
Data Collection, Processing, Analysis and more

Learning Path

Java: Data 
Science Made 
Easy

Richard M. Reese, Jennifer L. Reese,
Alexey Grigorev



Java: Data Science Made Easy

Data collection, processing, analysis, and more

A course in two modules

BIRMINGHAM - MUMBAI



Java: Data Science Made Easy
Copyright © 2017 Packt Publishing

All rights reserved. No part of this course may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this course is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this course.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Published on: July 2017

Production reference: 1040717

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.
ISBN 978-1-78847-565-5

www.packtpub.com

http://www.packtpub.com


Credits

Authors
Richard M. Reese
Jennifer L. Reese
Alexey Grigorev

Content Development Editor
Mayur Pawanikar

Reviewers
Walter Molina
Shilpi Saxena
Stanislav Bashkyrtsev
Luca Massaron
Prashant Verma

Production Coordinator
Arvindkumar Gupta



Chapter 1: Getting Started with Data Science 7

Problems solved using data science 8
Understanding the data science problem - solving approach 9

Using Java to support data science 10
Acquiring data for an application 11
The importance and process of cleaning data 12
Visualizing data to enhance understanding 14
The use of statistical methods in data science 15
Machine learning applied to data science 17
Using neural networks in data science 19
Deep learning approaches 22
Performing text analysis 23
Visual and audio analysis 25
Improving application performance using parallel techniques 27
Assembling the pieces 29
Summary 29

Chapter 2: Data Acquisition 30

Understanding the data formats used in data science applications 31
Overview of CSV data 32
Overview of spreadsheets 32
Overview of databases 33
Overview of PDF files 35
Overview of JSON 36
Overview of XML 36
Overview of streaming data 37
Overview of audio/video/images in Java 38

Data acquisition techniques 39
Using the HttpUrlConnection class 39
Web crawlers in Java 40

Creating your own web crawler 42
Using the crawler4j web crawler 45

Web scraping in Java 48

Module 1: Java for Data Science



[ ii ]

Using API calls to access common social media sites 52
Using OAuth to authenticate users 52
Handing Twitter 52
Handling Wikipedia 55
Handling Flickr 58
Handling YouTube 61

Searching by keyword 62
65Summary 

Chapter 3: Data Cleaning 66

Handling data formats 67
Handling CSV data 68
Handling spreadsheets 70

Handling Excel spreadsheets 71
Handling PDF files 72
Handling JSON 74

Using JSON streaming API 74
Using the JSON tree API 79

The nitty gritty of cleaning text 80
Using Java tokenizers to extract words 82

Java core tokenizers 83
Third-party tokenizers and libraries 83

Transforming data into a usable form 85
Simple text cleaning 85
Removing stop words 87

Finding words in text 89
Finding and replacing text 90

Data imputation 92
Subsetting data 95
Sorting text 96
Data validation 100

Validating data types 101
Validating dates 102
Validating e-mail addresses 104
Validating ZIP codes 106
Validating names 106

Cleaning images 107
Changing the contrast of an image 108
Smoothing an image 109
Brightening an image 111
Resizing an image 112
Converting images to different formats 113

Summary 114



[ iii ]

Chapter 4: Data Visualization 115

Understanding plots and graphs 116
Visual analysis goals 122

Creating index charts 123
Creating bar charts 126

Using country as the category 128
Using decade as the category 130

Creating stacked graphs 133
Creating pie charts 135
Creating scatter charts 138
Creating histograms 140
Creating donut charts 143
Creating bubble charts 145
Summary 148

Chapter 5: Statistical Data Analysis Techniques 149

Working with mean, mode, and median 150
Calculating the mean 150

Using simple Java techniques to find mean 150
Using Java 8 techniques to find mean 151
Using Google Guava to find mean 152
Using Apache Commons to find mean 152

Calculating the median 153
Using simple Java techniques to find median 153
Using Apache Commons to find the median 155

Calculating the mode 155
Using ArrayLists to find multiple modes 157
Using a HashMap to find multiple modes 158
Using a Apache Commons to find multiple modes 159

Standard deviation 159
Sample size determination 162
Hypothesis testing 162
Regression analysis 163

Using simple linear regression 165
Using multiple regression 168

Summary 175

Chapter 6: Machine Learning 176

Supervised learning techniques 177
Decision trees 178

Decision tree types 179
Decision tree libraries 179



[ iv ]

Using a decision tree with a book dataset 180
Testing the book decision tree 184

Support vector machines 185
Using an SVM for camping data 188
Testing individual instances 191

Bayesian networks 192
Using a Bayesian network 193

Unsupervised machine learning 196
Association rule learning 196

Using association rule learning to find buying relationships 198
Reinforcement learning 200
Summary 201

Chapter 7: Neural Networks 203

Training a neural network 205
Getting started with neural network architectures 206

Understanding static neural networks 207
A basic Java example 207

Understanding dynamic neural networks 215
Multilayer perceptron networks 215

Building the model 216
Evaluating the model 218
Predicting other values 219
Saving and retrieving the model 220

Learning vector quantization 220
Self-Organizing Maps 221

Using a SOM 221
Displaying the SOM results 222

Additional network architectures and algorithms 226
The k-Nearest Neighbors algorithm 226
Instantaneously trained networks 226
Spiking neural networks 227
Cascading neural networks 227
Holographic associative memory 227
Backpropagation and neural networks 228

Summary 228

Chapter 8: Deep Learning 229

Deeplearning4j architecture 230
Acquiring and manipulating data 231

Reading in a CSV file 231
Configuring and building a model 232

Using hyperparameters in ND4J 233



[ v ]

Instantiating the network model 235
Training a model 235
Testing a model 236

Deep learning and regression analysis 237
Preparing the data 237
Setting up the class 238
Reading and preparing the data 238
Building the model 239
Evaluating the model 240

Restricted Boltzmann Machines 242
Reconstruction in an RBM 243
Configuring an RBM 244

Deep autoencoders 245
Building an autoencoder in DL4J 246

Configuring the network 246
Building and training the network 248
Saving and retrieving a network 248
Specialized autoencoders 248

Convolutional networks 249
Building the model 249
Evaluating the model 252

Recurrent Neural Networks 253
Summary 254

Chapter 9: Text Analysis 255

Implementing named entity recognition 256
Using OpenNLP to perform NER 257
Identifying location entities 258

Classifying text 260
Word2Vec and Doc2Vec 260
Classifying text by labels 260
Classifying text by similarity 263

Understanding tagging and POS 266
Using OpenNLP to identify POS 266
Understanding POS tags 268

Extracting relationships from sentences 269
Using OpenNLP to extract relationships 270

Sentiment analysis 272
Downloading and extracting the Word2Vec model 273
Building our model and classifying text 276

Summary 278



[ vi ]

Chapter 10: Visual and Audio Analysis 280

Text-to-speech 281
Using FreeTTS 283
Getting information about voices 285
Gathering voice information 287

Understanding speech recognition 288
Using CMUPhinx to convert speech to text 289
Obtaining more detail about the words 290

Extracting text from an image 292
Using Tess4j to extract text 292

Identifying faces 293
Using OpenCV to detect faces 294

Classifying visual data 296
Creating a Neuroph Studio project for classifying visual images 297
Training the model 304

Summary 309

Chapter 11: Mathematical and Parallel Techniques for Data Analysis 310

Implementing basic matrix operations 311
Using GPUs with DeepLearning4j 313

Using map-reduce 315
Using Apache's Hadoop to perform map-reduce 315
Writing the map method 316
Writing the reduce method 317
Creating and executing a new Hadoop job 318

Various mathematical libraries 320
Using the jblas API 320
Using the Apache Commons math API 321
Using the ND4J API 322

Using OpenCL 324
Using Aparapi 324

Creating an Aparapi application 325
Using Aparapi for matrix multiplication 328

Using Java 8 streams 330
Understanding Java 8 lambda expressions and streams 331
Using Java 8 to perform matrix multiplication 332
Using Java 8 to perform map-reduce 333

Summary 335

Chapter 12: Bringing It All Together 337



[ vii ]

Defining the purpose and scope of our application 338
Understanding the application's architecture 338
Data acquisition using Twitter 342
Understanding the TweetHandler class 344

Extracting data for a sentiment analysis model 346
Building the sentiment model 347
Processing the JSON input 348
Cleaning data to improve our results 349
Removing stop words 350
Performing sentiment analysis 351
Analysing the results 351

Other optional enhancements 352
Summary 353

Chapter 1: Data Science Using Java 355

Data science 356
Machine learning 357

Supervised learning 358
Unsupervised learning 359

Clustering 359
Dimensionality reduction 359

Natural Language Processing 360
Data science process models 361

CRISP-DM 361
A running example 363

Data science in Java 364
Data science libraries 365

Data processing libraries 365
Math and stats libraries 367
Machine learning and data mining libraries 367
Text processing 368

Summary 369

Chapter 2: Data Processing Toolbox 370

Standard Java library 370
Collections 371
Input/Output 372

Reading input data 372
Writing ouput data 374

Streaming API 375
Extensions to the standard library 378

Module 2: Mastering Java for Data Science



[ viii ]

Apache Commons 378
Commons Lang 378
Commons IO 379
Commons Collections 380
Other commons modules 380

Google Guava 381
AOL Cyclops React 385

Accessing data 386
Text data and CSV 386
Web and HTML 388
JSON 391
Databases 393
DataFrames 396

Search engine - preparing data 398
Summary 402

Chapter 3: Exploratory Data Analysis 403

Exploratory data analysis in Java 403
Search engine datasets 404
Apache Commons Math 405
Joinery 408

Interactive Exploratory Data Analysis in Java 410
JVM languages 410

Interactive Java 411
Joinery shell 412

Summary 417

Chapter 4: Supervised Learning - Classification and Regression 418

Classification 419
Binary classification models 419

Smile 420
JSAT 422
LIBSVM and LIBLINEAR 424
Encog 431

Evaluation 432
Accuracy 433
Precision, recall, and F1 434
ROC and AU ROC (AUC) 436
Result validation 439
K-fold cross-validation 442
Training, validation, and testing 444

Case study - page prediction 446
Regression 450



[ ix ]

Machine learning libraries for regression 451
Smile 451
JSAT 452
Other libraries 453

Evaluation 453
MSE 453
MAE 454

Case study - hardware performance 454
Summary 460

Chapter 5: Unsupervised Learning - Clustering and Dimensionality
Reduction 461

Dimensionality reduction 462
Unsupervised dimensionality reduction 462
Principal Component Analysis 463
Truncated SVD 467
Truncated SVD for categorical and sparse data 470

Random projection 476
Cluster analysis 479

Hierarchical methods 480
K-means 487

Choosing K in K-Means 488
DBSCAN 490

Clustering for supervised learning 491
Clusters as features 491
Clustering as dimensionality reduction 492
Supervised learning via clustering 495

Evaluation 496
Manual evaluation 496
Supervised evaluation 497
Unsupervised Evaluation 499

Summary 500

Chapter 6: Working with Text - Natural Language Processing and
Information Retrieval 501

Natural Language Processing and information retrieval 502
Vector Space Model - Bag of Words and TF-IDF 502

Vector space model implementation 505
Indexing and Apache Lucene 511
Natural Language Processing tools 515

Stanford CoreNLP 515
Customizing Apache Lucene 519

Machine learning for texts 521



[ x ]

Unsupervised learning for texts 521
Latent Semantic Analysis 521
Text clustering 525
Word embeddings 527

Supervised learning for texts 536
Text classification 537
Learning to rank for information retrieval 540

Reranking with Lucene 545
Summary 548

Chapter 7: Extreme Gradient Boosting 549

Gradient Boosting Machines and XGBoost 549
Installing XGBoost 550

XGBoost in practice 553
XGBoost for classification 553

Parameter tuning 560
Text features 562
Feature importance 563

XGBoost for regression 564
XGBoost for learning to rank 568

Summary 573

Chapter 8: Deep Learning with DeepLearning4J 574

Neural Networks and DeepLearning4J 574
ND4J - N-dimensional arrays for Java 575
Neural networks in DeepLearning4J 578
Convolutional Neural Networks 588

Deep learning for cats versus dogs 594
Reading the data 595
Creating the model 598
Monitoring the performance 602
Data augmentation 609
Running DeepLearning4J on GPU 612

Summary 617

Chapter 9: Scaling Data Science 618

Apache Hadoop 619
Hadoop MapReduce 619
Common Crawl 620

Apache Spark 630
Link prediction 633

Reading the DBLP graph 634



[ xi ]

Extracting features from the graph 636
Node features 638
Negative sampling 642
Edge features 647
Link Prediction with MLlib and XGBoost 652
Link suggestion 657

Summary 662

Chapter 10: Deploying Data Science Models 663

Microservices 664
Spring Boot 664
Search engine service 665

Online evaluation 675
A/B testing 675
Multi-armed bandits 680

Summary 683

Bibliography 684

Index 685



Preface
Data science is concerned with extracting knowledge and insights from a wide variety of
data sources to analyze patterns or predict future behavior. It draws from a wide array of
disciplines including statistics, computer science, mathematics, machine learning, and data
mining. In this course, we cover the basic as well as advanced data science concepts and
how they are implemented using the popular Java tools and libraries.

The course starts with an introduction of data science, followed by the basic data science
tasks of data collection, data cleaning, data analysis, and data visualization. This is followed
by a discussion of statistical techniques and more advanced topics including machine
learning, neural networks, and deep learning. You will examine the major categories of data
analysis including text, visual, and audio data, followed by a discussion of resources that
support parallel implementation. Throughout this course, the chapters will illustrate a
challenging data science problem, and then go on to present a comprehensive, Java-based
solution to tackle that problem. You will cover a wide range of topics – from classification
and regression, to dimensionality reduction and clustering, deep learning and working with
Big Data. Finally, you will see the different ways to deploy the model and evaluate it in
production settings.

By the end of this course, you will be up and running with various facets of data science
using Java, in no time at all.

What this learning path covers
Module 1, Java for data science, this module takes an expansive yet cursory approach to
various aspects of data science. A brief introduction to the field is presented in the first
chapter. Subsequent chapters cover significant aspects of data science, such as data cleaning
and the application of neural networks. The last chapter combines topics discussed
throughout the book to create a comprehensive data science application.

Module 2, Mastering Java for data science, in this module we will see how we can utilize
Java’s toolbox for processing small and large datasets, then look into doing initial
exploration data analysis.



Preface

[ 2 ]

Next, we will review the Java libraries that implement common Machine Learning models
for classification, regression, clustering, and dimensionality reduction problems. Then we
will get into more advanced techniques and discuss Information Retrieval and Natural
Language Processing, XGBoost, deep learning, and large scale tools for processing big
datasets such as Apache Hadoop and Apache Spark. Finally, we will also have a look at
how to evaluate and deploy the produced models such that the other services can use them.

What you need for this learning path
Many of the examples in the book use Java 8 features. There are a number of Java APIs
demonstrated, each of which is introduced before it is applied. An IDE is not required but is
desirable.

You need to have any latest system with at least 2GB RAM and a Windows 7 /Ubuntu
14.04/Mac OS X operating system. Further, you will need to have Java 1.8.0 or above and
Maven 3.0.0 or above installed.

Who this learning path is for
This course is meant for Java developers who are comfortable developing applications in
Java, and now want to enter the world of data science or wish to build intelligent
applications. Aspiring data scientists with some understanding of the Java programming
language will also find this book to be very helpful. If you are willing to build efficient data
science applications and bring them in the enterprise environment without changing your
existing Java stack, this book is for you!

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Here, we
create SummaryStatistics objects and add all body content lengths."

A block of code is set as follows:

SummaryStatistics statistics = new SummaryStatistics();
data.stream().mapToDouble(RankedPage::getBodyContentLength)
    .forEach(statistics::addValue);
System.out.println(statistics.getSummary());



Preface

[ 3 ]

Any command-line input or output is written as follows:

mvn dependency:copy-dependencies -DoutputDirectory=lib
mvn compile

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "If, instead, our model
outputs some score such that the higher the values of the score the more likely the item is to
be positive, then the binary classifier is called a ranking classifier."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at h t t p ://w w w . p

a c k t p u b . c o m . If you purchased this book elsewhere, you can visit h t t p ://w w w . p a c k t p u b . c

o m /s u p p o r t and register to have the files e-mailed directly to you.

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support


Preface

[ 4 ]

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at h t t p s ://g i t h u b . c o m /P a c k t P u b l

i s h i n g /M a s t e r i n g - J a v a - f o r - D a t a - S c i e n c e . We also have other code bundles from our
rich catalog of books and videos available at h t t p s ://g i t h u b . c o m /P a c k t P u b l i s h i n g /.
Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from h t t p s ://w w w . p a c k t p u b . c o m /s i t e s /d e f a u l t /f i l e s /d o w n

l o a d s /M a s t e r i n g J a v a f o r D a t a S c i e n c e _ C o l o r I m a g e s . p d f .

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting h t t p ://w w w . p a c k t p u b . c o m /s u b m i t - e r r a t a , selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/Java-Data-Science-Made-Easy
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringJavaforDataScience_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata


Preface

[ 5 ]

To view the previously submitted errata, go to h t t p s ://w w w . p a c k t p u b . c o m /b o o k s /c o n t e n

t /s u p p o r t and enter the name of the book in the search field. The required information will
appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support


Module 1

Java for Data Science

Examine the techniques and Java tools supporting the growing field of data science



1
Getting Started with Data

Science
Data science is not a single science as much as it is a collection of various scientific
disciplines integrated for the purpose of analyzing data. These disciplines include various
statistical and mathematical techniques, including:

Computer science
Data engineering
Visualization
Domain-specific knowledge and approaches

With the advent of cheaper storage technology, more and more data has been collected and
stored permitting previously unfeasible processing and analysis of data. With this analysis
came the need for various techniques to make sense of the data. These large sets of data,
when used to analyze data and identify trends and patterns, become known as big data.

This in turn gave rise to cloud computing and concurrent techniques such as map-reduce,
which distributed the analysis process across a large number of processors, taking
advantage of the power of parallel processing.

The process of analyzing big data is not simple and evolves to the specialization of
developers who were known as data scientists. Drawing upon a myriad of technologies
and expertise, they are able to analyze data to solve problems that previously were either
not envisioned or were too difficult to solve.



Getting Started with Data Science

[ 8 ]

Early big data applications were typified by the emergence of search engines capable of
more powerful and accurate searches than their predecessors. For example, AltaVista was
an early popular search engine that was eventually superseded by Google. While big data
applications were not limited to these search engine functionalities, these applications laid
the groundwork for future work in big data.

The term, data science, has been used since 1974 and evolved over time to include statistical
analysis of data. The concepts of data mining and data analytics have been associated with
data science. Around 2008, the term data scientist appeared and was used to describe a
person who performs data analysis. A more in-depth discussion of the history of data 
science can be found at h t t p ://w w w . f o r b e s . c o m /s i t e s /g i l p r e s s /2013/05/28/a - v e r y - s h

o r t - h i s t o r y - o f - d a t a - s c i e n c e /#3d 9e a 08369f d .

This book aims to take a broad look at data science using Java and will briefly touch on
many topics. It is likely that the reader may find topics of interest and pursue these at
greater depth independently. The purpose of this book, however, is simply to introduce the
reader to the significant data science topics and to illustrate how they can be addressed
using Java.

There are many algorithms used in data science. In this book, we do not attempt to explain
how they work except at an introductory level. Rather, we are more interested in explaining
how they can be used to solve problems. Specifically, we are interested in knowing how
they can be used with Java.

Problems solved using data science
The various data science techniques that we will illustrate have been used to solve a variety
of problems. Many of these techniques are motivated to achieve some economic gain, but
they have also been used to solve many pressing social and environmental problems.
Problem domains where these techniques have been used include finance, optimizing
business processes, understanding customer needs, performing DNA analysis, foiling
terrorist plots, and finding relationships between transactions to detect fraud, among many
other data-intensive problems.

Data mining is a popular application area for data science. In this activity, large quantities
of data are processed and analyzed to glean information about the dataset, to provide
meaningful insights, and to develop meaningful conclusions and predictions. It has been
used to analyze customer behavior, detecting relationships between what may appear to be
unrelated events, and to make predictions about future behavior.

http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd
http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/#3d9ea08369fd


Getting Started with Data Science

[ 9 ]

Machine learning is an important aspect of data science. This technique allows the
computer to solve various problems without needing to be explicitly programmed. It has
been used in self-driving cars, speech recognition, and in web searches. In data mining, the
data is extracted and processed. With machine learning, computers use the data to take
some sort of action.

Understanding the data science problem -
solving approach
Data science is concerned with the processing and analysis of large quantities of data to
create models that can be used to make predictions or otherwise support a specific goal.
This process often involves the building and training of models. The specific approach to
solve a problem is dependent on the nature of the problem. However, in general, the
following are the high-level tasks that are used in the analysis process:

Acquiring the data: Before we can process the data, it must be acquired. The data
is frequently stored in a variety of formats and will come from a wide range of
data sources.
Cleaning the data: Once the data has been acquired, it often needs to be
converted to a different format before it can be used. In addition, the data needs
to be processed, or cleaned, so as to remove errors, resolve inconsistencies, and
otherwise put it in a form ready for analysis.
Analyzing the data: This can be performed using a number of techniques
including:

Statistical analysis: This uses a multitude of statistical approaches
to provide insight into data. It includes simple techniques and
more advanced techniques such as regression analysis.
AI analysis: These can be grouped as machine learning, neural
networks, and deep learning techniques:

Machine learning approaches are characterized by
programs that can learn without being specifically
programmed to complete a specific task
Neural networks are built around models patterned
after the neural connection of the brain
Deep learning attempts to identify higher levels of
abstraction within a set of data



Getting Started with Data Science

[ 10 ]

Text analysis: This is a common form of analysis, which works
with natural languages to identify features such as the names of
people and places, the relationship between parts of text, and the
implied meaning of text.
Data visualization: This is an important analysis tool. By
displaying the data in a visual form, a hard-to-understand set of
numbers can be more readily understood.
Video, image, and audio processing and analysis: This is a more
specialized form of analysis, which is becoming more common as
better analysis techniques are discovered and faster processors
become available. This is in contrast to the more common text
processing and analysis tasks.

Complementing this set of tasks is the need to develop applications that are efficient. The
introduction of machines with multiple processors and GPUs contributes significantly to
the end result.

While the exact steps used will vary by application, understanding these basic steps
provides the basis for constructing solutions to many data science problems.

Using Java to support data science
Java and its associated third-party libraries provide a range of support for the development
of data science applications. There are numerous core Java capabilities that can be used,
such as the basic string processing methods. The introduction of lambda expressions in Java
8 helps enable more powerful and expressive means of building applications. In many of
the examples that follow in subsequent chapters, we will show alternative techniques using
lambda expressions.

There is ample support provided for the basic data science tasks. These include multiple
ways of acquiring data, libraries for cleaning data, and a wide variety of analysis
approaches for tasks such as natural language processing and statistical analysis. There are
also myriad of libraries supporting neural network types of analysis.

Java can be a very good choice for data science problems. The language provides both
object-oriented and functional support for solving problems. There is a large developer
community to draw upon and there exist multiple APIs that support data science tasks.
These are but a few reasons as to why Java should be used.



Getting Started with Data Science

[ 11 ]

The remainder of this chapter will provide an overview of the data science tasks and Java
support demonstrated in the book. Each section is only able to present a brief introduction
to the topics and the available support. The subsequent chapter will go into considerably
more depth regarding these topics.

Acquiring data for an application
Data acquisition is an important step in the data analysis process. When data is acquired, it
is often in a specialized form and its contents may be inconsistent or different from an
application's need. There are many sources of data, which are found on the Internet. Several
examples will be demonstrated in Chapter 2, Data Acquisition.

Data may be stored in a variety of formats. Popular formats for text data include HTML,
Comma Separated Values (CSV), JavaScript Object Notation (JSON), and XML. Image
and audio data are stored in a number of formats. However, it is frequently necessary to
convert one data format into another format, typically plain text.

For example, JSON (h t t p ://w w w . J S O N . o r g /) is stored using blocks of curly braces
containing key-value pairs. In the following example, parts of a YouTube result is shown:

    {
      "kind": "youtube#searchResult",
      "etag": etag,
      "id": {
        "kind": string,
        "videoId": string,
        "channelId": string,
        "playlistId": string
      },
      ...
    }

Data is acquired using techniques such as processing live streams, downloading
compressed files, and through screen scraping, where the information on a web page is
extracted. Web crawling is a technique where a program examines a series of web pages,
moving from one page to another, acquiring the data that it needs.

http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/


Getting Started with Data Science

[ 12 ]

With many popular media sites, it is necessary to acquire a user ID and password to access
data. A commonly used technique is OAuth, which is an open standard used to
authenticate users to many different websites. The technique delegates access to a server
resource and works over HTTPS. Several companies use OAuth 2.0, including PayPal,
Facebook, Twitter, and Yelp

The importance and process of cleaning
data
Once the data has been acquired, it will need to be cleaned. Frequently, the data will contain
errors, duplicate entries, or be inconsistent. It often needs to be converted to a simpler data
type such as text. Data cleaning is often referred to as data wrangling, reshaping, or
munging. They are effectively synonyms.

When data is cleaned, there are several tasks that often need to be performed, including
checking its validity, accuracy, completeness, consistency, and uniformity. For example,
when the data is incomplete, it may be necessary to provide substitute values.

Consider CSV data. It can be handled in one of several ways. We can use simple Java
techniques such as the String class' split method. In the following sequence, a string
array, csvArray, is assumed to hold comma-delimited data. The split method populates
a second array, tokenArray.

for(int i=0; i<csvArray.length; i++) {
    tokenArray[i] = csvArray[i].split(",");
}

More complex data types require APIs to retrieve the data. For example, in Chapter 3, Data
Cleaning, we will use the Jackson Project (https://github.com/FasterXML/jackson) to
retrieve fields from a JSON file. The example uses a file containing a JSON-formatted
presentation of a person, as shown next:

{
 "firstname":"Smith",
 "lastname":"Peter",
 "phone":8475552222,
 "address":["100 Main Street","Corpus","Oklahoma"]
}

https://github.com/FasterXML/jackson


Getting Started with Data Science

[ 13 ]

The code sequence that follows shows how to extract the values for fields of a person. A
parser is created, which uses getCurrentName to retrieve a field name. If the name is
firstname, then the getText method returns the value for that field. The other fields are
handled in a similar manner.

try {
    JsonFactory jsonfactory = new JsonFactory();
    JsonParser parser = jsonfactory.createParser(

new File("Person.json"));
    while (parser.nextToken() != JsonToken.END_OBJECT) {

String token = parser.getCurrentName();
if ("firstname".equals(token)) {

parser.nextToken();
String fname = parser.getText();
out.println("firstname : " + fname);

}
...

    }
    parser.close();
} catch (IOException ex) {
    // Handle exceptions
}

The output of this example is as follows:

firstname : Smith

Simple data cleaning may involve converting the text to lowercase, replacing certain text
with blanks, and removing multiple whitespace characters with a single blank. One way of
doing this is shown next, where a combination of the String class' toLowerCase,
replaceAll, and trim methods are used. Here, a string containing dirty text is processed:

dirtyText = dirtyText
    .toLowerCase()
    .replaceAll("[\\d[^\\w\\s]]+", "
    .trim();
while(dirtyText.contains("  ")){

dirtyText = dirtyText.replaceAll("  ", " ");
}

Stop words are words such as the, and, or but that do not always contribute to the analysis of
text. Removing these stop words can often improve the results and speed up the processing.



Getting Started with Data Science

[ 14 ]

The LingPipe API can be used to remove stop words. In the next code sequence, a
TokenizerFactory class instance is used to tokenize text. Tokenization is the process of
returning individual words. The EnglishStopTokenizerFactory class is a special
tokenizer that removes common English stop words.

text = text.toLowerCase().trim();
TokenizerFactory fact = IndoEuropeanTokenizerFactory.INSTANCE;
fact = new EnglishStopTokenizerFactory(fact);
Tokenizer tok = fact.tokenizer(
    text.toCharArray(), 0, text.length());
for(String word : tok){
      out.print(word + " ");
}

Consider the following text, which was pulled from the book, Moby Dick:

Call me Ishmael. Some years ago- never mind how long precisely - having
little or no money in my purse, and nothing particular to interest me
on shore, I thought I would sail about a little and see the watery part
of the world.

The output will be as follows:

call me ishmael . years ago - never mind how long precisely - having little
money my purse , nothing particular interest me shore , i thought i sail
little see watery part world .

These are just a couple of the data cleaning tasks discussed in Chapter 3, Data Cleaning.

Visualizing data to enhance understanding
The analysis of data often results in a series of numbers representing the results of the
analysis. However, for most people, this way of expressing results is not always intuitive. A
better way to understand the results is to create graphs and charts to depict the results and
the relationship between the elements of the result.

The human mind is often good at seeing patterns, trends, and outliers in visual
representation. The large amount of data present in many data science problems can be
analyzed using visualization techniques. Visualization is appropriate for a wide range of
audiences ranging from analysts to upper-level management to clientele. In this chapter, we
present various visualization techniques and demonstrate how they are supported in Java.



Getting Started with Data Science

[ 15 ]

In Chapter 4, Data Visualization, we illustrate how to create different types of graphs, plots,
and charts. These examples use JavaFX using a free library called GRAL
(http://trac.erichseifert.de/gral/).

Visualization allows users to examine large datasets in ways that provide insights that are
not present in the mass of the data. Visualization tools helps us identify potential problems
or unexpected data results and develop meaningful interpretations of the data.

For example, outliers, which are values that lie outside of the normal range of values, can be
hard to spot from a sea of numbers. Creating a graph based on the data allows users to
quickly see outliers. It can also help spot errors quickly and more easily classify data.

For example, the following chart might suggest that the upper two values should be outliers
that need to be dealt with:

The use of statistical methods in data
science
Statistical analysis is the key to many data science tasks. It is used for many types of
analysis ranging from the computation of simple mean and medium to complex multiple
regression analysis. Chapter 5, Statistical Data Analysis Techniques, introduces this type of
analysis and the Java support available.

http://trac.erichseifert.de/gral/


Getting Started with Data Science

[ 16 ]

Statistical analysis is not always an easy task. In addition, advanced statistical techniques
often require a particular mindset to fully comprehend, which can be difficult to learn.
Fortunately, many techniques are not that difficult to use and various libraries mitigate
some of these techniques' inherent complexity.

Regression analysis, in particular, is an important technique for analyzing data. The
technique attempts to draw a line that matches a set of data. An equation representing the
line is calculated and can be used to predict future behavior. There are several types of
regression analysis, including simple and multiple regression. They vary by the number of
variables being considered.

The following graph shows the straight line that closely matches a set of data points
representing the population of Belgium over several decades:



Getting Started with Data Science

[ 17 ]

Simple statistical techniques, such as mean and standard deviation, can be computed using
basic Java. They can also be handled by libraries such as Apache Commons. For example, to
calculate the median, we can use the Apache Commons DescriptiveStatistics class.
This is illustrated next where the median of an array of doubles is calculated. The numbers
are added to an instance of this class, as shown here:

double[] testData = {12.5, 18.3, 11.2, 19.0, 22.1, 14.3, 16.2,
    12.5, 17.8, 16.5, 12.5};
DescriptiveStatistics statTest =
    new SynchronizedDescriptiveStatistics();
for(double num : testData){
   statTest.addValue(num);
}

The getPercentile method returns the value stored at the percentile specified in its
argument. To find the median, we use the value of 50.

out.println("The median is " + statTest.getPercentile(50));

Our output is as follows:

The median is 16.2

In Chapter 5, Statistical Data Analysis Techniques, we will demonstrate how to perform
regression analysis using the Apache Commons SimpleRegression class.

Machine learning applied to data science
Machine learning has become increasingly important for data science analysis as it has been
for a multitude of other fields. A defining characteristic of machine learning is the ability of
a model to be trained on a set of representative data and then later used to solve similar
problems. There is no need to explicitly program an application to solve the problem. A
model is a representation of the real-world object.

For example, customer purchases can be used to train a model. Subsequently, predictions
can be made about the types of purchases a customer might subsequently make. This allows
an organization to tailor ads and coupons for a customer and potentially providing a better
customer experience.



Getting Started with Data Science

[ 18 ]

Training can be performed in one of several different approaches:

Supervised learning: The model is trained with annotated, labeled, data showing
corresponding correct results
Unsupervised learning: The data does not contain results, but the model is
expected to find relationships on its own
Semi-supervised: A small amount of labeled data is combined with a larger
amount of unlabeled data
Reinforcement learning: This is similar to supervised learning, but a reward is
provided for good results

There are several approaches that support machine learning. In Chapter 6, Machine
Learning, we will illustrate three techniques:

Decision trees: A tree is constructed using features of the problem as internal
nodes and the results as leaves
Support vector machines: This is used for classification by creating a hyperplane
that partitions the dataset and then makes predictions
Bayesian networks: This is used to depict probabilistic relationships between
events

A Support Vector Machine (SVM) is used primarily for classification type problems. The
approach creates a hyperplane to categorize data, which can be envisioned as a geometric
plane that separates two regions. In a two-dimensional space, it will be a line. In a three-
dimensional space, it will be a two-dimensional plane. In Chapter 6, Machine Learning, we
will demonstrate how to use the approach using a set of data relating to the propensity of
individuals to camp. We will use the Weka class, SMO, to demonstrate this type of analysis.

The following figure depicts a hyperplane using a distribution of two types of data points.
The lines represent possible hyperplanes that separate these points. The lines clearly
separate the data points except for one outlier.



Getting Started with Data Science

[ 19 ]

Once the model has been trained, the possible hyperplanes are considered and predictions
can then be made using similar data.

Using neural networks in data science
An Artificial Neural Network (ANN), which we will call a neural network, is based on the
neuron found in the brain. A neuron is a cell that has dendrites connecting it to input
sources and other neurons. Depending on the input source, a weight allocated to a source,
the neuron is activated, and then fires a signal down a dendrite to another neuron. A
collection of neurons can be trained to respond to a set of input signals.



Getting Started with Data Science

[ 20 ]

An artificial neuron is a node that has one or more inputs and a single output. Each input
has a weight assigned to it that can change over time. A neural network can learn by
feeding an input into a network, invoking an activation function, and comparing the
results. This function combines the inputs and creates an output. If outputs of multiple
neurons match the expected result, then the network has been trained correctly. If they
don't match, then the network is modified.

A neural network can be visualized as shown in the following figure, where Hidden Layer
is used to augment the process:

In Chapter 7, Neural Networks, we will use the Weka class, MultilayerPerceptron, to
illustrate the creation and use of a Multi Layer Perceptron (MLP) network. As we will
explain, this type of network is a feedforward neural network with multiple layers. The 
network uses supervised learning with backpropagation. The example uses a dataset called
dermatology.arff that contains 366 instances that are used to diagnose erythemato-
squamous diseases. It uses 34 attributes to classify the disease into one of the five different
categories.



Getting Started with Data Science

[ 21 ]

The dataset is split into a training set and a testing set. Once the data has been read, the
MLP instance is created and initialized using the method to configure the attributes of the
model, including how quickly the model is to learn and the amount of time spent training
the model.

String trainingFileName = "dermatologyTrainingSet.arff";
String testingFileName = "dermatologyTestingSet.arff";

try (FileReader trainingReader = new FileReader(trainingFileName);
        FileReader testingReader =
            new FileReader(testingFileName)) {
    Instances trainingInstances = new Instances(trainingReader);
    trainingInstances.setClassIndex(
        trainingInstances.numAttributes() - 1);
    Instances testingInstances = new Instances(testingReader);
    testingInstances.setClassIndex(
        testingInstances.numAttributes() - 1);

    MultilayerPerceptron mlp = new MultilayerPerceptron();
    mlp.setLearningRate(0.1);
    mlp.setMomentum(0.2);
    mlp.setTrainingTime(2000);
    mlp.setHiddenLayers("3");
          mlp.buildClassifier(trainingInstances);
       ...
} catch (Exception ex) {
    // Handle exceptions
}

The model is then evaluated using the testing data:

Evaluation evaluation = new Evaluation(trainingInstances);
evaluation.evaluateModel(mlp, testingInstances);

The results can then be displayed:

System.out.println(evaluation.toSummaryString());

The truncated output of this example is shown here where the number of correctly and
incorrectly identified diseases are listed:

Correctly Classified Instances 73 98.6486 %
Incorrectly Classified Instances 1 1.3514 %

The various attributes of the model can be tweaked to improve the model. In Chapter 7,
Neural Networks, we will discuss this and other techniques in more depth.



Getting Started with Data Science

[ 22 ]

Deep learning approaches
Deep learning networks are often described as neural networks that use multiple
intermediate layers. Each layer will train on the outputs of a previous layer potentially
identifying features and subfeatures of a dataset. The features refer to those aspects of the
data that may be of interest. In Chapter 8, Deep Learning, we will examine these types of
networks and how they can support several different data science tasks.

These networks often work with unstructured and unlabeled datasets, which is the vast
majority of the data available today. A typical approach is to take the data, identify features,
and then use these features and their corresponding layers to reconstruct the original
dataset, thus validating the network. The Restricted Boltzmann Machines (RBM) is a good
example of the application of this approach.

The deep learning network needs to ensure that the results are accurate and minimizes any
error that can creep into the process. This is accomplished by adjusting the internal weights
assigned to neurons based on what is known as gradient descent. This represents the slope
of the weight changes. The approach modifies the weight so as to minimize the error and
also speeds up the learning process.

There are several types of networks that have been classified as a deep learning network.
One of these is an autoencoder network. In this network, the layers are symmetrical where
the number of input values is the same as the number of output values and the intermediate
layers effectively compress the data to a single smaller internal layer. Each layer of the
autoencoder is a RBM.

This structure is reflected in the following example, which will extract the numbers found
in a set of images containing hand-written numbers. The details of the complete example
are not shown here, but notice that 1,000 input and output values are used along with
internal layers consisting of RBMs. The size of the layers are specified in the nOut and nIn
methods.

MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
        .seed(seed)
        .iterations(numberOfIterations)
        .optimizationAlgo(
           OptimizationAlgorithm.LINE_GRADIENT_DESCENT)
        .list()
        .layer(0, new RBM.Builder()
            .nIn(numberOfRows * numberOfColumns).nOut(1000)
            .lossFunction(LossFunctions.LossFunction.RMSE_XENT)
            .build())
        .layer(1, new RBM.Builder().nIn(1000).nOut(500)
            .lossFunction(LossFunctions.LossFunction.RMSE_XENT)



Getting Started with Data Science

[ 23 ]

.build())
.layer(2, new RBM.Builder().nIn(500).nOut(250)

.lossFunction(LossFunctions.LossFunction.RMSE_XENT)

.build())
.layer(3, new RBM.Builder().nIn(250).nOut(100)

.lossFunction(LossFunctions.LossFunction.RMSE_XENT)

.build())
.layer(4, new RBM.Builder().nIn(100).nOut(30)

.lossFunction(LossFunctions.LossFunction.RMSE_XENT)

.build()) //encoding stops
.layer(5, new RBM.Builder().nIn(30).nOut(100)

.lossFunction(LossFunctions.LossFunction.RMSE_XENT)

.build()) //decoding starts
.layer(6, new RBM.Builder().nIn(100).nOut(250)

.lossFunction(LossFunctions.LossFunction.RMSE_XENT)

.build())
.layer(7, new RBM.Builder().nIn(250).nOut(500)

.lossFunction(LossFunctions.LossFunction.RMSE_XENT)

.build())
.layer(8, new RBM.Builder().nIn(500).nOut(1000)

.lossFunction(LossFunctions.LossFunction.RMSE_XENT)

.build())
.layer(9, new OutputLayer.Builder(

LossFunctions.LossFunction.RMSE_XENT).nIn(1000)
.nOut(numberOfRows * numberOfColumns).build())

.pretrain(true).backprop(true)

.build();

Once the model has been trained, it can be used for predictive and searching tasks. With a
search, the compressed middle layer can be used to match other compressed images that
need to be classified.

Performing text analysis
The field of Natural Language Processing (NLP) is used for many different tasks including
text searching, language translation, sentiment analysis, speech recognition, and
classification to mention a few. Processing text is difficult due to a number of reasons,
including the inherent ambiguity of natural languages.



Getting Started with Data Science

[ 24 ]

There are several different types of processing that can be performed such as:

Identifying Stop words: These are words that are common and may not be
necessary for processing
Name Entity Recognition (NER): This is the process of identifying elements of
text such as people's names, location, or things
Parts of Speech (POS): This identifies the grammatical parts of a sentence such as
noun, verb, adjective, and so on
Relationships: Here we are concerned with identifying how parts of text are
related to each other, such as the subject and object of a sentence

As with most data science problems, it is important to preprocess and clean text. In Chapter
9, Text Analysis, we examine the support Java provides for this area of data science.

For example, we will use Apache's OpenNLP (https://opennlp.apache.org/) library to
find the parts of speech. This is just one of the several NLP APIs that we could have used 
including LingPipe (h t t p ://a l i a s - i . c o m /l i n g p i p e /), Apache UIMA (h t t p s ://u i m a . a p a

c h e . o r g /), and Standford NLP (h t t p ://n l p . s t a n f o r d . e d u /). We chose OpenNLP because
it is easy to use for this example.

In the following example, a model used to identify POS elements is found in the en-pos-
maxent.bin file. An array of words is initialized and the POS model is created:

try (InputStream input = new FileInputStream(
        new File("en-pos-maxent.bin"));) {
    String sentence = "Let's parse this sentence.";
    ...
    String[] words;
    ...
    list.toArray(words);
    POSModel posModel = new POSModel(input);
    ...
} catch (IOException ex) {
    // Handle exceptions
}

https://opennlp.apache.org/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
http://nlp.stanford.edu/
http://nlp.stanford.edu/
http://nlp.stanford.edu/
http://nlp.stanford.edu/
http://nlp.stanford.edu/
http://nlp.stanford.edu/
http://nlp.stanford.edu/
http://nlp.stanford.edu/
http://nlp.stanford.edu/
http://nlp.stanford.edu/
http://nlp.stanford.edu/
http://nlp.stanford.edu/
http://nlp.stanford.edu/
http://nlp.stanford.edu/
http://nlp.stanford.edu/
http://nlp.stanford.edu/
http://nlp.stanford.edu/
http://nlp.stanford.edu/
http://nlp.stanford.edu/
http://nlp.stanford.edu/
http://nlp.stanford.edu/
http://nlp.stanford.edu/
http://nlp.stanford.edu/
http://nlp.stanford.edu/
http://nlp.stanford.edu/
http://nlp.stanford.edu/
http://nlp.stanford.edu/
http://nlp.stanford.edu/
http://nlp.stanford.edu/
http://nlp.stanford.edu/
http://nlp.stanford.edu/
http://nlp.stanford.edu/
http://nlp.stanford.edu/
http://nlp.stanford.edu/
http://nlp.stanford.edu/
http://nlp.stanford.edu/
http://nlp.stanford.edu/
http://nlp.stanford.edu/
http://nlp.stanford.edu/
http://nlp.stanford.edu/
http://nlp.stanford.edu/


Getting Started with Data Science

[ 25 ]

The tag method is passed an array of words and returns an array of tags. The words and
tags are then displayed.

String[] posTags = posTagger.tag(words);
for(int i=0; i<posTags.length; i++) {
    out.println(words[i] + " - " + posTags[i]);
}

The output for this example is as follows

Let's - NNP
parse - NN
this - DT
sentence. - NN

The abbreviations NNP and DT stand for a singular proper noun and determiner
respectively. We examine several other NLP techniques in Chapter 9, Text Analysis.

Visual and audio analysis
In Chapter 10, Visual and Audio Analysis, we demonstrate several Java techniques for
processing sounds and images. We begin by demonstrating techniques for sound
processing, including speech recognition and text-to-speech APIs. Specifically, we will use
the FreeTTS (http://freetts.sourceforge.net/docs/index.php) API to convert text to
speech. We also include a demonstration of the CMU Sphinx toolkit for speech recognition.

The Java Speech API (JSAPI)
(http://www.oracle.com/technetwork/java/index-140170.html) supports speech
technology. This API, created by third-party vendors, supports speech recognition and
speech synthesizers. FreeTTS and Festival
(http://www.cstr.ed.ac.uk/projects/festival/) are examples of vendors supporting
JSAPI.

In the second part of the chapter, we examine image processing techniques such as facial
recognition. This demonstration involves identifying faces within an image and is easy to 
accomplish using OpenCV (h t t p ://o p e n c v . o r g /).

Also, in Chapter 10, Visual and Audio Analysis, we demonstrate how to extract text from
images, a process known as OCR. A common data science problem involves extracting and
analyzing text embedded in an image. For example, the information contained in license
plate, road signs, and directions can be significant.

http://freetts.sourceforge.net/docs/index.php
http://www.oracle.com/technetwork/java/index-140170.html
http://www.cstr.ed.ac.uk/projects/festival/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/


Getting Started with Data Science

[ 26 ]

In the following example, explained in more detail in Chapter 11, Mathematical and Parallel
Techniques for Data Analysis accomplishes OCR using Tess4j (h t t p ://t e s s 4j . s o u r c e f o r g e .

n e t /) a Java JNA wrapper for Tesseract OCR API. We perform OCR on an image captured
from the Wikipedia article on OCR
(https://en.wikipedia.org/wiki/Optical_character_recognition#Applications),
shown here

The ITesseract interface provides numerous OCR methods. The doOCR method takes a
file and returns a string containing the words found in the file as shown here:

ITesseract instance = new Tesseract();
try {
    String result = instance.doOCR(new File("OCRExample.png"));
    System.out.println(result);
} catch (TesseractException e) {
    System.err.println(e.getMessage());
}

A part of the output is shown next:

OCR engines nave been developed into many lunds oiobiectorlented OCR
applicatlons, sucn as reoeipt OCR, involoe OCR, check OCR, legal billing
document OCR
They can be used ior
- Data entry ior business documents, e g check, passport, involoe, bank
statement and receipt
- Automatic number plate recognnlon

As you can see, there are numerous errors in this example that need to be addressed. We
build upon this example in Chapter 11, Mathematical and Parallel Techniques for Data
Analysis, with a discussion of enhancements and considerations to ensure the OCR process
is as effective as possible.

http://tess4j.sourceforge.net/
http://tess4j.sourceforge.net/
http://tess4j.sourceforge.net/
http://tess4j.sourceforge.net/
http://tess4j.sourceforge.net/
http://tess4j.sourceforge.net/
http://tess4j.sourceforge.net/
http://tess4j.sourceforge.net/
http://tess4j.sourceforge.net/
http://tess4j.sourceforge.net/
http://tess4j.sourceforge.net/
http://tess4j.sourceforge.net/
http://tess4j.sourceforge.net/
http://tess4j.sourceforge.net/
http://tess4j.sourceforge.net/
http://tess4j.sourceforge.net/
http://tess4j.sourceforge.net/
http://tess4j.sourceforge.net/
http://tess4j.sourceforge.net/
http://tess4j.sourceforge.net/
http://tess4j.sourceforge.net/
http://tess4j.sourceforge.net/
http://tess4j.sourceforge.net/
http://tess4j.sourceforge.net/
http://tess4j.sourceforge.net/
http://tess4j.sourceforge.net/
http://tess4j.sourceforge.net/
http://tess4j.sourceforge.net/
http://tess4j.sourceforge.net/
http://tess4j.sourceforge.net/
http://tess4j.sourceforge.net/
http://tess4j.sourceforge.net/
http://tess4j.sourceforge.net/
http://tess4j.sourceforge.net/
http://tess4j.sourceforge.net/
http://tess4j.sourceforge.net/
http://tess4j.sourceforge.net/
http://tess4j.sourceforge.net/
http://tess4j.sourceforge.net/
http://tess4j.sourceforge.net/
http://tess4j.sourceforge.net/
http://tess4j.sourceforge.net/
http://tess4j.sourceforge.net/
http://tess4j.sourceforge.net/
http://tess4j.sourceforge.net/
http://tess4j.sourceforge.net/
http://tess4j.sourceforge.net/
http://tess4j.sourceforge.net/
http://tess4j.sourceforge.net/
http://tess4j.sourceforge.net/
https://en.wikipedia.org/wiki/Optical_character_recognition


Getting Started with Data Science

[ 27 ]

We will conclude the chapter with a discussion of NeurophStudio, a neural network Java-
based editor, to classify images and perform image recognition. We train a neural network
to recognize and classify faces in this section.

Improving application performance using
parallel techniques
In Chapter 11, Mathematical and Parallel Techniques for Data Analysis, we consider some of
the parallel techniques available for data science applications. Concurrent execution of a
program can significantly improve performance. In relation to data science, these
techniques range from low-level mathematical calculations to higher-level API-specific
options.

This chapter includes a discussion of basic performance enhancement considerations.
Algorithms and application architecture matter as much as enhanced code, and this should
be considered when attempting to integrate parallel techniques. If an application does not
behave in the expected or desired manner, any gains from parallel optimizing are
irrelevant.

Matrix operations are essential to many data applications and supporting APIs. We will
include a discussion in this chapter about matrix multiplication and how it is handled using
a variety of approaches. Even though these operations are often hidden within the API, it
can be useful to understand how they are supported.

One approach we demonstrate utilizes the Apache Commons Math API
(http://commons.apache.org/proper/commons-math/). This API supports a large number
of mathematical and statistical operations, including matrix multiplication. The following
example illustrates how to perform matrix multiplication.

We first declare and initialize matrices A and B:

double[][] A = {
    {0.1950, 0.0311},
    {0.3588, 0.2203},
    {0.1716, 0.5931},
    {0.2105, 0.3242}};

double[][] B = {
    {0.0502, 0.9823, 0.9472},
    {0.5732, 0.2694, 0.916}};

http://commons.apache.org/proper/commons-math/


Getting Started with Data Science

[ 28 ]

Apache Commons uses the RealMatrix class to store a matrix. Next, we use the
Array2DRowRealMatrix constructor to create the corresponding matrices for A and B:

RealMatrix aRealMatrix = new Array2DRowRealMatrix(A);
RealMatrix bRealMatrix = new Array2DRowRealMatrix(B);

We perform multiplication simply using the multiply method:

RealMatrix cRealMatrix = aRealMatrix.multiply(bRealMatrix);

Finally, we use a for loop to display the results:

for (int i = 0; i < cRealMatrix.getRowDimension(); i++) {
    System.out.println(cRealMatrix.getRowVector(i));
}

The output is as follows:

{0.02761552; 0.19992684; 0.2131916}
{0.14428772; 0.41179806; 0.54165016}
{0.34857924; 0.32834382; 0.70581912}
{0.19639854; 0.29411363; 0.4963528}

Another approach to concurrent processing involves the use of Java threads. Threads are
used by APIs such as Aparapi when multiple CPUs or GPUs are not available.

Data science applications often take advantage of the map-reduce algorithm. We will
demonstrate parallel processing by using Apache's Hadoop to perform map-reduce.
Designed specifically for large datasets, Hadoop reduces processing time for large scale
data science projects. We demonstrate a technique for calculating the average value of a
large dataset.

We also include examples of APIs that support multiple processors, including CUDA and
OpenCL. CUDA is supported using Java bindings for CUDA (JCuda) (h t t p ://j c u d a . o r g /).
We also discuss OpenCL and its Java support. The Aparapi API provides high-level
support for using multiple CPUs or GPUs and we include a demonstration of Aparapi in
support of matrix multiplication.

http://jcuda.org/
http://jcuda.org/
http://jcuda.org/
http://jcuda.org/
http://jcuda.org/
http://jcuda.org/
http://jcuda.org/
http://jcuda.org/
http://jcuda.org/
http://jcuda.org/
http://jcuda.org/
http://jcuda.org/
http://jcuda.org/
http://jcuda.org/
http://jcuda.org/
http://jcuda.org/
http://jcuda.org/
http://jcuda.org/
http://jcuda.org/
http://jcuda.org/
http://jcuda.org/
http://jcuda.org/
http://jcuda.org/
http://jcuda.org/
http://jcuda.org/
http://jcuda.org/
http://jcuda.org/


Getting Started with Data Science

[ 29 ]

Assembling the pieces
In the final chapter of this book, we will tie together many of the techniques explored in the
previous chapters. We will create a simple console-based application for acquiring data
from Twitter and performing various types of data manipulation and analysis. Our goal in
this chapter is to demonstrate a simple project exploring a variety of data science concepts
and provide insights and considerations for future projects.

Specifically, the application developed in the final chapter performs several high-level
tasks, including data acquisition, data cleaning, sentiment analysis, and basic statistical
collection. We demonstrate these techniques using Java 8 Streams and focus on Java 8
approaches whenever possible.

Summary
Data science is a broad, diverse field of study and it would be impossible to explore
exhaustively within this book. We hope to provide a solid understanding of important data
science concepts and equip the reader for further study. In particular, this book will provide
concrete examples of different techniques for all stages of data science related inquiries.
This ranges from data acquisition and cleaning to detailed statistical analysis.

So let's start with a discussion of data acquisition and how Java supports it as illustrated in
the next chapter.



2
Data Acquisition

It is never much fun to work with code that is not formatted properly or uses variable
names that do not convey their intended purpose. The same can be said of data, except that
bad data can result in inaccurate results. Thus, data acquisition is an important step in the
analysis of data. Data is available from a number of sources but must be retrieved and
ultimately processed before it can be useful. It is available from a variety of sources. We can
find it in numerous public data sources as simple files, or it may be found in more complex
forms across the Internet. In this chapter, we will demonstrate how to acquire data from
several of these, including various Internet sites and several social media sites.

We can access data from the Internet by downloading specific files or through a process
known as web scraping, which involves extracting the contents of a web page. We also
explore a related topic known as web crawling, which involves applications that examine a
web site to determine whether it is of interest and then follows embedded links to identify
other potentially relevant pages.

We can also extract data from social media sites. These types of sites often hold a treasure
trove of data that is readily available if we know how to access it. In this chapter, we will
demonstrate how to extract data from several sites, including:

Twitter
Wikipedia
Flickr
YouTube



Data Acquisition

[ 31 ]

When extracting data from a site, many different data formats may be encountered. We will
examine three basic types: text, audio, and video. However, even within text, audio, and
video data, many formats exist. For audio data alone, there are 45 audio coding formats
compared at h t t p s ://e n . w i k i p e d i a . o r g /w i k i /C o m p a r i s o n _ o f _ a u d i o _ c o d i n g _ f o r m a t s .
For textual data, there are almost 300 formats listed at
http://fileinfo.com/filetypes/text. In this chapter, we will focus on how to download
and extract these types of text as plain text for eventual processing.

We will briefly examine different data formats, followed by an examination of possible data
sources. We need this knowledge to demonstrate how to obtain data using different data
acquisition techniques.

Understanding the data formats used in data
science applications
When we discuss data formats, we are referring to content format, as opposed to the
underlying file format, which may not even be visible to most developers. We cannot
examine all available formats due to the vast number of formats available. Instead, we will
tackle several of the more common formats, providing adequate examples to address the
most common data retrieval needs. Specifically, we will demonstrate how to retrieve data
stored in the following formats:

HTML
PDF
CSV/TSV
Spreadsheets
Databases
JSON
XML

Some of these formats are well supported and documented elsewhere. For example, XML
has been in use for years and there are several well-established techniques for accessing
XML data in Java. For these types of data, we will outline the major techniques available
and show a few examples to illustrate how they work. This will provide those readers who
are not familiar with the technology some insight into their nature.

https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
https://en.wikipedia.org/wiki/Comparison_of_audio_coding_formats
http://fileinfo.com/filetypes/text


Data Acquisition

[ 32 ]

The most common data format is binary files. For example, Word, Excel, and PDF
documents are all stored in binary. These require special software to extract information
from them. Text data is also very common.

Overview of CSV data
Comma Separated Values (CSV) files, contain tabular data organized in a row-column
format. The data, stored as plaintext, is stored in rows, also called records. Each record
contains fields separated by commas. These files are also closely related to other delimited
files, most notably Tab-Separated Values (TSV) files. The following is a part of a simple
CSV file, and these numbers are not intended to represent any specific type of data:

JURISDICTION NAME,COUNT PARTICIPANTS,COUNT FEMALE,PERCENT FEMALE
10001,44,22,0.5
10002,35,19,0.54
10003,1,1,1

Notice that the first row contains header data to describe the subsequent records. Each
value is separated by a comma and corresponds to the header in the same position. In
Chapter 3, Data Cleaning, we will discuss CSV files in more depth and examine the support
available for different types of delimiters.

Overview of spreadsheets
Spreadsheets are a form of tabular data where information is stored in rows and columns,
much like a two-dimensional array. They typically contain numeric and textual information
and use formulas to summarize and analyze their contents. Most people are familiar with
Excel spreadsheets, but they are also found as part of other product suites, such as
OpenOffice.

Spreadsheets are an important data source because they have been used for the past several
decades to store information in many industries and applications. Their tabular nature
makes them easy to process and analyze. It is important to know how to extract data from
this ubiquitous data source so that we can take advantage of the wealth of information that
is stored in them.



Data Acquisition

[ 33 ]

For some of our examples, we will use a simple Excel spreadsheet that consists of a series of
rows containing an ID, along with minimum, maximum, and average values. These
numbers are not intended to represent any specific type of data. The spreadsheet looks like
this:

ID Minimum Maximum Average

12345 45 89 65.55

23456 78 96 86.75

34567 56 89 67.44

45678 86 99 95.67

In Chapter 3, Data Cleaning, we will learn how to extract data from spreadsheets.

Overview of databases
Data can be found in Database Management Systems (DBMS), which, like spreadsheets,
are ubiquitous. Java provides a rich set of options for accessing and processing data in a
DBMS. The intent of this section is to provide a basic introduction to database access using
Java.

We will demonstrate the essence of connecting to a database, storing information, and
retrieving information using JDBC. For this example, we used the MySQL DBMS. However,
it will work for other DBMSes as well with a change in the database driver. We created a
database called example and a table called URLTABLE using the following command within
the MySQL Workbench. There are other tools that can achieve the same results:

CREATE TABLE IF NOT EXISTS `URLTABLE` (
  `RecordID` INT(11) NOT NULL AUTO_INCREMENT,
  `URL` text NOT NULL,
  PRIMARY KEY (`RecordID`)
);

We start with a try block to handle exceptions. A driver is needed to connect to the DBMS.
In this example, we used com.mysql.jdbc.Driver. To connect to the database, the
getConnection method is used, where the database server location, user ID, and
password are passed. These values depend on the DBMS used:

    try {
Class.forName("com.mysql.jdbc.Driver");
String url = "jdbc:mysql://localhost:3306/example";



Data Acquisition

[ 34 ]

        connection = DriverManager.getConnection(url, "user ID",
            "password");
            ...
    } catch (SQLException | ClassNotFoundException ex) {
        // Handle exceptions
    }

Next, we will illustrate how to add information to the database and then how to read it. The
SQL INSERT command is constructed in a string. The name of the MySQL database is
example. This command will insert values into the URLTABLE table in the database where
the question mark is a placeholder for the value to be inserted:

    String insertSQL = "INSERT INTO  `example`.`URLTABLE` "
        + "(`url`) VALUES " + "(?);";

The PreparedStatement class represents an SQL statement to execute. The
prepareStatement method creates an instance of the class using the INSERT SQL
statement:

    PreparedStatement stmt = connection.prepareStatement(insertSQL);

We then add URLs to the table using the setString method and the execute method. The
setString method possesses two arguments. The first specifies the column index to insert
the data and the second is the value to be inserted. The execute method does the actual
insertion. We add two URLs in the next sequence:

    stmt.setString(1, "https://en.wikipedia.org/wiki/Data_science");
    stmt.execute();
    stmt.setString(1,
      "https://en.wikipedia.org/wiki/Bishop_Rock,_Isles_of_Scilly");
    stmt.execute();

To read the data, we use a SQL SELECT statement as declared in the selectSQL string. This
will return all the rows and columns from the URLTABLE table. The createStatement
method creates an instance of a Statement class, which is used for INSERT type
statements. The executeQuery method executes the query and returns a ResultSet
instance that holds the contents of the table:

    String selectSQL = "select * from URLTABLE";
    Statement statement = connection.createStatement();
    ResultSet resultSet = statement.executeQuery(selectSQL);



Data Acquisition

[ 35 ]

The following sequence iterates through the table, displaying one row at a time. The
argument of the getString method specifies that we want to use the second column of the
result set, which corresponds to the URL field:

    out.println("List of URLs");
    while (resultSet.next()) {
        out.println(resultSet.getString(2));
    }

The output of this example, when executed, is as follows:

List of URLs
https://en.wikipedia.org/wiki/Data_science
https://en.wikipedia.org/wiki/Bishop_Rock,_Isles_of_Scilly

If you need to empty the contents of the table, use the following sequence:

    Statement statement = connection.createStatement();
    statement.execute("TRUNCATE URLTABLE;");

This was a brief introduction to database access using Java. There are many resources
available that will provide more in-depth coverage of this topic. For example, Oracle
provides a more in-depth introduction to this topic at h t t p s ://d o c s . o r a c l e . c o m /j a v a s e /t

u t o r i a l /j d b c /.

Overview of PDF files
The Portable Document Format (PDF) is a format not tied to a specific platform or software
application. A PDF document can hold formatted text and images. PDF is an open standard,
making it useful in a variety of places.

There are a large number of documents stored as PDF, making it a valuable source of data.
There are several Java APIs that allow access to PDF documents, including Apache POI and
PDFBox. Techniques for extracting information from a PDF document are illustrated in
Chapter 3, Data Cleaning.

https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javase/tutorial/jdbc/


Data Acquisition

[ 36 ]

Overview of JSON
JavaScript Object Notation (JSON) (h t t p ://w w w . J S O N . o r g /) is a data format used to 
interchange data. It is easy for humans or machines to read and write. JSON is supported by
many languages, including Java, which has several JSON libraries listed at h t t p ://w w w . J S O

N . o r g /.

A JSON entity is composed of a set of name-value pairs enclosed in curly braces. We will
use this format in several of our examples. In handling YouTube, we will use a JSON object,
some of which is shown next, representing the results of a request from a YouTube video:

{
  "kind": "youtube#searchResult",
  "etag": "etag",
  "id": {
    "kind": string,
    "videoId": string,
    "channelId": string,
    "playlistId": string
  },
  ...
}

Accessing the fields and values of such a document is not hard and is illustrated in Chapter
3, Data Cleaning.

Overview of XML
Extensible Markup Language (XML) is a markup language that specifies a standard
document format. Widely used to communicate between applications and across the
Internet, XML is popular due to its relative simplicity and flexibility. Documents encoded in
XML are character-based and easily read by machines and humans.

XML documents contain markup and content characters. These characters allow parsers to
classify the information contained within the document. The document consists of tags, and
elements are stored within the tags. Elements may also contain other markup tags and form
child elements. Additionally, elements may contain attributes or specific characteristics
stored as a name-and-value pair.

An XML document must be well-formed. This means it must follow certain rules such as
always using closing tags and only a single root tag. Other rules are discussed at h t t p s ://e

n . w i k i p e d i a . o r g /w i k i /X M L #W e l l - f o r m e d n e s s _ a n d _ e r r o r - h a n d l i n g .

http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling
https://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling


Data Acquisition

[ 37 ]

The Java API for XML Processing (JAXP) consists of three interfaces for parsing XML data.
The Document Object Model (DOM) interface parses an XML document and returns a tree
structure delineating the structure of the document. The DOM interface parses an entire
document as a whole. Alternatively, the Simple API for XML (SAX) parses a document one
element at a time. SAX is preferable when memory usage is a concern as DOM requires
more resources to construct the tree. DOM, however, offers flexibility over SAX in that any
element can be accessed at any time and in any order.

The third Java API is known as Streaming API for XML (StAX). This streaming model was
designed to accommodate the best parts of DOM and SAX models by granting flexibility
without sacrificing resources. StAX exhibits higher performance, with the trade-off being
that access is only available to one location in a document at a time. StAX is the preferred
technique if you already know how you want to process the document, but it is also
popular for applications with limited available memory.

The following is a simple XML file. Each <text> represents a tag, labelling the element
contained within the tags. In this case, the largest node in our file is <music> and contained
within it are sets of song data. Each tag within a <song> tag describes another element
corresponding to that song. Every tag will eventually have a closing tag, such as </song>.
Notice that the first tag contains information about which XML version should be used to
parse the file:

<?xml version="1.0"?>
<music>
   <song id="1234">
      <artist>Patton, Courtney</artist>
      <name>So This Is Life</name>
      <genre>Country</genre>
      <price>2.99</price>
   </song>
   <song id="5678">
      <artist>Eady, Jason</artist>
      <name>AM Country Heaven</name>
      <genre>Country</genre>
      <price>2.99</price>
   </song>
</music>

There are numerous other XML-related technologies. For example, we can validate a
specific XML document using either a DTD document or XML schema writing specifically
for that XML document. XML documents can be transformed into a different format using
XLST.



Data Acquisition

[ 38 ]

Overview of streaming data
Streaming data refers to data generated in a continuous stream and accessed in a sequential,
piece-by-piece manner. Much of the data the average Internet user accesses is streamed,
including video and audio channels, or text and image data on social media sites. Streaming
data is the preferred method when the data is new and changing quickly, or when large
data collections are sought.

Streamed data is often ideal for data science research because it generally exists in large
quantities and raw format. Much public streaming data is available for free and supported
by Java APIs. In this chapter, we are going to examine how to acquire data from streaming
sources, including Twitter, Flickr, and YouTube. Despite the use of different techniques and
APIs, you will notice similarities between the techniques used to pull data from these sites.

Overview of audio/video/images in Java
There are a large number of formats used to represent images, videos, and audio. This type
of data is typically stored in binary format. Analog audio streams are sampled and
digitized. Images are often simply collections of bits representing the color of a pixel. The
following are links that provide a more in-depth discussion of some of these formats:

Audio: h t t p s ://e n . w i k i p e d i a . o r g /w i k i /A u d i o _ f i l e _ f o r m a t

Images:h t t p s ://e n . w i k i p e d i a . o r g /w i k i /I m a g e _ f i l e _ f o r m a t s

Video: h t t p s ://e n . w i k i p e d i a . o r g /w i k i /V i d e o _ f i l e _ f o r m a t

Frequently, this type of data can be quite large and must be compressed. When data is
compressed two approaches are used. The first is a lossless compression, where less space is
used and there is no loss of information. The second is lossy, where information is lost.
Losing information is not always a bad thing as sometimes the loss is not noticeable to
humans.

As we will demonstrate in Chapter 3, Data Cleaning, this type of data often is compromised
in an inconvenient fashion and may need to be cleaned. For example, there may be
background noise in an audio recording or an image may need to be smoothed before it can
be processed. Image smoothing is demonstrated in Chapter 3, Data Cleaning, using the
OpenCV library.

https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Audio_file_format
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format
https://en.wikipedia.org/wiki/Video_file_format


Data Acquisition

[ 39 ]

Data acquisition techniques
In this section, we will illustrate how to acquire data from web pages. Web pages contain a
potential bounty of useful information. We will demonstrate how to access web pages using
several technologies, starting with a low-level approach supported by the
HttpUrlConnection class. To find pages, a web crawler application is often used. Once a
useful page has been identified, then information needs to be extracted from the page. This
is often performed using an HTML parser. Extracting this information is important because
it is often buried amid a clutter of HTML tags and JavaScript code.

Using the HttpUrlConnection class
The contents of a web page can be accessed using the HttpUrlConnection class. This is a
low-level approach that requires the developer to do a lot of footwork to extract relevant
content. However, he or she is able to exercise greater control over how the content is
handled. In some situations, this approach may be preferable to using other API libraries.

We will demonstrate how to download the content of Wikipedia's data science page using
this class. We start with a try/catch block to handle exceptions. A URL object is created
using the data science URL string. The openConnection method will create a connection to
the Wikipedia server as shown here:

    try {
URL url = new URL(

"https://en.wikipedia.org/wiki/Data_science");
HttpURLConnection connection = (HttpURLConnection)

url.openConnection();
...

    } catch (MalformedURLException ex) {
// Handle exceptions

    } catch (IOException ex) {
// Handle exceptions

    }

The connection object is initialized with an HTTP GET command. The connect method is
then executed to connect to the server:

    connection.setRequestMethod("GET");
    connection.connect();



Data Acquisition

[ 40 ]

Assuming no errors were encountered, we can determine whether the response was
successful using the getResponseCode method. A normal return value is 200. The content
of a web page can vary. For example, the getContentType method returns a string
describing the page's content. The getContentLength method returns its length:

    out.println("Response Code: " + connection.getResponseCode());
    out.println("Content Type: " + connection.getContentType());
    out.println("Content Length: " + connection.getContentLength());

Assuming that we get an HTML formatted page, the next sequence illustrates how to get
this content. A BufferedReader instance is created where one line at a time is read in from
the web site and appended to a BufferedReader instance. The buffer is then displayed:

    InputStreamReader isr = new InputStreamReader((InputStream)
        connection.getContent());
    BufferedReader br = new BufferedReader(isr);
    StringBuilder buffer = new StringBuilder();
    String line;
    do {
        line = br.readLine();
        buffer.append(line + "\n");
    } while (line != null);
    out.println(buffer.toString());

The abbreviated output is shown here:

Response Code: 200
Content Type: text/html; charset=UTF-8
Content Length: -1
<!DOCTYPE html>
<html lang="en" dir="ltr" class="client-nojs">
<head>
<meta charset="UTF-8"/>
<title>Data science - Wikipedia, the free encyclopedia</title>
<script>document.documentElement.className =
...
"wgHostname":"mw1251"});});</script>
</body>
</html>

While this is feasible, there are easier methods for getting the contents of a web page. One of
these techniques is discussed in the next section.



Data Acquisition

[ 41 ]

Web crawlers in Java
Web crawling is the process of traversing a series of interconnected web pages and
extracting relevant information from those pages. It does this by isolating and then
following links on a page. While there are many precompiled datasets readily available, it
may still be necessary to collect data directly off the Internet. Some sources such as news
sites are continually being updated and need to be revisited from time to time.

A web crawler is an application that visits various sites and collects information. The web
crawling process consists of a series of steps:

Select a URL to visit1.
Fetch the page2.
Parse the page3.
Extract relevant content4.
Extract relevant URLs to visit5.

This process is repeated for each URL visited.

There are several issues that need to be considered when fetching and parsing a page such
as:

Page importance: We do not want to process irrelevant pages.
Exclusively HTML: We will not normally follow links to images, for example.
Spider traps: We want to bypass sites that may result in an infinite number of
requests. This can occur with dynamically generated pages where one request
leads to another.
Repetition: It is important to avoid crawling the same page more than once.
Politeness: Do not make an excessive number of requests to a website. Observe
the robot.txt files; they specify which parts of a site should not be crawled.



Data Acquisition

[ 42 ]

The process of creating a web crawler can be daunting. For all but the simplest needs, it is
recommended that one of several open source web crawlers be used. A partial list follows:

Nutch: h t t p ://n u t c h . a p a c h e . o r g

crawler4j: h t t p s ://g i t h u b . c o m /y a s s e r g /c r a w l e r 4j

JSpider: h t t p ://j - s p i d e r . s o u r c e f o r g e . n e t /

WebSPHINX: h t t p ://w w w . c s . c m u . e d u /~r c m /w e b s p h i n x /

Heritrix: h t t p s ://w e b a r c h i v e . j i r a . c o m /w i k i /d i s p l a y /H e r i t r i x

We can either create our own web crawler or use an existing crawler and in this chapter we
will examine both approaches. For specialized processing, it can be desirable to use a
custom crawler. We will demonstrate how to create a simple web crawler in Java to provide
more insight into how web crawlers work. This will be followed by a brief discussion of
other web crawlers.

Creating your own web crawler
Now that we have a basic understanding of web crawlers, we are ready to create our own.
In this simple web crawler, we will keep track of the pages visited using ArrayList
instances. In addition, jsoup will be used to parse a web page and we will limit the number
of pages we visit. Jsoup (h t t p s ://j s o u p . o r g /) is an open source HTML parser. This
example demonstrates the basic structure of a web crawler and also highlights some of the
issues involved in creating a web crawler.

We will use the SimpleWebCrawler class, as declared here:

public class SimpleWebCrawler {

    private String topic;
    private String startingURL;
    private String urlLimiter;
    private final int pageLimit = 20;
    private ArrayList<String> visitedList = new ArrayList<>();
    private ArrayList<String> pageList = new ArrayList<>();
    ...
    public static void main(String[] args) {
        new SimpleWebCrawler();
    }

}

http://nutch.apache.org
http://nutch.apache.org
http://nutch.apache.org
http://nutch.apache.org
http://nutch.apache.org
http://nutch.apache.org
http://nutch.apache.org
http://nutch.apache.org
http://nutch.apache.org
http://nutch.apache.org
http://nutch.apache.org
http://nutch.apache.org
http://nutch.apache.org
http://nutch.apache.org
http://nutch.apache.org
http://nutch.apache.org
http://nutch.apache.org
http://nutch.apache.org
http://nutch.apache.org
http://nutch.apache.org
http://nutch.apache.org
http://nutch.apache.org
http://nutch.apache.org
http://nutch.apache.org
http://nutch.apache.org
http://nutch.apache.org
http://nutch.apache.org
http://nutch.apache.org
http://nutch.apache.org
http://nutch.apache.org
http://nutch.apache.org
http://nutch.apache.org
http://nutch.apache.org
http://nutch.apache.org
http://nutch.apache.org
http://nutch.apache.org
http://nutch.apache.org
http://nutch.apache.org
http://nutch.apache.org
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
http://j-spider.sourceforge.net/
http://j-spider.sourceforge.net/
http://j-spider.sourceforge.net/
http://j-spider.sourceforge.net/
http://j-spider.sourceforge.net/
http://j-spider.sourceforge.net/
http://j-spider.sourceforge.net/
http://j-spider.sourceforge.net/
http://j-spider.sourceforge.net/
http://j-spider.sourceforge.net/
http://j-spider.sourceforge.net/
http://j-spider.sourceforge.net/
http://j-spider.sourceforge.net/
http://j-spider.sourceforge.net/
http://j-spider.sourceforge.net/
http://j-spider.sourceforge.net/
http://j-spider.sourceforge.net/
http://j-spider.sourceforge.net/
http://j-spider.sourceforge.net/
http://j-spider.sourceforge.net/
http://j-spider.sourceforge.net/
http://j-spider.sourceforge.net/
http://j-spider.sourceforge.net/
http://j-spider.sourceforge.net/
http://j-spider.sourceforge.net/
http://j-spider.sourceforge.net/
http://j-spider.sourceforge.net/
http://j-spider.sourceforge.net/
http://j-spider.sourceforge.net/
http://j-spider.sourceforge.net/
http://j-spider.sourceforge.net/
http://j-spider.sourceforge.net/
http://j-spider.sourceforge.net/
http://j-spider.sourceforge.net/
http://j-spider.sourceforge.net/
http://j-spider.sourceforge.net/
http://j-spider.sourceforge.net/
http://j-spider.sourceforge.net/
http://j-spider.sourceforge.net/
http://j-spider.sourceforge.net/
http://j-spider.sourceforge.net/
http://j-spider.sourceforge.net/
http://j-spider.sourceforge.net/
http://j-spider.sourceforge.net/
http://j-spider.sourceforge.net/
http://j-spider.sourceforge.net/
http://j-spider.sourceforge.net/
http://j-spider.sourceforge.net/
http://j-spider.sourceforge.net/
http://j-spider.sourceforge.net/
http://j-spider.sourceforge.net/
http://j-spider.sourceforge.net/
http://j-spider.sourceforge.net/
http://j-spider.sourceforge.net/
http://j-spider.sourceforge.net/
http://j-spider.sourceforge.net/
http://j-spider.sourceforge.net/
http://www.cs.cmu.edu/~rcm/websphinx/
http://www.cs.cmu.edu/~rcm/websphinx/
http://www.cs.cmu.edu/~rcm/websphinx/
http://www.cs.cmu.edu/~rcm/websphinx/
http://www.cs.cmu.edu/~rcm/websphinx/
http://www.cs.cmu.edu/~rcm/websphinx/
http://www.cs.cmu.edu/~rcm/websphinx/
http://www.cs.cmu.edu/~rcm/websphinx/
http://www.cs.cmu.edu/~rcm/websphinx/
http://www.cs.cmu.edu/~rcm/websphinx/
http://www.cs.cmu.edu/~rcm/websphinx/
http://www.cs.cmu.edu/~rcm/websphinx/
http://www.cs.cmu.edu/~rcm/websphinx/
http://www.cs.cmu.edu/~rcm/websphinx/
http://www.cs.cmu.edu/~rcm/websphinx/
http://www.cs.cmu.edu/~rcm/websphinx/
http://www.cs.cmu.edu/~rcm/websphinx/
http://www.cs.cmu.edu/~rcm/websphinx/
http://www.cs.cmu.edu/~rcm/websphinx/
http://www.cs.cmu.edu/~rcm/websphinx/
http://www.cs.cmu.edu/~rcm/websphinx/
http://www.cs.cmu.edu/~rcm/websphinx/
http://www.cs.cmu.edu/~rcm/websphinx/
http://www.cs.cmu.edu/~rcm/websphinx/
http://www.cs.cmu.edu/~rcm/websphinx/
http://www.cs.cmu.edu/~rcm/websphinx/
http://www.cs.cmu.edu/~rcm/websphinx/
http://www.cs.cmu.edu/~rcm/websphinx/
http://www.cs.cmu.edu/~rcm/websphinx/
http://www.cs.cmu.edu/~rcm/websphinx/
http://www.cs.cmu.edu/~rcm/websphinx/
http://www.cs.cmu.edu/~rcm/websphinx/
http://www.cs.cmu.edu/~rcm/websphinx/
http://www.cs.cmu.edu/~rcm/websphinx/
http://www.cs.cmu.edu/~rcm/websphinx/
http://www.cs.cmu.edu/~rcm/websphinx/
http://www.cs.cmu.edu/~rcm/websphinx/
http://www.cs.cmu.edu/~rcm/websphinx/
http://www.cs.cmu.edu/~rcm/websphinx/
http://www.cs.cmu.edu/~rcm/websphinx/
http://www.cs.cmu.edu/~rcm/websphinx/
http://www.cs.cmu.edu/~rcm/websphinx/
http://www.cs.cmu.edu/~rcm/websphinx/
http://www.cs.cmu.edu/~rcm/websphinx/
http://www.cs.cmu.edu/~rcm/websphinx/
http://www.cs.cmu.edu/~rcm/websphinx/
http://www.cs.cmu.edu/~rcm/websphinx/
http://www.cs.cmu.edu/~rcm/websphinx/
http://www.cs.cmu.edu/~rcm/websphinx/
http://www.cs.cmu.edu/~rcm/websphinx/
http://www.cs.cmu.edu/~rcm/websphinx/
http://www.cs.cmu.edu/~rcm/websphinx/
http://www.cs.cmu.edu/~rcm/websphinx/
http://www.cs.cmu.edu/~rcm/websphinx/
http://www.cs.cmu.edu/~rcm/websphinx/
http://www.cs.cmu.edu/~rcm/websphinx/
http://www.cs.cmu.edu/~rcm/websphinx/
http://www.cs.cmu.edu/~rcm/websphinx/
http://www.cs.cmu.edu/~rcm/websphinx/
http://www.cs.cmu.edu/~rcm/websphinx/
http://www.cs.cmu.edu/~rcm/websphinx/
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://webarchive.jira.com/wiki/display/Heritrix
https://jsoup.org/
https://jsoup.org/
https://jsoup.org/
https://jsoup.org/
https://jsoup.org/
https://jsoup.org/
https://jsoup.org/
https://jsoup.org/
https://jsoup.org/
https://jsoup.org/
https://jsoup.org/
https://jsoup.org/
https://jsoup.org/
https://jsoup.org/
https://jsoup.org/
https://jsoup.org/
https://jsoup.org/
https://jsoup.org/
https://jsoup.org/
https://jsoup.org/
https://jsoup.org/
https://jsoup.org/
https://jsoup.org/
https://jsoup.org/
https://jsoup.org/
https://jsoup.org/
https://jsoup.org/
https://jsoup.org/
https://jsoup.org/


Data Acquisition

[ 43 ]

The instance variables are detailed here:

Variable Use

topic The keyword that needs to be in a page for the page to be accepted

startingURL The URL of the first page

urlLimiter A string that must be contained in a link before it will be followed

pageLimit The maximum number of pages to retrieve

visitedList The ArrayList containing pages that have already been visited

pageList An ArrayList containing the URLs of the pages of interest

In the SimpleWebCrawler constructor, we initialize the instance variables to begin the
search from the Wikipedia page for Bishop Rock, an island off the coast of Italy. This was
chosen to minimize the number of pages that might be retrieved. As we will see, there are
many more Wikipedia pages dealing with Bishop Rock than one might think.

The urlLimiter variable is set to Bishop_Rock, which will restrict the embedded links to
follow to just those containing that string. Each page of interest must contain the value
stored in the topic variable. The visitPage method performs the actual crawl:

    public SimpleWebCrawler() {
startingURL = h t t p s ://e n . w i k i p e d i a . o r g /w i k i /B i s h o p _ R o c k , "

+ "Isles_of_Scilly";
urlLimiter = "Bishop_Rock";
topic = "shipping route";
visitPage(startingURL);

    }

In the visitPage method, the pageList ArrayList is checked to see whether the
maximum number of accepted pages has been exceeded. If the limit has been exceeded,
then the search terminates:

    public void visitPage(String url) {
if (pageList.size() >= pageLimit) {

return;
}

...
    }

https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock
https://en.wikipedia.org/wiki/Bishop_Rock


Data Acquisition

[ 44 ]

If the page has already been visited, then we ignore it. Otherwise, it is added to the visited
list:

    if (visitedList.contains(url)) {
        // URL already visited
    } else {
        visitedList.add(url);
            ...
    }

Jsoup is used to parse the page and return a Document object. There are many different
exceptions and problems that can occur such as a malformed URL, retrieval timeouts, or
simply bad links. The catch block needs to handle these types of problems. We will
provide a more in-depth explanation of jsoup in web scraping in Java:

    try {
        Document doc = Jsoup.connect(url).get();
            ...
        }
    } catch (Exception ex) {
        // Handle exceptions
    }

If the document contains the topic text, then the link is displayed and added to the
pageList ArrayList. Each embedded link is obtained, and if the link contains the limiting
text, then the visitPage method is called recursively:

    if (doc.text().contains(topic)) {
        out.println((pageList.size() + 1) + ": [" + url + "]");
        pageList.add(url);

        // Process page links
        Elements questions = doc.select("a[href]");
        for (Element link : questions) {
            if (link.attr("href").contains(urlLimiter)) {
                visitPage(link.attr("abs:href"));
            }
        }
    }

This approach only examines links in those pages that contain the topic text. Moving the
for loop outside of the if statement will test the links for all pages.



Data Acquisition

[ 45 ]

The output follows:

1: [https://en.wikipedia.org/wiki/Bishop_Rock,_Isles_of_Scilly]
2: [https://en.wikipedia.org/wiki/Bishop_Rock_Lighthouse]
3:
[https://en.wikipedia.org/w/index.php?title=Bishop_Rock,_Isles_of_Scilly&ol
did=717634231#Lighthouse]
4:
[https://en.wikipedia.org/w/index.php?title=Bishop_Rock,_Isles_of_Scilly&di
ff=prev&oldid=717634231]
5:
[https://en.wikipedia.org/w/index.php?title=Bishop_Rock,_Isles_of_Scilly&ol
did=716622943]
6:
[https://en.wikipedia.org/w/index.php?title=Bishop_Rock,_Isles_of_Scilly&di
ff=prev&oldid=716622943]
7:
[https://en.wikipedia.org/w/index.php?title=Bishop_Rock,_Isles_of_Scilly&ol
did=716608512]
8:
[https://en.wikipedia.org/w/index.php?title=Bishop_Rock,_Isles_of_Scilly&di
ff=prev&oldid=716608512]
...
20:
[https://en.wikipedia.org/w/index.php?title=Bishop_Rock,_Isles_of_Scilly&di
ff=prev&oldid=716603919]

In this example, we did not save the results of the crawl in an external source. Normally this
is necessary and can be stored in a file or database.

Using the crawler4j web crawler
Here we will illustrate the use of the crawler4j (h t t p s ://g i t h u b . c o m /y a s s e r g /c r a w l e r 4j )
web crawler. We will use an adapted version of the basic crawler found at
https://github.com/yasserg/crawler4j/tree/master/src/test/java/edu/uci/ics/craw

ler4j/examples/basic. We will create two classes: CrawlerController and
SampleCrawler. The former class set ups the crawler while the latter contains the logic that
controls what pages will be processed.

As with our previous crawler, we will crawl the Wikipedia article dealing with Bishop
Rock. The results using this crawler will be smaller as many extraneous pages are ignored.

https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j/tree/master/src/test/java/edu/uci/ics/crawler4j/examples/basic
https://github.com/yasserg/crawler4j/tree/master/src/test/java/edu/uci/ics/crawler4j/examples/basic
https://github.com/yasserg/crawler4j/tree/master/src/test/java/edu/uci/ics/crawler4j/examples/basic


Data Acquisition

[ 46 ]

Let's look at the CrawlerController class first. There are several parameters that are used
with the crawler as detailed here:

Crawl storage folder: The location where crawl data is stored
Number of crawlers: This controls the number of threads used for the crawl
Politeness delay: How many seconds to pause between requests
Crawl depth: How deep the crawl will go
Maximum number of pages to fetch: How many pages to fetch
Binary data: Whether to crawl binary data such as PDF files

The basic class is shown here:

public class CrawlerController {

  public static void main(String[] args) throws Exception {
    int numberOfCrawlers = 2;
    CrawlConfig config = new CrawlConfig();
    String crawlStorageFolder = "data";

    config.setCrawlStorageFolder(crawlStorageFolder);
    config.setPolitenessDelay(500);
    config.setMaxDepthOfCrawling(2);
    config.setMaxPagesToFetch(20);
    config.setIncludeBinaryContentInCrawling(false);
    ...
  }
}

Next, the CrawlController class is created and configured. Notice the RobotstxtConfig
and RobotstxtServer classes used to handle robot.txt files. These files contain
instructions that are intended to be read by a web crawler. They provide direction to help a
crawler to do a better job such as specifying which parts of a site should not be crawled.
This is useful for auto generated pages:

    PageFetcher pageFetcher = new PageFetcher(config);
    RobotstxtConfig robotstxtConfig = new RobotstxtConfig();
    RobotstxtServer robotstxtServer =

new RobotstxtServer(robotstxtConfig, pageFetcher);
    CrawlController controller =

new CrawlController(config, pageFetcher, robotstxtServer);

The crawler needs to start at one or more pages. The addSeed method adds the starting
pages. While we used the method only once here, it can be used as many times as needed:

    controller.addSeed(



Data Acquisition

[ 47 ]

      "https://en.wikipedia.org/wiki/Bishop_Rock,_Isles_of_Scilly");

The start method will begin the crawling process:

    controller.start(SampleCrawler.class, numberOfCrawlers);

The SampleCrawler class contains two methods of interest. The first is the shouldVisit
method that determines whether a page will be visited and the visit method that actually
handles the page. We start with the class declaration and the declaration of a Java regular
expression class Pattern object. It will be one way of determining whether a page will be
visited. In this declaration, standard images are specified and will be ignored:

    public class SampleCrawler extends WebCrawler {
        private static final Pattern IMAGE_EXTENSIONS =
            Pattern.compile(".*\\.(bmp|gif|jpg|png)$");

        ...
    }

The shouldVisit method is passed a reference to the page where this URL was found
along with the URL. If any of the images match, the method returns false and the page is
ignored. In addition, the URL must start with h t t p s ://e n . w i k i p e d i a . o r g /w i k i /. We
added this to restrict our searches to the Wikipedia website:

    public boolean shouldVisit(Page referringPage, WebURL url) {
        String href = url.getURL().toLowerCase();
        if (IMAGE_EXTENSIONS.matcher(href).matches()) {
            return false;
        }
        return href.startsWith("https://en.wikipedia.org/wiki/");
    }

The visit method is passed a Page object representing the page being visited. In this
implementation, only those pages containing the string shipping route will be processed.
This further restricts the pages visited. When we find such a page, its URL, Text, and Text
length are displayed:

    public void visit(Page page) {
        String url = page.getWebURL().getURL();

        if (page.getParseData() instanceof HtmlParseData) {
            HtmlParseData htmlParseData =
                (HtmlParseData) page.getParseData();
            String text = htmlParseData.getText();
            if (text.contains("shipping route")) {
                out.println("\nURL: " + url);

https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/


Data Acquisition

[ 48 ]

                out.println("Text: " + text);
                out.println("Text length: " + text.length());
            }
        }
    }

The following is the truncated output of the program when executed:

URL: https://en.wikipedia.org/wiki/Bishop_Rock,_Isles_of_Scilly
Text: Bishop Rock, Isles of Scilly...From Wikipedia, the free encyclopedia
... Jump to: ... navigation, search For the Bishop Rock in the Pacific
Ocean, see Cortes Bank. Bishop Rock Bishop Rock Lighthouse (2005)
...
Text length: 14677

Notice that only one page was returned. This web crawler was able to identify and ignore
previous versions of the main web page.

We could perform further processing, but this example provides some insight into how the
API works. Significant amounts of information can be obtained when visiting a page. In the
example, we only used the URL and the length of the text. The following is a sample of
other data that you may be interested in obtaining:

URL path
Parent URL
Anchor
HTML text
Outgoing links
Document ID

Web scraping in Java
Web scraping is the process of extracting information from a web page. The page is
typically formatted using a series of HTML tags. An HTML parser is used to navigate
through a page or series of pages and to access the page's data or metadata.



Data Acquisition

[ 49 ]

Jsoup (h t t p s ://j s o u p . o r g /) is an open source Java library that facilitates extracting and
manipulating HTML documents using an HTML parser. It is used for a number of
purposes, including web scraping, extracting specific elements from an HTML page, and
cleaning up HTML documents.

There are several ways of obtaining an HTML document that may be useful. The HTML
document can be extracted from a:

URL
String
File

The first approach is illustrated next where the Wikipedia page for data science is loaded
into a Document object. This Jsoup object represents the HTML document. The connect
method connects to the site and the get method retrieves the document:

    try {
Document document = Jsoup.connect(

"https://en.wikipedia.org/wiki/Data_science").get();
...

} catch (IOException ex) {
// Handle exception

    }

Loading from a file uses the File class as shown next. The overloaded parse method uses
the file to create the document object:

    try {
File file = new File("Example.html");
Document document = Jsoup.parse(file, "UTF-8", "");
...

    } catch (IOException ex) {
// Handle exception

    }

The Example.html file follows:

<html>
<head><title>Example Document</title></head>
<body>
<p>The body of the document</p>
Interesting Links:
<br>
<a href="https://en.wikipedia.org/wiki/Data_science">Data Science</a>
<br>
<a href="https://en.wikipedia.org/wiki/Jsoup">Jsoup</a>

https://jsoup.org/
https://jsoup.org/
https://jsoup.org/
https://jsoup.org/
https://jsoup.org/
https://jsoup.org/
https://jsoup.org/
https://jsoup.org/
https://jsoup.org/
https://jsoup.org/
https://jsoup.org/
https://jsoup.org/
https://jsoup.org/
https://jsoup.org/
https://jsoup.org/
https://jsoup.org/
https://jsoup.org/
https://jsoup.org/
https://jsoup.org/
https://jsoup.org/
https://jsoup.org/
https://jsoup.org/
https://jsoup.org/
https://jsoup.org/
https://jsoup.org/
https://jsoup.org/
https://jsoup.org/
https://jsoup.org/
https://jsoup.org/


Data Acquisition

[ 50 ]

<br>
Images:
<br>
 <img src="eyechart.jpg" alt="Eye Chart">
</body>
</html>

To create a Document object from a string, we will use the following sequence where the
parse method processes the string that duplicates the previous HTML file:

    String html = "<html>\n"
        + "<head><title>Example Document</title></head>\n"
        + "<body>\n"
        + "<p>The body of the document</p>\n"
        + "Interesting Links:\n"
        + "<br>\n"
        + "<a href="https://en.wikipedia.org/wiki/Data_science">" +
          "DataScience</a>\n"
        + "<br>\n"
        + "<a href="https://en.wikipedia.org/wiki/Jsoup">" +
          "Jsoup</a>\n"
        + "<br>\n"
        + "Images:\n"
        + "<br>\n"
        + " <img src="eyechart.jpg" alt="Eye Chart"> \n"
        + "</body>\n"
        + "</html>";
    Document document = Jsoup.parse(html);

The Document class possesses a number of useful methods. The title method returns the
title. To get the text contents of the document, the select method is used. This method
uses a string specifying the element of a document to retrieve:

    String title = document.title();
    out.println("Title: " + title);
    Elements element = document.select("body");
    out.println("  Text: " + element.text());

The output for the Wikipedia data science page is shown here. It has been shortened to
conserve space:

Title: Data science - Wikipedia, the free encyclopedia
Text: Data science From Wikipedia, the free encyclopedia Jump to:
navigation, search Not to be confused with information science. Part of a
...
policy About Wikipedia Disclaimers Contact Wikipedia Developers Cookie
statement Mobile view



Data Acquisition

[ 51 ]

The parameter type of the select method is a string. By using a string, the type of
information selected is easily changed. Details on how to formulate this string are found at
the jsoup Javadocs for the Selector class at https://jsoup.org/apidocs/:

We can use the select method to retrieve the images in a document, as shown here:

    Elements images = document.select("img[src$=.png]");
    for (Element image : images) {

out.println("\nImage: " + image);
    }

The output for the Wikipedia data science page is shown here. It has been shortened to
conserve space:

Image: <img alt="Data Visualization" src="//upload.wikimedia.org/...>
Image: <img alt=""
src="//upload.wikimedia.org/wikipedia/commons/thumb/b/ba/...>

Links can be easily retrieved as shown next:

    Elements links = document.select("a[href]");
    for (Element link : links) {

out.println("Link: " + link.attr("href")
+ " Text: " + link.text());

    }

The output for the Example.html page is shown here:

Link: https://en.wikipedia.org/wiki/Data_science Text: Data Science
Link: https://en.wikipedia.org/wiki/Jsoup Text: Jsoup

jsoup possesses many additional capabilities. However, this example demonstrates the web
scraping process. There are also other Java HTML parsers available. A comparison of Java
HTML parser, among others, can be found at h t t p s ://e n . w i k i p e d i a . o r g /w i k i /C o m p a r i s

o n _ o f _ H T M L _ p a r s e r s .

https://jsoup.org/apidocs/
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers
https://en.wikipedia.org/wiki/Comparison_of_HTML_parsers


Data Acquisition

[ 52 ]

Using API calls to access common social media
sites
Social media contain a wealth of information that can be processed and is used by many
data analysis applications. In this section, we will illustrate how to access a few of these
sources using their Java APIs. Most of them require some sort of access key, which is
normally easy to obtain. We start with a discussion on the OAuth class, which provides one
approach to authenticating access to a data source.

When working with the type of data source, it is important to keep in mind that the data is
not always public. While it may be accessible, the owner of the data may be an individual
who does not necessarily want the information shared. Most APIs provide a means to
determine how the data can be distributed, and these requests should be honored. When
private information is used, permission from the author must be obtained.

In addition, these sites have limits on the number of requests that can be made. Keep this in
mind when pulling data from a site. If these limits need to be exceeded, then most sites
provide a way of doing this.

Using OAuth to authenticate users
OAuth is an open standard used to authenticate users to many different websites. A
resource owner effectively delegates access to a server resource without having to share
their credentials. It works over HTTPS. OAuth 2.0 succeeded OAuth and is not backwards
compatible. It provides client developers a simple way of providing authentication. Several
companies use OAuth 2.0 including PayPal, Comcast, and Blizzard Entertainment.

A list of OAuth 2.0 providers is found at h t t p s ://e n . w i k i p e d i a . o r g /w i k i /L i s t _ o f _ O A u t

h _ p r o v i d e r s . We will use several of these in our discussions.

Handing Twitter
The sheer volume of data and the popularity of the site, among celebrities and the general
public alike, make Twitter a valuable resource for mining social media data. Twitter is a
popular social media platform allowing users to read and post short messages called
tweets. Twitter provides API support for posting and pulling tweets, including streaming
data from all public users. While there are services available for pulling the entire set of
public tweet data, we are going to examine other options that, while limiting in the amount
of data retrieved at one time, are available at no cost.

https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers


Data Acquisition

[ 53 ]

We are going to focus on the Twitter API for retrieving streaming data. There are other
options for retrieving tweets from a specific user as well as posting data to a specific
account but we will not be addressing those in this chapter. The public stream API, at the
default access level, allows the user to pull a sample of public tweets currently streaming on
Twitter. It is possible to refine the data by specifying parameters to track keywords, specific
users, and location.

We are going to use HBC, a Java HTTP client, for this example. You can download a sample
HBC application at h t t p s ://g i t h u b . c o m /t w i t t e r /h b c . If you prefer to use a different
HTTP client, ensure it will return incremental response data. The Apache HTTP client is one
option. Before you can create the HTTP connection, you must first create a Twitter account
and an application within that account. To get started with the app, visit apps.twitter.com.
Once your app is created, you will be assigned a consumer key, consumer secret, access
token, and access secret token. We will also use OAuth, as discussed previously in this
chapter.

First, we will write a method to perform the authentication and request data from Twitter.
The parameters for our method are the authentication information given to us by Twitter
when we created our app. We will create a BlockingQueue object to hold our streaming
data. For this example, we will set a default capacity of 10,000. We will also specify our
endpoint and turn off stall warnings:

    public static void streamTwitter(
        String consumerKey, String consumerSecret,
        String accessToken, String accessSecret)
            throws InterruptedException {

        BlockingQueue<String> statusQueue =
            new LinkedBlockingQueue<String>(10000);
        StatusesSampleEndpoint ending =
            new StatusesSampleEndpoint();
        ending.stallWarnings(false);
        ...
    }

Next, we create an Authentication object using OAuth1, a variation of the OAuth class.
We can then build our connection client and complete the HTTP connection:

    Authentication twitterAuth = new OAuth1(consumerKey,
        consumerSecret, accessToken, accessSecret);
    BasicClient twitterClient = new ClientBuilder()
            .name("Twitter client")
            .hosts(Constants.STREAM_HOST)
            .endpoint(ending)
            .authentication(twitterAuth)

https://github.com/twitter/hbc
https://github.com/twitter/hbc
https://github.com/twitter/hbc
https://github.com/twitter/hbc
https://github.com/twitter/hbc
https://github.com/twitter/hbc
https://github.com/twitter/hbc
https://github.com/twitter/hbc
https://github.com/twitter/hbc
https://github.com/twitter/hbc
https://github.com/twitter/hbc
https://github.com/twitter/hbc
https://github.com/twitter/hbc
https://github.com/twitter/hbc
https://github.com/twitter/hbc
https://github.com/twitter/hbc
https://github.com/twitter/hbc
https://github.com/twitter/hbc
https://github.com/twitter/hbc
https://github.com/twitter/hbc
https://github.com/twitter/hbc
https://github.com/twitter/hbc
https://github.com/twitter/hbc
https://github.com/twitter/hbc
https://github.com/twitter/hbc
https://github.com/twitter/hbc
https://github.com/twitter/hbc
https://github.com/twitter/hbc
https://github.com/twitter/hbc
https://github.com/twitter/hbc
https://github.com/twitter/hbc
https://github.com/twitter/hbc
https://github.com/twitter/hbc
https://github.com/twitter/hbc
https://github.com/twitter/hbc
https://github.com/twitter/hbc
https://github.com/twitter/hbc
https://github.com/twitter/hbc
https://github.com/twitter/hbc
https://github.com/twitter/hbc
https://github.com/twitter/hbc
https://github.com/twitter/hbc
https://github.com/twitter/hbc
https://github.com/twitter/hbc
https://github.com/twitter/hbc
https://github.com/twitter/hbc
https://github.com/twitter/hbc
https://github.com/twitter/hbc
https://github.com/twitter/hbc
https://github.com/twitter/hbc


Data Acquisition

[ 54 ]

.processor(new StringDelimitedProcessor(statusQueue))

.build();
    twitterClient.connect();

For the purposes of this example, we will simply read the messages received from the
stream and print them to the screen. The messages are returned in JSON format and the
decision of how to process them in a real application will depend upon the purpose and
limitations of that application:

    for (int msgRead = 0; msgRead < 1000; msgRead++) {
if (twitterClient.isDone()) {

out.println(twitterClient.getExitEvent().getMessage());
break;

}

String msg = statusQueue.poll(10, TimeUnit.SECONDS);
if (msg == null) {

out.println("Waited 10 seconds - no message received");
} else {

out.println(msg);
}

    }
    twitterClient.stop();

To execute our method, we simply pass our authentication information to the
streamTwitter method. For security purposes, we have replaced our personal keys here.
Authentication information should always be protected:

    public static void main(String[] args) {

try {
SampleStreamExample.streamTwitter(

myKey, mySecret, myToken, myAccess);
} catch (InterruptedException e) {

out.println(e);
}

    }



Data Acquisition

[ 55 ]

Here is truncated sample data retrieved using the methods listed above. Your data will vary
based upon Twitter's live stream, but it should resemble this example:

{"created_at":"Fri May 20 15:47:21 +0000
2016","id":733685552789098496,"id_str":"733685552789098496","text":"bwisit
si em bahala sya","source":"\u003ca href="http:\/\/twitter.com"
rel="nofollow"\u003eTwitter Web
...
ntions":[],"symbols":[]},"favorited":false,"retweeted":false,"filter_level"
:"low","lang":"tl","timestamp_ms":"1463759241660"}

Twitter also provides support for pulling all data for one specific user account, as well as
posting data directly to an account. A REST API is also available and provides support for
specific queries via the search API. These also use the OAuth standard and return data in
JSON files.

Handling Wikipedia
Wikipedia (h t t p s ://w w w . w i k i p e d i a . o r g /) is a useful source of text and image type
information. It is an Internet encyclopedia that hosts 38 million articles written in over 250
languages (https://en.wikipedia.org/wiki/Wikipedia). As such, it is useful to know how
to programmatically access its contents.

MediaWiki is an open source wiki application that supports wiki type sites. It is used to
support Wikipedia and many other sites. The MediaWiki API
(http://www.mediawiki.org/wiki/API) provides access to a wiki's data and metadata over
HTTP. An application, using this API, can log in, read data, and post changes to a site.

There are several Java APIs that support programmatic access to a wiki site as listed at h t t p

s ://w w w . m e d i a w i k i . o r g /w i k i /A P I :C l i e n t _ c o d e #J a v a . To demonstrate Java access to a
wiki we will use Bliki found at
https://bitbucket.org/axelclk/info.bliki.wiki/wiki/Home. It provides good access
and is easy to use for most basic operations.

The MediaWiki API is complex and has many features. The intent of this section is to
illustrate the basic process of obtaining text from a Wikipedia article using this API. It is not
possible to cover the API completely here.

https://www.wikipedia.org/
https://www.wikipedia.org/
https://www.wikipedia.org/
https://www.wikipedia.org/
https://www.wikipedia.org/
https://www.wikipedia.org/
https://www.wikipedia.org/
https://www.wikipedia.org/
https://www.wikipedia.org/
https://www.wikipedia.org/
https://www.wikipedia.org/
https://www.wikipedia.org/
https://www.wikipedia.org/
https://www.wikipedia.org/
https://www.wikipedia.org/
https://www.wikipedia.org/
https://www.wikipedia.org/
https://www.wikipedia.org/
https://www.wikipedia.org/
https://www.wikipedia.org/
https://www.wikipedia.org/
https://www.wikipedia.org/
https://www.wikipedia.org/
https://www.wikipedia.org/
https://www.wikipedia.org/
https://www.wikipedia.org/
https://www.wikipedia.org/
https://www.wikipedia.org/
https://www.wikipedia.org/
https://www.wikipedia.org/
https://www.wikipedia.org/
https://www.wikipedia.org/
https://www.wikipedia.org/
https://www.wikipedia.org/
https://www.wikipedia.org/
https://www.wikipedia.org/
https://www.wikipedia.org/
https://www.wikipedia.org/
https://www.wikipedia.org/
https://www.wikipedia.org/
https://www.wikipedia.org/
https://www.wikipedia.org/
https://www.wikipedia.org/
https://www.wikipedia.org/
https://www.wikipedia.org/
https://en.wikipedia.org/wiki/Wikipedia
http://www.mediawiki.org/wiki/API
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://www.mediawiki.org/wiki/API:Client_code#Java
https://bitbucket.org/axelclk/info.bliki.wiki/wiki/Home


Data Acquisition

[ 56 ]

We will use the following classes from the info.bliki.api and
info.bliki.wiki.model packages:

Page: Represents a retrieved page
User: Represents a user
WikiModel: Represents the wiki

Javadocs for Bliki are found at h t t p ://w w w . j a v a d o c . i o /d o c /i n f o . b l i k i . w i k i /b l i k i - c o r

e /3. 1. 
0.

The following example has been adapted from h t t p ://w w w . i n t e g r a t i n g s t u f f . c o m

/2012/04/06/h o o k - i n t o - w i k i p e d i a - u s i n g - j a v a - a n d - t h e - m e d i a w i k i - a p i /. This
example will access the English Wikipedia page for the subject, data science. We start by
creating an instance of the User class. The first two arguments of the three-argument
constructor are the user ID and password, respectively. In this case, they are empty
strings. This combination allows us to read a page without having to set up an account. The
third argument is the URL for the MediaWiki API page:

    User user = new User("", "",
        "http://en.wikipedia.org/w/api.php");
    user.login();

An account will enable us to modify the document. The queryContent method returns a
list of Page objects for the subjects found in a string array. Each string should be the title of
a page. In this example, we access a single page:

    String[] titles = {"Data science"};
    List<Page> pageList = user.queryContent(titles);

Each Page object contains the content of a page. There are several methods that will return
the contents of the page. For each page, a WikiModel instance is created using the two-
argument constructor. The first argument is the image base URL and the second argument
is the link base URL. These URLs use Wiki variables called image and title, which will be
replaced when creating links:

    for (Page page : pageList) {
        WikiModel wikiModel = new WikiModel("${image}",
            "${title}");
        ...
    }

http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.javadoc.io/doc/info.bliki.wiki/bliki-core/3.1.0
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/
http://www.integratingstuff.com/2012/04/06/hook-into-wikipedia-using-java-and-the-mediawiki-api/


Data Acquisition

[ 57 ]

The render method will take the wiki page and render it to HTML. There is also a method
to render the page to a PDF document:

    String htmlText = wikiModel.render(page.toString());

The HTML text is then displayed:

    out.println(htmlText);

A partial listing of the output follows:

<p>PageID: 35458904; NS: 0; Title: Data science;
Image url:
Content:
{{distinguish}}
{{Use dmy dates}}
{{Data Visualization}}</p>
<p><b>Data science</b> is an interdisciplinary field about processes and
systems to extract <a href="Knowledge" >knowledge</a>
...

We can also obtain basic information about the article using one of several methods as
shown here:

    out.println("Title: " + page.getTitle() + "\n" +
"Page ID: " + page.getPageid() + "\n" +
"Timestamp: " + page.getCurrentRevision().getTimestamp());

It is also possible to obtain a list of references in the article and a list of the headers. Here, a
list of the references is displayed:

    List <Reference> referenceList = wikiModel.getReferences();
    out.println(referenceList.size());
    for(Reference reference : referenceList) {

out.println(reference.getRefString());
    }



Data Acquisition

[ 58 ]

The following illustrates the process of getting the section headers:

    ITableOfContent toc = wikiModel.getTableOfContent();
    List<SectionHeader> sections = toc.getSectionHeaders();
    for(SectionHeader sh : sections) {
        out.println(sh.getFirst());
    }

The entire content of Wikipedia can be downloaded. This process is discussed at h t t p s ://e

n . w i k i p e d i a . o r g /w i k i /W i k i p e d i a :D a t a b a s e _ d o w n l o a d . It may be desirable to set up
your own Wikipedia server to handle your request.

Handling Flickr
Flickr (h t t p s ://w w w . f l i c k r . c o m /) is an online photo management and sharing
application. It is a possible source for images and videos. The Flickr Developer Guide (h t t p

s ://w w w . f l i c k r . c o m /s e r v i c e s /d e v e l o p e r /) is a good starting point to learn more about
Flickr's API.

One of the first steps to using the Flickr API is to request an API key. This key is used to
sign your API requests. The process to obtain a key starts at h t t p s ://w w w . f l i c k r . c o m /s e r

v i c e s /a p p s /c r e a t e /. Both commercial and noncommercial keys are available. When you
obtain a key you will also get a "secret." Both of these are required to use the API.

We will illustrate the process of locating and downloading images from Flickr. The process
involves:

Creating a Flickr class instance
Specifying the search parameters for a query
Performing the search
Downloading the image

https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://www.flickr.com/
https://www.flickr.com/
https://www.flickr.com/
https://www.flickr.com/
https://www.flickr.com/
https://www.flickr.com/
https://www.flickr.com/
https://www.flickr.com/
https://www.flickr.com/
https://www.flickr.com/
https://www.flickr.com/
https://www.flickr.com/
https://www.flickr.com/
https://www.flickr.com/
https://www.flickr.com/
https://www.flickr.com/
https://www.flickr.com/
https://www.flickr.com/
https://www.flickr.com/
https://www.flickr.com/
https://www.flickr.com/
https://www.flickr.com/
https://www.flickr.com/
https://www.flickr.com/
https://www.flickr.com/
https://www.flickr.com/
https://www.flickr.com/
https://www.flickr.com/
https://www.flickr.com/
https://www.flickr.com/
https://www.flickr.com/
https://www.flickr.com/
https://www.flickr.com/
https://www.flickr.com/
https://www.flickr.com/
https://www.flickr.com/
https://www.flickr.com/
https://www.flickr.com/
https://www.flickr.com/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/developer/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/


Data Acquisition

[ 59 ]

A FlickrException or IOException may be thrown during this process. There are
several APIs that support Flickr access. We will be using Flickr4Java, found at h t t p s ://g i t

h u b . c o m /c a l l m e a l /F l i c k r 4J a v a . The Flickr4Java Javadocs is found at h t t p ://f l i c k r j . s o

u r c e f o r g e . n e t /a p i /. We will start with a try block and the apikey and secret
declarations:

    try {
String apikey = "Your API key";
String secret = "Your secret";

    } catch (FlickrException | IOException ex) {
// Handle exceptions

    }

The Flickr instance is created next, where the apikey and secret are supplied as the first
two parameters. The last parameter specifies the transfer technique used to access Flickr
servers. Currently, the REST transport is supported using the REST class:

    Flickr flickr = new Flickr(apikey, secret, new REST());

To search for images, we will use the SearchParameters class. This class supports a
number of criteria that will narrow down the number of images returned from a query and
includes such criteria as latitude, longitude, media type, and user ID. In the following
sequence, the setBBox method specifies the longitude and latitude for the search. The
parameters are (in order): minimum longitude, minimum latitude, maximum longitude,
and maximum latitude. The setMedia method specifies the type of media. There are three
possible arguments---"all", "photos", and "videos":

    SearchParameters searchParameters = new SearchParameters();
    searchParameters.setBBox("-180", "-90", "180", "90");
    searchParameters.setMedia("photos");

The PhotosInterface class possesses a search method that uses the SearchParameters
instance to retrieve a list of photos. The getPhotosInterface method returns an instance
of the PhotosInterface class, as shown next. The SearchParameters instance is the first
parameter. The second parameter determines how many photos are retrieved per page and
the third parameter is the offset. A PhotoList class instance is returned:

    PhotosInterface pi = new PhotosInterface(apikey, secret,
new REST());

    PhotoList<Photo> list = pi.search(searchParameters, 10, 0);

https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
https://github.com/callmeal/Flickr4Java
http://flickrj.sourceforge.net/api/
http://flickrj.sourceforge.net/api/
http://flickrj.sourceforge.net/api/
http://flickrj.sourceforge.net/api/
http://flickrj.sourceforge.net/api/
http://flickrj.sourceforge.net/api/
http://flickrj.sourceforge.net/api/
http://flickrj.sourceforge.net/api/
http://flickrj.sourceforge.net/api/
http://flickrj.sourceforge.net/api/
http://flickrj.sourceforge.net/api/
http://flickrj.sourceforge.net/api/
http://flickrj.sourceforge.net/api/
http://flickrj.sourceforge.net/api/
http://flickrj.sourceforge.net/api/
http://flickrj.sourceforge.net/api/
http://flickrj.sourceforge.net/api/
http://flickrj.sourceforge.net/api/
http://flickrj.sourceforge.net/api/
http://flickrj.sourceforge.net/api/
http://flickrj.sourceforge.net/api/
http://flickrj.sourceforge.net/api/
http://flickrj.sourceforge.net/api/
http://flickrj.sourceforge.net/api/
http://flickrj.sourceforge.net/api/
http://flickrj.sourceforge.net/api/
http://flickrj.sourceforge.net/api/
http://flickrj.sourceforge.net/api/
http://flickrj.sourceforge.net/api/
http://flickrj.sourceforge.net/api/
http://flickrj.sourceforge.net/api/
http://flickrj.sourceforge.net/api/
http://flickrj.sourceforge.net/api/
http://flickrj.sourceforge.net/api/
http://flickrj.sourceforge.net/api/
http://flickrj.sourceforge.net/api/
http://flickrj.sourceforge.net/api/
http://flickrj.sourceforge.net/api/
http://flickrj.sourceforge.net/api/
http://flickrj.sourceforge.net/api/
http://flickrj.sourceforge.net/api/
http://flickrj.sourceforge.net/api/
http://flickrj.sourceforge.net/api/
http://flickrj.sourceforge.net/api/
http://flickrj.sourceforge.net/api/
http://flickrj.sourceforge.net/api/
http://flickrj.sourceforge.net/api/
http://flickrj.sourceforge.net/api/
http://flickrj.sourceforge.net/api/
http://flickrj.sourceforge.net/api/
http://flickrj.sourceforge.net/api/
http://flickrj.sourceforge.net/api/
http://flickrj.sourceforge.net/api/
http://flickrj.sourceforge.net/api/
http://flickrj.sourceforge.net/api/
http://flickrj.sourceforge.net/api/
http://flickrj.sourceforge.net/api/
http://flickrj.sourceforge.net/api/
http://flickrj.sourceforge.net/api/
http://flickrj.sourceforge.net/api/


Data Acquisition

[ 60 ]

The next sequence illustrates the use of several methods to get information about the
images retrieved. Each Photo instance is accessed using the get method. The title, image
format, public flag, and photo URL are displayed:

    out.println("Image List");
    for (int i = 0; i < list.size(); i++) {
        Photo photo = list.get(i);
        out.println("Image: " + i +
            `"\nTitle: " + photo.getTitle() +
            "\nMedia: " + photo.getOriginalFormat() +
            "\nPublic: " + photo.isPublicFlag() +
            "\nUrl: " + photo.getUrl() +
            "\n");
    }
    out.println();

A partial listing is shown here where many of the specific values have been modified to
protect the original data:

Image List
Image: 0
Title: XYZ Image
Media: jpg
Public: true
Url: https://flickr.com/photos/7723...@N02/269...
Image: 1
Title: IMG_5555.jpg
Media: jpg
Public: true
Url: https://flickr.com/photos/2665...@N07/264...
Image: 2
Title: DSC05555
Media: jpg
Public: true
Url: https://flickr.com/photos/1179...@N04/264...

The list of images returned by this example will vary since we used a fairly wide search
range and images are being added all of the time.

There are two approaches that we can use to download an image. The first uses the image's
URL and the second uses a Photo object. The image's URL can be obtained from a number
of sources. We use the Photo class getUrl method for this example.



Data Acquisition

[ 61 ]

In the following sequence, we obtain an instance of PhotosInterface using its constructor
to illustrate an alternate approach:

    PhotosInterface pi = new PhotosInterface(apikey, secret,
new REST());

We get the first Photo instance from the previous list and then its getUrl to get the image's
URL. The PhotosInterface class's getImage method returns a BufferedImage object
representing the image as shown here:

    Photo currentPhoto = list.get(0);
    BufferedImage bufferedImage =

pi.getImage(currentPhoto.getUrl());

The image is then saved to a file using the ImageIO class:

    File outputfile = new File("image.jpg");
    ImageIO.write(bufferedImage, "jpg", outputfile);

The getImage method is overloaded. Here, the Photo instance and the size of the image
desired are used as arguments to get the BufferedImage instance:

    bufferedImage = pi.getImage(currentPhoto, Size.SMALL);

The image can be saved to a file using the previous technique.

The Flickr4Java API supports a number of other techniques for working with Flickr images.

Handling YouTube
YouTube is a popular video site where users can upload and share videos (h t t p s ://w w w . y o

u t u b e . c o m /). It has been used to share humorous videos, provide instructions on how to do
any number of things, and share information among its viewers. It is a useful source of
information as it captures the thoughts and ideas of a diverse group of people. This
provides an interesting opportunity to analysis and gain insight into human behavior.

YouTube can serve as a useful source of videos and video metadata. A Java API is available
to access its contents (https://developers.google.com/youtube/v3/). Detailed
documentation of the API is found at https://developers.google.com/youtube/v3/docs/.

https://www.youtube.com/
https://www.youtube.com/
https://www.youtube.com/
https://www.youtube.com/
https://www.youtube.com/
https://www.youtube.com/
https://www.youtube.com/
https://www.youtube.com/
https://www.youtube.com/
https://www.youtube.com/
https://www.youtube.com/
https://www.youtube.com/
https://www.youtube.com/
https://www.youtube.com/
https://www.youtube.com/
https://www.youtube.com/
https://www.youtube.com/
https://www.youtube.com/
https://www.youtube.com/
https://www.youtube.com/
https://www.youtube.com/
https://www.youtube.com/
https://www.youtube.com/
https://www.youtube.com/
https://www.youtube.com/
https://www.youtube.com/
https://www.youtube.com/
https://www.youtube.com/
https://www.youtube.com/
https://www.youtube.com/
https://www.youtube.com/
https://www.youtube.com/
https://www.youtube.com/
https://www.youtube.com/
https://www.youtube.com/
https://www.youtube.com/
https://www.youtube.com/
https://www.youtube.com/
https://www.youtube.com/
https://www.youtube.com/
https://developers.google.com/youtube/v3/
https://developers.google.com/youtube/v3/docs/


Data Acquisition

[ 62 ]

In this section, we will demonstrate how to search for videos by keyword and retrieve
information of interest. We will also show how to download a video. To use the YouTube
API, you will need a Google account, which can be obtained at
https://www.google.com/accounts/NewAccount. Next, create an account in the Google
Developer's Console (https://console.developers.google.com/). API access is supported
using either API keys or OAuth 2.0 credentials. The project creation process and keys are
discussed at
https://developers.google.com/youtube/registering_an_application#create_project

.

Searching by keyword
The process of searching for videos by keyword is adapted from
https://developers.google.com/youtube/v3/code_samples/java#search_by_keyword.
Other potentially useful code examples can be found at h t t p s ://d e v e l o p e r s . g o o g l e . c o m

/y o u t u b e /v 3/c o d e _ s a m p l e s /j a v a . The process has been simplified so that we can focus on
the search process. We start with a try block and the creation of a YouTube instance. This
class provides the basic access to the API. Javadocs for this API is found at h t t p s ://d e v e l o
p e r s . g o o g l e . c o m /r e s o u r c e s /a p i - l i b r a r i e s /d o c u m e n t a t i o n /y o u t u b e /v 3/j a v a /l a t e s t

/.

The YouTube.Builder class is used to construct a YouTube instance. Its constructor takes
three arguments:

Transport: Object used for HTTP
JSONFactory: Used to process JSON objects
HttpRequestInitializer: None is needed for this example

Many of the APIs responses will be in the form of JSON objects. The YouTube class'
setApplicationName method gives it a name and the build method creates a new
YouTube instance:

    try {
        YouTube youtube = new YouTube.Builder(
            Auth.HTTP_TRANSPORT,
            Auth.JSON_FACTORY,
            new HttpRequestInitializer() {
                public void initialize(HttpRequest request)
                        throws IOException {
                }
            })
                .setApplicationName("application_name")
        ...

https://www.google.com/accounts/NewAccount
https://console.developers.google.com/
https://console.developers.google.com/
https://developers.google.com/youtube/registering_an_application#create_project
https://developers.google.com/youtube/v3/code_samples/java#search_by_keyword
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/youtube/v3/code_samples/java
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/
https://developers.google.com/resources/api-libraries/documentation/youtube/v3/java/latest/


Data Acquisition

[ 63 ]

    } catch (GoogleJSONResponseException ex) {
// Handle exceptions

    } catch (IOException ex) {
// Handle exceptions

    }

Next, we initialize a string to hold the search term of interest. In this case, we will look for
videos containing the word cats:

    String queryTerm = "cats";

The class, YouTube.Search.List, maintains a collection of search results. The YouTube
class's search method specifies the type of resource to be returned. In this case, the string
specifies the id and snippet portions of the search result to be returned:

    YouTube.Search.List search = youtube
.search()
.list("id,snippet");

The search result is a JSON object that has the following structure. It is described in more
detail at https://developers.google.com/youtube/v3/docs/playlistItems#methods. In
the previous sequence, only the id and snippet parts of a search will be returned,
resulting in a more efficient operation:

{
  "kind": "youtube#searchResult",
  "etag": etag,
  "id": {
    "kind": string,
    "videoId": string,
    "channelId": string,
    "playlistId": string
  },
  "snippet": {
    "publishedAt": datetime,
    "channelId": string,
    "title": string,
    "description": string,
    "thumbnails": {

(key): {
"url": string,
"width": unsigned integer,
"height": unsigned integer

}
    },
    "channelTitle": string,
    "liveBroadcastContent": string

https://developers.google.com/youtube/v3/docs/playlistItems#methods


Data Acquisition

[ 64 ]

  }
}

Next, we need to specify the API key and various search parameters. The query term is
specified, as well as the type of media to be returned. In this case, only videos will be
returned. The other two options include channel and playlist:

    String apiKey = "Your API key";
    search.setKey(apiKey);
    search.setQ(queryTerm);
    search.setType("video");

In addition, we further specify the fields to be returned as shown here. These correspond to
fields of the JSON object:

    search.setFields("items(id/kind,id/videoId,snippet/title," +
        "snippet/description,snippet/thumbnails/default/url)");

We also specify the maximum number of results to retrieve using the setMaxResults
method:

    search.setMaxResults(10L);

The execute method will perform the actual query, returning a SearchListResponse
object. Its getItems method returns a list of SearchResult objects, one for each video
retrieved:

    SearchListResponse searchResponse = search.execute();
    List<SearchResult> searchResultList =
        searchResponse.getItems();

In this example, we do not iterate through each video returned. Instead, we retrieve the first
video and display information about the video. The SearchResult video variable allows
us to access different parts of the JSON object, as shown here:

    SearchResult video = searchResultList.iterator().next();
    Thumbnail thumbnail = video
        .getSnippet().getThumbnails().getDefault();

    out.println("Kind: " + video.getKind());
    out.println("Video Id: " + video.getId().getVideoId());
    out.println("Title: " + video.getSnippet().getTitle());
    out.println("Description: " +
        video.getSnippet().getDescription());
    out.println("Thumbnail: " + thumbnail.getUrl());



Data Acquisition

[ 65 ]

One possible output follows where parts of the output have been modified:

Kind: null
Video Id: tntO...
Title: Funny Cats ...
Description: Check out the ...
Thumbnail: https://i.ytimg.com/vi/tntO.../default.jpg

We have skipped many error checking steps to simplify the example, but these should be
considered when implementing this in a business application.

If we need to download the video, one of the simplest ways is to use axet/wget found at
https://github.com/axet/wget. It provides an easy-to-use technique to download the
video using its video ID.

In the following example, a URL is created using the video ID. You will need to provide a
video ID for this to work properly. The file is saved to the current directory with the video's
title as the filename:

    String url = "http://www.youtube.com/watch?v=videoID";
    String path = ".";
    VGet vget = new VGet(new URL(url), new File(path));
    vget.download();

There are other more sophisticated download techniques found at the GitHub site.

Summary
In this chapter, we discussed types of data that are useful for data science and readily
accessible on the Internet. This discussion included details about file specifications and
formats for the most common types of data sources.

We also examined Java APIs and other techniques for retrieving data, and illustrated this
process with multiple sources. In particular, we focused on types of text-based document
formats and multimedia files. We used web crawlers to access websites and then performed
web scraping to retrieve data from the sites we encountered.

Finally, we extracted data from social media sites and examined the available Java support.
We retrieved data from Twitter, Wikipedia, Flickr, and YouTube and examined the
available API support.

https://github.com/axet/wget


3
Data Cleaning

Real-world data is frequently dirty and unstructured, and must be reworked before it is
usable. Data may contain errors, have duplicate entries, exist in the wrong format, or be
inconsistent. The process of addressing these types of issues is called data cleaning. Data 
cleaning is also referred to as data wrangling, massaging, reshaping , or munging. Data
merging, where data from multiple sources is combined, is often considered to be a data
cleaning activity.

We need to clean data because any analysis based on inaccurate data can produce
misleading results. We want to ensure that the data we work with is quality data. Data 
quality involves:

Validity: Ensuring that the data possesses the correct form or structure
Accuracy: The values within the data are truly representative of the dataset
Completeness: There are no missing elements
Consistency: Changes to data are in sync
Uniformity: The same units of measurement are used

There are several techniques and tools used to clean data. We will examine the following
approaches:

Handling different types of data
Cleaning and manipulating text data
Filling in missing data
Validating data

In addition, we will briefly examine several image enhancement techniques.



Data Cleaning

[ 67 ]

There are often many ways to accomplish the same cleaning task. For example, there are a
number of GUI tools that support data cleaning, such as OpenRefine (h t t p ://o p e n r e f i n e .

o r g /). This tool allows a user to read in a dataset and clean it using a variety of techniques.
However, it requires a user to interact with the application for each dataset that needs to be
cleaned. It is not conducive to automation.

We will focus on how to clean data using Java code. Even then, there may be different
techniques to clean the data. We will show multiple approaches to provide the reader with
insights on how it can be done. Sometimes, this will use core Java string classes, and at
other time, it may use specialized libraries.

These libraries often are more expressive and efficient. However, there are times when
using a simple string function is more than adequate to address the problem. Showing
complimentary techniques will improve the reader's skill set.

The basic text based tasks include:

Data transformation
Data imputation (handling missing data)
Subsetting data
Sorting data
Validating data

In this chapter, we are interested in cleaning data. However, part of this process is
extracting information from various data sources. The data may be stored in plaintext or in
binary form. We need to understand the various formats used to store data before we can
begin the cleaning process. Many of these formats were introduced in Chapter 2, Data
Acquisition, but we will go into greater detail in the following sections.

Handling data formats
Data comes in all types of forms. We will examine the more commonly used formats and
show how they can be extracted from various data sources. Before we can clean data it
needs to be extracted from a data source such as a file. In this section, we will build upon
the introduction to data formats found in Chapter 2, Data Acquisition, and show how to
extract all or part of a dataset. For example, from an HTML page we may want to extract
only the text without markup. Or perhaps we are only interested in its figures.

http://openrefine.org/
http://openrefine.org/
http://openrefine.org/
http://openrefine.org/
http://openrefine.org/
http://openrefine.org/
http://openrefine.org/
http://openrefine.org/
http://openrefine.org/
http://openrefine.org/
http://openrefine.org/
http://openrefine.org/
http://openrefine.org/
http://openrefine.org/
http://openrefine.org/
http://openrefine.org/
http://openrefine.org/
http://openrefine.org/
http://openrefine.org/
http://openrefine.org/
http://openrefine.org/
http://openrefine.org/
http://openrefine.org/
http://openrefine.org/
http://openrefine.org/
http://openrefine.org/
http://openrefine.org/
http://openrefine.org/
http://openrefine.org/
http://openrefine.org/
http://openrefine.org/
http://openrefine.org/
http://openrefine.org/
http://openrefine.org/
http://openrefine.org/
http://openrefine.org/


Data Cleaning

[ 68 ]

These data formats can be quite complex. The intent of this section is to illustrate the basic
techniques commonly used with that data format. Full treatment of a specific data format is
beyond the scope of this book. Specifically, we will introduce how the following data
formats can be processed from Java:

CSV data
Spreadsheets
Portable Document Format, or PDF files
JavaScript Object Notation, or JSON files

There are many other file types not addressed here. For example, jsoup is useful for parsing
HTML documents. Since we introduced how this is done in the Web scraping in Java
section of Chapter 2, Data Acquisition, we will not duplicate the effort here.

Handling CSV data
A common technique for separating information is to use commas or similar separators.
Knowing how to work with CSV data allows us to utilize this type of data in our analysis
efforts. When we deal with CSV data there are several issues including escaped data and
embedded commas.

We will examine a few basic techniques for processing comma-separated data. Due to the
row-column structure of CSV data, these techniques will read data from a file and place the
data in a two-dimensional array. First, we will use a combination of the Scanner class to
read in tokens and the String class split method to separate the data and store it in the
array. Next, we will explore using the third-party library, OpenCSV, which offers a more
efficient technique.

However, the first approach may only be appropriate for quick and dirty processing of
data. We will discuss each of these techniques since they are useful in different situations.

We will use a dataset downloaded from h t t p s ://w w w . d a t a . g o v / containing U.S.
demographic statistics sorted by ZIP code. This dataset can be downloaded at h t t p s ://c a t

a l o g . d a t a . g o v /d a t a s e t /d e m o g r a p h i c - s t a t i s t i c s - b y - z i p - c o d e - a c f c 9. For our
purposes, this dataset has been stored in the file Demographics.csv. In this particular file,
every row contains the same number of columns. However, not all data will be this clean
and the solutions shown next take into account the possibility for jagged arrays.

https://www.data.gov/
https://www.data.gov/
https://www.data.gov/
https://www.data.gov/
https://www.data.gov/
https://www.data.gov/
https://www.data.gov/
https://www.data.gov/
https://www.data.gov/
https://www.data.gov/
https://www.data.gov/
https://www.data.gov/
https://www.data.gov/
https://www.data.gov/
https://www.data.gov/
https://www.data.gov/
https://www.data.gov/
https://www.data.gov/
https://www.data.gov/
https://www.data.gov/
https://www.data.gov/
https://www.data.gov/
https://www.data.gov/
https://www.data.gov/
https://www.data.gov/
https://www.data.gov/
https://www.data.gov/
https://www.data.gov/
https://www.data.gov/
https://www.data.gov/
https://www.data.gov/
https://www.data.gov/
https://www.data.gov/
https://www.data.gov/
https://www.data.gov/
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9


Data Cleaning

[ 69 ]

A jagged array is an array where the number of columns may be different
for different rows. For example, row 2 may have 5 elements while row 3
may have 6 elements. When using jagged arrays you have to be careful
with your column indexes.

First, we use the Scanner class to read in data from our data file. We will temporarily store
the data in an ArrayList since we will not always know how many rows our data
contains.

try (Scanner csvData = new Scanner(new File("Demographics.csv"))) {
    ArrayList<String> list = new ArrayList<String>();
    while (csvData.hasNext()) {

list.add(csvData.nextLine());
} catch (FileNotFoundException ex) {
    // Handle exceptions
}

The list is converted to an array using the toArray method. This version of the method
uses a String array as an argument so that the method will know what type of array to
create. A two-dimension array is then created to hold the CSV data.

String[] tempArray = list.toArray(new String[1]);
String[][] csvArray = new String[tempArray.length][];

The split method is used to create an array of Strings for each row. This array is
assigned to a row of the csvArray.

for(int i=0; i<tempArray.length; i++) {
    csvArray[i] = tempArray[i].split(",");
}

Our next technique will use a third-party library to read in and process CSV data. There are
multiple options available, but we will focus on the popular OpenCSV (h t t p ://o p e n c s v . s o

u r c e f o r g e . n e t ). This library offers several advantages over our previous technique. We
can have an arbitrary number of items on each row without worrying about handling
exceptions. We also do not need to worry about embedded commas or embedded carriage
returns within the data tokens. The library also allows us to choose between reading the
entire file at once or using an iterator to process data line-by-line.

http://opencsv.sourceforge.net
http://opencsv.sourceforge.net
http://opencsv.sourceforge.net
http://opencsv.sourceforge.net
http://opencsv.sourceforge.net
http://opencsv.sourceforge.net
http://opencsv.sourceforge.net
http://opencsv.sourceforge.net
http://opencsv.sourceforge.net
http://opencsv.sourceforge.net
http://opencsv.sourceforge.net
http://opencsv.sourceforge.net
http://opencsv.sourceforge.net
http://opencsv.sourceforge.net
http://opencsv.sourceforge.net
http://opencsv.sourceforge.net
http://opencsv.sourceforge.net
http://opencsv.sourceforge.net
http://opencsv.sourceforge.net
http://opencsv.sourceforge.net
http://opencsv.sourceforge.net
http://opencsv.sourceforge.net
http://opencsv.sourceforge.net
http://opencsv.sourceforge.net
http://opencsv.sourceforge.net
http://opencsv.sourceforge.net
http://opencsv.sourceforge.net
http://opencsv.sourceforge.net
http://opencsv.sourceforge.net
http://opencsv.sourceforge.net
http://opencsv.sourceforge.net
http://opencsv.sourceforge.net
http://opencsv.sourceforge.net
http://opencsv.sourceforge.net
http://opencsv.sourceforge.net
http://opencsv.sourceforge.net
http://opencsv.sourceforge.net
http://opencsv.sourceforge.net
http://opencsv.sourceforge.net
http://opencsv.sourceforge.net
http://opencsv.sourceforge.net
http://opencsv.sourceforge.net
http://opencsv.sourceforge.net
http://opencsv.sourceforge.net
http://opencsv.sourceforge.net
http://opencsv.sourceforge.net
http://opencsv.sourceforge.net
http://opencsv.sourceforge.net
http://opencsv.sourceforge.net
http://opencsv.sourceforge.net
http://opencsv.sourceforge.net
http://opencsv.sourceforge.net
http://opencsv.sourceforge.net


Data Cleaning

[ 70 ]

First, we need to create an instance of the CSVReader class. Notice the second parameter
allows us to specify the delimiter, a useful feature if we have similar file format delimited
by tabs or dashes, for example. If we want to read the entire file at one time, we use the
readAll method.

CSVReader dataReader = new CSVReader(new
FileReader("Demographics.csv"),',');
ArrayList<String> holdData = (ArrayList)dataReader.readAll();

We can then process the data as we did above, by splitting the data into a two-dimension
array using String class methods. Alternatively, we can process the data one line at a time.
In the example that follows, each token is printed out individually but the tokens can also
be stored in a two-dimension array or other data structure as appropriate.

CSVReader dataReader = new CSVReader(new
FileReader("Demographics.csv"),',');
String[] nextLine;
while ((nextLine = dataReader.readNext()) != null){
for(String token : nextLine){
    out.println(token);
  }
}
dataReader.close();

We can now clean or otherwise process the array.

Handling spreadsheets
Spreadsheets have proven to be a very popular tool for processing numeric and textual
data. Due to the wealth of information that has been stored in spreadsheets over the past
decades, knowing how to extract information from spreadsheets enables us to take
advantage of this widely available data source. In this section, we will demonstrate how
this is accomplished using the Apache POI API.

Open Office also supports a spreadsheet application. Open Office documents are stored in
XML format which makes it readily accessible using XML parsing technologies. However,
the Apache ODF Toolkit (h t t p ://i n c u b a t o r . a p a c h e . o r g /o d f t o o l k i t /) provides a means
of accessing data within a document without knowing the format of the OpenOffice
document. This is currently an incubator project and is not fully mature. There are a
number of other APIs that can assist in processing OpenOffice documents as detailed on the
Open Document Format (ODF) for developers (h t t p ://w w w . o p e n d o c u m e n t f o r m a t . o r g /d e

v e l o p e r s /) page.

http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://incubator.apache.org/odftoolkit/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/
http://www.opendocumentformat.org/developers/


Data Cleaning

[ 71 ]

Handling Excel spreadsheets
Apache POI (h t t p ://p o i . a p a c h e . o r g /i n d e x . h t m l ) is a set of APIs providing access to
many Microsoft products including Excel and Word. It consists of a series of components
designed to access a specific Microsoft product. An overview of these components is found
at h t t p ://p o i . a p a c h e . o r g /o v e r v i e w . h t m l .

In this section we will demonstrate how to read a simple Excel spreadsheet using the XSSF
component to access Excel 2007+ spreadsheets. The Javadocs for the Apache POI API is
found at h t t p s ://p o i . a p a c h e . o r g /a p i d o c s /i n d e x . h t m l .

We will use a simple Excel spreadsheet consisting of a series of rows containing an ID along
with minimum, maximum, and average values. These numbers are not intended to
represent any specific type of data. The spreadsheet follows:

ID Minimum Maximum Average

12345 45 89 65.55

23456 78 96 86.75

34567 56 89 67.44

45678 86 99 95.67

We start with a try-with-resources block to handle any IOExceptions that may occur:

try (FileInputStream file = new FileInputStream(
        new File("Sample.xlsx"))) {
    ...
    }
} catch (IOException e) {
    // Handle exceptions
}

An instance of a XSSFWorkbook class is created using the spreadsheet. Since a workbook
may consists of multiple spreadsheets, we select the first one using the getSheetAt
method.

XSSFWorkbook workbook = new XSSFWorkbook(file);
XSSFSheet sheet = workbook.getSheetAt(0);

http://poi.apache.org/index.html
http://poi.apache.org/index.html
http://poi.apache.org/index.html
http://poi.apache.org/index.html
http://poi.apache.org/index.html
http://poi.apache.org/index.html
http://poi.apache.org/index.html
http://poi.apache.org/index.html
http://poi.apache.org/index.html
http://poi.apache.org/index.html
http://poi.apache.org/index.html
http://poi.apache.org/index.html
http://poi.apache.org/index.html
http://poi.apache.org/index.html
http://poi.apache.org/index.html
http://poi.apache.org/index.html
http://poi.apache.org/index.html
http://poi.apache.org/index.html
http://poi.apache.org/index.html
http://poi.apache.org/index.html
http://poi.apache.org/index.html
http://poi.apache.org/index.html
http://poi.apache.org/index.html
http://poi.apache.org/index.html
http://poi.apache.org/index.html
http://poi.apache.org/index.html
http://poi.apache.org/index.html
http://poi.apache.org/index.html
http://poi.apache.org/index.html
http://poi.apache.org/index.html
http://poi.apache.org/index.html
http://poi.apache.org/index.html
http://poi.apache.org/index.html
http://poi.apache.org/index.html
http://poi.apache.org/index.html
http://poi.apache.org/index.html
http://poi.apache.org/index.html
http://poi.apache.org/index.html
http://poi.apache.org/index.html
http://poi.apache.org/index.html
http://poi.apache.org/index.html
http://poi.apache.org/index.html
http://poi.apache.org/index.html
http://poi.apache.org/index.html
http://poi.apache.org/index.html
http://poi.apache.org/index.html
http://poi.apache.org/index.html
http://poi.apache.org/index.html
http://poi.apache.org/index.html
http://poi.apache.org/index.html
http://poi.apache.org/index.html
http://poi.apache.org/index.html
http://poi.apache.org/index.html
http://poi.apache.org/index.html
http://poi.apache.org/index.html
http://poi.apache.org/index.html
http://poi.apache.org/overview.html
http://poi.apache.org/overview.html
http://poi.apache.org/overview.html
http://poi.apache.org/overview.html
http://poi.apache.org/overview.html
http://poi.apache.org/overview.html
http://poi.apache.org/overview.html
http://poi.apache.org/overview.html
http://poi.apache.org/overview.html
http://poi.apache.org/overview.html
http://poi.apache.org/overview.html
http://poi.apache.org/overview.html
http://poi.apache.org/overview.html
http://poi.apache.org/overview.html
http://poi.apache.org/overview.html
http://poi.apache.org/overview.html
http://poi.apache.org/overview.html
http://poi.apache.org/overview.html
http://poi.apache.org/overview.html
http://poi.apache.org/overview.html
http://poi.apache.org/overview.html
http://poi.apache.org/overview.html
http://poi.apache.org/overview.html
http://poi.apache.org/overview.html
http://poi.apache.org/overview.html
http://poi.apache.org/overview.html
http://poi.apache.org/overview.html
http://poi.apache.org/overview.html
http://poi.apache.org/overview.html
http://poi.apache.org/overview.html
http://poi.apache.org/overview.html
http://poi.apache.org/overview.html
http://poi.apache.org/overview.html
http://poi.apache.org/overview.html
http://poi.apache.org/overview.html
http://poi.apache.org/overview.html
http://poi.apache.org/overview.html
http://poi.apache.org/overview.html
http://poi.apache.org/overview.html
http://poi.apache.org/overview.html
http://poi.apache.org/overview.html
http://poi.apache.org/overview.html
http://poi.apache.org/overview.html
http://poi.apache.org/overview.html
http://poi.apache.org/overview.html
http://poi.apache.org/overview.html
http://poi.apache.org/overview.html
http://poi.apache.org/overview.html
http://poi.apache.org/overview.html
http://poi.apache.org/overview.html
http://poi.apache.org/overview.html
http://poi.apache.org/overview.html
http://poi.apache.org/overview.html
http://poi.apache.org/overview.html
http://poi.apache.org/overview.html
http://poi.apache.org/overview.html
http://poi.apache.org/overview.html
http://poi.apache.org/overview.html
http://poi.apache.org/overview.html
http://poi.apache.org/overview.html
http://poi.apache.org/overview.html
http://poi.apache.org/overview.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html
https://poi.apache.org/apidocs/index.html


Data Cleaning

[ 72 ]

The next step is to iterate through the rows, and then each column, of the spreadsheet:

for(Row row : sheet) {
    for (Cell cell : row) {

...
    }
out.println();

Each cell of the spreadsheet may use a different format. We use the getCellType method
to determine its type and then use the appropriate method to extract the data in the cell. In
this example we are only working with numeric and text data.

switch (cell.getCellType()) {
    case Cell.CELL_TYPE_NUMERIC:

out.print(cell.getNumericCellValue() + "\t");
break;

    case Cell.CELL_TYPE_STRING:
out.print(cell.getStringCellValue() + "\t");
break;

   }

When executed we get the following output:

ID Minimum Maximum Average
12345.0 45.0 89.0 65.55
23456.0 78.0 96.0 86.75
34567.0 56.0 89.0 67.44
45678.0 86.0 99.0 95.67

POI supports other more sophisticated classes and methods to extract data.

Handling PDF files
There are several APIs supporting the extraction of text from a PDF file. Here we will use
PDFBox. The Apache PDFBox (h t t p s ://p d f b o x . a p a c h e . o r g /) is an open source API that
allows Java programmers to work with PDF documents. In this section we will illustrate
how to extract simple text from a PDF document. Javadocs for the PDFBox API is found at h
t t p s ://p d f b o x . a p a c h e . o r g /d o c s /2. 0. 1/j a v a d o c s /.

https://pdfbox.apache.org/
https://pdfbox.apache.org/
https://pdfbox.apache.org/
https://pdfbox.apache.org/
https://pdfbox.apache.org/
https://pdfbox.apache.org/
https://pdfbox.apache.org/
https://pdfbox.apache.org/
https://pdfbox.apache.org/
https://pdfbox.apache.org/
https://pdfbox.apache.org/
https://pdfbox.apache.org/
https://pdfbox.apache.org/
https://pdfbox.apache.org/
https://pdfbox.apache.org/
https://pdfbox.apache.org/
https://pdfbox.apache.org/
https://pdfbox.apache.org/
https://pdfbox.apache.org/
https://pdfbox.apache.org/
https://pdfbox.apache.org/
https://pdfbox.apache.org/
https://pdfbox.apache.org/
https://pdfbox.apache.org/
https://pdfbox.apache.org/
https://pdfbox.apache.org/
https://pdfbox.apache.org/
https://pdfbox.apache.org/
https://pdfbox.apache.org/
https://pdfbox.apache.org/
https://pdfbox.apache.org/
https://pdfbox.apache.org/
https://pdfbox.apache.org/
https://pdfbox.apache.org/
https://pdfbox.apache.org/
https://pdfbox.apache.org/
https://pdfbox.apache.org/
https://pdfbox.apache.org/
https://pdfbox.apache.org/
https://pdfbox.apache.org/
https://pdfbox.apache.org/
https://pdfbox.apache.org/
https://pdfbox.apache.org/
https://pdfbox.apache.org/
https://pdfbox.apache.org/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/
https://pdfbox.apache.org/docs/2.0.1/javadocs/


Data Cleaning

[ 73 ]

This is a simple PDF file. It consists of several bullets:

Line 1
Line 2
Line 3

This is the end of the document.

A try block is used to catch IOExceptions. The PDDocument class will represent the PDF
document being processed. Its load method will load in the PDF file specified by the File
object:

try {
    PDDocument document = PDDocument.load(new File("PDF File.pdf"));
    ...
} catch (Exception e) {
    // Handle exceptions
}

Once loaded, the PDFTextStripper class getText method will extract the text from the
file. The text is then displayed as shown here:

PDFTextStripper Tstripper = new PDFTextStripper();
String documentText = Tstripper.getText(document);
System.out.println(documentText);

The output of this example follows. Notice that the bullets are returned as question marks.

This is a simple PDF file. It consists of several bullets:
? Line 1
? Line 2
? Line 3
This is the end of the document.

This is a brief introduction to the use of PDFBox. It is a very powerful tool when we need to
extract and otherwise manipulate PDF documents.



Data Cleaning

[ 74 ]

Handling JSON
In Chapter 2, Data Acquisition we learned that certain YouTube searches return JSON
formatted results. Specifically, the SearchResult class holds information relating to a
specific search. In that section we illustrate how to use YouTube specific techniques to
extract information. In this section we will illustrate how to extract JSON information using
the Jackson JSON implementation.

JSON supports three models for processing data:

Streaming API - JSON data is processed token by token
Tree model - The JSON data is held entirely in memory and then processed
Data binding - The JSON data is transformed to a Java object

Using JSON streaming API
We will illustrate the first two approaches. The first approach is more efficient and is used
when a large amount of data is processed. The second technique is convenient but the data
must not be too large. The third technique is useful when it is more convenient to use
specific Java classes to process data. For example, if the JSON data represent an address
then a specific Java address class cane be defined to hold and process the data.

There are several Java libraries that support JSON processing including:

Flexjson (h t t p ://f l e x j s o n . s o u r c e f o r g e . n e t /)
Genson (h t t p ://o w l i k e . g i t h u b . i o /g e n s o n /)
Google-Gson (h t t p s ://g i t h u b . c o m /g o o g l e /g s o n )
Jackson library (h t t p s ://g i t h u b . c o m /F a s t e r X M L /j a c k s o n )
JSON-io (h t t p s ://g i t h u b . c o m /j d e r e g /j s o n - i o )
JSON-lib (h t t p ://j s o n - l i b . s o u r c e f o r g e . n e t /)

http://flexjson.sourceforge.net/
http://flexjson.sourceforge.net/
http://flexjson.sourceforge.net/
http://flexjson.sourceforge.net/
http://flexjson.sourceforge.net/
http://flexjson.sourceforge.net/
http://flexjson.sourceforge.net/
http://flexjson.sourceforge.net/
http://flexjson.sourceforge.net/
http://flexjson.sourceforge.net/
http://flexjson.sourceforge.net/
http://flexjson.sourceforge.net/
http://flexjson.sourceforge.net/
http://flexjson.sourceforge.net/
http://flexjson.sourceforge.net/
http://flexjson.sourceforge.net/
http://flexjson.sourceforge.net/
http://flexjson.sourceforge.net/
http://flexjson.sourceforge.net/
http://flexjson.sourceforge.net/
http://flexjson.sourceforge.net/
http://flexjson.sourceforge.net/
http://flexjson.sourceforge.net/
http://flexjson.sourceforge.net/
http://flexjson.sourceforge.net/
http://flexjson.sourceforge.net/
http://flexjson.sourceforge.net/
http://flexjson.sourceforge.net/
http://flexjson.sourceforge.net/
http://flexjson.sourceforge.net/
http://flexjson.sourceforge.net/
http://flexjson.sourceforge.net/
http://flexjson.sourceforge.net/
http://flexjson.sourceforge.net/
http://flexjson.sourceforge.net/
http://flexjson.sourceforge.net/
http://flexjson.sourceforge.net/
http://flexjson.sourceforge.net/
http://flexjson.sourceforge.net/
http://flexjson.sourceforge.net/
http://flexjson.sourceforge.net/
http://flexjson.sourceforge.net/
http://flexjson.sourceforge.net/
http://flexjson.sourceforge.net/
http://flexjson.sourceforge.net/
http://flexjson.sourceforge.net/
http://flexjson.sourceforge.net/
http://flexjson.sourceforge.net/
http://flexjson.sourceforge.net/
http://flexjson.sourceforge.net/
http://flexjson.sourceforge.net/
http://flexjson.sourceforge.net/
http://flexjson.sourceforge.net/
http://flexjson.sourceforge.net/
http://flexjson.sourceforge.net/
http://flexjson.sourceforge.net/
http://flexjson.sourceforge.net/
http://owlike.github.io/genson/
http://owlike.github.io/genson/
http://owlike.github.io/genson/
http://owlike.github.io/genson/
http://owlike.github.io/genson/
http://owlike.github.io/genson/
http://owlike.github.io/genson/
http://owlike.github.io/genson/
http://owlike.github.io/genson/
http://owlike.github.io/genson/
http://owlike.github.io/genson/
http://owlike.github.io/genson/
http://owlike.github.io/genson/
http://owlike.github.io/genson/
http://owlike.github.io/genson/
http://owlike.github.io/genson/
http://owlike.github.io/genson/
http://owlike.github.io/genson/
http://owlike.github.io/genson/
http://owlike.github.io/genson/
http://owlike.github.io/genson/
http://owlike.github.io/genson/
http://owlike.github.io/genson/
http://owlike.github.io/genson/
http://owlike.github.io/genson/
http://owlike.github.io/genson/
http://owlike.github.io/genson/
http://owlike.github.io/genson/
http://owlike.github.io/genson/
http://owlike.github.io/genson/
http://owlike.github.io/genson/
http://owlike.github.io/genson/
http://owlike.github.io/genson/
http://owlike.github.io/genson/
http://owlike.github.io/genson/
http://owlike.github.io/genson/
http://owlike.github.io/genson/
http://owlike.github.io/genson/
http://owlike.github.io/genson/
http://owlike.github.io/genson/
http://owlike.github.io/genson/
http://owlike.github.io/genson/
http://owlike.github.io/genson/
http://owlike.github.io/genson/
http://owlike.github.io/genson/
http://owlike.github.io/genson/
http://owlike.github.io/genson/
http://owlike.github.io/genson/
http://owlike.github.io/genson/
http://owlike.github.io/genson/
http://owlike.github.io/genson/
http://owlike.github.io/genson/
http://owlike.github.io/genson/
https://github.com/google/gson
https://github.com/google/gson
https://github.com/google/gson
https://github.com/google/gson
https://github.com/google/gson
https://github.com/google/gson
https://github.com/google/gson
https://github.com/google/gson
https://github.com/google/gson
https://github.com/google/gson
https://github.com/google/gson
https://github.com/google/gson
https://github.com/google/gson
https://github.com/google/gson
https://github.com/google/gson
https://github.com/google/gson
https://github.com/google/gson
https://github.com/google/gson
https://github.com/google/gson
https://github.com/google/gson
https://github.com/google/gson
https://github.com/google/gson
https://github.com/google/gson
https://github.com/google/gson
https://github.com/google/gson
https://github.com/google/gson
https://github.com/google/gson
https://github.com/google/gson
https://github.com/google/gson
https://github.com/google/gson
https://github.com/google/gson
https://github.com/google/gson
https://github.com/google/gson
https://github.com/google/gson
https://github.com/google/gson
https://github.com/google/gson
https://github.com/google/gson
https://github.com/google/gson
https://github.com/google/gson
https://github.com/google/gson
https://github.com/google/gson
https://github.com/google/gson
https://github.com/google/gson
https://github.com/google/gson
https://github.com/google/gson
https://github.com/google/gson
https://github.com/google/gson
https://github.com/google/gson
https://github.com/google/gson
https://github.com/google/gson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/jdereg/json-io
https://github.com/jdereg/json-io
https://github.com/jdereg/json-io
https://github.com/jdereg/json-io
https://github.com/jdereg/json-io
https://github.com/jdereg/json-io
https://github.com/jdereg/json-io
https://github.com/jdereg/json-io
https://github.com/jdereg/json-io
https://github.com/jdereg/json-io
https://github.com/jdereg/json-io
https://github.com/jdereg/json-io
https://github.com/jdereg/json-io
https://github.com/jdereg/json-io
https://github.com/jdereg/json-io
https://github.com/jdereg/json-io
https://github.com/jdereg/json-io
https://github.com/jdereg/json-io
https://github.com/jdereg/json-io
https://github.com/jdereg/json-io
https://github.com/jdereg/json-io
https://github.com/jdereg/json-io
https://github.com/jdereg/json-io
https://github.com/jdereg/json-io
https://github.com/jdereg/json-io
https://github.com/jdereg/json-io
https://github.com/jdereg/json-io
https://github.com/jdereg/json-io
https://github.com/jdereg/json-io
https://github.com/jdereg/json-io
https://github.com/jdereg/json-io
https://github.com/jdereg/json-io
https://github.com/jdereg/json-io
https://github.com/jdereg/json-io
https://github.com/jdereg/json-io
https://github.com/jdereg/json-io
https://github.com/jdereg/json-io
https://github.com/jdereg/json-io
https://github.com/jdereg/json-io
https://github.com/jdereg/json-io
https://github.com/jdereg/json-io
https://github.com/jdereg/json-io
https://github.com/jdereg/json-io
https://github.com/jdereg/json-io
https://github.com/jdereg/json-io
https://github.com/jdereg/json-io
https://github.com/jdereg/json-io
https://github.com/jdereg/json-io
https://github.com/jdereg/json-io
https://github.com/jdereg/json-io
https://github.com/jdereg/json-io
https://github.com/jdereg/json-io
https://github.com/jdereg/json-io
https://github.com/jdereg/json-io
https://github.com/jdereg/json-io
https://github.com/jdereg/json-io
http://json-lib.sourceforge.net/
http://json-lib.sourceforge.net/
http://json-lib.sourceforge.net/
http://json-lib.sourceforge.net/
http://json-lib.sourceforge.net/
http://json-lib.sourceforge.net/
http://json-lib.sourceforge.net/
http://json-lib.sourceforge.net/
http://json-lib.sourceforge.net/
http://json-lib.sourceforge.net/
http://json-lib.sourceforge.net/
http://json-lib.sourceforge.net/
http://json-lib.sourceforge.net/
http://json-lib.sourceforge.net/
http://json-lib.sourceforge.net/
http://json-lib.sourceforge.net/
http://json-lib.sourceforge.net/
http://json-lib.sourceforge.net/
http://json-lib.sourceforge.net/
http://json-lib.sourceforge.net/
http://json-lib.sourceforge.net/
http://json-lib.sourceforge.net/
http://json-lib.sourceforge.net/
http://json-lib.sourceforge.net/
http://json-lib.sourceforge.net/
http://json-lib.sourceforge.net/
http://json-lib.sourceforge.net/
http://json-lib.sourceforge.net/
http://json-lib.sourceforge.net/
http://json-lib.sourceforge.net/
http://json-lib.sourceforge.net/
http://json-lib.sourceforge.net/
http://json-lib.sourceforge.net/
http://json-lib.sourceforge.net/
http://json-lib.sourceforge.net/
http://json-lib.sourceforge.net/
http://json-lib.sourceforge.net/
http://json-lib.sourceforge.net/
http://json-lib.sourceforge.net/
http://json-lib.sourceforge.net/
http://json-lib.sourceforge.net/
http://json-lib.sourceforge.net/
http://json-lib.sourceforge.net/
http://json-lib.sourceforge.net/
http://json-lib.sourceforge.net/
http://json-lib.sourceforge.net/
http://json-lib.sourceforge.net/
http://json-lib.sourceforge.net/
http://json-lib.sourceforge.net/
http://json-lib.sourceforge.net/
http://json-lib.sourceforge.net/
http://json-lib.sourceforge.net/
http://json-lib.sourceforge.net/
http://json-lib.sourceforge.net/
http://json-lib.sourceforge.net/
http://json-lib.sourceforge.net/
http://json-lib.sourceforge.net/


Data Cleaning

[ 75 ]

We will use the Jackson Project (h t t p s ://g i t h u b . c o m /F a s t e r X M L /j a c k s o n ).
Documentation is found at h t t p s ://g i t h u b . c o m /F a s t e r X M L /j a c k s o n - d o c s . We will use
two JSON files to demonstrate how it can be used. The first file, Person.json, is shown
next where a single person data is stored. It consists of four fields where the last field is an
array of location information.

{
   "firstname":"Smith",
   "lastname":"Peter",
   "phone":8475552222,
   "address":["100 Main Street","Corpus","Oklahoma"]
}

The code sequence that follows shows how to extract the values for each of the fields.
Within the try-catch block a JsonFactory instance is created which then creates a
JsonParser instance based on the Person.json file.

try {
    JsonFactory jsonfactory = new JsonFactory();
    JsonParser parser = jsonfactory.createParser(new File("Person.json"));
    ...
    parser.close();
} catch (IOException ex) {
    // Handle exceptions
}

The nextToken method returns a token. However, the JsonParser object keeps track of
the current token. In the while loop the nextToken method returns and advances the
parser to the next token. The getCurrentName method returns the field name for the
token. The while loop terminates when the last token is reached.

while (parser.nextToken() != JsonToken.END_OBJECT) {
    String token = parser.getCurrentName();
    ...
}

The body of the loop consists of a series of if statements that processes the field by its
name. Since the address field is an array, another loop will extract each of its elements
until the ending array token is reached.

if ("firstname".equals(token)) {
    parser.nextToken();
    String fname = parser.getText();
    out.println("firstname : " + fname);
}
if ("lastname".equals(token)) {

https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs


Data Cleaning

[ 76 ]

    parser.nextToken();
    String lname = parser.getText();
    out.println("lastname : " + lname);
}
if ("phone".equals(token)) {
    parser.nextToken();
    long phone = parser.getLongValue();
    out.println("phone : " + phone);
}
if ("address".equals(token)) {
    out.println("address :");
    parser.nextToken();
    while (parser.nextToken() != JsonToken.END_ARRAY) {
        out.println(parser.getText());
    }
}

The output of this example follows:

firstname : Smith
lastname : Peter
phone : 8475552222
address :
100 Main Street
Corpus
Oklahoma

However, JSON objects are frequently more complex than the previous example. Here a
Persons.json file consists of an array of three persons:

{
   "persons": {
      "groupname": "school",
      "person":
         [
            {"firstname":"Smith",
              "lastname":"Peter",
              "phone":8475552222,
              "address":["100 Main Street","Corpus","Oklahoma"] },
           {"firstname":"King",
              "lastname":"Sarah",
              "phone":8475551111,
              "address":["200 Main Street","Corpus","Oklahoma"] },
           {"firstname":"Frost",
              "lastname":"Nathan",
              "phone":8475553333,
              "address":["300 Main Street","Corpus","Oklahoma"] }
         ]



Data Cleaning

[ 77 ]

   }
}

To process this file, we use a similar set of code as shown previously. We create the parser
and then enter a loop as before:

try {
    JsonFactory jsonfactory = new JsonFactory();
    JsonParser parser = jsonfactory.createParser(new File("Person.json"));
    while (parser.nextToken() != JsonToken.END_OBJECT) {
        String token = parser.getCurrentName();
        ...
    }
    parser.close();
} catch (IOException ex) {
    // Handle exceptions
}

However, we need to find the persons field and then extract each of its elements. The
groupname field is extracted and displayed as shown here:

if ("persons".equals(token)) {
    JsonToken jsonToken = parser.nextToken();
    jsonToken = parser.nextToken();
    token = parser.getCurrentName();
    if ("groupname".equals(token)) {
        parser.nextToken();
        String groupname = parser.getText();
        out.println("Group : " + groupname);
        ...
    }
}

Next, we find the person field and call a parsePerson method to better organize the code:

parser.nextToken();
token = parser.getCurrentName();
if ("person".equals(token)) {
    out.println("Found person");
    parsePerson(parser);
}

The parsePerson method follows which is very similar to the process used in the first
example.

public void parsePerson(JsonParser parser) throws IOException {
    while (parser.nextToken() != JsonToken.END_ARRAY) {
        String token = parser.getCurrentName();



Data Cleaning

[ 78 ]

        if ("firstname".equals(token)) {
            parser.nextToken();
            String fname = parser.getText();
            out.println("firstname : " + fname);
        }
        if ("lastname".equals(token)) {
            parser.nextToken();
            String lname = parser.getText();
            out.println("lastname : " + lname);
        }
        if ("phone".equals(token)) {
            parser.nextToken();
            long phone = parser.getLongValue();
            out.println("phone : " + phone);
        }
        if ("address".equals(token)) {
            out.println("address :");
            parser.nextToken();
            while (parser.nextToken() != JsonToken.END_ARRAY) {
                out.println(parser.getText());
            }
        }
    }
}

The output follows:

Group : school
Found person
firstname : Smith
lastname : Peter
phone : 8475552222
address :
100 Main Street
Corpus
Oklahoma
firstname : King
lastname : Sarah
phone : 8475551111
address :
200 Main Street
Corpus
Oklahoma
firstname : Frost
lastname : Nathan
phone : 8475553333address :
300 Main Street



Data Cleaning

[ 79 ]

Corpus
Oklahoma

Using the JSON tree API
The second approach is to use the tree model. An ObjectMapper instance is used to create
a JsonNode instance using the Persons.json file. The fieldNames method returns
Iterator allowing us to process each element of the file.

try {
    ObjectMapper mapper = new ObjectMapper();
    JsonNode node = mapper.readTree(new File("Persons.json"));
    Iterator<String> fieldNames = node.fieldNames();
    while (fieldNames.hasNext()) {

...
fieldNames.next();

    }
} catch (IOException ex) {
    // Handle exceptions
}

Since the JSON file contains a persons field, we will obtain a JsonNode instance
representing the field and then iterate over each of its elements.

JsonNode personsNode = node.get("persons");
Iterator<JsonNode> elements = personsNode.iterator();
while (elements.hasNext()) {
    ...
}

Each element is processed one at a time. If the element type is a string, we assume that this
is the groupname field.

JsonNode element = elements.next();
JsonNodeType nodeType = element.getNodeType();

if (nodeType == JsonNodeType.STRING) {
    out.println("Group: " + element.textValue());
}

If the element is an array, we assume it contains a series of persons where each person is
processed by the parsePerson method:

if (nodeType == JsonNodeType.ARRAY) {
    Iterator<JsonNode> fields = element.iterator();
    while (fields.hasNext()) {



Data Cleaning

[ 80 ]

        parsePerson(fields.next());
    }
}

The parsePerson method is shown next:

public void parsePerson(JsonNode node) {
    Iterator<JsonNode> fields = node.iterator();
    while(fields.hasNext()) {
        JsonNode subNode = fields.next();
        out.println(subNode.asText());
    }
}

The output follows:

Group: school
Smith
Peter
8475552222
King
Sarah
8475551111
Frost
Nathan
8475553333

There is much more to JSON than we are able to illustrate here. However, this should give
you an idea of how this type of data can be handled.

The nitty gritty of cleaning text
Strings are used to support text processing so using a good string library is important.
Unfortunately, the java.lang.String class has some limitations. To address these
limitations, you can either implement your own special string functions as needed or you
can use a third-party library.

Creating your own library can be useful, but you will basically be reinventing the wheel. It
may be faster to write a simple code sequence to implement some functionality, but to do
things right, you will need to test them. Third-party libraries have already been tested and
have been used on hundreds of projects. They provide a more efficient way of processing
text.



Data Cleaning

[ 81 ]

There are several text processing APIs in addition to those found in Java. We will
demonstrate two of these:

Apache Commons: h t t p s ://c o m m o n s . a p a c h e . o r g /

Guava: h t t p s ://g i t h u b . c o m /g o o g l e /g u a v a

Java provides many supports for cleaning text data, including methods in the String class.
These methods are ideal for simple text cleaning and small amounts of data but can also be
efficient with larger, complex datasets. We will demonstrate several String class methods
in a moment. Some of the most helpful String class methods are summarized in the
following table:

Method Name Return Type Description

trim String Removes leading and trailing blank spaces

toUpperCase/toLowerCase String Changes the casing of the entire string

replaceAll String Replaces all occurrences of a character sequence
within the string

contains boolean Determines whether a given character sequence
exists within the string

compareTo
compareToIgnoreCase

int Compares two strings lexographically and
returns an integer representing their
relationship

matches boolean Determines whether the string matches a given
regular expression

join String Combines two or more strings with a specified
delimiter

split String[] Separates elements of a given string using a
specified delimiter

Many text operations are simplified by the use of regular expressions. Regular expressions
use standardized syntax to represent patterns in text, which can be used to locate and
manipulate text matching the pattern.

https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava


Data Cleaning

[ 82 ]

A regular expression is simply a string itself. For example, the string Hello, my name is
Sally can be used as a regular expression to find those exact words within a given text.
This is very specific and not broadly applicable, but we can use a different regular
expression to make our code more effective. Hello, my name is \\w will match any text
that starts with Hello, my name is and ends with a word character.

We will use several examples of more complex regular expressions, and some of the more
useful syntax options are summarized in the following table. Note each must be double-
escaped when used in a Java application.

Option Description

\d Any digit: 0-9

\D Any non-digit

\s Any whitespace character

\S Any non-whitespace character

\w Any word character (including digits): A-Z, a-z, and 0-9

\W Any non-word character

The size and source of text data varies wildly from application to application but the
methods used to transform the data remain the same. You may actually need to read data
from a file, but for simplicity's sake, we will be using a string containing the beginning
sentences of Herman Melville's Moby Dick for several examples within this chapter. Unless
otherwise specified, the text will assumed to be as shown next:

String dirtyText = "Call me Ishmael. Some years ago- never mind how";
dirtyText += " long precisely - having little or no money in my purse,";
dirtyText += " and nothing particular to interest me on shore, I thought";
dirtyText += " I would sail about a little and see the watery part of the
world.";

Using Java tokenizers to extract words
Often it is most efficient to analyze text data as tokens. There are multiple tokenizers
available in the core Java libraries as well as third-party tokenizers. We will demonstrate
various tokenizers throughout this chapter. The ideal tokenizer will depend upon the
limitations and requirements of an individual application.



Data Cleaning

[ 83 ]

Java core tokenizers
StringTokenizer was the first and most basic tokenizer and has been available since Java
1. It is not recommended for use in new development as the String class's split method
is considered more efficient. While it does provide a speed advantage for files with
narrowly defined and set delimiters, it is less flexible than other tokenizer options. The
following is a simple implementation of the StringTokenizer class that splits a string on
spaces:

StringTokenizer tokenizer = new StringTokenizer(dirtyText," ");
while(tokenizer.hasMoreTokens()){
  out.print(tokenizer.nextToken() + " ");
}

When we set the dirtyText variable to hold our text from Moby Dick, shown previously,
we get the following truncated output:

Call me Ishmael. Some years ago- never mind how long precisely...

StreamTokenizer is another core Java tokenizer. StreamTokenizer grants more
information about the tokens retrieved, and allows the user to specify data types to parse,
but is considered more difficult to use than StreamTokenizer or the split method. The
String class split method is the simplest way to split strings up based on a delimiter, but
it does not provide a way to parse the split strings and you can only specify one delimiter
for the entire string. For these reasons, it is not a true tokenizer, but it can be useful for data
cleaning.

The Scanner class is designed to allow you to parse strings into different data types. We
used it previously in the Handling CSV data section and we will address it again in the
Removing stop words section.

Third-party tokenizers and libraries
Apache Commons consists of sets of open source Java classes and methods. These provide
reusable code that complements the standard Java APIs. One popular class included in the
Commons is StrTokenizer. This class provides more advanced support than the standard
StringTokenizer class, specifically more control and flexibility. The following is a simple
implementation of the StrTokenizer:

StrTokenizer tokenizer = new StrTokenizer(text);
while (tokenizer.hasNext()) {
  out.print(tokenizer.next() + " ");
}



Data Cleaning

[ 84 ]

This operates in a similar fashion to StringTokenizer and by default parses tokens on
spaces. The constructor can specify the delimiter as well as how to handle double quotes
contained in data.

When we use the string from Moby Dick, shown previously, the first tokenizer
implementation produces the following truncated output:

Call me Ishmael. Some years ago- never mind how long precisely - having
little or no money in my purse...

We can modify our constructor as follows:

StrTokenizer tokenizer = new StrTokenizer(text,",");

The output for this implementation is:

Call me Ishmael. Some years ago- never mind how long precisely - having
little or no money in my purse
and nothing particular to interest me on shore
I thought I would sail about a little and see the watery part of the world.

Notice how each line is split where commas existed in the original text. This delimiter can
be a simple char, as we have shown, or a more complex StrMatcher object.

Google Guava is an open source set of utility Java classes and methods. The primary goal of
Guava, as with many APIs, is to relieve the burden of writing basic Java utilities so
developers can focus on business processes. We are going to talk about two main tools in
Guava in this chapter: the Joiner class and the Splitter class. Tokenization is
accomplished in Guava using its Splitter class's split method. The following is a simple
example:

Splitter simpleSplit = Splitter.on(',').omitEmptyStrings().trimResults();
Iterable<String> words = simpleSplit.split(dirtyText);
for(String token: words){
  out.print(token);
}

This splits each token on commas and produces output like our last example. We can
modify the parameter of the on method to split on the character of our choosing. Notice the
method chaining which allows us to omit empty strings and trim leading and trailing
spaces. For these reasons, and other advanced capabilities, Google Guava is considered by
some to be the best tokenizer available for Java.



Data Cleaning

[ 85 ]

LingPipe is a linguistical toolkit available for language processing in Java. It provides more
specialized support for text splitting with its TokenizerFactory interface. We implement
a LingPipe IndoEuropeanTokenizerFactory tokenizer in the Simple text cleaning section.

Transforming data into a usable form
Data often needs to be cleaned once it has been acquired. Datasets are often inconsistent, are
missing in information, and contain extraneous information. In this section, we will
examine some simple ways to transform text data to make it more useful and easier to
analyze.

Simple text cleaning
We will use the string shown before from Moby Dick to demonstrate some of the basic
String class methods. Notice the use of the toLowerCase and trim methods. Datasets
often have non-standard casing and extra leading or trailing spaces. These methods ensure
uniformity of our dataset. We also use the replaceAll method twice. In the first instance,
we use a regular expression to replace all numbers and anything that is not a word or
whitespace character with a single space. The second instance replaces all back-to-back
whitespace characters with a single space:

out.println(dirtyText);
dirtyText =    dirtyText.toLowerCase().replaceAll("[\\d[^\\w\\s]]+", " ");
dirtyText = dirtyText.trim();
while(dirtyText.contains("  ")){
  dirtyText = dirtyText.replaceAll("  ", " ");
}
out.println(dirtyText);

When executed, the code produces the following output, truncated:

Call me Ishmael. Some years ago- never mind how long precisely -
call me ishmael some years ago never mind how long precisely



Data Cleaning

[ 86 ]

Our next example produces the same result but approaches the problem with regular
expressions. In this case, we replace all of the numbers and other special characters first.
Then we use method chaining to standardize our casing, remove leading and trailing
spaces, and split our words into a String array. The split method allows you to break
apart text on a given delimiter. In this case, we chose to use the regular expression \\W,
which represents anything that is not a word character:

out.println(dirtyText);
dirtyText = dirtyText.replaceAll("[\\d[^\\w\\s]]+", "");
String[] cleanText = dirtyText.toLowerCase().trim().split("[\\W]+");
for(String clean : cleanText){
  out.print(clean + " ");
}

This code produces the same output as shown previously.

Although arrays are useful for many applications, it is often important to recombine text
after cleaning. In the next example, we employ the join method to combine our words
once we have cleaned them. We use the same chained methods as shown previously to
clean and split our text. The join method joins every word in the array words and inserts a
space between each word:

out.println(dirtyText);
String[] words =    dirtyText.toLowerCase().trim().split("[\\W\\d]+");
String cleanText = String.join(" ", words);
out.println(cleanText);

Again, this code produces the same output as shown previously. An alternate version of the
join method is available using Google Guava. Here is a simple implementation of the same
process we used before, but using the Guava Joiner class:

out.println(dirtyText);
String[] words =    dirtyText.toLowerCase().trim().split("[\\W\\d]+");
String cleanText = Joiner.on(" ").skipNulls().join(words);
out.println(cleanText);

This version provides additional options, including skipping nulls, as shown before. The
output remains the same.



Data Cleaning

[ 87 ]

Removing stop words
Text analysis sometimes requires the omission of common, non-specific words such as the,
and, or but. These words are known as stop words are there are several tools available for
removing them from text. There are various ways to store a list of stop words, but for the
following examples, we will assume they are contained in a file. To begin, we create a new
Scanner object to read in our stop words. Then we take the text we wish to transform and
store it in an ArrayList using the Arrays class's asList method. We will assume here the
text has already been cleaned and normalized. It is essential to consider casing when using
String class methods---and is not the same as AND or And, although all three may be stop
words you wish to eliminate:

Scanner readStop = new Scanner(new File("C://stopwords.txt"));
ArrayList<String> words = new
ArrayList<String>(Arrays.asList((dirtyText));
out.println("Original clean text: " + words.toString());

We also create a new ArrayList to hold a list of stop words actually found in our text. This
will allow us to use the ArrayList class removeAll method shortly. Next, we use our
Scanner to read through our file of stop words. Notice how we also call the toLowerCase
and trim methods against each stop word. This is to ensure that our stop words match the
formatting in our text. In this example, we employ the contains method to determine
whether our text contains the given stop word. If so, we add it to our foundWords
ArrayList. Once we have processed all the stop words, we call removeAll to remove them
from our text:

ArrayList<String> foundWords = new ArrayList();
while(readStop.hasNextLine()){
  String stopWord = readStop.nextLine().toLowerCase();
  if(words.contains(stopWord)){
    foundWords.add(stopWord);
  }
}
words.removeAll(foundWords);
out.println("Text without stop words: " + words.toString());

The output will depend upon the words designated as stop words. If your stop words file
contains different words than used in this example, your output will differ slightly. Our
output follows:



Data Cleaning

[ 88 ]

Original clean text: [call, me, ishmael, some, years, ago, never, mind,
how, long, precisely, having, little, or, no, money, in, my, purse, and,
nothing, particular, to, interest, me, on, shore, i, thought, i, would,
sail, about, a, little, and, see, the, watery, part, of, the, world]
Text without stop words: [call, ishmael, years, ago, never, mind, how,
long, precisely

There is also support outside of the standard Java libraries for removing stop words. We are
going to look at one example, using LingPipe. In this example, we start by ensuring that our
text is normalized in lowercase and trimmed. Then we create a new instance of the
TokenizerFactory class. We set our factory to use default English stop words and then
tokenize the text. Notice that the tokenizer method uses a char array, so we call
toCharArray against our text. The second parameter specifies where to begin searching
within the text, and the last parameter specifies where to end:

text = text.toLowerCase().trim();
TokenizerFactory fact = IndoEuropeanTokenizerFactory.INSTANCE;
fact = new EnglishStopTokenizerFactory(fact);
Tokenizer tok = fact.tokenizer(text.toCharArray(), 0, text.length());
for(String word : tok){
  out.print(word + " ");
}

The output follows:

Call me Ishmael. Some years ago- never mind how long precisely - having
little or no money in my purse, and nothing particular to interest me on
shore, I thought I would sail about a little and see the watery part of the
world.
call me ishmael . years ago - never mind how long precisely - having little
money my purse , nothing particular interest me shore , i thought i sail
little see watery part world .

Notice the differences between our previous examples. First of all, we did not clean the text
as thoroughly and allowed special characters, such as the hyphen, to remain in the text.
Secondly, the LingPipe list of stop words differs from the file we used in the previous
example. Some words are removed, but LingPipe was less restrictive and allowed more
words to remain in the text. The type and number of stop words you use will depend upon
your particular application.



Data Cleaning

[ 89 ]

Finding words in text
The standard Java libraries offer support for searching through text for specific tokens. In
previous examples, we have demonstrated the matches method and regular expressions,
which can be useful when searching text. In this example, however, we will demonstrate a
simple technique using the contains method and the equals method to locate a particular
string. First, we normalize our text and the word we are searching for to ensure we can find
a match. We also create an integer variable to hold the number of times the word is found:

dirtyText = dirtyText.toLowerCase().trim();
toFind = toFind.toLowerCase().trim();
int count = 0;

Next, we call the contains method to determine whether the word exists in our text. If it
does, we split the text into an array and then loop through, using the equals method to
compare each word. If we encounter the word, we increment our counter by one. Finally,
we display the output to show how many times our word was encountered:

if(dirtyText.contains(toFind)){
      String[] words = dirtyText.split(" ");
      for(String word : words){
            if(word.equals(toFind)){
                  count++;
            }
      }
out.println("Found " + toFind + " " + count + " times in the text.");
}

In this example, we set toFind to the letter I. This produced the following output:

Found i 2 times in the text.

We also have the option to use the Scanner class to search through an entire file. One
helpful method is the findWithinHorizon method. This uses a Scanner to parse the text
up to a given horizon specification. If zero is used for the second parameter, as shown next,
the entire Scanner will be searched by default:

dirtyText = dirtyText.toLowerCase().trim();
toFind = toFind.toLowerCase().trim();
Scanner textLine = new Scanner(dirtyText);
out.println("Found " + textLine.findWithinHorizon(toFind, 10));

This technique can be more efficient for locating a particular string, but it does make it more
difficult to determine where, and how many times, the string was found.



Data Cleaning

[ 90 ]

It can also be more efficient to search an entire file using a BufferedReader. We specify
the file to search and use a try-catch block to catch any IO exceptions. We create a new
BufferedReader object from our path and process our file as long as the next line is not
empty:

String path = "C:// MobyDick.txt";
try {
    String textLine = "";
    toFind = toFind.toLowerCase().trim();
    BufferedReader textToClean = new BufferedReader(
        new FileReader(path));
    while((textLine = textToClean.readLine()) != null){
        line++;
        if(textLine.toLowerCase().trim().contains(toFind)){
            out.println("Found " + toFind + " in " + textLine);
           }
    }
    textToClean.close();
} catch (IOException ex) {
    // Handle exceptions
}

We again test our data by searching for the word I in the first sentences of Moby Dick. The
truncated output follows:

Found i in Call me Ishmael...

Finding and replacing text
We often not only want to find text but also replace it with something else. We begin our
next example much like we did the previous examples, by specifying our text, our text to
locate, and invoking the contains method. If we find the text, we call the replaceAll
method to modify our string:

text = text.toLowerCase().trim();
toFind = toFind.toLowerCase().trim();
out.println(text);

if(text.contains(toFind)){
      text = text.replaceAll(toFind, replaceWith);
      out.println(text);
}



Data Cleaning

[ 91 ]

To test this code, we set toFind to the word I and replaceWith to Ishmael. Our output
follows:

call me ishmael. some years ago- never mind how long precisely - having
little or no money in my purse, and nothing particular to interest me on
shore, i thought i would sail about a little and see the watery part of the
world.
call me ishmael. some years ago- never mind how long precisely - having
little or no money in my purse, and nothing particular to interest me on
shore, Ishmael thought Ishmael would sail about a little and see the watery
part of the world.

Apache Commons also provides a replace method with several variations in the
StringUtils class. This class provides much of the same functionality as the String class,
but with more flexibility and options. In the following example, we use our string from
Moby Dick and replace all instances of the word me with X to demonstrate the replace
method:

out.println(text);
out.println(StringUtils.replace(text, "me", "X"));

The truncated output follows:

Call me Ishmael. Some years ago- never mind how long precisely -
Call X Ishmael. SoX years ago- never mind how long precisely -

Notice how every instance of me has been replaced, even those instances contained within
other words, such as some. This can be avoided by adding spaces around me , although this
will ignore any instances where me is at the end of the sentence, like me. We will examine a
better alternative using Google Guava in a moment.

The StringUtils class also provides a replacePattern method that allows you to search
for and replace text based upon a regular expression. In the following example, we replace
all non-word characters, such as hyphens and commas, with a single space:

out.println(text);
text = StringUtils.replacePattern(text, "\\W\\s", " ");
out.println(text);



Data Cleaning

[ 92 ]

This will produce the following truncated output:

Call me Ishmael. Some years ago- never mind how long precisely -
Call me Ishmael Some years ago never mind how long precisely

Google Guava provides additional support for matching and modify text data using the
CharMatcher class. CharMatcher not only allows you to find data matching a particular
char pattern, but also provides options as to how to handle the data. This includes allowing
you to retain the data, replace the data, and trim whitespaces from within a particular
string.

In this example, we are going to use the replace method to simply replace all instances of
the word me with a single space. This will produce series of empty spaces within our text.
We will then collapse the extra whitespace using the trimAndCollapseFrom method and
print our string again:

text = text.replace("me", " ");
out.println("With double spaces: " + text);
String spaced = CharMatcher.WHITESPACE.trimAndCollapseFrom(text, ' ');
out.println("With double spaces removed: " + spaced);

Our output is truncated as follows:

With double spaces: Call Ishmael. So years ago- ...
With double spaces removed: Call Ishmael. So years ago- ...

Data imputation
Data imputation refers to the process of identifying and replacing missing data in a given
dataset. In almost any substantial case of data analysis, missing data will be an issue, and it
needs to be addressed before data can be properly analysed. Trying to process data that is
missing information is a lot like trying to understand a conversation where every once in
while a word is dropped. Sometimes we can understand what is intended. In other
situations, we may be completely lost as to what is trying to be conveyed.

Among statistical analysts, there exist differences of opinion as to how missing data should
be handled but the most common approaches involve replacing missing data with a
reasonable estimate or with an empty or null value.



Data Cleaning

[ 93 ]

To prevent skewing and misalignment of data, many statisticians advocate for replacing
missing data with values representative of the average or expected value for that dataset.
The methodology for determining a representative value and assigning it to a location
within the data will vary depending upon the data and we cannot illustrate every example
in this chapter. However, for example, if a dataset contained a list of temperatures across a
range of dates, and one date was missing a temperature, that date can be assigned a
temperature that was the average of the temperatures within the dataset.

We will examine a rather trivial example to demonstrate the issues surrounding data
imputation. Let's assume the variable tempList contains average temperature data for each
month of one year. Then we perform a simple calculation of the average and print out our
results:

   double[] tempList = {50,56,65,70,74,80,82,90,83,78,64,52};
   double sum = 0;
   for(double d : tempList){
         sum += d;
   }
   out.printf("The average temperature is %1$,.2f", sum/12);

Notice that for the numbers used in this execution, the output is as follows:

The average temperature is 70.33

Next we will mimic missing data by changing the first element of our array to zero before
we calculate our sum:

   double sum = 0;
   tempList[0] = 0;
   for(double d : tempList){
         sum += d;
   }
   out.printf("The average temperature is %1$,.2f", sum/12);

This will change the average temperature displayed in our output:

The average temperature is 66.17

Notice that while this change may seem rather minor, it is statistically significant.
Depending upon the variation within a given dataset and how far the average is from zero
or some other substituted value, the results of a statistical analysis may be significantly
skewed. This does not mean zero should never be used as a substitute for null or otherwise
invalid values, but other alternatives should be considered.



Data Cleaning

[ 94 ]

One alternative approach can be to calculate the average of the values in the array,
excluding zeros or nulls, and then substitute the average in each position with missing data.
It is important to consider the type of data and purpose of data analysis when making these
decisions. For example, in the preceding example, will zero always be an invalid average
temperature? Perhaps not if the temperatures were averages for Antarctica.

When it is essential to handle null data, Java's Optional class provides helpful solutions.
Consider the following example, where we have a list of names stored as an array. We have
set one value to null for the purposes of demonstrating these methods:

   String useName = "";
   String[] nameList =
         {"Amy","Bob","Sally","Sue","Don","Rick",null,"Betsy"};
   Optional<String> tempName;
   for(String name : nameList){
         tempName = Optional.ofNullable(name);
         useName = tempName.orElse("DEFAULT");
         out.println("Name to use = " + useName);
   }

We first created a variable called useName to hold the name we will actually print out. We
also created an instance of the Optional class called tempName. We will use this to test
whether a value in the array is null or not. We then loop through our array and create and
call the Optional class ofNullable method. This method tests whether a particular value
is null or not. On the next line, we call the orElse method to either assign a value from the
array to useName or, if the element is null, assign DEFAULT. Our output follows:

Name to use = Amy
Name to use = Bob
Name to use = Sally
Name to use = Sue
Name to use = Don
Name to use = Rick
Name to use = DEFAULT
Name to use = Betsy

The Optional class contains several other methods useful for handling potential null data.
Although there are other ways to handle such instances, this Java 8 addition provides
simpler and more elegant solutions to a common data analysis problem.



Data Cleaning

[ 95 ]

Subsetting data
It is not always practical or desirable to work with an entire set of data. In these cases, we
may want to retrieve a subset of data to either work with or remove entirely from the
dataset. There are a few ways of doing this supported by the standard Java libraries. First,
we will use the subSet method of the SortedSet interface. We will begin by storing a list
of numbers in a TreeSet. We then create a new TreeSet object to hold the subset retrieved
from the list. Next, we print out our original list:

Integer[] nums = {12, 46, 52, 34, 87, 123, 14, 44};
TreeSet<Integer> fullNumsList = new TreeSet<Integer>(new
ArrayList<>(Arrays.asList(nums)));
SortedSet<Integer> partNumsList;
out.println("Original List: " + fullNumsList.toString()
    + " " + fullNumsList.last());

The subSet method takes two parameters, which specify the range of integers within the
data we want to retrieve. The first parameter is included in the results while the second is
exclusive. In our example that follows, we want to retrieve a subset of all numbers between
the first number in our array 12 and 46:

partNumsList = fullNumsList.subSet(fullNumsList.first(), 46);
out.println("SubSet of List: " + partNumsList.toString()
    + " " + partNumsList.size());

Our output follows:

Original List: [12, 14, 34, 44, 46, 52, 87, 123]
SubSet of List: [12, 14, 34, 44]

Another option is to use the stream method in conjunction with the skip method. The
stream method returns a Java 8 Stream instance which iterates over the set. We will use the
same numsList as in the previous example, but this time we will specify how many
elements to skip with the skip method. We will also use the collect method to create a
new Set to hold the new elements:

out.println("Original List: " + numsList.toString());
Set<Integer> fullNumsList = new TreeSet<Integer>(numsList);
Set<Integer> partNumsList = fullNumsList
         .stream()
         .skip(5)
         .collect(toCollection(TreeSet::new));
out.println("SubSet of List: " + partNumsList.toString());



Data Cleaning

[ 96 ]

When we print out the new subset, we get the following output where the first five
elements of the sorted set are skipped. Because it is a SortedSet, we will actually be
omitting the five lowest numbers:

Original List: [12, 46, 52, 34, 87, 123, 14, 44]
SubSet of List: [52, 87, 123]

At times, data will begin with blank lines or header lines that we wish to remove from our
dataset to be analyzed. In our final example, we will read data from a file and remove all
blank lines. We use a BufferedReader to read our data and employ a lambda expression
to test for a blank line. If the line is not blank, we print the line to the screen:

try (BufferedReader br = new BufferedReader(new
FileReader("C:\\text.txt"))) {
   br
         .lines()
         .filter(s -> !s.equals(""))
         .forEach(s -> out.println(s));
} catch (IOException ex) {
   // Handle exceptions
}

Sorting text
Sometimes it is necessary to sort data during the cleaning process. The standard Java library
provides several resources for accomplishing different types of sorts, with improvements
added with the release of Java 8. In our first example, we will use the Comparator interface
in conjunction with a lambda expression.

We start by declaring our Comparator variable compareInts. The first set of parenthesis
after the equals sign contains the parameters to be passed to our method. Within the
lambda expression, we call the compare method, which determines which integer is larger:

 Comparator<Integer> compareInts = (Integer first, Integer second) ->
   Integer.compare(first, second);



Data Cleaning

[ 97 ]

We can now call the sort method as we did previously:

Collections.sort(numsList,compareInts);
out.println("Sorted integers using Lambda: " + numsList.toString());

Our output follows:

Sorted integers using Lambda: [12, 14, 34, 44, 46, 52, 87, 123]

We then mimic the process with our wordsList. Notice the use of the compareTo method
rather than compare:

 Comparator<String> compareWords = (String first, String second) ->
first.compareTo(second);
Collections.sort(wordsList,compareWords);
out.println("Sorted words using Lambda: " + wordsList.toString());

When this code is executed, we should see the following output:

Sorted words using Lambda: [boat, cat, dog, house, road, zoo]

In our next example, we are going to use the Collections class to perform basic sorting on
String and integer data. For this example, wordList and numsList are both ArrayList
and are initialized as follows:

List<String> wordsList
        = Stream.of("cat", "dog", "house", "boat", "road", "zoo")
        .collect(Collectors.toList());
List<Integer> numsList = Stream.of(12, 46, 52, 34, 87, 123, 14, 44)
        .collect(Collectors.toList());

First, we will print our original version of each list followed by a call to the sort method.
We then display our data, sorted in ascending fashion:

out.println("Original Word List: " + wordsList.toString());
Collections.sort(wordsList);
out.println("Ascending Word List: " + wordsList.toString());
out.println("Original Integer List: " + numsList.toString());
Collections.sort(numsList);
out.println("Ascending Integer List: " + numsList.toString());



Data Cleaning

[ 98 ]

The output follows:

Original Word List: [cat, dog, house, boat, road, zoo]
Ascending Word List: [boat, cat, dog, house, road, zoo]
Original Integer List: [12, 46, 52, 34, 87, 123, 14, 44]
Ascending Integer List: [12, 14, 34, 44, 46, 52, 87, 123]

Next, we will replace the sort method with the reverse method of the Collections class
in our integer data example. This method simply takes the elements and stores them in
reverse order:

 out.println("Original Integer List: " + numsList.toString());
 Collections.reverse(numsList);
 out.println("Reversed Integer List: " + numsList.toString());

The output displays our new numsList:

Original Integer List: [12, 46, 52, 34, 87, 123, 14, 44]
Reversed Integer List: [44, 14, 123, 87, 34, 52, 46, 12]

In our next example, we handle the sort using the Comparator interface. We will continue
to use our numsList and assume that no sorting has occurred yet. First we create two
objects that implement the Comparator interface. The sort method will use these objects to
determine the desired order when comparing two elements. The expression
Integer::compare is a Java 8 method reference. This is can be used where a lambda
expression is used:

out.println("Original Integer List: " + numsList.toString());
Comparator<Integer> basicOrder = Integer::compare;
Comparator<Integer> descendOrder = basicOrder.reversed();
Collections.sort(numsList,descendOrder);
out.println("Descending Integer List: " + numsList.toString());

After we execute this code, we will see the following output:

Original Integer List: [12, 46, 52, 34, 87, 123, 14, 44]
Descending Integer List: [123, 87, 52, 46, 44, 34, 14, 12]



Data Cleaning

[ 99 ]

In our last example, we will attempt a more complex sort involving two comparisons. Let's
assume there is a Dog class that contains two properties, name and age, along with the
necessary accessor methods. We will begin by adding elements to a new ArrayList and
then printing the names and ages of each Dog:

ArrayList<Dogs> dogs = new ArrayList<Dogs>();
dogs.add(new Dogs("Zoey", 8));
dogs.add(new Dogs("Roxie", 10));
dogs.add(new Dogs("Kylie", 7));
dogs.add(new Dogs("Shorty", 14));
dogs.add(new Dogs("Ginger", 7));
dogs.add(new Dogs("Penny", 7));
out.println("Name " + " Age");
for(Dogs d : dogs){
      out.println(d.getName() + " " + d.getAge());
}

Our output should resemble:

Name Age
Zoey 8
Roxie 10
Kylie 7
Shorty 14
Ginger 7
Penny 7

Next, we are going to use method chaining and the double colon operator to reference
methods from the Dog class. We first call comparing followed by thenComparing to
specify the order in which comparisons should occur. When we execute the code, we expect
to see the Dog objects sorted first by Name and then by Age:

dogs.sort(Comparator.comparing(Dogs::getName).thenComparing(Dogs::getAge));
out.println("Name " + " Age");
for(Dogs d : dogs){
      out.println(d.getName() + " " + d.getAge());
}



Data Cleaning

[ 100 ]

Our output follows:

Name Age
Ginger 7
Kylie 7
Penny 7
Roxie 10
Shorty 14
Zoey 8

Now we will switch the order of comparison. Notice how the age of the dog takes priority
over the name in this version:

dogs.sort(Comparator.comparing(Dogs::getAge).thenComparing(Dogs::getName));
out.println("Name " + " Age");
for(Dogs d : dogs){
      out.println(d.getName() + " " + d.getAge());
}

And our output is:

Name Age
Ginger 7
Kylie 7
Penny 7
Zoey 8
Roxie 10
Shorty 14

Data validation
Data validation is an important part of data science. Before we can analyze and manipulate
data, we need to verify that the data is of the type expected. We have organized our code
into simple methods designed to accomplish very basic validation tasks. The code within
these methods can be adapted into existing applications.



Data Cleaning

[ 101 ]

Validating data types
Sometimes we simply need to validate whether a piece of data is of a specific type, such as
integer or floating point data. We will demonstrate in the next example how to validate
integer data using the validateInt method. This technique is easily modified for the other
major data types supported in the standard Java library, including Float and Double.

We need to use a try-catch block here to catch a NumberFormatException. If an exception
is thrown, we know our data is not a valid integer. We first pass our text to be tested to the
parseInt method of the Integer class. If the text can be parsed as an integer, we simply
print out the integer. If an exception is thrown, we display information to that effect:

public static void validateInt(String toValidate){
try{
      int validInt = Integer.parseInt(toValidate);
      out.println(validInt + " is a valid integer");
}catch(NumberFormatException e){
      out.println(toValidate + " is not a valid integer");

}

We will use the following method calls to test our method:

validateInt("1234");
validateInt("Ishmael");

The output follows:

1234 is a valid integer
Ishmael is not a valid integer



Data Cleaning

[ 102 ]

The Apache Commons contain an IntegerValidator class with additional useful
functionalities. In this first example, we simply duplicate the process from before, but use
IntegerValidator methods to accomplish our goal:

public static String validateInt(String text){
      IntegerValidator intValidator = IntegerValidator.getInstance();
      if(intValidator.isValid(text)){
            return text + " is a valid integer";
      }else{
            return text + " is not a valid integer";
      }
}

We again use the following method calls to test our method:

validateInt("1234");
validateInt("Ishmael");

The output follows:

1234 is a valid integer
Ishmael is not a valid integer

The IntegerValidator class also provides methods to determine whether an integer is
greater than or less than a specific value, compare the number to a ranger of numbers, and
convert Number objects to Integer objects. Apache Commons has a number of other
validator classes. We will examine a few more in the rest of this section.

Validating dates
Many times our data validation is more complex than simply determining whether a piece
of data is the correct type. When we want to verify that the data is a date for example, it is
insufficient to simply verify that it is made up of integers. We may need to include hyphens
and slashes, or ensure that the year is in two-digit or four-digit format.



Data Cleaning

[ 103 ]

To do this, we have created another simple method called validateDate. The method
takes two String parameters, one to hold the date to validate and the other to hold the
acceptable date format. We create an instance of the SimpleDateFormat class using the
format specified in the parameter. Then we call the parse method to convert our String
date to a Date object. Just as in our previous integer example, if the data cannot be parsed
as a date, an exception is thrown and the method returns. If, however, the String can be
parsed to a date, we simply compare the format of the test date with our acceptable format
to determine whether the date is valid:

 public static String validateDate(String theDate, String dateFormat){
      try {
            SimpleDateFormat format = new SimpleDateFormat(dateFormat);
            Date test = format.parse(theDate);
            if(format.format(test).equals(theDate)){
                  return theDate.toString() + " is a valid date";
            }else{
                  return theDate.toString() + " is not a valid date";
            }
      } catch (ParseException e) {
            return theDate.toString() + " is not a valid date";
      }
}

We make the following method calls to test our method:

String dateFormat = "MM/dd/yyyy";
out.println(validateDate("12/12/1982",dateFormat));
out.println(validateDate("12/12/82",dateFormat));
out.println(validateDate("Ishmael",dateFormat));

The output follows:

12/12/1982 is a valid date
12/12/82 is not a valid date
Ishmael is not a valid date

This example highlights why it is important to consider the restrictions you place on data.
Our second method call did contain a legitimate date, but it was not in the format we
specified. This is good if we are looking for very specifically formatted data. But we also run
the risk of leaving out useful data if we are too restrictive in our validation.



Data Cleaning

[ 104 ]

Validating e-mail addresses
It is also common to need to validate e-mail addresses. While most e-mail addresses have
the @ symbol and require at least one period after the symbol, there are many variations.
Consider that each of the following examples can be valid e-mail addresses:

myemail@mail.com

MyEmail@some.mail.com

My.Email.123!@mail.net

One option is to use regular expressions to attempt to capture all allowable e-mail
addresses. Notice that the regular expression used in the method that follows is very long
and complex. This can make it easy to make mistakes, miss valid e-mail addresses, or accept
invalid addresses as valid. But a carefully crafted regular expression can be a very powerful
tool.

We use the Pattern and Matcher classes to compile and execute our regular expression. If
the pattern of the e-mail we pass in matches the regular expression we defined, we will
consider that text to be a valid e-mail address:

public static String validateEmail(String email) {
      String emailRegex = "^[a-zA-Z0-9.!$'*+/=?^_`{|}~-" +
          "]+@((\\[[0-9]{1,3}\\.[0-9]{1,3}\\.[0-9]{1,3}\\." +
          "[0-9]{1,3}\\])|(([a-zAZ\\-0-9]+\\.)+[a-zA-Z]{2,}))$";
      Pattern.compile(emailRegex);
      Matcher matcher = pattern.matcher(email);
      if(matcher.matches()){
            return email + " is a valid email address";
      }else{
            return email + " is not a valid email address";
      }
}

We make the following method calls to test our data:

out.println(validateEmail("myemail@mail.com"));
out.println(validateEmail("My.Email.123!@mail.net"));
out.println(validateEmail("myEmail"));

The output follows:

myemail@mail.com is a valid email address
My.Email.123!@mail.net is a valid email address
myEmail is not a valid email address



Data Cleaning

[ 105 ]

There is a standard Java library for validating e-mail addresses as well. In this example, we
use the InternetAddress class to validate whether a given string is a valid e-mail address
or not:

    public static String validateEmailStandard(String email){
        try{
            InternetAddress testEmail = new InternetAddress(email);
            testEmail.validate();
            return email + " is a valid email address";
        }catch(AddressException e){
            return email + " is not a valid email address";
        }
    }

When tested against the same data as in the previous example, our output is identical.
However, consider the following method call:

    out.println(validateEmailStandard("myEmail@mail"));

Despite not being in standard e-mail format, the output is as follows:

myEmail@mail is a valid email address

Additionally, the validate method by default accepts local e-mail addresses as valid. This
is not always desirable, depending upon the purpose of the data.

One last option we will look at is the Apache Commons EmailValidator class. This class's
isValid method examines an e-mail address and determines whether it is valid or not. Our
validateEmail method shown previously is modified as follows to use EmailValidator:

public static String validateEmailApache(String email){
      email = email.trim();
      EmailValidator eValidator = EmailValidator.getInstance();
      if(eValidator.isValid(email)){
            return email + " is a valid email address.";
      }else{
            return email + " is not a valid email address.";
      }
}



Data Cleaning

[ 106 ]

Validating ZIP codes
Postal codes are generally formatted specific to their country or local requirements. For this
reason, regular expressions are useful because they can accommodate any postal code
required. The example that follows demonstrates how to validate a standard United States
postal code, with or without the hyphen and last four digits:

public static void validateZip(String zip){
      String zipRegex = "^[0-9]{5}(?:-[0-9]{4})?$";
      Pattern pattern = Pattern.compile(zipRegex);
      Matcher matcher = pattern.matcher(zip);
      if(matcher.matches()){
            out.println(zip + " is a valid zip code");
      }else{
            out.println(zip + " is not a valid zip code");
      }
}

We make the following method calls to test our data:

out.println(validateZip("12345"));
out.println(validateZip("12345-6789"));
out.println(validateZip("123"));

The output follows:

12345 is a valid zip code
12345-6789 is a valid zip code
123 is not a valid zip code

Validating names
Names can be especially tricky to validate because there are so many variations. There are
no industry standards or technical limitations, other than what characters are available on
the keyboard. For this example, we have chosen to use Unicode in our regular expression
because it allows us to match any character from any language. The Unicode property
\\p{L} provides this flexibility. We also use \\s-', to allow spaces, apostrophes, commas,
and hyphens in our name fields. It is possible to perform string cleaning, as discussed
earlier in this chapter, before attempting to match names. This will simplify the regular
expression required:

public static void validateName(String name){
      String nameRegex = "^[\\p{L}\\s-',]+$";
      Pattern pattern = Pattern.compile(nameRegex);
      Matcher matcher = pattern.matcher(name);



Data Cleaning

[ 107 ]

      if(matcher.matches()){
            out.println(name + " is a valid name");
      }else{
            out.println(name + " is not a valid name");
      }
}

We make the following method calls to test our data:

validateName("Bobby Smith, Jr.");
validateName("Bobby Smith the 4th");
validateName("Albrecht Muller");
validateName("Francois Moreau");

The output follows:

Bobby Smith, Jr. is a valid name
Bobby Smith the 4th is not a valid name
Albrecht Muller is a valid name
Francois Moreau is a valid name

Notice that the comma and period in Bobby Smith, Jr. are acceptable, but the 4 in 4th is
not. Additionally, the special characters in Francois and Muller are considered valid.

Cleaning images
While image processing is a complex task, we will introduce a few techniques to clean and
extract information from an image. This will provide the reader with some insight into
image processing. We will also demonstrate how to extract text data from an image using
Optical Character Recognition (OCR).

There are several techniques used to improve the quality of an image. Many of these require
tweaking of parameters to get the improvement desired. We will demonstrate how to:

Enhance an image's contrast
Smooth an image
Brighten an image

Resize an image
Convert images to different formats



Data Cleaning

[ 108 ]

We will use OpenCV (h t t p ://o p e n c v . o r g /), an open source project for image processing.
There are several classes that we will use:

Mat: This represents an n-dimensional array holding image data such as channel,
grayscale, or color values
Imgproc: Possesses many methods that process an image
Imgcodecs: Possesses methods to read and write image files

The OpenCV Javadocs is found at http://docs.opencv.org/java/2.4.9/. In the examples
that follow, we will use Wikipedia images since they can be freely downloaded. Specifically
we will use the following images:

Parrot image:
https://en.wikipedia.org/wiki/Grayscale#/media/File:Grayscale_8bits_pa
lette_sample_image.png

Cat image: h t t p s ://e n . w i k i p e d i a . o r g /w i k i /C a t #/m e d i a /F i l e :K i t t y p l y _ e d i
t 1. j p g

Changing the contrast of an image
Here we will demonstrate how to enhance a black-and-white image of a parrot. The
Imgcodecs class's imread method reads in the image. Its second parameter specifies the
type of color used by the image, which is grayscale in this case. A new Mat object is created
for the enhanced image using the same size and color type as the original.

The actual work is performed by the equalizeHist method. This equalizes the histogram
of the image which has the effect of normalizing the brightness and increases the contrast of
the image. An image histogram is a histogram representing the tonal distribution of an
image. Tonal is also referred to as lightness. It represents the variation in the brightness
found in an image.

The last step is to write out the image.

Mat source = Imgcodecs.imread("GrayScaleParrot.png",
        Imgcodecs.CV_LOAD_IMAGE_GRAYSCALE);
Mat destination = new Mat(source.rows(), source.cols(), source.type());
Imgproc.equalizeHist(source, destination);
Imgcodecs.imwrite("enhancedParrot.jpg", destination);

http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://docs.opencv.org/java/2.4.9/
https://en.wikipedia.org/wiki/Grayscale
https://en.wikipedia.org/wiki/Grayscale
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg


Data Cleaning

[ 109 ]

The following is the original image:

The enhanced image follows:

Smoothing an image
Smoothing an image, also called blurring, will make the edges of an image smoother.
Blurring is the process of making an image less distinct. We recognize blurred objects when
we take a picture with the camera out of focus. Blurring can be used for special effects.
Here, we will use it to create an image that we will then sharpen.

The following example loads an image of a cat and repeatedly applies the blur method to
the image. In this example, the process is repeated 25 times. Increasing the number of
iterations will result in more blur or smoothing.



Data Cleaning

[ 110 ]

The third argument of the blur method is the blurring kernel size. The kernel is a matrix of
pixels, 3 by 3 in this example, that is used for convolution. This is the process of multiplying
each element of an image by weighted values of its neighbors. This allows neighboring
values to effect an element's value:

Mat source = Imgcodecs.imread("cat.jpg");
Mat destination = source.clone();
for (int i = 0; i < 25; i++) {
    Mat sourceImage = destination.clone();
    Imgproc.blur(sourceImage, destination, new Size(3.0, 3.0));
}
Imgcodecs.imwrite("smoothCat.jpg", destination);

The following is the original image:



Data Cleaning

[ 111 ]

The enhanced image follows:

Brightening an image
The convertTo method provides a means of brightening an image. The original image is
copied to a new image where the contrast and brightness is adjusted. The first parameter is
the destination image. The second specifies that the type of image should not be changed.
The third and fourth parameters control the contrast and brightness respectively. The first
value is multiplied by this value while the second is added to the multiplied value:

Mat source = Imgcodecs.imread("cat.jpg");
Mat destination = new Mat(source.rows(), source.cols(),
        source.type());
source.convertTo(destination, -1, 1, 50);
Imgcodecs.imwrite("brighterCat.jpg", destination);



Data Cleaning

[ 112 ]

The enhanced image follows:

Resizing an image
Sometimes it is desirable to resize an image. The resize method shown next illustrates
how this is done. The image is read in and a new Mat object is created. The resize method
is then applied where the width and height are specified in the Size object parameter. The
resized image is then saved:

Mat source = Imgcodecs.imread("cat.jpg");
Mat resizeimage = new Mat();
Imgproc.resize(source, resizeimage, new Size(250, 250));
Imgcodecs.imwrite("resizedCat.jpg", resizeimage);



Data Cleaning

[ 113 ]

The enhanced image follows:

Converting images to different formats
Another common operation is to convert an image that uses one format into an image that
uses a different format. In OpenCV, this is easy to accomplish as shown next. The image is
read in and then immediately written out. The extension of the file is used by the imwrite
method to convert the image to the new format:

Mat source = Imgcodecs.imread("cat.jpg");
Imgcodecs.imwrite("convertedCat.jpg", source);
Imgcodecs.imwrite("convertedCat.jpeg", source);
Imgcodecs.imwrite("convertedCat.webp", source);
Imgcodecs.imwrite("convertedCat.png", source);
Imgcodecs.imwrite("convertedCat.tiff", source);

The images can now be used for specialized processing if necessary.



Data Cleaning

[ 114 ]

Summary
Many times, half the battle in data science is manipulating data so that it is clean enough to
work with. In this chapter, we examined many techniques for taking real-world, messy data
and transforming it into workable datasets. This process is generally known as data
cleaning, wrangling, reshaping, or munging. Our focus was on core Java techniques, but we
also examined third-party libraries.

Before we can clean data, we need to have a solid understanding of the format of our data.
We discussed CSV data, spreadsheets, PDF, and JSON file types, as well as provided several
examples of manipulating text file data. As we examined text data, we looked at multiple
approaches for processing the data, including tokenizers, Scanners, and
BufferedReaders. We showed ways to perform simple cleaning operations, remove stop
words, and perform find and replace functions.

This chapter also included a discussion on data imputation and the importance of
identifying and rectifying missing data situations. Missing data can cause problems during
data analysis and we proposed different methods for dealing with this problem. We
demonstrated how to retrieve subsets of data and sort data as well.

Finally, we discussed image cleaning and demonstrated several methods of modifying
image data. This included changing contrast, smoothing, brightening, and resizing
information. We concluded with a discussion on extracting text imposed on an image.

With this background, we will introduce basic statistical methods and their Java support in
the next chapter.



4
Data Visualization

The human mind is often good at seeing patterns, trends, and outliers in visual
representations. The large amount of data present in many data science problems can be
analyzed using visualization techniques. Visualization is appropriate for a wide range of
audiences, ranging from analysts, to upper-level management, to clientele. In this chapter,
we present various visualization techniques and demonstrate how they are supported in
Java.

In this chapter, we will illustrate how to create different types of graph, plot, and chart. The
majority of the examples use JavaFX, with a few using a free library called GRAphing
Library (GRAL). There are several open source Java plotting libraries available. A brief
comparison of several of these libraries can be found at
https://github.com/eseifert/gral/wiki/comparison. We chose JavaFX because it is
packaged as part of Java SE.

GRAL is used to illustrate plots that are not as easily created using JavaFX. GRAL is a free
Java library useful for creating a variety of charts and graphs. This graphing library
provides flexibility in types of plots, axis formatting, and export options. GRAL resources
(http://trac.erichseifert.de/gral/) include example code and helpful how to sections.

https://github.com/eseifert/gral/wiki/comparison
http://trac.erichseifert.de/gral/


Data Visualization

[ 116 ]

Visualization is an important step in data analysis because it allows us to conceive of large
datasets in practical and meaningful ways. We can look at small datasets of values and
perhaps draw conclusions from the patterns we see, but this is an overwhelming and
unreliable process. Using visualization tools helps us identify potential problems or
unexpected data results, as well as construct meaningful interpretations of good data.

One example of the usefulness of data visualization comes with the presence of outliers.
Visualizing data allows us to quickly see data results significantly outside of our
expectations, and we can choose how to modify the data to build a clean and usable dataset.
This process allows us to see errors quickly and deal with them before they become a
problem later on. Additionally, visualization allows us to easily classify information and
help analysts organize their inquiries in a manner best suited to their particular dataset.

Understanding plots and graphs
There are many types of visual expression available to aid in visualization. We are going to
briefly discuss the most common and useful ones, and then demonstrate several Java
techniques for achieving these types of expression. The choice of graph, or other
visualization tool will depend upon the dataset and application needs and constraints.



Data Visualization

[ 117 ]

A bar chart is a very common technique for displaying relationships in data. In this type of
graph, data is represented in either vertical or horizontal bars placed along an X and Y axis.
The data is scaled so the values represented by each bar can be compared to one another.
The following is a simple example of a bar chart we will create in the Using country as the
category section:



Data Visualization

[ 118 ]

A pie chart is most useful when you want to demonstrate a value in relation to a larger set.
Think of this as a way to visualize how large the piece of pie is in relation to the entire pie.
The following is a simple example of a pie chart showing the distribution of population for
selected European countries:

Time series graphs are a special type of graph used for displaying time-related values.
These are most appropriate when the data analysis requires an understanding of how data
changes over a period of time. In these graphs, the vertical axis corresponds to the values
and the horizontal axis corresponds to particular points in time. In particular, this type of
graph can be useful for identifying trends across time,or suggesting correlations between
data values and particular events within a given time period.



Data Visualization

[ 119 ]

For example, stock prices and home prices will change, but their rate of change varies.
Pollution levels and crime rates also change over time. There are several techniques that
visualize this type of data. Often, specific values are not as important as their trend over
time.

An index chart is also called a line chart. Line charts use the X and Y axis to plot points on a
grid. They can be used to represent time series data. These points are connected by lines,
and these lines are used to compare values of multiple data at one time. This comparison is
usually achieved by plotting independent variables, such as time, along the X axis, and
independent variables, such as frequency or percentages, along the Y axis.

The following is a simple example of an index chart showing the distribution of population
for selected European countries:



Data Visualization

[ 120 ]

When we wish to arrange larger amounts of data in a compact and useful manner, we may
opt for a stem and leaf plot. This type of visual expression allows you to demonstrate the
correlation of one value to many values in a readable manner. The stem refers to a data
value, and the leaves are the corresponding data points. One common example of this is a
train timetable. In the following table, the departure times for a train are listed:

06:15 06 :20 06:25 06:30

06:40 06:45 06:55 07:15

07:20 07:25 07:30 07:40

07:45 07:55 08:00 08:12

08:24 08:36 08:48 09:00

09:12 09:24 09:36 09:48

10:00 10:12 10:24 10:36

10:48

However, this table can be hard to read. Instead, in the following partial stem and leaf plot,
the stem represents the hours at which a train may depart, while the leaves represent the
minutes within each hour:

Hour Minute

06 :15 :20 :25 :30 :40 :45 :55

07 :15 :20 :25 :30 :40 :45 :55

08 :00 :12 :24 :36 :48

09 :00 :12 :24 :36 :48

10 :00 :12 :24 :36 :48

This is much easier to read and process.



Data Visualization

[ 121 ]

A very popular form of visualization in statistical analysis is the histogram. Histograms
allow you to display frequencies within data using bars, similar to a bar chart. The main
difference is that histograms are used to identify frequencies and trends within a dataset
while bar charts are used to compare specific data values within a dataset. The following is
an example of a histogram we will create in the Creating histograms section:



Data Visualization

[ 122 ]

A scatter plot is simply collections of points, and analysis techniques, such as correlation or
regression, can be used to identify trends within these types of graph. In the following
scatter chart, as developed in Creating scatter charts, the population along the X axis is
plotted against the decade along the Y axis:

Visual analysis goals
Each type of visual expression lends itself to different types of data and data analysis
purposes. One common purpose of data analysis is data classification. This involves
determining which subset within a dataset a particular data value belongs to. This process
may occur early in the data analysis process because breaking data apart into manageable
and related pieces simplifies the analysis process. Often, classification is not the end goal
but rather an important intermediary step before further analysis can be undertaken.



Data Visualization

[ 123 ]

Regression analysis is a complex and important form of data analysis. It involves studying
relationships between independent and dependent variables, as well as multiple
independent variables. This type of statistical analysis allows the analyst to identify ranges
of acceptable or expected values and determine how individual values may fit into a larger
dataset. Regression analysis is a significant part of machine learning, and we will discuss it
in more detail in Chapter 5, Statisitcal Data Analysis Techniques.

Clustering allows us to identify groups of data points within a particular set or class. While
classification sorts data into similar types of datasets, clustering is concerned with the data
within the set. For example, we may have a large dataset containing all feline species in the
world, in the family Felidae. We could then classify these cats into two groups, Pantherinae
(containing most larger cats) and Felinae (all other cats). Clustering would involve grouping
subsets of similar cats within one of these classifications. For example, all tigers could be a
cluster within the Pantherinae group.

Sometimes, our data analysis requires that we extract specific types of information from our
dataset. The process of selecting the data to extract is known as attribute selection or
feature selection. This process helps analysts simplify the data models and allows us to
overcome issues with redundant or irrelevant information within our dataset.

With this introduction to basic plot and chart types, we will discuss Java support for
creating these plots and charts.

Creating index charts
An index chart is a line chart that shows the percentage change of something over time.
Frequently, such a chart is based on a single data attribute. In the following example, we
will be using the Belgian population for six decades. The data is a subset of population data
found at h t t p s ://o u r w o r l d i n d a t a . o r g /g r a p h e r /p o p u l a t i o n - b y - c o u n t r y ?t a b =d a t a :

Decade Population

1950 8639369

1960 9118700

1970 9637800

1980 9846800

1990 9969310

2000 10263618

https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data


Data Visualization

[ 124 ]

We start by creating the MainApp class, which extends Application. We create a series of
instance variables. The XYChart.Series class represents a series of data points for some
plot. In our case, this will be for the decades and population, which we will initialize
shortly. The next declaration is for the CategoryAxis and NumberAxis instances. These
represent the X and Y axes respectively. The declaration for the Y axis includes range and
increment values for the population. This makes the chart a bit more readable. The last
declaration is a string variable for the country:

public class MainApp extends Application {
    final XYChart.Series<String, Number> series =
        new XYChart.Series<>();
    final CategoryAxis xAxis = new CategoryAxis();
    final NumberAxis yAxis =
        new NumberAxis(8000000, 11000000, 1000000);
    final static String belgium = "Belgium";
    ...
}

In JavaFX, the main method usually launches the application using the base class launch
method. Eventually, the start method is called, which we override. In this example, we
call the simpleLineChart method where the user interface is created:

public static void main(String[] args) {
    launch(args);
}

public void start(Stage stage) {
    simpleIndexChart (stage);
}

The simpleLineChart follows and is passed an instance of the Stage class. This
represents the client area of the application's window. We start by setting a title for the
application and the line chart proper. The label of the Y axis is set. An instance of the
LineChart class is initialized using the X and Y axis instances. This class represents the line
chart:

public void simpleIndexChart (Stage stage) {
    stage.setTitle("Index Chart");
    lineChart.setTitle("Belgium Population");
    yAxis.setLabel("Population");
    final LineChart<String, Number> lineChart
            = new LineChart<>(xAxis, yAxis);

    ...
}



Data Visualization

[ 125 ]

The series is given a name, and then the population for each decade is added to the series
using the addDataItem helper method:

series.setName("Population");
addDataItem(series, "1950", 8639369);
addDataItem(series, "1960", 9118700);
addDataItem(series, "1970", 9637800);
addDataItem(series, "1980", 9846800);
addDataItem(series, "1990", 9969310);
addDataItem(series, "2000", 10263618);

The addDataItem method follows, which creates an XYChart.Data class instance using
the String and Number values passed to it. It then adds the instance to the series:

public void addDataItem(XYChart.Series<String, Number> series,
        String x, Number y) {
    series.getData().add(new XYChart.Data<>(x, y));
}

The last part of the simpleLineChart method creates a Scene class instance that
represents the content of the stage. JavaFX uses the concept of a stage and scene to deal
with the internals of the application's GUI.

The scene is created using a line chart, and the application's size is set to 800 by 600 pixels.
The series is then added to the line chart and scene is added to stage. The show method
displays the application:

Scene scene = new Scene(lineChart, 800, 600);
lineChart.getData().add(series);
stage.setScene(scene);
stage.show();



Data Visualization

[ 126 ]

When the application executes the following window will be displayed:

Creating bar charts
A bar chart uses two axes with rectangular bars that can be either positioned either
vertically or horizontally. The length of a bar is proportional to the value it represents. A bar
chart can be used to show time series data.



Data Visualization

[ 127 ]

In the following series of examples, we will be using a set of European country populations
for three decades, as listed in the following table. The data is a subset of population data
found at h t t p s ://o u r w o r l d i n d a t a . o r g /g r a p h e r /p o p u l a t i o n - b y - c o u n t r y ?t a b =d a t a :

Country 1950 1960 1970

Belgium 8,639,369 9,118,700 9,637,800

France 42,518,000 46,584,000 51,918,000

Germany 68,374,572 72,480,869 77,783,164

Netherlands 10,113,527 11,486,000 13,032,335

Sweden 7,014,005 7,480,395 8,042,803

United Kingdom 50,127,000 52,372,000 55,632,000

The first of three bar charts will be constructed using JavaFX. We start with a series of
declarations for the countries as part of a class that extends the Application class:

public class MainApp extends Application {
    final static String belgium = "Belgium";
    final static String france = "France";
    final static String germany = "Germany";
    final static String netherlands = "Netherlands";
    final static String sweden = "Sweden";
    final static String unitedKingdom = "United Kingdom";

...
}

Next, we declared a series of instance variables that represent the parts of a graph. The first
are CategoryAxis and NumberAxis instances:

final CategoryAxis xAxis = new CategoryAxis();
final NumberAxis yAxis = new NumberAxis();

The population and country data is stored in a series of XYChart.Series instances. Here,
we have declared six different series, which use a string and number pair. The first example
does not use all six series, but later examples will. We will initially assign a country string
and its corresponding population to three series. These series will represent the populations
for the decades 1950, 1960, and 1970:

final XYChart.Series<String, Number> series1 =
    new XYChart.Series<>();
final XYChart.Series<String, Number> series2
    new XYChart.Series<>();

https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data
https://ourworldindata.org/grapher/population-by-country?tab=data


Data Visualization

[ 128 ]

final XYChart.Series<String, Number> series3 =
    new XYChart.Series<>();
final XYChart.Series<String, Number> series4 =
    new XYChart.Series<>();
final XYChart.Series<String, Number> series5 =
    new XYChart.Series<>();
final XYChart.Series<String, Number> series6 =
    new XYChart.Series<>();

We will start with two simple bar charts. The first one will show the countries as categories
where the year changes occur within the category on the X axis and the population along
the Y axis. The second shows the decades as categories containing the counties. The last
example is a stacked bar chart.

Using country as the category
The elements of the bar chart are set up in the simpleBarChartByCountry method. The
title of the chart is set and a BarChart class instance is created using the two axes. The
chart, its X axis, and its Y axis also have labels that are initialized here:

public void simpleBarChartByCountry(Stage stage) {
    stage.setTitle("Bar Chart");
    final BarChart<String, Number> barChart
                = new BarChart<>(xAxis, yAxis);
    barChart.setTitle("Country Summary");
    xAxis.setLabel("Country");
    yAxis.setLabel("Population");
    ...
}

Next, the first three series are initialized with a name, and then the country and population
data for that series. A helper method, addDataItem, as introduced in the previous section,
is used to add the data to each series:

series1.setName("1950");
addDataItem(series1,belgium, 8639369);
addDataItem(series1,france, 42518000);
addDataItem(series1,germany, 68374572);
addDataItem(series1,netherlands, 10113527);
addDataItem(series1,sweden, 7014005);
addDataItem(series1,unitedKingdom, 50127000);

series2.setName("1960");
addDataItem(series2,belgium, 9118700);
addDataItem(series2,france, 46584000);



Data Visualization

[ 129 ]

addDataItem(series2,germany, 72480869);
addDataItem(series2,netherlands, 11486000);
addDataItem(series2,sweden, 7480395);
addDataItem(series2,unitedKingdom, 52372000);

series3.setName("1970");
addDataItem(series3,belgium, 9637800);
addDataItem(series3,france, 51918000);
addDataItem(series3,germany, 77783164);
addDataItem(series3,netherlands, 13032335);
addDataItem(series3,sweden, 8042803);
addDataItem(series3,unitedKingdom, 55632000);

The last part of the method creates a scene instance. The three series are added to the
scene and the scene is attached to the stage using the setScene method. A stage is a
class that essentially represents the client area of a window:

Scene scene = new Scene(barChart, 800, 600);
barChart.getData().addAll(series1, series2, series3);
stage.setScene(scene);
stage.show();

The last of the two methods is the start method, which is called automatically when the
window is displayed. It is passed the Stage instance. Here, we call the
simpleBarChartByCountry method:

public void start(Stage stage) {
    simpleBarChartByCountry(stage);
}

The main method consists of a call to the Application class's launch method:

public static void main(String[] args) {
    launch(args);
}



Data Visualization

[ 130 ]

When the application is executed, the following graph is displayed:

Using decade as the category
In the following example, we will demonstrate how to display the same information, but we
will organize the X axis categories by year. We will use the simpleBarChartByYear
method, as shown next. The axis and titles are set up in the same way as before, but with
different values for the title and labels:

public void simpleBarChartByYear(Stage stage) {
    stage.setTitle("Bar Chart");
    final BarChart<String, Number> barChart
            = new BarChart<>(xAxis, yAxis);



Data Visualization

[ 131 ]

    barChart.setTitle("Year Summary");
    xAxis.setLabel("Year");
    yAxis.setLabel("Population");
    ...
}

The following string variables are declared for the three decades:

String year1950 = "1950";
String year1960 = "1960";
String year1970 = "1970";

The data series are created in the same way as before, except the country name is used for
the series name and the year is used for the category. In addition, six series are used, one for
each country:

series1.setName(belgium);
addDataItem(series1, year1950, 8639369);
addDataItem(series1, year1960, 9118700);
addDataItem(series1, year1970, 9637800);

series2.setName(france);
addDataItem(series2, year1950, 42518000);
addDataItem(series2, year1960, 46584000);
addDataItem(series2, year1970, 51918000);

series3.setName(germany);
addDataItem(series3, year1950, 68374572);
addDataItem(series3, year1960, 72480869);
addDataItem(series3, year1970, 77783164);

series4.setName(netherlands);
addDataItem(series4, year1950, 10113527);
addDataItem(series4, year1960, 11486000);
addDataItem(series4, year1970, 13032335);

series5.setName(sweden);
addDataItem(series5, year1950, 7014005);
addDataItem(series5, year1960, 7480395);
addDataItem(series5, year1970, 8042803);

series6.setName(unitedKingdom);
addDataItem(series6, year1950, 50127000);
addDataItem(series6, year1960, 52372000);
addDataItem(series6, year1970, 55632000);



Data Visualization

[ 132 ]

The scene is created and attached to the stage:

Scene scene = new Scene(barChart, 800, 600);
barChart.getData().addAll(series1, series2,
    series3, series4, series5, series6);
stage.setScene(scene);
stage.show();

The main method is unchanged, but the start method calls the simpleBarChartByYear
method instead:

public void start(Stage stage) {
    simpleBarChartByYear(stage);
}

When the application is executed, the following graph is displayed:



Data Visualization

[ 133 ]

Creating stacked graphs
An area chart depicts information by allocating more space for larger values. By stacking
area charts on top of each other we create a stacked graph, sometimes called a stream graph.
However, stacked graphs do not work well with negative values and cannot be used for
data where summation does not make sense, such as with temperatures. If too many graphs
are stacked, then it can become difficult to interpret.

Next, we will show how to create a stacked bar chart. The stackedGraphExample method
contains the code to create the bar chart. We start with familiar code to set the title and
labels. However, for the X axis, the setCategories method
FXCollections.<String>observableArrayList instance is used to set the categories.
The argument of this constructor is an array of strings created by the Arrays class's asList
method and the names of the countries:

public void stackedGraphExample(Stage stage) {
    stage.setTitle("Stacked Bar Chart");
    final StackedBarChart<String, Number> stackedBarChart
            = new StackedBarChart<>(xAxis, yAxis);
    stackedBarChart.setTitle("Country Population");
    xAxis.setLabel("Country");
    xAxis.setCategories(
        FXCollections.<String>observableArrayList(
                Arrays.asList(belgium, germany, france,
                    netherlands, sweden, unitedKingdom)));
    yAxis.setLabel("Population");
    ...
}



Data Visualization

[ 134 ]

The series are initialized with the year being used for the series name and the country, and
their population being added using the helper method addDataItem. The scene is then
created:

series1.setName("1950");
addDataItem(series1, belgium, 8639369);
addDataItem(series1, france, 42518000);
addDataItem(series1, germany, 68374572);
addDataItem(series1, netherlands, 10113527);
addDataItem(series1, sweden, 7014005);
addDataItem(series1, unitedKingdom, 50127000);

series2.setName("1960");
addDataItem(series2, belgium, 9118700);
addDataItem(series2, france, 46584000);
addDataItem(series2, germany, 72480869);
addDataItem(series2, netherlands, 11486000);
addDataItem(series2, sweden, 7480395);
addDataItem(series2, unitedKingdom, 52372000);

series3.setName("1970");
addDataItem(series3, belgium, 9637800);
addDataItem(series3, france, 51918000);
addDataItem(series3, germany, 77783164);
addDataItem(series3, netherlands, 13032335);
addDataItem(series3, sweden, 8042803);
addDataItem(series3, unitedKingdom, 55632000);

Scene scene = new Scene(stackedBarChart, 800, 600);
stackedBarChart.getData().addAll(series1, series2, series3);
stage.setScene(scene);
stage.show();

The main method is unchanged, but the start method calls the stackedGraphExample
method instead:

public void start(Stage stage) {
    stackedGraphExample(stage);
}



Data Visualization

[ 135 ]

When the application is executed, the following graph is displayed:

Creating pie charts
The following pie chart example is based on the 2000 population of selected European
countries as summarized here:

Country Population Percentage

Belgium 10,263,618 3

France 61,137,000 26

Germany 82,187,909 35



Data Visualization

[ 136 ]

Netherlands 15,907,853 7

Sweden 8,872,000 4

United Kingdom 59,522,468 25

The JavaFX implementation uses the same Application base class and main method as
used in the previous examples. We will not use a separate method for creating the GUI, but
instead place this code in the start method, as shown here:

public class PieChartSample extends Application {

    public void start(Stage stage) {
        Scene scene = new Scene(new Group());
        stage.setTitle("Europian Country Population");
        stage.setWidth(500);
        stage.setHeight(500);
        ...
    }

    public static void main(String[] args) {
        launch(args);
    }

}

A pie chart is represented by the PieChart class. We can create and initialize the pie chart
in the constructor by using an ObservableList of pie chart data. This data consists of a
series of PieChart.Data instances, each containing a text label and a percentage value.

The next sequence creates an ObservableList instance based on the European population
data presented earlier. The FXCollections class's observableArrayList method returns
an ObservableList instance with a list of pie chart data:

ObservableList<PieChart.Data> pieChartData =
        FXCollections.observableArrayList(
        new PieChart.Data("Belgium", 3),
        new PieChart.Data("France", 26),
        new PieChart.Data("Germany", 35),
        new PieChart.Data("Netherlands", 7),
        new PieChart.Data("Sweden", 4),
        new PieChart.Data("United Kingdom", 25));



Data Visualization

[ 137 ]

We then create the pie chart and set its title. The pie chart is then added to the scene, the
scene is associated with the stage, and then the window is displayed:

final PieChart pieChart = new PieChart(pieChartData);
pieChart.setTitle("Country Population");
((Group) scene.getRoot()).getChildren().add(pieChart);
stage.setScene(scene);
stage.show();

When the application is executed, the following graph is displayed:



Data Visualization

[ 138 ]

Creating scatter charts
Scatter charts also use the XYChart.Series class in JavaFX. For this example, we will use a
set of European data that includes the previous Europeans countries and their population
data for the decades 1500 through 2000. This information is stored in a file called
EuropeanScatterData.csv. The first part of this file is shown here:

1500 1400000
1600 1600000
1650 1500000
1700 2000000
1750 2250000
1800 3250000
1820 3434000
1830 3750000
1840 4080000
...

We start with the declaration of the JavaFX MainApp class, as shown next. The main method
launches the application and the start method creates the user interface:

public class MainApp extends Application {
    @Override
    public void start(Stage stage) throws Exception {
        ...
    }

    public static void main(String[] args) {
        launch(args);
    }
}

Within the start method we set the title, create the axes, and create an instance of the
ScatterChart that represents the scatter plot. The NumberAxis class's constructors used
values that better match the data range than the default values used by its default
constructor:

stage.setTitle("Scatter Chart Sample");
final NumberAxis yAxis = new NumberAxis(1400, 2100, 100);
final NumberAxis xAxis = new NumberAxis(500000, 90000000,
    1000000);
final ScatterChart<Number, Number> scatterChart = new
    ScatterChart<>(xAxis, yAxis);



Data Visualization

[ 139 ]

Next, the axes' labels are set along with the scatter chart's title:

xAxis.setLabel("Population");
yAxis.setLabel("Decade");
scatterChart.setTitle("Population Scatter Graph");

An instance of the XYChart.Series class is created and named:

XYChart.Series series = new XYChart.Series();

The series is populated using a CSVReader class instance and the file
EuropeanScatterData.csv. This process was discussed in Chapter 3, Data Cleaning:

try (CSVReader dataReader = new CSVReader(new
FileReader("EuropeanScatterData.csv"), ',')) {
    String[] nextLine;
    while ((nextLine = dataReader.readNext()) != null) {
            int decade = Integer.parseInt(nextLine[0]);
            int population = Integer.parseInt(nextLine[1]);
            series.getData().add(new XYChart.Data(
                population, decade));
            out.println("Decade: " + decade +
                "  Population: " + population);
    }
}
scatterChart.getData().addAll(series);

The JavaFX scene and stage are created, and then the plot is displayed:

Scene scene = new Scene(scatterChart, 500, 400);
stage.setScene(scene);
stage.show();



Data Visualization

[ 140 ]

When the application is executed, the following graph is displayed:

Creating histograms
Histograms, though similar in appearance to bar charts, are used to display the frequency of
data items in relation to other items within the dataset. Each of the following examples
using GRAL will use the DataTable class to initially hold the data to be displayed. In this
example, we will read data from a sample file called AgeofMarriage.csv. This comma-
separated file holds a list of ages at which people were first married.



Data Visualization

[ 141 ]

We will create a new class, called HistogramExample, which extends the JFrame class and
contains the following code within its constructor. We first create a DataReader object to
specify that the data is in CSV format. We then use a try-catch block to handle IO exceptions
and call the DataReader class's read method to place the data directly into a DataTable
object. The first parameter of the read method is a FileInputStream object, and the
second specifies the type of data expected from within the file:

DataReader readType=
  DataReaderFactory.getInstance().get("text/csv");
String fileName = "C://AgeofMarriage.csv";
try {
    DataTable histData = (DataTable) readType.read(
        New FileInputStream(fileName), Integer.class);
    ...
}

Next, we create a Number array to specify the ages for which we expect to have data. In this
case, we expect the ages of marriage will range from 19 to 30. We use this array to create
our Histogram object. We include our DataTable from earlier and specify the orientation
as well. Then we create our DataSource, specify our starting age, and specify the spacing
along our X axis:

Number ageRange[] = {19,20,21,22,23,24,25,26,27,28,29,30};
Histogram sampleHisto = new Histogram1D(
    histData, Orientation.VERTICAL, ageRange);
DataSource sampleHistData = new EnumeratedData(sampleHisto, 19,
  1.0);

We use the BarPlot class to create our histogram from the data we read in earlier:

BarPlot testPlot = new BarPlot(sampleHistData);

The next few steps serve to format various aspects of our histogram. We use the setInsets
method to specify how much space to place around each side of the graph within the
window. We can provide a title for our graph and specify the bar width:

testPlot.setInsets(new Insets2D.Double(20.0, 50.0, 50.0, 20.0));
testPlot.getTitle().setText("Average Age of Marriage");
testPlot.setBarWidth(0.7);



Data Visualization

[ 142 ]

We also need to format our X and Y axes. We have chosen to set our range for the X axis to
closely match our expected age range but to provide some space on the side of the graph.
Because we know the amount of sample data, we set our Y axis to range from 0 to 10. In a
business application, these ranges would be calculated by examining the actual dataset. We
can also specify whether we want tick marks to show and where we would like the axes to
intersect:

testPlot.getAxis(BarPlot.AXIS_X).setRange(18, 30.0);
testPlot.getAxisRenderer(BarPlot.AXIS_X).setTickAlignment(0.0);
testPlot.getAxisRenderer(BarPlot.AXIS_X).setTickSpacing(1);
testPlot.getAxisRenderer(BarPlot.AXIS_X).setMinorTicksVisible(false  );

testPlot.getAxis(BarPlot.AXIS_Y).setRange(0.0, 10.0);
testPlot.getAxisRenderer(BarPlot.AXIS_Y).setTickAlignment(0.0);
testPlot.getAxisRenderer(BarPlot.AXIS_Y).setMinorTicksVisible(false  );
testPlot.getAxisRenderer(BarPlot.AXIS_Y).setIntersection(0);

We also have a lot of flexibility with the color and values displayed on the graph. In this
example, we have chosen to display the frequency value for each age and set our graph
color to black:

PointRenderer renderHist =
    testPlot.getPointRenderers(sampleHistData).get(0);
renderHist.setColor(GraphicsUtils.deriveWithAlpha(Color.black,
  128));
renderHist.setValueVisible(true);

Finally, we set several properties for how we want our window to display:

InteractivePanel pan = new InteractivePanel(testPlot);
pan.setPannable(false);
pan.setZoomable(false);
add(pan);
setSize(1500, 700);
this.setVisible(true);



Data Visualization

[ 143 ]

When the application is executed, the following graph is displayed:

Creating donut charts
Donut charts are similar to pie charts, but they are missing the middle section (hence the
name donut). Some analysts prefer donut charts to pie charts because they do not
emphasize the size of each piece within the chart and are easier to compare to other donut
charts. They also provide the added advantage of taking up less space, allowing for more
formatting options in the display.

In this example, we will assume our data is already populated in a two-dimensional array
called ageCount. The first row of the array contains the possible age values, ranging again
from 19 to 30 (inclusive). The second row contains the number of data values equal to each
age. For example, in our dataset, there are six data values equal to 19, so ageCount[0][1]
contains the number six.



Data Visualization

[ 144 ]

We create a DataTable and use the add method to add our values from the array. Notice
we are testing to see if the value of a particular age is zero. In our test case, there will be
zero data values equal to 23. We are opting to add a blank space in our donut chart if there
are no data values for that point. This is accomplished by using a negative number as the
first parameter in the add method. This will set an empty space of size 3:

DataTable donutData = new DataTable(Integer.class, Integer.class);
for(int Y = 0; Y < ageCount[0].length; y++){
    if(ageCount[1][y] == 0){
        donutData.add(-3, ageCount[0][y]);
    }else{
        donutData.add(ageCount[1][y], ageCount[0][y]);
    }
}

Next, we create our donut plot using the PiePlot class. We set basic properties of the plot,
including specifying the values for the legend. In this case, we want our legend to reflect
our age possibilities, so we use the setLabelColumn method to change the default labels.
We also set our insets as we did in the previous example:

PiePlot testPlot = new PiePlot(donutData);
((ValueLegend) testPlot.getLegend()).setLabelColumn(1);
testPlot.getTitle().setText("Donut Plot Example");
testPlot.setRadius(0.9);
testPlot.setLegendVisible(true);
testPlot.setInsets(new Insets2D.Double(20.0, 20.0, 20.0, 20.0));

Next, we create a PieSliceRenderer object to set more advanced properties. Because a
donut plot is basically a pie plot in essence, we will render a donut plot by calling the
setInnerRadius method. We also specify the gap between the pie slices, the colors used,
and the style of the labels:

PieSliceRenderer renderPie = (PieSliceRenderer)
testPlot.getPointRenderer(donutData);
renderPie.setInnerRadius(0.4);
renderPie.setGap(0.2);
LinearGradient colors = new LinearGradient(
    Color.blue, Color.green);
renderPie.setColor(colors);
renderPie.setValueVisible(true);
renderPie.setValueColor(Color.WHITE);
renderPie.setValueFont(Font.decode(null).deriveFont(Font.BOLD));



Data Visualization

[ 145 ]

Finally, we create our panel and set its size:

add(new InteractivePanel(testPlot), BorderLayout.CENTER);
setSize(1500, 700);
setVisible(true);

When the application is executed, the following graph is displayed:

Creating bubble charts
Bubble charts are similar to scatter plots except they represent data with three dimensions.
The first two dimensions are expressed on the X and Y axes and the third is represented by
the size of the point plotted. This can be helpful in determining relationships between data
values.



Data Visualization

[ 146 ]

We will again use the DataTable class to initially hold the data to be displayed. In this
example, we will read data from a sample file called MarriageByYears.csv. This is also a
CSV file, and contains one column representing the year a marriage occurred, a second
column holding the age at which a person was married, and a third column holding
integers representing marital satisfaction on a scale from 1 (least satisfied) to 10 (most
satisfied). We create a DataSeries to represent our type of desired data plot and then
create a XYPlot object:

DataReader readType =
    DataReaderFactory.getInstance().get("text/csv");
String fileName = "C://MarriageByYears.csv";
try {
    DataTable bubbleData = (DataTable) readType.read(
        new FileInputStream(fileName), Integer.class,
            Integer.class, Integer.class);
DataSeries bubbleSeries = new DataSeries("Bubble", bubbleData);
XYPlot testPlot = new XYPlot(bubbleSeries);

Next, we set basic property information about our chart. We will set the color and turn off
the vertical and horizontal grids in this example. We will also make our X and Y axes
invisible in this example. Notice that we still set a range for the axes, even though they are
not displayed:

testPlot.setInsets(new Insets2D.Double(30.0));  testPlot.setBackground(new
Color(0.75f, 0.75f, 0.75f));
XYPlotArea2D areaProp = (XYPlotArea2D) testPlot.getPlotArea();
areaProp.setBorderColor(null);
areaProp.setMajorGridX(false);
areaProp.setMajorGridY(false);
areaProp.setClippingArea(null);

testPlot.getAxisRenderer(XYPlot.AXIS_X).setShapeVisible(false);
testPlot.getAxisRenderer(XYPlot.AXIS_X).setTicksVisible(false);
testPlot.getAxisRenderer(XYPlot.AXIS_Y).setShapeVisible(false);
testPlot.getAxisRenderer(XYPlot.AXIS_Y).setTicksVisible(false);
testPlot.getAxis(XYPlot.AXIS_X).setRange(1940, 2020);
testPlot.getAxis(XYPlot.AXIS_Y).setRange(17, 30);



Data Visualization

[ 147 ]

We can also set properties related to the bubbles drawn on the chart. Here, we set the color
and shape, and specify which column of the data will be used to scale the shapes. In this
case, the third column, with the marital satisfaction rating, will be used. We set it using the
setColumn method:

Color color = GraphicsUtils.deriveWithAlpha(Color.black, 96);
SizeablePointRenderer renderBubble = new SizeablePointRenderer();
renderBubble.setShape(new Ellipse2D.Double(-3.5, -3.5, 4.0, 4.0));
renderBubble.setColor(color);
renderBubble.setColumn(2);
testPlot.setPointRenderers(bubbleSeries, renderBubble);

Finally, we create our panel and set its size:

add(new InteractivePanel(testPlot), BorderLayout.CENTER);
setSize(new Dimension(1500, 700));
setVisible(true);

When the application is executed, the following graph is displayed. Notice both the size and
color of the points changes depending upon the frequency of that particular data point:



Data Visualization

[ 148 ]

Summary
In this chapter, we introduce basic graphs, plots, and charts used to visualize data. The
process of visualization enables an analyst to graphically examine the data under review.
This is more intuitive, and often facilitates the rapid identification of anomalies in the data
that can be hard to extract from the raw data.

Several visual representations were examined, including line charts, a variety of bar charts,
pie charts, scatterplots, histograms, donut charts, and bubble charts. Each of these graphical
depictions of data provides a different perspective of the data being analyzed. The most
appropriate technique depends on the nature of the data being used. While we have not
covered all of the possible graphical techniques, this sample provides a good overview of
what is available.

We were also concerned with how Java is used to draw these graphics. Many of the
examples used JavaFX. This is a readily available tool that is bundled with Java SE.
However, there are several other libraries available. We used GRAL to illustrate how to
generate some graphs.

With the overview of visualization techniques, we are ready to move on to other topics,
where visualization will be used to better convey the essence of data science techniques. In
the next chapter, we will introduce basic statistical processes, including linear regression,
and we will use the techniques introduced in this chapter.



5
Statistical Data Analysis

Techniques
The intent of this chapter is not to make the reader an expert in statistical techniques.
Rather, it is to familiarize the reader with the basic statistical techniques in use and
demonstrate how Java can support statistical analysis. While there are quite a variety of
data analysis techniques, in this chapter, we will focus on the more common tasks.

These techniques range from the relatively simple mean calculation to sophisticated
regression analysis models. Statistical analysis can be a very complicated process and
requires significant study to be conducted properly. We will start with an introduction to
basic statistical analysis techniques, including calculating the mean, median, mode, and
standard deviation of a dataset. There are numerous approaches used to calculate these
values, which we will demonstrate using standard Java and third-party APIs. We will also
briefly discuss sample size and hypothesis testing.

Regression analysis is an important technique for analyzing data. The technique creates a
line that tries to match the dataset. The equation representing the line can be used to predict
future behavior. There are several types of regression analysis. In this chapter, we will focus
on simple linear regression and multiple regression. With simple linear regression, a single
factor such as age is used to predict some behavior such as the likelihood of eating out.
With multiple regression, multiple factors such as age, income level, and marital status may
be used to predict how often a person eats out.

Predictive analytics, or analysis, is concerned with predicting future events. Many of the
techniques used in this book are concerned with making predictions. Specifically, the
regression analysis part of this chapter predicts future behavior.

Before we see how Java supports regression analysis, we need to discuss basic statistical
techniques. We begin with mean, mode, and median.



Statistical Data Analysis Techniques

[ 150 ]

In this chapter, we will cover the following topics:

Working with mean, mode, and median
Standard deviation and sample size determination
Hypothesis testing
Regression analysis

Working with mean, mode, and median
The mean, median, and mode are basic ways to describe characteristics or summarize
information from a dataset. When a new, large dataset is first encountered, it can be helpful
to know basic information about it to direct further analysis. These values are often used in
later analysis to generate more complex measurements and conclusions. This can occur
when we use the mean of a dataset to calculate the standard deviation, which we will
demonstrate in the Standard deviation section of this chapter.

Calculating the mean
The term mean, also called the average, is computed by adding values in a list and then
dividing the sum by the number of values. This technique is useful for determining the
general trend for a set of numbers. It can also be used to fill in missing data elements. We
are going to examine several ways to calculate the mean for a given set of data using
standard Java libraries as well as third-party APIs.

Using simple Java techniques to find mean
In our first example, we will demonstrate a basic way to calculate mean using standard Java
capabilities. We will use an array of double values called testData:

double[] testData = {12.5, 18.7, 11.2, 19.0, 22.1, 14.3, 16.9, 12.5,
   17.8, 16.9};

We create a double variable to hold the sum of all of the values and a double variable to
hold the mean. A loop is used to iterate through the data and add values together. Next, the
sum is divided by the length of our array (the total number of elements) to calculate the
mean:

double total = 0;
for (double element : testData) {



Statistical Data Analysis Techniques

[ 151 ]

   total += element;
}
double mean = total / testData.length;
out.println("The mean is " + mean);

Our output is as follows:

The mean is 16.19

Using Java 8 techniques to find mean
Java 8 provided additional capabilities with the introduction of optional classes. We are
going to use the OptionalDouble class in conjunction with the Arrays class's stream
method in this example. We will use the same array of doubles we used in the previous
example to create an OptionalDouble object. If any of the numbers in the array, or the sum
of the numbers in the array, is not a real number, the value of the OptionalDouble object
will also not be a real number:

OptionalDouble mean = Arrays.stream(testData).average();

We use the isPresent method to determine whether we calculated a valid number for our
mean. If we do not get a good result, the isPresent method will return false and we can
handle any exceptions:

if (mean.isPresent()) {
    out.println("The mean is " + mean.getAsDouble());
} else {
    out.println("The stream was empty");
}

Our output is the following:

The mean is 16.19

Another, more succinct, technique using the OptionalDouble class involves lambda
expressions and the ifPresent method. This method executes its argument if mean is a
valid OptionalDouble object:

OptionalDouble mean = Arrays.stream(testData).average();
mean.ifPresent(x-> out.println("The mean is " + x));



Statistical Data Analysis Techniques

[ 152 ]

Our output is as follows:

The mean is 16.19

Finally, we can use the orElse method to either print the mean or an alternate value if
mean is not a valid OptionalDouble object:

OptionalDouble mean = Arrays.stream(testData).average();
out.println("The mean is " + mean.orElse(0));

Our output is the same:

The mean is 16.19

For our next two mean examples, we will use third-party libraries and continue using the
array of doubles, testData.

Using Google Guava to find mean
In this example, we will use Google Guava libraries, introduced in Chapter 3, Data
Cleaning. The Stats class provides functionalities for handling numeric data, including
finding mean and standard deviation, which we will demonstrate later. To calculate the
mean, we first create a Stats object using our testData array and then execute the mean
method:

Stats testStat = Stats.of(testData);
double mean = testStat.mean();
out.println("The mean is " + mean);

Notice the difference between the default format of the output in this example.

Using Apache Commons to find mean
In our final mean examples, we use Apache Commons libraries, also introduced in Chapter
3, Data Cleaning. We first create a Mean object and then execute the evaluate method using
our testData. This method returns a double, representing the mean of the values in the
array:

Mean mean = new Mean();
double average = mean.evaluate(testData);
out.println("The mean is " + average);



Statistical Data Analysis Techniques

[ 153 ]

Our output is the following:

The mean is 16.19

Apache Commons also provides a helpful DescriptiveStatistics class. We will use this
later to demonstrate median and standard deviation, but first we will begin by calculating
the mean. Using the SynchronizedDescriptiveStatistics class is advantageous as it is
synchronized and therefore thread safe.

We start by creating our DescriptiveStatistics object, statTest. We then loop
through our double array and add each item to statTest. We can then invoke the
getMean method to calculate the mean:

DescriptiveStatistics statTest =
    new SynchronizedDescriptiveStatistics();
for(double num : testData){
   statTest.addValue(num);
}
out.println("The mean is " + statTest.getMean());

Our output is as follows:

The mean is 16.19

Next, we will cover the related topic: median.

Calculating the median
The mean can be misleading if the dataset contains a large number of outlying values or is
otherwise skewed. When this happens, the mode and median can be useful. The term
median is the value in the middle of a range of values. For an odd number of values, this is
easy to compute. For an even number of values, the median is calculated as the average of
the middle two values.

Using simple Java techniques to find median
In our first example, we will use a basic Java approach to calculate the median. For these
examples, we have modified our testData array slightly:

double[] testData = {12.5, 18.3, 11.2, 19.0, 22.1, 14.3, 16.2, 12.5,
   17.8, 16.5};



Statistical Data Analysis Techniques

[ 154 ]

First, we use the Arrays class to sort our data because finding the median is simplified
when the data is in numeric order:

Arrays.sort(testData);

We then handle three possibilities:

Our list is empty
Our list has an even number of values
Our list has an odd number of values

The following code could be shortened, but we have been explicit to help clarify the
process. If our list has an even number of values, we divide the length of the list by 2. The
first variable, mid1, will hold the first of two middle values. The second variable, mid2, will
hold the second middle value. The average of these two numbers is our median value. The
process for finding the median index of a list with an odd number of values is simpler and
requires only that we divide the length by 2 and add 1:

if(testData.length==0){    // Empty list
   out.println("No median. Length is 0");
}else if(testData.length%2==0){    // Even number of elements
   double mid1 = testData[(testData.length/2)-1];
   double mid2 = testData[testData.length/2];
   double med = (mid1 + mid2)/2;
   out.println("The median is " + med);
}else{   // Odd number of elements
   double mid = testData[(testData.length/2)+1];
   out.println("The median is " + mid);
}

Using the preceding array, which contains an even number of values, our output is:

The median is 16.35

To test our code for an odd number of elements, we will add the double 12.5 to the end of
the array. Our new output is as follows:

The median is 16.5



Statistical Data Analysis Techniques

[ 155 ]

Using Apache Commons to find the median
We can also calculate the median using the Apache Commons DescriptiveStatistics
class demonstrated in the Calculating the mean section. We will continue using the testData
array with the following values:

double[] testData = {12.5, 18.3, 11.2, 19.0, 22.1, 14.3, 16.2, 12.5,
   17.8, 16.5, 12.5};

Our code is very similar to what we used to calculate the mean. We simply create our
DescriptiveStatistics object and call the getPercentile method, which returns an
estimate of the value stored at the percentile specified in its argument. To find the median,
we use the value of 50:

DescriptiveStatistics statTest =
    new SynchronizedDescriptiveStatistics();
for(double num : testData){
   statTest.addValue(num);
}
out.println("The median is " + statTest.getPercentile(50));

Our output is as follows:

The median is 16.2

Calculating the mode
The term mode is used for the most frequently occurring value in a dataset. This can be
thought of as the most popular result, or the highest bar in a histogram. It can be a useful
piece of information when conducting statistical analysis but it can be more complicated to
calculate than it first appears. To begin, we will demonstrate a simple Java technique using
the following testData array:

double[] testData = {12.5, 18.3, 11.2, 19.0, 22.1, 14.3, 16.2, 12.5,
   17.8, 16.5, 12.5};

We start off by initializing variables to hold the mode, the number of times the mode
appears in the list, and a tempCnt variable. The mode and modeCount variables are used to
hold the mode value and the number of times this value occurs in the list respectively. The
variable tempCnt is used to count the number of times an element occurs in the list:

int modeCount = 0;
double mode = 0;
int tempCnt = 0;



Statistical Data Analysis Techniques

[ 156 ]

We then use nested for loops to compare each value of the array to the other values within
the array. When we find matching values, we increment our tempCnt. After comparing
each value, we test to see whether tempCnt is greater than modeCount, and if so, we change
our modeCount and mode to reflect the new values:

for (double testValue : testData){
   tempCnt = 0;
   for (double value : testData){
         if (testValue == value){
               tempCnt++;
         }
   }

   if (tempCnt > modeCount){
         modeCount = tempCnt;
         mode = testValue;
   }
}
out.println("Mode" + mode + " appears " + modeCount + " times.");

Using this example, our output is as follows:

The mode is 12.5 and appears 3 times.

While our preceding example seems straightforward, it poses potential problems. Modify
the testData array as shown here, where the last entry is changed to 11.2:

double[] testData = {12.5, 18.3, 11.2, 19.0, 22.1, 14.3, 16.2, 12.5,
   17.8, 16.5, 11.2};

When we execute our code this time, our output is as follows:

The mode is 12.5 and appears 2 times.

The problem is that our testData array now contains two values that appear two times
each, 12.5 and 11.2. This is known as a multimodal set of data. We can address this
through basic Java code and through third-party libraries, as we will show in a moment.

However, first we will show two approaches using simple Java. The first approach will use
two ArrayList instances and the second will use an ArrayList and a HashMap instance.



Statistical Data Analysis Techniques

[ 157 ]

Using ArrayLists to find multiple modes
In the first approach, we modify the code used in the last example to use an ArrayList
class. We will create two ArrayLists, one to hold the unique numbers within the dataset
and one to hold the count of each number. We also need a tempMode variable, which we
use next:

ArrayList<Integer> modeCount = new ArrayList<Integer>();
ArrayList<Double> mode = new ArrayList<Double>();
int tempMode = 0;

Next, we will loop through the array and test for each value in our mode list. If the value is
not found in the list, we add it to mode and set the same position in modeCount to 1. If the
value is found, we increment the same position in modeCount by 1:

for (double testValue : testData){
   int loc = mode.indexOf(testValue);
   if(loc == -1){
         mode.add(testValue);
         modeCount.add(1);
   }else{
         modeCount.set(loc, modeCount.get(loc)+1);
   }
}

Next, we loop through our modeCount list to find the largest value. This represents the
mode, or the frequency of the most common value in the dataset. This allows us to select
multiple modes:

for(int cnt = 0; cnt < modeCount.size(); cnt++){
   if (tempMode < modeCount.get(cnt)){
         tempMode = modeCount.get(cnt);
   }
}

Finally, we loop through our modeCount array again and print out any elements in mode
that correspond to elements in modeCount containing the largest value, or mode:

for(int cnt = 0; cnt < modeCount.size(); cnt++){
   if (tempMode == modeCount.get(cnt)){
         out.println(mode.get(cnt) + " is a mode and appears " +
             modeCount.get(cnt) + " times.");
   }
}



Statistical Data Analysis Techniques

[ 158 ]

When our code is executed, our output reflects our multimodal dataset:

12.5 is a mode and appears 2 times.
11.2 is a mode and appears 2 times.

Using a HashMap to find multiple modes
The second approach uses HashMap. First, we create ArrayList to hold possible modes, as
in the previous example. We also create our HashMap and a variable to hold the mode:

ArrayList<Double> modes = new ArrayList<Double>();
HashMap<Double, Integer> modeMap = new HashMap<Double, Integer>();
int maxMode = 0;

Next, we loop through our testData array and count the number of occurrences of each
value in the array. We then add the count of each value and the value itself to the HashMap.
If the count for the value is larger than our maxMode variable, we set maxMode to our new
largest number:

for (double value : testData) {
   int modeCnt = 0;
   if (modeMap.containsKey(value)) {
         modeCnt = modeMap.get(value) + 1;
   } else {
         modeCnt = 1;
   }
   modeMap.put(value, modeCnt);
   if (modeCnt > maxMode) {
         maxMode = modeCnt;
   }
}

Finally, we loop through our HashMap and retrieve our modes, or all values with a count
equal to our maxMode:

for (Map.Entry<Double, Integer> multiModes : modeMap.entrySet()) {
   if (multiModes.getValue() == maxMode) {
         modes.add(multiModes.getKey());
   }
}
for(double mode : modes){
   out.println(mode + " is a mode and appears " + maxMode + " times.");
}



Statistical Data Analysis Techniques

[ 159 ]

When we execute our code, we get the same output as in the previous example:

12.5 is a mode and appears 2 times.
11.2 is a mode and appears 2 times.

Using a Apache Commons to find multiple modes
Another option uses the Apache Commons StatUtils class. This class contains several
methods for statistical analysis, including multiple methods for the mean, but we will only
examine the mode here. The method is named mode and takes an array of doubles as its
parameter. It returns an array of doubles containing all modes of the dataset:

double[] modes = StatUtils.mode(testData);
for(double mode : modes){
   out.println(mode + " is a mode.");
}

One disadvantage is that we are not able to count the number of times our mode appears
within this method. We simply know what the mode is, not how many times it appears.
When we execute our code, we get a similar output to our previous example:

12.5 is a mode.
11.2 is a mode.

Standard deviation
Standard deviation is a measurement of how values are spread around the mean. A high
deviation means that there is a wide spread, whereas a low deviation means that the values
are more tightly grouped around the mean. This measurement can be misleading if there is
not a single focus point or there are numerous outliers.

We begin by showing a simple example using basic Java techniques. We are using our
testData array from previous examples, duplicated here:

double[] testData = {12.5, 18.3, 11.2, 19.0, 22.1, 14.3, 16.2, 12.5,
   17.8, 16.5, 11.2};



Statistical Data Analysis Techniques

[ 160 ]

Before we can calculate the standard deviation, we need to find the average. We could use
any of our techniques listed in the Calculating the mean section, but we will add up our
values and divide by the length of testData for simplicity's sake:

int sum = 0;
for(double value : testData){
   sum += value;
}
double mean = sum/testData.length;

Next, we create a variable, sdSum, to help us calculate the standard deviation. As we loop
through our array, we subtract the mean from each data value, square that value, and add it
to sdSum. Finally, we divide sdSum by the length of the array and square that result:

int sdSum = 0;
for (double value : testData){
    sdSum += Math.pow((value - mean), 2);
}
out.println("The standard deviation is " +
Math.sqrt( sdSum / ( testData.length ) ));

Our output is our standard deviation:

The standard deviation is 3.3166247903554

Our next technique uses Google Guava's Stats class to calculate the standard deviation.
We start by creating a Stats object with our testData. We then call the
populationStandardDeviation method:

Stats testStats = Stats.of(testData);
double sd = testStats.populationStandardDeviation();
out.println("The standard deviation is " + sd);

The output is as follows:

The standard deviation is 3.3943803826056653

This example calculates the standard deviation of an entire population. Sometimes it is
preferable to calculate the standard deviation of a sample subset of a population, to correct
possible bias. To accomplish this, we use essentially the same code as before but replace the
populationStandardDeviation method with sampleStandardDeviation:

Stats testStats = Stats.of(testData);
double sd = testStats.sampleStandardDeviation();
out.println("The standard deviation is " + sd);



Statistical Data Analysis Techniques

[ 161 ]

In this case, our output is:

The sample standard deviation is 3.560056179332006

Our next example uses the Apache Commons DescriptiveStatistics class, which we
used to calculate the mean and median in previous examples. Remember, this technique has
the advantage of being thread safe and synchronized. After we create a
SynchronizedDescriptiveStatistics object, we add each value from the array. We
then call the getStandardDeviation method.

DescriptiveStatistics statTest =
    new SynchronizedDescriptiveStatistics();
for(double num : testData){
   statTest.addValue(num);
}
out.println("The standard deviation is " +
statTest.getStandardDeviation());

Notice the output matches our output from our previous example. The
getStandardDeviation method by default returns the standard deviation adjusted for a
sample:

The standard deviation is 3.5600561793320065

We can, however, continue using Apache Commons to calculate the standard deviation in
either form. The StandardDeviation class allows you to calculate the population standard
deviation or subset standard deviation. To demonstrate the differences, replace the previous
code example with the following:

StandardDeviation sdSubset = new StandardDeviation(false);
out.println("The population standard deviation is " +
sdSubset.evaluate(testData));

StandardDeviation sdPopulation = new StandardDeviation(true);
out.println("The sample standard deviation is " +
sdPopulation.evaluate(testData));



Statistical Data Analysis Techniques

[ 162 ]

On the first line, we created a new StandardDeviation object and set our constructor's
parameter to false, which will produce the standard deviation of a population. The second
section uses a value of true, which produces the standard deviation of a sample. In our
example, we used the same test dataset. This means we were first treating it as though it
were a subset of a population of data. In our second example we assumed that our dataset
was the entire population of data. In reality, you would might not use the same set of data
with each of those methods. The output is as follows:

The population standard deviation is 3.3943803826056653
The sample standard deviation is 3.560056179332006

The preferred option will depend upon your sample and particular analyzation needs.

Sample size determination
Sample size determination involves identifying the quantity of data required to conduct
accurate statistical analysis. When working with large datasets it is not always necessary to
use the entire set. We use sample size determination to ensure we choose a sample small
enough to manipulate and analyze easily, but large enough to represent our population of
data accurately.

It is not uncommon to use a subset of data to train a model and another subset is used to
test the model. This can be helpful for verifying accuracy and reliability of data. Some
common consequences for a poorly determined sample size include false-positive results,
false-negative results, identifying statistical significance where none exists, or suggesting a
lack of significance where it is actually present. Many tools exist online for determining
appropriate sample sizes, each with varying levels of complexity. One simple example is
available at h t t p s ://w w w . s u r v e y m o n k e y . c o m /m p /s a m p l e - s i z e - c a l c u l a t o r /.

Hypothesis testing
Hypothesis testing is used to test whether certain assumptions, or premises, about a dataset
could not happen by chance. If this is the case, then the results of the test are considered to
be statistically significant.

https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/


Statistical Data Analysis Techniques

[ 163 ]

Performing hypothesis testing is not a simple task. There are many different pitfalls to
avoid such as the placebo effect or the observer effect. In the former, a participant will attain
a result that they think is expected. In the observer effect, also called the Hawthorne effect,
the results are skewed because the participants know they are being watched. Due to the
complex nature of human behavior analysis, some types of statistical analysis are
particularly subject to skewing or corruption.

The specific methods for performing hypothesis testing are outside the scope of this book
and require a solid background in statistical processes and best practices. Apache Commons
provides a package, org.apache.commons.math3.stat.inference, with tools for
performing hypothesis testing. This includes tools to perform a student's T-test, chi square,
and calculating p values.

Regression analysis
Regression analysis is useful for determining trends in data. It indicates the relationship
between dependent and independent variables. The independent variables determine the
value of a dependent variable. Each independent variable can have either a strong or a
weak effect on the value of the dependent variable. Linear regression uses a line in a
scatterplot to show the trend. Non-linear regression uses some sort of curve to depict the
relationships.

For example, there is a relationship between blood pressure and various factors such as age,
salt intake, and Body Mass Index (BMI). The blood pressure can be treated as the
dependent variable and the other factors as independent variables. Given a dataset
containing these factors for a group of individuals we can perform regression analysis to see
trends.

There are several types of regression analysis supported by Java. We will be examining
simple linear regression and multiple linear regression. Both approaches take a dataset and
derive a linear equation that best fits the data. Simple linear regression uses a single
dependent and a single independent variable. Multiple linear regression uses multiple
dependent variables.

There are several APIs that support simple linear regression including:

Apache Commons - h t t p ://c o m m o n s . a p a c h e . o r g /p r o p e r /c o m m o n s - m a t h /j a v a
d o c s /a p i - 3. 6. 1/i n d e x . h t m l

Weka - h t t p ://w e k a . s o u r c e f o r g e . n e t /d o c . d e v /w e k a /c o r e /m a t r i x /L i n e a r R e
g r e s s i o n . h t m l

http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html
http://weka.sourceforge.net/doc.dev/weka/core/matrix/LinearRegression.html


Statistical Data Analysis Techniques

[ 164 ]

JFree - h t t p ://w w w . j f r e e . o r g /j f r e e c h a r t /a p i /j a v a d o c /o r g /j f r e e /d a t a /s t a
t i s t i c s /R e g r e s s i o n . h t m l

Michael Thomas Flanagan's Java Scientific Library - h t t p ://w w w . e e . u c l . a c . u k
/~m f l a n a g a /j a v a /R e g r e s s i o n . h t m l

Nonlinear Java support can be found at:

odinsbane/least-squares-in-java - h t t p s ://g i t h u b . c o m /o d i n s b a n e /l e a s t - s q u a
r e s - i n - j a v a

NonLinearLeastSquares (Parallel Java Library Documentation) - h t t p s ://w w w .
c s . r i t . e d u /~a r k /p j /d o c /e d u /r i t /n u m e r i c /N o n L i n e a r L e a s t S q u a r e s . h t m l

There are several statistics that evaluate the effectiveness of an analysis. We will focus on
basic statistics.

Residuals are the difference between the actual data values and the predicted values. The
Residual Sum of Squares (RSS) is the sum of the squares of residuals. Essentially it
measures the discrepancy between the data and a regression model. A small RSS indicates
the model closely matches the data. RSS is also known as the Sum of Squared Residuals
(SSR) or the Sum of Squared Errors (SSE) of prediction.

The Mean Square Error (MSE) is the sum of squared residuals divided by the degrees of
freedom. The number of degrees of freedom is the number of independent observations (N)
minus the number of estimates of population parameters. For simple linear regression this
N - 2 because there are two parameters. For multiple linear regression it depends on the
number of independent variables used.

A small MSE also indicates that the model fits the dataset well. You will see both of these
statistics used when discussing linear regression models.

The correlation coefficient measures the association between two variables of a regression
model. The correlation coefficient ranges from -1 to +1. A value of +1 means that two
variables are perfectly related. When one increases, so does the other. A correlation
coefficient of -1 means that two variables are negatively related. When one increases, the
other decreases. A value of 0 means there is no correlation between the variables. The
coefficient is frequently designated as R. It will often be squared, thus ignoring the sign of
the relation. The Pearson's product moment correlation coefficient is normally used.

http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
http://www.ee.ucl.ac.uk/~mflanaga/java/Regression.html
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://github.com/odinsbane/least-squares-in-java
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html
https://www.cs.rit.edu/~ark/pj/doc/edu/rit/numeric/NonLinearLeastSquares.html


Statistical Data Analysis Techniques

[ 165 ]

Using simple linear regression
Simple linear regression uses a least squares approach where a line is computed that
minimizes the sum of squared of the distances between the points and the line. Sometimes
the line is calculated without using the Y intercept term. The regression line is an estimate.
We can use the line's equation to predict other data points. This is useful when we want to
predict future events based on past performance.

In the following example we use the Apache Commons SimpleRegression class with the
Belgium population dataset used in Chapter 4, Data Visualization. The data is duplicated
here for your convenience:

Decade Population

1950 8639369

1960 9118700

1970 9637800

1980 9846800

1990 9969310

2000 10263618

While the application that we will demonstrate is a JavaFX application, we will focus on the
linear regression aspects of the application. We used a JavaFX program to generate a chart
to show the regression results.

The body of the start method follows. The input data is stored in a two-dimension array
as shown here:

double[][] input = {{1950, 8639369}, {1960, 9118700},
    {1970, 9637800}, {1980, 9846800}, {1990, 9969310},
    {2000, 10263618}};

An instance of the SimpleRegression class is created and the data is added using the
addData method:

SimpleRegression regression = new SimpleRegression();
regression.addData(input);



Statistical Data Analysis Techniques

[ 166 ]

We will use the model to predict behavior for several years as declared in the array that
follows:

double[] predictionYears = {1950, 1960, 1970, 1980, 1990, 2000,
    2010, 2020, 2030, 2040};

We will also format our output using the following NumberFormat instances. One is used
for the year where the setGroupingUsed method with a parameter of false suppresses
commas.

NumberFormat yearFormat = NumberFormat.getNumberInstance();
yearFormat.setMaximumFractionDigits(0);
yearFormat.setGroupingUsed(false);
NumberFormat populationFormat = NumberFormat.getNumberInstance();
populationFormat.setMaximumFractionDigits(0);

The SimpleRegression class possesses a predict method that is passed a value, a year in
this case, and returns the estimated population. We use this method in a loop and call the
method for each year:

for (int i = 0; i < predictionYears.length; i++) {
    out.println(nf.format(predictionYears[i]) + "-"
            + nf.format(regression.predict(predictionYears[i])));
}

When the program is executed, we get the following output:

1950-8,801,975
1960-9,112,892
1970-9,423,808
1980-9,734,724
1990-10,045,641
2000-10,356,557
2010-10,667,474
2020-10,978,390
2030-11,289,307
2040-11,600,223



Statistical Data Analysis Techniques

[ 167 ]

To see the results graphically, we generated the following index chart. The line matches the
actual population values fairly well and shows the projected populations in the future.

Simple Linear Regression

The SimpleRegession class supports a number of methods that provide additional
information about the regression. These methods are summarized next:

Method Meaning

getR Returns Pearson's product moment correlation coefficient

getRSquare Returns the coefficient of determination (R-square)

getMeanSquareError Returns the MSE



Statistical Data Analysis Techniques

[ 168 ]

getSlope The slope of the line

getIntercept The intercept

We used the helper method, displayAttribute, to display various attribute values as
shown here:

displayAttribute(String attribute, double value) {
    NumberFormat numberFormat = NumberFormat.getNumberInstance();
    numberFormat.setMaximumFractionDigits(2);
    out.println(attribute + ": " + numberFormat.format(value));
}

We called the previous methods for our model as shown next:

displayAttribute("Slope",regression.getSlope());
displayAttribute("Intercept", regression.getIntercept());
displayAttribute("MeanSquareError",
    regression.getMeanSquareError());
displayAttribute("R", + regression.getR());
displayAttribute("RSquare", regression.getRSquare());

The output follows:

Slope: 31,091.64
Intercept: -51,826,728.48
MeanSquareError: 24,823,028,973.4
R: 0.97
RSquare: 0.94

As you can see, the model fits the data nicely.

Using multiple regression
Our intent is not to provide a detailed explanation of multiple linear regression as that
would be beyond the scope of this section. A more through treatment can be found at h t t p

://w w w . b i d d l e . c o m /d o c u m e n t s /b c g _ c o m p _ c h a p t e r 4. p d f . Instead, we will explain the
basics of the approach and show how we can use Java to perform multiple regression.

http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf
http://www.biddle.com/documents/bcg_comp_chapter4.pdf


Statistical Data Analysis Techniques

[ 169 ]

Multiple regression works with data where multiple independent variables exist. This
happens quite often. Consider that the fuel efficiency of a car can be dependent on the
octane level of the gas being used, the size of the engine, the average cruising speed, and the
ambient temperature. All of these factors can influence the fuel efficiency, some to a larger
degree than others.

The independent variable is normally represented as Y where there are multiple dependent
variables represented using different Xs. A simplified equation for a regression using three
dependent variables follows where each variable has a coefficient. The first term is the
intercept. These coefficients are not intended to represent real values but are only used for
illustrative purposes.

Y = 11 + 0.75 X1 + 0.25 X2 − 2 X3

The intercept and coefficients are generated using a multiple regression model based on
sample data. Once we have these values, we can create an equation to predict other values.

We will use the Apache Commons OLSMultipleLinearRegression class to perform 
multiple regression using cigarette data. The data has been adapted from h t t p ://w w w . a m s t

a t . o r g /p u b l i c a t i o n s /j s e /v 2n 1/d a t a s e t s . m c i n t y r e . h t m l . The data consists of 25 entries
for different brands of cigarettes with the following information:

Brand name
Tar content (mg)
Nicotine content (mg)
Weight (g)
Carbon monoxide content (mg)

The data has been stored in a file called data.csv as shown in the following partial listing
of its contents where the columns values match the order of the previous list:

Alpine,14.1,.86,.9853,13.6
Benson&Hedges,16.0,1.06,1.0938,16.6
BullDurham,29.8,2.03,1.1650,23.5
CamelLights,8.0,.67,.9280,10.2
...

http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html


Statistical Data Analysis Techniques

[ 170 ]

The following is a scatter plot chart showing the relationship of the data:

Multiple Regression Scatter plot

We will use a JavaFX program to create the scatter plot and to perform the analysis. We
start with the MainApp class as shown next. In this example we will focus on the multiple
regression code and we do not include the JavaFX code used to create the scatter plot. The
complete program can be downloaded from h t t p ://w w w . p a c k t p u b . c o m /s u p p o r t .

http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support


Statistical Data Analysis Techniques

[ 171 ]

The data is held in a one-dimensional array and a NumberFormat instance will be used to
format the values. The array size reflects the 25 entries and the 4 values per entry. We will
not be using the brand name in this example.

    public class MainApp extends Application {
    private final double[] data = new double[100];
    private final NumberFormat numberFormat =
        NumberFormat.getNumberInstance();
    ...
    public static void main(String[] args) {
        launch(args);
    }

}

The data is read into the array using a CSVReader instance as shown next:

    int i = 0;
try (CSVReader dataReader = new CSVReader(
        new FileReader("data.csv"), ',')) {
    String[] nextLine;
    while ((nextLine = dataReader.readNext()) != null) {
        String brandName = nextLine[0];
        double tarContent = Double.parseDouble(nextLine[1]);
        double nicotineContent = Double.parseDouble(nextLine[2]);
        double weight = Double.parseDouble(nextLine[3]);
        double carbonMonoxideContent =
            Double.parseDouble(nextLine[4]);

        data[i++] = carbonMonoxideContent;
        data[i++] = tarContent;
        data[i++] = nicotineContent;
        data[i++] = weight;
        ...
    }
}

Apache Commons possesses two classes that perform multiple regression:

OLSMultipleLinearRegression- Ordinary Least Square (OLS) regression
GLSMultipleLinearRegression- Generalized Least Squared (GLS) regression



Statistical Data Analysis Techniques

[ 172 ]

When the latter technique is used, the correlation within elements of the model impacts the
results addversely. We will use the OLSMultipleLinearRegression class and start with
its instantiation:

    OLSMultipleLinearRegression ols = new OLSMultipleLinearRegression();

We will use the newSampleData method to initialize the model. This method needs the
number of observations in the dataset and the number of independent variables. It may
throw an IllegalArgumentException exception which needs to be handled.

    int numberOfObservations = 25;
int numberOfIndependentVariables = 3;
try {
    ols.newSampleData(data, numberOfObservations,
        numberOfIndependentVariables);
} catch (IllegalArgumentException e) {
     // Handle exceptions
}

Next, we set the number of digits that will follow the decimal point to two and invoke the
estimateRegressionParameters method. This returns an array of values for our
equation, which are then displayed:

    numberFormat.setMaximumFractionDigits(2);
double[] parameters = ols.estimateRegressionParameters();
for (int i = 0; i < parameters.length; i++) {
    out.println("Parameter " + i +": " +
        numberFormat.format(parameters[i]));
}

When executed we will get the following output which gives us the parameters needed for
our regression equation:

Parameter 0: 3.2
Parameter 1: 0.96
Parameter 2: -2.63
Parameter 3: -0.13



Statistical Data Analysis Techniques

[ 173 ]

To predict a new dependent value based on a set of independent variables, the getY
method is declared, as shown next. The parameters parameter contains the generated
equation coefficients. The arguments parameter contains the value for the dependent
variables. These are used to calculate the new dependent value which is returned:

    public double getY(double[] parameters, double[] arguments) {
    double result = 0;
    for(int i=0; i<parameters.length; i++) {
        result += parameters[i] * arguments[i];
    }
    return result;
}

We can test this method by creating a series of independent values. Here we used the same
values as used for the SalemUltra entry in the data file:

    double arguments1[] = {1, 4.5, 0.42, 0.9106};
out.println("X: " + 4.9 + "  y: " +
        numberFormat.format(getY(parameters,arguments1)));

This will give us the following values:

X: 4.9 y: 6.31

The return value of 6.31 is different from the actual value of 4.9. However, using the
values for VirginiaSlims:

    double arguments2[] = {1, 15.2, 1.02, 0.9496};
out.println("X: " + 13.9 + "  y: " +
        numberFormat.format(getY(parameters,arguments2)));

We get the following result:

X: 13.9 y: 15.03



Statistical Data Analysis Techniques

[ 174 ]

This is close to the actual value of 13.9. Next, we use a different set of values than found in
the dataset:

    double arguments3[] = {1, 12.2, 1.65, 0.86};
out.println("X: " + 9.9 + "  y: " +
        numberFormat.format(getY(parameters,arguments3)));

The result follows:

X: 9.9 y: 10.49

The values differ but are still close. The following figure shows the predicted data in
relation to the original data:

Multiple regression projected



Statistical Data Analysis Techniques

[ 175 ]

The OLSMultipleLinearRegression class also possesses several methods to evaluate
how well the models fits the data. However, due to the complex nature of multiple
regression, we have not discussed them here.

Summary
In this chapter, we provided a brief introduction to the basic statistical analysis techniques
you may encounter in data science applications. We started with simple techniques to
calculate the mean, median, and mode of a set of numerical data. Both standard Java and
third-party Java APIs were used to show how these attributes are calculated. While these
techniques are relatively simple, there are some issues that need to be considered when
calculating them.

Next, we examined linear regression. This technique is more predictive in nature and
attempts to calculate other values in the future or past based on a sample dataset. We
examine both simple linear regression and multiple regression and used Apache Commons
classes to perform the regression and JavaFX to draw graphs.

Simple linear regression uses a single independent variable to predict a dependent variable.
Multiple regression uses more than one independent variable. Both of these techniques
have statistical attributes used to assess how well they match the data.

We demonstrated the use of the Apache Commons OLSMultipleLinearRegression class
to perform multiple regression using cigarette data. We were able to use multiple attributes
to create an equation that predicts the carbon monoxide output.

With these statistical techniques behind us, we can now examine basic machine learning
techniques in the next chapter. This will include a detailed discussion of multilayer
perceptrons and various other neural networks.



6
Machine Learning

Machine learning is a broad topic with many different supporting algorithms. It is generally
concerned with developing techniques that allow applications to learn without having to be
explicitly programmed to solve a problem. Typically, a model is built to solve a class of
problems and then is trained using sample data from the problem domain. In this chapter,
we will address a few of the more common problems and models used in data science.

Many of these techniques use training data to teach a model. The data consists of various
representative elements of the problem space. Once the model has been trained, it is tested
and evaluated using testing data. The model is then used with input data to make
predictions.

For example, the purchases made by customers of a store can be used to train a model.
Subsequently, predictions can be made about customers with similar characteristics. Due to
the ability to predict customer behavior, it is possible to offer special deals or services to
entice customers to return or facilitate their visit.

There are several ways of classifying machine learning techniques. One approach is to
classify them according to the learning style:

Supervised learning: With supervised learning, the model is trained with data
that matches input characteristic values to the correct output values
Unsupervised learning: In unsupervised learning, the data does not contain
results, but the model is expected to determine relationships on its own.
Semi-supervised: This technique uses a small amount of labeled data containing
the correct response with a larger amount of unlabeled data. The combination can
lead to improved results.

Reinforcement learning: This is similar to supervised learning but a reward is
provided for good results.



Machine Learning

[ 177 ]

Deep learning: This approach models high-level abstractions using a graph that
contains multiple processing levels.

In this chapter, we will only be able to touch on a few of these techniques. Specifically, we
will illustrate three techniques that use supervised learning:

Decision trees: A tree is constructed using the features of the problem as internal
nodes and the results as leaves
Support vector machines: Generally used for classification by creating a
hyperplane that separates the dataset and then making predictions
Bayesian networks: Models used to depict probabilistic relationships between
events within an environment

For unsupervised learning, we will show how association rule learning can be used to find
relationships between elements of a dataset. However, we will not address unsupervised
learning in this chapter.

We will discuss the elements of reinforcement learning and discuss a few specific variations
of this technique. We will also provide links to resources for further exploration.

The discussion of deep learning is postponed to Chapter 8, Deep Learning. This technique
builds upon neural networks, which will be discussed in Chapter 7, Neural Networks.

In this chapter, we will cover the following specific topics:

Decision trees
Support vector machines
Bayesian networks
Association rule learning
Reinforcement learning

Supervised learning techniques
There are a large number of supervised machine learning algorithms available. We will
examine three of them: decision trees, support vector machines, and Bayesian networks.
They all use annotated datasets that contain attributes and a correct response. Typically, a
training and a testing dataset is used.

We start with a discussion of decision trees.



Machine Learning

[ 178 ]

Decision trees
A machine learning decision tree is a model used to make predictions. It effectively maps
certain observations to conclusions about a target. The term tree comes from the branches
that reflect different states or values. The leaves of a tree represent results and the branches
represent features that lead to the results. In data mining, a decision tree is a description of
data used for classification. For example, we can use a decision tree to determine whether
an individual is likely to buy an item based on certain attributes such as income level and
postal code.

We want to create a decision tree that predicts results based on other variables. When the
target variable takes on continuous values such as real numbers, the tree is called a
regression tree.

A tree consists of internal nodes and leaves. Each internal node represents a feature of the
model such as the number of years of education or whether a book is paperback or
hardcover. The edges leading out of an internal node represent the values of these features.
Each leaf is called a class and has an associated probability distribution.

For example, we will be using a dataset that deals with the success of a book based on its
binding type, use of color, and genre. One possible decision tree based on this dataset
follows:

Decision tree



Machine Learning

[ 179 ]

Decision trees are useful and easy to understand. Preparing data for a model is
straightforward even for large datasets.

Decision tree types
A tree can be taught by dividing an input dataset by the features. This is often done in a 
recursive fashion and is called recursive partitioning or Top-Down Induction of Decision
Trees (TDIDT). The recursion is bounded when node's values are all of the same type as
the target or the recursion no longer adds value.

Classification and Regression Tree (CART) analysis refers to two different types of
decision tree types:

Classification tree analysis: The leaf corresponds to a target feature
Regression tree analysis: The leaf possesses a real number representing a feature

During the process of analysis, multiple trees may be created. There are several techniques
used to create trees. The techniques are called ensemble methods:

Bagging decision trees: The data is resampled and frequently used to obtain a
prediction based on consensus
Random forest classifier: Used to improve the classification rate
Boosted trees: This can be used for regression or classification problems
Rotation forest: Uses a technique called Principal Component Analysis (PCA)

With a given set of data, it is possible that more than one tree models the data. For example,
the root of a tree may specify whether a bank has an ATM machine and a subsequent
internal node may specify the number of tellers. However, the tree could be created where
the number of tellers is at the root and the existence of an ATM is an internal node. The
difference in the structure of the tree can determine how efficient the tree is.

There are a number of ways of determining the order of the nodes of a tree. One technique
is to select an attribute that provides the most information gain; that is, choose an attribute
that better helps narrow down the possible decisions fastest.

Decision tree libraries
There are several Java libraries that support decision trees:

Weka: h t t p ://w w w . c s . w a i k a t o . a c . n z /m l /w e k a /

http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/


Machine Learning

[ 180 ]

Apache Spark:
https://spark.apache.org/docs/1.2.0/mllib-decision-tree.html

JBoost: h t t p ://j b o o s t . s o u r c e f o r g e . n e t

MAchine Learning for LanguagE Toolkit (MALLET): h t t p ://m a l l e t . c s . u m a s s
. e d u

We will use Waikato Environment for Knowledge Analysis (Weka) to demonstrate how to
create a decision tree in Java. Weka is a tool that has a GUI interface that permits analysis of
data. It can also be invoked from the command line or through a Java API, which we will
use.

As a tree is being built, a variable is selected to split the tree. There are several techniques
used to select a variable. The one we use is determined by how much information is gained
by choosing a variable. Specifically, we will use the C4.5 algorithm as supported by Weka's
J48 class.

Weka uses an .arff file to hold a dataset. This file is human readable and consists of two
sections. The first is a header section; it describes the data in the file. This section uses the
ampersand to specify the relation and attributes of the data. The second section is the data
section; it consists of a comma-delimited set of data.

Using a decision tree with a book dataset
For this example, we will use a file called books.arff. It is shown next and uses four
features called attributes. The features specify how a book is bound, whether it uses
multiple colors, its genre, and a result indicating whether the book was purchased or not.
The header section is shown here:

@RELATION book_purchases
@ATTRIBUTE Binding {Hardcover, Paperback, Leather}
@ATTRIBUTE Multicolor {yes, no}
@ATTRIBUTE Genre {fiction, comedy, romance, historical}
@ATTRIBUTE Result {Success, Failure}

The data section follows and consists of 13 book entries:

@DATA
Hardcover,yes,fiction,Success
Hardcover,no,comedy,Failure
Hardcover,yes,comedy,Success
Leather,no,comedy,Success
Leather,yes,historical,Success
Paperback,yes,fiction,Failure
Paperback,yes,romance,Failure

https://spark.apache.org/docs/1.2.0/mllib-decision-tree.html
http://jboost.sourceforge.net
http://jboost.sourceforge.net
http://jboost.sourceforge.net
http://jboost.sourceforge.net
http://jboost.sourceforge.net
http://jboost.sourceforge.net
http://jboost.sourceforge.net
http://jboost.sourceforge.net
http://jboost.sourceforge.net
http://jboost.sourceforge.net
http://jboost.sourceforge.net
http://jboost.sourceforge.net
http://jboost.sourceforge.net
http://jboost.sourceforge.net
http://jboost.sourceforge.net
http://jboost.sourceforge.net
http://jboost.sourceforge.net
http://jboost.sourceforge.net
http://jboost.sourceforge.net
http://jboost.sourceforge.net
http://jboost.sourceforge.net
http://jboost.sourceforge.net
http://jboost.sourceforge.net
http://jboost.sourceforge.net
http://jboost.sourceforge.net
http://jboost.sourceforge.net
http://jboost.sourceforge.net
http://jboost.sourceforge.net
http://jboost.sourceforge.net
http://jboost.sourceforge.net
http://jboost.sourceforge.net
http://jboost.sourceforge.net
http://jboost.sourceforge.net
http://jboost.sourceforge.net
http://jboost.sourceforge.net
http://jboost.sourceforge.net
http://jboost.sourceforge.net
http://jboost.sourceforge.net
http://jboost.sourceforge.net
http://jboost.sourceforge.net
http://jboost.sourceforge.net
http://jboost.sourceforge.net
http://jboost.sourceforge.net
http://jboost.sourceforge.net
http://jboost.sourceforge.net
http://jboost.sourceforge.net
http://jboost.sourceforge.net
http://jboost.sourceforge.net
http://jboost.sourceforge.net
http://jboost.sourceforge.net
http://jboost.sourceforge.net
http://mallet.cs.umass.edu
http://mallet.cs.umass.edu
http://mallet.cs.umass.edu
http://mallet.cs.umass.edu
http://mallet.cs.umass.edu
http://mallet.cs.umass.edu
http://mallet.cs.umass.edu
http://mallet.cs.umass.edu
http://mallet.cs.umass.edu
http://mallet.cs.umass.edu
http://mallet.cs.umass.edu
http://mallet.cs.umass.edu
http://mallet.cs.umass.edu
http://mallet.cs.umass.edu
http://mallet.cs.umass.edu
http://mallet.cs.umass.edu
http://mallet.cs.umass.edu
http://mallet.cs.umass.edu
http://mallet.cs.umass.edu
http://mallet.cs.umass.edu
http://mallet.cs.umass.edu
http://mallet.cs.umass.edu
http://mallet.cs.umass.edu
http://mallet.cs.umass.edu
http://mallet.cs.umass.edu
http://mallet.cs.umass.edu
http://mallet.cs.umass.edu
http://mallet.cs.umass.edu
http://mallet.cs.umass.edu
http://mallet.cs.umass.edu
http://mallet.cs.umass.edu
http://mallet.cs.umass.edu
http://mallet.cs.umass.edu
http://mallet.cs.umass.edu
http://mallet.cs.umass.edu
http://mallet.cs.umass.edu
http://mallet.cs.umass.edu
http://mallet.cs.umass.edu
http://mallet.cs.umass.edu
http://mallet.cs.umass.edu
http://mallet.cs.umass.edu
http://mallet.cs.umass.edu
http://mallet.cs.umass.edu
http://mallet.cs.umass.edu


Machine Learning

[ 181 ]

Leather,yes,comedy,Failure
Paperback,no,fiction,Failure
Paperback,yes,historical,Failure
Hardcover,yes,historical,Success
Paperback,yes,comedy,Success
Hardcover,yes,comedy,Success

We will use the BookDecisionTree class as defined next to process this file. It uses one
constructor and three methods:

BookDecisionTree: Reads in the trainer data and creates an Instance object
used to process the data
main: Drives the application
performTraining: Trains the model using the dataset
getTestInstance: Creates a test case

The Instances class holds elements representing the individual dataset elements:

public class BookDecisionTree {
    private Instances trainingData;

    public static void main(String[] args) {
        ...
    }

    public BookDecisionTree(String fileName) {
        ...
    }

    private J48 performTraining() {
        ...
    }

    private Instance getTestInstance(
        ...
    }
}



Machine Learning

[ 182 ]

The constructor opens a file and uses the BufferReader instance to create an instance of
the Instances class. Each element of the dataset will be either a feature or a result. The
setClassIndex method specifies the index of the result class. In this case, it is the last
index of the dataset and corresponds to success or failure:

public BookDecisionTree(String fileName) {
    try {
        BufferedReader reader = new BufferedReader(
            new FileReader(fileName));
        trainingData = new Instances(reader);
        trainingData.setClassIndex(
            trainingData.numAttributes() - 1);
    } catch (IOException ex) {
        // Handle exceptions
    }
}

We will use the J48 class to generate a decision tree. This class uses the C4.5 decision tree
algorithm for generating a pruned or unpruned tree. The setOptions method specifies
that an unpruned tree be used. The buildClassifier method actually creates the
classifier based on the dataset used:

private J48 performTraining() {
    J48 j48 = new J48();
    String[] options = {"-U"};
    try {
        j48.setOptions(options);
        j48.buildClassifier(trainingData);
    } catch (Exception ex) {
        ex.printStackTrace();
    }
    return j48;
}



Machine Learning

[ 183 ]

We will want to test the model, so we will create an object that implements the Instance
interface for each test case. A getTestInstance helper method is passed three arguments
representing the three features of a data element. The DenseInstance class is a class that
implements the Instance interface. The values passed are assigned to the instance and the
instance is returned:

private Instance getTestInstance(
        String binding, String multicolor, String genre) {
    Instance instance = new DenseInstance(3);
    instance.setDataset(trainingData);
    instance.setValue(trainingData.attribute(0), binding);
    instance.setValue(trainingData.attribute(1), multicolor);
    instance.setValue(trainingData.attribute(2), genre);
    return instance;
}

The main method uses all the previous methods to process and test our book dataset. First,
a BookDecisionTree instance is created using the name of the book dataset file:

public static void main(String[] args) {
    try {
        BookDecisionTree decisionTree =
            new BookDecisionTree("books.arff");
        ...
    } catch (Exception ex) {
        // Handle exceptions
    }
}

Next, the performTraining method is invoked to train the model. We also display the
tree:

J48 tree = decisionTree.performTraining();
System.out.println(tree.toString());



Machine Learning

[ 184 ]

When executed, the following will be displayed:

J48 unpruned tree
------------------
Binding = Hardcover: Success (5.0/1.0)
Binding = Paperback: Failure (5.0/1.0)
Binding = Leather: Success (3.0/1.0)
Number of Leaves : 3
Size of the tree : 4

Testing the book decision tree
We will test the model with two different test cases. Both use identical code to set up the
instance. We use the getTestInstance method with test-case-specific values and then use
the instance with classifyInstance to get results. To get something that is more
readable, we generate a string, which is then displayed:

Instance testInstance = decisionTree.
        getTestInstance("Leather", "yes", "historical");
int result = (int) tree.classifyInstance(testInstance);
String results = decisionTree.trainingData.attribute(3).value(result);
System.out.println(
        "Test with: " + testInstance + "  Result: " + results);

testInstance = decisionTree.
        getTestInstance("Paperback", "no", "historical");
result = (int) tree.classifyInstance(testInstance);
results = decisionTree.trainingData.attribute(3).value(result);
System.out.println(
        "Test with: " + testInstance + "  Result: " + results);

The result of executing this code is as follows:

Test with: Leather,yes,historical Result: Success
Test with: Paperback,no,historical Result: Failure

This matches our expectations. This technique is based on the amount of information gain
before and after an ordering decision has been made. This can be measured based on the
entropy as calculated here:

Entropy = -portionPos * log2(portionPos) - portionNeg* log2(portionNeg)



Machine Learning

[ 185 ]

In this example, portionPos is the portion of the data that is positive and portionNeg is
the portion of the data that is negative. Based on the books file, we can calculate the entropy
for the binding as shown in the following table. The information gain is calculated by
subtracting the entropy for binding from 1.0:

We can calculate the entropy for the use of color and genre in a similar manner. The
information gain for color is 0.05, and it is 0.15 for the genre. Thus, it makes more sense to
use the binding type for the first level of the tree.

The resulting tree from the example consists of two levels, because the C4.5 algorithm
determines that the remaining features do not provide any additional information gain.

Information gain can be problematic when a feature that has a large number of values is
chosen, such as a customer's credit card number. Using this type of attribute will quickly
narrow down the field, but it is too selective to be of much value.

Support vector machines
A Support Vector Machine (SVM) is a supervised machine learning algorithm used for
both classification and regression problems. It is mostly used for classification problems.
The approach creates a hyperplane to categorize the training data. A hyperplane can be
envisioned as a geometric plane that separates two regions. In a two-dimensional space, it
will be a line. In a three-dimensional space, it will be a two-dimensional plane. For higher
dimensions, it is harder to conceptualize, but they do exist.



Machine Learning

[ 186 ]

Consider the following figure depicting a distribution of two types of data points. The lines
represent possible hyperplanes that separate these points. Part of the SVM process is to find
the best hyperplane for the problem dataset. We will elaborate on this figure in the coding
example.

Hyperplane example

Support vectors are data points that lie near the hyperplane. An SVM model uses the
concept of a kernel to map input data to a higher order dimensional space to make the data
more easily structured. A mapping function for doing this could lead to an infinite-
dimensional space; that is, there could be an unbounded number of possible mappings.



Machine Learning

[ 187 ]

However, what is known as the kernel trick, a kernel function is an approach that avoids
this mapping and avoids possibly infeasible computations that might otherwise occur.
SVMs support different types of kernels. A list of kernels can be found at
http://crsouza.com/2010/03/kernel-functions-for-machine-learning-applications/.
Choosing the right kernel depends on the problem. Commonly used kernels include:

Linear: Uses a linear hyperplane
Polynomial: Uses a polynomial equation for the hyperplane
Radial Basis Function (RBF): Uses a non-linear hyperplane
Sigmoid: The sigmoid kernel, also known as the Hyperbolic Tangent kernel,
comes from the neural networks field and is equivalent to a two-layer perceptron
neural network

These kernels support different algorithms for analyzing data.

SVMs are useful for higher dimensional spaces that humans have a harder time visualizing.
In the previous figure, two attributes were used to predict a third. An SVM can be used
when many more attributes are present. The SVM needs to be trained and this can take
longer with larger datasets.

We will use the Weka class SMO to demonstrate SVM analysis. The class supports John
Platt's sequential minimal optimization algorithm. More information about this algorithm is
found at
https://www.microsoft.com/en-us/research/publication/fast-training-of-support-v

ector-machines-using-sequential-minimal-optimization/.

The SMO class supports the following kernels, which can be specified when using the class:

Puk: The Pearson VII-function-based universal kernel
PolyKernel: The polynomial kernel
RBFKernel: The RBF kernel

The algorithm uses training data to create a classification model. Test data can then be used
to evaluate the model. We can also evaluate individual data elements.

http://crsouza.com/2010/03/kernel-functions-for-machine-learning-applications/
https://www.microsoft.com/en-us/research/publication/fast-training-of-support-vector-machines-using-sequential-minimal-optimization/
https://www.microsoft.com/en-us/research/publication/fast-training-of-support-vector-machines-using-sequential-minimal-optimization/


Machine Learning

[ 188 ]

Using an SVM for camping data
For illustration purposes, we will be using a dataset consisting of age, income, and whether
someone camps. We would like to be able to predict whether someone is inclined to camp
based on their age and income. The data we use is stored in .arff format and is not based
on a survey but has been created to explain the SVM process. The input data is found in the
camping.txt file, as shown next. The file extension does not need to be .arff:

@relation camping
@attribute age numeric
@attribute income numeric
@attribute camps {1, 0}
@data
23,45600,1
45,65700,1
72,55600,1
24,28700,1
22,34200,1
28,32800,1
32,24600,1
25,36500,1
26,91000,0
29,85300,0
67,76800,0
86,58900,0
56,125300,0
25,125000,0
22,43600,1
78,125700,1
73,56500,1
29,87600,0
65,79300,0



Machine Learning

[ 189 ]

The following shows how the data is distributed graphically. Notice the outlier found in the
upper-right corner. The JavaFX code that produces this graph is found at h t t p ://w w w . p a c k

t p u b . c o m /s u p p o r t :

Camping Graph

We will start by reading in the data and handling exceptions:

try {
    BufferedReader datafile;
    datafile = readDataFile("camping.txt");
    ...
} catch (Exception ex) {
    // Handle exceptions
}

http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support


Machine Learning

[ 190 ]

The readDataFile method follows:

public BufferedReader readDataFile(String filename) {
    BufferedReader inputReader = null;
    try {
        inputReader = new BufferedReader(
            new FileReader(filename));
    } catch (FileNotFoundException ex) {
        // Handle exceptions
    }
    return inputReader;
}

The Instances class holds a series of data instances, where each instance is an age, income,
and camping value. The setClassIndex method indicates which of the attributes is to be
predicted. In this case, it is the camps attribute:

    Instances data = new Instances(datafile);
    data.setClassIndex(data.numAttributes() - 1);

To train the model, we will split the dataset into two sets. The first 14 instances are used to
train the model and the last 5 instances are used to test the model. The second argument of
the Instances constructor specifies the beginning index in the dataset, and the last
argument specifies how many instances to include:

    Instances trainingData = new Instances(data, 0, 14);
    Instances testingData = new Instances(data, 14, 5);

An Evaluation class instance is created to evaluate the model. An instance of the SMO class
is also created. The SMO class's buildClassifier method builds the classifier using the
dataset:

    Evaluation evaluation = new Evaluation(trainingData);
    Classifier smo = new SMO();
    smo.buildClassifier(data);

The evaluateModel method evaluates the model using the testing data. The results are
then displayed:

    evaluation.evaluateModel(smo, testingData);
    System.out.println(evaluation.toSummaryString());



Machine Learning

[ 191 ]

The output follows. Notice one incorrectly classified instance. This corresponds to the
outlier mentioned earlier:

Correctly Classified Instances 4 80 %
Incorrectly Classified Instances 1 20 %
Kappa statistic 0.6154
Mean absolute error 0.2
Root mean squared error 0.4472
Relative absolute error 41.0256 %
Root relative squared error 91.0208 %
Coverage of cases (0.95 level) 80 %
Mean rel. region size (0.95 level) 50 %
Total Number of Instances 5

Testing individual instances
We can also test an individual instance using the classifyInstance method. In the
following sequence, we create a new instance using the DenseInstance class. It is then
populated using the attributes of the camping dataset:

Instance instance = new DenseInstance(3);
instance.setValue(data.attribute("age"), 78);
instance.setValue(data.attribute("income"), 125700);
instance.setValue(data.attribute("camps"), 1);

The instance needs to be associated with the dataset using the setDataset method:

instance.setDataset(data);

The classifyInstance method is then applied to the smo instance and the results are
displayed:

System.out.println(smo.classifyInstance(instance));

When executed, we get the following output:

1.0



Machine Learning

[ 192 ]

There are also alternate testing approaches. A common one is called cross-validation folds.
This approach divides the dataset into folds, which are partitions of the dataset. Frequently,
10 partitions are created. Nine of the partitions are used for training and one for testing.
This is repeated 10 times using a different partition of the dataset each time, and the average
of the results is used. This technique is described at
https://weka.wikispaces.com/Generating+cross-validation+folds+(Java+approach).

We will now examine the purpose and use of Bayesian networks.

Bayesian networks
Bayesian networks, also known as Bayes nets or belief networks, are models designed to
reflect a particular world or environment by depicting the states of different attributes of
the world and their statistical relationships. The models can be used to show a wide variety
of real-world scenarios. In the following diagram, we model a system depicting the
relationship between various factors and our likelihood of being late to work:

Bayesian network

https://weka.wikispaces.com/Generating+cross-validation+folds+(Java+approach)


Machine Learning

[ 193 ]

Each circle on the diagram represents a node or part of the system, which can have various
values and probabilities for each value. For example, Power Outage might be true or false---
either the power went out or it did not. The probability of the power going out affects the
probability that your alarm will not ring, you might oversleep, and thus be late to work.

The nodes at the top of the diagram tend to imply a higher level of causality than those at
the bottom. The higher nodes are called parent nodes, and they may have one or more child
nodes. Bayesian networks only relate nodes that have a causal dependency and therefore
allow more efficient computation of probabilities. Unlike other models, we would not have
to store and analyze every possible combination of states of each node. Instead, we can
calculate and store probabilities of related nodes. Additionally, Bayesian networks are
easily adaptable and can grow as more knowledge about a particular world is acquired.

Using a Bayesian network
To model this type of network using Java, we will create a network using JBayes
(https://github.com/vangj/jbayes). JBayes is an open source library for creating a simple
Bayesian Belief Network (BBN). It is available at no cost for personal or commercial use. In
our next example, we will perform approximate inference, a technique considered less
accurate but allowing for decreased computational time. This technique is often used when
working with big data because it produces a reliable model in a reasonable amount of time.
We conduct approximate inference by using weight sampling of each node. JBayes also
provides support for exact inference. Exact inference is most often used with smaller
datasets or in situations where accuracy is of most importance. JBayes performs exact
inference using the junction tree algorithm.

To begin our approximate inference model, we will first create our nodes. We will use the
preceding diagram depicting attributes affecting on-time arrival to work to build our
network. In the following code example, we use method chaining to create our nodes. Three
of the methods take a String parameter. The name method is the name associated with
each node. For brevity, we are only using the first initial, so s represents storms, t
represents traffic, and so on. The value method allows us to set values for the node. In
each case, our nodes can only have two values: t for true or f for false:

Node storms = Node.newBuilder().name("s").value("t").value("f").build();
Node traffic = Node.newBuilder().name("t").value("t").value("f").build();
Node powerOut = Node.newBuilder().name("p").value("t").value("f").build();
Node alarm = Node.newBuilder().name("a").value("t").value("f").build();
Node overslept = Node.newBuilder().name("o").value("t").value("f").build();
Node lateToWork =
Node.newBuilder().name("l").value("t").value("f").build();

https://github.com/vangj/jbayes


Machine Learning

[ 194 ]

Next, we assign parents to each of our child nodes. Notice that storms is a parent node to
both traffic and powerOut. The lateToWork node has two parent nodes, traffic and
overslept:

traffic.addParent(storms);
powerOut.addParent(storms);
lateToWork.addParent(traffic);
alarm.addParent(powerOut);
overslept.addParent(alarm);
lateToWork.addParent(overslept);

Then we define the conditional probability tables (CPTs) for each of our nodes. These
tables are basically two-dimensional arrays representing the probabilities of each attribute
of each node. If we have more than one parent node, as in the case of the lateToWork node,
we need a row for each. We have used arbitrary values for our probabilities in this example,
but note that each row must sum to 1.0:

storms.setCpt(new double[][] {{0.7, 0.3}});
traffic.setCpt(new double[][] {{0.8, 0.2}});
powerOut.setCpt(new double[][] {{0.5, 0.5}});
alarm.setCpt(new double[][] {{0.7, 0.3}});
overslept.setCpt(new double[][] {{0.5, 0.5}});
lateToWork.setCpt(new double[][] {
   {0.5, 0.5},
   {0.5, 0.5}
});

Finally, we create a Graph object and add each node to our graph structure. We then use
this graph to perform our sampling:

Graph bayesGraph = new Graph();
bayesGraph.addNode(storms);
bayesGraph.addNode(traffic);
bayesGraph.addNode(powerOut);
bayesGraph.addNode(alarm);
bayesGraph.addNode(overslept);
bayesGraph.addNode(lateToWork);
bayesGraph.sample(1000);

At this point, we may be interested in the probabilities of each event. We can use the prob
method to check the probabilities of a True or False value for each node:

double[] stormProb = storms.probs();
double[] trafProb = traffic.probs();
double[] powerProb = powerOut.probs();
double[] alarmProb = alarm.probs();
double[] overProb = overslept.probs();



Machine Learning

[ 195 ]

double[] lateProb = lateToWork.probs();

out.println("nStorm Probabilities");
out.println("True: " + stormProb[0] + " False: " + stormProb[1]);
out.println("nTraffic Probabilities");
out.println("True: " + trafProb[0] + " False: " + trafProb[1]);
out.println("nPower Outage Probabilities");
out.println("True: " + powerProb[0] + " False: " + powerProb[1]);
out.println("vAlarm Probabilities");
out.println("True: " + alarmProb[0] + " False: " + alarmProb[1]);
out.println("nOverslept Probabilities");
out.println("True: " + overProb[0] + " False: " + overProb[1]);
out.println("nLate to Work Probabilities");
out.println("True: " + lateProb[0] + " False: " + lateProb[1]);

Our output contains the probabilities of each value for each node. For example, the
probability of a storm occurring is 71% while the probability of a storm not occurring is
29%:

Storm Probabilities
True: 0.71 False: 0.29
Traffic Probabilities
True: 0.726 False: 0.274
Power Outage Probabilities
True: 0.442 False: 0.558
Alarm Probabilities
True: 0.543 False: 0.457
Overslept Probabilities
True: 0.556 False: 0.444
Late to Work Probabilities
True: 0.469 False: 0.531

Notice in this example that we have used numbers that produce a very
high likelihood of being late to work, roughly 47%. This is due to the fact
that we have set the probabilities of our parent nodes fairly high as well.
This data would vary dramatically if the chances of a storm were lower or
if we changed some of the other child nodes as well.



Machine Learning

[ 196 ]

If we would like to save information about our sample, we can save the data to a CSV file
using the following code:

try {
   CsvUtil.saveSamples(bayesGraph, new FileWriter(
        new File("C://JBayesInfo.csv")));
} catch (IOException e) {
   // Handle exceptions
}

With this discussion of supervised learning complete, we will now move on to
unsupervised learning.

Unsupervised machine learning
Unsupervised machine learning does not use annotated data; that is, the dataset does to
contain anticipated results. While there are several unsupervised learning algorithms, we
will demonstrate the use of association rule learning to illustrate this learning approach.

Association rule learning
Association rule learning is a technique that identifies relationships between data items. It
is part of what is called market basket analysis. When a shopper makes purchases, these
purchases are likely to consist of more than one item, and when it does, there are certain
items that tend to be bought together. Association rule learning is one approach for
identifying these related items. When an association is found, a rule can be formulated for
it.

For example, if a customer buys diapers and lotion, they are also likely to buy baby wipes.
An analysis can find these associations and a rule stating the observation can be formed.
The rule would be expressed as {diapers, lotion} => {wipes}. Being able to identify these
purchasing patterns allows a store to offer special coupons, arrange their products to be
easier to get, or effect any number of other market-related activities.



Machine Learning

[ 197 ]

One of the problems with this technique is that there are a large number of possible
associations. One efficient method that is commonly used is the apriori algorithm. This
algorithm works on a collection of transactions defined by a set of items. These items can be
thought of as purchases and a transaction as a set of items bought together. The collection is
often referred to as a database.

Consider the following set of transactions where a 1 indicates that the item was purchased
as part of a transaction and 0 means that it was not purchased:

Transaction ID Diapers Lotion Wipes Formula

1 1 1 1 0

2 1 1 1 1

3 0 1 1 0

4 1 0 0 0

5 0 1 1 1

There are several analysis terms used with the apriori model:

Support: This is the proportion of the items in a database that contain a subset of
items. In the previous database, the item {diapers, lotion} occurs 2/5 times or 20%.
Confidence: This is a measure of the frequency of the rule being true. It is
calculated as conf(X- > Y) = sup(X ∪ Y)/sup(X).
Lift: This measures the degree to which the items are dependent upon each other.
It is defined as lift(X -> Y) = sup(X ∪ Y) / (sup(X) * sup(Y)).
Leverage: Leverage is a measure of the number of transactions that are covered
by both X and Y if X and Y are independent of each other. A value above 0 is a
good indicator. It is calculated as lev(X->Y) = sup(X ,Y) - sup(X) * sup(Y).
Conviction: A measure of how often the rule makes an incorrect decision. It is
defined as conv(X -> Y) = 1 - sup(Y) / (1 - conf(X -> Y)).

These definitions and sample values can be found at
https://en.wikipedia.org/wiki/Association_rule_learning.

https://en.wikipedia.org/wiki/Association_rule_learning


Machine Learning

[ 198 ]

Using association rule learning to find buying
relationships
We will be using the Apriori Weka class to demonstrate Java support for the algorithm
using two datasets. The first is the data discussed previously and the second deals with
what a person may take on a hike.

The following is the data file, babies.arff, for baby information:

@relation TEST_ITEM_TRANS
@attribute Diapers {1, 0}
@attribute Lotion {1, 0}
@attribute Wipes {1, 0}
@attribute Formula {1, 0}
@data
1,1,1,0
1,1,1,1
0,1,1,0
1,0,0,0
0,1,1,1

We start by reading in the file using a BufferedReader instance. This object is used as the
argument of the Instances class, which will hold the data:

try {
    BufferedReader br;
    br = new BufferedReader(new FileReader("babies.arff"));
   Instances data = new Instances(br);
    br.close();
    ...
} catch (Exception ex) {
    // Handle exceptions
}

Next, an Apriori instance is created. We set the number of rules to be generated and a
minimum confidence for the rules:

Apriori apriori = new Apriori();
apriori.setNumRules(100);
apriori.setMinMetric(0.5);

The buildAssociations method generates the associations using the Instances
variable. The associations are then displayed:

apriori.buildAssociations(data);
System.out.println(apriori);



Machine Learning

[ 199 ]

There will be 100 rules displayed. The following is the abbreviated output. Each rule is
followed by various measures of the rule:

Note that rule 8 and 100 reflect the previous examples.

Apriori
=======
Minimum support: 0.3 (1 instances)
Minimum metric <confidence>: 0.5
Number of cycles performed: 14
Generated sets of large itemsets:
Size of set of large itemsets L(1): 8
Size of set of large itemsets L(2): 18
Size of set of large itemsets L(3): 16
Size of set of large itemsets L(4): 5
Best rules found:
1. Wipes=1 4 ==> Lotion=1 4 <conf:(1)> lift:(1.25) lev:(0.16) [0]
conv:(0.8)
2. Lotion=1 4 ==> Wipes=1 4 <conf:(1)> lift:(1.25) lev:(0.16) [0]
conv:(0.8)
3. Diapers=0 2 ==> Lotion=1 2 <conf:(1)> lift:(1.25) lev:(0.08) [0]
conv:(0.4)
4. Diapers=0 2 ==> Wipes=1 2 <conf:(1)> lift:(1.25) lev:(0.08) [0]
conv:(0.4)
5. Formula=1 2 ==> Lotion=1 2 <conf:(1)> lift:(1.25) lev:(0.08) [0]
conv:(0.4)
6. Formula=1 2 ==> Wipes=1 2 <conf:(1)> lift:(1.25) lev:(0.08) [0]
conv:(0.4)
7. Diapers=1 Wipes=1 2 ==> Lotion=1 2 <conf:(1)> lift:(1.25) lev:(0.08) [0]
conv:(0.4)
8. Diapers=1 Lotion=1 2 ==> Wipes=1 2 <conf:(1)> lift:(1.25) lev:(0.08) [0]
conv:(0.4)
...
62. Diapers=0 Lotion=1 Formula=1 1 ==> Wipes=1 1 <conf:(1)> lift:(1.25)
lev:(0.04) [0] conv:(0.2)
...
99. Lotion=1 Formula=1 2 ==> Diapers=1 1 <conf:(0.5)> lift:(0.83)
lev:(-0.04) [0] conv:(0.4)
100. Diapers=1 Lotion=1 2 ==> Formula=1 1 <conf:(0.5)> lift:(1.25)
lev:(0.04) [0] conv:(0.6)

This provides us with a list of relationships, which we can use to identify patterns in
activities such as purchasing behavior.



Machine Learning

[ 200 ]

Reinforcement learning
Reinforcement learning is a type of learning at the cutting edge of current research into
neural networks and machine learning. Unlike unsupervised and supervised learning,
reinforcement learning makes decisions based upon the results of an action. It is a goal-
oriented learning process, similar to that used by many parents and teachers across the
world. We teach children to study and perform well on tests so that they receive high
grades as a reward. Likewise, reinforcement learning can be used to teach machines to
make choices that will result in the highest reward.

There are four main components to reinforcement learning: the actor or agent, the state or
scenario, the chosen action, and the reward. The actor is the object or vehicle making the
decisions within the application. The state is the world the actor exists within. Any decision
the actor makes occurs within the parameters of the state. The action is simply the choice
the actor makes when given a set of options. The reward is the result of each action and
influences the likelihood of choosing that particular action in the future.

It is essential to note that the action and the state where the action occurred are not
independent. In fact, the correct, or highest rewarding, action can often depend upon the
state in which the action occurs. If the actor is trying to decide how to cross a body of water,
swimming might be a good option if the body of water is calm and rather small. Swimming
would be a terrible choice for the actor to choose if he wanted to cross the Pacific Ocean.

To handle this problem, we can consider the Q function. This function results from the
mapping of a particular state to an action within the state. The Q function would link a
lower reward to swimming across the Pacific that it might for swimming across a small
river. Rather than saying swimming is a low reward activity, the Q function allows for
swimming to sometimes have a low reward and other times a higher reward.

Reinforcement learning always begins with a blank slate. The actor does not know the best
path or sequence of decisions when the iteration first begins. However, after many
iterations through a given problem, considering the results of each particular state-action
pair choice, the algorithm improves and learns to make the highest rewarding choices.

The algorithms used to achieve reinforcement learning involve maximization of reward
amidst a complex set of processes and choices. Though currently being tested in video
games and other discrete environments, the ultimate goal is success of these algorithms in
unpredictable, real-world scenarios. Within the topic of reinforcement learning, there are
three main flavors or types: temporal difference learning, Q`-learning, and State-Action-
Reward-State-Action (SARSA).



Machine Learning

[ 201 ]

Temporal difference learning takes into account previously learned information to inform
future decisions. This type of learning assumes a correlation between past and future
decisions. Before an action is taken, a prediction is made. This prediction is compared to
other known information about the environment and similar decisions before an action is
chosen. This process is known as bootstrapping and is thought to create more accurate and
useful results.

Q-learning uses the Q function mentioned above to select not only the best action for one
particular step in a given state, but the action that will lead to the highest reward from that
point forward. This is known as the optimum policy. One great advantage Q-learning offers
is the ability to make decisions without requiring a full model of the state. This allows it to
function in states with random changes in actions and rewards.

SARSA is another algorithm used in reinforcement learning. Its name is fairly self-
explanatory: the Q value depends upon the current State, the current chosen Action, the
Reward for that action, the State the agent will exist in after the action is completed, and the
subsequent Action taken in the new state. This algorithm looks further ahead one step to
make the best possible decision.

There are limited tools currently available for performing reinforcement learning using
Java. One popular tool is Platform for Implementing Q-Learning Experiments (Piqle).
This Java framework aims to provide tools for fast designing and testing or reinforcement
learning experiments. Piqle can be downloaded from http://piqle.sourceforge.net.
Another robust tool is called Brown-UMBC Reinforcement Learning and Planning
(BURPLAP). Found at h t t p ://b u r l a p . c s . b r o w n . e d u , this library is also designed for
development of algorithms and domains for reinforcement learning. This particular
resource boasts in the flexibility of states and actions and supports a wide range of planning
and learning algorithms. BURLAP also includes analysis tools for visualization purposes.

Summary
Machine learning is concerned with developing techniques that allow the applications to
learn without having to be explicitly programmed to solve a problem. This flexibility allows
such applications to be used in more varied settings with little to no modifications.

We saw how training data is used to create a model. Once the model has been trained, the
model is evaluated using testing data. Both the training data and testing data come from the
problem domain. Once trained, the model is used with other input data to make
predictions.

http://piqle.sourceforge.net
http://burlap.cs.brown.edu
http://burlap.cs.brown.edu
http://burlap.cs.brown.edu
http://burlap.cs.brown.edu
http://burlap.cs.brown.edu
http://burlap.cs.brown.edu
http://burlap.cs.brown.edu
http://burlap.cs.brown.edu
http://burlap.cs.brown.edu
http://burlap.cs.brown.edu
http://burlap.cs.brown.edu
http://burlap.cs.brown.edu
http://burlap.cs.brown.edu
http://burlap.cs.brown.edu
http://burlap.cs.brown.edu
http://burlap.cs.brown.edu
http://burlap.cs.brown.edu
http://burlap.cs.brown.edu
http://burlap.cs.brown.edu
http://burlap.cs.brown.edu
http://burlap.cs.brown.edu
http://burlap.cs.brown.edu
http://burlap.cs.brown.edu
http://burlap.cs.brown.edu
http://burlap.cs.brown.edu
http://burlap.cs.brown.edu
http://burlap.cs.brown.edu
http://burlap.cs.brown.edu
http://burlap.cs.brown.edu
http://burlap.cs.brown.edu
http://burlap.cs.brown.edu
http://burlap.cs.brown.edu
http://burlap.cs.brown.edu
http://burlap.cs.brown.edu
http://burlap.cs.brown.edu
http://burlap.cs.brown.edu
http://burlap.cs.brown.edu
http://burlap.cs.brown.edu
http://burlap.cs.brown.edu
http://burlap.cs.brown.edu
http://burlap.cs.brown.edu
http://burlap.cs.brown.edu
http://burlap.cs.brown.edu
http://burlap.cs.brown.edu
http://burlap.cs.brown.edu
http://burlap.cs.brown.edu


Machine Learning

[ 202 ]

We learned how the Weka Java API is used to create decision trees. This tree consists of
internal nodes that represent different attributes of the problem. The leaves of the tree
represent results. Since there are many ways of constructing a tree, part of the job of a
decision tree is to create the best tree.

Support vector machines divide a dataset into sections thus classifying elements in the
dataset. This classification s based on the attributes of the data such as age, hair color, or
weight. With the model, it is possible to predict outcomes based on attributes of a data
instance.

Bayesian networks are used to make predictions based on parent-child relationships
between nodes. The probability of one event directly affects the probability of a child event,
and we can use this information to predict outcomes of complex real-world environments.

In the section on association rule learning, we learned how the relationships between
elements of a dataset can be identified. The more significant relationships allow us to create
rules that are applied to solve various problems.

In our discussion of reinforcement learning, we discussed the elements of agent, state,
action, and reward and their relationship to one another. We also discussed specific types of
reinforcement learning and provided resources for further inquiry.

Having introduced the elements of machine learning, we are now ready to explore neural
networks, found in the next chapter.



7
Neural Networks

While neural networks have been around for a number of years, they have grown in
popularity due to improved algorithms and more powerful machines. Some companies are
building hardware systems that explicitly mimic neural networks (h t t p s ://w w w . w i r e d . c o m

/2016/05/g o o g l e - t p u - c u s t o m - c h i p s /). The time has come to use this versatile technology
to address data science problems.

In this chapter, we will explore the ideas and concepts behind neural networks and then
demonstrate their use. Specifically, we will:

Define and illustrate neural networks
Describe how they are trained
Examine various neural network architectures
Discuss and demonstrate several different neural networks, including:

A simple Java example
A Multi Layer Perceptron (MLP) network
The k-Nearest Neighbor (k-NN) algorithm and others

The idea for an Artificial Neural Network (ANN), which we will call a neural network,
originates from the neuron found in the brain. A neuron is a cell that has dendrites
connecting it to input sources and other neurons. It receives stimulus from multiple sources
through the dendrites. Depending on the source, the weight allocated to a source, the
neuron is activated and fires a signal down a dendrite to another neuron. A collection of
neurons can be trained and will respond to a particular set of input signals.

https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/
https://www.wired.com/2016/05/google-tpu-custom-chips/


Neural Networks

[ 204 ]

An artificial neuron is a node that has one or more inputs and a single output. Each input
has a weight associated with it. By weighting inputs, we can amplify or de-amplify an
input.

Artificial neurons are alternately called perceptrons.

This is depicted in the following diagram, where the weights are summed and then sent to
an Activation Function that determines the Output.

The neuron, and ultimately a collection of neurons, operate in one of two modes:

Training mode - The neuron is trained to fire when a certain set of inputs are
received
Testing mode - Input is provided to the neuron, which responds as trained to a
known set of inputs

A dataset is frequently split into two parts. A larger part is used to train a model. The
second part is used to test and verify the model.



Neural Networks

[ 205 ]

The output of a neuron is determined by the sum of the weighted inputs. Whether a neuron
fires or not is determined by an activation function. There are several different types of
activations functions, including:

Step function - This linear function is computed using the summation of the
weighted inputs as follows:

The f(Net) designates the output of a function. It is 1, if the Net input is greater than the
activation threshold. When this happens the neuron fires. Otherwise it returns 0 and doesn't
fire. The value is calculated based on all of the dendrite inputs.

Sigmoid - This is a nonlinear function and is computed as follows:

As the neuron is trained, the weights with each input can be adjusted.

In contrast to the step function, the sigmoid function is non-linear. This better matches some
problem domains. We will find the sigmoid function used in multi-layer neural networks.

Training a neural network
There are three basic training approaches:

Supervised learning - With supervised learning the model is trained with data
that matches input sets to output values
Unsupervised learning - In unsupervised learning, the data does not contain
results, but the model is expected to determine relationships on its own
Reinforcement learning - Similar to supervised learning, but a reward is
provided for good results

These datasets differ in the information they contain. Supervised and reinforcement
learning contain correct output for a set of input. The unsupervised learning does not
contain correct results.



Neural Networks

[ 206 ]

A neural network learns (at least with supervised learning) by feeding an input into a
network and comparing the results, using the activation function, to the expected outcome.
If they match, then the network has been trained correctly. If they don't match then the
network is modified.

When we modify the weights we need to be careful not to change them too drastically. If
the change is too large, then the results may change too much and we may miss the desired
output. If the change is too little, then training the model will take too long. There are times
when we may not want to change some weights.

A bias unit is a neuron that has a constant output. It is always one and is sometimes
referred to as a fake node. This neuron is similar to an offset and is essential for most
networks to function properly. You could compare the bias neuron to the y-intercept of a
linear function in slope-intercept form. Just as adjusting the y-intercept value changes the
location of the line, but not the shape/slope, the bias neuron can change the output values
without adjusting the shape or function of the network. You can adjust the outputs to fit the
particular needs of your problem.

Getting started with neural network architectures
Neural networks are usually created using a series of layers of neurons. There is typically
an Input Layer, one or more middle layers (Hidden Layer), and an Output Layer.

The following is the depiction of a feedforward network:



Neural Networks

[ 207 ]

The number of nodes and layers will vary. A feedforward network moves the information
forward. There are also feedback networks where information is passed backwards.
Multiple hidden layers are needed to handle the more complicated processing required for
most analysis.

We will discuss several architectures and algorithms related to different types of neural
networks throughout this chapter. Due to the complexity and length of explanation
required, we will only provide in-depth analysis of a few key network types. Specifically,
we will demonstrate a simple neural network, MLPs, and Self-Organizing Maps (SOMs).

We will, however, provide an overview of many different options. The type of neural
network and algorithm implementation appropriate for any particular model will depend
upon the problem being addressed.

Understanding static neural networks
Static neural networks are ANNs that undergo a training or learning phase and then do not
change when they are used. They differ from dynamic neural networks, which learn
constantly and may undergo structural changes after the initial training period. Static
neural networks are useful when the results of a model are relatively easy to reproduce or
are more predictable. We will look at dynamic neural networks in a moment, but we will
begin by creating our own basic static neural network.

A basic Java example
Before we examine various libraries and tools available for constructing neural networks,
we will implement our own basic neural network using standard Java libraries. The next
example is an adaptation of work done by Jeff Heaton
(http://www.informit.com/articles/article.aspx?p=30596). We will construct a feed-
forward backpropagation neural network and train it to recognize the XOR operator
pattern. Here is the basic truth table for XOR:

X Y Result

0 0 0

0 1 1

1 0 1

1 1 0

http://www.informit.com/articles/article.aspx?p=30596


Neural Networks

[ 208 ]

This network needs only two input neurons and one output neuron corresponding to the X
and Y input and the result. The number of input and output neurons needed for models is
dependent upon the problem at hand. The number of hidden neurons is often the sum of
the number of input and output neurons, but the exact number may need to be changed as
training progresses.

We are going to demonstrate how to create and train the network next. We first provide the
network with an input and observe the output. The output is compared to the expected
output and then the weight matrix, called weightChanges, is adjusted. This adjustment
ensures that the subsequent output will be closer to the expected output. This process is
repeated until we are satisfied that the network can produce results significantly close
enough to the expected output. In this example, we present the input and output as arrays
of doubles where each input or output neuron is an element of the array.

The input and output are sometimes referred to as patterns.

First, we will create a SampleNeuralNetwork class to implement the network. Begin by
adding the variables listed underneath to the class. We will discuss and demonstrate their
purposes later in this section. Our class contains the following instance variables:

   double errors;
   int inputNeurons;
   int outputNeurons;
   int hiddenNeurons;
   int totalNeurons;
   int weights;
   double learningRate;
   double outputResults[];
   double resultsMatrix[];
   double lastErrors[];
   double changes[];
   double thresholds[];
   double weightChanges[];
   double allThresholds[];
   double threshChanges[];
   double momentum;
   double errorChanges[];



Neural Networks

[ 209 ]

Next, let's take a look at our constructor. We have four parameters, representing the
number of inputs to our network, the number of neurons in hidden layers, the number of
output neurons, and the rate and momentum at which we wish for learning to occur. The
learningRate is a parameter that specifies the magnitude of changes in weight and bias
during the training process. The momentum parameter specifies what fraction of a previous
weight should be added to create a new weight. It is useful to prevent convergence at local
minimums or saddle points. A high momentum increases the speed of convergence in a
system, but can lead to an unstable system if it is too high. Both the momentum and
learning rate should be values between 0 and 1:

public SampleNeuralNetwork(int inputCount,
         int hiddenCount,
         int outputCount,
         double learnRate,
         double momentum) {
   ...
}

Within our constructor we initialize all private instance variables. Notice that
totalNeurons is set to the sum of all inputs, outputs, and hidden neurons. This sum is
then used to set several other variables. Also notice that the weights variable is calculated
by finding the product of the number of inputs and hidden neurons, the product of the
hidden neurons and the outputs, and adding these two products together. This is then used
to create new arrays of length weight:

     learningRate = learnRate;
     momentum = momentum;

     inputNeurons = inputCount;
     hiddenNeurons = hiddenCount;
     outputNeurons = outputCount;
     totalNeurons = inputCount + hiddenCount + outputCount;
     weights = (inputCount * hiddenCount)
        + (hiddenCount * outputCount);

     outputResults    = new double[totalNeurons];
     resultsMatrix   = new double[weights];
     weightChanges = new double[weights];
     thresholds = new double[totalNeurons];
     errorChanges = new double[totalNeurons];
     lastErrors    = new double[totalNeurons];
     allThresholds = new double[totalNeurons];
     changes = new double[weights];
     threshChanges = new double[totalNeurons];
     reset();



Neural Networks

[ 210 ]

Notice that we call the reset method at the end of the constructor. This method resets the
network to begin training with a random weight matrix. It initializes the thresholds and
results matrices to random values. It also ensures that all matrices used for tracking changes
are set back to zero. Using random values ensures that different results can be obtained:

public void reset() {
   int loc;
   for (loc = 0; loc < totalNeurons; loc++) {
         thresholds[loc] = 0.5 - (Math.random());
         threshChanges[loc] = 0;
         allThresholds[loc] = 0;
   }
   for (loc = 0; loc < resultsMatrix.length; loc++) {
         resultsMatrix[loc] = 0.5 - (Math.random());
         weightChanges[loc] = 0;
         changes[loc] = 0;
   }
}

We also need a method called calcThreshold. The threshold value specifies how close a
value has to be to the actual activation threshold before the neuron will fire. For example, a
neuron may have an activation threshold of 1. The threshold value specifies whether a
number such as 0.999 counts as 1. This method will be used in subsequent methods to
calculate the thresholds for individual values:

public double threshold(double sum) {
   return 1.0 / (1 + Math.exp(-1.0 * sum));
}

Next, we will add a method to calculate the output using a given set of inputs. Both our
input parameter and the data returned by the method are arrays of double values. First, we
need two position variables to use in our loops, loc and pos. We also want to keep track of
our position within arrays based upon the number of input and hidden neurons. The index
for our hidden neurons will start after our input neurons, so its position is the same as the
number of input neurons. The position of our output neurons is the sum of our input
neurons and hidden neurons. We also need to initialize our outputResults array:

public double[] calcOutput(double input[]) {
   int loc, pos;
   final int hiddenIndex = inputNeurons;
   final int outIndex = inputNeurons + hiddenNeurons;

   for (loc = 0; loc < inputNeurons; loc++) {
         outputResults[loc] = input[loc];
   }
...



Neural Networks

[ 211 ]

}

Then we calculate outputs based upon our input neurons for the first layer of our network.
Notice our use of the threshold method within this section. Before we can place our sum
in the outputResults array, we need to utilize the threshold method:

   int rLoc = 0;
   for (loc = hiddenIndex; loc < outIndex; loc++) {
         double sum = thresholds[loc];
         for (pos = 0; pos < inputNeurons; pos++) {
               sum += outputResults[pos] * resultsMatrix[rLoc++];
         }
         outputResults[loc] = threshold(sum);
   }

Now we take into account our hidden neurons. Notice the process is similar to the previous
section, but we are calculating outputs for the hidden layer rather than the input layer. At
the end, we return our result. This result is in the form of an array of doubles containing the
values of each output neuron. In our example, there is only one output neuron:

   double result[] = new double[outputNeurons];
   for (loc = outIndex; loc < totalNeurons; loc++) {
         double sum = thresholds[loc];

         for (pos = hiddenIndex; pos < outIndex; pos++) {
               sum += outputResults[pos] * resultsMatrix[rLoc++];
         }
         outputResults[loc] = threshold(sum);
         result[loc-outIndex] = outputResults[loc];
   }

   return result;



Neural Networks

[ 212 ]

It is quite likely that the output does not match the expected output, given our XOR table.
To handle this, we use error calculation methods to adjust the weights of our network to
produce better output. The first method we will discuss is the calcError method. This
method will be called every time a set of outputs is returned by the calcOutput method. It
does not return data, but rather modifies arrays containing weight and threshold values.
The method takes an array of doubles representing the ideal value for each output neuron.
Notice we begin as we did in the calcOutput method and set up indexes to use
throughout the method. Then we clear out any existing hidden layer errors:

public void calcError(double ideal[]) {
   int loc, pos;
   final int hiddenIndex = inputNeurons;
   final int outputIndex = inputNeurons + hiddenNeurons;

      for (loc = inputNeurons; loc < totalNeurons; loc++) {
            lastErrors[loc] = 0;
      }

Next we calculate the difference between our expected output and our actual output. This
allows us to determine how to adjust the weights for further training. To do this, we loop
through our arrays containing the expected outputs, ideal, and the actual outputs,
outputResults. We also adjust our errors and change in errors in this section:

      for (loc = outputIndex; loc < totalNeurons; loc++) {
         lastErrors[loc] = ideal[loc - outputIndex] -
            outputResults[loc];
         errors += lastErrors[loc] * lastErrors[loc];
         errorChanges[loc] = lastErrors[loc] * outputResults[loc]
            *(1 - outputResults[loc]);
     }

     int locx = inputNeurons * hiddenNeurons;
     for (loc = outputIndex; loc < totalNeurons; loc++) {
           for (pos = hiddenIndex; pos < outputIndex; pos++) {
                 changes[locx] += errorChanges[loc] *
                       outputResults[pos];
                 lastErrors[pos] += resultsMatrix[locx] *
                       errorChanges[loc];
                 locx++;
           }
           allThresholds[loc] += errorChanges[loc];
      }

Next we calculate and store the change in errors for each neuron. We use the lastErrors
array to modify the errorChanges array, which contains total errors:



Neural Networks

[ 213 ]

for (loc = hiddenIndex; loc < outputIndex; loc++) {
      errorChanges[loc] = lastErrors[loc] *outputResults[loc]
            * (1 - outputResults[loc]);
}

We also fine tune our system by making changes to the allThresholds array. It is
important to monitor the changes in errors and thresholds so the network can improve its
ability to produce correct output:

   locx = 0;
   for (loc = hiddenIndex; loc < outputIndex; loc++) {
         for (pos = 0; pos < hiddenIndex; pos++) {
               changes[locx] += errorChanges[loc] *
                     outputResults[pos];
               lastErrors[pos] += resultsMatrix[locx] *
                     errorChanges[loc];
               locx++;
         }
         allThresholds[loc] += errorChanges[loc];
   }
}

We have one other method used for calculating errors in our network. The getError
method calculates the root mean square for our entire set of training data. This allows us to
identify our average error rate for the data:

public double getError(int len) {
   double err = Math.sqrt(errors / (len * outputNeurons));
   errors = 0;
   return err;
}

Now that we can initialize our network, compute outputs, and calculate errors, we are
ready to train our network. We accomplish this through the use of the train method. This
method makes adjustments first to the weights based upon the errors calculated in the
previous method, and then adjusts the thresholds:

public void train() {
   int loc;
   for (loc = 0; loc < resultsMatrix.length; loc++) {
      weightChanges[loc] = (learningRate * changes[loc]) +
         (momentum * weightChanges[loc]);
      resultsMatrix[loc] += weightChanges[loc];
      changes[loc] = 0;
   }
   for (loc = inputNeurons; loc < totalNeurons; loc++) {
      threshChanges[loc] = learningRate * allThresholds[loc] +



Neural Networks

[ 214 ]

         (momentum * threshChanges[loc]);
      thresholds[loc] += threshChanges[loc];
      allThresholds[loc] = 0;
   }
}

Finally, we can create a new class to test our neural network. Within the main method of
another class, add the following code to represent the XOR problem:

double xorIN[][] ={
               {0.0,0.0},
               {1.0,0.0},
               {0.0,1.0},
               {1.0,1.0}};

double xorEXPECTED[][] = { {0.0},{1.0},{1.0},{0.0}};

Next we want to create our new SampleNeuralNetwork object. In the following example,
we have two input neurons, three hidden neurons, one output neuron (the XOR result), a
learn rate of 0.7, and a momentum of 0.9. The number of hidden neurons is often best
determined by trial and error. In subsequent executions, consider adjusting the values in
this constructor and examine the difference in results:

SampleNeuralNetwork network = new
                SampleNeuralNetwork(2,3,1,0.7,0.9);

The learning rate and momentum should usually fall between zero and
one.

We then repeatedly call our calcOutput, calcError, and train methods, in that order.
This allows us to test our output, calculate the error rate, adjust our network weights, and
then try again. Our network should display increasingly accurate results:

for (int runCnt=0;runCnt<10000;runCnt++) {
   for (int loc=0;loc<xorIN.length;loc++) {
         network.calcOutput(xorIN[loc]);
         network.calcError(xorEXPECTED[loc]);
         network.train();
   }
   System.out.println("Trial #" + runCnt + ",Error:" +
               network.getError(xorIN.length));
}



Neural Networks

[ 215 ]

Execute the application and notice that the error rate changes with each iteration of the
loop. The acceptable error rate will depend upon the particular network and its purpose.
The following is some sample output from the preceding code. For brevity we have
included the first and the last training output. Notice that the error rate is initially above
50%, but falls to close to 1% by the last run:

Trial #0,Error:0.5338334002845255
Trial #1,Error:0.5233475199946769
Trial #2,Error:0.5229843653785426
Trial #3,Error:0.5226263062497853
Trial #4,Error:0.5226916275713371
...
Trial #994,Error:0.014457034704806316
Trial #995,Error:0.01444865096401158
Trial #996,Error:0.01444028142777395
Trial #997,Error:0.014431926056394229
Trial #998,Error:0.01442358481032747
Trial #999,Error:0.014415257650182488

In this example, we have used a small scale problem and we were able to train our network
rather quickly. In a larger scale problem, we would start with a training set of data and then
use additional datasets for further analysis. Because we really only have four inputs in this
scenario, we will not test it with any additional data.

This example demonstrates some of the inner workings of a neural network, including
details about how errors and output can be calculated. By exploring a relatively simple
problem we are able to examine the mechanics of a neural network. In our next examples,
however, we will use tools that hide these details from us, but allow us to conduct robust
analysis.

Understanding dynamic neural networks
Dynamic neural networks differ from static networks in that they continue learning after
the training phase. They can make adjustments to their structure independently of external
modification. A feedforward neural network (FNN) is one of the earliest and simplest
dynamic neural networks. This type of network, as its name implies, only feeds information
forward and does not form any cycles. This type of network formed the foundation for
much of the later work in dynamic ANNs. We will show in-depth examples of two types of
dynamic networks in this section, MLP networks and SOMs.



Neural Networks

[ 216 ]

Multilayer perceptron networks
A MLP network is a FNN with multiple layers. The network uses supervised learning with
backpropagation where feedback is sent to early layers to assist in the learning process.
Some of the neurons use a nonlinear activation function mimicking biological neurons.
Every nodes of one layer is fully connected to the following layer.

We will use a dataset called dermatology.arff that can be downloaded from h t t p ://r e p

o s i t o r y . s e a s r . o r g /D a t a s e t s /U C I /a r f f /. This dataset contains 366 instances used to
diagnosis erythemato-squamous diseases. It uses 34 attributes to classify the disease into
one of five different categories. The following is a sample instance:

2,2,0,3,0,0,0,0,1,0,0,0,0,0,0,3,2,0,0,0,0,0,0,0,0,0,0,3,0,0,0,1,0,55,2

The last field represents the disease category. This dataset has been partitioned into two
files: dermatologyTrainingSet.arff and dermatologyTestingSet.arff. The training
set uses the first 80% (292 instances) of the original set and ends with line 456. The testing
set is the last 20% (74 instances) and starts with line 457 of the original set (lines 457-530).

Building the model
Before we can make any predictions, it is necessary that we train the model on a
representative set of data. We will use the Weka class, MultilayerPerceptron, for
training and eventually to make predictions. First, we declare strings for the training and
testing of filenames and the corresponding FileReader instances for them. The instances
are created and the last field is specified as the field to use for classification:

String trainingFileName = "dermatologyTrainingSet.arff";
String testingFileName = "dermatologyTestingSet.arff";

try (FileReader trainingReader = new FileReader(trainingFileName);
        FileReader testingReader =
            new FileReader(testingFileName)) {
    Instances trainingInstances = new Instances(trainingReader);
    trainingInstances.setClassIndex(
        trainingInstances.numAttributes() - 1);
    Instances testingInstances = new Instances(testingReader);
    testingInstances.setClassIndex(
        testingInstances.numAttributes() - 1);
    ...
} catch (Exception ex) {
    // Handle exceptions
}

http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/
http://repository.seasr.org/Datasets/UCI/arff/


Neural Networks

[ 217 ]

An instance of the MultilayerPerceptron class is then created:

MultilayerPerceptron mlp = new MultilayerPerceptron();

There are several model parameters that we can set, as shown here:

Parameter Method Description

Learning rate setLearningRate Affects the training speed

Momentum setMomentum Affects the training speed

Training time setTrainingTime The number of training epochs used to train the model

Hidden layers setHiddenLayers The number of hidden layers and perceptrons to use

As mentioned previously, the learning rate will affect the speed in which your model is
trained. A large value can increase the training speed. If the learning rate is too small, then
the training time may take too long. If the learning rate is too large, then the model may
move past a local minimum and become divergent. That is, if the increase is too large, we
might skip over a meaningful value. You can think of this a graph where a small dip in a
plot along the Y axis is missed because we incremented our X value too much.

Momentum also affects the training speed by effectively increasing the rate of learning. It is
used in addition to the learning rate to add momentum to the search for the optimal value.
In the case of a local minimum, the momentum helps get out of the minimum in its quest
for a global minimum.

When the model is learning it performs operations iteratively. The term, epoch is used to
refer to the number of iterations. Hopefully, the total error encounter with each epoch will
decrease to a point where further epochs are not useful. It is ideal to avoid too many epochs.

A neural network will have one or more hidden layers. Each of these layers will have a
specific number of perceptrons. The setHiddenLayers method specifies the number of
layers and perceptrons using a string. For example, 3,5 would specify two hidden layers
with three and five perceptrons per layer, respectively.

For this example, we will use the following values:

mlp.setLearningRate(0.1);
mlp.setMomentum(0.2);
mlp.setTrainingTime(2000);
mlp.setHiddenLayers("3");



Neural Networks

[ 218 ]

The buildClassifier method uses the training data to build the model:

mlp.buildClassifier(trainingInstances);

Evaluating the model
The next step is to evaluate the model. The Evaluation class is used for this purpose. Its
constructor takes the training set as input and the evaluateModel method performs the
actual evaluation. The following code illustrates this using the testing dataset:

Evaluation evaluation = new Evaluation(trainingInstances);
evaluation.evaluateModel(mlp, testingInstances);

One simple way of displaying the results of the evaluation is using the toSummaryString
method:

System.out.println(evaluation.toSummaryString());

This will display the following output:

Correctly Classified Instances 73 98.6486 %
Incorrectly Classified Instances 1 1.3514 %
Kappa statistic 0.9824
Mean absolute error 0.0177
Root mean squared error 0.076
Relative absolute error 6.6173 %
Root relative squared error 20.7173 %
Coverage of cases (0.95 level) 98.6486 %
Mean rel. region size (0.95 level) 18.018 %
Total Number of Instances 74

Frequently, it will be necessary to experiment with these parameters to get the best results.
The following are the results of varying the number of perceptrons:



Neural Networks

[ 219 ]

Predicting other values
Once we have a model trained, we can use it to evaluate other data. In the previous testing
dataset there was one instance which failed. In the following code sequence, this instance is
identified and the predicted and actual results are displayed.

Each instance of the testing dataset is used as input to the classifyInstance method.
This method tries to predict the correct result. This result is compared to the last field of the
instance that contains the actual value. For mismatches, the predicted and actual values are
displayed:

for (int i = 0; i < testingInstances.numInstances(); i++) {
    double result = mlp.classifyInstance(
        testingInstances.instance(i));
    if (result != testingInstances
            .instance(i)
            .value(testingInstances.numAttributes() - 1)) {
        out.println("Classify result: " + result
                + " Correct: " + testingInstances.instance(i)
                .value(testingInstances.numAttributes() - 1));
        ...
    }
}

For the testing set we get the following output:

Classify result: 1.0 Correct: 3.0

We can get the likelihood of the prediction being correct using the
MultilayerPerceptron class' distributionForInstance method. Place the following
code into the previous loop. It will capture the incorrect instance, which is easier than
instantiating an instance based on the 34 attributes used by the dataset. The
distributionForInstance method takes this instance and returns a two element array of
doubles. The first element is the probability of the result being positive and the second is the
probability of it being negative:

Instance incorrectInstance = testingInstances.instance(i);
incorrectInstance.setDataset(trainingInstances);
double[] distribution = mlp.distributionForInstance(incorrectInstance);
out.println("Probability of being positive: " + distribution[0]);
out.println("Probability of being negative: " + distribution[1]);



Neural Networks

[ 220 ]

The output for this instance is as follows:

Probability of being positive: 0.00350515156929017
Probability of being negative: 0.9683660500711128

This can provide a more quantitative feel for the reliability of the prediction.

Saving and retrieving the model
We can also save and retrieve a model for later use. To save the model, build the model and
then use the SerializationHelper class' static method write, as shown in the following
code snippet. The first argument is the name of the file to hold the model:

SerializationHelper.write("mlpModel", mlp);

To retrieve the model, use the corresponding read method as shown here:

mlp = (MultilayerPerceptron)SerializationHelper.read("mlpModel");

Next, we will learn how to use another useful neural network approach, SOMs.

Learning vector quantization
Learning Vector Quantization (LVQ) is another special type of a dynamic ANN. SOMs,
which we will discuss in a moment, are a by-product of LVQ networks. This type of
network implements a competitive type of algorithm in which the winning neuron gains
the weight. These types of networks are used in many different applications and are
considered to be more natural and intuitive than some other ANNs. In particular, LVQ is
effective for classification of text-based data.

The basic algorithm begins by setting the number of neurons, the weight for each neuron,
how fast the neurons can learn, and a list of input vectors. In this context, a vector is similar
to a vector in physics and represents the values provided to the input layer neurons. As the
network is trained, a vector is used as input, a winning neuron is selected, and the weight of
the winning neuron is updated. This model is iterative and will continue to run until a
solution is found.



Neural Networks

[ 221 ]

Self-Organizing Maps
SOMs is a technique that takes multidimensional data and reducing it to one or two
dimensions. This compression technique is called vector quantization. The technique
usually involves a visual component that allows a human to better see how the data has
been categorized. SOM learns without supervision.

The SOM is good for finding clusters, which is not to be confused with classification. With
classification we are interested in finding the best fit for a data instance among predefined
categories. With clustering we are interested in grouping instances where the categories are
unknown.

A SOM uses a lattice of neurons, usually a two-dimensional array or a hexagonal grid,
representing neurons that are assigned weights. The input sources are connected to each of
these neurons. The technique then adjusts the weights assigned to each lattice member
through several iterations until the best fit is found. When finished, the lattice members will
have grouped the input dataset into categories. The SOM results can be viewed to identify
categories and map new input to one of the identified categories.

Using a SOM
We will use the Weka to demonstrate SOM. However, it is does not come installed with
standard Weka. Instead, we will need to download a set of Weka classification algorithms
from https://sourceforge.net/projects/wekaclassalgos/files/ and the actual SOM
class from http://www.cis.hut.fi/research/som_pak/. The classification algorithms
include support for LVQ. More details about the classification algorithms can be found at
http://wekaclassalgos.sourceforge.net/.

To use the SOM class, called SelfOrganizingMap, the source code needs to be in your
project. The Javadoc for this class is found at h t t p ://j s a l a t a s . i c t p r o . g r /w e k a /d o c /S e l f

O r g a n i z i n g M a p /.

We start with the creation of an instance of the SelfOrganizingMap class. This is followed
by code to read in data and create an Instances object to hold the data. In this example,
we will use the iris.arff file, which can be found in the Weka data directory. Notice that
once the Instances object is created we do not specify the class index as we did with
previous Weka examples since SOM uses unsupervised learning:

SelfOrganizingMap som = new SelfOrganizingMap();
String trainingFileName = "iris.arff";
try (FileReader trainingReader =
        new FileReader(trainingFileName)) {

https://sourceforge.net/projects/wekaclassalgos/files/
http://www.cis.hut.fi/research/som_pak/
http://wekaclassalgos.sourceforge.net/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/
http://jsalatas.ictpro.gr/weka/doc/SelfOrganizingMap/


Neural Networks

[ 222 ]

    Instances trainingInstances = new Instances(trainingReader);
    ...
} catch (IOException ex) {
    // Handle exceptions
} catch (Exception ex) {
    // Handle exceptions
}

The buildClusterer method will execute the SOM algorithm using the training dataset:

    som.buildClusterer(trainingInstances);

Displaying the SOM results
We can now display the results of the operation as follows:

    out.println(som.toString());

The iris dataset uses five attributes: sepallength, sepalwidth, petallength,
petalwidth, and class. The first four attributes are numeric and the fifth has three
possible values: Iris-setosa, Iris-versicolor, and Iris-virginica. The first part of
the abbreviated output that follows identified four clusters and the number of instances in
each cluster. This is followed by statistics for each of the attributes:

Self Organized Map
==================
Number of clusters: 4
Cluster
Attribute 0 1 2 3
(50) (42) (29) (29)
==============================================
sepallength
value 5.0036 6.2365 5.5823 6.9513
min 4.3 5.6 4.9 6.2
max 5.8 7 6.3 7.9
mean 5.006 6.25 5.5828 6.9586
std. dev. 0.3525 0.3536 0.3675 0.5046
...
class
value 0 1.5048 1.0787 2
min 0 1 1 2
max 0 2 2 2
mean 0 1.4524 1.069 2
std. dev. 0 0.5038 0.2579 0



Neural Networks

[ 223 ]

These statistics can provide insight into the dataset. If we are interested in determining
which dataset instance is found in a cluster, we can use the getClusterInstances
method to return the array that groups the instances by cluster. As shown next, this method
is used to list the instance by cluster:

Instances[] clusters = som.getClusterInstances();
int index = 0;
for (Instances instances : clusters) {
    out.println("-------Custer " + index);
    for (Instance instance : instances) {
        out.println(instance);
    }
    out.println();
    index++;
}

As we can see with the abbreviated output of this sequence, different iris classes are
grouped into the different clusters:

-------Custer 0
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-setosa
4.6,3.1,1.5,0.2,Iris-setosa
...
5.3,3.7,1.5,0.2,Iris-setosa
5,3.3,1.4,0.2,Iris-setosa

-------Custer 1
7,3.2,4.7,1.4,Iris-versicolor
6.4,3.2,4.5,1.5,Iris-versicolor
6.9,3.1,4.9,1.5,Iris-versicolor
...
6.5,3,5.2,2,Iris-virginica
5.9,3,5.1,1.8,Iris-virginica

-------Custer 2
5.5,2.3,4,1.3,Iris-versicolor
5.7,2.8,4.5,1.3,Iris-versicolor
4.9,2.4,3.3,1,Iris-versicolor
...
4.9,2.5,4.5,1.7,Iris-virginica
6,2.2,5,1.5,Iris-virginica

-------Custer 3
6.3,3.3,6,2.5,Iris-virginica
7.1,3,5.9,2.1,Iris-virginica



Neural Networks

[ 224 ]

6.5,3,5.8,2.2,Iris-virginica
...

The cluster results can be displayed visually using the Weka GUI interface. In the following
screenshot, we have used the Weka Workbench to analyze and visualize the result of the
SOM analysis:



Neural Networks

[ 225 ]

An individual section of the graph can be selected, customized, and analyzed as follows:

However, before you can use the SOM class, the WekaPackageManager must be used to add
the SOM package to Weka. This process is discussed at h t t p s ://w e k a . w i k i s p a c e s . c o m /H o w

+d o +I +u s e +t h e +p a c k a g e +m a n a g e r %3F .

If a new instance needs to be mapped to a cluster, the distributionForInstance method
can be used as illustrated in Predicting other values section.

https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F
https://weka.wikispaces.com/How+do+I+use+the+package+manager%3F


Neural Networks

[ 226 ]

Additional network architectures and
algorithms
We have discussed a few of the most common and practical neural networks. At this point,
we would also like to consider some specialized neural networks and their application in
various fields of study. These types of networks do not fit neatly into one particular
category, but may still be of interest.

The k-Nearest Neighbors algorithm
An artificial neural network implementing the k-NN algorithm is similar to MLP networks,
but it provides significant reduction in time compared to the winner takes all strategy. This
type of network does not require a training algorithm after the initial weights are set and
has fewer connections among its neurons. We have chosen not to provide an example of
this algorithm's implementation because its use in Weka is very similar to the MLP
example.

This type of network is best suited to classification tasks. Because it utilizes lazy learning
techniques, reserving all computation until after information has been classified, it is
considered to be one of the simpler models. In this model, the neurons are weighted based
upon their distance from their neighbors. The classification of the neighbors is already
known and therefore no specific training is required.

Instantaneously trained networks
Instantaneously Trained Neural Networks (ITNNs) are feedforward ANNs. They are
special because they add a new hidden neuron for every unique set of training data. The
main advantage to this type of network is the ability to provide generalization to other
problems.

ITNNs are especially useful in short term learning situations. In particular, this type of
network is useful for web searches and other pattern recognition functions with large
datasets. These networks are suited for time series prediction and other deep learning
purposes.



Neural Networks

[ 227 ]

Spiking neural networks
A Spiking Neural Network (SNN) is a more complex ANN due to the fact it takes into
account not only the neuron and information propagation, but also the timing of each event.
In these networks, every neuron does not fire during every propagation of information, but
rather only when the membrane potential for a particular neuron reaches a specific
threshold. The membrane potential refers to the activation level of a neuron and closely
resembles the way biological neurons fire.

Due to the close mimicry of biological neural networks, SNNs are especially suited to
biological study and application. They have been used to model the nervous system of
animals and insects and are useful for predicting the outcome of various stimuli. These
networks have the ability to create very complex models with significant detail, but sacrifice
time to accomplish this goal.

Cascading neural networks
Cascading Neural Networks (CNNs) is a specialized supervised learning algorithm. In this
type, the network is initially very small and simplistic. As the network learns, it gradually
adds new hidden units. Once the node is added, its input weight is constant and cannot be
changed or removed.

This type of neural network is praised for its quick learning rate and ability to dynamically
build itself. The user of such a network does not have to worry about topological design.
Additionally, these networks do not require backpropagation of error information to make
adjustments.

Holographic associative memory
Holographic Associative Memory (HAM) is a special type of complex neural network. This
is a specialized type of network related to natural human memory and visual analysis. This
network is especially useful for pattern recognition and associative memory tasks and can
be applied to optical computations.

HAM attempts to closely mimic human visualization and pattern recognition. In this
network, stimulus-response patterns are learned without iteration and backpropagation of
errors is not required. Unlike other networks discussed in this chapter, HAM does not
exhibit the same type of connected behaviour. Instead, the stimulus-response patterns can
be stored within a single neuron.



Neural Networks

[ 228 ]

Backpropagation and neural networks
Backpropagation algorithms are another supervised learning techniques used to train
neural networks. As the name suggests, this algorithm calculates the computed output error
and then changes the weights of each neuron in a backwards manner. Backpropagation is
primarily used with MLP networks. It is important to note forward propagation must occur
before backward propagation can be used.

In its most basic form, this algorithm consists of four steps:

Perform forward propagation for a given set of inputs.1.
Calculate the error value for each output.2.
Change the weights based upon the calculated error for each node.3.
Perform forward propagation again.4.

This algorithm completes when the output matches the expected output.

Summary
In this chapter, we have provided a broad overview of artificial neural networks, as well as
a detailed examination of a few specific implementations. We began with a discussion of the
basic properties of neural networks, training algorithms, and neural network architectures.

Next we provided an example of a simple static neural network implementing the XOR
problem using Java. This example provided detailed explanation of the code used to build
and train the network, including some of the math behind the weight adjustments during
the training process. We then discussed dynamic neural networks and provided two in-
depth examples, the MLP and SOM networks. These used the Weka tools to create and train
the networks.

Finally, we concluded our chapter with a discussion of additional network architectures
and algorithms. We chose some of the more popular networks to summarize and explored
situations where each type would be most useful. We also included a discussion of
backpropagation in this section.

In the next chapter, we will expand upon this introduction and take a look at deep learning
with neural networks.



8
Deep Learning

In this chapter, we will focus on neural networks, often referred to as Deep Learning
Networks (DLNs). This type of network is characterized as a multiple-layer neural
network. Each of these layers are rained on the output of the previous layer, potentially
identifying features and sub-features of the dataset. A feature hierarchy is created in this
manner.

DLNs typically work with unstructured and unlabeled data, which constitute the vast bulk
of data found in the world today. DLN will take this unstructured data, identify features,
and try to reconstruct the original input. This approach is illustrated with Restricted
Boltzmann Machines (RBMs) in Restricted Boltzmann Machines and with autoencoders in
Deep autoencoders. An autoencoder takes a dataset and effectively compresses it. It then
decompresses it to reconstruct the original dataset.

DLN can also be used for predictive analysis. The last step of a DLN will use an activation
function to generate output represented by one of several categories. When used with new
data, the model will attempt to classify the input based on the previously trained model.

An important DLN task is ensuring that the model is accurate and minimizes error. As with
simple neural networks, weights and biases are used at each layer. As weight values are
adjusted, errors can be introduced. A technique to adjust weights uses gradient descent.
This can be thought of as the slope of the change. The idea is to modify the weight so as to
minimize the error. It is an optimization technique that speeds up the learning process.

Later in the chapter, we will examine Convolutional Neural Networks (CNNs) and briefly
discuss Recurrent Neural Networks (RNN). Convolution networks mimic the visual cortex
in that each neuron can interact with and make decisions based on a region of information.
Recurrent networks process information based on not only the output of the previous layer
but also the calculations performed in previous layers.



Deep Learning

[ 230 ]

There are several libraries that support deep learning, including these:

N-Dimensional Arrays for Java (ND4J) h t t p ://n d 4j . o r g /: A scientific 
computing library intended for production use
Deeplearning4j (h t t p ://d e e p l e a r n i n 4j . o r g /): An open source, distributed
deep-learning library
Encog (h t t p ://w w w . h e a t o n r e s e a r c h . c o m /e n c o g /): This library supports several
deep learning algorithms

ND4J is a lower level library that is actually used in other projects, including DL4J. Encog is
perhaps not as well supported as DL4J, but does provide support for deep learning.

The examples used in this chapter are all based on the Deep Learning for Java (DL4J) (h t t p

://d e e p l e a r n i n g 4j . o r g ) API with support from ND4J. This library provides good support
for many of the algorithms associated with deep learning. As a result, the next section
explains the basic tasks found in common with many of the deep learning algorithms, such
as loading data, training a model, and testing the model.

Deeplearning4j architecture
In this section, we will discuss its architecture and address several of the common tasks
performed when using the API. DLN typically starts with the creation of a
MultiLayerConfiguration instance, which defines the network, or model. The network
is composed of multiple layers. Hyperparameters are used to configure the network and are
variables that affect such things as learning speed, activation functions to use for a layer,
and how weights are to be initialized.

As with neural networks, the basic DLN process consists of:

Acquiring and manipulating data
Configuring and building a model
Training the model
Testing the model

We will investigate each of these tasks in the next sections.

The code examples in this section are not intended to be entered and
executed here. Instead, these examples are snippets out of later models
that we will be using.

http://nd4j.org/
http://nd4j.org/
http://nd4j.org/
http://nd4j.org/
http://nd4j.org/
http://nd4j.org/
http://nd4j.org/
http://nd4j.org/
http://nd4j.org/
http://nd4j.org/
http://nd4j.org/
http://nd4j.org/
http://nd4j.org/
http://nd4j.org/
http://nd4j.org/
http://nd4j.org/
http://nd4j.org/
http://nd4j.org/
http://nd4j.org/
http://nd4j.org/
http://nd4j.org/
http://nd4j.org/
http://nd4j.org/
http://deeplearnin4j.org/
http://deeplearnin4j.org/
http://deeplearnin4j.org/
http://deeplearnin4j.org/
http://deeplearnin4j.org/
http://deeplearnin4j.org/
http://deeplearnin4j.org/
http://deeplearnin4j.org/
http://deeplearnin4j.org/
http://deeplearnin4j.org/
http://deeplearnin4j.org/
http://deeplearnin4j.org/
http://deeplearnin4j.org/
http://deeplearnin4j.org/
http://deeplearnin4j.org/
http://deeplearnin4j.org/
http://deeplearnin4j.org/
http://deeplearnin4j.org/
http://deeplearnin4j.org/
http://deeplearnin4j.org/
http://deeplearnin4j.org/
http://deeplearnin4j.org/
http://deeplearnin4j.org/
http://deeplearnin4j.org/
http://deeplearnin4j.org/
http://deeplearnin4j.org/
http://deeplearnin4j.org/
http://deeplearnin4j.org/
http://deeplearnin4j.org/
http://deeplearnin4j.org/
http://deeplearnin4j.org/
http://deeplearnin4j.org/
http://deeplearnin4j.org/
http://deeplearnin4j.org/
http://deeplearnin4j.org/
http://deeplearnin4j.org/
http://deeplearnin4j.org/
http://deeplearnin4j.org/
http://deeplearnin4j.org/
http://deeplearnin4j.org/
http://deeplearnin4j.org/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://deeplearning4j.org
http://deeplearning4j.org
http://deeplearning4j.org
http://deeplearning4j.org
http://deeplearning4j.org
http://deeplearning4j.org
http://deeplearning4j.org
http://deeplearning4j.org
http://deeplearning4j.org
http://deeplearning4j.org
http://deeplearning4j.org
http://deeplearning4j.org
http://deeplearning4j.org
http://deeplearning4j.org
http://deeplearning4j.org
http://deeplearning4j.org
http://deeplearning4j.org
http://deeplearning4j.org
http://deeplearning4j.org
http://deeplearning4j.org
http://deeplearning4j.org
http://deeplearning4j.org
http://deeplearning4j.org
http://deeplearning4j.org
http://deeplearning4j.org
http://deeplearning4j.org
http://deeplearning4j.org
http://deeplearning4j.org
http://deeplearning4j.org
http://deeplearning4j.org
http://deeplearning4j.org
http://deeplearning4j.org
http://deeplearning4j.org
http://deeplearning4j.org
http://deeplearning4j.org
http://deeplearning4j.org
http://deeplearning4j.org
http://deeplearning4j.org
http://deeplearning4j.org
http://deeplearning4j.org
http://deeplearning4j.org


Deep Learning

[ 231 ]

Acquiring and manipulating data
The DL4J API has a number of techniques for acquiring data. We will focus on those
specific techniques that we will use in our examples. The dataset used by a DL4J project is
often modified using either binarization or normalization. Binarization converts data to
ones and zeroes. Normalization converts data to a value between 1 and 0.

Data feed to DLN is transformed to a set of numbers. These numbers are referred to as
vectors. These vectors consist of a one-column matrix with a variable number of rows. The
process of creating a vector is called vectorization.

Canova (h t t p ://d e e p l e a r n i n g 4j . o r g /c a n o v a . h t m l ) is a DL4J library that supports
vectorization. It works with many different types of datasets. It has been merged with
DataVec (http://deeplearning4j.org/datavec), a vectorization and Extract, Transform,
and Load (ETL) library.

In this section, we will focus on how to read in CSV data.

Reading in a CSV file
ND4J provides the CSVRecordReader class, which is useful for reading CSV data. It has
three overloaded constructors. The one we will demonstrate is passed two arguments. The
first is the number of lines to skip when first reading a file and the second is a string
holding the delimiters used to parse the text.

In the following code, we create a new instance of the class, where we do not skip any lines
and use only a comma for a delimiter:

RecordReader recordReader = new CSVRecordReader(0, ",");

The class implements the RecordReader interface. It has an initialize method that is
passed an instance of the FileSplit class. One of its constructors is passed an instance of a
File object that references a dataset. The FileSplit class assists in splitting the data for
training and testing. In this example, we initialize the reader for a file called car.txt that
we will use in the Preparing the data section:

recordReader.initialize(new FileSplit(new File("car.txt")));

http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/canova.html
http://deeplearning4j.org/datavec


Deep Learning

[ 232 ]

To process the data, we need an iterator such as the DataSetIterator instance shown
next. This class possesses a multitude of overloaded constructors. In the following example,
the first argument is the RecordReader instance. This is followed by three arguments. The
first is the batch size, which is the number of records to retrieve at a time. The next one is
the index of the last attribute of the record. The last argument is the number of classes
represented by the dataset:

DataSetIterator iterator =
    new RecordReaderDataSetIterator(recordReader, 1728, 6, 4);

The file's record's last attribute will hold a class value if we use a dataset for regression. This
is precisely how we will use it later. The number of the class's parameter is only used with
regression.

In the next code sequence, we will split the dataset into two sets: one for training and one
for testing. Starting with the next method, this method returns the next dataset from the
source. The size of the dataset is dependent on the batch size used earlier. The shuffle
method randomizes the input while the splitTestAndTrain method returns an instance
of the SplitTestAndTrain class, which we use to get the training and testing datasets. The
splitTestAndTrain method's argument specifies the percentage of the data to be used for
training.

DataSet dataset = iterator.next();
dataset.shuffle();
SplitTestAndTrain testAndTrain = dataset.splitTestAndTrain(0.65);
DataSet trainingData = testAndTrain.getTrain();
DataSet testData = testAndTrain.getTest();

We can then use these datasets with a model.

Configuring and building a model
Frequently, DL4J uses the MultiLayerConfiguration class to define the configuration of
the model and the MultiLayerNetwork class to represent a model. These classes provide a
flexible way of building models.

In the following example, we will demonstrate the use of these classes. Starting with the
MultiLayerConfiguration class, we find that several methods are used in a fluent style.
We will provide more details about these methods shortly. However, notice that two layers
are defined for this model:

MultiLayerConfiguration conf =
    new NeuralNetConfiguration.Builder()



Deep Learning

[ 233 ]

        .iterations(1000)
        .activation("relu")
        .weightInit(WeightInit.XAVIER)
        .learningRate(0.4)
        .list()
        .layer(0, new DenseLayer.Builder()
                .nIn(6).nOut(3)
                .build())
        .layer(1, new OutputLayer
                .Builder(LossFunctions.LossFunction
                        .NEGATIVELOGLIKELIHOOD)
                .activation("softmax")
                .nIn(3).nOut(4).build())
        .backprop(true).pretrain(false)
        .build();

The nIn and nOut methods specify the number of inputs and outputs for a layer.

Using hyperparameters in ND4J
Builder classes are common in DL4J. In the previous example, the
NeuralNetConfiguration.Builder class is used. The methods used here are but a few
of the many that are available. In the following table, we describe several of them:

Method Usage

iterations Controls the number of optimization iterations performed

activation This is the activation function used

weightInit Used to initialize the initial weights for the model

learningRate Controls the speed the model learns

List Creates an instance of the NeuralNetConfiguration.ListBuilder
class so that we can add layers

Layer Creates a new layer

backprop When set to true, it enables backpropagation

pretrain When set to true, it will pretrain the model

Build Performs the actual build process



Deep Learning

[ 234 ]

Let's examine how a layer is created more closely. In the example, the list method returns
a NeuralNetConfiguration.ListBuilder instance. Its layer method takes two
arguments. The first is the number of the layer, a zero-based numbering scheme. The
second is the Layer instance.

There are two different layers used here with two different builders: a
DenseLayer.Builder and an OutputLayer.Builder instance. There are several types of
layers available in DL4J. The argument of a builder's constructor may be a loss function, as
is the case with the output layer, and is explained next.

In a feedback network, the neural network's guess is compared to what is called the ground
truth, which is the error. This error is used to update the network through the modification
of weights and biases. The loss function, also called an objective or cost function, measures
the difference.

There are several loss functions supported by DL4J:

MSE: In linear regression MSE stands for mean squared error
EXPLL: In poisson regression EXPLL stands for exponential log likelihood
XENT: In binary classification XENT stands for cross entropy
MCXENT: This stands for multiclass cross entropy
RMSE_XENT: This stands for RMSE cross entropy
SQUARED_LOSS: This stands for squared loss
RECONSTRUCTION_CROSSENTROPY: This stands for reconstruction cross entropy
NEGATIVELOGLIKELIHOOD: This stands for negative log likelihood
CUSTOM: Define your own loss function

The remaining methods used with the builder instance are the activation function, the
number of inputs and outputs for the layer, and the build method, which creates the layer.

Each layer of a multi-layer network requires the following:

Input: Usually in the form of an input vector
Weights: Also called coefficients
Bias: Used to ensure that at least some nodes in a layer are activated
Activation function: Determines whether a node fires



Deep Learning

[ 235 ]

There are many different types of activation functions, each of which can address a
particular type of problem.

The activation function is used to determine whether the neuron fires. There are several
functions supported, including relu (rectified linear), tanh, sigmoid, softmax, hardtanh,
leakyrelu, maxout, softsign, and softplus.

An interesting list of activation functions along with graphs is found at h t
t p ://s t a t s . s t a c k e x c h a n g e . c o m /q u e s t i o n s /115258/c o m p r e h e n s i v e - l i
s t - o f - a c t i v a t i o n - f u n c t i o n s - i n - n e u r a l - n e t w o r k s - w i t h - p r o s - c o n s

and h t t p s ://e n . w i k i p e d i a . o r g /w i k i /A c t i v a t i o n _ f u n c t i o n .

Instantiating the network model
Next, a MultiLayerNetwork instance is created using the defined configuration. The
model is initialized, and its listeners are set. The ScoreIterationListener instance will 
display information as the model trains, which we will see shortly. Its constructor's
argument specifies how often that information should be displayed:

MultiLayerNetwork model = new MultiLayerNetwork(conf);
model.init();
model.setListeners(new ScoreIterationListener(100));

We are now ready to train the model.

Training a model
This is actually a fairly simple step. The fit method performs the training:

model.fit(trainingData);

When executed, the output will be generated using any listeners associated with the model,
as is the preceding case, where a ScoreIterationListener instance is used.

Another example of how the fit method is used is through the process of iterating through
a dataset, as shown next. In this example, a sequence of datasets is used. This is the part of
an autoencoder where the output is intended to match the input, as explained in Deep
autoencoders section. The dataset used as the argument to the fit method uses both the
input and the expected output. In this case, they are the same as provided by the
getFeatureMatrix method:

while (iterator.hasNext()) {

http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
http://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function


Deep Learning

[ 236 ]

    DataSet dataSet = iterator.next();
    model.fit(new DataSet(dataSet.getFeatureMatrix(),
            dataSet.getFeatureMatrix()));
}

For larger datasets, it is necessary to pretrain the model several times to get accurate results.
This is often performed in parallel to reduce training time. This option is set with a layer
class's pretrain method.

Testing a model
The evaluation of a model is performed using the Evaluation class and the training
dataset. An Evaluation instance is created using an argument specifying the number of
classes. The test data is fed into the model using the output method. The eval method
takes the output of the model and compares it against the test data classes to generate
statistics:

Evaluation evaluation = new Evaluation(4);
INDArray output = model.output(testData.getFeatureMatrix());
evaluation.eval(testData.getLabels(), output);
out.println(evaluation.stats());

The output will look similar to the following:

==========================Scores===================================
Accuracy: 0.9273
Precision: 0.854
Recall: 0.8323
F1 Score: 0.843

These statistics are detailed here:

Accuracy: This is a measure of how often the correct answer was returned.
Precision: This is a measure of the probability that a positive response is
correct.
Recall: This measures how likely the result will be classified correctly if given a
positive example.
F1 Score: This is the probability that the network's results are correct. It is the
harmonic mean of recall and precision. It is calculated by dividing the number of
true positives by the sum of true positives and false negatives.

We will use the Evaluation class to determine the quality of our model. A measure called
f1 is used, whose values range from 0 to 1, where 1 represents the best quality.



Deep Learning

[ 237 ]

Deep learning and regression analysis
Neural networks can be used to perform regression analysis. However, other techniques
(see the early chapters) may offer a more effective solution. With regression analysis, we
want to predict a result based on several input variables.

We can perform regression analysis using an output layer that consists of a single neuron
that sums the weighted input plus bias of the previous hidden layer. Thus, the result is a
single value representing the regression.

Preparing the data
We will use a car evaluation database to demonstrate how to predict the acceptability of a
car based on a series of attributes. The file containing the data we will be using can be
downloaded from: h t t p ://a r c h i v e . i c s . u c i . e d u /m l /m a c h i n e - l e a r n i n g - d a t a b a s e s /c a r

/c a r . d a t a . It consists of car data such as price, number of passengers, and safety
information, and an assessment of its overall quality. It is this latter element, quality, that
we will try to predict. The comma-delimited values in each attribute are shown next, along
with substitutions. The substitutions are needed because the model expects numeric data:

Attribute Original value Substituted value

Buying price vhigh, high, med, low 3,2,1,0

Maintenance price vhigh, high, med, low 3,2,1,0

Number of doors 2, 3, 4, 5-more 2,3,4,5

Seating 2, 4, more 2,4,5

Cargo space small, med, big 0,1,2

Safety low, med, high 0,1,2

http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data


Deep Learning

[ 238 ]

There are 1,728 instances in the file. The cars are marked with four classes:

Class Number of
instances

Percentage of instances Original value Substituted value

Unacceptable 1210 70.023% unacc 0

Acceptable 384 22.222% acc 1

Good 69 3.99% good 2

Very good 65 3.76% v-good 3

Setting up the class
We start with the definition of a CarRegressionExample class, as shown next, where an
instance of the class is created and where the work is performed within its default
constructor:

public class CarRegressionExample {

    public CarRegressionExample() {
        try {
            ...
        } catch (IOException | InterruptedException ex) {
            // Handle exceptions
        }
    }

    public static void main(String[] args) {
        new CarRegressionExample();
    }
}

Reading and preparing the data
The first task is to read in the data. We will use the CSVRecordReader class to get the data,
as explained in Reading in a CSV file:

RecordReader recordReader = new CSVRecordReader(0, ",");
recordReader.initialize(new FileSplit(new File("car.txt")));
DataSetIterator iterator = new
  RecordReaderDataSetIterator(recordReader, 1728, 6, 4);



Deep Learning

[ 239 ]

With this dataset, we will split the data into two sets. Sixty five percent of the data is used
for training and the rest for testing:

DataSet dataset = iterator.next();
dataset.shuffle();
SplitTestAndTrain testAndTrain = dataset.splitTestAndTrain(0.65);
DataSet trainingData = testAndTrain.getTrain();
DataSet testData = testAndTrain.getTest();

The data now needs to be normalized:

DataNormalization normalizer = new NormalizerStandardize();
normalizer.fit(trainingData);
normalizer.transform(trainingData);
normalizer.transform(testData);

We are now ready to build the model.

Building the model
A MultiLayerConfiguration instance is created using a series of
NeuralNetConfiguration.Builder methods. The following is the dice used. We will
discuss the individual methods following the code. Note that this configuration uses two
layers. The last layer uses the softmax activation function, which is used for regression
analysis:

MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
        .iterations(1000)
        .activation("relu")
        .weightInit(WeightInit.XAVIER)
        .learningRate(0.4)
        .list()
        .layer(0, new DenseLayer.Builder()
                .nIn(6).nOut(3)
                .build())
        .layer(1, new OutputLayer
                .Builder(LossFunctions.LossFunction
                        .NEGATIVELOGLIKELIHOOD)
                .activation("softmax")
                .nIn(3).nOut(4).build())
        .backprop(true).pretrain(false)
        .build();



Deep Learning

[ 240 ]

Two layers are created. The first is the input layer. The DenseLayer.Builder class is used
to create this layer. The DenseLayer class is a feed-forward and fully connected layer. The
created layer uses the six car attributes as input. The output consists of three neurons that
are fed into the output layer and is duplicated here for your convenience:

.layer(0, new DenseLayer.Builder()
        .nIn(6).nOut(3)
        .build())

The second layer is the output layer created with the OutputLayer.Builder class. It uses a
loss function as the argument of its constructor. The softmax activation function is used
since we are performing regression as shown here:

.layer(1, new OutputLayer
        .Builder(LossFunctions.LossFunction
                .NEGATIVELOGLIKELIHOOD)
        .activation("softmax")
        .nIn(3).nOut(4).build())

Next, a MultiLayerNetwork instance is created using the configuration. The model is
initialized, its listeners are set, and then the fit method is invoked to perform the actual
training. The ScoreIterationListener instance will display information as the model
trains which we will see shortly in the output of this example. The
ScoreIterationListener constructor's argument specifies the frequency that
information is displayed:

MultiLayerNetwork model = new MultiLayerNetwork(conf);
model.init();
model.setListeners(new ScoreIterationListener(100));
model.fit(trainingData);

We are now ready to evaluate the model.

Evaluating the model
In the next sequence of code, we evaluate the model against the training dataset. An
Evaluation instance is created using an argument specifying that there are four classes.
The test data is fed into the model using the output method. The eval method takes the
output of the model and compares it against the test data classes to generate statistics. The
getLabels method returns the expected values:

Evaluation evaluation = new Evaluation(4);
INDArray output = model.output(testData.getFeatureMatrix());
evaluation.eval(testData.getLabels(), output);



Deep Learning

[ 241 ]

out.println(evaluation.stats());

The output of the training follows, which is produced by the ScoreIterationListener
class. However, the values you get may differ due to how the data is selected and analyzed.
Notice that the score improves with the iterations but levels out after about 500 iterations:

12:43:35.685 [main] INFO o.d.o.l.ScoreIterationListener - Score at
iteration 0 is 1.443480901811554
12:43:36.094 [main] INFO o.d.o.l.ScoreIterationListener - Score at
iteration 100 is 0.3259061845624861
12:43:36.390 [main] INFO o.d.o.l.ScoreIterationListener - Score at
iteration 200 is 0.2630572026049783
12:43:36.676 [main] INFO o.d.o.l.ScoreIterationListener - Score at
iteration 300 is 0.24061281470878784
12:43:36.977 [main] INFO o.d.o.l.ScoreIterationListener - Score at
iteration 400 is 0.22955121170274934
12:43:37.292 [main] INFO o.d.o.l.ScoreIterationListener - Score at
iteration 500 is 0.22249920540161677
12:43:37.575 [main] INFO o.d.o.l.ScoreIterationListener - Score at
iteration 600 is 0.2169898450109222
12:43:37.872 [main] INFO o.d.o.l.ScoreIterationListener - Score at
iteration 700 is 0.21271599814600958
12:43:38.161 [main] INFO o.d.o.l.ScoreIterationListener - Score at
iteration 800 is 0.2075677126088741
12:43:38.451 [main] INFO o.d.o.l.ScoreIterationListener - Score at
iteration 900 is 0.20047317735870715

This is followed by the results of the stats method as shown next. The first part reports on
how examples are classified and the second part displays various statistics:

Examples labeled as 0 classified by model as 0: 397 times
Examples labeled as 0 classified by model as 1: 10 times
Examples labeled as 0 classified by model as 2: 1 times
Examples labeled as 1 classified by model as 0: 8 times
Examples labeled as 1 classified by model as 1: 113 times
Examples labeled as 1 classified by model as 2: 1 times
Examples labeled as 1 classified by model as 3: 1 times
Examples labeled as 2 classified by model as 1: 7 times
Examples labeled as 2 classified by model as 2: 21 times
Examples labeled as 2 classified by model as 3: 14 times
Examples labeled as 3 classified by model as 1: 2 times
Examples labeled as 3 classified by model as 3: 30 times
==========================Scores===================================Accuracy
: 0.9273
Precision: 0.854
Recall: 0.8323
F1 Score: 0.843
===================================================================



Deep Learning

[ 242 ]

The regression model does a reasonable job with this dataset.

Restricted Boltzmann Machines
RBM is often used as part of a multi-layer deep belief network. The output of the RBM is
used as an input to another layer. The use of the RBM is repeated until the final layer is
reached.

Deep Belief Networks (DBNs) consist of several RBMs stacked together.
Each hidden layer provides the input for the subsequent layer. Within
each layer, the nodes cannot communicate laterally and it becomes
essentially a network of other single-layer networks. DBNs are especially
helpful for classifying, clustering, and recognizing image data.

The term, continuous restricted Boltzmann machine, refers an RBM that uses values other
than integers. Input data is normalized to values between zero and one.

Each node of the input layer is connected to each node of the second layer. No nodes of the
same layer are connected to each other. That is, there is no intra-layer communication. This
is what restricted means.

The number of input nodes for the visible layer is dependent on the problem being solved.
For example, if we are looking at an image with 256 pixels, then we will need 256 input
nodes. For an image, this is the number of rows times the number of columns for the image.



Deep Learning

[ 243 ]

The Hidden Layer should contain fewer neurons than the Input Layer. Using close to the
same number of neurons will sometimes result in the construction of an identity function.
Too many neurons may result in overfitting. This means that datasets with a large number
of inputs will require multiple layers. Smaller input sizes result in the need for fewer layers.

Stochastic, that is, random, values are assigned to each node's weights. The value for a node
is multiplied by its weight and then added to a bias. This value, combined with the
combined input from the other input nodes, is then fed into the activation function, where
an output value is generated.

Reconstruction in an RBM
The RBM technique goes through a reconstruction phase. This is where the activations are
fed back to the first layer and multiplied by the same weights used for the input. The sum of
these values from each node of the second layer, plus another bias, represents an
approximation of the original input. The idea is to train the model to minimize the
difference between the original input values and the feedback values.

The difference in values is treated as an error. The process is repeated until an error
minimum is reached. You can think of the reconstruction as guesses about the original
input. These guesses are essentially a probability distribution of the original input. This is
called generative learning, in contrast to discriminative learning, which occurs with
classification techniques.



Deep Learning

[ 244 ]

In a multi-layer model, each layer can be used to essentially identify a feature. In
subsequent layers, a combination of features may be identified or generated. In this way, a
seemingly random set of pixel values may be analyzed to identify the veins of a leaf, a leaf,
a trunk, and then a tree.

The output of an RBM is a value that essentially represents a percentage. If it is not zero,
then the machine has learned something about the input.

Configuring an RBM
We will examine two different RBM configurations. The first one is minimal and we will see
it again in Deep autoencoders. The second uses several additional methods and provides
more insights into the various ways it can be configured.

The following statement creates a new layer using the RBM.Builder class. The input is
computed based on the number of rows and columns of an image. The output is large,
containing 1000 neurons. The loss function is RMSE_XENT. This loss function works better
for some classification problems:

.layer(0, new RBM.Builder()
    .nIn(numRows * numColumns).nOut(1000)
    .lossFunction(LossFunctions.LossFunction.RMSE_XENT)
    .build())

Next is a more complex RBM. We will not detail each of these methods here but will see
them used in later examples:

.layer(new RBM.Builder()
    .l2(1e-1).l1(1e-3)
    .nIn(numRows * numColumns
    .nOut(outputNum)
    .activation("relu")
    .weightInit(WeightInit.RELU)
    .lossFunction(LossFunctions.LossFunction
        .RECONSTRUCTION_CROSSENTROPY).k(3)
    .hiddenUnit(HiddenUnit.RECTIFIED)
    .visibleUnit(VisibleUnit.GAUSSIAN)
    .updater(Updater.ADAGRAD)
        .gradientNormalization(
             GradientNormalization.ClipL2PerLayer)
    .build())

A single-layer RBM is not always useful. A multi-layer autoencoder is often required. We
will look at this option in the next section.



Deep Learning

[ 245 ]

Deep autoencoders
An autoencoder is used for feature selection and extraction. It consists of two symmetrical
DBNs. The first half of the network is composed of several layers, which performs
encoding. The second part of the network performs decoding. Each layer of the autoencoder
is an RBM. This is illustrated in the following figure:

The purpose of the encoding sequence is to compress the original input into a smaller
vector space. The middle layer of the previous figure is this compressed layer. These
intermediate vectors can be thought of as possible features of the dataset. The encoding is
also referred to as the pre-training half. It is the output of the intermediate RBM layer and
does not perform classification.

The encoder's first layer will use more inputs than used by the dataset. This has the effect of
expanding the features of the dataset. A sigmoid-belief unit is a form of non-linear
transformation used with each layer. This unit is not able to accurately represent
information as real values. However, using more inputs, it is able to do a better job.



Deep Learning

[ 246 ]

The second half of the network performs decoding, effectively reconstructing the input.
This is a forward-feed network, using the same weights as the corresponding layers in the
encoding half. However, the weights are transposed and are not initialized randomly. The
training rate needs to be set lower for the second half.

An autoencoder is useful for data compression and searching. The output of the first half of
the model is compressed, thus making it useful for storage and transmission usage. Later, it
can be decompressed, as we will demonstrate in Chapter 10, Visual and Audio Analysis. This
is sometimes referred to as semantic hashing.

If a series of inputs, such as images or sounds, have been compressed and stored, then new
input can be compressed and matched with the stored values to find the best fit. An
autoencoder can also be used for other information retrieval tasks.

Building an autoencoder in DL4J
This example is adapted from h t t p ://d e e p l e a r n i n g 4j . o r g /d e e p a u t o e n c o d e r . We start
with a try-catch block to handle errors that may crop up and with a few variable
declarations. This example uses the Mnist (h t t p ://y a n n . l e c u n . c o m /e x d b /m n i s t /) dataset,
which is a set of images containing hand-written numbers. Each image consists of 28 by 28
pixels. An iterator is declared to access the data:

try {
    final int numberOfRows = 28;
    final int numberOfColumns = 28;
    int seed = 123;
    int numberOfIterations = 1;

    iterator = new MnistDataSetIterator(
        1000, MnistDataFetcher.NUM_EXAMPLES, true);
    ...
} catch (IOException ex) {
    // Handle exceptions
}

Configuring the network
The configuration of the network is created using the
NeuralNetConfiguration.Builder() class. Ten layers are created where the input layer
consists of 1000 neurons. This is larger than the 28 by 28 pixel input and is used to
compensate for the sigmoid-belief units used in each layer.

http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://deeplearning4j.org/deepautoencoder
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/


Deep Learning

[ 247 ]

Each of the subsequent layers gets smaller until layer four is reached. This layer represents
the last step of the encoding process. With layer five, the decoding process starts and the
subsequent layers get bigger. The last layer uses 1000 neurons.

Each layer of the model uses an RBM instance except the last layer, which is constructed
using the OutputLayer.Builder class. The configuration code follows:

MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
        .seed(seed)
        .iterations(numberOfIterations)
        .optimizationAlgo(
           OptimizationAlgorithm.LINE_GRADIENT_DESCENT)
        .list()
        .layer(0, new RBM.Builder()
            .nIn(numberOfRows * numberOfColumns).nOut(1000)
            .lossFunction(LossFunctions.LossFunction.RMSE_XENT)
            .build())
        .layer(1, new RBM.Builder().nIn(1000).nOut(500)
            .lossFunction(LossFunctions.LossFunction.RMSE_XENT)
            .build())
        .layer(2, new RBM.Builder().nIn(500).nOut(250)
            .lossFunction(LossFunctions.LossFunction.RMSE_XENT)
            .build())
        .layer(3, new RBM.Builder().nIn(250).nOut(100)
            .lossFunction(LossFunctions.LossFunction.RMSE_XENT)
            .build())
        .layer(4, new RBM.Builder().nIn(100).nOut(30)
            .lossFunction(LossFunctions.LossFunction.RMSE_XENT)
            .build()) //encoding stops
        .layer(5, new RBM.Builder().nIn(30).nOut(100)
            .lossFunction(LossFunctions.LossFunction.RMSE_XENT)
            .build()) //decoding starts
        .layer(6, new RBM.Builder().nIn(100).nOut(250)
            .lossFunction(LossFunctions.LossFunction.RMSE_XENT)
            .build())
        .layer(7, new RBM.Builder().nIn(250).nOut(500)
            .lossFunction(LossFunctions.LossFunction.RMSE_XENT)
            .build())
        .layer(8, new RBM.Builder().nIn(500).nOut(1000)
            .lossFunction(LossFunctions.LossFunction.RMSE_XENT)
            .build())
        .layer(9, new OutputLayer.Builder(
                LossFunctions.LossFunction.RMSE_XENT).nIn(1000)
                .nOut(numberOfRows * numberOfColumns).build())
        .pretrain(true).backprop(true)
        .build();



Deep Learning

[ 248 ]

Building and training the network
The model is then created and initialized, and score iteration listeners are set up:

model = new MultiLayerNetwork(conf);
model.init();
model.setListeners(Collections.singletonList(
        (IterationListener) new ScoreIterationListener()));

The model is trained using the fit method:

while (iterator.hasNext()) {
    DataSet dataSet = iterator.next();
    model.fit(new DataSet(dataSet.getFeatureMatrix(),
            dataSet.getFeatureMatrix()));
}

Saving and retrieving a network
It is useful to save the model so that it can be used for later analysis. This is accomplished
using the ModelSerializer class's writeModel method. It takes the model instance and
modelFile instance, along with a boolean parameter specifying whether the model's
updater should be saved. An updater is a learning algorithm used for adjusting certain
model parameters:

modelFile = new File("savedModel");
ModelSerializer.writeModel(model, modelFile, true);

The model can be retrieved using the following code:

modelFile = new File("savedModel");
MultiLayerNetwork model =
ModelSerializer.restoreMultiLayerNetwork(modelFile);

Specialized autoencoders
There are specialized versions of autoencoders. When an autoencoder uses more hidden
layers than inputs, it may learn the identity function, which is a function that always
returns the same value used as input to the function. To avoid this problem, an extension to
the autoencoder, denoising autoencoder, is used; it randomly modifies the input
introducing noise. The amount of noise introduced varies depending on the input dataset.
A Stacked Denoising Autoencoder (SdA) is a series of denoising autoencoders strung
together.



Deep Learning

[ 249 ]

Convolutional networks
CNNs are feed-forward networks modeled after the visual cortex found in animals. The
visual cortex is arranged with overlapping neurons, and so in this type of network, the
neurons are also arranged in overlapping sections, known as receptive fields. Due to their
design model, they function with minimal preprocessing or prior knowledge, and this lack
of human intervention makes them especially useful.

This type of network is used frequently in image and video recognition applications. They
can be used for classification, clustering, and object recognition. CNNs can also be applied
to text analysis by implementing Optical Character Recognition (OCR). CNNs have been a
driving force in the machine learning movement in part due to their wide applicability in
practical situations.

We are going to demonstrate a CNN using DL4J. The process will closely mirror the process
we used in the Building an autoencoder in DL4J section. We will again use the Mnist dataset.
This dataset contains image data, so it is well-suited to a convolutional network.

Building the model
First, we need to create a new DataSetIterator to process the data. The parameters for
the MnistDataSetIterator constructor are the batch size, 1000 in this case, and the total
number of samples to process. We then get our next dataset, shuffle the data to randomize,
and split our data to be tested and trained. As we discussed earlier in the chapter, we
typically use 65% of the data to train the data and the remaining 35% is used for testing:

DataSetIterator iter = new MnistDataSetIterator(1000,
MnistDataFetcher.NUM_EXAMPLES);
DataSet dataset = iter.next();
dataset.shuffle();
SplitTestAndTrain testAndTrain = dataset.splitTestAndTrain(0.65);
DataSet trainingData = testAndTrain.getTrain();
DataSet testData = testAndTrain.getTest();

We then normalize both sets of data:

DataNormalization normalizer = new NormalizerStandardize();
normalizer.fit(trainingData);
normalizer.transform(trainingData);
normalizer.transform(testData);



Deep Learning

[ 250 ]

Next, we can build our network. As shown earlier, we will again use a
MultiLayerConfiguration instance with a series of
NeuralNetConfiguration.Builder methods. We will discuss the individual methods
after the following code sequence. Notice that the last layer again uses the softmax
activation function for regression analysis:

MultiLayerConfiguration.Builder builder = new
          NeuralNetConfiguration.Builder()
     .seed(123)
     .iterations(1)
     .regularization(true).l2(0.0005)
     .weightInit(WeightInit.XAVIER)
     .optimizationAlgo(OptimizationAlgorithm
           .STOCHASTIC_GRADIENT_DESCENT)
     .updater(Updater.NESTEROVS).momentum(0.9)
     .list()
     .layer(0, new ConvolutionLayer.Builder(5, 5)
           .nIn(6)
           .stride(1, 1)
           .nOut(20)
           .activation("identity")
           .build())
     .layer(1, new SubsamplingLayer.Builder(
                SubsamplingLayer.PoolingType.MAX)
           .kernelSize(2, 2)
           .stride(2, 2)
           .build())
     .layer(2, new ConvolutionLayer.Builder(5, 5)
           .stride(1, 1)
           .nOut(50)
           .activation("identity")
           .build())
     .layer(3, new SubsamplingLayer.Builder(
                SubsamplingLayer.PoolingType.MAX)
           .kernelSize(2, 2)
           .stride(2, 2)
           .build())
     .layer(4, new DenseLayer.Builder().activation("relu")
           .nOut(500).build())
     .layer(5, new OutputLayer.Builder(
                LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD)
           .nOut(10)
           .activation("softmax")
           .build())
     .backprop(true).pretrain(false);



Deep Learning

[ 251 ]

The first layer, layer 0, which is duplicated next for your convenience, uses the
ConvolutionLayer.Builder method. The input to a convolution layer is the product of
the image height, width, and number of channels. In a standard RGB image, there are three
channels. The nIn method takes the number of channels. The nOut method specifies that 20
outputs are expected:

.layer(0, new ConvolutionLayer.Builder(5, 5)
        .nIn(6)
        .stride(1, 1)
        .nOut(20)
        .activation("identity")
        .build())

Layers 1 and 3 are both subsampling layers. These layers follow convolution layers and do
no real convolution themselves. They return a single value, the maximum value for that
input region:

.layer(1, new SubsamplingLayer.Builder(
            SubsamplingLayer.PoolingType.MAX)
        .kernelSize(2, 2)
        .stride(2, 2)
        .build())
                        ...
.layer(3, new SubsamplingLayer.Builder(
            SubsamplingLayer.PoolingType.MAX)
        .kernelSize(2, 2)
        .stride(2, 2)
        .build())

Layer 2 is also a convolution layer like layer 0. Notice that we do not specify the number of
channels in this layer:

.layer(2, new ConvolutionLayer.Builder(5, 5)
        .nOut(50)
        .activation("identity")
        .build())

The fourth layer uses the DenseLayer.Builder class, as in our earlier example. As
mentioned previously, the DenseLayer class is a feed-forward and fully connected layer:

.layer(4, new DenseLayer.Builder().activation("relu")
        .nOut(500).build())



Deep Learning

[ 252 ]

The layer 5 is an OutputLayer instance and uses softmax automation:

.layer(5, new OutputLayer.Builder(
            LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD)
        .nOut(10)
        .activation("softmax")
        .build())
        .backprop(true).pretrain(false);

Finally, we create a new instance of the ConvolutionalLayerSetup class. We pass the
builder object and the dimensions of our image (28 x 28). We also pass the number of
channels, in this case, 1:

new ConvolutionLayerSetup(builder, 28, 28, 1);

We can now configure and fit our model. We once again use the
MultiLayerConfiguration and MultiLayerNetwork classes to build our network. We
set up listeners and then iterate through our data. For each DataSet, we execute the fit
method:

MultiLayerConfiguration conf = builder.build();
MultiLayerNetwork model = new MultiLayerNetwork(conf);
model.init();
model.setListeners(Collections.singletonList((IterationListener)
  new ScoreIterationListener(1/5)));

while (iter.hasNext()) {
    DataSet next = iter.next();
    model.fit(new DataSet(next.getFeatureMatrix(), next.getLabels()));
}

We are now ready to evaluate our model.

Evaluating the model
To evaluate our model, we use the Evaluation class. We get the output from our model
and send it, along with the labels for our dataset, to the eval method. We then execute the
stats method to get the statistical information on our network:

Evaluation evaluation = new Evaluation(4);
INDArray output = model.output(testData.getFeatureMatrix());
evaluation.eval(testData.getLabels(), output);
out.println(evaluation.stats());



Deep Learning

[ 253 ]

The following is a sample output from the execution of this code, for we are only showing
the results of the stats method. The first part reports on how examples are classified and
the second part displays various statistics:

Examples labeled as 0 classified by model as 0: 19 times
Examples labeled as 1 classified by model as 1: 41 times
Examples labeled as 2 classified by model as 1: 4 times
Examples labeled as 2 classified by model as 2: 30 times
Examples labeled as 2 classified by model as 3: 1 times
Examples labeled as 3 classified by model as 2: 1 times
Examples labeled as 3 classified by model as 3: 28 times
==========================Scores===================================Accuracy
: 0.3371
Precision: 0.8481
Recall: 0.8475
F1 Score: 0.8478
===================================================================

As in our previous model, the evaluation demonstrates decent accuracy and success with
our network.

Recurrent Neural Networks
RNN differ from feed-forward networks in that their input includes the input from the
previous iteration or step. They still process the current input but use a feedback loop to
take into consideration the inputs to the prior step, also called the recent past, for context.
This step effectively gives the network memory. One popular type of recurrent network
involves Long Short-Term Memory (LSTM). This type of memory improves the processing
power of the network.

RNNs are designed to process sequential data and are especially useful for analysis and
prediction with text data. Given a sequence of words, an RNN can predict the probability of
each word being the next in the sequence. This also allows for text generation by the
network. RNNs are versatile and also process image data well, especially image labeling
applications. The flexibility in design and purpose and ease in training make RNNs popular
choices for many data science applications. DL4J also provides support for LSTM networks
and other RNNs.



Deep Learning

[ 254 ]

Summary
In this chapter, we examined deep learning techniques for neural networks. All API support
in this chapter was provided by Deeplearning4j. We began by demonstrating how to
acquire and prepare data for use with deep learning networks. We discussed how to
configure and build a model. This was followed by an explanation of how to train and test a
model by splitting the dataset into training and testing segments.

Our discussion continued with an examination of deep learning and regression analysis.
We showed how to prepare the data and class, build the model, and evaluate the model. We
used sample data and displayed output statistics to demonstrate the relative effectiveness of
our model.

RBM and DBNs were then examined. DBNs are comprised of RBMs stacked together and
are especially useful for classification and clustering applications. Deep autoencoders are
also built using RBMs, with two symmetrical DBNs. The autoencoders are especially useful
for feature selection and extraction.

Finally, we demonstrated a convolutional network. This network is modeled after the visual
cortex and allows the network to use regions of information for classification. As in
previous examples, we built, trained, and then evaluated the model for effectiveness. We
then concluded the chapter with a brief introduction to recurrent neural networks.

We will expand upon these topics as we move into next chapter and examine text analysis
techniques.



  9
Text Analysis

Text analysis is a broad topic and is typically referred to as Natural Language Processing
(NLP). It is used for many different tasks, including text searching, language translation,
sentiment analysis, speech recognition, and classification, to mention a few. The process of
analyzing can be difficult due to the particularities and ambiguity found in natural
languages. However, there has been a considerable amount of work in this area and there
are several Java APIs supporting this effort.

We will start with an introduction to the basic concepts and tasks used in NLP. These
include the following:

Tokenization: The process of splitting text into individual tokens or words.
Stop words: These are words that are common and may not be necessary for
processing. They include such words as the, a, and to.
Name Entity Recognition (NER): This is the process of identifying elements of
text such as people's name, locations, or things.
Parts of Speech (POS): This identifies the grammatical parts of a sentence such as
noun, verb, adjective, and so on.
Relationships: Here, we are concerned with identifying how parts of text are
related to each other, such as the subject and object of a sentence.

The concepts of words, sentences, and paragraphs are well known. However, extracting
and analyzing these components is not always that straightforward. The term corpus
frequently refers to a collection of text.



Text Analysis

[ 256 ]

As with most data science problems, it is important to preprocess text. Frequently, this
involves handling such tasks as these:

Handling Unicode
Converting text to uppercase or lowercase
Removing stop words

We examined several techniques for tokenization and removing stop words in Chapter 3,
Data Cleaning. In this chapter, we will focus on POS, NER, extracting relationships from
sentence, text classification, and sentiment analysis.

There are several NLP APIs available, including these:

OpenNLP (h t t p s ://o p e n n l p . a p a c h e . o r g /): An open source Apache project
Stanford NLP (h t t p ://n l p . s t a n f o r d . e d u /s o f t w a r e /) : Another open source
library
UIMA (h t t p s ://u i m a . a p a c h e . o r g /): An Apache project supporting pipelines
LingPipe (h t t p ://a l i a s - i . c o m /l i n g p i p e /): A library that uses pipelines
extensively
DL4J (h t t p ://d e e p l e a r n i n g 4j . o r g /): The Deep Learning for Java library
supports various classes for deep learning neural networks including support for
NLP

We will use OpenNLP and DL4J to demonstrate text analysis in this chapter. We chose
these because they are both well-known and have good published resources for additional
support.

We will use the Google Word2Vec and Doc2Vec neural networks to perform text
classification. This includes feature vectors based on other words as well as using labeled
information to classify documents. Finally, we will discuss sentiment analysis. This type of
analysis seeks to assign meaning to text and also uses the Word2Vec network.

We start our discussion with NER.

Implementing named entity recognition
This is sometimes referred to as finding people and things. Given a text segment, we may
want to identify all the names of people present. However, this is not always easy because a
name such as Rob may also be used as a verb.

https://opennlp.apache.org/
https://opennlp.apache.org/
https://opennlp.apache.org/
https://opennlp.apache.org/
https://opennlp.apache.org/
https://opennlp.apache.org/
https://opennlp.apache.org/
https://opennlp.apache.org/
https://opennlp.apache.org/
https://opennlp.apache.org/
https://opennlp.apache.org/
https://opennlp.apache.org/
https://opennlp.apache.org/
https://opennlp.apache.org/
https://opennlp.apache.org/
https://opennlp.apache.org/
https://opennlp.apache.org/
https://opennlp.apache.org/
https://opennlp.apache.org/
https://opennlp.apache.org/
https://opennlp.apache.org/
https://opennlp.apache.org/
https://opennlp.apache.org/
https://opennlp.apache.org/
https://opennlp.apache.org/
https://opennlp.apache.org/
https://opennlp.apache.org/
https://opennlp.apache.org/
https://opennlp.apache.org/
https://opennlp.apache.org/
https://opennlp.apache.org/
https://opennlp.apache.org/
https://opennlp.apache.org/
https://opennlp.apache.org/
https://opennlp.apache.org/
https://opennlp.apache.org/
https://opennlp.apache.org/
https://opennlp.apache.org/
https://opennlp.apache.org/
https://opennlp.apache.org/
https://opennlp.apache.org/
https://opennlp.apache.org/
https://opennlp.apache.org/
https://opennlp.apache.org/
https://opennlp.apache.org/
https://opennlp.apache.org/
https://opennlp.apache.org/
http://nlp.stanford.edu/software/
http://nlp.stanford.edu/software/
http://nlp.stanford.edu/software/
http://nlp.stanford.edu/software/
http://nlp.stanford.edu/software/
http://nlp.stanford.edu/software/
http://nlp.stanford.edu/software/
http://nlp.stanford.edu/software/
http://nlp.stanford.edu/software/
http://nlp.stanford.edu/software/
http://nlp.stanford.edu/software/
http://nlp.stanford.edu/software/
http://nlp.stanford.edu/software/
http://nlp.stanford.edu/software/
http://nlp.stanford.edu/software/
http://nlp.stanford.edu/software/
http://nlp.stanford.edu/software/
http://nlp.stanford.edu/software/
http://nlp.stanford.edu/software/
http://nlp.stanford.edu/software/
http://nlp.stanford.edu/software/
http://nlp.stanford.edu/software/
http://nlp.stanford.edu/software/
http://nlp.stanford.edu/software/
http://nlp.stanford.edu/software/
http://nlp.stanford.edu/software/
http://nlp.stanford.edu/software/
http://nlp.stanford.edu/software/
http://nlp.stanford.edu/software/
http://nlp.stanford.edu/software/
http://nlp.stanford.edu/software/
http://nlp.stanford.edu/software/
http://nlp.stanford.edu/software/
http://nlp.stanford.edu/software/
http://nlp.stanford.edu/software/
http://nlp.stanford.edu/software/
http://nlp.stanford.edu/software/
http://nlp.stanford.edu/software/
http://nlp.stanford.edu/software/
http://nlp.stanford.edu/software/
http://nlp.stanford.edu/software/
http://nlp.stanford.edu/software/
http://nlp.stanford.edu/software/
http://nlp.stanford.edu/software/
http://nlp.stanford.edu/software/
http://nlp.stanford.edu/software/
http://nlp.stanford.edu/software/
http://nlp.stanford.edu/software/
http://nlp.stanford.edu/software/
http://nlp.stanford.edu/software/
http://nlp.stanford.edu/software/
http://nlp.stanford.edu/software/
http://nlp.stanford.edu/software/
http://nlp.stanford.edu/software/
http://nlp.stanford.edu/software/
http://nlp.stanford.edu/software/
http://nlp.stanford.edu/software/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
https://uima.apache.org/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://deeplearning4j.org/
http://deeplearning4j.org/
http://deeplearning4j.org/
http://deeplearning4j.org/
http://deeplearning4j.org/
http://deeplearning4j.org/
http://deeplearning4j.org/
http://deeplearning4j.org/
http://deeplearning4j.org/
http://deeplearning4j.org/
http://deeplearning4j.org/
http://deeplearning4j.org/
http://deeplearning4j.org/
http://deeplearning4j.org/
http://deeplearning4j.org/
http://deeplearning4j.org/
http://deeplearning4j.org/
http://deeplearning4j.org/
http://deeplearning4j.org/
http://deeplearning4j.org/
http://deeplearning4j.org/
http://deeplearning4j.org/
http://deeplearning4j.org/
http://deeplearning4j.org/
http://deeplearning4j.org/
http://deeplearning4j.org/
http://deeplearning4j.org/
http://deeplearning4j.org/
http://deeplearning4j.org/
http://deeplearning4j.org/
http://deeplearning4j.org/
http://deeplearning4j.org/
http://deeplearning4j.org/
http://deeplearning4j.org/
http://deeplearning4j.org/
http://deeplearning4j.org/
http://deeplearning4j.org/
http://deeplearning4j.org/
http://deeplearning4j.org/
http://deeplearning4j.org/
http://deeplearning4j.org/
http://deeplearning4j.org/
http://deeplearning4j.org/


Text Analysis

[ 257 ]

In this section, we will demonstrate how to use OpenNLP's TokenNameFinderModel class
to find names and locations in text. While there are other entities we may want to find, this
example will demonstrate the basics of the technique. We begin with names.

Most names occur within a single line. We do not want to use multiple lines because an
entity such as a state might inadvertently be identified incorrectly. Consider the following
sentences:

Jim headed north. Dakota headed south.

If we ignored the period, then the state of North Dakota might be identified as a location,
when in fact it is not present.

Using OpenNLP to perform NER
We start our example with a try-catch block to handle exceptions. OpenNLP uses models
that have been trained on different sets of data. In this example, the en-token.bin and en-
ner-person.bin files contain the models for the tokenization of English text and for
English name elements, respectively. These files can be downloaded from h t t p ://o p e n n l p .

s o u r c e f o r g e . n e t /m o d e l s - 1. 5/. However, the IO stream used here is standard Java:

try (InputStream tokenStream =
            new FileInputStream(new File("en-token.bin"));
        InputStream personModelStream = new FileInputStream(
            new File("en-ner-person.bin"));) {
    ...
} catch (Exception ex) {
    // Handle exceptions
}

An instance of the TokenizerModel class is initialized using the token stream. This
instance is then used to create the actual TokenizerME tokenizer. We will use this instance
to tokenize our sentence:

TokenizerModel tm = new TokenizerModel(tokenStream);
TokenizerME tokenizer = new TokenizerME(tm);

http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/


Text Analysis

[ 258 ]

The TokenNameFinderModel class is used to hold a model for name entities. It is initialized
using the person model stream. An instance of the NameFinderME class is created using this
model since we are looking for names:

TokenNameFinderModel tnfm = new
  TokenNameFinderModel(personModelStream);
NameFinderME nf = new NameFinderME(tnfm);

To demonstrate the process, we will use the following sentence. We then convert it to a
series of tokens using the tokenizer and tokenizer method:

String sentence = "Mrs. Wilson went to Mary's house for dinner.";
String[] tokens = tokenizer.tokenize(sentence);

The Span class holds information regarding the positions of entities. The find method will
return the position information, as shown here:

Span[] spans = nf.find(tokens);

This array holds information about person entities found in the sentence. We then display
this information as shown here:

for (int i = 0; i < spans.length; i++) {
    out.println(spans[i] + " - " + tokens[spans[i].getStart()]);
}

The output for this sequence is as follows. Notice that it identifies the last name of Mrs.
Wilson but not the "Mrs.":

[1..2) person - Wilson
[4..5) person - Mary

Once these entities have been extracted, we can use them for specialized analysis.

Identifying location entities
We can also find other types of entities such as dates and locations. In the following
example, we find locations in a sentence. It is very similar to the previous person example,
except that an en-ner-location.bin file is used for the model:

try (InputStream tokenStream =
            new FileInputStream("en-token.bin");
        InputStream locationModelStream = new FileInputStream(
            new File("en-ner-location.bin"));) {

    TokenizerModel tm = new TokenizerModel(tokenStream);



Text Analysis

[ 259 ]

    TokenizerME tokenizer = new TokenizerME(tm);

    TokenNameFinderModel tnfm =
        new TokenNameFinderModel(locationModelStream);
    NameFinderME nf = new NameFinderME(tnfm);

    sentence = "Enid is located north of Oklahoma City.";
    String tokens[] = tokenizer.tokenize(sentence);

    Span spans[] = nf.find(tokens);

    for (int i = 0; i < spans.length; i++) {
        out.println(spans[i] + " - " +
        tokens[spans[i].getStart()]);
    }
} catch (Exception ex) {
    // Handle exceptions
}

With the sentence defined previously, the model was only able to find the second city, as
shown here. This likely due to the confusion that arises with the name Enid which is both
the name of a city and a person' name:

[5..7) location - Oklahoma

Suppose we use the following sentence:

sentence = "Pond Creek is located north of Oklahoma City.";

Then we get this output:

[1..2) location - Creek
[6..8) location - Oklahoma

Unfortunately, it has missed the town of Pond Creek. NER is a useful tool for many
applications, but like many techniques, it is not always foolproof. The accuracy of the NER
approach presented, and many of the other NLP examples, will vary depending on factors
such as the accuracy of the model, the language being used, and the type of entity.

We may also be interested in how text can be classified. We will examine one approach in
the next section.



Text Analysis

[ 260 ]

Classifying text
Classifying text is an important part of machine learning and data science. We have to be
able to classify text for a variety of applications, including document retrieval and web
searches. It is often important to assign specific labels to the data before we can determine
its usefulness for a particular application or search result.

In this chapter, we are going to demonstrate a technique involving the use of paragraph
vectors and labeled data with DL4J classes. This example allows us to read in documents
and, based on the text inside of the document, assign a label (or classification) to the
document. We are also going to show an example of classifying text by similarity. This
means we will match phrases and words that have similar structure. This example will also
use DL4J.

Word2Vec and Doc2Vec
We will be using Word2Vec and Doc2Vec in a few examples in this chapter. Word2Vec is a
neural network with two layers used for text processing. Given a body of text, the network
will provide feature vectors for the words contained in the text. These vectors are simply
mathematical representations of the word features and can be numerically compared to
other vectors. This comparison is often referred to as the distance between two words.

Word2Vec operates with the understanding that words can be classified by determining the
probability that two words will occur together. Because of this methodology, Word2Vec can
be used for more than classification of sentences. Any object or data that can be represented
by text labels can be classified with this network.

Doc2Vec is an extension of Word2Vec. Rather than building vectors representing the
features of individual words compared to other words, as Word2Vec does, this network
compares words to given labels. The vectors are set up to represent the theme or overall
meaning of a document. Our next example shows how these feature vectors are then
associated with specific documents.

Classifying text by labels
In our first example using Doc2Vec, we will associate our documents with three labels:
health, finance, and science. But before we can associate the data with labels, we have to
define those labels and train our model to recognize the labels. Each label represents the
meaning or classification of a particular piece of text.



Text Analysis

[ 261 ]

In this example we will use sample documents, each pre-labelled with our categories:
health, finance, or science. We will use these paragraphs to train our model and then, as in 
previous examples, use a set of test data to test our model. We will be using the files found
at
https://github.com/deeplearning4j/dl4j-examples/tree/master/dl4j-examples/src/m

ain/resources/paravec. We have based this example upon sample code written for DL4J,
which can be found at h t t p s ://g i t h u b . c o m /d e e p l e a r n i n g 4j /d l 4j - e x a m p l e s /b l o b /m a s t e
r /d l 4j - e x a m p l e s /s r c /m a i n /j a v a /o r g /d e e p l e a r n i n g 4j /e x a m p l e s /n l p /p a r a g r a p h v e c t o r

s /P a r a g r a p h V e c t o r s C l a s s i f i e r E x a m p l e . j a v a .

First we need to set up some instance variables to use later in our code. We will be using a
ParagraphVectors object to create our vectors, a LabelAwareIterator object to iterate
through our data, and a TokenizerFactory object to tokenize our data:

ParagraphVectors pVect;
LabelAwareIterator iter;
TokenizerFactory tFact;

Then we will set up our ClassPathResource. This specifies the directory within our
project that contains the data files to be classified. The first resource contains our labeled
data used for training purposes. We then direct our iterator and tokenizer to use the
resources specified as the ClassPathResource. We also specify that we will use the
CommonPreprocessor to preprocess our data:

ClassPathResource resource = new
         ClassPathResource("paravec/labeled");

iter = new FileLabelAwareIterator.Builder()
        .addSourceFolder(resource.getFile())
        .build();

tFact = new DefaultTokenizerFactory();
tFact.setTokenPreProcessor(new CommonPreprocessor());

Next, we build our ParagraphVectors. This is where we specify the learning rate, batch
size, and number of training epochs. We include our iterator and tokenizer in the setup
process as well. Once we've built our ParagraphVectors, we call the fit method to train
our model using the training data in the paravec/labeled directory:

pVect = new ParagraphVectors.Builder()
        .learningRate(0.025)
        .minLearningRate(0.001)
        .batchSize(1000)
        .epochs(20)
        .iterate(iter)

https://github.com/deeplearning4j/dl4j-examples/tree/master/dl4j-examples/src/main/resources/paravec
https://github.com/deeplearning4j/dl4j-examples/tree/master/dl4j-examples/src/main/resources/paravec
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java


Text Analysis

[ 262 ]

        .trainWordVectors(true)
        .tokenizerFactory(tFact)
        .build();

pVect.fit();

Now that we have trained our model, we can use our unlabeled data to test. We create a
new ClassPathResource for our unlabeled data and create a new
FileLabelAwareIterator as well:

ClassPathResource unlabeledText =
         new ClassPathResource("paravec/unlabeled");
FileLabelAwareIterator unlabeledIter =
         new FileLabelAwareIterator.Builder()
               .addSourceFolder(unlabeledText.getFile())
               .build();

The next step involves iterating through our unlabeled data and identifying the correct label
for each document. We can generally expect that each document will fall into multiple
labels but have a different weight, or percent match, for each. So, while one article may be
mostly classified as a health article, it likely has enough information to be also classified, to
a lesser degree, as a science article.

Next, we set up a MeansBuilder and LabelSeeker object. These classes access tables
containing the relationships between words and labels, which we will use in our
ParagraphVectors. The InMemoryLookupTable class provides access to a default table
for word lookup:

MeansBuilder mBuilder =
   new MeansBuilder((InMemoryLookupTable<VocabWord>)
      pVect.getLookupTable(),tFact);
LabelSeeker lSeeker =
    new LabelSeeker(iter.getLabelsSource().getLabels(),
               (InMemoryLookupTable<VocabWord>)
    pVect.getLookupTable());

Finally, we iterate through our unlabeled documents. For each document, we will change
the document into a vector and use our LabelSeeker to get the scores for each document.
We log the scores for each document and print out the score with the appropriate labels:

while (unlabeledIter.hasNextDocument()) {
    LabelledDocument doc = unlabeledIter.nextDocument();
    INDArray docCentroid = mBuilder.documentAsVector(doc);
    List<Pair<String, Double>> scores =
              lSeeker.getScores(docCentroid);
    out.println("Document '" + doc.getLabel() +



Text Analysis

[ 263 ]

       "' falls into the following categories: ");
    for (Pair<String, Double> score : scores) {
       out.println ("        " + score.getFirst() + ": " +
             score.getSecond());
        }

}

The output from our preceding print statements is as follows:

Document 'finance' falls into the following categories:
finance: 0.2889593541622162
health: 0.11753179132938385
science: 0.021202782168984413
Document 'health' falls into the following categories:
finance: 0.059537000954151154
health: 0.27373185753822327
science: 0.07699354737997055

In each instance, our documents were classified properly, as demonstrated by the higher
percentage assigned to the correct label category. This classification can be used in
conjunction with other data analysis techniques to draw additional conclusions about the
data contained in the files. Often text classification is an initial or early step in a data
analysis process as documents are classified into groups for further analysis.

Classifying text by similarity
In this next example, we will match different text samples based on their structure and
similarity. We will still be using the ParagraphVectors class we used in the previous
example. To begin, download the raw_sentences.txt file from GitHub
(https://github.com/deeplearning4j/dl4j-examples/tree/master/dl4j-examples/src/
main/resources) and add it to your project. This file contains a list of sentences which we
will read in, label, and then compare.

First, we set up our ClassPathResource and assign an iterator to handle our file data. We
have used a SentenceIterator for this example:

ClassPathResource srcFile = new
      ClassPathResource("/raw_sentences.txt");
File file = srcFile.getFile();
SentenceIterator iter = new BasicLineIterator(file);

https://github.com/deeplearning4j/dl4j-examples/tree/master/dl4j-examples/src/main/resources
https://github.com/deeplearning4j/dl4j-examples/tree/master/dl4j-examples/src/main/resources


Text Analysis

[ 264 ]

Next, we will again use TokenizerFactory to tokenize our data. We also want to create a
new LabelsSource object. This allows us to define the format of our sentence labels. We
have chosen to prefix each line with LINE_:

TokenizerFactory tFact = new DefaultTokenizerFactory();
tFact.setTokenPreProcessor(new CommonPreprocessor());
LabelsSource labelFormat = new LabelsSource("LINE_");

Now we are ready to build our ParagraphVectors. Our setup process includes these
methods: minWordFrequency, which specifies the minimum word frequency to use in the
training corpus, and iterations, which specifies the number of iterations for each mini
batch. We also set the number of epochs, the layer size, and the learning rate. Additionally,
we include our LabelsSource, defined before, and our iterator and tokenizer. The
trainWordVectors method specifies whether word and document representations should
be built together. Finally, sampling determines whether subsampling should occur or not.
We then call our build and fit methods:

ParagraphVectors vec = new ParagraphVectors.Builder()
        .minWordFrequency(1)
        .iterations(5)
        .epochs(1)
        .layerSize(100)
        .learningRate(0.025)
        .labelsSource(labelFormat)
        .windowSize(5)
        .iterate(iter)
        .trainWordVectors(false)
        .tokenizerFactory(tFact)
        .sampling(0)
        .build();

vec.fit();

Next, we will include some statements to evaluate the accuracy of our classifications. It is
important to note that while the document itself starts at 1, the indexing process begins at 0.
So, for example, line 9836 in the document will be associated with the label LINE_9835. We
will first compare three sentences that should be classified as somewhat similar, and then
two examples comparing dissimilar sentences. The similarity method takes two labels
and returns the relative distance between them in the form of double:

double similar1 = vec.similarity("LINE_9835", "LINE_12492");
out.println("Comparing lines 9836 & 12493
       ('This is my house .'/'This is my world .')
       Similarity = " + similar1);



Text Analysis

[ 265 ]

double similar2 = vec.similarity("LINE_3720", "LINE_16392");
out.println("Comparing lines 3721 & 16393
       ('This is my way .'/'This is my work .')
       Similarity = " + similar2);

double similar3 = vec.similarity("LINE_6347", "LINE_3720");
out.println("Comparing lines 6348 & 3721
       ('This is my case .'/'This is my way .')
       Similarity = " + similar3);

double dissimilar1 = vec.similarity("LINE_3720", "LINE_9852");
out.println("Comparing lines 3721 & 9853
       ('This is my way .'/'We now have one .')
       Similarity = " + dissimilar1);

double dissimilar2 = vec.similarity("LINE_3720", "LINE_3719");
out.println("Comparing lines 3721 & 3720
       ('This is my way .'/'At first he says no .')
       Similarity = " + dissimilar2);

The output of our print statements is shown as follows. Compare the result of the
similarity method for the three similar sentences and the two dissimilar sentences. Of
particular note, the similarity method result for the last example, two very dissimilar
sentences, returned a negative number. This implies a more significant disparity:

16:56:15.423 [main] INFO o.d.m.s.SequenceVectors - Epoch: [1]; Words
vectorized so far: [3171540]; Lines vectorized so far: [485810];
learningRate: [1.0E-4]
Comparing lines 9836 & 12493 ('This is my house .'/'This is my world .')
Similarity = 0.7641470432281494
Comparing lines 3721 & 16393 ('This is my way .'/'This is my work .')
Similarity = 0.7246013879776001
Comparing lines 6348 & 3721 ('This is my case .'/'This is my way .')
Similarity = 0.8988922834396362
Comparing lines 3721 & 9853 ('This is my way .'/'We now have one .')
Similarity = 0.5840312242507935
Comparing lines 3721 & 3720 ('This is my way .'/'At first he says no .')
Similarity = -0.6491150259971619

Although this example uses ParagraphVectors like our first classification example, this
demonstrates flexibility in our approach. We can use these DL4J libraries to classify data in
more than one manner.



Text Analysis

[ 266 ]

Understanding tagging and POS
POS is concerned with identifying the types of components found in a sentence. For
example, this sentence has several elements, including the verb "has", several nouns such as
"example" and "elements", and adjectives such as "several". Tagging, or more specifically
POS tagging, is the process of associating element types to words.

POS tagging is useful as it adds more information about the sentence. We can ascertain the
relationship between words and often their relative importance. The results of tagging are
often used in later processing steps.

This task can be difficult as we are unable to rely upon a simple dictionary of words to
determine their type. For example, the word lead can be used as both a noun and as a verb.
We might use it in either of the following two sentences:

He took the lead in the play.
Lead the way!

POS tagging will attempt to associate the proper label to each word of a sentence.

Using OpenNLP to identify POS
To illustrate this process, we will be using OpenNLP (https://opennlp.apache.org/). This
is an open source Apache project which supports many other NLP processing tasks.

We will be using the POSModel class, which can be trained to recognize POS elements. In
this example, we will use it with a previously trained model based on the Penn TreeBank
tag-set (http://www.comp.leeds.ac.uk/ccalas/tagsets/upenn.html). Various pretrained
models are found at http://opennlp.sourceforge.net/models-1.5/. We will be using the
en-pos-maxent.bin model. This has been trained on English text using what is called
maximum entropy.

Maximum entropy refers to the amount of uncertainty in the model which it maximizes. For
a given problem there is a set of probabilities describing what is known about the data set.
These probabilities are used to build a model. For example, we may know that there is a 23
percent chance that one specific event may follow a certain condition. We do not want to
make any assumptions about unknown probabilities so we avoid adding unjustified
information. A maximum entropy approach attempts to preserve as much uncertainty as
possible; hence it attempts to maximize entropy.

https://opennlp.apache.org/
http://www.comp.leeds.ac.uk/ccalas/tagsets/upenn.html
http://opennlp.sourceforge.net/models-1.5/


Text Analysis

[ 267 ]

We will also use the POSTaggerME class, which is a maximum entropy tagger. This is the
class that will make tag predictions. With any sentence, there may be more than one way of
classifying, or tagging, its components.

We start with code to acquire the previously trained English tagger model and a simple
sentence to be tagged:

try (InputStream input = new FileInputStream(
        new File("en-pos-maxent.bin"));) {
    String sentence = "Let's parse this sentence.";
    ...
} catch (IOException ex) {
    // Handle exceptions
}

The tagger uses an array of strings, where each string is a word. The following sequence
takes the previous sentence and creates an array called words. The first part uses the
Scanner class to parse the sentence string. We could have used other code to read the data
from a file if needed. After that, the List class's toArray method is used to create the array
of strings:

List<String> list = new ArrayList<>();
Scanner scanner = new Scanner(sentence);
while(scanner.hasNext()) {
    list.add(scanner.next());
}
String[] words = new String[1];
words = list.toArray(words);

The model is then built using the file containing the model:

POSModel posModel = new POSModel(input);

The tagger is then created based on the model:

POSTaggerME posTagger = new POSTaggerME(posModel);

The tag method does the actual work. It is passed an array of words and returns an array of
tags. The words and tags are then displayed:

String[] posTags = posTagger.tag(words);
for(int i=0; i<posTags.length; i++) {
    out.println(words[i] + " - " + posTags[i]);
}



Text Analysis

[ 268 ]

The output for this example follows:

Let's - NNP
parse - NN
this - DT
sentence. - NN

The analysis has determined that the word let's is a singular proper noun while the
words parse and sentence are singular nouns. The word this is a determiner, that is, it is
a word that modifies another and helps identify a phrase as general or specific. A list of tags
is provided in the next section.

Understanding POS tags
The POS elements returned abbreviations. A list of Penn TreeBankPOS tags can be found
at https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html.
The following is a shortened version of this list:

Tag Description Tag Description

DT Determiner RB Adverb

JJ Adjective RBR Adverb, comparative

JJR Adjective, comparative RBS Adverb, superlative

JJS Adjective, superlative RP Particle

NN Noun, singular or mass SYM Symbol

NNS Noun, plural TOP Top of the parse tree

NNP Proper noun, singular VB Verb, base form

NNPS Proper noun, plural VBD Verb, past tense

POS Possessive ending VBG Verb, gerund or present participle

PRP Personal pronoun VBN Verb, past participle

PRP$ Possessive pronoun VBP Verb, non-3rd person singular present

S Simple declarative clause VBZ Verb, 3rd person singular present

https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html


Text Analysis

[ 269 ]

As mentioned earlier, there may be more than one possible set of POS assignments for a
sentence. The topKSequences method, as shown next, will return various assignment
possibilities along with a score. The method returns an array of Sequence objects whose
toString method returns the score and POS list:

    Sequence sequences[] = posTagger.topKSequences(words);
    for(Sequence sequence : sequences) {
        out.println(sequence);
    }

The output for the previous sentence follows, where the last sequence is considered to be
the most probable alternative:

-2.3264880694837213 [NNP, NN, DT, NN]
-2.6610271245387853 [NNP, VBD, DT, NN]
-2.6630142638557217 [NNP, VB, DT, NN]

Each line of output assigns possible tags to each word of the sentence. We can see that only
the second word, parse, is determined to have other possible tags.

Next, we will demonstrate how to extract relationships from text.

Extracting relationships from sentences
Knowing the relationship between elements of a sentence is important in many analysis
tasks. It is useful for assessing the important content of a sentence and providing insight
into the meaning of a sentence. This type of analysis has been used for tasks ranging from
grammar checking to speech recognition to language translations.

In the previous section, we demonstrated one approach used to extract the parts of speech.
Using this technique, we were able to identify the sentence element types present in a
sentence. However, the relationships between these elements is missing. We need to parse
the sentence to extract these relationships between sentence elements.



Text Analysis

[ 270 ]

Using OpenNLP to extract relationships
There are several techniques and APIs that can be used to extract this type of information.
In this section we will use OpenNLP to demonstrate one way of extracting the structure of a
sentence. The demonstration is centered around the ParserTool class, which uses a
previously trained model. The parsing process will return the probabilities that the
sentence's elements extracted are correct. As will many NLP tasks, there are often multiple
answers possible.

We start with a try-with-resource block to open an input stream for the model. The en-
parser-chunking.bin file contains a model that uses parses text into its POS. In this case,
it is trained for English:

try (InputStream modelInputStream = new FileInputStream(
            new File("en-parser-chunking.bin"));) {
    ...
} catch (Exception ex) {
    // Handle exceptions
}

Within the try block an instance of the ParserModel class is created using the input stream.
The actual parser is created next using the ParserFactory class's create method:

ParserModel parserModel = new ParserModel(modelInputStream);
Parser parser = ParserFactory.create(parserModel);

We will use the following sentence to test the parser. The ParserTool class's parseLine
method does the actual parsing and returns an array of Parse objects. Each of these objects
holds one parsing alternative. The last argument of the parseLine method specifies how
many alternatives to return:

String sentence = "Let's parse this sentence.";
Parse[] parseTrees = ParserTool.parseLine(sentence, parser, 3);

The next sequence displays each of the possibilities:

for(Parse tree : parseTrees) {
    tree.show();
}



Text Analysis

[ 271 ]

The output of the show method for this example follows. The tags were previously defined
in Understanding POS tags section:

(TOP (NP (NP (NNP Let's) (NN parse)) (NP (DT this) (NN sentence.))))
(TOP (S (NP (NNP Let's)) (VP (VB parse) (NP (DT this) (NN sentence.)))))
(TOP (S (NP (NNP Let's)) (VP (VBD parse) (NP (DT this) (NN sentence.)))))

The following example reformats the last two outputs to better show the relationships. They
differ in how they classify the verb parse:

(TOP
(S
(NP (NNP Let's))
(VP (VB parse)
(NP (DT this) (NN sentence.))
)
)
)
(TOP
(S
(NP (NNP Let's))
(VP (VBD parse)
(NP (DT this) (NN sentence.))
)
)
)

When there are multiple parse alternatives, the Parse class's getProb returns a probability
that reflects the model's confidence in the alternatives. The following sequence
demonstrates this method:

for(Parse tree : parseTrees) {
    out.println("Probability: " + tree.getProb());
}

The output follows:

Probability: -3.6810244423259078
Probability: -3.742475884515823
Probability: -4.16148634555491

Another interesting NLP task is sentiment analysis, which we will demonstrate next.



Text Analysis

[ 272 ]

Sentiment analysis
Sentiment analysis involves the evaluation and classification of words based on their
context, meaning, and emotional implications. Typically, if we were to look up a word in a
dictionary we will find a meaning or definition for the word but, taken out of the context of
a sentence, we may not be able to ascribe detailed and precise meaning to the word.

For example, the word toast could be defined as simply a slice of heated and browned
bread. But in the context of the sentence He's toast!, the meaning changes completely.
Sentiment analysis seeks to derive meanings of words based on their context and usage.

It is important to note that advanced sentiment analysis will expand beyond simple positive
or negative classification and ascribe detailed emotional meaning to words. It is far simpler
to classify words as positive or negative but far more useful to classify them as happy,
furious, indifferent, or anxious.

This type of analysis falls into the category of effective computing, a type of computing
interested in the emotional implications and uses of technological tools. This type of
computing is especially significant given the growing amount of emotionally influenced
data readily available for analysis on social media sites today.

Being able to determine the emotional content of text enables a more targeted, and
appropriate response. For example, being able to judge the emotional response in a chat
session between a customer and technical representative can allow the representative to do
a better job. This can be especially important when there is a cultural or language gap
between them.

This type of analysis can also be applied to visual images. It could be used to gauge
someone's response to a new product, such as when conducting a taste test, or to judge how
people react to scenes of s movie or commercial.

As part of our example we will be using a bag-of-words model. Bag-of-words models
simplify word representation for natural language processing by containing a set, known as
the bag, of words irrespective of grammar or word order. The words have features used for
classification, most importantly the frequency of each word. Because some words such as
the, a, or and will naturally have a higher frequency in any text, the words are given a
weight as well. Common words with less contextual significance will have a smaller weight
and factor less into the text analysis.



Text Analysis

[ 273 ]

Downloading and extracting the Word2Vec model
To demonstrate sentiment analysis, we will use Google's Word2Vec models in conjunction
with DL4J to simply classify movie reviews as either positive or negative based upon the
words used in the review. This example is adapted from work done by Alex Black
(https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/
main/java/org/deeplearning4j/examples/recurrent/word2vecsentiment/Word2VecSenti

mentRNN.java). As discussed previously in this chapter, Word2Vec consists of two-layer
neural networks trained to build meaning from the context of words. We will also be using
a large set of movie reviews from http://ai.stanford.edu/~amaas/data/sentiment/.

Before we begin, you will need to download the Word2Vec data from
https://code.google.com/p/word2vec/. The basic process includes:

Downloading and extracting the movie reviews
Loading the Word2Vec Google News vectors
Loading each movie review

The words within the reviews are then broken into vectors and used to train the network.
We will train the network across five epochs and evaluate the network's performance after
each epoch.

To begin, we first declare three final variables. The first is the URL to retrieve the training
data, the second is the location to store our extracted data, and the third is the location of
the Google News vectors on the local machine. Modify this third variable to reflect the
location on your local machine:

public static final String TRAINING_DATA_URL =
    "h t t p ://a i . s t a n f o r d . e d u /~a m a a s /" +
    "data/sentiment/aclImdb_v1.tar.gz";
public static final String EXTRACT_DATA_PATH =
    FilenameUtils.concat(System.getProperty(
    "java.io.tmpdir"), "dl4j_w2vSentiment/");
public static final String GNEWS_VECTORS_PATH =
    "C:/YOUR_PATH/GoogleNews-vectors-negative300.bin" +
    "/GoogleNews-vectors-negative300.bin";

https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/recurrent/word2vecsentiment/Word2VecSentimentRNN.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/recurrent/word2vecsentiment/Word2VecSentimentRNN.java
https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/recurrent/word2vecsentiment/Word2VecSentimentRNN.java
http://ai.stanford.edu/~amaas/data/sentiment/
https://code.google.com/p/word2vec/
http://ai.stanford.edu/~amaas/
http://ai.stanford.edu/~amaas/
http://ai.stanford.edu/~amaas/
http://ai.stanford.edu/~amaas/
http://ai.stanford.edu/~amaas/
http://ai.stanford.edu/~amaas/
http://ai.stanford.edu/~amaas/
http://ai.stanford.edu/~amaas/
http://ai.stanford.edu/~amaas/
http://ai.stanford.edu/~amaas/
http://ai.stanford.edu/~amaas/
http://ai.stanford.edu/~amaas/
http://ai.stanford.edu/~amaas/
http://ai.stanford.edu/~amaas/
http://ai.stanford.edu/~amaas/
http://ai.stanford.edu/~amaas/
http://ai.stanford.edu/~amaas/
http://ai.stanford.edu/~amaas/
http://ai.stanford.edu/~amaas/
http://ai.stanford.edu/~amaas/
http://ai.stanford.edu/~amaas/
http://ai.stanford.edu/~amaas/
http://ai.stanford.edu/~amaas/
http://ai.stanford.edu/~amaas/
http://ai.stanford.edu/~amaas/
http://ai.stanford.edu/~amaas/
http://ai.stanford.edu/~amaas/
http://ai.stanford.edu/~amaas/
http://ai.stanford.edu/~amaas/
http://ai.stanford.edu/~amaas/
http://ai.stanford.edu/~amaas/
http://ai.stanford.edu/~amaas/
http://ai.stanford.edu/~amaas/
http://ai.stanford.edu/~amaas/
http://ai.stanford.edu/~amaas/
http://ai.stanford.edu/~amaas/
http://ai.stanford.edu/~amaas/
http://ai.stanford.edu/~amaas/
http://ai.stanford.edu/~amaas/
http://ai.stanford.edu/~amaas/
http://ai.stanford.edu/~amaas/
http://ai.stanford.edu/~amaas/
http://ai.stanford.edu/~amaas/
http://ai.stanford.edu/~amaas/
http://ai.stanford.edu/~amaas/
http://ai.stanford.edu/~amaas/
http://ai.stanford.edu/~amaas/
http://ai.stanford.edu/~amaas/
http://ai.stanford.edu/~amaas/


Text Analysis

[ 274 ]

Next we download and extract our model data. The next two methods are modelled after
the code found in the DL4J example. We first create a new method, getModelData. The
method is shown next in its entirety.

First we create a new File using the EXTRACT_DATA_PATH we defined previously. If the
file does not already exist, we create a new directory. Next, we create two more File
objects, one for the path to the archived TAR file and one for the path to the extracted data.
Before we attempt to extract the data, we check whether these two files exist. If the archive
path does not exist, we download the data from the TRAINING_DATA_URL and then extract
the data. If the extracted file does not exist, we then extract the data:

private static void getModelData() throws Exception {
    File modelDir = new File(EXTRACT_DATA_PATH);
    if (!modelDir.exists()) {
        modelDir.mkdir();
    }
    String archivePath = EXTRACT_DATA_PATH + "aclImdb_v1.tar.gz";
    File archiveName = new File(archivePath);
    String extractPath = EXTRACT_DATA_PATH + "aclImdb";
    File extractName = new File(extractPath);
    if (!archiveName.exists()) {
        FileUtils.copyURLToFile(new URL(TRAINING_DATA_URL),
                archiveName);
        extractTar(archivePath, EXTRACT_DATA_PATH);
    } else if (!extractName.exists()) {
        extractTar(archivePath, EXTRACT_DATA_PATH);
    }
}

To extract our data, we will create another method called extractTar. We will provide
two inputs to the method, the archivePath and the EXTRACT_DATA_PATH defined before.
We also need to define our buffer size to use in the extraction process:

private static final int BUFFER_SIZE = 4096;

We first create a new TarArchiveInputStream. We use the
GzipCompressorInputStream because it provides support for extracting .gz files. We
also use the BufferedInputStream to improve performance in our extraction process. The
compressed file is very large and may take some time to download and extract.



Text Analysis

[ 275 ]

Next we create a TarArchiveEntry and begin reading in data using the
TarArchiveInputStreamgetNextEntry method. As we process entry in the compressed
file, we first check whether the entry is a directory. If it is, we create a new directory in our
extraction location. Finally we create a new FileOutputStream and
BufferedOutputStream and use the write method to write our data in the extracted
location:

private static void extractTar(String dataIn, String dataOut)
    throws IOException {
        try (TarArchiveInputStream inStream =
            new TarArchiveInputStream(
                new GzipCompressorInputStream(
                    new BufferedInputStream(
                        new FileInputStream(dataIn))))) {
            TarArchiveEntry tarFile;
            while ((tarFile = (TarArchiveEntry) inStream.getNextEntry())
                != null) {
                if (tarFile.isDirectory()) {
                    new File(dataOut + tarFile.getName()).mkdirs();
                }else {
                    int count;
                    byte data[] = new byte[BUFFER_SIZE];
                    FileOutputStream fileInStream =
                      new FileOutputStream(dataOut + tarFile.getName());
                    BufferedOutputStream outStream =
                      new BufferedOutputStream(fileInStream,
                        BUFFER_SIZE);
                    while ((count = inStream.read(data, 0, BUFFER_SIZE))
                        != -1) {
                            outStream.write(data, 0, count);
                    }
                }
            }
        }
    }



Text Analysis

[ 276 ]

Building our model and classifying text
Now that we have created methods to download and extract our data, we need to declare
and initialize variables used to control the execution of our model. Our batchSize refers to
the amount of words we process in each example, in this case 50. Our vectorSize
determines the size of the vectors. The Google News model has word vectors of size 300.
nEpochs refers to the number of times we attempt to run through our training data. Finally,
truncateReviewsToLength specifies whether, for memory utilization purposes, we
should truncate the movie reviews if they exceed a specific length. We have chosen to
truncate reviews longer than 300 words:

int batchSize = 50;
int vectorSize = 300;
int nEpochs = 5;
int truncateReviewsToLength = 300;

Now we can set up our neural network. We will use a MultiLayerConfiguration
network, as discussed in Chapter 8, Deep Learning. In fact, our example here is very similar
to the model built in configuring and building a model, with a few differences. In particular,
in this model we will use a faster learning rate and a GravesLSTM recurrent network in
layer 0. We will have the same number of input neurons as we have words in our vector, in
this case, 300. We also use gradientNormalization, a technique used to help our
algorithm find the optimal solution. Notice we are using the softmax activation function,
which was discussed in Chapter 8, Deep Learning. This function uses regression and is
especially suited for classification algorithms:

MultiLayerConfiguration sentimentNN =
         new NeuralNetConfiguration.Builder()
        .optimizationAlgo(OptimizationAlgorithm
                 .STOCHASTIC_GRADIENT_DESCENT).iterations(1)
        .updater(Updater.RMSPROP)
        .regularization(true).l2(1e-5)
        .weightInit(WeightInit.XAVIER)
        .gradientNormalization(GradientNormalization
                 .ClipElementWiseAbsoluteValue)
                 .gradientNormalizationThreshold(1.0)
        .learningRate(0.0018)
        .list()
        .layer(0, new GravesLSTM.Builder()
                 .nIn(vectorSize).nOut(200)
                .activation("softsign").build())
        .layer(1, new RnnOutputLayer.Builder()
                .activation("softmax")
                .lossFunction(LossFunctions.LossFunction.MCXENT)
                .nIn(200).nOut(2).build())



Text Analysis

[ 277 ]

        .pretrain(false).backprop(true).build();

We can then create our MultiLayerNetwork, initialize the network, and set listeners.

MultiLayerNetwork net = new MultiLayerNetwork(sentimentNN);
net.init();
net.setListeners(new ScoreIterationListener(1));

Next we create a WordVectors object to load our Google data. We use a DataSetIterator
to test and train our data. The AsyncDataSetIterator allows us to load our data in a
separate thread, to improve performance. This process requires a large amount of memory
and so improvements such as this are essential for optimal performance:

WordVectors wordVectors = WordVectorSerializer
DataSetIterator trainData = new AsyncDataSetIterator(
    new SentimentExampleIterator(EXTRACT_DATA_PATH, wordVectors,
        batchSize, truncateReviewsToLength, true), 1);
DataSetIterator testData = new AsyncDataSetIterator(
    new SentimentExampleIterator(EXTRACT_DATA_PATH, wordVectors,
        100, truncateReviewsToLength, false), 1);

Finally, we are ready to train and evaluate our data. We run through our data nEpochs
times; in this case, we have five iterations. Each iteration executes the fit method against
our training data and then creates a new Evaluation object to evaluate our model using
testData. The evaluation is based on around 25,000 movie reviews and can take a
significant amount to time to run. As we evaluate the data, we create INDArray to store
information, including the feature matrix and labels from our data. This data is used later in
the evalTimeSeries method for evaluation. Finally, we print out our evaluation statistics:

for (int i = 0; i < nEpochs; i++) {
    net.fit(trainData);
    trainData.reset();

    Evaluation evaluation = new Evaluation();
    while (testData.hasNext()) {
        DataSet t = testData.next();
        INDArray dataFeatures = t.getFeatureMatrix();
        INDArray dataLabels = t.getLabels();
        INDArray inMask = t.getFeaturesMaskArray();
        INDArray outMask = t.getLabelsMaskArray();
        INDArray predicted = net.output(dataFeatures, false,
            inMask, outMask);

        evaluation.evalTimeSeries(dataLabels, predicted, outMask);
    }
    testData.reset();



Text Analysis

[ 278 ]

    out.println(evaluation.stats());
}

The output from the final iteration is shown next. Our examples classified as 0 are
considered negative reviews and the ones classified as 1 are considered positive reviews:

Epoch 4 complete. Starting evaluation:
Examples labeled as 0 classified by model as 0: 11122 times
Examples labeled as 0 classified by model as 1: 1378 times
Examples labeled as 1 classified by model as 0: 3193 times
Examples labeled as 1 classified by model as 1: 9307 times
==========================Scores===================================Accuracy
: 0.8172
Precision: 0.824
Recall: 0.8172
F1 Score: 0.8206
===================================================================

If compared with previous iterations, you should notice the score and accuracy improving
with each evaluation. With each iteration, our model improves its accuracy in classifying
movie reviews as either negative or positive.

Summary
In this chapter, we introduced a number of NLP tasks and showed how they are supported.
In particular, we used OpenNLP and DL4J to illustrate how they are performed. While
there are a number of other libraries available, these examples provide a good introduction
to the techniques.

We started with an introduction to basic NLP terms and concepts such as named entity
recognition, POS, and relationships between elements of a sentence. Named entity
recognition is concerned with finding and labeling the parts of a sentence such as people,
locations, and things. POS associates labels with elements of a sentence. For example, NN
refers to a noun and VB to a verb.



Text Analysis

[ 279 ]

We then included a discussion of the Word2Vec and Doc2Vec neural networks. These were
used to classify text, both with labels and by similarity with other words. We demonstrated
the use of DL4J resources to create feature vectors for document association with labels.

While the identification of these associations is interesting, a more useful analysis is
performed when relationships are extracted from a sentence. We demonstrated how
relationships are found using OpenNLP. The POS are associated with each word and the
relationships between the words are shown using a set of tags and parentheses. This type of
analysis can be used for more sophisticated analyses such as language translation and
grammar checking.

Finally, we discussed and showed examples of sentiment analysis. This process involves
classifying text based on its tone or contextual meaning. We examined a process for
classifying movie reviews as positive or negative.

In this chapter, we demonstrated various techniques for text analysis and classification. In
our next chapter, we will examine techniques designed for video and audio analysis.



10
Visual and Audio Analysis

The use of sound, images, and videos is becoming a more important aspect of our day-to-
day lives. Phone conversations and devices reliant on voice commands are increasingly
common. People regularly conduct video chats with other people around the world. There
has been a rapid proliferation of photo and video sharing sites. Applications that utilize
images, video, and sound from a variety of sources are becoming more common.

In this chapter, we will demonstrate several techniques available to Java to process sounds
and images. The first part of the chapter addresses sound processing. Both speech
recognition and Text-To-Speech (TTS) APIs will be demonstrated. Specifically, we will use
the FreeTTS (http://freetts.sourceforge.net/docs/index.php) API to convert text to
speech, followed with a demonstration of the CMU Sphinx toolkit for speech recognition.

The Java Speech API (JSAPI)
(http://www.oracle.com/technetwork/java/index-140170.html) provides access to
speech technology. It is not part of the standard JDK but is supported by third-party
vendors. Its intent is to support speech recognition and speech synthesizers. There are
several vendors that support JSAPI, including FreeTTS and Festival
(http://www.cstr.ed.ac.uk/projects/festival/).

In addition, there are several cloud-based speech APIs, including IBM's support through
Watson Cloud speech-to-text capabilities.

Next, we will examine image processing techniques, including facial recognition. This
involves identifying faces within an image. This technique is easy to accomplish using
OpenCV (http://opencv.org/) which we will demonstrate in the Identifying faces section.

We will end the chapter with a discussion of Neuroph Studio, a neural network Java-based
editor, to classify images and perform image recognition. We will continue to use faces here
and attempt to train a network to recognize images of human faces.

http://freetts.sourceforge.net/docs/index.php
http://www.oracle.com/technetwork/java/index-140170.html
http://www.cstr.ed.ac.uk/projects/festival/
http://opencv.org/


Visual and Audio Analysis

[ 281 ]

Text-to-speech
Speech synthesis generates human speech. TTS converts text to speech and is useful for a
number of different applications. It is used in many places, including phone help desk
systems and ordering systems. The TTS process typically consists of two parts. The first part
tokenizes and otherwise processes the text into speech units. The second part converts these
units into speech.

The two primary approaches for TTS uses concatenation synthesis and formant synthesis.
Concatenation synthesis frequently combines prerecorded human speech to create the
desired output. Formant synthesis does not use human speech but generates speech by
creating electronic waveforms.

We will be using FreeTTS (http://freetts.sourceforge.net/docs/index.php) to
demonstrate TTS. The latest version can be downloaded from
https://sourceforge.net/projects/freetts/files/. This approach uses concatenation to
generate speech.

There are several important terms used in TTS/FreeTTS:

Utterance - This concept corresponds roughly to the vocal sounds that make up a
word or phrase
Items - Sets of features (name/value pairs) that represent parts of an utterance
Relationship - A list of items, used by FreeTTS to iterate back and forward
through an utterance
Phone - A distinct sound
Diphone - A pair of adjacent phones

http://freetts.sourceforge.net/docs/index.php
https://sourceforge.net/projects/freetts/files/


Visual and Audio Analysis

[ 282 ]

The FreeTTS Programmer's Guide
(http://freetts.sourceforge.net/docs/ProgrammerGuide.html) details the process of
converting text to speech. This is a multi-step process whose major steps include the
following:

Tokenization - Extracting the tokens from the text
TokenToWords - Converting certain words, such as 1910 to nineteen ten
PartOfSpeechTagger - This step currently does nothing, but is intended to
identify the parts of speech
Phraser - Creates a phrase relationship for the utterance
Segmenter - Determines where syllable breaks occur
PauseGenerator - This step inserts pauses within speech, such as before
utterances
Intonator - Determines the accents and tones
PostLexicalAnalyzer - This step fixes problems such as a mismatch between the
available diphones and the one that needs to be spoken
Durator - Determines the duration of the syllables
ContourGenerator - Calculates the fundamental frequency curve for an
utterance, which maps the frequency against time and contributes to the
generation of tones
UnitSelector - Groups related diphones into a unit
PitchMarkGenerator - Determines the pitches for an utterance
UnitConcatenator - Concatenates the diphone data together

http://freetts.sourceforge.net/docs/ProgrammerGuide.html


Visual and Audio Analysis

[ 283 ]

The following figure is from the FreeTTS Programmer's Guide, Figure 11: The Utterance after
UnitConcatenator processing, and depicts the process. This high-level overview of the TTS
process provides a hint at the complexity of the process:

Using FreeTTS
TTS system facilitates the use of different voices. For example, these differences may be in
the language, the sex of the speaker, or the age of the speaker.



Visual and Audio Analysis

[ 284 ]

The MBROLA Project's (http://tcts.fpms.ac.be/synthesis/mbrola.html) objective is to 
support voice synthesizers for as many languages as possible. MBROLA is a speech
synthesizer that can be used with a TTS system such as FreeTTS to support TTS synthesis.

Download MBROLA for the appropriate platform binary from
http://tcts.fpms.ac.be/synthesis/mbrola.html. From the same page, download any
desired MBROLA voices found at the bottom of the page. For our examples we will use
usa1, usa2, and usa3. Further details about the setup are found at
http://freetts.sourceforge.net/mbrola/README.html.

The following statement illustrates the code needed to access the MBROLA voices. The
setProperty method assigns the path where the MBROLA resources are found:

System.setProperty("mbrola.base", "path-to-mbrola-directory");

To demonstrate how to use TTS, we use the following statement. We obtain an instance of
the VoiceManager class, which will provide access to various voices:

VoiceManager voiceManager = VoiceManager.getInstance();

To use a specific voice the getVoice method is passed the name of the voice and returns an
instance of the Voice class. In this example, we used mbrola_us1, which is a US English,
young, female voice:

Voice voice = voiceManager.getVoice("mbrola_us1");

Once we have obtained the Voice instance, use the allocate method to load the voice.
The speak method is then used to synthesize the words passed to the method as a string, as
illustrated here:

voice.allocate();
voice.speak("Hello World");

When executed, the words "Hello World" should be heard. Try this with other voices, as
described in the next section, and text to see which combination is best suited for an
application.

http://tcts.fpms.ac.be/synthesis/mbrola.html
http://tcts.fpms.ac.be/synthesis/mbrola.html
http://freetts.sourceforge.net/mbrola/README.html


Visual and Audio Analysis

[ 285 ]

Getting information about voices
The VoiceManager class' getVoices method is used to obtain an array of the voices
currently available. This can be useful to provide users with a list of voices to choose from.
We will use the method here to illustrate some of the voices available. In the next code
sequence, the method returns the array, whose elements are then displayed:

Voice[] voices = voiceManager.getVoices();
for (Voice v : voices) {
    out.println(v);
}

The output will be similar to the following:

CMUClusterUnitVoice
CMUDiphoneVoice
CMUDiphoneVoice
MbrolaVoice
MbrolaVoice
MbrolaVoice

The getVoiceInfo method provides potentially more useful information, though it is
somewhat verbose:

out.println(voiceManager.getVoiceInfo());

The first part of the output follows; the VoiceDirectory directory is displayed followed
by the details of the voice. Notice that the directory name contains the name of the voice.
The KevinVoiceDirectory contains two voices: kevin and kevin16:

VoiceDirectory
'com.sun.speech.freetts.en.us.cmu_time_awb.AlanVoiceDirectory'
Name: alan
Description: default time-domain cluster unit voice
Organization: cmu
Domain: time
Locale: en_US
Style: standard
Gender: MALE
Age: YOUNGER_ADULT
Pitch: 100.0
Pitch Range: 12.0
Pitch Shift: 1.0
Rate: 150.0
Volume: 1.0
VoiceDirectory
'com.sun.speech.freetts.en.us.cmu_us_kal.KevinVoiceDirectory'



Visual and Audio Analysis

[ 286 ]

Name: kevin
Description: default 8-bit diphone voice
Organization: cmu
Domain: general
Locale: en_US
Style: standard
Gender: MALE
Age: YOUNGER_ADULT
Pitch: 100.0
Pitch Range: 11.0
Pitch Shift: 1.0
Rate: 150.0
Volume: 1.0
Name: kevin16
Description: default 16-bit diphone voice
Organization: cmu
Domain: general
Locale: en_US
Style: standard
Gender: MALE
Age: YOUNGER_ADULT
Pitch: 100.0
Pitch Range: 11.0
Pitch Shift: 1.0
Rate: 150.0
Volume: 1.0
...
Using voices from a JAR file

Voices can be stored in JAR files. The VoiceDirectory class provides access to voices
stored in this manner. The voice directories available to FreeTTs are found in the lib
directory and include the following:

cmu_time_awb.jar

cmu_us_kal.jar

The name of a voice directory can be obtained from the command prompt:

java -jar fileName.jar

For example, execute the following command:

java -jar cmu_time_awb.jar



Visual and Audio Analysis

[ 287 ]

It generates the following output:

VoiceDirectory
'com.sun.speech.freetts.en.us.cmu_time_awb.AlanVoiceDirectory'
Name: alan
Description: default time-domain cluster unit voice
Organization: cmu
Domain: time
Locale: en_US
Style: standard
Gender: MALE
Age: YOUNGER_ADULT
Pitch: 100.0
Pitch Range: 12.0
Pitch Shift: 1.0
Rate: 150.0
Volume: 1.0

Gathering voice information
The Voice class provides a number of methods that permit the extraction or setting of
speech characteristics. As we demonstrated earlier, the VoiceManager class'
getVoiceInfo method provided information about the voices currently available.
However, we can use the Voice class to get information about a specific voice.

In the following example, we will display information about the voice kevin16. We start by
getting an instance of this voice using the getVoice method:

VoiceManager vm = VoiceManager.getInstance();
Voice voice = vm.getVoice("kevin16");
voice.allocate();

Next, we call a number of the Voice class' get method to obtain specific information about
the voice. This includes previous information provided by the getVoiceInfo method and
other information that is not otherwise available:

out.println("Name: " + voice.getName());
out.println("Description: " + voice.getDescription());
out.println("Organization: " + voice.getOrganization());
out.println("Age: " + voice.getAge());
out.println("Gender: " + voice.getGender());
out.println("Rate: " + voice.getRate());
out.println("Pitch: " + voice.getPitch());
out.println("Style: " + voice.getStyle());



Visual and Audio Analysis

[ 288 ]

The output of this example follows:

Name: kevin16
Description: default 16-bit diphone voice
Organization: cmu
Age: YOUNGER_ADULT
Gender: MALE
Rate: 150.0
Pitch: 100.0
Style: standard

These results are self-explanatory and give you an idea of the type of information available.
There are additional methods that give you access to details regarding the TTS process that
are not normally of interest. This includes information such as the audio player being used,
utterance-specific data, and features of a specific phone.

Having demonstrated how text can be converted to speech, we will now examine how we
can convert speech to text.

Understanding speech recognition
Converting speech to text is an important application feature. This ability is increasingly
being used in a wide variety of contexts. Voice input is used to control smart phones,
automatically handle input as part of help desk applications, and to assist people with
disabilities, to mention a few examples.

Speech consists of an audio stream that is complex. Sounds can be split into phones, which
are sound sequences that are similar. Pairs of these phones are called diphones. Utterances
consist of words and various types of pauses between them.

The essence of the conversion process involves splitting sounds by silences between
utterances. These utterances are then matched to the words that most closely sound like the
utterance. However, this can be difficult due to many factors. For example, these differences
may be in the form of variances in how words are pronounced due to the context of the
word, regional dialects, the quality of the sound, and other factors.

The matching process is quite involved and often uses multiple models. A model may be
used to match acoustic features with a sound. A phonetic model can be used to match
phones to words. Another model is used to restrict word searches to a given language.
These models are never entirely accurate and contribute to inaccuracies found in the
recognition process.

We will be using CMUSphinx 4 to illustrate this process.



Visual and Audio Analysis

[ 289 ]

Using CMUPhinx to convert speech to text
Audio processed by CMUSphinx must be in Pulse Code Modulation (PCM) format. PCM
is a technique that samples analog data, such as an analog wave representing speech, and
produces a digital version of the signal. FFmpeg (https://ffmpeg.org/) is a free tool that
can convert between audio formats if needed.

You will need to create sample audio files using the PCM format. These files should be
fairly short and can contain numbers or words. It is recommended that you run the
examples with different files to see how well the speech recognition works.

First, we set up the basic framework for the conversion by creating a try-catch block to
handle exceptions. First, create an instance of the Configuration class. It is used to
configure the recognizer to recognize standard English. The configuration models and
dictionary need to be changed to handle other languages:

try {
    Configuration configuration = new Configuration();
    String prefix = "resource:/edu/cmu/sphinx/models/en-us/";
    configuration
            .setAcousticModelPath(prefix + "en-us");
    configuration
            .setDictionaryPath(prefix + "cmudict-en-us.dict");
    configuration
            .setLanguageModelPath(prefix + "en-us.lm.bin");
    ...
} catch (IOException ex) {
    // Handle exceptions
}

The StreamSpeechRecognizer class is then created using configuration. This class
processes the speech based on an input stream. In the following code, we create an instance
of the StreamSpeechRecognizer class and an InputStream from the speech file:

StreamSpeechRecognizer recognizer = new StreamSpeechRecognizer(
        configuration);
InputStream stream = new FileInputStream(new File("filename"));

To start speech processing, the startRecognition method is invoked. The getResult
method returns a SpeechResult instance that holds the result of the processing. We then
use the SpeechResult method to get the best results. We stop the processing using the
stopRecognition method:

recognizer.startRecognition(stream);
SpeechResult result;

https://ffmpeg.org/


Visual and Audio Analysis

[ 290 ]

while ((result = recognizer.getResult()) != null) {
    out.println("Hypothesis: " + result.getHypothesis());
}
recognizer.stopRecognition();

When this is executed, we get the following, assuming the speech file contained this
sentence:

Hypothesis: mary had a little lamb

When speech is interpreted there may be more than one possible word sequence. We can
obtain the best ones using the getNbest method, whose argument specifies how many
possibilities should be returned. The following demonstrates this method:

Collection<String> results = result.getNbest(3);
for (String sentence : results) {
    out.println(sentence);
}

One possible output follows:

<s> mary had a little lamb </s>
<s> marry had a little lamb </s>
<s> mary had a a little lamb </s>

This gives us the basic results. However, we will probably want to do something with the
actual words. The technique for getting the words is explained next.

Obtaining more detail about the words
The individual words of the results can be extracted using the getWords method, as shown
next. The method returns a list of WordResult instance, each of which represents one word:

List<WordResult> words = result.getWords();
for (WordResult wordResult : words) {
    out.print(wordResult.getWord() + " ");
}

The output for this code sequence follows <sil> reflects a silence found at the beginning of
the speech:

<sil> mary had a little lamb

We can extract more information about the words using various methods of the
WordResult class. In this sequence that follows, we will return the confidence and time
frame associated with each word.



Visual and Audio Analysis

[ 291 ]

The getConfidence method returns the confidence expressed as a log. We use the
SpeechResult class' getResult method to get an instance of the Result class. Its
getLogMath method is then used to get a LogMath instance. The logToLinear method is
passed the confidence value and the value returned is a real number between 0 and 1.0
inclusive. More confidence is reflected by a larger value.

The getTimeFrame method returns a TimeFrame instance. Its toString method returns
two integer values, separated by a colon, reflecting the beginning and end times of the
word:

for (WordResult wordResult : words) {
    out.printf("%s\n\tConfidence: %.3f\n\tTime Frame: %s\n",
            wordResult.getWord(), result
                    .getResult()
                    .getLogMath()
                    .logToLinear((float)wordResult
                            .getConfidence()),
            wordResult.getTimeFrame());
}

One possible output follows:

<sil>
Confidence: 0.998
Time Frame: 0:430
mary
Confidence: 0.998
Time Frame: 440:900
had
Confidence: 0.998
Time Frame: 910:1200
a
Confidence: 0.998
Time Frame: 1210:1340
little
Confidence: 0.998
Time Frame: 1350:1680
lamb
Confidence: 0.997
Time Frame: 1690:2170

Now that we have examined how sound can be processed, we will turn our attention to
image processing.



Visual and Audio Analysis

[ 292 ]

Extracting text from an image
The process of extracting text from an image is called Optical Character Recognition
(OCR). This can be very useful when the text data that needs to be processed is embedded
in an image. For example, the information contained in license plates, road signs, and
directions can be very useful at times.

We can perform OCR using Tess4j (http://tess4j.sourceforge.net/), a Java JNA
wrapper for Tesseract OCR API. We will demonstrate how to use the API using an image
captured from the Wikipedia article on OCR
(https://en.wikipedia.org/wiki/Optical_character_recognition#Applications). The
Javadoc for the API is found at http://tess4j.sourceforge.net/docs/docs-3.0/. The
image we use is shown here:

Using Tess4j to extract text
The ITesseract interface contains numerous OCR methods. The doOCR method takes a
file and returns a string containing the words found in the file, as shown here:

ITesseract instance = new Tesseract();
try {
    String result = instance.doOCR(new File("OCRExample.png"));
    out.println(result);
} catch (TesseractException e) {
    // Handle exceptions
}

http://tess4j.sourceforge.net/
https://en.wikipedia.org/wiki/Optical_character_recognition
http://tess4j.sourceforge.net/docs/docs-3.0/


Visual and Audio Analysis

[ 293 ]

Part of the output is shown next:

OCR engines nave been developed into many lunds oiobiectorlented OCR
applicatlons, sucn as reoeipt OCR, involoe OCR, check OCR, legal billing
document OCR
They can be used ior
- Data entry ior business documents, e g check, passport, involoe, bank
statement and receipt
- Automatic number plate recognnlon

As you can see, there are numerous errors in this example. Often the quality of an image
needs to be improved before it can be processed correctly. Techniques for improving the
quality of the output can be found at
https://github.com/tesseract-ocr/tesseract/wiki/ImproveQuality. For example, we
can use the setLanguage method to specify the language processed. Also, the method
often works better on TIFF images.

In the next example, we used an enlarged portion of the previous image, as shown here:

The output is much better, as shown here:

OCR engines have been developed into many kinds of object-oriented OCR
applications, such as receipt OCR,
invoice OCR, check OCR, legal billing document OCR.
They can be used for:
. Data entry for business documents, e.g. check, passport, invoice, bank
statement and receipt
. Automatic number plate recognition

These examples highlight the need for the careful cleaning of data.

Identifying faces
Identifying faces within an image is useful in many situations. It can potentially classify an
image as one containing people or find people in an image for further processing. We will
use OpenCV 3.1 (http://opencv.org/opencv-3-1.html) for our examples.

https://github.com/tesseract-ocr/tesseract/wiki/ImproveQuality
http://opencv.org/opencv-3-1.html


Visual and Audio Analysis

[ 294 ]

OpenCV (h t t p ://o p e n c v . o r g /) is an open source computer vision library that supports
several programming languages, including Java. It supports a number of techniques,
including machine learning algorithms, to perform computer vision tasks. The library
supports such operations as face detection, tracking camera movements, extracting 3D
models, and removing red eye from images. In this section, we will demonstrate face
detection.

Using OpenCV to detect faces
The example that follows was adapted from
http://docs.opencv.org/trunk/d9/d52/tutorial_java_dev_intro.html. Start by loading
the native libraries added to your system when OpenCV was installed. On Windows, this
requires that appropriate DLL files are available:

System.loadLibrary(Core.NATIVE_LIBRARY_NAME);

We used a base string to specify the location of needed OpenCV files. Using an absolute
path works better with many methods:

String base = "PathToResources";

The CascadeClassifier class is used for object classification. In this case, we will use it
for face detection. An XML file is used to initialize the class. In the following code, we use
the lbpcascade_frontalface.xml file, which provides information to assist in the
identification of objects. In the OpenCV download are several files, as listed here, that can
be used for specific face recognition scenarios:

lbpcascade_frontalcatface.xml

lbpcascade_frontalface.xml

lbpcascade_frontalprofileface.xml

lbpcascade_silverware.xml

The following statement initializes the class to detect faces:

CascadeClassifier faceDetector =
        new CascadeClassifier(base +
            "/lbpcascade_frontalface.xml");

The image to be processed is loaded, as shown here:

Mat image = Imgcodecs.imread(base + "/images.jpg");

http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://docs.opencv.org/trunk/d9/d52/tutorial_java_dev_intro.html


Visual and Audio Analysis

[ 295 ]

For this example, we used the following image:

To find this image, perform a Google search using the term people. Select the Images
category and then filter for Labeled for reuse. The image has the label: Closeup portrait of
a group of business people laughing by LyndaSanchez.

When faces are detected, the location within the image is stored in a MatOfRect instance.
This class is intended to hold vectors and matrixes for any faces found:

MatOfRect faceVectors = new MatOfRect();

At this point, we are ready to detect faces. The detectMultiScale method performs this
task. The image and the MatOfRect instance to hold the locations of any images are passed
to the method:

faceDetector.detectMultiScale(image, faceVectors);

The next statement shows how many faces were detected:

out.println(faceVectors.toArray().length + " faces found");

We need to use this information to augment the image. This process will draw boxes
around each face found, as shown next. To do this, the Imgproc class' rectangle method
is used. The method is called once for each face detected. It is passed the image to be
modified and the points represented the boundaries of the face:

for (Rect rect : faceVectors.toArray()) {
    Imgproc.rectangle(image, new Point(rect.x, rect.y),
            new Point(rect.x + rect.width, rect.y + rect.height),
            new Scalar(0, 255, 0));
}



Visual and Audio Analysis

[ 296 ]

The last step writes this image to a file using the Imgcodecs class' imwrite method:

Imgcodecs.imwrite("faceDetection.png", image);

As shown in the following image, it was able to identify four images:

Using different configuration files will work better for other facial profiles.

Classifying visual data
In this section, we will demonstrate one technique for classifying visual data. We will use
Neuroph to accomplish this. Neuroph is a Java-based neural network framework that
supports a variety of neural network architectures. Its open source library provides support
and plugins for other applications. In this example, we will use its neural network editor,
Neuroph Studio, to create a network. This network can be saved and used in other
applications. Neuroph Studio is available for download here:
http://neuroph.sourceforge.net/download.html. We are building upon the process
shown here: http://neuroph.sourceforge.net/image_recognition.htm.

For our example, we will create a Multi Layer Perceptron (MLP) network. We will then
train our network to recognize images. We can both train and test our network using
Neuroph Studio. It is important to understand how MLP networks recognize and interpret
image data. Every image is basically represented by three two-dimensional arrays. Each
array contains information about the color components: one array contains information
about the color red, one about the color green, and one about the color blue. Every element
of the array holds information about one specific pixel in the image. These arrays are then
flattened into a one-dimensional array to be used as an input by the neural network.

http://neuroph.sourceforge.net/download.html
http://neuroph.sourceforge.net/image_recognition.htm


Visual and Audio Analysis

[ 297 ]

Creating a Neuroph Studio project for classifying
visual images
To begin, first create a new Neuroph Studio project:



Visual and Audio Analysis

[ 298 ]

We will name our project RecognizeFaces because we are going train the neural network
to recognize images of human faces:



Visual and Audio Analysis

[ 299 ]

Next, we create a new file in our project. There are many types of project to choose from,
but we will choose an Image Recognition type:



Visual and Audio Analysis

[ 300 ]

Click Next and then click Add directory. We have created a directory on our local machine
and added several different black and white images of faces to use for training. These can
be found by searching Google images or another search engine. The more quality images
you have to train with, theoretically, the better your network will be:



Visual and Audio Analysis

[ 301 ]

After you click Next, you will be directed to select an image to not recognize. You may need
to try different images based upon the images you want to recognize. The image you select
here will prevent false recognitions. We have chosen a simple blue square from another
directory on our local machine, but if you are using other types of image for training, other
color blocks may work better:



Visual and Audio Analysis

[ 302 ]

Next, we need to provide network training parameters. We also need to label our training
dataset and set our resolution. A height and width of 20 is a good place to start, but you
may want to change these values to improve your results. Some trial and error may be
involved. The purpose of providing this information is to allow for image scaling. When we
scale images to a smaller size, our network can process them and learn faster:



Visual and Audio Analysis

[ 303 ]

Finally, we can create our network. We assign a label to our network and define our
Transfer function. The default function, Sigmoid, will work for most networks, but if your
results are not optimal you may want to try Tanh. The default number of Hidden Layers
Neuron Counts is 12, and that is a good place to start. Be aware that increasing the number
of neurons increases the time it takes to train the network and decreases your ability to
generalize the network to other images. As with some of our previous values, some trial
and error may be necessary to find the optimal settings for a given network. Select Finish
when you are done:



Visual and Audio Analysis

[ 304 ]

Training the model
Once we have created our network, we need to train it. Begin by double-clicking on your
neural network in the left pane. This is the file with the .nnet extension. When you do this,
you will open a visual representation of the network in the main window. Then drag the
dataset, with the file extension .tsest, from the left pane to the top node of the neural
network. You will notice the description on the node change to the name of your dataset.
Next, click the Train button, located in the top-left part of the window:



Visual and Audio Analysis

[ 305 ]

This will open a dialog box with settings for the training. You can leave the default values
for Max Error, Learning Rate, and Momentum. Make sure the Display Error Graph box is
checked. This allows you to see the improvement in the error rate as the training process
continues:



Visual and Audio Analysis

[ 306 ]

After you click the Train button, you should see an error graph similar to the following one:



Visual and Audio Analysis

[ 307 ]

Select the tab titled Image Recognition Test. Then click on the Select Test Image button.
We have loaded a simple image of a face that was not included in our original dataset:

Locate the Output tab. It will be in the bottom or left pane and will display the results of
comparing our test image with each image in the training set. The greater the number, the
more closely our test image matches the image from our training set. The last image results
in a greater output number than the first few comparisons. If we compare these images,
they are more similar than the others in the dataset, and thus the network was able to create
a more positive recognition of our test image:



Visual and Audio Analysis

[ 308 ]

We can now save our network for later use. Select Save from the File menu and then you
can use the .nnet file in external applications. The following code example shows a simple
technique for running test data through your pre-built neural network. The
NeuralNetwork class is part of the Neuroph core package, and the load method allows
you to load the trained network into your project. Notice we used our neural network
name, faces_net. We then retrieve the plugin for our image recognition file. Next, we call
the recognizeImage method with a new image, which must handle an IOException. Our
results are stored in a HashMap and printed to the console:

NeuralNetwork iRNet = NeuralNetwork.load("faces_net.nnet");
ImageRecognitionPlugin iRFile
  = (ImageRecognitionPlugin)iRNet.getPlugin(
    ImageRecognitionPlugin.class);
try {
    HashMap<String, Double> newFaceMap
      = imageRecognition.recognizeImage(
        new File("testFace.jpg"));
    out.println(newFaceMap.toString());
} catch(IOException e) {
   // Handle exceptions
}

This process allows us to use a GUI editor application to create our network in a more
visual environment, but then embed the trained network into our own applications.



Visual and Audio Analysis

[ 309 ]

Summary
In this chapter, we demonstrated many techniques for processing speech and images. This
capability is becoming important, as electronic devices are increasingly embracing these
communication mediums.

TTS was demonstrated using FreeTSS. This technique allows a computer to present results
as speech as opposed to text. We learned how we can control the attributes of the voice
used, such as its gender and age.

Recognizing speech is useful and helps bridge the human-computer interface gap. We
demonstrated how CMUSphinx is used to recognize human speech. As there is often more
than one way speech can be interpreted, we learned how the API can return various
options. We also demonstrated how individual words are extracted, along with the relative
confidence that the right word was identified.

Image processing is a critical aspect of many applications. We started our discussion of
image processing by use Tess4J to extract text from an image. This process is sometimes
referred to as OCR. We learned, as with many visual and audio data files, that the quality of
the results is related to the quality of the image.

We also learned how to use OpenCV to identify faces within an image. Information about
specific view of faces, such as frontal or profile views, are contained in XML files. These files
were used to outline faces within an image. More than one face can be detected at a time.

It can be helpful to classify images and sometimes external tools are useful for this purpose.
We examined Neuroph Studio and created a neural network designed to recognize and
classify images. We then tested our network with images of human faces.

In the next chapter, we will learn how to speed up common data science applications using
multiple processors.



11
Mathematical and Parallel

Techniques for Data Analysis
The concurrent execution of a program can result in significant performance improvements.
In this chapter, we will address the various techniques that can be used in data science
applications. These can range from low-level mathematical calculations to higher-level API-
specific options.

Always keep in mind that performance enhancement starts with ensuring that the correct
set of application functionality is implemented. If the application does not do what a user
expects, then the enhancements are for nought. The architecture of the application and the
algorithms used are also more important than code enhancements. Always use the most
efficient algorithm. Code enhancement should then be considered. We are not able to
address the higher-level optimization issues in this chapter; instead, we will focus on code
enhancements.

Many data science applications and supporting APIs use matrix operations to accomplish
their tasks. Often these operations are buried within an API, but there are times when we
may need to use these directly. Regardless, it can be beneficial to understand how these
operations are supported. To this end, we will explain how matrix multiplication is handled
using several different approaches.

Concurrent processing can be implemented using Java threads. A developer can use threads
and thread pools to improve an application's response time. Many APIs will use threads
when multiple CPUs or GPUs are not available, as is the case with Aparapi. We will not 
illustrate the use of threads here. However, the reader is assumed to have a basic
knowledge of threads and thread pools.



Mathematical and Parallel Techniques for Data Analysis

[ 311 ]

The map-reduce algorithm is used extensively for data science applications. We will present
a technique for achieving this type of parallel processing using Apache's Hadoop. Hadoop
is a framework supporting the manipulation of large datasets, and can greatly decrease the
required processing time for large data science projects. We will demonstrate a technique
for calculating an average value for a sample set of data.

There are several well-known APIs that support multiple processors, including CUDA and
OpenCL. CUDA is supported using Java bindings for CUDA (JCuda)
(http://jcuda.org/). We will not demonstrate this technique directly here. However,
many of the APIs we will use do support CUDA if it is available, such as DL4J. We will
briefly discuss OpenCL and how it is supported in Java. It is worth nothing that the
Aparapi API provides higher-level support, which may use either multiple CPUs or GPUs.
A demonstration of Aparapi in support of matrix multiplication will be illustrated.

In this chapter, we will examine how multiple CPUs and GPUs can be harnessed to speed
up data mining tasks. Many of the APIs we have used already take advantage of multiple
processors or at least provide a means to enable GPU usage. We will introduce a number of
these options in this chapter.

Concurrent processing is also supported extensively in the cloud. Many of the techniques
discussed here are used in the cloud. As a result, we will not explicitly address how to
conduct parallel processing in the cloud.

Implementing basic matrix operations
There are several different types of matrix operations, including simple addition,
subtraction, scalar multiplication, and various forms of multiplication. To illustrate the
matrix operations, we will focus on what is known as matrix product. This is a common
approach that involves the multiplication of two matrixes to produce a third matrix.

Consider two matrices, A and B, where matrix A has n rows and m columns. Matrix B will
have m rows and p columns. The product of A and B, written as AB, is an n row and p
column matrix. The m entries of the rows of A are multiplied by the m entries of the
columns of matrix B. This is more explicitly shown here, where:

http://jcuda.org/


Mathematical and Parallel Techniques for Data Analysis

[ 312 ]

Where the product is defined as follows:

We start with the declaration and initialization of the matrices. The variables n, m, p
represent the dimensions of the matrices. The A matrix is n by m, the B matrix is m by p, and
the C matrix representing the product is n by p:

int n = 4;
int m = 2;
int p = 3;

double A[][] = {
    {0.1950, 0.0311},
    {0.3588, 0.2203},
    {0.1716, 0.5931},
    {0.2105, 0.3242}};
double B[][] = {
    {0.0502, 0.9823, 0.9472},
    {0.5732, 0.2694, 0.916}};
double C[][] = new double[n][p];

The following code sequence illustrates the multiplication operation using nested for
loops:

for (int i = 0; i < n; i++) {
    for (int k = 0; k < m; k++) {
        for (int j = 0; j < p; j++) {
            C[i][j] += A[i][k] * B[k][j];
        }
    }
}



Mathematical and Parallel Techniques for Data Analysis

[ 313 ]

This following code sequence formats output to display our matrix:

out.println("\nResult");
for (int i = 0; i < n; i++) {
    for (int j = 0; j < p; j++) {
        out.printf("%.4f  ", C[i][j]);
    }
    out.println();
}

The result appears as follows:

Result
0.0276  0.1999  0.2132
0.1443  0.4118  0.5417
0.3486  0.3283  0.7058
0.1964  0.2941  0.4964

Later, we will demonstrate several alternative techniques for performing the same
operation. Next, we will discuss how to tailor support for multiple processors using DL4J.

Using GPUs with DeepLearning4j
DeepLearning4j works with GPUs such as those provided by NVIDIA. There are options
available that enable the use of GPUs, specify how many GPUs should be used, and control
the use of GPU memory. In this section, we will show how you can use these options. This
type of control is often available with other high-level APIs.

DL4J uses n-dimensional arrays for Java (ND4J) (h t t p ://n d 4j . o r g /) to perform numerical
computations. This is a library that supports n-dimensional array objects and other
numerical computations, such as linear algebra and signal processing. It includes support
for GPUs and is also integrated with Hadoop and Spark.

A vector is a one-dimensional array of numbers and is used extensively with neural
networks. A vector is a type of mathematical structure called a tensor. A tensor is
essentially a multidimensional array. We can think of a tensor as an array with three or
more dimensions, and each dimension is called a rank.

There is often a need to map a multidimensional set of numbers to a one-dimensional array.
This is done by flattening the array using a defined order. For example, with a two-
dimensional array many systems will allocate the members of the array in row-column
order. This means the first row is added to the vector, followed by the second vector, and
then the third, and so forth. We will use this approach in the Using the ND4J API section.

http://nd4j.org/
http://nd4j.org/
http://nd4j.org/
http://nd4j.org/
http://nd4j.org/
http://nd4j.org/
http://nd4j.org/
http://nd4j.org/
http://nd4j.org/
http://nd4j.org/
http://nd4j.org/
http://nd4j.org/
http://nd4j.org/
http://nd4j.org/
http://nd4j.org/
http://nd4j.org/
http://nd4j.org/
http://nd4j.org/
http://nd4j.org/
http://nd4j.org/
http://nd4j.org/
http://nd4j.org/
http://nd4j.org/


Mathematical and Parallel Techniques for Data Analysis

[ 314 ]

To enable GPU use, the project's POM file needs to be modified. In the properties section of
the POM file, the nd4j.backend tag needs to added or modified, as shown here:

<nd4j.backend>nd4j-cuda-7.5-platform</<nd4j.backend>

Models can be trained in parallel using the ParallelWrapper class. The training task is
automatically distributed among available CPUs/GPUs. The model is used as an argument
to the ParallelWrapper class' Builder constructor, as shown here:

ParallelWrapper parallelWrapper =
    new ParallelWrapper.Builder(aModel)
        // Builder methods...
        .build();

When executed, a copy of the model is used on each GPU. After the number of iterations is
specified by the averagingFrequency method, the models are averaged and then the
training process continues.

There are various methods that can be used to configure the class, as summarized in the
following table:

Method Purpose

prefetchBuffer Specifies the size of a buffer used to pre-fetch data

workers Specifies the number of workers to be used

averageUpdaters
averagingFrequency
reportScoreAfterAveraging
useLegacyAveraging

Various methods to control how averaging is achieved

The number of workers should be greater than the number of GPUs available.

As with most computations, using a lower precision value will speed up the processing.
This can be controlled using the setDTypeForContext method, as shown next. In this case,
half precision is specified:

DataTypeUtil.setDTypeForContext(DataBuffer.Type.HALF);

This support and more details regarding optimization techniques can be found at
http://deeplearning4j.org/gpu.

http://deeplearning4j.org/gpu


Mathematical and Parallel Techniques for Data Analysis

[ 315 ]

Using map-reduce
Map-reduce is a model for processing large sets of data in a parallel, distributed manner.
This model consists of a map method for filtering and sorting data, and a reduce method
for summarizing data. The map-reduce framework is effective because it distributes the
processing of a dataset across multiple servers, performing mapping and reduction
simultaneously on smaller pieces of the data. Map-reduce provides significant performance
improvements when implemented in a multi-threaded manner. In this section, we will
demonstrate a technique using Apache's Hadoop implementation. In the Using Java 8 to
perform map-reduce section, we will discuss techniques for performing map-reduce using
Java 8 streams.

Hadoop is a software ecosystem providing support for parallel computing. Map-reduce
jobs can be run on Hadoop servers, generally set up as clusters, to significantly improve
processing speeds. Hadoop has trackers that run map-reduce operations on nodes within a
Hadoop cluster. Each node operates independently and the trackers monitor the progress
and integrate the output of each node to generate the final output. The following image can
be found at h t t p ://w w w . d e v e l o p e r . c o m /j a v a /d a t a /b i g - d a t a - t o o l - m a p - r e d u c e . h t m l

and demonstrates the basic map-reduce model with trackers.

Using Apache's Hadoop to perform map-reduce
We are going to show you a very simple example of a map-reduce application here. Before
we can use Hadoop, we need to download and extract Hadoop application files. The latest
versions can be found at http://hadoop.apache.org/releases.html. We are using version
2.7.3 for this demonstration.

You will need to set your JAVA_HOME environment variable. Additionally, Hadoop is
intolerant of long file paths and spaces within paths, so make sure you extract Hadoop to
the simplest directory structure possible.

http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://www.developer.com/java/data/big-data-tool-map-reduce.html
http://hadoop.apache.org/releases.html


Mathematical and Parallel Techniques for Data Analysis

[ 316 ]

We will be working with a sample text file containing information about books. Each line of
our tab-delimited file has the book title, author, and page count:

Moby Dick  Herman Melville  822
Charlotte's Web  E.B. White  189
The Grapes of Wrath  John Steinbeck  212
Jane Eyre  Charlotte Bronte  299
A Tale of Two Cities  Charles Dickens  673
War and Peace  Leo Tolstoy  1032
The Great Gatsby  F. Scott Fitzgerald  275

We are going to use a map function to extract the title and page count information and then
a reduce function to calculate the average page count of the books in our dataset. To begin,
create a new class, AveragePageCount. We will create two static classes within
AveragePageCount, one to handle the map procedure and one to handle the reduction.

Writing the map method
First, we will create the TextMapper class, which will implement the map method. This
class inherits from the Mapper class and has two private instance variables, pages and
bookTitle. pages is an IntWritable object and bookTitle is a Text object.
IntWritable and Text are used because these objects will need to be serialized to a byte
stream before they can be transmitted to the servers for processing. These objects take up
less space and transfer faster than the comparable int or String objects:

public static class TextMapper
        extends Mapper<Object, Text, Text, IntWritable> {

    private final IntWritable pages = new IntWritable();
    private final Text bookTitle = new Text();

}

Within our TextMapper class we create the map method. This method takes three
parameters: the key object, a Text object, bookInfo, and the Context. The key allows the
tracker to map each particular object back to the correct job. The bookInfo object contains
the text or string data about each book. Context holds information about the entire system
and allows the method to report on progress and update values within the system.



Mathematical and Parallel Techniques for Data Analysis

[ 317 ]

Within the map method, we use the split method to break each piece of book information
into an array of String objects. We set our bookTitle variable to position 0 of the array
and set pages to the value stored in position 2, after parsing it as an integer. We can then
write out our book title and page count information through the context and update our
entire system:

public void map(Object key, Text bookInfo, Context context)
 throws IOException, InterruptedException {
        String[] book = bookInfo.toString().split("\t");
        bookTitle.set(book[0]);
        pages.set(Integer.parseInt(book[2]));
        context.write(bookTitle, pages);
    }

Writing the reduce method
Next, we will write our AverageReduce class. This class extends the Reducer class and
will perform the reduction processes to calculate our average page count. We have created
four variables for this class: a FloatWritable object to store our average page count, a
float average to hold our temporary average, a float count to count how many books exist
in our dataset, and an integer sum to add up the page counts:

public static class AverageReduce
        extends Reducer<Text, IntWritable, Text, FloatWritable> {

    private final FloatWritable finalAvg = new FloatWritable();
    Float average = 0f;
    Float count = 0f;
    int sum = 0;

}

Within our AverageReduce class we will create the reduce method. This method takes as
input a Text key, an Iterable object holding writeable integers representing the page
counts, and the Context. We use our iterator to process the page counts and add each to
our sum. We then calculate the average and set the value of finalAvg. This information is
paired with a Text object label and written to the Context:

    public void reduce(Text key, Iterable<IntWritable> pageCnts,
        Context context)
            throws IOException, InterruptedException {

    for (IntWritable cnt : pageCnts) {
        sum += cnt.get();



Mathematical and Parallel Techniques for Data Analysis

[ 318 ]

    }
    count += 1;
    average = sum / count;
    finalAvg.set(average);
    context.write(new Text("Average Page Count = "), finalAvg);
}

Creating and executing a new Hadoop job
We are now ready to create our main method in the same class and execute our map-reduce
processes. To do this, we need to create a new Configuration object and a new Job. We
then set up the significant classes to use in our application.

public static void main(String[] args) throws Exception {
    Configuration con = new Configuration();
    Job bookJob = Job.getInstance(con, "Average Page Count");
    ...
}

We set our main class, AveragePageCount, in the setJarByClass method. We specify our
TextMapper and AverageReduce classes using the setMapperClass and
setReducerClass methods, respectively. We also specify that our output will have a text-
based key and a writeable integer using the setOutputKeyClass and
setOutputValueClass methods:

    bookJob.setJarByClass(AveragePageCount.class);
    bookJob.setMapperClass(TextMapper.class);
    bookJob.setReducerClass(AverageReduce.class);
    bookJob.setOutputKeyClass(Text.class);
    bookJob.setOutputValueClass(IntWritable.class);

Finally, we create new input and output paths using the addInputPath and
setOutputPath methods. These methods both take our Job object as the first parameter
and a Path object representing our input and output file locations as the second parameter.
We then call waitForCompletion. Our application exits once this call returns true:

    FileInputFormat.addInputPath(bookJob, new Path("C:/Hadoop/books.txt"));
    FileOutputFormat.setOutputPath(bookJob, new
        Path("C:/Hadoop/BookOutput"));
    if (bookJob.waitForCompletion(true)) {
        System.exit(0);
    }



Mathematical and Parallel Techniques for Data Analysis

[ 319 ]

To execute the application, open a command prompt and navigate to the directory
containing our AveragePageCount.class file. We then use the following command to
execute our sample application:

hadoop AveragePageCount

While our task is running, we see updated information about our process output to the
screen. A sample of our output is shown as follows:

...
File System Counters
    FILE: Number of bytes read=1132
    FILE: Number of bytes written=569686
    FILE: Number of read operations=0
    FILE: Number of large read operations=0
    FILE: Number of write operations=0
Map-Reduce Framework
    Map input records=7
    Map output records=7
    Map output bytes=136
    Map output materialized bytes=156
    Input split bytes=90
    Combine input records=0
    Combine output records=0
    Reduce input groups=7
    Reduce shuffle bytes=156
    Reduce input records=7
    Reduce output records=7
    Spilled Records=14
    Shuffled Maps =1
    Failed Shuffles=0
    Merged Map outputs=1
    GC time elapsed (ms)=11
    Total committed heap usage (bytes)=536870912
Shuffle Errors
    BAD_ID=0
    CONNECTION=0
    IO_ERROR=0
    WRONG_LENGTH=0
    WRONG_MAP=0
    WRONG_REDUCE=0
File Input Format Counters    
    Bytes Read=249
File Output Format Counters    
     Bytes Written=216



Mathematical and Parallel Techniques for Data Analysis

[ 320 ]

If we open the BookOutput directory created on our local machine, we find four new files.
Use a text editor to open part-r-00000. This file contains information about the average
page count as it was calculated using parallel processes. A sample of this output follows:

Average Page Count =  673.0
Average Page Count =   431.0
Average Page Count =   387.0
Average Page Count =   495.75
Average Page Count =   439.0
Average Page Count =   411.66666
Average Page Count =   500.2857

Notice how the average changes as each individual process is combined with the other
reduction processes. This has the same effect as calculating the average of the first two
books first, then adding in the third book, then the fourth, and so on. The advantage here of
course is that the averaging is done in a parallel manner. If we had a huge dataset, we
should expect to see a noticeable advantage in execution time. The last line of BookOutput
reflects the correct and final average of all seven page counts.

Various mathematical libraries
There are numerous mathematical libraries available for Java use. In this section, we will
provide a quick and high-level overview of several libraries. These libraries do not
necessarily automatically support multiple processors. In addition, the intent of this section
is to provide some insight into how these libraries can be used. In most cases, they are
relatively easy to use.

A list of Java mathematical libraries is found at
https://en.wikipedia.org/wiki/List_of_numerical_libraries#Java and
https://java-matrix.org/. We will demonstrate the use of the jblas, Apache Commons
Math, and the ND4J libraries.

Using the jblas API
The jblas API (http://jblas.org/) is a math library supporting Java. It is based on Basic
Linear Algebra Subprograms (BLAS) (http://www.netlib.org/blas/) and Linear Algebra
Package (LAPACK) (http://www.netlib.org/lapack/), which are standard libraries for 
fast arithmetic calculation. The jblas API provides a wrapper around these libraries.

https://en.wikipedia.org/wiki/List_of_numerical_libraries#Java
https://java-matrix.org/
http://jblas.org/
http://www.netlib.org/blas/
http://www.netlib.org/lapack/


Mathematical and Parallel Techniques for Data Analysis

[ 321 ]

The following is a demonstration of how matrix multiplication is performed. We start with
the matrix definitions:

DoubleMatrix A = new DoubleMatrix(new double[][]{
    {0.1950, 0.0311},
    {0.3588, 0.2203},
    {0.1716, 0.5931},
    {0.2105, 0.3242}});

DoubleMatrix B = new DoubleMatrix(new double[][]{
    {0.0502, 0.9823, 0.9472},
    {0.5732, 0.2694, 0.916}});
DoubleMatrix C;

The actual statement to perform multiplication is quite short, as shown next. The mmul
method is executed against the A matrix, where the B array is passed as an argument:

C = A.mmul(B);

The resulting C matrix is then displayed:

for(int i=0; i<C.getRows(); i++) {
    out.println(C.getRow(i));
}

The output should be as follows:

[0.027616, 0.199927, 0.213192]
[0.144288, 0.411798, 0.541650]
[0.348579, 0.328344, 0.705819]
[0.196399, 0.294114, 0.496353]

This library is fairly easy to use and supports an extensive set of arithmetic operations.

Using the Apache Commons math API
The Apache Commons math API (http://commons.apache.org/proper/commons-math/)
supports a large number of mathematical and statistical operations. The following example
illustrates how to perform matrix multiplication.

We start with the declaration and initialization of the A and B matrices:

double[][] A = {
    {0.1950, 0.0311},
    {0.3588, 0.2203},
    {0.1716, 0.5931},

http://commons.apache.org/proper/commons-math/


Mathematical and Parallel Techniques for Data Analysis

[ 322 ]

    {0.2105, 0.3242}};

double[][] B = {
    {0.0502, 0.9823, 0.9472},
    {0.5732, 0.2694, 0.916}};

Apache Commons uses the RealMatrix class to hold a matrix. In the following code
sequence, the corresponding matrices for the A and B matrices are created using the
Array2DRowRealMatrix constructor:

RealMatrix aRealMatrix = new Array2DRowRealMatrix(A);
RealMatrix bRealMatrix = new Array2DRowRealMatrix(B);

The multiplication is straightforward using the multiply method, as shown next:

RealMatrix cRealMatrix = aRealMatrix.multiply(bRealMatrix);

The next for loop will display the following results:

for (int i = 0; i < cRealMatrix.getRowDimension(); i++) {
    out.println(cRealMatrix.getRowVector(i));
}

The output should be as follows:

{0.02761552; 0.19992684; 0.2131916}
{0.14428772; 0.41179806; 0.54165016}
{0.34857924; 0.32834382; 0.70581912}
{0.19639854; 0.29411363; 0.4963528}

Using the ND4J API
ND4J (http://nd4j.org/) is the library used by DL4J to perform arithmetic operations. The
library is also available for direct use. In this section, we will demonstrate how matrix
multiplication is performed using the A and B matrices.

Before we can perform the multiplication, we need to flatten the matrices to vectors. The
following declares and initializes these vectors:

double[] A = {
    0.1950, 0.0311,
    0.3588, 0.2203,
    0.1716, 0.5931,
    0.2105, 0.3242};

double[] B = {

http://nd4j.org/


Mathematical and Parallel Techniques for Data Analysis

[ 323 ]

    0.0502, 0.9823, 0.9472,
    0.5732, 0.2694, 0.916};

The Nd4j class' create method creates an INDArray instance given a vector and
dimension information. The first argument of the method is the vector. The second
argument specifies the dimensions of the matrix. The last argument specifies the order the
rows and columns are laid out. This order is either row-column major as exemplified by c,
or column-row major order as used by FORTRAN. Row-column order means the first row
is allocated to the vector, followed by the second row, and so forth.

In the following code sequence 2INDArray instances are created using the A and B vectors.
The first is a 4 row, 2 column matrix using row-major order as specified by the third
argument, c. The second INDArray instance represents the B matrix. If we wanted to use
column-row ordering, we would use an f instead.

INDArray aINDArray = Nd4j.create(A,new int[]{4,2},'c');
INDArray bINDArray = Nd4j.create(B,new int[]{2,3},'c');

The C array, represented by cINDArray, is then declared and assigned the result of the
multiplication. The mmul performs the operation:

INDArray cINDArray;
cINDArray = aINDArray.mmul(bINDArray);

The following sequence displays the results using the getRow method:

for(int i=0; i<cINDArray.rows(); i++) {
   out.println(cINDArray.getRow(i));
}

The output should be as follows:

[0.03, 0.20, 0.21]
[0.14, 0.41, 0.54]
[0.35, 0.33, 0.71]
[0.20, 0.29, 0.50]

Next, we will provide an overview of the OpenCL API that provide supports for concurrent
operations on a number of platforms.



Mathematical and Parallel Techniques for Data Analysis

[ 324 ]

Using OpenCL
Open Computing Language (OpenCL) (https://www.khronos.org/opencl/) supports 
programs that execute across heterogeneous platforms, that is, platforms potentially using 
different vendors and architectures. The platforms can use different processing units,
including Central Processing Unit (CPU), Graphical Processing Unit (GPU), Digital
Signal Processor (DSP), Field-Programmable Gate Array (FPGA), and other types of
processors.

OpenCL uses a C99-based language to program the devices, providing a standard interface
for programming concurrent behavior. OpenCL supports an API that allows code to be
written in different languages. For Java, there are several APIs that support the
development of OpenCL based languages:

Java bindings for OpenCL (JOCL) (http://www.jocl.org/) - This is a binding to
the original OpenCL C implementation and can be verbose.
JavaCl (https://code.google.com/archive/p/javacl/) - Provides an object-
oriented interface to JOCL.
Java OpenCL (http://jogamp.org/jocl/www/) - Also provides an object-oriented
abstraction of JOCL. It is not intended for client use.
The Lightweight Java Game Library (LWJGL) (https://www.lwjgl.org/) - Also 
provides support for OpenCL and is oriented toward GUI applications.

In addition, Aparapi provides higher-level access to OpenCL, thus avoiding some of the
complexity involved in creating OpenCL applications.

Code that runs on a processor is encapsulated in a kernel. Multiple kernels will execute in
parallel on different computing devices. There are different levels of memory supported by
OpenCL. A specific device may not support each level. The levels include:

Global memory - Shared by all computing units
Read-only memory - Generally not writable
Local memory - Shared by a group of computing units
Per-element private memory - Often a register

OpenCL applications require a considerable amount of initial code to be useful. This
complexity does not permit us to provide a detailed example of its use. However, the
Aparapi section does provide some feel for how OpenCL applications are structured.

https://www.khronos.org/opencl/
http://www.jocl.org/
https://code.google.com/archive/p/javacl/
http://jogamp.org/jocl/www/
https://www.lwjgl.org/


Mathematical and Parallel Techniques for Data Analysis

[ 325 ]

Using Aparapi
Aparapi (https://github.com/aparapi/aparapi) is a Java library that supports concurrent
operations. The API supports code running on GPUs or CPUs. GPU operations are executed
using OpenCL, while CPU operations use Java threads. The user can specify which
computing resource to use. However, if GPU support is not available, Aparapi will revert to
Java threads.

The API will convert Java byte codes to OpenCL at runtime. This makes the API largely
independent from the graphics card used. The API was initially developed by AMD but has
been released as open source. This is reflected in the basic package name,
com.amd.aparari. Aparapi offers a higher level of abstraction than provided by OpenCL.

Aparapi code is located in a class derived from the Kernel class. Its execute method will
start the operations. This will result in an internal call to a run method, which needs to be
overridden. It is within the run method that concurrent code is placed. The run method is
executed multiple times on different processors.

Due to OpenCL limitations, we are unable to use inheritance or method overloading. In
addition, it does not like println in the run method, since the code may be running on a
GPI. Aparapi only supports one-dimensional arrays. Arrays using two or more dimensions
need to be flattened to a one dimension array. The support for double values is dependent
on the OpenCL version and GPU configuration.

When a Java thread pool is used, it allocates one thread per CPU core. The kernel containing
the Java code is cloned, one copy per thread. This avoids the need to access data across a
thread. Each thread has access to information, such as a global ID, to assist in the code
execution. The kernel will wait for all of the threads to complete.

Aparapi downloads can be found at https://github.com/aparapi/aparapi/releases.

Creating an Aparapi application
The basic framework for an Aparapi application is shown next. It consists of a Kernel
derived class where the run method is overridden. In this example, the run method will
perform scalar multiplication. This operation involves multiplying each element of a vector
by some value.

https://github.com/aparapi/aparapi
https://github.com/aparapi/aparapi/releases


Mathematical and Parallel Techniques for Data Analysis

[ 326 ]

The ScalarMultiplicationKernel extends the Kernel class. It possesses two instance
variables used to hold the matrices for input and output. The constructor will initialize the
matrices. The run method will perform the actual computations, and the displayResult
method will show the results of the multiplication:

public class ScalarMultiplicationKernel extends Kernel {
    float[] inputMatrix;
    float outputMatrix [];

    public ScalarMultiplicationKernel(float inputMatrix[]) {
        ...
    }

    @Override
    public void run() {
        ...
    }

    public void displayResult() {
        ...
    }
}

The constructor is shown here:

public ScalarMultiplicationKernel(float inputMatrix[]) {
    this.inputMatrix = inputMatrix;
    outputMatrix = new float[this.inputMatrix.length];
}

In the run method, we use a global ID to index into the matrix. This code is executed on
each computation unit, for example, a GPU or thread. A unique global ID is provided to
each computational unit, allowing the code to access a specific element of the matrix. In this
example, each element of the input matrix is multiplied by 2 and then assigned to the
corresponding element of the output matrix:

public void run() {
    int globalID = this.getGlobalId();
    outputMatrix[globalID] = 2.0f * inputMatrix[globalID];
}



Mathematical and Parallel Techniques for Data Analysis

[ 327 ]

The displayResult method simply displays the contents of the outputMatrix array:

public void displayResult() {
    out.println("Result");
    for (float element : outputMatrix) {
        out.printf("%.4f ", element);
    }
    out.println();
}

To use this kernel, we need to declare variables for the inputMatrix and its size. The
size will be used to control how many kernels to execute:

float inputMatrix[] = {3, 4, 5, 6, 7, 8, 9};
int size = inputMatrix.length;

The kernel is then created using the input matrix followed by the invocation of the execute
method. This method starts the process and will eventually invoke the Kernel class' run
method based on the execute method's argument. This argument is referred to as the pass
ID. While not used in this example, we will use it in the next section. When the process is
complete, the resulting output matrix is displayed and the dispose method is called to stop
the process:

ScalarMultiplicationKernel kernel =
        new ScalarMultiplicationKernel(inputMatrix);
kernel.execute(size);
kernel.displayResult();
kernel.dispose();

When this application is executed we will get the following output:

6.0000 8.0000 10.0000 12.0000 14.0000 16.0000 18.000

We can specify the execution mode using the Kernel class' setExecutionMode method, as
shown here:

kernel.setExecutionMode(Kernel.EXECUTION_MODE.GPU);



Mathematical and Parallel Techniques for Data Analysis

[ 328 ]

However, it is best to let Aparapi determine the execution mode. The following table
summarizes the execution modes available:

Execution mode Meaning

Kernel.EXECUTION_MODE.NONE Does not specify mode

Kernel.EXECUTION_MODE.CPU Use CPU

Kernel.EXECUTION_MODE.GPU Use GPU

Kernel.EXECUTION_MODE.JTP Use Java threads

Kernel.EXECUTION_MODE.SEQ Use single loop (for debugging purposes)

Next, we will demonstrate how we can use Aparapi to perform dot product matrix
multiplication.

Using Aparapi for matrix multiplication
We will use the matrices as used in the Implementing basic matrix operations section. We start
with the declaration of the MatrixMultiplicationKernel class, which contains the
vector declarations, a constructor, the run method, and a displayResults method. The
vectors for matrices A and B have been flattened to one-dimensional arrays by allocating the
matrices in row-column order:

class MatrixMultiplicationKernel extends Kernel {
    float[] vectorA = {
        0.1950f, 0.0311f, 0.3588f,
        0.2203f, 0.1716f, 0.5931f,
        0.2105f, 0.3242f};
    float[] vectorB = {
        0.0502f, 0.9823f, 0.9472f,
        0.5732f, 0.2694f, 0.916f};
    float[] vectorC;
    int n;
    int m;
    int p;

    @Override
    public void run() {
        ...
    }

    public MatrixMultiplicationKernel(int n, int m, int p) {
        ...



Mathematical and Parallel Techniques for Data Analysis

[ 329 ]

    }

    public void displayResults () {
        ...
    }
}

The MatrixMultiplicationKernel constructor assigns values for the matrices'
dimensions and allocates memory for the result stored in vectorC, as shown here:

public MatrixMultiplicationKernel(int n, int m, int p) {
    this.n = n;
    this.p = p;
    this.m = m;
    vectorC = new float[n * p];
}

The run method uses a global ID and a pass ID to perform the matrix multiplication. The
pass ID is specified as the second argument of the Kernel class' execute method, as we
will see shortly. This value allows us to advance the column index for vectorC. The vector
indexes map to the corresponding row and column positions of the original matrices:

public void run() {
    int i = getGlobalId();
    int j = this.getPassId();
    float value = 0;
    for (int k = 0; k < p; k++) {
        value += vectorA[k + i * m] * vectorB[k * p + j];
    }
    vectorC[i * p + j] = value;
}

The displayResults method is shown as follows:

public void displayResults() {
    out.println("Result");
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < p; j++) {
            out.printf("%.4f  ", vectorC[i * p + j]);
        }
        out.println();
    }
}



Mathematical and Parallel Techniques for Data Analysis

[ 330 ]

The kernel is started in the same way as in the previous section. The execute method is
passed the number of kernels that should be created and an integer indicating the number
of passes to make. The number of passes is used to control the index into the vectorA and
vectorB arrays:

MatrixMultiplicationKernel kernel = new MatrixMultiplicationKernel(n, m,
   p);kernel.execute(6, 3);kernel.displayResults();
kernel.dispose();

When this example is executed, you will get the following output:

Result
0.0276  0.1999  0.2132
0.1443  0.4118  0.5417
0.3486  0.3283  0.7058
0.1964  0.2941  0.4964

Next, we will see how Java 8 additions can contribute to solving math-intensive problems in
a parallel manner.

Using Java 8 streams
The release of Java 8 came with a number of important enhancements to the language. The
two enhancements of interest to us include lambda expressions and streams. A lambda
expression is essentially an anonymous function that adds a functional programming
dimension to Java. The concept of streams, as introduced in Java 8, does not refer to IO
streams. Instead, you can think of it as a sequence of objects that can be generated and
manipulated using a fluent style of programming. This style will be demonstrated shortly.

As with most APIs, programmers must be careful to consider the actual execution
performance of their code using realistic test cases and environments. If not used properly,
streams may not actually provide performance improvements. In particular, parallel
streams, if not crafted carefully, can produce incorrect results.

We will start with a quick introduction to lambda expressions and streams. If you are
familiar with these concepts you may want to skip over the next section.



Mathematical and Parallel Techniques for Data Analysis

[ 331 ]

Understanding Java 8 lambda expressions and
streams
A lambda expression can be expressed in several different forms. The following illustrates a
simple lambda expression where the symbol, ->, is the lambda operator. This will take
some value, e, and return the value multiplied by two. There is nothing special about the
name e. Any valid Java variable name can be used:

e -> 2 * e

It can also be expressed in other forms, such as the following:

(int e) -> 2 * e
(double e) -> 2 * e
(int e) -> {return 2 * e;

The form used depends on the intended value of e. Lambda expressions are frequently used
as arguments to a method, as we will see shortly.

A stream can be created using a number of techniques. In the following example, a stream is
created from an array. The IntStream interface is a type of stream that uses integers. The
Arrays class' stream method converts an array into a stream:

IntStream stream = Arrays.stream(numbers);

We can then apply various stream methods to perform an operation. In the following
statement, the forEach method will simply display each integer in the stream:

stream.forEach(e -> out.printf("%d  ", e));

There are a variety of stream methods that can be applied to a stream. In the following
example, the mapToDouble method will take an integer, multiply it by 2, and then return it
as a double. The forEach method will then display these values:

stream
        .mapToDouble(e-> 2 * e)
        .forEach(e -> out.printf("%.4f  ", e));

The cascading of method invocations is referred to as fluent programing.



Mathematical and Parallel Techniques for Data Analysis

[ 332 ]

Using Java 8 to perform matrix multiplication
Here, we will illustrate how streams can be used to perform matrix multiplication. The
definitions of the A, B, and C matrices are the same as declared in the Implementing basic
matrix operations section. They are duplicated here for your convenience:

double A[][] = {
    {0.1950, 0.0311},
    {0.3588, 0.2203},
    {0.1716, 0.5931},
    {0.2105, 0.3242}};
double B[][] = {
    {0.0502, 0.9823, 0.9472},
    {0.5732, 0.2694, 0.916}};
double C[][] = new double[n][p];

The following sequence is a stream implementation of matrix multiplication. A detailed
explanation of the code follows:

C = Arrays.stream(A)
        .parallel()
        .map(AMatrixRow -> IntStream.range(0, B[0].length)
                .mapToDouble(i -> IntStream.range(0, B.length)
                        .mapToDouble(j -> AMatrixRow[j] * B[j][i])
                        .sum()
                ).toArray()).toArray(double[][]::new);

The first map method, shown as follows, creates a stream of double vectors representing the
4 rows of the A matrix. The range method will return a list of stream elements ranging from
its first argument to the second argument.

.map(AMatrixRow -> IntStream.range(0, B[0].length)

The variable i corresponds to the numbers generated by the second range method, which
corresponds to the number of rows in the B matrix (2). The variable j corresponds to the
numbers generated by the third range method, representing the number of columns of the
B matrix (3).

At the heart of the statement is the matrix multiplication, where the sum method calculates
the sum:

.mapToDouble(j -> AMatrixRow[j] * B[j][i])

.sum()



Mathematical and Parallel Techniques for Data Analysis

[ 333 ]

The last part of the expression creates the two-dimensional array for the C matrix. The
operator, ::new, is called a method reference and is a shorter way of invoking the new
operator to create a new object:

).toArray()).toArray(double[][]::new);

The displayResult method is as follows:

public void displayResult() {
    out.println("Result");
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < p; j++) {
            out.printf("%.4f  ", C[i][j]);
        }
        out.println();
    }
}

The output of this sequence follows:

Result
0.0276  0.1999  0.2132
0.1443  0.4118  0.5417
0.3486  0.3283  0.7058
0.1964  0.2941  0.4964

Using Java 8 to perform map-reduce
In the next section, we will use Java 8 streams to perform a map-reduce operation similar to
the one demonstrated using Hadoop in the Using map-reduce section. In this example, we
will use a Stream of Book objects. We will then demonstrate how to use the Java 8 reduce
and average methods to get our total page count and average page count.

Rather than begin with a text file, as we did in the Hadoop example, we have created a
Book class with title, author, and page-count fields. In the main method of the driver class,
we have created new instances of Book and added them to an ArrayList called books. We
have also created a double value average to hold our average, and initialized our variable
totalPg to zero:

ArrayList<Book> books = new ArrayList<>();
double average;
int totalPg = 0;

books.add(new Book("Moby Dick", "Herman Melville", 822));
books.add(new Book("Charlotte's Web", "E.B. White", 189));



Mathematical and Parallel Techniques for Data Analysis

[ 334 ]

books.add(new Book("The Grapes of Wrath", "John Steinbeck", 212));
books.add(new Book("Jane Eyre", "Charlotte Bronte", 299));
books.add(new Book("A Tale of Two Cities", "Charles Dickens", 673));
books.add(new Book("War and Peace", "Leo Tolstoy", 1032));
books.add(new Book("The Great Gatsby", "F. Scott Fitzgerald",    275));

Next, we perform a map and reduce operation to calculate the total number of pages in our
set of books. To accomplish this in a parallel manner, we use the stream and parallel
methods. We then use the map method with a lambda expression to accumulate all of the
page counts from each Book object. Finally, we use the reduce method to merge our page
counts into one final value, which is to be assigned to totalPg:

totalPg = books
        .stream()
        .parallel()
        .map((b) -> b.pgCnt)
        .reduce(totalPg, (accumulator, _item) -> {
            out.println(accumulator + " " +_item);
            return accumulator + _item;
                });

Notice in the preceding reduce method we have chosen to print out information about the
reduction operation's cumulative value and individual items. The accumulator represents
the aggregation of our page counts. The _item represents the individual task within the
map-reduce process undergoing reduction at any given moment.

In the output that follows, we will first see the accumulator value stay at zero as each
individual book item is processed. Gradually, the accumulator value increases. The final
operation is the reduction of the values 1223 and 2279. The sum of these two numbers is
3502, or the total page count for all of our books:

0 822
0 189
0 299
0 673
0 212
299 673
0 1032
0 275
1032 275
972 1307
189 212
822 401
1223 2279



Mathematical and Parallel Techniques for Data Analysis

[ 335 ]

Next, we will add code to calculate the average page count of our set of books. We multiply
our totalPg value, determined using map-reduce, by 1.0 to prevent truncation when we
divide by the integer returned by the size method. We then print out average.

average = 1.0 * totalPg / books.size();
out.printf("Average Page Count: %.4f\n", average);

Our output is as follows:

    Average Page Count: 500.2857

We could have used Java 8 streams to calculate the average directly using the map method.
Add the following code to the main method. We use parallelStream with our map
method to simultaneously get the page count for each of our books. We then use
mapToDouble to ensure our data is of the correct type to calculate our average. Finally, we
use the average and getAsDouble methods to calculate our average page count:

average = books
        .parallelStream()
        .map(b -> b.pgCnt)
        .mapToDouble(s -> s)
        .average()
        .getAsDouble();
out.printf("Average Page Count: %.4f\n", average);

Then we print out our average. Our output, identical to our previous example, is as follows:

    Average Page Count: 500.2857

These techniques made use of Java 8 capabilities related to the map-reduce framework to
solve numeric problems. This type of process can also be applied to other types of data,
including text-based data. The true benefit is seen when these processes handle extremely
large datasets within a greatly reduced time frame.

Summary
Data science uses math extensively to analyze problems. There are numerous Java math
libraries available, many of which support concurrent operations. In this chapter, we
introduced a number of libraries and techniques to provide some insight into how they can
be used to support and improve the performance of applications.



Mathematical and Parallel Techniques for Data Analysis

[ 336 ]

We started with a discussion of how simple matrix multiplication is performed. A basic
Java implementation was presented. In later sections, we duplicated the implementation
using other APIs and technologies.

Many higher level APIs, such as DL4J, support a number of useful data analysis techniques.
Beneath these APIs often lies concurrent support for multiple CPUs and GPUs. Sometimes
this support is configurable, as is the case for DL4J. We briefly discussed how we can
configure ND4J to support multiple processors.

The map-reduce algorithm has found extensive use in the data science community. We took
advantage of the parallel processing power of this framework to calculate the average of a
given set of values, the page counts for a set of books. This technique used Apache's
Hadoop to perform the map and reduce functions.

Mathematical techniques are supported by a large number of libraries. Many of these
libraries do not directly support parallel operations. However, understanding what is
available and how they can be used is important. To that end, we demonstrated how three
different Java APIs can be used: jblas, Apache Commons Math, and ND4J.

OpenCL is an API that supports parallel operations on a variety of hardware platforms,
processor types, and languages. This support is fairly low level. There are a number of Java
bindings for OpenCL, which we reviewed.

Aparapi is a higher level of support for Java that can use CPUs, CUDA, or OpenCL to effect
parallel operations. We demonstrated this support using the matrix multiplication example.

We wrapped up our discussion with an introduction to Java 8 streams and lambda
expressions. These language elements can support parallel operations to improve an
application's performance. In addition, this can often provide a more elegant and more
maintainable implementation once the programmer becomes familiar with the techniques.
We also demonstrated techniques for performing map-reduce using Java 8.

In the next chapter, we will conclude the book by illustrating how many of the techniques
introduced can be used to build a complete application.



12
Bringing It All Together

While we have demonstrated many aspects of using Java to support data science tasks, the
need to combine and use these techniques in an integrated manner exists. It is one thing to
use the techniques in isolation and another to use them in a cohesive fashion. In this
chapter, we will provide you with additional experience with these technologies and
insights into how they can be used together.

Specifically, we will create a console-based application that analyzes tweets related to a
user-defined topic. Using a console-based application allows us to focus on data-science-
specific technologies and avoids having to choose a specific GUI technology that may not be
relevant to us. It provides a common base from which a GUI implementation can be created
if needed.

The application performs and illustrates the following high-level tasks:

Data acquisition
Data cleaning, including:

Removing stop words
Cleaning the text

Sentiment analysis
Basic data statistic collection
Display of results

More than one type of analysis can be used with many of these steps. We will show the
more relevant approaches and allude to other possibilities as appropriate. We will use Java
8's features whenever possible.



Bringing It All Together

[ 338 ]

Defining the purpose and scope of our
application
The application will prompt the user for a set of selection criteria, which include topic and
sub-topic areas, and the number of tweets to process. The analysis performed will simply
compute and display the number of positive and negative tweets for a topic and sub-topic.
We used a generic sentiment analysis model, which will affect the quality of the sentiment
analysis. However, other models and more analysis can be added.

We will use a Java 8 stream to structure the processing of tweet data. It is a stream of
TweetHandler objects, as we will describe shortly.

We use several classes in this application. They are summarized here:

TweetHandler: This class holds the raw tweet text and specific fields needed for
the processing including the actual tweet, username, and similar attributes.
TwitterStream: This is used to acquire the application's data. Using a specific
class separates the acquisition of the data from its processing. The class possesses
a few fields that control how the data is acquired.
ApplicationDriver: This contains the main method, user prompts, and the
TweetHandler stream that controls the analysis.

Each of these classes will be detailed in later sections. However, we will present
ApplicationDriver next to provide an overview of the analysis process and how the user
interacts with the application.

Understanding the application's architecture
Every application has its own unique structure, or architecture. This architecture provides
the overarching organization or framework for the application. For this application, we
combine the three classes using a Java 8 stream in the ApplicationDriver class. This class
consists of three methods:

ApplicationDriver: Contains the applications' user input
performAnalysis: Performs the analysis
main: Creates the ApplicationDriver instance



Bringing It All Together

[ 339 ]

The class structure is shown next. The three instance variables are used to control the
processing:

public class ApplicationDriver {
    private String topic;
    private String subTopic;
    private int numberOfTweets;

    public ApplicationDriver() { ... }
    public void performAnalysis() { ...     }

    public static void main(String[] args) {
        new ApplicationDriver();
    }
}

The ApplicationDriver constructor follows. A Scanner instance is created and the
sentiment analysis model is built:

public ApplicationDriver() {
    Scanner scanner = new Scanner(System.in);
    TweetHandler swt = new TweetHandler();
    swt.buildSentimentAnalysisModel();
    ...
}

The remainder of the method prompts the user for input and then calls the
performAnalysis method:

out.println("Welcome to the Tweet Analysis Application");
out.print("Enter a topic: ");
this.topic = scanner.nextLine();
out.print("Enter a sub-topic: ");
this.subTopic = scanner.nextLine().toLowerCase();
out.print("Enter number of tweets: ");
this.numberOfTweets = scanner.nextInt();
performAnalysis();

The performAnalysis method uses a Java 8 Stream instance obtained from the
TwitterStream instance. The TwitterStream class constructor uses the number of tweets
and topic as input. This class is discussed in the Data acquisition using Twitter section:

public void performAnalysis() {
Stream<TweetHandler> stream = new TwitterStream(
    this.numberOfTweets, this.topic).stream();
    ...
}



Bringing It All Together

[ 340 ]

The stream uses a series of map, filter, and a forEach method to perform the processing.
The map method modifies the stream's elements. The filter methods remove elements
from the stream. The forEach method will terminate the stream and generate the output.

The individual methods of the stream are executed in order. When acquired from a public
Twitter stream, the Twitter information arrives as a JSON document, which we process first.
This allows us to extract relevant tweet information and set the data to fields of the
TweetHandler instance. Next, the text of the tweet is converted to lowercase. Only English
tweets are processed and only those tweets that contain the sub-topic will be processed. The
tweet is then processed. The last step computes the statistics:

stream
        .map(s -> s.processJSON())
        .map(s -> s.toLowerCase())
        .filter(s -> s.isEnglish())
        .map(s -> s.removeStopWords())
        .filter(s -> s.containsCharacter(this.subTopic))
        .map(s -> s.performSentimentAnalysis())
        .forEach((TweetHandler s) -> {
            s.computeStats();
            out.println(s);
        });

The results of the processing are then displayed:

out.println();
out.println("Positive Reviews: "
        + TweetHandler.getNumberOfPositiveReviews());
out.println("Negative Reviews: "
        + TweetHandler.getNumberOfNegativeReviews());

We tested our application on a Monday night during a Monday-night football game and
used the topic #MNF. The # symbol is called a hashtag and is used to categorize tweets. By
selecting a popular category of tweets, we ensured that we would have plenty of Twitter
data to work with. For simplicity, we chose the football subtopic. We also chose to only
analyze 50 tweets for this example. The following is an abbreviated sample of our prompts,
input, and output:

Building Sentiment Model
Welcome to the Tweet Analysis Application
Enter a topic: #MNF
Enter a sub-topic: football
Enter number of tweets: 50
Creating Twitter Stream
51 messages processed!
Text: rt @ bleacherreport : touchdown , broncos ! c . j . anderson punches



Bringing It All Together

[ 341 ]

! lead , 7 - 6 # mnf # denvshou
Date: Mon Oct 24 20:28:20 CDT 2016
Category: neg
...
Text: i cannot emphasize enough how big td drive . @ broncos offense .
needed confidence booster & amp ; just got . # mnf # denvshou
Date: Mon Oct 24 20:28:52 CDT 2016
Category: pos
Text: least touchdown game . # mnf
Date: Mon Oct 24 20:28:52 CDT 2016
Category: neg
Positive Reviews: 13
Negative Reviews: 27

We print out the text of each tweet, along with a timestamp and category. Notice that the
text of the tweet does not always make sense. This may be due to the abbreviated nature of
Twitter data, but it is partially due to the fact this text has been cleaned and stop words
have been removed. We should still see our topic, #MNF, although it will be lowercase due
to our text cleaning. At the end, we print out the total number of tweets classified as
positive and negative.

The classification of tweets is done by the performSentimentAnalysis method. Notice
the process of classification using sentiment analysis is not always precise. The following
tweet mentions a touchdown by a Denver Broncos player. This tweet could be construed as
positive or negative depending on an individual's personal feelings about that team, but our
model classified it as positive:

Text: cj anderson td run @ broncos . broncos now lead 7 - 6 . # mnf
Date: Mon Oct 24 20:28:42 CDT 2016
Category: pos

Additionally, some tweets may have a neutral tone, such as the one shown next, but still be
classified as either positive or negative. The following tweet is a retweet of a popular sports
news twitter handle, @bleacherreport:

Text: rt @ bleacherreport : touchdown , broncos ! c . j . anderson punches
! lead , 7 - 6 # mnf # denvshou
Date: Mon Oct 24 20:28:37 CDT 2016
Category: neg



Bringing It All Together

[ 342 ]

This tweet has been classified as negative but perhaps could be considered neutral. The
contents of the tweet simply provide information about a score in a football game. Whether
this is a positive or negative event will depend upon which team a person may be rooting
for. When we examine the entire set of tweet data analysed, we notice that this same
@bleacherreport tweet has been retweeted a number of times and classified as negative
each time. This could skew our analysis when we consider that we may have a large
number of improperly classified tweets. Using incorrect data decreases the accuracy of the
results.

One option, depending on the purpose of analysis, may be to exclude tweets by news
outlets or other popular Twitter users. Additionally we could exclude tweets with RT, an
abbreviation denoting that the tweet is a retweet of another user.

There are additional issues to consider when performing this type of analysis, including the
sub-topic used. If we were to analyze the popularity of a Star Wars character, then we
would need to be careful which names we use. For example, when choosing a character
name such as Han Solo, the tweet may use an alias. Aliases for Han Solo include Vykk
Draygo, Rysto, Jenos Idanian, Solo Jaxal, Master Marksman, and Jobekk Jonn, to mention a
few (h t t p ://s t a r w a r s . w i k i a . c o m /w i k i /C a t e g o r y :H a n _ S o l o _ a l i a s e s ). The actor's name
may be used instead of the actual character, which is Harrison Ford in the case of Han Solo.
We may also want to consider the actor's nickname, such as Harry for Harrison.

Data acquisition using Twitter
The Twitter API is used in conjunction with HBC's HTTP client to acquire tweets, as
previously illustrated in the Handling Twitter section of Chapter 2, Data Acquisition. This
process involves using the public stream API at the default access level to pull a sample of
public tweets currently streaming on Twitter. We will refine the data based on user-selected
keywords.

To begin, we declare the TwitterStream class. It consists of two instance variables,
(numberOfTweets and topic), two constructors, and a stream method. The
numberOfTweets variable contains the number of tweets to select and process, and topic
allows the user to search for tweets related to a specific topic. We have set our default
constructor to pull 100 tweets related to Star Wars:

public class TwitterStream {
    private int numberOfTweets;
    private String topic;

    public TwitterStream() {
        this(100, "Stars Wars");

http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases
http://starwars.wikia.com/wiki/Category:Han_Solo_aliases


Bringing It All Together

[ 343 ]

    }

    public TwitterStream(int numberOfTweets, String topic) { ... }

}

The heart of our TwitterStream class is the stream method. We start by performing
authentication using the information provided by Twitter when we created our Twitter
application. We then create a BlockingQueue object to hold our streaming data. In this
example, we will set a default capacity of 1000. We use our topic variable in the
trackTerms method to specify the types of tweets we are searching for. Finally, we specify
our endpoint and turn off stall warnings:

String myKey = "mySecretKey";
String mySecret = "mySecret";
String myToken = "myToKen";
String myAccess = "myAccess";

out.println("Creating Twitter Stream");
BlockingQueue<String> statusQueue = new
LinkedBlockingQueue<>(1000);
StatusesFilterEndpoint endpoint = new StatusesFilterEndpoint();
endpoint.trackTerms(Lists.newArrayList("twitterapi", this.topic));
endpoint.stallWarnings(false);

Now we can create an Authentication object using OAuth1, a variation of the OAuth
class. This allows us to build our connection client and complete the HTTP connection:

Authentication twitterAuth = new OAuth1(myKey, mySecret, myToken,
  myAccess);

BasicClient twitterClient = new ClientBuilder()
        .name("Twitter client")
        .hosts(Constants.STREAM_HOST)
        .endpoint(endpoint)
        .authentication(twitterAuth)
        .processor(new StringDelimitedProcessor(statusQueue))
        .build();

twitterClient.connect();



Bringing It All Together

[ 344 ]

Next, we create two ArrayLists, list to hold our TweetHandler objects and twitterList
to hold the JSON data streamed from Twitter. We will discuss the TweetHandler object in
the next section. We use the drainTo method in place of the poll method demonstrated in
Chapter 2, Data Acquisition, because it can be more efficient for large amounts of data:

List<TweetHandler> list = new ArrayList();
List<String> twitterList = new ArrayList();

Next we loop through our retrieved messages. We call the take method to remove each
string message from the BlockingQueue instance. We then create a new TweetHandler
object using the message and place it in our list. After we have handled all of our
messages and the for loop completes, we stop the HTTP client, display the number of
messages, and return our stream of TweetHandler objects:

statusQueue.drainTo(twitterList);
for(int i=0; i<numberOfTweets; i++) {
    String message;
    try {
        message = statusQueue.take();
        list.add(new TweetHandler(message));
    } catch (InterruptedException ex) {
        ex.printStackTrace();
    }
}
twitterClient.stop();
out.printf("%d messages processed!\n",
    twitterClient.getStatsTracker().getNumMessages());

return list.stream();
}

We are now ready to clean and analyze our data.

Understanding the TweetHandler class
The TweetHandler class holds information about a specific tweet. It takes the raw JSON
tweet and extracts those parts that are relevant to the application's needs. It also possesses
the methods to process the tweet's text such as converting the text to lowercase and
removing tweets that are not relevant. The first part of the class is shown next:

public class TweetHandler {
    private String jsonText;
    private String text;
    private Date date;



Bringing It All Together

[ 345 ]

    private String language;
    private String category;
    private String userName;
    ...
    public TweetHandler processJSON() { ... }
    public TweetHandler toLowerCase(){ ... }
    public TweetHandler removeStopWords(){ ... }
    public boolean isEnglish(){ ... }
    public boolean containsCharacter(String character) { ... }
    public void computeStats(){ ... }
    public void buildSentimentAnalysisModel{ ... }
    public TweetHandler performSentimentAnalysis(){ ... }
}

The instance variables show the type of data retrieved from a tweet and processed, as
detailed here:

jsonText: The raw JSON text
text: The text of the processed tweet
date: The date of the tweet
language: The language of the tweet
category: The tweet classification, which is positive or negative
userName: The name of the Twitter user

There are several other instance variables used by the class. The following are used to create
and use a sentiment analysis model. The classifier static variable refers to the model:

private static String[] labels = {"neg", "pos"};
private static int nGramSize = 8;
private static DynamicLMClassifier<NGramProcessLM>
    classifier = DynamicLMClassifier.createNGramProcess(
        labels, nGramSize);

The default constructor is used to provide an instance to build the sentiment model. The
single argument constructor creates a TweetHandler object using the raw JSON text:

    public TweetHandler() {
        this.jsonText = "";
    }

    public TweetHandler(String jsonText) {
        this.jsonText = jsonText;
    }

The remainder of the methods are discussed in the following sections.



Bringing It All Together

[ 346 ]

Extracting data for a sentiment analysis model
In Chapter 9, Text Analysis, we used DL4J to perform sentiment analysis. We will use
LingPipe in this example as an alternative to our previous approach. Because we want to
classify Twitter data, we chose a dataset with pre-classified tweets, available at
http://thinknook.com/wp-content/uploads/2012/09/Sentiment-Analysis-Dataset.zip.
We must complete a one-time process of extracting this data into a format we can use with
our model before we continue with our application development.

This dataset exists in a large .csv file with one tweet and classification per line. The tweets
are classified as either 0 (negative) or 1 (positive). The following is an example of one line of
this data file:

95,0,Sentiment140, - Longest night ever.. ugh!
http://tumblr.com/xwp1yxhi6

The first element represents a unique ID number which is part of the original data set and
which we will use for the filename. The second element is the classification, the third is a
data set label (effectively ignored for the purposes of this project), and the last element is the
actual tweet text. Before we can use this data with our LingPipe model, we must write each
tweet into an individual file. To do this, we created three string variables. The filename
variable will be assigned either pos or neg depending on each tweet's classification and will
be used in the write operation. We also use the file variable to hold the name of the
individual tweet file and the text variable to hold the individual tweet text. Next, we use
the readAllLines method with the Paths class's get method to store our data in a List
object. We need to specify the charset, StandardCharsets.ISO_8859_1, as well:

try {
    String filename;
    String file;
    String text;
    List<String> lines = Files.readAllLines(
Paths.get("\\path-to-file\\SentimentAnalysisDataset.csv"),
StandardCharsets.ISO_8859_1);
    ...

} catch (IOException ex) {
    // Handle exceptions
}

http://thinknook.com/wp-content/uploads/2012/09/Sentiment-Analysis-Dataset.zip


Bringing It All Together

[ 347 ]

Now we can loop through our list and use the split method to store our .csv data in a
string array. We convert the element at position 1 to an integer and determine whether it is
a 1. Tweets classified with a 1 are considered positive tweets and we set filename to pos.
All other tweets set the filename to neg. We extract the output filename from the element
at position 0 and the text from element 3. We ignore the label in position 2 for the purposes
of this project. Finally, we write out our data:

for(String s : lines) {
    String[] oneLine = s.split(",");
    if(Integer.parseInt(oneLine[1])==1) {
        filename = "pos";
    } else {
        filename = "neg";
    }
    file = oneLine[0]+".txt";
    text = oneLine[3];
    Files.write(Paths.get(
        path-to-file\\txt_sentoken"+filename+""+file),
        text.getBytes());
}

Notice that we created the neg and pos directories within the txt_sentoken directory.
This location is important when we read the files to build our model.

Building the sentiment model
Now we are ready to build our model. We loop through the labels array, which contains
pos and neg, and for each label we create a new Classification object. We then create a
new file using this label and use the listFiles method to create an array of filenames.
Next, we will traverse these filenames using a for loop:

public void buildSentimentAnalysisModel() {
    out.println("Building Sentiment Model");

    File trainingDir = new File("\\path to file\\txt_sentoken");
    for (int i = 0; i < labels.length; i++) {
        Classification classification =
            new Classification(labels[i]);
        File file = new File(trainingDir, labels[i]);
        File[] trainingFiles = file.listFiles();
        ...
    }
}



Bringing It All Together

[ 348 ]

Within the for loop, we extract the tweet data and store it in our string, review. We then
create a new Classified object using review and classification. Finally we can call
the handle method to classify this particular text:

for (int j = 0; j < trainingFiles.length; j++) {
    try {
        String review = Files.readFromFile(trainingFiles[j],
            "ISO-8859-1");
        Classified<CharSequence> classified = new
            Classified<>(review, classification);
        classifier.handle(classified);
    } catch (IOException ex) {
        // Handle exceptions
    }
 }

For the dataset discussed in the previous section, this process may take a substantial
amount of time. However, we consider this time trade-off to be worth the quality of
analysis made possible by this training data.

Processing the JSON input
The Twitter data is retrieved using JSON format. We will use Twitter4J (h t t p ://t w i t t e r 4j

. o r g ) to extract the relevant parts of the tweet and store in the corresponding field of the
TweetHandler class.

The TweetHandler class's processJSON method does the actual data extraction. An
instance of the JSONObject is created based on the JSON text. The class possesses several
methods to extract specific types of data from an object. We use the getString method to
get the fields we need.

The start of the processJSON method is shown next, where we start by obtaining the
JSONObject instance, which we will use to extract the relevant parts of the tweet:

public TweetHandler processJSON() {
    try {
        JSONObject jsonObject = new JSONObject(this.jsonText);
        ...
    } catch (JSONException ex) {
        // Handle exceptions
    }
    return this;
}

http://twitter4j.org
http://twitter4j.org
http://twitter4j.org
http://twitter4j.org
http://twitter4j.org
http://twitter4j.org
http://twitter4j.org
http://twitter4j.org
http://twitter4j.org
http://twitter4j.org
http://twitter4j.org
http://twitter4j.org
http://twitter4j.org
http://twitter4j.org
http://twitter4j.org
http://twitter4j.org
http://twitter4j.org
http://twitter4j.org
http://twitter4j.org
http://twitter4j.org
http://twitter4j.org
http://twitter4j.org
http://twitter4j.org
http://twitter4j.org
http://twitter4j.org
http://twitter4j.org
http://twitter4j.org
http://twitter4j.org
http://twitter4j.org
http://twitter4j.org
http://twitter4j.org


Bringing It All Together

[ 349 ]

First, we extract the tweet's text as shown here:

this.text = jsonObject.getString("text");

Next, we extract the tweet's date. We use the SimpleDateFormat class to convert the date
string to a Date object. Its constructor is passed a string that specifies the format of the date
string. We used the string "EEE MMM d HH:mm:ss Z yyyy", whose parts are detailed
next. The order of the string elements corresponds to the order found in the JSON entity:

EEE: Day of the week specified using three characters
MMM: Month, using three characters
d: Day of the month
HH:mm:ss: Hours, minutes, and seconds
Z: Time zone
yyyy: Year

The code follows:

SimpleDateFormat sdf = new SimpleDateFormat(
    "EEE MMM d HH:mm:ss Z yyyy");
try {
    this.date = sdf.parse(jsonObject.getString("created_at"));
} catch (ParseException ex) {
    // Handle exceptions
}

The remaining fields are extracted as shown next. We had to extract an intermediate JSON
object to extract the name field:

this.language = jsonObject.getString("lang");
JSONObject user = jsonObject.getJSONObject("user");
this.userName = user.getString("name");

Having acquired and extracted the text, we are now ready to perform the important task of
cleaning the data.

Cleaning data to improve our results
Data cleaning is a critical step in most data science problems. Data that is not properly
cleaned may have errors such as misspellings, inconsistent representation of elements such
as dates, and extraneous words.



Bringing It All Together

[ 350 ]

There are numerous data cleaning options that we can apply to Twitter data. For this
application, we perform simple cleaning. In addition, we will filter out certain tweets.

The conversion of the text to lowercase letters is easily achieved as shown here:

    public TweetHandler toLowerCase() {
        this.text = this.text.toLowerCase().trim();
        return this;
    }

Part of the process is to remove certain tweets that are not needed. For example, the
following code illustrates how to detect whether the tweet is in English and whether it
contains a sub-topic of interest to the user. The boolean return value is used by the filter
method in the Java 8 stream, which performs the actual removal:

    public boolean isEnglish() {
        return this.language.equalsIgnoreCase("en");
    }

    public boolean containsCharacter(String character) {
        return this.text.contains(character);
    }

Numerous other cleaning operations can be easily added to the process such as removing
leading and trailing white space, replacing tabs, and validating dates and email addresses.

Removing stop words
Stop words are those words that do not contribute to the understanding or processing of
data. Typical stop words include the 0, and, a, and or. When they do not contribute to the
data process, they can be removed to simplify processing and make it more efficient.

There are several techniques for removing stop words, as discussed in Chapter 9, Text
Analysis. For this application, we will use LingPipe (h t t p ://a l i a s - i . c o m /l i n g p i p e /) to
remove stop words. We use the EnglishStopTokenizerFactory class to obtain a model
for our stop words based on an IndoEuropeanTokenizerFactory instance:

public TweetHandler removeStopWords() {
    TokenizerFactory tokenizerFactory
            = IndoEuropeanTokenizerFactory.INSTANCE;
    tokenizerFactory =
        new EnglishStopTokenizerFactory(tokenizerFactory);
    ...
    return this;
}

http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/


Bringing It All Together

[ 351 ]

A series of tokens that do not contain stop words are extracted, and a StringBuilder
instance is used to create a string to replace the original text:

Tokenizer tokens = tokenizerFactory.tokenizer(
        this.text.toCharArray(), 0, this.text.length());
StringBuilder buffer = new StringBuilder();
for (String word : tokens) {
    buffer.append(word + " ");
}
this.text = buffer.toString();

The LingPipe model we used may not be the best suited for all tweets. In addition, it has
been suggested that removing stop words from tweets may not be productive
(http://oro.open.ac.uk/40666/). Options to select various stop words and whether stop
words should even be removed can be added to the stream process.

Performing sentiment analysis
We can now perform sentiment analysis using the model built in the Building the sentiment
model section of this chapter. We create a new Classification object by passing our
cleaned text to the classify method. We then use the bestCategory method to classify
our text as either positive or negative. Finally, we set category to the result and return the
TweetHandler object:

public TweetHandler performSentimentAnalysis() {
    Classification classification =
        classifier.classify(this.text);
    String bestCategory = classification.bestCategory();
    this.category = bestCategory;
    return this;
}

We are now ready to analyze the results of our application.

Analysing the results
The analysis performed in this application is fairly simple. Once the tweets have been
classified as either positive or negative, a total is computed. We used two static variables for
this purpose:

    private static int numberOfPositiveReviews = 0;
    private static int numberOfNegativeReviews = 0;

http://oro.open.ac.uk/40666/


Bringing It All Together

[ 352 ]

The computeStats method is called from the Java 8 stream and increments the appropriate
variable:

public void computeStats() {
    if(this.category.equalsIgnoreCase("pos")) {
        numberOfPositiveReviews++;
    } else {
        numberOfNegativeReviews++;
    }
}

Two static methods provide access to the number of reviews:

public static int getNumberOfPositiveReviews() {
    return numberOfPositiveReviews;
}

public static int getNumberOfNegativeReviews() {
    return numberOfNegativeReviews;
}

In addition, a simple toString method is provided to display basic tweet information:

public String toString() {
    return "\nText: " + this.text
            + "\nDate: " + this.date
            + "\nCategory: " + this.category;
}

More sophisticated analysis can be added as required. The intent of this application was to
demonstrate a technique for combining the various data processing tasks.

Other optional enhancements
There are numerous improvements that can be made to the application. Many of these are
user preferences and others relate to improving the results of the application. A GUI
interface would be useful in many situations. Among the user options, we may want add
support for:

Displaying individual tweets
Allowing null sub-topics
Processing other tweet fields



Bringing It All Together

[ 353 ]

Providing list of topics or sub-topics the user can choose from
Generating additional statistics and supporting charts

With regard to process result improvements, the following should be considered:

Correct user entries for misspelling
Remove spacing around punctuation
Use alternate stop word removal techniques
Use alternate sentiment analysis techniques

The details of many of these enhancements are dependent on the GUI interface used and
the purpose and scope of the application.

Summary
The intent of this chapter was to illustrate how various data science tasks can be integrated
into an application. We chose an application that processes tweets because it is a popular
social medium and allows us to apply many of the techniques discussed in earlier chapters.

A simple console-based interface was used to avoid cluttering the discussion with specific
but possibly irrelevant GUI details. The application prompted the user for a Twitter topic, a
sub-topic, and the number of tweets to process. The analysis consisted of determining the
sentiments of the tweets, with simple statistics regarding the positive or negative nature of
the tweets.

The first step in the process was to build a sentiment model. We used LingPipe classes to
build a model and perform the analysis. A Java 8 stream was used and supported a fluent
style of programming where the individual processing steps could be easily added and
removed.

Once the stream was created, the JSON raw text was processed and used to initialize a
TweetHandler class. Instances of this class were subsequently modified, including
converting the text to lowercase, removing non-English tweets, removing stop words, and
selecting only those tweets that contain the sub-topic. Sentiment analysis was then
performed, followed by the computation of the statistics.

Data science is a broad topic that utilizes a wide range of statistical and computer science
topics. In this book, we provided a brief introduction to many of these topics and how they
are supported by Java.



Module 2

Mastering Java for Data Science

Building Data Science Applications in Java



  1
Data Science Using Java

This book is about building data science applications using the Java language. In this book,
we will cover all the aspects of implementing projects from data preparation to model
deployment.

The readers of this book are assumed to have some previous exposure to Java and data
science, and the book will help to take this knowledge to the next level. This means learning
how to effectively tackle a specific data science problem and get the most out of the
available data.

This is an introductory chapter where we will prepare the foundation for all the other
chapters. Here we will cover the following topics:

What is machine learning and data science?
Cross Industry Standard Process for Data Mining (CRIPS-DM), a methodology
for doing data science projects
Machine learning libraries in Java for medium and large-scale data science
applications

By the end of this chapter, you will know how to approach a data science project and what
Java libraries to use to do that.



Data Science Using Java

[ 356 ]

Data science
Data science is the discipline of extracting actionable knowledge from data of various
forms. The name data science emerged quite recently--it was invented by DJ Patil and Jeff
Hammerbacher and popularized in the article Data Scientist: The Sexiest Job of the 21st
Century in 2012. But the discipline itself had existed before for quite a while and previously
was known by other names such as data mining or predictive analytics. Data science, like
its predecessors, is built on statistics and machine learning algorithms for knowledge
extraction and model building.

The science part of the term data science is no coincidence--if we look up science, its
definition can be summarized to systematic organization of knowledge in terms testable
explanations and predictions. This is exactly what data scientists do, by extracting patterns
from available data, they can make predictions about future unseen data, and they make
sure the predictions are validated beforehand.

Nowadays, data science is used across many fields, including (but not limited to):

Banking: Risk management (for example, credit scoring), fraud detection, trading
Insurance: Claims management (for example, accelerating claim approval), risk
and losses estimation, also fraud detection
Health care: Predicting diseases (such as strokes, diabetes, cancer) and relapses
Retail and e-commerce: Market basket analysis (identifying product that go well
together), recommendation engines, product categorization, and personalized
searches

This book covers the following practical use cases:

Predicting whether an URL is likely to appear on the first page of a search engine
Predicting how fast an operation will be completed given the hardware
specifications
Ranking text documents for a search engine
Checking whether there is a cat or a dog on a picture
Recommending friends in a social network
Processing large-scale textual data on a cluster of computers

In all these cases, we will use data science to learn from data and use the learned knowledge
to solve a particular business problem.



Data Science Using Java

[ 357 ]

We will also use a running example throughout the book, building a search engine. We will
use it to illustrate many data science concepts such as, supervised machine learning,
dimensionality reduction, text mining, and learning to rank models.

Machine learning
Machine learning is a part of computer science, and it is at the core of data science. The data
itself, especially in big volumes, is hardly useful, but inside it hides highly valuable
patterns. With the help of machine learning, we can recognize these hidden patterns, extract
them, and then apply the learned information to the new unseen items.

For example, given the image of an animal, a machine learning algorithm can say whether
the picture is a dog or a cat; or, given the history of a bank client, it will say how likely the
client is to default, that is, to fail to pay the debt.

Often, machine learning models are seen as black boxes that take in a data point and output
a prediction for it. In this book, we will look at what is inside these black boxes and see how
and when it is best to use them.

The typical problems that machine learning solves can be categorized in the following
groups:

Supervised learning: For each data point, we have a label--extra information that
describes the outcome that we want to learn. In the cats versus dogs case, the data
point is an image of the animal; the label describes whether it's a dog or a cat.
Unsupervised learning: We only have raw data points and no label information
is available. For example, we have a collection of e-mails and we would like to
group them based on how similar they are. There is no explicit label associated
with the e-mails, which makes this problem unsupervised.
Semi-supervised learning: Labels are given only for a part of the data.
Reinforcement learning: Instead of labels, we have a reward; something the
model gets by interacting with the environment it runs in. Based on the reward, it
can adapt and maximize it. For example, a model that learns how to play chess
gets a positive reward each time it eats a figure of the opponent, and gets a
negative reward each time it loses a figure; and the reward is proportional to the
value of the figure.



Data Science Using Java

[ 358 ]

Supervised learning
As we discussed previously, for supervised learning we have some information attached to
each data point, the label, and we can train a model to use it and to learn from it. For
example, if we want to build a model that tells us whether there is a dog or a cat on a
picture, then the picture is the data point and the information whether it is a dog or a cat is
the label. Another example is predicting the price of a house--the description of a house is
the data point, and the price is the label.

We can group the algorithms of supervised learning into classification and regression
algorithms based on the nature of this information.

In classification problems, the labels come from some fixed finite set of classes, such as {cat,
dog}, {default, not default}, or {office, food, entertainment, home}. Depending on the
number of classes, the classification problem can be binary (only two possible classes) or
multi-class (several classes).

Examples of classification algorithms are Naive Bayes, logistic regression, perceptron,
Support Vector Machine (SVM), and many others. We will discuss classification
algorithms in more detail in the first part of Chapter 4, Supervised Learning - Classification
and Regression.

In regression problems, the labels are real numbers. For example, a person can have a
salary in the range from $0 per year to several billions per year. Hence, predicting the salary
is a regression problem.

Examples of regression algorithms are linear regression, LASSO, Support Vector
Regression (SVR), and others. These algorithms will be described in more detail in the
second part of Chapter 4, Supervised Learning - Classification and Regression.

Some of the supervised learning methods are universal and can be applied to both
classification and regression problems. For example, decision trees, random forest, and
other tree-based methods can tackle both types. We will discuss one such algorithm,
gradient boosting machines in Chapter 7, Extreme Gradient Boosting.

Neural networks can also deal with both classification and regression problems, and we
will talk about them in Chapter 8, Deep Learning with DeepLearning4J.



Data Science Using Java

[ 359 ]

Unsupervised learning
Unsupervised learning covers the cases where we have no labels available, but still want to
find some patterns hidden in the data. There are several types of unsupervised learning,
and we will look into cluster analysis, or clustering and unsupervised dimensionality
reduction.

Clustering
Typically, when people talk about unsupervised learning, they talk about cluster analysis
or clustering. A cluster analysis algorithm takes a set of data points and tries to categorize
them into groups such that similar items belong to the same group, and different items do
not. There are many ways where it can be used, for example, in customer segmentation or
text categorization.

Customer segmentation is an example of clustering. Given some description of customers,
we try to put them into groups such that the customers in one group have similar profiles
and behave in a similar way. This information can be used to understand what do the
people in these groups want, and this can be used to target them with better advertisements
and other promotional messages.

Another example is text categorization. Given a collection of texts, we would like to find
common topics among these texts and arrange the texts according to these topics. For
example, given a set of complaints in an e-commerce store, we may want to put ones that
talk about similar things together, and this should help the users of the system navigate
through the complaints easier.

Examples of cluster analysis algorithms are hierarchical clustering, k-means, density-based
spatial clustering of applications with noise (DBSCAN), and many others. We will talk
about clustering in detail in the first part of Chapter 5, Unsupervised Learning - Clustering
and Dimensionality Reduction.

Dimensionality reduction
Another group of unsupervised learning algorithms is dimensionality reduction
algorithms. This group of algorithms compresses the dataset, keeping only the most useful
information. If our dataset has too much information, it can be hard for a machine learning
algorithm to use all of it at the same time. It may just take too long for the algorithm to
process all the data and we would like to compress the data, so processing it takes less time.



Data Science Using Java

[ 360 ]

There are multiple algorithms that can reduce the dimensionality of the data, including
Principal Component Analysis (PCA), Locally linear embedding, and t-SNE. All these
algorithms are examples of unsupervised dimensionality reduction techniques.

Not all dimensionality reduction algorithms are unsupervised; some of them can use labels
to reduce the dimensionality better. For example, many feature selection algorithms rely on
labels to see what features are useful and what are not.

We will talk more about this in Chapter 5, Unsupervised Learning - Clustering and
Dimensionality Reduction.

Natural Language Processing
Processing natural language texts is very complex, they are not very well structured and
require a lot of cleaning and normalizing. Yet the amount of textual information around us
is tremendous: a lot of text data is generated every minute, and it is very hard to retrieve
useful information from them. Using data science and machine learning is very helpful for
text problems as well; they allow us to find the right text, process it, and extract the valuable
bits of information.

There are multiple ways we can use the text information. One example is information
retrieval, or, simply, text search--given a user query and a collection of documents, we want
to find what are the most relevant documents in the corpus with respect to the query, and
present them to the user. Other applications include sentiment analysis--predicting whether
a product review is positive, neutral or negative, or grouping the reviews according to how
they talk about the products.

We will talk more about information retrieval, Natural Language Processing (NLP) and
working with texts in Chapter 6, Working with Text - Natural Language Processing and
Information Retrieval. Additionally, we will see how to process large amounts of text data in
Chapter 9, Scaling Data Science.

The methods we can use for machine learning and data science are very important. What is
equally important is the the way we create them and then put them to use in production
systems. Data science process models help us make it more organized and systematic,
which is why we will talk about them next.



Data Science Using Java

[ 361 ]

Data science process models
Applying data science is much more than just selecting a suitable machine learning
algorithm and using it on the data. It is always good to keep in mind that machine learning
is only a small part of the project; there are other parts such as understanding the problem,
collecting the data, testing the solution and deploying to the production.

When working on any project, not just data science ones, it is beneficial to break it down
into smaller manageable pieces and complete them one-by-one. For data science, there are
best practices that describe how to do it the best way, and they are called process models.
There are multiple models, including CRISP-DM and OSEMN.

In this chapter, CRISP-DM is explained as Obtain, Scrub, Explore, Model, and iNterpret
(OSEMN), which is more suitable for data analysis tasks and addresses many important
steps to a lesser extent.

CRISP-DM
Cross Industry Standard Process for Data Mining (CRISP-DM) is a process methodology
for developing data mining applications. It was created before the term data science became
popular, it's reliable and time-tested by several generations of analytics. These practices are
still useful nowadays and describe the high-level steps of any analytical project quite well.

Image source: h t t p s ://e n . w i k i p e d i a . o r g /w i k i /F i l e :C R I S P - D M _ P r o c e s s _ D i a g r a m . p n g

https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://en.wikipedia.org/wiki/File:CRISP-DM_Process_Diagram.png


Data Science Using Java

[ 362 ]

The CRISP-DM methodology breaks down a project into the following steps:

Business understanding
Data understanding
Data preparation
Modeling
Evaluation
Deployment

The methodology itself defines much more than just these steps, but typically knowing
what the steps are and what happens at each step is enough for a successful data science
project. Let's look at each of these steps separately.

The first step is Business Understanding. This step aims at learning what kinds of
problems the business has and what they want to achieve by solving these problems. To be
successful, a data science application must be useful for the business. The result of this step
is the formulation of a problem which we want to solve and what is the desired outcome of
the project.

The second step is Data Understanding. In this step, we try to find out what data can be
used to solve the problem. We also need to find out if we already have the data; if not, we
need to think how we can we get it. Depending on what data we find (or do not find), we
may want to alter the original goal.

When the data is collected, we need to explore it. The process of reviewing the data is often
called Exploratory Data Analysis and it is an integral part of any data science project. it
helps to understand the processes that created the data, and can already suggest approaches
for tackling the problem. The result of this step is the knowledge about which data sources
are needed to solve the problem. We will talk more about this step in Chapter 3, Exploratory
Data Analysis.

The third step of CRISP-DM is Data Preparation. For a dataset to be useful, it needs to be
cleaned and transformed to a tabular form. The tabular form means that each row
corresponds to exactly one observation. If our data is not in this shape, it cannot be used by
most of the machine learning algorithms. Thus, we need to prepare the data such that it
eventually can be converted to a matrix form and fed to a model.

Also, there could be different datasets that contain the needed information, and they may
not be homogenous. What this means is that we need to convert these datasets to some
common format, which can be read by the model.



Data Science Using Java

[ 363 ]

This step also includes Feature Engineering--the process of creating features that are most 
informative for the problem and describe the data in the best way.

Many data scientists say that they spend most of their time on this step when building Data
Science applications. We will talk about this step in Chapter 2, Data Processing Toolbox and
throughout the book.

The fourth step is Modeling. In this step, the data is already in the right shape and we feed
it to different Machine Learning algorithms. This step also includes parameter tuning,
feature selection, and selecting the best model.

Evaluation of the quality of the models from the machine learning point of view happens
during this step. The most important thing to check is the ability to generalize, and this is
typically done via cross validation. In this step, we also may want to go back to the previous
step and do extra cleaning and feature engineering. The outcome is a model that is
potentially useful for solving the problem defined in Step 1.

The fifth step is Evaluation. It includes evaluating the model from the business perspective-
-not from the machine learning perspective. This means that we need to perform a critical
review of the results so far and plan the next steps. Does the model achieve what we want?
Additionally, some of the findings may lead to reconsidering the initial question. After this
step, we can go to the deployment step or re-iterate the process.

The, final, sixth step is Model Deployment. During this step, the produced model is added
to the production, so the result is the model integrated to the live system. We will cover this
step in Chapter 10, Deploying Data Science Models.

Often, evaluation is hard because it is not always possible to say whether the model
achieves the desired result or not. In these cases, the evaluation and deployment steps can
be combined into one, the model is deployed and applied only to a part of users, and then
the data for evaluating the model is collected. We will also briefly cover the ways of doing
them, such as A/B testing and multi-armed bandits, in the last chapter of the book.

A running example
There will be many practical use cases throughout the book, sometimes a couple in each
chapter. But we will also have a running example, building a search engine. This problem is
interesting for a number of reasons:

It is fun
Business in almost any domain can benefit from a search engine



Data Science Using Java

[ 364 ]

Many businesses already have text data; often it is not used effectively, and its
use can be improved
Processing text requires a lot of effort, and it is useful to learn to do this
effectively

We will try to keep it simple, yet, with this example, we will touch on all the technical parts
of the data science process throughout the book:

Data Understanding: Which data can be useful for the problem? How can we
obtain this data?
Data Preparation: Once the data is obtained, how can we process it? If it is
HTML, how do we extract text from it? How do we extract individual sentences
and words from the text?
Modeling: Ranking documents by their relevance with respect to a query is a
data science problem and we will discuss how it can be approached.
Evaluation: The search engine can be tested to see if it is useful for solving the
business problem or not.
Deployment: Finally, the engine can be deployed as a REST service or integrated
directly to the live system.

We will obtain and prepare the data in Chapter 2, Data Processing Toolbox, understand the
data in Chapter 3, Exploratory Data Analysis, build simple models and evaluate them in
Chapter 4, Supervised Machine Learning - Classification and Regression, look at how to process
text in Chapter 6, Working with Text - Natural Language Processing and Information Retrieval,
see how to apply it to millions of webpages in Chapter 9, Scaling Data Science, and, finally,
learn how we can deploy it in Chapter 10, Deploying Data Science Models.

Data science in Java
In this book, we will use Java for doing data science projects. Java might not seem a good
choice for data science at first glance, unlike Python or R, it has fewer data science and
machine learning libraries, it is more verbose and lacks interactivity. On the other hand, it
has a lot of upsides as follows:

Java is a statically typed language, which makes it easier to maintain the code
base and harder to make silly mistakes--the compiler can detect some of them.
The standard library for data processing is very rich, and there are even richer
external libraries.



Data Science Using Java

[ 365 ]

Java code is typically faster than the code in scripting languages that are usually
used for data science (such as R or Python).
Maven, the de-facto standard for dependency management in the Java world,
makes it very easy to add new libraries to the project and avoid version conflicts.
Most of big data frameworks for scalable data processing are written in either
Java or JVM languages, such as Apache Hadoop, Apache Spark, or Apache Flink.
Very often production systems are written in Java and building models in other
languages adds unnecessary levels of complexity. Creating the models in Java
makes it easier to integrate them to the product.

Next, we will look at the data science libraries available in Java.

Data science libraries
While there are not as many data science libraries in Java compared to R, there are quite a
few. Additionally, it is often possible to use machine learning and data mining libraries
written in other JVM languages, such as Scala, Groovy, or Clojure. Because these languages
share the runtime environment, it makes it very easy to import libraries written in Scala and
use them directly in Java code.

We can divide the libraries into the following categories:

Data processing libraries
Math and stats libraries
Machine learning and data mining libraries
Text processing libraries

Now we will see each of them in detail.

Data processing libraries
The standard Java library is very rich and offers a lot of tools for data processing, such as
collections, I/O tools, data streams, and means of parallel task execution.

There are very powerful extensions to the standard library such as:

Google Guava (https://github.com/google/guava) and Apache Common
Collections (https://commons.apache.org/collections/) for richer collections

https://github.com/google/guava
https://commons.apache.org/collections/


Data Science Using Java

[ 366 ]

Apache Commons IO (https://commons.apache.org/io/) for simplified I/O
AOL Cyclops-React (https://github.com/aol/cyclops-react) for richer
functional-way parallel streaming

We will cover both the standard API for data processing and its extensions in Chapter 2,
Data Processing Toolbox. In this book, we will use Maven for including external libraries such
as Google Guava or Apache Commons IO. It is a dependency management tool and allows
to specify the external dependencies with a few lines of XML code. For example, to add
Google Guava, it is enough to declare the following dependency in pom.xml:

<dependency>
 <groupId>com.google.guava</groupId>
 <artifactId>guava</artifactId>
 <version>19.0</version>
</dependency>

When we do it, Maven will go to the Maven Central repository and download the
dependency of the specified version. The best way to find the dependency snippets for
pom.xml (such as the previous one) is to use the search at https://mvnrepository.com or
your favorite search engine.

Java gives an easy way to access databases through Java Database Connectivity (JDBC)--a
unified database access protocol. JDBC makes it possible to connect virtually any relational
database that supports SQL, such as MySQL, MS SQL, Oracle, PostgreSQL, and many
others. This allows moving the data manipulation from Java to the database side.

When it is not possible to use a database for handling tabular data, then we can use
DataFrame libraries for doing it directly in Java. The DataFrame is a data structure that
originally comes from R and it allows to easily manipulate textual data in the program,
without resorting to external database.

For example, with DataFrames it is possible to filter rows based on some condition, apply
the same operation to each element of a column, group by some condition or join with
another DataFrame. Additionally, some data frame libraries make it easy to convert tabular
data to a matrix form so that the data can be used by machine learning algorithms.

There are a few data frame libraries available in Java. Some of them are as follows:

Joinery (https://cardillo.github.io/joinery/)
Tablesaw (https://github.com/lwhite1/tablesaw)
Saddle (https://saddle.github.io/) a data frame library for Scala
Apache Spark DataFrames (http://spark.apache.org/)

https://commons.apache.org/io/
https://github.com/aol/cyclops-react
https://mvnrepository.com/
https://cardillo.github.io/joinery/
https://github.com/lwhite1/tablesaw
https://saddle.github.io/
http://spark.apache.org/


Data Science Using Java

[ 367 ]

We will also cover databases and data frames in Chapter 2, Data Processing Toolbox and we
will use DataFrames throughout the book.

There are more complex data processing libraries such as Spring Batch
(http://projects.spring.io/spring-batch/). They allow creating complex data pipelines
(called ETLs from Extract-Transform-Load) and manage their execution.

Additionally, there are libraries for distributed data processing such as:

Apache Hadoop (http://hadoop.apache.org/)
Apache Spark (http://spark.apache.org/)
Apache Flink (https://flink.apache.org/)

We will talk about distributed data processing in Chapter 9, Scaling Data Science.

Math and stats libraries
The math support in the standard Java library is quite limited, and only includes methods
such as log for computing the logarithm, exp for computing the exponent and other basic
methods.

There are external libraries with richer support of mathematics. For example:

Apache Commons Math (http://commons.apache.org/math/) for statistics,
optimization, and linear algebra
Apache Mahout (http://mahout.apache.org/) for linear algebra, also includes a
module for distributed linear algebra and machine learning
JBlas (http://jblas.org/) optimized and very fast linear algebra package that
uses the BLAS library

Also, many machine learning libraries come with some extra math functionality, often
linear algebra, stats, and optimization.

Machine learning and data mining libraries
There are quite a few machine learning and data mining libraries available for Java and
other JVM languages. Some of them are as follows:

Weka (http://www.cs.waikato.ac.nz/ml/weka/) is probably the most famous
data mining library in Java, contains a lot of algorithms and has many extensions.

http://projects.spring.io/spring-batch/
http://hadoop.apache.org/
http://spark.apache.org/
https://flink.apache.org/
http://commons.apache.org/math/
http://mahout.apache.org/
http://jblas.org/
http://jblas.org/
http://www.cs.waikato.ac.nz/ml/weka/


Data Science Using Java

[ 368 ]

JavaML (http://java-ml.sourceforge.net/) is quite an old and reliable ML
library, but unfortunately not updated anymore
Smile (http://haifengl.github.io/smile/) is a promising ML library that is
under active development at the moment and a lot of new methods are being
added there.
JSAT (https://github.com/EdwardRaff/JSAT) contains quite an impressive list
of machine learning algorithms.
H2O (http://www.h2o.ai/) is a framework for distributed ML written in Java,
but is available for multiple languages, including Scala, R, and Python.
Apache Mahout (http://mahout.apache.org/) is used for in-core (one machine)
and distributed machine learning. The Mahout Samsara framework allows
writing the code in a framework-independent way and then executes it on Spark,
Flink, or H2O.

There are several libraries that specialize solely on neural networks:

Encog (http://www.heatonresearch.com/encog/)
DeepLearning4j (http://deeplearning4j.org/)

We will cover some of these libraries throughout the book.

Text processing
It is possible to do simple text processing using only the standard Java library with classes
such as StringTokenizer, the java.text package, or the regular expressions.

In addition to that, there is a big variety of text processing frameworks available for Java as
follows:

Apache Lucene (https://lucene.apache.org/) is a library that is used for 
information retrieval
Stanford CoreNLP (http://stanfordnlp.github.io/CoreNLP/)
Apache OpenNLP (https://opennlp.apache.org/)
LingPipe (http://alias-i.com/lingpipe/)
GATE (https://gate.ac.uk/)
MALLET (http://mallet.cs.umass.edu/)
Smile (http://haifengl.github.io/smile/) also has some algorithms for NLP

http://java-ml.sourceforge.net/
http://haifengl.github.io/smile/
https://github.com/EdwardRaff/JSAT
http://www.h2o.ai/
http://mahout.apache.org/
http://www.heatonresearch.com/encog/
http://deeplearning4j.org/
https://lucene.apache.org/
http://stanfordnlp.github.io/CoreNLP/
https://opennlp.apache.org/
http://alias-i.com/lingpipe/
https://gate.ac.uk/
http://mallet.cs.umass.edu/
http://haifengl.github.io/smile/


Data Science Using Java

[ 369 ]

Most NLP libraries have very similar functionality and coverage of algorithms, which is
why selecting which one to use is usually a matter of habit or taste. They all typically have
tokenization, parsing, part-of-speech tagging, named entity recognition, and other
algorithms for text processing. Some of them (such as StanfordNLP) support multiple
languages, and some support only English.

We will cover some of these libraries in Chapter 6, Working with Text - Natural Language
Processing and Information Retrival.

Summary
In this chapter, we briefly discussed data science and what role machine learning plays in it.
Then we talked about doing a data science project, and what methodologies are useful for
it. We discussed one of them, CRISP-DM, the steps it defines, how these steps are related
and the outcome of each step.

Finally, we spoke about why doing a data science project in Java is a good idea, it is
statically compiled, it's fast, and often the existing production systems already run in Java.
We also mentioned libraries and frameworks one can use to successfully accomplish a data
science project using the Java language.

With this foundation, we will now go to the most important (and most time-consuming)
step in a data science project--Data Preparation.



  2
Data Processing Toolbox

In the previous chapter, we discussed the best practices for approaching data science
problems. We looked at CRISP-DM, which is the methodology for dealing with data mining
projects, and one of the first steps there is data preprocessing. In this chapter, we will take a
closer look at how to do this in Java.

Specifically, we will cover the following topics:

Standard Java library
Extensions to the standard library
Reading data from different sources such as text, HTML, JSON, and databases
DataFrames for manipulating tabular data

In the end, we will put everything together to prepare the data for the search engine.

By the end of this chapter, you will be able to process data such that it can be used for
machine learning and further analysis.

Standard Java library
The standard Java library is very rich and offers a lot of tools for data manipulation,
including:

Collections for organizing data in memory
I/O for reading and writing data
Streaming APIs for making data transformations easy

In this chapter, we will look at all these tools in detail.



Data Processing Toolbox

[ 371 ]

Collections
Data is the most important part of data science. When dealing with data, it needs to be
efficiently stored and processed, and for this we use data structures. A data structure
describes a way to store data efficiently to solve a specific problem, and the Java Collection
API is the standard Java API for data structures. This API offers a wide variety of
implementations that are useful in practical data science applications.

We will not describe the collection API in full detail, but concentrate on the most useful and
important ones--list, set, and map interfaces.

Lists are collections where each element can be accessed by its index. The g0-to
implementation of the List interface is ArrayList, which should be used in 99% of cases
and it can be used as follows:

List<String> list = new ArrayList<>();
list.add("alpha");
list.add("beta");
list.add("beta");
list.add("gamma");
System.out.println(list);

There are other implementations of the List interface, LinkedList or
CopyOnWriteArrayList, but they are rarely needed.

Set is another interface in the Collections API, and it describes a collection which allows no
duplicates. The go-to implementation is HashSet, if the order in which we insert elements
does not matter, or LinkedHashSet, if the order matters. We can use it as follows:

Set<String> set = new HashSet<>();
set.add("alpha");
set.add("beta");
set.add("beta");
set.add("gamma");
System.out.println(set);

List and Set both implement the Iterable interface, which makes it possible to use the
for-each loop with them:

for (String el : set) {
    System.out.println(el);
}



Data Processing Toolbox

[ 372 ]

The Map interface allows mapping keys to values, and is sometimes called as dictionary or
associative array in other languages. The g0-to implementation is HashMap:

Map<String, String> map = new HashMap<>();
map.put("alpha", "α");
map.put("beta", "β");
map.put("gamma", "γ");
System.out.println(map);

If you need to keep the insertion order, you can use LinkedHashMap; if you know that the
map interface will be accessed from multiple threads, use ConcurrentHashMap.

The Collections class provides several helper methods for dealing with collections such
as sorting, or extracting the max or min elements:

String min = Collections.min(list);
String max = Collections.max(list);
System.out.println("min: " + min + ", max: " + max);
Collections.sort(list);
Collections.shuffle(list);

There are other collections such as Queue, Deque, Stack, thread-safe collections, and some
others. They are less frequently used and not very important for data science.

Input/Output
Data scientists often work with files and other data sources. I/O is needed for reading from
the data sources and writing the results back. The Java I/O API provides two main types of
abstraction for this:

InputStream, OutputStream for binary data
Reader, Writer for text data

Typical data science applications deal with text rather than raw binary data--the data is
often stored in TXT, CSV, JSON, and other similar text formats. This is why we will
concentrate on the second part.

Reading input data
Being able to read data is the most important skill for a data scientist, and this data is
usually in text format, be it TXT, CSV, or any other format. In Java I/O API, the subclasses of
the Reader classes deal with reading text files.



Data Processing Toolbox

[ 373 ]

Suppose we have a text.txt file with some sentences (which may or may not make sense):

My dog also likes eating sausage
The motor accepts beside a surplus
Every capable slash succeeds with a worldwide blame
The continued task coughs around the guilty kiss

If you need to read the whole file as a list of strings, the usual Java I/O way of doing this is
using BufferedReader:

List<String> lines = new ArrayList<>();

try (InputStream is = new FileInputStream("data/text.txt")) {
    try (InputStreamReader isReader = new InputStreamReader(is,
               StandardCharsets.UTF_8)) {
        try (BufferedReader reader = new BufferedReader(isReader)) {
            while (true) {
                String line = reader.readLine();
                if (line == null) {
                    break;
                }
                lines.add(line);
            }

            isReader.close();
        }
    }
}

It is important to provide character encoding--this way, the Reader knows
how to translate the sequence of bytes into a proper String object. Apart
from UTF-8, there are UTF-16, ISO-8859 (which is ASCII-based text
encoding for English), and many others.

There is a shortcut to get BufferedReader for a file directly:

Path path = Paths.get("data/text.txt");
try (BufferedReader reader = Files.newBufferedReader(path,
        StandardCharsets.UTF_8)) {
    // read line-by-line
}



Data Processing Toolbox

[ 374 ]

Even with this shortcut, you can see that this is quite verbose for such a simple task as
reading a list of lines from a file. You can wrap this in a helper function, or instead use the
Java NIO API, which gives some helper methods to make this task easier:

Path path = Paths.get("data/text.txt");
List<String> lines = Files.readAllLines(path, StandardCharsets.UTF_8);
System.out.println(lines);

The Java NIO shortcuts work only for files. Later, we will talk about
shortcuts that work for any InputStream objects, not just files.

Writing ouput data
After the data is read and processed, we often want to put it back on disk. For text, this is
usually done using the Writer objects.

Suppose we read the sentences from text.txt and we need to convert each line to
uppercase and write them back to a new file output.txt; the most convenient way of
writing the text data is via the PrintWriter class:

try (PrintWriter writer = new PrintWriter("output.txt", "UTF-8")) {
    for (String line : lines) {
        String upperCase = line.toUpperCase(Locale.US);
        writer.println(upperCase);
    }
}

In Java NIO API, it would look like this:

Path output = Paths.get("output.txt");
try (BufferedWriter writer = Files.newBufferedWriter(output,
           StandardCharsets.UTF_8)) {
    for (String line : lines) {
        String upperCase = line.toUpperCase(Locale.US);
        writer.write(upperCase);
        writer.newLine();
    }
}

Both ways are correct and you should select the one that you prefer. However, it is
important to remember to always include the encoding; otherwise, it may use some default
values which are platform-dependent and sometimes arbitrary.



Data Processing Toolbox

[ 375 ]

Streaming API
Java 8 was a big step forward in the history of the Java language. Among other features,
there were two important things--Streams and Lambda expressions.

In Java, a stream is a sequence of objects, and the Streams API provides functional-style
operations to transform these sequences, such as map, filter, and reduce. The sources for
streams can be anything that contain elements, for example, arrays, collections, or files.

For example, let's create a simple Word class, which contains a token and its part of speech:

public class Word {
    private final String token;
    private final String pos;
    // constructor and getters are omitted
}

For brevity, we will always omit constructors and getters for such data classes, but indicate
that with a comment.

Now, let's consider a sentence My dog also likes eating sausage. Using this class, we can
represent it as follows:

Word[] array = { new Word("My", "RPR"), new Word("dog", "NN"),
     new Word("also", "RB"), new Word("likes", "VB"),
     new Word("eating", "VB"), new Word("sausage", "NN"),
     new Word(".", ".") };

Here, we use the Penn Treebank POS notation, where NN represents a noun or VB represents
a verb.

Now, we can convert this array to a stream using the Arrays.stream utility method:

Stream<Word> stream = Arrays.stream(array);

Streams can be created from collections using the stream method:

List<Word> list = Arrays.asList(array);
Stream<Word> stream = list.stream();

The operations on streams are chained together and form nice and readable data processing
pipelines. The most common operations on streams are the map and filter operations:

Map applies the same transformer function to each element
Filter, given a predicate function, filters out elements that do not satisfy it



Data Processing Toolbox

[ 376 ]

At the end of the pipeline, you collect the results using a collector. The Collectors class
provides several implementations such as toList, toSet, toMap, and others.

Suppose we want to keep only tokens which are nouns. With the Streams API, we can do it
as follows:

List<String> nouns = list.stream()
        .filter(w -> "NN".equals(w.getPos()))
        .map(Word::getToken)
        .collect(Collectors.toList());
System.out.println(nouns);

Alternatively, we may want to check how many unique POS tags there are in the stream.
For this, we can use the toSet collector:

Set<String> pos = list.stream()
        .map(Word::getPos)
        .collect(Collectors.toSet());
System.out.println(pos);

When dealing with texts, we may sometimes want to join a sequence of strings together:

String rawSentence = list.stream()
        .map(Word::getToken)
        .collect(Collectors.joining(" "));
System.out.println(rawSentence);

Alternatively, we can group words by their POS tag:

Map<String, List<Word>> groupByPos = list.stream()
        .collect(Collectors.groupingBy(Word::getPos));
System.out.println(groupByPos.get("VB"));
System.out.println(groupByPos.get("NN"));

Also, there is a useful toMap collector that can index a collection using some fields. For
example, if we want to get a map from tokens to the Word objects, it can be achieved using
the following code:

Map<String, Word> tokenToWord = list.stream()
        .collect(Collectors.toMap(Word::getToken, Function.identity()));
System.out.println(tokenToWord.get("sausage"));

Apart from object streams, the Streams API provides primitive streams--streams of ints,
doubles, and other primitives. These streams have useful methods for statistical calculations
such as sum, max, min, or average. A usual stream can be converted to a primitive stream
using functions such as mapToInt or mapToDouble.



Data Processing Toolbox

[ 377 ]

For example, this is how we can find the maximum length across all words in our sentence:

int maxTokenLength = list.stream()
        .mapToInt(w -> w.getToken().length())
        .max().getAsInt();
System.out.println(maxTokenLength);

Stream operations are easy to parallelize; they are applied to each item separately, and
therefore multiple threads can do that without interfering with one another. So, it is
possible to make these operations a lot faster by splitting the work across multiple
processors and execute all the tasks in parallel.

Java leverages that and provides an easy and expressive way to create parallel code; for
collections, you just need to call the parallelStream method:

int[] firstLengths = list.parallelStream()
        .filter(w -> w.getToken().length() % 2 == 0)
        .map(Word::getToken)
        .mapToInt(String::length)
        .sequential()
        .sorted()
        .limit(2)
        .toArray();
System.out.println(Arrays.toString(firstLengths));

In this example, the filtering and mapping is done in parallel, but then the stream is
converted to a sequential stream, sorted, and the top two elements are extracted to an array.
While the example is not very meaningful, it shows how much it is possible to do with
streams.

Finally, the standard Java I/O library offers some convenience methods. For example, it is
possible to represent a text file as a stream of lines using the Files.lines method:

Path path = Paths.get("text.txt");
try (Stream<String> lines = Files.lines(path, StandardCharsets.UTF_8)) {
    double average = lines
        .flatMap(line -> Arrays.stream(line.split(" ")))
        .map(String::toLowerCase)
        .mapToInt(String::length)
        .average().getAsDouble();
    System.out.println("average token length: " + average);
}

Streams are an expressive and powerful way to process data and mastering this API is very
helpful for doing data science in Java. Later on, we will often use the Stream API, so you
will see more examples of how to use it.



Data Processing Toolbox

[ 378 ]

Extensions to the standard library
The standard Java library is quite powerful, but some things take a long time to write using
it or they are simply missing. There are a number of extensions to the standard library, and
the most prominent libraries are Apache Commons (a collection of libraries) and Google
Guava. They make it easier to use the standard API or extend it, for example, by adding
new collections or implementations.

To begin with, we will briefly go over the most relevant parts of these libraries, and later on
we will see how they are used in practice.

Apache Commons
Apache Commons is a collection of open source libraries for Java, with the goal of creating
reusable Java components. There are quite a few of them, including Apache Commons
Lang, Apache Commons IO, Apache Commons Collections, and many others.

Commons Lang
Apache Commons Lang is a set of utility classes that extend the java.util package and
they make the life of a Java developer a lot easier by providing many little methods that
solve common problems and save a lot of time.

To include external libraries in Java, we usually use Maven, which makes it very easy to
manage dependencies. With Maven, the Apache Commons Lang library can be included
using this dependency snippet:

<dependency>
  <groupId>org.apache.commons</groupId>
  <artifactId>commons-lang3</artifactId>
  <version>3.4</version>
</dependency>

The library contains a lot of methods useful for general-purpose Java programming, such as
making it easier to implement the equals and hashCode methods for objects, serialization
helpers and others. In general, they are not very specific to data science, but there are a few
helper functions that are quite useful. For example,

RandomUtils and RandomStringUtils for generating data
StringEscapeUtils and LookupTranslator for escaping and un-escaping
strings



Data Processing Toolbox

[ 379 ]

EqualsBuilder and HashCodeBuilder for the fast implementation of equals
and hashCode methods
StringUtils and WordUtils for useful string manipulation methods
the Pair class

For more information, you can read the documentation at h t t p s ://c o m m o n s . a p a c h e . o r g /l

a n g .

The best way to see what is available is to download the package and see
the code available there. Every Java developer will find a lot of useful
things.

Commons IO
Like Apache Commons Lang extends the java.util standard package, Apache Commons
IO extends java.io; it is a Java library of utilities to assist with I/O in Java, which, as we
previously learned, can be quite verbose.

To include the library in your project, add the dependency snippet to the pom.xml file:

<dependency>
  <groupId>commons-io</groupId>
  <artifactId>commons-io</artifactId>
  <version>2.5</version>
</dependency>

We already learned about Files.lines from Java NIO. While it is handy, we do not
always work with files, and sometimes need to get lines from some other InputStream, for
example, a web page or a web socket.

For this purpose, Commons IO provides a very helpful utility class IOUtils. Using it,
reading the entire input stream into string or a list of strings is quite easy:

try (InputStream is = new FileInputStream("data/text.txt")) {
    String content = IOUtils.toString(is, StandardCharsets.UTF_8);
    System.out.println(content);
}

try (InputStream is = new FileInputStream("data/text.txt")) {
    List<String> lines = IOUtils.readLines(is, StandardCharsets.UTF_8);
    System.out.println(lines);
}

https://commons.apache.org/lang
https://commons.apache.org/lang
https://commons.apache.org/lang
https://commons.apache.org/lang
https://commons.apache.org/lang
https://commons.apache.org/lang
https://commons.apache.org/lang
https://commons.apache.org/lang
https://commons.apache.org/lang
https://commons.apache.org/lang
https://commons.apache.org/lang
https://commons.apache.org/lang
https://commons.apache.org/lang
https://commons.apache.org/lang
https://commons.apache.org/lang
https://commons.apache.org/lang
https://commons.apache.org/lang
https://commons.apache.org/lang
https://commons.apache.org/lang
https://commons.apache.org/lang
https://commons.apache.org/lang
https://commons.apache.org/lang
https://commons.apache.org/lang
https://commons.apache.org/lang
https://commons.apache.org/lang
https://commons.apache.org/lang
https://commons.apache.org/lang
https://commons.apache.org/lang
https://commons.apache.org/lang
https://commons.apache.org/lang
https://commons.apache.org/lang
https://commons.apache.org/lang
https://commons.apache.org/lang
https://commons.apache.org/lang
https://commons.apache.org/lang
https://commons.apache.org/lang
https://commons.apache.org/lang
https://commons.apache.org/lang
https://commons.apache.org/lang
https://commons.apache.org/lang
https://commons.apache.org/lang
https://commons.apache.org/lang
https://commons.apache.org/lang
https://commons.apache.org/lang
https://commons.apache.org/lang
https://commons.apache.org/lang
https://commons.apache.org/lang
https://commons.apache.org/lang
https://commons.apache.org/lang
https://commons.apache.org/lang
https://commons.apache.org/lang
https://commons.apache.org/lang
https://commons.apache.org/lang


Data Processing Toolbox

[ 380 ]

Although we use FileInputStream objects in this example, it can be any other stream. The
first method, IOUtils.toString, is particularly useful, and we will use it later for
crawling web pages and processing the responses from web services.

There are a lot more useful methods for I/O in this library, and to get a good overview, you
can consult the documentation available at h t t p s ://c o m m o n s . a p a c h e . o r g /i o .

Commons Collections
The Java Collections API is very powerful and it defines a good set of abstractions for data
structures in Java. The Commons Collections use these abstractions and extend the standard
Collections API with new implementations as well as new collections. To include the
library, use this snippet:

<dependency>
  <groupId>org.apache.commons</groupId>
  <artifactId>commons-collections4</artifactId>
  <version>4.1</version>
</dependency>

Some useful collections from this library are:

Bag: This is an interface for sets that can hold the same element multiple times
BidiMap: This stands for Bi-directional map. It can map from keys to values and
from values to keys

It has some overlap with collections from Google Guava, explained in the next session, but
has some additional collections that aren't implemented there. For example,

LRUMap: This is used for implementing caches
PatriciaTrie: This is used for fast string prefix lookups

Other commons modules
Commons Lang, IO, and Collections are a few commons libraries out of many. There are
other commons modules that are useful for data science:

Commons compress is used for reading compressed files such as, bzip2 (for
reading Wikipedia dumps), gzip, 7z, and others

https://commons.apache.org/io
https://commons.apache.org/io
https://commons.apache.org/io
https://commons.apache.org/io
https://commons.apache.org/io
https://commons.apache.org/io
https://commons.apache.org/io
https://commons.apache.org/io
https://commons.apache.org/io
https://commons.apache.org/io
https://commons.apache.org/io
https://commons.apache.org/io
https://commons.apache.org/io
https://commons.apache.org/io
https://commons.apache.org/io
https://commons.apache.org/io
https://commons.apache.org/io
https://commons.apache.org/io
https://commons.apache.org/io
https://commons.apache.org/io
https://commons.apache.org/io
https://commons.apache.org/io
https://commons.apache.org/io
https://commons.apache.org/io
https://commons.apache.org/io
https://commons.apache.org/io
https://commons.apache.org/io
https://commons.apache.org/io
https://commons.apache.org/io
https://commons.apache.org/io
https://commons.apache.org/io
https://commons.apache.org/io
https://commons.apache.org/io
https://commons.apache.org/io
https://commons.apache.org/io
https://commons.apache.org/io
https://commons.apache.org/io
https://commons.apache.org/io
https://commons.apache.org/io
https://commons.apache.org/io
https://commons.apache.org/io
https://commons.apache.org/io
https://commons.apache.org/io
https://commons.apache.org/io
https://commons.apache.org/io
https://commons.apache.org/io
https://commons.apache.org/io
https://commons.apache.org/io
https://commons.apache.org/io
https://commons.apache.org/io


Data Processing Toolbox

[ 381 ]

Commons CSV is used for reading and writing CSV files (we will use it later)
Commons math is used for statistical calculation and linear algebra (we will also
use it later)

You can refer to h t t p s ://c o m m o n s . a p a c h e . o r g / for the whole list.

Google Guava
Google Guava is very similar to Apache Commons; it is a set of utilities that extend the
standard Java API and make life easier. But unlike Apache Commons, Google Guava is one
library that covers many areas at once, including collections and I/O.

To include it in a project, use dependency:

<dependency>
  <groupId>com.google.guava</groupId>
  <artifactId>guava</artifactId>
  <version>19.0</version>
</dependency>

We will start with the Guava I/O module. To give an illustration, we will use some
generated data. We already used the word class, which contains a token and its part-of-
speech tag, and here we will generate more words. To do that, we can use a data generation
tool such as h t t p ://w w w . g e n e r a t e d a t a . c o m /. Let's define the following schema as shown
in the following screenshot:

After that it is possible to save the generated data to the CSV format, set the delimiter to tab
(t), and save it to words.txt. We already generated a file for you; you can find it in the
chapter2 repository.

https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
https://commons.apache.org/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/


Data Processing Toolbox

[ 382 ]

Guava defines a few abstractions for working with I/O. One of them is CharSource, an
abstraction for any source of character-based data, which, in some sense, is quite similar to
the standard Reader class. Additionally, similarly to Commons IO, there is a utility class
for working with files. It is called Files (not to be confused with java.nio.file.Files),
and contains helper functions that make file I/O easier. Using this class, it is possible to read
all lines of a text file as follows:

File file = new File("data/words.txt");
CharSource wordsSource = Files.asCharSource(file, StandardCharsets.UTF_8);
List<String> lines = wordsSource.readLines();

Google Guava Collections follows the same idea as Commons Collections; it builds on the
Standard Collections API and provides new implementations and abstractions. There are a
few utility classes such as Lists, for working with lists, Sets for working with sets, and so
on.

One of the methods from Lists is transform, it is like map on streams and it is applied to
every element from the list. The elements of the resulting list are evaluated lazily; the
computation of the function is triggered only when the element is needed. Let's use it for
transforming the lines from the text file to a list of Word objects:

List<Word> words = Lists.transform(lines, line -> {
    String[] split = line.split("t");
    return new Word(split[0].toLowerCase(), split[1]);
});

The main difference between this and map from the Streams API is that transform
immediately returns a list, so there is no need to first create a stream, call the map function,
and finally collect the results to list.

Similarly to Commons Collections, there are new collections that are not available in the
Java API. The most useful collections for data science are Multiset, Multimap, and Table.

Multisets are sets where the same element can be stored multiple times, and they are
usually used for counting things. This class is especially useful for text processing, when we
want to calculate how many times each term appears.

Let's take the words that we read and calculate how many times each pos tag appeared:

Multiset<String> pos = HashMultiset.create();
for (Word word : words) {
    pos.add(word.getPos());
}



Data Processing Toolbox

[ 383 ]

If we want to output the results sorted by counts, there is a special utility function for that:

Multiset<String> sortedPos = Multisets.copyHighestCountFirst(pos);
System.out.println(sortedPos);

Multimap is a map that for each key can have multiple values. There are several types of
multimaps. The two most common maps are as follows:

ListMultimap: This associates a key with a list of values, similar to Map<Key,
List<Value>>

SetMultimap: This associates a key to a set of values, similar to Map<Key,
Set<Value>>

This can be quite useful for implementing group by logic. Let's look at the average length
per POS tag:

ArrayListMultimap<String, String> wordsByPos = ArrayListMultimap.create();
for (Word word : words) {
    wordsByPos.put(word.getPos(), word.getToken());
}

It is possible to view a multimap as a map of collections:

Map<String, Collection<String>> wordsByPosMap = wordsByPos.asMap();
wordsByPosMap.entrySet().forEach(System.out::println);

Finally, the Table collection can be seen as a two-dimensional extension of the map
interface; now, instead of one key, each entry is indexed by two keys, row keys and column
keys. In addition to that, it is also possible to get the entire column using the column key or
a row using the row key.

For example, we can count how many times each (word, POS) pair appeared in the dataset:

Table<String, String, Integer> table = HashBasedTable.create();
for (Word word : words) {
    Integer cnt = table.get(word.getPos(), word.getToken());
    if (cnt == null) {
        cnt = 0;
    }
    table.put(word.getPos(), word.getToken(), cnt + 1);
}

Once the data is put to the table, we can access the rows and columns individually:

Map<String, Integer> nouns = table.row("NN");
System.out.println(nouns);



Data Processing Toolbox

[ 384 ]

String word = "eu";
Map<String, Integer> posTags = table.column(word);
System.out.println(posTags);

Like in Commons Lang, Guava also contains utility classes for working with primitives
such as Ints for int primitives, Doubles for double primitives, and so on. For example, it
can be used to convert a collection of primitive wrappers to a primitive array:

Collection<Integer> values = nouns.values();
int[] nounCounts = Ints.toArray(values);
int totalNounCount = Arrays.stream(nounCounts).sum();
System.out.println(totalNounCount);

Finally, Guava provides a nice abstraction for sorting data--Ordering, which extends the
standard Comparator interface. It provides a clean fluent interface for creating
comparators:

Ordering<Word> byTokenLength =
        Ordering.natural().<Word> onResultOf(w ->
w.getToken().length()).reverse();
List<Word> sortedByLength = byTokenLength.immutableSortedCopy(words);
System.out.println(sortedByLength);

Since Ordering implements the Comparator interface, it can be used wherever a
comparator is expected. For example, for Collections.sort:

List<Word> sortedCopy = new ArrayList<>(words);
Collections.sort(sortedCopy, byTokenLength);

In addition to that, it provides other methods such as extracting the top-k or bottom-k
elements:

List<Word> first10 = byTokenLength.leastOf(words, 10);
System.out.println(first10);
List<Word> last10 = byTokenLength.greatestOf(words, 10);
System.out.println(last10);

It is the same as first sorting and then taking the first or last k elements, but more efficient.

There are other useful classes:

Customizable hash implementations such as Murmur hash and others
Stopwatch for measuring time

For more insights, you can refer to h t t p s ://g i t h u b . c o m /g o o g l e /g u a v a and h t t p s ://g i t h u

b . c o m /g o o g l e /g u a v a /w i k i .

https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava/wiki
https://github.com/google/guava/wiki
https://github.com/google/guava/wiki
https://github.com/google/guava/wiki
https://github.com/google/guava/wiki
https://github.com/google/guava/wiki
https://github.com/google/guava/wiki
https://github.com/google/guava/wiki
https://github.com/google/guava/wiki
https://github.com/google/guava/wiki
https://github.com/google/guava/wiki
https://github.com/google/guava/wiki
https://github.com/google/guava/wiki
https://github.com/google/guava/wiki
https://github.com/google/guava/wiki
https://github.com/google/guava/wiki
https://github.com/google/guava/wiki
https://github.com/google/guava/wiki
https://github.com/google/guava/wiki
https://github.com/google/guava/wiki
https://github.com/google/guava/wiki
https://github.com/google/guava/wiki
https://github.com/google/guava/wiki
https://github.com/google/guava/wiki
https://github.com/google/guava/wiki
https://github.com/google/guava/wiki
https://github.com/google/guava/wiki
https://github.com/google/guava/wiki
https://github.com/google/guava/wiki
https://github.com/google/guava/wiki
https://github.com/google/guava/wiki
https://github.com/google/guava/wiki
https://github.com/google/guava/wiki
https://github.com/google/guava/wiki
https://github.com/google/guava/wiki
https://github.com/google/guava/wiki
https://github.com/google/guava/wiki
https://github.com/google/guava/wiki
https://github.com/google/guava/wiki
https://github.com/google/guava/wiki
https://github.com/google/guava/wiki
https://github.com/google/guava/wiki
https://github.com/google/guava/wiki
https://github.com/google/guava/wiki
https://github.com/google/guava/wiki
https://github.com/google/guava/wiki
https://github.com/google/guava/wiki
https://github.com/google/guava/wiki
https://github.com/google/guava/wiki
https://github.com/google/guava/wiki
https://github.com/google/guava/wiki
https://github.com/google/guava/wiki
https://github.com/google/guava/wiki
https://github.com/google/guava/wiki
https://github.com/google/guava/wiki
https://github.com/google/guava/wiki
https://github.com/google/guava/wiki
https://github.com/google/guava/wiki
https://github.com/google/guava/wiki


Data Processing Toolbox

[ 385 ]

You may have noticed that Guava and Apache Commons have a lot in common. Selecting
which one to use is a matter of taste--both libraries are very well tested and actively used in
many production systems. However, Guava is more actively developed and new features
appear more often, so if you want to use only one of them, then Guava may be a better
choice.

AOL Cyclops React
As we already learned, Java Streams API is a very powerful way of dealing with data in a
functional way. The Cyclops React library extends this API by adding new operations on
streams and allows for more control of the flow execution. To include the library, add this
to the pom.xml file:

<dependency>
  <groupId>com.aol.simplereact</groupId>
  <artifactId>cyclops-react</artifactId>
  <version>1.0.0-RC4</version>
</dependency>

Some of the methods it adds are zipWithIndex and cast and convenience collectors such as
toList, toSet, and toMap. What is more, it gives more control for parallel execution, for
example, it is possible to provide a custom executor, which will be used for processing data
or intercepting exceptions declaratively.

Also, with this library, it is easy to create a parallel stream from the iterator--it is hard to do
it with the standard library.

For example, let's take words.txt, extract all POS tags from it, and then create a map that
associates each tag with a unique index. For reading data, we will use LineIterator from
Commons IO, which otherwise would be hard to parallelize using only standard Java APIs.
Additionally, we create a custom executor, which will be used for executing the stream
operations in parallel:

LineIterator it = FileUtils.lineIterator(new File("data/words.txt"),
"UTF-8");
ExecutorService executor = Executors.newCachedThreadPool();
LazyFutureStream<String> stream =
        LazyReact.parallelBuilder().withExecutor(executor).from(it);

Map<String, Integer> map = stream
        .map(line -> line.split("t"))
        .map(arr -> arr[1].toLowerCase())
        .distinct()
        .zipWithIndex()



Data Processing Toolbox

[ 386 ]

        .toMap(Tuple2::v1, t -> t.v2.intValue());

System.out.println(map);
executor.shutdown();
it.close();

It is a very simple example and does not come close to describing all the functionality
available in this library. For more information, refer to their documentation, which can be
found at h t t p s ://g i t h u b . c o m /a o l /c y c l o p s - r e a c t . We will also use it in other examples
in later chapters.

Accessing data
By now we already have spent a lot of time describing how to read and write data. But
there is much more to that: data often comes in different formats such as CSV, HTML, or
JSON or it can be stored in a database. Knowing how to access and process this data is
important for Data Science and now we will describe in detail how to do it for the most
common data formats and sources.

Text data and CSV
We already have spoken about reading text data in great detail, and it can be done, for
example, using the Files helper class from the NIO API or IOUtils from Commons IO.

CSV (Comma Separated Values) is a common way to organize tabular data in plain text
files. While it is possible to parse CSV files by hand, there are some corner cases, which
make it a bit cumbersome. Luckily, there are nice libraries for that purpose, and one of them
is Apache Commons CSV:

<dependency>
  <groupId>org.apache.commons</groupId>
  <artifactId>commons-csv</artifactId>
  <version>1.4</version>
</dependency>

https://github.com/aol/cyclops-react
https://github.com/aol/cyclops-react
https://github.com/aol/cyclops-react
https://github.com/aol/cyclops-react
https://github.com/aol/cyclops-react
https://github.com/aol/cyclops-react
https://github.com/aol/cyclops-react
https://github.com/aol/cyclops-react
https://github.com/aol/cyclops-react
https://github.com/aol/cyclops-react
https://github.com/aol/cyclops-react
https://github.com/aol/cyclops-react
https://github.com/aol/cyclops-react
https://github.com/aol/cyclops-react
https://github.com/aol/cyclops-react
https://github.com/aol/cyclops-react
https://github.com/aol/cyclops-react
https://github.com/aol/cyclops-react
https://github.com/aol/cyclops-react
https://github.com/aol/cyclops-react
https://github.com/aol/cyclops-react
https://github.com/aol/cyclops-react
https://github.com/aol/cyclops-react
https://github.com/aol/cyclops-react
https://github.com/aol/cyclops-react
https://github.com/aol/cyclops-react
https://github.com/aol/cyclops-react
https://github.com/aol/cyclops-react
https://github.com/aol/cyclops-react
https://github.com/aol/cyclops-react
https://github.com/aol/cyclops-react
https://github.com/aol/cyclops-react
https://github.com/aol/cyclops-react
https://github.com/aol/cyclops-react
https://github.com/aol/cyclops-react
https://github.com/aol/cyclops-react
https://github.com/aol/cyclops-react
https://github.com/aol/cyclops-react
https://github.com/aol/cyclops-react
https://github.com/aol/cyclops-react
https://github.com/aol/cyclops-react
https://github.com/aol/cyclops-react
https://github.com/aol/cyclops-react
https://github.com/aol/cyclops-react
https://github.com/aol/cyclops-react
https://github.com/aol/cyclops-react
https://github.com/aol/cyclops-react
https://github.com/aol/cyclops-react
https://github.com/aol/cyclops-react
https://github.com/aol/cyclops-react
https://github.com/aol/cyclops-react
https://github.com/aol/cyclops-react
https://github.com/aol/cyclops-react
https://github.com/aol/cyclops-react
https://github.com/aol/cyclops-react
https://github.com/aol/cyclops-react
https://github.com/aol/cyclops-react
https://github.com/aol/cyclops-react
https://github.com/aol/cyclops-react
https://github.com/aol/cyclops-react
https://github.com/aol/cyclops-react
https://github.com/aol/cyclops-react


Data Processing Toolbox

[ 387 ]

To illustrate how to use this library, let's generate some random data once again. This time
we can also use h t t p ://w w w . g e n e r a t e d a t a . c o m / and define the following schema:

Now we can create a special class for holding this data:

public static class Person {
    private final String name;
    private final String email;
    private final String country;
    private final int salary;
    private final int experience;
    // constructor and getters are omitted
}

Then, to read a CSV file you can do the following:

List<Person> result = new ArrayList<>();

Path csvFile = Paths.get("data/csv-example-generatedata_com.csv");
try (BufferedReader reader = Files.newBufferedReader(csvFile,
StandardCharsets.UTF_8)) {
    CSVFormat csv = CSVFormat.RFC4180.withHeader();
    try (CSVParser parser = csv.parse(reader)) {
        Iterator<CSVRecord> it = parser.iterator();
        it.forEachRemaining(rec -> {
            String name = rec.get("name");
            String email = rec.get("email");
            String country = rec.get("country");
            int salary = Integer.parseInt(rec.get("salary").substring(1));
            int experience = Integer.parseInt(rec.get("experience"));
            Person person = new Person(name, email, country, salary,
experience);
            result.add(person);
        });
    }
}

http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/
http://www.generatedata.com/


Data Processing Toolbox

[ 388 ]

The preceding code creates an iterator of CSVRecord objects, and from each such object we
extract the values and pass them to a data object. Creating an iterator is useful when the
CSV file is very large and may not fit entirely into available memory.

If the file is not too large, it is also possible to read the entire CSV at once and put the results
into a list:

List<CSVRecord> records = parse.getRecords();

Finally, tab-separated files can be seen as a special case of CSV and also can be read using
this library. To do it, you just need to use the TDF format for parsing:

CSVFormat tsv = CSVFormat.TDF.withHeader();

Web and HTML
There is a lot of data on the Internet nowadays, and being able to access this data and
transform it into something machine-readable is a very important skill for a Data Scientist.

There are multiple ways of accessing data from the Internet. Luckily for us, the standard
Java API provides a special class for doing that, URL. With URL, it is possible to open an
InputStream, which will contain the response body. For web pages it typically is its HTML
content. With IOUtils from Commons IO, doing this is simple:

try (InputStream is = new URL(url).openStream()) {
    return IOUtils.toString(is, StandardCharsets.UTF_8);
}

This piece of code is quite useful, so putting it into some helper method, for example,
UrlUtils.request, will be helpful.

Here we assume that the content of a web page is always UTF-8. It may
work for many cases, especially for pages in English, but it occasionally
may fail. For more complex crawlers, you can use encoding detection from
Apache Tika (https://tika.apache.org/).

https://tika.apache.org/


Data Processing Toolbox

[ 389 ]

The preceding method returns raw HTML data, which is not useful in itself; most of the
time we are interested in the text content rather than markup. There are libraries for
processing HTML and one of them is Jsoup:

<dependency>
  <groupId>org.jsoup</groupId>
  <artifactId>jsoup</artifactId>
  <version>1.9.2</version>
</dependency>

Let's consider an example. Kaggle.com is a website for hosting data science competitions,
and for each competition there is a leader board that shows the performance of each
participant. Suppose you are interested in extracting this information from
https://www.kaggle.com/c/avito-duplicate-ads-detection/leaderboard as shown in
the following screenshot:

https://www.kaggle.com/c/avito-duplicate-ads-detection/leaderboard


Data Processing Toolbox

[ 390 ]

This information is contained in a table, and to extract the data from this table we need to
find an anchor that uniquely points to this table. To do that, you can have a look at the page
using an inspector (pressing F12 in Mozilla Firefox or Google Chrome will open the
Inspector window):

Using the Inspector, we can notice that the ID of the table is leaderboard-table, and to
get this table in Jsoup, we can use the following CSS selector, #leaderboard-table. Since
we are actually interested in the rows of the table, we will use #leaderboard-table tr.

The information about the team name is contained in the third column of the table in the
list. Thus, to extract it, we need to get the third <td> tag and then look inside its <a> tag.
Likewise, to extract the score, we get the content of the fourth <td> tag.

The code for doing this is as follows:

Map<String, Double> result = new HashMap<>();

String rawHtml =
UrlUtils.request("https://www.kaggle.com/c/avito-duplicate-ads-detection/le



Data Processing Toolbox

[ 391 ]

aderboard");
Document document = Jsoup.parse(rawHtml);
Elements tableRows = document.select("#leaderboard-table tr");
for (Element tr : tableRows) {
    Elements columns = tr.select("td");
    if (columns.isEmpty()) {
        continue;
    }

    String team = columns.get(2).select("a.team-link").text();
    double score = Double.parseDouble(columns.get(3).text());
    result.put(team, score);
}

Comparator<Map.Entry<String, Double>> byValue =
Map.Entry.comparingByValue();
result.entrySet().stream()
        .sorted(byValue.reversed())
        .forEach(System.out::println);

Here we reuse the UrlUtils.request function to get the HTML that we defined
previously, and then process it with Jsoup.

Jsoup makes use of CSS selectors for accessing items inside the parsed HTML document. To
learn more about them, you can read the related documentation, which is accessible at h t t p

s ://j s o u p . o r g /c o o k b o o k /e x t r a c t i n g - d a t a /s e l e c t o r - s y n t a x .

JSON
JSON is becoming more and more popular as a way of communicating between web
services, steadily displacing XML and other formats. Knowing how to process it lets you
extract data from a huge variety of data sources available on the Internet.

There are quite a few JSON libraries available for Java. Jackson is one of them and there is
its simplified version, called jackson-jr, which works for most simple cases when all we
need is to quickly extract data from JSON. To add it, use the following:

<dependency>
  <groupId>com.fasterxml.jackson.jr</groupId>
  <artifactId>jackson-jr-all</artifactId>
  <version>2.8.1</version>
</dependency>

https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax
https://jsoup.org/cookbook/extracting-data/selector-syntax


Data Processing Toolbox

[ 392 ]

To illustrate it, let's consider a simple API that returns JSON. We can use h t t p ://w w w . j s o n t

e s t . c o m /, which provides a number of dummy web services. One of them is an MD5
service at h t t p ://m d 5. j s o n t e s t . c o m ; given a string it returns its MD5 hash.

Here is an example of its output:

{
  "original": "mastering java for data science",
  "md5": "f4c8637d7274f13b58940ff29f669e8a"
}

Let us use it:

String text = "mastering java for data science";
String json = UrlUtils.request("http://md5.jsontest.com/?text=" +
text.replace(' ', '+'));

Map<String, Object> map = JSON.std.mapFrom(json);
System.out.println(map.get("original"));
System.out.println(map.get("md5"));

In this example, the JSON response of a web service is quite simple. However, there are
more complex cases with lists and nested objects. For example, www.github.com provides a
number of APIs, one of which is h t t p s ://a p i . g i t h u b . c o m /u s e r s /a l e x e y g r i g o r e v /r e p o s .
For a given user it returns all their repositories. It has a list of objects and each object has a
nested object.

In languages with dynamic typing, such as Python, it is quite simple--the language does not
force you to have a specific type, which, for this particular case, is good. In Java, however,
the static type system requires defining a type; every time you need to extract something,
you need to do casting.

For example, if we want to get the element ID of the first object, we would need to do
something like this:

String username = "alexeygrigorev";
String json = UrlUtils.request("https://api.github.com/users/" + username +
"/repos");

List<Map<String, ?>> list = (List<Map<String, ?>>) JSON.std.anyFrom(json);
String name = (String) list.get(0).get("name");
System.out.println(name);

http://www.jsontest.com/
http://www.jsontest.com/
http://www.jsontest.com/
http://www.jsontest.com/
http://www.jsontest.com/
http://www.jsontest.com/
http://www.jsontest.com/
http://www.jsontest.com/
http://www.jsontest.com/
http://www.jsontest.com/
http://www.jsontest.com/
http://www.jsontest.com/
http://www.jsontest.com/
http://www.jsontest.com/
http://www.jsontest.com/
http://www.jsontest.com/
http://www.jsontest.com/
http://www.jsontest.com/
http://www.jsontest.com/
http://www.jsontest.com/
http://www.jsontest.com/
http://www.jsontest.com/
http://www.jsontest.com/
http://www.jsontest.com/
http://www.jsontest.com/
http://www.jsontest.com/
http://www.jsontest.com/
http://www.jsontest.com/
http://www.jsontest.com/
http://www.jsontest.com/
http://www.jsontest.com/
http://www.jsontest.com/
http://www.jsontest.com/
http://www.jsontest.com/
http://www.jsontest.com/
http://www.jsontest.com/
http://www.jsontest.com/
http://www.jsontest.com/
http://www.jsontest.com/
http://www.jsontest.com/
http://md5.jsontest.com/
http://md5.jsontest.com/
http://md5.jsontest.com/
http://md5.jsontest.com/
http://md5.jsontest.com/
http://md5.jsontest.com/
http://md5.jsontest.com/
http://md5.jsontest.com/
http://md5.jsontest.com/
http://md5.jsontest.com/
http://md5.jsontest.com/
http://md5.jsontest.com/
http://md5.jsontest.com/
http://md5.jsontest.com/
http://md5.jsontest.com/
http://md5.jsontest.com/
http://md5.jsontest.com/
http://md5.jsontest.com/
http://md5.jsontest.com/
http://md5.jsontest.com/
http://md5.jsontest.com/
http://md5.jsontest.com/
http://md5.jsontest.com/
http://md5.jsontest.com/
http://md5.jsontest.com/
http://md5.jsontest.com/
http://md5.jsontest.com/
http://md5.jsontest.com/
http://md5.jsontest.com/
http://md5.jsontest.com/
http://md5.jsontest.com/
http://md5.jsontest.com/
http://md5.jsontest.com/
http://md5.jsontest.com/
http://md5.jsontest.com/
http://md5.jsontest.com/
http://md5.jsontest.com/
http://md5.jsontest.com/
http://www.github.com
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos
https://api.github.com/users/alexeygrigorev/repos


Data Processing Toolbox

[ 393 ]

As you can see, we need to do a lot of type casting and the code quickly becomes pretty
cluttered. A solution to that may be using a query language similar to Xpath, called
JsonPath. An implementation available for Java is accessible at
https://github.com/jayway/JsonPath. To use it, add the following:

<dependency>
  <groupId>com.jayway.jsonpath</groupId>
  <artifactId>json-path</artifactId>
  <version>2.2.0</version>
</dependency>

If we want to retrieve all repositories, which are written in Java and have at least one start,
then the following query will do it:

ReadContext ctx = JsonPath.parse(json);
String query = "$..[?(@.language=='Java' && @.stargazers_count >
0)]full_name";
List<String> javaProjects = ctx.read(query);

It definitely will save some time for simple data manipulations such as filtering, but,
unfortunately, for more complex things, you may still need to do manual conversions with
a lot of casting.

For more complex queries (for example, sending a POST request), it is
better to use a special library such as Apache HttpComponents
(https://hc.apache.org/).

Databases
In organizations, data is usually kept in relational databases. Java defines Java Database
Connectivity (JDBC) as an abstraction for accessing any database that supports SQL.

In our example, we will use MySQL, which can be downloaded from h t t p s ://w w w . m y s q l . c

o m /, but in principle it can be any other database, such as PostgreSQL, Oracle, MS SQL and
many others. To connect to a MySQL server, we can use a JDBC MySQL driver:

<dependency>
  <groupId>mysql</groupId>
  <artifactId>mysql-connector-java</artifactId>
  <version>5.1.39</version>
</dependency>

https://github.com/jayway/JsonPath
https://hc.apache.org/
https://www.mysql.com/
https://www.mysql.com/
https://www.mysql.com/
https://www.mysql.com/
https://www.mysql.com/
https://www.mysql.com/
https://www.mysql.com/
https://www.mysql.com/
https://www.mysql.com/
https://www.mysql.com/
https://www.mysql.com/
https://www.mysql.com/
https://www.mysql.com/
https://www.mysql.com/
https://www.mysql.com/
https://www.mysql.com/
https://www.mysql.com/
https://www.mysql.com/
https://www.mysql.com/
https://www.mysql.com/
https://www.mysql.com/
https://www.mysql.com/
https://www.mysql.com/
https://www.mysql.com/
https://www.mysql.com/
https://www.mysql.com/
https://www.mysql.com/
https://www.mysql.com/
https://www.mysql.com/
https://www.mysql.com/
https://www.mysql.com/
https://www.mysql.com/
https://www.mysql.com/
https://www.mysql.com/
https://www.mysql.com/
https://www.mysql.com/


Data Processing Toolbox

[ 394 ]

If you would like to use a different database, then you can use your favorite search engine
and find the suitable JDBC driver. The interaction code will remain the same, and if you use
the standard SQL, the query code should not change as well.

For example, we will use the same data we generated for the CSV example. First, we will
load it to the database, and then do a simple select.

Let's define the following schema:

CREATE SCHEMA &grave;people&grave; DEFAULT CHARACTER SET utf8 ;
CREATE TABLE &grave;people&grave;.&grave;people&grave; (
  &grave;person_id&grave; INT UNSIGNED NOT NULL AUTO_INCREMENT,
  &grave;name&grave; VARCHAR(45) NULL,
  &grave;email&grave; VARCHAR(100) NULL,
  &grave;country&grave; VARCHAR(45) NULL,
  &grave;salary&grave; INT NULL,
  &grave;experience&grave; INT NULL,
  PRIMARY KEY (&grave;person_id&grave;));

Now, to connect to the database, we typically use the DataSource abstraction. The MySQL
driver provides an implementation: MysqlDataSource:

MysqlDataSource datasource = new MysqlDataSource();
datasource.setServerName("localhost");
datasource.setDatabaseName("people");
datasource.setUser("root");
datasource.setPassword("");

Now using the DataSource object, we can load the data. There are two ways of doing it;
the simple way, when we insert each object individually, and batch mode, where we first
prepare a batch, and then insert all the objects of a batch. The batch mode option typically
works faster.

Let's first look at the usual mode:

try (Connection connection = datasource.getConnection()) {
    String sql = "INSERT INTO people (name, email, country, salary,
experience) VALUES (?, ?, ?, ?, ?);";
    try (PreparedStatement statement = connection.prepareStatement(sql)) {
        for (Person person : people) {
            statement.setString(1, person.getName());
            statement.setString(2, person.getEmail());
            statement.setString(3, person.getCountry());
            statement.setInt(4, person.getSalary());
            statement.setInt(5, person.getExperience());
            statement.execute();
        }



Data Processing Toolbox

[ 395 ]

    }
}

Note that the enumeration of indexes starts from 1 in JDBC, not from 0.

Batch is very similar. To prepare the batches, we first use a Lists.partition function
from Guava, and chuck all the data into batches of 50 objects. Then each object of a chunk is
added to a batch with the addBatch function:

List<List<Person>> chunks = Lists.partition(people, 50);

try (Connection connection = datasource.getConnection()) {
    String sql = "INSERT INTO people (name, email, country, salary,
experience) VALUES (?, ?, ?, ?, ?);";
    try (PreparedStatement statement = connection.prepareStatement(sql)) {
        for (List<Person> chunk : chunks) {
            for (Person person : chunk) {
                statement.setString(1, person.getName());
                statement.setString(2, person.getEmail());
                statement.setString(3, person.getCountry());
                statement.setInt(4, person.getSalary());
                statement.setInt(5, person.getExperience());
                statement.addBatch();
            }
            statement.executeBatch();
        }
    }
}

Batch mode is faster than the usual way of processing the data, but requires more memory.
If you need to process a lot of data and care about speed, then batch mode is a better choice,
but it makes the code a bit more complex. For that reason, it may be better to use the
simpler approach.

Now, when the data is loaded, we can query the database. For instance, let us select all the
people from a country:

String country = "Greenland";
try (Connection connection = datasource.getConnection()) {
    String sql = "SELECT name, email, salary, experience FROM people WHERE
country = ?;";
    try (PreparedStatement statement = connection.prepareStatement(sql)) {
        List<Person> result = new ArrayList<>();



Data Processing Toolbox

[ 396 ]

        statement.setString(1, country);
        try (ResultSet rs = statement.executeQuery()) {
            while (rs.next()) {
                String name = rs.getString(1);
                String email = rs.getString(2);
                int salary = rs.getInt(3);
                int experience = rs.getInt(4);
                Person person = new Person(name, email, country, salary,
experience);
                result.add(person);
            }
        }
    }
}

This way we can execute any SQL query we want and put the results into Java objects for
further processing.

You may have noticed that there is a lot of boilerplate code in JDBC. The
boilerplate can be reduced with the Spring JDBC Template library (see
http://www.springframework.org).

DataFrames
DataFrames are a convenient way of representing tabular data in memory. Originally
DataFrames came from the R programming language, but they are now common in other
languages; for example, in Python the pandas library offers a DataFrame data structure
similar to R's.

The usual way of storing data in Java is lists, maps, and other collections of objects. We can
think of these collections as tables, but we can assess the data only by row. However, for
data science manipulation columns are equally important, and this is where DataFrames are
helpful.

For example, they allow you to apply the same function over all values of the same column
or look at the distribution of the values.

In Java there are not so many mature implementations, but there are some that have all the
needed functionality. In our examples we will use joinery:

<dependency>
  <groupId>joinery</groupId>
  <artifactId>joinery-dataframe</artifactId>

http://www.springframework.org/


Data Processing Toolbox

[ 397 ]

  <version>1.7</version>
</dependency>

Unfortunately, joinery is not available on Maven Central; thus, to include it to a Maven
project, you need to point to bintray, another Maven repository. To do this, add this
repository to the repositories section in the pom file:

<repository>
  <id>bintray</id>
  <url>http://jcenter.bintray.com</url>
</repository>

Joinery depends on Apache POI, so you need to add it as well:

<dependency>
  <groupId>org.apache.poi</groupId>
  <artifactId>poi</artifactId>
  <version>3.14</version>
</dependency>

With Joinery it is very easy to read the data:

DataFrame<Object> df = DataFrame.readCsv("data/csv-example-
generatedata_com.csv");

Once the data is read, we can access not only every row, but also every column of the
DataFrame. Given a column name, Joinery returns a List of values that are stored in the
column, and we can use it to apply various transformations to it.

For example, suppose we want to associate every country that we have with a unique index.
We can do it like this:

List<Object> country = df.col("country");
Map<String, Long> map = LazyReact.sequentialBuilder()
        .from(country)
        .cast(String.class)
        .distinct()
        .zipWithIndex()
        .toMap(Tuple2::v1, Tuple2::v2);

List<Object> indexes =
country.stream().map(map::get).collect(Collectors.toList());



Data Processing Toolbox

[ 398 ]

After that, we can drop the old column with country and include the new index column
instead:

df = df.drop("country");
df.add("country_index", indexes);
System.out.println(df);

Joinery can do a lot more--group by, joins, pivoting, and creating design matrices for
machine learning models. We will use it again in the future in almost all the chapters.
Meanwhile, you can read more about joinery at https://cardillo.github.io/joinery/.

Search engine - preparing data
In the first chapter, we introduced the running example, building a search engine. A search
engine is a program that, given a query from the user, returns results ordered by relevance
with respect to the query. In this chapter, we will perform the first steps--obtaining and
processing data.

Suppose we are working on a web portal where users generate a lot of content, but they
have trouble finding what other people have created. To overcome this problem, we
propose to build a search engine, and product management has identified the typical
queries that the users will put in.

For example, "Chinese food", "homemade pizza", and "how to learn programming" are
typical queries from this list.

Now we need to collect the data. Luckily for us, there are already search engines on the
Internet that can take in a query and return a list of URLs they consider relevant. We can
use them for obtaining the data. You probably already know such engines--Google or Bing,
to name just two.

Thus, we can apply what we learned in this chapter and parse the data from Google, Bing,
or any other search engine using JSoup. Alternatively, it is possible to use services such as
https://flow-app.com/ to do this extraction for you, but it requires registration.

In the end, what we need is a query and a list of the most relevant URLs. Extraction of the
relevant URLs is left as an exercise, but we already prepared some results that you can use
if you wish: for each query there are 30 most relevant pages from the first three pages of the
search results. Additionally, you can find useful code for crawling in the code bundle.

https://cardillo.github.io/joinery/
https://flow-app.com/


Data Processing Toolbox

[ 399 ]

Now, when we have the URLs, we are interested in retrieving them and saving their HTML
code. For this purpose, we need a crawler that is a bit smarter than what we already have in
our UrlUtils.request.

One particular thing that we must add is timeouts: some pages take a lot of time to load,
because they are either big or the server is experiencing some troubles and takes a while to
respond. In these cases, it makes sense to give up when a page cannot be downloaded in,
for example, 30 seconds.

In Java, this can be done with Executors. First, let's create a Crawler class, and declare the
executor field:

int numProc = Runtime.getRuntime().availableProcessors();
executor = Executors.newFixedThreadPool(numProc);

Then, we can use this executor as follows:

try {
    Future<String> future = executor.submit(() -> UrlUtils.request(url));
    String result = future.get(30, TimeUnit.SECONDS);
    return Optional.of(result);
} catch (TimeoutException e) {
    LOGGER.warn("timeout exception: could not crawl {} in {} sec", url,
timeout);
    return Optional.empty();
}

This code will drop pages that are taking too long to retrieve.

We need to store the crawled HTML pages somewhere. There are a few options: a bunch of
HTML files on the filesystem, a relational store such as MySQL, or a key-value store. The
key-value storage looks like the best choice because we have a key, the URL, and the value,
the HTML. For that we can use MapDB, a pure Java key-value storage that implements the
Map interface. In essence, it's a Map that is supported by a file on disk.

Since it is pure Java, all you need to do to use it is to include its dependency:

<dependency>
  <groupId>org.mapdb</groupId>
  <artifactId>mapdb</artifactId>
  <version>3.0.1</version>
</dependency>



Data Processing Toolbox

[ 400 ]

And now we can use it:

DB db = DBMaker.fileDB("urls.db").closeOnJvmShutdown().make();
HTreeMap<?, ?> htreeMap = db.hashMap("urls").createOrOpen();
Map<String, String> urls = (Map<String, String>) htreeMap;

Since it implements the Map interface, it can be treated as a usual Map and we can put the
HTML there. So, let's read the relevant URLs, download their HTML, and save it to the
map:

Path path = Paths.get("data/search-results.txt");
List<String> lines = FileUtils.readLines(path.toFile(),
StandardCharsets.UTF_8);

lines.parallelStream()
    .map(line -> line.split("t"))
    .map(split -> "http://" + split[2])
    .distinct()
    .forEach(url -> {
        try {
            Optional<String> html = crawler.crawl(url);
            if (html.isPresent()) {
                LOGGER.debug("successfully crawled {}", url);
                urls.put(url, html.get());
            }
        } catch (Exception e) {
            LOGGER.error("got exception when processing url {}", url, e);
        }
    });

Here we do that in a parallelStream to make the execution faster. The timeouts will
ensure that it finishes in a reasonable amount of time.

For starters, let's extract something very simple from the pages, as follows:

Length of the URL
Length of the title
Whether or not the query is contained in the title
Length of entire text in body
Number of <h1>-<h6> tags
Number of links



Data Processing Toolbox

[ 401 ]

To hold this information, we can create a special class, RankedPage.

public class RankedPage {
    private String url;
    private int position;
    private int page;
    private int titleLength;
    private int bodyContentLength;
    private boolean queryInTitle;
    private int numberOfHeaders;
    private int numberOfLinks;
    // setters, getters are omitted
}

Now, let us crawl the for each page create an object of this class. We use flatMap for this
because for some URLs there is no HTML data.

Stream<RankedPage> pages = lines.parallelStream().flatMap(line -> {
    String[] split = line.split("t");
    String query = split[0];
    int position = Integer.parseInt(split[1]);
    int searchPageNumber = 1 + (position - 1) / 10; // converts position to
a page number
    String url = "http://" + split[2];
    if (!urls.containsKey(url)) { // no crawl available
        return Stream.empty();
    }

    RankedPage page = new RankedPage(url, position, searchPageNumber);
    String html = urls.get(url);
    Document document = Jsoup.parse(html);
    String title = document.title();
    int titleLength = title.length();
    page.setTitleLength(titleLength);

    boolean queryInTitle =
title.toLowerCase().contains(query.toLowerCase());
    page.setQueryInTitle(queryInTitle);

    if (document.body() == null) { // no body for the document
        return Stream.empty();
    }
    int bodyContentLength = document.body().text().length();
    page.setBodyContentLength(bodyContentLength);

    int numberOfLinks = document.body().select("a").size();
    page.setNumberOfLinks(numberOfLinks);



Data Processing Toolbox

[ 402 ]

    int numberOfHeaders =
document.body().select("h1,h2,h3,h4,h5,h6").size();
    page.setNumberOfHeaders(numberOfHeaders);

    return Stream.of(page);
});

In this piece of code, for each page we look up its HTML. If it is not crawled--we skip the
page; then we parse the HTML and retrieve the preceding basic features.

This is only a small fraction of the possible page features that we can compute. Later on, we
will build on this and add more features.

In this example, we get a stream of pages. We can do anything we want with this stream,
for example, save it to JSON or convert it to a DataFrame. The code bundle that comes with
this book has some examples and shows how to do these types of conversion. For example,
conversion from a list of Java objects to a Joinery DataFrame is available in the
BeanToJoinery utility class.

Summary
There are a few steps for approaching any data science problem, and the data preparation
step is one of the first. The standard Java API has a tremendous number of tools that make
this task possible, and there are a lot of libraries that make it a lot easier.

In this chapter, we discussed many of them, including extensions to the Java API such as
Google Guava; we talked about ways to read the data from different sources such as text,
HTML, and databases; and finally we covered the DataFrame, a useful structure for
manipulating tabular data.

In the next chapter, we will take a closer look at the data that we extracted in this chapter
and perform Exploratory Data Analysis.



  3
Exploratory Data Analysis

the previous chapter, we covered data processing, which is an important step for
transforming data into a form usable for analysis. In this chapter, we take the next logical
step after cleaning and look at data. This step is called Exploratory Data Analysis (EDA),
and it consists of summarizing data and creating visualizations.

In this chapter, we will cover the following topics:

Summary statistics with Apache Commons Math and Joinery
Interactive shells for EDA in Java and JVM

By the end of this chapter, you will know how to calculate summary statistics and create
simple graphs with Joinery.

Exploratory data analysis in Java
Exploratory Data Analysis is about taking a dataset and extracting the most important
information from it, in such a way that it is possible to get an idea of what the data looks
like. This includes two main parts:

The summarization step is very helpful for understanding data. For numerical variables, in
this step we calculate the most important sample statistics:

The extremes (the minimal and the maximal values)
The mean value, or the sample average
The standard deviation, which describes the spread of the data



Exploratory Data Analysis

[ 404 ]

Often we consider other statistics, such as the median and the quartiles (25% and 75%).

As we have already seen in the previous chapter, Java offers a great set of tools for data
preparation. The same set of tools can be used for EDA, and especially for creating
summaries.

Search engine datasets
In this chapter, we will use our running example--building a search engine. In Chapter 2,
Data Processing Toolbox, we extracted some data from HTML pages returned by a search
engine. This dataset included some numerical features, such as the length of the title and
the length of the content.

For the purposes of storing these features, we created the following class:

public class RankedPage {
    private String url;
    private int position;
    private int page;
    private int titleLength;
    private int bodyContentLength;
    private boolean queryInTitle;
    private int numberOfHeaders;
    private int numberOfLinks;
    // setters, getters are omitted
}

It is interesting to see if this information can be useful for the search engine. For example,
given a URL, we may want to know whether it is likely to appear on the first page of the
engine output or not. Looking at the data by means of EDA will help us know if it is
possible.

Additionally, real-world data is rarely clean. We will use EDA to try to spot some strange or
problematic observations.

Let's get started. We saved the data in the JSON format, and now we can read it back using
streams and Jackson:

Path path = Paths.get("./data/ranked-pages.json");
try (Stream<String> lines = Files.lines(path)) {
    return lines.map(line -> parseJson(line)).collect(Collectors.toList());
}



Exploratory Data Analysis

[ 405 ]

This is the body of a function that returns a list of RankedPage objects. We read them from
the ranked-page.json file. And then we use the parseJson function to convert the JSON
to the Java class:

JSON.std.beanFrom(RankedPage.class, line);

After reading the data, we can analyze it. Usually, the first step in the analysis is looking at
the summary statistics, and we can use Apache Commons Math for that.

Apache Commons Math
Once we read the data, we can calculate the statistics. As we already mentioned earlier, we
are typically interested in summaries such as min, max, mean, standard deviation, and so
on. We can use the Apache Commons Math library for that. Let's include it in pom.xml:

<dependency>
  <groupId>org.apache.commons</groupId>
  <artifactId>commons-math3</artifactId>
  <version>3.6.1</version>
</dependency>

There is a SummaryStatistics class for calculating the summaries. Let's use it to calculate
some statistics about the distribution of body content length of the pages we crawled:

SummaryStatistics statistics = new SummaryStatistics();
data.stream().mapToDouble(RankedPage::getBodyContentLength)
    .forEach(statistics::addValue);
System.out.println(statistics.getSummary());

Here, we create SummaryStatistics objects and add all body content lengths. After that,
we can call a getSummary method to get all summary stats at once. This will print the
following:

StatisticalSummaryValues:
n: 4067
min: 0.0
max: 8675779.0
mean: 14332.239242685007
std dev: 144877.54551111493
variance: 2.0989503193325176E10
sum: 5.8289217E7



Exploratory Data Analysis

[ 406 ]

The DescriptiveStatistics method is another useful class from this library. It allows
getting more values, such as median and percentiles, and percentiles; give a better idea of
what the data looks like:

double[] dataArray = data.stream()
        .mapToDouble(RankedPage::getBodyContentLength)
        .toArray();
DescriptiveStatistics desc = new DescriptiveStatistics(dataArray);
System.out.printf("min: %9.1f%n", desc.getMin());
System.out.printf("p05: %9.1f%n", desc.getPercentile(5));
System.out.printf("p25: %9.1f%n", desc.getPercentile(25));
System.out.printf("p50: %9.1f%n", desc.getPercentile(50));
System.out.printf("p75: %9.1f%n", desc.getPercentile(75));
System.out.printf("p95: %9.1f%n", desc.getPercentile(95));
System.out.printf("max: %9.1f%n", desc.getMax());

This will produce the following output:

min: 0.0
p05: 527.6
p25: 3381.0
p50: 6612.0
p75: 11996.0
p95: 31668.4
max: 8675779.0

From the output, we can note that the minimum length is zero, which is strange; most
likely, there was a data processing issue. Also, the maximal value is very high, which
suggests that there are outliers. Later on, it will make sense to exclude these values from our
analysis.

Probably the pages with zero content length are crawling errors. Let's see the proportion of
these pages:

double proportion = data.stream()
    .mapToInt(p -> p.getBodyContentLength() == 0 ? 1 : 0)
    .average().getAsDouble();
System.out.printf("proportion of zero content length: %.5f%n", proportion);

We see that not so many pages have zero length, so it is quite safe to just drop them.

Later on, in the next chapter, we will try to predict whether a URL comes from the first
search page result or not. If some features have different values for each page, then a
machine learning model will be able to see this difference and use it for more accurate
predictions. Let's see whether the value for content length is similar across the different
pages.



Exploratory Data Analysis

[ 407 ]

For this purpose, we can group the URLs by page and calculate the mean content length. As
we already know, Java streams can be used to do this:

Map<Integer, List<RankedPage>> byPage = data.stream()
    .filter(p -> p.getBodyContentLength() != 0)
    .collect(Collectors.groupingBy(RankedPage::getPage));

Note that we added a filter for empty pages, so they do not appear in the groups. Now, we
can use the groups to calculate the average:

List<DescriptiveStatistics> stats = byPage.entrySet().stream()
    .sorted(Map.Entry.comparingByKey())
    .map(e -> calculate(e.getValue(), RankedPage::getBodyContentLength))
    .collect(Collectors.toList());

Here, calculate is a function that takes in a collection, computes the provided function on
every element (using getBodyContentLength in this case), and creates a
DescriptiveStatistics object from it:

private static DescriptiveStatistics calculate(List<RankedPage> data,
            ToDoubleFunction<RankedPage> getter) {
    double[] dataArray = data.stream().mapToDouble(getter).toArray();
    return new DescriptiveStatistics(dataArray);
}

Now, in the list, you will have the descriptive statistics for each group (page, in this case).
Then, we can display them in any way we want. Consider the following example:

Map<String, Function<DescriptiveStatistics, Double>> functions = new
LinkedHashMap<>();
functions.put("min", d -> d.getMin());
functions.put("p05", d -> d.getPercentile(5));
functions.put("p25", d -> d.getPercentile(25));
functions.put("p50", d -> d.getPercentile(50));
functions.put("p75", d -> d.getPercentile(75));
functions.put("p95", d -> d.getPercentile(95));
functions.put("max", d -> d.getMax());
System.out.print("page");

for (Integer page : byPage.keySet()) {
    System.out.printf("%9d ", page);
}
System.out.println();

for (Entry<String, Function<DescriptiveStatistics, Double>> pair :
functions.entrySet()) {
    System.out.print(pair.getKey());
    Function<DescriptiveStatistics, Double> function = pair.getValue();



Exploratory Data Analysis

[ 408 ]

    System.out.print(" ");
    for (DescriptiveStatistics ds : stats) {
        System.out.printf("%9.1f ", function.apply(ds));
    }
    System.out.println();
}

This produces the following output:

page 0 1 2
min 5.0 1.0 5.0
p05 1046.8 900.6 713.8
p25 3706.0 3556.0 3363.0
p50 7457.0 6882.0 6383.0
p75 13117.0 12067.0 11309.8
p95 42420.6 30557.2 27397.0
max 390583.0 8675779.0 1998233.0

The output suggests that the distribution of content length is different across URLs coming
from different pages of search engine results. Thus, this can potentially be useful when
predicting the search page number for a given URL.

Joinery
You might notice that the code we just wrote is quite verbose. Of course, it is possible to put
it inside a helper function and call it when needed, but there is another more concise way of
computing these statistics--with joinery and its DataFrames.

In Joinery, the DataFrame object has a method called describe, which creates a new
DataFrame with summary statistics:

List<RankedPage> pages = Data.readRankedPages();
DataFrame<Object> df = BeanToJoinery.convert(pages, RankedPage.class);
df = df.retain("bodyContentLength", "titleLength", "numberOfHeaders");
DataFrame<Object> describe = df.describe();
System.out.println(describe.toString());

In the preceding code, Data.readRankedPages is a helper method that reads JSON data
and converts it to a list of Java objects, and BeanToJoinery.convert is a helper class that
converts a list of Java objects to a DataFrame.



Exploratory Data Analysis

[ 409 ]

Then, we keep only three columns and drop everything else. The following is the output:

body   contentLength   numberOfHeaders  titleLength
count  4067.00000000   4067.00000000    4067.00000000
mean   14332.23924269  25.25325793      46.17334645
std    144877.5455111  32.13788062      27.72939822
var    20989503193.32  1032.84337047    768.91952552
max    8675779.000000  742.00000000     584.00000000
min    0.00000000      0.00000000       0.00000000

We can also look at the means across different groups, for example, across different pages.
For that, we can use the groupBy method:

DataFrame<Object> meanPerPage = df.groupBy("page").mean()
    .drop("position")
    .sortBy("page")
    .transpose();
System.out.println(meanPerPage);

Apart from applying mean after groupBy, we also remove one column position because we
already know that position will be different for different pages. Additionally, we apply the
transpose operation at the end; this is a trick to make the output fit into a screen when there
are many columns. This produces the following output:

page 0 1 2
bodyContentLength 12577 18703 11286
numberOfHeaders 30 23 21
numberOfLinks 276 219 202
queryInTitle 0 0 0
titleLength 46 46 45

We can see that the averages are quite different for some variables. For other variables, such
as queryInTitle, there does not seem to be any difference. However, remember that this
is a Boolean variable, so the mean is between 0 and 1. For some reason, Joinery decided not
to show the decimal part here.

Now, we know how to compute some simple summary statistics in Java, but to do that, we
first need to write some code, compile it, and then run it. This is not the most convenient
procedure, and there are better ways to do it interactively, that is, avoiding compilation and
getting the results right away. Next, we will see how to do it in Java.



Exploratory Data Analysis

[ 410 ]

Interactive Exploratory Data Analysis in Java
Java is a statically typed programming language and code written in Java needs compiling.
While Java is good for developing complex data science applications, it makes it harder to
interactively explore the data; every time, we need to recompile the source code and re-run
the analysis script to see the results. This means that, if we need to read some data, we will
have to do it over and over again. If the dataset is large, the program takes more time to
start.

So it is hard to interact with data and this makes EDA more difficult in Java than in other
languages. In particular, Read-Evaluate-Print Loop (REPL), an interactive shell, is quite an
important feature for doing EDA.

Unfortunately, Java 8 does not have REPL, but there are several alternatives:

Other interactive JVM languages such as JavaScript, Groovy, or Scala
Java 9 with jshell
Completely alternative platforms such as Python or R

In this chapter, we will look at the first two options--JVM languages and Java 9's REPL.

JVM languages
As you probably know, the Java platform is not only the Java programming language, but
also the Java Virtual Machine (JVM) can run code from other JVM languages. There are a
number of languages that run on JVM and have REPL, for example, JavaScript, Scala,
Groovy, JRuby, and Jython. There are many more. All these languages can access any code
written in Java and they have interactive consoles.

For example, Groovy is very similar to Java, and prior to Java 8 almost any code written in
Java could be run in Groovy. However, for Java 8, this is no longer the case. Groovy does
not support the new Java syntax for lambda expressions and functional interfaces, so we
will not be able to run most of the code from this book there.

Scala is another popular functional JVM language, but its syntax is very different from Java.
It is a very powerful and expressive language for data processing, it has a nice interactive
shell, and there are many libraries for doing data analysis and data science.



Exploratory Data Analysis

[ 411 ]

Additionally, there are a couple of JavaScript implementations available for JVM. One of
them is Nashorn, which comes with Java 8 out-of-the-box; there is no need to include it as a
separate dependency. Joinery also comes in with a built-in interactive console, which
utilizes JavaScript, and later in this chapter, we will see how to use it.While all these
languages are nice, they are beyond the scope of this book. You can learn more about them
from these books:

Groovy in Action, Dierk Konig, Manning
Scala Data Analysis Cookbook, Arun Manivannan, Packt Publishing

Interactive Java
It would not be fair to say that Java is a 100% not-interactive language; there are some
extensions that provide a REPL environment directly for Java.

One such environment is a scripting language (BeanShell) that looks exactly like Java.
However, it is quite old and the new Java 8 syntax is not supported, so it is not very useful
for doing interactive data analysis.

What is more interesting is Java 9, which comes with an integrated REPL called JShell and
supports autocompletion on tab, Java Streams, and the Java 8 syntax for lambda
expressions. At the time of writing, Java 9 is only available as an Early Access Release. You
can download it from h t t p s ://j d k 9. j a v a . n e t /d o w n l o a d /.

Starting the shell is easy:

$ jshell

But typically you would like to access some libraries, and for that they need to be on the
classpath. Usually, we use Maven for managing the dependencies, so we can run the
following to copy all the jar libraries specified in the pom file to a directory of our choice:

mvn dependency:copy-dependencies -DoutputDirectory=lib
mvn compile

After doing it, we can run the shell like this:

jshell -cp lib/*:target/classes

If you are on Windows, replace the colon with a semicolon:

jshell -cp lib/*;target/classes

https://jdk9.java.net/download/
https://jdk9.java.net/download/
https://jdk9.java.net/download/
https://jdk9.java.net/download/
https://jdk9.java.net/download/
https://jdk9.java.net/download/
https://jdk9.java.net/download/
https://jdk9.java.net/download/
https://jdk9.java.net/download/
https://jdk9.java.net/download/
https://jdk9.java.net/download/
https://jdk9.java.net/download/
https://jdk9.java.net/download/
https://jdk9.java.net/download/
https://jdk9.java.net/download/
https://jdk9.java.net/download/
https://jdk9.java.net/download/
https://jdk9.java.net/download/
https://jdk9.java.net/download/
https://jdk9.java.net/download/
https://jdk9.java.net/download/
https://jdk9.java.net/download/
https://jdk9.java.net/download/
https://jdk9.java.net/download/
https://jdk9.java.net/download/
https://jdk9.java.net/download/
https://jdk9.java.net/download/
https://jdk9.java.net/download/
https://jdk9.java.net/download/
https://jdk9.java.net/download/
https://jdk9.java.net/download/
https://jdk9.java.net/download/
https://jdk9.java.net/download/
https://jdk9.java.net/download/
https://jdk9.java.net/download/
https://jdk9.java.net/download/
https://jdk9.java.net/download/
https://jdk9.java.net/download/
https://jdk9.java.net/download/
https://jdk9.java.net/download/
https://jdk9.java.net/download/
https://jdk9.java.net/download/
https://jdk9.java.net/download/
https://jdk9.java.net/download/
https://jdk9.java.net/download/
https://jdk9.java.net/download/
https://jdk9.java.net/download/
https://jdk9.java.net/download/
https://jdk9.java.net/download/
https://jdk9.java.net/download/
https://jdk9.java.net/download/


Exploratory Data Analysis

[ 412 ]

However, our experiments showed that JShell is unfortunately quite raw yet and sometimes
crashes. At the time of writing, the plan is to release it at the end of March 2017. For now,
we will not cover JShell in more detail, but all the code from the first half of the chapter
should work in that console with no additional configuration. And what is more, we should
be able to see the output immediately.

By now, we have used Joinery a couple of times already, and it has also some support for
performing simple EDA. Next, we will look at how to do the analysis with the Joinery shell.

Joinery shell
Joinery has already proved useful multiple times for doing data processing and simple
EDA. It has an interactive shell for doing EDA and you get an answer instantly.

If the data is already in the CSV format, then the Joinery shell can be called from the system
console:

$ java joinery.DataFrame shell

You can see the examples at h t t p s ://g i t h u b . c o m /c a r d i l l o /j o i n e r y . So if your data is
already in CSV, you are good to go, just follow the instructions from there.

Here, in this book, we will look at a more complex example when the DataFrame is not in
CSV. In our case the data is in JSON, and the Joinery shell does not support that format, so
we need to do some pre-processing first.

What we can do is to create a DataFrame object inside the Java code and then create the
interactive shell and pass the DataFrame there. Let's see how it can be done.

But before we can do this, we need to add a few dependencies to make it possible. First, the
Joinery shell uses JavaScript, but it does not use the Nashorn engin shipped along with the
JVM; instead it uses the Mozilla's engine called Rhino. Thus, we need to include it to our
pom:

<dependency>
  <groupId>rhino</groupId>
  <artifactId>js</artifactId>
  <version>1.7R2</version>
</dependency>

https://github.com/cardillo/joinery
https://github.com/cardillo/joinery
https://github.com/cardillo/joinery
https://github.com/cardillo/joinery
https://github.com/cardillo/joinery
https://github.com/cardillo/joinery
https://github.com/cardillo/joinery
https://github.com/cardillo/joinery
https://github.com/cardillo/joinery
https://github.com/cardillo/joinery
https://github.com/cardillo/joinery
https://github.com/cardillo/joinery
https://github.com/cardillo/joinery
https://github.com/cardillo/joinery
https://github.com/cardillo/joinery
https://github.com/cardillo/joinery
https://github.com/cardillo/joinery
https://github.com/cardillo/joinery
https://github.com/cardillo/joinery
https://github.com/cardillo/joinery
https://github.com/cardillo/joinery
https://github.com/cardillo/joinery
https://github.com/cardillo/joinery
https://github.com/cardillo/joinery
https://github.com/cardillo/joinery
https://github.com/cardillo/joinery
https://github.com/cardillo/joinery
https://github.com/cardillo/joinery
https://github.com/cardillo/joinery
https://github.com/cardillo/joinery
https://github.com/cardillo/joinery
https://github.com/cardillo/joinery
https://github.com/cardillo/joinery
https://github.com/cardillo/joinery
https://github.com/cardillo/joinery
https://github.com/cardillo/joinery
https://github.com/cardillo/joinery
https://github.com/cardillo/joinery
https://github.com/cardillo/joinery
https://github.com/cardillo/joinery
https://github.com/cardillo/joinery
https://github.com/cardillo/joinery
https://github.com/cardillo/joinery
https://github.com/cardillo/joinery
https://github.com/cardillo/joinery
https://github.com/cardillo/joinery
https://github.com/cardillo/joinery
https://github.com/cardillo/joinery
https://github.com/cardillo/joinery
https://github.com/cardillo/joinery
https://github.com/cardillo/joinery
https://github.com/cardillo/joinery
https://github.com/cardillo/joinery
https://github.com/cardillo/joinery
https://github.com/cardillo/joinery
https://github.com/cardillo/joinery
https://github.com/cardillo/joinery
https://github.com/cardillo/joinery
https://github.com/cardillo/joinery
https://github.com/cardillo/joinery
https://github.com/cardillo/joinery
https://github.com/cardillo/joinery


Exploratory Data Analysis

[ 413 ]

Second, it relies on a special library for autocompletion, jline. Let's add it as well:

<dependency>
  <groupId>jline</groupId>
  <artifactId>jline</artifactId>
  <version>2.14.2</version>
</dependency>

Using Maven gives you a lot of flexibility; it is simpler and does not require you to
download all the libraries manually and build Joinery from the source code to be able to
execute the shell. So, we let Maven take care of it.

Now we are ready to use it:

List<RankedPage> pages = Data.readRankedPages();
DataFrame<Object> dataFrame = BeanToJoinery.convert(pages,
'RankedPage.class);
Shell.repl(Arrays.asList(dataFrame));

Let's save this code to a chapter03.JoineryShell class. After that, we can run it with the
following Maven command:

mvn exec:java -Dexec.mainClass="chapter03.JoineryShell"

This will bring us to the Joinery shell:

# DataFrames for Java -- null, 1.7-8e3c8cf
# Java HotSpot(TM) 64-Bit Server VM, Oracle Corporation, 1.8.0_91
# Rhino 1.7 release 2 2009 03 22
>

All the DataFrames that we pass to the Shell object in Java are available in the frames
variable in the shell. So, to get DataFrame, we can do this:

> var df = frames[0]

To see the content of DataFrame, just write its name:

> df

And you will see a couple of first rows of DataFrame. Note that the autocompletion works
as expected:

> df.<tab>

You will see a list of options.



Exploratory Data Analysis

[ 414 ]

We can use this shell to call the same methods on the DataFrames as we would use in the
usual Java application. For example, you can compute the mean as follows:

> df.mean().transpose()

We will see the following output:

bodyContentLength 14332.23924269
numberOfHeaders 25.25325793
numberOfLinks 231.16867470
page 1.03221047
position 18.76518318
queryInTitle 0.59822965
titleLength 46.17334645

Alternatively. we can perform the same groupBy example:

> df.drop('position').groupBy('page').mean().sortBy('page').transpose()

This will produce the following output:

page 0 1 2
bodyContentLength 12577 18703 11286
numberOfHeaders 30 23 21
numberOfLinks 276 219 202
queryInTitle 0 0 0
titleLength 46 46 45

Finally, it is also possible to create some simple plots with Joinery. For that, we will need to
use an additional library. For plotting, Joinery uses xchart. Let's include it:

<dependency>
  <groupId>com.xeiam.xchart</groupId>
  <artifactId>xchart</artifactId>
  <version>2.5.1</version>
</dependency>

And run the console again. Now we can use the plot function:

> df.retain('titleLength').plot(PlotType.SCATTER)



Exploratory Data Analysis

[ 415 ]

And we will see this:

Here, we see an outlier whose title length is more than 550 characters. Let's remove
everything that is above 200 and have a look at the picture again. Also, remember that there
are some zero-length content pages, so we can filter them out as well.

To keep only those rows that satisfy some condition, we use the select method. It takes a
function, which is applied to every row; if a function returns true, the row is kept.

We can use it like this:

> df.retain('titleLength')
    .select(function(list) { return list.get(0) <= 200; })
    .select(function(list) { return list.get(0) > 0;})
    .plot(PlotType.SCATTER)



Exploratory Data Analysis

[ 416 ]

The line-breaks in the preceding code are added for better readability, but
they will not work in the console, so do not use them.

Now, we get a clearer picture:

Unfortunately, the plotting capabilities of joinery are quite limited, and it takes a lot of effort
to produce graphs using xchart.

As we already know, in Joinery, it is easy to calculate statistics across different groups; we
just need to use the groupBy method. However, it is not possible to easily use this method
for plotting data so that it is easy to compare the distributions for each group.



Exploratory Data Analysis

[ 417 ]

There are other tools that you can also use for EDA:

Weka, which is written in Java, is a library used for performing data mining. It
has a GUI interface for performing EDA.
Smile, another Java library, has a Scala shell and a smile-plot library for creating
visualizations.

Unfortunately, Java is typically not the ideal choice for performing EDA and there are other
better suited dynamic languages for that. For example, R and Python are ideal for this task,
but covering them is beyond the scope of this book. You can learn more about them from
the following book:

Mastering Data Analysis with R, Gergely Daroczi
Python Machine Learning, Sebastian Raschka

Summary
In this chapter, we talked about Exploratory Data Analysis, or EDA for short. We discussed
how to do EDA in Java, which included creating summaries and simple visualizations.

Throughout the chapter, we used our search engine example and analyzed the data we
collected previously. Our analysis showed that the distribution of some variables looks
different for URLs coming from different pages of the search engine results. This suggests
that it is possible to use these differences to build a model that will predict whether a URL
comes from the first page or not.

In the next chapter, we will look at how to do it and discuss of supervised machine learning
algorithms, such as classification and regression.



  4
Supervised Learning -

Classification and Regression
In previous chapters, we looked at how to pre-process data in Java and how to do
Exploratory Data Analysis. Now, as we covered the foundation, we are ready to start
creating machine learning models.

First, we start with supervised learning. In the supervised settings, we have some
information attached to each observation, called labels, and we want to learn from it, and
predict it for observations without labels.

There are two types of labels: the first are discrete and finite, such as true/false or buy/sell,
and the second are continuous, such as salary or temperature. These types correspond to
two types of supervised learning: classification and regression. We will talk about them in
this chapter.

This chapter covers the following points:

Classification problems
Regression problems
Evaluation metrics for each type
An overview of the available implementations in Java

By the end of this chapter, you will know how to use Smile, LIBLINEAR, and other Java
libraries for building supervised machine learning models.



Supervised Learning - Classification and Regression

[ 419 ]

Classification
In machine learning, the classification problems deal with discrete targets with a finite set of
possible values. What this means is that there is a set of possible outcomes, and given some
features we want to predict the outcome.

The binary classification is the most common type of classification problem, as the target
variable can have only two possible values, such as True/False, Relevant/Not
Relevant, Duplicate/Not Duplicate, Cat/Dog, and so on.

Sometimes the target variable can have more than two outcomes, for example, colors,
category of an item, model of a car, and so on, and we call this multi-class classification.
Typically, each observation can only have one label, but in some settings an observation can
be assigned several values. Multi-class classification can be converted to a set of binary
classification problems, which is why we will mostly concentrate on binary classification.

Binary classification models
As we have already discussed, the binary classification model deals with the case when
there are only two possible outcomes that we want to predict. Typically, in these settings,
we have items of the positive class (the presence of some effect) and items of the negative
class (the absence of some effect).

For example, the positive label can be relevant, duplicate, fail to pay the debts, and so on.
The instances of the positive class are typically assigned the target value of 1. Also, we have
negative instances, such as not relevant, not duplicate, pays the debts, and they are assigned
the target value of 0.

This separation into positive and negative classes is somewhat artificial, and in some cases
does not really make sense. For example, if we have images of cats and dogs, even though
there are just two classes, it would be a stretch to say that Cat is a positive class and Dog is
negative. But it is not important for the model, so we can still assign the labels in such a way
that Cat is 1, and Dog is 0.

Once we have trained a model, we are not typically interested in a hard prediction such as
the positive effect is there, or this is a cat. What is more interesting is the degree of the positive
or negative effect, and this is typically achieved by predicting probabilities. For example, if
we want to build a model to predict whether a client will fail to pay the debts, then saying
this client has 30% of defaulting is more useful than this client will not default.



Supervised Learning - Classification and Regression

[ 420 ]

There are many models solve the binary classification problem and it is not possible to
cover all of them. We will briefly cover the ones that are most often used in practice. They
include the following:

Logistic regression
Support Vector Machines
Decision trees
Neural networks

We assume that you are already familiar with these methods, and at least have some idea as
to how they work. Deep familiarity is not required, but for more information, you can check
the following books:

An Introduction to Statistical Learning, G. James, D. Witten, T. Hastie, and R.
Tibshirani, Springer
Python Machine Learning, S. Raschka, Packt Publishing

When it comes to libraries, we will cover Smile, JSAT, LIBSVM, LIBLINEAR, and Encog.
Let's start with Smile.

Smile
Statistical Machine Intelligence and Learning Engine (Smile) is a library with a large set
of classification and other machine learning algorithms. For us, the most interesting ones
are logistic regression, SVM, and random forest, but you can see the full list of available
algorithms on their official GitHub page at https://github.com/haifengl/smile.

The library is available on Maven Central and the latest version at the time of writing is
1.1.0. To include it to your project, add the following dependency:

<dependency>
  <groupId>com.github.haifengl</groupId>
  <artifactId>smile-core</artifactId>
  <version>1.1.0</version>
</dependency>

https://github.com/haifengl/smile


Supervised Learning - Classification and Regression

[ 421 ]

It is being actively developed; new features and bug fixes are added quite often, but not
released as frequently. We recommend using the latest available version of Smile, and to get
it, you will need to build it from the sources. To do this:

Install sbt, which is a tool used for building scala projects. You can follow the
instruction at
http://www.scala-sbt.org/release/docs/Manual-Installation.html

Use git to clone the project from https://github.com/haifengl/smile
To build and publish the library to a local Maven repository, run the following
command:

sbt core/publishM2

The Smile library consists of several submodules, such as smile-core, smile-nlp,
smile-plot, and so on. For the purposes of this chapter, we only need the core package,
and the preceding command will build only that. At the moment of writing, the current
version available on GitHub is 1.2.0. So, after building it, add the following dependency to
your pom:

<dependency>
  <groupId>com.github.haifengl</groupId>
  <artifactId>smile-core</artifactId>
  <version>1.2.0</version>
</dependency>

The models from Smile expect the data to be in a form of two-dimensional arrays of
doubles, and the label information as a one dimensional array of integers. For binary
models, the values should be 0 or 1. Some models in Smile can handle multi-class
classification problems, so it is possible to have more labels, not just 0 and 1, but also 2, 3,
and so on.

In Smile, the models are built using the builder pattern; you create a special class, set some
parameters and at the end it returns the object it builds. This builder class is typically
called Trainer, and all models should have a Trainer object for them.

For example, consider training a RandomForest model:

double[] X = ... // training data
int[] y = ... // 0 and 1 labels
RandomForest model = new RandomForest.Trainer()
    .setNumTrees(100)
    .setNodeSize(4)
    .setSamplingRates(0.7)
    .setSplitRule(SplitRule.ENTROPY)
    .setNumRandomFeatures(3)

http://www.scala-sbt.org/release/docs/Manual-Installation.html
https://github.com/haifengl/smile


Supervised Learning - Classification and Regression

[ 422 ]

    .train(X, y);

The RandomForest.Trainer class takes in a set of parameters and the training data, and
in the end produces the trained RandomForest model. The implementation of
RandomForest from Smile has the following parameters:

numTrees: This is the number of trees to train in the model
nodeSize: This is the minimum number of items in the leaf nodes
samplingRate: This is the ratio of training data used to grow each tree
splitRule: This is the impurity measure used for selecting the best split
numRandomFeatures: This is the number of features the model randomly
chooses for selecting the best split

Similarly, a logistic regression is trained as follows:

LogisticRegression lr = new LogisticRegression.Trainer()
        .setRegularizationFactor(lambda)
        .train(X, y);

Once we have a model, we can use it for predicting the label of previously unseen items.
For that we use the predict method:

double[] row = // data
int prediction = model.predict(row);

This code outputs the most probable class for the given item. However, we are often more
interested not in the label itself, but in the probability of having the label. If a model
implements the SoftClassifier interface, then it is possible to get these probabilities like
this:

double[] probs = new double[2];
model.predict(row, probs);

After running this code, the probs array will contain the probabilities.

JSAT
Java Statistical Analysis Tool (JSAT) is another Java library which contains a lot of 
implementations of commonly-used machine learning algorithms. You can check the full
list of implemented models at https://github.com/EdwardRaff/JSAT/wiki/Algorithms.

https://github.com/EdwardRaff/JSAT/wiki/Algorithms


Supervised Learning - Classification and Regression

[ 423 ]

To include JSAT to a Java project, add the following snippet to pom:

<dependency>
  <groupId>com.edwardraff</groupId>
  <artifactId>JSAT</artifactId>
  <version>0.0.5</version>
</dependency>

Unlike Smile models, which require just an array of doubles with the feature information,
JSAT requires a special wrapper class for data. If we have an array, it is converted to the
JSAT representation like this:

double[][] X = ... // data
int[] y = ... // labels

// change to more classes for more classes for multi-classification
CategoricalData binary = new CategoricalData(2);

List<DataPointPair<Integer>> data = new ArrayList<>(X.length);
for (int i = 0; i < X.length; i++) {
    int target = y[i];
    DataPoint row = new DataPoint(new DenseVector(X[i]));
    data.add(new DataPointPair<Integer>(row, target));
}

ClassificationDataSet dataset = new ClassificationDataSet(data, binary);

Once we have prepared the dataset, we can train a model. Let's consider the Random Forest
classifier again:

RandomForest model = new RandomForest();
model.setFeatureSamples(4);
model.setMaxForestSize(150);
model.trainC(dataset);

First, we set some parameters for the model, and then, in the end, we call the trainC
method (which means train a classifier).

In the JSAT implementation, Random Forest has fewer options for tuning than Smile, only
the number of features to select and the number of trees to grow.

Also, JSAT contains several implementations of Logistic Regression. The usual Logistic
Regression model does not have any parameters, and it is trained like this:

LogisticRegression model = new LogisticRegression();
model.trainC(dataset);



Supervised Learning - Classification and Regression

[ 424 ]

If we want to have a regularized model, then we need to use the LogisticRegressionDCD
class. Dual Coordinate Descent (DCD) is the optimization method used to train the logistic
regression). We train it like this:

LogisticRegressionDCD model = new LogisticRegressionDCD();
model.setMaxIterations(maxIterations);
model.setC(C);
model.trainC(fold.toJsatDataset());

In this code, C is the regularization parameter, and the smaller values of C correspond to
stronger regularization effect.

Finally, for outputting probabilities, we can do the following:

double[] row = // data
DenseVector vector = new DenseVector(row);
DataPoint point = new DataPoint(vector);
CategoricalResults out = model.classify(point);
double probability = out.getProb(1);

The CategoricalResults class contains a lot of information, including probabilities for
each class and the most likely label.

LIBSVM and LIBLINEAR
Next, we consider two similar libraries, LIBSVM and LIBLINEAR.

LIBSVM (https://www.csie.ntu.edu.tw/~cjlin/libsvm/) is a library with
implementation of Support Vector Machine models, which include support
vector classifiers
LIBLINEAR (https://www.csie.ntu.edu.tw/~cjlin/liblinear/) is a library for
fast linear classification algorithms such as Liner SVM and Logistic Regression

Both these libraries come from the same research group and have very similar interfaces.
We will start with LIBSVM.

LIBSVM is a library that implements a number of different SVM algorithms. It is
implemented in C++ and has an officially supported Java version. It is available on Maven
Central:

<dependency>
  <groupId>tw.edu.ntu.csie</groupId>
  <artifactId>libsvm</artifactId>
  <version>3.17</version>
</dependency>

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/


Supervised Learning - Classification and Regression

[ 425 ]

Note that the Java version of LIBSVM is updated not as often as the C++
version. Nevertheless, the preceding version is stable and should not
contain bugs, but it might be slower than its C++ version.

To use SVM models from LIBSVM, you first need to specify the parameters. For this, you
create a svm_parameter class. Inside, you can specify many parameters, including:

The kernel type (RBF, POLY, or LINEAR)
The regularization parameter C
probability which you can set to 1 to be able to get probabilities
svm_type should be set to C_SVC; this tells that the model should be a classifier

Recall that SVM models can have different kernels, and depending on which kernel we use,
we have different models with different parameters. Here, we will consider the most
commonly used kernels; linear (or no kernel), polynomial and Radial Basis Function (RBF),
also known as Gaussian kernel).
First, let's start with the linear kernel. First, we create an svm_paramter object, where we
set the kernel type to LINEAR and also ask it to output probabilities:

svm_parameter param = new svm_parameter();
param.svm_type = svm_parameter.C_SVC;
param.kernel_type = svm_parameter.LINEAR;
param.probability = 1;
param.C = C;

// default parameters
param.cache_size = 100;
param.eps = 1e-3;
param.p = 0.1;
param.shrinking = 1;

Next, we have a polynomial kernel. Recall that the polynomial kernel is specified by the
following formula:

It has three additional parameters, that is, gamma, coef0, and degree, which control the
kernel, and also C--the regularization parameter. We can configure the svm_parameter
class for POLY SVM like this:

svm_parameter param = new svm_parameter();



Supervised Learning - Classification and Regression

[ 426 ]

param.svm_type = svm_parameter.C_SVC;
param.kernel_type = svm_parameter.POLY;
param.C = C;
param.degree = degree;
param.gamma = 1;
param.coef0 = 1;
param.probability = 1;
// plus defaults from the above

Finally, the Gaussian kernel (or RBF) has the following formula:

So there is one parameter, gamma, which controls the width of the Gaussians. We can
specify the model with the RBF kernel like this:

svm_parameter param = new svm_parameter();
param.svm_type = svm_parameter.C_SVC;
param.kernel_type = svm_parameter.RBF;
param.C = C;
param.gamma = gamma;
param.probability = 1;
// plus defaults from the above

Once we have created the configuration object, we need to convert the data in the right
format. The library expects the data to be represented in the sparse format. For a single data
row, the conversion to the required format is as follows:

double[] dataRow = // single row vector
svm_node[] svmRow = new svm_node[dataRow.length];

for (int j = 0; j < dataRow.length; j++) {
    svm_node node = new svm_node();
    node.index = j;
    node.value = dataRow[j];
    svmRow[j] = node;
}

Since we typically have a matrix, not just a single row, we apply the preceding code to each
row of this matrix:

double[][] X = ... // data
int n = X.length;
svm_node[][] nodes = new svm_node[n][];

for (int i = 0; i < n; i++) {



Supervised Learning - Classification and Regression

[ 427 ]

    nodes[i] = wrapAsSvmNode(X[i]);
}

Here, wrapAsSvmNode is a function, that wraps a vector into an array of svm_node objects.

Now, we can put the data and the labels together into the svm_problem object:

double[] y = ... // labels
svm_problem prob = new svm_problem();
prob.l = n;
prob.x = nodes;
prob.y = y;

Finally, we can use the parameters and the problem specification to train an SVM model:

svm_model model = svm.svm_train(prob, param);

Once the model is trained, we can use it to classify unseen data. Getting probabilities is
done this way:

double[][] X = // test data
int n = X.length;
double[] results = new double[n];
double[] probs = new double[2];

for (int i = 0; i < n; i++) {
    svm_node[] row = wrapAsSvmNode(X[i]);
    svm.svm_predict_probability(model, row, probs);
    results[i] = probs[1];
}

Since we used param.probability = 1, we can use the
svm.svm_predict_probability method to predict probabilities. Like in Smile, the
method takes an array of doubles and writes the output there. After this operation, it will
contain the probabilities in this array.

Finally, while training, LIBSVM outputs a lot of things on the console. If we are not
interested in this output, we can disable it with the following code snippet:

svm.svm_set_print_string_function(s -> {});

Just add this in the beginning of your code and you will not see the
debugging information anymore.



Supervised Learning - Classification and Regression

[ 428 ]

The next library is LIBLINEAR, which provides very fast and high-performing linear
classifiers, such as SVM with linear kernel and logistic regression. It can easily scale to tens
and hundreds of millions of data points. Its interface is quite similar to LIBSVM, where we
need to specify the parameters and the data, and then train a model.

Unlike LIBSVM, there is no official Java version of LIBLINEAR, but there is an unofficial
Java port available at http://liblinear.bwaldvogel.de/. To use it, include the following:

<dependency>
 <groupId>de.bwaldvogel</groupId>
 <artifactId>liblinear</artifactId>
 <version>1.95</version>
</dependency>

The interface is very similar to LIBSVM. First, we define the parameters:

SolverType solverType = SolverType.L1R_LR;
double C = 0.001;
double eps = 0.0001;
Parameter param = new Parameter(solverType, C, eps);

In this example, we specify three parameters:

solverType: This defines the model that will be used
C: This is the amount of regularization, the smaller the C, the stronger the
regularization
epsilon: This is the level of tolerance for stopping the training process; a
reasonable default is 0.0001

For the classification problem, the following are the solvers that we can use:

Logistic regression: L1R_LR or L2R_LR
SVM: L1R_L2LOSS_SVC or L2R_L2LOSS_SVC

Here, we have two models; logistic regression and SVM, and two regularization types, L1
and L2. How can we decide which model to choose and which regularization to use?
According to the official FAQ (which can be found here:
https://www.csie.ntu.edu.tw/~cjlin/liblinear/FAQ.html), we should:

Prefer SVM to logistic regression as it trains faster and usually gives higher
accuracy
Try L2 regularization first unless you need a sparse solution, in this case use L1

http://liblinear.bwaldvogel.de/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/FAQ.html


Supervised Learning - Classification and Regression

[ 429 ]

Next, we need to prepare our data. As previously, we need to wrap it to some special
format. First, let's see how to wrap a single data row:

double[] row = // data
int m = row.length;
Feature[] result = new Feature[m];

for (int i = 0; i < m; i++) {
    result[i] = new FeatureNode(i + 1, row[i]);
}

Note that we add 1 to the index. The 0 is the bias term, so the actual
features should start from 1.

We can put this code into a wrapRow function and then wrap the entire dataset as follows:

double[][] X = // data
int n = X.length;
Feature[][] matrix = new Feature[n][];
for (int i = 0; i < n; i++) {
    matrix[i] = wrapRow(X[i]);
}

Now, we can create the Problem class with the data and labels:

double[] y = // labels

Problem problem = new Problem();
problem.x = wrapMatrix(X);
problem.y = y;
problem.n = X[0].length + 1;
problem.l = X.length;

Note that here we also need to provide the dimensionality of the data, and it's the number
of features plus one. We need to add one because it includes the bias term.

Now we are ready to train the model:

Model model = LibLinear.train(fold, param);

When the model is trained, we can use it to classify unseen data. In the following example,
we will output probabilities:

double[] dataRow = // data
Feature[] row = wrapRow(dataRow);
Linear.predictProbability(model, row, probs);



Supervised Learning - Classification and Regression

[ 430 ]

double result = probs[1];

The preceding code works fine for the logistic regression model, but it will not work for
SVM, SVM cannot output probabilities, so the preceding code will throw an error for
solvers such as L1R_L2LOSS_SVC. What we can do instead is to get the raw output:

double[] values = new double[1];
Feature[] row = wrapRow(dataRow);
Linear.predictValues(model, row, values);
double result = values[0];

In this case, the results will not contain probability, but some real value. When this value is
greater than zero, the model predicts that the class is positive.

If we would like to map this value to the [0, 1] range, we can use the sigmoid function
for that:

public static double[] sigmoid(double[] scores) {
    double[] result = new double[scores.length];

    for (int i = 0; i < result.length; i++) {
        result[i] = 1 / (1 + Math.exp(-scores[i]));
    }

    return result;
}

Finally, like LIBSVM, LIBLINEAR also outputs a lot of things to standard output. If you do
not wish to see it, you can mute it with the following code:

PrintStream devNull = new PrintStream(new NullOutputStream());
Linear.setDebugOutput(devNull);

Here, we use NullOutputStream from Apache IO, which does nothing, so the screen stays
clean.

Want to know when to use LIBSVM and when to use LIBLINEAR? For large datasets, it is
not often possible to use any kernel methods. In this case, you should prefer LIBLINEAR.
Additionally, LIBLINEAR is especially good for text processing purposes such as document
classification. We will cover these cases in more detail in Chapter 6, Working with Texts -
Natural Language Processing and Information Retrieval.



Supervised Learning - Classification and Regression

[ 431 ]

Encog
So far, we have covered many models, that is, logistic regression, SVM, and RandomForest,
and we have looked at multiple libraries that implement them. But we have not yet covered
neural networks. In Java, there is a special library that deals exclusively with neural
networks--Encog. It is available on Maven Central and can be added with the following
snippet:

<dependency>
  <groupId>org.encog</groupId>
  <artifactId>encog-core</artifactId>
  <version>3.3.0</version>
</dependency>

After including the library, the first step is to specify the architecture of a neural network.
We can do it like this:

BasicNetwork network = new BasicNetwork();
network.addLayer(new BasicLayer(new ActivationSigmoid(), true,
noInputNeurons));
network.addLayer(new BasicLayer(new ActivationSigmoid(), true, 30));
network.addLayer(new BasicLayer(new ActivationSigmoid(), true, 1));
network.getStructure().finalizeStructure();
network.reset();

Here, we create a network with one input layer, one inner layer with 30 neurons, and one
output layer with 1 neuron. In each layer we use sigmoid as the activation function and add
the bias input (the true parameter). Finally, the reset method randomly initializes the
weights in the network.

For both input and output, Encog expects two-dimensional double arrays. In the case of
binary classification, we typically have a one dimensional array, so we need to convert it:

double[][] X = // data
double[] y = // labels
double[][] y2d = new double[y.length][];

for (int i = 0; i < y.length; i++) {
    y2d[i] = new double[] { y[i] };
}

Once the data is converted, we wrap it into a special wrapper class:

MLDataSet dataset = new BasicMLDataSet(X, y2d);



Supervised Learning - Classification and Regression

[ 432 ]

Then, this dataset can be used for training:

MLTrain trainer = new ResilientPropagation(network, dataset);
double lambda = 0.01;
trainer.addStrategy(new RegularizationStrategy(lambda));

int noEpochs = 101;
for (int i = 0; i < noEpochs; i++) {
    trainer.iteration();
}

We won't cover Encog in much detail here, but we will come back to neural networks in
Chapter 8, Deep Learning with DeepLearning4j, where we will look at a different library--
DeepLearning4J.

There are a lot of other machine learning libraries available in Java. For example Weka,
H2O, JavaML, and others. It is not possible to cover all of them, but you can also try them
and see if you like them more than the ones we have covered.

Next, we will see how we can evaluate the classification models.

Evaluation
We have covered many machine learning libraries, and many of them implement the same
algorithms such as random forest or logistic regression. Also, each individual model can
have many different parameters, a logistic regression has the regularization coefficient, an
SVM is configured by setting the kernel and its parameters.

How do we select the best single model out of so many possible variants?

For that, we first define some evaluation metric and then select the model which achieves
the best possible performance with respect to this metric. For binary classification, there are
many metrics that we can use for comparison, and the most commonly used ones are as
follows:

Accuracy and error
Precision, recall, and F1
AUC (AU ROC)



Supervised Learning - Classification and Regression

[ 433 ]

We use these metrics to see how well the model will be able to generalize to new unseen
data. Therefore, it is important to model this situation when the data is new to the model.
This is typically done by splitting the data into several parts. So, we will also cover the
following:

Result evaluation
K-fold cross-validation
Training, validation, and testing

Let us start with the most intuitive evaluation metric, accuracy.

Accuracy
Accuracy is the most straightforward way of evaluating a classifier: we make a prediction,
look at the predicted label and then compare it with the actual value. If the values agree,
then the model got it right. Then, we can do it for all the data that we have and see the ratio
of the correctly predicted examples; and this is exactly what accuracy describes. So,
accuracy tells us for how many examples the model predicted the correct label. Calculating
it is trivial:

int n = actual.length;
double[] proba = // predictions;

double[] prediction = Arrays.stream(proba).map(p -> p > threshold ? 1.0 :
0.0).toArray();
int correct = 0;

for (int i = 0; i < n; i++) {
    if (actual[i] == prediction[i]) {
        correct++;
    }
}

double accuracy = 1.0 * correct / n;

Accuracy is the simplest evaluation metric, and it is easy to explain it to anybody, even to
nontechnical people.

However sometimes, accuracy is not the best measure of model performance. Next we will
see what are its problems and what to use instead.



Supervised Learning - Classification and Regression

[ 434 ]

Precision, recall, and F1
In some cases, accuracy values are deceiving: they suggest that the classifier is good,
although it is not. For example, suppose we have an unbalanced dataset: there are only 1%
of examples that are positive, and the rest (99%) are negative. Then, a model that always
predicts negative is right in 99% of the cases, and hence will have an accuracy of 0.99. But
this model is not useful.

There are alternatives to accuracy that can overcome this problem. Precision and recall are
among these metrics, as they both look at the fraction of positive items that the model
correctly recognized. So, if we have a large number of negative examples, we can still
perform some meaningful evaluation of the model.

Precision and recall can be calculated using the confusion matrix, a table which summarizes
the performance of a binary classifier:

When we use a binary classification model to predict the actual value of some data item,
there are four possible outcomes:

True positive (TP): The actual class is positive, and we predict positive
True negative (TN): The actual class is negative, and we predict negative
False positive (FP): The actual class is negative, but we say it is positive
False negative (FN): The actual class is positive, but we say it is negative

The first two cases (TP and TN) are correct predictions the actual and the predicted values
are the same. The last two cases (FP and FN) are incorrect classification, as we fail to predict
the correct label.



Supervised Learning - Classification and Regression

[ 435 ]

Now, suppose that we have a dataset with known labels, and run our model against it.
Then, let TP be the number of true positive examples, TN the true negative examples, and so
on.

Then we can calculate precision and recall using these values:

Precision is the fraction of correctly--predicted positive items among all items the
model predicted positive. In terms of the confusion matrix, precision is TP / (TP
+ FP).
Recall is the fraction of correctly-- predicted positive items among items that are
actually positive. With values from the confusion matrix, recall is TP / (TP +
FN).
It is often hard to decide whether one should optimize precision or recall. But
there is another metric which combines both precision and recall into one
number, and it is called F1 score.

For calculating precision and recall, we first need to calculate the values for the cells of the
confusion matrix:

int tp = 0, tn = 0, fp = 0, fn = 0;

for (int i = 0; i < actual.length; i++) {
    if (actual[i] == 1.0 && proba[i] > threshold) {
        tp++;
    } else if (actual[i] == 0.0 && proba[i] <= threshold) {
        tn++;
    } else if (actual[i] == 0.0 && proba[i] > threshold) {
        fp++;
    } else if (actual[i] == 1.0 && proba[i] <= threshold) {
        fn++;
    }
}

Then, we can use the values to calculate precision and recall:

double precision = 1.0 * tp / (tp + fp);
double recall = 1.0 * tp / (tp + fn);

Finally, f1 can be calculated using the following formula:

double f1 = 2 * precision * recall / (precision + recall);

These metrics are quite useful when the dataset is imbalanced.



Supervised Learning - Classification and Regression

[ 436 ]

ROC and AU ROC (AUC)
The preceding metrics are good for binary classifiers which produce a hard output; they
only tell whether the class should be assigned a positive label or negative. If, instead, our
model outputs some score such that the higher the values of the score the more likely the
item is to be positive, then the binary classifier is called a ranking classifier.

Most of the models can output probabilities of belonging to a certain class, and we can use it
to rank examples such that the positives are likely to come first.

The ROC curve visually tells us how good a ranking classifier separates positive examples
from negative ones. The way a ROC curve is built is as follows:

Sort the observations by their score and then start from the origin
Go up if the observation is positive and right if it is negative.

This way, in the ideal case, we first always go up, and then always go right and this will
result in the best possible ROC curve. In this case, we can say that the separation between
positive and negative examples is perfect. If the separation is not perfect, but still OK, the
curve will go up for positive examples, but sometimes will turn right when a
misclassification occurs. Finally, a bad classifier will not be able to tell positive and negative
examples apart and the curve would alternate between going up and right.

Let's look at some examples:



Supervised Learning - Classification and Regression

[ 437 ]

The diagonal line on the plot represents the baseline--the performance that a random
classifier would achieve. The further away the curve is from the baseline, the better.

Unfortunately, there is no available easy-to-use implementation of ROC curves in Java. It is
not hard to implement the code ourselves. Here, we will outline how to do it, and you will
find the implementation in the chapter code repository.

So the algorithm for drawing a ROC curve is as follows:

Let POS be the number of positive labels, and NEG be the number of negative
labels
Order data by the score, decreasing
Start from (0, 0)
For each example in the sorted order,

o if the example is positive, move 1 / POS up in the graph,
o otherwise, move 1 / NEG right in the graph.

This is a simplified algorithm and assumes that the scores are distinct. If the scores aren't
distinct, and there are different actual labels for the same score, some adjustment needs to
be made.

It is implemented in the RocCurve class, which you will find in the source code. You can
use it as follows:

RocCurve.plot(actual, prediction);

Calling it will create a plot similar to this one:



Supervised Learning - Classification and Regression

[ 438 ]

The area under the curve says how good the separation between the positive and negative
examples is. If the separation is very good, then the area will be close to one. But if the
classifier cannot distinguish between positive and negative examples, the curve will go
around the random baseline curve, and the area will be close to 0.5.

The area under the curve is often abbreviated as AUC, or, sometimes, AU ROC to
emphasize that the curve is a ROC curve.



Supervised Learning - Classification and Regression

[ 439 ]

AUC has a very nice interpretation--the value of AUC corresponds to probability that a
randomly selected positive example is scored higher than a randomly selected negative
example. Naturally, if this probability is high, our classifier does a good job separating
positive and negative examples.

This makes AUC a to-go evaluation metric for many cases, especially when the dataset is
unbalanced in the sense that there are a lot more examples of one class than another.

Luckily, there are implementations of AUC in Java. For example, it is implemented in Smile.
You can use it like this:

double[] predicted = ...  //
int[] truth = ... //
double auc = AUC.measure(truth, predicted);

Now, when we discussed the possible evaluation metrics, we need to apply them to test our
models. We need to handle it with care. If we perform the evaluation on the same data
which we used for training, then the evaluation results will be overly optimistic. Next, we
will see what is the correct way of doing it.

Result validation
When learning from data, there is always the danger of overfitting. Overfitting occurs when
the model starts learning the noise in the data instead of detecting useful patterns. It is
always important to check if a model overfits, otherwise it will not be useful when applied
to unseen data.

The typical and most practical way of checking whether a model overfits or not is to
emulate unseen data, that is, take a part of the available labeled data and do not use it for
training.

This technique is called hold out, where we hold out a part of the data and use it only for
evaluation.



Supervised Learning - Classification and Regression

[ 440 ]

We also shuffle the original dataset before splitting. In many cases, we make a simplifying
assumption that the order of data is not important, that is, one observation has no influence
on another. In this case, shuffling the data prior to splitting will remove effects that the
order of items might have. On the other hand, if the data is a time series data, then shuffling
it is not a good idea, because there is some dependency between observations.

So, let's implement the hold out split. We assume that the data that we have is already
represented by X--a two-dimensional array of doubles with features and y--a one-
dimensional array of labels.

First, we create a helper class for holding the data:

public class Dataset {
    private final double[][] X;
    private final double[] y;
    // constructor and getters are omitted
}

Splitting our dataset should produce two datasets, so let's create a class for that as well:

public class Split {
    private final Dataset train;
    private final Dataset test;
    // constructor and getters are omitted
}

Now, suppose we want to split the data into two parts: train and test. We also want to
specify the size of the train set, and we will do it using a testRatio parameter: the
percentage of items that should go to the test set.

The first thing we do is to generate an array with indexes and then split it according to
testRatio:

int[] indexes = IntStream.range(0, dataset.length()).toArray();
int trainSize = (int) (indexes.length * (1 - testRatio));
int[] trainIndex = Arrays.copyOfRange(indexes, 0, trainSize);
int[] testIndex = Arrays.copyOfRange(indexes, trainSize, indexes.length);



Supervised Learning - Classification and Regression

[ 441 ]

We can also shuffle the indexes if we want:

Random rnd = new Random(seed);

for (int i = indexes.length - 1; i > 0; i--) {
    int index = rnd.nextInt(i + 1);
    int tmp = indexes[index];
    indexes[index] = indexes[i];
    indexes[i] = tmp;
}

Then we can select instances for the training set as follows:

int trainSize = trainIndex.length;
double[][] trainX = new double[trainSize][];
double[] trainY = new double[trainSize];
for (int i = 0; i < trainSize; i++) {
    int idx = trainIndex[i];
    trainX[i] = X[idx];
    trainY[i] = y[idx];
}

And then, finally, wrap it into our Dataset class:

Dataset train = new Dataset(trainX, trainY);

If we repeat the same for the test set, we can put both train and test sets into a Split object:

Split split = new Split(train, test);

Now we can use train fold for training and test fold for testing the models.

If we put all the previous code into a function of the Dataset class, for example,
trainTestSplit, we can use it as follows:

Split split = dataset.trainTestSplit(0.2);

Dataset train = split.getTrain();
// train the model using train.getX() and train.getY()

Dataset test = split.getTest();
// test the model using test.getX(); test.getY();

Here, we train a model on the train dataset, and then calculate the evaluation metric on
the test set.



Supervised Learning - Classification and Regression

[ 442 ]

K-fold cross-validation
Holding out only one part of the data may not always be the best option. What we can do
instead is splitting it into K parts and then testing the models only on 1/Kth of the data.

This is called k-fold cross-validation; it not only gives the performance estimation, but also
the possible spread of the error. Typically, we are interested in models that give good and
consistent performance. K-fold cross-validation helps us to select such models.

Next we prepare the data for k-fold cross-validation as follows:

First, split the data into K parts
Then, for each of these parts:

Take one part as the validation set
Take the remaining K-1 parts as the training set

If we translate this into Java, the first step will look like this:

int[] indexes = IntStream.range(0, dataset.length()).toArray();
int[][] foldIndexes = new int[k][];

int step = indexes.length / k;
int beginIndex = 0;

for (int i = 0; i < k - 1; i++) {
    foldIndexes[i] = Arrays.copyOfRange(indexes, beginIndex, beginIndex +
step);
    beginIndex = beginIndex + step;
}

foldIndexes[k - 1] = Arrays.copyOfRange(indexes, beginIndex,
indexes.length);

This creates an array of indexes for each of the K folds. We can also shuffle the indexes array
as previously.

Now we can create splits from each fold:

List<Split> result = new ArrayList<>();

for (int i = 0; i < k; i++) {
    int[] testIdx = folds[i];
    int[] trainIdx = combineTrainFolds(folds, indexes.length, i);
    result.add(Split.fromIndexes(dataset, trainIdx, testIdx));
}



Supervised Learning - Classification and Regression

[ 443 ]

In the preceding code we have two additional methods:

combineTrainFolds: This takes in K-1 arrays with indexes and combines them
into one
Split.fromIndexes: This creates a split that trains and tests indexes.

We have already covered the second function when we created a simple hold-out test set.

The first function, combineTrainFolds, is implemented like this:

private static int[] combineTrainFolds(int[][] folds, int totalSize, int
excludeIndex) {
    int size = totalSize - folds[excludeIndex].length;
    int result[] = new int[size];

    int start = 0;
    for (int i = 0; i < folds.length; i++) {
        if (i == excludeIndex) {
            continue;
        }
        int[] fold = folds[i];
        System.arraycopy(fold, 0, result, start, fold.length);
        start = start + fold.length;
    }

    return result;
}

Again, we can put the preceding code into a function of the Dataset class and call it like
follows:

List<Split> folds = train.kfold(3);

Now, when we have a list of Split objects, we can create a special function for performing
cross-validation:

public static DescriptiveStatistics crossValidate(List<Split> folds,
        Function<Dataset, Model> trainer) {
    double[] aucs = folds.parallelStream().mapToDouble(fold -> {
        Dataset foldTrain = fold.getTrain();
        Dataset foldValidation = fold.getTest();
        Model model = trainer.apply(foldTrain);
        return auc(model, foldValidation);
    }).toArray();

    return new DescriptiveStatistics(aucs);
}



Supervised Learning - Classification and Regression

[ 444 ]

What this function does is, it takes a list of folds and a callback that is inside and creates a
model. After the model is trained, we calculate AUC for it.

Additionally, we take advantage of Java's ability to parallelize loops and train models on
each fold at the same time.

Finally, we put the AUCs calculated on each fold into a DescriptiveStatistics object,
which can later on be used to return the mean and standard deviation of the AUCs. As you
probably remember, the DescriptiveStatistics class comes from the Apache
Commons Math library.

Let's consider an example. Suppose we want to use logistic regression from LIBLINEAR and
select the best value for the regularization parameter, C. We can use the preceding function
this way:

double[] Cs = { 0.01, 0.05, 0.1, 0.5, 1.0, 5.0, 10.0 };

for (double C : Cs) {
    DescriptiveStatistics summary = crossValidate(folds, fold -> {
        Parameter param = new Parameter(SolverType.L1R_LR, C, 0.0001);
        return LibLinear.train(fold, param);
    });

    double mean = summary.getMean();
    double std = summary.getStandardDeviation();
    System.out.printf("L1 logreg C=%7.3f, auc=%.4f &pm; %.4f%n", C, mean,
std);
}

Here, LibLinear.train is a helper method that takes a Dataset object and a Parameter
object and then trains a LIBLINEAR model. This will print AUC for all the provided values
of C, so you can see which one is the best, and pick the one with the highest mean AUC.

Training, validation, and testing
When doing cross-validation, there's still a danger of overfitting. Since we try a lot of
different experiments on the same validation set, we might accidentally pick the model
which just happened to do well on the validation set--but it may later on fail to generalize to
unseen data.

The solution to this problem is to hold out a test set at the very beginning and do not touch
it at all until we select what we think is the best model. And we use it only for evaluating
the final model on it.



Supervised Learning - Classification and Regression

[ 445 ]

So how do we select the best model? What we can do is to do cross-validation on the
remaining train data. It can be hold out or k-fold cross-validation. In general, you should
prefer doing k-fold cross-validation because it also gives you the spread of performance,
and you may use it in for model selection as well.

The following diagram illustrates the process:

According to the diagram, a typical data science workflow should be the following:

0: Select some metric for validation, for example, accuracy or AUC
1: Split all the data into train and test sets
2: Split the training data further and hold out a validation dataset or split it into k
folds
3: Use the validation data for model selection and parameter optimization
4: Select the best model according to the validation set and evaluate it against the
hold out test set

It is important to avoid looking at the test set too often, it should be used very rarely, and
only for final evaluation to make sure the selected model does not overfit. If the validation
scheme is set up properly, the validation score should correspond to the final test score. If
this happens, we can be sure that the model does not overfit and is able to generalize to
unseen data.



Supervised Learning - Classification and Regression

[ 446 ]

Using the classes and the code we created previously, it translates to the following Java
code:

Dataset data = new Dataset(X, y);
Dataset train = split.getTrain();
List<Split> folds = train.kfold(3);
// now use crossValidate(folds, ...) to select the best model

Dataset test = split.getTest();
// do final evaluation of the best model on test

With this information, we are ready to do a project on binary classification.

Case study - page prediction
Now we will continue with our running example, the search engine. What we want to do
here is to try to predict whether a URL comes from the first page of the search engine
results or not. So, it is time to use the material we have covered so far in this chapter.

In Chapter 2, Data Processing Toolbox, we created the following object to store the
information about pages:

public class RankedPage {
    private String url;
    private int position;
    private int page;
    private int titleLength;
    private int bodyContentLength;
    private boolean queryInTitle;
    private int numberOfHeaders;
    private int numberOfLinks;
}

First, we can start by adding a few methods to this object, as follows:

isHttps: This should tell us if the URL is HTTPS and can be implemented with
url.startsWith("https://")

isComDomain: This should tells us if the URL belongs to the COM domain and
whether we can implement it with url.contains(".com")
isOrgDomain, isNetDomain: This is the same as the previous one, but for ORG
and NET, respectively



Supervised Learning - Classification and Regression

[ 447 ]

numberOfSlashes: This is the number of slash characters in the URL and can be
implemented with Guava's CharMatcher:
CharMatcher.is('/').countIn(url)

These models describe each URL that we get, so we call them feature methods, and we can
use the results of these methods in our machine learning models.

As previously, we have a method which reads the JSON data and creates a Joinery
DataFrame from it:

List<RankedPage> pages = RankedPageData.readRankedPages();
DataFrame<Object> dataframe = BeanToJoinery.convert(pages,
RankedPage.class);

When we have the data, the first step is to extract the values of the target variable:

List<Object> page = dataframe.col("page");
double[] target = page.stream()
                      .mapToInt(o -> (int) o)
                      .mapToDouble(p -> (p == 0) ? 1.0 : 0.0)
                      .toArray();

To get the feature matrix X, we can use Joinery to create a two-dimensional array for us.
First, we need to drop some of the variables, namely, the target variable, the URL, and also
the position, because the position clearly correlates with the page. We can do it like this:

dataframe = dataframe.drop("page", "url", "position");
double[][] X = dataframe.toModelMatrix(0.0);

Next, we can use the Dataset class we have created in this chapter and split it into train
and test parts:

Dataset dataset = new Dataset(X, target);
Split split = dataset.trainTestSplit(0.2);
Dataset train = split.getTrain();
Dataset test = split.getTest();

Additionally, for some algorithms, it is helpful to standardize the features such that they
have zero mean and unit standard deviation. The reason for doing this is to help the
optimization algorithms converge faster.

To do it, we calculate mean and standard deviation for each column of the matrix, and then
subtract the mean from each value and divide it by the standard deviation. We omit the
code of this function here for brevity, but you can find it in the chapter code repository.



Supervised Learning - Classification and Regression

[ 448 ]

The following code does this:

preprocessor = StandardizationPreprocessor.train(train);
train = preprocessor.transform(train);
test = preprocessor.transform(test);

Now we are ready to start training different models. Let's try logistic regression
implementation from Smile first. We will use k-fold cross-validation to select the best value
of lambda, its regularization parameter.

List<Fold> folds = train.kfold(3);
double[] lambdas = { 0, 0.5, 1.0, 5.0, 10.0, 100.0, 1000.0 };
for (double lambda : lambdas) {
    DescriptiveStatistics summary = Smile.crossValidate(folds, fold -> {
        return new LogisticRegression.Trainer()
                .setRegularizationFactor(lambda)
                .train(fold.getX(), fold.getYAsInt());
    });

    double mean = summary.getMean();
    double std = summary.getStandardDeviation();
    System.out.printf("logreg, λ=%8.3f, auc=%.4f &pm; %.4f%n", lambda,
mean, std);
}

Note that the Dataset class here has a new method, getYAsInt, which simply returns the
target variable represented as an array of integers. When we run this, it produces the
following output:

logreg, λ=   0.000, auc=0.5823 &pm; 0.0041
logreg, λ=   0.500, auc=0.5822 &pm; 0.0040
logreg, λ=   1.000, auc=0.5820 &pm; 0.0037
logreg, λ=   5.000, auc=0.5820 &pm; 0.0030
logreg, λ=  10.000, auc=0.5823 &pm; 0.0027
logreg, λ= 100.000, auc=0.5839 &pm; 0.0009
logreg, λ=1000.000, auc=0.5859 &pm; 0.0036

It shows the value of lambda, the AUC we got for this value, and the standard deviation of
AUCs across different folds.

We see that the AUCs that we get are quite low. This should not be a surprise: using only
the information that we have now is clearly not enough to fully reverse-engineer the
ranking algorithm of the search engine. In the following chapters, we will learn how to
extract more information from the pages and these techniques will help to increase AUC
greatly.



Supervised Learning - Classification and Regression

[ 449 ]

Another thing we can notice is that the AUCs are quite similar across different values of
lambda, but one of them has the lowest standard deviation. In situations like this, we
always should prefer models with smallest variance.

We can also try a more complex classifier such as RandomForest:

DescriptiveStatistics rf = Smile.crossValidate(folds, fold -> {
    return new RandomForest.Trainer()
            .setNumTrees(100)
            .setNodeSize(4)
            .setSamplingRates(0.7)
            .setSplitRule(SplitRule.ENTROPY)
            .setNumRandomFeatures(3)
            .train(fold.getX(), fold.getYAsInt());
});

System.out.printf("random forest auc=%.4f &pm; %.4f%n", rf.getMean(),
rf.getStandardDeviation());

This creates the following output:

random forest auc=0.6093 &pm; 0.0209

This classifier is, on average, 2% better than the logistic regression one, but we can also
notice that the standard deviation is quite high. Because it is a lot higher, we can suspect
that on the test data this model may perform significantly worse than the logistic regression
model.

Next, we can try training other models as well. But, let's assume we did that and at the end
we came to the conclusion that the logistic regression with lambda=100 gives the best
performance. We can then take it and retrain on the entire train dataset, and then use the
test set for the final evaluation:

LogisticRegression logregFinal = new LogisticRegression.Trainer()
        .setRegularizationFactor(100.0)
        .train(train.getX(), train.getYAsInt());

double auc = Smile.auc(logregFinal, test);
System.out.printf("final logreg auc=%.4f%n", auc);

This code produces the following output:

final logreg auc=0.5807



Supervised Learning - Classification and Regression

[ 450 ]

So, indeed, we can see that the AUC produced by the selected model is the same as in our
cross-validation. This is a good sign that the model can generalize well and does not
overfill.

For curiosity, we can also check how the RandomForest model would perform on the
training set. Since it has high variance, it may perform worse than logistic regression, but
also can perform way better. Let's retrain it on the entire train set:

RandomForest rfFinal = new RandomForest.Trainer()
        .setNumTrees(100)
        .setNodeSize(4)
        .setSamplingRates(0.7)
        .setSplitRule(SplitRule.ENTROPY)
        .setNumRandomFeatures(3)
        .train(train.getX(), train.getYAsInt());

double auc = Smile.auc(rfFinal, test);
System.out.printf("final rf auc=%.4f%n", finalAuc);

It prints the following:

final rf auc=0.5778

So, indeed, high variance of the model resulted in a test score lower than the cross-
validation score. This is not a good sign, and such models should not be preferred.

Thus, for such a dataset, the best performing model is logistic regression.

If you wonder how to use other machine learning libraries to solve this problem, you can
check the chapter's code repository. There we created some examples for JSAT, JavaML,
LIBSVM, LIBLINEAR, and Encog.

With this, we conclude the part of this chapter on classification and next we will look into
another supervised learning problem called regression.

Regression
In machine learning, regression problems deal with situations when the label information is
continuous. This can be predicting the temperature for tomorrow, the stock price, the salary
of a person or the rating of an item on an e-commerce website.



Supervised Learning - Classification and Regression

[ 451 ]

There are many models which can solve the regression problem:

Ordinary Least Squares (OLS) is the usual linear regression
Ridge regression and LASSO are the regularized variants of OLS
Tree-based models such as RandomForest
Neural networks

Approaching a regression problem is very similar to approaching a classification problem,
and the general framework stays the same:

First, you select an evaluation metric
Then, you split the data into training and testing
You train the model on training, tune parameters using cross-validation, and do
the final verification using the held out testing set.

Machine learning libraries for regression
We have already discussed many machine learning libraries that can deal with classification
problems. Typically, these libraries also have regression models. Let's briefly go over them.

Smile
Smile is a general purpose machine learning library, so it has regression models as well.
You can have a look at the list of models, here: https://github.com/haifengl/smile.

For example, this is how you can create a simple linear regression:

OLS ols = new OLS(data.getX(), data.getY());

For regularized regression, you can use ridge or LASSO:

double lambda = 0.01;
RidgeRegression ridge = new RidgeRegression(data.getX(), data.getY(),
lambda);
LASSO lasso = new LASSO(data.getX(), data.getY(), lambda);

Using a RandomForest is very similar to the classification case:

int nbtrees = 100;
RandomForest rf = new RandomForest.Trainer(nbtrees)
        .setNumRandomFeatures(15)
        .setMaxNodes(128)

https://github.com/haifengl/smile


Supervised Learning - Classification and Regression

[ 452 ]

        .setNodeSize(10)
        .setSamplingRates(0.6)
        .train(data.getX(), data.getY());

Predicting is identical to the classification case as well. What we need to do is just use the
predict method:

double result = model.predict(row);

JSAT
JSAT is also a general purpose library and contains a lot of implementations for solving
regression problems.

As with classification, it needs a wrapper class for data and a special wrapper for
regression:

double[][] X = ... //
double[] y = ... //
List<DataPointPair<Double>> data = new ArrayList<>(X.length);

for (int i = 0; i < X.length; i++) {
    DataPoint row = new DataPoint(new DenseVector(X[i]));
    data.add(new DataPointPair<Double>(row, y[i]));
}

RegressionDataSet dataset = new RegressionDataSet(data);

Once the dataset is wrapped in the right class, we can train models like this:

MultipleLinearRegression linreg = new MultipleLinearRegression();
linreg.train(dataset);;

The preceding code trains the usual OLS linear regression.

Unlike Smile, OLS does not produce a stable solution when the matrix is
ill-conditioned, that is, it has some linearly dependent solutions. Use a
regularized model in this case.

Training a regularized linear regression can be done with the following code:

RidgeRegression ridge = new RidgeRegression();
ridge.setLambda(lambda);
ridge.train(dataset);



Supervised Learning - Classification and Regression

[ 453 ]

Then, for predicting, we also need to do some conversion:

double[] row = .. . //
DenseVector vector = new DenseVector(row);
DataPoint point = new DataPoint(vector);
double result = model.regress(point);

Other libraries
Other libraries that we previously covered also have models for solving the regression
problem.

For example, in LIBSVM, it is possible to do regression by setting the svm_type parameter
to EPSILON_SVR or NU_SVR, and the rest of the code stays almost the same as in the
classification case. Likewise, in LIBLINEAR, the regression problem is solved by choosing
L2R_L2LOSS_SVR or L2R_L2LOSS_SVR_DUAL models.

It is also possible to solve the regression problem with neural networks, for example, in
Encog. The only thing you need to change is the loss function: instead of minimizing a
classification loss function (such as logloss) you should use a regression loss function,
such as mean-squared error.

Since most of the code is pretty similar, there is no need to cover it in detail. As always, we
have prepared some code examples in the chapter code repository, so feel free to have a
look at them.

Evaluation
As with classification, we also need to evaluate the results of our models. There are some
metrics that help to do that and select the best model. Let's go over the two most popular
ones: Mean Squared Error (MSE) and Mean Absolute Error (MAE).

MSE
Mean Squared Error (MSE) is the sum of squared differences between the actual and
predicted values. It is quite easy to compute it in Java:

double[] actual, predicted;

int n = actual.length;
double sum = 0.0;
for (int i = 0; i < n; i++) {



Supervised Learning - Classification and Regression

[ 454 ]

    diff = actual[i] - predicted[i];
    sum = sum + diff * diff;
}

double mse = sum / n;

Typically, the value of MSE is hard to interpret, which is why we often take a square root of
MSE; this is called Root Mean Squared Error (RMSE). It is easier to interpret because it is in
the same units as the target variable.

double rmse = Math.sqrt(mse);

MAE
Mean Absolute Error (MAE), is an alternative metric for evaluating performance. Instead of
taking the squared error, it only takes the absolute value of the difference between the
actual and predicted value. This is how we can compute it:

double sum = 0.0;
for (int i = 0; i < n; i++) {
    sum = sum + Math.abs(actual[i] - predicted[i]);
}

double mae = sum / n;

Sometimes we have outliers in the data--the values with quite irregular values. If we have a
lot of outliers, we should prefer MAE to RMSE, since it is more robust to them. If we do not
have many outliers, then RMSE should be the preferred choice.

There are also other metrics such as MAPE or RMSE, but they are used less often, so we
won't cover them.

While we went over the libraries for solving the regression problem only briefly, with the
foundation we got from the overview for solving the classification problem, it is enough to
do a project on regression.

Case study - hardware performance
In this project, we will try to predict how much time it will take to multiply two matrices on
different computers.



Supervised Learning - Classification and Regression

[ 455 ]

The dataset for this project originally comes from the paper Automatic selection of the fastest
algorithm implementation by Sidnev and Gergel (2014), and it was made available at a
machine learning competition organized by Mail.RU. You can check the details at h t t p ://m

l b o o t c a m p . r u /c h a m p i o n s h i p /7/.

The content is in Russian, so if you do not speak it, it is better to use a
browser with translation support.

You will find a copy of the dataset along with the code for this chapter.

This dataset has the following data:

m, k, and n represent the dimensionality of the matrices, with m*k being the
dimensionality of matrix A and k*n being the dimensionality of matrix B
Hardware characteristics such as CPU speed, number of cores, whether hyper-
threating is enabled or not, and the type of CPU
The operation system

The solution for this problem can be quite useful for research, when selecting hardware to
buy for running the experiment. In that case. you can can use the model for selecting a build
which should result in the best performance.

So, the goal is to predict how many seconds it will take to multiply two matrices given their
size and the characteristics of the environment. Although the paper uses MAPE as the
evaluation metric, we will use RMSE as it is easier to implement and interpret.

First, we need to read the data. There are two files, one with features and one with labels.
Let's read the target first:

DataFrame<Object> targetDf =
DataFrame.readCsv("data/performance/y_train.csv");
List<Double> targetList = targetDf.cast(Double.class).col("time");
double[] target = Doubles.toArray(targetList);

Next, we read the features:

DataFrame<Object> dataframe =
DataFrame.readCsv("data/performance/x_train.csv");

http://mlbootcamp.ru/championship/7/
http://mlbootcamp.ru/championship/7/
http://mlbootcamp.ru/championship/7/
http://mlbootcamp.ru/championship/7/
http://mlbootcamp.ru/championship/7/
http://mlbootcamp.ru/championship/7/
http://mlbootcamp.ru/championship/7/
http://mlbootcamp.ru/championship/7/
http://mlbootcamp.ru/championship/7/
http://mlbootcamp.ru/championship/7/
http://mlbootcamp.ru/championship/7/
http://mlbootcamp.ru/championship/7/
http://mlbootcamp.ru/championship/7/
http://mlbootcamp.ru/championship/7/
http://mlbootcamp.ru/championship/7/
http://mlbootcamp.ru/championship/7/
http://mlbootcamp.ru/championship/7/
http://mlbootcamp.ru/championship/7/
http://mlbootcamp.ru/championship/7/
http://mlbootcamp.ru/championship/7/
http://mlbootcamp.ru/championship/7/
http://mlbootcamp.ru/championship/7/
http://mlbootcamp.ru/championship/7/
http://mlbootcamp.ru/championship/7/
http://mlbootcamp.ru/championship/7/
http://mlbootcamp.ru/championship/7/
http://mlbootcamp.ru/championship/7/
http://mlbootcamp.ru/championship/7/
http://mlbootcamp.ru/championship/7/
http://mlbootcamp.ru/championship/7/
http://mlbootcamp.ru/championship/7/
http://mlbootcamp.ru/championship/7/
http://mlbootcamp.ru/championship/7/
http://mlbootcamp.ru/championship/7/
http://mlbootcamp.ru/championship/7/
http://mlbootcamp.ru/championship/7/
http://mlbootcamp.ru/championship/7/
http://mlbootcamp.ru/championship/7/
http://mlbootcamp.ru/championship/7/
http://mlbootcamp.ru/championship/7/
http://mlbootcamp.ru/championship/7/
http://mlbootcamp.ru/championship/7/
http://mlbootcamp.ru/championship/7/
http://mlbootcamp.ru/championship/7/
http://mlbootcamp.ru/championship/7/
http://mlbootcamp.ru/championship/7/
http://mlbootcamp.ru/championship/7/
http://mlbootcamp.ru/championship/7/
http://mlbootcamp.ru/championship/7/
http://mlbootcamp.ru/championship/7/
http://mlbootcamp.ru/championship/7/
http://mlbootcamp.ru/championship/7/
http://mlbootcamp.ru/championship/7/
http://mlbootcamp.ru/championship/7/
http://mlbootcamp.ru/championship/7/
http://mlbootcamp.ru/championship/7/
http://mlbootcamp.ru/championship/7/
http://mlbootcamp.ru/championship/7/


Supervised Learning - Classification and Regression

[ 456 ]

If we look at the data, we can notice that sometimes the missing values are encoded as a
string None. We need to convert it to a real Java null. To do this, we can define a special
function:

private static List<Object> noneToNull(List<Object> memfreq) {
    return memfreq.stream()
            .map(s -> isNone(s) ? null : Double.parseDouble(s.toString()))
            .collect(Collectors.toList());
}

Now, use it to process the original columns, then remove them, and add the transformed
ones:

List<Object> memfreq = noneToNull(dataframe.col("memFreq"));
List<Object> memtRFC = noneToNull(dataframe.col("memtRFC"));
dataframe = dataframe.drop("memFreq", "memtRFC");
dataframe.add("memFreq", memfreq);
dataframe.add("memtRFC", memtRFC);

There are some categorical variables in the dataset. We can look at them. First, let's create a
data frame, which contains the types of original frames:

List<Object> types = dataframe.types().stream()
             .map(c -> c.getSimpleName())
             .collect(Collectors.toList());
List<Object> columns = new ArrayList<>(dataframe.columns());
DataFrame<Object> typesDf = new DataFrame<>();
typesDf.add("column", columns);
typesDf.add("type", types);

Since we are interested only in categorical values, we need to select the features that are of
type String:

DataFrame<Object> stringTypes = typesDf.select(p ->
p.get(1).equals("String"));

The way categorical variables are often used in the machine learning problem is called
dummy-coding, or one hot encoding. In this coding scheme:

We create as many columns as there are possible values
For each observation, we put the number 1 for the column, which corresponds to
the value of the categorical variable, and the remaining columns get 0

Joinery can do this conversion automatically for us:

double[][] X = dataframe.toModelMatrix(0.0);



Supervised Learning - Classification and Regression

[ 457 ]

The preceding code will apply one hot encoding scheme to all categorical variables.

However, for the data that we have, some values of the categorical variables occur only
once or just a few times. Typically, we are not interested in such infrequently occurring
values, so we can replace them with some artificial value such as OTHER.

This is how we do this in Joinery:

Remove all categorical columns from DataFrame
For each column, we calculate how many times the values occur and replace
infrequent with OTHER

Let's translate it into Java code. This way we get the categorical variables:

Object[] columns = stringTypes.col("column").toArray();
DataFrame<Object> categorical = dataframe.retain(columns);
dataframe = dataframe.drop(stringTypes.col("column").toArray());

For counting, we can use a Multiset collection from Guava. Then, we replace the
infrequent ones with OTHER and put the result back to the DataFrame:

for (Object column : categorical.columns()) {
    List<Object> data = categorical.col(column);
    Multiset<Object> counts = HashMultiset.create(data);

    List<Object> cleaned = data.stream()
            .map(o -> counts.count(o) >= 50 ? o : "OTHER")
            .collect(Collectors.toList());

    dataframe.add(column, cleaned);
}

After this processing, we can convert the DataFrame into the matrix and put it into our
Dataset object:

double[][] X = dataframe.toModelMatrix(0.0);
Dataset dataset = new Dataset(X, target);

Now we are ready to start training models. Again, we will use Smile for the implementation
of machine learning algorithms, and the code for other libraries is available in the chapter
code repository.



Supervised Learning - Classification and Regression

[ 458 ]

We already decided that we will use RMSE as the evaluation metrics. Now we need to set
up the cross-validation scheme and hold out the data for final evaluation:

Split trainTestSplit = dataset.shuffleSplit(0.3);
Dataset train = trainTestSplit.getTrain();
Dataset test = trainTestSplit.getTest();
List<Split> folds = train.shuffleKFold(3);

We can reuse the function we wrote for the classification case and slightly adapt it to the
regression case:

public static DescriptiveStatistics crossValidate(List<Split> folds,
        Function<Dataset, Regression<double[]>> trainer) {
    double[] aucs = folds.parallelStream().mapToDouble(fold -> {
        Dataset train = fold.getTrain();
        Dataset validation = fold.getTest();
        Regression<double[]> model = trainer.apply(train);
        return rmse(model, validation);
    }).toArray();

    return new DescriptiveStatistics(aucs);
}

In the preceding code, we first train a regression model and then evaluate its RMSE on the
validation dataset.

Before going into modeling, let's first come with a simple baseline solution. In case of
Regression, always predicting the mean can be such a baseline:

private static Regression<double[]> mean(Dataset data) {
    double meanTarget = Arrays.stream(data.getY()).average().getAsDouble();
    return x -> meanTarget;
}

Let's use it as the function for cross-validation for the baseline calculation:

DescriptiveStatistics baseline = crossValidate(folds, data -> mean(data));
System.out.printf("baseline: rmse=%.4f &pm; %.4f%n", baseline.getMean(),
baseline.getStandardDeviation());

It prints the following to the console:

baseline: rmse=25.1487 &pm; 4.3445

Our baseline solution is wrong by 25 seconds on average and the spread is 4.3 seconds.



Supervised Learning - Classification and Regression

[ 459 ]

Now we can try to train a simple OLS regression:

DescriptiveStatistics ols = crossValidate(folds, data -> {
    return new OLS(data.getX(), data.getY());
});

System.out.printf("ols: rmse=%.4f &pm; %.4f%n", ols.getMean(),
ols.getStandardDeviation());

We should note that Smile gives us a warning that the matrix is not full rank and it will use
Singular Value Decomposition (SVD) to solve the OLS problem. We can either ignore it or
explicitly tell it to use SVD:

new OLS(data.getX(), data.getY(), true);

In either case, it prints the following to the console:

ols: rmse=15.8679 &pm; 3.4587

When we use a regularized model, we do not typically worry about correlated columns.
Let's try LASSO with different values of lambda:

double[] lambdas = { 0.1, 1, 10, 100, 1000, 5000, 10000, 20000 };
for (double lambda : lambdas) {
    DescriptiveStatistics summary = crossValidate(folds, data -> {
        return new LASSO(data.getX(), data.getY(), lambda);
    });

    double mean = summary.getMean();
    double std = summary.getStandardDeviation();
    System.out.printf("lasso λ=%9.1f, rmse=%.4f &pm; %.4f%n", lambda, mean,
std);
}

It produces the following output:

lasso λ=      0.1, rmse=15.8679 &pm; 3.4587
lasso λ=      1.0, rmse=15.8678 &pm; 3.4588
lasso λ=     10.0, rmse=15.8650 &pm; 3.4615
lasso λ=    100.0, rmse=15.8533 &pm; 3.4794
lasso λ=   1000.0, rmse=15.8650 &pm; 3.5905
lasso λ=   5000.0, rmse=16.1321 &pm; 3.9813
lasso λ=  10000.0, rmse=16.6793 &pm; 4.3830
lasso λ=  20000.0, rmse=18.6088 &pm; 4.9315



Supervised Learning - Classification and Regression

[ 460 ]

Note that the LASSO implementation from Smile version 1.1.0 will have a
problem with this dataset because there are linearly dependent columns.
To avoid this, you should use the 1.2.0 version, which, at the moment of
writing, is not available from Maven Central, and you need to build it
yourself if you want to use it. We have already discussed how to do this.

We can also try RidgeRegression, but its performance is very similar to OLS and LASSO, so
we will omit it here.

It seems that the results of OLS is not so different from LASSO, so we select it as the final
model and use it since it's the simplest model:

OLS ols = new OLS(train.getX(), train.getY(), true);
double testRmse = rmse(lasso, test);
System.out.printf("final rmse=%.4f%n", testRmse);

This gives us the following output:

final rmse=15.0722

So the performance of the selected model is consistent with our cross-validation, which
means that the model is able to generalize to the unseen data well.

Summary
In this chapter, we spoke about supervised machine learning and about two common
supervised problems: classification and regression. We also covered the libraries, which are
commonly-used algorithms, implemented them, and learned how to evaluate the
performance of these algorithms.

There is another family of machine learning algorithms that do not require the label
information; these methods are called unsupervised learning--in the next chapter, we will
talk about them.



  5
Unsupervised Learning -

Clustering and Dimensionality
Reduction

In the previous chapter, covered with with machine learning in Java and discussed how to
approach the supervised learning problem when the label information is provided.

Often, however, there is no label information, and all we have is just some data. In this case,
it is still possible to use machine learning, and this class of problems is called unsupervised
learning; there are no labels, hence no supervision. Cluster analysis belongs to one of these
algorithms. Given some dataset, the goal is to group the items from there such that similar
items are put into the same group.

Additionally, some unsupervised learning techniques can be useful when there is label
information.

For example, the dimensionality reduction algorithm tries to compress the dataset such that
most of the information is preserved and the dataset can be represented with fewer features.
What is more, dimensionality reduction is also useful for performing cluster analysis, and
cluster analysis can be used for performing dimensionality reduction.

We will see how to do it all of this in this chapter. Specifically, we will cover the following
topics:

Unsupervised dimensionality reduction methods, such as PCA and SVD
Cluster analysis algorithms, such as k-means
Available implementations in Java



Unsupervised Learning - Clustering and Dimensionality Reduction

[ 462 ]

By the end of this chapter, you will know how to cluster the data you have and how to
perform dimensionality reduction in Java using Smile and other Java libraries.

Dimensionality reduction
Dimensionality reduction, as the name suggests, reduces the dimensionality of your dataset.
That is, these techniques try to compress the dataset such that only the most useful
information is retained, and the rest is discarded.

By dimensionality of a dataset, we mean the number of features of this dataset. When the
dimensionality is high, that is, there are too many features, it can be bad due to the
following reasons:

If there are more features than the items of the dataset, the problem becomes ill-
defined and some linear models, such as ordinary least squares (OLS) regression
cannot handle this case
Some features may be correlated and cause problems with training and
interpreting the models
Some of the features can turn out to be noisy or irrelevant and confuse the model
Distances start to make less sense in high dimensions -- this problem is
commonly referred to as the curse of dimensionality
Processing a large set of features may be computationally expensive

In the case of high dimensionality, we are interested in reducing the dimensionality such
that it becomes manageable. There are several ways of doing so:

Supervised dimensionality reduction methods such as feature selection: We
use the information we have about the labels to help us decide which features are
useful and which are not
Unsupervised dimensionality reduction such as feature extraction: We do not
use the information about labels (either because we do not have it or would not
like to do it) and try to compress the large set of features into smaller ones

In this chapter, we will speak about the second type, that is, unsupervised dimensionality
reduction, and in particular, about feature extraction.



Unsupervised Learning - Clustering and Dimensionality Reduction

[ 463 ]

Unsupervised dimensionality reduction
The main idea behind feature extraction algorithms is that they take in some dataset with
high dimensionality, process it, and return a dataset with much smaller set of new features.

Note that the returned features are new, they are extracted or learned from the data. But
this extraction is performed in such a way that the new representation of data retains as
much information from the original features as possible. In other words, it takes the data
represented with old features, transforms it, and returns a new dataset with entirely new
features.

There are many feature extraction algorithms for dimensionality reduction, including:

Principal Component Analysis (PCA) and Singular Value Decomposition
(SVD)
Non-Negative Matrix Factorization (NNMF)
Random projections
Locally Linear Embedding (LLE)
t-SNE

In this chapter we will cover PCA, SVD, and random projections. The other techniques are
less popular and less often used in practice, so we will not discuss them in this book.

Principal Component Analysis
Principal Component Analysis (PCA) is the most famous algorithm for feature extraction.
The new feature representation learned by PCA is a linear combination of the original
features such that the variance within the original data is preserved as much as possible.

Let's look at this algorithm in action. First, we will consider the dataset we already used the
performance prediction. For this problem, the number of features is relatively large; after
encoding categorical variables with one-hot-encoding there are more than 1,000 features,
and only 5,000 observations. Clearly, 1,000 features is quite a lot for such a small sample
size, and this may cause problems when building a machine learning model.

Let's see if we can reduce the dimensionality of this dataset without harming the
performance of our model.



Unsupervised Learning - Clustering and Dimensionality Reduction

[ 464 ]

But first, let's recall how PCA works. There are usually the following steps to complete:

First, you perform mean-normalization of the datasets -- transform the dataset1.
such that the mean value of each column becomes zero.
Then, compute the covariance or correlation matrix.2.
After that, perform Eigenvalue Decomposition (EVD) or Singular Value3.
Decomposition (SVD) of the covariance/correlation matrix.
The result is a set of principal components, each of which explains a part of the4.
variance. The principal components are typically ordered such that the first
components explain most of the variance, and last components explain very little
of it.
In the last step, we throw away components that do not carry any variance on5.
them, and keep only first principal components with large variance. To select the
number of components to keep, we typically use the cumulated ratio of explained
variance to the total variance.
We use these components to compress the original dataset by performing the6.
projection of the original data on the basis formed by these components.
After doing these steps, we have a dataset with smaller number of features, but7.
most of the information of the original dataset is preserved.

There are a number of ways we can implement PCA in Java, but we can take one of the
libraries such as Smile, which offers off-the-shelf implementations. In Smile, PCA already
performs mean-normalization, then computes the covariance matrix and automatically
decides whether to use EVD or SVD. All we need to do is to give it a data matrix, and it will
do the rest.

Typically, PCA is performed on the covariance matrix, but sometimes, when some of the
original features are on a different scale, the ratio of the explained variance can become
misleading.

For example, if one of the features we have is distance in kilometers, and the other one is
time is milliseconds, then the second feature will have larger variance simply because the
numbers are a lot higher in the second feature. Thus, this feature will have the dominant
presence in the resulting components.

To overcome this problem, we can use the correlation matrix instead of the covariance one,
and since the correlation coefficient is unitless, the PCA results will not be affected by
different scales. Alternatively, we can perform standardization of the features in our
dataset, and, in effect, computing covariance will be the same as computing correlation.



Unsupervised Learning - Clustering and Dimensionality Reduction

[ 465 ]

So, first we will standardize the data using the StandardizationPreprocessor we wrote
previously:

StandardizationPreprocessor preprocessor =
StandardizationPreprocessor.train(dataset);
dataset = preprocessor.transform(dataset)

Then we can run PCA on the transformed dataset and have a look at the cumulative
variance:

PCA pca = new PCA(dataset.getX(), false);
double[] variance = pca.getCumulativeVarianceProportion();
System.out.println(Arrays.toString(variance));

If we take the output and plot the first one hundred components, we will see the following
picture:

As we can see, the principal component explains about 67% of variance, and the cumulative
explained ratio quite quickly reaches 95% at less than 40 components, 99% at 61, and it is
almost 100% at 80 components. This means that if we take only the first 80 components, it
will be enough to capture almost all variance present in the dataset. This means that we
should be able to safely compress our 1,000 plus dimensional datasets into only 80
dimensions.



Unsupervised Learning - Clustering and Dimensionality Reduction

[ 466 ]

Let's test it. First, let's try to do OLS without PCA. We will take the code from the previous
chapter:

Dataset train = trainTestSplit.getTrain();

List<Split> folds = train.shuffleKFold(3);
DescriptiveStatistics ols = crossValidate(folds, data -> {
    return new OLS(data.getX(), data.getY());
});

This prints the following output:

ols: rmse=15.8679 &pm; 3.4587

Now let's try to cap the number of principal components at the 95%, 99%, and 99.9% levels
and see what happens with the error:

double[] ratios = { 0.95, 0.99, 0.999 };

for (double ratio : ratios) {
    pca = pca.setProjection(ratio);
    double[][] projectedX = pca.project(train.getX());
    Dataset projected = new Dataset(projectedX, train.getY());

    folds = projected.shuffleKFold(3);
    ols = crossValidate(folds, data -> {
        return new OLS(data.getX(), data.getY());
    });

    double mean = ols.getMean();
    double std = ols.getStandardDeviation()
    System.out.printf("ols (%.3f): rmse=%.4f &pm; %.4f%n", ratio, mean,
std);
}

This produces the following output:

ols (0.950): rmse=18.3331 &pm; 3.6308
ols (0.990): rmse=16.0702 &pm; 3.5046
ols (0.999): rmse=15.8656 &pm; 3.4625

As we see, keeping 99.9% of variance with PCA gives the same performance as the OLS
regression fit on the original dataset. For this dataset, 99.9% of variance is explained by only
84 principal components, and there are 1070 features in the original dataset. Thus, we
managed to reduce the dimensionality of the data by keeping only 7.8% of the original data
size without loosing any performance.



Unsupervised Learning - Clustering and Dimensionality Reduction

[ 467 ]

Sometimes, however, the implementation of PCA from Smile and other similar packages is
not the best in terms of performance. Next, we will see why and how to deal with it.

Truncated SVD
The previous code (in this case, using Smile) performs full PCA via full SVD or EVD. Here,
full means that it computes all eigenvalues and eigenvectors, which may be
computationally expensive, especially when we only need the first 7.8% of the principal
components. However, we do not necessarily have to always compute the full PCA, and
instead we can use truncated SVD. Truncated SVD computes only the specified number of
principal components, and it is usually a lot faster than the full version.

Smile also provides an implementation of truncated SVD. But before using it, let's quickly
revise SVD.

SVD of a matrix X computes the bases for the rows and the columns of X such that:

XV = US

Here, the equation is explained as follows:

The columns of V form the basis for the rows of X
The columns of U form the basis for the rows of X
S is a diagonal matrix with the singular values of X

Often, SVD is written in this form:

So, SVD decomposes the matrix X into three matrices U, S, and V.

When SVD is truncated to dimensionality K, the matrices U and V have only K columns,
and we compute only K singular values. If we then multiply the original matrix X by the
truncated V, or, alternatively, multiply S by U, we will obtain the reduced projection of the
rows of X to this new SVD basis.

This will bring the original matrix to the new reduced space, and we can use the results as
features instead of the original one.



Unsupervised Learning - Clustering and Dimensionality Reduction

[ 468 ]

Now, we are ready to apply it. In Smile it will look like this:

double[][] X = ... // X is mean-centered
Matrix matrix = new Matrix(X);
SingularValueDecomposition svd =
SingularValueDecomposition.decompose(matrix, 100);

Here, Matrix is a class from Smile for storing dense matrices. The matrices U, S, and V are
returned inside the SingularValueDecomposition object, U and V as two-dimensional
double arrays and S as a one-dimensional array of doubles.

Now, we need to get the reduced representation of our data matrix X. As we discussed
earlier, there are two ways of doing it:

By computing 
By computing 

First, let's have a look at computing .

In Smile, the decompose method from SingularValueDecomposition returns S as a one-
dimensional array of doubles, so we need to convert it to the matrix form. We can take
advantage of the fact that S is diagonal and use it for speeding up the multiplication.

Let's use the Commons Math library for that. There is a special implementation for diagonal
matrices, so we will use it, and usual array-backed matrix for U.

DiagonalMatrix S = new DiagonalMatrix(svd.getSingularValues());
Array2DRowRealMatrix U = new Array2DRowRealMatrix(svd.getU(), false);

Now we can multiply these two matrices:

RealMatrix result = S.multiply(U.transpose()).transpose();
double[][] data = result.getData();

Note that instead of multiplying U by S, we do it in the opposite direction and then
transpose: this takes advantage of S being diagonal, and makes the matrix multiplications a
lot faster. In the end, we extract the array of doubles to be used in Smile.

If we use this code for the problem of predicting performance, it takes less than 4 seconds,
and that's including the matrix multiplication part. This is a great speed improvement over
the full PCA version, which, on our laptop, takes more than 1 minute.



Unsupervised Learning - Clustering and Dimensionality Reduction

[ 469 ]

Another way to compute the projection is to calculate . Let's once again use
Commons Math for that:

Array2DRowRealMatrix X = new Array2DRowRealMatrix(dataX, false);
Array2DRowRealMatrix V = new Array2DRowRealMatrix(svd.getV(), false);
double[][] data = X.multiply(V).getData();

This takes slightly more time than computing , since neither of the matrices are
diagonal. However, the difference in speed is only marginal: computing SVD and reducing
the dimensionality this way takes less than 5 seconds for the performance prediction
problem.

When you use SVD to reduce the dimensionality of training data, there is no difference
between these two methods. However, we cannot apply the  approach to new unseen
data, because both U and S are produced for the matrix X, for which we trained the SVD.
Instead we use the  approach. Note that X in this case will be the new matrix
containing the test data, not the same X we used for training the SVD.

In code it will look like this:

double[] trainX = ...;
double[] testX = ...;

Matrix matrix = new Matrix(trainX);
SingularValueDecomposition svd =
SingularValueDecomposition.decompose(matrix, 100);

double[][] trainProjected = mmult(trainX, svd.getV());
double[][] testProjected = mmult(testX, svd.getV());

Here, mmult is a method that multiplies the matrix X by the matrix V.

There is another implementation detail: in Smile's PCA implementation, we determine the
number of needed dimensionality using the ratio of explained variance. Recall that we do
this by invoking getCumulativeVarianceProportion on the PCA object, and usually
keep the number of components high enough to get at least 95% or 99% of variance.

However, since we use SVD directly, we do not know this ratio now. It means that to be
able to choose the right dimensionality, we need to implement this ourselves. Luckily, it is
not very complex to do; first, we need to calculate the overall variance of the dataset, and
then the variances of all the principal components. The latter can be obtained from the
singular values (the matrix S). The singular values correspond to standard deviations, so to
get the variance, we just need to square them. Finally, finding the ratio is simple, and we
just need to divide one by another.



Unsupervised Learning - Clustering and Dimensionality Reduction

[ 470 ]

Let's see how it looks in code. First, we use Commons Math to compute the total variance:

Array2DRowRealMatrix matrix = new Array2DRowRealMatrix(dataset.getX(),
false);
int ncols = matrix.getColumnDimension();

double totalVariance = 0.0;
for (int col = 0; col < ncols; col++) {
    double[] column = matrix.getColumn(col);
    DescriptiveStatistics stats = new DescriptiveStatistics(column);
    totalVariance = totalVariance + stats.getVariance();
}

Now we can compute the cumulated ratios from singular values:

int nrows = X.length;
double[] singularValues = svd.getSingularValues();
double[] cumulatedRatio = new double[singularValues.length];

double acc = 0.0;
for (int i = 0; i < singularValues.length; i++) {
    double s = singularValues[i];
    double ratio = (s * s / nrows) / totalVariance;
    acc = acc + ratio;
    cumulatedRatio[i] = acc;
}

After running this code, the cumulatedRatio array will contain the desired ratios. The
result should be exactly the same as from Smile's PCA implementation from
pca.getCumulativeVarianceProportion().

Truncated SVD for categorical and sparse data
Dimensionality reduction can be very useful for datasets with many categorical variables,
especially when each of these variables have a lot of possible values.

When we have sparse matrices of very high dimensionality, computing full SVD is typically
very expensive. Thus, truncated SVD is especially for this case, and here we will see how
we can use it. Later on in the next chapter, we will see that this is also pretty useful for text
data, and we will cover this case in the next chapter. For now, we will have a look at how to
use it for categorical variables.

For this, we will use a dataset about customer complaints from Kaggle. You can download
it from here: h t t p s ://w w w . k a g g l e . c o m /c f p b /u s - c o n s u m e r - f i n a n c e - c o m p l a i n t s .

https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints
https://www.kaggle.com/cfpb/us-consumer-finance-complaints


Unsupervised Learning - Clustering and Dimensionality Reduction

[ 471 ]

This dataset contains complaints that customers of banks and other financial institutions
have filed, and also contains additional information about these complaints, as follows:

The product for which the complaint is filed can be Mortgage Loan, Student Loan,
Debt Collection, and so on. There are 11 types of products.
The reported issue about the product, such as incorrect information, false statements,
and so on. There are 95 types of issues.
The company for which the complaint is filed, more than 3,000 companies.
submitted_via is how the complaint was sent, 6 possible options such as, web
and e-mail.
The state and zipcode is 63 and 27,000 possible values respectively.
consumer_complaint_narrative is a free text description of the problem.

We see that there is a large number of categorical variables in this dataset. As we have
already discussed in previous chapters, the typical way of encoding categorical variables is
one-hot-encoding (also called dummy-coding). The idea is that for each possible value of a
variable, we create a separate feature, and put the value 1 there if an item has this particular
value. Txhe columns for all other possible values will have 0 there.

The easiest way to implement this is to use feature hashing, which sometimes is referred as
the hashing trick.

It can be done quite easily by following these steps:

We specify the dimensionality of our sparse matrix beforehand, and for that we
take some reasonably large number
Then, for each value, we compute the hash of this value
Using the hash, we compute the number of the column in the sparse matrix and
set the value of this column to 1

So, let's try to implement it. First, we load the dataset and keep only the categorical
variables:

DataFrame<Object> categorical = dataframe.retain("product", "sub_product",
"issue",
        "sub_issue", "company_public_response", "company",
        "state", "zipcode", "consumer_consent_provided",
        "submitted_via");

Now, let's implement feature hashing for encoding them:

int dim = 50_000;
SparseDataset result = new SparseDataset(dim);



Unsupervised Learning - Clustering and Dimensionality Reduction

[ 472 ]

int ncolOriginal = categorical.size();
ListIterator<List<Object>> rows = categorical.iterrows();

while (rows.hasNext()) {
    int rowIdx = rows.nextIndex();
    List<Object> row = rows.next();
    for (int colIdx = 0; colIdx < ncolOriginal; colIdx++) {
        Object val = row.get(colIdx);
        String stringValue = colIdx + "_" + Objects.toString(val);
        int targetColIdx = Math.abs(stringValue.hashCode()) % dim;

        result.set(rowIdx, targetColIdx, 1.0);
    }
}

What happens here is that we first create a SparseDataset-- a class from Smile for keeping
row-based sparse matrices. Next, we say that the matrix should have the dimensionality
specified by the variable dim. The value of dim should be high enough so that the chance of
collision is not very high. Typically, however, it is not a big deal if there are collisions.

If you set the value of dim to a very large number, there could be some
performance problems when we later decompose the matrix.

Feature hashing is a very simple approach and often works really well in practice. There is
another approach, which is more complex to implement, but it ensures that there are no
hash collisions. For that, we build a map from all the possible values to column indexes, and
then build the sparse matrix.

Building the map will look like this:

Map<String, Integer> valueToIndex = new HashMap<>();
List<Object> columns = new ArrayList<>(categorical.columns());

int ncol = 0;

for (Object name : columns) {
    List<Object> column = categorical.col(name);
    Set<Object> distinct = new HashSet<>(column);
    for (Object val : distinct) {
        String stringValue = Objects.toString(name) + "_" +
Objects.toString(val);
        valueToIndex.put(stringValue, ncol);
        ncol++;
    }
}



Unsupervised Learning - Clustering and Dimensionality Reduction

[ 473 ]

The ncol variable contains the number of columns, which is the dimensionality of our
future sparse matrix. Now we can construct the actual matrix. It is very similar to what we
had before, but, instead of hashing, we now look the indexes up in the map:

SparseDataset result = new SparseDataset(ncol);

ListIterator<List<Object>> rows = categorical.iterrows();
while (rows.hasNext()) {
    int rowIdx = rows.nextIndex();
    List<Object> row = rows.next();
    for (int colIdx = 0; colIdx < columns.size(); colIdx++) {
        Object name = columns.get(colIdx);
        Object val = row.get(colIdx);
        String stringValue = Objects.toString(name) + "_" +
Objects.toString(val);
        int targetColIdx = valueToIndex.get(stringValue);

        result.set(rowIdx, targetColIdx, 1.0);
    }
}

After doing this, we have a SparseDataset object, which contains the data in a row-based
format. Next, we need to be able to put it to the SVD solver, and for that we need to convert
it to a different column-based format. This is implemented in the SparseMatrix class.
Luckily, there is a special method in the SparseDataset class which does the conversion,
so we use it:

SparseMatrix matrix = dataset.toSparseMatrix();
SingularValueDecomposition svd =
SingularValueDecomposition.decompose(matrix, 100);

The decomposition is quite fast; computing SVD of the feature hashing matrix took about 28
seconds and the usual one-hot-encoding took about 24 seconds. Remember that there are
0.5 million rows in this dataset, so the speed is pretty good. To our knowledge, other Java
implementations of SVD are not able to provide the same performance.

Now, when SVD is computed, we need to project the original matrix to the reduced space,
like we did in the case of dense matrices previously.

The  projection can be done exactly as before, because both U and S are dense.
However, X is sparse, so we need to find a way to multiply sparse X and dense X
efficiently.



Unsupervised Learning - Clustering and Dimensionality Reduction

[ 474 ]

Unfortunately, neither Smile nor Commons Math has a suitable implementation for this.
Therefore, we need to use another library, and this problem can be solved with Matrix Java
Toolkit (MTJ). This library is based on netlib-java, which is a wrapper for low-level high-
performance libraries such as BLAS, LAPACK, and ARPACK. You can read more on its
GitHub page: h t t p s ://g i t h u b . c o m /f o m m i l /m a t r i x - t o o l k i t s - j a v a .

Since we use Maven, it will take care of downloading the binary dependencies and linking
them to the project. All we need need to do is to specify the following dependency:

<dependency>
  <groupId>com.googlecode.matrix-toolkits-java</groupId>
  <artifactId>mtj</artifactId>
  <version>1.0.2</version>
</dependency>

We need to multiply two matrices, X and V, with the condition that X is sparse while V is
dense. Since X is on the left side of the multiplication operator, the most efficient way to
store the values of X is a row-based sparse matrix representation. For V the most efficient
representation is a column-based dense matrix.

But before we can do it, we first need to convert Smile's SparseDataset into MTJ's sparse
matrix. For that we use a special builder: FlexCompRowMatrix class, which is good for
populating a matrix with values, but not so good for multiplication. Once we constructed
the matrix, we convert it to CompRowMatrix, which has a more efficient internal
representation and is better suited for multiplication purposes.

Here's how we do it:

SparseDataset dataset = ... //
int ncols = dataset.ncols();
int nrows = dataset.size();
FlexCompRowMatrix builder = new FlexCompRowMatrix(nrows, ncols);

SparseArray[] array = dataset.toArray(new SparseArray[0]);
for (int rowIdx = 0; rowIdx < array.length; rowIdx++) {
    Iterator<Entry> row = array[rowIdx].iterator();
    while (row.hasNext()) {
        Entry entry = row.next();
        builder.set(rowIdx, entry.i, entry.x);
    }
}

CompRowMatrix X = new CompRowMatrix(builder);

https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java


Unsupervised Learning - Clustering and Dimensionality Reduction

[ 475 ]

The second step is to create a dense matrix. This step is simpler:

DenseMatrix V = new DenseMatrix(svd.getV());

Internally, MTJ stores dense matrices column-wise, and it is ideal for our purposes.

Next, we need to create a matrix object, which will contain the results, and then we multiply
X by V:

DenseMatrix XV = new DenseMatrix(X.numRows(), V.numColumns());
X.mult(V, XV);

Finally, we need to extract the double array data from the result matrix. For performance
purposes, MTJ stores the data as a one-dimensional double array, so we need to convert it
to the conventional representation. We do it like this:

double[] data = XV.getData();
int nrows = XV.numRows();
int ncols = XV.numColumns();
double[][] result = new double[nrows][ncols];

for (int col = 0; col < ncols; col++) {
    for (int row = 0; row < nrows; row++) {
        result[row][col] = data[row + col * nrows];
    }
}

In the end, we have the result array, which captures most of the variability of the original
dataset, and we can use it for cases where a small dense matrix is expected.

This transformation is especially useful for the second topic of this chapter: clustering.
Typically, we use distances for clustering data points, but when it comes to high-
dimensional spaces, the distances are no longer meaningful, and this phenomenon is known
as the curve of dimensionality. However, in the reduced SVD space, the distances still
make sense and when we apply cluster analysis, the results are typically better.

This is also a very useful method for processing natural language texts, as typically texts are
represented as extremely high dimensional and very sparse matrices. We will come back to
this in Chapter 6, Working with Texts - Natural Language Processing and Information Retrieval.



Unsupervised Learning - Clustering and Dimensionality Reduction

[ 476 ]

Note that unlike in the usual PCA case, we do not perform mean-centering here. There are a
few reasons for this:

If we do this, the matrix will become dense and will occupy too much memory,
so it will not be possible to process it in a reasonable amount of time
In sparse matrices, the mean is already very close to zero, so there is no need to
perform mean normalization

Next, we will look at a different dimensionality reduction technique, which is extremely
simple, requires no learning, and is pretty fast.

Random projection
PCA tries to find some structure in data and use it for reducing the dimensionality; it finds
such a basis in which most of the original variance is preserved. However, there is an
alternative approach instead of trying to learn the basis, just generate it randomly and then
project the original data on it.

Surprisingly, this simple idea works quite well in practice. The reason for that is, this
transformation preserves distances. What this means is that if we have two objects that are
close to each other in the original space, then, when we apply the projection, they still
remain close. Likewise, if the objects are far away from each other, then they will remain far
in the new reduced space.

Smile already has implementation for random projection, which takes the input
dimensionality and the desired output dimensionality:

double[][] X = ... // data
int inputDimension = X[0].length;
int outputDimension = 100;
smile.math.Math.setSeed(1);
RandomProjection rp = new RandomProjection(inputDimension,
outputDimension);

Note that we explicitly set the seed for random number generator; since the basis for
random projections is generated randomly, we want to ensure reproducibility.

Setting seed is only possible in version 1.2.1, which was not available on
Maven Central at the moment of writing.



Unsupervised Learning - Clustering and Dimensionality Reduction

[ 477 ]

It is implemented in Smile in the following way:

First, a set of random vectors are sampled from a Gaussian distribution
Then, the vectors are made orthonormal via the Gram-Schmidt algorithm, that is,
they are first made orthogonal and then the length is normalized to 1
The projection is made on this orthonormal basis

Let's use it for performance prediction and then fit the usual OLS:

double[][] X = dataset.getX();
int inputDimension = X[0].length;
int outputDimension = 100;
smile.math.Math.setSeed(1);
RandomProjection rp = new RandomProjection(inputDimension,
outputDimension);

double[][] projected = rp.project(X);
dataset = new Dataset(projected, dataset.getY());

Split trainTestSplit = dataset.shuffleSplit(0.3);
Dataset train = trainTestSplit.getTrain();

List<Split> folds = train.shuffleKFold(3);
DescriptiveStatistics ols = crossValidate(folds, data -> {
    return new OLS(data.getX(), data.getY());
});

System.out.printf("ols: rmse=%.4f &pm; %.4f%n", ols.getMean(),
ols.getStandardDeviation());

It is very fast (it takes less than a second on our laptop) and this code produces the
following result:

ols: rmse=15.8455 &pm; 3.3843

The result is pretty much the same as in plain OLS or OLS on PCA with 99.9% variance.

However, the implementation from Smile only works with dense matrices, and at the
moment of writing there is no support for sparse matrices. Since the method is pretty
straightforward, it is not difficult to implement it ourselves. Let's implement a simplified
version of generating the random basis.

To generate the basis, we sample from the Gaussian distribution with zero mean and a
standard deviation equal to 1 / new_dimensionality, where new_dimensionality is
the desired dimensionality of the new reduced space.



Unsupervised Learning - Clustering and Dimensionality Reduction

[ 478 ]

Let's use Commons Math for it:

NormalDistribution normal = new NormalDistribution(0.0, 1.0 /
outputDimension);
normal.reseedRandomGenerator(seed);
double[][] result = new double[inputDimension][];

for (int i = 0; i < inputDimension; i++) {
    result[i] = normal.sample(outputDimension);
}

Here, we have the following parameters:

inputDimension: This is the dimensionality of the matrix we want to project,
that is, the number of columns of this matrix
outputDimension: This is the desired dimensionality of the projection
seed: This is the random number generator seed for reproducibility

First, let's sanity-check the implementation and apply it to the same performance problem.
Even though it is dense, it is enough for testing purposes:

double[][] X = dataset.getX();
int inputDimension = X[0].length;
int outputDimension = 100;
int seed = 1;
double[][] basis = Projections.randomProjection(inputDimension,
outputDimension, seed);
double[][] projected = Projections.project(X, basis);
dataset = new Dataset(projected, dataset.getY());

Split trainTestSplit = dataset.shuffleSplit(0.3);
Dataset train = trainTestSplit.getTrain();

List<Split> folds = train.shuffleKFold(3);
DescriptiveStatistics ols = crossValidate(folds, data -> {
    return new OLS(data.getX(), data.getY());
});

System.out.printf("ols: rmse=%.4f &pm; %.4f%n", ols.getMean(),
ols.getStandardDeviation());

Here we have two methods:

Projections.randomProjection: This generates the random basis, which we
implemented previously.



Unsupervised Learning - Clustering and Dimensionality Reduction

[ 479 ]

Projections.project: This projects the matrix X onto the basis, and it is
implemented by multiplying the matrix X onto the matrix of the basis.

After running the code, we see the following output:

ols: rmse=15.8771 &pm; 3.4332

This indicates that our implementation has passed the sanity check, the results make sense,
and the method is implemented correctly.

Now we need to change the projection method such that it can be applied to sparse
matrices. We have already done that, but let's once again take a look at the outline:

Put the sparse matrix into RompRowMatrix, compressed row storage (CRS)
matrix
Put the basis into DenseMatrix
Multiply the matrices and write the results into DenseMatrix
Unwrap the underlying data from DenseMatrix into a two-dimensional double
array

For the categorical example from the complaints dataset, it will look like the following:

DataFrame<Object> categorical = ... // data
SparseDataset sparse = OHE.hashingEncoding(categorical, 50_000);
double[][] basis = Projections.randomProjection(50_000, 100, 0);
double[][] proj = Projections.project(sparse, basis);

Here, we created some helper methods:

OHE.hashingEncoding : This does one-hot-encoding of categorical data from
the categorical DataFrame
Projections.randomProjection : This generates a random basis
Projections.project : This projects our sparse matrix on this generated basis

We wrote the code for these methods previously, and here we have placed them in helper
methods for convenience. Of course, as usual, you can see the entire code in the code
bundle provided for the chapter. So far, we have covered only one set of techniques from
unsupervised learning dimensionality reduction. There is also cluster analysis, which we
will cover next. Interestingly, clustering can also be used for reducing the dimensionality of
the dataset, and soon we will see how.



Unsupervised Learning - Clustering and Dimensionality Reduction

[ 480 ]

Cluster analysis
Clustering, or cluster analysis, is another family of unsupervised learning algorithms. The
goal of clustering is to organize data into clusters such that the similar items end up in the
same cluster, and dissimilar items in different ones.

There are many different algorithm families for performing clustering, and they differ in
how they group elements.

The most common families are as follows:

Hierarchical: This organizes the dataset into a hierarchy, for example,
agglomerative and divisive clustering. The result is typically a dendrogram.
Partitioning: This splits the dataset into K disjoint classes--K is often specified in
advance--for example, K-means.
Density-based: This organizes the items based on density regions; if there are
many items in some dense regions, they form a cluster, for example, DBSCAN.
Graph-based: This represents the relations between items as a graph and applies
grouping algorithms from the graph theory, for example, connected components
and minimal spanning trees.

Hierarchical methods
Hierarchical methods are considered the simplest clustering algorithms; they are easy to
understand and interpret. There are two families of clustering method, which belong to the
hierarchical family:

Divisive clustering algorithms
Agglomerative clustering algorithms

In the divisive approach, we put all the data items into one cluster, and at each step we pick
up a cluster and then split it into halves until every element is its own cluster. For this
reason, this approach is sometimes called top-down clustering.

The agglomerative clustering approach is the opposite; at the beginning, each data point
belongs to its own cluster, and then at each step, we select two closest clusters and merge
them, until there is only one big cluster left. This is also called bottom-up approach.



Unsupervised Learning - Clustering and Dimensionality Reduction

[ 481 ]

Even though there are two types of hierarchical clustering algorithms, when people say
hierarchical clustering, they typically mean agglomerative clustering, these algorithms are
more common. So let's have a closer look at them.

In agglomerative clustering, at each step, we merge two closest clusters, but depending on
how we define closest, the result can be quite different.

The process of merging two clusters is often called linking, and linkage describes how the
distance between two clusters is calculated.

There are many types of linkages, and the most common ones are as follows:

Single linkage: The distance between two clusters is the distance between two
closest elements.
Complete linkage: The distance between two clusters is the distance between
two most distant elements.
Average linkage (also sometimes called UPGMA linkage): The distance
between clusters is the distance between the centroids, where a centroid is the
average across all items of the cluster.

These methods are usually suitable for a dataset of smaller sizes, and they work quite well
for them. But for larger datasets, they are usually less useful and take a lot of time to finish.
Still, it is possible to use it even with larger datasets, but we need to take a sample of some
manageable size.

Let's look at the example. We can use the dataset of complaints we used previously, with
categorical variables encoded via One-Hot-Encoding. If you remember, we then translated
the sparse matrix with categorical variables into a dense matrix of smaller dimensionality
by using SVD. The dataset is quite large to process, so let's first sample 10,000 records from
there:

double[] data = ... // our data in the reduced SVD space
int size = 10000; // sample size
long seed = 0; // seed number for reproducibility
Random rnd = new Random(seed);

int[] idx = rnd.ints(0, data.length).distinct().limit(size).toArray();
double[][] sample = new double[size][];
for (int i = 0; i < size; i++) {
    sample[i] = data[idx[i]];
}

data = sample;



Unsupervised Learning - Clustering and Dimensionality Reduction

[ 482 ]

What we do here is take a stream of distinct integers from the random number generator
and then limit it to 10,000. Then we use these integers as indexes for the sample.
After preparing the data and taking a sample, we can try to apply agglomerative cluster
analysis to this dataset. Most of the Machine Learning libraries that we previously
discussed have implementations of clustering algorithms, so we can use any of them. Since
we have already used Smile quite extensively, and, in this chapter, we will also use the
implementation from Smile.
When we use it, the first thing we need to specify is the linkage. To specify the linkage and
create a Linkage object, we first need to compute a proximity matrix--a matrix that
contains distances between each pair of object from the dataset.
We can use any distance measure there, but we will take the most commonly used one, the
Euclidean distance. Recall that the Euclidean distance is a norm of the difference between
two vectors. To efficiently compute it, we can use the following decomposition:

We represent the square of the distance as an inner product, and then decompose it. Next,
we recognize that this is a sum of the norms of the individual vectors minus their product:

And this is the formula we can use for efficient calculation of the proximity matrix - the
matrix of distances between each pair of items. In this formula, we have the inner product
of the pair, which can be efficiently computed by using the matrix multiplication.
Let's see how to translate this formula into the code. The first two components are the
individual norms, so let's compute them:

int nrow = data.length;

double[] squared = new double[nrow];
for (int i = 0; i < nrow; i++) {
    double[] row = data[i];

    double res = 0.0;
    for (int j = 0; j < row.length; j++) {
        res = res + row[j] * row[j];
    }

    squared[i] = res;
}



Unsupervised Learning - Clustering and Dimensionality Reduction

[ 483 ]

When it comes to the inner product, it is just a matrix multiplication of the data matrix with
its transpose. We can compute it with any mathematical package in Java. For example, with
Commons Math:

Array2DRowRealMatrix m = new Array2DRowRealMatrix(data, false);
double[][] product = m.multiply(m.transpose()).getData();

Finally, we put these components together to calculate the proximity matrix:

double[][] dist = new double[nrow][nrow];

for (int i = 0; i < nrow; i++) {
    for (int j = i + 1; j < nrow; j++) {
        double d = squared[i] - 2 * product[i][j] + squared[j];
        dist[i][j] = dist[j][i] = d;
    }
}

Because the distance matrix is symmetric, we can save time and loop only over the half of
the indexes. There is no need to cover the case when i == j.

There are other distance measures we can use: it does not matter for the Linkage class. For
example, instead of using Euclidean distance, we can take another one, for example, the
cosine distance.

The cosine distance is another measure of dissimilarity between two vectors, and it is based
on the cosine similarity. The cosine similarity geometrically corresponds to the angle
between two vectors, and it is computed using the inner product:

The inner product here is divided by the norms of each individual vector. But if the vectors
are already normalized, that is, they have a norm, which is equal to 1, then the cosine is just
the inner product. If the cosine similarity is equal to one, then the vectors are exactly the
same.

The cosine distance is the opposite of the cosine similarity: it should be equal to zero when
the vectors are the same, so we can compute it by just subtracting it from one:



Unsupervised Learning - Clustering and Dimensionality Reduction

[ 484 ]

Since we have the inner product here, it is easy to calculate this distance using the matrix
multiplication.

Let's implement it. First, we do unit-normalization of each row vector of our data matrix:

int nrow = data.length;
double[][] normalized = new double[nrow][];

for (int i = 0; i < nrow; i++) {
    double[] row = data[i].clone();
    normalized[i] = row;
    double norm = new ArrayRealVector(row, false).getNorm();
    for (int j = 0; j < row.length; j++) {
        row[j] = row[j] / norm;
    }
}

Now we can multiply the normalized matrices to get the cosine similarity:

Array2DRowRealMatrix m = new Array2DRowRealMatrix(normalized, false);
double[][] cosine = m.multiply(m.transpose()).getData();

Finally, we get the cosine distance by subtracting the cosine similarity from 1:

for (int i = 0; i < nrow; i++) {
    double[] row = cosine[i];
    for (int j = 0; j < row.length; j++) {
        row[j] = 1 - row[j];
    }
}

Now, it is possible to pass the computed matrix to the Linkage instance. As we mentioned,
any distance measure can be used with hierarchical clustering, and this is a nice property,
which other clustering methods often lack.

Let's now use the computed distance matrix for clustering:

double[][] proximity = calcualateSquaredEuclidean(data);
Linkage linkage = new UPGMALinkage(proximity);
HierarchicalClustering hc = new HierarchicalClustering(linkage);

In agglomerative clustering, we take two most similar clusters and merge them, and we
repeat that process until there is only one cluster left. This merging process can be
visualized with a dendrogram. For drawing it in Java, we can use the plotting library that
comes with Smile.



Unsupervised Learning - Clustering and Dimensionality Reduction

[ 485 ]

To illustrate how to do it, let's first sample only a few items and apply the clustering. Then
we can get something similar to the following picture:

At the bottom on the x axis, we have the items that are merged into clusters. On the y axis,
we have the distance at which the clusters are merged.

To create the plot, we use the following code:

Frame frame = new JFrame("Dendrogram");
frame.setDefaultCloseOperation(WindowConstants.DISPOSE_ON_CLOSE);



Unsupervised Learning - Clustering and Dimensionality Reduction

[ 486 ]

PlotCanvas dendrogram = Dendrogram.plot(hc.getTree(), hc.getHeight());
frame.add(dendrogram);

frame.setSize(new Dimension(1000, 1000));
frame.setLocationRelativeTo(null);
frame.setVisible(true);

This visualization is quite helpful when we need to analyze the resulting clusters. Since we
know the distance at which the merge was done (on the y axis), we can get some idea how
many clusters it may make sense to extract from the data. For example, after around 21, the
mergers become quite distant from each other, which may suggest that there are 5 clusters.

To get these clusters, we can cut the dendrogram at some distance threshold. If some
element was merged at a distance below the threshold, then they stay within the same
cluster. Otherwise, if they are merged at the distance above the threshold, they are treated
as separate clusters.

For the preceding dendrogram, if we cut at the height of 23, we should get 5 separate
clusters. This is how we can do it:

double height = 23.0;
int[] labels = hc.partition(height);

Alternatively, we can ask for a specific number of clusters:

int k = 5;
int[] labels = hc.partition(k);

There are several advantages of hierarchical clusters:

It can work with any distance function, all it needs is a distance matrix, so any
function can be used to create the matrix
It is easy to come up with the number of clusters with this clustering

However, there are some disadvantages:

It does not work well with a large number of items in the dataset--the distance
matrix is hard to fit into memory.
It is usually slower than other method, especially when some linkage is used.

There is another very popular method, which works quite well for larger datasets, and next
we will talk about it.



Unsupervised Learning - Clustering and Dimensionality Reduction

[ 487 ]

K-means
As we mentioned previously, Agglomerative clustering methods work quite well with
small datasets, but they have some problems with bigger ones. K-means is another popular
clusterization technique, which does not suffer from this problem.

K-means is a clustering method, which belongs to the partitioning family of clustering
algorithm: given the number of clusters K, K-Means splits the data into K disjoint groups.
Grouping items into clusters is done using centroids. A centroid represents the "center" of a
cluster, and for each item, we assign it to the group of its closest centroid. The quality of
clustering is measured by distortion - the sum of distances between each item and its
centroid.

As with agglomerative clustering, there are multiple implementations of K-Means available
in Java, and, like previously, we will use the one from Smile. Unfortunately, it does not
support sparse matrices, and can work only with dense ones. If we want to use it for sparse
data, we either need to convert it to dense matrix, or reduce its dimensionality with SVD or
random projection.

Let's again use the categorical dataset of complaints, and project it to 30 components with
SVD:

SingularValueDecomposition svd =
SingularValueDecomposition.decompose(sparse.toSparseMatrix(), 30);
double[][] proj = Projections.project(sparse, svd.getV());

As we see here, the K-means implementation in Smile takes in four arguments:

The matrix that we want to cluster
The number of clusters we want to find
The number of iterations to run
The number of trials before selecting the best one

K-means optimizes the distortion of the dataset, and this objective function has many local
optima. This means, depending on the initial configuration, you may end up with entirely
different results, and some may be better than others. The problem can be mitigated by
running K-means multiple times, each time with different starting position, and then
choosing the clustering with the best optimum. This is why we need the last parameters, the
number of trials.

Now, let's run K-means in Smile:

int k = 10;
int maxIter = 100;



Unsupervised Learning - Clustering and Dimensionality Reduction

[ 488 ]

int runs = 3;
KMeans km = new KMeans(proj, k, maxIter, runs);

Although the implementation from Smile can only work with dense matrices, the
implementation from JSAT does not have this limitation, it can work with any matrix, be it
dense or sparse.

The way we do it in JSAT is as follows:

SimpleDataSet ohe = JsatOHE.oneHotEncoding(categorical);
EuclideanDistance distance = new EuclideanDistance();
Random rand = new Random(1);
SeedSelection seedSelection = SeedSelection.RANDOM;
KMeans km = new ElkanKMeans(distance, rand, seedSelection);

List<List<DataPoint>> clustering = km.cluster(ohe);

In this code, we use another implementation of One-Hot-Encoding, which produces sparse
JSAT datasets. It very closely follows the implementation we have for Smile. For details,
you can take a look at the code in the chapter's code repository.

There are multiple implementations of K-Means in JSAT. One of these implementations is
ElkanKMeans, which we used earlier. The ElkanKMeans parameter from JSAT is quite
different from the Smile version:

First, it takes the distance function, typically Euclidean
It creates an instance of the random class to ensure reproducibility
It creates the algorithm for selecting the initial seeds for clusters, with random
being fastest and KPP (which is K-means++) being most optimal in terms of the
cost function

For sparse matrices, the JSAT implementation is too slow, so it is not suitable for the
problem we have. For dense matrices, the results that JSAT implementations produce are
comparable to Smile, but it also takes considerably more time.

K-means has a parameter K, which is the number of clusters we want to have. Often, it is
challenging to come up with a good value of K, and next we will look at how to select it.

Choosing K in K-Means
K-means has a drawback: we need to specify the number of clusters K. Sometimes K can be
known from the domain problem we are trying to solve. For example, if we know that there
are 10 types of clients, we probably want to look for 10 clusters.



Unsupervised Learning - Clustering and Dimensionality Reduction

[ 489 ]

However, often we do not have this kind of domain knowledge. In situations like this, we
can use a method often referred as the elbow method:

Try different values of K, record the distortion for each
Plot the distortion for each K
Try to spot the elbow, the part of the graph where the error stops dropping
rapidly and starts decreasing slowly

You can do it in the following way:

PrintWriter out = new PrintWriter("distortion.txt");

for (int k = 3; k < 50; k++) {
    int maxIter = 100;
    int runs = 3;
    KMeans km = new KMeans(proj, k, maxIter, runs);
    out.println(k + "/t" + km.distortion());
}

out.close();

Then, you can plot the content of the distortion.txt file with your favorite plotting
library, and this is the result:

Here, we can see that it drops quickly initially, but then around 15-20 it starts to decrease
slower. So we can select K from this region, for example, take K = 17.



Unsupervised Learning - Clustering and Dimensionality Reduction

[ 490 ]

Another solution would be to sample a small amount of data, and then build a dendrogram
with hierarchical clustering. By looking at the dendrogram, it may become clear what is the
best number of clusters K.

Both of these methods require human judgement and is hard to formalize. But there is
another option--ask Machine Learning to choose the best K for us. To do it, we can use X-
Means, which is an extension to the K-Means algorithm. X-Means tries to select the best K
automatically using the Bayesian Information Criterion (BIC) score.

Smile already contains an implementation of X-Means, called XMeans, and running it is
easy as follows:

int kmax = 300;
XMeans km = new XMeans(data, kmax);
System.out.println("selected number of clusters: " + km.getNumClusters());

This will output the optimal number of clusters according to BIC. JSAT also has an
implementation of XMeans, and it works similarly.

It is never clear which approach is better, so you may need to try each of them and select the
best one for a particular problem.

Apart from Agglomerative Clustering and K-Means, there are other clustering methods,
which are also sometimes useful in practice. Next, we now look into one of them -
DBSCAN.

DBSCAN
DBSCAN is another clustering quite popular technique. DBSCAN belongs to the density-
based family of algorithms, and, unlike K-Means, it does not need to know the number of
clusters, K, in advance.

In a few words, DBSCAN works as follows: at each step it takes an item to grow a cluster
around it.

When we take an item from a high-density region, then there are many other data points
close to the current item, and all these items are added to the cluster. Then the process is
repeated for each newly added element of the cluster. If, however, the region is not dense
enough, and there are not so many points nearby, then we do not form a cluster and say
that this item is an outlier.



Unsupervised Learning - Clustering and Dimensionality Reduction

[ 491 ]

So, for DBSCAN to work, we need to provide the following parameters:

The distance metric for calculating how close two items are
The minimal number of neighbors within the radius to continue growing the
cluster
The radius around each point

As we can see, we do not need to specify K in advance for DBSCAN. Additionally, it
naturally handles outliers, which may cause significant problems for methods like K-Means.
There is an implementation of DBSCAN in Smile and here is how we use it:

double[] X = ... // data
EuclideanDistance distance = new EuclideanDistance();
int minPts = 5;
double radius = 1.0;
DBScan<double[]> dbscan = new DBScan<>(X, distance, minPts, radius);

System.out.println(dbscan.getNumClusters());
int[] assignment = dbscan.getClusterLabel();

In this code, we specify the following three parameters: distance, the minimum number of
points around an item to be considered a cluster, and the radius.

After it is finished, we can get the cluster labels assignment using the getClusterLabel
method. Since DBSCAN handles outliers, there is a special cluster ID for them,
Integer.MAX_VALUE.

Agglomerative clustering, K-Means, and DBSCAN are one of the most commonly used
clustering approaches, and they are useful when we need to group items that share some
pattern. However, we can also use clustering for dimensionality reduction, and next we will
see how.

Clustering for supervised learning
Like dimensionality reduction, clustering can also be useful for supervised learning.

We will talk about the following cases:

Clustering as a feature engineering technique for creating extra features
Clustering as a dimensionality reduction technique
Clustering as a simple classification or regression method



Unsupervised Learning - Clustering and Dimensionality Reduction

[ 492 ]

Clusters as features
Clustering can be seen as a method for feature engineering, and the results of clustering can
be added to a supervised model as a set of additional features.

The simplest way of doing it to use one-hot-encoding of clustering results is as follows:

First, you run a clustering algorithm and as a result, you group the dataset into K
clusters
Then, you represent each datapoint as a cluster to which it belongs using the
cluster ID
Finally, you treat the IDs as a categorical feature and apply One-Hot-Encoding to
it.

It looks very simple in code:

KMeans km = new KMeans(X, k, maxIter, runs);
int[] labels = km.getClusterLabel();

SparseDataset sparse = new SparseDataset(k);

for (int i = 0; i < labels.length; i++) {
    sparse.set(i, labels[i], 1.0);
}

After running it, the sparse object will contain one-hot-encoding of cluster IDs. Next, we can
just append it to the existing features and run the usual supervised learning techniques on
it.

Clustering as dimensionality reduction
Clustering can be seen as a special kind of dimensionality reduction. For example, if you
group your data into K clusters, then you can compress it into K centroids. Once we have
done it, each data point can be represented as a vector of distances to each of those
centroids. If K is smaller than the dimensionality of your data, it can be seen as a way of
reducing the dimensionality.

Let's implement this. First, let's run a K-means on some data. We can use the performance
dataset we used previously.



Unsupervised Learning - Clustering and Dimensionality Reduction

[ 493 ]

We will use Smile again, and we already know how to run K-means. Here is the code:

double[][] X = ...; // data
int k = 60;
int maxIter = 10;
int runs = 1;
KMeans km = new KMeans(X, k, maxIter, runs);

Once it finishes, it is possible to extract the centroids for each cluster. They are stored in a
two dimensional array row-wise:

double[][] centroids = km.centroids();

This should return a dataset of K rows (in our case, K = 60) with the number of columns
equal to the number of features that we have in the dataset.

Next, for each observation, we can compute how far it is from each centroid. We already
discussed how to implement the Euclidean distance efficiently via matrix multiplication,
but previously we needed to compute the pair-wise distance between each element of the
same set. Now, however, we need to compute the distance between each item from our
dataset and each centroid, so we have two sets of data points. We will adapt the code
slightly such that it can handle this case.

Recall the formula:

We need to compute the squared norms for each vector individually and then an inner
product between all items.

So, if we put all items of each set as rows of two matrices A and B, then we can use this
formula to compute pair-wise distances between the two matrices via matrix multiplication.

First, we compute the norms and the product:

double[] squaredA = squareRows(A);
double[] squaredB = squareRows(B);

Array2DRowRealMatrix mA = new Array2DRowRealMatrix(A, false);
Array2DRowRealMatrix mB = new Array2DRowRealMatrix(B, false);
double[][] product = mA.multiply(mB.transpose()).getData();



Unsupervised Learning - Clustering and Dimensionality Reduction

[ 494 ]

Here, the squareRows function computes the squared norm of each row vector of the
matrix:

public static double[] squareRows(double[][] data) {
    int nrow = data.length;

    double[] squared = new double[nrow];
    for (int i = 0; i < nrow; i++) {
        double[] row = data[i];

        double res = 0.0;
        for (int j = 0; j < row.length; j++) {
            res = res + row[j] * row[j];
        }

        squared[i] = res;
    }

    return squared;
}

Now we can use the formula from the preceding code to compute the distances:

int nrow = product.length;
int ncol = product[0].length;
double[][] distances = new double[nrow][ncol];
for (int i = 0; i < nrow; i++) {
    for (int j = 0; j < ncol; j++) {
        double dist = squaredA[i] - 2 * product[i][j] + squaredB[j];
        distances[i][j] = Math.sqrt(dist);
    }
}

If we wrap this into a function, for example, distance, we can use it like this:

double[][] centroids = km.centroids();
double[][] distances = distance(X, centroids);

Now we can use the distances array instead of the original dataset X, for example, like this:

OLS model = new OLS(distances, y);

Note that it does not necessarily have to be used as a dimensionality reduction technique.
Instead, we can use it for engineering extra features, and just add these new features to the
existing ones.



Unsupervised Learning - Clustering and Dimensionality Reduction

[ 495 ]

Supervised learning via clustering
Unsupervised learning can be used as a model for supervised learning, and depending on
the supervised problem we have, it can be either classification via clustering or regression via
clustering.

This approach is relatively straightforward. First, you associate each item with some cluster
ID, and then:

For the binary classification problem, you output the probability of seeing the
positive class in the cluster
For regression, you output the mean value across the cluster

Let's look at how we can do this for regression. At the beginning, we run K-means on the
original data as usual:

int k = 250;
int maxIter = 10;
int runs = 1;

KMeans km = new KMeans(X, k, maxIter, runs);

Often it makes sense to pick a relative large K, and the optimal value, as
we do usually, should be determined by cross-validation.

Next, we calculate the mean target value for each cluster from the training data. For doing
this, we first group by the cluster ID, and then calculate the mean of each group:

double[] y = ... // target variable
int[] labels = km.getClusterLabel();

Multimap<Integer, Double> groups = ArrayListMultimap.create();
for (int i = 0; i < labels.length; i++) {
    groups.put(labels[i], y[i]);
}

Map<Integer, Double> meanValue = new HashMap<>();
for (int i = 0; i < k; i++) {
    double mean = groups.get(i).stream()
                        .mapToDouble(d -> d)
                        .average().getAsDouble();
    meanValue.put(i, mean);
}



Unsupervised Learning - Clustering and Dimensionality Reduction

[ 496 ]

Now, if we want to apply this model to test data, we can do it the following way. First, for
each unseen data item, we find the closest cluster ID, and then, using this ID, we look up
the mean target value.

In code it looks like this:

double[][] testX = ... // test data
double[] testY = ... // test target
int[] testLabels = Arrays.stream(testX).mapToInt(km::predict).toArray();

double[] testPredict = Arrays.stream(testLabels)
                             .mapToDouble(meanValue::get)
                             .toArray();

Now, the testPredict array contains the prediction for each observation from the test
data.

What is more, if instead of regression, you have a binary classification problem, and you
keep the labels in array of doubles, the preceding code will output probabilities of
belonging to a class based on clustering, without any changes! And the testPredict array
will contain the predicted probabilities.

Evaluation
The most complex part of unsupervised learning is evaluating the quality of models. It is
very hard to objectively tell if a clustering is good or whether one result is better than
another.

There are a few ways to approach this:

Manual evaluation
Using label information, if present
Unsupervised metrics

Manual evaluation
Manual evaluation means looking at the results manually and using the domain expertise to
assess the quality of clusters and if they make any sense.



Unsupervised Learning - Clustering and Dimensionality Reduction

[ 497 ]

The manual check is usually done in the following way:

For each cluster, we sample the same data points
Then, we look at them to see if they should belong together or not

When looking at the data, we want to ask ourselves the following questions:

Do these items look similar?
Does it make sense to put these items into the same group?

If the answer to both the question is yes, then the clustering results are good.
Additionally, the way we sample data is also important. For example, in case of K-means,
we should sample some items that are close to the centroid, and some items that are far
away from it. Then, we can compare the ones that are close with the ones that are far. If we
look at them and still can spot some similarities between them, then the clustering is good.

This sort of evaluation always makes sense even if we use other sort of cluster validation
techniques, and, if possible, it should be always done to sanity-check the models. For
example, if we apply it for customer segregation, we always should manually see if two
customers are indeed similar within clusters, otherwise the model results will not be useful.

However, it is clear that this approach is very subjective, not reproducible, and does not
scale. Unfortunately, sometimes this is the only good option, and for many problems there
is no proper way to evaluate the model quality. Still, for some problems other more
automatic methods can provide good results, and next we will look at some such methods.

Supervised evaluation
Manual inspection of the output is always good, but it can be quite cumbersome. Often
there is some extra data, which we can use for evaluating the result of our clustering in a
more automatic fashion.

For example, if we use clustering for supervised learning, then we have labels. For example,
if we solve the classification problem, then we can use the class information to measure how
pure (or homogeneous) the discovered clusters are. That is, we can see what is the ratio of
the majority class to the rest of the classes within the cluster.

If we take the complaints dataset, there are some variables, which we did not use for
clustering, for example:

Timely response: This is a binary variable indicating whether the company
responded to the complaint in time or not.



Unsupervised Learning - Clustering and Dimensionality Reduction

[ 498 ]

Company response to consumer: This states what kind of response the company
gave to the complaint.
Consumer disputed: This states whether the customer agreed with the response
or not.

Potentially, we could be interested in predicting any of these variables, so we could use
them as an indication of the quality of the clustering.

For example, suppose we are interested in predicting the response of the company. So we
perform the clustering:

int maxIter = 100;
int runs = 3;
int k = 15;
KMeans km = new KMeans(proj, k, maxIter, runs);

And now want to see how useful it is for predicting the response. Let's calculate the ratio of
the outcomes within each cluster.

For that we first group by the cluster ID, and then calculate the ratios:

int[] assignment = km.getClusterLabel();
List<Object> resp = data.col("company_response_to_consumer");
Multimap<Integer, String> respMap = ArrayListMultimap.create();

for (int i = 0; i < assignment.length; i++) {
    int cluster = assignment[i];
    respMap.put(cluster, resp.get(i).toString());
}

Now we can print it, sorting the values within the cluster by the most frequent one:

List<Integer> keys = Ordering.natural().sortedCopy(map.keySet());

for (Integer c : keys) {
    System.out.print(c + ": ");

    Collection<String> values = map.get(c);
    Multiset<String> counts = HashMultiset.create(values);
    counts = Multisets.copyHighestCountFirst(counts);

    int totalSize = values.size();
    for (Entry<String> e : counts.entrySet()) {
        double ratio = 1.0 * e.getCount() / totalSize;
        String element = e.getElement();
        System.out.printf("%s=%.3f (%d), ", element, ratio, e.getCount());
    }



Unsupervised Learning - Clustering and Dimensionality Reduction

[ 499 ]

    System.out.println();
}

This is the output for the first couple of clusters:

0: Closed with explanation=0.782 (12383), Closed with non-monetary
relief=0.094 (1495)...
1: Closed with explanation=0.743 (19705), Closed with non-monetary
relief=0.251 (6664)...
2: Closed with explanation=0.673 (18838), Closed with non-monetary
relief=0.305 (8536)...

We can see that the clustering is not really pure: there's one dominant class and the purity is
more or less the same across the clusters. On the other hand, we see that the distribution of
classes is different across clusters. For example, in cluster 2, 30% if items are closed with non-
monetary relief, and in cluster 1, there is only 9% of them.

Even though the majority class might not be useful by itself, the
distribution within each cluster can be useful for a classification model, if
we use it as a feature.

This brings us to a different evaluation method; if we use the clustering as a feature
engineering technique, we can evaluate the quality of the clustering by how much
performance gain it gives, and select the best clustering by picking up the one with the most
gain.

This brings us to the next evaluation method. If we use the results of clustering in some
supervised settings (say, by using it in as a feature engineering technique), then we can
evaluate the quality of the clustering by looking at how much performance it gives.

For example, we have a model that has 85% accuracy without any clustering features. Then
we use two different clustering algorithms and extract the features from them, and include
them to the model. The features from the first algorithm improve the score by 2%, and the
second algorithm gives a 3% improvement. Then, the second algorithm is better.

Finally, there are some special metrics that we can use to assess how good the clustering is
with respect to a provided label. One such metric is Rand Index and Mutual Information.
These metrics are implemented in JSAT, and you will find them in the
jsat.clustering.evaluation package.



Unsupervised Learning - Clustering and Dimensionality Reduction

[ 500 ]

Unsupervised Evaluation
Lastly, there are unsupervised evaluation scores for assessing the quality of clustering when
no labels are known.

We already mentioned one such metric: distortion, which is the sum of distances between
each item and its closest centroid. There are other metrics such as:

Maximal pairwise distance within clusters
Mean pairwise distance
Sum of squared pairwise distances

These and some other metrics are also implemented in JSAT and you will find them in the
jsat.clustering.evaluation.intra package.

Summary
In this chapter, we talked about unsupervised machine learning and about two common
unsupervised learning problems, dimensionality reduction and cluster analysis. We
covered the most common algorithms from each type, including PCA and K-means. We
also covered the existing implementations of these algorithms in Java, and implemented
some of them ourselves. Additionally, we touched some important techniques such as SVD,
which are very useful in general.

The previous chapter and this chapter have given us quite a lot of information already.
With these chapters, we prepared a good foundation to look at how to process textual data
with machine learning and data science algorithm--and this is what we will cover in the
next chapter.



  6
Working with Text - Natural
Language Processing and

Information Retrieval
In the previous two chapters, we covered the basics of machine learning: we spoke about
supervised and unsupervised problems.

In this chapter, we will take a look at how to use these methods for processing textual
information, and we will illustrate most of our ideas with our running example: building a
search engine. Here, we will finally use the text information from the HTML and include it
into the machine learning models.

First, we will start with the basics of natural language processing, and implement some of
the basic ideas ourselves, and then look into efficient implementations available in NLP
libraries.

This chapter covers the following topics:

Basics of information retrieval
Indexing and searching with Apache Lucene
Basics of natural language processing
Unsupervised models for texts - dimensionality reduction, clustering, and word
embeddings
Supervised models for texts - text classification and learning to rank

By the end of this chapter you will learn how to do simple text pre-processing for machine
learning, how to use Apache Lucene for indexing, how to transform words into vectors, and
finally, how to cluster and classify texts.



Working with Text - Natural Language Processing and Information Retrieval

[ 502 ]

Natural Language Processing and
information retrieval
Natural Language Processing (NLP) is a part of computer science and computational
linguistics that deals with textual data. To a computer, texts are unstructured, and NLP
helps find the structure and extract useful information from them.

Information retrieval (IR) is a discipline that studies searching in large unstructured
datasets. Typically, these datasets are texts, and the IR systems help users find what they
want. Search engines such as Google or Bing are examples of such IR systems: they take in a
query and provide a collection of documents ranked according to relevance with respect to
the query.

Usually, IR systems use NLP for understanding what the documents are about - so later,
when the user needs, these documents can be retrieved. In this chapter, we will go over the
basics of text processing for information retrieval.

Vector Space Model - Bag of Words and TF-IDF
For a computer, a text is just a string of characters with no particular structure imposed on
it. Hence, we call texts unstructured data. However, to humans, texts certainly has a
structure, which we use to understand the content. What IR and NLP models try to do is
similar: they find the structure in texts, use it to extract the information there, and
understand what the text is about.

The simplest possible way of achieving it is called Bag of Words: we take a text, split it into
individual words (which we call tokens), and then represent the text as an unordered
collection of tokens along with some weights associated with each token.

Let us consider an example. If we take a document, that consists of one sentence (we use Java
for Data Science because we like Java), it can be represented as follows:

(because, 1), (data, 1), (for, 1), (java, 2), (science, 1), (use, 1), (we,
2)

Here, each word from the sentence is weighted by the number of times the word occurs
there.

Now, when we are able to represent documents in such a way, we can use it for comparing
one document to another.



Working with Text - Natural Language Processing and Information Retrieval

[ 503 ]

For example, if we take another sentence such as Java is good enterprise development, we can
represent it as follows:

(development, 1), (enterprise, 1), (for, 1), (good, 1), (java, 1)

We can see that there is some intersection between these two documents, which may mean
that these two documents are similar, and the higher the intersection, the more similar the
documents are.

Now, if we think of words as dimensions in some vector space, and weights as the values
for these dimensions, then we can represent documents as vectors:

If we take this vectorial representation, we can use the inner product between two vectors
as a measure of similarity. Indeed, if two documents have a lot of common words, the inner
product between them will be high, and if they share no documents, the inner product is
zero.

This idea is called Vector Space Model, and this is what is used in many information
retrieval systems: all documents as well as the user queries are represented as vectors. Once
the query and the documents are in the same space, we can think of similarity between a
query and a document as the relevance between them. So, we sort the documents by their
similarity to the user query.

Going from raw text to a vector involves a few steps. Usually, they are as follows:

First, we tokenize the text, that is, convert it into a collection of individual tokens.
Then, we remove function words such as is, will, to, and others. They are often
used for linking purposes only and do not carry any significant meaning. These
words are called stop words.
Sometimes we also convert tokens to some normal form. For example, we may
want to map cat and cats to cat because the concept is the same behind these two
different words. This is achieved through stemming or lemmatization.
Finally, we compute the weight of each token and put them into the vector space.



Working with Text - Natural Language Processing and Information Retrieval

[ 504 ]

Previously, we used the number of occurrences for weighting terms; this is called Term
Frequency weighting. However, some words are more important than others and Term
Frequency does not always capture that.

For example, hammer can be more important than tool because it is more specific. Inverse
Document Frequency is a different weighting scheme that penalizes general words and
favors specific ones. Inside, it is based on the number of documents that contain the term,
and the idea is that more specific terms occur in fewer documents than general ones.

Finally, there is a combination of both Term Frequency and Inverse Document Frequency,
which is abbreviated as TF-IDF. As the name suggests, the weight for the token t consists of
two parts: TF and IDF:

weight(t) = tf(t) * idf(t)

Here is an explanation of the terms mentioned in the preceding equation:

tf(t): This is a function on the number of times the token t occurs in the text
idf(t): This is a function on the number of documents that contain the token

There are multiple ways to define these functions, but, most commonly, the following
definitions are used:

tf(t): This is the number of times t occurs in the document
idf(t) = log(N / df(t)): Here, df(t) is the number of documents, which
contain t, and N - the total number of documents

Previously, we suggested that we can use the inner product for measuring the similarity
between documents. There is a problem with this approach: it is unbounded, which means
that it can take any positive value, and this makes it harder to interpret. Additionally,
longer documents will tend to have higher similarity with everything else just because they
contain more words.

The solution to this problem is to normalize the weights inside a vector such that its norm
becomes 1. Then, computing the inner product will always result in a bounded value
between 0 and 1, and longer documents will have less influence. The inner product between
normalized vectors is usually called cosine similarity because it corresponds to the cosine of
the angle that these two vectors form in the vector space.



Working with Text - Natural Language Processing and Information Retrieval

[ 505 ]

Vector space model implementation
Now we have enough background information and are ready to proceed to the code.

First, suppose that we have a text file where each line is a document, and we want to index
the content of this file and be able to query it. For example, we can take some text from h t t p

s ://o c w . m i t . e d u /a n s 7870/6/6. 006/s 08/l e c t u r e n o t e s /f i l e s /t 8. s h a k e s p e a r e . t x t and
save it to simple-text.txt.

Then we can read it this way:

Path path = Paths.get("data/simple-text.txt");
List<List<String>> documents = Files.lines(path, StandardCharsets.UTF_8)
     .map(line -> TextUtils.tokenize(line))
     .map(line -> TextUtils.removeStopwords(line))
     .collect(Collectors.toList());

We use the Files class from the standard library, and then use two functions:

The first one, TextUtils.tokenize, takes a String and produces a list of tokens
The second one, TextUtils.removeStopwords, removes the functional words
such as a, the, and so on

A simple and naive way to implement tokenization is to split a string based on a regular
expression:

public static List<String> tokenize(String line) {
     Pattern pattern = Pattern.compile("W+");
     String[] split = pattern.split(line.toLowerCase());
     return Arrays.stream(split)
             .map(String::trim)
             .filter(s -> s.length() > 2)
             .collect(Collectors.toList());
 }

The expression W+ means split the String on everything that is not a Latin character. Of
course, it will fail to handle languages with non-Latin characters, but it is a fast way to
implement tokenization. Also, it works quite well for English, and can be adapted to handle
other European languages.

Another thing here is throwing away short tokens smaller than two characters - these
tokens are often stopwords, so it is safe to discard them. The second function takes a list of
tokens and removes all stopwords from it. Here is its implementation:

Set<String> EN_STOPWORDS = ImmutableSet.of("a", "an", "and", "are", "as",
"at", "be", ...

https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt


Working with Text - Natural Language Processing and Information Retrieval

[ 506 ]

public static List<String> removeStopwords(List<String> line) {
     return line.stream()
             .filter(token -> !EN_STOPWORDS.contains(token))
             .collect(Collectors.toList());
 }

It is pretty straightforward: we keep a set of English stopwords and then for each token we
just check if it is in this set or not. You can get a good list of English stopwords from h t t p

://w w w . r a n k s . n l /s t o p w o r d s .

It is also quite easy to add token normalization to this pipeline. For now, we will skip it, but
we will come back to it later in this chapter.

Now we have tokenized the texts, so the next step is to represent the tokens in the vector
space. Let's create a special class for it. We will call it CountVectorizer.

The name CountVectorizer is inspired by a class with similar
functionality from scikit-learn - an excellent package for doing machine
learning in Python. If you are familiar with the library, you may notice
that we sometimes borrow the names from there (such as names fit()
and transform() for methods).

Since we cannot directly create a vector space whose dimensions are indexed by words, we
will first map all distinct tokens from all the texts to some column number.

Also, it makes sense to calculate the document frequency at this step, and use it to discard
tokens that appear only in a few documents. Often, such terms are misspellings, non-
existing words, or too infrequent to have any impact on the results.

In code it looks like this:

Multiset<String> df = HashMultiset.create();
documents.forEach(list -> df.addAll(Sets.newHashSet(list)));
Multiset<String> docFrequency = Multisets.filter(df, p -> df.count(p) >=
minDf);

List<String> vocabulary =
Ordering.natural().sortedCopy(docFrequency.elementSet());
Map<String, Integer> tokenToIndex = new HashMap<>(vocabulary.size());

for (int i = 0; i < vocabulary.size(); i++) {
    tokenToIndex.put(vocabulary.get(i), i);
}

http://www.ranks.nl/stopwords
http://www.ranks.nl/stopwords
http://www.ranks.nl/stopwords
http://www.ranks.nl/stopwords
http://www.ranks.nl/stopwords
http://www.ranks.nl/stopwords
http://www.ranks.nl/stopwords
http://www.ranks.nl/stopwords
http://www.ranks.nl/stopwords
http://www.ranks.nl/stopwords
http://www.ranks.nl/stopwords
http://www.ranks.nl/stopwords
http://www.ranks.nl/stopwords
http://www.ranks.nl/stopwords
http://www.ranks.nl/stopwords
http://www.ranks.nl/stopwords
http://www.ranks.nl/stopwords
http://www.ranks.nl/stopwords
http://www.ranks.nl/stopwords
http://www.ranks.nl/stopwords
http://www.ranks.nl/stopwords
http://www.ranks.nl/stopwords
http://www.ranks.nl/stopwords
http://www.ranks.nl/stopwords
http://www.ranks.nl/stopwords
http://www.ranks.nl/stopwords
http://www.ranks.nl/stopwords
http://www.ranks.nl/stopwords
http://www.ranks.nl/stopwords
http://www.ranks.nl/stopwords
http://www.ranks.nl/stopwords
http://www.ranks.nl/stopwords
http://www.ranks.nl/stopwords
http://www.ranks.nl/stopwords
http://www.ranks.nl/stopwords
http://www.ranks.nl/stopwords
http://www.ranks.nl/stopwords
http://www.ranks.nl/stopwords
http://www.ranks.nl/stopwords
http://www.ranks.nl/stopwords
http://www.ranks.nl/stopwords
http://www.ranks.nl/stopwords
http://www.ranks.nl/stopwords
http://www.ranks.nl/stopwords
http://www.ranks.nl/stopwords
http://www.ranks.nl/stopwords
http://www.ranks.nl/stopwords
http://www.ranks.nl/stopwords
http://www.ranks.nl/stopwords


Working with Text - Natural Language Processing and Information Retrieval

[ 507 ]

We use a Multiset from Guava to count document frequency, then we apply the filtering,
with minDf being a parameter, which specifies the minimal document frequency. After
discarding infrequent tokens, we associate a column number with each remaining one, and
put this to a Map.

Now we can use the document frequencies to calculate IDF:

int numDocuments = documents.size();
double numDocumentsLog = Math.log(numDocuments + 1);
double[] idfs = new double[vocabulary.size()];

for (Entry<String> e : docFrequency.entrySet()) {
    String token = e.getElement();
    double idfValue = numDocumentsLog - Math.log(e.getCount() + 1);
    idfs[tokenToIndex.get(token)] = idfValue;
}

After executing it, the idfs array will contain the IDF part of the weight for all the tokens in
our vocabulary.

Now we are ready to put the tokenized documents into a vector space:

int ncol = vocabulary.size();
SparseDataset tfidf = new SparseDataset(ncol);

for (int rowNo = 0; rowNo < documents.size(); rowNo++) {
    List<String> doc = documents.get(rowNo);
    Multiset<String> row = HashMultiset.create(doc);
    for (Entry<String> e : row.entrySet()) {
        String token = e.getElement();
        double tf = e.getCount();
        int colNo = tokenToIndex.get(token);
        double idf = idfs[colNo];
        tfidf.set(rowNo, colNo, tf * idf);
    }
}

tfidf.unitize();

Since the resulting vectors are very sparse, we use SparseDataset from Smile to store
them. Then, for each token in a document, we compute its TF and multiply it by IDF to get
the TF-IDF weights.

The last line in the code applies the length normalization to the document vectors. With
this, computing the inner product between vectors will result in the Cosine Similarity score,
which is a bounded value between 0 and 1.



Working with Text - Natural Language Processing and Information Retrieval

[ 508 ]

Now, let's put the code into a class, so we can reuse it afterwards:

public class CountVectorizer {
    void fit(List<List<String>> documents);
    SparseDataset tranform(List<List<String>> documents);
}

The functions we define does the following:

fit creates the mapping from tokens to column numbers and calculates the IDF
transform converts a collection of documents into a sparse matrix
The constructor should take minDf, which specifies the minimal document
frequency for a token.

Now we can use it for vectorizing our dataset:

List<List<String>> documents = Files.lines(path, StandardCharsets.UTF_8)
         .map(line -> TextUtils.tokenize(line))
         .map(line -> TextUtils.removeStopwords(line))
         .collect(Collectors.toList());

int minDf = 5;
CountVectorizer cv = new CountVectorizer(minDf);
cv.fit(documents);
SparseDataset docVectors = cv.transform(documents);

Now imagine that we, as users, want to query this collection of documents. To be able to do
it, we need to implement the following:

First, represent a query in the same vector space: that is, apply the exact same1.
procedure (tokenization, stopwords removal, and so on) to the documents.
Then, compute the similarity between the query and each document.2.
Finally, rank the documents using the similarity score, from largest to lowest.3.

Suppose our query is the probabilistic interpretation of tf-idf. Then, map it
into the vector space in a similar way:

List<String> query = TextUtils.tokenize("the probabilistic interpretation
of tf-idf");
query = TextUtils.removeStopwords(query);
SparseDataset queryMatrix =
vectorizer.transfrom(Collections.singletonList(query));
SparseArray queryVector = queryMatrix.get(0).x;



Working with Text - Natural Language Processing and Information Retrieval

[ 509 ]

The method we created previously accepts a collection of documents, rather than a single
document, so first we wrap it into a list, and then get the first row of the matrix with results.

What we have now is docVector, which is a sparse matrix containing our collection of
documents, and queryVector, a sparse vector containing the query. With this, getting
similarities is easy: we just need to multiply the matrix with the vector and the result will
contain the similarity scores.

As in the previous chapter, we will make use of Matrix Java Toolkit (MTJ) for that. Since
we are doing matrix-vector multiplication, with the matrix being on the left side, the best
way of storing the values is the row-based representation. We already wrote a utility
method for converting SparseDataset from Smile into CompRowMatrix from MTJ.

Here it is again:

public static CompRowMatrix asRowMatrix(SparseDataset dataset) {
    int ncols = dataset.ncols();
    int nrows = dataset.size();

    FlexCompRowMatrix X = new FlexCompRowMatrix(nrows, ncols);
    SparseArray[] array = dataset.toArray(new SparseArray[0]);

    for (int rowIdx = 0; rowIdx < array.length; rowIdx++) {
        Iterator<Entry> row = array[rowIdx].iterator();
        while (row.hasNext()) {
            Entry entry = row.next();
            X.set(rowIdx, entry.i, entry.x);
        }
    }

    return new CompRowMatrix(X);
}

Now we also need to convert a SparseArray object into a SparseVector object from MTJ.

Let's also create a method for that:

public static SparseVector asSparseVector(int dim, SparseArray vector) {
    int size = vector.size();
    int[] indexes = new int[size];
    double[] values = new double[size];

    Iterator<Entry> iterator = vector.iterator();
    int idx = 0;

    while (iterator.hasNext()) {
        Entry entry = iterator.next();



Working with Text - Natural Language Processing and Information Retrieval

[ 510 ]

        indexes[idx] = entry.i;
        values[idx] = entry.x;
        idx++;
    }

    return new SparseVector(dim, indexes, values, false);
}

Note that we also have to pass the dimensionality of the resulting vector to this method.
This is due to a limitation of SparseArray, which does not store information about it.

Now we can use these methods for computing the similarities:

CompRowMatrix X = asRowMatrix(docVectors);
SparseVector v = asSparseVector(docVectors.ncols(), queryVector);
DenseVector result = new DenseVector(X.numRows());
X.mult(v, result);
double[] scores = result.getData();

The scores array now contains the cosine similarity scores of the query to each of the
documents. The index of this array corresponds to the index of the original document
collection. That is, to see the similarity between the query and the 10th document, we look
at the 10th element of the array. So, we need to sort the array by the score, while keeping
the original indexes.

Let's first create a class for it:

public class ScoredIndex implements Comparable<ScoredIndex> {
    private final int index;
    private final double score;

    // constructor and getters omitted

    @Override
    public int compareTo(ScoredIndex that) {
        return -Double.compare(this.score, that.score);
    }
 }

This class implements the Comparable interface, so now we can put all objects of this class
into a collection, and then sort it. At the end, the first elements in the collection will have the
highest score. Let's do that:

double minScore = 0.2;
List<ScoredIndex> scored = new ArrayList<>(scores.length);

for (int idx = 0; idx < scores.length; idx++) {



Working with Text - Natural Language Processing and Information Retrieval

[ 511 ]

    double score = scores[idx];
    if (score >= minScore) {
        scored.add(new ScoredIndex(idx, score));
    }
}

Collections.sort(scored);

We also add a similarity threshold of 0.2 to sort fewer elements: we assume that the
elements below this score are not relevant, so we just ignore them.

Finally, we can just iterate over the results and see the most relevant documents:

for (ScoredIndex doc : scored) {
    System.out.printf("> %.4f ", doc.getScore());
    List<String> document = documents.get(doc.getIndex());
    System.out.println(String.join(" ", document));
}

With this, we implemented a simple IR system ourselves, entirely from scratch. However,
the implementation is quite naive. In reality, there are a quite a lot of document candidates,
so it is not feasible to compute the cosine similarity of a query with every one of them.
There is a special data structure called inverted index, which can be used for solving the
problem, and now we will look into one of its implementations: Apache Lucene.

Indexing and Apache Lucene
Previously, we looked at how to implement a simple search engine, but it will not scale well
with the number of documents.

First of all, it requires a comparison of the query with each and every document in our
collection, and it becomes very time-consuming as it grows. Most of the documents,
however, are not relevant to the query, and only a small fraction are. We can safely assume
that, if a document is relevant to a query, it should contain at least one word from it. This is
the idea behind the Inverted Index data structure: for each word it keeps track of the
documents that contain it. When a query is given, it can quickly find the documents that
have at least one term from it.

There also is a memory problem: at some point, the documents will no longer fit into
memory, and we need to be able to store them on disk and retrieve, when needed.



Working with Text - Natural Language Processing and Information Retrieval

[ 512 ]

Apache Lucene solves these problems: it implements a persistent Inverted Index, which is
very efficient in terms of both speed and storage, and it is highly optimized and time-
proven. In Chapter 2, Data Processing Toolbox we collected some raw HTML data, so let's
use Lucene to build an index for it.

First, we need to include the library to our pom:

<dependency>
  <groupId>org.apache.lucene</groupId>
  <artifactId>lucene-core</artifactId>
  <version>6.2.1</version>
</dependency>
<dependency>
  <groupId>org.apache.lucene</groupId>
  <artifactId>lucene-analyzers-common</artifactId>
  <version>6.2.1</version>
</dependency>
<dependency>
  <groupId>org.apache.lucene</groupId>
  <artifactId>lucene-queryparser</artifactId>
  <version>6.2.1</version>
</dependency>

Lucene is very modular and it is possible to include only things we need. In our case this is:

The core package: We always need it when using Lucene
The analyzers-common module: This contains common classes for text
processing
The queryparser: This is the module used for parsing the query

Lucene provides several types of indexes, including in-memory and filesystem ones. We
will use the filesystem one:

File index = new File(INDEX_PATH);
FSDirectory directory = FSDirectory.open(index.toPath());

Next, we need to define an Analyzer: this is a class that does all the text processing steps,
including tokenization, stopwords removal, and normalization.

StandardAnalyzer is a basic Analyzer, that removes some English stopwords, but does
not perform any stemming or lemmatization. It works quite well for English texts, so let's
use it for building the index:

StandardAnalyzer analyzer = new StandardAnalyzer();
IndexWriter writer = new IndexWriter(directory, new
IndexWriterConfig(analyzer))



Working with Text - Natural Language Processing and Information Retrieval

[ 513 ]

Now we are ready to index the documents!

Let's take the URLs we crawled through previously and index their content:

UrlRepository urls = new UrlRepository();
Path path = Paths.get("data/search-results.txt");
List<String> lines =
        FileUtils.readLines(path.toFile(), StandardCharsets.UTF_8);

for (String line : lines) {
    String[] split = line.split("t");
    String url = split[3];
    Optional<String> html = urls.get(url);
    if (!html.isPresent()) {
        continue;
    }

    org.jsoup.nodes.Document jsoupDoc = Jsoup.parse(html.get());
    Element body = jsoupDoc.body();
    if (body == null) {
        continue;
    }

    Document doc = new Document();
    doc.add(new Field("url", url, URL_FIELD));
    doc.add(new Field("title", jsoupDoc.title(), URL_FIELD));
    doc.add(new Field("content", body.text(), BODY_FIELD));
    writer.addDocument(doc);
}

writer.commit();
writer.close();
directory.close();

Let's have a closer look at some things here. First, UrlRepository is a class that stores the
scraped HTML content for some URLs we created in the Chapter 2, Data Processing Toolbox.
Given a URL, it returns an Optional object, which contains the response if the repository
has the data for it; and otherwise it returns an empty Optional.

Then we parse the raw HTML with JSoup and extract the title and the text of the body. Now
we have the text data, which we put into a Lucene Document.

A Document in Lucene consists of fields, with each Field object storing some information
about the document. A Field has some properties, such as:

Whether we store the value in the index or not. If we do, then later we can extract
the content.



Working with Text - Natural Language Processing and Information Retrieval

[ 514 ]

Whether we index the value or not. If it is indexed, then it becomes searchable
and we can query it.
Whether it is analyzed or not. If it is, we apply the Analyzer to the content, so we
can query individual tokens. Otherwise only the exact match is possible.

These and other properties are kept in the FieldType objects.

For example, here is how we specify the properties for URL_FIELD:

FieldType field = new FieldType();
field.setTokenized(false);
field.setStored(true);
field.freeze();

Here we say that we do not want to tokenize it, but want to store the value in the index. The
freeze() method ensures that once we specify the properties, they no longer can be
changed.

And here is how we specify BODY_FIELD:

FieldType field = new FieldType();
field.setStored(false);
field.setTokenized(true);
field.setIndexOptions(IndexOptions.DOCS_AND_FREQS);
field.freeze();

In this case, we only analyze it, but do not store the exact content of the field. This way it is
still possible to query it, but since the content is not stored, the field takes less space in the
index.

It quite quickly processes our dataset, and after executing it creates an index in the
filesystem, which we can query. Let's do it.

String userQuery = "cheap used cars";

File index = new File(INDEX_PATH);
FSDirectory directory = FSDirectory.open(index.toPath());
DirectoryReader reader = DirectoryReader.open(directory);
IndexSearcher searcher = new IndexSearcher(reader);

StandardAnalyzer analyzer = new StandardAnalyzer();
AnalyzingQueryParser parser = new AnalyzingQueryParser("content",
analyzer);
Query query = parser.parse(userQuery);

TopDocs result = searcher.search(query, 10);



Working with Text - Natural Language Processing and Information Retrieval

[ 515 ]

ScoreDoc[] scoreDocs = result.scoreDocs;

for (ScoreDoc scored : scoreDocs) {
    int docId = scored.doc;
    float luceneScore = scored.score;
    Document doc = searcher.doc(docId);
    System.out.println(luceneScore + " " + doc.get("url") + " " +
doc.get("title"));
}

In this code, we first open the index, then specify the analyzer for processing the query.
Using this analyzer, we parse the query, and use the parsed query to extract the top 10
matching documents from the index. We stored the URL and the title, so now we can
retrieve this information during the query time and present it to the user.

Natural Language Processing tools
Natural language processing is a field of computer science and computational linguistics
that deals with processing texts. As we saw previously, information retrieval uses simple
NLP techniques for indexing and retrieving textual information.

But NLP can do more. There are quite a few major NLP tasks, such as text summarization
or machine translation, but we will not cover them and only talk about the basic ones:

Sentence Splitting: Given text, we split it into sentences
Tokenization: Given a sentence, split it into individual tokens
Lemmatization: Given a token, we want to find its lemma. For example, for the
words cat and cats the lemma is cat.
Part-of-Speech tagging (POS Tagging): Given a sequence of tokens, the goal is to
determine what is the part-of-speech tag for each of them. For example, it means
associating a tag VERB with a token like, or a tag NOUN with a token laptop.
Named Entity Recognition (NER): In a sequence of tokens, find those that
correspond to named entities such as cities, countries, and other geographical
names, people names, and so on. For example, it should tag Paul McCartney as a
person's name, and Germany as a country name.

Let's have a look at one of the libraries that implement these basic methods: Stanford
CoreNLP.



Working with Text - Natural Language Processing and Information Retrieval

[ 516 ]

Stanford CoreNLP
There are quite a lot of mature NLP libraries in Java. For example, Stanford CoreNLP,
OpenNLP, and GATE. Many libraries that we have previously covered have some NLP
modules, for example, Smile or JSAT.

In this chapter, we will use Stanford CoreNLP. There is no particular reason, and it should
be possible to reproduce the examples in any other library if needed.

Let's start by specifying the following dependencies in our pom.xml:

<dependency>
  <groupId>edu.stanford.nlp</groupId>
  <artifactId>stanford-corenlp</artifactId>
  <version>3.6.0</version>
</dependency>
<dependency>
  <groupId>edu.stanford.nlp</groupId>
  <artifactId>stanford-corenlp</artifactId>
  <version>3.6.0</version>
  <classifier>models</classifier>
</dependency>

There are two dependencies: the first one is for the NLP package itself, and the second one
contains the models used by the first module. These models are for English, but there also
exist models for other European languages such as German or Spanish.

The main abstraction here is a StanfordCoreNLP class, which acts as a processing pipeline.
Inside it specifies a sequence of steps that are applied to the raw text.

Consider the following example:

Properties props = new Properties();
props.put("annotators", "tokenize, ssplit, pos, lemma");
StanfordCoreNLP pipeline = new StanfordCoreNLP(props);

Here we create a pipeline that takes text, tokenizes it, splits it into sentences, applies the
POS model to each token, and then finds its lemma.

This is how we can use it:

String text = "some text";

Annotation document = new Annotation(text);
pipeline.annotate(document);
List<Word> results = new ArrayList<>();



Working with Text - Natural Language Processing and Information Retrieval

[ 517 ]

List<CoreLabel> tokens = document.get(TokensAnnotation.class);
for (CoreLabel tokensInfo : tokens) {
    String token = tokensInfo.get(TextAnnotation.class);
    String lemma = tokensInfo.get(LemmaAnnotation.class);
    String pos = tokensInfo.get(PartOfSpeechAnnotation.class);
    results.add(new Word(token, lemma, pos));
}

In this code, Word is our class, which holds the information about tokens: the surface form
(the form which appears in the text), the lemma (the normalized form) and the part of
speech.

It is easy to modify the pipeline to add extra steps. For example, if we wish to add NER,
then what we do is first we add NER to the pipeline:

Properties props = new Properties();
props.put("annotators", "tokenize, ssplit, pos, lemma, ner");
StanfordCoreNLP pipeline = new StanfordCoreNLP(props);

And then, for each token, extract the associated NER tag:

String ner = tokensInfo.get(NamedEntityTagAnnotation.class);

Still, the preceding code needs some manual cleaning; if we run this, we may notice that it
also outputs punctuation and the stopwords. It is easy to fix by adding a few extra checks in
the loop:

for (CoreLabel tokensInfo : tokens) {
    String token = tokensInfo.get(TextAnnotation.class);
    String lemma = tokensInfo.get(LemmaAnnotation.class);
    String pos = tokensInfo.get(PartOfSpeechAnnotation.class);
    String ner = tokensInfo.get(NamedEntityTagAnnotation.class);

    if (isPunctuation(token) || isStopword(token)) {
        continue;
    }

    results.add(new Word(token, lemma, pos, ner));
}

Implementation of the isStopword method is easy: we simply check whether the token is
in the set of stopwords or not. Checking for punctuation is also not difficult:

public static boolean isPunctuation(String token) {
    char first = token.charAt(0);
    return !Character.isAlphabetic(first) && !Character.isDigit(first);
}



Working with Text - Natural Language Processing and Information Retrieval

[ 518 ]

We just verify that the first character of the String is not alphabetic and not a digit. If it is
the case, then it must be a punctuation.

There is another issue with NER, which we might want to fix: it does not concatenate
consecutive words of the same class into one token. Consider this example: My name is
Justin Bieber, and I live in New York. It will produce the following NER tag assignment:

Justin -> Person
Bieber -> Person
New -> Location
York -> Location
Other tokens are mapped to O

We can join consecutive tokens labeled with the same NER tag with the following code
snippet:

String prevNer = "O";

List<List<Word>> groups = new ArrayList<>();
List<Word> group = new ArrayList<>();

for (Word w : words) {
    String ner = w.getNer();
    if (prevNer.equals(ner) && !"O".equals(ner)) {
        group.add(w);
        continue;
    }
    groups.add(group);
    group = new ArrayList<>();
    group.add(w);

    prevNer = ner;
}

groups.add(group);

So we simply go through the sequence and see if the current tag is the same as previous tag
or not. If it is the case, then we stop one group and start the next one. If we see O, then we
always assume it's the next group. After that, we just need to filter empty groups and join
the text fields into one, if needed.

While it does not seem a big deal for persons, it may be important for geographical names
like New York: these tokens together have an entirely different meaning from separate
tokens New and York, so treating them as a single token may be useful for IR systems.



Working with Text - Natural Language Processing and Information Retrieval

[ 519 ]

Next, we will see how we can leverage NLP tools such as Stanford CoreNLP in Apache
Lucene.

Customizing Apache Lucene
Apache Lucene is an old and very powerful search library. It was written back in 1999, and
since then a lot of users not only have adopted it but also created many different extensions
for this library.

Still, sometimes the built-in NLP capabilities of Lucene are not enough, and a specialized
NLP library is needed.

For example, if we would like to include POS tags along with tokens, or find Named
Entities, then we need something such as Stanford CoreNLP. It is not very difficult to
include such external specialized NLP libraries in the Lucene workflow, and here we will
see how to do it.

Let's use the StanfordNLP library and the tokenizer we have implemented in the previous
section. We can call it StanfordNlpTokenizer, with one method tokenize, where we
will put the code for tokenization we previously wrote.

We can use this class to tokenize the content of the crawled HTML data. As we did
previously, we extract the text from HTML using JSoup, but now, instead of putting the title
and the body directly to the document, we first preprocess it ourselves using the CoreNLP
pipeline. We can do it by creating the following utility method, and then using it for
tokenizing the title and the body:

public static String tokenize(StanfordNlpTokenizer tokenizer, String text)
{
    List<Word> tokens = tokenizer.tokenize(text);
    return tokens.stream()
                .map(Word::getLemma)
                .map(String::toLowerCase)
                .collect(Collectors.joining(" "));
}

Note that here we use the lemma, not the token itself, and at the end we again put
everything back together to a String.

With this modification, we can use WhitespaceAnalyzer from Lucene. As opposed to
StandardAnalyzer, it is very simple and all it does is split the text by a whitespace
character. In our case, the String is already prepared and processed by CoreNLP, so Lucene
indexes the content in the desired form.



Working with Text - Natural Language Processing and Information Retrieval

[ 520 ]

The full modified version will look like this:

Analyzer analyzer = new WhitespaceAnalyzer();
IndexWriter writer =
        new IndexWriter(directory, new IndexWriterConfig(analyzer));
StanfordNlpTokenizer tokenizer = new StanfordNlpTokenizer();

for (String line : lines) {
    String[] split = line.split("t");
    String url = split[3];
    Optional<String> html = urls.get(url);
    if (!html.isPresent()) {
        continue;
    }

    org.jsoup.nodes.Document jsoupDoc = Jsoup.parse(html.get());
    Element body = jsoupDoc.body();
    if (body == null) {
        continue;
    }

    String titleTokens = tokenize(tokenizer, jsoupDoc.title());
    String bodyTokens = tokenize(tokenizer, body.text());

    Document doc = new Document();
    doc.add(new Field("url", url, URL_FIELD));
    doc.add(new Field("title", titleTokens, URL_FIELD));
    doc.add(new Field("content", bodyTokens, BODY_FIELD));
    writer.addDocument(doc);
}

It is possible to use Lucene's StandardAnalyzer for some fields, and
WhitespaceAnalyzer with customized preprocessing for others. For
that, we need to use PerFieldAnalyzerWrapper, where we can specify a
specific Analyzer for each field.

This gives us a lot of flexibility in how we preprocess and analyze texts, but it does not let
us change the ranking formula: the formula which Lucene uses for ordering the documents.
Later in this chapter, we will also see how to do this, but first we will look at how to use
machine learning in text analysis.



Working with Text - Natural Language Processing and Information Retrieval

[ 521 ]

Machine learning for texts
Machine learning plays an important role in text processing. It allows to better understand
the information hidden in the text, and extract the useful knowledge hidden there. We are
already familiar with machine learning models from the previous chapters, and, in fact, we
have even used some of them for texts already, for example, POS tagger and NER from
Stanford CoreNLP are all machine learning based models.

In Chapters 4, Supervised Learning - Clasfication and Regression and Chapter 5, Unsupervised
Learning - Clustering and Dimensionality Reduction we covered supervised and unsupervised
machine learning problems. When it comes to text, both play an important role in helping to
organize the texts or extract useful pieces of information. In this section, we will see how to
apply them to text data.

Unsupervised learning for texts
As we know, unsupervised machine learning deals with cases when no information about
labels is provided. For texts, it means just letting it process a lot of text data with no extra
information about the content. Still, it often may be useful, and now we will see how to use
both dimensionality reduction and clustering for texts.

Latent Semantic Analysis
Latent Semantic Analysis (LSA), also known as Latent Semantic Indexing (LSI), is an
application of unsupervised dimensionality reduction techniques to textual data.

The problems that LSA tries to solve are the problems of:

Synonymy: This means multiple words having the same meaning
Polysemy: This means one word having multiple meanings

Shallow term-based techniques such as Bag of Words cannot solve these problems because
they only look at the exact raw form of terms. For instance, words such as help and assist
will be assigned to different dimensions of the Vector Space, even though they are very
close semantically.

To solve these problems, LSA moves the documents from the usual Bag of Words Vector
Space to some other Semantic Space, in which words, close in meaning, correspond to the
same dimension, and the values of polysemous words are split across dimensions.



Working with Text - Natural Language Processing and Information Retrieval

[ 522 ]

This is achieved by looking at the term-term co-occurrence matrix. The assumption is the
following: if two words are often used in the same context, then they are synonymous, and
vice versa, if a word is polysemous, it will be used in different contexts. Dimensionality
reduction techniques can detect such co-occurrence patterns, and compress them into a
vector space of smaller dimensions.

One such Dimensionality Reduction technique is Singular Value Decomposition (SVD). If
X is a document-term matrix, such as the matrix we get from our CountVectorizer, then
the SVD of X is:

XV = US

The terms in the preceding equation are explained as folliows:

V is the basis for terms that is computed on the term-term co-occurrence matrix
XTX
U is the basis for documents that is computed on the document-document co-
occurrence matrix XXT

So, by applying a Truncated SVD to X, we reduce the dimensionality of a term-term co-
occurrence matrix XTX, and then can use this new reduced basis V for representing our
documents.

Our document matrix is stored in SparseDataset. If you remember, we have already used
SVD on such objects: first, we transformed the SparseDataset into a column-based
SparseMatrix, and then applied the SVD to it:

SparseMatrix matrix = data.toSparseMatrix();
SingularValueDecomposition svd =
SingularValueDecomposition.decompose(matrix, n);
double[][] termBasis = svd.getV();

And then the next step is to project our matrix onto this new term basis. We already did this
in the previous chapter using the following method:

public static double[][] project(SparseDataset dataset, double[][] Vd) {
    CompRowMatrix X = asRowMatrix(dataset);
    DenseMatrix V = new DenseMatrix(Vd);
    DenseMatrix XV = new DenseMatrix(X.numRows(), V.numColumns());
    X.mult(V, XV);
    return to2d(XV);
}



Working with Text - Natural Language Processing and Information Retrieval

[ 523 ]

Here, asRowMatrix converts the SparseDataset into a CompRowMatrix from MTJ, and
to2d converts the dense matrix from MTJ to a two-dimensional array of doubles.

Once we project the original data into the LSA space, it is no longer normalized. We can fix
that by implementing the following method:

public static double[][] l2RowNormalize(double[][] data) {
    for (int i = 0; i < data.length; i++) {
        double[] row = data[i];
        ArrayRealVector vector = new ArrayRealVector(row, false);
        double norm = vector.getNorm();
        if (norm != 0) {
            vector.mapDivideToSelf(norm);
            data[i] = vector.getDataRef();
        }
    }

    return data;
}

Here, we apply length normalization to each row of the input matrix, and for that we use
ArrayRealVector from Apache Commons Math.

For convenience, we can create a special class for LSA. Let's call it TruncatedSVD, which
will have the following signature:

public class TruncatedSVD {
    void fit(SparseDataset data);
    double[][] transform(SparseDataset data);
}

It has the following methods:

fit learns the new basis for term
transform reduces the dimensionality of the data by projecting it into the
learned basis
The constructor should have two parameters: n, the desired dimensionality and
whether the result should be normalized or not

We can apply LSA to our IR system: now, instead of the cosine similarity in the Bag of
Words space, we go to the LSA space and compute the cosine there. For this, we first need
to map documents to this space during the indexing time, and later, during the query time,
we perform the same transformation on the user queries. Then, computing the cosine is just
a matrix multiplication.



Working with Text - Natural Language Processing and Information Retrieval

[ 524 ]

So, let's first take the code we used previously:

List<List<String>> documents = Files.lines(path, StandardCharsets.UTF_8)
        .map(line -> TextUtils.tokenize(line))
        .map(line -> TextUtils.removeStopwords(line))
        .collect(Collectors.toList());

int minDf = 5;
CountVectorizer cv = new CountVectorizer(minDf);
cv.fit(documents);
SparseDataset docVectors = cv.transform(documents);

Now, we map docVectors to the LSA space using the TruncatedSVD class we just created:

int n = 150;
boolean normalize = true;
TruncatedSVD svd = new TruncatedSVD(n, normalize);
svd.fit(docVectors);
double[][] docsLsa = svd.transform(docVectors);

And we repeat the same with the query:

List<String> query = TextUtils.tokenize("cheap used cars");
query = TextUtils.removeStopwords(query);
SparseDataset queryVectors =
vectorizer.transfrom(Collections.singletonList(query));
double[] queryLsa = svd.transform(queryVectors)[0];

Like previously, we wrap the query into a list, and then extract the first row of the result.
Here, however, we have a dense vector, not sparse. Now, what is left is computing the
similarity, which is just a matrix-vector multiplication:

DenseMatrix X = new DenseMatrix(docsLsa);
DenseVector v = new DenseVector(vector);
DenseVector result = new DenseVector(X.numRows());
X.mult(v, result);
double[] scores = result.getData();

After executing it, the scores array will contain the similarities, and we can use the
ScoredIndex class for ordering the documents by this score. This is quite useful, so let's put
this into a utility method:

public static List<ScoredIndex> wrapAsScoredIndex(double[] scores, double
minScore) {
    List<ScoredIndex> scored = new ArrayList<>(scores.length);

    for (int idx = 0; idx < scores.length; idx++) {
        double score = scores[idx];



Working with Text - Natural Language Processing and Information Retrieval

[ 525 ]

        if (score >= minScore) {
            scored.add(new ScoredIndex(idx, score));
        }
    }

    Collections.sort(scored);
    return scored;
}

Finally, we take the first elements from the list and present them to the user, like we did
previously.

Text clustering
In Chapter 5, Unsupervised Learning - Clustering and Dimensionality Reduction, we covered
dimensionality reduction and clustering. We already discussed how to use dimensionality
reduction for texts, but have not yet spoken about clustering.

Text clustering is also a useful technique for understanding what is a collection of
documents. When we want to cluster texts, the goal is similar to non-text cases: we want to
find groups of documents such that they have a lot in common: for example, the documents
within such group should be on the same topic. In some cases, this can be useful for IR
systems. For example, if a topic is ambiguous, we may want to group the search engine
results.

K-means is a simple, yet powerful clustering algorithm, and it works quite well for texts.
Let's use the crawled texts, and try to find some topics among them using K-means. First,
we load the documents and vectorize them. We will use the K-Means implementation from
Smile, which, if you remember, does not work with sparse matrices, so we also need to
reduce the dimensionality. We will use LSA for that.

List<List<String>> documents = ... // read the crawl data

int minDf = 5;
CountVectorizer cv = new CountVectorizer(minDf);
cv.fit(documents);

SparseDataset docVectors = cv.transform(documents);
int n = 150;
boolean normalize = true;
TruncatedSVD svd = new TruncatedSVD(n, normalize);
svd.fit(docVectors);

double[][] docsLsa = svd.transform(docVectors);



Working with Text - Natural Language Processing and Information Retrieval

[ 526 ]

The data is prepared, so we can apply K-means:

int maxIter = 100;
int runs = 3;
int k = 100;
KMeans km = new KMeans(docsLsa, k, maxIter, runs);

Here, k, as you should remember from the previous chapter, is the number of clusters we
want to find. The choice of K here is quite arbitrary, so feel free to experiment and choose
any other value of K.

Once it has finished, we can have a look at the resulting centroids. These centroids are,
however, in the LSA space, and not in the original term space. To bring them back, we need
to invert the LSA tranformation.

To go from the original space to the LSA space, we used the matrix formed by the terms
basis. Thus, to do the inverse transformation, we need the inverse of that matrix. Since the
basis is orthonormal, the inverse is the same as the transpose, and we will use this for
inverting the LSA tranformation. This is how it looks in the code:

double[][] centroids = km.centroids();
double[][] termBasis = svd.getTermBasis();
double[][] centroidsOriginal = project(centroids, t(termBasis));

The following is how the t method computes the transpose:

public static double[][] t(double[][] M) {
    Array2DRowRealMatrix matrix = new Array2DRowRealMatrix(M, false);
    return matrix.transpose().getData();
}

And the project method just computes the matrix-matrix multiplication.

Now, when the centroids are in the original space, we find the most important terms of each
of them.

For that, we just take a centroid and see what the largest dimensions are:

List<String> terms = vectorizer.vocabulary();
for (int centroidId = 0; centroidId < k; centroidId++) {
    double[] centroid = centroidsOriginal[centroidId];
    List<ScoredIndex> scored = wrapAsScoredIndex(centroid, 0.0);
    for (int i = 0; i < 20; i++) {
        ScoredIndex scoredTerm = scored.get(i);
        int position = scoredTerm.getIndex();
        String term = terms.get(position);
        System.out.print(term + ", ");



Working with Text - Natural Language Processing and Information Retrieval

[ 527 ]

    }
    System.out.println();
}

Here, terms is the list that contains the names of dimensions from the CountVectorizer,
and wrapAsScoredIndex is the function we wrote previously; it takes an array of doubles,
creates a list of ScoredIndex objects, and sorts it.

When you run it, you may see something similar to these clusters:

Cluster 1 Cluster 2 Cluster 3

Blood pressure hypotension low
symptoms heart causes health
disease treatment

hp printer printers printing
laserjet support officejet
print ink software

cars car toyota ford honda
used bmw chevrolet
vehicle nissan

We just took the first three clusters, and they clearly make sense. There also are some
clusters which make less sense, which suggests that the algorithm could be tuned further:
we can adjust K in K-Means and the number of dimensions for LSA.

Word embeddings
So far, we have covered how to apply dimensionality reduction and clustering to textual
data. There is another type of unsupervised Learning, which is specific to text: word
embeddings. You have probably heard about Word2Vec, which is one such algorithm.

The problem Word embeddings tries to solve is how to embed words into low-dimensional
vector space such that semantically close words are close in this space, and different words
are far apart.

For example, cat and dog should be rather close there, but laptop and sky should be quite
far apart.

Here, we will implement a Word Embedding algorithm based on the co-occurrence matrix.
It builds upon the ideas of LSA: there we could represent the terms by the documents they
contain. So, if two words are contained in the same documents, they should be related.
Document, however, is quite a broad context for a word, so we can narrow it down to a
sentence, or to a few words before and after the word of interest.

For example, consider the following sentences:

We use Java for Data Science because we like Java. Java is good for enterprise development.



Working with Text - Natural Language Processing and Information Retrieval

[ 528 ]

Then, we tokenize the text, split it into sentences, remove stopwords, and get the following:

"we", "use", "java", "data", "science", "we", "like", "java"
"java", "good", "enterprise", "development"

Now, suppose that for each word here we want to see what are the two words before and
the two words after. This will give us the context in which each of the words is used. For
this example, it will be:

we -> use, java
use -> we; java, data
java -> we, use; data, science
data -> use, java; science, we
java -> we, like
java -> good, enterprise
good -> java; enterprise, development
enterprise -> java, good; development
development -> good, enterprise

Then, we can build a co-occurrence matrix, where we will put 1 each time a word occurs in
the context of another word. So, for "we", we will add +1 to "use" and "java", and so on.

By the end, each cell will say how many times a word w1 (from the rows of the matrix)
occurred in the context of another word w2 (from the columns of the matrix). Next, if we
reduce the dimensionality of this matrix with SVD, we already get a good improvement
over the plain LSA approach.

But we could go futher and replace the counts with Pointwise Mutual Information (PMI).

PMI is a measure of dependency between two random variables. It initially comes from the
information theory, but it is often used in computational linguistics for measuring the
degree of associations between two words. It is defined in the following way:

It checks if two words w and v co-occur by chance or not. If they happen to co-occur by
chance, then the joint probability p(w, v) should be equal to the product of marginal
probabilities p(w) p(v), so PMI is 0. But if there is indeed association between two words,
PMI gets values higher than 0, such that the higher the values, the stronger the association.



Working with Text - Natural Language Processing and Information Retrieval

[ 529 ]

We typically estimate these probabilities by going through a body of text and counting:

For marginal probabilities, we just count how many times the token occurs
For join probabilities, we look at the co-occurrence matrix

We use the following formulas:

p(w) = c(w) / N, where c(w) is the number of times w occurs in the body, and
N is the total number of tokens
p(w, v) = c(w, v) / N, where c(w, v) is the value from the co-occurrence
matrix and N is the number of tokens as well

In practice, however, small values of c(w, v), c(w), and c(v) can distort the probabilities,
so they are often smoothed by adding some small number λ:

p(w) = [c(w) + λ] / [N + Kλ], where K is the number of unique tokens in
the corpus
p(w, v) = [c(w, v) + λ] / [N + Kλ]

If we replace the PMI formula from the preceding equation, we get the following one:

PMI(w, v) = log [c(w, v) + λ] + log [N + Kλ] - log [c(w) + λ] - log [c(v) + λ]

So what we can do is just replace the counts in the co-occurrence matrix with PMI and then
compute the SVD of this matrix. In this case, the resulting embeddings will be of better
quality.

Now, let's implement this. First, you may have noticed that we need to have the sentences,
and previously we just had a stream of tokens, with no detection of sentence boundaries. As
we know, Stanford CoreNLP can do it, so let's create a pipeline:

Properties props = new Properties();
props.put("annotators", "tokenize, ssplit, pos, lemma");
StanfordCoreNLP pipeline = new StanfordCoreNLP(props);

We will use the sentence splitter for detecting the sentences, and then we will take the
word's lemma instead of the surface form.



Working with Text - Natural Language Processing and Information Retrieval

[ 530 ]

But let's first create some useful classes. Previously, we used List<List<String>> to say
that we pass a collection of documents, and each document is a sequence of tokens. Now,
when we split each document into sentences, and then each sentence into tokens, it becomes
List<List<List<String>>>, which is a bit hard to understand. We can replace this with
some meaningful classes, such as Document and Sentence:

public class Document {
    private List<Sentence> sentences;
    // getter, setter and constructor is omitted
}

public class Sentence {
    private List<String> tokens;
    // getter, setter and constructor is omitted
}

Create such small classes whenever possible. Even though it may seem
verbose at the beginning, it greatly helps when it comes to reading the
code afterwards and understanding the intention.

Now, let's use them for tokenizing a document. We can create a Tokenizer class with the
following method:

public Document tokenize(String text) {
    Annotation document = new Annotation(text);
    pipeline.annotate(document);

    List<Sentence> sentencesResult = new ArrayList<>();
    List<CoreMap> sentences = document.get(SentencesAnnotation.class);

    for (CoreMap sentence : sentences) {
        List<CoreLabel> tokens = sentence.get(TokensAnnotation.class);
        List<String> tokensResult = new ArrayList<>();

        for (CoreLabel tokensInfo : tokens) {
            String token = tokensInfo.get(TextAnnotation.class);
            String lemma = tokensInfo.get(LemmaAnnotation.class);
            if (isPunctuation(token)
                    || isStopword(token)
                    || lemma.length() <= 2) {
                continue;
            }

            tokensResult.add(lemma.toLowerCase());
        }



Working with Text - Natural Language Processing and Information Retrieval

[ 531 ]

        if (!tokensResult.isEmpty()) {
            sentencesResult.add(new Sentence(tokensResult));
        }
    }

    return new Document(sentencesResult);
}

So here we apply the sentence splitter to the text, and then, for each sentence, collect the
tokens. We have already seen isPunctuation and isStopword methods - here they have
the same implementation as previously.

Then we can use the crawled HTML dataset again, and apply the tokenizer on the content
extracted with JSoup. We will omit this part for brevity. Now, we are ready to build the co-
occurrence matrix from this data.

The first step, as in CountVectorizer, is to apply the document frequency filter to discard
infrequent tokens, and then build a map that associates a token with some integer: the
column number of the resulting sparse matrix. We know how to do it already, so we can
skip this part.

Then, to estimate p(w) and p(v), we need to know the number of times each token occurs:

Multiset<String> counts = HashMultiset.create();
for (Document doc : documents) {
    for (Sentence sentence : doc.getSentences()) {
        counts.addAll(sentence.getTokens());
    }
}

Now, we can proceed to calculating the co-occurrence matrix. For that, we can use the
Table class from Guava:

Table<String, String, Integer> coOccurrence = HashBasedTable.create();
for (Document doc : documents) {
    for (Sentence sentence : doc.getSentences()) {
        processWindow(sentence, window, coOccurrence);
    }
}

Here, we define the processWindow function with the following content:

List<String> tokens = sentence.getTokens();

for (int idx = 0; idx < tokens.size(); idx++) {
    String token = tokens.get(idx);



Working with Text - Natural Language Processing and Information Retrieval

[ 532 ]

    Map<String, Integer> tokenRow = coOccurrence.row(token);

    for (int otherIdx = idx - window;
            otherIdx <= idx + window;
            otherIdx++) {

        if (otherIdx < 0
                || otherIdx >= tokens.size()
                || otherIdx == idx) {
            continue;
        }

        String other = tokens.get(otherIdx);
        int currentCnt = tokenRow.getOrDefault(other, 0);
        tokenRow.put(other, currentCnt + 1);
    }
}

Here we slide a window of a specified size over each sentence of the document. Then, for a
word in the center of this window, we look at the words before and after, and for each one
of them increase the co-occurrence count by 1.

The next step is to create a matrix with PMI values from this data. Like we did previously,
we will use the SparseDataset class from Smile to keep these values:

int vocabularySize = vocabulary.size();

double logTotalNumTokens = Math.log(counts.size() + vocabularySize *
smoothing);
SparseDataset result = new SparseDataset(vocabularySize);

for (int rowIdx = 0; rowIdx < vocabularySize; rowIdx++) {
    String token = vocabulary.get(rowIdx);
    double logMainTokenCount = Math.log(counts.count(token) + smoothing);
    Map<String, Integer> tokenCooc = coOccurrence.row(token);

    for (Entry<String, Integer> otherTokenEntry : tokenCooc.entrySet()) {
        String otherToken = otherTokenEntry.getKey();
        double logOtherTokenCount = Math.log(counts.count(otherToken) +
smoothing);
        double logCoOccCount = Math.log(otherTokenEntry.getValue() +
smoothing);

        double pmi = logCoOccCount + logTotalNumTokens
                   - logMainTokenCount - logOtherTokenCount;

        if (pmi > 0) {
            int colIdx = tokenToIndex.get(otherToken);



Working with Text - Natural Language Processing and Information Retrieval

[ 533 ]

            result.set(rowIdx, colIdx, pmi);
        }
    }

}

In this code, we just apply the PMI formula to the co-occurrence counts we have. Finally,
we perform SVD of this matrix, and for that we just use the TruncatedSVD class we created
previously.

Now, we can see if the embedding we trained make sense. To do this, we can select some
terms and, for each, find the most similar ones. This can be achieved in the following way:

First, for a given token, we look up its vector representation
Then, we compute the similarity of this token with the rest of the vectors. As we
know, this can be done by matrix-vector multiplication
Finally, we sort the results of the multiplication by score, and show the tokens
with the highest score.

By now we have done the exact same procedure a few times, so we can skip the code. Of
course, it is available in the code bundle for the chapter.

But let's anyway have a look at the results. We have selected a few words: cat, germany and
laptop, and the following words are the most similar ones, according to the embeddings we
just trained:

Cat Germany Laptop

0.835 pet 0.829 country 0.882 notebook

0.812 dog 0.815 immigrant 0.869 ultrabook

0.796 kitten 0.813 united 0.866 desktop

0.793 funny 0.808 states 0.865 pro

0.788 puppy 0.802 brazil 0.845 touchscreen

0.762 animal 0.789 canada 0.842 lenovo

0.742 shelter 0.777 german 0.841 gaming

0.727 friend 0.776 australia 0.836 tablet

0.727 rescue 0.760 europe 0.834 asus

0.726 picture 0.759 foreign 0.829 macbook



Working with Text - Natural Language Processing and Information Retrieval

[ 534 ]

Even though it's not ideal, the result still makes sense. It can be improved further by
training these embeddings on a lot more text data, or fine-tuning the parameters such as the
dimensionality of SVD, minimal document frequency, and the amount of smoothing.

When training word embeddings, getting more data is always a good idea.
Wikipedia is a good source of textual data; it is available in many
languages, and they regularly publish dumps at h t t p s ://d u m p s . w i k i m e d

i a . o r g /. If Wikipedia is not enough, you can use Common Crawl (h t t p

://c o m m o n c r a w l . o r g /), where they crawl everything on the Internet and
make it available to anyone for free. We will also talk about Common
Crawl in Chapter 9, Scaling Data Science.

Finally, there are a lot of pretrained word embeddings available on the Internet.

For example, you can have a look at the collection here: h t t p s ://g i t h u b . c o m /3T o p /w o r d 2v

e c - a p i . It is quite easy to load embeddings from there.

To do this, let's first create a class to store the vectors:

public class WordEmbeddings {
    private final double[][] embeddings;
    private final List<String> vocabulary;
    private final Map<String, Integer> tokenToIndex;
    // constructor and getters are omitted

    List<ScoredToken> mostSimilar(String top, int topK, double
minSimilarity);
    Optional<double[]> representation(String token);
}

This class has the following fields and methods:

embeddings: This is the array which stores the vectors
vocabulary: This is the list of all the tokens
tokenToIndex: This is the mapping from a token to the index at which the
vector is stored
mostSimilar: This returns top K other tokens most similar to the provided one
representation: This returns a vector representation for a term or
Optional.absent if there is no vector for it

Of course, we can put the PMI-based embeddings there. But let's see how we can load the
existing GloVe and Word2Vec vectors from the preceding link.

https://dumps.wikimedia.org/
https://dumps.wikimedia.org/
https://dumps.wikimedia.org/
https://dumps.wikimedia.org/
https://dumps.wikimedia.org/
https://dumps.wikimedia.org/
https://dumps.wikimedia.org/
https://dumps.wikimedia.org/
https://dumps.wikimedia.org/
https://dumps.wikimedia.org/
https://dumps.wikimedia.org/
https://dumps.wikimedia.org/
https://dumps.wikimedia.org/
https://dumps.wikimedia.org/
https://dumps.wikimedia.org/
https://dumps.wikimedia.org/
https://dumps.wikimedia.org/
https://dumps.wikimedia.org/
https://dumps.wikimedia.org/
https://dumps.wikimedia.org/
https://dumps.wikimedia.org/
https://dumps.wikimedia.org/
https://dumps.wikimedia.org/
https://dumps.wikimedia.org/
https://dumps.wikimedia.org/
https://dumps.wikimedia.org/
https://dumps.wikimedia.org/
https://dumps.wikimedia.org/
https://dumps.wikimedia.org/
https://dumps.wikimedia.org/
https://dumps.wikimedia.org/
https://dumps.wikimedia.org/
https://dumps.wikimedia.org/
https://dumps.wikimedia.org/
https://dumps.wikimedia.org/
https://dumps.wikimedia.org/
https://dumps.wikimedia.org/
https://dumps.wikimedia.org/
https://dumps.wikimedia.org/
https://dumps.wikimedia.org/
https://dumps.wikimedia.org/
https://dumps.wikimedia.org/
https://dumps.wikimedia.org/
https://dumps.wikimedia.org/
https://dumps.wikimedia.org/
https://dumps.wikimedia.org/
https://dumps.wikimedia.org/
https://dumps.wikimedia.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
https://github.com/3Top/word2vec-api
https://github.com/3Top/word2vec-api
https://github.com/3Top/word2vec-api
https://github.com/3Top/word2vec-api
https://github.com/3Top/word2vec-api
https://github.com/3Top/word2vec-api
https://github.com/3Top/word2vec-api
https://github.com/3Top/word2vec-api
https://github.com/3Top/word2vec-api
https://github.com/3Top/word2vec-api
https://github.com/3Top/word2vec-api
https://github.com/3Top/word2vec-api
https://github.com/3Top/word2vec-api
https://github.com/3Top/word2vec-api
https://github.com/3Top/word2vec-api
https://github.com/3Top/word2vec-api
https://github.com/3Top/word2vec-api
https://github.com/3Top/word2vec-api
https://github.com/3Top/word2vec-api
https://github.com/3Top/word2vec-api
https://github.com/3Top/word2vec-api
https://github.com/3Top/word2vec-api
https://github.com/3Top/word2vec-api
https://github.com/3Top/word2vec-api
https://github.com/3Top/word2vec-api
https://github.com/3Top/word2vec-api
https://github.com/3Top/word2vec-api
https://github.com/3Top/word2vec-api
https://github.com/3Top/word2vec-api
https://github.com/3Top/word2vec-api
https://github.com/3Top/word2vec-api
https://github.com/3Top/word2vec-api
https://github.com/3Top/word2vec-api
https://github.com/3Top/word2vec-api
https://github.com/3Top/word2vec-api
https://github.com/3Top/word2vec-api
https://github.com/3Top/word2vec-api
https://github.com/3Top/word2vec-api
https://github.com/3Top/word2vec-api
https://github.com/3Top/word2vec-api
https://github.com/3Top/word2vec-api
https://github.com/3Top/word2vec-api
https://github.com/3Top/word2vec-api
https://github.com/3Top/word2vec-api
https://github.com/3Top/word2vec-api
https://github.com/3Top/word2vec-api
https://github.com/3Top/word2vec-api
https://github.com/3Top/word2vec-api
https://github.com/3Top/word2vec-api
https://github.com/3Top/word2vec-api
https://github.com/3Top/word2vec-api
https://github.com/3Top/word2vec-api
https://github.com/3Top/word2vec-api
https://github.com/3Top/word2vec-api
https://github.com/3Top/word2vec-api
https://github.com/3Top/word2vec-api
https://github.com/3Top/word2vec-api


Working with Text - Natural Language Processing and Information Retrieval

[ 535 ]

The text file format for storing the vector is quite similar for both Word2Vec and GloVe, so
we can cover only one of them. GloVe is a bit simpler, so let's use it as follows:

First, download the pretrained embeddings from h t t p ://n l p . s t a n f o r d . e d u /d a
t a /g l o v e . 6B . z i p

Unpack it; there are several files trained on the same corpus of different
dimensionality
Let's use glove.6B.300d.txt

The storage format is straightforward; on each line, there is a token followed by a sequence
of numbers. The numbers are obviously the embedding vector for the token. Let's read
them:

List<Pair<String, double[]>> pairs =
        Files.lines(file.toPath(), StandardCharsets.UTF_8)
             .parallel()
             .map(String::trim)
             .filter(StringUtils::isNotEmpty)
             .map(line -> parseGloveTextLine(line))
             .collect(Collectors.toList());

List<String> vocabulary = new ArrayList<>(pairs.size());
double[][] embeddings = new double[pairs.size()][];

for (int i = 0; i < pairs.size(); i++) {
    Pair<String, double[]> pair = pairs.get(i);
    vocabulary.add(pair.getLeft());
    embeddings[i] = pair.getRight();
}

embeddings = l2RowNormalize(embeddings);
WordEmbeddings result = new WordEmbeddings(embeddings, vocabulary);

Here, we parse each line of the text file, then create the vocabulary list and normalize the
length of the vectors. The parseGloveTextLine has the following content:

List<String> split = Arrays.asList(line.split(" "));
String token = split.get(0);
double[] vector = split.subList(1, split.size()).stream()
        .mapToDouble(Double::parseDouble).toArray();
Pair<String, double[]> result = ImmutablePair.of(token, vector);

Here, ImmutablePair is an object from Apache Commons Lang.

http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip


Working with Text - Natural Language Processing and Information Retrieval

[ 536 ]

Let's take the same words and have a look at their neighbors using these GloVe
embeddings. This is the result:

Cat Germany Laptop

- 0.682 dog
- 0.682 cats
- 0.587 pet
- 0.541 dogs
- 0.490 feline
- 0.488 monkey
- 0.473 horse
- 0.463 pets
- 0.461 rabbit
- 0.459 leopard

- 0.749 german
- 0.663 austria
- 0.646 berlin
- 0.597 europe
- 0.586 munich
- 0.579 poland
- 0.577 switzerland
- 0.575 germans
- 0.559 denmark
- 0.557 france

- 0.796 laptops
- 0.673 computers
- 0.599 phones
- 0.596 computer
- 0.580 portable
- 0.562 desktop
- 0.547 cellphones
- 0.546 notebooks
- 0.544 pcs
- 0.529 cellphone

The results indeed make sense, and, in some cases, it is better than the embeddings we
trained ourselves with.

As we mentioned, the text format for word2vec vectors is pretty similar to the GloVe ones,
so only minor modifications are needed for reading them. There is, however, a binary
format for storing word2vec embeddings. It is a bit more complex, but if you would like to
know how to read it, have a look at the code bundle for this chapter.

Later in this chapter, we will see how we can apply word embeddings to solve supervised
learning problems.

Supervised learning for texts
Supervised machine learning methods are also quite useful for text data. Like in the usual
settings, here we have the label information, which we can use to understand the
information within texts.

A very common example of such application of supervised learning to texts is spam
detection: every time you hit the spam button in your e-mail client, this data is collected and
then put in a classifier. Then, this classifier is trained to tell apart spam versus nonspam e-
mails.

In this section, we will look into how to use Supervised methods for text on two examples:
first, we will build a model for sentiment analysis, and then we will use a ranking classifier
for reranking search results.



Working with Text - Natural Language Processing and Information Retrieval

[ 537 ]

Text classification
Text Classification is a problem where given a collection of texts and labels, it trains a model
that can predict these labels for new unseen text. So the settings here are usual for
supervised learning, except that now we have text data.

There are many possible classification problems, as follows:

Spam detection: This predicts whether an e-mail is spam or not
Sentiment analysis: This predicts whether the sentiment of the text is positive or
negative
Language detection: Given a text, this detects its language

The general workflow for text classification is similar in almost all cases:

We tokenize and vectorize the text
Then we fit a linear classifier treating each token as a feature

As we know that if we vectorize the text, the resulting vector is quite sparse. This is why it
is a good idea to use linear models: they are very fast and can easily deal with sparsity and
high dimensionality of the text data.

So let's solve one of these problems.

For example, we can take a sentiment analysis problem, and build a model, which predicts
the polarity of texts, that is, whether the text is positive or negative.

We can take the data from here: http://ai.stanford.edu/~amaas/data/sentiment/.
This dataset contains 50.000 labeled movie reviews extracted from IMDB, and the authors
provide a predefined train-test split. To store the reviews from there, we can create a class
for it:

public class SentimentRecord {
    private final String id;
    private final boolean train;
    private final boolean label;
    private final String content;
    // constructor and getters omitted
}



Working with Text - Natural Language Processing and Information Retrieval

[ 538 ]

We will not go into details of the code for reading the data from the archive, but, as usual,
you are welcome to check the code bundle.

As for the model, we will use LIBLINEAR--as you already know from Chapter 4, Supervised
Learning - Classification and Regression. It is a library with fast implementation of linear
classifiers such as logistic regression and Linear SVM.

Now, let's read the data:

List<SentimentRecord> data = readFromTagGz("data/aclImdb_v1.tar.gz");

List<SentimentRecord> train = data.stream()
        .filter(SentimentRecord::isTrain)
        .collect(Collectors.toList());

List<List<String>> trainTokens = train.stream()
        .map(r -> r.getContent())
        .map(line -> TextUtils.tokenize(line))
        .map(line -> TextUtils.removeStopwords(line))
        .collect(Collectors.toList());

Here, we read the data from the archive, and then tokenize the train data. Next, we
vectorize the texts:

int minDf = 10;
CountVectorizer cv = new CountVectorizer(minDf);
cv.fit(trainTokens);
SparseDataset trainData = cv.transform(trainTokens);

So far, nothing new. But now we need to convert SparseDataset into the LIBLINEAR
format. Let's create a couple of utility methods for this:

public static Feature[][] wrapX(SparseDataset dataset) {
    int nrow = dataset.size();
    Feature[][] X = new Feature[nrow][];

    int i = 0;
    for (Datum<SparseArray> inrow : dataset) {
        X[i] = wrapRow(inrow);
        i++;
    }
    return X;
}

public static Feature[] wrapRow(Datum<SparseArray> inrow) {
    SparseArray features = inrow.x;



Working with Text - Natural Language Processing and Information Retrieval

[ 539 ]

    int nonzero = features.size();
    Feature[] outrow = new Feature[nonzero];
    Iterator<Entry> it = features.iterator();

    for (int j = 0; j < nonzero; j++) {
        Entry next = it.next();
        outrow[j] = new FeatureNode(next.i + 1, next.x);
    }

    return outrow;
}

The first method, wrapX, takes a SparseDataset and creates a two-dimensional array of
Feature objects. This is the LIBLINEAR's format for storing the data. The second method,
wrapRow, takes one particular row of SparseDataset, and wraps it into a one-dimensional
array of Feature objects.

Now, we need to extract the label information and create an instance of the Problem class,
which describes the data:

double[] y = train.stream().mapToDouble(s -> s.getLabel() ? 1.0 :
0.0).toArray();
Problem problem = new Problem();
problem.x = wrapX(dataset);
problem.y = y;
problem.n = dataset.ncols() + 1;
problem.l = dataset.size();

Then, we define the parameters and train the model:

Parameter param = new Parameter(SolverType.L1R_LR, 1, 0.001);
Model model = Linear.train(problem, param);

Here, we specify a Logistic Regression model with L1 regularization and the cost parameter
C=1.

Linear classifiers such as logistic regression or SVM with L1 regularization
are very good for approaching high sparsity problems such as Text
Classification. The L1 penalty makes sure the model converges very fast,
and, additionally, it forces the solution to be sparse: that is, it performs
feature selection and only keeps the most informative words.



Working with Text - Natural Language Processing and Information Retrieval

[ 540 ]

For predicting the probability, we can create another utility method, which takes a model
and a test dataset, and returns a one-dimensional array of probabilities:

public static double[] predictProba(Model model, SparseDataset dataset) {
    int n = dataset.size();
    double[] results = new double[n];
    double[] probs = new double[2];
    int i = 0;
    for (Datum<SparseArray> inrow : dataset) {
        Feature[] row = wrapRow(inrow);
        Linear.predictProbability(model, row, probs);
        results[i] = probs[1];
        i++;
    }

    return results;
}

Now we can test the model. So we take the test data, tokenize and vectorize it, and then
invoke the predictProba method for checking the output. Finally, we can evaluate the
performance using some evaluation metric such as AUC. In this particular case, the AUC is
0.89, which is reasonably good performance for this dataset.

Learning to rank for information retrieval
Learning to rank is a family of algorithms that deal with ordering data. This family is a part
of supervised machine learning; to order the data, we need to know which items are more
important and need to be shown first.

Learning to rank is often used in the context of building search engines; based on some
relevance evaluations, we build a model that tries to rank relevant items higher than
nonrelevant ones. In the unsupervised ranking case, such as cosine on TF-IDF weights, we
typically have only one feature, by which we order the documents. However, there could be
a lot more features, which we may want to include in the model and let it combine them in
the best possible way.

There are several types of learning to rank models. Some of them are called Point-wise--
they are applied to each document individually and consider them in isolation from the rest
of the training data. Even though this is a strict assumption, these algorithms are easy to
implement and they work well in practice. Typically, it amounts to using either
classification or a regression model, and then order the items by the score.



Working with Text - Natural Language Processing and Information Retrieval

[ 541 ]

Let's get back to our running example of building the search engine and include more
features into it. Previously, it was unsupervised; we just ranked the items by one feature,
the cosine. But we can add more features and make it a supervised learning problem.

However, for that, we need to know the labels. We already have the positive labels: for a
query we know about 30 relevant documents. But we do not know the negative labels: the
search engine, which we used, returns only the relevant pages. So we need to get negative
examples, and then it will be possible to train a binary classifier which will tell relevant
pages apart from irrelevant.

There is a technique we can use to obtain the negative data, and it is called negative
sampling. This idea is based on the assumption that most of the documents in the corpus
are not relevant, so if we randomly sample some of them from there and say that they are
not relevant, we will be right most of the time. If a sampled document turns to be relevant,
then nothing bad happens; this would be just a noisy observation which should not affect
the overall result.

So, we do the following:

First, we read the ranking data and group the documents there based on the
query
Then, we split the queries into two non-overlapping groups: one for training and
one for validation
Next, within each group, we take a query and randomly sample 9 negative
examples. These URLs from the negative queries are assigned the negative label
Finally, we train a model based on these labeled document/query pairs

At the negative sampling step, it is important that for training we do not
take negative examples from the validation group and vice versa. If we
sample only within the train/validation group, then we can be sure that
our model generalizes well to unseen queries and documents.

Negative sampling is quite easy to implement, so let's do it:

private static List<String> negativeSampling(String positive, List<String>
collection,
                int size, Random rnd) {
    Set<String> others = new HashSet<>(collection);
    others.remove(positive);
    List<String> othersList = new ArrayList<>(others);
    Collections.shuffle(othersList, rnd);
    return othersList.subList(0, size);
}



Working with Text - Natural Language Processing and Information Retrieval

[ 542 ]

The idea is the following: first, we take the entire collection of queries, and remove the one
we are considering currently. Then, we shuffle this collection and take the top N ones from
there.

Now that we have both positive and negative examples, we need to extract features, which
we will put into the model. Let's create a QueryDocumentPair class, which will contain the
information about the user query as well as the data about the document:

public class QueryDocumentPair {
    private final String query;
    private final String url;
    private final String title;
    private final String bodyText;
    private final String allHeaders;
    private final String h1;
    private final String h2;
    private final String h3;
    // getters and constructor omitted
}

The objects of this class can be created by parsing the HTML content with JSoup and
extracting the title, the text of the body, all the header text together (h1-h6), and h1, h2, h3
headers separately.

We will use these fields for computing the features.

For example, we can compute the following ones:

Bag-of-word TF-IDF similarity between the query and all other text fields
LSA similarity between the query and all other text fields
Embeddings similarity between the query and the title and h1, h2, and h3
headers.

We already know how to compute the first two types of features:

We vectorize each of the fields separately using CountVectorizer and use the
transform method to vectorize the query
For LSA, we use the TruncatedSVD class in the same way; we train it on the text
fields and then apply it to the query
Then, we compute the cosine similarity between the text fields and the query in
both Bag of Words and LSA spaces



Working with Text - Natural Language Processing and Information Retrieval

[ 543 ]

However, we have not covered the last one here, using word embeddings. The idea is as
follows:

For query, get the vector for each token and put them together into a matrix
For title (or other text field), do the same
Compute the similarity of each query vector with each title vector via matrix
multiplication
Look at the distribution of similarities and take some characteristics of this
distribution such as min, mean, max, and standard deviation. We can use these
values as features
Also, we can take the average query vector and the average title vector and
compute the similarity between them

Let's implement this. First, create a method for getting the vectors for a collection of tokens:

public static double[][] wordsToVec(WordEmbeddings we, List<String> tokens)
{
    List<double[]> vectors = new ArrayList<>(tokens.size());
    for (String token : tokens) {
        Optional<double[]> vector = we.representation(token);
        if (vector.isPresent()) {
            vectors.add(vector.get());
        }
    }

    int nrows = vectors.size();
    double[][] result = new double[nrows][];
    for (int i = 0; i < nrows; i++) {
        result[i] = vectors.get(i);
    }

    return result;
}

Here, we use the WordsEmbeddings class we created previously, and then for each token
we look up its representation, and if it's present, we put it into a matrix.

Then, getting all the similarities is just a multiplication of the two embedding matrices:

private static double[] similarities(double[][] m1, double[][] m2) {
    DenseMatrix M1 = new DenseMatrix(m1);
    DenseMatrix M2 = new DenseMatrix(m2);
    DenseMatrix M1M2 = new DenseMatrix(M1.numRows(), M2.numRows());
    M1.transBmult(M2, M1M2);
    return M1M2.getData();



Working with Text - Natural Language Processing and Information Retrieval

[ 544 ]

}

As we know, MTJ stores the values of a matrix column-wise in a one-dimensional data
array, and previously, we converted it to a two-dimensional array. In this case, we don't
really need to do it, so we take these values as is.

Now, given a list of queries, and a list of tokens from some other field (for example, title),
we compute the distribution features:

int size = query.size();

List<Double> mins = new ArrayList<>(size);
List<Double> means = new ArrayList<>(size);
List<Double> maxs = new ArrayList<>(size);
List<Double> stds = new ArrayList<>(size);

for (int i = 0; i < size; i++) {
    double[][] queryEmbed = wordsToVec(glove, query.get(i));
    double[][] textEmbed = wordsToVec(glove, text.get(i));
    double[] similarities = similarities(queryEmbed, textEmbed);

    DescriptiveStatistics stats = new DescriptiveStatistics(similarities);
    mins.add(stats.getMin());
    means.add(stats.getMean());
    maxs.add(stats.getMax());
    stds.add(stats.getStandardDeviation());
}

Of course, here we could add even more features like 25th or 75th percentiles, but these four
features are enough for now. Note that sometimes either queryEmbed or textEmbed can be
empty and we need to handle this case by adding multiple NaN instances to each list.

We also mentioned another useful feature, the similarity between the average vectors. We
compute it in a similar manner:

List<Double> avgCos = new ArrayList<>(size);
for (int i = 0; i < size; i++) {
    double[] avgQuery = averageVector(wordsToVec(glove, query.get(i)));
    double[] avgText = averageVector(wordsToVec(glove, text.get(i)));
    avgCos.add(dot(avgQuery, avgText));
}

Here, the dot is the inner product between two vectors, and averageVector is
implemented in the following way:

private static double[] averageVector(double[][] rows) {
    ArrayRealVector acc = new ArrayRealVector(rows[0], true);



Working with Text - Natural Language Processing and Information Retrieval

[ 545 ]

    for (int i = 1; i < rows.length; i++) {
        ArrayRealVector vec = new ArrayRealVector(rows[0], false);
        acc.combineToSelf(1.0, 1.0, vec);
    }

    double norm = acc.getNorm();
    acc.mapDivideToSelf(norm);
    return acc.getDataRef();
}

Once we have computed all these features, we can put them into an array of doubles and
use it for training a classifier. There are many possible models we can choose from.

For example, we can use the Random Forest classifier from Smile: typically, tree-based
methods are quite good at discovering complex interactions between features, and these
methods work well for Learning to Rank tasks.

There is another thing we have not yet discussed: how to evaluate the ranking results. There
are special evaluation metrics for ranking models, such as Mean Average Precision (MAP)
or Normalized Discounted Cumulative Gain (NDCG), but for our current case AUC is
more than sufficient. Recall that one possible interpretation of AUC is that it corresponds to
the probability that a randomly-chosen positive example will be ranked higher than a
randomly chosen negative one.

So, AUC fits quite well to this task, and in our experiments, a random forest model achieves
the AUC of 98%. In this section, we omitted some code, but, as usual, the full code is
available in the code bundle, and you can go through the feature extraction pipeline in more
detail.

Reranking with Lucene
In this chapter, we already mentioned that Lucene can be customized, and we already took
a look at how to do preprocessing outside of Lucene and then seamlessly integrate the
results in the Lucene workflow.

When it comes to reranking search results, the situation is more or less similar. The common
approach to this is taking the Lucene ranking as is and retrieve the top 100 (or more) results.
Then we take these already retrieved documents and apply the ranking model to this for
reordering.



Working with Text - Natural Language Processing and Information Retrieval

[ 546 ]

If we have such a reranking model, we need to make sure that we store all the data we used
for training. In our case, it was a QueryDocumentPair class from which we extracted the
relevance features. So let's create an index:

FSDirectory directory = FSDirectory.open(index);
WhitespaceAnalyzer analyzer = new WhitespaceAnalyzer();
IndexWriter writer = new IndexWriter(directory, new
IndexWriterConfig(analyzer));

List<HtmlDocument> docs = // read documents for indexing

for (HtmlDocument htmlDoc : docs.) {
    String url, title, bodyText, ... // extract the field values
    Document doc = new Document();
    doc.add(new Field("url", url, URL_FIELD));
    doc.add(new Field("title", title, TEXT_FIELD));
    doc.add(new Field("bodyText", bodyText, TEXT_FIELD));
    doc.add(new Field("allHeaders", allHeaders, TEXT_FIELD));
    doc.add(new Field("h1", h1, TEXT_FIELD));
    doc.add(new Field("h2", h2, TEXT_FIELD));
    doc.add(new Field("h3", h3, TEXT_FIELD));

    writer.addDocument(doc);
}

writer.commit();
writer.close();
directory.close();

In this code, HtmlDocument is a class which stores the details about the documents-- their
title, body, header, and so on. We iterate over all our documents and put this information
into Lucene's index.

In this example, all the fields are stored, because, later on, during query time, we will need
to retrieve these values and use them for computing the features.

So, the index is built, and now, let's query it:

RandomForest rf = load("project/random-forest-model.bin");

FSDirectory directory = FSDirectory.open(index);
DirectoryReader reader = DirectoryReader.open(directory);
IndexSearcher searcher = new IndexSearcher(reader);

WhitespaceAnalyzer analyzer = new WhitespaceAnalyzer();
AnalyzingQueryParser parser = new AnalyzingQueryParser("bodyText",
analyzer);



Working with Text - Natural Language Processing and Information Retrieval

[ 547 ]

String userQuery = "cheap used cars";
Query query = parser.parse(userQuery);

TopDocs result = searcher.search(query, 100);

List<QueryDocumentPair> data = wrapResults(userQuery, searcher, result);
double[][] matrix = extractFeatures(data);
double[] probs = predict(rf, matrix);

List<ScoredIndex> scored = wrapAsScoredIndex(probs);
for (ScoredIndex idx : scored) {
    QueryDocumentPair doc = data.get(idx.getIndex());
    System.out.printf("%.4f: %s, %s%n", idx.getScore(), doc.getTitle(),
doc.getUrl());
}

In this code, we first read the model we previously trained and saved, and then we read the
index. Next, a user gives a query, we parse it, and retrieve the top 100 results from the
index. All the values we need are stored in the index, so we get them and put them into
QueryDocumentPair+--this is what happens inside the wrapResults method. Then we
extract the features, apply the random forest model, and use the scores for reranking the
results before presenting them to the user.

At the feature extraction step, it is very important to follow the exact same
procedure we used for training. Otherwise, the model results may be
meaningless or misleading. The best way of achieving this is creating a
special method for extracting features and use it for both training the
model and during the query time.
If you need to return more than 100 results, you can perform reranking for
the top 100 entires returned by Lucene, but keep the original order for 100
plus entries. In reality, users rarely go past the first page, so the probability
of reaching the 100th entry is pretty less, so we usually do not need to
bother with reordering the documents there.

Let's take a closer look at the content of the wrapResults method:

List<QueryDocumentPair> data = new ArrayList<>();

for (ScoreDoc scored : result.scoreDocs) {
    int docId = scored.doc;
    Document doc = searcher.doc(docId);

    String url = doc.get("url");
    String title = doc.get("title");
    String bodyText = doc.get("bodyText");
    String allHeaders = doc.get("allHeaders");



Working with Text - Natural Language Processing and Information Retrieval

[ 548 ]

    String h1 = doc.get("h1");
    String h2 = doc.get("h2");
    String h3 = doc.get("h3");

    QueryDocumentPair pair = new QueryDocumentPair(userQuery,
            url, title, bodyText, allHeaders, h1, h2, h3);
    data.add(pair);
}

Since all the fields are stored, we can get them from the index and build the
QueryDocumentPair objects. Then we just apply the exact same procedure for feature
extraction and put them into our model.

With this, we have created a search engine based on Lucene and then used a machine
learning model for reranking the query results. There is a lot of room for further
improvements: it can be adding more features or getting more training data, or it can be
trying to use a different model. In the next chapter, we will talk about XGBoost, which also
can be used for Learning to Rank tasks.

Summary
In this chapter, we covered a lot of ground in the information retrieval and NLP fields,
including the basics of IR and how to apply machine learning to text. While doing this, we
implemented a naive search engine first, and then used a learning to rank approach on top
of Apache Lucene for an industrial-strength IR model.

In the next chapter, we will look at Gradient Boosting Machines, and at XGBoost, an
implementation of this algorithm. This library provides state-of-the-art performance for
many Data Science problems, including classification, regression, and ranking.



  7
Extreme Gradient Boosting

By now we should have become quite familiar with machine learning and data science in
Java: we have covered both supervised and unsupervised learning and also considered an
application of machine learning to textual data.

In this chapter, we continue with supervised machine learning and will discuss a library
which gives state-of-the-art performance in many supervised tasks: XGBoost and Extreme
Gradient Boosting. We will look at familiar problems such as predicting whether a URL
ranks for the first page or not, performance prediction, and ranking for the search engine,
but this time we will use XGBoost to solve the problem.

The outline of this chapter is as follows:

Gradient Boosting Machines and XGBoost
Installing XGBoost
XGBoost for classification
XGBoost for regression
XGBoost for learning to rank

By the end of this chapter, you will learn how to build XGBoost from the sources and use it
for solving data science problems.

Gradient Boosting Machines and XGBoost
Gradient Boosting Machines (GBM) is an ensembling algorithm. The main idea behind
GBM is to take some base model and then fit this model, over and over, to the data,
gradually improving the performance. It is different from Random Forest models because
GBM tries to improve the results at each step, while random forest builds multiple
independent models and takes their average.



Extreme Gradient Boosting

[ 550 ]

The main idea behind GBM can be best illustrated with a Linear Regression example. To fit
several linear regressions to data, we can do the following:

Fit the base model to the original data.1.
Take the difference between the target value and the prediction of the first model2.
(we call it the residuals of Step 1) and use this for training the second model.
Take the difference between the residuals of step 1 and predictions of step 2 (this3.
is the residuals of Step 2) and fit the 3rd model.
Continue until you train N models.4.
For predicting, sum up the predictions of all individual models.5.

So, as you can see, at each step of the algorithm, the model tries to improve the results of the
previous step, and by the end, it takes all the models and combines their prediction into the
final one.

Essentially, any model can be used as the base model, not only Linear Regression. For
example, it could be Logistic Regression or Decision Tree. Typically, tree-based models are
very good and show excellent performance on a variety of problems. When we use trees in
GBM, the overall model is typically called Gradient Boosted Trees, and depending on the
type of the trees, it can be Gradient Boosted Regression Trees or Gradient Boosted
Classification Trees.

Extreme Gradient Boosting, XGBoost, or XGB for short, is an implementation of Gradient
Boosting Machines, and it provides a few base models, including decision trees. The tree-
based XGBoost models are very powerful: they do not make any assumptions about the
dataset and the distribution of values in its features, they naturally handle missing values,
and they are extremely fast and can efficiently utilize all the available CPUs.

XGBoost can achieve excellent performance and can squeeze as much as possible from the
data. If you know h t t p s ://w w w . k a g g l e . c o m /, a website for hosting data science
competitions, then you have probably already heard about XGBoost. It is the library the
winners very often use in their solutions. Of course, it performs just as well outside of
Kaggle and helps many Data Scientists in their daily job.

The library is originally written in C++, but there exist bindings for other languages like R
and Python. Quite recently, a wrapper for Java was created as well, and in this chapter, we
will see how to use it in our Java applications. This wrapper library is called XGBoost4j,
and it is implemented via Java Native Interface (JNI) bindings, so it uses C++ underneath.
But before we can use it, we need to be able to build it and install it. Now we will see how it
can be done.

https://www.kaggle.com/
https://www.kaggle.com/
https://www.kaggle.com/
https://www.kaggle.com/
https://www.kaggle.com/
https://www.kaggle.com/
https://www.kaggle.com/
https://www.kaggle.com/
https://www.kaggle.com/
https://www.kaggle.com/
https://www.kaggle.com/
https://www.kaggle.com/
https://www.kaggle.com/
https://www.kaggle.com/
https://www.kaggle.com/
https://www.kaggle.com/
https://www.kaggle.com/
https://www.kaggle.com/
https://www.kaggle.com/
https://www.kaggle.com/
https://www.kaggle.com/
https://www.kaggle.com/
https://www.kaggle.com/
https://www.kaggle.com/
https://www.kaggle.com/
https://www.kaggle.com/
https://www.kaggle.com/
https://www.kaggle.com/
https://www.kaggle.com/
https://www.kaggle.com/
https://www.kaggle.com/
https://www.kaggle.com/
https://www.kaggle.com/
https://www.kaggle.com/
https://www.kaggle.com/
https://www.kaggle.com/
https://www.kaggle.com/
https://www.kaggle.com/
https://www.kaggle.com/


Extreme Gradient Boosting

[ 551 ]

Installing XGBoost
As we have already mentioned, XGBoost is written in C++, and there is a Java library that
allows using XGBoost in Java via JNI. Unfortunately, at the time of writing, XGBoost4J is
not available on Maven Central, which means that it needs to be built locally and then
published to the local Maven repository. There are plans to release the library to the central
repository, and you can see the progress at h t t p s ://g i t h u b . c o m /d m l c /x g b o o s t /i s s u e s

/1807.

Even when it is released to Maven Central, it is still useful to know how to build it to get the
bleeding edge version with the latest changes and bugfixes. So, let's see how to build the
XGBoost library itself and then how to build the Java wrapper for it. For that, you can
follow the official instruction from h t t p s ://x g b o o s t . r e a d t h e d o c s . i o /e n /l a t e s t /b u i l d .

h t m l , and here we will give an unofficial summary.

XGBoost mostly targets Linux systems, so building it on Linux is trivial:

git clone --recursive https://github.com/dmlc/xgboost
cd xgboost
make -j4

By executing the previous commands, we installed the base XGBoost library, but now we
need to install the XGBoost4J bindings. To do so, perform the following sequence of steps:

First, make sure you have the JAVA_HOME environment variable set and that it
points to your JDK
Then, go to the jvm-packages directory
Finally, run mvn -DskipTests install here

The last command builds the XGBoost4J JNI bindings, then compiles the Java code and
publishes everything to the local Maven repository.

Now, all we need to do for using XGBoost4J in our projects is to include the following
dependency:

<dependency>
  <groupId>ml.dmlc</groupId>
  <artifactId>xgboost4j</artifactId>
  <version>0.7</version>
</dependency>

The installation process for OS X is pretty similar. However, when it comes to Windows, it
is more complex.

https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://github.com/dmlc/xgboost/issues/1807
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html
https://xgboost.readthedocs.io/en/latest/build.html


Extreme Gradient Boosting

[ 552 ]

To build it for Windows, we need to first download the 64-bit GCC compilers from h t t p s

://s o u r c e f o r g e . n e t /p r o j e c t s /m i n g w - w 64/. When installing, it is important to select
x86_64 architecture, and not i686, as only 64-bit platforms are supported by XGBoost. If,
for some reason, the installer does not work, we can directly download the x86_64-6.2.0-
release-posix-seh-rt_v5-rev1.7z archive with binaries from h t t p s ://g o o . g l /C V c b

8d and then just unpack them.

When building XGBoost on Windows, it is important to avoid directory
names with spaces there. It is therefore best to create a folder in the root,
for example, C:/soft, and perform all the installations from there.

Next, we clone XGBoost and make it. Here we assume that you use the Git Windows
console:

git clone --recursive https://github.com/dmlc/xgboost
PATH=/c/soft/mingw64/bin/:$PATH
alias make='mingw32-make'
cp make/mingw64.mk config.mk
make -j4

Finally, we need to build the XGBoost4J JNI binaries. You need the content of your JDK.
However, there is a problem in Windows: by default, JDK is installed to the Program
Files folder, which has a space in it, and this will cause problems during installation. One
possible solution is to copy the JDK to some other place.

After doing this, we are ready to build the library:

export JAVA_HOME=/c/soft/jdk1.8.0_102
make jvm
cd jvm-packages
mvn -DskipTests install

If your Maven complains about the style and aborts the build, you can disable it by passing
the -Dcheckstyle.skip flag:

mvn -DskipTests -Dcheckstyle.skip install

After successfully performing this step, the XGBoost4J library should be published to the
local maven repository and we can use the same dependency that we used previously.

https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
https://goo.gl/CVcb8d
https://goo.gl/CVcb8d
https://goo.gl/CVcb8d
https://goo.gl/CVcb8d
https://goo.gl/CVcb8d
https://goo.gl/CVcb8d
https://goo.gl/CVcb8d
https://goo.gl/CVcb8d
https://goo.gl/CVcb8d
https://goo.gl/CVcb8d
https://goo.gl/CVcb8d
https://goo.gl/CVcb8d
https://goo.gl/CVcb8d
https://goo.gl/CVcb8d
https://goo.gl/CVcb8d
https://goo.gl/CVcb8d
https://goo.gl/CVcb8d
https://goo.gl/CVcb8d
https://goo.gl/CVcb8d
https://goo.gl/CVcb8d
https://goo.gl/CVcb8d
https://goo.gl/CVcb8d
https://goo.gl/CVcb8d
https://goo.gl/CVcb8d
https://goo.gl/CVcb8d
https://goo.gl/CVcb8d
https://goo.gl/CVcb8d
https://goo.gl/CVcb8d
https://goo.gl/CVcb8d
https://goo.gl/CVcb8d
https://goo.gl/CVcb8d


Extreme Gradient Boosting

[ 553 ]

To test if a library is built correctly, try to execute this line of code:

Class<Booster> boosterClass = Booster.class;

If you see that the code terminates correctly, then you are ready to go. However if you get
UnsatisfiedLinkError with a message similar to xgboost4j.dll: Can't find
dependent libraries, then make sure that the mingw64/bin folder is on the system
PATH variable.

XGBoost in practice
After we have successfully built and installed the library, we can use it for creating machine
learning models, and in this chapter we will cover three cases: binary classification,
regression, and learning to rank models. We will also talk about the familiar use cases:
predicting whether a URL is on the first page or search engine results, predicting the
performance of a computer, and ranking for our own search engine.

XGBoost for classification
Now let's finally use it for solving a classification problem!
In Chapter 4, Supervised Learning - Classification and Regression, we tried to predict whether a
URL is likely to appear on the first page of search results or not. Previously, we created a
special object for keeping the features:

public class RankedPage {
    private String url;
    private int position;
    private int page;
    private int titleLength;
    private int bodyContentLength;
    private boolean queryInTitle;
    private int numberOfHeaders;
    private int numberOfLinks;
    public boolean isHttps();
    public boolean isComDomain();
    public boolean isOrgDomain();
    public boolean isNetDomain();
    public int getNumberOfSlashes();
}

As you can see, there are a number of features, but none of them really involved text. If you
remember, with these features we achieved around 0.58 AUC on a held-out test set.



Extreme Gradient Boosting

[ 554 ]

As a first step, let's try to reproduce this result with XGBoost. Because this is a binary
classification, we set the objective parameter to binary:logistic, and since the last time
we used AUC for evaluation, we will stick to this choice and set eval_metric to auc as
well. We set the parameters via a map:

Map<String, Object> params = new HashMap<>();
params.put("objective", "binary:logistic");
params.put("eval_metric", "logloss");
params.put("nthread", 8);
params.put("seed", 42);
params.put("silent", 1);

// default values:
params.put("eta", 0.3);
params.put("gamma", 0);
params.put("max_depth", 6);
params.put("min_child_weight", 1);
params.put("max_delta_step", 0);
params.put("subsample", 1);
params.put("colsample_bytree", 1);
params.put("colsample_bylevel", 1);
params.put("lambda", 1);
params.put("alpha", 0);
params.put("tree_method", "approx");

Here, most of the parameters are set to their default values, with the exception of objective,
eval_metric, nthread, seed, and silent.

As you see, XGBoost is a very configurable implementation of the Gradient Boosting
Machines algorithm, and there are a lot of parameters that we can change. We will not
include all the parameters here; you can refer to the official documentation at h t t p s ://g i t h

u b . c o m /d m l c /x g b o o s t /b l o b /m a s t e r /d o c /p a r a m e t e r . m d for the full list. In this chapter, we
will only use tree-based methods, so let's review some of their parameters:

Parameter name Range Description

nthread 1 and more This is the number of threads to use when building the
trees

eta from 0 to 1 This is the weight of each model in the ensemble

max_depth 1 and more This is the maximal depth of each tree

min_child_weight 1 and more This is the minimal number of observations per leaf

subsample from 0 to 1 This is the fraction of observations to be used at each step

https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md


Extreme Gradient Boosting

[ 555 ]

colsample_bytree from 0 to 1 This is the fraction of features to be used at each step

objective This defines the task (regression or classification)

eval_metric This is the evaluation metric for the task

seed integer This sets the seed for reproducibility

silent 0 or 1 Here, 1 turns off the debugging output during training

Then, we read the data and create the train, validation, and test sets. We already have
special functions for this, which we will use here as well:

Dataset dataset = readData();

Split split = dataset.trainTestSplit(0.2);
Dataset trainFull = split.getTrain();
Dataset test = split.getTest();

Split trainSplit = trainFull.trainTestSplit(0.2);
Dataset train = trainSplit.getTrain();
Dataset val = trainSplit.getTest();

Previously, we applied the Standardization (or Z-Score transformation) to
our data. For tree-based algorithms, including XGBoost, this is not
required: these methods are insensitive to such monotone transformations,
so we can skip this step.

Next, we need to wrap our dataset into XGBoost's internal format: DMatrix. Let's create a
utility method for this:

public static DMatrix wrapData(Dataset data) throws XGBoostError {
    int nrow = data.length();
    double[][] X = data.getX();
    double[] y = data.getY();

    List<LabeledPoint> points = new ArrayList<>();

    for (int i = 0; i < nrow; i++) {
        float label = (float) y[i];
        float[] floatRow = asFloat(X[i]);
        LabeledPoint point = LabeledPoint.fromDenseVector(label, floatRow);
        points.add(point);
    }

    String cacheInfo = "";
    return new DMatrix(points.iterator(), cacheInfo);
}



Extreme Gradient Boosting

[ 556 ]

Now we can use it for wrapping the datasets:

DMatrix dtrain = XgbUtils.wrapData(train);
DMatrix dval = XgbUtils.wrapData(val);

XGBoost gives us a convenient way to monitor the performance of our model via the so-
called watchlist. In essence, this is analogous to learning curves, where we can see how the
evaluation metric evolves at each step. If, during training, we see that the values of training
and evaluation metrics diverge significantly, then it may indicate that we are likely to
overfit. Likewise, if at some step the validation metric starts decreasing while the train
metric values keep increasing, then we overfit.

A watchlist is defined via a map where we associate some name with every dataset we are
interested in:

Map<String, DMatrix> watches = ImmutableMap.of("train", dtrain, "val",
dval);

Now we are ready to train an XGBoost model:

int nrounds = 30;
IObjective obj = null;
IEvaluation eval = null;
Booster model = XGBoost.train(dtrain, params, nrounds, watches, obj, eval);

It is possible to provide custom objective and evaluation functions in XGBoost, but since we
only use the standard ones, these parameters are set to null.

As we discussed, the training process can be monitored via a watchlist, and this is what you
will see during the training process: at each step it will compute the evaluation function on
the provided datasets and output the values to the console:

[0]    train-auc:0.735058    val-auc:0.533165
[1]    train-auc:0.804517    val-auc:0.576641
[2]    train-auc:0.842617    val-auc:0.561298
[3]    train-auc:0.860178    val-auc:0.567264
[4]    train-auc:0.875294    val-auc:0.570171
[5]    train-auc:0.888918    val-auc:0.575836
[6]    train-auc:0.896271    val-auc:0.573969
[7]    train-auc:0.904762    val-auc:0.577094
[8]    train-auc:0.907462    val-auc:0.580005
[9]    train-auc:0.911556    val-auc:0.580033
[10]    train-auc:0.922488    val-auc:0.575021
[11]    train-auc:0.929859    val-auc:0.579274
[12]    train-auc:0.934084    val-auc:0.580852
[13]    train-auc:0.941198    val-auc:0.577722
[14]    train-auc:0.951749    val-auc:0.582231



Extreme Gradient Boosting

[ 557 ]

[15]    train-auc:0.952837    val-auc:0.579925

If, during training, we want to build a lot of trees, then digesting the text output from the
console is hard, and it often helps to visualize these curves. In our case, however, we only
had 30 iterations, so it is possible to make some judgment of the performance. If we take a
careful look, we may notice that in step 8 the validation score stopped increasing, while the
train score was still getting better and better. The conclusion that we can make from this is
that at some point it starts overfitting. To avoid that, we can only use the first nine trees
when making predictions:

boolean outputMargin = true;
int treeLimit = 9;
float[][] res = model.predict(dval, outputMargin, treeLimit);

Note two things here:

If we set outputMargin to false, the un-normalized values will be returned, not
probabilities. Setting it to true will apply the logistic transformation to the values,
and it will make sure that the results look like probabilities.
The results are a two-dimensional array of floats, not a one-dimensional array of
doubles.

Let's write a utility function for transforming these results into doubles:

public static double[] unwrapToDouble(float[][] floatResults) {
    int n = floatResults.length;
    double[] result = new double[n];
    for (int i = 0; i < n; i++) {
        result[i] = floatResults[i][0];
    }
    return result;
}

Now we can use other methods we developed previously, for example, a method for
checking AUC:

double[] predict = XgbUtils.unwrapToDouble(res);
double auc = Metrics.auc(val.getY(), predict);
System.out.printf("auc: %.4f%n", auc);



Extreme Gradient Boosting

[ 558 ]

If we do not specify the number of trees in predict, then it uses all the available trees and
performs the normalization of values by default:

float[][] res = model.predict(dval);
double[] predict = unwrapToDouble(res);
double auc = Metrics.auc(val.getY(), predict);
System.out.printf("auc: %.4f%n", auc);

In the previous chapters, we have created some code for K-Fold cross-validation. We can
use it here as well:

int numFolds = 3;
List<Split> kfold = trainFull.kfold(numFolds);
double aucs = 0;

for (Split cvSplit : kfold) {
    DMatrix dtrain = XgbUtils.wrapData(cvSplit.getTrain());

    Dataset validation = cvSplit.getTest();
    DMatrix dval = XgbUtils.wrapData(validation);
    Map<String, DMatrix> watches = ImmutableMap.of("train", dtrain, "val",
dval);

    Booster model = XGBoost.train(dtrain, params, nrounds, watches, obj,
eval);
    float[][] res = model.predict(dval);
    double[] predict = unwrapToDouble(res);

    double auc = Metrics.auc(validation.getY(), predict);
    System.out.printf("fold auc: %.4f%n", auc);
    aucs = aucs + auc;
}

aucs = aucs / numFolds;
System.out.printf("cv auc: %.4f%n", aucs);

However, XGBoost has built-in capabilities for performing Cross-Validation: all we need to
do is to provide DMatrix, and then it will split the data and run the evaluation
automatically. Here is how we can use it:

DMatrix dtrainfull = wrapData(trainFull);
int nfold = 3;
String[] metric = {"auc"};
XGBoost.crossValidation(dtrainfull, params, nrounds, nfold, metric, obj,
eval);



Extreme Gradient Boosting

[ 559 ]

And we will see the following evaluation log:

[0]    cv-test-auc:0.556261    cv-train-auc:0.714733
[1]    cv-test-auc:0.578281    cv-train-auc:0.762113
[2]    cv-test-auc:0.584887    cv-train-auc:0.792096
[3]    cv-test-auc:0.592273    cv-train-auc:0.824534
[4]    cv-test-auc:0.593516    cv-train-auc:0.841793
[5]    cv-test-auc:0.593855    cv-train-auc:0.856439
[6]    cv-test-auc:0.593967    cv-train-auc:0.875119
[7]    cv-test-auc:0.588910    cv-train-auc:0.887434
[8]    cv-test-auc:0.592887    cv-train-auc:0.897417
[9]    cv-test-auc:0.589738    cv-train-auc:0.906296
[10]   cv-test-auc:0.588782    cv-train-auc:0.915271
[11]   cv-test-auc:0.586081    cv-train-auc:0.924716
[12]   cv-test-auc:0.586461    cv-train-auc:0.935201
[13]   cv-test-auc:0.584988    cv-train-auc:0.940725
[14]   cv-test-auc:0.586363    cv-train-auc:0.945656
[15]   cv-test-auc:0.585908    cv-train-auc:0.951073

After we chose the best parameters (the number of trees in this case), we can retrain the
model on the entire train part of the data and then evaluate it on the test:

int bestNRounds = 9;
Map<String, DMatring> watches = Collections.singletonMap("dtrainfull",
dtrainfull);

Booster model = XGBoost.train(dtrainfull, params, bestNRounds, watches,
obj, eval);

DMatrix dtest = XgbUtils.wrapData(test);
float[][] res = model.predict(dtest);
double[] predict = XgbUtils.unwrapToDouble(res);

double auc = Metrics.auc(test.getY(), predict);
System.out.printf("final auc: %.4f%n", auc);

Finally, we can save the model and use it afterwards:

Path path = Paths.get("xgboost.bin");
try (OutputStream os = Files.newOutputStream(path)) {
    model.saveModel(os);
}



Extreme Gradient Boosting

[ 560 ]

Reading the saved model is also simple:

Path path = Paths.get("xgboost.bin");
try (InputStream is = Files.newInputStream(path)) {
     Booster model = XGBoost.loadModel(is);
}

These models are compatible with other XGBoost bindings. So, we can
train a model in Python or R, and then import it into Java - or the other
way round.

Here, we used only the default parameters, which are often not ideal. Let's look at how we
can modify them to achieve the best performance.

Parameter tuning
So far we have discussed three ways to perform Cross-Validation with XGBoost: hold-out
dataset, manual K-Fold, and XGBoost K-Fold. Any of these ways can be used for selecting
the best performance.

The implementations from XGBoost are typically better-suited for this task because they can
show the performance at each step, and the training process can be manually stopped once
you see that the learning curves diverge too much.

If your dataset is relatively large (for example, more that 100k examples), then simply
selecting a hold-out dataset may be the best and fastest option. On the other hand, if your
dataset is smaller, it may be a good idea to perform the K-Fold Cross-Validation.

Once we have decided on the validation scheme, we can start tuning the model. Since
XGBoost has a lot of parameters, it is quite a complex problem because it is not
computationally feasible to try all the possible combinations. There are, however, a few
approaches that may help to achieve reasonably good performance.

The general approach is to change one parameter at a time and then run the training
process with a watchlist. When doing so, we closely monitor the validation values and take
a note of the largest ones. Finally, we select the combination of parameters, which gives the
best validation performance. If two combinations give comparable performance, then we
should opt for the simpler one (for example, less deep, with more instances in leaves, and so
on).



Extreme Gradient Boosting

[ 561 ]

Here is one such algorithm for tuning the parameters:

For the start, select a very large value for the number of trees, like 2,000 or 3,000.1.
Never grow all these trees and stop the training process when you see that the
validation scores stop growing or start decreasing.
Take the default parameters and change one at a time.2.
If your dataset is quite small, it may make sense to pick a smaller eta at the3.
beginning, for example, 0.1. If the dataset is big enough, then the default value is
fine.
First, we tune the depth parameter. Train the model with the default value (6),4.
then try with small value (3) and large value (10). Depending on which one
performs better, move in the appropriate direction.
Once the tree depth is settled, try changing the subsample parameter. First, try5.
the default value (1) and then try decreasing it to 0.8, 0.6, and 0.4, and then move
it to the appropriate direction. Typically, values around 0.6-0.7 work reasonably
well.
Next, tune colsample_bytree. The approach is the same as for subsample, and6.
values around 0.6-0.7 also work quite well.
Now, we tune min_child_weight. You can try values such as 10, 20, 50, and7.
then move to the appropriate direction.
Finally, set eta to some small value (such as 0.01, 0.05, or 0.1 depending on the8.
size of the dataset) and see what is the iteration number where the validation
performance stops increasing. Use this number for selecting the number of
iterations for the final model.

There are alternative ways of doing this. For example:

Initialize depth to 10, eta to 0.1, and min_child_weight to 5
As previously, first find the best depth by trying smaller and larger values
Then, tune the subsample parameter
After that, tune min_child_weight
The last parameter to tune is colsample_bytree
Finally, we set eta to a smaller number and watch the validation performance to
select the number of trees

These are simple heuristics and do not touch many available parameters, but they can,
nonetheless, give a reasonably good model. You can also tune the regularization parameters
such as gamma, alpha, and beta. For example, for high depth values (more than 10), you
may want to increase the gamma parameter a bit and see what happens.



Extreme Gradient Boosting

[ 562 ]

Unfortunately, none of these algorithms gives a 100% guarantee to find the best solution,
but you should try them and find the one you personally like the most - which probably be
a combination of these ones, or maybe even something completely different.

If you do not have a lot of data and do not want to tune the parameters
manually, then try setting the parameters randomly, repeat it multiple
times, and select the best model based on Cross-Validation. This is called
Random Search Parameter Optimization: it does not require hand tuning
and often works well in practice.

It may seem very overwhelming at the beginning, so do not worry. After doing it several
times, you will develop some intuition as to how these parameters depend on each other
and what is the best way to tune them.

Text features
In the previous chapter, we learned a lot of things that could be applied to text data and
used some of the ideas when building the search engine. Let's take these features, include
them into our model, and see how our AUC changes.

Recall that we previously created these features:

Cosine similarity in the TF-IDF space between the query and the text fields of the
documents, such as the title, the body content, and the h1, h2, and h3 headers
LSA similarity between the query and all other text fields

We also used GloVe features in the previous chapter, but we will skip them here.In addition
we won't include the implementation of the previous features in this chapter. For
information on how to do it, refer to Chapter 6, Working with Text - Natural Language
Processing and Information Retrieval.

Once we have added the features, we can play with parameters a bit. For example, we can
end up using these parameters:

Map<String, Object> params = XgbUtils.defaultParams();
params.put("eval_metric", "auc");
params.put("colsample_bytree", 0.5);
params.put("max_depth", 3);
params.put("min_child_weight", 30);
params.put("subsample", 0.7);
params.put("eta", 0.01);



Extreme Gradient Boosting

[ 563 ]

Here, XgbUtils.defaultParams() is a helper function, which creates a map with some
parameters set to their default values, and then we can modify some of them. For example,
since the performance is not very good and it is easy to overfit here, we grow smaller trees
of depth 3 and ask for at least 30 observations in leaf nodes. Finally, we set the learning rate
parameter eta to a small value because the dataset is not very large.

With these features, we can now achieve the AUC of 64.4%. This is very far from good
performance, but it's a 5% improvement over the previous version with no features, which
is a considerable step forward.

To avoid repetition, we have omitted a lot of code. If you feel a bit lost, you are always
welcome to check the chapter's code bundle for details.

Feature importance
Finally, we can also see which features contribute most to the model, which are less
important, and order our features according to their performance. XGBoost implements one
such feature's important measure called FScore, which is the number of times a feature is
used by the model.

To extract FScore, we first need to create a feature map: a file that contains the names of the
features:

List<String> featureNames = columnNames(dataframe);
String fmap = "feature_map.fmap";
try (PrintWriter printWriter = new PrintWriter(fileName)) {
    for (int i = 0; i < featureNames.size(); i++) {
        printWriter.print(i);
        printWriter.print('t');
        printWriter.print(featureNames.get(i));
        printWriter.print('t');
        printWriter.print("q");
        printWriter.println();
    }
}

In this code, we first call a function, columnNames (not present here), which extracts the
column names from a joinery dataframe. Then, we create a file where at each line we first
print the feature name, and then a letter q, which means that the feature is quantitative and
not an i - indicator.



Extreme Gradient Boosting

[ 564 ]

Then, we call a method called getFeatureScore, which takes the feature map file and
returns the feature's importance in a map. After getting it, we can sort the entries of the map
according to their values, and this will produce a list of features ranked by their importance:

Map<String, Integer> scores = model.getFeatureScore(fmap);
Comparator<Map.Entry<String, Integer>> byValue =
Map.Entry.comparingByValue();
scores.entrySet().stream().sorted(byValue.reversed()).forEach(System.out::p
rintln);

For the classification model with text features, it will produce the following output:

numberOfLinks=17
queryBodyLsi=15
queryTitleLsi=14
bodyContentLength=13
numberOfHeaders=10
queryBodySimilarity=10
urlLength=7
queryTitleSimilarity=6
https=3
domainOrg=1
numberOfSlashes=1

We see that these new features are quite important to the model. We also see that features
such as domainOrg or numberOfSlashes are rarely used, and many of the features we
included are not even on this list. This means that we can safely exclude these features from
our model and re-train the model without them.

FScore is not the only feature-importance measure available for tree-based
methods, but the XGBoost library provides only this score. There are
external libraries such as XGBFI (h t t p s ://g i t h u b . c o m /F a r 0n /x g b f i ),
which can use the model dump for calculating metrics such as Gain,
Weighted FScore, and others, and often these scores are more informative.

XGBoost is good not only for classification purposes, but also shines when it comes to
Regression. Next, we will see how to use XGBoost for it.

XGBoost for regression
Gradient Boosting is quite a general model: it can deal with both classification and
regression tasks. To use it to solve the regression problem all we need to do is to change the
objective and the evaluation metric.

https://github.com/Far0n/xgbfi
https://github.com/Far0n/xgbfi
https://github.com/Far0n/xgbfi
https://github.com/Far0n/xgbfi
https://github.com/Far0n/xgbfi
https://github.com/Far0n/xgbfi
https://github.com/Far0n/xgbfi
https://github.com/Far0n/xgbfi
https://github.com/Far0n/xgbfi
https://github.com/Far0n/xgbfi
https://github.com/Far0n/xgbfi
https://github.com/Far0n/xgbfi
https://github.com/Far0n/xgbfi
https://github.com/Far0n/xgbfi
https://github.com/Far0n/xgbfi
https://github.com/Far0n/xgbfi
https://github.com/Far0n/xgbfi
https://github.com/Far0n/xgbfi
https://github.com/Far0n/xgbfi
https://github.com/Far0n/xgbfi
https://github.com/Far0n/xgbfi
https://github.com/Far0n/xgbfi
https://github.com/Far0n/xgbfi
https://github.com/Far0n/xgbfi
https://github.com/Far0n/xgbfi
https://github.com/Far0n/xgbfi
https://github.com/Far0n/xgbfi
https://github.com/Far0n/xgbfi
https://github.com/Far0n/xgbfi
https://github.com/Far0n/xgbfi
https://github.com/Far0n/xgbfi
https://github.com/Far0n/xgbfi
https://github.com/Far0n/xgbfi
https://github.com/Far0n/xgbfi
https://github.com/Far0n/xgbfi
https://github.com/Far0n/xgbfi
https://github.com/Far0n/xgbfi
https://github.com/Far0n/xgbfi
https://github.com/Far0n/xgbfi
https://github.com/Far0n/xgbfi
https://github.com/Far0n/xgbfi
https://github.com/Far0n/xgbfi
https://github.com/Far0n/xgbfi
https://github.com/Far0n/xgbfi
https://github.com/Far0n/xgbfi
https://github.com/Far0n/xgbfi
https://github.com/Far0n/xgbfi
https://github.com/Far0n/xgbfi


Extreme Gradient Boosting

[ 565 ]

For binary classification, we used the binary:logistic objective, but for regression, we
just change it to reg:linear. When it comes to evaluation, there are the following built-in
evaluation metrics:

Root-Means-Square Error (set eval_metric to rmse)
Mean Absolute Deviation (set eval_metric to mae)

Apart from these changes, the other parameters for tree-based models are exactly the same!
We can follow the same approach for tuning the parameters, except that now we will
monitor a different metric.

In Chapter 4, Supervised Learning - Classification and Regression, we used the matrix
multiplication performance data for illustrating the regression problem. Let's take the same
dataset again, and this time use XGBoost for building the model.

To speed things up, we can take the reduced dataset from Chapter 5, Unsupervised Learning
- Clustering and Dimensionality Reduction. However, in Chapter 6, Working with Text - Natural
Language Processing and Information Retrieval, we have created a special class for SVD:
TruncatedSVD. So, let's use it for reducing the dimensionality of this dataset:

Dataset dataset = ... // read the data
StandardizationPreprocessor preprocessor =
StandardizationPreprocessor.train(dataset);
dataset = preprocessor.transform(dataset);

Split trainTestSplit = dataset.shuffleSplit(0.3);
Dataset allTrain = trainTestSplit.getTrain();
Split split = allTrain.trainTestSplit(0.3);
Dataset train = split.getTrain();
Dataset val = split.getTest();

TruncatedSVD svd = new TruncatedSVD(100, false)
svd.fit(train);

train = dimred(train, svd);
val = dimred(val, svd);

You should remember from Chapter 5, Unsupervised Learning - Clustering and Dimensionality
Reduction , that if we are going to reduce the dimensionality of the dataset with PCA via
SVD, we need to standardize the data before that, and the following is what happens right
after we read the data. We do the usual train-validation-test split and reduce the
dimensionality of all the datasets. The dimred function just wraps calling the transform
method from SVD and then it puts the results back to a Dataset class.



Extreme Gradient Boosting

[ 566 ]

Now, let's use XGBoost:

DMatrix dtrain = XgbUtils.wrapData(train);
DMatrix dval = XgbUtils.wrapData(val);
Map<String, DMatrix> watches = ImmutableMap.of("train", dtrain, "val",
dval);
IObjective obj = null;
IEvaluation eval = null;

Map<String, Object> params = XgbUtils.defaultParams();
params.put("objective", "reg:linear");
params.put("eval_metric", "rmse");
int nrounds = 100;

Booster model = XGBoost.train(dtrain, params, nrounds, watches, obj, eval);

Here, we wrap our datasets into DMatrix, then create a watchlist, and finally set the
objective and eval_metric parameters to the appropriate ones. Now we can train the
model.

Let's look at the watchlist output (for brevity, we will only show every 10th record here):

[0]    train-rmse:21.223036    val-rmse:18.009176
[9]    train-rmse:3.584128    val-rmse:5.860992
[19]    train-rmse:1.430081    val-rmse:5.104758
[29]    train-rmse:1.117103    val-rmse:5.004717
[39]    train-rmse:0.914069    val-rmse:4.989938
[49]    train-rmse:0.777749    val-rmse:4.982237
[59]    train-rmse:0.667336    val-rmse:4.976982
[69]    train-rmse:0.583321    val-rmse:4.967544
[79]    train-rmse:0.533318    val-rmse:4.969896
[89]    train-rmse:0.476646    val-rmse:4.967906
[99]    train-rmse:0.422991    val-rmse:4.970358

We can see that the validation error stopped decreasing around the 50th tree and then
started increasing again. So, let's limit the model to 50 trees and apply this model to the test
data:

DMatrix dtrainall = XgbUtils.wrapData(allTrain);
watches = ImmutableMap.of("trainall", dtrainall);
nrounds = 50;
model = XGBoost.train(dtrainall, params, nrounds, watches, obj, eval);



Extreme Gradient Boosting

[ 567 ]

Then, we can apply this model to the test data and see the final performance:

Dataset test = trainTestSplit.getTest();
double[] predict = XgbUtils.predict(model, test);
double testRmse = rmse(test.getY(), predict);
System.out.printf("test rmse: %.4f%n", testRmse);

Here, XgbUtils.predict converts a dataset into DMatrix, then calls the predict method
and finally converts the array of floats into doubles. After executing the code, we will see
the following:

test rmse: 4.2573

Recall that previously it was around 15, so with XGBoost it is more than three times better
than with a linear regression!

Note that in the original dataset there are categorical variables, and when we use One-Hot-
Encoding (via the toModelMatrix method from the joinery data frame), the resulting
matrix is sparse. In addition, we then compress this data with PCA. However, XGBoost can
also deal with sparse data, so let's use this example to illustrate how to do it.

In Chapter 5, Unsupervised Learning - Clustering and Dimensionality Reduction, we created a
class for performing One-Hot-Encoding: we used it for converting categorical variables into
an object of the SparseDataset class from Smile. Now we can use this method for creating
such SparseDataset, and then for constructing a DMatrix object for XGBoost from it.

So, let's create a method for converting SparseDataset into DMatrix:

public static DMatrix wrapData(SparseDataset data) {
    int nrow = data.size();
    List<LabeledPoint> points = new ArrayList<>();

    for (int i = 0; i < nrow; i++) {
        Datum<SparseArray> datum = data.get(i);
        float label = (float) datum.y;
        SparseArray array = datum.x;

        int size = array.size();
        int[] indices = new int[size];
        float[] values = new float[size];

        int idx = 0;
        for (Entry e : array) {
            indices[idx] = e.i;
            values[idx] = (float) e.x;
            idx++;
        }



Extreme Gradient Boosting

[ 568 ]

        LabeledPoint point =
                LabeledPoint.fromSparseVector(label, indices, values);
        points.add(point);
    }

    String cacheInfo = "";
    return new DMatrix(points.iterator(), cacheInfo);
}

Here, the code is pretty similar to what we used for dense matrices, but now we call the
fromSparseVector factory method instead of fromDenseVector. To use it, we convert
each row of SparseDataset into an array of indexes and array of values and then use them
to create a LabeledPoint instance, which we use to create a DMatrix instance.

After converting it, we run the XGBoost model on it:

SparseDataset sparse = readData();
DMatrix dfull = XgbUtils.wrapData(sparse);

Map<String, Object> params = XgbUtils.defaultParams();
params.put("objective", "reg:linear");
params.put("eval_metric", "rmse");

int nrounds = 100;
int nfold = 3;
String[] metric = {"rmse"};
XGBoost.crossValidation(dfull, params, nrounds, nfold, metric, null, null);

When we run this, we see that RMSE reaches 17.549534 and never goes down after that.
This is expected, since we a small subset of features; these features are all categorical and
not all of them are very informative. Still, this serves as a good illustration of how we can
use XGBoost for sparse datasets.

Apart from Classification and Regression, XGBoost also provides special support for
creating ranking models, and now we will see how we can use it.

XGBoost for learning to rank
Our search engine has become quite powerful. Previously, we used Lucene for the fast
retrieval of documents and then used a machine learning model for reordering them. By
doing this, we were solving a ranking problem. After being given a query and a collection
of documents, we need to order all the documents such that the ones that are the most
relevant to the query have the highest rank.



Extreme Gradient Boosting

[ 569 ]

Previously, we approached this problem as a classification: we built a binary classification
model to separate relevant and non-relevant documents, and we used the probability of a
document being relevant for sorting. This approach works reasonably well in practice, but
has a limitation: it only considers one element at a time and keeps other documents in
complete isolation. In other words, when deciding whether a document is relevant, we look
only at the features of this particular document and do not look at the features of other
documents.

What we can do instead is to look at the positions of the documents in relation to each
other. Then, for each query, we can form a group of documents, which we consider to this
particular query, and optimize the ranking within all such groups.

LambdaMART is the name of a model that uses this idea. It looks at the pairs of documents
and considers the relative order of the documents within the pair. If the order is wrong (an
irrelevant document ranks higher than a relevant one), then the model introduces a penalty,
and during training we want to make this penalty as small as possible.

MART in LambdaMART stands for Multiple Additive Regression Trees, so it is a tree-
based method. XGBoost also implements this algorithm. To use it, we set the objective to
rank:pairwise and then we set the evaluation measure to one of the following:

ndcg: This stands for Normalized Discounted Cumulative Gain
ndcg@n: NDCG at N is the first N elements of the list and evaluates NDCG on it
map: This stands for Mean Average Precision
map@n: This is MAP evaluated at the first N elements of each group

For our purposes, it is not important to know in detail what these metrics do; for now, it is
enough to know that the higher the value of a metric, the better it would be. However, there
is an important difference between these two metrics: MAP can only deal with binary (0/1)
labels, but NDCG can work with ordinal (0, 1, 2, ...) labels.

When we built a classifier, we only had two labels: positive (1) and negative (0). It may
make sense to extend the labels to include more degrees of relatedness. For example, we can
assign the labels in the following fashion:

First, 3 URLs get a relevance of 3
Other URLs on the first page get a relevance of 2
The remaining relevant URLs on the second and third page get a relevance of 1
And all non-relevant documents are labeled with 0



Extreme Gradient Boosting

[ 570 ]

As we have mentioned, NDCG can deal with such ordinal labels, so we will use it for
evaluation. To implement this relevance assignment, we can take the RankedPage class we
used previously and create the following method:

private static int relevanceLabel(RankedPage page) {
    if (page.getPage() == 0) {
        if (page.getPosition() < 3) {
            return 3;
        } else {
            return 2;
        }
    }

    return 1;
}

We can use this method for all the documents within one query, and for all the other
documents, we just assign a relevance of 0. Apart from this method, the remaining code for
creating and extracting features stays the same, so for brevity, we will omit the code.

Once the data is prepared, we wrap Dataset it into DMatrix. When doing this, we need to
specify the groups, and within each we will optimize the ranking. In our case, we group the
data by the query.

XGBoost expects the objects belonging to the same group to be in a consecutive order, so it
needs an array of group sizes. For example, suppose in our dataset we have 12 objects: 4
from group 1, 3 from group 2, and 5 from group 3:

Then, the size array should contain the sizes of these groups: [4, 3, 5].



Extreme Gradient Boosting

[ 571 ]

Here, qid is the ID of a query: an integer, which we put in association with each query:

Let's first create a utility function for calculating the size arrays:

private static int[] groups(List<Integer> queryIds) {
    Multiset<Integer> groupSizes = LinkedHashMultiset.create(queryIds);
    return groupSizes.entrySet().stream().mapToInt(e ->
e.getCount()).toArray();
}

This method takes in a list of query IDs and then it counts how many times each ID is
present there. For that, we use LinkedHashMultiset - a multiset from Guava. This
particular implementation of the multiset remembers the order in which the elements were
inserted, so when getting back the counts the order is preserved.

Now we can specify the group sizes for both datasets:

DMatrix dtrain = XgbUtils.wrapData(trainDataset);
int[] trainGroups = queryGroups(trainFeatures.col("queryId"));
dtrain.setGroup(trainGroups);

DMatrix dtest = XgbUtils.wrapData(testDataset);
int[] testGroups = queryGroups(testFeatures.col("queryId"));
dtest.setGroup(testGroups);

And we are ready to train a model:

Map<String, DMatrix> watches = ImmutableMap.of("train", dtrain, "test",
dtest);
IObjective obj = null;
IEvaluation eval = null;

Map<String, Object> params = XgbUtils.defaultParams();



Extreme Gradient Boosting

[ 572 ]

params.put("objective", "rank:pairwise");
params.put("eval_metric", "ndcg@30");

int nrounds = 500;
Booster model = XGBoost.train(dtrain, params, nrounds, watches, obj, eval);

Here, we change the objective to rank:pairwise, because we are interested in solving the
ranking problem.We also set the evaluation metrics to ndcg@30, which means that we want
to look only at NDCG of the first 30 documents, and do not really care about the documents
we have after 30. The reason for this is that the users of search engines rarely look at the
second and third pages of the search results, and it is very unlikely that they will look past
the third page, and so we only consider the first three pages of the search results. That is, we
are interested only in the top 30 documents, so we only look at NDCG at 30.

As we did previously, we start with default parameters and go through the same parameter
tuning procedure as we do for classification or regression.

We can tune it a bit, for example, using the following parameters:

Map<String, Object> params = XgbUtils.defaultParams();
params.put("objective", "rank:pairwise");
params.put("eval_metric", "ndcg@30");
params.put("colsample_bytree", 0.5);
params.put("max_depth", 4);
params.put("min_child_weight", 30);
params.put("subsample", 0.7);
params.put("eta", 0.02);

With this set of parameters, we see that the best NDCG@30 of 0.632 for the hold-out data is
reached at about the 220th iteration, so we should not grow more than 220 trees.

Now we can save the model with XGBoost model dumper and use it in Lucene. For that, we
need to use the same code as we did previously with almost no changes; the only thing we
need to change is the model. That is, the only difference is that instead of loading a random
forest model, we need to load the XGBoost model. After that, we just follow the same
procedure: we retrieve the top 100 documents with Lucene and rerank them with the new
XGBoost model.

Therefore, with XGBoost, we are able to take into consideration the relative order of
documents within each query group, and use this information to improve the model
further.



Extreme Gradient Boosting

[ 573 ]

Summary
In this chapter, we learned about Extreme Gradient Boosting --an implementation of
Gradient Boosting Machines. We learned how to install the library and then we applied to
solve a variety of supervised learning problems: classification, regression, and ranking.

XGBoost shines when the data is structured: when it is possible to extract good features
from our data and put these features into a tabular format. However, in some cases, the
data is quite hard to structure. For example, when dealing with images or sounds, a lot of
effort is needed to extract useful features. But we do not necessarily have to do the feature
extraction ourselves, instead, we can use Neural Network models which can learn the best
features themselves.

In the next chapter, we will look at deeplearning4j--a deep learning library for Java.



  8
Deep Learning with

DeepLearning4J
In the previous chapter, we covered Extreme Gradient Boosting (XGBoost)--a library that
implements the gradient boosting machine algorithm. This library provides state-of-the-art
performance for many supervised machine learning problems. However, XGBoost only
shines when the data is already structured and there are good handmade features.

The feature engineering process is usually quite complex and requires a lot of effort,
especially when it comes to unstructured information such as images, sounds, or videos.
This is the area where deep learning algorithms are usually superior to others, including
XGBoost; they do not need hand-crafted features and are able to learn the structure of the
data themselves.

In this chapter, we will look into a deep learning library for Java--DeepLearning4J. This
library allows us to easily specify complex neural network architectures that are able to
process unstructured data such as images. In particular, we will look into Convolutional
Neural Networks--a special kind of neural network that is well-suited for images.

This chapter will cover the following:

ND4J--the engine behind DeepLearning4J
Simple neural networks for handwritten digit recognition
Deep networks with convolutional layers for digit recognition
A model for classifying images with dogs and cats

By the end of this chapter, you will learn how to run DeepLearning4J, apply it to image
recognition problems, and use AWS and GPUs to speed it up.



Deep Learning with DeepLearning4J

[ 575 ]

Neural Networks and DeepLearning4J
Neural Networks are typically good models that give a reasonable performance on
structured datasets, but they might not necessarily be better than others. However, when it
comes to dealing with unstructured data, most often they are the best.

In this chapter, we will look into a Java library for designing Deep Neural Networks, called
DeepLearning4j. But before we do this, we first will look into its backend--ND4J, which does
all the number crunching and heavy lifting.

ND4J - N-dimensional arrays for Java
DeepLearning4j relies on ND4J for preforming linear algebra operations such as matrix
multiplication. Previously, we covered quite a few such libraries, for example, Apache
Commons Math or Matrix Toolkit Java. Why do we need yet another linear algebra library?

There are two reasons for this. First, these libraries usually deal only with vectors and
matrices, but for deep learning we need tensors. A tensor is a generalization of vectors and
matrices to multiple dimensions; we can see vectors as one-dimensional tensors and
matrices as two-dimensional ones. For deep learning, this is important because we have
images, which are three-dimensional; not only do they have height and width, but also
multiple channels.

Another quite important reason for ND4J is its GPU support; all the operations can be
executed on the graphical processors, which are designed to handle a lot of complex linear
algebra operations in parallel, and this is extremely helpful for speeding up the training of
neural networks.

So, before going into DeepLearning4j, let's quickly go over some basics of ND4J, even if it is
not so important to know the specifics of how Deep Neural Networks are implemented, it
can be useful for other purposes.

As usual, we first need to include the dependency on the pom file:

<dependency>
  <groupId>org.nd4j</groupId>
  <artifactId>nd4j-native-platform</artifactId>
  <version>0.7.1</version>
</dependency>



Deep Learning with DeepLearning4J

[ 576 ]

This will download the CPU version for Linux, MacOS, or Windows, depending on your
platform. Note that for Linux you might need to have OpenBLAS installed. It is usually
very easy, for example, for Ubuntu Linux, you can install it by executing the following
command:

sudo apt-get install libopenblas-dev

After including the library to the pom file and installing dependencies, we are ready to start
using it.

ND4J's interface is heavily inspired by NumPy, a numerical library for
Python. If you already know NumPy, you will quickly recognize
familiarities in ND4J.

Let's begin by creating ND4J arrays. Suppose, we want to create a 5 x 10 array filled with
ones (or with zeros). This is quite simple, for that, we can use the ones and zeros utility
methods from the Nd4j class:

INDArray ones = Nd4j.ones(5, 10);
INDArray zeros = Nd4j.zeros(5, 10);

If we already have an array of doubles, then wrapping them into Nd4j is easy:

Random rnd = new Random(10);
double[] doubles = rnd.doubles(100).toArray();
INDArray arr1d = Nd4j.create(doubles);

When creating an array, we can specify the resulting shape. Suppose we want to take this
array with 100 elements and put it into a 10 x 10 matrix. All we need to do is specify the
shape when creating the array:

INDArray arr2d = Nd4j.create(doubles, new int[] { 10, 10 });

Alternatively, we can reshape the array after creating it:

INDArray reshaped = arr1d.reshape(10, 10);

Any array of any dimensionality can be reshaped into a one-dimensional array with the
reshape method:

INDArray reshaped1d = reshaped.reshape(1, -1);



Deep Learning with DeepLearning4J

[ 577 ]

Note that we use -1 here; this way we ask ND4J to automatically infer the right number of
elements.

If we have a two-dimensional Java array of doubles, then there is a special syntax for
wrapping them into ND4J:

double[][] doubles = new double[3][];
doubles[0] = rnd.doubles(5).toArray();
doubles[1] = rnd.doubles(5).toArray();
doubles[2] = rnd.doubles(5).toArray();
INDArray arr2d = Nd4j.create(doubles);

Likewise, we can create a three-dimensional ND4J array from doubles:

double[] doubles = rnd.doubles(3 * 5 * 5).toArray();
INDArray arr3d = Nd4j.create(doubles, new int[] { 3, 5, 5 });

So far, we used Java's Random class for generating random numbers, but we can use ND4J's
method for this:

int seed = 0;
INDArray rand = Nd4j.rand(new int[] { 5, 5 }, seed);

What is more, we can specify a distribution from which we will sample the values:

double mean = 0.5;
double std = 0.2;
INDArray rand = Nd4j.rand(new int[] { 3, 5, 5 }, new
NormalDistribution(mean, std));

As we mentioned previously, three-dimensional tensors are useful for representing images.
Typically, an image is a three-dimensional array where the dimensions are the number of
channels * height * width, and the values typically range from 0 to 255.

Let's generate an image-like array of size 2 * 5 with three channels:

double[] picArray = rnd.doubles(3 * 2 * 5).map(d -> Math.round(d *
255)).toArray();
INDArray pic = Nd4j.create(picArray).reshape(3, 2, 5);

If we print this array, we will see something like the following:

[[[51.00, 230.00, 225.00, 146.00, 244.00],
  [64.00, 147.00, 25.00, 12.00, 230.00]],
[[145.00, 160.00, 57.00, 202.00, 143.00],
  [170.00, 91.00, 181.00, 94.00, 92.00]],
[[193.00, 43.00, 248.00, 211.00, 27.00],
  [68.00, 139.00, 115.00, 44.00, 97.00]]]



Deep Learning with DeepLearning4J

[ 578 ]

Here, the output is first grouped by channels, and inside we have the pixel value
information of each channel separately. To get a specific channel only, we can use the get
method:

for (int i = 0; i < 3; i++) {
    INDArray channel = pic.get(NDArrayIndex.point(i));
    System.out.println(channel);
}

Alternatively, if we are interested in all the rows of the 0th channels with columns from 2nd to
3rd, we can use the get method for accessing this specific part of the array in this way:

INDArray slice = pic.get(NDArrayIndex.point(0), NDArrayIndex.all(),
NDArrayIndex.interval(2, 4));
System.out.println(slice);

The following is the output:

[[225.00, 146.00],
 [25.00, 12.00]]

This library has a lot more things such as dot product, matrix multiplication, and so on. This
functionality is quite similar to what we have already covered in detail for analogous
libraries, so we will not repeat ourselves here.

Now, let's start with neural networks!

Neural networks in DeepLearning4J
After learning some basics of ND4J, we are now ready to start using DeepLearning4j and
create neural networks with it.

As you probably know already, neural networks are models where we stack individual
neurons in layers. During the prediction phase, each neuron gets some input, processes it,
and forwards the results to the next layer. We start from the input layer, which receives the
raw data, and gradually push the values forward to the output layer, which will contain the
prediction of the model for the given input.



Deep Learning with DeepLearning4J

[ 579 ]

A neural network with one hidden layer might look like this:

DeepLearning4J allows us to easily design such networks. If we take the network from the
preceding figure and try to implement it with DeepLearning4j, we might end up with the
following:

DenseLayer input = new DenseLayer.Builder().nIn(n).nOut(6).build();
nnet.layer(0, input);
OutputLayer output = new OutputLayer.Builder().nIn(6).nOut(k).build();
nnet.layer(1, output);

As you see, it is not difficult to read and understand. So, let's use it; for that, we first need to
specify its dependency to the pom.xml file:

<dependency>
  <groupId>org.deeplearning4j</groupId>
  <artifactId>deeplearning4j-core</artifactId>
  <version>0.7.1</version>
</dependency>

Note that the versions of DeepLearning4j and ND4J must be the same.



Deep Learning with DeepLearning4J

[ 580 ]

For the illustration, we will use the MNIST dataset; this dataset contains images of
handwritten digits from 0 to 9, and the goal is to predict the depicted number given in the
image:

This dataset is quite a famous one; creating a model to recognize the digits often serves as a
Hello World for neural networks and deep learning.

This chapter starts with a simple network with only one inner layer. Since all the images are
28 * 28 pixels, the input layer should have 28 * 28 neurons (the pictures are grayscale,
so there is only one channel). To be able to input the pictures into the network, we first need
to unwrap it into a one-dimensional array:

As we already know, with ND4J, this is very easy to do; we just invoke reshape(1, -1).
However, we do not need to do it; DeepLearning4J will handle it automatically and reshape
the input for us.

Next, we create an inner layer, and we can start with 1,000 neurons there. Since there are 10
digits, the number of neurons in the output layer should be equal to 10.

Now, let's implement this network in DeepLearning4J. Since MNIST is a very popular
dataset, the library already provides a convenient loader for it, so all we need to do is use
the following code:

int batchSize = 128;
int seed = 1;
DataSetIterator mnistTrain = new MnistDataSetIterator(batchSize, true,
seed);
DataSetIterator mnistTest = new MnistDataSetIterator(batchSize, false,
seed);



Deep Learning with DeepLearning4J

[ 581 ]

For the training part, there are 50,000 labeled examples, and there are 10,000 testing
examples. To iterate over them, we use DeepLearning4j's abstraction-- DataSetIterator.
What it does here is takes the entire dataset, shuffle it, and then chunks it into batches of 128
pictures.

The reason we prepare batches is that neural networks are typically trained with Stochastic
Gradient Descent (SGD), and the training happens in batches; we take a batch, train a
model on it, update the weights, and then take the next batch. Taking one batch and
training a model on it is called an iteration, and iterating over all available training batches
is called an epoch.

After getting the data, we can specify the training configuration of our network:

NeuralNetConfiguration.Builder config = new
NeuralNetConfiguration.Builder();
config.seed(seed);
config.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT);
config.learningRate(0.005);
config.regularization(true).l2(0.0001);

In this code, we say that we want to use SGD for training with a learning rate of 0.005 and
L2 regularization of 0.0001. SGD is a reasonable default and you should stick to it.

The learning rate is the most important training configuration parameter. If we set it too
high, then the training procedure will diverge, and if it is too small--it will take a lot of time
before converging. For selecting the optimal learning rate, we typically run the training
procedure for values such as 0.1, 0.01, 0.001, ..., 0.000001 and see when the neural network
stops diverging.

Another thing we used here was L2 regularization. L1 and L2 regularization work in exactly
the same way as in linear models such as logistic regression--they help to avoid overfitting
by making the weights smaller, and L1 ensures the sparsity of the solution.

However, there are regularization strategies specific to neural networks--dropout and
dropconnect, which mute a random part of the net at each training iteration. We can specify
them for the entire network in the configuration:

config.dropOut(0.1);

But the preferable way is to specify them per layer--we will see later how to do it.



Deep Learning with DeepLearning4J

[ 582 ]

Once we are done with the training configuration, we can continue with specifying the
architecture of the net, that is, things such as its layers and the number of neurons in each.

For that we get an object of the ListBuilder class:

ListBuilder architecture = config.list();

Now, let's add the first layer:

DenseLayer.Builder innerLayer = new DenseLayer.Builder();
innerLayer.nIn(28 * 28);
innerLayer.nOut(1000);
innerLayer.activation("tanh");
innerLayer.weightInit(WeightInit.UNIFORM);
architecture.layer(0, innerLayer.build());

As we previously discussed, the number of neurons in the input layer should be equal to
the size of the image, which is 28 times 28. Since the inner layer has 1,000 neurons, the
output of this layer is 1,000.

Additionally, we specify here the activation function and the weight initialization strategy.

The activation function is the nonlinear transformation, which is applied to each neuron's
output. There can be several activation functions:

Activation Plot

linear: no activation



Deep Learning with DeepLearning4J

[ 583 ]

sigmoid: [0, 1] range

tanh: [-1, 1] range

ReLU: [0, infinity] range



Deep Learning with DeepLearning4J

[ 584 ]

Leaky ReLU: [-infinity,
infinity]

For this example, we used tanh, which was the default option for shallow networks in the
pre-deep-learning era. However, for deep networks, ReLU activations should typically be
preferred because they solve the vanishing gradient problem.

Vanishing gradient is a problem that occurs during the training of neural
networks. For training, we calculate the gradient--the direction which we
need to follow, and update the weights based on that. This problem occurs
when we use sigmoid or tanh activations in deep networks--the first layers
(processed last during optimization) have a very small gradient and do not
get updated at all.

However, ReLU also sometimes has a problem, called dying ReLU, which can be solved
using other activation functions such as LeakyReLU.

If the input to the ReLU function is negative, then the output is exactly zero,
which means that in many cases the neuron is not activated. What is more,
while training the derivative, in this case, is is zero, so following the gradient
may never update the weights. This is known as the dying ReLU problem,
many neurons never get activated and die. This problem can be solved using
the LeakyReLU activation, instead of always outputting zero for negative
values, it outputs something very small, so the gradient can still be calculated.



Deep Learning with DeepLearning4J

[ 585 ]

Another thing we specified here is the weight initialization. Typically, before we train a
network, we need to initialize the parameters, and some initializations work better than
others, but, as usual, this is case-specific and often we need to try several methods before
settling on a particular one.

Weight initialization method Comment

WeightInit.ZERO Here, all the weights are set to zero. This is not recommended.

WeightInit.UNIFORM Here, weights are set to uniform values in [-a, a] range,
where a depends on the number neurons.

WeightInit.XAVIER This is the Gaussian distribution with variance, which
depends on the number of neurons. If in doubt, use this
initialization.

WeightInit.RELU This is the Gaussian distribution with higher variance than in
XAVIER. It helps with the Dying ReLU problem.

WeightInit.DISTRIBUTION This lets you specify any distribution from which the weights
will be sampled. In this case, the distribution is set this way:
layer.setDist(new NormalDistribution(0,

0.01));.

others There are other weight initialization strategies, see the
JavaDocs of the WeightInit class.

The UNIFORM and XAVIER methods are usually good starting points; try them first and see if
they produce good results. If not, then try to experiment and choose some other methods.

If you experience the dying ReLU problem, then it is best to use the
WeightInit.RELU initialization method. Otherwise, use
WeightInit.XAVIER.

Next, we specify the output layer:

architecture.layer(1, outputLayer.build());



Deep Learning with DeepLearning4J

[ 586 ]

For the output layer, we need to specify the loss function--the function we want to
optimize with the network during training. There are multiple options, but the most
common ones are as follows:

LossFunction.NEGATIVELOGLIKELIHOOD, which is LogLoss. Use this for
classification.
LossFunction.MSE, which is Mean Squared Error. Use it for regression.

You might have noticed that here we used a different activation function--softmax, and we
have not covered this activation previously. This is a generalization of the sigmoid function
to multiple classes. If we have a binary classification problem, and we want to predict only
one value, the probability of belonging to the positive class, then we use a sigmoid. But if
our problem is multiclass, or we output two values for the binary classification problem,
then we need to use softmax. If we solve the regression problem, then we use the linear
activation function.

Output activation When to use

sigmoid Binary classification

softmax Multiclass classification

linear Regression

Now, when we have established the architecture, we can build the network from it:

MultiLayerNetwork nn = new MultiLayerNetwork(architecture.build());
nn.init();

It is often useful to monitor the training progress and see the scores as the model train, and
for that we can use ScoreIterationListener--it subscribes to the model, and after each
iteration it outputs the new training score:

nn.setListeners(new ScoreIterationListener(1));

Now we are ready to train the network:

int numEpochs = 10;
for (int i = 0; i < numEpochs; i++) {
    nn.fit(mnistTrain);
}

Here, we train the network for 10 epochs, that is, we iterate over the entire training dataset
10 times, and if you remember, each epoch consists of a number of 128-sized batches.



Deep Learning with DeepLearning4J

[ 587 ]

Once the training is done, we can evaluate the performance of the model on the test. For this
purpose, we create a special object of type Evaluation, and then we iterate over the
batches of the test set, and apply the model to each batch. Every time we do this, we update
the Evaluation object, which keeps track of the overall performance.

Once the training is done, we can evaluate the performance of the model. For this we create
a special object of type Evaluation, and then iterate over the validation dataset and apply
the model to each batch. The results are recorded by the Evaluation class, and in the end
we can see the result:

while (mnistTest.hasNext()) {
    DataSet next = mnistTest.next();
    INDArray output = nn.output(next.getFeatures());
    eval.eval(next.getLabels(), output);
}

System.out.println(eval.stats());

If we run it for 10 epochs, it will produce this:

Accuracy:        0.9
Precision:       0.8989
Recall:          0.8985
F1 Score:        0.8987

So the performance is not very impressive, and to improve it, we can modify the
architecture, for example, by adding another inner layer:

DenseLayer.Builder innerLayer1 = new DenseLayer.Builder();
innerLayer1.nIn(numrow * numcol);
innerLayer1.nOut(1000);
innerLayer1.activation("tanh");
innerLayer1.dropOut(0.5);
innerLayer1.weightInit(WeightInit.UNIFORM);
architecture.layer(0, innerLayer1.build());

DenseLayer.Builder innerLayer2 = new DenseLayer.Builder();
innerLayer2.nIn(1000);
innerLayer2.nOut(2000);
innerLayer2.activation("tanh");
innerLayer2.dropOut(0.5);
innerLayer2.weightInit(WeightInit.UNIFORM);
architecture.layer(1, innerLayer2.build());

LossFunction loss = LossFunction.NEGATIVELOGLIKELIHOOD;
OutputLayer.Builder outputLayer = new OutputLayer.Builder(loss);
outputLayer.nIn(2000);



Deep Learning with DeepLearning4J

[ 588 ]

outputLayer.nOut(10);
outputLayer.activation("softmax");
outputLayer.weightInit(WeightInit.UNIFORM);
architecture.layer(2, outputLayer.build());

As you can see, here we added an extra layer with 2000 neurons between the first layer and
the output layer. We also added dropout to each layer for regularization purposes.

With this setup, we can achieve slightly better accuracy:

Accuracy:        0.9124
Precision:       0.9116
Recall:          0.9112
F1 Score:        0.9114

Of course, the improvement is only marginal, and the network is far from being well-tuned.
To improve it, we can use the ReLU activation, Nesterov's updater with momentum around
0.9, and XAVIER's weight initialization. This should give an accuracy higher than 95%. In
fact, you can find a very well-tuned network in the examples from the official
DeepLearning4j repository; look for the class named
MLPMnistSingleLayerExample.java.

In our example, we used classical neural network; they are rather shallow (that is, they do
not have many layers), and all the layers are fully connected. While for small-scale
problems this might be good enough, typically it is better to use Convolutional Neural
Networks for image recognition tasks, these networks take into account the image structure
and can achieve better performance.

Convolutional Neural Networks
As we have already mentioned several times, neural networks can do the feature
engineering part themselves, and this is especially useful for images. Now we will finally
see this in action. For that we will use Convolutional Neural Networks, they are a special
kind of neural networks that uses special convolutional layers. They are very well suited for
image processing.

In the usual neural networks, the layers are fully connected, meaning that each neuron of a
layer is connected to all the neurons from the previous layer. For 28 x 28 images such as
digits from MNIST, this is not a big deal, but it starts to be a problem for larger images.
Imagine that we need to process images of size 300 x 300; in this case, the input layer will
have 90,000 neurons. Then, if the next layer also has 90,000 neurons, then there will be
90000 x 90000 connections between these two layers, which is clearly a lot.



Deep Learning with DeepLearning4J

[ 589 ]

In images, however, only a small area of each pixel is important. So the preceding problem
can be solved by considering only a small neighborhood for each pixel, and this is exactly
what convolutional layers do; inside, they keep a set of filters of some small size. Then, we
slide a window over the image and calculate the similarity of the content within the
window to each of the filters:

The filters are the neurons in these convolutional layers, and they are learned during
training phase, in a way similar to the usual fully-connected case.

When we slide a window over an image, we calculate the similarity of the content to the
filter, which is the dot product between them. For each window, we write the results to the
output. We say the filter is activated when the area under consideration is similar to the
filter. Clearly, if it is similar, the dot product will tend to produce higher values.



Deep Learning with DeepLearning4J

[ 590 ]

Since images usually have multiple channels, we actually deal with volumes (or 3D tensors)
of dimensionality number of channels times height times width. When an image goes
through a convolutional layer, each filter is applied in turn, and as the output, we have the
volume of dimensionality number of filters times height times width. When we stack such
layers on top of each other, we get a sequence of volumes:



Deep Learning with DeepLearning4J

[ 591 ]

Apart from convolutional layers, another layer type is important for convolutional
networks--the downsampling layer, or the pooling layer. The purpose of this layer is to
reduce the dimensionality of the input, and usually each side is reduced by the factor of 2,
so in total, the dimensionality is reduced 4 times. Usually, we use max pooling, which keeps
the maximal value when downsampling:

The reason we do this is to decrease the number of parameters our network has, it makes
the training a lot faster.

When such a layer gets a volume, it only changes the height and the width but does not
change the number of filters. Typically, we put the pooling layers after convolutional layers,
and often organize the architecture such that two convolutional layers are followed by one
pooling layer:

Then, at some point, after we have added enough convolutional layers, we switch to fully-
connected layers, the same type of layer we have in usual networks. And then, in the end,
we have the output layer, as we did previously.



Deep Learning with DeepLearning4J

[ 592 ]

Let's continue with the MNIST example, but this time let's train a Convolutional Neural
Network to recognize digits. For this task, there is a famous architecture called LeNet
(created by researcher Yann LeCun), so let's implement it. We will base our example on the
official DeepLearning4j example available in their repository.

The architecture is as follows:

5 x 5 convolutional layer with 20 filters
Max pooling
5 x 5 convolutional layer with 50 filters
Max pooling
Fully connected layers with 500 neurons
Output layer with softmax

So there are six layers in this network.

Like we did previously, first, we specify the training configuration of the network:

NeuralNetConfiguration.Builder config = new
NeuralNetConfiguration.Builder();
config.seed(seed);
config.regularization(true).l2(0.0005);
config.learningRate(0.01);
config.weightInit(WeightInit.XAVIER);
config.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT);
config.updater(Updater.NESTEROVS).momentum(0.9);

There is almost nothing new here, except for Updater;we use Nesterov's update with
momentum set to 0.9. The purpose of this is faster convergence.

Now we can create the architecture:

ListBuilder architect = config.list();

First, the convolutional layer:

ConvolutionLayer cnn1 = new ConvolutionLayer.Builder(5, 5)
        .name("cnn1")
        .nIn(nChannels)
        .stride(1, 1)
        .nOut(20)
        .activation("identity")
        .build();
architect.layer(0, cnn1);



Deep Learning with DeepLearning4J

[ 593 ]

Here, in the Builder's constructor, we specify the dimensionality of the filter, which is 5 x
5. Then the nIn parameter is set to the number of channels in the input pictures, which is 1
for MNIST, they are all gray scale images. The nOut parameter specifies the number of
filters this layer has. The stride parameter specifies the step at which we slide the window
over the image, and typically it is set to 1. Finally, the layer does not use any activation.

The next layer in the architecture is the pooling layer:

SubsamplingLayer pool1 = new SubsamplingLayer.Builder(PoolingType.MAX)
        .name("pool1")
        .kernelSize(2, 2)
        .stride(2, 2)
        .build();
architect.layer(1, pool1);

When we create this layer, we first specify the way we want to downsample, and we use
MAX since we are interested in max pooling. There are other options such as AVG average,
and SUM, but they are not used very frequently in practice.

This layer has two parameters--the kernelSize parameter, which is the size of the window
we slide over the picture, and the stride parameter, which is the step we take when sliding
the window. Typically, these values are set to 2.

Then we add the next convolutional layer and a pooling layer for it:

ConvolutionLayer cnn2 = new ConvolutionLayer.Builder(5, 5)
        .name("cnn2")
        .stride(1, 1)
        .nOut(50)
        .activation("identity")
        .build();
architect.layer(2, cnn2);
SubsamplingLayer pool2 = new SubsamplingLayer.Builder(PoolingType.MAX)
        .name("pool2")
        .kernelSize(2, 2)
        .stride(2, 2)
        .build();
architect.layer(3, pool2);

Finally, we create the fully-connected layer and the output layer:

DenseLayer dense1 = new DenseLayer.Builder()
        .name("dense1")
        .activation("relu")
        .nOut(500)
        .build();
architect.layer(4, dense1);



Deep Learning with DeepLearning4J

[ 594 ]

OutputLayer output = new
OutputLayer.Builder(LossFunction.NEGATIVELOGLIKELIHOOD)
        .name("output")
        .nOut(outputNum)
        .activation("softmax")
        .build();
architect.layer(5, output);

For the last two layers, there is nothing new for us, we do not use any new parameters.

Finally, before training, we need to tell the optimizer that the input is a picture, and this is
done by specifying the input type:

architect.setInputType(InputType.convolutionalFlat(height, width,
nChannels));

With this, we are ready to begin the training:

for (int i = 0; i < nEpochs; i++) {
    model.fit(mnistTrain);
    Evaluation eval = new Evaluation(outputNum);

    while (mnistTest.hasNext()) {
        DataSet ds = mnistTest.next();
        INDArray out = model.output(ds.getFeatureMatrix(), false);
        eval.eval(ds.getLabels(), out);
    }

    System.out.println(eval.stats());
    mnistTest.reset();
}

For this architecture, the accuracy the network can achieve after one epoch is 97%, which is
significantly better than our previous attempts. But after training it for 10 epochs, the
accuracy is 99%.

Deep learning for cats versus dogs
While MNIST is a very good dataset for educational purpose, it is quite small. Let's take a
look at a different image recognition problem: given a picture, we want to predict if there is
a cat on the image or a dog.



Deep Learning with DeepLearning4J

[ 595 ]

For this, we will use the dataset with dogs and cats pictures from a competition run on
kaggle, and the dataset can be downloaded from h t t p s ://w w w . k a g g l e . c o m /c /d o g s - v s - c a

t s .

Let's start by first reading the data.

Reading the data
For the dogs versus cats competition, there are two datasets; training, with 25,000 images of
dogs and cats, 50% each, and testing. For the purposes of this chapter, we only need to
download the training dataset. Once you have downloaded it, unpack it somewhere.

The filenames look like the following:

dog.9993.jpg
dog.9994.jpg
dog.9995.jpg

cat.10000.jpg
cat.10001.jpg
cat.10002.jpg

The label (dog or cat) is encoded into the filename.

As you know, the first thing we always do is to split the data into training and validation
sets. Since all we have here is a collection of files, we just get all the filenames and then split
them into two parts--training and validation.

For that we can use this simple script:

File trainDir = new File(root,  "train");
double valFrac = 0.2;
long seed = 1;

Iterator<File> files = FileUtils.iterateFiles(trainDir, new String[] {

https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats


Deep Learning with DeepLearning4J

[ 596 ]

"jpg" }, false);
List<File> all = Lists.newArrayList(files);
Random random = new Random(seed);
Collections.shuffle(all, random);

int trainSize = (int) (all.size() * (1 - valFrac));
List<File> train = all.subList(0, trainSize);
copyTo(train, new File(root, "train_cv"));

List<File> val = all.subList(trainSize, all.size());
copyTo(val, new File(root, "val_cv"));

In the code, we use the FileUtils.iterateFiles method from Apache Commons IO to
iterate over all .jpg files in the training directory. Then we put all these files into a list,
shuffle it, and split them into 80% and 20% parts.

The copyTo method just copies the files into the specified directory:

private static void copyTo(List<File> pics, File dir) {
    for (File pic : pics) {
        FileUtils.copyFileToDirectory(pic, dir);
    }
}

Here, the FileUtils.copyFileToDirectory method also comes from Apache Commons
IO.

There are a number of things we need to do to use the data for training a network. They are
as follows:

Getting the paths to each picture
Getting the label (dog or cat from the filename)
Resizing the input so every picture has the same size
Applying some normalization to the image
Creating DataSetIterator from it

Getting the paths to each picture is easy and we already know how to do it, we can use the
same method from Commons IO as we did previously. But now we need to get URI for each
file as DeepLearning4j dataset iterators expect the file's URI, and not the file itself. For that
we create a helper method:

private static List<URI> readImages(File dir) {
    Iterator<File> files = FileUtils.iterateFiles(dir,
                                 new String[] { "jpg" }, false);
    List<URI> all = new ArrayList<>();



Deep Learning with DeepLearning4J

[ 597 ]

    while (files.hasNext()) {
        File next = files.next();
        all.add(next.toURI());
    }

    return all;
}

Getting the class name (dog or cat) from the filename is done by implementing the
PathLabelGenerator interface:

private static class FileNamePartLabelGenerator implements
PathLabelGenerator {

    @Override
    public Writable getLabelForPath(String path) {
        File file = new File(path);
        String name = file.getName();
        String[] split = name.split(Pattern.quote("."));
        return new Text(split[0]);
    }

    @Override
    public Writable getLabelForPath(URI uri) {
        return getLabelForPath(new File(uri).toString());
    }
}

Inside we just split the filename by . and then take the first element of the result.

Finally, we create a method, which takes in a list of URI and creates a DataSetIterator:

private static DataSetIterator datasetIterator(List<URI> uris)
                     throws IOException {
    CollectionInputSplit train = new CollectionInputSplit(uris);
    PathLabelGenerator labelMaker = new FileNamePartLabelGenerator();

    ImageRecordReader trainRecordReader = new ImageRecordReader(HEIGHT,
WIDTH, CHANNELS, labelMaker);
    trainRecordReader.initialize(train);

    return new RecordReaderDataSetIterator(trainRecordReader, BATCH_SIZE,
1, NUM_CLASSES);
}



Deep Learning with DeepLearning4J

[ 598 ]

This method uses some constants, which we initialize with the following values:

HEIGHT = 128;
WIDTH = 128;
CHANNELS = 3;
BATCH_SIZE = 30;
NUM_CLASSES = 2;

The ImageRecordReader will use the HEIGHT and WIDTH parameters to resize the images
into the specified form, and if it is grayscale, it will artificially create RGB channels for it.
The BATCH_SIZE specifies how many images we will consider at once during training.

In linear models, normalization plays an important role and helps the model converge
faster. For neural networks as well, this is the case, so we need to normalize the image. For
this, we can use a special built-in class ImagePreProcessingScaler. DataSetIterator
can have a preprocessor, so we put this scaler there:

DataSetIterator dataSet = datasetIterator(valUris);
ImagePreProcessingScaler preprocessor = new ImagePreProcessingScaler(0, 1);
dataSet.setPreProcessor(preprocessor);

With this, the data preparation is done and we can proceed to create the model.

Creating the model
For the model's architecture, we will use a variation of the VGG network. This architecture
is taken from a publicly available script from the forums ( h t t p s ://w w w . k a g g l e . c o m /j e f f d

23/d o g s - v s - c a t s - r e d u x - k e r n e l s - e d i t i o n /c a t d o g n e t - k e r a s - c o n v n e t - s t a r t e r ) and
here we will adapt this example to DeepLearning4j.

VGG is a model that took 2nd place in the image net 2014 challenge, and it
uses only 3 x 3 and 2 x 2 convolutional filters.

It is always a good idea to use the existing architectures, as it solves a lot of
time--coming up with a good architecture on your own is a challenging
task.

https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter
https://www.kaggle.com/jeffd23/dogs-vs-cats-redux-kernels-edition/catdognet-keras-convnet-starter


Deep Learning with DeepLearning4J

[ 599 ]

The architecture we will use is as follows:

Two layers of 3 x 3 convolution with 32 filters
Max pooling
Two layers of 3 x 3 convolution with 64 filters
Max pooling
Two layers of 3 x 3 convolution with 128 filters
Max pooling
A fully connected layer with 512 neurons
A fully connected layer with 256 neurons
The output layer with softmax activation

For our example, we will use ReLU activation for all the convolution and fully-connected
layers. To avoid the dying ReLU problem, we will use the WeightInit.RELU weight
initialization scheme. In our experiments, without using it, the network tends to produce
the same result no matter what input it receives.

So, first we start with the configuration:

NeuralNetConfiguration.Builder config = new
NeuralNetConfiguration.Builder();
config.seed(SEED);
config.weightInit(WeightInit.RELU);
config.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT);
config.learningRate(0.001);
config.updater(Updater.RMSPROP);
config.rmsDecay(0.99);

Some of the parameters should already be quite familiar by now, but there are two new
things here--the RMSPROP updater and the rmsDecay parameter. Using them allows us to
adaptively change the learning rate as we train. At the beginning, the learning rate is larger
and we take bigger steps toward the minimum, but as we train and approach the minimum,
it decreases the learning rate and we take smaller steps.

The learning rate was selected by trying different values such as 0.1, 0.001 and 0.0001 and
watching when the network stops diverging. This is easy to spot because when diverging
the training error varies a lot and then starts outputting Infinity or NaN.

Now we specify the architecture.



Deep Learning with DeepLearning4J

[ 600 ]

First, we create the convolutional layers and the pooling layers:

int l = 0;
ListBuilder network = config.list();

ConvolutionLayer cnn1 = new ConvolutionLayer.Builder(3, 3)
        .name("cnn1")
        .stride(1, 1)
        .nIn(3).nOut(32)
        .activation("relu").build();
network.layer(l++, cnn1);

ConvolutionLayer cnn2 = new ConvolutionLayer.Builder(3, 3)
        .name("cnn2")
        .stride(1, 1)
        .nIn(32).nOut(32)
        .activation("relu").build();
network.layer(l++, cnn2);

SubsamplingLayer pool1 = new SubsamplingLayer.Builder(PoolingType.MAX)
        .kernelSize(2, 2)
        .stride(2, 2)
        .name("pool1").build();
network.layer(l++, pool1);

ConvolutionLayer cnn3 = new ConvolutionLayer.Builder(3, 3)
        .name("cnn3")
        .stride(1, 1)
        .nIn(32).nOut(64)
        .activation("relu").build();
network.layer(l++, cnn3);

ConvolutionLayer cnn4 = new ConvolutionLayer.Builder(3, 3)
        .name("cnn4")
        .stride(1, 1)
        .nIn(64).nOut(64)
        .activation("relu").build();
network.layer(l++, cnn4);

SubsamplingLayer pool2 = new SubsamplingLayer.Builder(PoolingType.MAX)
        .kernelSize(2, 2)
        .stride(2, 2)
        .name("pool2").build();
network.layer(l++, pool2);

ConvolutionLayer cnn5 = new ConvolutionLayer.Builder(3, 3)
        .name("cnn5")
        .stride(1, 1)



Deep Learning with DeepLearning4J

[ 601 ]

        .nIn(64).nOut(128)
        .activation("relu").build();
network.layer(l++, cnn5);

ConvolutionLayer cnn6 = new ConvolutionLayer.Builder(3, 3)
        .name("cnn6")
        .stride(1, 1)
        .nIn(128).nOut(128)
        .activation("relu").build();
network.layer(l++, cnn6);

SubsamplingLayer pool3 = new SubsamplingLayer.Builder(PoolingType.MAX)
        .kernelSize(2, 2)
        .stride(2, 2)
        .name("pool3").build();
network.layer(l++, pool3);

There should be nothing new for us here. And then we create the fully-connected layers and
the output:

DenseLayer dense1 = new DenseLayer.Builder()
        .name("ffn1")
        .nOut(512).build();
network.layer(l++, dense1);

DenseLayer dense2 = new DenseLayer.Builder()
        .name("ffn2")
        .nOut(256).build();
network.layer(l++, dense2);

OutputLayer output = new
OutputLayer.Builder(LossFunction.NEGATIVELOGLIKELIHOOD)
        .name("output")
        .nOut(2)
        .activation("softmax").build();
network.layer(l++, output);

Finally, as previously, we specify the input size:

network.setInputType(InputType.convolutionalFlat(HEIGHT, WIDTH, CHANNELS));

Now, we create the model from this architecture and specify the score listener for train
monitoring purposes:

MultiLayerNetwork model = new MultiLayerNetwork(network.build())
ScoreIterationListener scoreListener = new ScoreIterationListener(1);
model.setListeners(scoreListener);



Deep Learning with DeepLearning4J

[ 602 ]

As for training, it happens in exactly the same was as we did previously--we train the
model for a few epochs:

List<URI> trainUris = readImages(new File(root, "train_cv"));
DataSetIterator trainSet = datasetIterator(trainUris);
trainSet.setPreProcessor(preprocessor);

for (int epoch = 0; epoch < 10; epoch++) {
    model.fit(trainSet);
}

ModelSerializer.writeModel(model, new File("model.zip"), true);

In the end, we also save the model into a ZIP archive with three files inside--the coefficients
of the model, the configuration (both parameters and the architecture) in a .json file, and
the configuration for the updater--in case we would like to continue training the model in
the future (the last parameter true tells us to save it and with false we cannot continue
training).

Here, however, the performance monitoring is pretty primitive, we only watch the training
error and do not look at the validation error at all. Next, we will look at more options for
performance monitoring.

Monitoring the performance
What we did for monitoring previously was adding the listener, which outputs the training
score of the model after each iteration:

MultiLayerNetwork model = new MultiLayerNetwork(network.build())
ScoreIterationListener scoreListener = new ScoreIterationListener(1);
model.setListeners(scoreListener);

This will give you some idea of the performance of the model, but only on the training data,
but we typically need more than that--at least the performance on the validation set would
be useful to know to see if we start overfitting or not.

So, let's read the validation dataset:

DataSetIterator valSet = datasetIterator(valUris);
valSet.setPreProcessor(preprocessor);



Deep Learning with DeepLearning4J

[ 603 ]

For training, previously we just took the dataset iterator and passed it to the fit function. We
can improve this process by taking all the training data, shuffling it before each epoch, and
chunking it into parts, with each chunk being equal to 20 batches. After the training on each
chunk is finished, we can iterate over the validation set and see the current validation
performance of the model.

In code, it looks like this:

for (int epoch = 0; epoch < 20000; epoch++) {
    ArrayList<URI> uris = new ArrayList<>(trainUris);
    Collections.shuffle(uris);
    List<List<URI>> partitions = Lists.partition(uris, BATCH_SIZE * 20);

    for (List<URI> set : partitions) {
        DataSetIterator trainSet = datasetIterator(set);
        trainSet.setPreProcessor(preprocessor);
        model.fit(trainSet);
        showTrainPredictions(trainSet, model);
        showLogloss(model, valSet, epoch);
    }

    saveModel(model, epoch);
}

So here we take the URI, shuffle them, and partition them into lists of 20 batches. For
partitioning, we use the Lists.partition method from Google Guava. From each such
partition, we create a dataset iterator and use it for training the model, and then, after each
chunk, we look at the validation score to make sure the network is not overfitting.

Also, it is helpful to see what the network predicts for the data it was just trained on,
especially to check if the network is learning anything. We do this inside the
showTrainPredictions method. If the predictions are different for different inputs, then
it is a good sign. Also, you may want to see how close the predictions are to the actual
labels.

Additionally, we save the model at the end of each epoch, in case something goes wrong,
we can train the process. If you noticed, we set the number of epochs to a high number, so
at some point we can just stop the training (for example, when we see from the logs that we
start overfitting), and just take the last good model.



Deep Learning with DeepLearning4J

[ 604 ]

Let's see how these methods are implemented:

private static void showTrainPredictions(DataSetIterator trainSet,
            MultiLayerNetwork model) {
    trainSet.reset();
    DataSet ds = trainSet.next();
    INDArray pred = model.output(ds.getFeatureMatrix(), false);
    pred = pred.get(NDArrayIndex.all(), NDArrayIndex.point(0));
    System.out.println("train pred: " + pred);
}

The showLogLoss method is simple, but a bit verbose because of the iterators. It does the
following:

Go over all batches in the validation dataset
Record the prediction and the true label for each batch
Put all predictions together in a single double array and does the same with the
actual labels
Calculate the log loss using the code we wrote in Chapter 4, Supervised Learning -
Classification and Regression.

For brevity, we will omit the exact code here, but you are welcome to check the code
bundle.

Saving the model is simple, and we already know how to do it. Here we just add some extra
information to the filename about the epoch number:

private static void saveModel(MultiLayerNetwork model, int epoch) throws
IOException {
    File locationToSave = new File("models", "cats_dogs_" + epoch +
".zip");
    boolean saveUpdater = true;
    ModelSerializer.writeModel(model, locationToSave, saveUpdater);
}

Now, when we have a lot of information to monitor, it becomes quite difficult to
comprehend everything from the logs. To make life easier for us, DeepLearning4j comes
with a special graphical dashboard for monitoring.



Deep Learning with DeepLearning4J

[ 605 ]

This is how the dashboard looks:

Let's add this to our code. First, we need to add an extra dependency to our pom:

<dependency>
  <groupId>org.deeplearning4j</groupId>
  <artifactId>deeplearning4j-ui_2.10</artifactId>
  <version>0.7.1</version>
</dependency>

It is written in Scala, which is why there is the _2.10 suffix at the end, it tells us that this
version is written in Scala 2.10. Since we are using it from Java, it does not matter for us, so
we can take any version we want.

Next, we can create the instance of the UI server, and create a special listener for the
network, which will subscribe to the network's updates:

UIServer uiServer = UIServer.getInstance();
StatsStorage statsStorage = new InMemoryStatsStorage();
uiServer.attach(statsStorage);
StatsListener statsListener = new StatsListener(statsStorage);



Deep Learning with DeepLearning4J

[ 606 ]

And we use it in the same way we used ScoreIterationListener, we add it to the
model via the setListeners method:

MultiLayerNetwork model = createNetwork();
ScoreIterationListener scoreListener = new ScoreIterationListener(1);
model.setListeners(scoreListener, statsListener);

With these changes, when we run the code, it starts the UI server, which we can see if we
open the browser and go to http://localhost:9000; this will show the dashboard from
the preceding code.

These charts are quite useful. The most useful one is the chart showing the model score at
each iteration. This is the training score, the same one we see in the logs from
ScoreIterationListener, which looks like this:

Based on this chart, we can understand how the model behaves during the training--
whether the training process is stable, or whether the model is learning anything at all.
Ideally, we should see the downward trend as shown in the preceding screenshot. If there is
no decrease in the score, then maybe there is something wrong with the network
configuration, for example, the learning rate is too small, not good weight initialization or
too much regularization. If there is an increase in the score, then the most likely problem is
too large learning rate.



Deep Learning with DeepLearning4J

[ 607 ]

The other charts also allow to monitor the training process. The parameter ratios chart
shows the changes in the parameters between each iterations, on the logarithmic scale (that
is, -3.0 corresponds to 0.001 change between iterations). If you see that the change is too
low, for example, below -6.0, then, probably, the network is not learning anything.

Finally, there is a chart that shows the standard deviations of all activations. The reason we
may need this is to detect the so-called vanishing and exploding activations:



Deep Learning with DeepLearning4J

[ 608 ]

The vanishing activation problem is related to the vanishing gradient
problem. For some activations, a change in input results is almost no change
in the output, and the gradient is almost zero, so the neuron is not updated,
so its activation vanishes. The exploding activation is the opposite, the
activation score keeps growing until it reaches infinity.

In this interface, we can also see the full network on the Models tab. Here is a part of our
model:

If we click on each individual layer, we can see some charts for this specific layer.

With these tools, we can closely monitor the performance of the model and adapt the
training process and our parameters when we see that something unusual happens.



Deep Learning with DeepLearning4J

[ 609 ]

Data augmentation
For this problem, we have only 25, 000 training examples. For a deep learning model, this
amount of data is usually not enough to capture all the details. No matter how sophisticated
our network is and how much time we spent tuning it, at some point 25, 000 examples will
not be enough to improve the performance further.

Often, getting more data is very expensive or not possible at all. But what we can do is
generating more data from the data we already have, and this is called data augmentation.
Usually, we generate new data by doing some of the following transformations:

Rotating the image
Flipping the image
Randomly cropping the image
Switching the color channels (for example, changing the red and blue channels)
Changing color saturation, constrast, and brightness
Adding noise

In this chapter, we will look at the first three transformations--rotation, flipping, and
cropping. To do them, we will use Scalr--a library for image manipulation. Let's add it to
the pom file:

<dependency>
  <groupId>org.imgscalr</groupId>
  <artifactId>imgscalr-lib</artifactId>
  <version>4.2</version>
</dependency>

It is very simple and only extends the standard Java API, in the same sense as Apache
Commons Lang does--by providing useful utility methods around the standard
functionality.

For rotation and flipping, we just use the Scalr.rotate method:

File image = new File("cat.10000.jpg");
BufferedImage src = ImageIO.read(image);
Rotation rotation = Rotation.CW_90;
BufferedImage rotated = Scalr.rotate(src, rotation);
File outputFile = new File("cat.10000_cw_90.jpg");
ImageIO.write(rotated, "jpg", outputFile);



Deep Learning with DeepLearning4J

[ 610 ]

As you see, this is pretty easy to use and quite intuitive. All we need to do is pass a
BufferedImage and the desired Rotation. Rotation is an enum with the following
values:

Rotation.CW_90: This involves clockwise rotation by 90 degrees
Rotation.CW_180: This involves clockwise rotation by 180 degrees
Rotation.CW_270: This involves clockwise rotation by 270 degrees
Rotation.FLIP_HORZ: This involves flipping the image horizontally
Rotation.FLIP_VERT: This involves flipping the image vertically

Cropping is also not difficult, and it's done via the Scalr.crop method, which takes in
four parameters--the position where the crop starts (x and y coordinates) and the size of the
crop (height and width). For our problem what we can do is randomly select a coordinate in
the top left corner of the image, and then randomly select the height and the width of the
crop. We can do it this way:

int width = src.getWidth();
int x = rnd.nextInt(width / 2);
int w = (int) ((0.7 + rnd.nextDouble() / 2) * width / 2);

int height = src.getHeight();
int y = rnd.nextInt(height / 2);
int h = (int) ((0.7 + rnd.nextDouble() / 2) * height / 2);

if (x + w > width) {
    w = width - x;
}

if (y + h > height) {
    h = height - y;
}

BufferedImage crop = Scalr.crop(src, x, y, w, h);

Here, we first randomly select the x and y coordinates and then select the width and the
height. In the code, we select the weight and the height such that they are at least 35% of the
image--but can go up to 60% of the image. Of course, you are free to play with these
parameters and change them to whatever makes more sense.

Then we also check if we do not overcome the image boundaries, that is, the crop always
stays within the image; and finally we call the crop method. Optionally, we can also rotate
or flip the cropped image at the end.



Deep Learning with DeepLearning4J

[ 611 ]

So, for all the files, it may look like this:

for (File f : all) {
    BufferedImage src = ImageIO.read(f);
    for (Rotation rotation : Rotation.values()) {
        BufferedImage rotated = Scalr.rotate(src, rotation);
        String rotatedFile = f.getName() + "_" + rotation.name() + ".jpg";
        File outputFile = new File(outputDir, rotatedFile);
        ImageIO.write(rotated, "jpg", outputFile);

        int width = src.getWidth();
        int x = rnd.nextInt(width / 2);
        int w = (int) ((0.7 + rnd.nextDouble() / 2) * width / 2);

        int height = src.getHeight();
        int y = rnd.nextInt(height / 2);
        int h = (int) ((0.7 + rnd.nextDouble() / 2) * height / 2);

        if (x + w > width) {
            w = width - x;
        }

        if (y + h > height) {
            h = height - y;
        }

        BufferedImage crop = Scalr.crop(src, x, y, w, h);
        rotated = Scalr.rotate(crop, rotation);

        String cropppedFile = f.getName() + "_" + x + "_" + w + "_" +
                    y + "_" + h + "_" + rotation.name() + ".jpg";

        outputFile = new File(outputDir, cropppedFile);
        ImageIO.write(rotated, "jpg", outputFile);
    }
}

In this code, we iterate over all training files, and then we apply all the rotations to the
image itself and to a random crop from this image. This code should generate 10 new
images from each source image. For example, for the following image of a cat, there will be
10 images generated as follows:



Deep Learning with DeepLearning4J

[ 612 ]

We only briefly listed the possible augmentations, and if you remember, the last one was
adding random noise. This is typically easy to implement, so here are some ideas as to what
you can do:

Replace some pixel values with 0 or with some random value
Add or subtract the same small number from all the values
Generate some Gaussian noise with a small variance and add it to all the channels
Add the noise only to a part of the image
Invert a part of the image
Add a filled square of some random color to the image; the color could have the
alpha channel (that is, it could somewhat transparent) or not
Apply strong JPG encoding to the image

With this, you can virtually generate an infinite number of data samples for training. Of
course, you probably will not need so many samples, but by using these techniques, you
can augment any image dataset and considerably improve the performance of the model
trained on this data.



Deep Learning with DeepLearning4J

[ 613 ]

Running DeepLearning4J on GPU
As we mentioned previously, DeepLearning4j relies on ND4J for numerical calculations.
ND4J is an interface, and there are multiple possible implementations. So far, we have used
the one based on OpenBLAS, but there are other ones. We also mentioned that ND4J can
utilize a Graphics Processing Unit (GPU), which is a lot faster than CPUs for typical Linear
Algebra operations used in neural networks such as matrix multiplication. To use it, we
need to get the CUDA ND4J backend.

CUDA is an interface used for executing the computations on NVidia's
GPUs, and it supports a wide range of graphical cards. Internally, ND4J
uses CUDA to run numerical computations on GPUs.

If you have previously executed all the code on the CPU via BLAS, you must have noticed
how slow it is. Switching the ND4J backend to CUDA should considerably improve the
performance by several orders of magnitude.

This is done by including the following dependency to the pom file:

<dependency>
  <groupId>org.nd4j</groupId>
  <artifactId>nd4j-cuda-7.5</artifactId>
  <version>0.7.1</version>
</dependency>

This dependency assumes that you have CUDA 7.5 installed.

For CUDA 8.0, you should replace 7.5 with 8.0: both CUDA 7.5 and CUDA 8.0 are
supported by ND4J.

If you already have a GPU with all the drivers installed, just adding this dependency is
enough to use the GPU for training the networks, and when you do this, you will see a
great performance boost.

What is more, you can use the UI dashboard to monitor the GPU memory usage, and if you
see that it is low, you can try to utilize it better, for example, by increasing the batch size.
You can find this chart on the System tab:



Deep Learning with DeepLearning4J

[ 614 ]

If you do not have a GPU, but do not want to wait while your CPU is crunching numbers,
you can easily rent a GPU computer. There are cloud providers such as Amazon AWS who
allow you to instantly get a server with a GPU even just for a few hours.

If you have never rented a server on Amazon AWS, we have prepared simple instructions
on how to get started with training there.

Before renting a server, let's first prepare everything that we need; the code and the data.

For data, we just take all the files (including the augmented ones) and put them into a single
archive file:

zip -r all-data.zip  train_cv/  val_cv/

Then, we need to build the code such that we also have all the .jar files with dependencies
laying nearby. This is done with maven-dependency-plugin, a plugin for Maven. We
have used this plugin previously in Chapter 3, Exploratory Data Analysis, so we will omit
the XML configuration that we need to add to our pom.xml file.



Deep Learning with DeepLearning4J

[ 615 ]

Now we use Maven to compile our code and put this into a .jar file:

mvn package

In our case, the project is called chapter-08-dl4j, so executing the package goal with
Maven creates a chapter-08-dl4j-0.0.1-SNAPSHOT.jar file in the target folder. But
since we also use the dependency plugin, it creates a libs folder, where you can find all the
dependencies. Let's put everything into a single .zip file:

zip -r code.zip chapter-08-dl4j-0.0.1-SNAPSHOT.jar libs/

After performing the preparation steps, we will have two ZIP files, all-data.zip and
code.zip.

Now, when we have prepared the program and the data, we can go to aws.amazon.com and
sign into the console or create an account if you don't have one yet. When you are in, select
EC2, which will bring you to the EC2 dashboard. Next, you can select the region you are
interested in. You can either select something geographically close or the cheapest one.
Usually, N. Virginia and US West Oregon are quite cheap compared to others.

Then, find the Launch Instance button and click on it.

If you need a GPU computer only for a few hours, you can choose to create a
spot instance--they are cheaper than the usual instances, but their price is
dynamic, and at some point, such an instance can die if somebody else is
willing to pay more for the instance you are using. When starting it, you can
set a price threshold, and if you choose something like $1 there, the instance
should last for a long time.

When creating an instance, it is possible to use an existing AMI, an image of a system with
some software preinstalled. The best option here is to look for CUDA, which will give you
the official NVidia CUDA 7.5 image, but you are free to choose any other image you want.

Note that some of the AMIs are not free, be careful when choosing. Also,
choose the AMI provider you can trust, as sometimes there could be
malicious images, which will use the computational resources for something
else than your task. If in doubt, use the official NVidia image, or create an
image yourself from scratch.

Once you select the image, you can choose the instance type. For our purposes, the
g2.2.xlarge instance is enough, but there are larger and more powerful ones if you wish.

http://aws.amazon.com


Deep Learning with DeepLearning4J

[ 616 ]

Next, you need to select the storage type; we don't need anything and can skip this step. But
the next is important, here we set up the security rules. Since the UI dashboard runs on port
9,000, we need to open it, so it is accessible from the outside world. We can then add a
custom TCP rule and write 9000 there.

After this step, we are done and can proceed to launching the instance before reviewing the
details.

Next, it will ask you to specify the key pair (.pem) for ssh to the instance, and you can
create and download a new one if you don't have any. Let's create a key pair named dl4j
and save it to the home folder.

Now, the instance is launched and ready to use. To access it, go to the dashboard and find
the public DNS of the instance, this is the name you can use for accessing the server from
your machine. Let's put this into an environment variable:

EC2_HOST=ec2-54-205-18-41.compute-1.amazonaws.com

From now on, we will assume you are using a bash shell on Linux, but it should work well
in MacOS or Windows with cygwin or MinGW.

Now, we can upload the .jar file we previously built along with the data. For that, we will
use sftp. Connecting the sftp client using the pem file is done this way:

sftp -o IdentityFile=~/dl4j.pem ec2-user@$EC2_HOST

Note that you should be in the folder with the data and the program archive. Then you can
upload them by executing the following commands:

put code.zip
put all-data.zip

The data is uploaded, so now we can apply ssh to the instance to run the program:

ssh -i "~/dl4j.pem" ec2-user@$EC2_HOST

The first thing we do is to unpack the archives:

unzip code.zip
unzip all-data.zip

If for some reason you do not have any free space left in the home folder,
run the df -h command to see if there are any places with free space.
There must be other disks with available space, where you can store the
data.



Deep Learning with DeepLearning4J

[ 617 ]

By now we have unpacked everything and are ready to execute the code. But if you use the
CUDA 7.5 AMI from NVidia, it only has Java 7 support. Since we used Java 8 for writing
the code, we need to install Java 8:

sudo yum install java-1.8.0-openjdk.x86_64

We do not want the execution to stop when we leave the ssh session, so it is best to create
screen there (or you can use tmux if you prefer):

screen -R dl4j

Now we run the code there:

java8 -cp chapter-08-dl4j.jar:libs/* chapter08.catsdogs.VggCatDog ~/data

Once you see that the model started training, you can detach the screen by pressing Ctrl + A
followed by D. Now you can close the terminal and use the UI to watch the training
process. To do it, just put EC2_HOST:9000 to your browser, where EC2_HOST is the public
DNS of the instance.

This is it, now you just need to wait for some time until your model converges.

There could be some problem along the way.

If it says that it cannot find openblas binaries, then you have several options. You can
either remove the dl4j-native JARS from the libs folder, or you can install openblas.
The first option might be preferrable because we don't need to use the CPU anyways.

Another issue you can potentially run into is a missing NVCC executable, which is needed
for dj4j's CUDA 7.5 library. Solving it is easy, you just need to add the path to CUDA's
binaries to the PATH variable:

PATH=/usr/local/cuda-7.5/bin:$PATH

Summary
In this chapter, we looked at how we can use deep learning in Java applications, learned the
basics of the DeepLearning4j library, and then tried to apply it to an image recognition
problem where we wanted to classify images to dogs and cats.

In the next chapter, we will cover Apache Spark--a library for distributing data science
algorithms across a cluster of machines.



  9
Scaling Data Science

So far we have covered a lot of material about data science, we learned how to do both
supervised and unsupervised learning in Java, how to perform text mining, use XGBoost
and train Deep Neural Networks. However, most of the methods and techniques we used
so far were designed to run on a single machine with the assumption that all the data will
fit into memory. As you should already know, this is often the case: there are very large
datasets that are not possible to process with traditional techniques on a typical hardware.

In this chapter, we will see how to process such datasets--we will look at the tools that allow
processing the data across several machines. We will cover two use cases: one is large scale
HTML processing from Common Crawl - the copy of the Web, and another is Link
Prediction for a social network.

We will cover the following topics:

Apache Hadoop MapReduce
Common Crawl processing
Apache Spark
Link prediction
Spark GraphFrame and MLlib libraries
XGBoost on Apache Spark

By the end of this chapter, you will learnt how to use Hadoop to extracting data from
Common Crawl, how to use Apache Spark for link prediction, and how to use XGBoost in
Spark.



Scaling Data Science

[ 619 ]

Apache Hadoop
Apache Hadoop is a set of tools that allows you to scale your data processing pipelines to
thousands of machines. It includes:

Hadoop MapReduce: This is a data processing framework
HDFS: This is a distributed filesystem, which allows us to store data on multiple
machines
YARN: This is the executor of MapReduce and other jobs

We will only cover MapReduce, as it is the core of Hadoop and it is related to data
processing. We will not cover the rest, and we will also not talk about setting up or
configuring a Hadoop Cluster as this is slightly beyond scope for this book. If you are
interested in knowing more about it, Hadoop: The Definitive Guide by Tom White is an
excellent book for learning this subject in depth.

In our experiments, we will use the local mode, that is, we will emulate the cluster, but still
run the code on a local machine. This is very useful for testing, and once we are sure that it
works correctly, it can be deployed to a cluster with no changes.

Hadoop MapReduce
As we already said, Hadoop MapReduce is a library, that allows you to process data in a
scalable way.

There are two main abstractions in the MapReduce framework: Map and Reduce. This idea
originally comes from the functional programming paradigm, where map and reduce are
high-level functions:

map: This takes in a function and a sequence of elements and applies the function
to each of the elements in turn. The result is a new sequence.
reduce: This also takes in a function and a sequence, and it uses this function to
process the sequence and ultimately return a single element in the end.

In this book, we have already used the map function from the Java Stream API quite
extensively, starting with Chapter 2, Data Processing Toolbox, so you must be quite familiar
with it by now.



Scaling Data Science

[ 620 ]

In Hadoop MapReduce, the map and reduce functions are a bit different from their
predecessors:

Map takes in an element and returns a number of key-value pairs. It can return
nothing, one, or several such pairs, so it is more flatMap than map
Then the output is grouped by key via sorting
Finally, reduce takes in a group, and for each group outputs a number of key-
value pairs

Typically, MapReduce is illustrated with the word count example: given a text, we want to
count how many times each word appeared in the text. The solution is as follows:

The map takes in text, then tokenizes it, and for each token outputs a pair
(token, 1), where token is the key, and 1 is the associated value.
The reducer sums over all ones and this is the final count.

We will implement something similar: instead of just counting words, we will create TF-IDF
vectors for each of the tokens in the corpus. But first, we need to get a large amount of text
data from somewhere. We will use the Common Crawl dataset, which contains a copy of
the Web.

Common Crawl
Common Crawl (h t t p ://c o m m o n c r a w l . o r g /) is a repository of data crawled from the
Internet over the last seven years. It is extremely large and, what is more is, it is available
for everyone to download and analyze.

Of course, we will not be able to use all of it: even a small fraction is so large that it requires
a big and powerful cluster for processing it. In this chapter, will take a few archives from
the end of 2016, and extract the text ting TF-IDF.

Downloading the data is not complex and you can find the instructions at h t t p ://c o m m o n c r

a w l . o r g /t h e - d a t a /g e t - s t a r t e d /. The data is already available in the S3 storage, so AWS
users can access it easily. In this chapter, however, we will download a part of Common
Crawl via HTTP without using AWS.

http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/


Scaling Data Science

[ 621 ]

At the time of writing, the most recent data is from December 2016, which is located at
s3://commoncrawl/crawl-data/CC-MAIN-2016-50. As per the instruction, we first
need to get all the paths to individual archive files for this month, and they are stored in a
warc.paths.gz file. So, in our case, we are interested in s3://commoncrawl/crawl-
data/CC-MAIN-2016-50/warc.paths.gz.

Since we do not plan to use AWS, we need to convert it to a path downloadable via HTTP.
For that, we replace s3://commoncrawl/ with
https://commoncrawl.s3.amazonaws.com:

wget
https://commoncrawl.s3.amazonaws.com/crawl-data/CC-MAIN-2016-50/warc.paths.
gz

Let's look at the file:

zcat warc.paths.gz | head -n 3

You will see a lot of lines like this (the suffixes are omitted for brevity):

.../CC-MAIN-20161202170900-00000-ip-10-31-129-80.ec2.internal.warc.gz

.../CC-MAIN-20161202170900-00001-ip-10-31-129-80.ec2.internal.warc.gz

.../CC-MAIN-20161202170900-00002-ip-10-31-129-80.ec2.internal.warc.gz

To download it via HTTP, we again need to append h t t p s ://c o m m o n c r a w l . s 3. a m a z o n a w s .

c o m / to every line of this file. This is easily achieved with awk:

zcat warc.paths.gz
  | head
  | awk '{ print "https://commoncrawl.s3.amazonaws.com/" $0}'
  > files.txt

Now we have the first 10 URLs from this file, so we can download them:

for url in $(cat files.txt); do
  wget $url;
done

To speed things up, we can download the files in parallel with gnu-parallel:

cat files.txt | parallel --gnu "wget {}"

Now we have downloaded somewhat biggish data: about 10 files of 1GB each. Note that
there are about 50,000 lines in the path file, there are approximately 50,000 GBs of data just
for December. This is a lot of data, and everybody can use it at any time!

https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/
https://commoncrawl.s3.amazonaws.com/


Scaling Data Science

[ 622 ]

We won't use all of it and will only concentrate on the 10 files we have already downloaded.
Let's process them with Hadoop.

The first step is normal: we need to specify the dependencies to Hadoop in the .pom file:

<dependency>
  <groupId>org.apache.hadoop</groupId>
  <artifactId>hadoop-client</artifactId>
  <version>2.7.3</version>
</dependency>
<dependency>
  <groupId>org.apache.hadoop</groupId>
  <artifactId>hadoop-common</artifactId>
  <version>2.7.3</version>
</dependency>

Common Crawl uses WARC for storing the HTML data: this is a special format for storing
the crawled data. To be able to process it, we need to add a special library for reading it:

<dependency>
  <groupId>org.netpreserve.commons</groupId>
  <artifactId>webarchive-commons</artifactId>
  <version>1.1.2</version>
</dependency>

Next, we need to tell Hadoop how to use such files. For this purpose, programmers
typically need to provide implementations of FileRecordReader and FileImportFormat
classes. Luckily, there are open source implementations, which we can just copy and paste
to our projects. One of them is available at h t t p s ://g i t h u b . c o m /S m e r i t y /c c - w a r c - e x a m p l

e s in the org.commoncrawl.warc package. So we just copy WARCFileInputFormat and
WARCFileRecordReader from there to our project. This code is also included in the code
bundle of this book, in case the repository is removed.

With this, we are ready to start coding. First, we need to create a Job class: it specifies
which mapper and reducer classes will be used to run the job and allows us to configure
how this job will be executed. So, let's create an WarcPreparationJob class, which extends
the Configured class and implements the Tool interface:

public class WarcPreparationJob extends Configured implements Tool {
    public static void main(String[] args) throws Exception {
        int res = ToolRunner.run(new Configuration(),
              new WarcPreparationJob(), args);
        System.exit(res);
    }

    public int run(String[] args) throws Exception {

https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples
https://github.com/Smerity/cc-warc-examples


Scaling Data Science

[ 623 ]

        // implementation goes here
    }
}

The Java doc for the Tool interface is quite informative and describes in detail how such a
Job class should be implemented: it has overriden the run method, where it should specify
the input and the output paths as well as the mapper and reducer classes.

We will adapt this code slightly: first, we will have a map-only Job, so we do not need a
reducer. Also, since we are working with texts, it is useful to compress the output. So, let's
create the run method with the following code. First, we create a Job class:

Job job = Job.getInstance(getConf());

Now we will look at the input and its format (WARC in our case):

Path inputPath = new Path(args[0]);
FileInputFormat.addInputPath(job, inputPath);
job.setInputFormatClass(WARCFileInputFormat.class);

Next, we specify the output, which is gzipped text:

Path outputPath = new Path(args[1];
TextOutputFormat.setOutputPath(job, outputPath);
TextOutputFormat.setCompressOutput(job, true);
TextOutputFormat.setOutputCompressorClass(job, GzipCodec.class);
job.setOutputFormatClass(TextOutputFormat.class);

Usually, the output is key-value pairs, but since we just want to process WARC and extract
the text from there, we only output a key, and no value:

job.setOutputKeyClass(Text.class);
job.setOutputValueClass(NullWritable.class);

Finally, we specify the mapper class and say that there will be no reducers:

job.setMapperClass(WarcPreparationMapper.class);
job.setNumReduceTasks(0);

Now, when we have specified the job, we can implement the mapper class--
WarcPreparationMapper in our case. This class should extend the Mapper class. All
mappers should implement the map method, so our mapper should have the following
outline:

public class WarcPreparationMapper extends
        Mapper<Text, ArchiveReader, Text, NullWritable> {



Scaling Data Science

[ 624 ]

   @Override
   protected void map(Text input, ArchiveReader archive, Context context)
             throws IOException, InterruptedException {
       // implementation goes here
   }

}

The map method takes in a WARC archive with a collection of records, so we want to
process all of them. Thus, we put the following to the map method:

for (ArchiveRecord record : archive) {
    process(record, context);
}

And the process method does the following: it extracts the HTML from the record, then
extracts the text from HTML, tokenizes it, and then, finally, writes the results to the output.
In code it looks like this:

String url = record.getHeader().getUrl();
String html = TextUtils.extractHtml(record);
String text = TextUtils.extractText(html);
List<String> tokens = TextUtils.tokenize(text);
String result = url + "t" + String.join(" ", tokens);
context.write(new Text(result), NullWritable.get());

Inside we use three helper functions: extractHtml, extractText, and tokenize. We
have already used the last two (exctractHtml and tokenize) a few times, so we will omit
their implementation; refer to Chapter 6, Working with Text - Natural Language Processing
and Information Retrieval.

And the first one, extractHtml, contains the following code:

byte[] rawData = IOUtils.toByteArray(r, r.available());
String rawContent = new String(rawData, "UTF-8");
String[] split = rawContent.split("(r?n){2}", 2);
String html = split[1].trim();

It converts the data from the archive to String with UTF-8 encoding (which sometimes
might not be ideal because not all pages on the Internet use UTF-8), and then removes the
response header and keeps only the remaining HTML.

Finally, to run these classes, we can use the following code:

String[] args = { /data/cc_warc", "/data/cc_warc_processed" };
ToolRunner.run(new Configuration(), new WarcPreparationJob(), args);



Scaling Data Science

[ 625 ]

Here we manually specify the "command-line" parameters (the ones that you get in the
main method) and pass them to the ToolRunner class, which can run Hadoop Jobs in the
local model.

The results may have pornographic content. Since Common Crawl is a
copy of the Web, and there are a lot of pornographic websites on the
Internet, it is very likely that you will see some pornographic text in the
processed results. It is quite easy to filter it out by keeping a special a list
of pornographic keywords and discarding all the documents that contain
any of these words.

After running this job, you will see that there are plenty of different languages in the results.
If we are interested in a specific language, then we can automatically detect the language of
a document, and keep only those documents that are in the language we are interested in.

Several Java libraries which can do language detection. One of them is language-detector,
which can be included in our project with the following dependency snippet:

<dependency>
  <groupId>com.optimaize.languagedetector</groupId>
  <artifactId>language-detector</artifactId>
  <version>0.5</version>
</dependency>

Not surprisingly, this library uses machine learning for detecting the language. So, the first
thing we need to do to use it is to load the model:

List<LanguageProfile> languageProfiles =
        new LanguageProfileReader().readAllBuiltIn();
LanguageDetector detector =
LanguageDetectorBuilder.create(NgramExtractors.standard())
        .withProfiles(languageProfiles)
        .build();

And we can use it this way:

Optional<LdLocale> result = detector.detect(text);
String language = "unk";
if (result.isPresent()) {
    language = result.get().getLanguage();
}



Scaling Data Science

[ 626 ]

With this, we can just keep the articles in English (or any other language) and discard the
rest. So, let's extract the text from the files we downloaded:

String lang = detectLanguage(text.get());
if (lang.equals("en")) {
    // process the data
}

Here, detectLanguage is a method, that contains the code for detecting what is the
language of the text: we wrote this code earlier.

Once we have processed the WARC files and extracted the text from them, we can calculate
IDF for every token in our corpus. For that, we need to first calculate DF - Document
Frequency. This is very similar to the Word Count example:

First, we need a mapper that outputs 1 for each distinct word in the document
Then the reducer sums up all the ones to come up with the final count

This job will process the documents we just parsed from Common Crawl.

Let's create the mapper. It will have the following code in the map method:

String doc = value.toString();
String[] split = doc.split("t");
String joinedTokens = split[1];
Set<String> tokens = Sets.newHashSet(joinedTokens.split(" "));
LongWritable one = new LongWritable(1);

for (String token : tokens) {
    context.write(new Text(token), one);
}

The input to the mapper is a Text object (named value), which contains the URL and the
tokens. We split the tokens and keep only distinct ones using a HashSet. Finally, for each
distinct token, we write 1.

For calculating IDF, we typically need to know N: the number of documents in our corpus.
There are two ways of getting it. First, we can use the counters: create a counter and
increment it for each successfully processed document. It is quite easy to do.



Scaling Data Science

[ 627 ]

The first step is to create a special enum with the possible counters we want to use in our
application. Since we need to have only one type of counter, we create an enum with just
one element:

public static enum Counter {
    DOCUMENTS;
}

The second step is to use the context.getCounter() method and increment the counter:

context.getCounter(Counter.DOCUMENTS).increment(1);

Once the job is over, we can get the value of the counter with this code:

Counters counters = job.getCounters();
long count = counters.findCounter(Counter.DOCUMENTS).getValue();

But there is another option: we can just pick a large number and use it as the number of
documents. It typically does not need to be exact since IDFs of all tokens share the same N.

Now, let's continue with the reducer. Since the mapper outputs Text and a long (via
LongWritable), the reducer gets in a Text and an iterable over LongWritable classes--
this is the token and a bunch of ones. What we can do is just sum over all of them:

long sum = 0;
for (LongWritable cnt : values) {
    sum = sum + cnt.get();
}

To keep only frequent tokens, we can add a filter, to discard all infrequent words and make
the results significantly smaller:

if (sum > 100) {
    context.write(key, new LongWritable(sum));
}

Then, the code in our job class for running it will look like this:

job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(LongWritable.class);

job.setMapperClass(DocumentFrequencyMapper.class);
job.setCombinerClass(DocumentFrequencyReducer.class);
job.setReducerClass(DocumentFrequencyReducer.class);



Scaling Data Science

[ 628 ]

Note that we not only set mapper and reducer, but also specify a combiner: this allows us to
pre-aggregate some 1's that we output in the mapper and spend less time sorting the data
and sending the results around the network.

Finally, to convert a document to TF-IDF, we can create a third job, reduce-less again, which
will read the results of the first job (where we processed WARC files) and apply the IDF
weighting from the second job.

We expect that the output of the second job should be quite small to fit into memory, so
what we can do is send the file to all mappers, read it during the initialization, and then go
over the lines of processed WARC and previously.

The main parts of the job class are the same: we input and the output is Text--the output is
compressed and the number of reducer tasks is 0.

Now we need to send the results of the df job to all the mappers. This is done via the cache
files:

Path dfInputPath = new Path(args[3]);
job.addCacheFile(new URI(dfInputPath.toUri() + "#df"));

So here we specify the path to the df job results and then put it to the cache file. Note #df at
the end: this is the alias we will use for accessing the file later.

Inside the mapper, we can read all the results into a map (in the setup method):

dfs = new HashMap<>();
File dir = new File("./df");
for (File file : dir.listFiles()) {
    try (FileInputStream is = FileUtils.openInputStream(file)) {
        LineIterator lines = IOUtils.lineIterator(is,
StandardCharsets.UTF_8);
        while (lines.hasNext()) {
            String line = lines.next();
            String[] split = line.split("t");
            dfs.put(split[0], Integer.parseInt(split[1]));
        }
    }
}

Here, df is the alias we assigned to the results file, and it is actually a folder, not a file. So to
get the result, we need to go over each file in the folder, read them line by line, and put the
results into a map. Then we can use this dictionary with counts in the map method for
applying the IDF weight:

String doc = value.toString();



Scaling Data Science

[ 629 ]

String[] split = doc.split("t");
String url = split[0];
List<String> tokens = Arrays.asList(split[1].split(" "));
Multiset<String> counts = HashMultiset.create(tokens);
String tfIdfTokens = counts.entrySet().stream()
        .map(e -> toTfIdf(dfs, e))
        .collect(Collectors.joining(" "));
Text output = new Text(url + "t" + tfIdfTokens);
context.write(output, NullWritable.get());

Here we take the tokens and use Multiset for calculating the Term Frequency. Next, we
multiply the TF by IDF inside the toTfIdf function:

String token = e.getElement();
int tf = e.getCount();
int df = dfs.getOrDefault(token, 100);
double idf = LOG_N - Math.log(df);
String result = String.format("%s:%.5f", token, tf * idf);

Here, we get the DF (Document Frequency) for each input entry of Multiset, and if the
token is not in our dictionary, we assume that it is quite rare, so we assign it the default DF
of 100. Next, we calculate IDF and finally tf*idf. For calculating IDF, we use LOG_N, which
is a constant we set to Math.log(1_000_000).

For this example, 1 million was chosen as the number of documents. Even though the real
number of documents is smaller (around 5k), it is the same for all the tokens. What is more,
if we decide to add more documents to our index, we can still use the same N and not
worry about re-calculating everything.

This produces the output that looks like this:

http://url.com/        flavors:9.21034 gluten:9.21034 specialty:14.28197
salad:18.36156 ...

As you must have noticed, the output of each job is saved to the disk. If we have multiple
jobs, like we did, we need to read the data, process it, and save it back. I/O is quite costly, so
some of these steps are intermediate and we do not need to save the results. In Hadoop
there is no way to avoid this, which is why it is pretty slow sometimes and gives a lot of I/O
overhead.

Luckily, there is another library that solves this problem: Apache Spark.



Scaling Data Science

[ 630 ]

Apache Spark
Apache Spark is a framework for scalable data processing. It was designed to be better than
Hadoop: it tries to process data in memory and not to save intermediate results on disk.
Additionally, it has more operations, not just map and reduce, and thus richer APIs.

The main unit of abstraction in Apache Spark is Resilient Distributed Dataset (RDD),
which is a distributed collection of elements. The key difference from usual collections or
streams is that RDDs can be processed in parallel across multiple machines, in the same
way, Hadoop jobs are processed.

There are two types of operations we can apply to RDDs: transformations and actions.

Transformations: As the name suggests, it only changes data from one form to
another. As input, they receive an RDD, and they also output an RDD.
Operations such as map, flatMap, or filter are examples of transformation
operations.
Actions: These take in an RDD and produce something else, for example, a value,
a list, or a map, or save the results. Examples of actions are count and reduce.

Like in the Java Steam API, transformations are lazy: they are not performed right away,
but instead they are chained together and computed in one go, without the need to save the
intermediate results to disk. In the Steam API, the chain is triggered by collecting the
stream, and it is the same in Spark: when we perform an action, all transformation that is
needed for this particular action are executed. If on the other hand some transformations
are not required, then they will never be executed, which is why they are called lazy.

So let's start with Spark by first including its dependency to the .pom file:

<dependency>
  <groupId>org.apache.spark</groupId>
  <artifactId>spark-core_2.11</artifactId>
  <version>2.1.0</version>
</dependency>

In this section, we will use it for computing TF-IDF: so we will try to reproduce the
algorithm we just wrote for Hadoop.

The first step is to create the configuration and the context:

SparkConf conf = new SparkConf().setAppName("tfidf").setMaster("local[*]");
JavaSparkContext sc = new JavaSparkContext(conf);



Scaling Data Science

[ 631 ]

Here, we specify the name of the Spark application and also the server URL to which it will
connect. Since we are running Spark in a local mode, we put local[*]. This means that we
set up a local server and create as many local workers as possible.

Spark relies on some Hadoop utilities, which makes it harder to run it on Windows. If you
are running under Windows, you may have a problem with not being able to locate the
winutils.exe file, which is needed by Spark and Hadoop. To solve this, do the following:

Create a folder for Hadoop files, for example, c:/tmp/hadoop (make sure there
are no spaces in the path)
Download winutils.exe from h t t p ://p u b l i c - r e p o - 1. h o r t o n w o r k s . c o m /h d p -
w i n - a l p h a /w i n u t i l s . e x e

Put the file to the folder c:/tmp/hadoop/bin--note the bin subdirectory.
Set the HADOOP_HOME environment variable to c:/tmp/hadoop and,
alternatively, use the following code:

System.setProperty("hadoop.home.dir", "c:/tmp/hadoop");

This should solve the problem.

The next step is to read the text file, which we created with Hadoop after processing the
Common Crawl files. Let's read it:

JavaRDD<String> textFile = sc.textFile("C:/tmp/warc");

To peek into the files, we can use the take function, which returns the top 10 elements from
the RDD, and then we print each line to stdout:

textFile.take(10).forEach(System.out::println);

Now we can read the file line-by-line, and, for each document, output all the distinct tokens
it has:

JavaPairRDD<String, Integer> dfRdd = textFile
    .flatMap(line -> distinctTokens(line))
   .mapToPair(t -> new Tuple2<>(t, 1))
   .reduceByKey((a, b) -> a + b)
   .filter(t -> t._2 >= 100);

Here, distinctToken is a function that splits the line and puts all the tokens into a set to
keep only the distinct ones. Here is how it is implemented:

private static Iterator<String> distinctTokens(String line) {
    String[] split = line.split("t");
   Set<String> tokens = Sets.newHashSet(split[1].split(" "));

http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe


Scaling Data Science

[ 632 ]

   return tokens.iterator();
}

The flatMap function needs to return an iterator, so we invoke the iterator method on the
set at the end.

Next, we convert each line to a tuple: this step is needed to tell Spark that we have key-
value pairs, so functions such as reduceByKey and groupByKey are available. Finally, we
call the reduceByKey method with the same implementation as we previously had in
Hadoop. At the end of the transformation chain, we apply the filter to keep only frequent
enough tokens.

You might have already noticed that this code is quite simple, compared to the Hadoop job
we wrote previously.

Now we can put all the results into a Map: since we applied the filtering, we expect that the
dictionary should easily fit into a memory even on modest hardware. We do it by using the
collectAsMap function:

Map<String, Integer> dfs = dfRdd.collectAsMap();

Lastly, we go over all the documents again, and this time apply the TF-IDF weighting
scheme to all the tokens:

JavaRDD<String> tfIdfRdd = textFile.map(line -> {
    String[] split = line.split("t");
    String url = split[0];
    List<String> tokens = Arrays.asList(split[1].split(" "));
    Multiset<String> counts = HashMultiset.create(tokens);

    String tfIdfTokens = counts.entrySet().stream()
           .map(e -> toTfIdf(dfs, e))
           .collect(Collectors.joining(" "));

    return url + "t" + tfIdfTokens;
});

We parse the input as we did previously and use Multiset from Guava for calculating TF.
The toTfIdf function is exactly the same as before: it takes in an entry from Multiset,
weights it by IDF, and outputs a string in the token:weight format.

To have a look at the results, we can take the first 10 tokens from the RDD and print them to
stdout:

tfIdfRdd.take(10).forEach(System.out::println);



Scaling Data Science

[ 633 ]

Finally, we save the results to a text file using the saveAsTextFile method:

tfIdfRdd.saveAsTextFile("c:/tmp/warc-tfidf");

As we see, we can do the same in Spark with significantly less code. What is more, it is also
more efficient: it does not need to save the results to disk after each step and applies all the
required transformations on-the-fly. This makes Spark a lot faster than Hadoop for many
applications.

However, there are cases when Hadoop is better than Spark. Spark tries to keep everything
in memory, and sometimes it fails with OutOfMemoryException because of this. Hadoop
is a lot simpler: all it does is it writes to files, and then performa big distributed merge sort
over the data. That being said, in general, you should prefer Apache Spark over Hadoop
MapReduce, because Hadoop is slower and quite verbose.

In the next section, we will see how we can use Apache Spark and its Graph Processing and
Machine Learning libraries for the Link Prediction problem.

Link prediction
Link Prediction is the problem of predicting which links will appear in a network. For
example, we can have a friendship graph in Facebook or another social network, and
functionality like people you may know is an application of Link Prediction. So, we can see
Link Prediction is a recommendation system for social networks.

For this problem, we need to find a dataset that contains a graph evolving over time. Then,
we can consider such a graph at some point in its evolution, calculate some characteristics
between the existing links, and, based on that, predict which links are likely to appear next.
Since for such graphs we know the future, we can use this knowledge for evaluating the
performance of our models.

There are a number of interesting datasets available, but unfortunately, most of them do not
have a time associated to the edges, so it is not possible to see how these graphs developed
over time. This makes it harder to test the methods, but, of course, it is possible to do it
without the time dimension.

Luckily, there are some datasets with timestamped edges. For this chapter, we will use the
coauthorship graph based on the data from DBLP (h t t p ://d b l p . u n i - t r i e r . d e /) - a search
engine that indexes computer science papers. The dataset is available from h t t p ://p r o j e c t

s . c s a i l . m i t . e d u /d n d /D B L P / (dblp_coauthorship.json.gz file) and it includes the
papers from 1938 until 2015. It is already in the graph form: each edge is a pair of authors
who published a paper together and each edge also contains the year when they did this.

http://dblp.uni-trier.de/
http://dblp.uni-trier.de/
http://dblp.uni-trier.de/
http://dblp.uni-trier.de/
http://dblp.uni-trier.de/
http://dblp.uni-trier.de/
http://dblp.uni-trier.de/
http://dblp.uni-trier.de/
http://dblp.uni-trier.de/
http://dblp.uni-trier.de/
http://dblp.uni-trier.de/
http://dblp.uni-trier.de/
http://dblp.uni-trier.de/
http://dblp.uni-trier.de/
http://dblp.uni-trier.de/
http://dblp.uni-trier.de/
http://dblp.uni-trier.de/
http://dblp.uni-trier.de/
http://dblp.uni-trier.de/
http://dblp.uni-trier.de/
http://dblp.uni-trier.de/
http://dblp.uni-trier.de/
http://dblp.uni-trier.de/
http://dblp.uni-trier.de/
http://dblp.uni-trier.de/
http://dblp.uni-trier.de/
http://dblp.uni-trier.de/
http://dblp.uni-trier.de/
http://dblp.uni-trier.de/
http://dblp.uni-trier.de/
http://dblp.uni-trier.de/
http://dblp.uni-trier.de/
http://dblp.uni-trier.de/
http://dblp.uni-trier.de/
http://dblp.uni-trier.de/
http://dblp.uni-trier.de/
http://dblp.uni-trier.de/
http://dblp.uni-trier.de/
http://dblp.uni-trier.de/
http://dblp.uni-trier.de/
http://dblp.uni-trier.de/
http://dblp.uni-trier.de/
http://dblp.uni-trier.de/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/
http://projects.csail.mit.edu/dnd/DBLP/


Scaling Data Science

[ 634 ]

This is what the first few lines of the file look like:

[
["Alin Deutsch", "Mary F. Fernandez", 1998],
["Alin Deutsch", "Daniela Florescu", 1998],
["Alin Deutsch", "Alon Y. Levy", 1998],
["Alin Deutsch", "Dan Suciu", 1998],
["Mary F. Fernandez", "Daniela Florescu", 1998],

Let's use this dataset to build a model that will predict who is very likely to become a
coauthor in the future. One of the applications of such a model can be a recommender
system: for each author, it may suggest the possible coauthors to cooperate with.

Reading the DBLP graph
To start with this project, we first need to read the graph data, and for this, we will use
Apache Spark and a few of its libraries. The first library is Spark Data frames, it is similar to
R data frames, pandas or joinery, except that they are distributed and based on RDDs.

Let's read this dataset. The first step is to create a special class Edge for storing the data:

public class Edge implements Serializable {
    private final String node1;
    private final String node2;
    private final int year;
    // constructor and setters omitted
}

Now, let's read the data:

SparkConf conf = new SparkConf().setAppName("graph").setMaster("local[*]");
JavaSparkContext sc = new JavaSparkContext(conf);
JavaRDD<String> edgeFile =
sc.textFile("/data/dblp/dblp_coauthorship.json.gz");

JavaRDD<Edge> edges = edgeFile.filter(s -> s.length() > 1).map(s -> {
    Object[] array = JSON.std.arrayFrom(s);

    String node1 = (String) array[0];
    String node2 = (String) array[1];
    Integer year = (Integer) array[2];

    if (year == null) {
        return new Edge(node1, node2, -1);
    }



Scaling Data Science

[ 635 ]

    return new Edge(node1, node2, year);
});

After setting up the context, we read the data from a text file, and then apply a map
function to each line to convert it to Edge. For parsing JSON, we use the Jackson-Jr library
as previously, so make sure you add this to the pom file.

Note that we also include a filter here: the first and the last line contain [ and ]
respectively, so we need to skip them.

To check whether we managed to parse the data successfully, we can use the take method:
it gets the head of the RDD and puts it into a List, which we can print to the console:

edges.take(5).forEach(System.out::println);

This should produce the following output:

Edge [node1=Alin Deutsch, node2=Mary F. Fernandez, year=1998]
Edge [node1=Alin Deutsch, node2=Daniela Florescu, year=1998]
Edge [node1=Alin Deutsch, node2=Alon Y. Levy, year=1998]
Edge [node1=Alin Deutsch, node2=Dan Suciu, year=1998]
Edge [node1=Mary F. Fernandez, node2=Daniela Florescu, year=1998]

After successfully converting the data, we will put it into a Data Frame. For that, we will
use Spark DataFrame, which is a part of the Spark-SQL package. We can include it with the
following dependency:

<dependency>
  <groupId>org.apache.spark</groupId>
  <artifactId>spark-sql_2.11</artifactId>
  <version>2.1.0</version>
</dependency>

To create a DataFrame from our RDD, we first create a SQL session, and then use its
createDataFrame method:

SparkSession sql = new SparkSession(sc.sc());
Dataset<Row> df = sql.createDataFrame(edges, Edge.class);

There are quite a lot of papers in the dataset. We can make it smaller by restricting it to
papers that were published only in 1990. For this we can use the filter method:

df = df.filter("year >= 1990");



Scaling Data Science

[ 636 ]

Next, many authors can have multiple papers together, and we are interested in the earliest
one. We can get it using the min function:

df = df.groupBy("node1", "node2")
       .min("year")
       .withColumnRenamed("min(year)", "year");

When we apply the min function, the column gets renamed to min(year), so we fix it by
renaming the column back to year with the withColumnRenamed function.

For building any machine learning model, we always need to specify a train/test split. This
case is no exception, so let's take all the data before 2013 as the training part, and all the
papers after as testing:

Dataset<Row> train = df.filter("year <= 2013");
Dataset<Row> test = df.filter("year >= 2014");

Now, we can start extracting some features that we will use for creating a model.

Extracting features from the graph
We need to extract some features that we will put to the Machine Learning model for
training. For this dataset, all the information we have is the graph itself and nothing more:
we do not have any external information such as author's affiliation. Of course, if we had it,
it would be no problem to add it to the model. So let's discuss which features we can extract
from the graph alone.

For graph models, there can be two kinds of features: node features (authors) and edge
features (the coauthorship relation).

There are many possible features we can extract from graph nodes. For example, among
others, we can consider the following:

Degree: This is the number of coauthors this author has.
Page Rank: This is the importance of a node.



Scaling Data Science

[ 637 ]

Let's look at the following diagram:

Here we have two connected components, and the number on the node specifies the degree
of the node, or how many connections it has.

In some way, the degree measures the importance (or centrality) of a node: the more
connections it has, the higher the importance. Page Rank (also called Eigenvector
Centrality) is another measure of importance. You have probably heard about Page Rank -
it is used by Google as one of the components of its ranking formula. The main idea behind
Page Rank is that, if a page is linked to other important pages, it also must be important.
Sometimes it also makes sense to use Chei Rank, the reverse of Page Rank-- which instead
of looking at incoming edges, looks at outcoming ones.

However, our graph is not directed: if A and B are coauthors, then B and A are also
coauthors. So, in our case Page Rank and Chei Rank are exactly the same.

There are other important measures such as Closeness Centrality or Betweenness
Centrality, but we will not consider them in this chapter.

Also, we can look at the connected component of a node: if two nodes are from different
connected components, it is often difficult to predict whether there is going to be a link
between them. (Of course, it becomes possible if we include other features, not only the
ones we can extract from the graph.)

Graphs also have edges, and we can extract a lot of information about them for building our
models. For example, we may consider the following features:

Common Friends: This is the number of common coauthors
Total Friends: This is the total number of distinct coauthors both authors have
Jaccard Similarity: This is the Jaccard similarity of the coauthor's sets
Node-based features This is the difference in the Page Rank of each node, min
and max degree, and so on



Scaling Data Science

[ 638 ]

Of course there are a lot of other features we can include, for example, the length of the
shortest path between two authors should be quite a strong predictor, but calculating it
typically requires a lot of time.

Node features
Let's first concentrate on the features with which we can compute nodes of a graph. For
that, we will need a graph library which lets us compute graph features such as degree or
Page Rank easily. For Apache Spark, such a library is GraphX. However, at the moment,
this library only supports Scala: it uses a lot of Scala-specific features, which makes it very
hard (and often impossible) to use it from Java.

However, there is another library called GraphFrames, which tries to combine GraphX with
DataFrames. Luckily for us, it supports Java. This package is not available on Maven
Central, and to use it, we first need to add the following repository to our pom.xml:

<repository>
  <id>bintray-spark</id>
  <url>https://dl.bintray.com/spark-packages/maven/</url>
</repository>

Next, let's include the library:

<dependency>
  <groupId>graphframes</groupId>
  <artifactId>graphframes</artifactId>
  <version>0.3.0-spark2.0-s_2.11</version>
</dependency>

We also need to add the GraphX dependency, because GraphFrames relies on it:

<dependency>
  <groupId>org.apache.spark</groupId>
  <artifactId>spark-graphx_2.11</artifactId>
  <version>2.1.0</version>
</dependency>

The GraphFrames library is under active development at the moment, and
it is quite likely that some of the method names will change in the future.
Refer to the official documentation from h t t p ://g r a p h f r a m e s . g i t h u b . i o

/, if, the examples from this chapter stop working.

http://graphframes.github.io/
http://graphframes.github.io/
http://graphframes.github.io/
http://graphframes.github.io/
http://graphframes.github.io/
http://graphframes.github.io/
http://graphframes.github.io/
http://graphframes.github.io/
http://graphframes.github.io/
http://graphframes.github.io/
http://graphframes.github.io/
http://graphframes.github.io/
http://graphframes.github.io/
http://graphframes.github.io/
http://graphframes.github.io/
http://graphframes.github.io/
http://graphframes.github.io/
http://graphframes.github.io/
http://graphframes.github.io/
http://graphframes.github.io/
http://graphframes.github.io/
http://graphframes.github.io/
http://graphframes.github.io/
http://graphframes.github.io/
http://graphframes.github.io/
http://graphframes.github.io/
http://graphframes.github.io/
http://graphframes.github.io/
http://graphframes.github.io/
http://graphframes.github.io/
http://graphframes.github.io/
http://graphframes.github.io/
http://graphframes.github.io/
http://graphframes.github.io/
http://graphframes.github.io/
http://graphframes.github.io/
http://graphframes.github.io/
http://graphframes.github.io/
http://graphframes.github.io/
http://graphframes.github.io/
http://graphframes.github.io/
http://graphframes.github.io/
http://graphframes.github.io/
http://graphframes.github.io/
http://graphframes.github.io/
http://graphframes.github.io/
http://graphframes.github.io/
http://graphframes.github.io/
http://graphframes.github.io/
http://graphframes.github.io/


Scaling Data Science

[ 639 ]

However, before we can actually use GraphFrames, we need to prepare our data, as it
expects the Data Frames to follow a specific convention. First, it assumes that the graph is
directed, which is not the case for our example. To overcome this problem, we need to add
the reverse links. That is, we have a record (A, B) in our dataset, we need to add its
reverse (B, A).

We can do this by renaming the columns of a copy of our DataFrame and then use the
union function with the original DataFrame:

Dataset<Row> dfReversed = df
        .withColumnRenamed("node1", "tmp")
        .withColumnRenamed("node2", "node1")
        .withColumnRenamed("tmp", "node2")
        .select("node1", "node2", "year")
Dataset<Row> edges = df.union(dfReversed);

Next, we need to create a special DataFrame for the nodes. We can do this by just selecting
the node1 column of the edges dataset and then calling the distinct function:

Dataset<Row> nodes = edges.select("node1")
        .withColumnRenamed("node1", "node")
        .distinct();

GraphFrame, when taking in a DataFrame with nodes, expects it to have the id column,
which we have to manually create. The first option is to just rename the node column to id
and pass this to GraphFrame. Another option is to create surrogate IDs, which we will do
here:

nodes = nodes.withColumn("id", functions.monotonicallyIncreasingId());

For the preceding code, we need to add the following import:

import org.apache.spark.sql.functions;

This functions is a utility class with a lot of useful DataFrame functions.

To see what our DataFrame looks like after all these transformations, we can use the show
method:

nodes.show();

It will produce the following output (truncated to six first rows here and in all examples):

+--------------------+---+
|                node| id|
+--------------------+---+
|         Dan Olteanu|  0|



Scaling Data Science

[ 640 ]

|        Manjit Borah|  1|
|    Christoph Elsner|  2|
|         Sagnika Sen|  3|
|          Jerome Yen|  4|
|        Anand Kudari|  5|
|              M. Pan|  6|
+--------------------+---+

Now, let's prepare the edges. GraphFrames requires the data frame to have two special
columns: src and dst (source and destination, respectively). To get the values for these
columns, let's join them with the nodes DataFrame and get the numerical IDs:

edges = edges.join(nodes, edges.col("node2").equalTo(nodes.col("node")));
edges = edges.drop("node").withColumnRenamed("id", "dst");
edges = edges.join(nodes, edges.col("node1").equalTo(nodes.col("node")));
edges = edges.drop("node").withColumnRenamed("id", "src");

It will create a DataFrame with the following content:

+-------------+--------------------+----+-------------+----+
|        node1|               node2|year|          dst| src|
+-------------+--------------------+----+-------------+----+
|A. A. Davydov| Eugene V. Shilnikov|2013|  51539612101|2471|
|A. A. Davydov|      S. V. Sinitsyn|2011| 326417520647|2471|
|A. A. Davydov|      N. Yu. Nalutin|2011| 335007452466|2471|
|A. A. Davydov|        A. V. Bataev|2011| 429496733302|2471|
|A. A. Davydov|Boris N. Chetveru...|2013|1486058685923|2471|
| A. A. Sawant|          M. K. Shah|2011| 231928238662|4514|
| A. A. Sawant|      A. V. Shingala|2011| 644245100670|4514|
+-------------+--------------------+----+-------------+----+

Finally, we can create GraphFrame from the nodes and edges dataframes:

GraphFrame gf = GraphFrame.apply(nodes, edges);

The GraphFrame class allows us to use a lot of graph algorithms. For example, computing
Page Rank is as easy as follows:

GraphFrame pageRank = gf.pageRank().resetProbability(0.1).maxIter(7).run();
Dataset<Row> pageRankNodes = pageRank.vertices();
pageRankNodes.show();

It will create a DataFrame with the following columns:

+----+-------------------+
|  id|           pagerank|
+----+-------------------+
|  26| 1.4394843416065657|



Scaling Data Science

[ 641 ]

|  29|  1.012233852957335|
| 474| 0.7774103396731716|
| 964| 0.4443614094552203|
|1677|  0.274044687604839|
|1697|  0.493174385163372|
+----+-------------------+

Calculating degrees is even simpler:

Dataset<Row> degrees = gf.degrees();

This line of code will create a DataFrame with the degree of each node:

+-------------+------+
|           id|degree|
+-------------+------+
| 901943134694|    86|
| 171798692537|     4|
|1589137900148|   114|
|   8589935298|    86|
| 901943133299|    74|
| 292057778121|    14|
+-------------+------+

The same is true for calculating connected components:

Dataset<Row> cc = gf.connectedComponents().run();

It will create a DataFrame where for each node we will have the ID of the connected
component it belongs to:

+----+---------+
|  id|component|
+----+---------+
|  26|        0|
|  29|        0|
| 474|        0|
| 964|      964|
|1677|        0|
|1697|        0|
+----+---------+

As we see here 5 out of 6 first components are the 0th component. Let's look at the sizes of
these components--maybe the 0th is the largest and includes almost everything?



Scaling Data Science

[ 642 ]

To do it, we can count how many times each component occurs:

Dataset<Row> cc = connectedComponents.groupBy("component").count();
cc.orderBy(functions.desc("count")).show();

We use the groupBy function and then invoke the count method. After that, we order the
DataFrame by the values of the count column in the decreasing order. Let's look at the
output:

+------------+-------+
|   component|  count|
+------------+-------+
|           0|1173137|
| 60129546561|     32|
| 60129543093|     30|
|         722|     29|
| 77309412270|     28|
| 34359740786|     28|
+------------+-------+

As we see, most of the nodes are indeed from the same component. Thus, in this case, the
information about the component is not very useful: almost always the component is 0.

Now, after computing the node features, we need to proceed to edge features. But before
we can do that, we first need to sample edges for which we are going to compute these
features.

Negative sampling
Before we compute another set of features, the edge features, we need to first specify which
edges we would like to take for that. So we need to select a set of candidate edges, and then
we will train a model on them for predicting whether an edge should belong to the graph or
not. In other words, we first need to prepare a dataset where existent edges are treated as
positive examples, and nonexistent ones as negative.

Getting positive examples is simple: we just take all the edges and assign them the label 1.

For negative examples, it is more complex: in any real-life graph, the number of positive
examples is a lot smaller than the number of negative examples. So we need to find a way to
sample the negative examples so that training a model becomes manageable.



Scaling Data Science

[ 643 ]

Often, for the Link Prediction problems, we consider two types of negative candidates:
simple and hard ones. The simple ones are just sampled from the same connected
components, but the hard ones are one or two hops away. Since for our problem most of the
authors are from the same component, we can relax it and sample the simple negatives
from the entire graph, and not restrict ourselves to the same connected component:

If we consider the preceding graph, positive examples are easy: we just get the existent
edges (1, 3), (2, 3), (3, 6), and so on. For negative ones, there are two types: simple
and hard. The simple ones are just sampled from the set of all possible nonexistent edges.
Here, it can be (1, 8), (2, 7), or (1, 9). The hard negative edges are only one hop
away: (1, 2), (1, 6), or (7, 9) are possible examples of hard negatives.

In our dataset, we have about 6 million positive examples. To keep the training data more
or less balanced, we can sample about 12 million simple negatives and about 6 million hard
ones. Then the proportion of positive to negative examples will be 1/4.

Creating positive examples is straightforward: we just take the edges from the graph and
assign them the 1.0 target:

Dataset<Row> pos = df.drop("year");
pos = pos.join(nodes, pos.col("node1").equalTo(nodes.col("node")));
pos = pos.drop("node", "node1").withColumnRenamed("id", "node1");

pos = pos.join(nodes, pos.col("node2").equalTo(nodes.col("node")));
pos = pos.drop("node", "node2").withColumnRenamed("id", "node2");

pos = pos.withColumn("target", functions.lit(1.0));

Here we do a few joins to replace the author names with their IDs. The result is the
following:

+-------------+-----+------+
|        node1|node2|target|
+-------------+-----+------+
|  51539612101| 2471|   1.0|



Scaling Data Science

[ 644 ]

| 429496733302| 2471|   1.0|
|1486058685923| 2471|   1.0|
|1254130450702| 4514|   1.0|
|  94489280742|  913|   1.0|
|1176821039357|  913|   1.0|
+-------------+-----+------+

Next, we sample the easy negative ones. For that, we first sample with replacement from
the node's DataFrame twice, once for node1 and once - for node2. Then, put these columns
together into one single data frame. We can take the samples this way:

Dataset<Row> nodeIds = nodes.select("id");
long nodesCount = nodeIds.count();
double fraction = 12_000_000.0 / nodesCount;

Dataset<Row> sample1 = nodeIds.sample(true, fraction, 1);
sample1 = sample1.withColumn("rnd", functions.rand(1))
                 .orderBy("rnd")
                 .drop("rnd");

Dataset<Row> sample2 = nodeIds.sample(true, fraction, 2);
sample2 = sample2.withColumn("rnd", functions.rand(2))
                 .orderBy("rnd")
                 .drop("rnd");

Here, the fraction parameter specifies what is the fraction of the DataFrame which the
sample should contain. Since we want to get 12 million examples, we divide 12 million by
the number of nodes we have. Then, we shuffle each sample by adding a column with
random number to it and use it for ordering the DataFrames. We don't need this column
after sorting is done, so it can be dropped.

It is possible that two samples have different sizes, so we need to select the minimal one,
and then limit both samples to this size, so they become concatenable:

long sample1Count = sample1.count();
long sample2Count = sample2.count();

int minSize = (int) Math.min(sample1Count, sample2Count);

sample1 = sample1.limit(minSize);
sample2 = sample2.limit(minSize);



Scaling Data Science

[ 645 ]

Next, we want to put these two samples together into one DataFrame. There is no easy way
to do this with the DataFrame API, so we will need to use RDDs for that. To do it, we
convert the DataFrames into JavaRDDs, zip them together, and then convert the result
back to a single DataFrame:

JavaRDD<Row> sample1Rdd = sample1.toJavaRDD();
JavaRDD<Row> sample2Rdd = sample2.toJavaRDD();
JavaRDD<Row> concat = sample1Rdd.zip(sample2Rdd).map(t -> {
    long id1 = t._1.getLong(0);
    long id2 = t._2.getLong(0);
    return RowFactory.create(id1, id2);
});

StructField node1Field = DataTypes.createStructField("node1",
DataTypes.LongType, false);
StructField node2Field = DataTypes.createStructField("node2",
DataTypes.LongType, false);
StructType schema = DataTypes.createStructType(Arrays.asList(node1Field,
node2Field));
Dataset<Row> negSimple = sql.createDataFrame(concat, schema);

For converting the RDD into a DataFrame, we need to specify a schema, and the preceding
code shows how to do it.

Finally, we add the target column to this DataFrame:

negSimple = negSimple.withColumn("target", functions.lit(0.0));

This will generate the following DataFrame:

+-------------+-------------+------+
|        node1|        node2|target|
+-------------+-------------+------+
| 652835034825|1056561960618|   0.0|
| 386547056678| 446676601330|   0.0|
| 824633725362|1477468756129|   0.0|
|1529008363870| 274877910417|   0.0|
| 395136992117| 944892811576|   0.0|
|1657857381212|1116691503444|   0.0|
+-------------+-------------+------+

It is possible that by sampling this way we accidentally generate pairs that
happen to be among positive examples. However, the probability of this is
quite low and it can be discarded.



Scaling Data Science

[ 646 ]

We also need to create hard negative examples - these are examples that are just one jump
away from each other:

In this figure, as we already discussed, the (1, 2), (1, 6), or (7, 9) pairs are examples
of hard negative examples.

To get such pairs, let's first formulate the idea logically. We need to sample all the possible
pairs (B, C) such that there exist some node A and edges (A, B) and (A, C) both exist,
but there is no edge (B, C).

When we phrase this sampling problem in such a way, it becomes easy to express this with
SQL: all we need to do is a self-join and select edges with the same source, but a different
destination. Consider the following example:

SELECT e1.dst as node1, e2.dst as node2
  FROM Edges e1, Edges e2
 WHERE e1.src = e2.src ANDe1.dst <> e2.dst;

Let's translate it to the Spark DataFrame API. To do a self-join, we first need to create two
aliases of the edge DataFrame and rename the columns inside:

Dataset<Row> e1 = edges.drop("node1", "node2", "year")
        .withColumnRenamed("src", "e1_src")
        .withColumnRenamed("dst", "e1_dst")
        .as("e1");
Dataset<Row> e2 = edges.drop("node1", "node2", "year")
        .withColumnRenamed("src", "e2_src")
        .withColumnRenamed("dst", "e2_dst")
        .as("e2");

Now, we perform the join on condition that dst is different, but src is the same, and then
rename the columns so they are consistent with the previous samples:

Column diffDest = e1.col("e1_dst").notEqual(e2.col("e2_dst"));
Column sameSrc = e1.col("e1_src").equalTo(e2.col("e2_src"));
Dataset<Row> hardNeg = e1.join(e2, diffDest.and(sameSrc));



Scaling Data Science

[ 647 ]

hardNeg = hardNeg.select("e1_dst", "e2_dst")
        .withColumnRenamed("e1_dst", "node1")
        .withColumnRenamed("e2_dst", "node2");

Next, we need to take the first 6 million generated edges and call it the hard sample.
However, Spark puts the values in this DataFrame in some particular order, which may
introduce bias into our model. To make the bias less harmful, let's add some randomness to
the sampling process: generate a column with random values and take only those edges
where the value is greater than some number:

hardNeg = hardNeg.withColumn("rnd", functions.rand(0));
hardNeg = hardNeg.filter("rnd >= 0.95").drop("rnd");
hardNeg = hardNeg.limit(6_000_000);
hardNeg = hardNeg.withColumn("target", functions.lit(0.0));

After that, we just take the first 6m edges, and add the target column. The results follow
the same schema as our previous samples:

+------------+-------------+------+
|       node1|        node2|target|
+------------+-------------+------+
| 34359740336| 970662610852|   0.0|
| 34359740336| 987842479409|   0.0|
| 34359740336|1494648621189|   0.0|
| 34359740336|1554778161775|   0.0|
| 42949673538| 326417515499|   0.0|
|266287973882| 781684049287|   0.0|
+------------+-------------+------+

Putting them together is done with the union function:

Dataset<Row> trainEdges = pos.union(negSimple).union(hardNeg);

Finally, let's associate a ID with every edge:

trainEdges = trainEdges.withColumn("id",
functions.monotonicallyIncreasingId());

With this, we have prepared the edges for which we can compute the edge features.

Edge features
There are a number of edge features that we can compute: the number of common friends,
the total number of distinct friends both people have, and so on.



Scaling Data Science

[ 648 ]

Let us start with the common friend's feature, which for our problem is the number of
common coauthors both authors have. To get them we need to join the edges we selected
with all the edges (two times) and then group by the ID and count how many elements are
there per group. In SQL, it looks like this:

  SELECT train.id, COUNT(*)
    FROM Sample train, Edges e1, Edges e2
   WHERE train.node1 = e1.src AND
         train.node2 = e2.src AND
         e1.dst = e2.dst
GROUP BY train.id;

Let's translate this to DataFrame API. First, we use the joins:

Dataset<Row> join = train.join(e1,
        train.col("node1").equalTo(e1.col("e1_src")));
join = join.join(e2,
        join.col("node2").equalTo(e2.col("e2_src")).and(
        join.col("e1_dst").equalTo(e2.col("e2_dst"))));

Here, we reuse DataFrames e1 and e2 from the negative sampling subsection.

Then, we finally group by the id and count:

Dataset<Row> commonFriends = join.groupBy("id").count();
commonFriends = commonFriends.withColumnRenamed("count", "commonFriends");

The resulting DataFrame will contain the following:

+-------------+-------------+
|           id|commonFriends|
+-------------+-------------+
|1726578522049|          116|
|        15108|            1|
|1726581250424|          117|
|        17579|            4|
|         2669|           11|
|         3010|           73|
+-------------+-------------+

Now we calculate the Total Friends feature, which is the number of distinct coauthors both
authors have. In SQL, it is a bit simpler than the previous feature:

  SELECT train.id, COUNT DISTINCT (e.dst)
    FROM Sample train, Edges e
   WHERE train.node1 = e.src
GROUP BY train.id



Scaling Data Science

[ 649 ]

Let's now translate it to Spark:

Dataset<Row> e = edges.drop("node1", "node2", "year", "target");
Dataset<Row> join = train.join(e,
        train.col("node1").equalTo(edges.col("src")));
totalFriends = join.select("id", "dst")
        .groupBy("id")
.agg(functions.approxCountDistinct("dst").as("totalFriendsApprox"));

Here, we used the approximate count distinct because it is faster and typically gives quite
accurate values. Of course, there is an option to use exact count distinct: for that, we need to
use the functions.countDistinct function. The output of this step is the following
table:

+-------------+------------------+
|           id|totalFriendsApprox|
+-------------+------------------+
|1726580872911|                 4|
| 601295447985|                 4|
|1726580879317|                 1|
| 858993461306|                11|
|1726578972367|               296|
|1726581766707|               296|
+-------------+------------------+

Next, we calculate the Jaccard Similarity between the two sets of coauthors. We first create a
DataFrame with sets for each author, then join and calculate the jaccard. For this feature
there's no direct way to express it in SQL, so we start from Spark API.

Creating the set of coauthors for each author is easy: we just use the groupBy function and
then apply functions.collect_set to each group:

Dataset<Row> coAuthors = e.groupBy("src")
        .agg(functions.collect_set("dst").as("others"))
        .withColumnRenamed("src", "node");

Now we join it with our training data:

Dataset<Row> join = train.drop("target");

join = join.join(coAuthors,
join.col("node1").equalTo(coAuthors.col("node")));
join = join.drop("node").withColumnRenamed("others", "others1");

join = join.join(coAuthors,
join.col("node2").equalTo(coAuthors.col("node")));
join = join.drop("node").withColumnRenamed("others", "others2");



Scaling Data Science

[ 650 ]

join = join.drop("node1", "node2");

At the end, the join column has the ID of the edge and the arrays of the coauthors for each
edge. Next, we go over every record of this dataframe and compute the Jaccard similarity:

JavaRDD<Row> jaccardRdd = join.toJavaRDD().map(r -> {
    long id = r.getAs("id");
    WrappedArray<Long> others1 = r.getAs("others1");
    WrappedArray<Long> others2 = r.getAs("others2");

    Set<Long> set1 = Sets.newHashSet((Long[]) others1.array());
    Set<Long> set2 = Sets.newHashSet((Long[]) others2.array());

    int intersection = Sets.intersection(set1, set2).size();
    int union = Sets.union(set1, set2).size();
    double jaccard = intersection / (union + 1.0);
    return RowFactory.create(id, jaccard);
});

Here we use the regularized Jaccard Similarity: instead of just dividing intersection by
union, we also add a small regularization factor to the denominator.

The reason for doing it is to give less score to very small sets: imagine that each set has the
same element, then the Jaccard is 1.0. With regularization, the similarity of small lots is
penalized, and for this example, it will be equal to 0.5.

Since we used RDDs here, we need to convert it back to a data frame:

StructField node1Field = DataTypes.createStructField("id",
DataTypes.LongType, false);
StructField node2Field = DataTypes.createStructField("jaccard",
DataTypes.DoubleType, false);
StructType schema = DataTypes.createStructType(Arrays.asList(node1Field,
node2Field));
Dataset<Row> jaccard = sql.createDataFrame(jaccardRdd, schema);

After executing it, we get a table like this:

+-------------+---------+
|           id|  jaccard|
+-------------+---------+
|1726581480054|    0.011|
|1726578955032|    0.058|
|1726581479913|    0.037|
|1726581479873|     0.05|
|1726581479976|      0.1|
|         1667|      0.1|
+-------------+---------+



Scaling Data Science

[ 651 ]

Note that the preceding method is quite universal, and we could follow the same approach
for calculating the Common Friends and Total Friends features: it would be the size of the
intersection and union respectively. What is more, it could be computed in one pass along
with Jaccard.

Our next step is to deprive edge features from the node features we already computed.
Among others, we can include the following:

Min degree, max degree
Preferential attachment score: degree of node1 times degree of node2
Product of page ranks
Absolute difference of page ranks
Same connected component

To do it we first join all the node features together:

Dataset<Row> nodeFeatures = pageRank.join(degrees, "id")
                                    .join(connectedComponents, "id");
nodeFeatures = nodeFeatures.withColumnRenamed("id", "node_id");

Next, we join the node features DataFrame we just created with the edges we prepared for
training:

Dataset<Row> join = train.drop("target");

join = join.join(nodeFeatures,
                join.col("node1").equalTo(nodeFeatures.col("node_id")));
join = join.drop("node_id")
        .withColumnRenamed("pagerank", "pagerank_1")
        .withColumnRenamed("degree", "degree_1")
        .withColumnRenamed("component", "component_1");

join = join.join(nodeFeatures,
                join.col("node2").equalTo(nodeFeatures.col("node_id")));
join = join.drop("node_id")
        .withColumnRenamed("pagerank", "pagerank_2")
        .withColumnRenamed("degree", "degree_2")
        .withColumnRenamed("component", "component_2");

join = join.drop("node1", "node2");



Scaling Data Science

[ 652 ]

Now, let's calculate the features:

join = join
    .withColumn("pagerank_mult",
join.col("pagerank_1").multiply(join.col("pagerank_2")))
    .withColumn("pagerank_max", functions.greatest("pagerank_1",
"pagerank_2"))
    .withColumn("pagerank_min", functions.least("pagerank_1",
"pagerank_2"))
    .withColumn("pref_attachm",
join.col("degree_1").multiply(join.col("degree_2")))
    .withColumn("degree_max", functions.greatest("degree_1", "degree_2"))
    .withColumn("degree_min", functions.least("degree_1", "degree_2"))
    .withColumn("same_comp",
join.col("component_1").equalTo(join.col("component_2")));
join = join.drop("pagerank_1", "pagerank_2");
join = join.drop("degree_1", "degree_2");
join = join.drop("component_1", "component_2");

This will create a DataFrame with edge ID and seven features: min and max Page Rank, a
product of two Page Ranks, min and max degree, a product of two degrees (Preferential
Attachment), and, finally, whether or not two nodes belong to the same component.

Now we have finished calculating all the features we wanted, so it's time we join them all
together in a single DataFrame:

Dataset<Row> join = train.join(commonFriends, "id")
     .join(totalFriends, "id")
     .join(jaccard, "id")
     .join(nodeFeatures, "id");

So far we created the dataset with labels and computed a set of features. Now we are finally
ready to train a machine learning model on it.

Link Prediction with MLlib and XGBoost
Now, when all the data is prepared and put into a suitable shape, we can train a model,
which will predict whether two authors are likely to become coauthors or not. For that we
will use a binary classifier model, which will be trained to predict what is the probability
that this edge exists in a graph.



Scaling Data Science

[ 653 ]

Apache Spark comes with a library which provides scalable implementation of several
Machine Learning algorithms. This library is called MLlib. Let's add it to our pom.xml:

<dependency>
  <groupId>org.apache.spark</groupId>
  <artifactId>spark-mllib_2.11</artifactId>
  <version>2.1.0</version>
</dependency>

There are a number of models we can use, including logistic regression, random forest, and
Gradient Boosted Trees. But before we train any model, let's split the training dataset into
train and validation sets:

features = features.withColumn("rnd", functions.rand(1));
Dataset<Row> trainFeatures = features.filter("rnd < 0.8").drop("rnd");
Dataset<Row> valFeatures = features.filter("rnd >= 0.8").drop("rnd");

To be able to use it for training machine learning models, we need to convert our data to
RDD of LabeledPoint objects. For that, we first convert the DataFrame to RDD, and then
convert each row to DenseVector:

List<String> columns = Arrays.asList("commonFriends", "totalFriendsApprox",
        "jaccard", "pagerank_mult", "pagerank_max", "pagerank_min",
        "pref_attachm", "degree_max", "degree_min", "same_comp");

JavaRDD<LabeledPoint> trainRdd = trainFeatures.toJavaRDD().map(r -> {
    Vector vec = toDenseVector(columns, r);
    double label = r.getAs("target");
    return new LabeledPoint(label, vec);
});

The columnsstores all the column names we want to use as features in the order we want to
put them into DenseVector. The toDenseVector function has the following
implementation:

private static DenseVector toDenseVector(List<String> columns, Row r) {
    int featureVecLen = columns.size();
    double[] values = new double[featureVecLen];
    for (int i = 0; i < featureVecLen; i++) {
        Object o = r.getAs(columns.get(i));
        values[i] = castToDouble(o);
    }
    return new DenseVector(values);
}



Scaling Data Science

[ 654 ]

Since, in our DataFrame we have data of multiple types, including int, double, and
boolean, we need to be able to convert all of them to double. This is what the
castToDouble function does:

private static double castToDouble(Object o) {
    if (o instanceof Number) {
        Number number = (Number) o;
        return number.doubleValue();
    }

    if (o instanceof Boolean) {
        Boolean bool = (Boolean) o;
        if (bool) {
            return 1.0;
        } else {
            return 0.0;
        }
    }

    throw new IllegalArgumentException();
}

Now we finally can train the logistic regression model:

LogisticRegressionModel logreg = new LogisticRegressionWithLBFGS()
            .run(JavaRDD.toRDD(trainRdd));

After it finishes, we can evaluate how good the model is.

Let's go through the entire validation dataset and make a prediction for each element there:

logreg.clearThreshold();

JavaRDD<Pair<Double, Double>> predRdd = valFeatures.toJavaRDD().map(r -> {
    Vector v = toDenseVector(columns, r);
    double label = r.getAs("target");
    double predict = logreg.predict(v);
    return ImmutablePair.of(label, predict);
});

Note that we first need to invoke the clearThreshold method - if we don't do this, then
the model will output hard predictions (only 0.0 and 1.0), which will make the evaluation
more difficult.



Scaling Data Science

[ 655 ]

Now we can put the predictions and the true labels into separate double arrays and use any
of the binary classification evaluation functions, which we covered in Chapter 4, Supervised
Learning - Classification and Regression. For example, we can use logLoss:

List<Pair<Double, Double>> pred = predRdd.collect();
double[] actual = pred.stream().mapToDouble(Pair::getLeft).toArray();
double[] predicted = pred.stream().mapToDouble(Pair::getRight).toArray();
double logLoss = Metrics.logLoss(actual, predicted);
System.out.printf("log loss: %.4f%n", logLoss);

This produces the following output:

log loss: 0.6528

This is not a very good performance: if we always output 0.5 as the prediction, the
logLoss would be 0.7, so our model is just a bit better than that. We can try other models
available in MLlib such as linear SVM or random forest to see whether they give better
performance.

But there is another option: if you remember from Chapter 7, Extreme Gradient Boosting
XGBoost, can also run in parallel mode, and it can use Apache Spark for doing it. So let's try
to use it for this problem. To see how to build XGBoost, refer to Chapter 7, Extreme Gradient
Boosting.

To include the Spark version to our project, we add the following dependency declaration
to the project:

<dependency>
  <groupId>ml.dmlc</groupId>
  <artifactId>xgboost4j-spark</artifactId>
  <version>0.7</version>
</dependency>

As input, XGBoost also takes RDDs of Vector objects. Apart from that, it takes the same
parameters as XGBoost running on a single machine: model parameters, number of trees to
build, and so on. This is how it looks in the code:

Map<String, Object> params = xgbParams();
int nRounds = 20;
int numWorkers = 4;
ObjectiveTrait objective = null;
EvalTrait eval = null;
boolean externalMemoryCache = false;
float nanValue = Float.NaN;
RDD<LabeledPoint> trainData = JavaRDD.toRDD(trainRdd);



Scaling Data Science

[ 656 ]

XGBoostModel model = XGBoost.train(trainData, params,
        nRounds, numWorkers, objective, eval, externalMemoryCache,
        nanValue);

Here, the xgbParams function returns a Map of XGBoost model parameters we use for
training.

Note that XGBoost Spark wrapper is written in Scala, not in Java, so the Map object is
actually scala.collection.immutable.Map, not java.util.Map. Thus, we also need to
convert a usual HashMap into the Scala Map:

HashMap<String, Object> params = new HashMap<String, Object>();
params.put("eta", 0.3);
params.put("gamma", 0);
params.put("max_depth", 6);
// ... other parameters
Map<String, Object> res = toScala(params);

Here, the toScala utility method is implemented in this way:

private static <K, V> Map<K, V> toScala(HashMap<K, V> params) {
    return JavaConversions.mapAsScalaMap(params)
            .toMap(Predef.<Tuple2<K, V>>conforms());
}

It looks a bit strange because it uses some Scala-specific features. But we don't need to go
into details and can use it as is.

With this, we will be able to train a distributed XGBoost. However, for evaluation, we
cannot follow the same approach as for logistic regression. That is, we cannot convert each
row to a vector, and then run the model against this vector, and if you do so, XGBoost will
throw an exception. The reason for this is that such an operation is quite costly, as it will try
to build DMatrix for each vector, and it will result in a significant slowdown.

Since our validation dataset is not very large, we can just convert the entire RDD to a
DMatrix:

JavaRDD<LabeledPoint> valRdd = valFeatures.toJavaRDD().map(r -> {
    float[] vec = rowToFloatArray(columns, r);
    double label = r.getAs("target");
    return LabeledPoint.fromDenseVector((float) label, vec);
});

List<LabeledPoint> valPoints = valRdd.collect();
DMatrix data = new DMatrix(valPoints.iterator(), null);



Scaling Data Science

[ 657 ]

Here, we go through the rows of the DataFrame, and convert each row to a LabeledPoint
class (from the ml.dmlc.xgboost4j package - not to be confused with
org.apache.spark.ml.feature.LabeledPoint). Then, we collect everything to a list
and create a DMatrix from it.

Next, we get the trained model and apply it to this DMatrix:

Booster xgb = model._booster();
float[][] xgbPred = xgb.predict(new ml.dmlc.xgboost4j.scala.DMatrix(data),
false, 20);

Then, our method for logLoss calculations expects to get doubles as input, so let us convert
the results to arrays of doubles:

double[] actual = floatToDouble(data.getLabel());
double[] predicted = unwrapToDouble(xgbPred);

We have already used these functions in Chapter 7, Extreme Gradient Boosting, and they are
pretty straightforward: floatToDouble just converts a float array to a double array, and
unwrapToDouble converts two-dimensional float arrays with one column to 1-dimensional
double array.

Finally, we can calculate the score:

double logLoss = Metrics.logLoss(actual, predicted);
System.out.printf("log loss: %.4f%n", logLoss);

It says that the score is 0.497, which is a huge improvement over what we had previously.
Here, we used the model with default parameters, which are often not the most optimal.
We can tune the model further, and you can find strategies on how to tune XGBoost in
Chapter 7, Extreme Gradient Boosting.

logLoss was chosen here only for its simplicity and often it is hard to interpret when it
comes to recommender systems. Choosing an evaluation metric is usually quite case-
specific, and we can use scores such as F1 score, MAP (Mean Average Precision), NDCG
(Normalized Discounted Cumulative Gain), and many others. In addition to that, we can
use on-line evaluation metrics such as how many suggested links are accepted by the users.

Next, we will see how this model can be used for suggesting links and how we can evaluate
it better.



Scaling Data Science

[ 658 ]

Link suggestion
So far we have discussed in a lot of details about building features for Link Prediction
models and training these models. Now we need to be able to use such models for making
suggestions. Again, think about people you may know banner on Facebook - here we would
like to have something similar, like authors you should write a paper with. In addition to that,
we will see how to evaluate the model so the evaluation result is more intuitive and clear in
this context.

The first step is to re-train the XGBoost model on the entire training set, without the train-
validation split. This is easy to do: we just fit the model again on the data before making the
split.

Next, we need to process the test dataset. If you remember, the test dataset contains all the
papers published in 2014 and 2015. To make things simpler, we will select a subset of test
users, and make recommendations to them only. This is how we can do it:

Dataset<Row> fullTest = df.filter("year >= 2014");
Dataset<Row> testNodes = fullTest.sample(true, 0.05, 1)
                                 .select("node1")
                                 .dropDuplicates();
Dataset<Row> testEdges = fullTest.join(testNodes, "node1");

Here we first select the test set, and then sample nodes from it - and this gives us a list of
authors we selected for testing. In other words, only these authors will receive
recommendations. Next, we perform the join of the full test set with the selected nodes to
get all the actual links that were made during the testing period. We will use these links
later for evaluation.

Next, we replace the names of the authors with IDs. We do it in the same way we did
previously - by joining it with the nodes DataFrame:

Dataset<Row> join = testEdges.drop("year");
join = join.join(nodes, join.col("node1").equalTo(nodes.col("node")));
join = join.drop("node", "node1").withColumnRenamed("id", "node1");
join = join.join(nodes, join.col("node2").equalTo(nodes.col("node")));
join = join.drop("node", "node2").withColumnRenamed("id", "node2");
Dataset<Row> selected = join;



Scaling Data Science

[ 659 ]

Next, we need to select candidates on who we will apply the model. The list of candidates
should contain a list of authors who are most likely to become a potential coauthor (that is,
form a link in the network). The most obvious way to select such candidates is to take the
authors that are one jump away from each other - in the same way, we sampled hard
negative links:

Dataset<Row> e1 = selected.select("node1").dropDuplicates();
Dataset<Row> e2 = edges.drop("node1", "node2", "year")
        .withColumnRenamed("src", "e2_src")
        .withColumnRenamed("dst", "e2_dst")
        .as("e2");
Column diffDest = e1.col("node1").notEqual(e2.col("e2_dst"));
Column sameSrc = e1.col("node1").equalTo(e2.col("e2_src"));
Dataset<Row> candidates = e1.join(e2, diffDest.and(sameSrc));
candidates = candidates.select("node1", "e2_dst")
                       .withColumnRenamed("e2_dst", "node2");

The code is almost the same except that we do not consider all possible hard negatives, but
only those that are related to the nodes we have preselected.

We assume that these candidates did not become coauthors during testing period, so we
add the target column with 0.0 in it:

candidates = candidates.withColumn("target", functions.lit(0.0));

While in general this assumption will not hold, because we look at the link obtained only
from the training period, and it might be quite possible that some of these links were
actually formed during the testing period.

Let us fix it by manually adding the positive candidates, and then removing duplicates:

selected = selected.withColumn("target", functions.lit(1.0));
candidates = selected.union(candidates).dropDuplicates("node1", "node2");

Now, as we did previously, we assign an ID to each candidate edge:

candidates = candidates.withColumn("id",
functions.monotonicallyIncreasingId());

To apply the model to these candidates, we need to calculate features. For that, we just
reuse the code we previously wrote. First, we calculate the node features:

Dataset<Row> nodeFeatures = nodeFeatures(sql, pageRank,
connectedComponents, degrees, candidates);



Scaling Data Science

[ 660 ]

Here, the nodeFeatures method takes in the pageRank, connectedComponents and
degree DataFrames, which we computed on the train data, and calculates all the node-
based features for the edges we pass in the candidates DataFrame.

Next, we compute the edge-based features for our candidates:

Dataset<Row> commonFriends = calculateCommonFriends(sql, edges,
candidates);
Dataset<Row> totalFriends = calculateTotalFriends(sql, edges, candidates);
Dataset<Row> jaccard = calculateJaccard(sql, edges, candidates);

We put the actual calculation of these features in utility methods, and just invoke them
using a different set of edges.

Finally, we just join everything together:

Dataset<Row> features = candidates.join(commonFriends, "id")
        .join(totalFriends, "id")
        .join(jaccard, "id")
        .join(nodeFeatures, "id");

Now we are ready to apply the XGBoost model to these features. For that we will use the
mapPartition function: it is similar to usual map, but instead of taking in just one item, it
gets multiple at the same time. This way, we will build a DMatrix for multiple objects at the
same time, and it will save time.

This is how we do it. First, we create a special class ScoredEdge for keeping the
information about the nodes of the edge, the score it was assigned by the model as well as
the actual label:

public class ScoredEdge implements Serializable {
    private long node1;
    private long node2;
    private double score;
    private double target;
    // constructor, getter and setters are omitted
}

Now we score the candidate edges:

JavaRDD<ScoredEdge> scoredRdd = features.toJavaRDD().mapPartitions(rows ->
{
    List<ScoredEdge> scoredEdges = new ArrayList<>();
    List<LabeledPoint> labeled = new ArrayList<>();

    while (rows.hasNext()) {
        Row r = rows.next();



Scaling Data Science

[ 661 ]

        long node1 = r.getAs("node1");
        long node2 = r.getAs("node2");
        double target = r.getAs("target");
        scoredEdges.add(new ScoredEdge(node1, node2, target));

        float[] vec = rowToFloatArray(columns, r);
        labeled.add(LabeledPoint.fromDenseVector(0.0f, vec));
    }

    DMatrix data = new DMatrix(labeled.iterator(), null);
    float[][] xgbPred =
        xgb.predict(new ml.dmlc.xgboost4j.scala.DMatrix(data), false, 20);

    for (int i = 0; i < scoredEdges.size(); i++) {
        double pred = xgbPred[i][0];
        ScoredEdge edge = scoredEdges.get(i);
        edge.setScore(pred);
    }

    return scoredEdges.iterator();
});

The code inside the mapPartition function does the following: first, we go over all input
rows, and create a ScoredEdge class for each row. In addition to that, we also extract
features from each row (in exactly the same way we did it previously). Then we put
everything into DMatrix and use the XGBoost model to score each row of this matrix.
Finally, we put the score to the ScoredEdge objects. As a result of this step, we get an RDD,
where each candidate edge is scored by the model.

Next, for each user we would like to recommend 10 potential coauthors. To do it we group
by node1 from our ScoredEdge class, then sort by score within each group and keep only
the first 10:

JavaPairRDD<Long, List<ScoredEdge>> topSuggestions = scoredRdd
        .keyBy(s -> s.getNode1())
        .groupByKey()
        .mapValues(es -> takeFirst10(es));

Here, takeFirst10 may be implemented this way:

private static List<ScoredEdge> takeFirst10(Iterable<ScoredEdge> es) {
    Ordering<ScoredEdge> byScore =
            Ordering.natural().onResultOf(ScoredEdge::getScore).reverse();
    return byScore.leastOf(es, 10);
}



Scaling Data Science

[ 662 ]

If you remember, Ordering here is a class from Google Guava which does the sorting by
score and then takes the first 10 edges.

Finally, let's see how good the suggestions are. For that we go over all the suggestions and
count how many of these links were actually formed during the test period. And then we
take the mean across all groups:

double mp10 = topSuggestions.mapToDouble(es -> {
    List<ScoredEdge> es2 = es._2();
    double correct = es2.stream().filter(e -> e.getTarget() ==
1.0).count();
    return correct / es2.size();
}).mean();

System.out.println(mp10);

What it does is it calculates Precision@10 (the faction of correctly classified edges among
the first 10) for each group and then takes a mean of it.

When we run it, we see that the score is about 30%. This is not a very bad result: it means
that 30% of recommended edges were actually formed.

Still, this score is far from ideal, and there are a lot of ways to improve it. In real-life Social
Networks, there often is additional information that we can use for building a model. For
example, in case of the coauthors graph, we could use affiliation, titles, and texts from
abstracts of the papers, conferences, and journals where the papers were published, and
many other things. If the social graph comes from a web Social Network such as Facebook,
we could use geographical information, groups and communities, and, finally, likes. By
including this information, we should be able to achieve far better performance.

Summary
In this chapter, we looked at ways to handle very large amounts of data and special tools
for doing this such as Apache Hadoop MapReduce and Apache Spark. We saw how to use
them to process Common Crawl - the copy of the Internet, and calculate some useful
statistics from it. Finally, we created a Link Prediction model for recommending coauthors
and trained an XGBoost model in a distributed way.

In the next chapter, we will look at how Data Science models can be deployed to production
systems.



10
Deploying Data Science Models

So far we have covered a lot of data science models, we talked about many supervised and
unsupervised learning methods, including deep learning and XGBoost, and discussed how
we can apply these models to text and graph data.

In terms of the CRISP-DM methodology, we mostly covered the modeling part so far. But
there are other important parts we have not yet discussed: evaluation and deployment. These
steps are quite important in the application lifecycle, because the models we create should
be useful for the business and bring value, and the only way to achieve that is integrate
them into the application (the deployment part) and make sure they indeed are useful (the
evaluation part).

In this last chapter of the book we will cover exactly these missing parts--we will see how
we can deploy data science models so they can be used by other services of the application.
In addition to that, we will also see how to perform an online evaluation of already
deployed models.

In particular, we will cover the following:

Microservices in Java with Spring Boot
Model evaluation with A/B tests and multi-armed bandits

By the end of this chapter you will learn how to create simple web services with data
science models and how to design them in a way that is easy to test.



Deploying Data Science Models

[ 664 ]

Microservices
Java is a very common platform choice for running production code for many applications
across many domains. When data scientists create a model for existing applications, Java is
a natural choice, since it can be seamlessly integrated into the code. This case is
straightforward, you create a separate package, implement your models there, and make
sure other packages use it. Another possible option is packaging the code into a separate
JAR file, and include it as a Maven dependency.

But there is a different architectural approach for combining multiple components of a large
system--the microservices architecture. The main idea is that a system should be composed
of small independent units with their own lifecycle--their development, testing, and
deployment cycles are independent of all other components.

These microservices typically communicate via REST API, which is based on HTTP. It is
based on four HTTP methods--GET, POST, PUT and DELETE. The first two are most
commonly used:

GET: Get some information from the service
POST: Submit some information to the service

There are quite a few libraries that allow creating a web service with a REST API in Java,
and one of them is Spring Boot, which is based on the Spring Framework. Next, we will
look into how we can use it for serving data science models.

Spring Boot
Spring is a very old and powerful Java library. The Core Spring module implements the
Dependency Injection (DI) pattern, which allows developing loosely coupled, testable, and
reliable applications. Spring has other modules which are built around the core, and one of
them is Spring MVC, which is a module for creating web applications.

In simple terms, the DI pattern says that you should put the application logic in so-called
services and then inject these services into web modules.

Spring MVC, as we already mentioned, is used for developing web services. It runs on top
of the Servlet API, which is the Java way of dealing with processing web requests and
producing web responses. Servlet containers implement the Servlet API. Thus, to be able to
use your application as a web service, you need to deploy it to a servlet container. The most
popular ones are Apache Tomcat and Eclipse Jetty. However, the API is quite cumbersome
to use. Spring MVC is built on top of the Servlet API but hides all its complexity.



Deploying Data Science Models

[ 665 ]

Additionally, the Spring Boot library allows us to quickly start developing a Spring
application without going into a lot of configuration details such as, setting up Apache
Tomcat, the Spring application context and so on. It comes with a good set of pre-defined
parameters which are expected to work fine, so we can just start using it and concentrate on
the application logic rather than configuring the servlet container.

Now let us see how we can use Spring Boot and Spring MVC for serving machine learning
models.

Search engine service
Let us finally come back to our running example--building a search engine. In Chapter 7,
Extreme Gradient Boosting, we created a ranking model, which we can use for reordering
search engine results so that the most relevant content gets higher positions.

In the previous chapter, Chapter 9, Scaling Data Science, we extracted a lot of text data from
Common Crawl. What we can do now is to put it all together--use Apache Lucene to index
the data from Common Crawl, and then search its content and get the best results with the
XGBoost ranking model.

We already know how to use Hadoop MapReduce to extract text information from
Common Crawl. However, if you remember, our ranking model needs more than just text--
apart from just the body text, it needs to know the title and the headers. We can either
modify existing MapReduce jobs to extract the parts we need, or process it without Hadoop
and just index it with Lucene directly. Let us look at the second approach.

First, we will again use the HtmlDocument class, which has the following fields:

public class HtmlDocument implements Serializable {
    private final String url;
    private final String title;
    private final ArrayListMultimap<String, String> headers;
    private final String bodyText;
    // constructors and getters are omitted
}

Then we will also reuse the method for converting HTML to this HtmlDocument object, but
will adapt it slightly so it can read the WARC record from Common Crawl:

private static HtmlDocument extractText(ArchiveRecord record) {
    String html = TextUtils.extractHtml(record);
    Document document = Jsoup.parse(html);
    String title = document.title();
    Element body = document.body();



Deploying Data Science Models

[ 666 ]

    String bodyText = body.text();

    Elements headerElements = body.select("h1, h2, h3, h4, h5, h6");
    ArrayListMultimap<String, String> headers = ArrayListMultimap.create();
    for (Element htag : headerElements) {
        String tagName = htag.nodeName().toLowerCase();
        headers.put(tagName, htag.text());
    }

    return new HtmlDocument(url, title, headers, bodyText);
}

Here extractHtml is a method from the previous chapter that extracts HTML content from
a WARC record, and the rest is the same as used in Chapter 6, Working with Text - Natural
Language Processing and Information Retrieval.

Next, we need to go over each record of a WARC archive and convert it to an object of the
HtmlDocument class. Since the archives are large enough, we do not want to keep the
content of all the HtmlDocument objects in memory all the time. Instead, we can do this
lazily on the fly: read the next WARC record, convert it to HtmlDocument, an index with
Lucene. and do it again for the next record.

To be able to do it lazily, we will use the AbstractIterator class from Google Guava:

public static Iterator<HtmlDocument> iterator(File commonCrawlFile) {
    ArchiveReader archive = WARCReaderFactory.get(commonCrawlFile);
    Iterator<ArchiveRecord> records = archive.iterator();

    return new AbstractIterator<HtmlDocument>() {
        protected HtmlDocument computeNext() {
            while (records.hasNext()) {
                ArchiveRecord record = records.next();
                return extractText(record);
            }
            return endOfData();
        }
    };
}

First, we open the WARC archive and pass it to the instance of our AbstractIterator
class. Inside, while there are still records, we convert them using our extractText
function. Once we are done with processing, we signal about it by invoking the endOfData
method.



Deploying Data Science Models

[ 667 ]

Now we can index all the WARC files with Lucene:

FSDirectory directory = FSDirectory.open("lucene-index");
WhitespaceAnalyzer analyzer = new WhitespaceAnalyzer();
IndexWriter writer = new IndexWriter(directory, new
IndexWriterConfig(analyzer));

for (File warc : warcFolder.listFiles()) {
    Iterator<HtmlDocument> iterator = CommonCrawlReader.iterator(warc);

    while (iterator.hasNext()) {
        HtmlDocument htmlDoc = iterator.next();
        Document doc = toLuceneDocument(htmlDoc);
        writer.addDocument(doc);
    }
}

In this code, first we create a filesystem Lucene index, and then go over all WARC files from
the warcFolder directory. For each such file we get the iterator using the method we just
wrote, and then index each record of this WARC file with Lucene. The toLuceneDocument
method should already be familiar to us from the Chapter 6, Working with Text - Natural
Language Processing and Information Retrieval; it converts HtmlDocument to a Lucene
document, and contains the following code:

String url = htmlDoc.getUrl();
String title = htmlDoc.getTitle();
String bodyText = htmlDoc.getBodyText();
ArrayListMultimap<String, String> headers = htmlDoc.getHeaders();

String allHeaders = String.join(" ", headers.values());
String h1 = String.join(" ", headers.get("h1"));
String h2 = String.join(" ", headers.get("h2"));
String h3 = String.join(" ", headers.get("h3"));

Document doc = new Document();
doc.add(new Field("url", url, URL_FIELD));
doc.add(new Field("title", title, TEXT_FIELD));
doc.add(new Field("bodyText", bodyText, TEXT_FIELD));
doc.add(new Field("allHeaders", allHeaders, TEXT_FIELD));
doc.add(new Field("h1", h1, TEXT_FIELD));
doc.add(new Field("h2", h2, TEXT_FIELD));
doc.add(new Field("h3", h3, TEXT_FIELD));

You can refer to Chapter 6, Working with Text - Natural Language Processing and Information
Retrievalor more details.



Deploying Data Science Models

[ 668 ]

With this code, we can quite quickly index a part of Common Crawl. For our experiment,
we took only 3 WARC archives from December 2016, which contain about 0.5 million
documents.

Now, after we indexed the data, we need to get our ranker. Let us reuse the models we
created in Chapter 6, Working with Text - Natural Language Processing and Information
Retrieval and Chapter 7, Extreme Gradient Boosting: the feature extractor and the XGBoost
model.

If you remember, the feature extractor performs the following: tokenizes the query and the
body, the title, and the headers of each document; puts them all into the TF-IDF vector
space and computes the similarity between the query and all text features. In addition to
that, we also looked at the similarity in the LSA space (the space reduced with SVD) and
also a similarity between the query and the title in the GloVe space. Please refer to Chapter
6, Working with Text - Natural Language Processing and Information Retrieval, for more details
about it.

So let us use these classes to implement our ranker. But first, we need to have a proper
abstraction for all ranking functions, and for that, we can create the Ranker interface:

public interface Ranker {
    SearchResults rank(List<QueryDocumentPair> inputList);
}

While creating the interface may seem redundant at this step, it will
ensure the services we create are easily extensible and replaceable, and
this is very important for being able for model evaluation.

Its only method rank takes in a list of QueryDocumentPair objects and produces a
SearchResults object. We created the QueryDocumentPair class in Chapter 6, Working
with Text - Natural Language Processing and Information Retrieval, and it contains the query
along with the text features of the document:

public static class QueryDocumentPair {
    private final String query;
    private final String url;
    private final String title;
    private final String bodyText;
    private final String allHeaders;
    private final String h1;
    private final String h2;
    private final String h3;
    // constructor and getters are omitted
}



Deploying Data Science Models

[ 669 ]

The SearchResults object just contains a reordered list of SearchResult objects:

public class SearchResults {
    private List<SearchResult> list;
    // constructor and getters are omitted
}

The SearchResult is another object that just holds the title and the URL of a page:

public class SearchResult {
    private String url;
    private String title;
    // constructor and getters are omitted
}

Now let us create an implementation of this interface and call it XgbRanker. First, we
specify the constructor, which takes in the FeatureExtractor object and the path to the
saved XGBoost model:

public XgbRanker(FeatureExtractor featureExtractor, String pathToModel) {
    this.featureExtractor = featureExtractor;
    this.booster = XGBoost.loadModel(pathToModel);
}

And the rank method is implemented the following way:

@Override
public SearchResults rank(List<QueryDocumentPair> inputList) {
    DataFrame<Double> featuresDf = featureExtractor.transform(inputList);
    double[][] matrix = featuresDf.toModelMatrix(0.0);

    double[] probs = XgbUtils.predict(booster, matrix);
    List<ScoredIndex> scored = ScoredIndex.wrap(probs);
    List<SearchResult> result = new ArrayList<>(inputList.size());
    for (ScoredIndex idx : scored) {
        QueryDocumentPair doc = inputList.get(idx.getIndex());
        result.add(new SearchResult(doc.getUrl(), doc.getTitle());
    }

    return new SearchResutls(result);
}



Deploying Data Science Models

[ 670 ]

Here we just took the code we wrote in Chapter 6, Working with Text - Natural Language
Processing and Information Retrieval and Chapter 7, Extreme Gradient Boosting and put it
inside, feature extractor creates a DataFrame with features. Then we use the utility class
XgbUtils for applying the XGBoost model to the data from the DataFrame, and finally, we
use the score from the model for reordering the input list. At the end, it just converts the
QueryDocumentPair objects into SearchResult objects and returns it.

To create an instance of this class, we can first load the feature extracted we trained and
saved previously as well as the model:

FeatureExtractor fe = FeatureExtractor.load("project/feature-
extractor.bin");
Ranker ranker = new XgbRanker(fe, "project/xgb_model.bin");

Here the load method is just a wrapper around SerializationUtils from Commons
Lang.

Now we have the ranker, and we can use it to create a search engine service. Inside, it
should take in Lucene's IndexSearcher for the Common Crawl index, and our ranker.

When we have a ranker, let us create a search service. It should take in Lucene's
IndexSearcher and our Ranker.

Then we create the search method with the user query; it parses the query, gets the top 100
documents from the Lucene index, and reorders them with the ranker:

public SearchResults search(String userQuery) {
    Query query = parser.parse(userQuery);
    TopDocs result = searcher.search(query, 100);
    List<QueryDocumentPair> data = wrapResultsToObject(userQuery, searcher,
result)
    return ranker.rank(data);
}

Here we again reuse a function from Chapter 6, Working with Text - Natural Language
Processing and Information Retrieval: the wrapResultsToObject which converts the Lucene
results to QueryDocumentPair objects:

private static List<QueryDocumentPair> wrapResultsToObject(String
userQuery,
              IndexSearcher searcher, TopDocs result) throws IOException {
    List<QueryDocumentPair> data = new ArrayList<>();

    for (ScoreDoc scored : result.scoreDocs) {
        int docId = scored.doc;
        Document doc = searcher.doc(docId);

https://cdp.packtpub.com/b05867masteringjavafordatascience/wp-admin/post.php?post=212&action=edit#post_82
https://cdp.packtpub.com/b05867masteringjavafordatascience/wp-admin/post.php?post=212&action=edit#post_105
https://cdp.packtpub.com/b05867masteringjavafordatascience/wp-admin/post.php?post=212&action=edit#post_82


Deploying Data Science Models

[ 671 ]

        String url = doc.get("url");
        String title = doc.get("title");
        String bodyText = doc.get("bodyText");
        String allHeaders = doc.get("allHeaders");
        String h1 = doc.get("h1");
        String h2 = doc.get("h2");
        String h3 = doc.get("h3");

        data.add(new QueryDocumentPair(userQuery, url, title,
              bodyText, allHeaders, h1, h2, h3));
    }

    return data;
}

Our search engine service is ready, so we can finally put it into a microservice. As discussed
previously, a simple way to do it is via Spring Boot.

For that, the first step is including Spring Boot into our project. It is a bit unusual: instead of
just specifying a dependency, we use the following snippet, which you need to put after
your dependency section:

<dependencyManagement>
  <dependencies>
    <dependency>
      <groupId>org.springframework.boot</groupId>
      <artifactId>spring-boot-dependencies</artifactId>
      <version>1.3.0.RELEASE</version>
      <type>pom</type>
      <scope>import</scope>
    </dependency>
  </dependencies>
</dependencyManagement>

And then the following dependency in the usual place:

<dependency>
  <groupId>org.springframework.boot</groupId>
  <artifactId>spring-boot-starter-web</artifactId>
</dependency>



Deploying Data Science Models

[ 672 ]

Note that the version part is missing here: Maven takes it from the dependency
management section we just added. Our web service will respond with JSON objects, so we
also need to add a JSON library. We will use Jackson, because Spring Boot already provides
a built-in JSON handler that works with Jackson. Let us include it to our pom.xml:

<dependency>
  <artifactId>jackson-databind</artifactId>
  <groupId>com.fasterxml.jackson.core</groupId>
</dependency>

Now all the dependencies are added, so we can create a web service. In Spring terms, they
are called Controller (or RestController). Let us create a SearchController class:

@RestController
@RequestMapping("/")
public class SearchController {
private final SearchEngineService service;

    @Autowired
    public SearchController(SearchEngineService service) {
        this.service = service;
    }

    @RequestMapping("q/{query}")
    public SearchResults contentOpt(@PathVariable("query") String query) {
        return service.search(query);
    }

}

Here we use a few of Spring's annotations:

@RestController to tell Spring that this class is a REST controller
@Autowired to tell Spring that it should inject the instance of the
SearchEngineService into the controller
@RequestMapping("q/{query}") to specify the URL for the service

Note that here we used the @Autowired annotation for injecting SearchEngineService.
But Spring does not know how such a service should be instantiated, so we need to create a
container where we do it ourselves. Let us do it:

@Configuration
public class Container {

    @Bean
    public XgbRanker xgbRanker() throws Exception {



Deploying Data Science Models

[ 673 ]

        FeatureExtractor fe = load("project/feature-extractor.bin");
        return new XgbRanker(fe, "project/xgb_model.bin");
    }

    @Bean
    public SearchEngineService searchEngineService(XgbRanker ranker)
             throws IOException {
        File index = new File("project/lucene-rerank");
        FSDirectory directory = FSDirectory.open(index.toPath());
        DirectoryReader reader = DirectoryReader.open(directory);
        IndexSearcher searcher = new IndexSearcher(reader);
        return new SearchEngineService(searcher, ranker);
    }

    private static <E> E load(String filepath) throws IOException {
        Path path = Paths.get(filepath);
        try (InputStream is = Files.newInputStream(path)) {
            try (BufferedInputStream bis = new BufferedInputStream(is)) {
                return SerializationUtils.deserialize(bis);
            }
        }
    }
}

Here we first create an object of the XgbRanker class, and by using the @Bean annotation
we tell Spring to put this class into the container. Next, we create the
SearchEngineService which depends on XgbRanker, so the method where we initialize
it takes it as a parameter. Spring treats this as a dependency and passes the XgbRanker
object there so the dependency can be satisfied.

The final step is creating the application, which will listen to the 8080 port for incoming
requests and respond with JSON:

@SpringBootApplication
public class SearchRestApp {
    public static void main(String[] args) {
        SpringApplication.run(SearchRestApp.class, args);
    }
}

Once we run this class, we can query our service by sending a GET request to
http://localhost:8080/q/query, where query can be anything.



Deploying Data Science Models

[ 674 ]

For example, if we want to find all the pages about cheap used cars, then we send a GET
request to http://localhost:8080/q/cheap%20used%20cars. If we do this in a web
browser, we should be able to see the JSON response:

As we see, it is possible to create a simple microservice serving data science models with a
few easy steps. Next, we will see how the performance of our models can be evaluated
online that is, after a model is deployed and users have started using it.



Deploying Data Science Models

[ 675 ]

Online evaluation
When we do cross-validation, we perform offline evaluation of our model, we train the
model on the past data, and then hold out some of it and use it only for testing. It is very
important, but often not enough, to know if the model will perform well on actual users.
This is why we need to constantly monitor the performance of our models online--when the
users actually use it. It can happen that a model, which is very good during offline testing,
does not actually perform very well during online evaluation. There could be many reasons
for that--overfitting, poor cross-validation, using the test set too often for checking the
performance, and so on.

Thus, when we come up with a new model, we cannot just assume it will be better because
its offline performance is better, so we need to test it on real users.

For testing models online we usually need to come up with a sensible way of measuring
performance. There are a lot of metrics we can capture, including simple ones such as the
number of clicks, the time spent on the website and many others. These metrics are often
called Key Performance Indicators (KPIs). Once we have decided which metrics to
monitor, we can split all the users into two groups, and see where the metrics are better.
This approach is called A/B testing, which is a popular approach to online model
evaluation.

A/B testing
A/B testing is a way of performing a controlled experiment on users of your system.
Typically, we have two systems--the original version of the system (the control system) and
the new improved version (the treatment system).

A/B test is a way of performing controlled experiments on online users of the system. In
these experiments, we have two systems--the original version (the control) and the new
version (the treatment). To test whether the new version is better than the original one, we
split the users of the system into two groups (control and treatment) and each group gets the
output of its respective system. While the users interact with the system, we capture the KPI
of our interest, and when the experiment is finished, we see if the KPI across the treatment
group is significantly different from the control. If it is not (or it is worse), then the test
suggests that the new version is not actually better than the existent one.

The comparison is typically performed using the t-test, we look at the mean of each group
and perform a two-sided (or, sometimes, one-sided) test, which tells us whether the mean of
one group is significantly better than the other one, or the difference can be attributed only
to random fluctuations in the data.



Deploying Data Science Models

[ 676 ]

Suppose we already have a search engine that uses the Lucene ranking formula and does
not perform any re-ordering. Then we come up with the XGBoost model and would like to
see if it is better or not. For that, we have decided to measure the number of clicks users
made

This KPI was chosen because it is quite simple to implement and serves as
a good illustration. But it is not a very good KPI for evaluating search
engines: for example, if one algorithm gets more clicks than other, it may
mean that the users weren't able to find what they were looking for. So, in
reality, you should choose other evaluation metrics. For a good overview
of existent options, you can consult the paper Online Evaluation for
Information Retrieval by K. Hoffman.

Let us implement it for our example. First, we create a special class ABRanker, which
implements the Ranker interface. In the constructor it takes two rankers and the random
seed (for reproducibility):

public ABRanker(Ranker aRanker, Ranker bRanker, long seed) {
    this.aRanker = aRanker;
    this.bRanker = bRanker;
    this.random = new Random(seed);
}

Next, we implement the rank method, which should be quite straightforward; we just
randomly select whether to use aRanker or the bRanker:

public SearchResults rank(List<QueryDocumentPair> inputList) {
    if (random.nextBoolean()) {
        return aRanker.rank(inputList);
    } else {
        return bRanker.rank(inputList);
    }
}

Let us also modify the SearchResults class and include two extra fields there, the ID of
the result as well as the ID of the algorithm that generated it:

public class SearchResults {
    private String uuid = UUID.randomUUID().toString();
    private String generatedBy = "na";
    private List<SearchResult> list;
}



Deploying Data Science Models

[ 677 ]

We will need that for tracking purposes. Next, we modify XGBRanker so it sets the
generatedBy field to xgb--this change is trivial, so we will omit it here. Additionally, we
need to create an implementation of the Lucene ranker. It is also trivial-- all this
implementation needs to do is returning the given list as is without reordering it, and
setting the generatedBy field to lucene.

Next, we modify our container. We need to create two rankers, assign each of them a name
(by using the name parameter of the @Bean annotation), and then finally create the
ABRanker:

@Bean(name = "luceneRanker")
public DefaultRanker luceneRanker() throws Exception {
    return new DefaultRanker();
}

@Bean(name = "xgbRanker")
public XgbRanker xgbRanker() throws Exception {
    FeatureExtractor fe = load("project/feature-extractor.bin");
    return new XgbRanker(fe, "project/xgb_model.bin");
}

@Bean(name = "abRanker")
public ABRanker abRanker(@Qualifier("luceneRanker") DefaultRanker lucene,
        @Qualifier("xgbRanker") XgbRanker xgb) {
    return new ABRanker(lucene, xgb, 0L);
}

@Bean
public SearchEngineService searchEngineService(@Qualifier("abRanker")
Ranker ranker)
        throws IOException {
    // content of this method stays the same
}

When we create ABRanker and SearchEngineService, in the parameters we provide the
@Qualifier - which is the name of the bean. Since we now have quite a few rankers, we
need to be able to distinguish between them, so they need to have names.

Once we have done it, we can restart our web service. From now on, half of the requests
will be handled by the Lucene default ranker with no reordering, and half--by the XGBoost
ranker with reordering by our model's score.



Deploying Data Science Models

[ 678 ]

The next step is getting the user's feedback and storing it. In our case the feedback is the
clicks, so we can create the following HTTP endpoint in SearchController for capturing
this information:

@RequestMapping("click/{algorithm}/{uuid}")
public void click(@PathVariable("algorithm") String algorithm,
        @PathVariable("uuid") String uuid) throws Exception {
    service.registerClick(algorithm, uuid);
}

This method will be invoked when we receive a GET request to the
click/{algorithm}/{uuid} path, where both {algorithm} and {uuid} are
placeholders. Inside this method, we forward the call to the SearchEngineService class.

Now let us re-organize our abstractions a bit and create another interface FeedbackRanker,
which extends the Ranker interface and provides the registerClick method:

public interface FeedbackRanker extends Ranker {
    void registerClick(String algorithm, String uuid);
}

We can make SearchEngineService dependent on it instead of a simple Ranker, so we
can collect the feedback. In addition to that, we can also forward the call to the actual
ranker:

public class SearchEngineService {
    private final FeedbackRanker ranker;

    public SearchEngineService(IndexSearcher searcher, FeedbackRanker
ranker) {
        this.searcher = searcher;
        this.ranker = ranker;
    }

    public void registerClick(String algorithm, String uuid) {
        ranker.registerClick(algorithm, uuid);
    }

    // other fields and methods are omitted
}

Finally, we make our ABRanker implement this interface, and put the capturing logic in the
registerClick method.



Deploying Data Science Models

[ 679 ]

For example, we can make the following modifications:

public class ABRanker implements FeedbackRanker {
    private final List<String> aResults = new ArrayList<>();
    private final List<String> bResults = new ArrayList<>();
    private final Multiset<String> clicksCount =
ConcurrentHashMultiset.create();

    @Override
    public SearchResults rank(List<QueryDocumentPair> inputList)
                     throws Exception {
        if (random.nextBoolean()) {
            SearchResults results = aRanker.rank(inputList);
            aResults.add(results.getUuid());
            return results;
        } else {
            SearchResults results = bRanker.rank(inputList);
            bResults.add(results.getUuid());
            return results;
        }
    }

    @Override
    public void registerClick(String algorithm, String uuid) {
        clicksCount.add(uuid);
    }

    // constructor and other fields are omitted
}

Here we create two array lists, which we populate with UUIDs of created results and one
Multiset from Guava, which counts how many clicks each of the algorithms received. We
use collections here only for illustration purposes, and in reality, you should write the
results to a database or some log.

Finally, let us imagine that the system was running for a while and we were able to collect
some feedback from the users. Now it's time to check if the new algorithm is better than the
old one. This is done with the t-test, which we can take from Apache Commons Math.



Deploying Data Science Models

[ 680 ]

The simplest way of implementing it is the following:

public void tTest() {
    double[] sampleA = aResults.stream().mapToDouble(u ->
clicksCount.count(u)).toArray();
    double[] sampleB = bResults.stream().mapToDouble(u ->
clicksCount.count(u)).toArray();

    TTest tTest = new TTest();
    double p = tTest.tTest(sampleA, sampleB);

    System.out.printf("P(sample means are same) = %.3f%n", p);
}

After executing it, this will report the p-value of the t-test, or, the probability of rejecting the
null hypothesis that two samples have the same mean. If this number is very small, then the
difference is significant, or, in other words, there is strong evidence that one algorithm is
better than another.

With this simple idea, we can perform online evaluation of our machine learning algorithm
and make sure that the offline improvements indeed led to online improvements. In the
next section, we will talk about a similar idea, multi-armed bandits, which allow us to select
the best performing algorithm at runtime.

Multi-armed bandits
A/B testing is a great tool for evaluating some ideas. But sometimes there is no better model,
for one particular case sometimes one is better, and sometimes another is better. To select
the one which is better at this particular moment we can use on-line learning.

We can formulate this problem as a Reinforcement Learning problem--we have the agents
(our search engine and the rankers), they interact with the environment (the users of the
search engine), and get some reward (clicks). Then our systems learn from the interaction
by taking actions (selecting the ranker), observing the feedback and selecting the best
strategy based on it.

If we try to formulate A/B tests in this framework, then the action of the A/B test is choosing
the ranker at random, and the reward is clicks. But for A/B tests, when we set up the
experiment, we wait till it finishes. In online learning settings, however, we do not need to
wait till the end and can already select the best ranker based on the feedback we received so
far.



Deploying Data Science Models

[ 681 ]

This problem is called the bandit problem and the algorithm called multi-armed bandit
helps us solve it--it can select the best model while performing the experiment. The main
idea is to have two kinds of actions--exploration, where you try to take actions of unknown
performance, and exploitation, where you use the best performing model.

The way it is implemented is following: we pre-define some probability e (epsilon), with
which we choose between exploration and exploitation. With probability e we randomly
select any available action, and with probability 1 - e we exploit the empirically best action.
For our problem, it means that if we have several rankers, we use the best one with
probability 1 - e, and with probability e we use a randomly selected ranker for re-ordering
the results. During the runtime, we monitor the KPIs to know which ranker is currently the
best one, and update the statistics as we get more feedback.

This idea has a small drawback, when we just start running the bandit, we do not have
enough data to choose which algorithm is the best one. This can be solved with a series of
warm-ups, for example, the first 1000 results may be obtained exclusively in the exploration
mode. That is, for the first 1000 results we just choose the ranker at random. After that we
should collect enough data, and then select between exploitation and exploration with
probability e as discussed above.

So let us create a new class for this, which we will call BanditRanker, which will
implement the FeedbackRanker interface we defined for our ABRanker.

The constructor will take a map of Ranker with names associated to each ranker, the
epsilon parameter, and the random seed:

public BanditRanker(Map<String, Ranker> rankers, double epsilon, long seed)
{
    this.rankers = rankers;
    this.rankerNames = new ArrayList<>(rankers.keySet());
    this.epsilon = epsilon;
    this.random = new Random(seed);
}

Inside, we will also keep a list of ranker names for internal use.

Next, we implement the rank function:

@Override
public SearchResults rank(List<QueryDocumentPair> inputList) throws
Exception {
    if (count.getAndIncrement() < WARM_UP_ROUNDS) {
        return rankByRandomRanker(inputList);
    }



Deploying Data Science Models

[ 682 ]

    double rnd = random.nextDouble();
    if (rnd > epsilon) {
        return rankByBestRanker(inputList);
    }

    return rankByRandomRanker(inputList);
}

Here we always select the ranker at random at first, and then either explore (select the
ranker at random via the rankByRandomRanker method) or exploit (select the best ranker
via the rankByBestRanker method).

Now let us see how to implement these methods, First, the rankByRandomRanker method
is implemented in the following way:

private SearchResults rankByRandomRanker(List<QueryDocumentPair> inputList)
{
    int idx = random.nextInt(rankerNames.size());
    String rankerName = rankerNames.get(idx);
    Ranker ranker = rankers.get(rankerName);
    SearchResults results = ranker.rank(inputList);
    explorationResults.add(results.getUuid().hashCode());
    return results;
}

This is pretty simple: we randomly select a name from the rankerName list, then get the
ranker by the name and use it for re-arranging the results. Finally, we also have the UUID of
the generated result to a HashSet (or, rather, its hash to save the RAM).

The rankByBestRanker method has the following implementation:

private SearchResults rankByBestRanker(List<QueryDocumentPair> inputList)
{
    String rankerName = bestRanker();
    Ranker ranker = rankers.get(rankerName);
    return ranker.rank(inputList);
}

private String bestRanker() {
    Comparator<Multiset.Entry<String>> cnp =
            (e1, e2) -> Integer.compare(e1.getCount(), e2.getCount());
    Multiset.Entry<String> entry =
counts.entrySet().stream().max(cnp).get();
    return entry.getElement();
}



Deploying Data Science Models

[ 683 ]

Here we keep Multiset<String>, which stores the number of clicks each algorithm has
received. Then we select the algorithm based on this number and use it for re-arranging the
results.

Finally, this is how we can implement the registerClick function:

@Override
public void registerClick(String algorithm, String uuid) {
    if (explorationResults.contains(uuid.hashCode())) {
        counts.add(algorithm);
    }
}

Instead of just counting the number of clicks, we first filter out the clicks for results
generated at the exploitation phase, so they do not skew the statistics.

With this, we implemented the simplest possible version of multi-armed bandits, and you
can use this for selecting the best-deployed model. To include this to our working web
service, we need to modify the container class, but the modification is trivial, so we omit
it here.

Summary
In this book we have covered a lot of material, starting from data science libraries available
in data, then exploring supervised and unsupervised learning models, and discussing text,
images, and graphs. In this last chapter we spoke about a very important step: how these
models can be deployed to production and evaluated on real users.



25
Bibliography

This course is a blend of text and quizzes, all packaged up keeping your journey in mind. It
includes content from the following Packt products:

Java for Data Science, Richard M. Reese, and Jennifer L. Reese
Mastering Java for Data Science, Alexey Grigorev



Index

A
A/B testing  675, 680
activation function
   about  20, 204, 205
   references  235
   sigmoid  205
   step function  205
Alex Black
   URL  273
AltaVista  8
AOL Cyclops React
   about  385
   reference  386
Apache Common Collections
   reference  365
Apache Commons IO
   reference  366
Apache Commons Math API
   URL  27, 321
   using  321
Apache Commons Math
   reference  367
Apache Commons
   Apache Commons Lang  378
   common modules  380
   Commons Collections  380
   Commons IO  379
   reference  379, 381
Apache Flink
   reference  367
Apache Hadoop
   about  619, 622
   Common Crawl  620, 625, 628
   Hadoop MapReduce  619
   reference  367
   used, for performing map-reduce  315

   YARN  619
Apache HttpComponents
   reference  393
Apache Lucene
   about  515
   customizing  519, 520
   reference  368
   using  511, 513
Apache Mahout
   reference  367, 368
Apache ODF Toolkit
   URL  70
Apache OpenNLP
   reference  368
Apache POI
   about  35
   URL  71
Apache Spark DataFrames
   reference  366
Apache Spark
   about  630
   reference  367
   URL  180
Apache Tika
   reference  388
Apache UIMA
   URL  24
Apache's Hadoop
   used, for performing map-reduce  316
Aparapi
   about  310
   application, creating  325, 326, 327, 328
   URL  325
   using  325
   using, for matrix multiplication  328, 330
apriori algorithm
   about  197



[ 686 ]

   confidence  197
   conviction  197
   leverage  197
   lift  197
   support  197
Artificial Neural Network (ANN)  19, 203
associated probability distribution  178
association rule learning
   about  177, 196
   URL  197
   using  198
attribute selection  123
audio coding formats
   URL  31
autoencoder
   about  22, 248
   building, in DL4J  246
axet/wget
   URL  65

B
backpropagation algorithms  228
Bag of Words  502
bandit problem  681
bar charts
   country, using as category  128, 130
   creating  126, 127
   decade, using as category  130, 132
bar graph
   about  117, 121
   visual analysis  122, 123
Basic Linear Algebra Subprograms (BLAS)
   URL  320
Bayesian Belief Network (BBN)  193
Bayesian Information Criterion (BIC)  490
Bayesian networks
   about  192
   using  193
bias unit  206
big data  7
binarization  231
binary classification models  419
Bliki
   URL  55
blurring  109

Body Mass Index (BMI)  163
bottom-up approach  481
Brown-UMBC Reinforcement Learning and

Planning (BURPLAP)
   about  201
   URL  201
bubble charts
   creating  145, 146, 147

C
C4.5 algorithm  180
Canova
   URL  231
Cascading Neural Networks (CNNs)  227
cats, versus dogs
   data augmentation  609, 612
   data, reading  595, 598
   deep learning, URL  595
   DeepLearning4J, running on GPU  613, 617
   model, creating  598, 602
   performance, monitoring  602, 608
Central Processing Unit (CPU)  324
class  178
Classification and Regression Tree (CART)

analysis  179
classification models
   about  420, 430
   Encog  431
   Java Statistical Analysis Tool (JSAT)  422
   LIBLINEAR  424
   LIBSVM  424
   Statistical Machine Intelligence and Learning

Engine (Smile)  420
classification problem
   binary  358
   multi-class  358
classification
   about  419
   binary classification  419
   binary classification models  419
   evaluation  432
   multi-class classification  419
classifying text
   about  260
   by labels  260



[ 687 ]

   by similarity  263
   Doc2Vec  260
   Word2Vec  260
cluster analysis
   about  359, 480
   additional set of features, adding  492
   as dimensionality reduction  492, 494
   density-based  480
   graph-based  480
   hierarchical methods  480, 482, 483, 485
   K-means  487
   partitioning  480
   using, in supervised learning  491
   versus supervised learning  495
clustering  123, 359
CMU Sphinx
   about  25
   used, for converting speech to text  289
Comma Separated Values (CSV)
   about  11
   data, handling  68
   overview  32
Common Crawl
   about  620, 621, 622, 627
   download link  620
compressed row storage (CRS)  479
concatenation synthesis  281
conditional probability tables (CPTs)  194
console-based application
   architecture  338
   enhancements  353
   purpose, defining  338
   scope, defining  338
continuous restricted Boltzmann machine  242
Convolutional Neural Networks (CNNs)
   about  229, 249, 593
   model, building  249
   model, evaluating  252
   using  588, 594
corpus  255
costs function  234
crawler4j web crawler
   URL  45
   using  45
Cross Industry Standard Process for Data Mining

(CRISP-DM)
   about  355, 361
   business understanding  362
   data preparation  362
   data understanding  362
   evaluation  363
   feature engineering  363
   model development  363
   modeling  363
CUDA
   URL  28
curve of dimensionality  475
customer segmentation  359

D
data accessing
   about  386
   Comma Separated Values (CSV)  386
   databases, using  393
   DataFrames  396
   HTML, using  388
   JSON, using  391
   text data, reading  386
   web, using  388
data acquisition techniques
   about  39
   API calls, using to access common social media

sites  52
   HttpUrlConnection class, using  39
   web crawlers  41
   web scraping  48
data acquisition
   about  11
   using, Twitter  342
data augmentation  609
data classification  122
data cleaning
   about  66
   importance  12
   process  12
data formats
   audio, overview in Java  38
   CSV data, handling  68
   CSV data, overview  32
   databases, overview  33



[ 688 ]

   handling  67
   images, overview in Java  38
   JSON, handling  74
   JSON, overview  36
   PDF files, handling  72
   PDF files, overview  35
   spreadsheets, handling  70
   spreadsheets, overview  32
   streaming data, overview  38
   used, for data science applications  31
   video, overview in Java  38
   XML, overview  36
data imputation  92
data mining  356
data quality
   about  66
   accuracy  66
   consistency  66
   uniformity  66
   validity  66
data science applications
   data formats, using  31
data science libraries
   about  365
   categories  365
   data mining  367
   data processing libraries  365
   machine learning  367
   math and stats libraries  367
   text processing  368
data science
   about  356, 364
   Java, using  10
   libraries  365
   machine learning  17, 357
   neural network, using  19
   problem solving approach  9
   process models  361
   statistical method, using  15
   URL  8
   used, for problem solving  8
   uses  356
data validation
   about  100
   dates, validating  102

   e-mail addresses, validating  104
   names, validating  106
   types, validating  101
   zip codes, validating  106
data visualization  14
data wrangling  12, 66
Database Management Systems (DBMS)
   overview  33
Datavec
   URL  231
decision tree
   about  178
   libraries  179
   testing  184
   types  179
   using, with book dataset  180
deep autoencoders
   about  245
   autoencoder, building in DL4J  246
   network, building  248
   network, configuring  246
   network, learning  248
   network, retrieving  248
   network, saving  248
   specialized autoencoders  248
   URL  246
Deep Belief Networks (DBNs)  242
Deep Learning for Java (DL4J)
   URL  230
Deep Learning Networks (DLNs)  229
deep learning
   about  237
   approaches  22
Deeplearning4j
   architecture  230
   autoencoder, building  246
   CSV file, reading  231
   data, acquiring  231
   data, manipulating  231
   GPUs, using  313
   hyperparameters, using  233
   loss functions  234
   model, building  232
   model, configuring  232
   model, testing  236



[ 689 ]

   model, training  235
   network model, instantiating  235
   neural network  578, 581, 585
   reference  368
   references  261, 263
   URL  230, 314
demographic statistics
   URL  68
dendrites  203
denoising autoencoder  248
density-based spatial clustering of applications with

noise (DBSCAN)  359, 490
Dependency Injection (DI)  664
dermatology
   URL  216
Digital Signal Processor (DSP)  324
dimensionality reduction
   shortcomings  462
   supervised dimensionality reduction  462
   truncated SVD  470
   unsupervised dimensionality  462
   unsupervised dimensionality reduction  463
diphones  288
distortion  487
Doc2Vec  256, 260
Document Object Model (DOM)  37
donut charts
   creating  143, 144
Dual Coordinate Descent (DCD)  424
dummy-coding  471
dying ReLU  584
dynamic neural networks
   about  215
   Learning Vector Quantization (LVQ)  220
   multilayer perceptron networks  216
   Self-Organizing Maps (SOM)  221

E
Eigenvalue Decomposition (EVD)  464
elbow method  489
Encog
   reference  368
   URL  230
ensemble methods
   about  179

   bagging decision trees  179
   boosted trees  179
   random forest classifier  179
   rotation forest  179
epoch  217, 581
evaluation metrics, classification
   about  432
   accuracy  433
   F1  434
   k-fold cross-validation  442
   precision  434
   recall  434
   result validation  439, 440
   ROC  436, 439
   ROC (AUC)  436, 439
   testing  444
   training  441, 444
   validation  444
evaluation metrics, regression
   Mean Absolute Error (MAE)  454
   Mean Squared Error (MSE)  453
evaluation, cluster analysis
   about  496
   manual evaluation  496
   supervised evaluation  497
   unsupervised evaluation  500
Exploratory Data Analysis (EDA)
   about  362, 403
   Apache Commons Math  405, 407
   in Java  403
   joinery  408, 409
   search engine dataset  404
Extensible Markup Language (XML)
   overview  36
   URL, for rules  36
extensions, to standard Java library
   about  378
   AOL Cyclops React  385
   Apache Commons  378
   Google Guava  381
Extract, Transform, and Load (ETL)  231
Extreme Gradient Boosting (XGBoost)  550, 574



[ 690 ]

F
F1 score  435
faces
   identifying  293
   OpenCV, used for detecting  294, 295
feature extraction algorithms, dimensionality

reduction
   Locally Linear Embedding (LLE)  463
   Non-Negative Matrix Factorization (NNMF)  463
   Principal Component Analysis (PCA)  463
   random projection  463, 476, 478, 479
   Singular Value Decomposition (SVD)  463
   t-SNE  463
   truncated SVD  467, 468, 469
   truncated SVD, for categorical and sparse data 

470, 474, 475
feature selection  123
features, extracting from graph
   node feature  639
feedforward neural network (FNN)  215
Festival
   URL  25, 280
FFmpeg
   URL  289
Field-Programmable Gate Array (FPGA)  324
file type data
   URL  31
Flickr Developer Guide
   URL  58
Flickr4Java
   URL  59
Flickr
   handling  58
   URL  58
flow
   reference  398
fluent programing  331
formant synthesis  281
FreeTTS
   about  25
   URL  280, 281, 282
   using  283, 284
FScore  563

G
GATE
   reference  368
Generalized Least Squared (GLS) regression  172
geometric plane  18
Google account
   URL  62
Google Developer Console
   URL  62
Google Guava
   about  381, 382, 384
   reference  365
Gradient Boosted Classification Trees  550
Gradient Boosted Regression Trees  550
Gradient Boosted Trees  550
Gradient Boosting Machines (GBM)  549
gradient descent  22, 229
GRAL
   URL  15
Graphics Processing Unit (GPU)
   about  324, 613
   using, with Deeplearning4j  313
GRAphing Library (GRAL)
   about  115
   URL  115
ground truth  234

H
H2O
   reference  368
Han Solo
   URL, for aliases  342
hardware performance project  454, 456, 458, 459
hashtag  340
HBC application
   reference link  53
Hidden Layer  20, 206, 243
histograms
   about  121
   creating  140, 141, 142, 143
hold out technique  439
Holographic Associative Memory (HAM)  227
HttpUrlConnection class
   using  39



[ 691 ]

Hyperbolic Tangent kernel  187
hyperparameters  230
hypothesis testing  162

I
images
   brightening  111
   cleaning  107
   contrast, modifying  108
   converting, in different formats  113
   resizing  112
   smoothing  109
index charts
   about  119
   creating  123, 125, 126
indexing  511
information retrieval (IR)
   about  502
   ranking  540, 542, 544
   reranking, with Apache Lucene  545, 548
Input Layer  206, 243
Instantaneously Trained Neural Networks (ITNNs) 

226

Interactive Exploratory Analysis Data
   about  410
   joinery shell  412, 417
   JVM languages  410
issues, text classification
   about  538
   language detection  537
   sentiment analysis  537
   spam detection  537
iteration  581

J
Jackson Project
   URL  12, 75
Java 8 streams
   about  331
   lambda expression  331
   used, for performing map-reduce  333, 335
   used, for performing matrix multiplication  332
   using  330
Java 9
   download link  411

Java API for XML Processing (JAXP)  37
Java bindings for CUDA (JCuda)
   URL  311
Java bindings for OpenCL (JOCL)
   URL  324
Java Database Connectivity (JDBC)  366, 393
Java HTML parser
   reference link  51
Java Native Interface (JNI)  550
Java OpenCL
   URL  324
Java Speech API (JSAPI)
   URL  25, 280
Java Statistical Analysis Tool (JSAT)
   reference  422
Java tokenizers
   about  83
   libraries  83
   third-party tokenizers  83
   used, for extracting words  82
Java Virtual Machine (JVM)  410
Java
   data frame libraries  366
   data science  364
   Exploratory Data Analysis (EDA)  403
   used, for data science  10
JavaCL
   URL  324
JavaML
   reference  368
JavaScript Object Notation (JSON)
   about  11
   input, processing  348
   overview  36
   URL  11, 36
JBayes
   URL  193
jblas API
   URL  320
   using  320, 321
JBlas
   reference  367
JBoost
   URL  180
JDBC API



[ 692 ]

   URL  35
joinery
   reference  366, 398, 412
JSAT
   reference  368
JSON
   handling  74
   reference  392
   streaming API, using  74
   tree API, using  79
jsoup
   URL  42, 49, 51
JVM languages
   about  410
   interactive Java  411

K
k-fold cross-validation  442
K-means
   DBSCAN  490
   implementing  487
   K, selecting  488
k-Nearest Neighbor (k-NN) algorithm  203, 226
Kaggle
   customer complaints, URL  470
kernel trick  187
kernels
   linear  187
   polynomial  187
   Radial Basis Function (RBF)  187
   sigmoid  187
   URL  187
Key Performance Indicators (KPIs)  675

L
Latent Semantic Indexing (LSI)  521
Launch Instance button  615
Learning Vector Quantization (LVQ)  220
LIBLINEAR
   reference  424, 428
LIBSVM
   reference  424
Lightweight Java Game Library (LWJGL)
   URL  324
line charts  119

Linear Algebra Package (LAPACK)
   URL  320
linear regression
   references  163
LingPipe
   about  14
   URL  24, 350, 368
Link Prediction
   about  633
   DBLP graph, reading  634, 636
   edge feature  650, 652
   edge features  647
   features, extracting from graph  636, 637
   link suggestions  658, 659, 661
   MLlib, using  652, 654
   negative sampling  642, 643, 646
   node feature  638, 642
   XGBoost, using  653, 655
linkages
   about  481
   average linkages (UPGMA linkage)  481
   complete linkages  481
   single linkages  481
linking  481
local minimums  209
Long Short-Term Memory (LSTM)  253
loss function  234

M
MAchine Learning for LanguagE Toolkit (MALLET)
   URL  180
machine learning libraries, for regression
   JSAT  452
   LIBSVM  453
   Smile  451
machine learning
   Bayesian networks  18
   decision trees  18
   for texts  521
   support vector machines  18
   with data science  17
MALLET
   reference  368
map-reduce
   about  7



[ 693 ]

   Hadoop job, creating  318, 319, 320
   Hadoop job, executing  318, 319, 320
   map method, implementing  316, 317
   performing, with Apache's Hadoop  315, 316
   performing, with Java 8  333, 335
   reduce method, writing  317
   reference link  315
   using  315
market basket analysis  196
massaging  66
mathematical libraries
   about  320
   Apache Commons math API, using  321
   jblas API, using  320, 321
   ND4J API, using  322
   references  320
Matrix Java Toolkit (MTJ)  474, 509
matrix operations
   GPUs, using with DeepLearning4j  313
   implementing  311
Maven Central repository
   reference  366
MBROLA Project's
   references  284
Mean Absolute Error (MAE)  454
Mean Average Precision (MAP)  545, 657
Mean Squared Error (MSE)  164, 453
mean
   calculating  150
   calculating, with Apache Commons  152
   calculating, with Google Guava  152
   calculating, with Java 8 techniques  151
   calculating, with Java techniques  150
   working, with  150
median
   about  153
   calculating  153
   calculating, with Apache Commons  155
   calculating, with simple Java techniques  153
   working, with  150
MediaWiki API
   URL  55
membrane potential  227
microservices
   about  664

   search engine service  665
   Spring Boot, using  664
Mnist
   URL  246
mode
   about  155
   calculating  155
   calculating, with Apache Commons  159
   calculating, with ArrayLists  157
   calculating, with HashMap  158
   working, with  150
Multi Layer Perceptron (MLP) network
   about  20, 203, 216, 296
   model, building  216
   model, evaluating  218
   model, retrieving  220
   model, saving  220
   values, predicting  219
multi-armed bandits  680
multimap  383
Multiple Additive Regression Trees

(LambdaMART)  569
multiple regression
   references  169
   using  168
multisets  382
munging  12, 66
MySQL Workbench  33

N
N-dimensional arrays for Java (ND4J)  575, 578
N-Dimensional Arrays for Java (ND4J)
   URL  230
named entity recognition (NER)
   implementing  256
   location entities, identifying  258
   OpenNLP, using  257
Natural Language Processing (NLP) tools
   lemmatization  515
   Named Entity Recognition (NER)  515
   Part-of-Speech tagging (POS) Tagging  515
   sentence splitting  515
   Stanford CoreNLP  516, 519
   tokenization  515
Natural Language Processing (NLP)



[ 694 ]

   about  23, 255, 360, 502
   name entity recognition (NER)  255
   parts of speech (POS)  255
   relationships  255
   stop words  255
   tokenization  255
   tools  515
ND4J API
   URL  322
   using  322
neural network
   about  19, 575
   architectures  206
   in DeepLearning4J  578, 581
   reference link  203, 207
   training  205
   using, in data science  19
neuron  203
Neuroph Studio
   creating, for classifying visual images  297
   references  296
NLP APIs
   DL4J  256
   LingPipe  256
   OpenNLP  256
   Standford  256
   UIMA  256
nonlinear java support
   references  164
normalization  231
Normalized Discounted Cumulative Gain (NDCG) 

545, 657

O
OAuth 2.0 provider
   URL  52
objective  234
Obtain, Scrub, Explore, Model, and iNterpret

(OSEMN)  361
online evaluation
   A/B testing  675
   about  675
Open Computing Language (OpenCL)
   URL  324
   using  324

Open Document Format (ODF)
   URL  70
OpenCSV
   URL  69
OpenCV 3.1
   URL  293
OpenCV Javadoc
   URL  108
OpenCV
   URL  25, 108, 280, 294
   using, to detect faces  294, 295
OpenNLP
   URL  24, 257, 266
   used, for extracting relationships  270
   used, for performing NER  257
OpenRefine
   URL  67
Optical Character Recognition (OCR)
   about  107, 249, 292
   Tess4j, using to extract text  292, 293
   URL  26, 292
Ordinary Least Squares (OLS)  451, 462
outliers  116
Output Layer  206

P
package manager
   reference link  225
page prediction  446, 447, 448, 450
parallel techniques
   used, for improving application  27
parent nodes  193
patterns  208
PDFBox
   about  35
   URL  72
Penn TreeBankPOS tags
   URL  268
perceptrons  204
phones  288
pie charts
   about  118
   creating  135, 137
Platform for Implementing Q-Learning Experiments

(Piqle)



[ 695 ]

   about  201
   URL  201
plots  116
Pointwise Mutual Information (PMI)  528
population data
   URL  123, 127
Portable Document Format (PDF)
   files, handling  72
   overview  35
POS tagging
   about  266, 268
   OpenNLP, using for identification  266
predictive analytics  356
Principal Component Analysis (PCA)  179, 360,

463, 466
problem solution categories, with machine learning
   Natural Language Processing (NLP)  360
   reinforcement learning  357
   semi-supervised learning  357
   supervised learning  357, 358
   unsupervised learning  357, 359
process models, data science
   about  361
   Cross Industry Standard Process for Data Mining

(CRISP-DM)  361
   example  363
proximity matrix  482
Pulse Code Modulation (PCM)  289

Q
Q function  200

R
Radial Basis Function (RBF)  425
rank  313
ranking classifier  436
Read-Evaluate-Print Loop (REPL)  410
records  32
Recurrent Neural Networks (RNN)  229, 253
recursive partitioning  179
regression analysis
   about  123, 163, 237
   class, setting up  238
   data, preparing  237, 239
   data, reading  238

   model, building  239
   model, evaluating  240
   multiple regression, using  168
   simple linear regression, using  165
regression problem  358
regression tree  178
regression
   about  450
   evaluation  453
   machine learning libraries  451
regularized Jaccard Similarity  650
reinforcement learning  200
relationship
   extracting, from sentences  269
   extracting, with OpenNLP  270
reshaping  12, 66
Residual Sum of Squares (RSS)  164
Resilient Distributed Dataset (RDD)
   about  630
   actions  630
   transformations  630
Restricted Boltzmann Machines (RBM)
   about  22, 242
   configuring  244
   reconstruction  243
   tb  229
Rhino  412
Root Mean Squared Error (RMSE)  454

S
saddle points  209
sample size determination
   about  162
   reference link  162
sbt tool
   reference  421
scatter charts
   creating  138, 139, 140
scatter plot  122
screen scraping  11
Search engine service
   multi-armed bandits  680, 683
search engine
   building  398, 665
Self-Organizing Maps (SOM)



[ 696 ]

   about  207
   reference link  221
   results, displaying  222
   using  221
sentiment analysis
   about  272
   data, extracting  346
   model, building  276
   performing  351
   reference link  273, 346
   text, classifying  276
   Word2Vec model, downloading  273
   Word2Vec model, extracting  273
sequential minimal optimization algorithm
   URL  187
Simple API for XML (SAX)  37
simple linear regression
   using  165
Singular Value Decomposition (SVD)  459, 464,

522

social media sites
   accessing, with API calls  52
   OAuth, using to authenticate users  52
   twitter, handling  52
   wikipedia, handling  55
   YouTube, handling  61
speech recognition
   about  288
   CMUPhinx, used for speech to text conversion 

289

   words  290
Spiking Neural Network (SNN)  227
spreadsheets
   Excel spreadsheets, handling  71
   handling  70
   overview  32
Spring Batch
   reference  367
Spring Boot  664
Stacked Denoising Autoencoder (SdA)  248
stacked graphs
   creating  133, 134, 135
standard deviation  159
standard Java library
   about  370, 371

   collections  371, 372
   extensions  378
   input data, reading  372
   input/output  372
   output data, writing  374
   streaming API  375
Standford NLP
   URL  24
Stanford CoreNLP
   reference  368
State-Action-Reward-State-Action (SARSA)  200
static neural networks
   about  207
   Java example  207
Statistical Machine Intelligence and Learning

Engine (Smile)
   reference  368, 420, 451, 452
stop words
   removing  350
   URL  351
Streaming API for XML (StAX)  37
streaming data
   overview  38
Sum of Squared Errors (SSE)  164
Sum of Squared Residuals (SSR)  164
supervised dimensionality reduction
   feature selection  462
supervised learning techniques
   about  177
   decision trees  178
   Support Vector Machine (SVM)  185
supervised learning
   about  358
   for texts  536
Support Vector Machine (SVM)  358
   about  18, 185
   individual instances, testing  191
   used, for camping data  188
Support Vector Regression (SVR)  358

T
Tab-Separated Values (TSV) files  32
Tablesaw
   reference  366
tensor  575



[ 697 ]

Tess4j
   URL  292, 293
   used, for extracting text  292, 293
text categorization  359
text cleaning
   about  80, 85
   data imputation  92
   data validation  100
   data, subsetting  95
   data, transforming into usable form  85
   Java tokenizers, using to extract words  82
   stop words, removing  87
   text, replacing  90
   text, searching  90
   text, sorting  96
   words, searching  89
Text-To-Speech (TTS)
   about  280, 281
   FreeTTS, using  283
   voice information, gathering  287
   voices  285, 287
threshold  210
time series graphs  118
tokens  502
Tonal  108
top-down clustering  480
Top-Down Induction of Decision Trees (TDIDT) 

179

tree  178
TweetHandler class
   about  344
   data, cleaning  349
   data, extracting for sentiment analysis model  346
   JSON input, processing  348
   results, analyzing  351
   sentiment analysis, performing  351
   sentiment model, building  347
   stop words, removing  350
tweets  52
Twitter4J
   URL  348
Twitter
   with data acquisition  342

U
UnitConcatenator  283
unstructured data  502
unsupervised dimensionality reduction
   feature extraction  462
unsupervised learning, for texts
   Latent Semantic Analysis (LSA)  521, 522, 523
   text clustering  525
   word embeddings  527, 529, 530, 534, 536
unsupervised learning
   about  359, 461
   clustering  359
   dimensionality reduction  359
   for texts  521
unsupervised machine learning
   about  196
   association rule learning  196
Utterance  283, 288

V
vanishing activation problem  608
vanishing gradient problem  584, 608
variables, not using in cluster analysis
   company response to customer  498
   consumer disputed  498
   timely response  498
vector quantization  221
Vector Space Model
   about  502, 503
   implementing  505, 507, 509, 511
vectorization  231
vectors  231
visual data
   classifying  296
   model, training  304, 305, 307
   Neuroph Studio, creating for classification  297

W
Waikato Environment for Knowledge Analysis

(Weka)
   about  180
   classification algorithm, references  221
   URL  180
Watson Cloud  280



web crawler
   about  30, 41
   crawler4j, using  45
   custom web crawler, creating  42
   references  42
web scraping  30, 48
Weka
   reference  367
wikipedia
   handling  55
   references  47, 55
winutils.exe file
   reference  631
word embeddings
   about  535
   download link  534
Word2Vec  256, 260, 527
   URL  273

X

XGBFI
   reference  564
XGBoost4j  550
XGBoost
   features, importance  563
   for Learning to Rank  568, 570, 572
   for regression  565, 567
   installing  551
   parameter tuning  560
   parameter tuning, algorithm  561
   text features  562
   used, for classification  553, 557, 560
   using  553

Y
Youtube
   handling  61
   references  61
   searching, by keyword  62



Thank you for buying  

Java: Data Science Made Easy
About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective 
MySQL Management, in April 2004, and subsequently continued to specialize in publishing 
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting 
and customizing today's systems, applications, and frameworks. Our solution-based books 
give you the knowledge and power to customize the software and technologies you're using 
to get the job done. Packt books are more specific and less general than the IT books you have 
seen in the past. Our unique business model allows us to bring you more focused information, 
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,  
cutting-edge books for communities of developers, administrators, and newbies alike.  
For more information, please visit our website at www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should 
be sent to author@packtpub.com. If your book idea is still at an early stage and you would 
like to discuss it first before writing a formal book proposal, then please contact us; one of our 
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing 
experience, our experienced editors can help you develop a writing career, or simply get some 
additional reward for your expertise.

 

Please check www.PacktPub.com for information on our titles




	Cover
	Copyright
	Credits
	Table of Contents
	Preface
	Module 1: Java for Data Science
	Chapter 1: Getting Started with Data Science
	Problems solved using data science
	Understanding the data science problem - solving approach
	Using Java to support data science

	Acquiring data for an application
	The importance and process of cleaning data
	Visualizing data to enhance understanding
	The use of statistical methods in data science
	Machine learning applied to data science
	Using neural networks in data science
	Deep learning approaches
	Performing text analysis
	Visual and audio analysis
	Improving application performance using parallel techniques
	Assembling the pieces
	Summary

	Chapter 2: Data Acquisition
	Understanding the data formats used in data science applications
	Overview of CSV data
	Overview of spreadsheets
	Overview of databases
	Overview of PDF files
	Overview of JSON
	Overview of XML
	Overview of streaming data
	Overview of audio/video/images in Java

	Data acquisition techniques
	Using the HttpUrlConnection class
	Web crawlers in Java
	Creating your own web crawler
	Using the crawler4j web crawler

	Web scraping in Java
	Using API calls to access common social media sites
	Using OAuth to authenticate users
	Handing Twitter
	Handling Wikipedia
	Handling Flickr
	Handling YouTube
	Searching by keyword



	Summary

	Chapter 3: Data Cleaning
	Handling data formats
	Handling CSV data
	Handling spreadsheets
	Handling Excel spreadsheets

	Handling PDF files
	Handling JSON
	Using JSON streaming API
	Using the JSON tree API


	The nitty gritty of cleaning text
	Using Java tokenizers to extract words
	Java core tokenizers
	Third-party tokenizers and libraries

	Transforming data into a usable form
	Simple text cleaning
	Removing stop words

	Finding words in text
	Finding and replacing text

	Data imputation
	Subsetting data
	Sorting text
	Data validation
	Validating data types
	Validating dates
	Validating e-mail addresses
	Validating ZIP codes
	Validating names


	Cleaning images
	Changing the contrast of an image
	Smoothing an image
	Brightening an image
	Resizing an image
	Converting images to different formats

	Summary

	Chapter 4: Data Visualization
	Understanding plots and graphs
	Visual analysis goals

	Creating index charts
	Creating bar charts
	Using country as the category
	Using decade as the category

	Creating stacked graphs
	Creating pie charts
	Creating scatter charts
	Creating histograms
	Creating donut charts
	Creating bubble charts
	Summary

	Chapter 5: Statistical Data Analysis Techniques
	Working with mean, mode, and median
	Calculating the mean
	Using simple Java techniques to find mean
	Using Java 8 techniques to find mean
	Using Google Guava to find mean
	Using Apache Commons to find mean

	Calculating the median
	Using simple Java techniques to find median
	Using Apache Commons to find the median

	Calculating the mode
	Using ArrayLists to find multiple modes
	Using a HashMap to find multiple modes
	Using a Apache Commons to find multiple modes


	Standard deviation
	Sample size determination
	Hypothesis testing
	Regression analysis
	Using simple linear regression
	Using multiple regression

	Summary

	Chapter 6: Machine Learning
	Supervised learning techniques
	Decision trees
	Decision tree types
	Decision tree libraries
	Using a decision tree with a book dataset
	Testing the book decision tree

	Support vector machines
	Using an SVM for camping data
	Testing individual instances

	Bayesian networks
	Using a Bayesian network


	Unsupervised machine learning
	Association rule learning
	Using association rule learning to find buying relationships


	Reinforcement learning
	Summary

	Chapter 7: Neural Networks
	Training a neural network
	Getting started with neural network architectures

	Understanding static neural networks
	A basic Java example

	Understanding dynamic neural networks
	Multilayer perceptron networks
	Building the model
	Evaluating the model
	Predicting other values
	Saving and retrieving the model

	Learning vector quantization
	Self-Organizing Maps
	Using a SOM
	Displaying the SOM results


	Additional network architectures and algorithms
	The k-Nearest Neighbors algorithm
	Instantaneously trained networks
	Spiking neural networks
	Cascading neural networks
	Holographic associative memory
	Backpropagation and neural networks

	Summary

	Chapter 8: Deep Learning
	Deeplearning4j architecture
	Acquiring and manipulating data
	Reading in a CSV file

	Configuring and building a model
	Using hyperparameters in ND4J
	Instantiating the network model

	Training a model
	Testing a model

	Deep learning and regression analysis
	Preparing the data
	Setting up the class
	Reading and preparing the data
	Building the model
	Evaluating the model

	Restricted Boltzmann Machines
	Reconstruction in an RBM
	Configuring an RBM

	Deep autoencoders
	Building an autoencoder in DL4J
	Configuring the network
	Building and training the network
	Saving and retrieving a network
	Specialized autoencoders


	Convolutional networks
	Building the model
	Evaluating the model

	Recurrent Neural Networks
	Summary

	Chapter 9: Text Analysis
	Implementing named entity recognition
	Using OpenNLP to perform NER
	Identifying location entities

	Classifying text
	Word2Vec and Doc2Vec
	Classifying text by labels
	Classifying text by similarity

	Understanding tagging and POS
	Using OpenNLP to identify POS
	Understanding POS tags

	Extracting relationships from sentences
	Using OpenNLP to extract relationships

	Sentiment analysis
	Downloading and extracting the Word2Vec model
	Building our model and classifying text

	Summary

	Chapter 10: Visual and Audio Analysis
	Text-to-speech
	Using FreeTTS
	Getting information about voices
	Gathering voice information

	Understanding speech recognition
	Using CMUPhinx to convert speech to text
	Obtaining more detail about the words

	Extracting text from an image
	Using Tess4j to extract text

	Identifying faces
	Using OpenCV to detect faces

	Classifying visual data
	Creating a Neuroph Studio project for classifying visual images
	Training the model

	Summary

	Chapter 11: Mathematical and Parallel Techniques for Data Analysis
	Implementing basic matrix operations
	Using GPUs with DeepLearning4j

	Using map-reduce
	Using Apache's Hadoop to perform map-reduce
	Writing the map method
	Writing the reduce method
	Creating and executing a new Hadoop job

	Various mathematical libraries
	Using the jblas API
	Using the Apache Commons math API
	Using the ND4J API

	Using OpenCL
	Using Aparapi
	Creating an Aparapi application
	Using Aparapi for matrix multiplication

	Using Java 8 streams
	Understanding Java 8 lambda expressions and streams
	Using Java 8 to perform matrix multiplication
	Using Java 8 to perform map-reduce

	Summary

	Chapter 12: Bringing It All Together
	Defining the purpose and scope of our application
	Understanding the application's architecture
	Data acquisition using Twitter
	Understanding the TweetHandler class
	Extracting data for a sentiment analysis model
	Building the sentiment model
	Processing the JSON input
	Cleaning data to improve our results
	Removing stop words
	Performing sentiment analysis
	Analysing the results

	Other optional enhancements
	Summary


	Module 2: Mastering Java for Data Science
	Chapter 1: Data Science Using Java
	Data science
	Machine learning
	Supervised learning
	Unsupervised learning
	Clustering
	Dimensionality reduction

	Natural Language Processing


	Data science process models
	CRISP-DM
	A running example

	Data science in Java
	Data science libraries
	Data processing libraries
	Math and stats libraries
	Machine learning and data mining libraries
	Text processing


	Summary

	Chapter 2: Data Processing Toolbox
	Standard Java library
	Collections
	Input/Output
	Reading input data
	Writing ouput data

	Streaming API

	Extensions to the standard library
	Apache Commons
	Commons Lang
	Commons IO
	Commons Collections
	Other commons modules

	Google Guava
	AOL Cyclops React

	Accessing data
	Text data and CSV
	Web and HTML
	JSON
	Databases
	DataFrames

	Search engine - preparing data
	Summary

	Chapter 3: Exploratory Data Analysis
	Exploratory data analysis in Java
	Search engine datasets
	Apache Commons Math
	Joinery

	Interactive Exploratory Data Analysis in Java
	JVM languages
	Interactive Java

	Joinery shell

	Summary

	Chapter 4: Supervised Learning - Classification and Regression
	Classification
	Binary classification models
	Smile
	JSAT
	LIBSVM and LIBLINEAR
	Encog

	Evaluation
	Accuracy
	Precision, recall, and F1
	ROC and AU ROC (AUC)
	Result validation
	K-fold cross-validation
	Training, validation, and testing


	Case study - page prediction
	Regression
	Machine learning libraries for regression
	Smile
	JSAT
	Other libraries

	Evaluation
	MSE
	MAE


	Case study - hardware performance
	Summary

	Chapter 5: Unsupervised Learning - Clustering and Dimensionality Reduction
	Dimensionality reduction
	Unsupervised dimensionality reduction
	Principal Component Analysis
	Truncated SVD
	Truncated SVD for categorical and sparse data
	Random projection


	Cluster analysis
	Hierarchical methods
	K-means
	Choosing K in K-Means
	DBSCAN

	Clustering for supervised learning
	Clusters as features
	Clustering as dimensionality reduction
	Supervised learning via clustering

	Evaluation
	Manual evaluation
	Supervised evaluation
	Unsupervised Evaluation


	Summary

	Chapter 6: Working with Text - Natural Language Processing and Information Retrieval
	Natural Language Processing and information retrieval
	Vector Space Model - Bag of Words and TF-IDF
	Vector space model implementation

	Indexing and Apache Lucene
	Natural Language Processing tools
	Stanford CoreNLP

	Customizing Apache Lucene

	Machine learning for texts
	Unsupervised learning for texts
	Latent Semantic Analysis
	Text clustering
	Word embeddings

	Supervised learning for texts
	Text classification
	Learning to rank for information retrieval
	Reranking with Lucene


	Summary

	Chapter 7: Extreme Gradient Boosting
	Gradient Boosting Machines and XGBoost
	Installing XGBoost

	XGBoost in practice
	XGBoost for classification
	Parameter tuning
	Text features
	Feature importance

	XGBoost for regression
	XGBoost for learning to rank

	Summary

	Chapter 8: Deep Learning with DeepLearning4J
	Neural Networks and DeepLearning4J
	ND4J - N-dimensional arrays for Java
	Neural networks in DeepLearning4J
	Convolutional Neural Networks

	Deep learning for cats versus dogs
	Reading the data
	Creating the model
	Monitoring the performance
	Data augmentation
	Running DeepLearning4J on GPU

	Summary

	Chapter 9: Scaling Data Science
	Apache Hadoop
	Hadoop MapReduce
	Common Crawl

	Apache Spark
	Link prediction
	Reading the DBLP graph
	Extracting features from the graph
	Node features
	Negative sampling
	Edge features
	Link Prediction with MLlib and XGBoost
	Link suggestion

	Summary

	Chapter 10: Deploying Data Science Models
	Microservices
	Spring Boot
	Search engine service

	Online evaluation
	A/B testing
	Multi-armed bandits

	Summary


	Bibliography
	Index



