o=
. | é‘éﬁ#f& 5 o & |
IR " i:xﬁ‘ “\ ‘N\

Advanced Java® EE
Development with WildFly®

Your one-stop guide to developing Java® EE applications with
the Eclipse IDE, Maven, and WildFIy® 8.1

PACKT

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Java® EE
Development with WildFIly®

Your one-stop guide to developing Java® EE
applications with the Eclipse IDE, Maven,
and WildFly® 8.1

Deepak Vohra

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Java® EE Development with WildFly®

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2015
Production reference: 1230315

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78328-890-8

www . packtpub.com

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author
Deepak Vohra

Reviewers
Miro Kopecky

Konstantinos A. Margaritis
Manu PK
Alexandre Arcanjo de Queiroz

Muhammad Rosli

Commissioning Editor
Kartikey Pandey

Acquisition Editor
Vinay Argekar

Content Development Editor
Rahul Nair

Technical Editors
Vijin Boricha
Parag Topre

Copy Editors
Sarang Chari

Janbal Dharmaraj

Project Coordinator
Suzanne Coutinho

Proofreaders
Paul Hindle

Clyde Jenkins

Indexer
Hemangini Bari

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Deepak Vohra is a consultant and a principal member of the NuBean software
company. He is a Sun Certified Java Programmer (SCJP) and Web Component
Developer (SCWCD) and has worked in the fields of XML and Java programming
and J2EE for over 5 years. Deepak is the coauthor of the Apress book Pro XML
Development with Java Technology and is the technical reviewer for the O'Reilly book
WebLogic: The Definitive Guide.

Deepak was also the technical reviewer for the Course Technology PTR book Ruby
Programming for the Absolute Beginner, and the technical editor for the Manning
Publications book Prototype and Scriptaculous in Action. He is also the author of

the Packt Publishing books JDBC 4.0 and Oracle JDeveloper for J2EE Development,
Processing XML documents with Oracle [Developer 11g, E]B 3.0 Database Persistence with
Oracle Fusion Middleware 11g, Java 7 JAX-WS Web Services, and Java EE Development
with Eclipse.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Miro Kopecky has been a passionate JVM enthusiast since the moment he
joined Sun Microsystems in 2002. Miro truly believes in distributed system design,
concurrency, and parallel computing, which push the system performance to its
limit without losing reliability and stability.

I would like to thank my family and my girlfriend, Tanja, for her big
support when I was reviewing this book.

Konstantinos A. Margaritis has worked as a contractor since 2003 and has
tackled all sorts of projects, from the very low level (C, C++, and ASM) to the very
high level (Java EE/Enterprise). He is highly proficient in both C/C++ and Java,
having written hundreds of thousands of lines in either language, and has used
Jboss/Wildfly for many years in corporate projects. He is also taking interest in new
languages, such as D, C#, Go, and Rust. His favorite subject is software optimization
and also SIMD architectures (SSE/AVX, ARM NEON, PowerPC Altivec/VSX,

and many more). He has been an official Debian developer since 1999 and has
boostrapped the Debian armhf port. Among others, he has worked for Genesi,
Linaro, and Collabora. He has written a user book for Debian (in Greek) and

several smaller guides and is currently in the process of writing an SIMD book.

I would like to thank my wife, Chryssoula, and my amazing kids,
Yiannis and Evangelos, who have shown incredible patience and
love in everything I attempt.

www.it-ebooks.info

http://www.it-ebooks.info/

Manu PK is a software architect at Schneider Electric, where he designs and
develops applications using Java and related technologies. He blogs at http://
blog.manupk.com on his experiments with technology and is a guest author on
DZone. Manu contributes to the developer community by participating in technical
discussion forums and speaks at various community events. His current interests
include modern technical architectures, Polyglot Persistence, JVM, and Agile
practices. You can reach him at manu. pk@out look. com or via his LinkedIn profile
at http://in.linkedin.com/in/manupk.

I would like to thank my family and my wife, Lakshmi, for her
support and patience when I was reviewing this book.

Alexandre Arcanjo de Queiroz is a Brazilian software developer graduated
from the Faculty of Technology of Sdo Paulo, a renowned institution of his country.
He has experience in developing applications using Java EE platform in the

UNIX environment.

He is currently working for Geofusion. Geofusion is the leader in geomarketing in
Brazil and offers an online platform called OnMaps, indispensable for companies
seeking expansion and assistance in more accurate decision making.

I would like to thank my family who supported me at every moment
of my life and my friends who believed in my potential.

Muhammad Rosli is a freelance hardware designer who completed his bachelor's
degree in electrical and electronic engineering from the University of Canterbury. He
has worked for different software contractors in telecommunication, construction, and
education, serving the government and private sectors for over 2 years. His primary
job involved interfacing data from hardware to the end user using web technology.
Most of the designs utilize Java EE and Wildfly for mission-critical projects involving
large data, such as e-commerce databases and scientific databases. He is currently
active in checking documentation for open source projects and testing the example
application provided.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers, and more

For support files and downloads related to your book, please visit www. PacktPub.

com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www. PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at serviceepacktpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

[a] PACKT

https://www2.packtpub.com/books/subscription/packtlib

®

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
* Fully searchable across every book published by Packt

* Copy and paste, print, and bookmark content

* On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www . PacktPub. com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/
http://www.it-ebooks.info/

Disclaimer

WildFly is a registered trademark of Red Hat, Inc.

Oracle and Java are registered trademarks of Oracle and/ or its affiliates. Other
names may be trademarks of their respective owners.

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Preface \4

Chapter 1: Getting Started with EJB 3.x 1
Setting up the Environment 2
Creating a WildFly runtime 3
Creating a Java EE project 6
Configuring a data source with MySQL database 10
Creating entities 14
Creating a JPA persistence configuration file 19
Creating a session bean facade 20
Creating a JSP client 22
Configuring the jboss-ejb3-ejb subproject 25
Configuring the jboss-ejb3-web subproject 27
Configuring the jboss-ejb3-ear subproject 28
Deploying the EAR module 30
Running the JSP client 34
Configuring a Java EE 7 Maven project 34
Summary 36

Chapter 2: Developing Object/Relational Mapping with

Hibernate 4 37
Setting up the environment 38
Creating a Java EE web project 39
Creating a Hibernate XML Mapping file 42
Creating a properties file 48
Creating a Hibernate configuration file 51
Creating JSPs for CRUD 56
Creating the JavaBean class 58
Exporting schema 61
Creating table data 63

[il

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Retrieving table data 65
Updating a table row 67
Deleting a table row 68
Installing the Maven project 70
Running a schema export 73
Creating table rows 76
Retrieving table data 76
Updating the table 77
Deleting the table row 78
Summary 79
Chapter 3: Developing JSF 2.x Facelets 81
Setting up the environment 82
Creating a Java EE web project 84
Creating a managed bean 89
Creating a Facelets template 97
Creating header and footer 103
Creating input and output Facelets composition pages 106
Creating a web descriptor 110
Deploying the web project with Maven 114
Running the Facelets application 120
Summary 121
Chapter 4: Using Ajax 123
Setting up the environment 123
Creating a Java EE web project 125
Creating a user interface 129
Creating a servlet 139
Deploying the Ajax application with Maven 147
Running the Ajax application 154
Summary 159
Chapter 5: Using GWT 161
Setting up the environment 162
Running the starter project on WildFly 8.1 165
Creating a GWT project in Eclipse 167
Deploying the starter project to WildFly 8.1 172
Running the starter project on WildFly 8.1 176
Creating a new GWT project 177
Creating a GWT module 183
Creating an entry-point class 187
Creating an HTML host page 195

Lii]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Deploying the GWT project with Maven 199
Running the GWT project 203
Summary 208
Chapter 6: Developing a JAX-WS 2.2 Web Service 209
Setting up the environment 210
Creating a Java EE web project 211
Creating a web descriptor 215
Creating a JAX-WS web service 217
Creating a web service client 224
Deploying the JAX-WS application with Maven 228
Running the JAX-WS application 238
Summary 238
Chapter 7: Developing a JAX-RS 1.1 Web Service 239
Setting up the environment 240
Creating a Java EE web project 241
Creating a sample RESTful web service 244
Deploying the RESTful web service 252
Running the RESTful web service 261
Creating a Java client 263
Running the Java client 266
Creating a JSP client 269
Running the JSP client 272
Summary 273
Chapter 8: Using Spring MVC 4.1 275
Setting up the environment 276
Creating a Spring MVC project 277
Creating a JPA configuration file 281
Creating the Model 282
Creating the Data Access Object design pattern 288
Creating a web descriptor 291
Creating a request handler 292
Creating the View 295
Creating a Spring MVC context 299
Deploying the Spring project with Maven 300
Creating deployment structure and infrastructure
deployment descriptors 308
Installing the Spring MVC Maven project 312
Running the Spring MVC application 314
Summary 315

[iii]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Chapter 9: Using JAX-RS 2.0 in Java EE 7 with RESTEasy 317
Setting up the environment 318
Creating a Java EE web project 318
The Client API 329

Creating a client instance 329
Accessing a resource 330
Setting a query parameter 335
Setting a template parameter 335
Filters and interceptors 336
Creating a client filter 337
Creating a container filter 342
Asynchronous processing 345
Suspended response 347
Resuming request processing 349
Resuming a request with a suspend timeout handler 350
Cancelling a request 354
Session bean EJB resource 355
Making an asynchronous call from the client 355
Fixing a common issue 357
Summary 358

Chapter 10: Processing JSON with Java EE 7 359
Setting up the environment 359
Creating a Maven project 360
Creating JSON 366
Parsing JSON 373
Processing JSON in a RESTful web service 377

JsonArray as a return type in the resource method for
a GET request 378
Encoding a JsonObject object for a GET request 381
JsonObject as a parameter type in the resource method for
a POST request 384
Summary 388
Index 389

[iv]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

WildFly is the new name for JBoss Application Server (JBoss AS) starting with

version 8.0.0. WildFly provides high startup speed, low memory overhead, a
high-performance, scalable web server, customizable runtime based on pluggable
subsystems, and support for Java EE 7 and the latest web development standards.

In past references to the server, "JBoss" is still used, but for subsequent references,
"WildFly" is used. According to the Developer Productivity Report 2012, referred to
subsequently as the "2012 report", JBoss is the most commonly used application server,
with 28 percent of Java developers or organizations using the application server, more
than any other application server. The same report indicated that 67 percent of Java
developers use the Maven build tool, more than any other build tool. Eclipse is used
by 68 percent of Java developers. The Java Tools and Technologies Landscape for 2014
report (referred to subsequently as the "2014 report") indicates that JBoss is the most
commonly used application server in both development (16 percent) and production
(17 percent). In the book, we discuss developing Java EE applications using WildFly
8.1.0, Maven 3, and Eclipse IDE. The book combines the most commonly used tools
for Java EE development: WildFly, Maven, and Eclipse IDE.

The book is based on the Java EE standards 5, 6, and 7. We will discuss the
commonly used technologies and frameworks JAX-RS 1.1, JSF 2.0, JPA 2.0, JAX-WS
2.2, EJB 3.0, Hibernate 4, Ajax, GWT 2.4, and Spring 3.1. The new Java EE7 support
for JAX-RS 2.0 is discussed with RESTEasy. The new Java EE 7 feature for processing
JSON is also discussed.

[v]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

While several books on WildFly administration are available, none on Java EE
application development with WildFly are available. WildFly is the most commonly
used application server with support for all the commonly used Java EE technologies
and frameworks. WildFly is efficient, lightweight, and modular, and provides a
flexible deployment structure. JBoss Tools provides a set of plugins with support for
WildFly, Maven, and Java EE frameworks such as JSF. Maven is the most commonly
used build tool for compiling and packaging a Java EE application based on a
project-object model (POM). Maven provides dependency management. The Eclipse
IDE for Java EE developers is the most commonly used Java EE IDE.

The objective of the book is to discuss how a Java EE developer would develop
applications with WildFly using Maven as the build tool and Eclipse IDE as the
development environment. The book covers all aspects of application development,
including the following topics:

* Setting the environment for an application
* Creating sample data

* Running a sample application

What this book covers

In Chapter 1, Getting Started with EJB 3.x, we discuss developing an EJB 3.0/JPA-based
application with WildFly 8.1.0. According to the 2012 report, JPA (at 44 percent) and
EJB 3.0 (at 23 percent) are the two most commonly used Java EE standards.

In Chapter 2, Developing Object/Relational Mapping with Hibernate 4, we discuss using
Hibernate 4 with WildFly 8.1.0. According to the 2012 report, Hibernate (at 54 percent)
is one of the most commonly used application frameworks. According to the 2014
report, Hibernate (at 67.5 percent) is the top object/relational mapping framework.

In Chapter 3, Developing JSF 2.x Facelets, we discuss using JSF 2.0 with WildFly 8.1.0.
According to the 2012 report, JSF (at 23 percent) is the second most commonly
used web framework. According to the 2014 report also, JSF is ranked second

(at 21 percent) among "web frameworks in use".

In Chapter 4, Using Ajax, we discuss developing an Ajax application with WildFly
8.1.0. Ajax is a trend started in 2004-2005 that makes use of a web technique to
transfer data between a browser and a server asynchronously.

In Chapter 5, Using GWT, we use Google Web Toolkit to develop an application with
WildFly. According to both, the 2012 report and the 2014 report, GWT is one of the
top four web frameworks.

[vil

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

In Chapter 6, Developing a JAX-WS 2.2 Web Service, we discuss developing an
application based on the JAX-WS 2.2 standard in the Eclipse IDE using the Maven
build tool. We deploy and run the application on WildFly 8.1.0.

In Chapter 7, Developing a JAX-RS 1.1 Web Service, we discuss developing a web
service based on the JAX-RS 1.1 standard in the Eclipse IDE using Maven as
the build tool. We deploy and run the application on WildFly 8.1.0.

In Chapter 8, Using Spring MV C 4.1, we discuss using Spring MVC with WildFly 8.1.0.
According to the 2012 report, Spring MVC (at 30 percent) is the most commonly
used web framework. In the 2014 report also, Spring MVC (at 40 percent) is the

most commonly used web framework.

In Chapter 9, Using JAX-RS 2.0 in Java EE 7 with RESTEasy, we introduce the
support for JAX-RS 2.0: the Java API for RESTful Web Services added to Java EE
7. We discuss the new Client API introduced in JAX-RS 2.0. We also discuss the
asynchronous processing feature of JAX-RS 2.0.

In Chapter 10, Processing [SON with Java EE 7, we introduce another new feature in
Java EE 7, that is, the support for JSR 353: Java API for JSON Processing.

What you need for this book

We have used WildFly 8.1.0 in the book. Download WildFly 8.1.0 Final from http://
wildfly.org/downloads/. In some of the chapters, we have used MySQL 5.6
Database-Community Edition, which can be downloaded from http://dev.mysql.
com/downloads/mysgl/. You also need to download and install the Eclipse IDE for
Java EE Developers from http://www.eclipse.org/downloads/. Eclipse Luna 4.4.1
is used, but a later version can also be used. Also, install JBoss Tools (version 4.2.0
used) as a plugin to Eclipse. Apache Maven (version 3.05 or later) is also required to
be installed and can be downloaded from http://maven.apache.org/download.
cgi. We have used Windows OS, but if you have Linux installed, the book can still
be used (though the source code and samples have not been tested with Linux).
Slight modifications may be required with the Linux install; for example, the
directory paths on Linux would be different than the Windows directory paths.

You also need to install Java for Java-based chapters; Java SE 7 is used in the book.

[vii]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Who this book is for

The target audience of the book is Java EE application developers. You might
already be using JBoss or WildFly, but don't use the Eclipse IDE or Maven for
development. The book introduces you to how the Eclipse IDE and Maven facilitate
the development of Java EE applications with WildFly 8.1.0. This book is suitable for
professional Java EE developers as well as beginners. The book is also suitable for
an intermediate/advanced-level course in Java EE development with WildFly 8.1.0.
The target audience is expected to have prior, albeit beginner-intermediate level,
knowledge about the Java language and the Java EE technologies used in the book.
The book also requires some familiarity with the Eclipse IDE.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Configuring the jboss-ejb3-ejb subproject."

A block of code is set as follows:

<module xmlns="urn:jboss:module:1.1" name="mysgl" slot="main"s>
<resources>
<resource-root path="mysqgl-connector-java-5.1.33-bin.jar"/>
</resources>
<dependencies>
<module name="javax.api"/>
</dependencies>
</module>

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Select
Window | Preferences in Eclipse. In Preferences, select Server | Runtime
Environment."

[viii]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

% Warnings or important notes appear in a box like this.

a1

~Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub. com,
and mention the book title via the subject of your message. If there is a topic that you
have expertise in and you are interested in either writing or contributing to a book,
see our author guide on www.packtpub. com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http: //www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register

to have the files e-mailed directly to you.

[ix]

www.it-ebooks.info

http://www.PacktPub.com
http://www.PacktPub.com/support
http://www.it-ebooks.info/

Preface

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books —maybe a mistake in the text or the
code —we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http: //www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questionse@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[x]

www.it-ebooks.info

mailto:copyright@packtpub.com
http://www.it-ebooks.info/

Getting Started with EJB 3.x

The objective of the E]JB 3.x specification is to simplify its development by improving
the EJB architecture. This simplification is achieved by providing metadata
annotations to replace XML configuration. It also provides default configuration
values by making entity and session beans POJOs (Plain Old Java Objects) and

by making component and home interfaces redundant. The EJB 2.x entity beans is
replaced with EJB 3.x entities. EJB 3.0 also introduced the Java Persistence API (JPA)
for object-relational mapping of Java objects.

WildFly 8.x supports E]JB 3.2 and the JPA 2.1 specifications from Java EE 7. While
EJB 3.2 is supported, the sample application in this chapter does not make use of the
new features of EJB 3.2 (such as the new TimerService API and the ability to disable
passivation of stateful session beans). The sample application is based on Java EE 6
and EJB 3.1. The configuration of EJB 3.x with Java EE 7 is also discussed, and the
sample application can be used or modified to run on a Java EE 7 project. We have
used a Hibernate 4.3 persistence provider. Unlike some of the other persistence
providers, the Hibernate persistence provider supports automatic generation of
relational database tables, including the joining of tables.

In this chapter, we will create an EJB 3.x project and build and deploy this project
to WildFly 8.1 using Maven. This chapter has the following sections:

* Setting up the environment

* Creating a WildFly runtime

* Creating a Java EE project

* Configuring a data source with MySQL database

* Creating entities

* Creating a JPA persistence configuration file

* Creating a Session Bean Facade

* Creating a JSP client

[1]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with E]B 3.x

* Configuring the jboss-ejb3-ejb subproject
* Configuring the jboss-ejb3-web subproject
* Configuring the jboss-ejb3-ear subproject
* Deploying the EAR Module

* Running the JSP Client

* Configuring a Java EE 7 Maven Project

Setting up the Environment

We need to download and install the following software:

* WildFly 8.1.0.Final: Download wildfly-8.1.0.Final.zip from
http://wildfly.org/downloads/.

* MySQL 5.6 Database-Community Edition: Download this edition from
http://dev.mysql.com/downloads/mysqgl/. When installing MySQL,
also install Connector/].

* Eclipse IDE for Java EE Developers: Download Eclipse Luna from
https://www.eclipse.org/downloads/packages/release/Luna/SR1.

* JBoss Tools (Luna) 4.2.0.Final: Install this as a plug-in to Eclipse from
the Eclipse Marketplace (http://tools.jboss.org/downloads/
installation.html). The latest version from Eclipse Marketplace
is likely to be different than 4.2.0.

* Apache Maven: Download version 3.05 or higher from http://maven.
apache.org/download.cgi.

* Java7: Download Java 7 from http://www.oracle.com/technetwork/
java/javase/downloads/index.html?ssSourceSiteId=ocomcn.

Set the environment variables: JAVA_ HOME, JBOSS_HOME, MAVEN HOME, and MYSQL_
HOME. Add $JAVA HOME%/bin, $MAVEN HOMES%/bin, $JBOSS HOMES$/bin, and $MYSQL
HOME$% /bin to the PATH environment variable. The environment settings used are
C:\wildfly-8.1.0.Final for JBOSS HOME, C:\Program Files\MySQL\MySQL
Server 5.6.21 for MYSQL HOME, C: \maven\apache—maven— 3.0.5 for MAVEN_ HOME,
and C:\Program Files\Java\jdkl.7.0 51 for JAVA HOME. Run the add-user.

bat script from the $JB0SS_HOME%/bin directory to create a user for the WildFly
administrator console. When prompted What type of user do you wish to add?,
select a) Management User. The other option is b) Application User.

[2]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Management User is used to log in to Administration Console, and Application
User is used to access applications. Subsequently, specify the Username and
Password for the new user. When prompted with the question, Is this user going
to be used for one AS process to connect to another AS..?, enter the answer as no.
When installing and configuring the MySQL database, specify a password for the
root user (the password mysql is used in the sample application).

Creating a WildFly runtime

As the application is run on WildFly 8.1, we need to create a runtime environment
for WildFly 8.1 in Eclipse. Select Window | Preferences in Eclipse. In Preferences,
select Server | Runtime Environment. Click on the Add button to add a new runtime
environment, as shown in the following screenshot:

,,

type filter text Server Runtime Environments a T
HQL editor -
Install/Update

> lava Server runtirme enviranments:
Jawa EE

Java Persistence

Add, rermowe, or edit server runtime environments,

Marne Type Add...

JavaSeript Edit...
> JBoss Tools

It Manitar Rermowe
> Maven

> Plug-in Developrment
Project Archives
Rernote Systerns
Run/Tebug
4 Server
Audio
Default Filesets
Launching

m

Orwerlays
Profilers
> | Runtime Enironme
> Team
Terrninal
Yalidation
2 Web
2 Weh Services
s WML
om0

1

@' QK l ’ Cancel

[31]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with E]B 3.x

In New Server Runtime Environment, select JBoss Community | WildFly 8.x
Runtime. Click on Next:

&) New Server Runtime EnvimnmeE- C=RREa X

New Server Runtime Environment D

Define a new server runtime environment

Download additional server adapters

Select the type of runtime ervironment:

type filker text

4 [IBoss Cormmunity -
ﬁ JBass 3.2 Runtime
ﬂ JBaoss 4.0 Runtime
ﬂ JBoss 4.2 Runtime
ﬁ JBoss 5.0 Runtime
ﬁ JBoss 5.1 Runtime
ﬁ JBass 6.x Runtirme
ﬁ JBaoss 7.0 Runtime
ﬁ JBoss 7.1 Runtime
4 WildFly B.x Runtirne

m

WildFly Spplication Server 8.

In WildFly Application Server 8.x, which appears below New Server Runtime
Environment, specify a Name for the new runtime or choose the default name,
which is wildFly 8.x Runtime. Select the Home Directory for the WildFly 8.x
server using the Browse button. The Home Directory is the directory where WildFly
8.1 is installed. The default path is C:\ wildfly-8.1.0.Final for this chapter and
subsequent chapters. Select the Runtime JRE as gavasg-1. 7. If the JDK location

is not added to the runtime list, first add it from the JRE preferences screen in
Eclipse. In Configuration base directory, select standalone as the default setting. In
Configuration file, select standalone.xml as the default setting. Click on Finish:

[4]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

E New Server Runtime Environm“

JBoss Runtime

WildFly Application Server B

@ @ by Red Hat

A JBoss Server runtirne references a JBoss installation directory.
It can be used to set up classpaths for projects which depend on this runtime,
as weell as by a "server” which will be able to start and stop instances of JBoss,

Mame

WildFhe 8. Runtime

Horne Directory
Cilwildfhy-8.1.0.Final

Runtime IRE

Download and install runtirm

@ Execution Environrent: JawaSE-1.7

v] [Environments... I

() Alternate JRE: jdk1.7.0_51

Configuration base directony! standalone

Configuration file: standalone.xml

Installed JREs...

®

[Finish %J[Cancel |

A new server runtime environment for WildFly 8.x Runtime gets created, as shown
in the following screenshot. Click on OK:

r
E Preferenca;__

[

type filter text

Server Runtime Environments

HOL editar -
Install/Update

lava Server runtime environments:

Add, remave, or edit server runtime enviranments,

Java EE
Mame
Java Persistence
JavaSeript -
JBoss Taols
It Monitor
hawven
Nty
Plug-in Developrment
Project Archives
Remate Systems
RunsDebug
Server
Audio
Default Filesets
Launching

Owetlays
Profilers
» Runtime Environrme
Team
Terminal
Walidation
Wb
Web Services

ﬁ WildFly 8. Runtime

Tope Add..,
WivildFly 8. Runtirne Edit...

Remove

Columnz.,

HML -
[0 r

@

[0K %J [Cancel

[51]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with E]B 3.x

Creating a Server Runtime Environment for WildFly 8.x is not a prerequisite for
creating a Java EE project in Eclipse. In the next section, we will create a new
Java EE project for an EJB 3.x application.

Creating a Java EE project

JBoss Tools provides project templates for different types of JBoss projects. In this
section, we will create a Java EE project for an E]JB 3.x application. Select File | New
| Other in Eclipse IDE. In the New wizard, select the JBoss Central | Java EE EAR
Project wizard. Click on the Next button:

& New (B
Select a wizard =
Mfizards:

type filter text
- = lawa EE -
» (= lava Emitter Ternplates
(= JawaSeript
- = JAXE
4 (= JBoss Central

m

5 AngularSwith Farge Project
[HTMLS Project
(2] Jawa EE EAR Project
@1 Jawva EEWeb Project
@’ RichFaces Project
 Spring MWC Project i

[] Show Al Wizards,

'/?3' < Back Finish Cancel

The Java EE EAR Project wizard gets started. By default, a Java EE 6 project is
created. A Java EE EAR Project is a Maven project. The New Project Example
window lists the requirements and runs a test for the requirements. The JBoss AS
runtime is required and some plugins (including the JBoss Maven Tools plugin) are
required for a Java EE project. Select Target Runtime as WildFly 8.x Runtime,
which was created in the preceding section. Then, check the Create a blank project
checkbox. Click on the Next button:

[6]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

F
E New Project Example

Java EE EAR Project

7
Create a multi-module, Maven-based Java EE 6 EAR application

Description:

A archetype that generates a starter Java EE 6 webapp project for JBoss Enterprise Application Platform 6 or -
IBoss Application Server. The project is an EAR, with an EJB-JAR and WAAR,

Project based on the orgjboss.spec.archetypesjboss-javaeef-webapp-ear-blank-archetype:7.L3.Final Maven
archetype

Create a blank project

Target Rurtirme | MfildFly 8. Runtirne

Requirements
Type Description Tnstall...
serverfrunti., - This project exarmple requires JBoss Enterprise Applic.,
. Download and Install..,
plugin This praject example requires m2e >= 1.0,
plugin This project example requires m2e-wip >= 0.16.0,
plugin

This project example requires JBoss Maven Tools,

@

[< Back][Mext = h] Finish

Specify Project name as jboss-ejb3, Package as org.jboss.ejb3, and tick the Use
default Workspace location box. Click on the Next button:

r

ﬂ New Praoject Example —— [EI_‘_JHE
Java EE EAR Project >
Create a rulti-rnodule, Maven-based Java EE § EAR application
Praject name jboss-gjb3 -
Package org,jboss.ejbl -

Use default Workspace location

[&dd project(s) to working set

More..,

b Advanced

[< Back][Mext » {}7] [Finish] [Cancel

[71

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with E]B 3.x

Specify Group Id as org. jboss.ejb3, Artifact Id as jboss-ejb3, Versionas 1.0.0,
and Package as org. jboss.ejb3.model. Click on Finish:

F

f T T =
ﬂ MNew Project Example

Java EE EAR. Project

Fis
Create a multi-module, Maven-based Java EE 6 EAR application

GroupId: orgjbossejbl

ArtifactId: jboss-gjbl

Yersion: 100

Package: orgjboss.ejb3model

Properties available from archetype:

MName Walue Add...
jboss-borm-enterpris.. 10.4.Final-redhat-4

- Rermowve
enterprise false

w Advanced

[] Resolve Workspace projects

Prafiles: arg-jbossas-remote

Mame termplate:

@ Mext = Finish [’ Cancel

[8]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

A Java EE project gets created, as shown in the following Project Explorer window.
Delete the jboss-ejb3/jboss-ejb3-ear/src/main/application/META-INF/
jboss-ejb3-ds.xml configuration file. The jboss-ejb3 project consists of three
subprojects: jboss-ejb3-ear, jboss-ejb3-ejb, and jboss-ejb3-web. Each
subproject consists of a pom.xml file for Maven. Initially the subprojects indicate
errors with red error markers, but these would get fixed when the main project is
built later in the chapter. Initially the subprojects might indicate errors with red error
markers, but these would get fixed when the main project is built later in the chapter.
We will configure a data source with the MySQL database in a later section. The
jboss-ejb3-ejb subproject consists of a META-INF/ persistence.xml file within the
src/main/resources source folder for the JPA database persistence configuration.

L7 Project Explorer &3 = <.===g>| == 0
4 | jboss-ejbd
a4 (= jboss-gjhi-ear
s = s
» [target
[pornsrnl
4 (= jboss-ejb3-ejb
4 = sre
4 [= main
- [java
4 [resources
a4 (= META-IMF
K| beans.xml
+4 persistencexml
= test
- [target
[pornsrnl
4 (= jboss-gjb3-web
4 = sre
4 [main
[java
(= resources
a4 (= webapp
(= resources
4 (= \WEB-TNF
*| heansznl
947 faces-configuxml
= test
(= target
[pornenl
[pormsnl

We will use MySQL as the database for data for the EJB application. In the next
section, we will create a data source in the MySQL database.

[o]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with E]B 3.x

Configuring a data source with MySQL
database

The default data source in WildFly 8.1 is configured with the H2 database engine.
There are several options available for a database. The top four most commonly
used relational databases are Oracle database, MySQL database, SQL Server, and
PostgreSQL Server. Oracle database and SQL Server are designed for enterprise
level applications and are not open source. Oracle database offers more features
to facilitate system and data maintenance. It also offers features to prevent system
and data failure as compared to SQL Server. MySQL and PostgreSQL are open
source databases with comparable features and designed primarily for small scale
applications. We will use MySQL database. Some of the reasons to choose MySQL
are discussed at http://www.mysqgl .com/why-mysqgl/topreasons.html.

We will configure a datasource with the MySQL database for use in the EJB 3.x
application for object/relational mapping. Use the following steps to configure
a datasource:

1. First, we need to create a module for MySQL database. For the MySQL
module, create a module.xml file in the $JB0SS HOME$ /modules/mysql/
main directory; the mysqgl/main subdirectory is also to be created. The
module.xml file is listed in the following code snippet:

<module xmlns="urn:jboss:module:1.1" name="mysqgl" slot="main">
<resources>
<resource-root path="mysgl-connector-java-5.1.33-bin.jar"/>
</resources>
<dependencies>
<module name="javax.api"/>
</dependencies>
</modules>

2. Copy the mysqgl-connector-java-5.1.33-bin.jar (MySQL JDBC JAR) file
from C:\Program Files (x86)\MySQL\Connector.J 5.1 tothe $JBOSS
HOME%/modules/mysqgl/main directory. The MySQL mysql-connector-java
JAR file version specified in module .xml must be the same as the version of
the JAR file copied to the /modules/mysqgl/main directory.

[10]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

3. Add a <datasource/> definition for the MySQL database to the
<datasources/> element and a <driver/> definition to the <drivers/>
element in the $JB0OSS_HOME%/standalone/configuration/standalone.
xml file within the <subsystem xmlns="urn:jboss:domain:datas
ources:2.0"> </subsystem> element. The <password/> tag in the
<datasource/> configuration tag is the password configured when the
MySQL database is installed. The datasource class for the MySQL driver
is a XA datasource, which is used for distributed transactions:

<subsystem xmlns="urn:jboss:domain:datasources:2.0">
<datasources>

<datasource jndi-name="java:jboss/datasources/MySQLDS" pool-
name="MySQLDS" enabled="true" use-java-context="true"s>

<connection-url>jdbc:mysqgl://localhost:3306/test</
connection-urls>

<driversmysqgl</drivers
<pool>
<min-pool-size>10</min-pool-size>
<max-pool-size>20</max-pool-size>
<prefillstrue</prefills>
</pool>
<securitys>
<user-name>root</user-name>
<password>mysgl</password>
</securitys>
</datasource>
<drivers>
<driver name="mysgl" module="mysqgl">
<driver-class>com.mysql.jdbc.Driver</driver-class>

<xa-datasource-class>com.mysqgl.jdbc.jdbc2.optional.
MysglXADataSource</xa-datasource-class>

</drivers
</drivers>
</datasources>
</subsystem>

4. If the server is running after modifying the standalone.xml configuration file,
restart WildFly 8.x server. The MySQL datasource gets deployed. To start or
restart the WildFly server, double-click on the ¢:\wildfly-8.1.0.Final\
bin\standalone batch file.

[11]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with E]B 3.x

5. Login to the WildFly 8 Administration Console with the URL: http://
localhost :8080. Click on Administration Console, as shown in the
following screenshot:

Welcome to WildFly 8

Your WildFly 8 1s running.
Documentation | Quickstarts |

I
WildFly Praject | User Forum | Report an issue

Joss | JRoss Community

6. In the login dialog box, specify the username and password for the user
added with the add-user.bat script.

7. Select the Runtime tab in Administration Console. The MySQL datasource
is listed as deployed in Datasources Subsystems, as shown in the following
screenshot. Click on Test Connection to test the connection:

[12]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[} JBoss Management
< C | [localhost:9990/console/App html#ds-metrics

WildFly 8.1.0.Final

guration Runtime Admir

= Server DATA SOURCES 4 DATA SOURCES
Overview Refresh
Manage Deployments
Parch Managernent Data Source Metrics
Darasources runtime utilisation
= Status
= Platform
Jm Flush
Envitonrnent
MHame INDI Enabled?
= Subsystemns
. ExampleDs Jjava:jboss/datasources/ExampleDS true
oA MyeQLDs Jjava:jboss/datasources/MEQOLDS true
INDI View 1-zol2
Transaction Logs
Fool Usage Prepared Statement Cache
Transactions
Webservices
Pool Usage A ———
ot
o 5 10 15 o

Compared ta Availsble
5% Max Used gy

2.26 Final 4 Tools /FSettings

8. If a connection with the MySQL database is established, a Successfully
created JDBC connection message will get displayed:

Y| B3 Maragement =

&« € [locathast®

= Server

urruinw Refrash

Manage Deployments

Fatch Manaaement BEIr | p—
Cuarasourg
= Srns
= Parorm O successtully created JDBC connecion.
Flush
v Successfully connected to database MyEOLDS,
Lrirananent =
HNarns: Enabled?
= Lubsysters l
Datisaunces Frany e
1o IS0 i LTS
Transacnian Logs = s
ont s ame
Traneaction.
WenLErvICEs |
Fool Usage AR AE O
Compared ro Avadahie ° 2 o 15 n

5% Max Used g

Z2nFinal » Touls A Setings

In the next section, we will create entities for the EJB 3.x application.

[13]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with E]B 3.x

Creating entities

In E]JB 3.x, an entity is a POJO (Plain Old Java Object) persistent domain object that
represents a database table row. As an entity is a Java class, create a Java class in the
jboss-ejb3-ejb subproject of the jboss-ejb3 project. Select File | New. In the New
window, select Java | Class and click on Next:

[.] MNew l oR—x

Select a wizard —(

Create a Jawa class

Wizards:
type filter text

4 (= Java -
@ Annotation
(& Class

& Enum
& Interface

2% Java Project

£ Java Project from Existing Ant Buildfile

147 Java Working Set

H# Package

@" Service Provider

& Source Falder il

m

[Showy &1 Wizards,

Select/specify jboss-ejb3/jboss-ejb3-ejb/src/main/java as the Java Source
folder, org.jboss.ejb3.model as the Package, and catalog as the class Name.
Click on Finish:

[14]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

@ New Java Class

Java Class

Source folder:

Package:

MNarme:

Modifiers:

Superclass:

Interfaces:

@

[T Enclasing type:

Create a new Java class,

org.jboss.ejb3model

Browrse...

Browese...

Catalog
@ public () package private protected
] abstract [final static

javalang.Object

Browrse...

Add...

Mext = Finish [}J ’ Cancel]

L o
jboss-gjb3-ejbfsrcimainjava

Similarly, add Java classes for the Edition.java, Section

entities, as shown in the following Project Explorer:

(5 Project Explorer 52 =] }=_|.|)
4 = jboss-gjb3

- = jboss-ejb3-ear

4 [jboss-g

> (= test

> (= target
[porm.mnl
= jboss

M porn.ml

ejb3-ejb

4 (= model
@ Article java
[d] Catalog.java
[d] Editior.java
[d] Section,java

Fesources

-ejb3-web

.java, and Article.java

[15]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with E]B 3.x

Next, we develop the EJB 3.x entities. A JPA persistence provider is required for
the EJB entities, and we will use the Hibernate persistence provider. The Hibernate
persistence provider has some peculiarities that need to be mentioned, as follows:

* If an entity has more than one non-lazy association of the following types,
Hibernate fails to fetch the entity:

o
with @org.hibernate.annotations.CollectionOfElements

The @oneToMany or @ManyToMany associations not annotated with
@org.hibernate.annotations.IndexColumn

Associations marked as mappedBy must not define database
mappings (such as @JoinTable or @JoinColumn)

We will develop the Catalog, Edition, Section, and Article class with one-to-many
relationship between the Catalog and Edition class, the Edition and Section class,
and the Section and Article class, as shown in the following UML class diagram:

The java.util.List, java.util.Collection properties annotated

Edition Section
Catalog Article
+idint +idrint
+id:int) + edition: String + sectionname: String +id: int
+JDL!rnaI: String) + catalog: Catalog + aticles: Set=Adicles +title: String
+ editions: Set=Edition= 1 + sections: Set<Sections |+ edition: Edition + section: Bection
+getldd: int + getld; int + getld(: int + getld): int
+ selld(int; void + setldiint: void + setld(int): void + gelld(int): vaid
+ getlournal(: String + getCatalog(): Catalog + getarticles(): Set=Articles + gefTitled: String
+ setlournal (String) void + sefCatalog(Catalog): void + settrticles(Set=Anicles=): void + sefTitle(String): void
+ gelEd!l!UnsO 591<E_unmn= + getEdition(: String + getEdition): Edition + getSection(): Section
+ selEdilions(Set<Edilion=). void + setEdition(String): vaid + setEdition(Edition): void + setSection(Section): void
+ getSections(: Set=Section= + getSectionname): String
+ setSections(Set=Section=); wvoid + sef lame(String=): void

Annotate the Catalog entity class with the @Entity annotation and the @Table

annotation. If the @Table annotation is not used, then the entity name is used as
the table name by default. In the @Table annotation, specify the table name as

CATALOG and uniqueConstraints, using the @UniqueConstraint annotation for the
id column. Specify the named queries as findCatalogAll, which selects all Catalog
and findCatalogByJournal entities. This selects a Catalog entity by Journal, using the
@NamedQueries and @NamedQuery annotations:

@Entity
@Table (name = "CATALOG", uniqueConstraints = @
UniqueConstraint (columnNames = "ID"))

@NamedQueries ({

@NamedQuery (name="findCatalogAll", query="SELECT c FROM Catalog c"),

@NamedQuery (name="findCatalogByJournal",

[16]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

query="SELECT c¢ FROM Catalog c WHERE c.journal = :journal")

3]

public class Catalog implements Serializable {

}

Specify the no-argument constructor, which is required in an entity class. The
Catalog entity class implements the Serializable interface to serialize a cache-enabled
entity to a cache when persisted to a database. To associate a version number with

a serializable class for a serialization runtime, specify a serialVersionUID variable.
Declare string variables for id and journal bean properties and for a collection of
Set<Edition> type, as the Catalog entity has a bi-directional one-to-many association
to Edition. The collection is chosen as Set for the reason mentioned earlier. Hibernate
does not support more than one EAGER association of the java.util. List type. Add
get/set methods for the bean properties. The @Id annotation specifies the identifier
property. The @Column annotation specifies the column name associated with the
property. The nullable element is set to false as the primary key cannot be nul1.

If we were using the Oracle database, we would have specified the
primary key generator to be of the sequence type, using the

. @SequenceGenerator annotation. The generation strategy is specified

% with the @Generatedvalue annotation. For the Oracle database, the
L= generation strategy would be strategy=GenerationType .SEQUENCE,

but as MySQL database supports auto increment of primary key column
values by generating a sequence, we have set the generation strategy to
GenerationType.AUTO.

Specify the bi-directional one-to-many association to Edition using the @
OneToMany annotation. The mappedBy element is specified on the non-owning side
of the relationship, which is the catalog entity. The cascade element is set to ALL.
Cascading is used to cascade database table operations to associated tables. The
fetch element is set to EAGER. With EAGER fetching the associated entity, collection is
immediately fetched when an entity is retrieved:

// bi-directional many-to-one association to Edition

@OneToMany (mappedBy = "catalog", targetEntity=org.jboss.ejb3.model.
Edition.class, cascade = { CascadeType.ALL }, fetch = FetchType.EAGER)

public Set<Edition> getEditions()
return this.editions;

[17]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with E]B 3.x

As mentioned earlier, associations marked with mappedBy must not specify
@JoinTable or @JoinColumn. The get and set methods for the Edition collection
are also specified. The catalog. java entity class is available in the code download
for the chapter at http: //www.packtpub.com/support.

Next, develop the entity class for the EDITION database table: Edition.

java. Specify the @Entity, @Table, @Id, @Column, and @Generatedvalue
annotations, as discussed for the catalog entity. Specify the findEditionAll and
findEditionByEdition named queries to find Edition collections. Specify the bean
properties and associated get/set methods for id and edition. Also, specify the
one-to-many association to the Section entity using a collection of the set type. The
bi-directional many-to-one association to the catalog relationship is specified using
the @ManyTooOne annotation, and with cascade of type PERSIST, MERGE, and REFRESH.
The Edition entity is the owning side of the relationship. Using the @JoinTable
annotation, a join table is included on the owning side to initiate cascade operations.
The join columns are specified using the @JoinColumn annotation. The Edition.
java entity class is available in the code download for the chapter.

Develop the entity class for the SECTION table: Section. java. Specify the
findSectionall and findSectionBySectionName named queries to find Section
entities. Specify the id and sectionname bean properties. Specify the bi-directional
many-to-one association to Edition using the @ManyTooOne annotation and the bi-
directional one-to-many association to Article using @oneToMany. The @JoinTable
and @JoinColumn are specified only for the @ManyToOne association for which
Section is the owning side. The section. java entity class is available in the code
download for the chapter.

Specify the entity class for the ARTICLE table: Article.java. The Article entity

is mapped to the ARTICLE database table using the @TABLE annotation. Add the
findArticleAll and findArticleByTitle named queries to find Article entities.
Specify id and sectionname bean properties and the associated get/set methods.
The Article entity is the owning side of the bi-directional many-to-one association
to section. Therefore, the @JoinTable and @JoinColumn are specified. The
Article.java class is available in the code downloaded for the chapter.

[18]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Creating a JPA persistence
configuration file

The META-INF/persistence.xml configuration file in the ejb/src/main/
resources folder in the jboss-ejb3-ejb subproject was created when we created
the Java EE project. The persistence.xml specifies a persistence provider to be used
to map object/relational entities to the database. Specify that, the persistence unit is
using the persistence-unit element. Set the transaction-type to JTA (the default
value). Specify the persistence provider as the Hibernate persistence provider:
org.hibernate.ejb.HibernatePersistence. Set the jta-data-source element
value to the java:jboss/datasources/MySQLDS data source, which we created
earlier. Specify the entity classes using the class element. The DDL generation
strategy is set to create-drop using the hibernate.hbm2ddl.auto property,

which automatically validates or exports the DDL schema to the database, when the
SessionFactory class is created. With the create-drop strategy, the required tables
are created and dropped when the SessionFactory is closed. The hibernate. show_
sql property is set to false. Setting it to true implies that all SQL statements be the
output, which is an alternative method to debug. The hibernate.dialect property
is set to org.hibernate.dialect .MySQLDialect for MySQL Database. Other
Hibernate properties (http://docs.jboss.org/hibernate/orm/3.3/reference/
en/html/session-configuration.html) can also be specified as required. The
persistence.xml configuration file is listed in the following code:

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlnsg="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" version="2.0"
xsi:schemalocation=" http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence 2 0.xsd">
<persistence-unit name="em" transaction-type="JTA">
<provider>org.hibernate.ejb.HibernatePersistence</providers>
<!-- If you are running in a production environment, add a managed
data source, the example data source is just for development and
testing! -->
<jta-data-source>java:jboss/datasources/MySQLDS</jta-data-source>
<class>org.jboss.ejb3.model .Article</class>
<class>org.jboss.ejb3.model.Catalog</class>
<class>org.jboss.ejb3.model .Edition</class>
<class>org.jboss.ejb3.model.Section</class>
<properties>
<!-- Properties for Hibernate -->
<property name="hibernate.hbm2ddl.auto" value="create-drop" />
<property name="hibernate.show sqgl" value="false" />

[19]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with E]B 3.x

<property name="hibernate.dialect" value="org.hibernate.dialect.
MySQLDialect" />
</properties>
</persistence-units>
</persistence>

The JPA specification does not mandate a persistence provider to create tables with
the hibernate.hbm2ddl.auto property set to create-drop or create. Hibernate
persistence provider supports creating tables. In addition to the entity tables, some
additional tables (such as the join tables and the sequence table) are created by the
Hibernate persistence provider.

Creating a session bean facade

One of the best practices of developing entities for separation of concerns and
maintainable code and as a result better performance is to wrap the entities in a
session bean facade. With a Session Facade, fewer remote method calls are required,
and an outer transaction context is created with which each get method invocation
does not start a new transaction. Session Facade is one of the core Java EE design
patterns (http ://www.oracle.com/technetwork/java/sessionfacade-141285.
html). Create a CatalogSessionBeanFacade session bean class in the org.jboss.
ejb3.model package, as shown in the following screenshot. The Session Facade class
can also be created in a different package (such as org. jboss.ejb3.view):

(5 Project Explorer 23 = f ~ = 0
4 = jhoss-ejhd
- = |boss-gjbi-ear
4 = jboss-ejb3-ejb
4 = src
4 [main
4 [java
4 = org
4 (= |boss
4 [= ejb3
4 [model
[d] Article
|d] Cata y
[0 CatzlogSessionBeanFacade.java
|J] Edition.jawva
[J] Section.java
= resources
= test
= target
| pornsnl
= jboss-gjb3-web
| pornsxml
[20]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

The session bean class is annotated with the @stateless annotation:

@Stateless
public class CatalogSessionBeanFacade {}

In the bean session, we use an EntityManager to create, remove, find, and query
persistence entity instances. Inject a EntityManager using the @PersistenceContext
annotation. Specify the unitName as the unitName configured in persistence.

xml. Next, specify the getAl1Editions, getAllSections, getAllArticles,
getAllCatalogs get methods to fetch the collection of entities. The get methods

get all entities' collections with the named queries specified in the entities.

The createNamedQuery method of EntityManager is used to create a Query

object from a named query. Specify the TransactionAttribute annotation's
TransactionAttributeType enumeration to REQUIRES NEW, which has the
advantage that if a transaction is rolled back due to an error in a different transaction
context from which the session bean is invoked, it does not affect the session bean.

To demonstrate the use of the entities, create the test data with the createTestData
convenience method in the session bean. Alternatively, a unit test or an extension
class can also be used. Create a catalog entity and set the journal using the
setJournal method. We do not set the id for the Catalog entity as we use the
GenerationType.AUTO generation strategy for the 1D column. Persist the entity
using the persist method of the EntityManager object. However, the persist
method does not persist the entity to the database. It only makes the entity instance
managed and adds it to the persistence context. The EntityManager.flush()
method is not required to be invoked to synchronize the entity with the database as
EntityManager is configured with FlushModeType as AUTO (the other setting being
coMMIT) and a flush will be done automatically when the EntityManager.persist()

is invoked:

Catalog catalogl = new Catalog() ;
catalogl.setJournal ("Oracle Magazine") ;
em.persist (catalogl) ;

Similarly, create and persist an Edition entity object. Add the catalog object:
catalogl using the setCatalog method of the Edition entity class:

Edition edition = new Edition() ;
edition.setEdition ("January/February 2009") ;
edition.setCatalog(catalogl) ;

em.persist (edition) ;

[21]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with E]B 3.x

Likewise add the section and Article entity instances. Add another catalog
object, but without any associated Edition, Section, or Article entities:

Catalog catalog2 = new Catalog() ;
catalog2.setJournal ("Linux Magazine") ;
em.persist (catalog2) ;

Next, we will delete data with the deleteSomeData method, wherein we first create
a Query object using the named query findCatalogByJournal. Specify the journal
to delete with the setParameter method of the Query object. Get the List result
with the getResultList method of the Query object. Iterate the List result and
remove the Catalog objects with the remove method of the EntityManager object.
The remove method only removes the catalog object from the persistence context:

public void deleteSomeData() {
// remove a catalog
Query g = em.createNamedQuery ("findCatalogByJournal") ;
//g.setParameter ("journal", "Linux Magazine") ;
g.setParameter ("journal", "Oracle Magazine") ;
List<Catalog> catalogs = g.getResultList() ;
for (Catalog catalog : catalogs) ({
em.remove (catalog) ;
}
}

The catalogSessionBeanFacade session bean class is available in the code
downloaded for the chapter.

Creating a JSP client

Next, we will create a JSP client to test the E]B entities. We will look up the session
bean using a local JNDI name. Subsequently, we will invoke the testData method of
the session bean to test database persistence using these entities. First create a JSP
file. Select File | New | Other, and in the New wizard, select Web | JSP File and
click on Next, as in the following screenshot:

[22]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Select a wizard
Create a new JSP file |

Wizards:
fype filter text

4 (= \eb -
|57 CSSFile
(% Dynarmic Web Project
7 Filter
&7 HTML File
& JEPFile
&7 ISP Tag
/”’;3 Listener
6 Servlet
7 Static Web Project
@5 Web Fragment Project

(|

[7] Shovwe 211 Wizards.

In the New JSP File wizard, select the jboss-ejb3/web/sr¢/main/webapp folder
in the jboss-ejb3-web subproject. Specify catalog.jsp as as File name and click
on Next. Then click on Finish:

& New JSP File [] |

Jsp

1y JavaSerser Pages created in projects that do not support Jawva might notwork v
as expected, —

Enter or select the parent folder:

Jbass-ejb3/jbass-ejbI-web/src/mainfiebapp

o
a4 = jboss-ejbl
(= .settings
: (= jboss-ejb3-ear
> [jboss-gjbl-ejb
4 [jboss-ejb3-web
(= settings
4 [sre
4 [main
= java
(= resources
> (= webapp
> [test
s [target
(= RemoteSysternsTempFiles

File name: catalog,jsp

@ < Back H Mext =] [Finish %] [Cancel

[23]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with E]B 3.x

The catalog.jsp file gets added to the jboss-ejb3-web subproject:

L Project Explorer &2 [= Q s T |
4 = jboss-ejb3
o = |boss-ejbi-ear
= jboss-gjb3-ejb
4 [|boss-gjb3-web
4 = src
4 [main
& java
= resources
4 = webapp
= resources
s = WEB-INF
[] catalogjsp
= test %
= target
E F:“:lr'r'l.:’:l'-l'll

Q pormml

We need to retrieve the CatalogSessionBeanFacade component from the JSP
client. WildFly 8 provides the local JNDI (Java Naming and Directory Interface)
namespace: Java, and the following JNDI contexts:

JNDI Context Description

java:comp This is the namespace that is scoped to the current
component, the EJB.

java:module This namespace is scoped to the current module.

java:app This namespace is scoped to the current application.

java:global This namespace is scoped to the application server.

When the jboss-ejb3 application is deployed, the JNDI bindings in the namespaces
(discussed in the preceding table) are created as indicated by the server message:

JNDI bindings for session bean named CatalogSessionBeanFacade in

deployment unit subdeployment "jboss-ejb3-ejb.jar" of deployment

"jboss-ejb3-ear.ear" are as follows:
java:global/jboss-ejb3-ear/jboss-ejb3-ejb/

CatalogSessionBeanFacade!org.jboss.ejb3.model.CatalogSessionBeanFacade
java:app/jboss-ejb3-ejb/CatalogSessionBeanFacade!org.jboss.ejb3.

model.CatalogSessionBeanFacade
java:module/CatalogSessionBeanFacade!org.jboss.ejb3.model.

CatalogSession

[24]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

BeanFacade
java:global/jboss-ejb3-ear/jboss-ejb3-ejb/CatalogSessionBeanFacade
java:app/jboss-ejb3-ejb/CatalogSessionBeanFacade
java:module/CatalogSessionBeanFacade

Next we will retrieve the session bean facade: catalogSessionBeanFacade using
the standard Java SE JNDI API, which does not require any additional configuration,
using the local JNDI lookup in the java:app namespace. For the local JNDI lookup,
we need to create an InitialContext object:

Context context = new InitialContext () ;

Using the local JNDI name lookup in the java:app namespace ,retrieve the
CatalogSessionBeanFacade component:

CatalogSessionBeanFacade bean = (CatalogSessionBeanFacade) context
.lookup ("java:app/jboss-ejb3-ejb/CatalogSessionBeanFacade!org.jboss.
ejb3.model.CatalogSessionBeanFacade") ;

Invoke the createTestData method and retrieve the List Catalog entities. Iterate
over the Catalog entities and output the catalog ID as the journal name:

bean.createTestData () ;
List<Catalog> catalogs = beanRemote.getAllCatalogs() ;
out.println("
" + "List of Catalogs" + "
");
for (Catalog catalog : catalogs) ({
out.println("Catalog Id:");
out.println("
" + catalog.getId() + "
");
out.println("Catalog Journal:") ;
out.println(catalog.getdJournal () + "
");

}

Similarly, obtain the Entity, Section, and Article entities and output the entity
property values. The catalog. jsp file is available in the code downloaded for
the chapter.

Configuring the jboss-ejb3-ejb subproject
We will generate an EAR file using the Maven project: jboss-ejb3, which includes
the jboss-ejb3-ejb, jboss-ejb-web and jboss-ejb3-ear subproject/artifacts. We
will use the Maven build tool to compile, package, and deploy the EAR application.
The jboss-ejb3-ear module to be deployed to WildFly has two submodules:
jboss-ejb3-web and jboss-ejb3-ejb.

[25]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with E]B 3.x

The jboss-ejb3-ear, jboss-ejb3-web and jboss-ejb3-ejb modules may

be referred to as ear, web, and ejb modules respectively. The ear module has
dependency on the web module, and the web module has dependency on the ejb
module, as shown in the following diagram:

Maven Module Dependency

-,

‘ EAR module }—»{ Weh module }—»{ EJB madule ‘

A

The ejb, web, and ear modules can be built and installed individually using
subproject-specific pom.xml, or these can be built together using the pom.xm1 file in
the jboss-ejb3 project. If built individually, the ejb module has to be built and
installed before the web module, as the web module has a dependency on the ejb
module. The ear module is to be built after the web and ejb modules have been built
and installed. We will build and install the top level project using the pom.xm1 file

in the jboss-ejb3 project, which has dependency specified on the jboss-ejb3-web
and jboss-ejb3-ejb artifacts. The pom. xml file for the jboss-ejb3-ejb subproject
specifies packaging as ejb. The WildFly 8.x provides most of the APIs required for an
EJB 3.x application. The provided APIs are specified with scope set to provided in
pom.xml. Dependencies for the EJB 3.1 API and the JPA 2.0 API are pre-specified. Add
the following dependency for the Hibernate Annotations API:

<dependencys>
<groupld>org.jboss.spec.javax.ejb</groupIld>
<artifactId>jboss-ejb-api 3.1 spec</artifactIds>
<version>1.0.0.Final</version>
<scope>provided</scope>

</dependency>

<dependencys>
<groupIds>org.hibernate.javax.persistence</groupId>
<artifactId>hibernate-jpa-2.0-api</artifactIds>
<version>1.0.0.Final</version>
<scope>provided</scope>

</dependency>

<dependencys>
<groupIds>org.hibernate</groupIld>
<artifactIdshibernate-annotations</artifactIds
<version>3.5.6-Final</version>

</dependency>

[26]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

The Hibernate Validator API dependency is also preconfigured in pom.xml. The
build is preconfigured with the Maven EJB plugin, which is required to package the
subproject into an EJB module. The EJB version in the Maven EJB plugin is 3.1:

<builds>
<finalName>${project.artifactId}</finalName>
<pluginss>
<plugins>
<artifactIds>maven-ejb-plugin</artifactIds>
<versions>${version.ejb.plugin}</versions>
<configurations>
<!-- Tell Maven we are using EJB 3.1 -->
<ejbVersion>3.1</ejbVersion>
</configurations>
</plugin>
</plugins>
</build>

The Maven poM. xm1 file for the EJB subproject is available in the code downloaded
for the chapter.

Configuring the jboss-ejb3-web
subproject

Most of the required configuration for the jboss-ejb3-web subproject is pre-
specified. The packaging for the jboss-ejb3-web artifacts is set to war:

<artifactId>jboss-ejb3-web</artifactIds>
<packagings>war</packaging>
<name>jboss-ejb3 Web module</name>

The pom.xm1 file for the subproject pre-specifies most of the required dependencies.
It also specifies dependency on the jboss-ejb3-ejb artifact:

<dependencys>
<groupIds>org.jboss.ejb3</groupId>
<artifactId>jboss-ejb3-ejb</artifactIds>
<typesejb</type>
<version>1.0.0</versions>
<scope>provided</scope>

</dependency>

[27]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with E]B 3.x

The EJB 3.1 API, the JPA 2.0 AP], the JSF 2.1 API, and the JAX-RS 1.1 API are
provided by the WildFly 8.x server, as indicated by the provided scope in the
dependency declarations. Add the dependency on the hibernate-annotations
artifact. The build is preconfigured with the Maven waRr plugin, which is required
to package the subproject into an wAR file:

<?xml version="1.0" encoding="UTF-8"?>
<builds>
<finalName>${project.artifactId}</finalName>
<pluginss>
<plugins>
<artifactIds>maven-war-plugin</artifactIds>
<versions>${version.war.plugin}</versions
<configurations>
<!-- Java EE 6 doesn't require web.xml, Maven needs to catch
up! -->
<failOnMissingWebXml>false</failOnMissingWebXml >
</configurations>
</plugin>
</plugins>
</build>

The pom.xm1 file for the jboss-ejb3-web subproject is available in the code
downloaded for the chapter.

Configuring the jboss-ejb3-ear
subproject

In pom. xml for the jboss-ejb3-ear subproject, the packaging for the
jboss-ejb3-ear artifact is specified as ear:

<artifactId>jboss-ejb3-ear</artifactIds>
<packagings>ear</packaging>

The pom.xm1 file specifies dependency on the ejb and web modules:

<dependencies>

<!-- Depend on the ejb module and war so that we can package them
-=>

<dependency>

<groupld>org.jboss.ejb3</groupld>

[28]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

<artifactId>jboss-ejb3-web</artifactId>
<version>1.0.0</versions>
<type>war</types>

</dependency>
<dependencys>
<grouplds>org.jboss.ejb3</groupIld>
<artifactId>jboss-ejb3-web</artifactId>
<version>1.0.0</versions>
<type>war</types>

</dependency>

</dependencies>

The build tag in the pom.xml file specifies the configuration for the maven-ear-
plugin plugin with output directory as the deployments directory in the WildFly
8.x standalone server. The EAR file generated from the Maven project is deployed
to the directory specified in the <outputDirectory/> element. Specify the
<outputDirectory/> element as the C:\wildfly-8.1.0.Final\standalone)\
deployments directory. The outputDirectory might need to be modified based
on the installation directory of WildFly 8.1. The EAR, WAR, and JAR modules in the
deployments directory get deployed to the WildFly automatically, if the server

is running:

<plugin>
<groupld>org.apache.maven.plugins</groupId>
<artifactIds>maven-ear-plugin</artifactId>
<version>2.8</version>
<configurations
<!-- Tell Maven we are using Java EE 6 -->
<version>6</versions>
<!-- Use Java EE ear libraries as needed. Java EE ear libraries
are in easy way to package any libraries needed in the ear, and
automatically have any modules (EJB-JARs and WARs) use them -->
<defaultLibBundleDir>lib</defaultLibBundleDir>
<fileNameMapping>no-version</fileNameMapping>

<outputDirectory>C:\wildfly-8.1.0.Final\standalone\deployments</
outputDirectorys>

</configurations>
</plugin>

[29]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with E]B 3.x

Deploying the EAR module

In this section, we will build and deploy the application EAR module to the WildFly
8.x server. The pom.xml for the jboss-ejb3 Maven project specifies three modules:

jboss-ejb3-ejb, jboss-ejb3-web, and jboss-ejb3-ear:

<moduless>
<module>jboss-ejb3-ejb</module>
<module>jboss-ejb3-web</module>
<module>jboss-ejb3-ear</module>
</modules>

Specify the JBoss AS versionas 8.1.0.Final:

<version.jboss.as>8.1.0.Final</version.jboss.as>

The pom.xm1 for the jboss-ejb3 project specifies dependency on the jboss-ejb3-

web and jboss-ejb3-ejb artifacts:

<dependencys>
<groupIds>org.jboss.ejb3</groupId>
<artifactId>jboss-ejb3-ejb</artifactId>
<version>${project.version}</versions>
<type>ejb</type>

</dependency>

<dependencys>
<groupIds>org.jboss.ejb3</groupId>
<artifactId>jboss-ejb3-web</artifactId>
<version>${project.version}</versions>
<types>war</type>
<scope>compile</scope>

</dependency>

Next, we will build and deploy the EAR module to WildFly 8.x while the server is
running. Right-click on pom.xml for the jboss-ejb3 Maven project and select Run

As | Maven install, as shown in the following screenshot:

[30]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[Project Explarer 53 E=S ¥ = B [jboss-ejpipomaml 57
a4 = jboss-ejb3 <#aml wersion="1.8" encoding="UTF-87%5
= jboss-
- meﬂ New * E of Professional Open Source
= bo13, Red Hat, Inc. andfer its affiliates, and individual
& jboss-g Open F3 ks by the @authors tag. See the copyright.txt in the
[pomir Qpen With b bn for & full listing of individual comtributors.
B Copy Cul+C pder the Apache License, Version 2.8 (the "License");
. cotey [use this file except in campliance with the License.
R T ain s copy of the License at
K Delete Delete | apache. org/licenses/LICENSE-2.0
) Lired by applicable law or agreed to in writing, software
G frmm Carifiz:: CtrlvhltaShiftDown B e the License is distributed on an "AS IS* BASIS,
Mark as Landmark Ctrl+21t +Shift +Lp RRANTIES OR COMDITIONS OF ANY KIND, either express or implied.
. kense for the specific language governing permissions and
E under the License.
Rename... F2
ShtEpinaven. apache. org/POM/4. 8. 87 amlns sesi="http: /fuaw w3, org/ 2081 XM Schana-instance™
e Import., {hmaw oration="htin: Shnauen anache arafeOMAL @ @ htins ffeouen anache arafmouen-nd 88 c=d"s
£ Export..
5 Dependency Hierarchy | Effective POM | pomaml
&7 Refresh F5
x %
Validate i FilestJavahjdk1.7.0_6T\binjavau.exe (Mar 17, 2015, 1:47:52 Pt}
Shour in Rernote Systerns view
Profile As 3
Debug & v
Run & b m2 1 Maven build Al +Shift 4, M
Team | m2 2 Maven build..
Replace With b|m2 3 Maven clean
Maven b|m2 4Maven generate-sources
JPA Tacls Hlme SMweninl
Cornpare With b m2 6 Maven test
»
g e Run Configurations... |
[l pormxml - jbos Properties Ble+Enter |

As the output from the pom.xml indicates all the three modules: ejb, web, and ear
get built. The ear module gets copied to the deployments directory in WildFly 8.x:

) Tasks B Console 52 PETEY
rogram Files\avadk1.7.0_6T\birtjavaw.exe (Mar 17, 2015, 2:16:05 PM)

<terminated >
INF0) --

INFO,

INFO] --- maven-ear-plugin:2.8:generate-application-sml (default-generate-application—sml) @ jbess-ejb3-car ---
INFO] Generating application.saml

INFO.

INFO] --- maven-resources-plugin:2.4.3:resources (default-resources) § jboss-ejb3-car ---

INFO] Using "UTF-8' encoding to copy filtered resources

INFO] skip non existing resourceDirectory Ciilsers\Deepak Vohral\Eclipselworkspaceljboss-ejb3\jhoss-eib3-garisreimainiresources
[INFO]
[INFO] --- mawen-ear-plugin:2.8:ear {default-ear) @ jboss-ejb3-ear ---

INFO] Copying artifact [war:org.jboss.ejb3:jboss-ejba-uch:1.0.2] to [jboss-ejbI-web.uar]
INFO] Copying artifact [ejb:org.jboss.ejb3:jboss-ejb3-ejb:1.0.2] to [Jboss-eibi-ej
INFO] Copy ear sources to C:\Users\Deepak VohratEclipseiworkspaceljboss-ejb3tjboss-ejb3-earitarget'jboss-ejb3-car

INFO] Could mot find manifest file: ¢:\Users\Deepak Wehra\Eclipsehworkspaceljboss-ejb3\ibess-eib3-ear\target) jboss-ejb3-ear\HETA-THF\MANIFEST.NF - Generating ene
1NFO] Building jar: C:iwildfly-8.1.0.Finslistandalone\deplogmentsijboss-ejb3-gar. ear

INFO.
INFO] --- mawen-install-plugini2.4:install (default-install) § jboss-ejb3-ear ---

INFO] Installing C:\wildfly-5.1.0.Finalistandaloneldeploymentsjboss-ejb3-ear.ear to C:iUsers\Deepak Wohral.m2\repository'orghjbossiejb3tiboss-ejb3-earil. . 8\jboss-ejb3-¢
INFO] Installing C:hiUsersiDespak vohra\Eclipsetworkspacehjboss-ejb3hjboss-ejb3-earipom.sml to C:\Users\Deepak vohra\.mzirepositoryiorghjbossiejb3tjboss-ejba-caril. 0. 2\jbe
INFO] --------
INFO] Reactor Summary:
INFO.

INFO] jboss-ejb3 . SUCCESS [1.202 5]
INFO] jboss-eibi: EI6 Hodule . . SUCCESS [8.725 5]
INFO] jbess-eib3 - web SUCCESS [13.660 s]
[INFO] jbess-eib3: EAR Hodule . . . SUCCESS [7.537 5]
T
INFO] BUILD SUCCESS

INFO] === mm = m oo o
INFO] Total time: 32.912 s

INFO] Findshed at: 2015-23-17T14:16:41-85:00

INFO] Final Memory: 22H/18H

INFO] === === m oo s oo oeoseeooeoeooooos
« 0 »

[31]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with E]B 3.x

Start the WildFly 8.x server if not already started. The jboss-ejb3.ear file gets
deployed to the WildFly 8.x server and the jboss-ejb3-web context gets registered.
The jboss-ejb3.ear.deployed file gets generated in the deployments directory,
as shown in the following screenshot:

(C » wildfly-8.L0Final » standalone » deployments

r Share with = Burn MNew folder

MHarme Date modified Type Size

|| jboss-ejb3-ear.ear 102972014 12:28 .., EA&RFile 11,882 KB
|| jboss-gjb3-ear.ear.deployed 102942014 12:29 ... DEPLOYED File 1KE

The EntityManager em persistence unit gets registered and the JNDI bindings for
the catalogSessionBeanFacade session bean gets generated:

Starting Persistence Unit (phase 1 of 2) Service 'jboss-ejb3-ear.ear/
jboss-e
jb3-ejb.jar#em’
12:30:32,047 INFO [org.hibernate.jpa.internal.util.LogHelper]
(ServerService Th
read Pool -- 50) HHH000204: Processing PersistenceUnitInfo [

name: em

-1

The MySQL database tables for the entities get created, as shown in the following
screenshot:

N Administrator: ChWi
.

mysql) show tables;
Empty set <(B.00 sec)>

myzgl> use test
Database changed
mysgl> show tables;
Empty set (B.08 sec)

mysgl> show tables;
+

article
articlesection
catalog

edition
editioncataloy
hibernate_sequence
section
sectionedition

rows in set (B.B8 sec)>

mysgl> _

[32]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

To log in to the WildFly 8 administration console, open http://localhost:8080

in any web browser. Click on the Administration Console link. Specify User Name
and Password and click on Log In. Select the Runtime tab. The jboss-ejb3.ear
application is listed as deployed in the Deployments | Manage Deployments section:

WildFly 8.1.0.Final T T

quration Runtime Administration

= Server DEPLOYMENTS

v
e Deployments

Manage Deployments
Currently deployed application components.

Patch Management

Status -
Add Remove En/Disable Replace

= Flatorm b jboss-ejbi-earear v
T
Environment
= Subsystems
Datasources
IRA
IHDI Wiew
Transaction Logs
Transactions

Deployment
Webservices

Meed Help?
Name: jboss—ejb3-ear ear
Runtime Name: Jboss-ejb3-ear.ear
[33]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with E]B 3.x

Running the JSP client

Next, open http://localhost:8080/jboss-ejb3-web/catalog.jsp and run the
JSP client. The List of Catalogs gets displayed. The deleteSomeData method deletes
Catalog for Oracle Magazine. As the Linux Magazine catalog does not have any
data, the empty list gets displayed, as shown in the following screenshot:

EJB3 Client

b + @http:mocaIhDst:SUSD,-’jboss-eij-Web,"catang.jsp [

List of Catalogs

Catalog Id: 1

Catalog Journal: Oracle Magazine
Catalog Id: 7

Catalog Journal: Limz Magarine

List of Editions
Edition Id: 2
Edition Date: JanuaryFebruary 2009

List of Sections

Section Id: 2

Section Name: FEATURES
Section Id: 5

Section Name: Technology

List of Articles
Article Id: 4
Article Title: Launching Performance

Article Id: &
Article Title: On Dynarmc Samplng

Delete some Data

List of Catalogs

Catalog Id: 7

Catalog Journal: Linusz Magazine
List of Edihons

List of Sections

List of Articles

Configuring a Java EE 7 Maven project

The default JBoss Java EE EAR project created is a Java EE 6 project. If a Java EE
7 project is required to avail of the EJB 3.2, Servlet 3.1, JSF 2.2, and Hibernate JPA
2.1 APIs, the pom.xm1l for the ejb module and the web module subprojects should
include the BOM (Bill of Materials) for Java EE 7 and the Nexus repository:

<repositoriess>
<repositorys
<id>JBoss Repository</id>

[34]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

<url>https://repository.jboss.org/nexus/content/groups/public/
</urls>
</repository>
</repositories>
<dependencyManagement >
<dependencies>
<dependencys>
<grouplds>org.jboss.spec</groupIld>
<artifactId>jboss-javaee-7.0</artifactId>
<version>1.0.0.Final</version>
<types>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement >

In addition the pom.xml for the ejb module and web module subprojects should
specify the dependencies for the EJB 3.2, JSF 2.2, Servlet 3.1, and Hibernate JPA 2.1
specifications, as required, instead of the dependencies for the EJB 3.1, JSF 2.1, Servlet
3.0, and Hibernate JPA 2.0:

<dependencys>
<groupld>org.jboss.spec.javax.ejb</groupIld>
<artifactId>jboss-ejb-api 3.2 spec</artifactIds>
<scope>provided</scope>

</dependency>

<dependencys>
<groupIds>org.hibernate.javax.persistence</groupId>
<artifactId>hibernate-jpa-2.l-api</artifactIds>
<scope>provided</scope>

</dependency>

<dependencys>
<grouplds>org.jboss.spec.javax.servlet</groupIld>
<artifactId>jboss-servlet-api 3.1 spec</artifactId>
<scope>provided</scope>

</dependency>

<dependencys>
<grouplds>org.jboss.spec.javax.faces</groupIld>
<artifactId>jboss-jsf-api 2.2 spec</artifactIds>
<scope>provided</scope>

</dependency>

[35]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with E]B 3.x

Summary

In this chapter, we used the JBoss Tools plugin 4.2 in Eclipse Luna to generate a
Java EE project for an EJB 3.x application in Eclipse IDE for Java EE Developers. We
created entities to create a Catalog and used the Hibernate persistence provider

to map the entities to the MySQL 5.6 database. Subsequently, we created a session
bean facade for the entities. In the session bean, we created a catalog using the
EntityManager APIL We also created a JSP client to invoke the session bean facade
using the local JNDI lookup and subsequently invoke the session bean methods to
display database data. We used Maven to build the EgB, web, and EAR modules and
deploy the EAR module to WildFly 8.1. We ran the JSP client in a browser to fetch
and display the data from the MySQL database. In the next chapter, we will discuss
another database persistence technology: Hibernate.

[36]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Object/Relational
Mapping with Hibernate 4

Hibernate is an object/relational mapping Java framework with which POJO domain
objects can be mapped to a relational database. Though Hibernate has evolved
beyond just being a object/relational framework, we will discuss only its object/
relational mapping aspect. Hibernate's advantage over traditional Java Database
Connectivity (JDBC) is that it provides the mapping of Java objects to relational
database tables and the mapping of Java data types to SQL data types without a
developer to provide the mapping, which implies having to make fewer API calls
and the elimination of SQL statements. Hibernate provides loose coupling with
the database with vendor-specific mapping using dialect configuration. Hibernate
implements features such as caching, query tuning, and connection pooling, which
have to be implemented by a developer in JDBC.

The chapter has the following sections:

* Creating a Java EE web project

* Creating a Hibernate XML Mapping file
* Creating a properties file

* Creating a Hibernate configuration file
* Creating JSPs for CRUD

* Creating the JavaBean class

* Exporting schema

* Creating table data

* Retrieving table data

* Updating a table row

[37]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Object/Relational Mapping with Hibernate 4

Deleting a table row
Installing the Maven project
Running schema export
Creating table rows
Retrieving table data
Updating table

Deleting the table row

Setting up the environment

We need to install the following software (the same as in Chapter 1, Getting Started
with EJB 3.x):

WildFly 8.1.0.Final: Download wildfly-8.1.0.Final.zip from
http://wildfly.org/downloads/.

MySQL 5.6 Database-Community Edition: Download this edition from
http://dev.mysql.com/downloads/mysqgl/. When installing MySQL,
also install Connector/].

Eclipse IDE for Java EE Developers: Download Eclipse Luna from
https://www.eclipse.org/downloads/packages/release/Luna/SR1.

JBoss Tools (Luna) 4.2.0.Final (or the latest version): Install this as a plugin
to Eclipse from the Eclipse Marketplace (http://tools. jboss.org/
downloads/installation.html).

Apache Maven: Download version 3.05 or higher from http://maven.
apache.org/download.cgi.

Java 7: Download Java 7 from http://www.oracle.com/technetwork/
java/javase/downloads/index.html?ssSourceSiteId=ocomcn.

Set the same environment variables as in Chapter 1, Getting Started with EJB 3.x:
JAVA_HOME, JBOSS_HOME, MAVEN_HOME, and MYSQL_HOME. Add $JAVA_HOME%/bin,
$MAVEN HOME$%/bin, $JBOSS HOMES%/bin, and $MYSQL HOMES%/bin to the PATH
environment variable.

Create a WildFly 8.1.0 runtime as discussed in Chapter 1, Getting Started with E|B 3.x.

[38]

www.it-ebooks.info

http://wildfly.org/downloads/
http://dev.mysql.com/downloads/mysql/
https://www.eclipse.org/downloads/packages/release/Luna/SR1
http://tools.jboss.org/downloads/installation.html
http://tools.jboss.org/downloads/installation.html
http://maven.apache.org/download.cgi
http://maven.apache.org/download.cgi
http://www.oracle.com/technetwork/java/javase/downloads/index.html?ssSourceSiteId=ocomcn
http://www.oracle.com/technetwork/java/javase/downloads/index.html?ssSourceSiteId=ocomcn
http://www.it-ebooks.info/

Chapter 2

Creating a Java EE web project

In this section, we will create Java EE Web Project in Eclipse IDE. Perform the
following steps to accomplish this task:

1. Select File | New | Other. In the New window, select JBoss Central | Java
EE Web Project and click on Next, as shown in the following screenshot:

['] Mew l B ||

Select a wizard —

Wizards:
type filter text

4 [JBoss Central -
% AngularlSwith Forge Project
B HTMLS Project
(£ lava EE EAR Project
@ Java EE WYeb Project
fnﬁ? RichFaces Project
A2 Spring MYC Project

[JBoss Toals

o = JBoss Tools Web

> = IPA

= Maven i

m
3

[T] Showe 811 Wizards.

The Java EE Web Project wizard gets started. A test is run for the
requirements, which includes a JBoss server runtime, the JBoss Tools
runtime, and the m2e and m2eclipes-wtp plugins.

[39]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Object/Relational Mapping with Hibernate 4

2. Select the Create a blank project checkbox and Target Runtime WildFly
8.x Runtime and click on Next, as shown in the following screenshot. Even
though Java EE Web Project indicates the Java EE version as Java EE 6, a Java
EE 7 web project is actually created.

Java EE Web Project

Create a baven-based Java EE 6 web application project

R — —
ﬂ Mew Project Example L@i—]

Description:

This iz your project! It's a sample, deployable Mawven 3 project to help you getyour foot in the door -
developing with Jawa EE 6 on JBass Enterprise Spplication Platform 6 or JBoss Application Serser 7.1,

This project is setup to allow you to create a compliant Jawva EE 6 application using J5F 2.0, CDI L0, EIB | =
3.1, JPA 2.0 and Bean Walidation 1.0

Project based on the orgaildfly.archetypewildfly-javaee7-webapp-blank-archetype:8, 1.0.Final Maven =
Create a blank project

Target Runtime | WildFly 8.x Runtime vl
Requirernents
Type Description Install...
serverfrunti.. This project exarple requires JBoss Enterprise Applic... |
. . . . Dowenload and Install..,
plugin This project example requires m2e == L0, I
plugin This project exarnple requires m2e-wip = 0,160, f
plugin This project example requires JBoss Mawven Tools, |
] 1 »

@ [<Back | Next» D\A ity

3. Specify Project Name (jboss-hibernate) and Package (org. jboss.
hibernate), and click on Next, as shown in the following screenshot:

[40]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

@& New Project Examplc W () i

Java EE Web Project

Create a Maven-based

Jawa EE 6 web application project @

Use default Waorkspa

Location:
[add projectis) to wao
Working set:

b Advanced

Project name | jboss-hibermate -

Package org.jbosshibernate -

ce location
Browyse...

tking set
Mare..,

@

[<Back | Nequ\&J[Fiish | [cancel |

4. Specify Group Id (org.jboss.hibernate), Artifact Id (jboss-hibernate),
Version (1.0.0), and Package (org.jboss.hibernate), as shown in the

following screenshot.

r
E New Project Example

Click on the Finish button.

-‘:IEIQ

Java EE Web Project

Create a Maven-based

Jawva EE 6 web application project @

Groupld: orgjbossh

Wersion: o0

Package: orgjbossh

ArtifactId: jboss-hibernate -

Properties available from archetype:

ibernate -

ibernate -

Marne

hame

Walue Add...

Jawa EE 6 webapp project Remave

w Advanced

[T] Resolve Workspace projects

Profiles:

et = ’ Finish {}J ’ Cancel]

[41]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Object/Relational Mapping with Hibernate 4

5. The jboss-hibernate project gets created in Eclipse and gets added to
Project Explorer, as shown in the following screenshot:

L5 Project Explorer £3 = O

F] E']'E jboss-hibernate
P 18X-R5\Weh Services
. 'z8 Deployment Descriptar: jhass-hibernate
+ |7 Web Resources
A 1AS-WES Web Services
. 4 JPA Content
- (2 Java Resources
- B, Javascript Resources
. Lz Deployed Resources
4 7 ste
4 [main
[java
4 [resources
4 (= META-IMF
¢ persistence.zml
4 [webapp
[= resources
4 = WEB-IMF
beans.xml
faces-config.xml
K| jboss-hibernate-dsxml
b test
- (= target
[pornaml

Creating a Hibernate XML Mapping file

Hibernate provides transparent mapping between a persistence class and a relational
database using an XML mapping file. The actual storing and loading of objects of the
persistence class is based on the mapping metadata. Perform the following steps to
accomplish this:

1. To create a Hibernate XML Mapping file, select File | New | Other.

[42]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

2. Inthe New window, select Hibernate | Hibernate XML Mapping File
(hbm.xml) and click on Next, as shown in the following screenshot:

E Mew l (S0 S

Select a wizard —

Creates a new Hibernate XML Mapping file

Wizards:
type filter text

» = Eclipse Modeling Framewark -~

» = EIB

> = Git

4 [Hibernate

¥4 Hibernate Configuration File (cfgaml)
¥y Hibernate Console Canfiguration i
¥4 Hibernate Rewverse Engineering File (reveng.xml)
¥4 Hibernate XML Mapping file (hbrmoml)

o = Java

+ = Java EE

» (= lava Emitter Templates e

1

[] Showe &1 iizards.

The New Hibernate XML Mapping files wizard gets started. As we have not
yet defined any persistence classes to map, we will first create an empty XML
mapping file.

[43]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Object/Relational Mapping with Hibernate 4

3. In Create Hibernate XML Mapping file(s), click on Next, as shown in the
following screenshot:

E Mew Hibernate XML Mapping files {(hbm.xmil)

Create Hibernate XML Mapping file(s)

Add classes and packages orwizard will create an ernply mapping file

Add Class..
Add Package...

Remowe

>

? | <Back || Next>M Firlsly

The resources in the src/main/resources directory are in the classpath of a
Hibernate application.

[44]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

4. Select the jboss-hibernate | src | main | resources folder and specify
File name as catalog.hbm.xml, as shown in the following screenshot. Click
on Finish.

ﬂ Mew Hibkernate XML Mapping files (hbm.eml) L@ﬂ

New Hibernate XML Mapping files (hbm.xml) .
Create a new empty XML Mapping files .

Eriter ar select the parent folder:

Jboss-hibernatefsrcfmaindresources

[l
a = jhoss-hibernate
[.settings
4 [src
4 [= main
[Java
. [resources
s = weebapp
= test
» [target
L= RemoteSystermsTempFiles

File name: catalog.hbrm.xoml

?\' Mext = Finizh {}—I [Cancel

[45]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Object/Relational Mapping with Hibernate 4

The catalog.hbm.xml mapping file gets added to the resources directory. The
root element of the mapping file is hibernate-mapping. The persistence classes

are configured using the <class/> element. Add a <class/> element to the org.
jboss.hibernate.model.Catalog class specified with the name attribute in the
<class/> element. We have yet to create the persistence class, which would not be
required if we were just exporting a schema to a relational database but is required
to store or load any POJO objects. Specify a table that the class is to be mapped to
with the table attribute of the <class/> element. With the specified mapping, an
instance of the catalog class is mapped to a row in the CATALOG database table. A
mapped persistence class is required to specify the primary key column of the table
it is mapped to. The primary key column is mapped to an identifier property in the
persistence class. The primary key column and the identifier property are specified
using the <id/> element. The column attribute specifies the primary key column;
the name attribute specifies the identifier property in the persistence class being
mapped; and the type attribute specifies the Hibernate type. The <generator/>
subelement of the <id/> element specifies the primary key generation strategy. Some
built-in generation strategies are available and different relational databases support
different ID generation strategies.

As we are using the MySQL database, which supports identity columns using AuTO
INCREMENT, we can use the generation strategy as identity or native. An identity
column is a table column of the INTEGER type, with AUTO INCREMENT and PRIMARY
KEY or UNIQUE KEY specified, such as id INTEGER AUTO_INCREMENT PRIMARY KEY
or id INTEGER AUTO_INCREMENT UNIQUE KEY.

Add JavaBean properties using the <property/> element. The JavaBean properties
in the persistence class are mapped to the columns of the database table. The name
attribute of the <property/> element specifies the property name and is the only
required attribute. The column attribute specifies the database table column name;
the default column name is the property name. The type attribute specifies the
Hibernate type. If the type attribute is not specified, Hibernate finds the type, which
might not be exactly the same as the actual type specified in the JavaBean class. To
distinguish between similar Hibernate types, it is recommended that you specity the
type in the property element. Add the <property/> elements journal, publisher,
edition, title, and author of the type string and mapped to the columns
JOURNAL, PUBLISHER, EDITION, TITLE, and AUTHOR respectively. The catalog.hbm.
xml mapping file is listed in the following code:

<?xml version="1.0"?><!DOCTYPE hibernate-mapping PUBLIC"-//Hibernate/
Hibernate Mapping DTD 3.0//EN"

"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">
<hibernate-mapping>

[46]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

<class name="org.jboss.hibernate.model.Catalog" table="CATALOG">

<id name="id" type="int" column="ID">

<generator class="native" />

</id>

<property name="journal" column="JOURNAL" type="string" />

<property name="publisher" column="PUBLISHER" type="string"

<property name="edition" column="EDITION" type="string" />
<property name="title" column="TITLE" type="string" />
<property name="author" column="AUTHOR" type="string" />

</class>
</hibernate-mapping>

The mapping file is shown in the jboss-hibernate project, as shown in the

following screenshot:

/>

[Project Explorer 52 = O
B&|le <
4 53 jboss-hibernate
B)BX-RSWieb Services
. ‘23 Deployrnent Descriptor: jboss-hibernate
> AL Web Resources
s A2 JBX-WEWVeh Services
» 4 JPA Content
> ﬁ% Java Resources
: mi JavaScript Resources
> [Deployed Resources
4 37 src
4 (= main
(= java
4 [= resources
4 (= META-INF
i persistence.xm|
» 8 catalog hbmaeml
s = webapp
o [test
s [target
[pom xml

jboss-ejb3fejbipo.., jboss-ejb3/ear/po.., IBoss Central Y atalag.hbrmosml 52

1 «ml wersion="1.8" encoding="UTF-8">

2 «lDOCTYPE hibernate-mapping PUELIC "-//HibernatefHibernate Mapping DTD 3.@//EN"

S=<hibernate-mapping»

He
=)
[}
7
&
9

12

11

1z

13

<class name="org.jboss.hibernote.model. Catolog” table="CATALOG">
<id name="{d” type="int" column="T0">
cgenerator class="native” /3
«fid>
cproperty name="Jowrnal™ column="JOUANAL" type="string” />
<property name="publisher” column="PUBLISHER" type="string” />
<property name="edition™ column="EQITION” type="string™ />
<preperty name="title” column="TITLE" type="string” /»
<property name="guthor” column="AUTHOR” type="string” />
<fclass>

F14 </hibernate-mapping>

=

[47]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Object/Relational Mapping with Hibernate 4

Creatmg a properties file

The Hibernate XML Mapping file defines the mapping of the persistence

or class or classes with the relational database. The connection parameters
used to connect to the database can be configured in a properties file or an
XML configuration file, or both. To create a properties file, select File | New
| Other. In the New wizard, select JBoss Tools Web | Properties File and
click on Next, as shown in the following screenshot:

['] Mew l B ||

Select a wizard —

Create a Properties File

Wizards:
type filter text

s = 1AXE -
» = JBoss Central
= JBoz: Tools
4 (= JBoss Tools Web
w55 Class
EX Properties File
< TLD File
FA viveh Descriptor
% XHTML Page
> = J5F
= Portlet

m

[T] Showe 811 Wizards.

The New File Properties wizard gets started.

2. Click on Browser for the Folder field to select a folder. In Folder Selection,
select the jboss-hibernate | src | main | resources folder and click on
OK, as shown in the following screenshot:

[48]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

@) Folder Selection [

Enter or select the parent folder:

i =
4 = jboss-hibernate
(= settings
4 [st
4 [main
= java
» |2 resources
> (= wiebapp
[test
s [target
(= RernoteSystemsTernpFiles

® 0K {}J [Cancel]

3. Specify Name* as hibernate.properties and click on Finish, as shown in

the following screenshot:

E New File Properties

File Properties

Folder® Jfiboss-hibernate/src/mainfresources

Marme™ hibernate.properties|

® Mext = ’ Finish %J ’ Cancel]

The hibernate.properties file gets added to the resources folder.

[49]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Object/Relational Mapping with Hibernate 4

4. Inthe hibernate.properties table, click on the Add button to add a
property, as shown in the following screenshot:

= g
SR

[(\3 Project Explorer &3

4 5:‘} jboss-hibernate
2B IRY-RS Web Services
> ‘23 Deployrment Descriptor: jboss-hibernate
» |3 Web Resources
v A JAXAWS Web Services
» 4 JPA Content
> 5‘5 Java Resources
» B JavaScript Resources
> (% Deployed Resources
4 3 src
4 [main
= java
4 [resources
4 [META-INF
i persistencexml
> F}B cataloghbriam|
hibernate properties
> [webapp
b e test
[target
[pormasrnl

[jboss-gjbdf. f:. 1Boss Central &R atalog.hbrn,.. hibernatep, 52 M = 0
} Filter
name value Add
Edit
Delete
Up
Diowen

5. Add the hibernate.connection.driver_class property with Value as
com.mysql.jdbc.Driver and click on Finish, as shown in the following

screenshot:

E Add Property

[[© it

O

Property
Marme® hibernate.connection.driver_class
Walue: corm.mysgljdbe, Driver

1?\

Finizh %—l [Cancel

[50]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

6. Similarly, add other properties as shown in the hibernate.properties
table. The hibernate. connection.url property specifies the connection
URL, and the hibernate.dialect property specifies the database dialect to
be used as MySQL5InnoDBDialect, as shown in the following screenshot:

17 Project Explarer 52 = 0 jhoss-gjhf 1Bnss Central Y ¥catalog.hbm... *hibermate.., 57 = 8
= <===(> = b Filter
Pl 5:9 jboss-hibernate
A 1AX-RSWeb Services name il Add
(g Deployment Descriptar: jhoss-hibernate hibernate.connection.driver., cormmysgljdbo,Driver
1| Web Resources hibernate.connection.url Jdbeirysqli/flocalhost 3306 test Edit
D JAXAWS Web Services hibernate.connection.usern... root Delete |
b JPA Content hibernate.connection.passn., mysgl
% Java Resources hibernate.dialect org.hibernate.dialect.hySQLSInno DEDialect Up
=, Javalcript Resources
5 Deployed Resources Down
4 {3 src
4 = main
(= jawa

4 [= resources
4 [META-INF
i persistencesiml
> m catalog.hbmoxml
hibernate,properties
(= webapp L\\)
- fa test

(= target
[pornznl

The hibernate.properties file is listed in the following code. The username and
password attributes can be different than the ones listed:

hibernate.connection.driver class=com.mysql.jdbc.Driver
hibernate.connection.url=jdbc:mysgl://localhost:3306/test
hibernate.connection.username=root
hibernate.connection.password=mysqgllé6
hibernate.dialect=org.hibernate.dialect.MySQL5InnoDBDialect

Creating a Hibernate configuration file

The Hibernate configuration can be specified in the Hibernate Configuration File
(cfg.xml), which has more configuration parameters than the properties file.

. Either the properties file or the configuration file can be used to

% specify the configuration, or both can be used. If both are provided,
= the configuration file overrides the properties file for the configuration

parameters specified in both.

[51]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Object/Relational Mapping with Hibernate 4

The Hibernate XML configuration file has the following advantages over the
properties file:

* The Hibernate configuration file is more convenient when tuning the
Hibernate cache. The Hibernate configuration file has the provision to
configure the Hibernate XML Mapping files.

* For exporting a schema to a database using the schemaExport tool, just
the properties file would suffice, but for object/relational mapping of a
persistence class, the Hibernate XML configuration file is a better option.

The following are the steps to create a Hibernate configuration file:

1. Select File | New | Other. In New, select Hibernate | Hibernate
Configuration File (cfg.xml) and click on Next, as shown in the
following screenshot:

i@ New [= ﬁl

Select a wizard —

Create a new hibernate, cfg.ml file (Helping with the initial JDBC setup etc.)

Mfizards:
fype filter text

4 (= Hibernate -
¥4 Hibernate Configuration File {cfg.aml)
¥4 Hibernate Canzole Configuration
¥4 Hibernate Reverse Engineering File {revengaeml)
¥4 Hibernate XML Mapping file thbrm.aml)

= Java

m

= Jawa EE

» = Jawa Emnitter Templates
» = JawvaScript

s = JAXE

» [JBoss Central

[Shawe Al Wizards.

@ B S

The Create Hibernate Configuration file wizard gets started.

[52]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

2. Select the jboss-hibernate | src | main | resources folder, specify

File name as hibernate.cfg.xml, and click on Next, as shown in the

following screenshot:

& = S

Create Hibernate Configuration file (cfg.xml)

1y To load Configuration fram 'hibernate.cfgxml’ you'll have to pass file name
to Configuration,configure() method

Enter or select the parent folder:

Jboss-hibernate/sro/mainresources

(=t
4 & jboss-hibernate
[settings
4 [st
4 [main
= java
¢ =5 resOuUrCes
» = weebapp
s = test
¢ = target
L= RemoteSysternsTempFiles

File narne: hibernate,cfg.aml

A&

@ | <Back | x> [; Finish

3. Inthe Hibernate Configuration File wizard, specify Session factory name
(HibernateSessionFactory). A session factory is a factory that is used to
generate client sessions to Hibernate. A session factory stores the metadata

for the object/relational mapping.

4. Select Database dialect as MySQL 5 (InnoDB). Select Driver class as com.

mysql.jdbc.Driver.

5. Specify Connection URL as jdbc:mysql://localhost:3306/test.

[53]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Object/Relational Mapping with Hibernate 4

6. Specify the Username and Password and click on Finish, as shown in the
following screenshot:

@ Bl |-
Hibernate Configuration File (cfg.xml) . ‘

This weizard creates a new configuration file to use with Hibernate,

Container: Fiboss-hibernatefsrcfmainresources
File narne: hibernate.cfg.xml
Session factary narme: HibernateSessionFactory

Getwalues fram Cannection

Databasze dialect: htySOL InnoDE) -
Driver class: cornrysgljdbe.Driver -
Connection URL: jdbeimysqlifflocalhiost: 3306/ te st -
Default Scherna:

Default Catalog:

Usernarme: root

Password: rrysg|

[T] Create a consale configuration

':?:' Mext = ’ Finizh |,\I\§J [Cancel]

Hibernate provides transaction-level caching of persistence data in a session by
default. Hibernate has the provision for a query-level cache, which is turned off by
default, to frequently run queries. Hibernate also has the provision for a second-level
cache on the SessionFactory level or on the cluster level. The second-level cache is
configured in the hibernate.cfg.xml file using the hibernate.cache.provider_
class property. Classes that specify <cache/> mapping have the second-level cache
enabled by default. The second-level cache can be turned off by setting the cache.
provider_class property to org.hibernate.cache.NoCacheProvider. Specify

the Hibernate XML Mapping file using the <mapping/> element with the resource
attribute set to catalog.hbm.xml.

[54]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

The hibernate.cfg.xml file is listed in the following code:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-configuration PUBLIC"-//Hibernate/Hibernate
Configuration DTD 3.0//EN"
"http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">
<hibernate-configurations>
<session-factory name="HibernateSessionFactory">
<property name="hibernate.connection.driver class">com.mysqgl.jdbc.
Driver</propertys>
<property name="hibernate.connection.url">jdbc:mysql://
localhost:3306/test</property>
<property name="hibernate.connection.username">root</property>
<property name="hibernate.connection.password">mysqllé</property>
<property name="hibernate.dialect"s>org.hibernate.dialect.
MySQL5InnoDBDialect</property>
<property name="cache.provider class"sorg.hibernate.cache.
NoCacheProvider</property>
<mapping resource="catalog.hbm.xml" />
</session-factorys>
</hibernate-configuration>

The hibernate.cfg.xml file is shown in the jboss-hibernate project folder,
as follows:

¥

3

*hibernate.c., 3 Tz

I

[y Project Explorer 52 = O 1Boss Central i *eatalog.hbrm.., *hibernate...

& .) . f
=% ® 7 | Hibernate Configuration 3.0 XML Editor
4 5:‘} jbass-hibernate
B JBX-RS\WWeb Services
- 'eg Deployment Descriptor: jhoss-hibernate

+ HibernateSessionFactory ~ Session Factory

4 =% Session Factory

Marre: | HibernateSessionFactory

> AL Web Resources , B} Properties
oA JRAWS WYeb Services . B Mappings = Properties
- 4 IPA Content £ Caches narme

@,
3 Java Resources

E‘sj S R & Events hibernate.connection.driver_class
> B JavaScript Resources B Listeners hibernate.connectionurl
> [; Deployed Resources X ' o
P hibernate.connection.usernarne

4 B rmain hibernate.connection passward Edit...

& java hibernate.dialect

H
-

4 [resources cache provider_class

a (= META-INF Doviwn
+ persistencexml

> m catalog.hbmsxml
> {“E hibernate.cfg.xml

Session Factory | Security | Source

~ Mappings

itern

g hhlbernate.pmpertles resource=catalog.hbmu.zml
» == webapp
[target
|| pom .l

[55]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Object/Relational Mapping with Hibernate 4

Creating JSPs for CRUD

We have created the required configuration files for Hibernate. Next, we will create
the JSPs to persist, load, update, and delete POJO domain objects, which are also
referred to as create, read, update, delete (CRUD). Perform the following steps to
accomplish this:

1. Select File | New | Other, and in New, select Web | JSP File and
click on Next.

2. InNew JSP File, select the webapp folder and specify File name as
schemaExport . jsp. Click on Next, as shown in the following screenshot:

i@ New ISP File B

ISP
Create a new 15P file, v

Enter or select the parent folder:

jboss-hibernatedsrcdmainfwebapp

o
4= jhoss-hibernate
[settings
4 [srC
4 [main
[Java
: [resources
> [webapp
> = test
s =+ target
=r RemoteSystemnsTempFiles

File narne: schemaExportjsp

':?:' < Back ” Mext = %7] [Finish l [Cancel

[56]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

3. Select the New JSP file (html) template, which is also the default, and click
on Finish. The schemaExport . jsp file gets added to the webapp folder.

4. Similarly, use add. jsp (to add table data), £ind. jsp (to find table data),
update.jsp (to update a table row), and delete. jsp (to delete a table row).

The directory structure of the jboss-hibernate project is shown in the following
screenshot. The JSP files might indicate an error, which will get fixed as the
application is developed and the Maven dependencies are added.

L7 Project Explarer 3 = O

b

a E;—:‘,J, |boss-hibernate
B JAX-REWeb Services
: '8 Deployment Descriptar: jboss-hibernate
> 3L Web Resources
s A RS \eb Services
s JPA Content
P Eﬁ Java Resources
8 sref/main/java
. [srcfmainfresources
B sroftestfjava
- 52 sroftestiresources
- = Libraries
» B JavaScript Resources
> [Deplayed Resaurces
4 [St
4 {7 main
[= Java
> [resources
4 7 webapp
= resources
» = WEB-IMF
g add.jsp
p delete jsp
g find.jsp
gl schemabxportjsp
Fdl updatesp
¢ - test
» = target
[pornzml

[57]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Object/Relational Mapping with Hibernate 4

Creating the JavaBean class

In this section, we create the JavaBean class to be persisted to the database. To
accomplish this, perform the following steps:

1. Select File | New | Other, and in the New wizard, select Class and
click on Next.

2. Inthe New Java Class wizard, specify Source folder as jboss-hibernate/
src/main/java and specify Package as org. jboss.hibernate.model.
Specify Name as Catalog and in Interfaces, add java.io.Serializable.
Click on Finish, as shown in the following screenshot:

i@ New Java Class l. = -gh]

Java Class —
Create a new Java class, C&Q

Source folder: jboss-hibernate/srcfmainfjava
Package: org.jboss hibernate. model

[C1Enclosing type: Browse..,
Farne: Catalog
Madifiers: @ public) package private protected

[abstract [|final static
Superclass: Jjavalang.Object
Interfaces: @ java.io.Serializable Add...

':?;' Mext = [Finish %J ’ Cancel

The org.jboss.hibernate.model .Catalog class is added to the jboss-hibernate
project. In the catalog class, declare the id property of the type Integer. The

id property is mapped to the 1D column in the CATALOG table as specified in the
catalog.hbm.xml file. Add the journal, publisher, edition, title, and author
properties of the String type. Add the no-argument constructor and a constructor
with all properties as parameters. Add getter/setter methods for the properties.

[58]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

The catalog persistence class is listed in the following code:

package org.jboss.hibernate.model;
import java.io.Serializable;

public class Catalog implements Serializable (
/** identifier field */
private Integer id;
/** nullable persistent field */
private String journal;
/** nullable persistent field */
private String publisher;
/** nullable persistent field */
private String edition;
/** nullable persistent field */
private String title;
/** nullable persistent field */
private String author;

/** full constructor */
public Catalog(String journal, String publisher, String edition,
String title, String author) ({

this.journal = journal;

this.publisher = publisher;

this.edition = edition;

this.title = title;

this.author = author;

/** default constructor */
public Catalog() {

}

public Integer getId() {
return this.id;

public void setId(Integer id) {
this.id = id;

public String getJournal () {
return this.journal;

[59]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Object/Relational Mapping with Hibernate 4

public void setJournal (String journal) {
this.journal = journal;

public String getPublisher() {
return this.publisher;

public void setPublisher (String publisher)
this.publisher = publisher;

public String getEdition() {
return this.edition;

public void setEdition(String editiom) {
this.edition = edition;

public String getTitle() {
return this.title;

public void setTitle(String title) {
this.title = title;

public String getAuthor()
return this.author;

public void setAuthor (String author) {
this.author = author;

[60]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

The org.jboss.hibernate.model .Catalog class is shown in the jboss-hibernate
project in the following screenshot:

L Project Explorer 22 = 0 add,jsp find.jsp update.jsp delete jsp m *Catalogjava 52 77 =
- 1 package org.jboss.hibernate.model;

ey i 2
4 g Jboss-hibernate 3 dimport java.io.Serializable;
B JAY-RS Web Services a
. ‘g Deployment Descriptor: jbass-hibernate S public class Catalog implements Serializable {
> | Web Resources 6 f** identifier field *f
2 7
8
El

+ 2 IS Web Services e I e fic1d s
. IPA Content ny, 3 £ persisten 1e.

private String journal;

4 g2 Java Resources 1@ A% nullable persistent field *f
a4 (B srcfmainfjava 11 private String publisher;
4 [orgjboss.hibernate.madel 12 #** nullable persistent field *f
X m Catalog java 1z private String edition;
—— 14 /** nullshle persistent field */
> =B srcf'mam..-'resuurces 15 private string title;
o 2 sroftestfjava 16 A% nullable persistent field */
> 5 srcftest/resources 17 private String author;
o = Libraries 18
> B JavaScript Resources) I full constr"uctc.)r‘ *fr
. (5 Deploved Resources 28 public Cata]:og(SFrlng]our:nal, string publisher, string edition,
@ UEploy 21 String title, String author) {
> g SrE 2z this.journal = journal;
¢ = target 23 this.publisher = publisher;
[l porm.sxml 24 this.edition = edition;
25 this.title = title;
26 this. suthor = author;
27 1

Exporting schema

In this section, we export the schema in schemaExport.jsp Jsp. We will

run schemaExport . jsp in a later section. Import the org.hibernate.cfg.
Configuration and org.hibernate.tool.hbm2ddl.SchemaExport Hibernate
classes. An org.hibernate.cfg.Configuration object is an initialization-
time-only object to configure properties and mapping files. Create an instance

of the configuration class with the no-argument constructor and configure the
hibernate.cfg.xml Hibernate XML configuration file using the configure method
in the manner shown in the following code:

Configuration cfg=new Configuration() ;
cfg.configure ("hibernate.cfg.xml") ;

The org.hibernate.tool.hbm2ddl .SchemaExport class is a command-line tool

to export a table schema to a database and can also be invoked from an application.
Create an instance of SchemaExport using the constructor that takes a Configuration
object as an argument. Specify the Configuration object we created using the
hibernate.cfg.xnl file. The following is the line of code to accomplish this:

SchemaExport schemaExport =new SchemaExport (cfg) ;

[61]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Object/Relational Mapping with Hibernate 4

Set the output file for the DDL script used to create the database table. Use the
following line of code to accomplish this:

schemaExport.setOutputFile ("hbd2ddl.sqgl") ;

The output file gets generated in the bin directory of the WildFly installation.
Export the schema to the database using the create (boolean script,boolean
export) method. The script parameter specifies whether the DDL script used
to create the database table is to be output to the console. The export parameter
specifies whether the schema is to be exported. The create method can be run
with export set to false to test the DDL script. Here's the code that encapsulates
the discussion in this paragraph:

schemaExport.create (true, true);

Optionally, add an out statement to output a message that the schema has been
exported. The schemaExport . jsp file is listed in the following code:

<%@ page language="java" contentType="text/html; charset=IS0-8859-1"
pageEncoding="IS0-8859-1"%>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd" >
<%@ page import="org.hibernate.*,org.hibernate.cfg.Configuration, org.
hibernate.tool.hbm2ddl.SchemaExport"%>
<html>
<head>
<meta http-equiv="Content-Type" content="text/xml;
charset=windows-1252" />
<title>Export Schema</title>
</head>
<body>
<%
Configuration cfg=new Configuration() ;
cfg.configure ("hibernate.cfg.xml") ;
SchemaExport schemaExport =new SchemaExport (cfg) ;
schemaExport.setOutputFile ("hbd2ddl.sqgl") ;
schemaExport.create (true, true);
out.println ("Schema Exported") ;

o\°

>
</body>
</html>

[62]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Creating table data

Having exported the schema to the database, in add. jsp, persist the catalog POJO
domain model to the database. We will run schemaExport . jsp and the other JSPs in
a later section after discussing the JSPs:

1.

Import the classes in the org. jboss.hibernate.model and org.hibernate
packages and the org.hibernate.cfg.Configuration class. Create an
instance of the Configuration object and configure the hibernate.cfg.xml
file as in the schemaExport . jsp.

Create instances of the catalog class using either the no-argument constructor
with the setter methods for the properties or the argument constructor that
takes all properties in the manner shown in the following code:

Catalog catalog = new Catalog() ;
catalog.setId (1) ;

catalog.setJournal ("Oracle Magazine") ;
catalog.setPublisher ("Oracle Publishing") ;
catalog.setEdition ("Jan-Feb 2004") ;
catalog.setTitle ("Understanding Optimization") ;
catalog.setAuthor ("Kimberly Floss") ;

Create sessionFactory from the Configuration object using the
buildSessionFactory () method. SessionFactory has all the metadata from
the mapping and properties files in Configuration. The Configuration
object is not used after SessionFactory has been created. Create a Session
object from the SessionFactory object using the opensession () method. The
openSession method implements J]DBC transparently. JDBC connections are
obtained from ConnectionProvider internally by Hibernate. We made the
Catalog persistent class serializable because a Session object is serializable
only if the persistent class is serializable. A Session object is a client

interface to Hibernate. The actual persistence to the database is made using a
Transaction object. Refer to the following line of code, which puts into action
the discussion in this paragraph:

Session sess = sessionFactory.openSession() ;

Begin a client session using the beginTransaction () method that returns a
Transaction object. A Transaction object represents a global transaction.
Refer to the following line of code that summarizes the discussion in this step:

Transaction tx = sess.beginTransaction() ;

[63]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Object/Relational Mapping with Hibernate 4

5.

The beginTransaction () method starts a new underlying transaction
only if required; otherwise it uses an existing transaction. Make the
Catalog instances associate with the Session object using the save ()
method, as follows:

sess.save (catalog) ;
sess.save (catalog2) ;

The save () method does not store the catalog instances to the database but
only adds the POJOs to Session. To store the catalog instances, invoke the
commit () method of the Transaction object in the manner shown in the
following code:

tx.commit () ;

Optionally output a message to indicate that the data has been added to the
database. The add. jsp file is listed in the following code:
<%@ page language="java" contentType="text/html;

charset=IS0-8859-1" pageEncoding="ISO-8859-1"%><!DOCTYPE HTML
PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.o0rg/TR/htmld/loose.dtd" >
<%@ page import="org.jboss.hibernate.model.*,org.hibernate.*,java.
util.List,org.hibernate.cfg.Configuration"%>
<html>
<head>
<meta http-equiv="Content-Type" content="text/xml;
charset=windows-1252" />
<title>Export Schema</titles
</head>
<body>
<%
Configuration cfg = new Configuration() ;
cfg.configure ("hibernate.cfg.xml") ;
Catalog catalog = new Catalog() ;
catalog.setId (1) ;
catalog.setJournal ("Oracle Magazine") ;
catalog.setPublisher ("Oracle Publishing") ;
catalog.setEdition ("Jan-Feb 2004") ;
catalog.setTitle ("Understanding Optimization") ;
catalog.setAuthor ("Kimberly Floss");

Catalog catalog2 = new Catalog() ;
catalog2.setId(2) ;

catalog2.setJournal ("Oracle Magazine") ;
catalog2.setPublisher ("Oracle Publishing") ;
catalog2.setEdition ("March-April 2005") ;

[64]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

catalog2.setTitle ("Starting with Oracle ADF");
catalog2.setAuthor ("Steve Muench") ;
SessionFactory sessionFactory = cfg.buildSessionFactory () ;
Session sess = sessionFactory.openSession() ;
Transaction tx = sess.beginTransaction() ;
sess.save (catalog) ;
sess.save (catalog2) ;
tx.commit () ;
out.println ("Added") ;
%>
</body>
</html>

Retrieving table data

In this section, we query the database to find all instances of a persistent object.
Hibernate provides HQL, a query language, which has syntax similar to SQL but is
object oriented. A reference to all HQL commands is available at https://docs.
jboss.org/hibernate/orm/3.3/reference/en/html/querthl.html.Thequery
is made on the persistent object, which is the catalog class instance, and not on the
CATALOG database table. To query the database to find all instances of the persistent
object, perform the following steps:

1.

Create a string HQL query to get all instances of the catalog class:
String hglQuery = "from Catalog";

Create and configure a Configuration object, create a SessionFactory
object, and obtain a Session object as discussed for add. jsp

Create a Query object from the string HQL query using the
createQuery (String) method of the session object, as follows:

Query query = sess.createQuery (hglQuery) ;

A Query object is an object-oriented representation of a Hibernate query.
Obtain the result of the Hibernate query using the 1ist () method, which
returns List. The SQL used to query the database is implemented internally
by Hibernate. A Transaction object is not required for a Hibernate query. A
Transaction object is required only to add, update, or delete a table row.

Iterate over List to output the query result. The £ind. jsp file is listed in the
following code:

<%@ page language="java" contentType="text/html;
charset=IS0-8859-1" pageEncoding="ISO-8859-1"%><!DOCTYPE HTML
PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

[65]

www.it-ebooks.info

https://docs.jboss.org/hibernate/orm/3.3/reference/en/html/queryhql.html
https://docs.jboss.org/hibernate/orm/3.3/reference/en/html/queryhql.html
http://www.it-ebooks.info/

Developing Object/Relational Mapping with Hibernate 4

"http://www.w3.org/TR/html4/loose.dtd" >

<%@ page import="org.jboss.hibernate.model.*,org.hibernate.*,java.
util.List,org.hibernate.cfg.Configuration"%>
<html>
<head>
<meta name="generator" content="HTML Tidy for Linux/x86 (vers
25 March 2009), see www.w3.org" />
<meta http-equiv="Content-Type" content="text/xml; charset=us-
ascii" />
<title>
Export Schema
</title>
</head>
<body>
<%
String hglQuery = "from Catalog";
Configuration cfg = new Configuration() ;
cfg.configure ("hibernate.cfg.xml") ;
SessionFactory sessionFactory = cfg.buildSessionFactory () ;
Session sess = sessionFactory.openSession() ;
Query query = sess.createQuery (hglQuery) ;
List list = query.list();

for (int i = 0; i < list.size(); i++) {

Catalog catalog = (Catalog) list.get(i);

out.println("
");

out.println("CatalogId " + catalog.getId() + " Journal: "+
catalog.getJournal ()) ;

out.println("
");

out.println("CatalogId " + catalog.getId() + " Publisher:
" + catalog.getPublisher());

out.println("
");

out.println("CatalogId " + catalog.getId() + " Edition: "+
catalog.getEdition()) ;

out.println("
");

out.println("CatalogId " + catalog.getId() + " Title "+

catalog.getTitle()) ;
out.println ("
");
out.println("CatalogId " + catalog.getId() + " Author: "+
catalog.getAuthor()) ;
}
sess.close() ;
%>
</body>
</html>

[66]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Updating a table row

In this section, we will update a table row. Perform the following steps to
accomplish this:

1. Create an HQL query string and create a Query object to generate List
as discussed for find. jsp.

2. Obtain the first item in List and modify the publisher value with the
setPublisher () method, as follows:

Catalog catalog = (Catalog) list.get(0);
catalog.setPublisher ("Oracle Magazine") ;

3. Create a Transaction object, which represents a transaction with the
database, with the beginTransaction () method. Save or update the
persistent state of the catalog object in Session with the saveorUpdate
method. Invoke the commit () method of the Transaction object to save
the catalog instance in the database.

4. Optionally, output a message to indicate that the update was completed:

Transaction tx = sess.beginTransaction() ;
sess.saveOrUpdate (catalog) ;
tx.commit () ;

The update. jsp is listed in the following code:

<%@ page language="java" contentType="text/html;
charset=I50-8859-1" pageEncoding="IS0-8859-1"%$><!DOCTYPE
HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/htmld/loose.dtd" >
<%@ page import="org.jboss.hibernate.model.*,org.hibernate.*,java.
util.List,org.hibernate.cfg.Configuration"%>
<html>
<head>

<meta http-equiv="Content-Type" content="text/xml;
charset=windows-1252" />

<title>Export Schema</title>
</head>
<body>
<%
String hglQuery = "from Catalog";
Configuration cfg = new Configuration() ;

[67]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Object/Relational Mapping with Hibernate 4

cfg.configure ("hibernate.cfg.xml") ;
SessionFactory sessionFactory = cfg.buildSessionFactory () ;
Session sess = sessionFactory.openSession() ;
Query query = sess.createQuery (hglQuery) ;
List list = query.list();
Catalog catalog = (Catalog) list.get(0);
catalog.setPublisher ("Oracle Magazine") ;
Transaction tx = sess.beginTransaction() ;
sess.saveOrUpdate (catalog) ;
tx.commit () ;
out.println ("Updated") ;
%>
</body>
</html>

Deleting a table row

In this section, we will delete a table row from the cATALOG table. Perform the
following steps to accomplish this:

1.

Create a HQL query String for the Catalog instance to delete the table row
using the following line of code:

String hglQuery = "from Catalog as catalog WHERE catalog.
edition='March-April 2005'";

Asin find.jsp and update.jsp, get List for Catalog instances. As only
one Catalog instance has edition set to March-April 2005, we only need
to get the first catalog instance from List. To do so, use the following code:

Catalog catalog = (Catalog) list.get(O0);

Create a Transaction object with beginTransaction ().

Delete the catalog instance from the Session with the delete method,
which doesn't delete the catalog instance from the database. Invoke the
commit () method of the Transaction object to save the Session state in the
database, which deletes the corresponding table row from the CATALOG table.

[68]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Optionally, using the following code, output a message to indicate deletion:

sess.delete(catalog) ;
tx.commit () ;

The delete. jsp file is listed in the following code:

<%@ page language="java" contentType="text/html;
charset=IS0-8859-1" pageEncoding="ISO-8859-1"%><!DOCTYPE HTML
PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.o0rg/TR/htmld/loose.dtd" >
<%@ page import="org.jboss.hibernate.model.*,org.hibernate.*,java.
util.List,org.hibernate.cfg.Configuration"%>
<html>
<head>
<meta http-equiv="Content-Type" content="text/xml;
charset=windows-1252" />
<title>Export Schema</title>
</head>
<body>
<%
String hglQuery = "from Catalog as catalog WHERE catalog.
edition='March-April 2005'";
Configuration cfg = new Configuration() ;
cfg.configure ("hibernate.cfg.xml") ;
SessionFactory sessionFactory = cfg.buildSessionFactory () ;
Session sess = sessionFactory.openSession() ;
Query query = sess.createQuery (hglQuery) ;
List list = query.list();
Catalog catalog = (Catalog) list.get (0);
Transaction tx = sess.beginTransaction() ;
sess.delete(catalog) ;
tx.commit () ;
out.println ("Deleted") ;
%>
</body>
</html>

[69]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Object/Relational Mapping with Hibernate 4

The directory structure of the Maven project is shown in the following
screenshot:

I Project Explorer 53 = <;==:>
4 E;:‘} jboss-hibernate
AR)AX-RSWeb Services
. 'eg Deployment Descriptor: jboss-hibernate
. |4 Web Resources
A IARWSWeb Services
» 4 IPA Content
- B Java Resources
- Bl Javalcoript Resources
. L Deployed Resources
4 g src
4 = main
4 = java
4 = org
4 = jboss
4 = hibernate
4 5= maodel
[0] Catalog.java
4 [resources
a4 (= META-IMF
+f persistencexml
3 E‘g catalog.hbmsml
: E‘s hibernate.cfig.xml
3 hibernate.properties
4 [webapp
v resources
» (= WEB-TMF
add.jsp
delete.jsp
find jsp
schemaBxportjsp
update.jsp
- test

- = target

Installing the Maven project

In this section, we will compile and package the Hibernate web application using
the Maven build tool. Some APIs, such as the Common Annotations API, Hibernate
validator API, and CDI API, are provided by WildFly 8. We need to add the MySQL
JDBC connector dependency to pom.xml inside the <dependencies/> element. To
acomplish this, use the following code:

<dependency>
<groupId>mysgl</groupId>
<artifactId>mysqgl-connector-java</artifactIds>
<version>5.1.28</versions>

</dependency>

[70]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Hibernate provides Hibernate-related artifacts in the group ID org.hibernate.
Include the Hibernate artifacts listed in the following table:

Artifact Description

hibernate-core This is the main artifact for the Hibernate API.

hibernate-annotations This is for the annotations metadata.

hibernate-commons-annotations This pertains to the EJB 3 style annotations for
Hibernate.

hibernate-ehcache This provides the cache for second-level
cache.

hibernate-c3p0 This is the C3P0 connection-pooling library.

antlr This is the parser generator.

hibernate-cglib-repack This is the CGLIB code generation library and

also signifies ASM dependencies.

hibernate-tools This provides tools to generate various
Hibernate source artifacts, such as mapping
files and Java entities.

hibernate-envers This is used for auditing and versioning of
persistent classes.

hibernate-jpamodelgen This is an annotation processor to generate
JPA 2 static meta-model classes. The Catalog
entity in Chapter 1, Getting Started with EJB 3.x,
is an example of a JPA 2 meta-model class.

The Maven compiler plugin is used to compile the project sources, and the Maven
WAR plugin collects all the dependencies, classes, and resources and generates a WAR
archive. In the configuration for maven-war-plugin, specify the directory to output the
WAR file with the outputDirectory element as C: \JBossAS8\wildfly-8.0.0.CR1\
standalone\deployments. The EAR, WAR, and JAR files in the deployments directory
get deployed to the WildFly application server. The pom.xm1 file for the jboss-
hibernate project is available in the code download for this chapter.

[71]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Object/Relational Mapping with Hibernate 4

Next, we install the Maven project. Right-click on pom.xml and select Run As |

Maven install, as shown in the following screenshot:

75 Project Explorer [Copy Chrl+C
a i jboss-hiber £ Copy Qualified MNarne
";? RSN = paste Ctrl+y
f 8;53‘?:; 9 Delete Delete
LAt Rermaowve from Context Ctrl +Alt+Shift+ Do
4 IP4 Con hdark as Landrmark Ctrl+20t+ Shift+Lp
2 Java Res Build Path v
5“ JavaSeriy Mave...
L5 Deploye
G s Rename..
(= target fu Import..
B porn.r g Export..
& Refresh F5
E:>J Matk as Deployable
‘alidate
Show in Rernote Systerns wiew
Profile A »
Debug &s 3
Run &5 b Pi 1Run on Server Alt+Shift+X, R
Team P | m2 2 Maven build Alt+3hift+3, M
Cornpare With b mz 3 Maven build..,
Replace 'With b | m2 4Maven clean
ITidy P m2 5 Maven clean verify
Maven b | m2 & Maven generate-sources
Source P mz T Maven install
Exclude Yalidation m2 & Maven test L}
Properties Alt+Enter Run Configurations..,

The Maven project is compiled and the jboss-hibernate.war archive gets
generated and output to the deployments directory of WildFly 8, as shown
in the following screenshot:

[THFO]
[INFO]
[THFO]
[INFO]
[THFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]

darkers

Froperties Servers Datz Source Explorer Snippet: Bl Console 52 Palette ErrorLog

% % | B B8

<terminated > ChProgram Files\JavalyjdkL7.0_51hvbinhjavaw. exe (Mow 14, 2014, 10:35:16 Ak}

Assemhling webapp [jhoss-hibernate] in [C:\Users\Deepak Yohra\Eclipseluworkspace\jhoss-hibernatettarget'ih
Frocessing war project

Copying wehapp resources [C:\lsers\Deepak Vohra‘\Eclipse\workspaceljboss-hibernatelsrcimaintuehapp]

Webapp assembled in [593 msecs]

Building war: C:twildfly-8.1.8.Final\standalonet\deploymentstjboss-hibernate. war

--- maven-install-plugin:2.4:install {default-install) @ jboss-hibernate ---
Installing C:twildfly-8.1.@.Finalistandaloneideploymentstjboss-hibernate.war to C:\Users\Deepak vohra'.mz
Installing C:%Users\Deepak Vohra\Eclipse\workspace\jboss-hibernatelipom.sml to C:\Users'Deepak Yohra'.m2\r

Total time: 21.441 =
Finished at: 2814-11-14T1@:35:45-05:0@
Final Memory: 26M/222M

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Start the WildFly 8 server. The jboss-hibernate.war file gets deployed to
the server and the MySQL data source also gets deployed. The persistence unit
gets started. The jboss-hibernate.war is shown deployed in the WildFly
Administration Console in the following screenshot:

T —
|8 JBoss Management
« + | hitpyloc console/App. bl t: < | [Q- Google
Runtime Adrministre
= Server DEPLOYMENTS

Cverview

Manage Deployments Deployments

Batch Managerment Currenthy deployed application components

= Staws
Add Remove En/Disable Replace
= Plaorm
oM jooss-gjbd-earzar ¥ pa
Environmment [y b iboss-hibernate war v unde rtow
= Subsysterns
Datasources
JPA
INDI iew
Transaction Logs
Transactions
Webservices Deployment
Meed Help?
Name: iboss-hibernate war

Running a schema export

In this section, we will run schemaExport . jsp on the WildFly application server
to export the schema to the MySQL database. To accomplish this, perform the
following steps:

1. Invoke the URL http://localhost:8080/jboss-hibernate/
schemaExport . jsp in a browser, as shown in the following screenshot.
The schema gets exported to the MySQL database.

Export Schema
« + @http:fflocalhost:ﬁl]ﬁ[lfjboss-hibernate,-fschemaExpor‘t.jsp
Zchema Exported
[73]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Object/Relational Mapping with Hibernate 4

2. The output from schemaExport . jsp on the server is shown in the
following code:
10:57:23,589 INFO [org.hibernate.cfg.Configuration] (default
task-8) HHH000041:

Configured SessionFactory: HibernateSessionFactory
10:57:23,590 INFO [org.hibernate.dialect.Dialect] (default task-
8) HHH000400: U
sing dialect: org.hibernate.dialect.MySQL5InnoDBDialect
10:57:23,592 INFO [org.hibernate.tool.hbm2ddl.SchemaExport]
(default task-8) HH
H000227: Running hbm2ddl schema export
10:57:23,761 WARN [org.hibernate.engine.jdbc.connections.
internal.DriverManager
ConnectionProviderImpl] (default task-8) HHH000402: Using
Hibernate built-in con
nection pool (not for production use!)
10:57:23,841 INFO [org.hibernate.engine.jdbc.connections.
internal .DriverManager
ConnectionProviderImpl] (default task-8) HHH000401l: using driver
[com.mysqgl.jdbc
.Driver] at URL [jdbc:mysqgl://localhost:3306/test]
10:57:23,842 INFO [org.hibernate.engine.jdbc.connections.
internal .DriverManager
ConnectionProviderImpl] (default task-8) HHH000046: Connection
properties: {user
=root, password=****}
10:57:23,843 INFO [org.hibernate.engine.jdbc.connections.
internal .DriverManager
ConnectionProviderImpl] (default task-8) HHH000006: Autocommit
mode: false
10:57:23,843 INFO [org.hibernate.engine.jdbc.connections.
internal.DriverManager
ConnectionProviderImpl] (default task-8) HHHO00011l5: Hibernate
connection pool si
ze: 20 (min=1)
10:57:24,035 INFO [stdout] (default task-8)
10:57:24,036 INFO [stdout] (default task-8) drop table if
exists CATALOG
10:57:24,038 INFO [stdout] (default task-8)

10:57:24,038 INFO [stdout] (default task-8) create table
CATALOG (

10:57:24,038 INFO [stdout] (default task-8) ID integer
not null auto_in

crement,

10:57:24,039 INFO [stdout] (default task-8) JOURNAL

varchar (255) ,

[74]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

10:57:24,039 INFO [stdout] (default task-8) PUBLISHER
varchar (255) ,

10:57:24,039 INFO [stdout] (default task-8) EDITION
varchar (255) ,

10:57:24,039 INFO [stdout] (default task-8) TITLE
varchar (255) ,

10:57:24,039 INFO [stdout] (default task-8) AUTHOR
varchar (255) ,

10:57:24,040 INFO [stdout] (default task-8) primary key
(ID)

10:57:24,040 INFO [stdout] (default task-8)) ENGINE=InnoDB

10:57:27,224 INFO [org.hibernate.engine.jdbc.connections.
internal .DriverManager

ConnectionProviderImpl] (default task-8) HHH000030: Cleaning up
connection pool

[jdbc:mysgl://localhost:3306/test]

10:57:27,225 INFO [org.hibernate.tool.hbm2ddl.SchemaExport]
(default task-8) HHH000230: Schema export complete

Run the DESC CATALOG command in the MySQL command line for the
structure of the CATALOG table, as shown in the following screenshot:

BE Administrator: C\Windows\system32\cmd.exe - mysgl -u root -p |ﬂlﬁj

C:“Uszers\Deepak Uohra>mysgl —u root -p
Enter passwoprd: e

Mlelcome to the MyEQL monitor. Commands end with ; or “\g.
Your MySQL connection id is

Berver version: 5.6.21-log MySQL Community Serwver (GPL)>

Copyright (c> 2888, 2814, Oracle andsor its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and-sor its
laffiliates. Other names may be trademarks of their respective
owners .

Type 'help;’ or ‘~h’ for help. Type °~c’ to clear the current input statement.

mys=gl> use test
Database changed
my=gl> show tables;
Empty set (B.00 sec)

mysql> DESC CATALOG;
|+

——————————— —_— 3

+
Field Default Extra

ID int<11>

JOURNAL varchar(255>
PUBLISHER varchar(255>
EDITION varchar(255>
TITLE varchar{255>
AUTHOR varchar(255>

+——— —_——t
6 rows in set <(B.14 sec

auto_increment

[—

mysgl> _

[75]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Object/Relational Mapping with Hibernate 4

Creating table rows

In this section, we will add the table data to the caTaL0G table. Invoke the URL
http://localhost:8080/jboss-hibernate/add.jsp, as shown in the following
screenshot. The table data gets added.

T _ e e |

-1 + B http:/flocalhosta080bass-hibernate fadd jsp

Added

Data gets added to the CATALOG table. A SELECT query in the MySQL command line
lists the CATALOG table in the manner shown in the following screenshot:

Administrator: C\Windows\system32\cmd.exe - mysgl -u root -p ‘ﬂli:—hj

JOURNAL
! AUTHOR
i Jan—Feh 2804 ! Understanding Op|
! March—fApril 2885 ! Starting with Op|
__________________ P

2 rows in set (B.@@ sec)

mysgl> _

Retrieving table data

In this section, we will run £ind. jsp to get and display the CATALOG table data.
Invoke the URL http://localhost:8080/jboss-hibernate/find.jsp, as shown
in the following screenshot. The CATALOG table data gets output in the browser.

[76]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

& Find

P . A

<4

Catalogld 1 Journal Cracle Magazine
Catalogld 1 Publisher: Oracle Publishing
Catalogld 1 Edition: Jan-Feb 2004
Catalogld 1 Title Understanding Optimization
Catalogld 1 Author Kimberly Floss
Catalogld 2 Journal Oracle Magazine
Catalogld 2 Publisher: Oracle Publishing
Catalogld 2 Edition: March-April 2005
Catalogld 2 Title Starting with Oracle ADF
Catalogld 2 Author: Steve IMuench

+ @ http:fflocalhost: 8080/ boss-hibernate find,jsp

Updating the table

In this section, we will update the CATALOG table. Invoke the URL
http://localhost:8080/jboss-hibernate/update.jsp, as shown
in the following screenshot. The CATALOG table gets updated.

Elw T W
- + @http::‘:‘lou:aIhu:ust:BEIEIJf‘jbnss—hibernatefupdate.jsp
Tpdated

[77]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Object/Relational Mapping with Hibernate 4

Run find. jsp to get and display the updated cATALOG table data. Invoke
the URL http://localhost:8080/jboss-hibernate/find.jsp, as shown
in the following screenshot:

B DO . ame |

-4 + @ http:fflocalhostB080/jhoss-hibernate find.jsp

Catalogld 1 Journal: Oracle MWagazine
Catalogld 1 Publisher: Oracle Maganne
Catalogld 1 Edition: January-February 2004
Catalegld 1 Title Tnderstanding Optirmization
Catalogld 1 Author: Floss, Emimberly
Catalogld 2 Tournal: Oracle MWagazine
Catalogld 2 Publisher: Oracle Publishing
Catalogld 2 Editior: IWlarch-Apnl 2005
Catalogld 2 Title Starting with Oracle ADF
Catalogld 2 Author: Stewe IWuench

Deleting the table row

In this section, we will delete a table row with the delete.jsp file. To accomplish
this, perform the following steps:

1. Invoke the URL http://localhost:8080/jboss-hibernate/delete.jsp,
as shown in the following screenshot. A table row gets deleted from cATALOG.

-4 + @ hitpefflocalhost 3080/ boss-hibernate /delete jsp

Deleted

[78]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

2. Run find.jsp again to list the updated cATALOG table with a row deleted.
The output in the browser is shown in the following screenshot:

B = W .

4 + @ http:/flocalhost:3080/boss-hibernate/find jsp

Catalogld 1 Journal: Oracle IMagazine
Catalogld 1 Publisher: Oracle Magazine
Catalogld 1 Ediion: JTanuary-Febrary 2004
Catalogld 1 Title Understanding Optumezation
Catalogld 1 Author: Floss, Kimbertly

Summary

In this chapter, we created a CRUD application with the Hibernate API. We
configured Hibernate using hibernate.cfg.xml. We mapped the persistence class
Catalog to a MySQL database table with mapping specified in catalog. hbm.xml.
We compiled and packaged the Hibernate web application with the Maven build
tool. We ran the web application on the WildFly 8 server to export a schema to the
MySQL database and created, retrieved, updated, and deleted table data. We used
hardcoded set, get, update, and delete operations, but a more dynamic CRUD
application can be created with user interfaces. In the next chapter, we discuss how
to develop Java Server Faces (JSF) in WildFly 8.

[79]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Developing JSF 2.x Facelets

JavaServer Faces (JSF) 2.x has introduced several new features, such as integrated
Facelets, implicit navigation, conditional navigation, preemptive navigation, bean
validation, view parameters, client behaviors, new scopes (view, flash, and custom),
configuration annotations, composite components, Resource Handler API, support
for Ajax, and new event handling and exception handling features.

WildFly 8.x supports JSF 2.2, the latest version of JSF. JSF 2.2 has introduced new
features of convenient HTML5 markup, Resource Library Contracts, Face Flows,
and stateless views. JSF 2.2 support is added to a project with a Maven dependency.
In this chapter, we will develop a JSF 2.x Facelets application in Eclipse, build and
package the application with Maven, and deploy the application to WildFly 8.1. We
will run the application in WildFly 8.1 to demonstrate the use of Facelets in a web
application. Facelets is the default View Declaration Language (VDL) in JSF 2.x,
replacing JSP as the default VDL. This chapter has the following sections:

* Setting the environment

* Creating a Java EE web project

* Creating a managed bean

* Creating the Facelets template

* Creating a header and footer

* Creating input and output Facelets pages

* Creating a web descriptor

* Installing the web project with Maven

* Running the Facelets application

[81]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing JSF 2.x Facelets

Setting up the environment

We need to install the following software:

* WildFly 8.1.0.Final: Download wildfly-8.1.0.Final.zip from
http://wildfly.org/downloads/

* MySQL 5.6 Database-Community Edition: Download this edition from
http://dev.mysql.com/downloads/mysql/. When installing MySQL,
also install Connector/]

* Eclipse IDE for Java EE Developers: Download Eclipse Luna from
https://www.eclipse.org/downloads/packages/release/Luna/SR1

* JBoss Tools (Luna) 4.2.0.Final: Install this as a plugin to Eclipse from
the Eclipse Marketplace (http://tools.jboss.org/downloads/
installation.html)

* Apache Maven: Download version 3.05 or higher from
http://maven.apache.org/download.cgi

* Java7: Download Java 7 from http://www.oracle.com/technetwork/
java/javase/downloads/index.html?ssSourceSiteId=ocomcn

Set the environment variables JAVA HOME, JBOSS_HOME, MAVEN HOME, and MYSQL
HOME. Add $JAVA HOMES%/bin, $MAVEN HOME%/bin, $JBOSS_HOMES%/bin, and $MYSQL
HOME$% /bin to the PATH environment variable.

Create a WildFly 8.1.0 runtime as discussed in Chapter 1, Getting Started with EJB 3.x.
Create a MySQL database caTALOG with the following SQL script:

CREATE TABLE CATALOG (CatalogId INTEGER

PRIMARY KEY, Journal VARCHAR (25), Publisher VARCHAR(25), Edition
VARCHAR (25), Title Varchar (45), Author Varchar (25)) ;

INSERT INTO CATALOG VALUES('l', 'Oracle Magazine', 'Oracle
Publishing', 'Nov-Dec 2004', 'Database Resource Manager', 'Kimberly
Floss') ;

INSERT INTO CATALOG VALUES('2', 'Oracle Magazine', 'Oracle
Publishing', 'Nov-Dec 2004', 'From ADF UIX to JSF', 'Jonas Jacobi');
INSERT INTO CATALOG VALUES('3', 'Oracle Magazine', 'Oracle
Publishing', 'March-April 2005', 'Starting with Oracle ADF ', 'Steve
Muench') ;

[82]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Run the script in the MySQL 5.6 command-line client. The database table,
Catalog, gets created. The output from the preceding script is shown in the
following screenshot:

Bl Administrator: C\Windows\system32\cmd.exe - mysgl -u root -p | = = =

iC:~lUzers~Deepak UVohra*mysgl —u root -p

Enter passwoprd: oeses

Welcome to the MyEQL mnnltnr Commands end with :; or “g.
Your MySQL connection id is

Server version: 5.6.21-log HySQL Community Server (GPL)

Copyright (c)> 20008, 2814, Oracle and-sor its affiliates. All vrights reserved.

Dracle iz a registered trademark of Oracle Corporation and-or its
laffiliatesz. Other names may be trademarks of their respective
owners .

Type ‘help;’ or *“h' for help. Type ““c' to clear the current input statement.

muzgl> use test
Databaze changed
mysgl> CREATE TABLE CATALOG{Catalogld INTEGER
—» PRIMARY KEY., Journal UARCHAR(25>, Publisher UARCHARCZ53>.
—» Edition UARCHARC25>, Title UVarchar{45>, Author Varchar(253>;
GQuery 0K, B rouws affected <1.83 sec)>

myﬁq1> INSERT INIO CATALOG UALUES<'i’'. ’Oracle Magazine’.
'Oracle Publishing’. ‘Mov-Dec 2884', ‘Databaze Resource
*» Manager', 'Himberly Flnss >
Guery 0K, 1 row affected <(B.88 sec>

muzgl> INSERT INTIO CATALOG VALUES<'2’. 'Oracle Magazine’.
—» ‘"0Oracle Publishing’, ‘Hou—Dec 2884’',. *From ADF Uiz to J5F' .
—» *Jonas Jacohi');
Query 0K, 1 vrow affected (H.B8 sec?

muzgl> INSERT INTIO CATALOG VALUES<'3’. ‘Oracle Magazine’.
—» ‘'Oracle Publishing’, ‘Harch-fApril 2885%°, 'Starting with
' Oracle ADF ', 'Steve Muench’?;

Query 0K, 1 row affected (H.B8 sec)

muzsgl>

We also need to configure a data source for MySQL database. The procedure to
configure a MySQL data source was discussed in Chapter 1, Getting Started with E]B
3.x, and will not be repeated in this chapter.

[83]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing JSF 2.x Facelets

Creating a Java EE web project

In this section, we will create a Eclipse project for JSF 2.x. Select File | New | Other
in Eclipse. Select JBoss Central | Java EE Web Project and click on Next, as shown
in the following screenshot:

E.] New l B[S

Select a wizard —

Wizards:
type filter text

» = Jawa Emitter Termplates -
> = lavaScript
s [1B
4 = JBoss Central
% Angular)s with Forge Project
) HTMLS Project
(E] Jawa EE EAR Project
i Jawa EE ¥eb Project
@? RichFaces Project
2 Spring WMWC Project
> (= JBoss Tools -

m

[Sk &1 Wizards,

@ <Back Finish

The Java EE Web Project wizard gets started. Though the wizard indicates that a
Java EE 6 web application project will be created, a Java EE 7 web application project
gets created.

[84]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

A test is run for the requirements, which include JBoss AS runtime, the m2e and
m2eclipse-wtp plugins, and the JBoss Tools plugin, as shown in the following
screenshot. Select Create a blank project checkbox and select Target Runtime
as WildFly 8.x Runtime. Click on Next.

@ Mew Project Exa EE
Java EE Web Project _@
Create a Maven-based lava EE 6 web application project),.-_" y

Description:
This is your project! It's a sample, deployable Maven 3 project to help you get wour foot in the door -
developing with Java EE 6 on JBoss Enterprise Application Platfarrm 6 or JBoss Application Server 7.1, |
This project is setup to allow you to create a cornpliant Java EE 6 application using J5F 2.0, COI L0, EIB 3.1, |=
IPA 2.0 and Bean Walidation 1.0,

Project based on the orguwildfly.archetypenwildfly-javaeeT-webapp-blank-archetype: 8, 1.0.Final Maven
Create a blank project

Target Runtirme | YildFly 8. Runtime VI
Requirerments
Type Description Four Install...
serverfrunti., - This project exarmple requires JBoss Enterprise Applic.. [
plugin This project example requires m2e == L0, Doeloadlandintall;
plugin This project exarnple requires m2e-wtp == 0,16.0,
plugin This project example requires JBoss Mawven Toals,
« 1 | 3

@ <Back || Ne>¢>%J Firisle

[85]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing JSF 2.x Facelets

Specify Project name (jboss-jsf2) and Package (org. jboss.jsf2), and select
the checkbox Use default Workspace location. Click on Next as shown in the

following screenshot:

]
@} New Project Examp S|

Java EE Weh Project

Create a Maven-based Java EE 6 web application project

fo,

Project name | jboss-jsf2

Package org,jboss,jsf2

Use default Workspace location

[7] Add project(s) to working set

-

-

Browvie..

Mare..,
b Advanced
|
@' ’ < Back ” Mext » l}] [Fitish] ’ Cancel]

The Maven building tool is used for the example project, and therefore, it is
necessary to specify the Maven modules: Group Id (org. jboss.js£2), Artifact
Id (jboss-js£2), Version (1.0.0), and Package (org.jboss.jsf2), as shown in
the following screenshot. Other than the name property, the properties listed in
Properties available from archetype may be deleted as these are not required for

the application.

[86]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

The default name property is set to Java EE 6 webapp project, which should be
modified to Java EE 7 webapp project. Click on Finish.

E New Project EXF — m(w=l

Java EE Web Project _a
Create a Maven-based Java EE 6 web application project f /
Group Id: org.jboss,sf2 v
ArtifactId: jhoss-jsf2 -
Wersion: 100 -
Package: orgjboss,sf2 -

Properties available from archetype:

Marne Walue Add...

narme Jawa EE T wrebapp project Aemane

w Sdvanced

[C] Resalve Wiforkspace projects i

Profiles:

Marne template: -

?\ Mext = Firish !}J [Cancel

[87]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing JSF 2.x Facelets

A Java EE Web Project gets created, as shown in Project Explorer in the following
screenshot. Delete the //jboss-jsf2/src/main/resources/META-INF/
persistence.xml configuration file as it is not used in the JSF application. The web
project includes a default.xhtml file in the WEB- INF/templates directory. We will
need a Facelets template, but not the default template.

L7 Praoject Explarer 32 = 0
== =
PR jboss—jst%
B 8X-RIWeb Services
- '8 Deployment Descriptor: jboss-jsf2
- |1 Web Resources
A JAXANE Web Services
o i IPA Content
- 238 lava Resources
. B JavaScript Resources
. [Deployed Resources
a4 (= s
4 (= main
= Java
4 = resources
a4 (= META-INF
i persistencexml
4 [webapp
= resources
4 (= WEB-IMF
beans.xml
faces-configaml
¥ jboss-jsf-dsoaml
- [test
- [target
[pornzrnl

Facelets is a set of tags in the http://java.sun.com/jsf/facelets namespace.
Facelets tags are used in conjunction with JSF Core and JSF HTML tag libraries to
develop a JSF Facelets application. The default suffix for a Facelets page is . xhtm1l.
A Facelets application consists of the following configuration and templating files:

1.

A Facelets template page: A template may be reused in several Facelets
composition pages.

Facelets header and footer pages: These pages are included in the Facelets
template page for common sections of a Facelets application.

A configuration file: This is the faces-config.xml file, which is included by
default in a Java EE web project.

Facelets composition page or pages: These pages are run on the WildFly.

A managed bean: This is used for the Facelets composition pages.

[88]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

We will create a Facelets application with an input Facelets composition page and an
output Facelets composition page. A common header and footer are included in the
input and output pages. In the input page, a SQL query may be specified in an input
field. The SQL query is used to get data from the database and create a JSF data table
and demonstrate templating. A command button sends the input request parameters
to a managed bean's action method. In the action method, a connection is established
with MySQL database and a result set generated for the SQL query. A JSF data table is
generated from the result set and displayed in the output Facelets composition page.

In the subsequent sections, we will create the different components of the Facelets
application; first, the managed bean.

Creating a managed bean

A managed bean is a Java bean managed by the JSF Managed Bean Facility.

A managed bean is registered with JSF and instantiated when first invoked.

In this section, we will create a JSF managed bean for the Facelets composition
pages. Right-click on faces-config.xml and select Open With | Faces Config
Editor, as shown in the following screenshot:

& ovit-iipe W .

File Edit Mavigate Search Project Mew 3
o ‘| 0> 00 @ { o P i @IRIE
e a ShowIn PRRPRIWI |°= o = E E S
- - 7 T Open F3
L5 Project Explarer 53 = Open \With | #f Faces Canfig Editor %
= <':=={>| B Copy ChlaC i | frBossE';.ools)(ML Editar
4 I jboss-jsf2 B Copy Qualified Marne ext Bditor
B JAX-RSWeb Services 2 Daste Ctrla X| XML Editor
- '3 Deployment Descriptor: jboss| _
B3 CER oy par) W Delete Delete =] System Editor

> 3L Web Resources

A JAKANSYeb Services
> 4 JPA Content

> @5 lava Resources

> B JavaScript Resources

» L Deployed Resources

4 [src
4 [main .
[java .
>[5 reSOUrCEs =
4 (= webapp &
(== resources
4 (= WEB-INF =

> Bz beansxml
> |ez faces-configaxn
K| jboss-jsf2-dsan
s = test
> = target
[ma] parnzrml

Rernowve fram Context
dark as Landrmark
Build Path

Mowe.,

Rename...

Import...
Export...

Refresh
tdark as Deployable

Walidate

Showy in Rernote Systerns view
Profile A3

Debug As

Run &s

Crl + 80t + Shift+ D owen
Ctrl+&1t+Shift+Up

»

=| In-Place Editor

Default Editor

Other...

Drer Snippets B Console 52

[89]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing JSF 2.x Facelets

The Faces Config Editor gets started. Click on Add to add a managed bean, as shown
in the following screenshot:

it faces-configaml &7

= 0
ManagedBean

+ Managed Bean Elements

The following managed beans are defined

E application Add

=, session .
Ermove

&, request

B iy

2, none

Introduction | Owverview | Mavigation Rule | ManagedBean | Component | Others | Source

In the New Managed Bean Wizard, select Create a new Java class in Java Class
Selection and click on Next, as shown in the following screenshot:

~
Java Class Selection

Search for an existing class or generate a new one,

(2 Using an existing Java class

Browse...
(This option will use an existing java class as managed bean's type.)
@ Create a new Java class

(This option will create a new java class in the nextwizard page.)

@' < Back

[90]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

The Java Class wizard gets started. The Source Folder (jboss-jsf2/src/main/
java), Package (org.jboss.jsf2.model), and Name (Catalog) should be specified,
as shown in the following screenshot. Click on Next.

~
i@ New Managed Bean Wiza é‘ﬂu

Java Class

Create a new lava class,

Source folder jboss-jsf2fsrc/maindjava
Package: L org.jb-:-ss.jsflmodel|

[T Enclosing type: Browse...
Marne: Catalog
Modifiers: @ public () package private pratected
[abstract [final static
Superclass: Jjavalang.Object
Interfaces: Add...
Retrnowe

Which method stubs would you like to create?
0 public static woid main(String[] args)
[Constructars frarm superclass
[]Inherited abstract methods
Do youwant to add comments? (Configure ternplates and default value here)

DGenerate comments

@ | <Back | Next>%J sty

[91]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing JSF 2.x Facelets

In the Managed Bean Configuration window, the Name textbox is specified as
catalog, and Scope as session. Click on Next, as shown in the following screenshot:

E New Managed Bean m - @M

Managed Bean Configuration

Set managed bean's narme and scope, and create or update Managed
Bean's properties, their types and default values,

General

Mame: catalog

Scope: sessian hd
Description: "

@ | <Back || Mests [}][Finish || cancel |

A summary of the managed bean to be created gets displayed in the Wizards
Summarys window. Click on Finish, as shown in the following screenshot:

E MNew Managed Bean m =000
Wizard Summarys

A new java managed bean will be created,

Field Walue

Source folder jboss-jsfifsrcfmaindava

Package narme org jbossjsf2.model

Type narne Catalog

fManaged bean name catalog

fManaged bean scope sessioh

tanaged bean class org.jhoss.jsf.model.Catalog

Description

4 m |

?\ Mext = ’ Finish L\\;J ’ Cancel

[92]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

A new managed bean catalog gets created, as shown in the following screenshot:

e *faces-configaml B2 = O
ManagedBean
+ Managed Bean Elements * Managed Bean i
The following managed beans are defined This section describes general configuration of this managed bean
E application Add fanaged Bean narme™ catalog

= i
4 = SEs5lon

Managed Bean class® orgjbossjsf2model.Catalor
@ catalog I,\\E

* | session -
= request Managed Bean scope

B i [

= Ve = Initialization

@ none

Wou can initialize the managed bean's properties or itself if it iz a
subclass of java.util.hap or jawa.otil List

Ianaged Bean class type: @ General class () Map () List

m

Marne Class Walue Add...

Edit...

Remuowve

Introduction | Owerdiew Mavigation RBule ManagedBean | Component Others | Source

In the managed bean, import the required classes and annotate the catalog class
with the eManagedBean annotation. Declare Java bean properties for an input

form (of the type HtmlForm), input the text field (of the type HtmlInputText), a
label for the input text field (of the type HtmloutputLabel), an command button
(of the type HtmlCommandButton), a data table (of the type HtmlDataTable), the
columns of the data table (of the type UIColumn), and an error message (of the type
HtmlOutputText). Add getter/setter methods for the properties as required by the
Java bean convention. Also, declare variables for a Connection object, a Statement
object, and a ResultSet object.

[93]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing JSF 2.x Facelets

Add an action method-a method that has no parameters and returns a String
value and commandButtonl action. In the action method, create a connection to
MySQL database either with the JDBC API or using a MySQL data source. If the
JDBC APl is used, the Connection object is obtained as follows:

Class.forName ("com.mysqgl.jdbc.Driver") ;

String url = "jdbc:mysgl://localhost:3306/test";
Connection connection = DriverManager.getConnection (url, "root",
llmysql n) ;

If a MySQL data source is used, the Connection object is obtained as follows:

InitialContext initialContext = new InitialContext () ;

DataSource ds = (DataSource) initialContext.lookup ("java:jboss/
datasources/MySQLDS") ;

java.sqgl.Connection conn = ds.getConnection() ;

Create a Statement object from the Connection object using the createStatement
method. Run the SQL query input in the input field using the executeQuery method
to obtain a ResultSet:

Statement stmt = connection.createStatement (ResultSet.TYPE_SCROLL_
INSENSITIVE, ResultSet.CONCUR READ ONLY) ;

ResultSet rs = stmt.executeQuery((String) inputTextl.getValue()) ;

Create a HtmlDataTable object, set its border using the setBorder method, set the
cell padding using the setCellpadding method, and set the iteration variable for a
data collection using the setvar method:

HtmlDataTable dataTablel = new HtmlDataTable() ;
dataTablel.setBorder (5) ;
dataTablel.setCellpadding("1") ;
dataTablel.setVar ("journalcatalog") ;

Create a ResultSetDataModel object, which encapsulates a data collection
represented by a ResultSet. Set the ResultSet generated from the SQL
query as the data collection for the ResultSetDataModel object using the
setWrappedData method:

ResultSetDataModel dataModel = new ResultSetDataModel () ;
dataModel . setWrappedData (rs) ;

[94]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Create columns for the data table using UIColumn class constructors, and set the
columns on the data table using the setColumn method of the HtmlDataTable object.
Create a data table column header using the HtmloutputText type variable for each
column, and set a header on a column using the setHeader method of the UTColumn
object. The data table values are also of the type HtmloutputText. The result set data
is bound to the data table using value expressions. A ValueExpression object is used
to set values. An ExpressionFactory object is required to create a ValueExpression
object. Obtain a ExpressionFactory object from a FacesContext object using
getApplication().getExpressionFactory().Fhstcrea&eaFacesContext(ﬂject
using the getCurrentInstance () method. Create a ValueExpression object from
the ExpressionFactory method using the createvalueExpression (ELContext
context, java.lang.String expression, java.lang.Class<?> expectedType)
method. The ELContext object for the createvalueExpression method is created
from the FacesContext object using the getELContext () method. The expression
for the createvalueExpression method is an EL expression, and the expectedType
method is String.class. A ValueExpression value is set on a HtmlOutputText type
column using the setvValueExpression method. Add the HtmloutputText object to
a UIColumn object using getChildren () .add (). The result set values are not bound
on each data table cell individually, but an EL expression consisting of an iteration
variable is used to bind the result set. For example, column1, which is the column for
the catalog ID, is set as follows:

HtmlOutputText columnlText = new HtmlOutputText () ;

FacesContext fCtx = FacesContext.getCurrentInstance() ;

ELContext elCtx = fCtx.getELContext () ;

ExpressionFactory ef = fCtx.getApplication () .getExpressionFactory() ;
ValueExpression ve = ef.createValueExpression(elCtx, "#{journalcatalog.
catalogid}", String.class);

columnlText .setValueExpression ("value", ve);
columnl.getChildren() .add (columnlText) ;

Similarly, set the other data table columns. Set the ResultSetDataModel data
collection on the HtmlDataTable object using the setvalue () method:

dataTablel.setValue (dataModel) ;

If an error is generated, return the error from the action method, which navigates the
Facelets application to error. jsp using implicit navigation. If implicit navigation is
used, the to-URL is the same name as the String value returned by the action method.
For a more detailed discussion on implicit navigation and other JSF 2 features, refer

to JavaServer Faces 2.0, Essential Guide for Developers, Cengage Learning. If an error is not
generated, return the output that navigates to output . jsp to display the data table.
The catalog.java managed bean is available in this chapter download.

[95]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing JSF 2.x Facelets

As we have used the @ManagedBean annotation, the faces-config.xml file is an
empty file, which is an advantage in terms of having to specify less configuration:

<?xml version="1.0" encoding="UTF-8"?>

<!-- This file is not required if you don't need any extra
configuration. -->

<faces-config version="2.0" xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xi="http://www.w3.0rg/2001/XInclude"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation=" http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-facesconfig 2 0.xsd">

</faces-config>

The managed bean is shown in the jboss-jsf2 project in the next screenshot.
The catalog.java Java class may indicate some errors, which are due to some
required Maven dependencies not being added in the pom.xm1 file. We will add
the required Maven dependencies in a later section.

I Project Explorer 53 = =(>| ¥ = 0
4 E]':‘J jbioss-jsf?
B JAX-RS\eb Services
> ‘28 Deployment Descriptar: jboss-jsf2
» |1 “Web Resources
A JAXES W eb Services
e JPA Content
» 2 Java Resources
> B JavaScript Resources
» [Deployed Resaurces
4 g src
4 7= main
4 [java
4 7= arg
4 7 jboss
4 3 |sf2
4 7= madel
| Catalogjava %
> =% resources
4 [webapp
L= resources
4 (= WEB-IMF
s beanszxml
faces-config.ml
K| jboss-jsf2-dszxml
[test
» = target
[poraseml

[96]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Creating a Facelets template

A Facelets template is a reusable component, which includes one or more JSF

pages as different, sections of the template that may be used in multiple Facelets
composition pages thus precluding the inclusion of each of the JSF pages that
comprise the common sections of Facelets composition pages separately. We will use
a Facelets template to include a header JSF page and a footer JSF page. The Facelets
templates are to be created in the WEB- INF/templates directory for which you need
to add a templates directory. Right-click on the weEB- INF folder in Project Explorer
and select New | Folder, as shown in the following screenshot:

t.] Java EE - jboss-jsf2/src/mainfjava/org/jboss/jsf2fmodel/Catalog.java - Eclip
File Edit Source Refactor Mavigate Search Project Run Window Help
il N IS =iy BrO-Q@iZrE-IBmO S
S ART R AT d
Mewr P P9 Project..
L™ Project Expl
0 Praject Explarer 3 o Into e
4 E':‘} jbass-jsf2 e
D JB-RS Web Service Show In Alt+Shift+W b | 9 Falder
» ‘2z Deployment Descri] [saLFile
») Web Resources “opy BiikC
s A MAXAWSeh Servic 5= Copy Qualified Name w IPAORM Mapping File
5 :H> IPL Content & Paste Ctrl+4f 5% HTML File
» 2 Java Resources 9 Delete Delete)
» B JavaSeript Resourcs Remove from Context Ctrl+ A+ Shift+Downen \y s e
» [Deployed Resource Y HHTML Page
; Build Path 3
4 [sre - =
4 [main Mowve., File beans.ml
> Java Renarne.., F2 | Bample.
o [resources
4 B webapp fag Import., 9 Other Ctrl+M
(= resource fug Export., alog™)
a (= WEB-INF
. bean| 2 Refresh 5 nl ;
= faces t inputTextl;
= EDJ Mark as Deployable bel cutputlabell;
1X] jboss utton commandButtonl;
s [test Walidate e dataTablel;
> = target Shows in Remate Systems view Jmn;;
umn2 ;
B pom.ml Profile A; b Lmn3s
Debug &3 p bmnd;
umnS ;
Rur As Y oLmng;
Tearn » [E:

[97]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing JSF 2.x Facelets

In the New Folder wizard, select the webapp | WEB- INF folder and specify Folder
name as templates, as shown in the following screenshot:

-
@) New Folder I e e

Folder —

Create a new folder resource, D

Enter or select the parent folder:

Jboss-jsf2fsrefmainfwebappAVEB-INF

A

> [.metadata -
(= settings |
4 = src
4 [= main
s java
s [resources
4 [webapp
= resources
= WEB-INF
> = test
s [target
= RernoteSysterns TernpFiles 1

m

Falder name: ternplates|

® Finish %—] ’ Cancel

[98]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

To create a Facelets template, select File | New | Other. In New, select JBoss Tools
Web | XHTML Page and click on Next, as shown in the following screenshot:

ﬂ Mew l J_Iéja

Select a wizard g
Create a Wew XHTML Page |

Wizards:
type filter text

> = lawa EE -
» (= Jawa Emnitter Ternplates
> [JavaScript
= 18KE
» (= JBoss Central
» = JBoss Tools
4 (= IBoss Tools Web
mh CS5 Class -
EX Properties File
&3 TLD File
P& e Descriptor
% XHTML Page
sl JEF
> = Portlet
= JPA

» = Maven -

[Showy &Il Wizards,

m

[99]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing JSF 2.x Facelets

In New XHTML Page wizard, select the folder as webapp/WEB- INF/templates
and specify File name as BasicTemplate.xhtml. Click on Next, as shown in the
following screenshot:

@) New XHTML Page (B

Mew XHTML Page

Create Mew XHTML Page < >

Enter or select the parent folder:

jboss-jsfafsrcfmainfwebappMYEB-IMF ftemplates

»

4 = jboss-jsf2
» = metadata
(= settings
a (= src
4 [= main
> (= java
+ =5 resources
4 [= webapp
(= resources
a4 (= WEB-IMF
(= templates
s = test

« (=% tarnet

m

File narme: BasicTerplatexhtml

?\' < Back ” et = L\Lej [Finizh l l Cancel

[100]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

In Select XHTML Template, select the Common Facelet Page template and click on
Finish, as shown in the following screenshot:

f8] New XHTML Page e

Select XHTML Template

Select KHTRL Ternplate < >
[V]Use XHTML Ternplate
Ternplates:

MNarne Description

Blank Facelet Page KHTRL Blank Facelet Page Template
Blank J5F Page Sirnple J5F page without facelets

Blank RichFaces Page Sirnple RichFaces Page

Commaon Facelet Page Commmon Facelet Page Template

Farrm Facelet Page Farrm Facelet Page Template

I5F Cormposite Component Mewe I5F Cormposite Component Ternplate
Preview:

<IDOCTYPE html PUBLIC “-/FUSC/FDTD MHTML 1.@ Transitionalf/EN™ “htt =
<html smmlns="http:/lwwe. w3, orgl1 888 himt” (]
amlnsiul="http: ffdova, sun. con/Jsf ffacelets" N
smlnsch="http: /Afova. sun, com/f sf bt ™
amlns:f="http: /Afova. sun. con/fsffcore™s

¢f:loadBundle basename="resources™ war="msg” />
chead>
4| 1 3

Ternplates are 'Mew XHTRL' termplates found in the XHTRL Ternplates preference page.

@' Mt = Finish !}J [Cancel

[101]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing JSF 2.x Facelets

The BasicTemplate.xhtml Facelet template gets created in the WEB-INF/templates
folder. In the template, create <div/> elements for header, content, and footer sections
of a Facelet composition page. The <ui:insert/> Facelets tag is used as a placeholder
for a composition page section. As common header and footer sections are required in
the input and output composition pages, you need to include a header JSF page in the
header div and a footer JSF page in the footer <div> using the <ui:include/> tag.
Keep the <ui:insert/> element for the content div empty for the composition page
to include the page section. For example, include a header.xhtml JSF page as follows:

<ui:insert name="header">
<ui:include src="/WEB-INF/templates/header.xhtml" />

</ui:inserts>

We will create the header.xhtml and footer.xhtml JSF pages in the next section.
The BasicTemplate.xhtml template is listed as follows:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.o0org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xmlns:ui="http://java.sun.
com/jsf/facelets">
<head>
<titles><ui:insert name="title">JSF 2.0 Facelets</ui:insert></
title>
</head>
<body>
<div id="header">
<ui:insert name="header"s>
<ui:include src="/WEB-INF/templates/header.xhtml" />
</ui:inserts>
</div>
<div id="content">
<ui:insert name="content"s>
</ui:inserts>
</div>
<div id="footer">
<ui:insert name="footer"s
<ui:include src="/WEB-INF/templates/footer.xhtml" />
</ui:inserts>
</div>
</body>
</html>

[102]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Copy the listing to the BasicTemplate.xhtml file in Eclipse IDE.
The BasicTemplate.xhtml file is shown in the following screenshot:

I Project Explorer 53 = %‘ ¢ Y = 8 7 faces-configuenl Catalog,java Jboss-jsfiipom ., oy BasicTemplatexht.,, 22 = O
4 {2 joass-jsf2 1 <lDOCTYPE html PUBLIC ™-//W3C//DTD XHTML 1.8 Transitionall/EN" -
AP 1AX-REWeb Services 2 “http:/fwwu. w3, orgd TR xhtmll/DTDS xhtmll-transitional. dtd">
P E
» %9 Deployment Descriptor: jhoss-jsf2 Z=<html smlns="htip: /w2, org /1888 xhont™
4 Web Resources 4 sanlns sui="http://Fava. sun. com/sf A acetets™s
Sl . S cheads
> 4 JAX-WS Web Services T & <titles<ui:insert name="title”>15F 2.x Facelets</ui:insert></titles
s b IPA Content 7 <fhead>
> B lava Resources 85 <bady>
» Bl JavaScript Resources 2o<div id="header”>
5 Deployed Resources 1 <uirinsert name="header™
I" ploy! 11 <uizinclude sre="/WEB-INF/tanplates/header.xhnt™ [»
4 g 12 <fui:insert>
4 37 main 13 </fdiw>
> @ java 19=¢div id="content”>
. [resources 15 <ui:insert name="content™>
4 [weba) e
(& webapp 7
L resDurCes 1% <fuirinserts
A [WEB-INF 19 </divy
4 (= templates 20-<div 1d="Footer”>
EasicTemplate.<html 21 <uiiir.wsert name="footer”>
22 <uizinclude src="/WEB-INF/tanplotes/footer. xhtml™ />
> beansxml A -
= N 23 <fui:insert></div>
i faces-configaml| 24 ¢/body>
%] jboss-jsfa-dsxml 25 ¢fhtml>
s = test 26
s [target
[l pornxml -

Creating header and footer

In this section, we will create header and footer JSF pages. Similar to creating the
BasicTemplate.xhtml Facelet template, create header.xhtml and footer.xhtml
in the WEB- INF/templates folder. For example, for the header JSF page, specify
header.xhtml, as shown here:

) New XHTML Page 5 S|

New XHTML Page
Create MNew XHTML Page < >

Enter or select the parent falder:

jboss-jsf2fsrc/mainfivebapp WEB-INFAerplates

o & jbass-jsf2 -
» = .metadata
(= settings
4 [src
4 (= main
bl java

(]

» ol resources
4 (= webapp
[resources
a (= WEB-INF
(= templates
ol test
L (= tarnet

File name: | headerxhtml

@ [<Back |[Next» QM Finish | [Cancel

[103]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing JSF 2.x Facelets

The difference in creating the header and footer pages that in Select XHTML
Template, select the Blank JSF Page template shown as follows:

@] New XHTML Page [

Select XHTML Template

Select XHTML Template < >

’ e

Use XHTML Ternplate
Ternplates:

Marne Description

Blank Facelet Page HHTML Blank Facelet Page Ternplate

Blank JSF Page Simple J5F page without facelets

Blank RichFaces Page Sirnple RichFaces Page

Comrnon Facelet Page Comrnon Facelet Page Template

Forrn Facelet Page Forrm Facelet Page Ternplate

J5F Composite Component Mew 13F Compaosite Component Termplate
Presview:

<LDOCTYPE html PUBLIC “-f/W3C/FDTD MHTHL 1.@ Transitionalf/EN™ "htt

<html smlns="htEp:/fwwe.w. org/1888 chinl™
smlnssh="http: /A fava. sun. can/Jsf hnt”
smlns:f="http: /A fava. sun. con/qsf/core”
smlns:ui="http: sl fava. sun.comffsf facelets"s

m

<h:head></h:head>
<body> =
n § T +

Templates are ‘Mew ¥HTML' ternplates found in the XHTRL Termplates preference page.

'i?;' Mext = ’ Finish g ’ Cancel]

We will include graphic JpEG files for the header and footer sections. In the header.
xhtml, include a JPEG file using the h:graphicImage tag enclosed in a h:panelGrid
tag. First, copy the graphic JPEG files FaceletsHeader.jpg and FaceletsFooter.
jpg to the //jboss-jsf2/src/main/webapp directory. The header.xhtml JSF page
is listed as follows:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.o0org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"

xmlns:ui="http://java.sun.com/jsf/facelets"

xmlns:h="http://java.sun.com/jsf/html"

xmlns:f="http://java.sun.com/jsf/core">

<f:view>

<h:form>
<h:panelGrid columns="1">
<h:graphicImage value="FaceletsHeader.jpg" />

[104]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

</h:panelGrid>
</h:form>
</f:view>
</html>

Similarly, in the footer.xhtml JSF page, include a FaceletsFooter.jpg image file
with the h:graphicImage tag enclosed in the h:panelGrid tag. The footer.xhtml
page is listed as follows:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core">
<f:view>
<h:form>
<h:panelGrid columns="1">
<h:graphicImage value="FaceletsFooter.jpg" />
</h:panelGrid>
</h:form>
</f:views>
</html>

The directory structure of the jboss-jsf2 project is shown in the
following screenshot:

L5 Project Explarer 52 S-S ¥ =0
a4 559 jhoss-jsf2
AR 1EX-RSWeb Services
> ‘&g Deployment Descriptor: jhoss-jsf2
» |1 Web Resources
> A JRXAWSWYeb Services
> < IPA Content
> g% lava Resources
> B JavaScript Resources
> L3 Deployed Resources
4 = srC
4 75 main
> Java
» [resources
4 (= webapp
(= resgurces
4 [WEB-INF
4 [ternplates
BasicTemplate xhiml
footerxhtrml
headersxhtml
bieans.xrml
faces-configaml
X jboss-jsf2-dsxml
[test
> = target
[pornsml

[105]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing JSF 2.x Facelets

Creating input and output Facelets
composition pages

In this section, we will create input and output Facelets composition pages,
input.xhtml and output.xhtml. Create the Facelets pages similar to creating the
BasicTemplate.xhtml, header.xhtml, and footer.xhtml to that select the folder
to create input .xhtml and output.xhtml as webapp. For example, specify input.
xhtml in Create New XHTML Page, as shown here:

8] New XHTML Page [E) |

New XHTML Page
Create Mew XHTML Page

Enter or select the parent folder:

Jboss-jsfdfsrefmainfwebapp
=5

a & jboss-jsf2
- = .metadata
(= .settings
4 (= src
4 [= main
s = Java
+ =5 resources
4 [webapp
(=% resources
- [= WEB-IMF
- = test

m

- [= target
L=+ RermnteSvstermsTermnFiles

File name: | input.xhtrmi|

Advanced >

lf?)' < Back “ et » [}J [Finish] I Cancel

[106]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

And in Select XHTML Template, select Form Facelet Page Template and click on
Finish, as shown in the following screenshot:

I8} Mew XHTML Page oy

Select XHTML Template

Select XHTML Template < >
[¥] Use XHTML Template
Ternplates:

Marne Cescription

Blank Facelet Page KHTML Blank Facelet Page Ternplate

Blank I5F Page Sirnple J5F page without facelets

Blank RichFaces Page Sirnple RichFaces Page

Comrmon Facelet Page Cormmon Facelet Page Termplate

Forrm Facelet Page Forrm Facelet Page Ternplate

I5F Composite Component Mew J5F Composite Component Template
Prewvien:

€lDOCTYPE himl PUELIC “-F/W3C/FDTD ¥HTML 1.8 Transitienal/FfEN™ “htt -
chtml amlns="htEp: /Aawe. w3, org/I 008 xhonl™ ‘

m

amlnsui="http: A ova. sun. com/J st facel ets™
smlns:f="http: /Fjova. sun. con/fsffcore™
smlnsh="http://iava, sun. con/fsf Shimt ™

<l--
Replace path to template, title, header and body -
4 | m L

Ternplates are 'Mew XHTML' ternplates found in the XHTRL Ternplates preference page.

@' Mext = Finish V\I\S’l ’ Cancel

[107]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing JSF 2.x Facelets

In the BasicTemplate.xhtml file, we defined the structure of a template that may
be reused in composition pages. The header and footer div tags are included in the
header.xhtml and footer.xhtml files respectively. In the input . xhtml file, include
the BasicTemplate.xhtml file using the ui: composition tag's template attribute.
Specify the relative path to the template. We only need to define the content section
of the input .xhtml composition page. The placeholder in the BasicTemplate.
xhtml file is specified using <ui:insert name="content"/>. Specify the actual
definition in the input .xhtml with <ui:define name="content"/>. Within the
ui:define tag, add the JSF components for an input text with a corresponding
output label, and a command button to invoke the action method in the managed
bean catalog. The components have binding with corresponding managed bean
properties using EL expression (http://docs.oracle.com/javaee/6/tutorial/
doc/gjddd.html). Enclose the JSF components within h:panelGrid, which is
enclosed within a h: form tag. The Facelet composition page is listed as follows:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core">
<uil:composition template="/WEB-INF/templates/BasicTemplate.xhtml">
<ui:define name="content">
<h:form>
<h:panelGrid columns="2">
<h:outputLabel binding="#{catalog.outputLabell}" value="SQL
Query:" />
<h:inputText binding="#{catalog.inputTextl}" />
<h:commandButton value="Submit" binding="#{catalog.
commandButtonl}" action="#{catalog.commandButtonl action}" />
</h:panelGrid>
</h:form>
</ui:defines>
</ui:compositions>
</html>

In the output . xhtml file, include BasicTemplate.xhtml with the template attribute
of the ui : composition tag. Define the content section using the ui:define tag.
Within the ui:define tag, add a h:dataTable tag for a data table. Specify binding to
the managed bean property dataTablel using EL expression. Set the data table border
with the border attribute of h:dataTable and set the number of rows to 5 using the
rows attribute. Within the h:dataTable tag, add six h:column tags for the data table
columns. Specify binding of the h: column tags to the managed bean properties.

[108]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

The output .xhtml page is listed as follows:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core">
<ui:composition template="/WEB-INF/templates/BasicTemplate.xhtml">
<ui:define name="content"s>
<h:form>
<h:dataTable binding="#{catalog.dataTablel}" border="1"
rows="5">

<h:column binding="#{catalog.columnl}"></h:column>

<h:column binding="#{catalog.column2}"></h:column>

<h:column binding="#{catalog.column3}"></h:column>

<h:column binding="#{catalog.column4}"></h:column>

<h:column binding="#{catalog.column5}"></h:column>

e e i W e P
e e e e

<h:column binding="# "></h:column>
</h:dataTable>

</h:form>

catalog.columné

</ui:define>
</ui:composition>
</html>

For a more detailed discussion on JSF 2 features, refer to JavaServer Faces 2.0, Essential
Guide for Developers, Cengage Learning. Add an error.xhtml JSF page for displaying
an error message. The error.xhtml page is not a Facelets composition page and just
has a h:outputLabel tag with binding to the errorMsg managed bean property:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:ui="http://java.sun.com/jsf/facelets">
<head>
<title>Error Page</title>
</head>

<bodys>Error Page<h:outputLabel binding="#{catalog.errorMsg}"
value="#{catalog.errorMsg}" />

</body>
</html>

[109]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing JSF 2.x Facelets

The template BasicTemplate.xhtml, the header header.xhtml, the footer footer.
xhtml and the input.xhtml and output .xhtml composition pages are shown in the
Project Explorer tab:

L7 Praject Explarer 532 = =;>| ¥ =08
F] 5‘3 jhoss-jsf2
B 1R-RE ek Services
. 'zg Deployment Descriptar: jhass-jsf2
. |3 Web Resources
- A LRSS W eb Services
» 4 IPA Content
- % Java Resources
. B JavaScript Resources
. [Deployed Resources
F =i
4 3= main
- Java
» [resources
4 [webapp
(= resources
a4 = WEB-INF
4 [templates
mr BasicTernplateschtml
o footerxhtml
mr headerxhtral
beans.xml
faces-config.xml
H jboss-jsf2-dsaml
o errorshtml
o inputshtml
o outputxhtml
- = test
+ = target
[pornxml

Creating a web descriptor

A web descriptor (web.xml) is not a requirement in Java EE 7, but for a JSF
application, we need to configure the Facelets servlet. To create a web descriptor,
select File | New | Other.

[110]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

In New, select JBoss Tools Web | Web Descriptor and click on Next, as shown in

the following screenshot:

@ New

Select a wizard
Create aWeb Descriptor

Wizards:
type filter text

2 (== lava Emitter Termplates

> (= lavaScript

> [JAXE

- = JBoss Central

[JBoss Tools

4 (= |Boss Tools Web
i C335 Class
X Properties File
&3 TLDFile
5 b Descriptor
% ¥HTML Page

|.m

[Showe &)1 Siizards,

Finish

Cancel

In the Web Descriptor File wizard for Folder, click on Browse to select a folder.
In Folder Selection, select the WEB-INF folder and click on OK, as shown in the

following screenshot:

E Folder Selection —

o o

Enter or select the parent folder:

(=51
4 2 jboss-jsf2
> = .metadata
(= .settings
4 [src
4 [main
> java
> [resources
4 [webapp
(= resources
> |2 WEB-INF
s = test
: (= target
(= RemnoteSysternsTempFiles

Cancel

@ oK %][

[111]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing JSF 2.x Facelets

Select the WEB-INF folder and specify Name as web.
on Finish, as shown in the following screenshot:

xml, Version as 3.1 and click

E.} MNew Web Descriptor File l SN X
Web Descriptor File @f,
Folder® fjboss-jsf2/srcfmainfwebapp MYER-INF
Marne webxml
Wersion: | 3.1 v]
(?3' et = ’ Finish ﬁ ’ Cancel]

A web.xml file gets created in the wEB- INF folder. In web.xml, specify the Faces
servlet and its servlet mappings. The web.xml web descriptor is listed as follows:

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.1" xmlns="http://xmlns

.jcp.org/xml/ns/

javaee" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://xmlns.jcp.org/xml/ns/javaee http://xmlns.

jcp.org/xml/ns/javaee/web-app 3 1.xsd">

<display-name>JSF 2.x Facelets</display-name>

<servlets>

<gervlet-name>Faces Servlet</servlet-name>

<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>

<load-on-startup>l</load-on-startup>
</servlets>
<servlet-mapping>

<gervlet-name>Faces Servlet</servlet-name>

<url-pattern>*.jsf</url-patterns>
</servlet-mapping>

[112]

www.it-ebooks.info

http://www.it-ebooks.info/

<servlet-mapping>
<servlet-names>Faces Servlet</servlet-names>
<url-pattern>*.faces</url-pattern>
</servlet-mapping>
<servlet-mapping>
<servlet-names>Faces Servlet</servlet-names>
<url-pattern>*.xhtml</url-pattern>
</servlet-mapping>
<servlet-mapping>
<servlet-names>Faces Servlet</servlet-name>
<url-pattern>/faces/*</url-patterns>
</servlet-mapping>
</web-app>

The web . xm1 is shown in the following jboss-jsf2 web project:

I Project Explorer 53 = <;==:>| ¢ -~ — O
4 B':‘} jboss-jsfe
S JA-REWeh Services
» ‘@1 Deployment Descriptor: jboss-jsf2
> L) Web Resources
> A JAKAWS W eb Services
> 4 IPA Content
> 2 Java Resources
> B JawaScript Resources
» L3 Deployed Resaurces
& 3 srC
4 [main
sl java
> [resources
4 [= webapp
= resources
4 = WEB-INF
(= termplates
mE BasicTernplatexhtrml
footersxhtml
mE headerxhtml
>z beansxml

[9

= faces-configuml
1% Jboss-jsf2-dsxml
> |z wee bl
errarxhtml
inputxhtrml

outputaxchtiml
» = test
> = target
[porm.sml
[113]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing JSF 2.x Facelets

Deploying the web project with Maven

The Java EE web project we created is based on Maven. It includes pom.xml to build,
compile, and package the web application. The default project in WildFly 8.1 is a Java
EE 7 version. As the Java EE project is a web project, the packaging gets specified

as war in pom.xml. The Group Idand Artifact Id attributes that we specified in
creating a Java EE web project get configured in pom.xml as well. As we are using
MySQL database, we need to add the dependency on the MySQL JDBC driver:

<dependencys>
<groupId>mysqgl</groupId>
<artifactIds>mysqgl-connector-java</artifactIds>
<versions>5.1.22</version>

</dependency>

The dependency on the Java EE 7 JSF 2.2 API, which is provided by WildFly 8.1, is
included in pom.xml by default.:

<dependencys>
<groupIds>org.jboss.spec.javax.faces</groupId>
<artifactId>jboss-jsf-api 2.2 spec</artifactIds
<scope>provided</scope>

</dependency>

As the managed bean and the Facelets composition pages use EL expressions,
include a dependency on el-api, which is not provided by default by WildFly 8.1:

<dependencys>
<groupIds>javax.el</groupId>
<artifactId>javax.el-api</artifactId>
<version>3.0.0</versions>
</dependency>

The CDI (Context and Dependency Injection) API, Common Annotations AP],
JAX-RS AP], JPA (Java Persistence API), E]B (Enterprise JavaBeans) API, Hibernate
Validator API, annotation processor to generate the JPA metamodel classes,
Hibernate validator annotation processor, and JUnit API are provided by WildFly
8.1 by default and can be removed if not being used in the sample application in

this chapter. In the build element, the compiler plugin and the maven-war-plugin
get configured by default. In the configuration for the maven-war-plugin plugin,
specify the output directory for the wAR archive as the deployments directory of the
WildFly 8.1 installation.

[114]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

The pom.xml file is listed as follows:

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://
www.w3.0rg/2001/XMLSchema-instance" xsi:schemalLocation="http://maven.
apache.org/POM/4.0.0 http://maven.apache.org/maven-v4 0 0.xsd">

<modelVersion>4.0.0</modelVersion>

<groupIds>org.jboss.jsf2</groupId>

<artifactId>jboss-jsf2</artifactIds>

<version>1.0.0</versions>

<packagings>war</packaging>

<name>WildFly JSF 2.x</name>

<description>A starter Java EE 7 webapp project for use on JBoss
WildFly / WildFly, generated from the jboss-javaee6-webapp archetype</
descriptions>

<urlshttp://wildfly.org</urls>
<licenses>
<license>
<name>Apache License, Version 2.0</name>
<distributions>repo</distributions>
<urlshttp://www.apache.org/licenses/LICENSE-2.0.html</url>

</license>
</licenses>
<propertiess
<!-- Explicitly declaring the source encoding eliminates the
following message: -->
<!-- [WARNING] Using platform encoding (UTF-8 actually) to copy
filtered resources, i.e. build is platform dependent! -->
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<!-- JBoss dependency versions -->
<version.wildfly.maven.plugin>1.0.2.Final</version.wildfly.maven.
plugin>
<!-- Define the version of the JBoss BOMs we want to import to
specify tested stacks. -->

<version.jboss.bom>8.1.0.Final</version.jboss.bom>

<version.arquillian.container>8.1.0.Final</version.arquillian.
containers

<!-- other plugin versions -->

<version.compiler.plugin>3.1l</version.compiler.plugin>

<version.surefire.plugin>2.16</version.surefire.plugin>

<version.war.plugin>2.1.1l</version.war.plugin>

<!-- maven-compiler-plugin -->

<maven.compiler.target>1l.7</maven.compiler.target>

<maven.compiler.source>1l.7</maven.compiler.sources>

[115]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing JSF 2.x Facelets

</properties>
<dependencyManagement >
<dependencies>
<dependencys>
<groupIds>org.wildfly.bom</groupId>
<artifactId>jboss-javaee-7.0-with-tools</artifactId>
<version>${version.jboss.bom}</versions>
<types>pom</type>
<scope>import</scope>
</dependency>
<dependencys>
<groupIds>org.wildfly.bom</groupId>

<artifactId>jboss-javaee-7.0-with-hibernate</artifactIds>

<version>${version.jboss.bom}</versions>
<types>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement >
<dependencies>
<dependencys>
<groupIds>mysqgl</groupId>
<artifactIds>mysqgl-connector-java</artifactIds>
<version>5.1.22</versions>
</dependency>
<dependencys>
<groupld>javax.el</groupIld>
<artifactId>javax.el-api</artifactId>
<version>3.0.0</versions>
</dependency>
<!-- Import the JSF API, we use provided scope as the API
included in JBoss WildFly -->
<dependencys>
<grouplds>org.jboss.spec.javax.faces</groupIld>
<artifactId>jboss-jsf-api 2.2 spec</artifactIds>
<scope>provided</scope>
</dependency>
</dependencies>
<builds>

is

[116]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

<!-- Maven will append the version to the finalName (which is the
name given to the generated war, and hence the context root) -->
<finalName>${project.artifactId}</finalName>
<pluginss>
<!-- Compiler plugin enforces Java 1.6 compatibility and
activates annotation processors -->
<plugins>

<artifactId>maven-compiler-plugin</artifactIds>
<version>${version.compiler.plugin}</versions>
<configurations>
<source>${maven.compiler.source}</sources>
<target>${maven.compiler.target}</target>
</configurations>
</plugins>
<plugins>
<artifactIds>maven-war-plugin</artifactIds>
<version>${version.war.plugin}</versions>
<configurations>

<outputDirectory>C:\wildfly-8.1.0.Final\standalone\
deployments</outputDirectorys>

<!-- Java EE 7 doesn't require web.xml, Maven needs to catch
up! -->
<failOnMissingWebXml>false</failOnMissingWebXml >
</configurations>
</plugins>
<!-- The WildFly plugin deploys your war to a local WildFly
container -->
<!-- To use, run: mvn package wildfly:deploy -->
<plugins>

<groupIds>org.wildfly.plugins</groupId>
<artifactIds>wildfly-maven-plugin</artifactIds>
<version>${version.wildfly.maven.plugin}</versions>
</plugin>
</plugins>
</build>
</project>

[117]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing JSF 2.x Facelets

Right-click on the pom.xm1 file and select Run As | Maven install, as shown in the
following screenshot:

@ Java EE - jboss-js
[File Edit Navigat
i

- ¥ - - ><::'

Mavigat

[Praject Explarer
a 5:‘3 jboss-jsf2
AP NE-RS
o 'z Deploy
> 1L Web Res
A
> JPA Con
> 59 Java Res
> By JavaScrig
> 03 Deploye
4 [src
» [mai
» o test
s [target
[ma] pornsm

B

ey

Showe In
Open
Open With

Copy

Copy Qualified MNarme
Paste

Delete

Remove from Context
dark as Landmark
Build Path

Move..,

Rename...

Irnport...
Export...

Refresh
Mark as Deployable

“alidate

Show in Rermote Systems view

Profile As
Debug s

Run &3

Team
Cornpare With
Replace With
ITidy

Maven

Source

Exclude Validation

Properties

3

Alt+Shift+yif »
F3

Ctrl+C
Chrl+¥
Delete

Ctrl + A+ Shift+D own
Ctrl+ 4/t +Shift+Up

F5

Alt+Enter

.

ARAARARAA L.

1 Run on Serser

2 Maven build

3 Mawven build...

4 Maven clean

5 Maven clean verify

6 Maven generate-sources
7 Mawven install

4 Maven test I}

Run Configurations...

Alt+Shift+X, R
Alt+Shift+X, M

[118]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

The Maven pom.xml build completes with a BUILD SUCCESS message, as shown in

the following screenshot. The jboss-js£2 application gets compiled, packaged, and
copied to the deployments folder, as all wAR archives copied to the deployments
directory get installed automatically and jboss-js2.war gets deployed to WildFly 8.1.

[#] Markers [T Properties 4% Servers [Data Sour.. [Snippets B Console 52 | <% Palette DErarlog = 0

X% BEEE =2 -0
<terminated = Ch\Program Filest avajdk L T.0_51vbinYjavaw.exe (Mow 19, 2014, 11:32:13 AM)
[INFO] --- maven-war-plugin:2.1.l:war (default-war) @ jboss-jsf2 ---
[INFO] Packaging webapp
[INFO] Assembling webapp [jboss-jsf2] in [C:\Users‘\Deepak vohra‘\Eclipse\workspaceijboss-jsf2ita
[INFO] Processing war project
[INFO] Copying webapp resources [C:iUsershDeepak vohra‘Eclipsetworkspaceijboss-jsf2isrcimainiue
[INFO] Webapp assembled in [413 msecs]
[INFO] Building war: C:hwildfly-8.1.@.Finalistandalonetdeploymentsijboss-jsf2.war
[WARNING] Warning: selected war files include a WEE-INF/web.s;ml which will be ignored
(webyml attribute is missing from war task, or ignerellebsml attribute is specified as "true')
[INFO]
[INFO] --- mawen-install-plugin:2.4:install (default-install) @ jbeoss-jsf2 ---
[INFO] Installing C:iwildfly-8.1.8.Finali\standalone\deploymentsijboss-jsf2.war to C:\Users\Deep
[INFO] Installing C:\lUsers\Deepak Wohra‘\Eclipse\workspacehjboss-jsf2ipom.sanl to C:\UsersiDeepak
150«
[INFO] BUILD SUCCESS
150«
[INFO] Total time: 17.523 s
[INFO] Finished at: 2@14-11-19T11:32:35-85:00
[INFO] Final Memory: 17M/216H
[INFO] = mmm e mmm o m oo oo o e e e o e e e e

T

Navigate to the Adminstration Console in WildFly 8.1 using the URL
http://localhost:8080/. The jboss-jsf2.war archive is listed as deployed,
as shown in the following screenshot:

€ hitp:/flocalhast2930/console/App.htmi¥deployments ¢ | [Qr Gosgle

Wi|dF|\I 8.1.0.Final

Runtime

= Serwer DEPLOYMENTS

Overview

Manage Deployments Deployments

Patch Managerment Currently deployed application components.
= Status

Add Remove En/Disable Replace
= Platform
o N jboss-jsf2 war v

Ernsironment

]

= Subsysterns
Datasources
JPA
MO View
Transaction Logs
Transactions

Wiehservices Deployment

Mesd Help?

Name: jboss-isf2 war

[119]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing JSF 2.x Facelets

Running the Facelets application

In this section, we will run the JSF 2 application on WildFly 8. Invoke the input.
xhtml file using the URL http://localhost:8080/jboss-jsf2/input.xhtml.
The jboss-jsf2 is included as it is the context root for the jboss-jsf2.war
application. The header and footer graphics JPEG files are included in the Facelets
composition page using templating. Specify an SQL query, for example, SELECT *
FROM CATALOG and click on Submit, as shown in the following screenshot:

&) JSF 2.x Facelets T T e[e
« + @http:,"f'lDcalhost:SDSD;‘jboss-jsf2,-‘input.xhtm| ¢ | [Qr Goagle O~ £~
Facelets

SQL Query: | SELECT * FROM GATA

Facelets is included in JSF 2.0

The input .xhtml page invokes the Facelets Servlet as . xhtml is specified in the servlet
mapping. The action method of the managed bean generates a JSF data table and
returns the output, which renders output . xhtml. The URL displayed in the browser
stays the same because the request dispatcher sends a request forward, which does not
start a new request. To display the output .xhtml file in the browser URL, a redirect
will be required, which starts a new request. The same header and footer are included
in the output . xhml file using templating, as shown in the following screenshot:

) JSF 2.x Facelets _—
«4 + @ http:/flocalhost:B080/bass-jsfafinputaxhtml & | | Qr Google O~ &~
Facelets
|Catalogld| Journal || Publisher || Edition || Title | Author |
Oracle Cracle Database Fesource Kimbetly
1 I lagazmine Publishing 1ov-Dec 2004 llanager Floss
Oracle Cracle .
2 Magazine Publishing MNov-Dec 2004||From ADF UL to ISF ||Jonas Jacobi
3 Oracle Cracle Mlarch-Aprl ||Starting with Cracle Steve
Llagazine Publishing 2005 ADF Iluench
.Fac'.elets is included in J5F 2.0 W
L
= = — ——— =/
[120]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Summary

In this chapter, we created a JSF 2.x application to create a data table from an SQL
query. We used Facelets based templating to include the same header and footer.
The JSF 2.0 application is compiled and packaged using the Maven build tool and
deployed to WildFly 8.1. The Facelets application is run on a browser to generate a
data table.

In the next chapter, we will discuss using Ajax with WildFly 8.1.

[121]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Using Ajax

Asynchronous JavaScript and XML (AJAX or Ajax) is a technique for transferring
data between a browser and a server asynchronously. "Asynchronously" implies that
the web page continues to be processed while the request is sent from the browser to
the server and a response is received. Ajax is based on JavaScript, Document Object
Model (DOM), and XxMLHttpRequest. Ajax provides dynamic interaction between

a browser and a server and can be used in several types of applications, such as for
validating a form that requires a unique identifier without submitting the form,
autocompleting input fields based on partial input, and refreshing information on

a web page periodically without having to reload the web page, thus incurring less
bandwidth usage.

In this chapter, we will create an Ajax application in the Eclipse IDE, compile and
package the application using Maven, and run the web application on WildFly 8.1
with MySQL database. In this chapter, we will cover the following topics:

* Setting up the environment

* Creating a Java EE web project

* Creating a user interface

* Creating a servlet

* Deploying the Ajax application with Maven

* Running the Ajax application

Setting up the environment

We need to install the following software:

* WildFly 8.1.0.Final: Download wildfly-8.1.0.Final.zip from
http://wildfly.org/downloads/.

[123]

www.it-ebooks.info

http://www.it-ebooks.info/

Using Ajax

* MySQL 5.6 Database-Community Edition: Download this edition from
http://dev.mysql.com/downloads/mysql/. When installing MySQL,
also install Connector/J.

* Eclipse IDE for Java EE Developers: Download Eclipse Luna from https://
www.eclipse.org/downloads/packages/release/Luna/SR1.

* JBoss Tools (Luna) 4.2.0.Final (or the latest version): Install this as a plugin
to Eclipse from Eclipse Marketplace (http://tools.jboss.org/downloads/
installation.html).

* Apache Maven: Download version 3.05 or higher from http://maven.
apache.org/download.cgi

* Java7: Download Java 7 from http://www.oracle.com/technetwork/
java/javase/downloads/index.html?ssSourceSiteId=ocomcn.

Set the JAVA_HOME, JBOSS_HOME, MAVEN HOME, and MYSQL_HOME environment
variables. Add $JAVA HOMES%/bin, $MAVEN HOMES%/bin, $JBOSS HOMES%/bin, and
$MYSQL_HOMES%/bin to the PATH environment variable.

Create a WildFly 8.1.0 runtime as discussed in Chapter 1, Getting Started with E|B 3.x.

Create a MySQL database CATALOG with the following SQL script:CREATE
TABLE Catalog(CatalogId VARCHAR (255), Journal VARCHAR(255), Publisher
Varchar (255), Edition VARCHAR (255), Title Varchar (255), Author
Varchar (255)) ;

INSERT INTO Catalog VALUES('catalogl', 'Oracle Magazine', 'Oracle
Publishing', 'September-October 2010', 'Using Oracle Essbase Release
11.1.2 Aggregate Storage Option Databases', 'Mark Rittman and

VenkatakrishnanJdanakiraman') ;

INSERT INTO Catalog VALUES('catalog2', 'Oracle Magazine', 'Oracle
Publishing', 'July-August 2010', 'Infrastructure Software and
Virtualization', 'David Baum') ;

We will use the same MySQL data source we used in earlier chapters. The procedure
to create a MySQL module, define a MySQL driver, and configure a data source is
discussed in Chapter 1, Getting Started with EJB 3.x.

[124]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Creating a Java EE web project

In this section, we will create a Java EE web project in Eclipse. Select File | New |
Other. In New, select JBoss Central | Java EE Web Project and click on Next, as

shown in the following screenshot:

type filter text

ﬂ New Llﬂlﬂ_hj
Select a wizard —
Wizards:

» = Jawa EE

o [Java Emitter Termplates

¢ = Javascript

> = JAXB

4 = JBoss Central
5 Angular)3with Forge Praject
S HTMLS Project
(Z Java EE EAR Praject
31 Jawa EE Web Project
@ RichFaces Project
A Spring WVC Project

l.m

] Showe 211 Wiizards,

Finish

Cancel

[125]

www.it-ebooks.info

http://www.it-ebooks.info/

Using Ajax

The Java EE Web Project wizard gets started. A test gets run for the requirements,
which include the m2e, m2eclipse-wtp, and JBoss Maven Tools plugins. Select the
Create a blank project checkbox and Target Runtime as WildFly 8.x Runtime,
as shown in the following screenshot. Then click on Next.

i ot Examnore TR T
ﬂ MNew Project Example - 5] |G

Java EE Weh Project

Create a Maven-based Java EE 6 web application project

Description:

This is wour project! It's a sample, deployable Maven 3 project to help wou getyour foot in the door developing with »
Jawva EE 6 on JBaoss Enterprise &pplication Platform 6 ar JBoss Application Server 7.1,

This project is setup to allow wou to create a compliant Java EE 6 application using JSF 2.0, CDIL.0, EJB 3.1, JPA 2.0

and Bean Walidation 1.0,

Project based on the orguwildfly.archetypewildfly-javaeeT-webapp-blank-archetype:8.L0Final Maven archetype v
Create a blank project

Target Runtime | WildFly 8. Runtime -

Requirerments

Type Description Foun... Tnstall..
serverfrunti.. This project example requires JBoss Enterprise Applic.. [
plugin This project exarnple requires m2e == L0, Downlcadlandin:tal 2
plugin This project exarnple requires m2e-wtp >= 0,16.0,
plugin This project exarnple requires JBoss Maven Toals,

@ <Back || Next>%J Finily

[126]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Specify Project name (jboss-ajax), Package (org.jboss.ajax), and click on Next,

as shown in the following screenshot:

"

E Mew Project Example

-:Elg

Java EE Web Project

Create a Mawven-based Java EE 6 web application project

Project name jboss-ajax

Package arg.jboss.ajax

Use default Workspace location

Location:

[Tl Add project(s) to warking set
YWorking set:

b Advanced

Browwse, .,

hlore...

® < Back

J |

Cancel

|| et hJ[Finish

[127]

www.it-ebooks.info

http://www.it-ebooks.info/

Using Ajax

Specify Group Id (org.jboss.ajax), Artifact Id (jboss-ajax), Version (1.0.0),
and Package (org.jboss.ajax), as shown in the following screenshot. After this,
click on Finish.

-

E Mew Project Example

-:IIEIQ

Java EE Web Project

Create a Maven-based Jawa EE 6 web application project

Group Id: orgjhoss.aja -
Artifact [jboss-ajax -
Wersion: 100 -
Package: orgjboss.ajax -
Froperties available from archetype:
Marne Walue Add...
narne lawva EE Tweebapp project [m
* Advanced

[(] Resolve Warkspace projects

Profiles:

et =

Finizh !k’l [Cancel

[128]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

The jboss-ajax Java EE web project gets created, as shown in Project Explorer in

the following screenshot. Delete the //jboss-ajax/src/main/resources/META-
INF/persistence.xml configuration file as it is not used in the Ajax application:

L Project Explorer 53 — <}~='=;:>| = =08
a i jbu:uss-ajaxl,}
B IRM-RS W eb Services
: Deployrment Descriptar jboss-ajax
. |3 Web Resources
AP JAXANE Vieh Services
+ & P& Content
. T Java Resources
- B, Javalcript Resources
. Lg Deployed Resources
4 [src
4 [main
= java
. [resources
4 [webapp
(= resources
4 = “WEB-IMF
beans.xml
faces-config.ml
K| jboss-ajac-dsxml
o [test
- = target
[m] pornxeml

Creating a user interface

An Ajax request is initiated in a browser from a web page. In this section, we

will create the user interface for the Ajax application. To initiate an Ajax request,

JavaScript is required, for which we will create a JSP page. We have used JSP, but
another user interface technology, such as JSF, can be used instead. Select File | New
| Other, and in New, select Web | JSP File and click on Next.

[129]

www.it-ebooks.info

http://www.it-ebooks.info/

Using Ajax

In the New JSP File wizard, select the webapp folder, specify File name (ajaxJBoss.
jsp), and click on Next, as shown in the following screenshot:

@) Mew JSP File (e
Jsp
Create a new ISP file, v

Enter or select the parent folder:

Jboss-ajaisrodmainfnebapp
o

a2 jboss-ajax
= settings
A =5 srC
4 [main
= java
s =% FESOUFCES
o [webapp
» [test
s = target
= RemoteSystemsTempFiles

File hamme: ajaxlBossjsp

@ | <Back | Next>M[Finish | [Cancel |

In Select JSP Template, select the New JSP File (html) template, and click on Finish.
The ajaxdBoss. jsp file gets added to the webapp folder. In ajaxJBoss.jsp, add

an HTML form to create a catalog entry. The input form consists of input fields

for Catalog ID, journal, publisher, edition, title, and author. The Catalog ID field
requires a unique field value. In a form without Ajax, we would specify a Catalog

ID value and the other field values and submit the form with a Submit button. If the
Catalog ID is unique, a new catalog entry would get created, but if the Catalog ID
already exists in the database, an error message would get displayed and the form
would be required to be refilled and resubmitted. With Ajax, the Catalog ID value
can be validated as the value is specified, thus preempting the need to resubmit the
form. In the Ajax application, the input Catalog ID value is sent to the server as the
value is specified using an Ajax request and an HTTP servlet immediately returns an
XML message about the validity of the input data.

[130]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

To send xMLHt tpRequest and receive a response, we will use the following procedure:

Ll

o

Invoke a JavaScript function from an HTML event, such as onkeyup.
Create an XMLHt tpRequest object in the JavaScript function.
Open an XMLHt tpRequest request.

Register a callback event handler, which gets invoked when the request is
complete, with the XMLHt t prequest object.

Send an XMLHttpRequest request to the server asynchronously.

Process the request on the server; for the server, the asynchronous request is
just like any other HTTP request.

Send an XML message response back to the browser.

Receive the XML response and display a message on the web page without
reloading the web page.

In ajaxJBoss. jsp, add an HTML form with input fields for a catalog entry. Set
the action for the form as AjaxFormServlet, which is mapped to invoke a servlet,
as discussed later. Add <table/> within <form/> and add a <input /> field for

a Catalog ID. Add a Submit button to submit the form to the server using the
HTTP posT method. In the <input/> field, set the onkeyup event handler to a
validateCatalogId () JavaScript function, which we will add to ajaxJBoss.

jsp. Include <div/> in the table row for the Catalog ID input field; <div/> will be
used to display a message about the validity of the Catalog ID. Here's the code that
encapsulates the discussion in this paragraph:

<table>

<tr>

<td>Catalog Id:</td><td><input type="text" size="20"

id="catalogId" name="catalogId" onkeyup="validateCatalogId() ">

</td>
<td>

<div id="validationMessage"></div>

</td>
</tr>

</table>

Similarly, add the other input fields for a catalog. Each time the onkeyup event is
generated, the validatecatalogId function gets invoked.

[131]

www.it-ebooks.info

http://www.it-ebooks.info/

Using Ajax

Next, create a validateCatalogId JavaScript function. In the validateCatalogId ()
JavaScript function, create a new XMLHt tpRequest object. If a browser supports the
XMLHttpRequest object as an ActiveX object (as in IE 6), the procedure to create

an XMLHt tpRequest object is different than the procedure if the XMLHt tpRequest
object is a native object; a window object property (as in IE 7 and later, and other
browsers). Create an init () function within the validateCatalogId function and
create an XMLHt t pRequest object for both types of browsers (those supporting / not
supporting XMLHt t pRequest as a native object). The following is the code for the
discussion in this paragraph:

function validateCatalogId(){
var xmlHttpRequest=init () ;
function init () {
if (window.XMLHttpRequest) {
return new XMLHttpRequest () ;
} else if (window.ActiveXObject) ({
return new ActiveXObject ("Microsoft .XMLHTTP") ;
}
}
}

Next, open XMLHt tpRequest using the open () method, url [, async = true [,
user = null [, password = nulll]l]).Setthe HTTP method to GET for the browser
to receive a response from the server. The server URL to which XMLHt tpRequest

is to be sent consists of a servlet mapping to invoke a servlet to process the request
and the CatalogId request parameter. In the example application, we will invoke
AjaxFormServlet, which is mapped to /AjaxFormServlet in web.xml. Encode the
request parameter CatalogId using the encodeURIComponent (string) method,
which encodes the catalogid value to UTF-8 (https://developer.mozilla.org/
en-US/docs/JavaScript/Reference/Global_Objects/encodeURIComponent).By
default, the user and password are set an empty string. The following code shows this
action performed on the example application:

varcatalogId=document .getElementById ("catalogId") ;
xmlHttpRequest .open ("GET", "AjaxFormServlet?catalogId="+
encodeURIComponent (catalogId.value), true);

We need to know when a request has been completed so that we can process

the response. Register a callback event handler, processRequest, with the
XMLHttpRequest object using the onreadystatechange property. The JavaScript
callback function processRequest, which we will add later, gets invoked whenever
the value of the readystate property changes, as shown in the following line

of code:

xmlHttpRequest .onreadystatechange=processRequest;

[132]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Send an Ajax request using the send () method (as the HTTP method is GET, data
sent with the send method is set to nul1), as shown in the following line of code:

xmlHttpRequest.send (null) ;

With an asynchronous request, the send () method returns immediately. The
processRequest function gets invoked each time the value of the readystate
property changes. In the processRequest function, retrieve the readystate
property value. When the request has loaded completely corresponding to the
readyState property value 4 and the HTTP status Ok, invoke the processResponse
JavaScript function to process the response from the server:

function processRequest () {

if (xmlHttpRequest .readyState==4) {
if (xmlHttpRequest.status==200) {
processResponse () ;

}
}
}

The XMLHt t prequest request invokes AjaxFormServlet. The servlet processes the
request and returns a response as an XML message of the following format:

<catalog>
<valids</valids>
<journal></journals>
<publisher></publisher>
<edition></edition>
<titles></title>
<author></authors>

</catalog>

We will discuss the server-side processing of the request in the Creating a Servlet
section. The XMLHt t pRequest request's response from the server is processed, and
if the instructions indicate that the catalogId input is valid, a message Catalog Id
is Valid is displayed. XMLHt t prequest will be sent to the server and a response is
received with each modification in the catalogid input field.

Next, add the JavaScript function to process the response processResponse (). In
the processRequest () JavaScript function, when the HTTP request has loaded
completely, which corresponds to the readystate property value 4 and the
HTTP status ok, which in turn corresponds to the status property value 200, the
processResponse () JavaScript function gets invoked. In the processResponse ()
function, obtain the value of the responsexML property, which contains the XML
string returned from the server. This is shown in the following line of code:

Var xmlMessage=xmlHttpRequest.responseXML;

[133]

www.it-ebooks.info

http://www.it-ebooks.info/

Using Ajax

The responseXML property contains the <valid/> element, which indicates the
validity of the catalogId value specified in the input form. Obtain the value of
the <valid/> element using the getElement sByTagName (string) method. This
is shown in the following lines of code:

var
valid=xmlMessage.getElementsByTagName ("valid") [0] .firstChild.
nodeValue;

If the <valid/> element value is true, set the validationMessage div tag to
Catalog Id is Valid, and enable the submit button in the input form. Also, set the
value of the form fields to an empty string so that new input values can be specified:

if (valid=="true") {
varvalidationMessage=document .getElementById
("validationMessage") ;
validationMessage.innerHTML = "Catalog Id is Valid";
document .getElementById ("submitForm") .disabled = false;

If the Catalog ID value is valid, a new catalog entry can be created by adding values
for the different values of a catalog entry. Submit the form with the Submit button.
If the <valid/> element value is false, set the validationMessage div tag in the
CatalogID field row to Catalog Id is not Valid, and disable the Submit button.
Set the values of other input fields to the values returned in the XML message from
the server. For example, the journal field value is set as follows, setting the values
of the other fields as an example of autocompletion with Ajax:

if (valid=="false") {
var validationMessage=document.getElementById("validationMessage") ;

validationMessage.innerHTML = "Catalog Id is not Valid";
document .getElementById ("submitForm") .disabled = true;

var journal=xmlMessage.getElementsByTagName
("journal") [0] .firstChild.nodeValue;

var journalElement=document.getElementById("journal") ;
journalElement.value = journal;

[134]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

The ajaxJBoss. jsp file is listed as follows:

<html>
<head>

<script type="text/javascript"s>

function validateCatalogId(){
var xmlHttpRequest=init () ;
function init () {

if (window.XMLHttpRequest) {
return new XMLHttpRequest () ;
} else if (window.ActiveXObject) {
return new ActiveXObject ("Microsoft .XMLHTTP") ;

}
}

var catalogId=document.getElementById("catalogId") ;
xmlHttpRequest .open ("GET", "AjaxFormServlet?catalogId="+

encodeURIComponent (catalogId.value), true);

xmlHttpRequest .onreadystatechange=processRequest;
xmlHttpRequest.send (null) ;

function processRequest(){
if (xmlHttpRequest.readyState==
if (xmlHttpRequest.status==200)
processResponse () ;

}
}
}

function processResponse(){

4){
{

var xmlMessage=xmlHttpRequest.responseXML;
var valid=xmlMessage.getElementsByTagName ("valid") [0] .

firstChild.nodeValue;

gell) ;

if (valid=="true") {

var validationMessage=document.getElementById ("validationMessa

validationMessage.innerHTML = "Catalog Id is Valid";
document .getElementById ("submitForm") .disabled = false;
var journalElement=document.getElementById("journal") ;
journalElement.value = "";

var publisherElement=document.getElementById ("publisher") ;
publisherElement.value = "";

var editionElement=document.getElementById("edition") ;
editionElement.value = "";

var titleElement=document.getElementById("title") ;

[135]

www.it-ebooks.info

http://www.it-ebooks.info/

Using Ajax

gell) ;

titleElement.value = "";
var authorElement=document.getElementById ("author") ;
authorElement.value = "";

}

if (valid=="false") {

var validationMessage=document.getElementById ("validationMessa

validationMessage.innerHTML = "Catalog Id is not Valid";
document .getElementById ("submitForm") .disabled = true;

var journal=xmlMessage.getElementsByTagName ("journal") [0] .

firstChild.nodeValue;

var publisher=xmlMessage.getElementsByTagName ("publisher") [0].

firstChild.nodeValue;

var edition=xmlMessage.getElementsByTagName ("edition") [0].

firstChild.nodeValue;

var title=xmlMessage.getElementsByTagName ("title") [0].

firstChild.nodeValue;

var author=xmlMessage.getElementsByTagName ("author") [0] .

firstChild.nodeValue;

var journalElement=document.getElementById ("journal") ;
journalElement.value = journal;

var publisherElement=document.getElementById ("publisher") ;
publisherElement.value = publisher;

var editionElement=document.getElementById("edition") ;
editionElement.value = edition;

var titleElement=document.getElementById("title") ;
titleElement.value = title;

var authorElement=document.getElementById ("author") ;
authorElement.value = author;

}
}
}

</script>
</head>
<body>

<hl>Form for Catalog Entry</hl>

<form name="AjaxFormServlet" action="AjaxFormServlet"
method="post">

[136]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

<table>
<tr>
<td>Catalog Id:</td>
<td><input type="text"
size="20"

id="catalogId"
name="catalogId"
onkeyup="validateCatalogId() "></td>

<td>
<div id="validationMessage"></div>
</td>
</tr>
<tr>
<td>Journal:</td>
<td><input type="text"
size="20"

id="journal"
name="journal"></td>

</tr>
<tr>
<td>Publisher:</td>
<td><input type="text"
size="20"

id="publisher"
name="publisher"></td>

</tr>
<tr>
<td>Edition:</td>
<td><input type="text"
size="20"

id="edition"
name="edition"></td>

</tr>
<tr>
<td>Title:</td>
<td><input type="text"
size="20"
id="title"
name="title"></td>
</tr>
<tr>
<td>Author:</td>
<td><input type="text"
size="20"

[137]

www.it-ebooks.info

http://www.it-ebooks.info/

Using Ajax

id="author"
name="author"></td>
</tr>
<tr>
<td><input type="submit"
value="Create Catalog"
id="submitForm"
name="submitForm"></td>
</tr>
</table>
</form>
</body>
</html>

Add a catalog.jsp JSP to output a message that a catalog entry has been created
without error, as follows:

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"
pageEncoding="IS0-8859-1"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd" >
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=IS0-8859-1">
<title>Catalog entry created without error</title>
</head>
<body>
Catalog entry created without error
</body>
</html>

Add another error. jsp JSP to indicate an error message, as follows:

<%@ page language="java" contentType="text/html; charset=IS0-8859-1"
pageEncoding="IS0-8859-1"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd" >
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=IS0-8859-1">
<title>Error page</titles>
</head>
<body>
Error Page
</body>
</html>

[138]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Creating a servlet

In this section, we will create a servlet to process an Ajax request. Select File | New |
Other, and in New, select Web | Servlet, which is shown as follows. Then, click

on Next.

ﬂ Mew

Select a wizard

Create a new Serelet

Wifizards:
type filter text

o = User Assistance
4 = Weh
& CSSFile

1 Filter

©F HTML File
[JSPFile
ﬁ JEP Tag
& Listener

& Servlet

% Dynarnic Web Project

:‘ﬁ Static Web Project

L.m |

[Showe &1 Wizards,

< Back

Cancel

[139]

www.it-ebooks.info

http://www.it-ebooks.info/

Using Ajax

The Create Servlet wizard gets started. Select Project as jboss-ajax, Source folder
as src\main\java, Java package as org.jboss.ajax.controller, Class name

as AjaxFormServlet, and Superclass as javax.servlet.http.HttpServlet, as
shown in the following screenshot. Then click on Next.

ﬂ Create Servlet l = |

Create Serviet =

Specify class file destination,

Project: jbioss-ajax vl
Source folder: Yjboss-ajadsroimainjava Browse...
lawa package: orgjbossajaxcontroller Browse...

Class name: .ﬂ.jaanrmServleﬂ

Superclass: Javaxservlethttp Hitp Serdlet Brovwse...

[T Use an existing Servlet class ar JSP

AjaxFormSerdet Browse...

@' < Back ” Mext = M [Finish l ’ Cancel

[140]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Specify URL mappings as AjaxFormServlet and click on Next, as shown in the
following screenshot:

(@] Create Servlet E@g

Create Servlet
Enter servlet deployrment descriptor specific infarmation,

Marne: AjaxFarmSerdet

Description:

Initialization parameters:

Mame Walue Description Add...
Edit..

Remove

URL rappings:

fBjaxFormSendet Add...
Edit...

Remove

@ <Back || Mext> ﬂ[Finish | [Cancel

[141]

www.it-ebooks.info

http://www.it-ebooks.info/

Using Ajax

Select the doGet and doPost methods to create the servlet, as shown in the following
screenshot. Once this is done, click on Finish.

ﬂ Create Servlet L =) &J

Create Serviet o

Specify modifiers, interfaces to implement, and method stubs to generate,

Modifiers: public abstract [T final

Interfaces:
Add...

Rermowe

Which method stubs would you like to create?

Constructors from superclass
[¥]Inherited abstract methods

[TTinit [] destroy [7] getServletConfig
DgetSENIetInfo [service [¥] doGet

[¥] doPaost [T daPut [T doDelete

[T doHead DdoOptions [T daTrace

@' Mext = ’ Finish %J [Cancel]

AjaxFormServlet gets created and the servlet gets configured in web . xm1, including
a URL mapping to /aAjaxFormServlet. We included /AjaxFormServlet in the URL
to send an XMLHt t pRequest request to invoke AjaxFormServlet. The web.xml file is
listed as follows:

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns="http://xmlns.jcp.org/xml/ns/javaee" xmlns:xsi="http://
www.w3.0rg/2001/XMLSchema-instance" xsi:schemaLocation="..."
version="3.1">

<display-name>jboss-ajax</display-name>
<servlets>
<description></description>

[142]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

<display-name>AjaxFormServlet</display-name>
<servlet-name>AjaxFormServlet</servlet-name>

<servlet-class>org.jboss.ajax.controller.AjaxFormServlet</servlet-
class>

</servlet>
<servlet-mapping>
<servlet-name>AjaxFormServlet</servlet-name>
<url-pattern>/AjaxFormServlet</url-pattern>
</servlet-mapping>
</web-app>

As the HTTP method is GET, the doGet () method of the servlet gets invoked. In the
doGet method, retrieve the value of the catalogId parameter, as shown in the
following line of code:

String catalogId = request.getParameter ("catalogId");

Apply the business logic on the catalogId value to validate the value. We have
used the business logic that the value must be unique to be valid, which implies the
same value must not already be in the database. Create a DataSource object using
a JNDI lookup with an InitialContext object on the java:jboss/datasources/
MySQLDS data source.

Create a Connection object from the DataSource object using the getConnection ()
method. Using the catalogId value specified in the input form, create a SQL query
to retrieve the data from the database. Create a Preparedstatement object from

the connection object using the prepareStatement (String) method. Run the
SQL query using the executeQuery () method to obtain a ResultSet object. If the
ResultSet object is empty, it implies that the catalogid field value is not defined
in the catalog database table; the catalogid field value is valid. If the Resultset
object contains data, it implies that the catalogId value already exists in the
database; the catalog1d field value is not valid.

Next, construct an XML string to return to the server. If catalogId is not valid,
construct an XML string that includes the different field values for the catalog entry
as XML elements. The XML string is required to have a root element, catalog, for
example. Include a <valid> </valid> element that specifies the validity of the
Catalogld field value with a boolean value. If the CatalogId value is valid, add
only the <valid> </valid> element to the XML string, as shown in the following
code snippet (the variable rs represents ResultSet):

if (rs.next()) {
out.println("<catalog>" + "<valid>false</valid>" + "<journal>" +
rs.getString(2) + "</journal>" + "<publisher>" +
rs.getString(3) + "</publisher>" + "<edition>" +
rs.getString(4) + "</edition>" + "<title>" +

[143]

www.it-ebooks.info

http://www.it-ebooks.info/

Using Ajax

rs.getString(5) + "</title>" + "<author>" +

rs.getString(6) + "</author>" + "</catalog>");
} else {

out.println("<valid>true</valid>") ;

}

Set the content type of Ht tpServletResponse to text/xml because the response
to an Ajax request is in the XML format, and set the Cache-Control header to
no-cache to prevent JSPs and servlets from being cached. As the Ajax response is
updated with each request, caching must be disabled to prevent a cached response
from being reserved, as follows:

response.setContentType ("text/xml") ;
response.setHeader ("Cache-Control", "no-cache");

If the catalogId field value does not exist in the database, the input form with
field values for a new catalog entry can be submitted using the PosT method. In the
dopost method in the servlet, create a JDBC connection to the MySQL database as
in the doGet method, and add a catalog entry with an INSERT SQL statement.

The FormsServlet.java Ajax is listed as follows:

package org.jboss.ajax.controller;

import java.io.*;

import java.sqgl.*;

import javax.naming.InitialContext;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.sqgl.DataSource;

public class AjaxFormServlet extends HttpServlet {

The doGet method is invoked with an asynchronous request sent using the HTTP
GET method. Run a SQL query using Catalog Id, which is specified in the input form
to generate a result set. Set headers for the HttpServletResponse object, and create
a PrintWriter object from the HttpServletResponse object. Construct an output as
an XML response, as shown in the following code:

public void doGet (HttpServletRequest request, HttpServletResponse
response)
throws ServletException, IOException {
try {
// Obtain value of Catalog Id field to be validated.

[144]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

String catalogId = request.getParameter ("catalogId") ;

// Obtain Connection
InitialContext initialContext = new InitialContext () ;

DataSource ds = (DataSource)initialContext.lookup ("java:jboss/
datasources/MySQLDS") ;

java.sqgl.Connection conn = ds.getConnection() ;

// Obtain result set

PreparedStatement pstmt = conn.prepareStatement ("SELECT * from
CATALOG WHERE CatalogId = ?");

pstmt.setString(1l, catalogId);
ResultSet rs = pstmt.executeQuery() ;

// set headers before accessing the Writer
response.setContentType ("text/xml") ;
response.setHeader ("Cache-Control", "no-cache");

PrintWriter out = response.getWriter() ;

// then send the response
// If result set is empty set valid element to true
if (rs.next()) {
out.println("<catalog>" + "<valid>false</valid>" + "<journal>"
rs.getString(2) + "</journal>" + "<publisher>"
rs.getString (3 "</publisher>" + "<edition>"
"«/edition>" + "<title>"

"<«/title>" + "<author>"

+
+

+ rs.getString
+ rs.getString
+

(3) +
(4) +
(5) +
rs.getString(6) +
} else {

out.println("<valid>true</valid>") ;

"</author>" + "</catalog>") ;

rs.close() ;
stmt.close () ;
conn.close() ;

} catch (javax.naming.NamingException e) {System.err.println(e.
getMessage ()) ;

} catch (SQLException e) {System.err.println(e.getMessage());

}

[145]

www.it-ebooks.info

http://www.it-ebooks.info/

Using Ajax

The doPost () method is used to create a new catalog entry. Create an
InitialContext object. With a JNDI lookup, create a DataSource object. Obtain a
Connection object from the DataSource object using the getConnection () method.
Create a Statement object using the createstatement () method of the Connection
class. PreparedStatement can be used instead of statement. Create a SQL string
from values retrieved from the input form. Run the SQL statement using the
execute () method. If the SQL statement runs without error, redirect the response

to catalogentrycreated. jsp. If an error is generated, redirect the response to
error. jsp, as shown in the following code:

public void doPost (HttpServletRequest request, HttpServletResponse
response)

throws ServletException, IOException {
try {

// Obtain Connection
InitialContext initialContext = new InitialContext () ;
DataSource ds = (DataSource) initialContext.lookup ("java:jboss/

datasources/MySQLDS") ;

java.sqgl.Connection conn = ds.getConnection() ;

String catalogId = request.getParameter ("catalogId") ;
String journal = request.getParameter ("journal") ;
String publisher = request.getParameter ("publisher");
String edition = request.getParameter ("edition") ;
String title = request.getParameter("title");

String author = request.getParameter ("author") ;

Statement stmt = conn.createStatement () ;

String sgl = "INSERT INTO Catalog VALUES(" + "\'" + catalogId
+ ||\||| + ||’|| + Il\lll + journal + ||\||| + ||’|| + Il\lll

+ publisher + ||\||| + ||’|| + Il\lll + edition + ||\||| + ||’||

+ ||\||| + title + Il\lll + ll,ll + ||\||| + author + ||\||| + ||>||I.

stmt .execute (sql) ;
response.sendRedirect ("catalogentrycreated.jsp") ;

stmt.close() ;
conn.close() ;

catch (javax.naming.NamingException e) {
response.sendRedirect ("error.jsp") ;
catch (SQLException e) ({
response.sendRedirect ("error.jsp") ;

[146]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

}
The AjaxFormservlet class is shown in Package Explorer in the following
screenshot. The errors shown in the listing will be removed in the next section
once the dependencies are satisfied through Maven.

L5 Praject Explorer 53 = <;==;>| ~ =0
4 5‘3 jboss-ajax
B 1AX-RSWWeb Services
- |7 WWeb Resources
s A JANAWS Wideh Services
- 4 P& Content
- g% lava Resources
» =, JavaScript Resources
- L@ Deployed Resources
& 3= src
4 7 main
4 3 java
4 3 arg
4 g jboss
4 [ajax
4 (7= controller
@ AjaxFormSerdet.java [}
» [resources
4 7= webapp
[resources
4 (= WEB-INF
beans.xml
faces-configeml
K| jboss-ajax-dsaml
gt wveboxml
gl ajaxlBoss jsp
p catalogjsp
Ei errorjsp
o = test
» (= target
[pornsml

Deploying the Ajax application
with Maven

In this section, we will compile, package, and deploy the Ajax application to
WildFly 8.1 using the Maven build tool. The information about the project and
the configuration details are specified in pom.xml in the root directory of the

Ajax application.

[147]

www.it-ebooks.info

http://www.it-ebooks.info/

Using Ajax

As we are using the MySQL database, add a dependency on the MySQL JDBC Java
Connector, as follows:

<dependency>
<groupId>mysgl</groupId>
<artifactId>mysqgl-connector-java</artifactIds>
<version>5.1.22</versions>

</dependency>
Add the dependency for the Servlet 3.1 AP, as follows:

<dependencys>
<groupId>javax.servlet</grouplds>
<artifactId>javax.servlet-api</artifactId>
<version>3.1.0</versions>

</dependency>

Add the Maven compiler plugin and the Maven WAR plugin in the build element.
In the configuration for the Maven wAR plugin, specify the output directory as the
deployments directory of WildFly 8.1. The pom. xml file is listed as follows:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://
www.w3.0rg/2001/XMLSchema-instance" xsi:schemalocation="http://maven.
apache.org/POM/4.0.0 http://maven.apache.org/maven-v4 0 0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupld>org.jboss.ajax</groupld>
<artifactId>jboss-ajax</artifactIds>
<version>1.0.0</version>
<packagings>war</packaging>
<name>WildFly Ajax</name>
<description>A starter Java EE 7 webapp project for use on JBoss
WildFly / WildFly, generated from the jboss-javaee6-webapp archetype</
descriptions>
<urlshttp://wildfly.org</urls>
<licenses>
<license>
<name>Apache License, Version 2.0</name>
<distributions>repo</distributions>
<urls>http://www.apache.org/licenses/LICENSE-2.0.html</urls>
</license>
</licenses>

<properties>
<!-- Explicitly declaring the source encoding eliminates the
following message: -->

[148]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

<!-- [WARNING] Using platform encoding (UTF-8 actually) to copy
filtered resources, i.e. build is platform dependent! -->

<project.build.sourceEncoding>UTF-8</project.build. sourceEncoding>

<!-- JBoss dependency versions -->

<version.wildfly.maven.plugin>1.0.2.Final</version.wildfly.maven.
plugin>

<!-- Define the version of the JBoss BOMs we want to import to
specify tested stacks. -->

<version.jboss.bom>8.1.0.Final</version.jboss.bom>

<version.arquillian.container>8.0.0.Final</version.arquillian.
containers>

<!-- other plugin versions -->
<version.compiler.plugin>3.1l</version.compiler.plugin>
<version.surefire.plugin>2.16</version.surefire.plugin>
<version.war.plugin>2.1l.1</version.war.plugins>
<!-- maven-compiler-plugin -->
<maven.compiler.target>1l.7</maven.compiler.target>
<maven.compiler.source>1l.7</maven.compiler.sources>
</properties>
<dependencyManagement >
<dependencies>
<dependencys>
<groupIds>org.wildfly.bom</groupId>
<artifactId>jboss-javaee-7.0-with-tools</artifactId>
<version>${version.jboss.bom}</versions>
<types>pom</type>
<scope>import</scope>
</dependency>
<dependencys>
<groupIds>org.wildfly.bom</groupId>
<artifactId>jboss-javaee-7.0-with-hibernate</artifactIds>
<version>${version.jboss.bom}</versions>
<types>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement >
<dependencies>

<!-- First declare the APIs we depend on and need for compilation.
All of them are provided by JBoss WildFly -->

<dependencys>
<groupIds>javax.servlet</groupIld>
<artifactId>javax.servlet-api</artifactIds>
<version>3.1.0</versions>

</dependency>

[149]

www.it-ebooks.info

http://www.it-ebooks.info/

Using Ajax

<dependencys>
<groupIds>mysqgl</groupId>
<artifactIds>mysqgl-connector-java</artifactIds>
<version>5.1.22</version>

</dependency>
</dependencies>
<builds>
<!-- Maven will append the version to the finalName (which is the
name given to the generated war, and hence the context root) -->
<finalName>${project.artifactId}</finalName>
<pluginss>
<!-- Compiler plugin enforces Java 1.6 compatibility and
activates annotation processors -->
<plugins>

<artifactId>maven-compiler-plugin</artifactIds>
<version>${version.compiler.plugin}</versions>
<configurations>
<source>${maven.compiler.source}</sources>
<target>${maven.compiler.target}</target>
</configurations>
</plugin>
<plugins>
<artifactIds>maven-war-plugin</artifactIds>
<version>${version.war.plugin}</versions>
<configurations>

<outputDirectory>C:\wildfly-8.1.0.Final\standalone\
deployments</outputDirectorys>

<!-- Java EE 7 doesn't require web.xml, Maven needs to catch
up! -->
<failOnMissingWebXml>false</failOnMissingWebXml >
</configurations>
</plugin>
<!-- The WildFly plugin deploys your war to a local WildFly
container -->
<!-- To use, run: mvn package wildfly:deploy -->
<plugins>

<groupIds>org.wildfly.plugins</groupId>
<artifactIds>wildfly-maven-plugin</artifactIds>
<version>${version.wildfly.maven.plugin}</versions>
</plugins>
</plugins>
</build>
</project>

[150]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

After the dependencies have been added to pom.xml, the errors in the JSPs and the
servlet get removed, as shown in the following screenshot:

Iy Project Explaorer &3 = <=-_3|';>| =0
4 53 Jbioss-ajax L*‘s
B 1AX-RSveb Services
(A WWeb Resources
s A 1AW Wieb Services
» 4 IPA Content
> % lava Resources
» =, lavaScript Resources
» L Deployed Resources
a4 = stC
4 = mmain
4 = Java
a4 = org
4 = jboss
4 = ajan
4 = controller
_@ AjaxFormSerdetjava
. [resources
4 = webapp
= resources

4 = WWEB-TMNF
> beansxml
. faces-config.xml
K| jboss-ajax-dsxml
weeb.xml
ajaxlBoss.jsp
catalog.jsp
BFTOFj5p
Lo test
¢ = target
[M] pornsenl
[151]

www.it-ebooks.info

http://www.it-ebooks.info/

Using Ajax

Right-click on pom.xml and select Run As | Maven install, as shown in the
following screenshot:

E.].'avaEE-jb:ss-a
i LG
3 f e

L7 Project Explorer
4 53 jboss-ajax
AP 18E-RE
» 4L Web Re
s A JAKANY
> 4 JPA Cop
o i Java Re
- m JavaScor
» LG Deploye
> ‘_'_/ src
> = target
[m] parnsr

ot

&
&

L]

Mewy

Showr In
Open
Open With

Copy

Copy Qualified Name
Paste

Delete

Rermove from Context
fark as Landrmark
Build Path

fove...

Renarne..

Impott..,
Export..,

Refresh
Mark as Deployable

Walidate

Showe in Rermote Systerns view

Profile Az
Debug &s
Run &5

Tearm
Compare With
Replace Yith
ITidy

fawven

Source

Exclude Walidation

Properties

3

Alt+Shift +4/ +
F3

Ctrl+C

Ctrl+
Delete
Ctrl + &kt +Shift+Dowen
Ctrl +81t+Shift+Up
3

F5

Alt+Enter

RARRAAAD

Servers
1 Run on Serser
2 Maven build
3 Mawven build...
4 Maven clean

5 Maven clean werify

6 Mawven generate-sources

T Maven install

3 Mawven test

Run Configurations...

Data 5.

Shippets B Consolg
Alt+Shift+3, R
Alt+Shift+3, M

The jboss-ajax application gets compiled and packaged into jboss-ajax.war,
which gets the output to the deployments directory. The Maven build outputs the
message BUILD SUCCESS, as shown in the following screenshot:

[152]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

{2 Markers [C] Properties 4L Servers [Data Source Explarer [f5 Snippets B Console 52 | 53 Palette €] ErrarLog = O

X% ZEEE *2 -0
<terminated > C\Program Files\Javatjdk1L7.0_51binyjavaw.exe (Mow 24, 2014, 2:22:21 PA)
[INFO]
[INFO] --- maven-war-plugin:2.1.1:war (default-war) @ jboss-ajax ---
[INFO] Packaging webapp
[INFO] Assembling webapp [jboss-ajax] in [C:iUsers\Deepak Wohra'\Eclipse\workspaceljboss-ajax\targetijboss-aja
[INFO] Processing war project
[INFO] Copying webapp resources [CiiUsershDeepak wWohra\Eclipse\workspace'jboss-ajaxtsrcimaintwebapp]
[INFO] Webapp assembled in [395 msecs)
[INFO] Building war: C:\wildfly-8.1.8.Finalistandalene‘\deploymentstjboss-ajax.war

[WARNING] Warning: selected war files include a WEE-INF/web.:ml which will be ignered

{webzml attribute is missing frem war task, or igneredebzml attribute is specified as “true')

[INFO]

[INFO] --- maven-install-plugin:2.4:install (default-install) @ jboss-ajax ---

[INFO] Installing C:\wildfly-8.1.2.Final\standalonetdeploymentsijboss-ajax.war to C:\UsersiDeepak Wohra'.m2im
[INFO] Installing C:‘\UsersiDeepak Wohra‘\Eclipseiworkspaceljboss-ajaxi\pom.sml to C:iUsers\Deepak wohral.m2\rep
[INFO] ==mmm e e e e e e e e e e e e e

[INFO] BUILD SUCCESS

[INFO] === m e

[INFO] Total time: 2@.479 s

[INFO] Finished at: 2014-11-24T14:22:49-05:20

[INFO] Final Memory: 17M/216M

[INFO] === m e

Start WildFly 8.1 if it is not already started. The jboss-ajax.war gets deployed to
WildFly 8.1 and the web context root | jboss-ajax gets registered. The jboss-ajax.
war gets deployed and gets listed in WildFly 8.1. Administration Console, as shown
in the following screenshot:

O hittp://ocalhost 9990/ console/Spp. htmitdeployments ¢ | |Qr Google

WildFly 8.1.0.Final Messages: 0 & mysal

Home Configuration Runtime Admini

= Server DEPLOYMENTS

Owerview

Manage Deployments Deployments

Patch Management Currently deployed application components.
= Sfatus

Add Remove En/Disable Replace
= Platform
I jboss-ajax.war v

Environment

in

= Subsystems
Datasources
JPa
JHDI View
Transaction Logs
Transactions

Wehservices Deployrment

Meed Help?

Name: jboss-ajax.war

[153]

www.it-ebooks.info

http://www.it-ebooks.info/

Using Ajax

Running the Ajax application

In this section, we will run the Ajax application. Run ajaxBoss. jsp using the URL
http://localhost:8080/jboss-ajax/ajaxJIBoss.jsp. The input form for a
catalog entry gets displayed, as shown in the following screenshot:

& http//localhost:B080/jboss-ajax/ajax)Boss.jsp _—

4 + @http:fflucaIhDst:SDSDf‘ijss—ajaxHajaﬂBoss.jsp ¢ | | Q- Google D' ﬁ'
Form for Catalog Entry

Catalog Id:
Journal:
Publisher:
Edition:
Title:
Author:

Create Catalog

Start to specify a Catalog Id value. As an Ajax request is sent to the server, with each
modification to the Catalog Id value, a response is returned from the server and

a message gets displayed about the validity of Catalog Id, which is shown in the
following screenshot:

[154]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

@ http//localhost8080/jbass-ajaxiaaBazsyop T I s e e

|_ <> ||+ @http:ff'localhost:BUEUf‘jboss—ajax."ajaxJBoss.jsp ¢ | Q- Google | O~ &~

Form for Catalog Entry

Catalog Id: c | Catalog Id is Valid

Journal:

FPublisher:

Edition: I

Title:

Author:

'
\ ==

The business logic used for Catalog Id to be valid is that the value should be unique,
but another logic can be used instead. Catalog Id (catalog) is still valid, as shown in

the following screenshot:

@ http:/flocalhost8080/jboss-ajaxlajaiBosssp T T o o= e
(<> ||+ B8 http://localhost3080/jhoss -ajaxfajaxBossjsp & | | Q- Google | O~ &
Form for Catalog Entry
Catalog Id: [catalug J Catalog Id 15 Valid
Journal
Publisher: I
Edition:
Title:
Authot:
|
| — —
[155]

www.it-ebooks.info

http://www.it-ebooks.info/

Using Ajax

Specify a Catalog Id value that is already in the MySQL database, catalogl for

example. A message Catalog Id is not Valid gets displayed, and the input fields
get filled with the catalog entry's field values, as follows:

& http://localhost:B080/jboss-ajax/ajax)Boss jsp '—_—_1

-« + @http:f,-‘localhost:SDSUf‘jboss-ajaxfajaﬂBoss.jsp C | |Qr Google | O~ L&~

Form for Catalog Entry

Catalog Td: | catalogl | Catalog Id 12 not Valid
Journal: Oracle Magazine

Publisher: Oracle Fublishing

Edition; September-October 201

Title: Using Oracle Esshase F

Author: hark Rittman and Yenks

Create Catalog

Specify catalog2 as Catalog Id, which is also not valid, as shown in the following
screenshot:

& http://localhost:8080/jboss-ajax/ajax) Bo__

| + @http:fflnta|hnst:BDBD,-'jhnss-ajax.-‘ajaxJans.jsp ¢ | |Qr Google | [~ £~
Form for Catalog Entry
Catalog Id: catalog? Catalog Id is not Valid
Journal: Oracle Magazine
Publisher: Oracle Publishing I
Edition: July-August 2010
Title: Infrastructure Software a ’
Author: Dranvid Baurm

Create Catalog

[156]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Specify catalog3 as Catalog Id. As the catalog3 value is not already in the

database, Catalog Id is valid, as shown in the following screenshot:

@ http:/flocalhost:8080/boss-ajax/ajax)Boss.js p__

| «|» | |+_@ hitp://localhost:8080/jboss-ajaxfajadBassjsp & | | O Google

| O- %~

Form for Catalog Entry

Catalog Id: Catalog Id is Valid
Tournal:

Publisher:

Edition:

Title:

Author:

Create Catalog

Add field values for a new catalog entry and click on Submit, as shown in the

following screenshot:

@ htlp:f’ﬂocaIhosl:BOBO.r‘jboss-ajaxfaja)dBossjspr—_

=

| «|» | |+_@ hitp:/Alocalhost:8080/jboss-ajax/ajadBoss jsp & | | Qr Google

| O- %

Form for Catalog Entry

Catalog Id: Catalog Id is Valid
Jemurnal: Oracle kagazine

TPublisher: Oracla Fublishing

Edition: November-December 2

Title: Customize Your Applica

Author: James L. Weawer

Create atalog

[157]

www.it-ebooks.info

http://www.it-ebooks.info/

Using Ajax

A new catalog entry gets created as indicated by the message shown in the
following screenshot:

&) Catalog entry ch_

|_ 4> ||+ @http:,-‘,-‘l0caIhost:8DSﬂf‘jboss-ajax.-‘catalog.jsp ¢ | Q- Google | O~ &~

Catalog entry created without error l
i

If the catalog3 value is re-added to the Catalog Id field, the Catalog Id is not Valid
message gets displayed, as shown in the following screenshot:

@ httpiiocalnost 8080 jboss ajmuamaBoss=> W W o=l S
_ 4> ||+ @http:,-‘,-‘IocaIhost:8D8Ufjboss-ajaxfajaﬂBoss.jsp ¢ | |Qr Google | O £~
Form for Catalog Entry |

"

Catalog Id: Catalog Id is not Valid

Jeurnal: Oracle Magazine

TPublisher: Oracle Publishing

Edition: NovemberDecember 2

Title: Customize Your Applica,

Author: James L. ‘Weawer

Create Catalog

[158]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Summary

In this chapter, we learned how to develop an Ajax application in Eclipse. We
compiled and packaged the application with the Maven build tool and deployed
the application to WildFly 8.1. We ran the Ajax application in a browser with
the MySQL database. We discussed only some of the methods and attributes

of the XMLHt tpRequest object. For complete information on XMLHt tpRequest,

refer to http://www.w3.org/TR/XMLHt tpRequest/ and https://developer.
mozilla.org/en-US/docs/DOM/XMLHttpRequest?redirectlocale=en-
US&redirectslug=XMLHttpRequest.

In the next chapter, we will discuss the GWT web framework, which provides Ajax
support in Ul components as a built-in feature.

[159]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Using GWT

Google Web Toolkit (GWT) is a toolkit for developing complex, Model-View-
Presenter model, browser-based web applications. A client-side application is
developed as Java using the GWT SDK and deployed as compiled JavaScript. In
addition to a Java API, GWT provides widgets, which are integrated with support
for Ajax. In Chapter 4, Using Ajax, we developed an Ajax application using the
XMLHt tpRequest object, which involved creating, sending, and processing an Ajax
request. The GWT SDK compiler compiles Java into JavaScript, which includes the
XMLHt tpRequest optimized to run on all browsers.

This chapter consists of the following sections:

* Setting up the environment

* Running the starter project on WildFly 8.1
* Creating a GWT project

* Creating a module

* Create an entry-point class

* Creating an HTML page

* Deploying the GWT project with Maven

* Running the GWT project

[161]

www.it-ebooks.info

http://www.it-ebooks.info/

Using GWT

Setting up the environment

We need to install the following software:

WildFly 8.1.0.Final: Download wildfly-8.1.0.Final.zip from
http://wildfly.org/downloads/.

MySQL 5.6 Database-Community Edition: Download this edition from
http://dev.mysql.com/downloads/mysql/. When installing MySQL, also
install Connector/J.

Eclipse IDE for Java EE Developers: Download Eclipse Luna from
https://www.eclipse.org/downloads/packages/release/Luna/SR1.

JBoss Tools (Luna) 4.2.0.Final (or the latest version): Install this as a plugin
to Eclipse from Eclipse Marketplace (http://tools.jboss.org/downloads/
installation.html).

Apache Maven: Download version 3.05 or higher from http://maven.
apache.org/download.cgi.

Java 7: Download Java 7 from http://www.oracle.com/technetwork/
java/javase/downloads/index.html?ssSourceSiteId=ocomcn.

The GWT version must be 2.6. The reason is that the Google plugin for Eclipse
supports the 2.6 version and not 2.7. Extract the GWT z1p file to the c: drive. Set
the environment variables JAVA HOME, JBOSS_HOME, and MAVEN HOME. Add
%JAVA_HOME%/bin, $MAVEN_ HOME%/bin, and $JBOSS_HOME%/bin to the PATH
environment variable. Create a WildFly 8.1 runtime as discussed in Chapter. 1,
Getting Started With EJB 3.x. Install JDK 7 and set the JDK compliance level to 1.7 in
the Eclipse IDE. To set the JDK compliance level, select Windows | Preferences. In
Preferences, select Java | Compiler. Select Compiler compliance level as 1.7, as
shown in the following screenshot:

[162]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

(8] Preferences T TR]]
tepe filker tewt Compiler f=1E - -

> General
. Ant

> Help
> Install/Update
4 Java
> Bppearance
> Build Path
> Code Style
> | Cornpiler
> Debug
> Editar
> Ihstalled JREs
IUnit

> Jawa EE

> Java Persistence
> JavaScript

s Melylyn

> Rernote Systems
» RunfDebug
s Berver
> Team
Terminal

4| 1

®@

> Data Managerent

Properties Files Editc

> Plug-in Developrment

»

IDK Compliance
Cormpiler compliance level:

[¥]Use default compliance settings

m

Classfile Generation

> Usage Data Collector

}

Configure Project Specific Settings...

’ Restare Defaults l ’

1.7

1.7

1.7

Error

Errar

[¥] Add wariable attributes to generated class files (used by the debugger)

[V Add line nurnber attributes to generated class files (used by the debugger)
[¥] Add source file narne to generated class file (used by the debugger)

[¥] Preserve unused (hever read) local variables

Inline finally blocks {larger class files, but improved performance)

Apply

)

[

oK] [Cancel

)

We also need to install Google Plugin for Eclipse by performing the following steps:

1.

In Eclipse, select Help | Install New Software. In the Install (Available
Software) wizard, click on Add to add a GWT repository. In Add
Repository, specify Name (Google Plugin for Eclipse 4.4)and specify
Location as https://dl.google.com/eclipse/plugin/4 .4, as shown in

the following screenshot. After this, click on OK.

E Add Repository

(e

Marne:

Location:

Gaoogle Plugin for Eclipse 4.4

https:ffdl.google.com/feclipse/plugin/4.4

Local...

oK E&J | Cancel |

[163]

www.it-ebooks.info

http://www.it-ebooks.info/

Using GWT

2. In Work With, select the Google Plugin for Eclipse 4.4 repository. From the
items listed, select the Google Plugin for Eclipse (required), GWT Designer
for GPE, and SDK | Google Web Toolkit SDK 2.6.0, as shown in the
following screenshot. Then, click on Next.

Available Software
Check the items thatyou wish to install,) -
Wéork with: Google Plugin for Eclipse 4.4 - httpsffdl.google.cam/feclipse/plugin/d.4 - Add...

Find rnare softweare by weorking with the "Awailable Software Sites” preferences.

type filter text

Marre Wersioh
» []000 Developer Tools

> [C]000 Google &pp Engine Tools far &ndroid (requires &0T)

- [C]000 Google App Engine Toals far Maven (requires m2e-wtp 1.5+)

> 000 Google Plugin for Eclipse (required)

> [V 000 GWT Designer for GPE

a (W[000 SDKs

[] 4§+ Google App Engine Java SDK 19,15 1915
[¥] 4§+ Google Web Toolkit SDK 2.6.0 2.6.0
’ Select All] [Deselect All 8 iterns selected
Details
-
Showr only the latest versions of available softaare Hide iterns that are already installed
Group iterns by category What is already installed?

[] Show only software applicable to target environment
Contact all update sites during install to find required software

3. InInstall Details, the different items to be installed are listed, including
Google Plugin for Eclipse 4.4 and Google Web Toolkit SDK 2.6.0, as
shown in the following screenshot. Now, click on Next.

[164]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

. e
Install Details
Rewiew the iterns to be installed, :,)._—J
Marne Wersion
% Google Plugin for Eclipse 4.4 3.8.0,201410302155-rel-r44
% Google Web Toolkit SDK 2.6.0 2.6.0
@ GWT Desigher Core 313 rdd201405021502
. [FL GWT Designer Editar 3.1.3.rdd201405021509
. [ST Designer GPE 3.1.3.r44:201405021554
% WindowBuilder Core L7.0.rdd:201405021445
% WindowBuilder CS5 Support L7.0.rd4:201405021453
> @: WindowBuilder XML Core (requires Eclipse WTPAWSET) LT.0.rd44:201405021458
4| 11 3
Size! Unknown

Details

@ | <Back | Next> L\r] Finish

4. In Review Licenses, select I accept the terms of the license agreement and
click on Finish. Google Plugin for Eclipse gets installed.

Running the starter project on WildFly 8.1

In the Get Started with the GWT SDK section (https://developers.google.com/
web-toolkit/gettingstarted), creating a first web application is discussed. In
this section, we will create the starter application and run the application on WildFly
8.1. Create the application with webAppCreator. Change directory (with the cd
command) to the GWT installation directory and run the following command to
create the starter web application.

>cd gwt-2.6.0
>webAppCreator -out MyWebApp com.mycompany.mywebapp.MyWebApp

[165]

www.it-ebooks.info

http://www.it-ebooks.info/

Using GWT

The application gets created and looks like the following screenshot:

Created

B Administrater: C:\Windows\system32\cmd.exe

IC=guwt—2 .6 .@>uebAppCreator
iGenerating from templates:
Mot creating tests bhecause

directory
directory
directory
directory
directory
directory
directory
directory
directory

PSR <

—out MylebApp com.mycompany.mywebapp.Mylle bApp
[zample, eclipse. readme. ant]
—junit argument was not specified.

Mylle bApp

Mylle bAppssrc

Mylle bApp s rchcomsmycompan ysmywehapp

Mylle bApp s rcrcomsmycompan ysmywe happsc lient
Mylle bApp s rchcomsmycompan ysmywe happ server
Mylle bApp s rcrcomsmycompan ysmywe bappsshared
Mylle bAppstest

Mylle bAppstesti com~mycompany mnyvebhapp

Mylle bApprwar

directory MyllebApp war-WEB-INF
file HMylebdpprsrcicomsmycompanysmywebapp MyllebApp.gut.xml
i Mylle bApprsrescomwmycompanysnyvebappsclientGreetingService . java
Mylle bApprerescomwmycompanysnywebappsclientsGreet ingServicefAzync . jav

reated
reated

Mylle bApprsrescomwmycompanysnyvebappsclient<Myllebfipp. java
Mylle bApprsrescomwmycompanysnyvebappiserversGreetingServiceImpl. java

Mylle bApprerescomwmycompanysnyvebappshared FieldUerifier. java
Mylle bApprwarWEB-INF~uweb.xml

Mylle bAppruwarsMylebfpp.ces

Mylle bApprwar<MyllebApp. html

MyllebApprwar~favicon.ico

MyllebApp™.clazspath

Mylle bApp™.. project

Mylle bApp~MyllebApp. launch

Mylle bApp~README . txt

MyllebApprbuild.xml

The directory structure of the the GWT 2.6 application is shown in the following
screenshot:

guvt-2,6.0
doc
Myifebdpp
His
com
mycompany
rrywvebapp
client
serser
shared
test
com
myCompany
myrvebapp
neat
WEB-IMF

sarnples

[166]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Creating a GWT project in Eclipse

In this section, we will run the starter application on WildFly. We will compile and
package the application with Maven in Eclipse. First we need to import the GWT
application to Eclipse.

In Eclipse, select File | New | Other. In New, select JBoss Central | Java EE Web
Project in the manner shown in the following screenshot. Then, click on Next.

ﬂ Mew [=l i:-?-,l

Select a wizard —

Mifizards:
type filter text

e 1AXE &
4 [~ IBoss Central

3 Angular]Swith Forge Project

5 HTMLS Project

(2} Java EE EAR Project

'jj' Jawa EE Web Project

@" RichFaces Project

A Spring MVWC Project

m

» (= JBoss Tools |
+ = IBass Toals Weh i
s JPA, Wl

Showe Al Wizards,

[167]

www.it-ebooks.info

http://www.it-ebooks.info/

Using GWT

A test gets run for the requirements, which include the m2e and m2eclipse-wtp
plugins, the JBoss Maven Tools plugin, and GWT Plugin, shown in the following
screenshot. Click in the Create a blank project checkbox and select WildFly 8.x
Runtime as Target Runtime. Now, click on Next.

. R

ﬂ Mew Project Example B |5

Java EE Weh Project @
Create a hMaven-hased Java EE 6 weeb application project .f !
Description:

This is your project! It's a sample, deployable Maven 3 project to help you get your foot in the door developing with
Jawa EE 6 on JBoss Enterprise Application Platform 6 or JBoss Application Server 1.1,

This project is setup to allow you to create a cormpliant Java EE 6 application using J5F 2.0, COT 1.0, EIB 3.1, JPA 2.0

and Bean Walidation 1.0

Project based on the arguwildfly.archetypenwildfly-javaeel-webapp-blank-archetype:d 1.0, Final Maven archetype v
Create a blank project

Target Runtirne | WildFly 8. Runtime hd
Requirerments
Type Description Found? Tnstall...
serverfrunti.. This project exarnple requires 1Boss Enterprise Applic.. [
plugin This project example requires mZe >= L0, Downlead and Install..
plugin This project example requires me-wtp »= 0.16.0,
plugin This project example requires 1Boss bMaven Toals,
] T b

@ <Back | Neit >\ Finish

[168]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

In the New Project Example wizard to create a Java EE Web Project, specify Project
name (jboss-gwt) and Package (com.mycompany . mywebapp), as shown in the
following screenshot, and click on Next.

; T
E Mew Project Example l E -
Java EE Web Project _@
Create a MMaven-based lawva EE 6 web application project ::' /

Praject name Jboss-gwt

Package COLImyCarmpany. mynebapp

se default MWarkspace location

Browse,..

[C] Add project(s) to working set

More,..

¢ Advanced

@ <Back | Mexts EEJ[Finish | [Cancel

[169]

www.it-ebooks.info

http://www.it-ebooks.info/

Using GWT

Specify Group Id (com.mycompany . mywebapp), Artifact Id (jboss-gwt), Version
(1.0.0), and Package (com.mycompnay . mywebapp), as shown in the following
screenshot . After this, click on Finish.

j T Y ===
E Mew Project Example 5 —ie-

Java EE Web Project

Create a Maven-based Java EE 6 web application project ::‘ /

Group Id: corm.mycampany.rywebappl -
ArtifactId: jboss-guet -
Wersion: 1.0.0 -
Package: com.mycompany.rrywebapp -
Properties available from archetype:
Marne Walue Add..,
narme Jawa EE Tuwvebapp project w
* Advanced

[C] Resoke Workspace projects

Profiles:

?\ Mext = Finizh [}J [Cancel]

[170]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

The jboss-gwt project gets created. But, the GWT project generated is not the one

we will run. Remove the files in the jboss-gwt project's \\jboss-gwt\src\main\
java folder and the \\jboss-gwt\src\main\webapp folder. Add the c:\gwt-2.6.0\
MyWebApp\src folder files generated for the starter GWT web application on the
command line to the jboss-gwt project's \\ jboss-gwt\src\main\java folder. Then,
copy the files of the c: \GWT\gwt-2.6.0\MyWebApp\war directory to the \\jboss-gwt\
src\main\webapp directory. Select File | Refresh to refresh the application folder.
The starter GWT web application is shown in Project Explorer as follows:

I’y Project Explarer &2 = <fp| ¥ = 0O
4 5'3 jhoss-guet
B -REWeb Services
; Ceployrment Descriptar: jhoss-gut
. M Web Resources
A JAKAWE Web Services
. 4 JPA Content
. 2 Java Resources
. B JavaScript Resources
. [Deployed Resources
F B 3rC
4 3 main
4 3 java
4 (77 com
4 (7 mycompany
4 = rywebapp
4 3 client
fll| GreetingService java
E@ GreetingServicedsyncjava
dll Myebdpp java
4 7 sereer
| GreetingSerdicelmpl.java
4 [shared
FieldWerifier jawva
K R ebAppaguet sl
» = resources
4 = webapp
» = WEB-INF
|| favicon.ico
=] Mtiebpp,css
nE MyebApp html

[171]

www.it-ebooks.info

http://www.it-ebooks.info/

Using GWT

Deploying the starter project to
WildFly 8.1

In this section, we will compile, package, and deploy the GWT starter web
application to WildFly 8.1. The JDK compliance level for the jboss-gwt project
should be set to 1.7. The global Java compiler, JDK compliance, was set to 1.7
earlier —a global setting that applies to every project. If a project-level JDK
compliance is required to be set, right-click on the jboss-gwt project and select
Properties. In Properties, select the Java Compiler node. Select Compiler
compliance level as 1.7 and click on OK. If the global JDK compliance is set to 1.7,
the project-level JDK compliance is not required to be set separately.

To the Maven WAR plugin configuration in pom.xm1, specify the output directory
as the deployments directory for WildFly 8.1, as follows:

<plugins>

<artifactIds>maven-war-plugin</artifactId>

<versions>2.1l.1l</versions>

<configurations>

<outputDirectory>C:\wildfly-8.1.0.Final\standalone\deployments</

outputDirectory>

</configurations>
</plugin>

[172]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

The complete pom.xml file is available in the downloadable code zip. The errors in
the GWT application files get removed after the project dependencies have been
added to pom.xml, as shown in the following screenshot:

I Project Explarer i3 = <}=={-} |

4 5

4 5':‘; jhoss-guvt

FB1AX-RS Web Services

. 'eg Deployment Descriptar: jhoss- gudt
- |# Web Resources
AP JASWES Weh Services

He JIPA Content

- VB lava Resources
- B, JawaScript Resources
. Lig Deployed Resources

o st
4 7 main
4 v java
4 b com
4 4= mycompany
4 = rmywebapp
a (= client
Greeting3ervice.java
GreetingServicelsync java
Myifeblpp.java
4 [= server
GreetingServicelmpl java
4 [shared
FieldWerifierjawva
K| MlyWebApp, guet.ml
4 4= webapp
4 = WEB-IMNF
weeb,xrml
|| fawicon.ico
E] MyWeblpp,css
ni Myideblpphtml

» [~ tarqet

[173]

www.it-ebooks.info

http://www.it-ebooks.info/

Using GWT

Start the WildFly 8.1 server. In Project Explorer, right-click on pom.xml and select
Run As | Maven install, as shown in the following screenshot:

I Project Explarel 5 Copy
P 53 jboss-gut | B2 Copy Qualified MNarme
B IRE-RE| [T Paste
&9 Deplayy 3 Delete

> (B MWeb Re Rernowve from Context
s A JAXANY

. 4 IPACar dark as Landmark

y ﬁ% Java Re: Build Path

- B Javalcor Faove...

» (3 Deploys Renarme...

> = SrC

o [target | pag Import.
vl poman iy Export.

2] Refresh
B2y Mark as Deployable

Validate

Profile As
Debug As
Run A

Tearn
Cornpare With
Replace With
ITidy

M awven
Google
Source

[pomami - jboss Exclude Walidation

Show in Rernote Spsterms view

Ctrl+C

Ctrl+
Delete
Ctrl +Alt+Shift+Down
Chrl+ &t +Shift+Up
3

F2

F5

1Run on Server Alt+Ehift+3, R
2 Maven build Alt+3hift+3, M
3 Maven build...

4 Maven clean

5 Maven clean verify

6 Maven generate-sources

s

Run Configurations...

T Maven install

RARRARRAA D

& Mawven test

The jboss-gwt application gets compiled, packaged, and deployed to WildFly 8.1.
The Maven pom.xml build and configuration script outputs the message BUILD
SUCCESS, as shown in the following screenshot:

[174]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Markers Properties 47h Servers Data Source Explorer B Snippets B Console 32 % Palette ©) Error Log = 0

I X% | B EEESE 2o

<terminated > ChProgram FilesawatjdkLT.0_51hbin'javaw exe (Wow 28, 2014, 2:39:07 PR

[INFO]
[INFO] --- maven-war-plugin:2.1l.l:war (default-war) @ jboss-gwt ---
[INFO] Packaging webapp
[INFO] Assembling webapp [jboss-gwt] in [CitUsers'Deepak VohratEclipsehworkspacehjboss-gwt'targethjboss-gu
[INFO] Processing war project
[INFO] Cepying webapp resources [CihUsershDeepak Wehra‘Eclipse\workspace\jboss-gwtisrcymaintwebapp]
]

Webapp assembled in [13342 msecs)

[INFO] Building war: C:iwildfly-8.1.@.Final\standalonehdeployments’ jboss-gut.war

[WARNING] Warning: selected war files include a WEEB-INF/web.zml which will be ignered

(webxml attribute is missing from war task, or ignorelebxml attribute is specified as "true®)

[INFO]

[INFO] --- maven-install-plugin:2.4:install (default-install) @ jboss-gwt ---

[INFO] Installing C:hwildfly-&.1.@8.Finalistandalonedeploymentstjboss-gut.war to C:hlsershDeepak wohrab.mz
[INF2] Installing C:‘\UsershDeepak YohratEclipseiworkspacehjbeoss-gutipom.:ml te (:h\UsersiDeepak wohra'.m2hr
[IHFO] = mmmm oo o mm oo m oo oo o

[INFO] BUILD 3UCCESS

1o

[INFC] Total time: @1:46 min

[INFC] Finished at: 2@14-11-28T14:48:58-08:20

[INFO] Final Memory: 22M/216M

15010

The jboss-gwt . war application gets deployed to WildFly 8.1. Now, log in to the
WildFly 8.1 Administration Console using the URL http://localhost:8080,
and click on Manage Deployments. The jboss-gwt . war file should be listed as
deployed, as shown in the following screenshot:

JBoss Management. B

- + | httpef/localhost:8990/ cansole/App htmiftdeployments ¢ | | Q- Google

WildFly 8.1.0.Final

Home Configuration Runtime Adrninistration

= Serwer DEPLOYMENTS
Overvien Deployments
Manage Deployments Currently deplayed application companents.

Patch Maragernent

= Status Add Remove En{Disable Replace

= Plarform b jboss-gwrwar L4
M
Emvironment
= Subsystems
Datasources
P
INDI View

Transaction Logs

Transactions Deployment

Webservices heed Help?
Name: jboss-gwt.war
Runtime Name: jhoss-gwtwar

[175]

www.it-ebooks.info

http://www.it-ebooks.info/

Using GWT

Running the starter project on WildFly 8.1

In this section, we will run the starter GWT web application generated on the
command line and added to a Java EE web project in Eclipse. Invoke the GWT
HTML page using the URL http://localhost:8080/jboss-gwt/MyWebApp.html.
The Web Application Starter Project user interface gets displayed in the browser.
Specify a name and click on Send, as shown in the following screenshot:

[B Web pplication Starter Project A 2222w N

« + @http:ffloca\host:sUSU;’Jboss—gwt/MyWebApp.htm\ 4

\Web Application Starter Project

Please enter your name:

GWT User || Seng

The user name gets sent to the WildFly 8.1 server and a reply from the server is
received and displayed in the browser, as shown in the following screenshot. Then,
click on Close.

Web Application Starter Project

Please enter your name:
ST Lser Send
Remote Procedure Call

Sending name to the server:
GWWT User

Server replies:
Hello, GWT Userl

| arn running WildFly 8.1.0.Final - 1.0.15.Final.
It looks like you are using:

Mozilla/5.0 (Windows NT B.1; WOWES) AppleWWebKit/534.57 2
(KHTML, like Gecko) Version/.1.7 Safarifb34.57 2

| Close |

[176]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Creating a new GWT project

Having discussed the starter GWT web project, we will create a new GWT web
application. Select File | New | Other in Eclipse. In New, select Google | Web
Application Project and click on Next, as shown in the following screenshot:

[ij New

(S

Select a wizard

Wizards:
type filter text

> = CWS
» [Eclipse Modeling Frarmewark
» [= EIB
= Git

4 [Google
@ Weh Application Project
o [Google Web Toolkit
+ (= Hibernate
> = Java
s (= Jawa EE
» (= lava Emitter Templates

m

[Show Al Wizards,

@ < Back

~

Finish

Cancel

[177]

www.it-ebooks.info

http://www.it-ebooks.info/

Using GWT

The New Web Application Project wizard gets started. Specify Project name
(gwt-jboss-ajax) and Package (org.jboss.gwt). Select the default setting for
Location. In Google SDKs, click on the Use Google Web Toolkit checkbox and
click on Configure SDKs, as shown in the following screenshot:

E Mew Web Application Project ‘ S=NECE X

Create a Weh Application Project

Create a Web Application project in the weorkspace arin an external location

Project name:
guvt-jboss-ajax
Package: (e.q. com.example.myproject)
org.jboss. gurk
Location
(@) Create new project in workspace

(7 Create new praject in:
CilzershDeepak Wohra\Eclipsehworkspacehgut-jhoss-ajax Brovvse,.,

Google 30K
se Google Wi'eb Toolkit

@ Use default SDK {GWT (1) - 2.6.00 innfigur@SDKs..i 'l
() Use specific SDK: | GWWT (1) - 2.6.0 1

[[Use Google &pp Engine
@ Use default SDK fnone) Configure SDKEs..

se specific SDE:
The project will use App Engine's High Beplication Datastore (HRDY by default,

Identifiers for Google &pp Engine
(@) Leave fpp Id field blank

m

se App Id Browse,.,

Your app will be deployed at:
- httpfpourappid.appspot.com for regular applications
- httpyffvourappidsyourdomain.com for domain applications

@' Mext = [Finish l [Cancel

[178]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

A filtered version of Preferences gets listed with only Google | Web Toolkit. Click
on Add to add a new SDK, as shown in the following screenshot:

E Preferences (Filtered) S =R X
type filter text Wehb Toolkit - v
Gaogl
“ ::D‘d?ﬁ:h Toalkit Add, rernove ar download SDKs,
By default, the checked SDK is added to the build path of newly created
prajects,
Dk
Mame Wersion Location Add...
Remmowe
N
4 [} | 3
@. l (o]] [Cancel]

In Add Google Web Toolkit SDK, select Installation directory for GWT 2.6

(c:\gwt-2.6) with Display name as gwt-2.6.0, as shown in the following
screenshot. Then, click on OK.

>

f@] Add Google Web Toolkit SDK =
Installation directony: Cihguat-2.6.0
Display narne: guit-2.6.0

(0]:4 M [Cancel

[179]

www.it-ebooks.info

http://www.it-ebooks.info/

Using GWT

A GWT SDK gets added to Preferences, as shown in the following screenshot:

ﬂ Preferences (Filtered) - L = ﬁJ
type filter test Weh Toolkit v T v
4 Google
. \Web Toolkit Add, rermaove or download SDEs,
By default, the checked SDK is added to the build path of newly created
projects.
SDKs:
Mame Wersion Location Add...

V] B qut-26.0 260 Cihgut-2,6.0 Rermove

4 m k

? [OKM[Cancel |

In the New Web Application Project wizard, click on the Create a Web Application
Project window. Click on Finish.

[180]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

E Mew Web Application Project - e |-E]

Create a Weh Application Project

Create a Web Application project in the workspace ar in an external location

.3

Praoject name: il
qut-jlbioss-ajax

Package: (e.g. corn.example myproject)
arg.jboss, gut
Location
@ Create new project in woarkspace

() Create new project in:

CihsershDeepak Wohra\Eclipsedweorkspace’qut-jboss-ajax Browvse,..

Google S0Ks
se Google Web Toolkit
@ Use default SDK {guet-2.6.0 - 2.6.0) Configure s0ks, . I

(7 Use specific SDK: | guvt-2,6.0 - 2.6.0

m

[[1Use Google &pp Engine
@ Use default SDE (hone) Configure S0KS..,

dse specific 50K
The project will use Spp Engine's High Beplication Datastore (HRDY by default.

Identifiers for Google &pp Engine
(@) Leawe App Id field blank

Idse fpp Id Browvse...

Your app will be deployed at:
- httpfArourappidiappspot.cor for reqular applications 1l
- http:ffvourappidayourdomain.com for domain applications

?\ Mext = Finish !}J [Cancel

[181]

www.it-ebooks.info

http://www.it-ebooks.info/

Using GWT

A Google Web Application project, which is essentially a GWT project, gets created
with the directory structure shown in the following screenshot:

I Project Explarer 53 = O

4 [gut-jboss-ajax %
PRE: R
4 B2 orgjboss.gwt
i Gt jboss_ajaxgutaoml
4 7 orgjboss.gmt.client
- [J] GreetingService java
o [J] GreetingServiceAsync.java
o [J] Guet_jbioss_ajax.java
a {1 orgjboss.gwtserver
» [J] GreetingServicelmpl java
a f orgjboss.guntshared
» [J] Fieldverifier java
o [test
B GWVT SDE [gut-2.6.0 - 2.6.0]
> B, JRE Systern Librany [jdk1.7.0_51]

4 (= wvar
4 (= WEB-INF
a (= lib

= guet-servietjar
wwebxrml
|| favican.ico
= Gwt_jboss_ajax.css
Guvt_jboss_ajaxhitml

A typical GWT web project consists of the following files, modules, and pages:
* C(lient Java source files to be compiled into JavaScript. GWT widgets from the
GWT SDK Java API can be added to the client Java source files.
* Server Java source files, which can implement some service logic.

* GWT modules, which specify the configuration for the GWT project. GWT
libraries are called modules.

* HTML host pages to run the GWT modules.

[182]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

We will create a GWT web application to create a catalog entry with an input form.
The input widgets for the input form will be specified in a client Java source file. A
GWT module will specify the configuration. An HTML host page will run the module
in a browser. As GWT widgets support Ajax, we will validate a new catalog entry
dynamically with Ajax. Before we create a new GWT project, delete the files created
in the default Google Web Application project, except the gwt - jboss-ajax project
root folder, the subdirectories in the src folder, and the war directory, including the
web . xml deployment descriptor in the //gwt -jboss-ajax/war/WEB-INF folder. Add
a pom.xml file (select XML | XML File in the New wizard) for a Maven project to the
root folder /gwt - jboss-ajax. The directory structure of the gwt - jboss-ajax project
is shown in the following screenshot:

[Praject Explorer 3 = O

402 gut-jboss-ajax
PRE: T lb
B orgjboss.gut.client
B orgjboss.gutserser
B org.jboss.gut.shared
- B GWT SDE [gwt-2.6.0 - 2.6.0]
. By JRE Systern Library [jdkL7.0_51]
4 = wear
4 (= WWEB-INF
4 (= lib
=| guvt-servletjar
weeh |
[pornsrnl

Creating a GWT module

The configuration for a GWT project is specified in a GWT module. A GWT module
is an XML file with the .gwt .xml extension and has the provision to specify the
following GWT configuration:

* Entry-point application class name: An entry-point class name is an entry
point to the module and must be of the type com.google.gwt.core.
client.EntryPoint. When a module is loaded, all entry-point classes get
instantiated and their onModuleLoad method gets called.

[183]

www.it-ebooks.info

http://www.it-ebooks.info/

Using GWT

* The source path for the GWT project: The client Java source files of the GWT
project that are to be compiled into JavaScript by the GWT compiler must
be in the source path. The server Java source files must also be in the source
path. The default source path is client.

* The public path for public resources such as CSS and images

¢ Inherited modules

In this section, we will create a GWT module. Select File | New | Other. In New,
select Google Web Toolkit | Module, as shown in the following screenshot. After
this, click on Next.

ENEW’ ['_' @ihj

Select a wizard —

Mifizards:
type filter text

» = EIB -
[Git
» = Google
4 = Google Web Toolkit
@ CliertBundle ‘
@ Entry Point Class
48 HTML Page

@ kodule
M8 UiBinder

= Hibernate
= Java i

[|

[] Showe 21 Yiizards,

[184]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

In New GWT Module, select Source folder as gwt -jboss-ajax/src and specify
Package as org. jboss.gwt and Module name as CatalogForm, as shown in the
following screenshot. In Inherited modules, add the com.google.gwt .user.User
module, which provides the core GWT functionality, such as the EntryPoint class
and the GWT widgets and panels. Now, click on Finish.

i@ New GWT Module .

New GWT Module
Create a new GWT bModule,

e

Source folder quvt-jbioss-ajaxfsrc Bronwse,.,

Package: arg.jboss gt Bronwse,.,

kodule name: CatalogForm|

Inherited modules: | [y com.google.gwtuser.User Add...
Rernowve

Cancel

[185]

www.it-ebooks.info

http://www.it-ebooks.info/

Using GWT

A catalogForm.gwt .xml file gets created in the gwt-jboss-ajax\src\org\jboss\
gwt directory, which is the root package for the GWT project. The inherited com.
google.gwt .user.User module is configured with the <inherits/> element. The
source path is configured with the <source/> element's path attribute and is set to
client, which is relative to the directory containing the module. We will create a client
Java source file, the entry-point class, in the client subdirectory in a later section of
this chapter. Specify the entry-point class in the <entry-point/> element's class
attribute as org. jboss.gwt .client.CatalogForm. The CatalogForm.gwt .xml
module is listed in the following code:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE module PUBLIC "-//Google Inc.//DTD Google Web Toolkit
2.6.0//EN" "http://google-web-toolkit.googlecode.com/svn/tags/2.6.0/
distro-source/core/src/gwt-module.dtd" >
<module>

<inherits name="com.google.gwt.user.User" />

<source path="client"/>

<!-- Specify the app entry point class. -->

<entry-point class='org.jboss.gwt.client.CatalogForm' />

</module>

In the following screenshot, the module is shown in Project Explorer in the gwt -
jboss-ajax project:

L5 Praject Explarer &3 | IBoss Central parnEml %] *CatalogForm.guitsml E3
= - 1 «2xml wersion="1.8" encoding="UTF-377>

2 <lDOCTYPE module FUBLIC "-//Google Inc.//DTD Google Web Toolkit 2.6.8/ JEN"™ “http:.

3= <modules

4 <inherits name="com.google. gvt. user.tser™ [»

|3 <source path="client™/>

& <l-- specify the app entry point class. --»

7

]

=]

4 0= guet-jboss-ajax
4 28 e
4 {2 org.jboss.gnt
|%| CatalogForm.gwtxml
£ orgjboss.gut.client
HH org.jboss.gnt.server
£ orgjboss.gutshared
. =) GWT SDK [gut-2.6.0 - 2,6.0]
» B JRE Systern Library [jdk17.0_51]
4 [war
a [WEB-INF
s = lib
> pl wveboxml _ -
B pomaml < L +

<entry-point class="org.jboss. gwt.client. CatalogFom ™ [»

</moduler

Design | Source

[186]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Creating an entry-point class

When a module gets compiled into JavaScript, the module can be used from an
HTML host page. An entry-point class is the entry point to a module and gets
instantiated when a module is loaded on a web page or an HTML host page. The
entry-point class must implement the com.google.gwt.core.client.EntryPoint
interface. In this section, we will create the entry-point class org. jboss.gwt.
client.CatalogForm to create an input form for a catalog entry. We will use GWT
widgets and panels from the com.google.gwt .user.client.ui package, and GWT
events and event handlers from the com.google.gwt.event .dom.client package.
Select File | New | Other and in New, select Google Web Toolkit | Entry Point
Class, as shown in the following screenshot. Then, click on Next.

] New -y
Select a wizard —
Yifizards:

type filter text

ol TS »
» = Eclipse Modeling Frarmewark
. = EIB
= Git
: = Google R
4 = Google Web Toolkit

8 ClientBundle

@ Entry Point Class

48 HTML Page

@ Fodule
M8 UiBinder 8

[T] Showe &1 Wizards,

m

[187]

www.it-ebooks.info

http://www.it-ebooks.info/

Using GWT

In the Entry Point Class wizard, select Source folder as gwt-jboss-ajax | src, and
specify Module as org. jboss.gwt.client.CatalogForm, Package as org. jboss.
gwt .client, Name as CatalogForm, and Interfaces as com.google.gwt .core.
client.EntryPoint, as shown in the following screenshot. Now, click on Finish.

ﬂ Mew Entry Paoint Class

Entry Point Class

Create a newr entry point class,

Source folder: guit-jboss-ajax/src Browwse..,
PAodule: arg.jboss.gut.CatalogForm Browwse...

Package: arg.jboss.gut.client Browwse...

BUEY

Mame: CatalogForm
Superclass: Jjava.lang.Object Browwse...
Interfaces: @ com.google.gwt.core.client.EntryPoint Add...
Remowe
Wihich method stubs would you like to create?
[] Constructors from superclass
[#] Inherited abstract methods
Do youwant to add cormments? (Configure termplates and defaultvalue here)
DGenerate comiments
[Cancel

[188]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

The org.jboss.gwt.client.CatalogForm entry-point class gets created. The
entry-point class is shown in the gwt - jboss-ajax web application in Project
Explorer in the following screenshot:

» B JRE System Library [jok17.0_51]
4 (= war
a4 [WEB-INF
> (= lib
s weebum|
[porermnl

I Project Explorer 22 = 8 i IBoss Central %] pomxml K| *CatalogFarm.gudtml
=l <===€>| I g 1 package org.jboss.gut.client;
. . 2
4 3 got-jboss-ajax S dimport com.google.gut.core.client.EntryPoint;
PRE: X1 4
a {2 orgjboss.gat 5 public class CatalogForm implements ErtryPoint {
[X| CatalogFarm.gwtarml =]
a £ orgjboss.gut.client 7= @O"'E':rlde_
|3 CatalogFarmjava - 8 public void onModuleload() {
_ e I Auto-generated method stub
1 orgjboss.gatserver 1a
7 orgjboss.gwtshared 11 T
> = GWT SDK [grt-2.6.0 - 2,6.0] 12
13 3}

14

[J] CatalogForm.java 22 = O

The entry-point class consists of the following GWT widgets, panels, events, and

event handlers:

GWT Component Description Function in the example
GWT project

com.google.gwt.user. | Thisisa panel to which all This is used to add the

client.ui.RootPanel | widgetsare added. A default | GWT widgets, which

root panel gets created.

include textBox, label, and
button.

client.ui.TextBox

com.google.gwt.user.

This creates a single-line text
box.

This is used to add input
fields for a catalog entry.

client.ui.Label

com.google.gwt.user.

This is a text label in a <div/>
element.

This is used to add labels
for the input fields for a
catalog entry.

client.ui.Button

com.google.gwt.user.

This is a button widget.

This is used to generate
a click event to submit a
catalog entry.

com.google.gwt.
event.dom.client.
KeyUpEvent

This is a key-up event.

This is used to send an
Ajax request.

com.google.gwt.
event.dom.client.
KeyUpHandler

This is an event handler for a
key-up event.

This is used to validate a
Catalog ID value.

[189]

www.it-ebooks.info

http://www.it-ebooks.info/

Using GWT

GWT Component Description Function in the example
GWT project
com.google.gwt. This is a click event. This is used to submit the
event.dom.client. catalog entry form.
ClickEvent
com.google.gwt. This is an event handler for a This is used to create a new
event.dom.client. click event. catalog entry.
ClickHandler

In the entry-point class, import the required widget, panel, event, and event handler
classes. When a module is loaded, the onModuleLoad method, which is the entry-point
method of the entry-point classes, gets called. In the onModuleLoad () method of the
CatalogForm entry-point class, create six TextBox widgets for input text fields for a
catalog entry. Add the corresponding Label widgets for labels to the input fields.

A Label widget and a TextBox widget, for example, are created as follows:

final Label labell = new Label ("Catalog ID");
final TextBox textBoxl = new TextBox() ;

Add Label to display a validation message. Add a Button widget for a Submit
button. The following line of code accomplishes this:

final Button button = new Button ("Submit") ;

The catalog is stored in HashMap<String, ArrayList<Strings>,in which each
catalog entry is an ArrayList<String> array. The catalog ID for a catalog entry is
also the HashMap key.

Create a catalog and add two catalog entries. For example, a catalog entry is created
and added to the HashMap as follows:

ArrayList<String> arrayList = new ArrayList<Strings() ;
arrayList.add (0, "catalogl");

arrayList.add(1l, "Oracle Magazine") ;

arrayList.add(2, "Oracle Publishing");
, "May-June 2006") ;

2
3
4, "Tuning Your View Objects") ;
5

(
(
arrayList.add (
arrayList.add(

(

arrayList.add (5, "Steve Muench") ;

HashMap<String, ArraylList<String>> catalogHashMap = new
HashMap<String, ArrayList<Strings>>();

catalogHashMap.put ("catalogl", arrayList) ;

[190]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Add the widgets to a root panel, which may be the default root panel or a widget-
specific root panel. The default root panel is not created directly but accessed using
the get () method. The root panel for a widget is accessed using the get (String
divid) method, in which divid is the <div/> ID for a widget in the HTML host
page. Add widgets to widget-specific root panels. For example, a label is added to a
label-specific root panel as follows. Use the following line of code for this purpose:

RootPanel.get ("labell") .add (labell) ;

We will create an HTML host page in a later section to specify the ordering of the
widgets using <div/> elements with associated IDs. The TextBox widgets support
Ajax. We will validate a Catalog ID using the business logic that the Catalog ID value
must not already be in HashMap for the catalog, and the Catalog ID must not be an

empty string.

To test the validity of a Catalog ID dynamically, add KeyUpHandler to TextBox for
the Catalog ID using the addkeyUpHandler method. Create a KeyUpHandler object
using an inner class. KeyUpHandler must implement the onKeyUp (KeyUpEvent

event) method. The following code encapsulates the discussion in this paragraph:

textBox1.addKeyUpHandler (new KeyUpHandler () {
public void onKeyUp (KeyUpEvent event) {}

}

In the onkeyUp method, retrieve the Catalog ID value using the getText () method
for TextBox:

String catalogId = textBoxl.getText () ;

If HashMap contains the Catalog ID value, fetch ArrayList for the corresponding
catalog entry. Set the Label widget to display a validation message, as catalog Id
is not Valid. Set the TextBox values to the catalog entry parameters and disable
the submit button. All this is accomplished by the following code:

if (catalogHashMap.containsKey (catalogId)) {

ArrayList<String> arraylist = (ArrayList<String>) catalogHashMap.
get (catalogId) ;

label7.setText ("Catalog Id is not Valid");

textBox2.setText ((String) arraylist.get(l));

button.setEnabled (false) ;

}

If HashMap does not contain the Catalog ID value and is not an empty String, set Label
for the validation message to Catalog Id is Valid, set all the input fields to an empty
String, and enable the Submit button so that a new catalog entry can be created.

[191]

www.it-ebooks.info

http://www.it-ebooks.info/

Using GWT

To create a new catalog entry, add a clickHandler event handler to the Button
widget using the addclickHandler () method. Create a new ClickHandler as

an inner class and implement the onClick (ClickEvent event) method. In the
onClick (ClickEvent event) method, retrieve the values specified in the TextBox
widgets using the getText () method and create ArrayList<String>. Add
ArrayList<String> to the HashMap catalog with the put method.

The entry-point class org. jboss.gwt.client.CatalogFormis listed in the
following code:

package org.jboss.gwt.client;
import com.google.gwt.core.client.EntryPoint;

import com.google.gwt.user.client.ui.Button;

import com.google.gwt.user.client.uil.TextBox;

import com.google.gwt.event.dom.client.ClickEvent;
import com.google.gwt.event.dom.client.ClickHandler;
import com.google.gwt.event.dom.client.KeyUpEvent;
import com.google.gwt.event.dom.client.KeyUpHandler;
import com.google.gwt.user.client.ui.Label;

import com.google.gwt.user.client.ui.RootPanel;

import java.util.*;
import java.lang.Exception;

/**
* Entry point classes define <code>onModuleLoad()</codes>.
*/

public class CatalogForm implements EntryPoint

/**
* This is the entry point method.

*/

ArrayList<String> arrayList;
HashMap<String, ArrayList<String>> catalogHashMap;

public void onModuleLoad()

final Button button = new Button ("Submit") ;
final Label labell = new Label ("Catalog ID");

final Label label2 = new Label ("Journal") ;
final Label label3 = new Label ("Publisher") ;
final Label label4 = new Label ("Edition") ;
final Label label5 = new Label ("Title");

[192]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

final
final

final
final
final
final
final
final

arrayList

arrayList.
arrayList.
arrayList.
arrayList.
arrayList.
arrayList.

catalogHashMap
catalogHashMap.put ("catalogl",

arrayList

arrayList.
arrayList.
arrayList.
arrayList.
arrayList.
arrayList.

catalogHashMap.put ("catalog2",

TextBox
TextBox
TextBox
TextBox
TextBox
TextBox

Label labelsé6
Label label?

textBoxl =
textBox2 =
textBox3 =
textBox4 =
textBox5 =
textBox6 =

new Label ("Author") ;
new Label () ;

new TextBox

new TextBox ;

I

)

)
new TextBox () ;
)
)
)

new TextBox ;

new TextBox ;

7

new TextBox

= new ArrayList<String>() ;

add (o,
add (1,
add (2,
add (3,
add (4,
add (5,

"catalogl") ;

"Oracle Magazine") ;

"Oracle Publishing") ;
"May-June 2006") ;

"Tuning Your View Objects");
"Steve Muench") ;

new HashMap<String, ArrayList<Strings>>();

arrayList) ;

= new ArrayList<Strings>() ;

add (o,
add (1,
add (2,
add (3,
add (4,
add (5,

"catalog2") ;

"Oracle Magazine") ;

"Oracle Publishing") ;
"July-August 2006") ;
"Evolving Grid Management") ;
"David Baum") ;

arrayList) ;

textBoxl.addKeyUpHandler (new KeyUpHandler () {
public void onKeyUp (KeyUpEvent event)

try {

String catalogId =

if

ArrayList<String> arraylist =

textBoxl.getText () ;

(catalogHashMap.containsKey (catalogId)) {

catalogHashMap
.get (catalogId) ;
label7.setText ("Catalog Id is not Valid");

textBox2.setText ((String)
textBox3.setText ((String)
textBox4 .setText ((String)

(ArrayList<String>)

arraylist.get (1)) ;
arraylist.get(2));
arraylist.get(3));

[193]

www.it-ebooks.info

http://www.it-ebooks.info/

Using GWT

textBox5.setText ((String) arraylist.get(4));
textBox6 .setText ((String) arraylist.get(5));
button.setEnabled (false) ;

}

else {
if (catalogIid != "") {

label7.setText ("Catalog Id is Valid");
textBox2.setText ("") ;
textBox3.setText ("") ;

textBox4 .setText ("") ;
textBox5.setText ("") ;
textBox6.setText ("") ;
button.setEnabled (true) ;

}

} catch (Exception e) {

}

}
3N

button.addClickHandler (new ClickHandler () {
public void onClick(ClickEvent event)

String catalogId = textBoxl.getText () ;
arrayList = new ArrayList<Strings>();

arrayList.add (0, catalogId);

arrayList.add(1l, textBox2.getText());

arrayList.add (2, textBox3.getText());
))
))

1

arrayList.add (3, textBox4.getText (
arrayList.add (4, textBox5.getText (
arrayList.add (5, textBox6.getText());

catalogHashMap.put (catalogId, arrayList);

}
3N

RootPanel.get ("labell") .add (labell)

RootPanel.get ("label2") .add (label2) ;

RootPanel.get ("label3") .add (label3) ;
) .)
) .)

1

7

7

RootPanel.get ("label4") .add (label4
RootPanel.get ("label5") .add (label5
RootPanel.get ("label6") .add (labels) ;

RootPanel .get ("textBox1l") .add (textBox1l) ;
RootPanel .get ("textBox2") .add (textBox2) ;

7

[194]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

7

RootPanel .get ("textBox3") .add (textBox3
RootPanel .get ("textBox4") .add (textBox4
RootPanel.get ("textBox5") .add (textBox5
RootPanel .get ("textBox6") .add (textBox6
RootPanel .get ("button") .add (button) ;
RootPanel.get ("label7") .add (label?) ;

7

7

7

Creating an HTML host page

We created a GWT module and an entry-point class, which is associated with the
module. To load the module and run the entry-point class, we need an HTML host
page. The GWT compiler compiles a module into a JavaScript file nocache. js, also
called the selection script, when we install the GWT project with Maven in a later
section. The JavaScript file for the module is required to be included in an HTML host
page in the <script/> tag. First, create an HTML page. Select File | New | Other, and
in New, select Google Web Toolkit | HTML Page and click on Next, as shown in the
following screenshot:

[.] Mew l [5] _EhJ

Select a wizard —

Wifizards:
type filter text

> [CVS *
> [= Eclipse Modeling Frarmewark
> = BB
: = Git

m

: [Google
4 [Google Web Toolkit
@ CliertBundle
&& Entry Point Class
8 HTML Page
8 Module
i UiBinder A

[] Showe A1 Wizards,

@ < Back Finish

[195]

www.it-ebooks.info

http://www.it-ebooks.info/

Using GWT

Select the gwt - jboss-ajax project and Path as war and specify File Name as
CatalogForm.html. Select the CatalogForm module and click on Finish, as shown
in the following screenshot:

f@) New HTML Page S

HTML page £
|
Create a new HTML page. @
Project: guvt-jbioss-ajax

File name: CatalogForm. html

radules:

%] CatalogForm - org.jboss, gut Add...

Remove

Restore Defaults

Which elernents do you want to include in your page?
Support for browser history (Back, Forward, bookmarks)

@' Mext » ’ Finish !}J [Cancel

A catalogForm.html HTML page gets created in the war directory. The default
<script/> tag generated has src=".nocache. js", which is not the JavaScript
generated from the catalogForm module. To accomplish this, use the following code:

<!ldoctype htmls>
<html>
<head>
<meta http-equiv="content-type" content="text/html;
charset=UTF-8">
<title>CatalogForm</title>

<script type="text/javascript" language="javascript" src=".
nocache.js"></script>

</head>

[196]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

<body>
<iframe src="javascript:''" id="_gwt historyFrame" tabIndex='-1'
style="position:absolute;width:0;height:0;border:0"></iframe>
</body>
</html>

The following are the steps to create an HTML host page:

1.

Set the script tag as follows:

<script type="text/javascript" language="javascript" src="org.
jboss.gwt.CatalogForm/org. jboss.gwt.CatalogForm.nocache.js" >

Add a <table/> element below the <iframe/> element for a catalog entry.
The <table/> element has <div/> elements for the GWT widgets created
in the entry-point class. The <div/> elements have associated IDs, which
are used in the entry-point class CatalogForm. java to add the widgets to
a widget-specific root panel. Add the Label widgets and the corresponding
TextBox widgets in the same row. The Label widget with the <div/> ID
label7 is the widget to display a validation message. The catalogForm.
html HTML host page is listed in the following code:

<!ldoctype htmls>
<html>
<head>
<meta name="generator" content="HTML Tidy for Linux/x86 (vers
25 March 2009), see www.w3.org" />
<meta http-equiv="content-type" content="text/html;
charset=us-ascii" />
<title>
CatalogForm
</title>
<script type="text/javascript" language="javascript" src="org.
jboss.gwt.CatalogForm/org. jboss.gwt.CatalogForm.nocache.js" >
</script>
</head>
<body>
<iframe src="javascript:''" id="_gwt historyFrame"
tabindex='-1"' style="position: absolute; width: 0; height: 0;
border: 0"></iframe>
<hl>
Catalog Form
</hl>
<table align="left">
<tr>
<td id="labell"></td>
<td id="textBoxl"></td>
</tr>
<tr>
<td id="label2"></td>

[197]

www.it-ebooks.info

http://www.it-ebooks.info/

Using GWT

<td id="textBox2"></td>
</tr>
<tr>
<td id="label3"></td>
<td id="textBox3"></td>
</tr>
<tr>
<td id="label4"></td>
<td id="textBox4"></td>
</tr>
<tr>
<td id="label5"></td>
<td id="textBox5"></td>
</tr>
<tr>
<td id="label6"></td>
<td id="textBox6"></td>
</tr>
<tr>
<td id="button"></td>
<td id="label7"></td>
</tr>
</table>
</body>
</html>

3. The HTML host page is shown in the gwt - jboss-ajax GWT web project in
Project Explorer, as shown in the following screenshot:

I™5 Project Explarer &3 = O

S| T
4 12 gut-jboss-ajax
PR
a4 {2 orgjboss.gut
|%] CatalogForm.gutml
4 orgjboss.guwtclient
. [J] CatalogForm.java
B org.jboss.gutserser
B orgijboss.gutshared
o B, GWT SDK [guet-2.6.0 - 2.6.0]
> = JRE Systern Librany [Jdk1.7.0_51]
4 [=% war
4 = WEB-INF
> = lib
s g weeb sl
rmE CatalogForm.html %

[pornsenl

[198]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Deploying the GWT project with Maven

In this section, we will compile, package, and deploy the GWT web project to
WildFly 8.1 with the Maven build tool. The pom. xm1 file is similar to the one used
for the project generated on the command line and imported into Eclipse. The Errai
(a GWT-based framework) dependencies are also included. The packaging for
gwt-jboss-ajax artifactIdiswar. The GWT version should be 2.6.0. Refer to
the following code to accomplish this:

<propertiess
<version.com.google.gwt>2.6.0</version.com.google.gwt>
</properties>

Specify the output directory for the Maven WAR plugin configuration as the WildFly
8.1 deployments directory, as follows:

<outputDirectory>C:\wildfly-8.1.0.Final\standalone\deployments</
outputDirectory>

The GWT user library for GWT widgets and panels and support for Ajax is a
required dependency with scope as compile. Refer to the following code for this:

<dependencys>
<groupId>com.google.gwt</groupIds>
<artifactId>gwt-user</artifactIds>
<scope>compile</scope>
</dependency>

The GWT development dependency is required as it supports the Java-to-JavaScript
compiler with scope as provided. Refer to the following code for this dependency:

<dependencys>
<groupId>com.google.gwt</groupIds>
<artifactId>gwt-dev</artifactId>
<scope>provided</scope>
</dependency>

GWT validation requires the Hibernate Validator and the Validation API. In addition
to the Maven compiler plugin and the Maven WAR plugin, the GWT plugin is
required to compile the client-side Java to JavaScript.

[199]

www.it-ebooks.info

http://www.it-ebooks.info/

Using GWT

Not all the dependencies included in pom.xml are used in the example application of
this chapter. Before we can run pom.xml, we need to modify the directory structure
of the GWT project to the standard directory layout for a Maven project with the
src/main/java directory for the application Java sources and the src/main/webapp
directory for the web application sources, as shown in the following screenshot.
Create the src/main/java and src/main/webapp directories and copy the Java
source code to the src/main/java directory and the web application source code to
the src/main/webapp directory.

{5 Project Explorer 53 = 0

4 12 gut-jboss-ajax
PRE:RS I/\\?
a {2 mainjava.orgjhass.gat
¥| CatalogForm, gueteaml
4 B} mainjava.org jboss.gut.client
- [J] CatalogForrm,java
B mainjava.arg.jboss.gutserer
B mainjava.org.jboss.gut.shared
4 f2 mainwebhapp
a4 (= WEB-INF
¢ [classes
== lib
> weh x|
CatalogForm, htrml
- B GWT SDE [guwet-2.6.0 - 2.6.0]
- B4, IRE Bystern Libirany [[dk1.7.0_51]
¢ = target
s fg war
[m] pornseml

[200]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Next, run the Maven build tool. Right-click on pom.xml and select Run As | Maven
install, as shown in the following screenshot:

[[5‘_-, Praject Expl

4 QE‘} guvt-jbio
- T
B G
. = JRE
s [targ
. é_—; wiar

[po

[m] parnml - g

B
B

EE

r?9

Copy

Copy Qualified Name
Paste

Delete

Rernanve frorm Context
Idark as Landmark
Build Path

fove...

Renarme..,

Irmport..
Export...

Refresh
Mark as Deployable

alidate

Show in Remote Systerns wiew
Profile As
Debug As

Run As

Tearmn

Replace With
ITidy

Maven
Google

JPA Tools
Commpare With
Source

Exclude Walidation

Ctrl+C

Ctrl+V
Delete
Chrl+A/t+ Shift+D owen
Ctrl+8t+ Shift+Up
»

F2

F3

RRARARARRAD

1Run on Server

2 Maven build

3 Maven build...

4 Maven clean

5 Maven clean verify

6 Maven generate-sources
T Mawven install

4 Maven test

Run Configurations,..

Alt+Shift+3, R
A+ Shift+3, b

[201]

www.it-ebooks.info

http://www.it-ebooks.info/

Using GWT

The GWT project gets compiled and packaged to gwt-jboss-ajax.war, as
shown in the following screenshot. The compiled JavaScript file org. jboss.
gwt.CatalogForm.nocache. js gets added to the org. jboss.gwt.CatalogForm
directory, which is included in the relative path in the script tag in the
CatalogForm.html hosted page:

Markers Properties Seprders Data Source Ex., Snippets B Console 53 Palette Errorlog = 8

X% BEEE 2o
zterrminated > ChPrograrm Files\Javaljdk17.0_515binYyjavanexe (Now 29, 2014, 9:28:20 Ak1)
[IHFC] Compilation succeeded -- 61.932s
[INFO]
[INFC] --- maven-war-plugin:2.l.l:war (default-war) @ gwt-jboss-ajax ---
[INFC] Packaging webapp
[INFO] Assembling webapp [gwt-jboss-ajax] in [CilUsersiDeepak Wohral\Eclipselworkspacehgwt-jboss-aja
[INFC] Processing war project
[INFC] Ceopying webapp resources [C:hUsershDespak wohra‘Eclipsetworkspace\gut-jboss-ajaxt\srcimaintue
[INFC] Webapp assembled in [15411 msecs)
[INFQ] Building war: C:hwildfly-8.1.8.Final‘standalonetdeploymentshgwt-jboss-ajax.war
[WARNING] Warning: selected war files include a WEB-IWFfweb.sml which will be ignored
{webxml attribute is missing from war task, or ignoreWebzml attribute is specified as ‘true')
[INFO]
[INFS] --- maven-install-plugin:2.4:install (default-install) @ gwt-jboss-ajax ---
[IHFC] Installing C:hwildfly-&.1.8.Final\standalonetdeployments'gwt-jboss-ajax.war to CihUsershDeep
[IHNFC] Installing C:hUsershDespak wohra‘Eclipsetworkspace\gut-jboss-ajax\pom.zml to C:h\UsershDeepak
[INFO] =mmmmm s m o e oo e o e e e e e e e e e e
[INFC] BUILD SUCCESS
5T
[INFS] Tetal time: @2:58 min
[INFO] Finished at: 2814-11-25T@3:31:24-08:00
[INFC] Final Memory: 28M/222M4
[INFO] === mmmmmm s o mm oo o m o s o e e e s

Start the WildFly 8.1 server. The gwt -jboss-ajax.war gets deployed to the server.
The gwt - jboss-ajax.war is shown deployed in the Administration Console of
WildFly in the following screenshot:

[202]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

& Jos: Management 0

\TT\ | + | httpi/flocalhost:9990/console/App htmiideployments ¢ | |Qr Google |

WildFly &.1.0.Final

Hormne Configuration Runtime Administration

= Server DEPLOYMENTS
overview Deployments
Manage Deplayments Currently deployed application components.

Fatch Managerment

T s Add || Remove || En/Disable || Replace
= Platform b gwrt-jboss-ajax.war L4

T

Environment
= Subsystems

Datasources

P

JNDI View

Transaction Logs

Tranzactions Deployment
Meed Help?
Webservices jeed Help
Name gut-jboss-ajax war
Runtime Name: gunt-jbioss-ajax war

Running the GWT project

In this section, we will run the GWT web project. Run the GWT HTML hosted page
CatalgForm.html in a browser with the URL http://localhost:8080/gwt-jboss-

ajax/CatalogForm.html. The GWT widget-generated input form gets displayed, as
shown in the following screenshot:

@ CatalogForm e

|« » ||+ @http:,-’J-‘IocalhDst:8DSUf’gwt—jboss—ajaxfCatalogF ¢ | |Q~ Google | O~ &~

Catalog Form '

Catalog ID
Tournal
Publisher
Edition
Title
Author

[203]

www.it-ebooks.info

http://www.it-ebooks.info/

Using GWT

Start to specify a Catalog ID value. As the TextBox widget supports Ajax, a
validation message gets displayed as shown in the following screenshot to indicate
whether the Catalog ID value is valid according to the logic that the value is not an
empty string and is not already in HashMap for the catalog.

@CatalogFDrm - _— X

[« |» | |T@http:HIc-caIhost:BEISUngt—jbnss—ajaxJCatalogF ¢ | | Q- Google | O~ %~

Catalog Form

Catalog ID lc]

Tournal
Publisher
Edition
Title I
Author

Catalog Id is Valid

An Ajax request is sent with each key-up event as the Catalog ID TextBox

widget is registered with the com.google.gwt.event.dom.client.KeyUpHandler
event handler. A value of catalog for Catalog ID is still valid, as shown in the
following screenshot:

[204]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

&) CatalogForm EIL

| < |'~ | | + Ehttp:fflocaIhost:SUSﬂfgwt—jboss-ajaxr'CatalogF C| |'°.' Google | M- &~

Catalog Form

Catalog ID [catalug]

Tournal
Publisher
Edition
Title I
Author

Catalog Id is Valid

Specify a value that is already in HashMap, such as catalogl. A validation message,
Catalog ID is not Valid, gets displayed, as shown in the following screenshot. The
input fields get filled and the Submit button gets disabled:

© Caogiorm W o = []

| « | > | | + ﬁhttp:fr'localhost:SUSUfgwt-jboss-ajax."CataIogF G| |JQ' Google | 0= &~

Catalog Form

Catalog ID [catalugﬂ]

Tournal Qracle Magazine
Publisher Oracle Publishing
Edition tday-June 2006 |
Title Tuning Your Yiew Chjec
Author Stewve Muench

Submit | Catalog Id 15 not Valid

[205]

www.it-ebooks.info

http://www.it-ebooks.info/

Using GWT

The Catalog ID value catalog2 is also not a valid value, as shown in the
following screenshot:

i@ CatalegForm - —_ x|

| 4> ||+ @http:HIcn:a|host:Sl]BUigwt-jboss-ajax.’CatalogF ¢ | [Qr Google | O~ &~

Catalog Form

Catalog ID [catalogE]

Jeurnal Oracle hagazine
Publisher Oracle Publishing
Edition July-August 2006

Title Ewvalving Grid Managerr
Author Dawid Baum

Submit | Cataleg Id 1z not Valid

The Catalog ID value catalog3 is a valid value to create a new catalog entry. Specify
input field values and click on the Submit button to create a new catalog entry, as
shown in the following screenshot:

[206]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

@ CatalogFom T W T [|
< | + |8 httpi//localhost:B080/qut-jboss-ajax/CatalogF & | | Qr Google | [~ %~

Catalog Form

Jeurnal Oracle Magazine

Publisher Oracle Fublishing

Edition MovembarDecember 2

Title Engineeting as a Sarvic

Author Dawid A, Kelly

Catalog Id is Valid

A new catalog entry gets added to HashMap. A catalog entry with Catalog ID

catalog3 gets created. After the user clicks on Submit, the user does not receive any
notification that the data has been stored. To verify that the data has been stored, the
user must clear Catalog ID first and re-add Catalog ID. If catalog3 is respecified as
Catalog ID, catalogs is considered as invalid, as shown in the following screenshot:

@ CatalogFom T W T [|
< | + |8 httpi//localhost:B080/qut-jboss-ajax/CatalogF & | | Qr Google | [~ %~

Catalog Form
Catalog ID | catalog3

Jeurnal Oracle Magazine

Publisher Oracle Fublishing
Edition NovemberDecember 2
Title Engineeting as a Sarvic

Author Dawid A, Kelly

Submit | Catalog Id 15 not Valid

[207]

www.it-ebooks.info

http://www.it-ebooks.info/

Using GWT

Summary

GWT compiles client Java into optimized JavaScript, which can be run in a browser.
In this chapter, we tested a starter GWT project on WildFly 8.1. We also developed
a new GWT web project. We added a module to the GWT project to configure an
entry-point class and add the GWT User library. We created an entry-point class,

a class that implements the com.google.gwt .core.client.EntryPoint interface.
We created an HTML hosted page to specify the compiled module as a JavaScript
file. We ran the hosted page in a browser to validate and create a new catalog entry.

In the next chapter, we will discuss creating a JAX-WS 2.2 Web Service in Eclipse,
building and deploying the application using Maven to WildFly 8.1, and running
the web service in WildFly 8.1.

[208]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing a JAX-WS 2.2
Web Service

Java API for XML-based Web Services, known as JAX-WS (http://jcp.org/
aboutJava/communityprocess/mrel/jsr224/index2.html), is a W3C standards-
based technology for communicating between services and clients using XML over
the HTTP protocol. Some of the W3C standards that JAX-WS Web Services support
are HTTP (http://www.w3.org/Protocols/), SOAP (http://www.w3.org/TR/
soap/), and Web Service Description Language (WSDL) (http://www.w3.org/
TR/wsdl). JAX-WS is a platform-independent standard; JAX-WS Web Services may
communicate with non-Java clients, for example a .NET client, and a JAX-WS client
may communicate with non-Java Web Services, a .NET Web Service for example.
JAX-WS makes use of XML in the following artifacts:

The WSDL is an XML document that describes network services as a set
of endpoints operating on messages; an endpoint being a URL location
representing a web service

A client and a web service communicate using SOAP messages, which are in
the XML format

A JAX-WS web service consists of the following components:

A non-final, non-abstract Java class that is annotated with javax.jws.
WebService annotation. The web service endpoints, the Java class consists of
business methods. A web service client creates a proxy of the web service to
invoke its methods (operations). The web service optionally returns a response.
The web service request and response are SOAP messages over HTTP.

An optional Java interface that defines the methods implemented in the web
service implementation class.

[209]

www.it-ebooks.info

http://jcp.org/aboutJava/communityprocess/mrel/jsr224/index2.html
http://jcp.org/aboutJava/communityprocess/mrel/jsr224/index2.html
http://www.w3.org/Protocols/
http://www.w3.org/TR/soap/
http://www.w3.org/TR/soap/
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www.it-ebooks.info/

Developing a JAX-WS 2.2 Web Service

This chapter has the following sections:

Setting up the environment

Creating a Java EE web project

Creating a web descriptor

Creating a JAX-WS Web Service

Creating a web service client

Deploying the JAX-WS application with Maven
Running the JAX-WS application

Setting up the environment

We need to download and install the following software:

WildFly 8.1.0.Final: Download wildfly-8.1.0.Final.zip from
http://wildfly.org/downloads/.

MySQL 5.6 Database-Community Edition: Download this edition from
http://dev.mysql.com/downloads/mysqgl/. When installing MySQL,
install Connector/J too.

Eclipse IDE for Java EE Developers: Download Eclipse Luna from
https://www.eclipse.org/downloads/packages/release/Luna/SR1.

JBoss Tools (Luna) 4.2.0.Final (or the latest version): Install this as a plugin
to Eclipse from the Eclipse Marketplace (http://tools.jboss.org/
downloads/installation.html).

Apache Maven: Download version 3.05 or higher from http://maven.
apache.org/download.cgi.

Java 7: Download Java 7 from http://www.oracle.com/technetwork/
java/javase/downloads/index.html?ssSourceSiteId=ocomcn.

Set the environment variables, JAVA HOME, JBOSS_HOME, and MAVEN HOME. Add
$JAVA HOME%/bin, $MAVEN HOMES$/bin, and $JBOSS HOME%/bin to the PATH
environment variable.

Create a WildFly 8.1.0 runtime as discussed in Chapter 1, Getting Started with EJB 3.x.

[210]

www.it-ebooks.info

http://wildfly.org/downloads/
http://dev.mysql.com/downloads/mysql/
https://www.eclipse.org/downloads/packages/release/Luna/SR1
http://tools.jboss.org/downloads/installation.html
http://tools.jboss.org/downloads/installation.html
http://maven.apache.org/download.cgi
http://maven.apache.org/download.cgi
http://www.oracle.com/technetwork/java/javase/downloads/index.html?ssSourceSiteId=ocomcn
http://www.oracle.com/technetwork/java/javase/downloads/index.html?ssSourceSiteId=ocomcn
http://www.it-ebooks.info/

Chapter 6

Creating a Java EE web project

In this section, we will create a Java EE Web Project for a JAX-WS Web Service. Select
File | New. In New, select JBoss Central | Java EE Web Project, as shown in the
following screenshot. Now click on Next.

ENEW . L w|sEl ﬁ,l

Select a wizard —>

Wizards:
type filter text

o = lawa EE

o = lava Emitter Termplates

s = JawaScript

s [JAXE

4 [1Boss Central ‘

m

= Angular)Zwith Forge Project
EJ HTMLS Project

(2 Java EE EAR Project

31 Java EE Web Praject |
@} RichFaces Project

/¥ Spring MYC Project il

[] Shovr A1 Wizards.

@ < Back Finish

[211]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing a JAX-WS 2.2 Web Service

A test is run for the requirements, which include m2e and m2eclipse-wtp plugins,
and the JBoss Maven Tools plugin. Select the checkbox and create a blank project;
select WildFly 8.x Runtime for Target Runtime, as shown in the following
screenshot. Now click on Next.

j E— — L[@
i@] New Project Example B S

Java EE Web Project

Create a Maven-based Java EE 6 web application project Ji‘ /

Description:

This is your project! It's a sarmple, deployable Maven 3 project to help you get wour foot in the door -
developing with Java EE 6 on JBoss Enterprise Application Platform 6 or JBoss Application Server 7.1,

This project is setup to allow you to create a compliant Java EE 6 application using J5F 2.0, CDI L0, EJB 3.1, JPA | =
2.0 and Bean Validation 1.0,

Froject based on the orgawildfly.archetypewildfly-javaeeT-webapp-blank-archetype: 8. L0Final Maven -
Create a blank project
Target Runtime | MAildFly B.x Runtime V]
Requirernents
Type Description Foun.. Install...
server/runti., This project example requires JBoss Enterprise Applic.,. [
plugin This project example requires m2e == 1.0, Downlead and Install..
plugin This project exarmple requires m2e-wtp »= 0,160,
plugin This project exarmple requires JBoss Maven Tools,
] 1 3

@ <Back | Med> L\J Finish

[212]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Specify Project name (jboss-jaxws) and Package (org. jboss. jaxws), as shown in
the following screenshot. Now click on Next.

-

ew Project Example

TS —
&N

Java EE Web Project

Create a Mawven-based Java EE 6 web application project

Project narme jboss-jaxws

Package org.jboss jaaws

Use default Workspace location

Location:
[T] Add project(s) to working set
Working set:

b Advanced

Browyse...

kaore...

< Back ”

Next>ll>&J [Finish] [Cancel

[213]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing a JAX-WS 2.2 Web Service

Specify Group Id as org. jboss. jaxws, Artifact Id (jboss-jaxws), Version (1.0.0),
and Package (org.jboss.jaxws), as shown in the following screenshot. Then click
on Finish.

i e Bl — =
E Mew Project Example — [T
Java EE Web Project

Create a Maven-based Java EE 6 web application project i /

GroupId: orgjboss.janws -
ArifactId: jboss-jaxes -
Wersion: 100 -

Package: orgjboss,jamws -

Froperties availahle from archetype:

Marne Walue Add...
hame Jawa EE 7 webapp project
Rernove
- Advanced

[T Resolve Workspace projects
Profiles: |

Mame ternplate: -

@' Mext = [Finish & [Cancel

A Maven-based Java EE Web Project, jboss-jaxws, is generated, as shown in
Project Explorer in the following screenshot. Delete the jboss-jaxws/src/main/
resources/META-INF/persistence.xml configuration file:

[T Praject Explorer 53 = 0

Bgle ~
4 :f‘} jboss-jaxs
2B IR-RSWeb Services
> 'zg Deployment Descriptor: jboss-jaas
> 3| “Web Resources
s A JRXAWEWeb Services
> 4 JPA Content
> :5 Jawva Resources
> B JavaScript Resources
> (3 Deployed Resources
4 = s
4 [main
[java
. [resources
4 (= webapp
(= resources
» (= WEB-INF
> [test
s [target
[pornxml

[214]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Creating a web descriptor

A JAX-WS Web Service requires a Web Descriptor. In this section, we will create a
web descriptor. Select File | New | Other. In New, select JBoss Tools Web | Web
Descriptor and click on Next, as shown in the following screenshot:

Select a wizard —
Create a Web Descriptor |

Wizards:
type filter text

s [JAXE -
. = JBoss Central
= JBoss Toals
4 = JBoss Tools Web
E S8 Class
= Properties File
¥ TLD File
P& e Descriptor
i HHTML Page
s [JSF
2 = Portlet i

l..m |

[] Shovr A1 Wizards.

[215]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing a JAX-WS 2.2 Web Service

Click on Browse for the Folder field to select the webapp/WEB- INF folder. Specify
Name as web.xml, select Version as 3.1, and click on Finish, as shown in the
following screenshot:

i@ New Web Descriptar File . E‘E‘ﬂ

Weh Descriptor File @f,

Folder® fjboss-jaswsfsrofmainfoebappMEB-INF

Marme® web.xml

YWersion: |31 ']

® Mext = Finizh V\I\SJ [Cancel

[216]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Creating a JAX-WS web service

In this section, we will create a JAX-WS Web Service in the Java EE Web Project.
Select File | New | Other. In New, select JBoss Tools | Create a Sample Web
Service, as shown in the following screenshot. Now click on Next.

ﬂ Mew ’ l B |5

Select a wizard —

Create a sarnple web service

Wizards:
type filter text

] -
+ (= JBaoss Central
4 [~ JBoss Toals
@ Configure Mawven Repositories
¥ Create a Sample Web Service
A7 Download Runtimes
N JBoss Datasource {-ds.xml) —
A Simple Wehb Service
+ (= JBaoss Tools Web
a (= P4
G IPA Entities fram Tables

m

[Showe Al Wizards,

[217]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing a JAX-WS 2.2 Web Service

In Generate a Sample Web Service, specify Project and Web Service Name. Select
the jboss-jaxws web project and specify Name of Web Service as HelloWorld. For
Sample Web Service Class, specify Package as org. jboss.jaxws.service and
Class as HelloWorld, as shown in the following screenshot. Now click on Finish.

ﬂ Generate a Sample Web Service . uﬂléj

Project and Weh Service Name q
Specify the Dynamic Web Project, service, package and class name for the . .P!

sarmple web service and web service class,

Dynamic Web Project

jboss-jams -

Web Service
Mame HelloWorld

Sarmnple Web Service Class

Package orgjbossjaswsservice

Class HelloWarld

(?:' Mext = [Finish %‘l [Cancel

The Helloworld class gets created. Annotate the class with the ewebservice
annotation, which indicates that the class implements a web service. Add the
following elements in the @WebService annotation:

Element Description Value

portName This is the port HelloWorldPort
name of the web
service. This is also
wsdl:portname
in the web service
WSDL.

[218]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Element

Description

Value

serviceName

This is the

service name of
the web service.
This is also the

WS :servicename

in the WSDL.

HelloWorldService

targetNamespace

This is the target
namespace for the

wsdl:servicein
the WSDL.

http://org.jboss.jaxws.service/

endpointInterface

This is the name
of the service
endpoint interface
defining the web
service methods.

org.jboss.jaxws.service.HelloWS

The HelloWorld implementation class implements the Hellows interface. Add a
business method sayHello (String) that takes a String name as argument and
returns a String message. The business method is annotated with the ewebMethod
annotation. A business method must not be static or final. The business methods
are exposed to a client as web service operations. The web service endpoint Java

class is listed here:

package org.jboss.jaxws.service;

import javax.jws.WebMethod;

import javax.jws.WebService;

@WebService (portName = "HelloWorldPort",
"HelloWorldService",
"http://org.jboss.jaxws.service/",
"org.jboss.jaxws.service.HelloWS")

serviceName =

targetNamespace =

endpointInterface =

public class HelloWorld implements HelloWs{

@WebMethod

()

public String sayHello(String name) {

return "Hello "+4+name +" Welcome to Web Services!";

[219]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing a JAX-WS 2.2 Web Service

As the endpoint implements an endpoint interface, create a Java interface. Select
File | New | Other. In New, select Interface and click on Next, as shown in the
following screenshot:

ﬂ MNew =5

Select a wizard —

Create a Java interface

Wizards:
type filter text

4 [lava -
@ Annotation
& Class

& Enum
&% Interface

2% Java Project

lava Project from Existing &nt Buildfile

150 Java Wéorking Set

B Package

(& Service Provider

ﬁ Source Folder i

leam |

[Shovr 211 Wizards,

In New Java Interface, select Source folder as src/main/java, specify Package as
org.jboss.jaxws.service, and specify Name as HelloWs, as shown here. Then
click on Finish.

[220]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

:

ﬂ MNew Java Interface

Java Interface

Create a new Java interface,

)
©

Source folder: Jboss-jmasdsrefmaindava

Package: org.,jboss.jams service Bronwse...

[C]Enclosing type: Bronwse..,

MNarre: HeIIDWS|

Modifiers: @ public () package private pratected

Extended interfaces: Add...
Rernowe

Do youwant to add comments? (Configure templates and defaultvalue here)

DGenerate camments

@' Mext = ’ Finish %J ’ Cancel

The org. jboss.jaxws.HelloWs interface gets added to the jobss-jaxws

project. Annotate the Hel1lows interface with ewebservice, which indicates

that the Java interface is a web service interface. The name element of @WebService
specifies the web service name, which is used as the name of wsdl :portType.

The targetNamespace specifies the target namespace for the web service. The
endpoint interface defines a sayHello method annotated with @WwebMethod, with
its operationName element set to hello. The endpoint interface is listed here:

package org.jboss.jaxws.service;

import javax.jws.WebMethod;

import javax.jws.WebService;

@WebService (name = "HelloWS", targetNamespace =
"http://org.jboss.jaxws.service/")

[221]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing a JAX-WS 2.2 Web Service

public interface HelloWsS {
@WebMethod (operationName = "hello")
public String sayHello(String name) ;

}

A JAX-WS Web Service can be published using the JSR-109 programming model for
implementing web services in Java. WildFly 8.1 supports the JSR-109 deployment
model in which a web service can be configured as a servlet class in web.xml. We
will use the JSR-109 deployment model; we need to configure the web service

as a servlet in web . xm1. Specify the endpoint class org. jboss.jaxws.service.
HelloWorld as a servlet in web.xml with the corresponding servlet mapping URL as
/HelloWorld. The web.xml file is listed here:

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://xmlns.jcp.org/xml/ns/javaee"
xsi:schemalocation="http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/web-app 3 1.xsd" version="3.1">
<servlets>
<display-name>HelloWorld</display-name>
<gservlet-name>HelloWorld</servlet-name>
<servlet-class>org.jboss.jaxws.service.HelloWorld</servlet-
class>
</servlet>
<servlet-mappings>
<gservlet-name>HelloWorld</servlet-name>
<url-pattern>/HelloWorld</url-pattern>
</servlet-mapping>
</web-app>

[222]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

The Helloworld web service class and the service endpoint interface Hellows are
shown in Eclipse in the following screenshot:

L7 Project Explarer 53 = 0
= <§} ~ T
a 259 [boss-jaumns
AR JAX-RS\Yeb Services
+ '@z Deployment Descriptor: jboss-jaxs
» 3L Web Resources
2 A JAXAS Web Services
» H JPA Content
4 7% |ava Resources
a [# srofmaindava
4 7 orgjbossjanwssenice
- [J] HelloWarld java
- [J] Hellabivsjawva %
. B seofmainfresources
- [sroftestfjava
- BB seoftestfresources
- = Libraries
> B, JavaScript Resources
» [Deployed Resources
4 b osrc
4 = main
¢ [java
¢ [resources
4 = webapp
=% resources

4 = WEB-IMF
» Bzl beansaml
- gz faces-configarml
|%] jboss-jaxs-dsml
> weebonl
» =% test
[223]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing a JAX-WS 2.2 Web Service

Creating a web service client

In this section, we will create a JSP Web Service client for the HelloWworld web
service. To create a JSP, select File | New | Other. In New, select Web | JSP File

and click on Next, as shown in the following screenshot:
—m(nl=] i:h

ﬂ Mew

Select a wizard
Create a new J5P file

Wifizards:
type filter text

4 [Wiieh
[£F CSSFile
5 Dynamic Web Project
T Filter
&7 HTRL File
[&7 ISP File
[# J5P Tag
”";3 Listerer
& Servlet |
2‘3 Static Web Project
G “Web Fragment Project

l.m

[T Showe All Wizards,

@ < Back Finish

In the New JSP File wizard, select the webapp folder, specify File name as
JAXWSClient.jsp, and click on Next, as shown in the following screenshot:

[224]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

i8] MNew ISP File e B |

J5P

Create 3 new 5P file,

©

Enter or select the parent folder:

Jboss-jaasfsrefmainfuebapp

[
RS jboss-jais
= settings
PRI
4 [main
[java
s [resources
» = weebapp
» = test
» [target
= RernoteSysternsTempFiles

File name: | J&XWSClient,jsp

@' [< Back ” IMext = %J [Finish] [Cancel

Select the New JSP file (html) template and click on Finish. The Jaxwsclient.jsp
file gets added to the webapp folder. In the client JSP, we will invoke the web service
with a name and display the web service response in the browser. First, create a URL

object for the WSDL. The URL for a web service is constructed from the context root
+ endpoint:

URL wsdlLocation = new URL("http://localhost:8080/jboss-jaxws/
HelloWorld?WSDL") ;

[225]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing a JAX-WS 2.2 Web Service

The jboss-jaxws in the URL is the context root and the /HellowWorld is the servlet
mapping URL for the web service endpoint as specified in the web .xm1. Next, create
a QName object for the service name. A QName represents a qualified name. Specify
arguments to the gName constructor as the target namespace http://org.jboss.
jaxws.service/ and the service name HelloWorldService

QName serviceName = new
QName ("http://org.jboss.jaxws.service/", "HelloWorldService") ;

The client view of a web service is provided by a javax.xml.ws.Service object.
Create javax.xml.ws.Service from the WSDL location URL and gName for the
service name:

Service service = Service.create(wsdlLocation, serviceName) ;

Get a proxy to the web service using the getPort (Class endpointInterface)
method. Specify the endpoint interface class as org. jboss.jaxws.service.
HelloWS.class:

HelloWS port =
service.getPort (org. jboss.jaxws.service.HelloWS.class) ;

Invoke the sayHello method of the web service proxy with a name as an argument.
The sayHello method returns a string. Output the response from the web service:

String result = port.sayHello("John Smith");
out.println(result) ;

The JaAXwSClient . jsp is listed here:

<%@ page language="java" contentType="text/html; charset=IS0-8859-
1" pageEncoding="ISO-8859-1"%>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.o0rg/TR/htmld/loose.dtd" >
<%@ page
import="org.jboss.jaxws.service.*, javax.xml.ws.WebServiceRef,
java.net .URL, javax.xml .namespace.QName, javax.xml .ws.Service"%>
<html>
<head>
<meta http-equiv="Content-Type" content="text/xml;
charset=windows-1252" />
<title>JAXWS Client</title>
</head>
<body>
<%URL wsdlLocation = new URL (
"http://localhost:8080/jboss-jaxws/HelloWorld?WSDL") ;

[226]

www.it-ebooks.info

http://org.jboss.jaxws.service/
http://org.jboss.jaxws.service/
http://www.it-ebooks.info/

Chapter 6

QOName serviceName = new
QName ("http://org.jboss.jaxws.service/", "HelloWorldService") ;

Service service = Service.create (wsdlLocation, serviceName) ;

HelloWS port =
service.getPort (org. jboss.jaxws.service.HelloWS.class) ;

String result = port.sayHello("John Smith") ;
out.println(result) ;

o\°

>
</body>
</html>

The directory structure of the jboss-jaxws application is shown in Java EE web
project in the following screenshot:

L5 Project Explorer 57 =| <-=|'=(>| ¢ =~ — 0O
4 Ef_"} b0 s-jars
B 1AK-RSYYeb Services
> 'ax Deployment Descriptor: jhoss-jass
» |3 Web Resources
A JAXMIS W eh Services
» 4 IPA Content
- i Java Resources
> = JawvaScript Resources
» [Deployed Resources
4 [i
4 {7 main
a4 (= java
4 [org
4 [jhoss
4 [jaais
4 [service
Hello¥World,java
HelloWs, java
s [resOUrCES
4 [z webapp
= resources
a4 = WEB-IMF
>t webaml
g JAMMYSClient,jsp
b = test
> [target
[pomzml

[227]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing a JAX-WS 2.2 Web Service

Deploying the JAX-WS application with
Maven

In this section, we will compile, package, and deploy the jboss-jaxws application
to WildFly 8.1. Specify the JAX-WS-related dependencies discussed in the following
table in the pom.xm1 file:

Dependency Description

Group Id: com. sun.xml .ws Open source reference implementation of the

Artifact Id: jaxws-rt JSR 224: Java API for XML Web Services
Group Id: javax.xml.ws JAX-WS (JSR 224) API

Artifact Id: jaxws-api

Group Id: com. sun.xml.bind JAXB (JSR 222) Reference implementation
Artifact Id: jaxb-impl
Group Id: com. sun.xml.bind JAXB (JSR 222) Reference implementation-

Artifact Id: jaxb-xjc schema compiler

We will use the JAX-WS Maven Plugin (http://jax-ws-commons.java.net/
jaxws-maven-plugin/), which is the Maven adapter for the JAX-WS's toolset.

The plugin provides wsgen and wsimport goals to generate the required portable
artifacts for a web service. First, run the wsgen goal to generate the JAX-WS web
service portable artifacts, including the WSDL, from an endpoint implementation
class. Subsequently, run the wsimport goal to generate the web service portable
artifacts, used by web service clients, from a WSDL. For the wsgen goal, specify the
service endpoint interface in the <sei/> element as org. jboss. jaxws.service.
HelloWorld, and specify the service name in the <serviceName/> element as
HelloWorldService. Set <genwsdl/> for the wsgen goal to true. Specify the Maven
Compiler Plugin and the Maven WAR Plugin, with the output directory set to the
deployments directory. The pom.xml code is listed here:

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
Xsi:schemalLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4 0 0.xsd">

<modelVersion>4.0.0</modelVersion>
<groupIds>org.jboss.jaxws</grouplds>
<artifactId>jboss-jaxws</artifactId>
<version>1.0.0</versions>
<packagings>war</packaging>

<name>Java EE 7 webapp project</names

[228]

www.it-ebooks.info

http://jax-ws-commons.java.net/jaxws-maven-plugin/
http://jax-ws-commons.java.net/jaxws-maven-plugin/
http://www.it-ebooks.info/

Chapter 6

<description>A starter Java EE 7 webapp project for use on JBoss
WildFly / WildFly, generated from the jboss-javaee6-webapp
archetype</descriptions>
<urlshttp://wildfly.org</urls>
<propertiess
<project.build.sourceEncoding>UTF-
8</project.build. sourceEncoding>
<!-- JBoss dependency versions -->
<version.wildfly.maven.plugin>1.0.2.Final
</version.wildfly.maven.plugin>

<!-- Define the version of the JBoss BOMs we want to import to
specify
tested stacks. -->

<version.jboss.bom>8.1.0.Final</version. jboss.bom>
<!-- other plugin versions -->
<version.compiler.plugin>3.1l</version.compiler.plugins>
<version.war.plugin>2.1l.1</version.war.plugins>
<!-- maven-compiler-plugin -->
<maven.compiler.target>1l.7</maven.compiler.target>
<maven.compiler.source>l.7</maven.compiler.sources>
</properties>
<repositoriess
<repositorys
<id>JBoss Repository</ids>
<url>https://repository.jboss.org/nexus/content
/groups/public/</urls>
</repository>
</repositories>
<dependencyManagement >
<dependencies>
<dependency>
<groupIds>org.wildfly.bom</groupId>
<artifactId>jboss-javaee-7.0-with-tools</artifactIds>
<version>${version.jboss.bom}</versions>
<types>pom</type>
<scope>import</scope>
</dependency>
<dependencys>
<groupld>org.wildfly.bom</groupIlds>
<artifactId>jboss-javaee-7.0-with-hibernate</artifactIds>
<versions>${version.jboss.bom}</versions>
<types>pom</type>
<scope>import</scope>
</dependency>
</dependencies>

[229]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing a JAX-WS 2.2 Web Service

</dependencyManagement >
<dependencies>

<!-- First declare the APIs we depend on and need for
compilation. All of them are provided by JBoss WildFly -->

<!-- Import the CDI API, we use provided scope as the API is
included in

JBoss WildFly -->

<dependencys>
<groupld>javax.enterprise</groupIds>
<artifactId>cdi-api</artifactIds>
<scope>provided</scope>

</dependency>

<dependencys>
<groupId>com.sun.xml.ws</groupId>
<artifactId>jaxws-rt</artifactIds>
<version>2.2.8</versions>
<scope>provided</scope>

</dependency>

<dependencys>
<groupld>javax.xml.ws</groupId>
<artifactId>jaxws-api</artifactId>
<version>2.2.8</versions>
<scope>provided</scope>

</dependency>

<dependencys>
<groupId>com.sun.xml.bind</groupIds>
<artifactId>jaxb-impl</artifactId>
<versions>2.2.7</versions>
<scope>provided</scope>

</dependency>

<dependencys>
<groupIds>javax.servlet</groupIld>
<artifactId>javax.servlet-api</artifactIds>
<version>3.1.0</versions>

</dependency>

<!-- Import the Common Annotations API (JSR-250), we use

provided scope

as the API is included in JBoss WildFly -->

<dependencys>
<groupIds>org.jboss.spec.javax.annotation</groupIds>
<artifactId>jboss-annotations-api 1.2 spec</artifactId>
<scope>provided</scope>

</dependency>

<dependencys>

[230]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

<groupId>javax.xml.bind</groupId>
<artifactId>jaxb-api</artifactIds>
<versions>2.2.7</versions>
<scope>provided</scope>
</dependency>
</dependencies>
<builds>

<!-- Maven will append the version to the finalName
the name

given to the generated war, and hence the context
<finalName>${project.artifactId}</finalName>
<pluginManagement >
<pluginss>
<plugins>
<groupIds>org.eclipse.m2e</groupld>
<artifactIds>lifecycle-mapping</artifactIds>
<version>1.0.0</versions>
<configurations>
<lifecycleMappingMetadatas>
<pluginExecutions>
<pluginExecutions>
<pluginExecutionFilters>

(which is

root)

-->

<groupld>org.jvnet.jax-ws-commons</groupIld>

<artifactId>jaxws-maven-plugin</artifactIds>

<versionRanges>[2.2,)</versionRange>
<goals>
<goal>wsimport</goals>
</goals>
</pluginExecutionFilters>
<actions
<ignore />
</action>
</pluginExecutions>
</pluginExecutions>
</lifecycleMappingMetadatas>
</configurations>
</plugin>

<!-- Compiler plugin enforces Java 1.6 compatibility and

activates annotation processors -->
<plugins>
<artifactId>maven-compiler-plugin</artifactIds>
<version>${version.compiler.plugin}</versions>
<configurations>
<source>${maven.compiler.source}</sources>

[231]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing a JAX-WS 2.2 Web Service

<target>${maven.compiler.target}</target>
</configurations>
</plugin>
<plugins>
<artifactIds>maven-war-plugin</artifactIds>
<version>${version.war.plugin}</versions>
<configurations>

<outputDirectory>C:\wildfly-
8.1.0.Final\standalone\deployments</outputDirectory>

<!-- Java EE 7 doesn't require web.xml, Maven needs to
catch up! -->
<failOnMissingWebXml>false</failOnMissingWebXml >
</configurations>

</plugin>

<!-- The WildFly plugin deploys your war to a local

WildFly container -->

<!-- To use, run: mvn package wildfly:deploy -->

<plugins>

<groupIds>org.wildfly.plugins</groupId>
<artifactIds>wildfly-maven-plugin</artifactIds>
<version>${version.wildfly.maven.plugin}</versions>
</plugin>
<plugins>
<groupld>org.jvnet.jax-ws-commons</groupIld>
<artifactId>jaxws-maven-plugin</artifactIds>
<versions>2.2</version>
<executionss>
<execution>
<id>HelloWorldService</id>
<phase>compile</phase>
<goals>
<goal>wsgen</goals>
</goals>
<configurations>
<sei>org.jboss.jaxws.service.HelloWorld</sei>
<genwsdl>true</genwsdl>
<servicename>HelloWorldService</servicename>
<keep>true</keep>
</configurations>
</executions>
</executions>
</plugin>
<plugins>
<groupld>org.jvnet.jax-ws-commons</groupIld>

[232]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

<artifactId>jaxws-maven-plugin</artifactIds>
<versions>2.3</version>
<executionss>
<execution>
<id>HelloWorldService</id>
<goals>
<goal>wsimport</goals>
</goals>
</executions>
</executions>
<configurations>
<packagename>org.jboss.jaxws.service</packagename>
<target>2.0</target>
<keep>true</keep>
</configurations>
<dependencies>
<dependencys>
<groupId>com.sun.xml.ws</groupId>
<artifactId>jaxws-tools</artifactId>
<version>2.2.8</versions>
<exclusionss>
<exclusion>
<grouplds>org.jvnet.staxex</groupIds>
<artifactIdsstax-ex</artifactIds>
</exclusion>
</exclusions>
</dependency>
<dependencys>
<grouplds>org.jvnet.staxex</grouplds>
<artifactIdsstax-ex</artifactIds>
<version>1l.7.6</versions>
<exclusionss>
<exclusion>
<groupIld>javax.xml.stream</groupIds>
<artifactIds>stax-api</artifactIds>
</exclusions>
</exclusions>
</dependency>
</dependencies>
</plugin>
</plugins>
</pluginManagement >
</build>
</project>

[233]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing a JAX-WS 2.2 Web Service

Right-click on pom.xml in the Project Explorer and select Run As | Maven install, as
shown in the following screenshot:

[pomaml - jbas

Exclude Validation

@ Java EE - jboss- e .
File Edit Mavig Show In Alt+Shift+4/ »
e Open F3
- - ¥5 Open With b
L Project Explore B Copy Ctrl+C
- Efj} jboss-ja 55 Copy Qualified Mame
A JAX-RY [Paste Chrl +v
> 'ax Deploy 3 Delete Delete
> [y Web Ry Rernowe from Context Ctrl+ &0t +Shift+Down
S v
IPACo dark as Landrmark Ctrl+Alt+Shift+Up
. 28 Java Rel Euild Path 2
> = Javascy Mowve...
> L3 Deplay Rename...
S 1
> G target | pag Import.
[m] pom fug Export..
2 Refresh F5
5% Mark as Deployahle
Yalidate
Show in Rernote Systerns view
Profile A3 3
Debug As 3
Run &3 3 BE 1Run an Server Alt+Shift+x, R
Tearn b m2 2 Maven build Alt+Shift+x, b
Cornpare With b m2 3 Maven build..
Replace With b m2 4Maven clean
ITidy b m2 5 Maven clean verify
taven b | m2 6 Maven generate-sources
Google b m2 T Maven install
Source b m2 8 Maven test L‘\’

Run Configurations..,

The jboss-jaxws project gets compiled and packaged into a jboss-jaxws.war
archive. A BUILD SUCCESS message indicates that the Maven build completed
without any error, as shown here:

[234]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Markers Properties o7 Servers Data Source Explorer [Snippets B Console 52 Palette &' Error Log = O
) % % | B B

<terminated > Ci\Program Files\Java\jdkLT.0_51\bin\javaw.exe (Dec 1, 2014, 127:28 PM)

[INFO] --- maven-war-plugin:2.1.1:war (default-war) @ jboss-jaxws ---

[INFO] Packaging webapp

[INFO] Assembling webapp [jboss-jaxws] in [C:'\Users\Deepak vohraiEclipse\workspacehiboss-jaxus‘\targetiibos
[INFO] Processing war project

[INFO] Copying webapp resources [C:iisersiDeepak vohra\Eclipsetworkspacetjboss-jaxwsisrcimaintwebapp]
[INFO] Webapp assembled in [A936 msecs]

[INFO] Building war: C:hwildfly-8.1.@.Final‘standalone\deploymentshjboss-Jaxus. war

[WARNING] Warning: selected war files include a WEB-INF/web.:ml which will be ignored

(webyml attribute is missing from war task, or ignorelebsml attribute is specified as 'true')

[INFO]

[INFO] --- maven-install-plugin:2.4:install (default-install) @ jboss-jaxws ---

[INFO] Installing C:wildfly-8.1.@.Finalistandalonetdeploymentstjboss-jaxws.war to C:\UsersiDeepak vohral.
[INF2] Installing C:'\Users\Deepak Wohra\Eclipselworkspaceljboss-jaxws\pom.:ml to C:\Users\Deepak Wohra'.m2
[IMFO] = mm o m o s o s e s e e o o

[INFO] BUILD SUCCESS

[INFO] === = m e mm e e e e e e e e e e e e e e e e e

[INFO] Total time: 4@.438 s

[INFO] Finished at: 2014-12-81T13:28:14-08:00

[INFO] Final Memory: L18M/216M

o e

Start WildFly 8.1 if it is not already started. The jboss-jaxws.war archive gets
deployed to WildFly 8.1, as shown in the Administration console:

[& s80ss Management -

“ + | httpiflacalt cansole/App htmitdeployment ¢ | [Qr Google

Runtime

= Server DEPLOYMENTS

Overview

Manage Deplayments Deployments

Patch Management Currently deployed application companents.
= Status

Add Remove En/Disable Replace
= Platform
M %D jboss-jaxws war v

Environment

= Subsysterns
Datasources
JRA
INDI iew
Transaction Logs
Transactions

Uiebservices Deployment

Hesd Help?

Name: jbess-jaxws.war

[235]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing a JAX-WS 2.2 Web Service

The WSDL for the web service can be invoked in a browser with the URL
http://localhost:8080/jboss-jaxws/HelloWorld?WSDL, as shown in the
following screenshot:

@ htip:/flocalhost:8080/jboss-jaxws/HelloWorld?WSDL =NNCN X

< + @http:f‘f'localhost:SUSUfjhoss—jamsr‘HeIIoWorld? ¢ | |Q Google O~ &~

-

This 3L file does not appear to have any style information associated with it The document
tree i3 shown belowr.

vowadl:definitions xmlns:xsd="http://www.w3.org/ 2001/ XML3chema™

m

xmlna:wadl="http://schewmas. xwlsoap.org/ wadl/ "™
Hmlns:tns="http://org. jboss. jaxws.service,/ "
xmlna:soap="http://schemas. xmlsoap. org/ wadl,/ soap/ "
®mlns:nsl="http://schemas.xwlsoap.org/soap/ http” name="HelloWor ldService"| |
targetMNamespace="http://ory. jhoss. jaxws.service/ ">
wwsdl:typess
vxs:ischema xmlnsixs="htop://www, w3, org/2001/ ZMLSchema"”
Xmlns:tns="http:/ org. jboss. jaxws . service,/ "
elementFormbefault="unqualified"”
targetNamespace="http:/ org. jboss. jaxws.service/" version="1.0">
<xz:element name="hello"™ type="tns:hello"/>
<HS:element name="helloReaponse™ type="tns:helloResponse™/ >
waHsicowplexType nawe="hello™:
Y XS SequUeEnce
<xE:element mindccurs="0" name="argl" type="xs:string”/ >
</®zisequences
</®s:icomplexTypes
waRsicowplexType namwe="helloResponse™s
¥ Eeduenee

The WSDL file's content is shown as follows:

<wsdl:definitions xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"xmln
s:wsdl="http://schemas.xmlsoap.org/wsdl/"xmlns:tns="http://org.jbo
ss.jaxws.service/"xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap
/"xmlns:nsl="http://schemas.xmlsoap.org/soap/http" name="HelloWorl
dService"targetNamespace="http://org.jboss.jaxws.service/">

<wsdl:types>

<XS:
ttp:

schema xmlns:xs="http://www.w3.0org/2001/XMLSchema"xmlns:tns="h
//org.jboss.jaxws.service/"elementFormDefault="unqualified"tar

getNamespace="http://org.jboss.jaxws.service/" version="1.0">

<XSs:
:element name="helloResponse" type="tns:helloResponse"/>
:complexType name="hello">

<Xs

<Xs

<XSs:

<XSs:

element name="hello" type="tns:hello"/>

sequences
element minOccurs="0" name="arg0" type="xs:string"/>

</xs:sequence>

</xs:complexType>

<XSs:

complexType name="helloResponse">

[236]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

<XS:sequencex
<xs:element minOccurs="0" name="return" type="Xs:string"/>
</xs:sequence>

</xs:complexType>

</xs:schemas>

</wsdl:types>

<wsdl:message name="hello">

<wsdl:part element="tns:hello" name="parameters"></wsdl:part>
</wsdl :message>

<wsdl:message name="helloResponse">

<wsdl:part element="tns:helloResponse" name="parameters">
</wsdl:part>

</wsdl :message>

<wsdl:portType name="HelloWS">

<wsdl:operation name="hello">

<wsdl:input message="tns:hello" name="hello"></wsdl:inputs>

<wsdl:output message="tns:helloResponse'"name="helloResponse">
</wsdl:output>

</wsdl:operation>

</wsdl :portType>

<wsdl:binding name="HelloWorldServiceSoapBinding" type="tns:HelloW
S">

<soap:binding style="document"transport="http://schemas.xmlsoap.or
g/soap/http"/>

<wsdl:operation name="hello">

<soap:operation soapAction="" style="document"/>

<wsdl:input name="hello">

<soap:body use="literal"/>

</wsdl:input>

<wsdl:output name="helloResponse">

<soap:body use="literal"/>

</wsdl:output>

</wsdl:operation>

</wsdl:binding>

<wsdl:service name="HelloWorldService">

<wsdl:port binding="tns:HelloWorldServiceSoapBinding"
name="HelloWorldPort">

<soap:address location="http://localhost:8080/jboss-
jaxws/HelloWorld" />

</wsdl:port>
</wsdl:service>
</wsdl:definitions>

[237]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing a JAX-WS 2.2 Web Service

Running the JAX-WS application

In this section, we will invoke the web service using a JSP client. Invoke the
JAXWSClient .jsp file in a browser with the URL http://localhost:8080/jboss-
jaxws/JAXWSClient.jsp. The web service response gets displayed in the browser,
as shown in the following screenshot:

€ JAXWS Client EET™
] + |8 http:/localhost:8080/jboss-jamovs 0w sClientjsp & | | Qr Google O- 2%~

Hello John Stith Welcome to Web Services!

Summary

In this chapter, we developed a JAX-WS Web Service in Eclipse IDE with JBoss Tools
sample web service. We created an endpoint implementation class and an endpoint
interface. We developed a JSP client for the web service. The web service is deployed
using the JSR-109 deployment model, which involves configuring the endpoint class
as a servlet in web.xml. We compiled and packaged the web service project with
Maven build tools and deployed the web application to WildFly 8.1. Subsequently,
we ran the web service client JSP in a browser.

In the next chapter, we will discuss RESTful web services with WildFly 8.1.

[238]

www.it-ebooks.info

http://localhost:8080/jboss-jaxws/JAXWSClient.jsp
http://localhost:8080/jboss-jaxws/JAXWSClient.jsp
http://www.it-ebooks.info/

Developing a JAX-RS 1.1
Web Service

In this chapter, we will discuss Representational State Transfer (REST) web
services, specifically those based on Java API for RESTful web services (JAX-RS 1.x),
which is defined in JSR 311 (http://jcp.org/en/jsr/detail?id=311). The new
version of JAX-RS (2.0) has become available and is discussed in Chapter 9, Using
JAX-RS 2.0 in Java EE 7 with RESTEasy. The previous version is discussed first, as

it forms the basis for the new version and also because a lot of developers are still
using the previous version. Migration to a new version of existing applications

does not happen as and when a new version becomes available. REST is a protocol
independent, loosely coupled, software architecture style for distributed systems.
Protocol independent implies that REST supports any protocol that supports transfer
of representational state, but we will discuss REST over HTTP only. In comparison
to SOAP, REST is less strongly typed, does not require XML parsing, and does not
require message headers. RESTful web services are based on the REST principle and
are simple, lightweight, and fast. A RESTful web service exposes a set of resources,
which are simply sources of information, identified by URIs in HTTP. A resource
could be a database record or a Plain Old Java Object (POJO) for example. What
are exchanged are not resources themselves, but representations of resources, which
are typically documents in HTML, XML, JSON, and plain text, but they could be an
image or some other format. Based on the representations of resources and included
metadata, a client makes changes to the resources.

RESTful web services follow these RESTful principles:

* Every resource has a unique base URI.

* For invoking web service operations, the HTTP protocol methods such as
GET, PUT, POST, and DELETE are used.

[239]

www.it-ebooks.info

http://jcp.org/en/jsr/detail?id=311
http://www.it-ebooks.info/

Developing a JAX-RS 1.1 Web Service

A client sends a request to a service, and the service returns a representation
of a resource requested to the client.

Client sessions are not stored on the server, which makes it easier to scale the
service with less data to replicate in a clustered environment.

In this chapter, we will use the Jersey JAX-RS (JSR 311) Reference Implementation
(RI) to create RESTful web services in Java. This chapter has the following sections:

Setting up the environment

Creating a Java EE web project
Creating a sample RESTful web service
Deploying the RESTful web service
Running the RESTful web service
Creating a Java client

Running the Java client

Creating a JSP client

Running the JSP client

Setting up the environment

We need to download and install the following software:

WildFly 8.1.0.Final: Download wildfly-8.1.0.Final.zip from
http://wildfly.org/downloads/.

MySQL 5.6 Database-Community Edition: Download this edition from
http://dev.mysql.com/downloads/mysql/. When installing MySQL,
install Connector/J too.

Eclipse IDE for Java EE Developers: Download Eclipse Luna from
https://www.eclipse.org/downloads/packages/release/Luna/SR1.

JBoss Tools (Luna) 4.2.0.Final (or the latest version): Install this as a plugin
to Eclipse from the Eclipse Marketplace (http://tools.jboss.org/
downloads/installation.html).

Apache Maven: Download version 3.05 or higher from
http://maven.apache.org/download. cgi.

Java 7: Download Java 7 from http: //www.oracle.com/technetwork/
java/javase/downloads/index.html?ssSourceSiteId=ocomcn.

[240]

www.it-ebooks.info

http://wildfly.org/downloads/
http://dev.mysql.com/downloads/mysql/
https://www.eclipse.org/downloads/packages/release/Luna/SR1
http://tools.jboss.org/downloads/installation.html
http://tools.jboss.org/downloads/installation.html
http://maven.apache.org/download.cgi
http://www.oracle.com/technetwork/java/javase/downloads/index.html?ssSourceSiteId=ocomcn
http://www.oracle.com/technetwork/java/javase/downloads/index.html?ssSourceSiteId=ocomcn
http://www.it-ebooks.info/

Chapter 7

Set the environment variables JAVA HOME, JBOSS_HOME, and MAVEN HOME. Add
$JAVA HOMES%/bin, $MAVEN HOMES%/bin, and $JBOSS HOME%/bin to the PATH
environment variable.

Create a WildFly 8.1.0 runtime as discussed in Chapter 1, Getting Started with E|B 3.x.

Creating a Java EE web project

In this section, we will create a Java EE Web Project. Select File | New | Other.
In New, select JBoss Central | Java EE Web Project, as shown here. Now, click
on Next.

[.] MNew » l (= S

Select a wizard p—

Wifizards:
fype filter text

» = lawa EE
> [= lawa Emitter Templates
> [= lawaScript
s [1AXE
4 [~ JBoss Central
% Angularlswith Forge Project
B HTMLS Project
(E} Java EE EAR Project
31 Jawva EE Web Project
@ RichFaces Project I
A Spring MWE Project il

m

(] Showe &1 Yizards,

[241]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing a JAX-RS 1.1 Web Service

A list for requirements, which includes the m2e and m2eclipse-wtp plugins, and the
JBoss Maven Tools plugin is shown as follows. Check the Create a blank project
checkbox and select WildFly 8.x Runtime as Target Runtime. Then, click on Next.

Java EE Web Project

Create a Maven-based Java EE 6 web application project

. R
@ New Project Example E5 X

Description:

This is your project! It's a sample, deployable Maven 3 project to help wou getywour foot in the door developing -
with Jawa EE 6 on JBoss Enterprise Application Platform 6 or JBoss Application Server 7.1,

This project is setup to allow you to create a compliant Jawva EE 6 application using JSF 2.0, CDI1.0, EJB 3.1, JPA 2.0
and Bean Walidation 1.0

Project based on the orguwildfly.archetypenwildfly-javaeeT-webapp-blank-archetype:8.L0.Final Maven archetype b
Create a blank project

Target Runtirme | W¢ildFly 8.x Runtime -

Requirerments

Type Description Faun... Install...
serverftunti., - This project example requires JBoss Enterprise Applic., [
plugin This project example requires m2e == L0, Dovinlcaclanin:tal 2
plugin This project exarmple requires mée-wip »= 0,16.0,
plugin This project exarmple requires JBoss Maven Toals,

@ [<Bak | Mex> %J sl

Specify Project name (jboss-jaxrs) and Package (org. jboss.jaxrs), and click on
Next, as shown here:

[242]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

F
E Mew Project Example

Java EE Web Project

Praject name jboss-jaxrs

Create a Maven-based Jawva EE 6 web application project

Package org.jboss.jaxrs|

[T 2dd project(s) to working set

b Advanced

Use default Workspace location

kare...

[< Back ” Mext = %7] [Finish] [Cancel]

r
ﬂ New Project Example

— | 5 [
Java EE Web Project ,@
Create a Mawven-based Java EE 6 web application project),.-_" /
GroupId: org.jboss.jars -
Artifact[d: jhoss-jaxrs -
Wersion: Lo.0 -
Package: orgjbossjaxrs -
Froperties available from archetype:
Marme Walue Add.,
hame Jawva EE Twebapp project m
Remove
* Advanced

[] Resolve Wiiarkspace projects

Profiles:

Marme temnplate:

?

Mext =

Finish [}J [Cancel

Specify Group Id (org.jboss.jaxrs), Artifact Id (jboss-jaxrs), Version (1.0.0),
and Package (org.jboss.jaxrs) and click on Finish, as shown here:

[243]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing a JAX-RS 1.1 Web Service

The jboss-jaxrs Java EE web project is shown in Project Explorer:

I Project Explarer 33 = 8
==l I
a & jboss-jaxrs
- AR 8X-REWYeh Services
- ‘=g Deployment Descriptor: jboss-j
. A Web Resources
A JAXAWEYeb Services
- [Java Resources
. L Deployed Resources
4 = src
4 [= main
[java
4 [= resources
- = META-IMF
4 [webapp
= resources
4 [WEB-INF
A beansaxml
¥| faces-canfig.zml
X| jboss-jaxrs-dsarr
o = test
- [target
[m] pormsml

Creating a sample RESTful web service

In this section, we will create a RESTful web service. Right-click on the JAX-RS Web
Services node in Project Explorer and select New JAX-RS Resource, as shown here:

L7 Project Explarer 52 = B | i IBoss Central i3
= & -
N 5| i, Welcome
4 'é-:‘ﬁ jbiass-jaxrs
AP 1AX-RE Web Serv
‘? £ ENIC,E QDQ- Refresh
- '3 Deployrment Descriy
|3 Web Resources ¥ Mew JAX-RS Resource)
A RS WYeh Servicky
» e JPA Content
o 8 Java Resources
. = JavaScript Resources
. L Deployed Resources

4 = src
: [main
o [test
- [target
[pornseml

[244]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Select the jboss-jaxrs project and specify Package as org. jboss.jaxrs.rest,
Name as HelloWorldResource, Resource path as /helloworld, and click on Next,
as shown here:

-

W

JAX-RS Resource
Create a new J&X-RS Resource,

1l

Source folder: jboss-jaxrsfsrc/mainfava Braowwse...
Package: org.jboss,jaxrs.rest Browwse..,
Target entity: Bronwse..,
MNarme: HelloWardResource

Resaurce path: fhellowarld

Media types: S applicationfjson

"q?ﬁapplicationf’xml

Which J&X-RS Resource Method stubs would you like to create 7
findById() lista|| () created)
update) deleteById
Do wouwwant to add camments? (Configure terplates and default value here)

D Generate comments

Add..,

Rernowve

@ < Back Finish

Cancel

[245]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing a JAX-RS 1.1 Web Service

In the JAX-RS Application window, select the Source folder as jboss-jaxrs/
src/main/java and specify Package as org.jboss.jaxrs.rest, Name as
HelloRESTApplication, Application path as /rest, and click on Finish,

as shown here:

:

- -
5 N

JAX-RS Application q
Create a new JAX-RS Application, F. !

Select the type of JAX-RS Application you want to create:

@ Subclass of javaxas rs.core Application

Source folder: Jboss-jaxrsfsrcfmain/java
Package: org jboss.jaxrs.rest

Marme: HelloRESTApplication

Application path: frest

Do youwant to add comments? (Configure templates and default value here)
|:| Generate comments

() Defined in the web deployment descriptar
frest I

() Skip the JAX-RS Application creation

@' Mext = [Finishl\‘ I Cancel

The org.jboss.jaxrs.rest .HelloWorldResource class gets generated, as shown
in the Project Explorer.

[246]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

L Project Explarer 53 == = = 8
4 5 jboss-jaurs
2B IAX-RE WY eh Services

- 'z8 Deployment Descriptor: jboss-jaxrs

- |1 Web Resources

s A 1AXSWSEWeh Services

s JPA Content

» 12 Java Resources

» =iy JawvaScript Resources

- L@ Deployed Resources

a4 [src
4 (=5 main
4 [java
4 = org
a (= jboss
4 [janrs
4 [= rest
HelloRESTApplication.java
Hello¥/orldResource java %
» =5 resources
+ = webapp
s = test
¢ [target
[pornxenl

A JAX-RS RESTful web service resource is defined using a root resource class. A
web service's URI is constructed from path designators, which are specified using
the @PATH annotation. A resource is defined using a root resource class. The root
resource classes are POJOs annotated with @PATH with one or more class methods
annotated with a resource method designator (eGET, @PUT, @POST, @ELETE) or with
the @PATH annotation or with both a resource method designator and epATH. The
root class methods that are annotated with resource method designators are called
resource methods. The resource methods that are annotated with epPATH are called
subresource methods. The class methods that are annotated only with @PATH are
called subresource locators.

The resources respond to HTTP methods such as GET, POST, PUT, and DELETE
(http://www.w3.org/Protocols/HTTP/Methods.html). For example, a client may
get a resource representation with GET, upload a modified copy of the resource using
PUT, or delete the resource using DELETE. The resource methods (and the subresource
methods and subresource locators) may return a resource representation in various
formats such as HTML, plain text, XML, PDF, JPEG, and JSON.

[247]

www.it-ebooks.info

http://www.w3.org/Protocols/HTTP/Methods.html
http://www.it-ebooks.info/

Developing a JAX-RS 1.1 Web Service

We will create a root resource class with some resource methods using the @GET
request method designator. Annotate the Java class org. jboss.jaxrs.rest.
HelloWorldResource with the @ATH annotation. Specify the URI path on which
the Java class will be hosted as /helloworld:

@Path("/helloworld")
public class HelloWorldResource

}
Next, add resource methods to produce three different MIME types. Add
the resource methods getClichedMessage (), getXMLMessage (), and
getHTMLMessage () (method names are arbitrary) annotated with the @GET
annotation, which indicates that the resource methods will process the HTTP GET
requests from a client. Each of the resource method produces a different MIME
type resource representation. Each of the resource methods returns String, but the
MIME type returned and specified in the @Produces annotation is different for the
different resource methods. We will output a "Hello JAX-RS" message in three
different MIME types: text /plain, text/xml, and text/html. The String value
returned in each of the resource methods is in the format corresponding to the
designated MIME type. Add two versions of the getXMLMessage () method one for
a JSP client, as discussed in a later section. Add a resource method annotated with @
Produces ("application/xml") to demonstrate the requirement for the produced
MIME type to match an acceptable MIME type in a client. The root resource class is
listed as follows; some sections have been commented out for testing the resource
methods separately:

package org.jboss.jaxrs.rest;

import javax.ws.rs.GET;

import javax.ws.rs.Produces;
import javax.ws.rs.Path;

import javax.ws.rs.core.MediaType;

// The Java class will be hosted at the URI path "/helloworld"
@Path ("/helloworld")
public class HelloWorldResource

// The Java method will process HTTP GET requests

//
// The Java method will produce content identified by the MIME
Media

// type "text/plain"

[248]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

@GET
@Produces ("text/plain")
public String getClichedMessage ()
// Return some cliched textual content

return "Hello JAX-RS";

}
/**

* @GET

* @Produces ("application/xml") public String getXMLMessage () {
return

* "<?xml version=\"1.0\"?>" +
* "<hello> Hello JAX-RS" +
"</hello>"; }
*/

//for java client
@GET
@Produces ("text/xml")
public String getXMLMessage ()

return "<?xml version=\"1.0\"?>" + "<hello> Hello JAX-RS" +
"<«/hello>";

//for jsp client
/**@GET
@Produces ("text/xml")
public String getXMLMessage () {

return "<?xml version=\"1.0\"?>" + "<hello>Hello
JAX-RS" + "</hello>";

b*/

@GET
@Produces ("text/html")
public String getHTMLMessage ()
return "<htmls> " + "<title>" + "Hello JAX-RS" + "</title>"

+ "<body><hl>" + "Hello JAX-RS" + "</body></hl> " +
"</html> ";

[249]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing a JAX-RS 1.1 Web Service

We also need to create a web deployment descriptor web.xml. Select File | New |
Other, and in New, select JBoss Tools Web | Web Descriptor and click on Next,
as shown here:

8] New Ll &) oo

Select a wizard

Create a Web Descriptor |

Wfizards:
type filker text

b = JAXE »
» [= JBoss Central
» = JBoss Tools
4 (= JBoss Tools Weh
B G55 Class
EX Praperties File
&3 TLDFile
5 e Descriptor
% KHTML Page
> = JSF
2 = Portlet

lam |

[Sk &1 izards.

In New Web Descriptor File, select the /jboss-jaxrs/src/main/webapp/WEB- INF
folder and specify Name as web.xml and select Version as 3.1, and click on Finish,
as shown here:

[250]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

ﬂ Mew Web Descriptor File —wplEl

Web Descriptor File @-',

Folder® fjboss-jaxrs/srofmainfoebappMVEB-IMNF

Tarme: e h ol

Wersion: | 3.1 VI

@' Mext = l Finish M ’ Cancel

In the web . xm1 file, specify a servlet for the servlet class com.sun.jersey.spi.
container.servlet.ServletContainer, which is a servlet for deploying root
resource classes. Specify the servlet mapping URL pattern as /jaxrs/*:

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.1" xmlns="http://xmlns.jcp.org/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
Xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/web-app 3 1.xsd">
<display-name>EclipseJAX-RS</display-name>
<welcome-file-list>
<welcome-file>index.html</welcome-file>
<welcome-file>index.htm</welcome-file>
<welcome-file>index.jsp</welcome-file>
</welcome-file-list>
<servlets>
<servlet-name>JAX-RS Servlet</servlet-name>

[251]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing a JAX-RS 1.1 Web Service

<servlet-class>com.sun.jersey.spi.container.servlet.

ServletContainer
</servlet-class>

<load-on-startup>1l</load-on-startup>

</servlet>
<servlet-mapping>

<servlet-name>JAX-RS Servlet</servlet-name>

<url-pattern>/jaxrs/*</url
</servlet-mapping>
</web-app>

-pattern>

The web . xm1 file is shown in Project Explorer as follows:

[75 Project Explorer &2

4 5 jboss-jars
. AP MH-RSWWeb Se

. |1 YWeb Resources

. JPA Content
. 7 Java Resources

. Lig Deployed Reso
4 [src
4 [rmain
o [java
s =% rESOUrC

X

¢ L= test
o [target
[parnznl

. ‘a1 Deployrment Descriptar: jboss-jaxrs

o A JAXMAWS W eh Services

. B Javascript Resources

4 [= webapp
= resourCes
4 [WEB-INF

rvices

urces
B3

beans.xml
faces-configxml
jboss-jaxrs-dsxml
wweb il

s

Deploying the RESTful web service

In this section, we will compile, packa

ge, and deploy the JAX-RS application jboss-

jaxrs with Maven. A pom.xml file gets created when a Java EE Web Project is

created. In the pom.xml file, the jboss

-jaxrs Artifact ID is specified with packaging

as war. The JAX-RS APl is provided by WildFly 8.1:

<dependencys>

<groupIds>org.jboss.spec.javax.ws.rs</groupId>

[252]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

<artifactId>jboss-jaxrs-api 1.1 spec</artifactIds>
<version>1.0.1.Final</version>
<scope>provided</scope>

</dependency>

As we are using the Jersey JAX-RS RI, include the dependencies for Jersey, which are
available in the Group ID com.sun.jersey:

<dependencys>
<groupIld>com.sun.jersey</groupIld>

<artifactId>jersey-server</artifactIds>
<version>1l.18</versions>

</dependency>

<dependencys>
<groupId>com.sun.jersey</groupIld>
<artifactIds>jersey-core</artifactId>
<version>1.18</version>

</dependency>

<dependencys>
<groupId>com.sun.jersey</groupIld>
<artifactId>jersey-servlet</artifactIds>
<version>1.18</versions>

</dependency>

<dependencys>
<groupId>com.sun.jersey</groupIld>
<artifactIds>jersey-client</artifactIds>
<version>1l.18</versions>

</dependency>

Add the Maven Compiler plugin and the Maven WAR plugin and specify the output
directory as the deployments directory of WildFly 8.1 installation. The pom.xm1 file
is listed as follows:

<?xml vergion="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

Xs1i:schemalocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4 0 0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupld>org.jboss.jaxrs</grouplds>
<artifactId>jboss-jaxrs</artifactIds>
<version>1.0.0</version>
<packaging>war</packaging>
<name>WildFly JAX-RS</name>

[253]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing a JAX-RS 1.1 Web Service

<description>A starter Java EE 7 webapp project for use on JBo
WildFly / WildFly, generated from the jboss-javaee6-webapp
archetype</descriptions>

<urlshttp://wildfly.org</urls>

<propertiess
<!-- Explicitly declaring the source encoding eliminates the
following
message: -->
<!-- [WARNING] Using platform encoding (UTF-8 actually) to

copy filtered
resources, i.e. build is platform dependent! -->

<project.build.sourceEncoding>UTF-
8</project.build. sourceEncoding>

<!-- JBoss dependency versions -->

<version.wildfly.maven.plugin>1.0.2.Final
</version.wildfly.maven.plugin>

<!-- Define the version of the JBoss BOMs we want to import
specify
tested stacks. -->

<version.jboss.bom>8.1.0.Final</version.jboss.bom>
<version.arquillian.container>8.1.0.Final
</version.arquillian.containers>
<!-- other plugin versions -->
<version.compiler.plugin>3.1l</version.compiler.plugin>
<version.war.plugin>2.1l.1</version.war.plugins>
<!-- maven-compiler-plugin -->
<maven.compiler.target>1l.7</maven.compiler.target>
<maven.compiler.source>1l.7</maven.compiler.sources>
</properties>
<dependencyManagement >
<dependencies>
<dependencys>
<groupIds>org.wildfly.bom</groupId>
<artifactId>jboss-javaee-7.0-with-tools</artifactId>
<version>${version.jboss.bom}</versions>
<types>pom</type>
<scope>import</scope>
</dependency>
<dependencys>
<grouplds>org.jboss.spec</groupIld>
<artifactId>jboss-javaee-web-7.0</artifactId>
<version>1.0.0.Final</version>
<types>pom</type>

SS

to

[254]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

<scope>import</scope>
</dependency>
</dependencies>

</dependencyManagement >

<dependencies>

<!-- First declare the APIs we depend on and need for
compilation. All of them are provided by JBoss WildFly -->

<!-- Import the CDI API, we use provided scope as the API is
included in

JBoss WildFly -->

<dependencys>
<groupld>javax.enterprise</groupIds>
<artifactId>cdi-api</artifactIds>
<scope>provided</scope>

</dependency>

<!-- Import the Common Annotations API (JSR-250), we use

provided scope as the API is included in JBoss WildFly -->

<dependencys>
<groupIds>org.jboss.spec.javax.annotation</groupIds>
<artifactId>jboss-annotations-api 1.2 spec</artifactId>
<scope>provided</scope>

</dependency>

<!-- Import the JAX-RS API, we use provided scope as the API

is included in JBoss WildFly -->

<dependencys>
<groupIds>javax.servlet</groupIld>
<artifactId>javax.servlet-api</artifactIds>
<version>3.1.0</versions>

</dependency>

<dependencys>
<grouplds>org.jboss.spec.javax.ws.rs</groupIld>
<artifactId>jboss-jaxrs-api 1.1 spec</artifactIds>
<version>1.0.1.Final</version>
<scope>provided</scope>

</dependency>

<dependencys>
<groupId>com.sun.jersey</groupIld>
<artifactIds>jersey-server</artifactId>
<version>1.18</version>

</dependency>

<dependencys>
<groupId>com.sun.jersey</groupld>
<artifactIds>jersey-core</artifactId>

[255]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing a JAX-RS 1.1 Web Service

<version>1l.18</versions>
</dependency>
<dependencys>
<groupId>com.sun.jersey</groupIld>
<artifactId>jersey-servlet</artifactIds>
<version>1l.18</version>
</dependency>
<dependencys>
<groupId>com.sun.jersey</groupIld>
<artifactIds>jersey-client</artifactIds>
<version>1l.18</versions>
</dependency>
</dependencies>
<builds>
<!-- Maven will append the version to the finalName (which is

the name given to the generated war, and hence the context
root) -->

<finalName>${project.artifactId}</finalName>
<pluginManagement >
<pluginss>
<!-- Compiler plugin enforces Java 1.6 compatibility and
activates annotation processors -->
<plugins>
<groupIds>org.eclipse.m2e</groupld>
<artifactIds>lifecycle-mapping</artifactIds>
<version>1.0.0</versions>
<configurations>
<lifecycleMappingMetadatas>
<pluginExecutions>
<pluginExecutions>
<pluginExecutionFilters>
<groupld>org.jvnet.jax-ws-commons</groupIld>
<artifactId>jaxws-maven-plugin</artifactIds>
<versionRanges>[2.2,)</versionRange>
<goals>
<goal>wsimport</goals>
</goals>
</pluginExecutionFilter>
<action>
<ignore />
</action>
</pluginExecutions>

[256]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

</pluginExecutions>
</lifecycleMappingMetadatas>
</configurations>
</plugin>
<plugins>
<artifactId>maven-compiler-plugin</artifactIds>
<version>${version.compiler.plugin}</version>
<configurations>
<source>${maven.compiler.source}</sources>
<target>${maven.compiler.target}</target>
</configurations>
</plugin>
<plugins>
<artifactIds>maven-war-plugin</artifactIds>
<version>${version.war.plugin}</versions>
<configurations>

<outputDirectory>C:\wildfly-
8.1.0.Final\standalone\deployments</outputDirectory>

<!-- Java EE 7 doesn't require web.xml, Maven needs to
catch up! -->
<failOnMissingWebXml>false</failOnMissingWebXml >
</configurations>

</plugin>

<!-- The WildFly plugin deploys your war to a local

WildFly container -->

<!-- To use, run: mvn package wildfly:deploy -->

<plugins>

<groupIds>org.wildfly.plugins</groupId>
<artifactIds>wildfly-maven-plugin</artifactIds>
<version>${version.wildfly.maven.plugin}</versions>
</plugin>
<plugins>
<groupld>org.jvnet.jax-ws-commons</groupIld>
<artifactId>jaxws-maven-plugin</artifactIds>
<versions>2.2</version>
<executions>
<execution>
<id>HelloWorldService</id>
<phase>compile</phase>
<goals>
<goal>wsgen</goals>
</goals>

[257]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing a JAX-RS 1.1 Web Service

<configurations>
<sei>org.jboss.jaxws.service.HelloWorld</sei>
<genwsdl>true</genwsdl>
<servicename>HelloWorldService</servicename>
<keep>true</keep>
</configurations>
</execution>
</executions>
</plugin>
<plugins>
<groupIld>org.jvnet.jax-ws-commons</groupIld>
<artifactId>jaxws-maven-plugin</artifactIds>
<versions>2.3</version>
<executionss>
<execution>
<id>HelloWorldService</id>
<goals>
<goal>wsimport</goals>
</goals>
</executions>
</executions>
<configurations>
<packagename>org.jboss.jaxws.service</packagename>
<target>2.0</target>
<keep>true</keep>
</configurations>
<dependencies>
<dependencys>
<groupId>com.sun.xml.ws</groupId>
<artifactId>jaxws-tools</artifactId>
<version>2.2.8</versions>
<exclusionss>
<exclusion>
<grouplds>org.jvnet.staxex</groupIds>
<artifactIdsstax-ex</artifactIds>
</exclusions>
</exclusions>
</dependency>
<dependencys>
<grouplds>org.jvnet.staxex</groupIds>
<artifactIdsstax-ex</artifactIds>
<version>1l.7.6</versions>

[258]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

<exclusionss>
<exclusion>
<groupld>javax.xml.stream</groupIds>
<artifactIds>stax-api</artifactIds>
</exclusions>
</exclusions>
</dependency>
</dependencies>
</plugin>
</plugins>
</pluginManagement >
</build>
</project>

Before we install the jboss-jaxrs application, delete org. jboss. jaxrs.rest.
HelloRESTApplication.java, which gets created automatically. Also, delete
the resources and test directories. The directory structure of the jboss-jaxrs
application is shown here:

[Project Explarer £2 = Q:H & =~ — 0O
4 E]f‘; jboss-jaxrs
> @ JAX-RSWeb Services
» 'an Deployment Descriptor: jhass-jaxrs
» 3L MWeb Resources
A LA W eh Services
H IPA Content
- 2 Java Resources
» B JavaScript Resources
+ [Deployed Resources
4 = sre
4 = main
4 [java
4 = org
4 [jhoss
4 (= Janrs
4 [rest
HelloworldResource java
4 (= webapp
a = WEB-IMNF
sy weeb xml
+ = target
[pomaml

[259]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing a JAX-RS 1.1 Web Service

Right-click on pom.xml and select Run As | Maven install, as shown here:

I Project Explore| 15] Copy Ctrl+C HelloWarldResaur... weehaml @ jbol
4 Efj jbass-jaxrs| B2 Copy Qualified Mame
. i@ JAY-RS) [Paste Ctrl 4V
+ ' Deploy| 3¢ Delete Delete
> 1 Wb Re Rernowve frorm Contest Ctrl+<+Shift+Down
e L e
4 IPACa dark as Landmark Ctrl +&t+Shift+Up
. 25 |ava Re Build Path o
- B JavaScr Move..,
- [Deploy Renarne.. 2
4o SrC

. [target | pag Import..
u] parn. g Export..

£ Refresh F5
E% Mark as Deployable

Walidate

Show in Remote Systems view

Profile As 3

Debug &s 3

Run A » | 35 1Runaon Server Alt+Shift+x, R
Team b | m2 2 Maven build Alt+Shift+3, b
Cormpare Yifith b m2 3 Maven build.

Replace Yifith b m2 4Maven clean

ITidy b m2 5 Maven clean verify

Maven b | m2 6 Maven generate-sources

Google b | m2 7 Maven install

Source b m2 B Maven test L\\’

The jboss-jaxrs application gets compiled, packaged into jboss-jaxrs.war and
outputs to the deployments directory. Maven install outputs the message BUILD
SUCCESS, as shown here:

Markers Properties Servers Data Source Explorer Snippets B Console 51 Palette Error Log =g

X% BEEE 20
<terminated = C:\Program Fileshavayjdk1.7.0_51\bin'javaw.exe (Dec 2, 2014, R34:58 AM)
INFO] --- maven-war-plugin:2.l.l:war (default-war) @ jboss-jaxrs ---
INFO] Packaging webapp
INFO] Assembling webapp [jbess-jaxrs] in [C:\Users\Deepak vohra\Eclipse\workspace'jboss-jaxrs\targetijbess-j
INFO] Processing war project
INFO] Copying webapp resources [(:\lUsers\Deepak vohra\Eclipseiworkspace'jboss-jaxrsisrcimainiwebapp]
INFC] Webapp assembled in [199@ msecs]
INFO] Building war: C:iwildfly-8.1.8.Finalystandalene’deploymentstjboss-jaxrs.war

INFCO] --- maven-install-plugin:2.4:install (default-install) @ jboss-jaxrs ---
INFO] Installing C:hwildfly-8.1.@.Finalistandalonehdeploymentshjboss-jasrs.war to CiiUsersiDespak Yohrah.m2h
INFO] Installing C:hUsers)\Deepak Yehra'\Eclipselworkspace\jboss-jaxrsipom.sml te Ci\Users\Deepak Wohral.m2're

INFO] Total time: 59.872 s
INFO] Finished at: 2@14-12-22T@%:36:14-08:00
INFO] Final Memory: 14M/158M

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Start the WildFly 8.1 server if not already started. By default, the root resource
classes are scanned for in the WEB-INF/1ib and WEB- INF/classes directories. The
org.jboss.jaxrs.rest.HelloWorldResource root resource class gets found.
The jboss-jaxrs.war application gets deployed to the server. Now, log in to

the WildFly 8.1 Administration console and click on Manage Deployments. The
jboss-jaxrs.war file should be listed as deployed, which is shown as follows:

WildFly 8.1.0.Final

O & rmysgl

Runtime Administration

= Server

Qverview
Manage Deployments

Patch Management

DEPLOYMENTS

Deployments

Currently deployed application components.

— Status

Add Remove En/Disable Replace

= Platform
T Ik b jboss-jaxrs war L4
Environment

= Subsysterns
Datasources
1PA
JMDI Yiew
Trahsaction Logs
Transactions
Webservices Deployment

Need Help?

Name: jboss-jaxrs war

Running the RESTful web service

In this section, we will run the root resource class. Invoke the URL http://
localhost:8080/jboss-jaxrs/jaxrs/helloworld. The jboss-jaxrs is included
in the URL as it is the context of the web application. The jaxrs is included to invoke
the servliet com.sun.jersey.spi.container.servlet.ServletContainer. The
/helloworld is the resource URI for the RESTful web service. We did not annotate
any resource method or class method with @PATH; therefore, we won't invoke a
specific method. The first resource method in the root resource class gets invoked.
Make different resource methods as the first in the root resource class to test different
MIME type outputs. If HTML output is required, make the getHTMLMessage method
the first in the root resource class.

[261]

www.it-ebooks.info

http://localhost:8080/jboss-jaxrs/jaxrs/helloworld
http://localhost:8080/jboss-jaxrs/jaxrs/helloworld
http://www.it-ebooks.info/

Developing a JAX-RS 1.1 Web Service

The HTML output in the browser is shown as follows:

@ Hello JAX-RS Ji———— o[B i)
<4 + @http:r'f‘lDcalhost:BDSU;‘jboss—jaxrsfjaxrsfhelloworld ¢ | | Qr Google O- £~

Hello JAX-RS

If the getClichedMessage () resource method is made sequentially the first in the
resource class, the text/plain representation gets displayed in the browser when
the URL http://localhost:8080/jboss-jaxrs/jaxrs/helloworld is invoked
as shown here:

& http//localhost:B080/jboss-jaxrs/jaxrs/helloworld — . l =TECN X
- + @http:fflocthost:SDSU;’jboss-jaxrs,-’jaxrsfhelloworld ¢ | [Qr Google O~ £~

Hello JAEX-RS

If the getXMLMessage () resource method is made sequentially the first in the
resource class, the XML representation gets displayed in the browser as shown here:

& http://localhost:8080/jboss-jaxrs/jaxrs/helloworld — - =HCN X

« + @http:,-‘flocalhost:SDSD,-’jboss-jaxrsfjaxrsfhelloworld ¢ | |Qr Google O~ £~

This XML file does not appear to have any style mformation associated with it. The document tree 15 shown
belowr.

<hellorHello JAX-R3</hellox

[262]

www.it-ebooks.info

http://localhost:8080/jboss-jaxrs/jaxrs/helloworld
http://www.it-ebooks.info/

Chapter 7

When a different method is invoked in the resource class after making a modification,
the jboss-jaxrs application would need to be reinstalled. To reinstall, first the
Maven project must be cleaned for which you need to right-click on pom.xml and
select Run As | Maven clean. A BUILD SUCCESS message indicates that the files
generated from the previous installation have been removed.

Creating a Java client

In this section, we will use the Jersey client API to create a JAX-RS Web Service
client. Create a Java class for a Java client. Select File | New | Other. In New, select
Class and click on Next. In the New Java Class wizard, select Source folder as src/
main/java, specify Package as org.jboss.jaxrs.rest, and Name as JAXRSClient,
which is shown as follows. Then click on Finish.

i@} New Java Class | E] | -

Java Class e
Create a new lava class, (\;)

Source folder: Jhoss-jaxrsfsrcfmainava
Package: org.,jboss.jaxrs.rest

[C]Enclosing type: Bronwse..,
MNarre: JAXRSClient
Modifiers: @ public () package private pratected

[] abstract [|final static
Superclass: Javalang Object
Interfaces: Add...

'i?:' Mext = Finish V\I\SJ ’ Cancel

[263]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing a JAX-RS 1.1 Web Service

The org.jboss.jaxrs.rest.JAXRSClient class gets created, as shown here:

L™ Praject Explarer 53 = B8

Fi 559» jboss-jaxrs
s B JAX-REWeb Services
@1 Deployment Descriptor: jhoss-jaxrs
11 Web Resources
A 1AW MYeD Services
+ JPA Content
4 72 Java Resources
a4 [srofmainfjava
4 {7 orgjbossjasrs.rest
- [J] HelloWarldResource java
- [J] JAXRSClient java
» B, Libraries %
= Javalcript Resources

5 Deployed Resources

4 = sk

» i main
= target
[ma] pormzml

Jersey provides a client API to invoke a JAX-RS Web Service. In the Java client,
invoke the resource methods using the Jersey client API. Create a resource instance
using the com. sun.jersey.api.client.Client class. First, we need to create a
ClientConfig object, which represents the client configuration such as property
names and features using the no-arguments constructor for DefaultClientConfig.
Create a Client object from the clientConfig object using the static method
create (ClientConfig). Create a WebResource object from the client object
using the resource (URI) method of the client object with the URI argument
being the base URI for the JAX-RS Web Service, which may be obtained with the
getBaseURI () method. A WwebResource object is an encapsulation of a web resource
and is used to send requests to and receive responses from the web resource:

ClientConfig config = new DefaultClientConfig() ;
Client client = Client.create(config);
WebResource service = client.resource (getBaseURI()) ;

[264]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Add a method getBaseURI () to return the base URI. The base URI is obtained
with the UriBuilder class using the static method fromuri for the URL
http://localhost:8080/jboss-jaxrs and subsequently the build method
to build a URI object:

private static URI getBaseURI ()
return UriBuilder.fromUri ("http://localhost:8080/jboss-jaxrs")
Lbuild() ;

}

Get the web service response by invoking the get () method on a WwebResource
object with String.class as argument, as the return type of the resource methods
is string. First, add paths to the base URI of the webrResource object using the

path () method, which returns a new webResource object with the path added. Add
jaxrs to the URI path to invoke the com.sun.jersey.spi.container.servlet.
ServletContainer servlet and add helloworld to the URI path to invoke the
HelloWorldResource resource. Add acceptable media types to the WebResource
object using the accept () method. We will test HelloWorldResource using three
different media types: TEXT PLAIN, TEXT_XML, and TEXT HTML. For example, a
TEXT_PLAIN response output is as follows:

System.out.println(service.path("jaxrs") .path("helloworld") .accept
(MediaType.TEXT PLAIN) .get (String.class));

Similarly, output the response as XML and HTML using the MediaType . TEXT XML
and MediaType.TEXT_HTML media types. The JAXRSClient . java class is listed
as follows:

package org.jboss.jaxrs.rest;

import java.net.URI;

import javax.ws.rs.core.*;

import com.sun.jersey.api.client.¥*;

import com.sun.jersey.api.client.config.*;

public class JAXRSClient {
public static void main(String[] args) {
ClientConfig config = new DefaultClientConfig() ;
Client client = Client.create(config);
WebResource service = client.resource (getBaseURI()) ;
System.out.println(service.path("jaxrs") .path("helloworld") .accept
(MediaType.TEXT PLAIN) .get (String.class));
System.out.println(service.path("jaxrs") .path("helloworld") .accept
(MediaType.TEXT XML) .get (String.class)) ;

[265]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing a JAX-RS 1.1 Web Service

System.out.println(service.path("jaxrs") .path("helloworld") .accept
(MediaType.TEXT HTML) .get (String.class)) ;
}
private static URI getBaseURI ()
return UriBuilder.fromUri ("http://localhost:8080/jboss-
jaxrs") .build() ;

Running the Java client

In this section, we will run the Java client. First, run the client to test outputting

just the media type TEXT_ PLAIN. The acceptable media type in the client class must
match a MIME media type produced in the resource class. In the JAXRSClient class,
uncomment only the System.out statement that accepts the TEXT_PLAIN media type.
Uncomment all the resource methods in the HelloWorldResource class. Then right-
click on gaxrRSClient.java and select Run As | Java Application, as shown here:

Open F3

L7 Project Explorer 2 Open With y st JAXREClient.... !
=
w © Ctrl+C
4 5‘.‘; jboss-jaxrs & ~opy) r+
+ 2B JBXCRS Web Senices F2) | oy Qi) (e
> 'x] Deployment Descriptor: jhy [T Paste Chrl+
» |4l Web Resources K Delete Delete
+ L AT Web Serices Rernove from Context Ctrl +&1t+Shift + Down
e IPA Content
4 28 Java Resources [l (e '
s [sre/mainfjava Source Alt+Shift+5 »
4 [orgjbossjaxrs.rest Refactor Alt+Shift+T »

> [I] HelloWarldResd
. [[I) JAXRSClient jav 2 Import..
: = Libraries g Export.,
> B JavaScript Resources

&
> g Deployed Resources 2ulf{iRetre s 3
4 = stc References 3
s i main .
o Declarations 3
» [target
[pornsral E:>J Mark as Deployable
Profile A5 3
Debug As 3
Run &5 ¥ | 5 1Runon Server Alt+Shift+x, R
Walidate 31 2 lava &pplication L\\, Alt+Shift+3, 1
Replace With 3

Run Configurations..,

Restore from Local History.., I

[266]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

The resource response gets displayed in the TEXT PLAIN media type, as shown here:

Markers Properties Sepeers Diata Source Ex Shippets B Console 53

X %|
<terminated = JAXRSClient [Java Application] C:\Program FilestavaljdkL7.0_51%binjavaw.exe
Hello JAK-RS

An acceptable media type must match a media type produced by the

resource class. If a produced MIME media type in the root resource class is

not found for an acceptable media type, a com.sun.jersey.api.client.
UniformInterfaceException exception is generated. For example, set an acceptable
media type to MediaType.TEXT_ XML by uncommenting the following System.out
statement in the JAXRSC1lient class:

System.out.println(service.path("jaxrs") .path("helloworld") .accept
(MediaType.TEXT XML) .get (String.class)) ;

The system.out statements for the other acceptable media types may be kept
uncommented or commented out as each resource method is invoked independent
of the other resource methods. In HelloWorldrResource, comment out the following
resource method:

@GET
@Produces ("text/xml")
public String getXMLMessage ()

return "<?xml version=\"1.0\"?>" + "<hello> Hello JAX-RS" +
"<«/hello>";

}

And uncomment the resource method that produces the MIME media type
application/xml:

@GET
@Produces ("application/xml")
public String getXMLMessage ()

return "<?xml version=\"1.0\"?>" + "<hello> Hello JAX-RS" +
"<«/hello>";

[267]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing a JAX-RS 1.1 Web Service

Redeploy the Maven application after making any modification to the application.
To redeploy right-click on pom.xml in Project Explorer and select Run As | Maven
clean. Subsequently, right-click on pom.xml and select Run As | Maven install.
Run gaxrsclient.java as a Java application. The UniformInterfaceException
exception gets generated. A response status of 406 (http://www.w3.org/
Protocols/rfc2616/rfc2616-secl0.html) is outputted, as shown here:

[Markers [Z] Properties 4L Servers [Data Source Explorer -3 Snippets | &) Console 5% <% Palette @] ErrorLog X% | GHEEE B0 0
<terminated > JAXRSClient [Java Application] CAProgram FilesysvayjdkL 7.0_S1ybin\javawrexe (Dec 2, 2014, 10:13:30)

thread "main® com.sun.iersey.api.client.UniformIntert: fon: GET http://locslhost:8088/Jboss-jaxrs/janrs/hellovorld returned a response status of 406 Not Acceptable
m.sun. jersey. api.client. <. handle{UebResource. 1ava:658)

am.sun. jersey. api.client. uebResource. access$20a(lebResource. Java:74)

m.sun. jersey. api.client. liebResourcetBuilder. get (WebResource. java:5ed)

~g.jboss. jaxrs.rest.JRRsClient. main(JAXRSClicnt. Java:id)

The error can be removed by uncommenting the resource method that produces the

MIME media type text/xml and commenting out the method that produces the
MIME type application/xml:

@GET
@Produces ("text/xml")
public String getXMLMessage ()

return "<?xml version=\"1.0\"?>" + "<hello> Hello JAX-RS" +
"</hello>";
}

If the JaxXrSClient . java application is run by making the acceptable media type as
MediaType.TEXT XML and by uncommenting the resource method that produces the
text/xml media type, the following output gets generated:

Mlarkers Froperties Servers Data Source Explorer Snippets B Console

<terrninated = JAXREClient [Java Application] ChPrograrm Filestavaljdk 1 7.0_5Ihbindjawan exe
<?xml wersion="1.@"7><hello> Hello JAK-RS</hellox

When we did not use a client for the root resource class, we were able to invoke

only one resource method at a time. The resource method that produces the MIME
media type that matches the most acceptable media type in the client gets invoked.
Multiple MIME media types may be specified in the same @Produces annotation
instance. If more than one media types are equally acceptable, the one specified
sequentially first gets selected. Next, we will invoke all the resource methods from
the client, uncomment all the resource methods in the HelloWorldResource class,
and uncomment the System. out statements for all the acceptable media types in the
JAXRSClient class. Run the JAXRSClient class as a Java application. Response from
all the resource methods in three different media types gets an output, as shown here:

[268]

www.it-ebooks.info

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.it-ebooks.info/

Chapter 7

hdarkers Properties &b Sercers Data Source Explorer Snippets B Console 23

<terminated > JAXREClient [Java Application] CiProgram Filestawvaljdk1.7.0_51%binyjavaw. exe (Dec 4,

Hello J&X-RS
¢fxml version="1.@8"¢><hello>» Hello IAM-R5<fhello:

chtmly <titlexHelle JAK-RS</titler<bodyr<hl:Helle JAK-RS</bodyr<fhl> «/html>

Creating a JSP client

In the previous section, we used a java client for the root resource class. To package
a client with the web application, a browser-based client such as a JSP client will
be required. In this section, we will create a JSP client for the root resource class.
Select File | New | Other, and in New, select Web | JSP File and click on Next,

. o

as shown here:

ﬂ Mew

Select a wizard

Create a new 5P file

Wizards:
type filter text

[87 CS5File

% Dynamic Web Project

26 Filter

&7 HTML File

[# JSP File

[#F ISP Tag

& Listener

& Servlet

51 Static Web Project

G Web Fragment Project
[Weh Services

l.m

1

[Showe Al Wizards,

[269]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing a JAX-RS 1.1 Web Service

In New JSP File wizard, select the webapp folder and specify File name as
jaxrsclient.jsp, as shown here. Now click on Next.

-
@) New JSP File [ESREER

J5P

Create a new ISP file, V

Emter or select the parent folder:

Jhoss-jaxrsfsrofmainfwebapp

[
a = jhioss-jaxrs
= .settings
4 = src
4 [main
s java
> = webapp
> [target
[= RernoteSystemsTernpFiles

File name: | jaxrsclient,jspl

@ | <Back | Next:»hj[Finish || Cancel |

Select the New JSP file (html) template, click on Finish. The jaxrsclient.jsp file
gets added to the webapp folder, as shown here:

[270]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[Project Explarer &3 O &%| e T= O
4 5‘3 jboss-jaxrs
4B JAX-REWeb Services
> '@ Deployment Descriptor: jboss-jaxrs
» 4L Web Resources
oA MRS Weh Sepvices
4 IPA Content
4 28 Java Resources
- [srcfmain/java
» B Libraries
» = JavwaScript Resources
+ [Deployed Resources
4 = srC
4 4= main
4 (= java
4 [~ org
a4 = jboss
4 [Jaxrs
4 [= rest
HelloWorldResource,java
JAXREClientjava
a = webapp
> e WEB-INF
=) jaxrsclientjsp
» - target Ik‘
[pornxml

In the jaxrsclient.jsp JSP client, the root resource class resource methods are
invoked as in the Java client. The jaxrsclient . jsp file is listed here:

<%@ page language="java" contentType="text/html; charset=IS0-8859-
1n
pageEncoding="IS0-8859-1"%>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd" >
<%@ page import="java.net.URI,javax.ws.rs.core.*,com.sun.jersey.api.
client.
,com.sun.jersey.api.client.config."%>
<html>
<head>
<meta http-equiv="Content-Type"
content="text/xml; charset=windows-1252" />
<title>JAX-RS Client</title>
</head>
<body>

°
<%

[271]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing a JAX-RS 1.1 Web Service

ClientConfig clientconfig = new DefaultClientConfig() ;
Client client = Client.create(clientconfig);

WebResource service =

client.resource (UriBuilder. fromUri

("http://localhost:8080/jboss-jaxrs") .build()) ;
out.println(service.path("jaxrs") .path("helloworld") .
accept (MediaType.TEXT PLAIN) .get (String.class));
out.println(service.path("jaxrs") .path("helloworld") .
accept (MediaType.TEXT XML) .get (String.class));
out.println(service.path("jaxrs") .path("helloworld") .
accept (MediaType.TEXT HTML) .get (String.class)) ;

%>
</body>
</html>

Running the JSP client

In this section, we will run the jaxrsclient.jsp file. Before we run the JSP client,
we need to make a slight modification in the root resource class to output an XML
string. Modify the getXMLMessage () method as follows:

@GET
@Produces ("text/xml")
public String getXMLMessage () {
return "<?xml version=\"1.0\"?>" + "<hello>Hello
JAX-RS" + "</hello>";

}

Start WildFly 8.1.1 if not already started. With all the resource methods
uncommented in the root resource class and all the out . print1n statements for the
different acceptable media types uncommented in the JSP client, clean and redeploy/
reinstall the Maven project. Invoke the URL http://localhost:8080/jboss-
jaxrs/jaxrsclient.jsp in a browser. All the resource methods get invoked and
three different media types get an output, as shown here:

€ JAX-RS Client . - =NNCN X

- + :’)‘__-qhttp:fflocalhost:SDSijboss-jaxrs,-’jaxrsclient.jsp ¢ | [Qr Google O~ £~

Hello TAM-E3S <%aml version="1.0"7><hello>Hello JTAT-E3</hello>

Hello JAX-RS

[272]

www.it-ebooks.info

http://localhost:8080/jboss-jaxrs/jaxrsclient.jsp
http://localhost:8080/jboss-jaxrs/jaxrsclient.jsp
http://www.it-ebooks.info/

Chapter 7

Summary

In this chapter, we developed a JAX-RS RESTful web service using the Jersey JAX-
RS RI. We created a Java EE Web Project for the RESTful web service. First, we
created a root resource class with three resource methods to produce three different
media types. We compiled, packaged, and deployed the jboss-jaxrs application
to WildFly 8.1. We tested the root resource class to output the different media types.
Subsequently, we used a Java client to invoke the root resource class methods. We
also used a JSP client to test the RESTful web service.

In the next chapter, we will discuss Spring MVC with WildFly 8.1.

[273]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Using Spring MVC 4.1

The Spring framework is based on the Inversion of Control (IoC) principle,

in which the objects define their own dependencies. Dependency Injection

is a form of IoC. The container injects the dependencies when the bean is

created. The dependency injection is implemented using the BeanFactory and
ApplicationContext interfaces. The BeanFactory interface is for managing beans
and ApplicationContext (WebApplicationContext is used for a web application)
is for configuring an application. BeanFactory applies the IoC pattern to separate
configuration and dependency specifications. The ApplicationContext interface
provides extended (extends) features to BeanFactory.

The Spring MVC framework is based on the Model-View-Controller design pattern
and is implemented using DispatcherServlet. DispatcherServlet fields requests
and delegates them to a request handler using web request URI mapping provided
by the @RequestMapping annotation. The request handler or Controller returns Model
and view using the Modelandview holder. In this chapter, we will create a Spring MVC
application in Eclipse, compile and package the application using the Maven build
tool, and deploy the application to WildFly 8.1. Subsequently, we will run the Spring
application in a browser. In this chapter, we will cover the following topics:

* Setting up the environment

* Creating a Spring MVC project

* Creating a MySQL data source

* Creating a JPA configuration file

* Creating the Model

* Creating the Data Access Object design pattern

* Creating a web descriptor

* Creating the request handler

* Creating the View

[275]

www.it-ebooks.info

http://www.it-ebooks.info/

Using Spring MVC 4.1

Creating a Spring MVC context

Deploying the Spring project with Maven

Creating deployment structure and infrastructure deployment descriptors
Installing the Spring MVC Maven project

Running the Spring application

Setting up the environment

We need to install the following software:

WildFly 8.1.0.Final: Download wildfly-8.1.0.Final.zip from
http://wildfly.org/downloads/.

MySQL 5.6 Database-Community Edition: Download this edition from
http://dev.mysql.com/downloads/mysql/. When installing MySQL, also
install Connector/J.

Eclipse IDE for Java EE Developers: Download Eclipse Luna from
https://www.eclipse.org/downloads/packages/release/Luna/SR1.

JBoss Tools (Luna) 4.2.0.Final: Install this as a plugin to Eclipse from Eclipse
Marketplace (http://tools.jboss.org/downloads/installation.html).

Apache Maven: Download version 3.05 or higher from
http://maven.apache.org/download.cgi.

Java 7: Download Java 7 from http://www.oracle.com/technetwork/
java/javase/downloads/index.html?ssSourceSiteId=ocomcn.

Set the JAVA HOME, JBOSS_HOME, MAVEN HOME, and MYSQL_HOME environment
variables. Add $JAVA HOME%/bin, $MAVEN HOME%/bin, $JBOSS_HOME%/bin, and
$MYSQL_HOME/bin to the PATH environment variable.

Create a WildFly 8.1.0 runtime as discussed in Chapter 1, Getting Started with E|B
3.x. Create a MySQL data source with the JNDI name java:jboss/datasources/
MySQLDS as explained in Chapter 1, Getting Started with EJB 3.x.

[276]

www.it-ebooks.info

http://wildfly.org/downloads/
http://dev.mysql.com/downloads/mysql/
https://www.eclipse.org/downloads/packages/release/Luna/SR1
http://tools.jboss.org/downloads/installation.html
http://maven.apache.org/download.cgi
http://www.oracle.com/technetwork/java/javase/downloads/index.html?ssSourceSiteId=ocomcn
http://www.oracle.com/technetwork/java/javase/downloads/index.html?ssSourceSiteId=ocomcn
http://www.it-ebooks.info/

Chapter 8

Creating a Spring MVC project

First, create a Spring MVC project. Select File | New | Other. In New, select JBoss
Central | Spring MVC Project, as shown in the following screenshot. Then, click
on Next.

@] New [

Select a wizard p—

Wizards:
fype filter text

v = IAXE -
4 (= IBoss Central
5 Angularl3with Forge Project
[HTMLS Project
{2 Java EE EAR Project
i1 Java EE Web Project
@ RichFaces Project
¥ Snring MYC Project
+ = JBoss Tools
+ = JBoss Tools Web
> = I -

|, m

[Show Al Wizards,

[277]

www.it-ebooks.info

http://www.it-ebooks.info/

Using Spring MVC 4.1
In the Spring MVC Project wizard, select Target Runtime as WildFly8.x Runtime,
as shown in the following screenshot. Now, click on Next.

ﬂ New Project Example Llﬂlﬂ—hj

Spring MVC Project II il

Create a Spring MVYC web application project

Description:
A archetype that generates a starter Spring MVC application with Java EE persistence settings (server bootstrapped »

JPA, ITA transaction management) for JBoss Enterprise Application Platform 6 ar JBoss Bpplication Server 7.1

Project based on the orgjboss.archetype wfljboss-spring-myvc-archetype:2.6.0.Final Maven archetype

Target Rurtirme | WildFly 8x Runtirne

Requirernents
Type Description Four.., Tnstall...
serverfrunti.. This project exarnple requires JBoss Erterprise Applic.. [
plugin This project example requires m2e == L0, Caivnlsacland Il
plugin This project exarmple requires m2e-wtp »>= 0.16.0,
plugin This project exarmple requires JBoss hMaven Tools,

'/?)' < Back Mext » [Finish

Specify Project name (jboss-springmvc) and Package (org. jboss.springmvc), as
shown in the following screenshot. After this, click on Next.

[278]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

ﬂ Mew Project Example

Spring MVC Project ey
Create a Spring MWC web application project ; ;

Project name jboss-springmwe -

Package org.jbossspringrre -

Use default Workspace location

Browvse...

[T] Add projectis) to working set

Mare..,
» Advanced
[
@ < Back][Mewt = [\] [Finish J [Cancel]

Specify Group Id (org.jboss.springmvc), Artifact Id (springmvc), Version
(1.0.0), and Package (org. jboss.springmvc), as shown in the following
screenshot, and click on Finish.

ﬂ New Project Example l o x|

Spring MVC Project —

e
Create a Spring MWC web application project ;" ;

GroupId: orgjbossspringrrve -
ArtifactId: jboss-springrove -
Wersion: oo -

Package; orgjbossspringrrve

Properties available from archetype:

Mame Walue Add...

Rermove

b Advanced

@ Mewt = [Finish [}J [Cancel

[279]

www.it-ebooks.info

http://www.it-ebooks.info/

Using Spring MVC 4.1

The jboss-springmve web project gets created, as shown in the following screenshot:

75 Project Explorer 23 = Q‘:;; |
4 |2 jboss-springrve
> 'ag Deployment Descriptor: jboss-springmuc
o A JANEWE Wb Services
4 JPA Content
+ +2 Java Resources
- B, JavaScript Resources
» L Deployed Resources
+ [functional-tests
4 fi= src
4 = main
4 [java
4 [org
4 [|boss
4 [springrmve
4 (= controller
ternberController,java
MemberRestCaontroller java
a (= data
MemberDao java
MernberDaclrpl java
a (= rmodel
Mernberjava
» [resOUrCEs
4 [= webapp
» [resources
4 =5 WEB-INF
s wiews
K| jboss-as-spring-rmvo-contextaml
K| Jboss-springrrecc-dsxml
> weeb .l
s v test

= tarnet

= jboss-springmmve

In the subsequent section, we will develop the Spring MVC application and discuss
the Spring MVC application artifacts in detail; the application shown in the Project
Explorer tab is the default application and will be replaced with the application we
will develop.

[280]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Creating a JPA configuration file

We will use an E]JB 3.0 entity bean for object/relational mapping in the Spring MVC
apphcaﬁon.Thespringmvc\src\main\resources\META—INF\persistence.xml
configuration file in the jboss-springmvc project was created when we created

the Spring MVC project. The persistence.xml file specifies a persistence provider
to be used for object/relational mapping of entities to the database. Specify a
persistence unit using the persistence-unit element. Set transaction-type to
JTA (default). Specify the persistence provider as the Hibernate persistence provider,
org.hibernate.ejb.HibernatePersistence. Set the jta-data-source element
value to the java:jboss/datasources/MySQLDS data source that we created earlier.
The DDL generation strategy is set to create-drop using the hibernate.hbm2ddl.
auto property. With the create-drop strategy, the required tables are created and
dropped. The hibernate.show_sql property is set to false, implying that all SQL
statements be output, which is an alternative method to debugging. The hibernate.
dialect file is set to org.hibernate.dialect .MySQLDialect for the MySQL
database. The persistence.xml configuration file is listed in the following code:

<persistence xmlnsg="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" version="2.0"
xsi:schemalocation=" http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence 2 0.xsd">
<persistence-unit name="primary" transaction-type="JTA">
<providers>org.hibernate.ejb.HibernatePersistence</providers>
<jta-data-source>java:jboss/datasources/MySQLDS</jta-data-source>
<class>org.jboss.springmve.model.Catalog</class>
<exclude-unlisted-classes />
<properties>
<property name="jboss.entity.manager.factory.jndi.name"
value="java:jboss/mysgl/persistence" />
<!-- Properties for Hibernate -->
<property name="hibernate.hbm2ddl.auto" value="create-drop" />
<property name="hibernate.show sqgl" value="false" />
<property name="hibernate.dialect" value="org.hibernate.dialect.
MySQLDialect" />
</properties>
</persistence-units>
</persistences

The JPA specification does not require a persistence provider to create tables even
if the hibernate.hbm2ddl.auto property is set to create-drop or create. The
Hibernate persistence provider supports creating tables.

[281]

www.it-ebooks.info

http://www.it-ebooks.info/

Using Spring MVC 4.1

Creating the Model

In this section, we will create an EJB 3.0 entity bean for a domain model. Create the
org.jboss.springmvc.model.Catalog entity bean class, which is just a plain old
Java object (POJO). To create a Java class, select File | New | Other, and in New,
select Java | Class, as shown in the following screenshot:

ENEW - l (= |

Select a wizard p—

Create a Jawva class

Mifizards:
type filter text

- = Git -
» = Google
» = Google Web Toolkit
+ [Hibernate
a [lava

@ Annotation

& Class

& Enum

& Interface
ﬁ Jawa Project
& Java Project frarn Existing &nt Buildfile e

|.m

[] Shoae A1 WYizards,

[282]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

In the New Java Class wizard, select Source folder as jboss-springmvc/src/main/
java, specify Package as org. jboss. springmvc.model, and specify the class Name
as Catalog, as shown in the following screenshot:

E Mew Java Class

Java Class

Source folder:
Package:

[T Enclosing type:

Create a new Java class,

jboss-springrave/srcfmainjava

org.jboss.springrmec.model

Browwse...

e

Browwse...

Marre: Catalog
Madifiers: @ puhlic () package private protected
[Jabstract [final static
Superclass: javalang. Object
Interfaces: add...
?\ Mext = ’ Finish[[Cancel
[283]

www.it-ebooks.info

http://www.it-ebooks.info/

Using Spring MVC 4.1

The org.jboss.springmvc.model.Catalog. java class gets added to the project, as
shown in Project Explorer in the following screenshot:

[Project Explorer 52 == | =
4 :f‘; jboss-springrmec
+ 'ag Deployment Descriptor: jboss-springmwve
oA JANWS e Services
» 4 JPA Content
32 Java Resources
» B, JavaScript Resources
» L@ Deployed Resources
[functional-tests
4 7 s
4 = main
4 (= java
4 = org
4 [jboss
4 [springrmee
4 (= controller
MernberControllerjava
ternberRestControllerjava
4 [~ data
MermberDao.java
MernberDaolmpl,java
a (= model
Catalog java
Memberjava
4 [resources
4 (= META-INF
» = spring
= persistencexml
[E] impart.sgl
4 [wehapp
> =% FEIOUFCES
4 (= WEB-INF

o TSl waEane

Catalog,java - jboss-springrnvc/srcfmaindjavaforg/jbossispri

Remove the Member . java class and the other Member* classes from the project to get
the directory structure, as shown in the following screenshot:

[284]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

I Project Explorer 53 =
4 5‘3 jboss-springrmwvc

- 'mg Deployment Descriptar: jbass-springrmwe
A 1AXCWE Web Services
4 JPA Content
2 Java Resources
=i, JawaScript Resources

[Deployed Resources
= functional-tests

A [= 3FC
4 [main
4 [Java
4 [org
4 [jboss
4 [springrmve
= contraller
= data
a (= model
Catalog,java
A =5 Mes0UrCEs
4 [META-IMF
4 [3pring
X applicationContextxml
¥| infrastructure xml
+ persistencexml
[importsql
4 [webapp
» [rESOUFCES
4 [= WEB-INF
s wiewys
K| jboss-as-spring-rmvo-contesxtooml
K| jboss-springrve-dsxml

e h el

5‘3 jhoss-springrve

<}==:> i

Annotate the catalog entity class with the @Ent ity annotation and the @Table
annotation. In the @Table annotation, specify the table name as CATALOG and
uniqueConstraints using the @UniqueConstraint annotation for the ID column.
Specify the no-argument constructor, which is required in an entity class. The entity
class implements the Serializable interface to serialize a cache-enabled entity
bean to a cache when persisted to a database. To associate a version number with

a serializable class by serialization runtime, specify a serialversionUID variable.
Declare variables for the bean properties: id, journal, publisher, edition, title,
and author. Add getter/setter methods for the bean properties. The @1d annotation
specifies the identifier property. The @Column annotation specifies the column name
associated with the property. The nullable element is set to false as the primary
key cannot be null.

[285]

www.it-ebooks.info

http://www.it-ebooks.info/

Using Spring MVC 4.1

If we were using the Oracle database, we would have specified the primary key
generator to be of the type sequence using the @SequenceGenerator annotation.
The generation strategy is specified with the @Generatedvalue annotation. For the
Oracle database, the generation strategy would be strategy=GenerationType.
SEQUENCE, but because MySQL database supports auto-increment of primary key
column values by generating a sequence, we have set the generation strategy to
GenerationType.AUTO. The catalog.java entity class is listed in the following
code snippet:

package org.jboss.springmvc.model;

import java.io.Serializable;

import javax.persistence.*;

/**

* The persistent class for the CATALOG database table.
*

*/

@Entity

@Table (name = "CATALOG", uniqueConstraints = @
UniqueConstraint (columnNames = "ID"))

public class Catalog implements Serializable
private static final long serialVersionUID = 1L;
private int id;
private String journal;
private String publisher;
private String edition;
private String title;
private String author;
public Catalog() {
}
@Id
@Column (name = "ID", nullable = false)
@GeneratedvValue (strategy = GenerationType.AUTO)
public int getId() {
return this.id;

[286]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

public void setId(int id) {
this.id = id;

public String getJournal () {
return this.journal;

public void setJournal (String journal) {
this.journal = journal;

}

public String getPublisher() {
return this.publisher;

}

public void setPublisher (String publisher) {
this.publisher = publisher;

}

public String getEdition() {
return this.edition;

}

public void setEdition(String editiom) {
this.edition = edition;

}

public String getTitle() {
return this.title;

}

public void setTitle(String title) {
this.title = title;

}

public String getAuthor()
return this.author;

}

public void setAuthor (String author) {
this.author = author;

[287]

www.it-ebooks.info

http://www.it-ebooks.info/

Using Spring MVC 4.1

Creating the Data Access Object design

pattern

The advantages of the Data Access Object design pattern, such as reusable software
and decoupling of the business logic and database persistence logic, are well
established. We shall use the DAO design pattern for the data access layer. The DAO
design pattern will provide standard operations for persisting a Catalog entity
instance and getting Catalog entity instances. Create an org.

jboss.springmvc.

data.CatalogbDao Java interface, as shown in the following screenshot:

E.] Mew Java Interface

:

Java Interface

Create a new lava interface,

|'\g)|

T

Source folder: Jjboss-springrrvecdsrcimaindava

Package: org.jboss.springravec.data

[T Enclosing type: Browse..,

Marne: CatalogDao

Madifiers: @ public) package private protected

Extended interfaces: Add...
Rernowve

Do youwant to add comments? (Configure templates and default value here)

|:| Generate comments

Mext =

l Finizh RJ [Cancel]

Add method definitions for the persist (Catalog) methods to persist of the

Catalog object and getAllCatalogs () to get List of Catalog objects. The

CatalogDao interface is listed in the following code:

package org.jboss.springmvc.data;
import java.util.List;
import javax.persistence.TypedQuery;

[288]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

import org.jboss.springmvc.model.Catalog;

public interface CatalogDao

{
public void persist (Catalog catalog) ;
public List<Catalog> getAllCatalogs() ;

}

Create an org. jboss. springmvc.data.CatalogDaoImpl implementation class to
implement the org. jboss. springmvc.data.CatalogDao interface. Annotate the class
with @Component, which makes the class a "component" that is auto-detected using
class-path scanning when we use annotation-based configuration. In the resources/
META-INF/spring/applicationContext.xml application context configuration file,
auto-detection of the org. jboss. springmve.data package gets configured with the
following <context : component /> element within the <beans/> element:

<context:component-scan base-package="org.jboss.springmvc.data" />

Spring MVC autodetects the CatalogbaoImpl class and injects a CatalogDaoImpl
object, catalogbaoImpl, into any @Autowired field, method parameter, or
constructor parameter of the type CatalogbaoImpl. Annotation-based transactions
are configured using the following declaration in applicationContext .xml:

<tx:annotation-driven />

The \\jboss-springmvc\src\main\resources\META-INF\spring\
applicationContext.xml file is listed in the following code:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:tx="http://www.springframework.org/schema/tx" xmlns:xsi="http://
www.w3.0rg/2001/XMLSchema-instance" xXsi:schemalLocation="http://www.
springframework.org/schema/beans http://www.springframework.org/

schema/beans/spring-beans-3.2.xsd http://
www . springframework.org/schema/context http://www.springframework.
org/schema/context/spring-context-3.2.xsd http://www.

springframework.org/schema/tx http://www.springframework.org/schema/

tx/spring-tx-3.2.xsd">
<context:component-scan base-package="org.jboss.springmvc.model" />
<context:component-scan base-package="org.jboss.springmvc.data" />
<tx:annotation-driven />

</beans>

[289]

www.it-ebooks.info

http://www.it-ebooks.info/

Using Spring MVC 4.1

Annotate the persist (Catalog) method with @Transactional. Inject
EntityManager into the DAO implementation class using the @PersistenceContext
annotation. The persist () method of EntityManager is used to persist a catalog
instance. To retrieve all catalog instances, create a TypedQuery object using the
createQuery method of the EntityManager object. Obtain a List<Catalog> object
as a result using the getResultList () method of the TypedQuery object. The org.
jboss.springmve.repo.CatalogDaoImpl DAO implementation class is listed in the
following code:

package org.jboss.springmvc.data;

import org.jboss.springmvc.model. *;

import java.util.List;

import javax.persistence.EntityManager;

import javax.persistence.PersistenceContext;

import javax.persistence.TypedQuery;

import org.springframework.stereotype.Component;

import org.springframework.transaction.annotation.Transactional;

@Component

public class CatalogDaoImpl implements CatalogDao

{

// Injected database connection:
@PersistenceContext private EntityManager em;
// Stores a new catalog:

@Transactional

public void persist (Catalog catalog) {
em.persist (catalog) ;

// Retrieves all the catalogs:

public List<Catalog> getAllCatalogs()
TypedQuery<Catalog> query = em.createQuery (
"SELECT ¢ FROM Catalog c¢ ORDER BY c.id", Catalog.class);
return query.getResultList () ;

[290]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Creating a web descriptor

We need to add the application context configuration file to the jboss-springmvc
web application class-path. Add a <1listener/> tag for the org. springframework.
web . context . ContextLoaderListener class, which starts up Spring's
WebApplicationContext root. Specify the config location for the root context with
the contextConfigLocation context parameter. The org. springframework.web.
servlet.DispatcherServlet servlet dispatches requests to the handler. Specify the
init parameter, contextConfigLocation, to configure another application context
for the Spring MVC application in /WEB-INF/jboss-as-spring-mvc-context.xml,
which is discussed in a later section. Specify a servlet mapping the URL pattern for
the Dispatcherservlet servlet. The web.xml file is listed in the following code:

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://xmlns.jcp.org/xml/ns/javaee" xmlns:xsi="http://
www.w3.0rg/2001/XMLSchema-instance" xsi:schemaLocation="..."
version="3.1">
<display-name>Java EE 7 Starter Application</display-name>
<context-param>
<param-name>contextConfiglLocation</param-name>
<param-value>classpath:/META-INF/spring/applicationContext .xml,
classpath:/META-INF/spring/infrastructure.xml</param-
value>
</context-param>
<listeners>
<listener-class>org.springframework.web.context.
ContextLoaderListener</listener-class>
</listeners>
<servlets>
<servlet-name>jboss-spring</servlet-name>
<servlet-class>org.springframework.web.servlet .DispatcherServlet</
servlet-class>
<init-params>
<param-name>contextConfiglLocation</param-name>
<param-value>/WEB-INF/jboss-as-spring-mvc-context.xml</param-
value>
</init-param>
<load-on-startup>1l</load-on-startup>
</servlet>
<servlet-mapping>
<servlet-name>jboss-spring</servlet-name>
<url-pattern>/</url-patterns
</servlet-mapping>
</web-app>

[291]

www.it-ebooks.info

http://www.it-ebooks.info/

Using Spring MVC 4.1

Creating a request handler

A typical request handler in Spring MVC is based on the @Controller and @
RequestMapping annotations. Create a Java class, org.jboss.springmvc.
controller.CatalogController, annotated with the @controller annotation,
which makes the class auto-detectable for injection by Spring. In the \springmve\
src\main\webapp\WEB-INF\jboss-as-spring-mvc-context .xml context file,
which is listed and discussed later in the chapter, the component scanning for the
org.jboss.springmvc.mve base package is configured, as follows:

<context :component-scan base-package="org.jboss.springmvc.controller"

/>

BeanFactory injects a catalogController bean when the catalogController
class is required to handle a request. The handler class creates a model Map with
data and selects a view name to be rendered. The createAndDisplayCatalog
method takes the servlet request sent by DispatcherServlet and returns an
org.springframework.web.servlet.ModelAndView object, which is a holder
for Model and View in the Spring MVC framework. Map the servlet request onto
the createAndDisplayCatalog handler method using the @RequestMapping
annotation. Specify the path mapping URI as /catalog.

Autowire the org. jboss.springmve.data.Catalogbao DAQ interface to

Spring's dependency injection mechanism using the @autowire annotation. A
catalogDaoImpl bean is injected on startup as, by default, the application context
pre-instantiates all singleton (the default scope in Spring) beans at startup. The
createAndDisplayCatalog method gets the request parameter values and creates
a Catalog object. The catalog object is stored using the autowired DAO object's
persist method. Having created a model Map, the createAndDisplayCatalog
method returns a org. springframework.web.servlet.ModelAndView object with
the view catalog and the catalogbDao model. The org. springframework.web.
servlet.ModelAndView object is returned to DispatcherServlet for the servlet to
render the response. The view ID is resolved using the view resolver specified in the
jboss-as-spring-mvc-context .xml context file. The Map model is made available
to the view template. The controller class is listed in the following code:

package org.jboss.springmvc.controller;

import org.jboss.springmvc.data.*;

import org.jboss.springmvc.model.*;

import javax.servlet.http.HttpServletRequest;

import org.springframework.beans.factory.annotation.Autowired;

[292]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.servlet.ModelAndView;

@Controller

public class CatalogController {
@Autowired
private CatalogDao catalogDao;

@RequestMapping (value = "/catalog")
public ModelAndView createAndDisplayCatalog (HttpServletRequest
request) {
// Handle a new catalog (if any):
String journal = request.getParameter ("journal") ;
String publisher = request.getParameter ("publisher") ;
String edition = request.getParameter ("edition") ;

String title = request.getParameter("title");

String author = request.getParameter ("author") ;

if (journal != null && publisher != null && edition != null
&& title != null && author != null) {

Catalog catalog = new Catalog() ;
catalog.setJournal (journal) ;
catalog.setPublisher (publisher) ;
catalog.setEdition(edition) ;
catalog.setTitle(title) ;
catalog.setAuthor (author) ;
catalogDao.persist (catalog) ;
}
// Prepare the result view (catalog):
return new ModelAndView("catalog", "catalogDao", catalogDao) ;

[293]

www.it-ebooks.info

http://www.it-ebooks.info/

Using Spring MVC 4.1

The model, DAO, and controller classes are shown in Project Explorer in the
following screenshot:

75 Praject Explorer 3 = <}==g>| e - =
4 5':‘; jboss-springrrve
» 'an Deployment Descriptor: jhass-springrmve
o A JAXSWS WYeb Services
4 IPA Content
» 92 Java Resources
» = JavaScript Resources
» 5 Deployed Resources
» = functional-tests
4 e src
4 {7 main
4 [java
4 [org
a [jhoss
4 [= springriwve
4 [controller
CatalogController java
4 (= data
CatalogDan java
CatalogDaolmpl java
4 [model
Catalog.java
4 [resources
a = META-INF
4 = spring
%] applicationContextxml
%] infrastructure xml
g persistencexml
[import.sgl
> i webapp
+ [target

[pormsml
[w] RFATRAF pad

0 iterns selected

[294]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Creating the View

The view resolver, configured in the WEB- INF/jboss-as-spring-mvc-context.
xml web application context, resolves view from the ModelAndview object, and the
response is rendered with a catalog. jsp view template. Create catalog. jsp in the
WEB- INF/views directory. To create a JSP, select File | New | Other, and in New,
select Web | JSP File and click on Next. In the New JSP File wizard, select the

WEB- INF/views folder, specify File name as catalog.jsp, and click on Next, as
shown in the following screenshot. Subsequently click on Finish.

&) New JSP File . Lo 0 S

JSP
Create a new JSP file, v

Enter or select the parent folder:

Jjboss-springreecdsrcfrmainfwebappWEB-TMFAviews

4 & jhass-springrove -
= settings
s = functional-tests
4 [st
4 = main
s s java

m

s = resourCes
4 [webapp
» [=% rESOUrCES
a = WEB-INF
= wiewis
s = target
L= RermnteSuestermsTemnFiles

File name: catalog.jsp

':?3' < Back ” et = [}J [Finish] [Cancel

[295]

www.it-ebooks.info

http://www.it-ebooks.info/

Using Spring MVC 4.1

The catalog.jsp class and the other classes added, which include the controller
class, the DAO classes, and the model class, are shown in Project Explorer in the
following screenshot:

I Project Explorer 23 = <‘1=’={> |
4 Eg':‘} jboss-springrmvc
> ‘a1 Deployment Descriptar: jhass-springmwve
oA JRXAWE Web Services
4 JPA Content
- £5 Java Resources
- By JavaScript Resources
» [Deployed Resources
¢ = functional-tests
4 [stC
4 {7 main
s = Java
o [PESOUPCES
4 = webapp

il

[resources
a = WEB-INF
a4 5 e
catalog.jsp L\\S
index.jsp
K| jhoss-as-spring-rvc-contextoml
K| jhoss-springrrecc-dsoml
> el
» [target
[porrxrnl
|w] README.md

The request initiates from the catalog. jsp view template, and the response

is rendered with catalog.jsp. To send a request to DispatcherServlet, the
<form/> element has the action attribute set to catalog, which gets mapped to

the /catalog path URI specified using the @RequestMapping annotation in the
CatalogController request handler class. The createAndDisplayCatalog handler
method gets invoked when the form is posted. In catalog. jsp, instantiate a bean
from the org. jboss.springmvc.data.CatalogDao interface with the scope request.
Add <form/> with <input/> elements for input fields to create a new Ccatalog
object. To render the response from a org. jboss. springmvc.data.CatalogbDao
bean, invoke the getAllcatalogs () method to obtain List of Catalog objects.
Iterate over List to output Catalog instance properties.

[296]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

The catalog.jsp is listed in the following code:

<%@page contentType="text/html; charset=IS0-8859-1"
pageEncoding="IS0-8859-1"%>

<%@page import="org.jboss.springmvc.model.Catalog,org.jboss.springmvc.
data.CatalogDao, org.jboss.springmvc.controller.CatalogController"%>

<jsp:useBean id="catalogDao" type="org.jboss.springmvc.data.
CatalogDao" scope="request" />

<!--scope should be request for the bean to be found -->
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd" >
<html>
<head>
<title>Spring MVC-JPA Catalog</title>
<head>
<meta name="generator" content="HTML Tidy for Linux/x86 (vers 25
March 2009), see www.w3.org" />
<title>
Spring MVC-JPA Catalog
</title>
</head><!-- action should be same as the mapping in the controller
-->
<body>
<h2>
Catalog form
</h2>
<form method="post" action="catalog">
Journal: <input type="text" name="journal" />Publisher:
<input type="text" name="publisher" />Edition: <input type="text"
name="edition" />Title: <input type="text" name="title" />Author:
<input type="text" name="author" />
<table>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>

[297]

www.it-ebooks.info

http://www.it-ebooks.info/

Using Spring MVC 4.1

<tr>
<td></td>
</tr>

</table>

<p>

<input type="submit" value="Add" />

</p>

</form>
<table>

)
<3

for

o
s>

<tr>

<td>
<%=catalog

</td>

<td>
<%=catalog

</td>

<td>
<%=catalog

</td>

<td>
<%=catalog

</td>

<td>
<%=catalog

</td>

<td>
<%=catalog

</td>

</tr><%

}

o
s>

</table>

</body>
</html>

catalog : catalogDao.getAllCatalogs())

.getId() %>

.getJournal () %>

.getPublisher () %>

.getEdition() %>

.getTitle () %>

.getAuthor () %>

{

[298]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Creating a Spring MVC context

The Spring MVC web application context is configured in springmve\src\main\
webapp \WEB-INF\ jboss-as-spring-mvc-context.xml.In addition to adding
the org. jboss. springmve.controller package for auto-detection, support for
processing requests using the controller methods annotated with @RequestMapping
is configured with the <mvc:annotation-driven /> declaration. Add support

for the annotation-based transaction manager; the catalogbao interface's persist
method is annotated with @Transactional. Add a view resolver bean for the org.
springframework.web.servlet.view.InternalResourceViewResolver class. It
is a best practice to add the view templates, such as catalog.jsp, within the WEB-
INF directory so that only the controller has access to them. Add a bean property
prefix with the /WEB- INF/views value to resolve the view templates. The jboss-as-
spring-mvc-context.xml file is listed in the following code:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/
beans" xmlns:context="http://www.springframework.org/schema/
context" xmlns:mvc="http://www.springframework.org/schema/mvc"
xmlns:tx="http://www.springframework.org/schema/tx" xmlns:xsi="http://
www.w3.0rg/2001/XMLSchema-instance" xsi:schemaLocation="http://www.
springframework.org/schema/beans http://www.springframework.org/
schema/beans/spring-beans-3.2.xsd http://
www . springframework.org/schema/context http://www.
springframework.org/schema/context/spring-context-3.2.xsd
http://www.springframework.org/schema/mvc http://www.springframework.
org/schema/mvc/spring-mve-3.2.xsd http://
www . springframework.org/schema/tx http://www.springframework.org/
schema/tx/spring-tx.xsd">
<context:component-scan base-package="org.jboss.springmvc.
controller" />
<mvc:annotation-driven />
<!-- Add JPA support -->
<bean id="emf" class="org.springframework.orm.jpa.
LocalContainerEntityManagerFactoryBean">
<property name="loadTimeWeaver">
<bean class="org.springframework.instrument.classloading.
InstrumentationLoadTimeWeaver" />
</property>
</bean>
<!-- Add Transaction support -->
<bean id="txManager" class="org.springframework.orm.jpa.
JpaTransactionManager">
<property name="entityManagerFactory" ref="emf" />

[299]

www.it-ebooks.info

http://www.it-ebooks.info/

Using Spring MVC 4.1

</bean>
<!-- Use @Transaction annotations for managing transactions -->
<tx:annotation-driven transaction-manager="txManager" />

<bean id="viewResolver" class="org.springframework.web.servlet.view.
InternalResourceViewResolver">

<property name="prefix" value="/WEB-INF/views/" />
<property name="suffix" value=".jsp" />
</bean>
<mvc:resources mapping="/static/**" location="/" />
<mvc:default-servlet-handler />
</beans>

The Spring MVC provides two levels of application contexts, the root application
context for application-level services and a servlet application context for the servlet-
level beans and services. The /META- INF/spring/applicationContext .xml file is
configured in web . xm1 is the root-level application context, and /WEB- INF/jboss-
as-spring-mvc-context.xml is the context for DispatcherServlet. The servlet
context configuration overrides the root context for beans with the same name.

Deploying the Spring project with Maven
Next, compile, package, and deploy the Spring MVC application using the Maven
build tool. The Hibernate JPA API, the Hibernate Validator API, and the Hibernate
Entity manager API are provided by WildFly 8.1. Add a dependency on the MySQL
JDBC connector, as follows:

<dependencys>
<groupIds>mysqgl</groupId>
<artifactIds>mysqgl-connector-java</artifactIds>
<version>5.1.22</versions>

</dependency>

The Spring dependencies are available in the org. springframework group ID. The
Spring version is configured as Spring 4.1.2 by default in pom.xm1, as follows:

<version.spring>4.1.2.RELEASE</version.springs>

The Spring Web MVC dependency is also configured as version 4.1.2. All the
required Spring framework dependencies —Spring AOP, Spring Beans, Spring
Context, Spring Core, Spring JDBC, Spring ORM, Spring Tx, Log4j, AOP alliance,
Commons logging, Cglib, Spring Expression Language, and Spring Web —are
configured in pom.xml. In <build/>, configure the Maven compiler plugin and

the Maven WAR plugin. Set the output directory for the Maven War plugin as the
C:\wildfly-8.1.0.Final\standalone\deployments directory of the WildFly 8.1
standalone installation.

[300]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

The pom.xm1 file is listed in the following code:

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://
www.w3.0rg/2001/XMLSchema-instance" xsi:schemalLocation="http://maven.
apache.org/POM/4.0.0 http://maven.apache.org/maven-v4 0 0.xsd">

<modelVersion>4.0.0</modelVersion>
<groupIds>org.jboss.springmvc</grouplds>
<artifactId>jboss-springmve</artifactIds>
<packagings>war</packaging>
<version>1.0.0</versions>
<name>Getting Started with Spring on JBoss</name>
<propertiess
<!-- Spring version -->
<version.spring>4.1.2.RELEASE</version.spring>
<!-- Spring Third Party dependencies -->
<version.aopalliance>1.0</version.aopalliance>
<!-- Third Party dependencies -->
<version.standard.taglibs>1.1.2</version.standard.taglibs>
<version.commons.logging>1.1.1l</version.commons.logging>
<!-- JBoss AS plugin for deployment -->
<version.jboss.as.maven.plugin>7.6.Final</version. jboss.as.maven.
plugin>
</properties>
<repositoriess
<repositorys
<id>springsource-milestones</id>
<name>SpringSource Milestones Proxy</names
<url>https://oss.sonatype.org/content/repositories/springsource-
milestones</urls>
</repository>
<repositorys
<id>Maven</id>
<name>Maven</name>
<urlshttp://repol.maven.org/maven2</url>
</repositorys>
</repositories>
<dependencyManagement >
<dependenciess>
<dependencys>
<groupIds>org.jboss.spec</groupId>
<artifactId>jboss-javaee-web-6.0</artifactId>
<version>3.0.0.Final</version>

[301]

www.it-ebooks.info

http://www.it-ebooks.info/

Using Spring MVC 4.1

<types>pom</type>
<scope>import</scope>

</dependency>

<!-- Spring dependencies -->

<dependencys>
<groupIds>org.springframework</groupIds>
<artifactId>spring-aop</artifactIds>
<version>${version.spring}</version>

</dependency>

<dependencys>
<groupIds>org.springframework</groupIds>
<artifactId>spring-beans</artifactIds>
<version>${version.spring}</versions>

</dependency>

<dependencys>
<groupIds>org.springframework</groupIds>
<artifactId>spring-context</artifactIds>
<version>${version.spring}</versions>

</dependency>

<dependencys>
<groupIds>org.springframework</groupIds>
<artifactIds>spring-context-support</artifactIds>
<version>${version.spring}</version>

</dependency>

<dependencys>
<groupIds>org.springframework</groupIds>
<artifactIds>spring-core</artifactIds>
<version>${version.spring}</versions>

</dependency>

<dependencys>
<groupIds>org.springframework</groupIds>
<artifactIds>spring-expression</artifactIds>
<version>${version.spring}</versions>

</dependency>

<dependencys>
<groupIds>org.springframework</groupIds>
<artifactIds>spring-jdbc</artifactIds>
<version>${version.spring}</versions>

</dependency>

<dependencys>
<groupIds>org.springframework</groupIds>
<artifactId>spring-orm</artifactIds>

[302]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

<version>${version.spring}</versions>

</dependency>

<dependencys>
<groupIds>org.springframework</groupIds>
<artifactIds>spring-test</artifactIds>
<version>${version.spring}</versions>
<scope>test</scope>

</dependency>

<dependencys>
<groupIds>org.springframework</groupIds>
<artifactIds>spring-tx</artifactId>
<version>${version.spring}</versions>

</dependency>

<dependencys>
<groupIds>org.springframework</groupIds>
<artifactId>spring-web</artifactIds>
<version>${version.spring}</version>

</dependency>

<dependencys>
<groupIds>org.springframework</groupIds>
<artifactIds>spring-webmvc</artifactIds>
<version>${version.spring}</versions>

</dependency>

<!-- Third Party dependencies -->

<dependencys>
<groupIds>aopalliance</groupId>
<artifactId>aopalliance</artifactIds>
<version>${version.aopalliance}</version>

</dependency>

<dependencys>
<groupId>taglibs</groupIld>
<artifactIdsstandard</artifactIds>
<version>${version.standard.taglibs}</versions>

</dependency>

<dependencys>
<groupIds>commons-logging</groupIld>
<artifactId>commons-logging</artifactIds>
<version>${version.commons.logging}</versions>

</dependency>

</dependencies>
</dependencyManagement >
<dependencies>

[303]

www.it-ebooks.info

http://www.it-ebooks.info/

Using Spring MVC 4.1

<!-- Import the JPA API using the provided scope It is included in

JBoss AS 7 / EAP 6 -->
<dependencys>
<groupIds>org.hibernate.javax.persistence</groupId>
<artifactId>hibernate-jpa-2.0-api</artifactIds>
<scope>provided</scope>

</dependency>

<!-- JSR-303 (Bean Validation) Implementation -->
<!-- Provides portable constraints such as @Email -->
<!-- Hibernate Validator is shipped in JBoss AS 7 -->
<dependencys>

<groupIds>org.hibernate</groupIld>
<artifactIdshibernate-validator</artifactIds
<version>4.1.0.Final</version>
<exclusionss>
<exclusion>
<groupIds>org.slfd4j</groupIds>
<artifactIds>slf4j-api</artifactIds>

</exclusions>
</exclusions>
</dependency>
<!-- Annotation processor that raising compilation errors whenever
constraint annotations are incorrectly used. -->
<dependencys>
<groupIds>org.hibernate</groupIld>
<artifactIds>hibernate-validator-annotation-processor</
artifactId>
<version>4.1.0.Final</version>
</dependency>
<dependencys>
<groupIds>org.hibernate</groupId>
<artifactId>hibernate-entitymanager</artifactIds>
<version>4.1.0.Final</version>
</dependency>
<!-- Import Spring dependencies, these are either from community
or versions certified in WFK2 -->
<dependencys>

<groupIds>org.springframework</groupIds>
<artifactId>spring-aop</artifactIds>
<version>${version.spring}</versions>
</dependency>
<dependencys>
<groupIds>org.springframework</groupIds>

[304]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

<artifactIds>spring-beans</artifactIds>
<version>${version.spring}</versions>

</dependency>

<dependencys>
<groupIds>org.springframework</groupIds>
<artifactId>spring-context</artifactIds>
<version>${version.spring}</version>

</dependency>

<dependencys>
<groupIds>org.springframework</groupIds>
<artifactId>spring-context-support</artifactIds>
<version>${version.spring}</versions>

</dependency>

<dependencys>
<groupIds>org.springframework</groupIds>
<artifactIds>spring-core</artifactIds>
<version>${version.spring}</versions>

</dependency>

<dependencys>
<groupIds>org.springframework</groupIds>
<artifactIds>spring-expression</artifactIds>
<version>${version.spring}</versions>

</dependency>

<dependencys>
<groupIds>org.springframework</groupIds>
<artifactIds>spring-jdbc</artifactIds>
<version>${version.spring}</version>
<!-- <scope>provided</scope> -->

</dependency>

<dependencys>
<groupIds>org.springframework</groupIds>
<artifactId>spring-orm</artifactIds>
<version>${version.spring}</version>

</dependency>

<dependencys>
<groupIds>org.springframework</groupIds>
<artifactIds>spring-tx</artifactId>
<version>${version.spring}</version>

</dependency>

<dependencys>
<groupIds>org.springframework</groupIds>
<artifactId>spring-web</artifactId>

[305]

www.it-ebooks.info

http://www.it-ebooks.info/

Using Spring MVC 4.1

<version>${version.spring}</version>

</dependency>

<dependencys>
<groupIds>org.springframework</groupIds>
<artifactIds>spring-webmvce</artifactIds>
<version>${version.spring}</version>

</dependency>

<!-- Other community dependencies -->

<dependencys>
<groupIds>aopalliance</groupId>
<artifactId>aopalliance</artifactId>
<version>${version.aopalliance}</version>

</dependency>

<dependencys>
<groupId>taglibs</groupIld>
<artifactIdsstandard</artifactIds>
<version>${version.standard.taglibs}</versions>

</dependency>

<dependencys>
<groupIds>commons-logging</groupIld>
<artifactId>commons-logging</artifactIds>
<version>${version.commons.logging}</versions>

</dependency>

<!-- Add cglib for the CatalogDaoTest -->

<dependencys>
<groupId>cglib</groupIld>
<artifactId>cglib-nodep</artifactId>
<versions>2.2</version>
<scope>provided</scope>

</dependency>

<dependencys>
<groupIds>mysqgl</groupId>
<artifactIds>mysqgl-connector-java</artifactIds>
<version>5.1.22</versions>

</dependency>

<dependencys>
<groupIds>javax.servlet</groupIld>
<artifactIdsservlet-api</artifactId>
<version>2.5</version>

</dependency>

<dependencys>
<groupIds>javax.servlet</groupIld>

[306]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

<artifactId>javax.servlet-api</artifactIds>
<version>3.0.1l</versions>
</dependency>

<!-- Add JSON dependency, specified in jboss-deployment-structure.

xml -->
<dependencys>
<groupIds>org.codehaus.jackson</groupIds>
<artifactId>jackson-mapper-asl</artifactIds>
<version>1.9.3</versions>
<scope>provided</scope>
</dependency>
<dependencys>
<groupIds>org.codehaus.jackson</groupIds>
<artifactId>jackson-core-asl</artifactIds>
<version>1.9.3</versions>
<!-- <scope>provided</scope> -->
</dependency>
<dependencys>
<groupIds>org.slfi4j</groupId>
<artifactId>slf4j-simple</artifactIds>
<version>1l.6.4</version>
<!-- <scope>provided</scope> -->
</dependency>
</dependencies>
<builds>
<finalName>jboss-springmvc</finalName>
<pluginss>
<!-- Force Java 6 -->
<plugins>
<groupld>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactIds>
<versions>2.4</version>
<configurations>
<sources>1l.7</sources
<target>1.7</target>
</configurations>
</plugin>
<!-- Deployent on AS from console -->
<plugins>
<groupldsorg.jboss.as.plugins</groupIlds>
<artifactId>jboss-as-maven-plugin</artifactIds>
<version>${version.jboss.as.maven.plugin}</versions>

[307]

www.it-ebooks.info

http://www.it-ebooks.info/

Using Spring MVC 4.1

</plugin>

<plugins>
<artifactIds>maven-war-plugin</artifactIds>
<versions>2.2</version>
<configurations>

<outputDirectory>C:\wildfly-8.1.0.Final\standalone\
deployments</outputDirectorys>

<failOnMissingWebXml>false</failOnMissingWebXml >
<warName>${project.artifactId}</warName>
</configurations>
</plugins>
</plugins>
</build>
</project>

Some of the dependencies listed do not get used in the example application but could
be used in some other Spring MVC application. Before we run the jboss-springmvc
application, remove any test files and classes from the project. Also, remove import.

sql from the resources directory.

Creating deployment structure and
infrastructure deployment descriptors

We have not yet discussed two files: webapp/WEB- INF/jboss-deployment -
structure.xml and resources/META-INF/spring/infrastructure.xml. The
jboss-deployment-structure.xml file is a JBoss-specific deployment descriptor
used to configure fine-grained class-loading. If the jboss-deployment-structure.
xml file is not included, the default class-loading is used, which might not be what is
required for an application. The jboss-deployment-structure.xml file can be used
for the following purposes:

* Preventing the inclusion of automatic dependencies
* Adding additional dependencies
* Defining additional modules
* Adding additional resource roots to a module
* Modifying an EAR deployments isolated class loading behavior
We have used jboss-deployment-structure.xml to include dependencies on the

org.codehaus.jackson.jackson-core-asl, org.codehaus.jackson.jackson-
mapper-asl, org.slf4j, and mysql modules.

[308]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

The jboss-deployment -structure.xml file is listed as follows:

<?xml version="1.0" encoding="UTF-8"?>

<jboss-deployment-structure xmlns="urn:jboss:deployment-
structure:1.0">

<deployment>
<!-- <exclusionss>
<module name="org.hibernate" />
</exclusions> -->
<dependenciess>
<module name="mysqgl" />
<module name="org.codehaus.jackson.jackson-core-asl" />
<module name="org.codehaus.jackson.jackson-mapper-asl" />
<module name="org.slf4j" />
</dependencies>
</deployment>
</jboss-deployment -structure>

The infrastructure.xml file is used for the following purposes:

* Registering the entity manager factory in JNDI
* Registering the data source in JNDI

* Enabling JTA transaction management

The infrastructure.xml file is listed as follows:

<?xml version="1.0" encoding="UTF-8"?>
<jboss-deployment-structure xmlns="urn:jboss:deployment-
structure:1.0">
<deployment>
<!-- <exclusionss>
<module name="org.hibernate" />
</exclusions> -->
<dependencies>
<module name="mysqgl" />
<module name="org.codehaus.jackson.jackson-core-asl" />
<module name="org.codehaus.jackson.jackson-mapper-asl" />
<module name="org.slf4j" />
</dependencies>
</deployment>
</jboss-deployment-structure>

[309]

www.it-ebooks.info

http://www.it-ebooks.info/

Using Spring MVC 4.1

The directory structure of the Spring Maven application's jboss-springmve\src\
main\java and jboss-springmvc\src\main\resources directories is shown in
Project Explorer in the following screenshot:

Ly Project Explorer 33 = dé} &
4 5'3 jboss-springrave
> 'a1 Deployment Descriptor: jboss-springrmwe
o A 1AXANE Web Services
» 4 IPA Content
2% Java Resources

= JavaScript Resources
[Deployed Resources
(= functional-tests

4 75 srC
4 = rmain
4 [java
4 [arg
4 [|boss
4 [springrove

4 [contraller
CatalogContrallerjava

4 [data
CatalogDao.java
CatalogDaolmpl.java

4 [model
Catalog.java

4 =5 resources
a4 [META-IMNF
4 [spring
%] applicationContextxml
%] infrastructure.xml
+ persistencesxml
» e webapp
¢ [target
_@ parm.xml

[310]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

The directory structure of the Spring Maven application's jboss-springmve\src\
main\webapp directory is also shown in Project Explorer in the following screenshot:

I Project Explarer 52 = <}:{}l ¢ - =

4 E':‘} jboss-springrre
» a1 Deployment Descriptar jhoss-springrmwve
o A JAXAWES ek Services
» < JPA Content
» ¥ Java Resources
» B, JavaScript Resources
+ [Deployed Resources
+ = functional-tests
4 = s
4 §= main
o = java
s = resources
a = webapp %
4[5 resources
[oss
» l,.__, gfx
a = WEB-TMF
4 =5 views
no catalogjsp
i) indexsp
|X] jboss-as-spring-rrve-contextaaml
%] jboss-deployment-structure xml

gl weeb x|
+ [target
_,'a parm.ml

[311]

www.it-ebooks.info

http://www.it-ebooks.info/

Using Spring MVC 4.1

Installing the Spring MVC Maven project

To run the Maven build tool, right-click on pom.xml and select Run As | Maven
install, as shown in the following screenshot:

L7 Project Explare B Copy Crl+C } CatalogCont.. catalog.jsp
4 B—:‘J Jboss-sprin £ Copy Qualified Mame
5y Deployy Paste Ctrl+4
- A 1AXAWY
. 4 IPACor H Delete Delete
, ;5 Java Re! Rermove from Context Chrl+Alt+Shift+Dowen
- m JavaScr Mark as Landrark Ctrl +&t +Shift+Up
- (9 Deploys g path v
: L__ :L::Ctlm Move..,
o [target Renarne...
bl pom.xn e Import.,
i Export..
& Refresh F5
E:>J Mark as Deployable
Walidate
Showy in Remote Systems view
Profile &s 3
Debug &s v
Run s v | o5 1Run on Server Alt+Shift+3, R
Tearn b | m2 2 Maven build Alt+Shift+3, M
Compare With b m2 3 Maven build.
Replace With P om2 4 Maven clean
ITidy b om2 5 Maven clean verify
Mawen b | m2 6 Maven generate-sources
Google b m2 ¥ Maven install
Source Fm2 B Maven test
I pornaml - jooss Brutele Wl o Run Configurations...

The jboss-springmve application gets compiled and packaged to the jboss-
springmvc.war archive, which gets output to the deployments directory. Maven
outputs a BUILD SUCCESS message, as shown in the following screenshot:

[312]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[2] Markers] Properties b Servers [Data Source Explorer [Snippets | B Console 32 | 3 Palette € Error Log = 0

X% &EEEB 20
<terminated > C\Program Filestavayjdk1.7.0_S1\bin'javawn.exe (Dec 2, 2014, 6:26:43 PM)
[INFO] --- maven-war-plugin:2.2:war (default-war) @ jboss-springmvec ---
[INFO] Packaging webapp
[INFC] Assembling webapp [jboss-springmec] in [Ci:\Users\Deepak Wohra‘\Eclipse\workspace\jboss-springmecitarget’jbess-sprin
[INFO] Processing war project
[INFC] Copying webapp reseurces [C:hUsershDeepak WohraEclipselworkspacehjboss-springmvchisrcimainiuebapp]
[INFO] Webapp assembled in [24825 msecs]
[INFC] Building war: C:iwildfly-8.1.@.Finalistandalonedeploymentsjboss-springmvc.war
[INFO] WEB-IMFiweb.:ml already added, skipping
[INFO]
[INFO] --- maven-install-plugin:2.4:install (default-install) @ jboss-springmwec ---
[INFO] Installing C:4wildfly-8.1.@.Finallstandalenshdeploymentstjboss-springmvc.war to CihUsershDeepak Wohra'.m2\reposite
[INFC] Installing C:'Users‘Deepak YohrahEclipsehworkspacejboss-springmvchipom.sal to C:hUsers\Deepak Yohra'.m2\repository
15T
[INFO] BUILD SUCCESS
15T
[INFO] Teotal time: @1:39 min
[INFO] Finished at: 2@14-12-@2T18:28:45-23:0@
[INFO] Final Memory: 20M/223M
[INFO] = mm - mmmm o mm oo oo o e

Start the WildFly 8.1 server if it is not already started. The jboss-springmve.war
archive gets deployed to WildFly 8.1. Now log in to the WildFly Administration
Console and click on Manage Deployments. The jboss-springmvc.war file, as
deployed, is shown in the following screenshot:

WildFly 8.1.0.Final

H fi on Runtime

= Server DEPLOYMENTS

Oweriew

Manage Deployments Dep|0\/m6ﬂt5

Patch Managerment Currently deployed application components.
= Srtatus

Add Remove En/Disable Replace
= Platfarm
M I}) ¥ jboss-springrve.war L

Enviranment
Subsysterns

Datasources

1Pa

IHDI Wiew

Transaction Logs

Transactions

Webservices Deployment

Need Help?

Name: jboss-springmuc. war

[313]

www.it-ebooks.info

http://www.it-ebooks.info/

Using Spring MVC 4.1

The catalog schema gets exported to the MySQL database. A hibernate_sequence
to auto-increment the 1D field also gets created. The catalog schema description can
be output with the desc catalog command in the MySQL command-line client, as
shown in the following screenshot:

catalog
ibernate_seguence

author varchar{255>
edition varchar{255>
Journal varchar(255>
publizher

+ +
[l [l
i i
1 1
i i
1 1
i i
1 1
1 1
Il Il
1 1
Il Il
1 1
+ +

$ o ——————
4 omm i ————

mysgl> _

Running the Spring MVC application

Run the Spring MVC application in a browser using the URL http://
localhost:8080/jboss-springmvc/catalog. The input view template catalog.
jsp gets displayed, as shown in the browser in the following screenshot:

@ Spring MVC-JPA Catalog E_ T o oS e
< + B3 httpi//acalhostB080bass- springrave/catalog ¢ | [Qr Google O~ 2~
Catalog form
Journal: Publisher: Edition: Title Author:
[Add |

Specify the values for a catalog entry in the input form and click on Add, as shown in
the following screenshot:

[314]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

@ Spring MVC-IPA Catalog - - X e - =) E]
-« + |F3 httpi//localhost:E0E0/jbass-springmuvc/eatalog ¢ | Q- Google | O~ #~
Catalog form
Journal: Oracle Magazine Publisher: Oracle Puhlishing Edition: July-August 2010 Title: Infrastructure Software & Author: David Baum
(g)

A catalog entry gets created and persisted to the MySQL database table catalog and
gets displayed in a table, as shown in the following screenshot:

@ Spring MVC-JPA Catalog - E T e - N =N)
-« + |F3 httpi//localhost:E0E0/jbass-springmuvc/eatalog ¢ | Q- Google | O~ #~
Catalog form
Journal: Publisher: Edition: Title: Author:
Add I
1 Oracle Magazine Oracle Publishing July- August 2010 Infrastructure Software and Virtualization David Baum

Similarly, create other catalog entries, as shown in the table in the following screenshot:

| &) Soring MVC-1PA Catalog

i | « + |ZH httpi/flocalhast:8080/boss-springmve featalog ¢ | [Qr Goagle | O~ %~
Catalog form
Journal: Publisher: Edition: Title: Author:
Add
1 Oracle Magazine Oracle Publishing Tuly-August 2010 Infrastructure Software and Virtnalization David Baum
2 Oracle Magazine Oracle Publishing September-Cetober 2012 Bulk processing with BULE COLLECT and FORALL Steven Feverstein
3 Oracle Magazine Oracle Publishing November-December 2012 Apps on Oracle Exadata David A Eelly

Summary

In this chapter, we developed a Spring 4.1 MVC application in Eclipse to create a
catalog. We compiled and packaged the application with Maven and deployed the

application to WildFly 8.1. Subsequently, we tested the Spring MVC application to
create a catalog.

In the next chapter, we will discuss a new feature in Java EE 7 and JAX-RS 2.0.

[315]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Using JAX-RS 2.0 in
Java EE 7 with RESTEasy

JSR 311 (http://jcp.org/en/jsr/detail?id=311) specifies the Java API for
RESTful Web services (JAX-RS) for developing REST (Representational State
Transfer) Web services with Java. REST is a protocol independent, loosely coupled,
software architecture style for distributed systems. A RESTful Web service exposes a
set of resources, which are simply sources of information, identified by URIs (Uniform
Resource Identifiers) in HTTP. RESTful Web services follow these RESTful principles:

* Every resource has a unique base URI

* For invoking Web service operations, the HTTP protocol methods such as
GET, PUT, POST, and DELETE are used

* A client sends a request to a service, and the service returns a representation
of a resource requested to the client

¢ (lient sessions are not stored on the server, which makes it easier to scale the
service with less data to replicate in a clustered environment

JSR 339 (https://www.jcp.org/en/jsr/detail?id=339) develops the JAX-RS 2.0
version. JAX-RS 2.0 provides several new features, such as a Client API, support for
validation, filters and interceptors, and asynchronous processing. We will discuss
the salient new features in JAX RS 2.0 using the RESTEasy (http://resteasy.
jboss.org/) implementation. This chapter has the following sections:

* Setting up the environment
* The Client API
* Filters and interceptors

* Asynchronous processing

[317]

www.it-ebooks.info

http://www.it-ebooks.info/

Using JAX-RS 2.0 in Java EE 7 with RESTEasy

Cancelling a request
Session bean EJB resource

Making an asynchronous call from the client

Setting up the environment

We need to install the following software:

WildFly 8.1.0.Final: Download wildfly-8.1.0.Final.zip from
http://wildfly.org/downloads/.

Eclipse IDE for Java EE Developers: Download Eclipse Luna from
https://www.eclipse.org/downloads/packages/release/Luna/SR1.

JBoss Tools (Luna) 4.2.0.Final (or the latest version): Install this as a plugin
to Eclipse from Eclipse Marketplace (http://tools.jboss.org/downloads/
installation.html).

Apache Maven: Download version 3.05 or higher from http://maven.
apache.org/download.cgi.

Java 7: Download Java 7 from http://www.oracle.com/technetwork/
java/javase/downloads/index.html ?ssSourceSiteId:ocomcn.)

Set the environment variables JAVA HOME, JBOSS_HOME, and MAVEN HOME. Add
$JAVA HOME%/bin, $MAVEN HOMES$/bin, and $JBOSS_HOME%/bin to the PATH
environment variable.

Create a WildFly 8.1.0 runtime as discussed in Chapter 1, Getting Started with E|B
3.x. Create a MySQL data source with the JNDI name java:jboss/datasources/
MySQLDS as explained in Chapter 1, Getting Started with EJB 3.x.

Creating a Java EE web project

First, we need to create a Java EE web project for which you need to select
File | New | Other. In New, select Web | Java EE Web Project, as shown in the
following screenshot:

[318]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

@) New L B ||

Select a wizard e

Wizards:
type filter text

> (= Java EE ~
> (= Java Emitter Templates
s = JawaScript
> (= JAXB
4 [= JBoss Central
%~ AngularlSwith Forge Project
B HTMLS Project

[

(2 Java EE EAR Project |
2 Java EE Web Project

@ RichFaces Project

/¥ Spring MYC Project i

[Shove &1l Wizardss,

In the Java EE Web Project wizard, select Create a blank project and select wildrly
8.x Runtime as Target Runtime, which is shown as follows. A test gets run to find
whether the required plugins are installed. Then, click on Next.

r -
P ;
1@ New Project Example T - cRr X

Java EE Web Project

Create a Mawven-based lawva EE § web application project g_" /

Description:

This is wour project! It's a sample, deployable Maven 3 projectto help you getyour foot in the door developing =
with Jawva EE 6 on JBoss Enterprise Application Platform 6 or JBoss Application Server 7.1, ‘

This project is setup to allows you to create a compliant Java EE 6 application using JSF 2.0, COI 1.0, EIB 3.1, 1P&,
Project based on the orguildfly.archetypewildfly-javaee-wehapp-blank-archetype:8.1.0.Final Maven >

2.0 and Bean Yalidation 1.0,
[¥] Create a blank project

Target Runtime | ¥ildFly §x Runtime Vl

Requirements

Type Description Foun.. Tnstall...
serverfrunti.. This project exarnple requires JBoss Enterprise &pplic.. [
plugin This project example requires m2e >= 1.0, opnioadlanclinstally
plugin This project example requires me-wip == 0.16.0,
plugin This project example requires 1Boss Maven Toals,

4| . 2

@ [<Back | Next>L\“J Fiatela

[319]

www.it-ebooks.info

http://www.it-ebooks.info/

Using JAX-RS 2.0 in Java EE 7 with RESTEasy

Specify Project name (jboss-resteasy) and Package (org. jboss.resteasy), and
click on Next as follows:

(& newe — [e

roject Example
Java EE Weh Project _@
Create a Maven-based Java EE 6 web application project ::‘ /

Project name jboss-resteasy

Package org.jboss.resteasy

Use default Waorkspace location

Browse...

[T &dd project(s) to wearking set
hlare..

b Advanced

@ [<Back | Nex‘t>y\[\s?][Fiish | | Concel |

Specify Group Id (org.jboss.resteasy), Artifact Id (jboss-resteasy), Version
(1.0.0), and Package (org. jboss.resteasy), and click on Next, as shown here:

[320]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

(785 New Project Exarmple ESIE]
i®; New Project Example — =m|nlE}
Java EE Weh Project _@
Create a Maven-based Jawva EE 6 web application project Ji‘ /
GroupId: orgjboss.resteasy -
ArtifactId: jboss-resteasy -
Wersion: L0.0 -
Package: orgjboss.resteasy -
Properties available from archetype:
Marme Walue Add...
harne Jawa EE Twebapp project R
ErTIove
w Advanced
[] Resake Warkspace projects ||
Profiles: |

?\ Mexdt = [Finish [?I ’ Cancel]

A

The jboss-resteasy Maven project gets created and gets added to Project Explorer,
as shown here:

[T Project Explarer 53 = 0

BE&|le ©
F] ::_'9 jhoss-resteasy
AP)AX-RE el Services
> 'zg Deployrnent Descriptor: jhoss-resteasy
> AL Web Resources
s AP IR Weh Services
= 4 JPA Content
. 28 Java Resaources
» B, Javascript Resources
» [Deployed Resources
4 [src
s[5 main
s [test
> (= target
] pornxml

[321]

www.it-ebooks.info

http://www.it-ebooks.info/

Using JAX-RS 2.0 in Java EE 7 with RESTEasy

Next, add a JAX-RS resource class (HelloWorldResource), which is just a Java

class. Select File | New | Other, and in New, select Java | Class and click on Next.
Select Source folder (jboss-resteasy/src/main/java) and specify Package
(org.jboss.resteasy.rest) and the class Name (HelloWorldResource), and click
on Finish, as shown here:

E

E Mew Java Class

Java Class —
Create a new Jawva class, @

source folder: Jboss-resteasyfsrcfmainfjava
Package: org,jhoss.resteanyrest
[C] Enclasing type: Browrse...
Marre: HelloWorldResource|
Madifiers: @ public () package private protected

[] abstract [final static

superclass: Jjawalang.Ohject Browvse...

Interfaces: Add

@' Mext » Finish [g [Cancel

[322]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Similarly, add a Java client class (RESTEasyClient) as follows:

= -
E Mew Java Class

Java Class

Create a new Jawva class,

== g
source folder: Jboss-resteasyfsrcfmainfjava

Package: org,jhoss.resteanyrest Browvse...
[l Enclosing type: | org.jboss.resteasy.rest.HelloWorldResource Browse...
Marre: RESTEasyClient
Modifiers: @ public () package private protected

[] abstract [final static
superclass: Jjawalang.Ohject
Interfaces: Add...

® Met = Finizh !ﬂ [Cancel

[323]

www.it-ebooks.info

http://www.it-ebooks.info/

Using JAX-RS 2.0 in Java EE 7 with RESTEasy

The directory structure of the jboss-resteasy application is shown in the

following screenshot:

L5 Project Explarer 32

Pl ::‘«Jf jboss-resteasy
AP JRX-REWeb Se

. 4 IPA Content
- % lava Resources

. LG Deployed Reso
4 (= src
4 [main
4 [java
4 = org

H

X
¢ [test
o [target
[m pormsml

. '8 Deployment Descriptor: jboss-resteasy
- |3 Wéeb Resources
A 1RMWES Wdeb Services

. B, lavaSoript Resources

4 [[boss
4 [resteasy

4 [resources
a [META-IMF

4 [= webapp
(= resources
4 = WEB-IMNF

—

= | =

&

reices

UrCes

4 [~ rest
HelloWardResource,java
RESTEasyClient,java

persistence.xml

beansxml
faces-configuxml
jboss-resteasy-ds.xml

Add the JAX-RS- and RESTEasy-related dependencies to pom.xm1, as follows:

<dependencies>

<!-- Import the JAX-RS APT,
included in JBoss WildFly -->
<dependencys>

we use provided scope as the API is

<groupld>org.jboss.resteasy</groupIds>

[324]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

<artifactId>jaxrs-api</artifactIds>

<version>3.0.10.Final</version>

<scope>provided</scope>
</dependency>

<dependencys>
<groupld>org.jboss.resteasy</groupIds>
<artifactIds>resteasy-jackson-provider</artifactIds>
<version>3.0.10.Final</version>
<scope>provided</scope>

</dependency>

<dependencys>
<groupld>org.jboss.resteasy</groupIlds>
<artifactId>resteasy-jaxrs</artifactIds>
<version>3.0.10.Final</version>
<scope>provided</scope>

</dependency>

<dependencys>
<groupIds>org.apache.httpcomponents</groupIld>
<artifactIds>httpclient</artifactIds>
<version>4.3.6</versions>
<scope>provided</scope>

</dependency>

<dependencys>
<groupIds>org.apache.httpcomponents</groupIld>
<artifactId>httpcore</artifactIds>
<version>4.3.3</versions>
<scope>provided</scope>

</dependency>

<dependencys>
<groupld>org.jboss.resteasy</grouplds>
<artifactIds>resteasy-client</artifactIds>
<version>3.0.10.Final</version>
<scope>provided</scope>

</dependency>

To the build, add the Maven compiler plugin and the Maven WAR plugin. In
the Maven WAR plugin configuration, specify the output directory to which the
built application is to be deployed: the c:\wildfly-8.1.0.Final\standalone\
deployments directory:

<builds>
<!-- Maven will append the version to the finalName (which is the name
given to the generated war, and hence the context root) -->

[325]

www.it-ebooks.info

http://www.it-ebooks.info/

Using JAX-RS 2.0 in Java EE 7 with RESTEasy

<finalName>${project.artifactId}</finalName>
<pluginss>
<plugins>
<artifactIds>maven-war-plugin</artifactIds>
<version>${version.war.plugin}</versions>

<configurations>

<outputDirectory>C:\wildfly-8.1.0.Final\standalone\
deployments</outputDirectory>

<failOnMissingWebXml>false</failOnMissingWebXml >
</configurations>
</plugin>
</plugins>
</build>

The complete pom. xml is available in the code download for this chapter. Next,
create the web deployment descriptor web.xml. Select File | New | Other. In New,
select JBoss Tools Web | Web Descriptor and click on Next, as shown here:

ENEW |. (= | S

Select a wizard

Create a Web Descriptor [

Wiizards:
type filter text

@ RichFaces Project
A Spring MVC Project
: (= JBoss Tools
4 (= JBoss Tools Web
m% 055 Class
EX Properties File
&3 TLD File
P& Yieh Descriptor
% KHTML Page
» = ISF
» = Portlet

lamm |

] Show Al Wisizards,

[326]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

In New Web Descriptor File, select Folder as the weB- INF directory, specify Name
as web.xml, and select Version as 3.1, as shown here:

i@ New Web Descriptor File &lﬂlﬂ

Weh Descriptor File e‘

Folder™ fjboss-resteasy/sro/mainfoebapp MEB-TMF

Marme®* | weebonl|

Wersion: [3.1 v]

® Mext = Finizh %J [Cancel

[327]

www.it-ebooks.info

http://www.it-ebooks.info/

Using JAX-RS 2.0 in Java EE 7 with RESTEasy

The web.xml deployment descriptor gets added to WeB- INF, which is shown
as follows:

I Project Explorer 22 — q,:{}| == 0
4 5—3 jboss-resteasy
- B JAX-REVVeb Services
» '@1 Deployment Descriptar: jhoss-resteasy
» AL WWeb Resources
s A JAX-WE Wb Services
& IPA Caontent
2 lava Resources

B, JavaScript Resources
L3 Deployed Resources

P
4 = main
4 [java
4 (= org
4 [jboss
4 [resteasy
4 [rest
HelloWorldResource,java
RESTEasyClientjava
[resources
4 = wehapp
(= resources
a = WWEB-IMF
> weebxml
¢ = target
i pomuml

Add the RESTEasy dispatcher servlet to the web . xml file including its URL mapping.
Add the context parameter required for RESTEasy to scan for JAX-RS classes. Also,
add the context parameter for the RESTEasy servlet mapping the prefix. The web.
xml file is listed as follows:

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://xmlns.jcp.org/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" version="3.1"
Xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee http://xmlns.
jcp.org/xml/ns/javaee/web-app 3 1.xsd">

<context-param>

[328]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

<param-name>resteasy.servlet.mapping.prefix</param-name>
<param-value>/rest</param-value>
</context-param>
<context-param>
<param-names>resteasy.scan</param-names
<param-value>true</param-value>
</context-params>
<listeners>
<listener-class>org.jboss.resteasy.plugins.server.servlet.
ResteasyBootstrap</listener-class>
</listeners>
<servlets>
<gservlet-name>Resteasy</servlet-name>
<servlet-class>org.jboss.resteasy.plugins.server.servlet.
HttpServletDispatcher</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>Resteasy</servlet-name>
<url-pattern>/rest/*</url-pattern>
</servlet-mapping>
</web-app>

The Client API

The Client API is a high-level API used to access web resources and integrate with
JAX-RS providers and is included in the javax.ws.rs.client package.

Previously, different implementations provided the Client AP,
—"butin JAX-RS 2.0, the Client API is provided as a core API.

Creating a client instance

A client instance is required to build and run client requests to access or consume
web resources. In the RESTEasy client class RESTEasyClient.java, create a Client
instance from ClientBuilder using the newClient () method as follows:

Client client = ClientBuilder.newClient () ;

Providers, filters, and features can be configured with the client object using the
register () method. For example, the org. jboss.resteasy.plugins.providers.
JaxrsFormProvider.class provider class is registered as follows:

client.register (org.jboss.resteasy.plugins.providers.
JaxrsFormProvider.class) ;

[329]

www.it-ebooks.info

http://www.it-ebooks.info/

Using JAX-RS 2.0 in Java EE 7 with RESTEasy

Accessing a resource

The client APIis used to access a web resource as follows:

1.

Create a WebTarget object from the resource URI using the overloaded
target () method of the client object. The path appended to the URI is
to enable the REST service to handle multiple inputs:

WebTarget target = client.target ("http://localhost:8080/jboss-
resteasy/rest/helloworld") ;

Add one or more path elements to the webTarget object if required using the
path () method, which returns a webTarget object:

WebTarget target = target.path("text");

Create a request from the WebTarget object using the overloaded request ()
method, in which you need to define the accepted response media types.
Invoke the HTTP GET method for the request using the overloaded get ()
method to obtain an invocation response as a Response object:

Response response=target.request ("text/plain") .get();

Obtain the message entity input stream as a String object:

String value = response.readEntity(String.class) ;

The fluent API can be used to build and submit the client request and obtain
a response by linking the method invocations:
String response = client.target ("http://localhost:8080/jboss-

resteasy/rest/helloworld") .path("text") .request ("text/plain") .
get (String.class) ;

The RESTEasyClient .java class is listed as follows:

package org.jboss.resteasy.rest;

import javax.ws.rs.client.Client;
import javax.ws.rs.client.ClientBuilder;

import javax.ws.rs.client.WebTarget;
import javax.ws.rs.core.*;

import org.jboss.resteasy.client.jaxrs.ResteasyClient;

public class RESTEasyClient

public static void main(String[] args) {

Client client = ClientBuilder.newClient () ;

[330]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

String response = client.target ("http://localhost:8080/jboss-
resteasy/rest/helloworld") .path("text") .request ("text/plain") .
get (String.class) ;

System.out.println (response) ;

}
}

Create a resource class hosted at the /helloworld URI path to test the client APL
Add a resource method at the relative URI path /text to return a Hello message
from a name. The resource class HelloWorldResource is listed as follows:

package org.jboss.resteasy.rest;

import javax.ws.rs.GET;
import javax.ws.rs.Produces;
import javax.ws.rs.Path;

@Path ("/helloworld")
public class HelloWorldResource {

@GET

@Produces ("text/plain")

@Path ("/text™")

public String getClichedMessage () {

return "Hello John Smith";

}
}

To test the resource class and the client, compile, package, and deploy the
jboss-resteasy application to WildFly. We will add the output directory as the
WildFly deployments directory to the configuration for the Maven WAR plugin,
as shown here:

<plugin>
<artifactIds>maven-war-plugin</artifactId>
<version>${version.war.plugin}</versions>
<configurations
<outputDirectory>C:\wildfly-8.1.0.Final\standalone\deployments</
outputDirectorys>
<failOnMissingWebXml>false</failOnMissingWebXml>
</configurations>
</plugin>

[331]

www.it-ebooks.info

http://www.it-ebooks.info/

Using JAX-RS 2.0 in Java EE 7 with RESTEasy

Right-click on pom.xml and select Run As | Maven install, which is shown

as follows:

I Project Exploy B
4 5‘3 Jboss-rest ==
- R IRK-R L
» 'mn Depla]
. o) Wweb i %
. Wt
4 JPAC
- 98 Java
- By Java sy
- [Deplo
s v src
> = target

v pom.y

i L/ [‘_./

&

Copy
Copy Qualified Marne

Paste

Delete

Rermove frorm Context
Mark as Landmark
Build Path

Move..,

Renarme..,

Import.,
Export..

Refresh
Mark as Deployable

Walidate

Show in Remote Systems wiew
Prafile As
Debug &5

Run &s

Tearn
Caompare With
Replace With
ITidy

Mawen
Google

Source

Ctrl+C

Ctrl+4

Delete

Ctrl + Al +Shift+D oven
Ctrl +41t+ Shift+Up

]

[J] Hello¥orldResource java 52

RRARARRRARAAE:

RESTEasyClient,

Alt+Shift+X, R
Alt+Shift+3, b

1Run on Server

2 Maven build

3 Maven build...

4 Maven clean

5 Maven clean verify

6 Maven generate-sources
T Maven install

4 Maven test

The jboss-resteasy application gets compiled, built, and outputted to the WildFly
8.1 deployments directory is indicated by the BUILD SUCCESS message in the
Console, which is shown as follows:

[332]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[80 Markers] Properties &b Servers [Data Source Explorer [Snippets | B Console 52 |53 Palette €] Error Lag = 0
) % % | Bk BF

<terminated » Ch\Program Files\avayjdk 1 7.0_515binYavaw.exe (Dec 3, 2014, 2:17:05 PM)
INFO] --- maven-war-plugin:2.l.1:war (default-war) @ jboss-resteasy ---
INFO] Packaging webapp
INFO] Assembling webapp [jboss-resteasy] in [C:\Users\Despak Wohra\Eclipse\workspace\jboss-resteasy'\targeti\jboss-resteasy]
INFO] Processing war preject
INFO] Copying webapp resources [C:\Users‘Deepak Wohra\Eclipse\workspacehjboss-resteasy\srci\maintuebapp]
INFO] Webapp assembled in [1157 msecs]
INFO] Building war: C:itwildfly-8.1.@.Final\standalonehdeploymentshjboss-resteasy.war

INFO] --- maven-install-plugin:2.4:install (default-install) @ jboss-resteasy ---
INFO] Installing C:wildfly-8.1.@.Finalistandalonedeployments'jboss-resteasy.war to C:\Users\Deepak Vohral.m2\repositoryorg

INFO] Total time: 51.417 s
INFO] Finished at: 2014-12-23714:18:27-08:00
INFO] Final Memory: 21M/216M

Now, log in to the WildFly 8.1 Administration Console and click on Manage
Deployments. The jboss-resteasy.war application should be listed as deployed,
which is shown in the following screenshot:

WildFly 8.1.0.Final

nfigurati Runtime

= Seruer DEPLOYMENTS

Craerview

Manage Deployments Dep|0\/merlt5

Patch Management Currently deployed application components
= Status

Add Remove En/Disable Replace
= Platform

I L\\) b Jboss-resteasy.war L4

Environment
= Subsystems
Datasources
P
JND View
Transaction Logs

Transactions

Webservices Deployment

Meed Help?

Name: jboss-resteasy. war

[333]

www.it-ebooks.info

http://www.it-ebooks.info/

Using JAX-RS 2.0 in Java EE 7 with RESTEasy

To test the client, right-click on the RESTEasyClient.java class in Project Explorer
and select Run As | Java Application, as shown here:

-

[7 Praject Explarer 3 =] <‘===€> | & 7 [Copy Cirl +C [J] RESTEasyClientjava 52 Jbass-resteasy’p
e
4 Jboss-resteasy B2 Copy Qualified Mame
> i? 183-RSWeb Services % paste ey
> '@x Deployment Descriptor: jboss-resteasy Bl Bl
t t
> A ¥eb Resources Elete Elete
b A ECAYS WYk Services Rermowve from Context Ctrl +40t +Shift+Down
4 IPA Content Mark as Landmark Ctrl+81t+Shift+Up
> §% lava Resources Build Path b
» B JawvaScript Resources M
» (g Deployed Resources O
4 7= osec Rename... F2
4 4= r:'nam & [Tmpere
4 (= Java
4 (5 org fu Export.,
4 [jboss &7 Refresh F5
4 (= resteasy
4 [rest References 3
HelloWorldRes Declarations v

_ BESTEs ylient 5% Mark as Deployable
= resources

> = webapp Walidate

> [target

Show in Remate Systems view
| pamuemnl

Profile As 2
Debug &5 3
Run As

-

W 1Run on Server Alt+Shift 43, R
O] 2lava App\icatinnl} At +Shift+X,)

-

Teatn
Compare With
Replace With L

-

Run Configurations...

The client application runs to invoke the resource class and produces the output, as
shown in the following Console:

1Boss Central HelloWWaorldResaurce jawva [J] RESTEasyClientjava 5% Jboss-resteasy/pormarml v wveb el =
1 package org.jboss.resteasy.rest;
5 i
G- dmport javax.ws.rs.client.Client;
4 import javax.ws.rs.client.ClientBuilder;
5
Wi & dmport javax.ws.rs.client.WebTarget;
W 7 dmport javax.ws.rs.core.¥;
&
wy 2 dmport org.jboss.resteasy.client.jaxrs.ResteasyClient;
1@
11 public class RESTEasyClient
1z 1
13 public static void main(String[] args) 1
14
15 Client client = ClientBuilder.newClient();
16
17 String response = client.target(“http://localhost :8082/jboss-resteasy/rest/helloworld"). path{"text™) . request(”
4 1l | 3
Markers Properties 47 Servers Diata Source Explorer 2 Snippets & Consale 33 5% Palette @ Errorlog =
® X %| E GE -

<terminated > RESTEasyClient [Java Application] ChWProgram FileshavayjdkLT.0_31hbinyjavanexe (Dec 3, 2014, 2:2430 PM)

loga]:WARN No appenders could be found for logger (org.jboss.resteasy.plugins.providers.DocumentProvider).
log4]:WARN Please initialize the legdj system properly.

logdj:WARN See http:/flogging.apache.org/logdi/1.2/faq. html#noconfig for more info.

Helle John smith

[334]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Setting a query parameter

To invoke a resource method with parameters, the @QuerypParam annotation can be
used to bind request parameters to resource method parameters. In a variation of
the resource class used in the previous subsection, add a string parameter to the
resource method. Annotate the parameter declaration with @QueryParam and set its
default value as befaultvalue:

@GET
@Produces ("text/plain")
@Path ("/text™")
public String getClichedMessage (@QueryParam("name") @
DefaultValue ("John Smith") String name) {
return "Hello " +name;

}

In the client class, the query parameter can be sent in the request using the
queryParam () method as follows:

String response = client.target ("http://localhost:8080/jboss-resteasy/
rest/helloworld") .path("text") .queryParam("name", "John Smith") .
request ("text/plain") .get (String.class) ;

Alternatively, the query parameter can be included in the request URI, which is
shown as follows:

String response = client.target ("http://localhost:8080/jboss-resteasy/
rest/helloworld/text?name=John Smith") .request ("text/plain") .
get (String.class) ;

Setting a template parameter

The resource URI can also be built using template parameters. In a variation of
HelloWorldResource, specify a template parameter {name} in the @Path annotating
the resource method. Bind the template parameter to the resource method parameter
using the @PathParam annotation:

@GET

@Produces ("text/plain")

@Path ("/text/{name}")

public String getClichedMessage (@PathParam("name") String name) {
return "Hello " +name;

[335]

www.it-ebooks.info

http://www.it-ebooks.info/

Using JAX-RS 2.0 in Java EE 7 with RESTEasy

In the RESTEasyClient class, include the value for the {name} template parameter in
the resource URI as follows:
String response = client.target ("http://localhost:8080/jboss-resteasy/

rest/helloworld/text/John Smith") .request ("text/plain") .get (String.
class) ;

Redeploy the jboss-resteasy application and rerun the client to produce the
same output.

Filters and interceptors

Filters provide extended functionality such as logging and authentication. Interceptors
provide extended functions such as entity compression. In this section, we will discuss
the support for filters at specific extension points in JAX-RS 2.0 implementation. The
two types of filters are provided in JAX-RS 2.0: client filters and container filters.

The client filters are on the client side and the container filters are on the container
side. Interfaces corresponding to the client filters are included in the Client API and
are javax.ws.rs.client.ClientRequestFilter and javax.ws.rs.client.
ClientResponseFilter. Interfaces for the container filters, which are included in the
Server AP, are javax.ws.rs.container.ContainerRequestFilter and javax.
ws.rs.container.ContainerResponseFilter. To be discovered by the JAX-RS
runtime, filters implementing the interfaces must be annotated with the eprovider
annotation. Create Java classes LoggingFilter (for the container filter example), and
ClientFilter (for the client filter example), as shown in Project Explorer.

L5 Project Explarer &3 = <f(>| ¥ =08
4 Efj jboss-resteasy

. B JAX-RSWeb Services

- ‘&1 Deployment Descriptar: jhass-resteasy

- A1) WWeb Resources

- A JBXAWE Web Services

4 IPA Content

- §% lava Resources

- =, JawaScript Resources

. [Deployed Resources

4 = src
4 = main
4 [java
4 = org
4 [~ jboss
4 [resteasy
a (= rest
ClientFilter java L\\)
HelloWWarldResource.java
LoggingFilter.java
RESTEasyClientjava
(= resources
= webapp
. [= target
b pormsrnl

[336]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Before we discuss the client and container filters, we need to discuss the junctions at
which the filters intercept communication between the client and the server:

1. The clientRequestFilter intercepts communication before the client HTTP
request is sent over to the server.

2. The containerRequestFilter intercepts after the client is sent over to the
server but before the JAX-RS resource method is invoked.

3. The containerResponseFilter intercepts after the JAX-RS resource method
is invoked but before the response is sent back to the client.

4. The clientResponseFilter is invoked after the server HTTP response is
sent over to the client but before the response is unmarshalled.

The junctions of request/response interception are illustrated in the following diagram:

ClientRequestFilter ContainerRequestFilter Sener

| Wanrs
L) bl
T L}

JA-RS Resource

Client Method

! |
..‘l

1k
/ hl
r

ClientResponseFilter ContainerResponseFilter

Creating a client filter

First, we will discuss the client filters with an example. The ClientRequestFilter

is run in the invocation pipeline before the HTTP request is delivered to the network.
The clientRequestFilter should be annotated by @Provider, which is the

marker that is discovered by the JAX-RS runtime during the scanning phase. The
ClientResponseFilter is run after the response is received from the server and before
the control is returned to the application. Make the clientFilter class implement the
ClientRequestFilter and ClientResponseFilter interfaces. Add implementation
for the filter (ClientRequestContext arg0) and filter (ClientRequestContext
arg0, ClientResponseContext argl) methods. Inthe ClientRequestFilter
implementation method filter (ClientRequestContext arg0), outputsome
headers using the getHeaderString (String) method of ClientRequestContext.
For example, the Accept-Charset and Accept-Encoding headers give out the
following output:

System.out.println ("Accept-Charset: " + arg0.getHeaderString ("Accept-
Charset")) ;
System.out.println ("Accept-Encoding: " + arg0.getHeaderString ("Accept-
Encoding")) ;

[337]

www.it-ebooks.info

http://www.it-ebooks.info/

Using JAX-RS 2.0 in Java EE 7 with RESTEasy

Set a new resource URI using the setUri (URI) method as follows:

arg0.setUri (new URI ("http://localhost:8080/jboss-resteasy/rest/

helloworld/text/Smith,John")) ;

The clientFilter class is listed as follows:

package org.jboss.resteasy.rest;

import java.io.IOException;
import java.net.URI;
import java.net.URISyntaxException;

import javax.ws.rs.client.ClientRequestContext;
import javax.ws.rs.client.ClientRequestFilter;

import javax.ws.rs.client.ClientResponseContext;
import javax.ws.rs.client.ClientResponseFilter;

import javax.ws.rs.core.Response;

import javax.ws.rs.ext.Provider;

@Provider

public class ClientFilter implements ClientRequestFilter,

ClientResponseFilter {

@Override

public void filter (ClientRequestContext arg0, ClientResponseContext

argl)
throws IOException {

}

@Override

public void filter (ClientReguestContext arg0) throws IOException {

System.out.println("Entity Class: " + arg0.getEntityClass()) ;

System.out.println("Accept: " + arg0.getHeaderString ("Accept")) ;

System.out.println ("Accept-Charset: "

+ arg0.getHeaderString ("Accept-Charset")) ;
System.out.println ("Accept-Encoding: "

+ arg0.getHeaderString ("Accept-Encoding")) ;
System.out.println ("Accept-Language: "

+ arg0.getHeaderString ("Accept-Language")) ;
System.out.println ("Accept-Ranges: "

[338]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

+ arg0

System.
System.

+ arg0
System
+ arg0

System.

+ arg0

System.

+ arg0

System.

+ arg0

System.

+ arg0
System

System.
System.
System.

Agent")) ;

try {

argo.

.getHeaderString ("Accept-Ranges")) ;

out.println("Allow: " + arg0.getHeaderString("Allow")) ;
out.println ("Authorization: "

.getHeaderString ("Authorization")) ;
.out.println("Cache-Control: "
.getHeaderString ("Cache-Control")) ;

out.println ("Content-Encoding: "

.getHeaderString ("Content-Encoding")) ;

out.println ("Content-Location: "

.getHeaderString ("Content-Location")) ;

out.println ("Accept-Encoding: "

.getHeaderString ("Accept-Encoding")) ;

out.println ("Content-Type: "

.getHeaderString ("Content-Type")) ;

.out.println("Host: " + arg0.getHeaderString("Host")) ;
out.println("Pragma: " + arg0.getHeaderString ("Pragma")) ;
out.println("Server: " + arg0.getHeaderString("Server"));
out.println ("User-Agent: " + arg0.getHeaderString("User-
setUri (new URI (

"http://localhost:8080/jboss-resteasy/rest/helloworld/text/
Smith,John")) ;

} catch (URISyntaxException e) ({
// TODO Auto-generated catch block
e.printStackTrace() ;

}

//argo.

}

abortWith (Response.notAcceptable (null) .build()) ;

For a client filter issue that could occur, refer to the section Fixing a Common Issue at
the end of this chapter. In the client class, RESTEasyClient registers the client filter

with the client:

client.register (ClientFilter.class) ;

We will use the following root resource class HelloWorldResource to test the

client filter:

package org.jboss.resteasy.rest;

import javax.ws.rs.GET;

import javax.ws.rs.PathParam;

[339]

www.it-ebooks.info

http://www.it-ebooks.info/

Using JAX-RS 2.0 in Java EE 7 with RESTEasy

import javax.ws.rs.Produces;
import javax.ws.rs.Path;

@Path("/helloworld")
public class HelloWorldResource

@GET

@Produces ("text/plain")

@Path ("/text/{name}")

public String getClichedMessage (@PathParam("name") String name)
return "Hello " +name;

}
The client class RESTEasyClient to test the client filter with is listed as follows:

package org.jboss.resteasy.rest;

import javax.ws.rs.client.Client;

import javax.ws.rs.client.ClientBuilder;
import javax.ws.rs.client.WebTarget;
import javax.ws.rs.core.*;

public class RESTEasyClient {

public static void main(String[] args) {
Client client = ClientBuilder.newClient () ;
client.register (ClientFilter.class) ;

String response = client.target ("http://localhost:8080/jboss-
resteasy/rest/helloworld/text/John Smith") .request ("text/plain").
get (String.class) ;

System.out.println("Text response "+ response) ;

[340]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Redeploy the jboss-resteasy application. To redeploy, right-click on pom.xml in
Project Explorer and select Run As | Maven clean, and subsequently, right-click on
pom.xml and select Run As | Maven install. Run the RESTEasyClient.java class to
generate the following output in the Console screen shown as follows:

flarkers Properties Seprvers D

<terminated » RESTEasyClient [Java &pplication]
log4q :WARN No appenders could be fou
log4y :WARN Please initialize the log
logdj :WARN See http:/flogging. apachd
Ertity Class: null

Accept: tesct/plain
Accept-Charset: null
Accept-Encoding: gzip, deflate
Accept-Language: null
Accept-Ranges: null

Allow: null

Autheorization: null
Cache-Control: null
Content-Enceding: null
Content-Location: null
Accept-Encoding: gzip, deflate
Content-Type: null

Host: null

Pragma: null

server: null

User-fgent: null

Helle smith,Jchn

As we modified the resource URI in the client filter, the response message is not for
John Smith as specified in the client class, but for Smith, John.

The filter chain processing may be aborted and response is returned to the client with
the abortWith (Response response) method. The client response filters get applied
before the client gets the response. As an example, break the filter chain and return a
notAcceptable (null) response:

arg0.abortWith (Response.notAcceptable (null) .build()) ;

[341]

www.it-ebooks.info

http://www.it-ebooks.info/

Using JAX-RS 2.0 in Java EE 7 with RESTEasy

Keep RESTEasyClient and HelloWorldResource the same and redeploy the ;
boss-restaesy application. Rerun the RESTEasyClient class to generate the
following output, which includes a NotAcceptableException shown as follows:

hdarkers Properties Servers Data Source Explorer Snippets B Console 53 Palette Error Log

X% &EEE -
<terminated= RESTEasyClient [Java Application] ChProgram Files\avahjdk L 7.0_51\bin\javaw.exe (Dec 3, 2014, 2:45:11 PM)
log4]j:WARN No appenders could be found for legger (org.jboss.resteasy.plugins.providers.DocumentProvider).
log4]j:WARN Please initialize the log4j system properly.
log4j :WARN See http:f/logging.apache.org/logdi 1.2/ faq. html#noconfig for more info.
Entity Class: null
Accept: text/plain
fccept-Charset: null
fccept-Encoding: gzip, deflate
Accept-Language: null
fAccept-Ranges: null
Allow: null
Authorization: null
Cache-Control: null
Content-Encoding: null
Content-Location: null
fccept-Encoding: gzip, deflate
Content-Type: null
Host: null
Pragma: null
server: null
User-Agent: null
Exception in thread “main® javax.ws.rs.NotfcceptableException: HTTP 486 Mot Acceptable
at org.jboss.resteasy.client. jaxrs.internal.ClientInvocation. handleErrorstatus(ClientInvocation. java:185)
at org.jboss.resteasy.client. jaxrs.internal.ClientInvocation. extractResult(ClientInvocation. java:154)
at org.jboss.resteasy.client. jaxrs.internal.ClientInvocation.invoke(ClientInvocation. java:444)
at org.jboss.resteasy.client. jaxrs.internal.ClientInvocationBuilder. get(ClientInvocationBuilder. java:165)
at org.jboss.resteasy.rest.RESTEasyClient.main(RESTEasyClient. java:ls)

Creating a container filter

Container filters are Server API filters. A ContainerRequestFilter filter is run

after receiving a request from the client. A ContainerResponseFilter isrunin

the response pipeline before the HTTP response is delivered to the client. Next,

we will create a container filter for logging/outputting some information about

the request. Extension points before and after the match are provided in the
ContainerRequestFilter interface. The pre-match filter is run before the request
has been matched with a resource method, and the post-match filter is applied after
the resource method matching; the default is post-match. We will use pre-match with
the @PreMatching annotation. Annotate the filter class with @Provider for the filter
to be discovered by the JAX-RS runtime during the scanning phase.

[342]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Make the example container filter LoggingFilter, implement the
ContainerRequestFilter,ContainerResponseFilterinkﬂﬁufs,and}ﬂovkkz
implementation for the filter (ContainerRequestContext requestContext) and
filter (ContainerRequestContext requestContext, ContainerResponseContext
responseContext) methods. In the ContainerRequestFilter implementation
method filter (ContainerRequestContext requestContext), output the request
method with the getMethod () method, request URI with the getUriInfo () .
getAbsolutePath (), media type with getMediaType (), and acceptable media
types with getAcceptableMediaTypes (). Include a no-argument constructor in the
LoggingFilter so that the filter may be instantiated. Register the LoggingFilter
with the client configuration using the register method. Comment out the
registration of the ClientFilter as we will apply only the LoggingFilter in the
RESTEasyClient class:

Client client = ClientBuilder.newClient () ;
//client.register(ClientFilter.class) ;
client.register (LoggingFilter.class) ;

By default, container filters are bound to all the resources the client request is sent
to, but a resource-specific container filter can be applied using the @NameBinding
annotation:

The LoggingFilter.java class is listed as follows:

package org.jboss.resteasy.rest;

import java.io.IOException;

import java.util.Iterator;

import java.util.List;

import javax.ws.rs.container.ContainerRequestContext;
import javax.ws.rs.container.ContainerRequestFilter;
import javax.ws.rs.container.ContainerResponseContext;
import javax.ws.rs.container.ContainerResponseFilter;
import javax.ws.rs.container.PreMatching;

import javax.ws.rs.core.MediaType;

import javax.ws.rs.ext.Provider;

@Provider

@PreMatching

public class LoggingFilter implements ContainerRequestFilter,
ContainerResponseFilter

[343]

www.it-ebooks.info

http://www.it-ebooks.info/

Using JAX-RS 2.0 in Java EE 7 with RESTEasy

public LoggingFilter() {

}

@Override
public void filter (ContainerRequestContext requestContext)

throws IOException ({

System.out.println ("Request Method: " + requestContext.

getMethod ()) ;
System.out.println ("Request URI: "+ requestContext.getUriInfol().
getAbsolutePath()) ;
System.out.println("Media Type "+ requestContext.
getMediaType ()) ;

List<MediaType> mediaTypes = requestContext.

getAcceptableMediaTypes () ;
Iterator<MediaType> iter = mediaTypes.iterator() ;
System.out.println ("Acceptable Media Types: ") ;
while (iter.hasNext()) {
MediaType mediaType = iter.next();
System.out.println (mediaType.getType() + ", ");

}

@Override
public void filter (ContainerRequestContext requestContext,

ContainerResponseContext responseContext) throws IOException {

}

Keep RESTEasyClient and HelloWorldResource the same as the ClientFilter
example and redeploy the jboss-restaesy application. Run the RESTEasyClient
application to generate the output shown from the container filter, which is shown here:

[344]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

BER C\Windows\system32\emd.exe |ﬂ|i-J

15:47:89,678 INFO [org.wildfly.extension.undertow] (MS8C service thread 1-1> JBAJA
5017535: Unregistered weh context: ~sjhoss—resteasy
15:47:18.146 INFO [org.jhoss.as.server.deployment] (MEC service thread 1-3> JBA
gBiSBZ;; Stopped deplnynent Jhoss—resteasy.war (runtime-name: jhoss—resteasy.wap|
in
15:47:10, 312 INFO [org.jhoss.as.server] (DeploymentScanner—threads — 1> JBEASALE
558: Undeployed "jhoss—resteasy.war" {runtime—-name: “jhoss—resteasy.war')
15:48:108.7192 INFO [org.jhoss.as.server.deployment.scanner] {(DeploymentScanner—t
threads — 1> JBASBH158@?: Scan found incompletely copied file content for deployme
nt C:auwildfly—8.1.A.Finalsxstandalonexdeployments™jhoss—resteasy.war. Deployment
changes will not be processed until all content is complete.
15:48:11,878 INFO [org.jhoss.aszs.server.deployment] (MSC service thread 1-1> JBA
SBiSB?Ei)Starting deployment of “jhoss—resteasy.war" (runtime-name: "jhoss—reste
s y.war

[org.wildfly.extension.undertow] (MSC service thread 1-2> JBA
BA17534: Registered web context: ~jhoss—resteasy
15:48:13,.864 INFO [org.jhoss.asz.server] (DeploymentScanner—threads — 2> JBASHALB
559: Deployed “jhoss-—resteasy.war" <(runtime—name : “jhoss-resteasy.war'?
15:-49:16.181 INFO [stdout] ({default task-18> Request Method: GET
15:49:10,182 INFO [stdout] {default task—-18) Request URI: http:/slocalhost 3080
”jboss—resteasys/restshelloworld/text/John#2B88nith
15:42:10,182 INFO [stdout] <{default task-18> Media Type : null
15:49:10.182 INFO [stdout] {default task-18> Acceptable Media Types:
15:49:108,183 INFO [stdout] {default task—18> text.

m

Asynchronous processing

JAX-RS 2.0 has added support for asynchronous processing in both the client

API and the server API. By default, when a client sends a request to the server,

it suspends all other processing till the response is received. With asynchronous
processing, the client suspends connection with the server and continues to process
while a server response is being generated and sent back to the client. When the
response is delivered to the client, the client re-establishes a connection with the
server and accepts the response. The client-server model in synchronous and
asynchronous request/response is illustrated in the following diagram:

Synchronous Client Asynchronous Client

‘ CLIENT

2. Processing Suspended ‘ CLIENT 3. Progessing Continues

~ -~

4. Response

1. Requestio server
1. Requestto server - 3. Response

2 Conpection Suspended

v i i) 4

‘ SERVER ‘ ‘ SERVER ‘

[345]

www.it-ebooks.info

http://www.it-ebooks.info/

Using JAX-RS 2.0 in Java EE 7 with RESTEasy

Similarly, by default a server thread blocks all other incoming client requests while
waiting for an external process to complete one client request. With asynchronous
processing, the server suspends connection with the client so that it may accept
other client requests. When a response is available for a client request, the

server re-establishes a connection with the client and sends the request. In this
section, we will discuss asynchronous processing with an example. Create Java
classes AsyncResource (for a root resource class), AsyncClient(for a client), and
AsyncTimeoutHandler (for a timeout handler). The directory structure of the async
classes is shown in Project Explorer as follows:

I Project Explorer 3% = <fp| = =0
4 5‘3 jhoss-resteasy
. B IAX-REWeb Services
. '&1 Deployment Descriptor: jbass-resteasy
. A WWeb Resources
- A 1BXNS W eb Services
4 IPA Content
. 8 Java Resources
. B JavaScript Resources
. L Deployed Resources
4 = src
4 = main
4 [java
4 [org
4 (= jboss
4 (= resteasy
4 [rest
4 | async [:}
AzyncClientjava
AsyncResourcejava
AsyncTimeoutHandler java
ClientFilter.java
HelloWorl dResource,java
LoggingFilter,java
RESTEasyClientjava
[resources
= webapp
- = target
bl pornml

[346]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

The server API has added the javax.ws.rs.container.AsyncResponse interface to
represent an asynchronous response for server-side processing of an asynchronous
response. The javax.ws.rs.container.Suspended interface is provided to inject

a suspended AsyncResponse instance into a resource method parameter. The
AsyncResponse instance is bound to an active client request and can be used to
provide a response asynchronously when a response is available. When a response is
to be sent to the client, the AsyncResponse instance resumes the suspended request.

Suspended response

A resource or subresource method that injects a suspended AsyncResponse using
the @suspended annotation must declare the return type as void. If the injected
AsyncResponse instance does not cancel or resume a suspended asynchronous
response, the response is suspended indefinitely. In the AsyncResource root
resource class, add a resource method (called timeout for example), which has a
suspended AsyncResponse instance injected into a resource method parameter using
the @Suspended annotation, as shown in the following listing. A template parameter
{timeout} is included in the path URI for the resource method:

package org.jboss.resteasy.rest.async;

import javax.ws.rs.GET;

import javax.ws.rs.PathParam;

import javax.ws.rs.Produces;

import javax.ws.rs.Path;

import javax.ws.rs.container.AsyncResponse;
import javax.ws.rs.container.Suspended;

@Path ("/helloworld")
public class AsyncResource {

@GET
@Path ("/timeout/{timeout}")
Produces ("text/plain")

public void timeout (@PathParam("timeout") String timeoutStr,@
Suspended AsyncResponse ar) {}

}

[347]

www.it-ebooks.info

http://www.it-ebooks.info/

Using JAX-RS 2.0 in Java EE 7 with RESTEasy

In the AsyncClient, class includes a value of 60 for the {timeout} template
parameter in the request URI, as shown in the following listing:

package org.jboss.resteasy.rest.async;
import javax.ws.rs.client.Client;
import javax.ws.rs.client.ClientBuilder;
import javax.ws.rs.client.WebTarget;
import javax.ws.rs.core.*;
public class AsyncClient {

public static void main(String[] args) {

Client client = ClientBuilder.newClient () ;

WebTarget target = client.target ("http://localhost:8080/jboss-
resteasy/rest/helloworld/timeout/60") ;

String response = target.request ("text/plain").get(String.class);
System.out.println("Text response: " + response) ;

}

Run the pom.xm1 file to deploy the jboss-resteasy application. When the
AsyncClient application is run, the server does not return a response as the
asynchronous response is suspended with the following exception being returned:

hdarkers Properties <74 Servers Data Source Explorer [Snippets B Console 51 03 Palette @] Error Log

X% ELEED == -
<terminated > AsyncClient [Java Application] Ch\Program Files\JavayjdkLT.0_51hbin\javaw.exe (Dec 3, 2014, £24:52 PM)
logaj:WARN No appenders could be found for logger (org.jbeoss.resteasy.plugins.providers.DocumentProvider).
loga4j:WARN Please initialize the logd] system properly.
logaj:WARN See http://logging.apache.org/logd4i 1.2/ faq. html#noconfig for more info.
Exception in thread "main®™ javax.ws.rs.SerwicelnavailableException: HTTP 583 Service Unawvailable
at org.jboss.resteasy.client.jaxrs.internal.ClientInvocation. handleErrorstatus(ClientInvocation. java:lol)
at org.jboss.resteasy.client.jaxrs.internal.ClientInvocation. extractResult(ClientInvocation. java:ls4)
at org.jboss.resteasy.client. jaxrs.internal.ClientInvocation. inveke(ClientInvocation. java:444)
at org.jboss.resteasy.client.jaxrs.internal.ClientInvocationBuilder. get(ClientInvocationBuilder. java:l65)
at org.jboss.resteasy.rest.async. fsyncClient.main(Asyncllient. java:la)

[348]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Resuming request processing

The suspended AsyncResponse may choose to resume the request processing,
usually when a response is available, using the resume (0Object) method. Build
the response using the ResponseBuilder object, which may be obtained for the
Response static method ok (Object). Set the media type for the response using
the ResponseBuilder method type (MediaType) and create a Response object
using the build () method. Resume the suspended request processing using the
resume (Object) method to send the Response object. The AsyncrResource root
resource class is listed as follows:

package org.jboss.resteasy.rest.async;

import javax.
import javax.
import javax.
import javax.
import javax.
import javax.
import javax.
import javax.

wS.
wSs.
wSs.
wSs.
wSs.
wSs.
wSs.
wSs.

rs

rs.
rs.
.Path;

rs

rs.
rs.

rs

rs.

.GET;

PathParam;
Produces;

container.AsyncResponse;
container.Suspended;

.core.MediaType;

core.Response;

@Path ("/helloworld")
public class AsyncResource {

@GET

@Path ("/timeout/{timeout}")
@Produces ("text/plain")
public void timeout (@PathParam("timeout") String timeoutStr,

@Suspended AsyncResponse ar)

try {

Response hello = Response.ok("Hello John Smith") .type (MediaType.
TEXT_PLAIN) .build() ;

ar.resume (hello) ;

} catch (Exception e) ({

System.out.println (e.getMessage()) ;

[349]

www.it-ebooks.info

http://www.it-ebooks.info/

Using JAX-RS 2.0 in Java EE 7 with RESTEasy

The client class is the same as listed in the Suspended response section of this chapter.
To compile and package the jboss-resteasy application, right-click on pom.

xml and select Run As | Maven Install. Start the WildFly 8.1 server to deploy the
application, and after the application has deployed, run the client class AsyncClient.
Right-click on AsyncClient. java in Package Explorer and select Run As | Java
Application. The client runs to produce the output, which is shown as follows:

hdarkers Properties Sersers Data Source Explorer Snippets B Console &2 Palette ErrarLog

X%k &GEEE »E-
<terminated > AsyncClient [Java Application] Ch\Program Files\JavayjdkLT.0_51bin\javaw.exe (Dec 3, 2014, £04:37 PM)
logaj:WARN No appenders could be found for logger (org.jbeoss.resteasy.plugins.providers.DocumentProvider).
loga4j:WARN Please initialize the logd] system properly.
logdj:UARN See http://logging.apache.org/logdj 1. 2/faq. html#noconfig for more info.
Text response: Helle John Smith

The rResponse object to be sent may be a string literal. If a String literal is used in
the resume (Object) as shown here, a Hello after a timeout message gets generated:

ar.resume ("Hello after a timeout") ;

Resuming a request with a suspend
timeout handler

The AsyncResponse instance may choose to update the suspended set data to
set a new suspend time-out. A new suspend time-out is set as follows using the
setTimeout (long time, TimeUnit unit) method:

ar.setTimeout (timeout, TimeUnit.SECONDS) ;

The ar variable is the AsyncResponse object. The new suspended timeout value
overrides the previous timeout value. At the first invocation of setTimeout, the
suspend timeout has gone from being suspended indefinitely to being suspended

for the specified timeout value. The javax.ws.rs.container.TimeoutHandler
interface is used to provide custom resolution of timeout events. The default
resolution of a timeout event is for the JAX-RS 2.0 runtime to generate a Service
unavailable exception. Set a suspend timeout handler using the setTimeoutHandle
r (TimeoutHandler handler) method:

ar.setTimeoutHandler (new AsyncTimeoutHandler ("Timeouted after " +
timeout + " seconds"));

[350]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

The AsyncResource class to set a suspend timeout handler is listed as follows:

package org.jboss.resteasy.rest.async;
import java.util.concurrent.TimeUnit;

import javax.ws.rs.GET;

import javax.ws.rs.PathParam;

import javax.ws.rs.Produces;

import javax.ws.rs.Path;

import javax.ws.rs.container.AsyncResponse;
import javax.ws.rs.container.Suspended;
import javax.ws.rs.core.MediaType;

import javax.ws.rs.core.Response;

@Path ("/helloworld")
public class AsyncResource

@GET

@Path ("/timeout/{timeout}")

@Produces ("text/plain")

public void timeout (@PathParam("timeout") String timeoutStr,
@Suspended AsyncResponse ar)

try {
long timeout = Long.parselong(timeoutStr) ;
System.out.println("timeout - enter with timeout=" + timeoutStr
+ IISII);

ar.setTimeoutHandler (new AsyncTimeoutHandler ("Timeouted after "
+ timeout + " seconds")) ;
ar.setTimeout (timeout, TimeUnit.SECONDS) ;
} catch (Exception e) ({
System.out.println(e.getMessage()) ;

}

Make the AsyncTimeoutHandler timeout handler class implement the
TimeoutHandler interface. In the AsyncTimeoutHandler, implement the
handleTimeout (AsyncResponse asyncResponse) method in which the suspended
timeout can be handled with one of the following methods:

* The asynchronous response can be resumed using the resume (Object)
method

[351]

www.it-ebooks.info

http://www.it-ebooks.info/

Using JAX-RS 2.0 in Java EE 7 with RESTEasy

The response can be resumed using the resume (Throwable) method to
throw an exception

* The response can be cancelled using the cancel () method

The suspend timeout can be extended using another invocation of the
setTimeout (long time, TimeUnit unit) method

In the AsyncTimeoutHandler class, resume the asynchronous response
using the resume (Object) method to return a response to the client. The
AsyncTimeoutHandler class is listed as follows:

package org.jboss.resteasy.rest.async;
import java.util.concurrent.TimeUnit;
import javax.ws.rs.container.AsyncResponse;
import javax.ws.rs.container.TimeoutHandler;
public class AsyncTimeoutHandler implements TimeoutHandler
private String message;
boolean keepSuspended = false;
//boolean cancel = true;
boolean cancel = false;
int retryPeriod = 10;
AsyncTimeoutHandler (String message) {
_message = message;
}
@Override
public void handleTimeout (AsyncResponse ar)
System.out.println("handleTimeout - enter");
if (keepSuspended) ({
ar.setTimeout (10, TimeUnit.SECONDS) ;
} else if (cancel) {
ar.cancel (retryPeriod) ;
} else {
ar.resume (_message) ;

}

/*Response hello = Response.ok ("Hello after a timeout").
type (MediaType.TEXT PLAIN) .build() ;

ar.resume (hello) ; *

1

[352]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Redeploy the application with Maven and rerun the AsynccClient class. The new
suspended timeout gets applied and the response gets suspended for 60 seconds

as indicated by the message timeout- enter with timeout=60s, which is shown
as follows:

SEiSS?E:)Starting deployment of “jbosz—resteasy_war'" (runtime—name: “jhossz—reste
azy_war'

16:13:86,.887 INFO [org.wildfly.extension.undertow] (MS5C service thread 1—4> JBA
S01°/534: Registered webh context: ~jhoss—resteasy

16:13:86.264 INFO [org.jhoss.as.serverl] (DeploymentScanner—threads — 1> JBASHALS8
£5%: Deployed “jhosz—resteasy_war' (runtime—name : “"jhoss-resteasy.war'?
16:13:27,.326 INFO I[stdout] {(default task—-17> Request Method: GET

16:13:27.326 INFO I[stdout] {(default task—17> Request URI: http:~-/localhost:8880
“jboss—resteasysrest /helloworldstimeocut /68

16:13:27.327 INFO I[stdout] (default task-17> Media Type : null

6 127,327 INFO I[Istdout] {default task—17> Acceptable Media Types:

16:13:27.327 INFO I[stdout] (default task-17> text.
16:13:27.335 INFO I[stdout] (default task—-17>» timeout — enter with timeout=6Hs=

When the request processing is resumed, the following response, as shown in
the following screenshot, is sent to the client and output from the client class
AsyncClient.java:

hdarkers Properties Sersers Data Source Explorer Snippets B Console &2 Palette ErrarLog

X EEEE ==~
<terminated = AsyncClient [Java Spplication] C\Program Files\Javaljdk1.7.0_51hbin'javaw.exe (Dec 3, 2014, £:13:25 PM)
logaj:WARN No appenders could be found for logger (org.jbeoss.resteasy.plugins.providers.DocumentProvider).
loga4j:WARN Please initialize the logd] system properly.
logdj:UARN See http://logging.apache.org/logdj 1. 2/faq. html#noconfig for more info.
Text response: Timeouted after 6@ seconds

In the previous example, we resumed the request in the timeout handler. A request
can be resumed in a resource method in which the new suspended timeout and the
timeout handler are set before the new suspend timeout has run as shown in the
resource method in the following listing;:

@GET
@Path ("/timeout/{timeout}")
@Produces ("text/plain")

public void timeout (@PathParam("timeout") String timeoutStr, @
Suspended AsyncResponse ar) {
try {

long timeout = Long.parselong(timeoutStr) ;

System.out.println("timeout - enter with timeout=" + timeoutStr +
"s");

ar.setTimeoutHandler (new AsyncTimeoutHandler ("Timeouted after " +
timeout + " seconds")) ;

ar.setTimeout (timeout, TimeUnit.SECONDS) ;

[353]

www.it-ebooks.info

http://www.it-ebooks.info/

Using JAX-RS 2.0 in Java EE 7 with RESTEasy

Response hello = Response.ok ("Hello before the suspend timeout of
60 seconds has run") .type (MediaType.TEXT PLAIN) .build() ;

ar.resume (hello) ;
} catch (Exception e) {
System.out.println (e.getMessage()) ;

}

For a new suspend timeout to be applied, the request must be resumed in the
timeout handler. If a new suspended timeout and a timeout handler are set and
the suspended timeout handler does not take any action, the default resolution is
for the request processing to be resumed with a ServiceUnAvailableException
exception. To resume the request to send a response, the request has to be resumed
explicitly using the resume (Object) method.

Cancelling a request

The AsyncResponse instance can cancel the response in the suspended timeout
handler or the resource method using the overloaded cancel () method:

boolean cancel = true;

int retryPeriod = 10;

if (cancel) {
System.out.println("Cancel the suspeneded request processing") ;
ar.cancel (retryPeriod) ;

}

The client gets the following exception when a response is cancelled, which is shown
as follows:

kdarkers Properties <7 Servers Data Source Explorer B Snippets B Console 53 Palette] Error Log 9

X % | B EE(EE @3-
Zterminated = AsyncClient [Java Application] C\Program Files\Java'jdkL7.0_514hin'javauw.exe (Dec 3, 2014, 3:58:00 PM)
log4] :WARN Ho appenders could be found for logger (org.jboss.resteasy.plugins.providers.DocumentProvider).
logdj:WARN Please initialize the log4j system properly.
logdj:WARN See http:/flogging. apache.org/logdjf 1.2/ fagq. html#noconfig for more info.
Exception in thread "main™ jawax.ws.rs.SerwicelUnavailableException: HTTP 583 Serwvice Unawailable
at org.jboss.resteasy. client. jaxrs.internal.ClientInvocation. handleErrorstatus{ClientInvocation. Java:191)
at org.jboss.resteasy.client.jaxrs.internal.(lientInvocation. extractResult(ClientInvocation. java:154)
at org.jboss.resteasy. client. jaxrs.internal.ClientInvocation. invoke{ClientInvocation. java:444)
at org.jboss.resteasy.client.jaxrs.internal.(lientInvocationBuilder. get{(lientInvocationBuilder. java:l&s)
at org.jboss.resteasy.rest.async. AsyncClient.mainifsyncClient. java:la)

[354]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Session bean EJB resource

JAX-RS 2.0 supports stateless and singleton session beans as root resource classes. In
this section, we will run the AsyncResource root resource class as a stateless session
bean. We added an E]B-related dependency to pom.xml.

Annotate the AsyncResource with the Stateless annotation. The @Path annotation
must also be applied to the class:

@Path("/helloworld")
@Stateless
public class AsyncResource {}

When the application is run, the root resource class gets added to the JNDI just as any
other session bean would. The JNDI binding for AsycnResource is shown as follows:

BER C\Windows\system32\cmd.exe |£|&J

SBlSB?Ei)StaPting deployment of "jhossz—resteasy.war'" (runtime—-name: “jhoss-reste]®
Az y.war

16:38:85,951 INFO [org.jhoss.weld.deployer] (MSC service thread 1-4> JBASHA16002

: Processing weld deployment jhoss—resteasy.war

16:-38:86.8807 INFO [org.jhoss.as.ejbhd.deployment.processors.EjbhdndiBindingsDeplo
ymentUnitProcessor] (MS5C service thread 14> JNDI bindings for session hean name
d AsyncResource in deployment wunit deployment "“jhoss—resteasy.war'" are as follow

=3

Java:global/jhoss—resteasysAsyncResourcetory. jhoss . . resteasy.rest.async.f

lzyncRezource
Javazappsjboss—resteasy/AsyncResourcetorg. jhoss.resteasy.rest.async.Asyn
cHesource
Java:modulesAsyncResourcetorg. jhoss . resteasy.rest.async.AsyncResource
Java:global/jhoss—resteasy/AsyncResource
Java:appsjhboss—resteasysAsyncResource
Java:imodulesAsyncResource

Making an asynchronous call from
the client

We have as yet discussed only the asynchronous support in the Server API. The
asynchronous request processing has also been made available in the client API.
A client request can be sent asynchronously using the async () method.

[355]

www.it-ebooks.info

http://www.it-ebooks.info/

Using JAX-RS 2.0 in Java EE 7 with RESTEasy

To invoke a resource asynchronously implies that the call returns immediately.
Optionally, a callback can be registered using the InvocationCallback interface.
Implement the completed (RESPONSE response) and failed (Throwable
throwable) methods. The completed (RESPONSE response) method is called when
the invocation completes successfully and the failed (Throwable throwable)
method is called when the invocation fails. A client request is made asynchronously
in the AsyncClient.java client as follows:

WebTarget target = client.target ("http://localhost:8080/jboss-
resteasy/rest/helloworld/timeout/60") ;

AsyncInvoker asyncInvoker = target.request ("text/plain").async();

asyncInvoker.get (new InvocationCallback<Strings () {
@Override

public void completed(String response)

System.out.println("Invocation completed and response available");

}

@Override
public void failed(Throwable arg0) {}
I3

System.out.println("Call to get returns immediately");

Set a suspended timeout and timeout handler in the resource method and resume the
request in the timeout handler as follows:

Response hello = Response.ok("Hello after a timeout") .type (MediaType.
TEXT PLAIN) .build() ;

ar.resume (hello) ;

When the application is run, the call returns immediately with the message call
to get returns immediately (the message can get output and the processing
continue without the message being noticed).

kdarkers Properties Servers Data Source Explorer Snippets & Console 52 Palette Errar Log q

= |&EEE ~E-
AsyncClient [Java Application] C\Program Files\JawaljdkL7.0_51\bin'javaw.exe (Dec 3, 2014, £36:36 PM)
log4] :WARN Mo appenders could be found for logger (org.jboss.resteasy.plugins.providers.DocumentProvider).
logdj:WARN Please initialize the log4] system properly.
logd]j:WARN See http:/flogging. apache.org/logdj /1. 2/ fagq. html#noconfig for more info.
Call to get returns immediately

[356]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

And the suspend timeout starts with the message. This is shown in the following
screenshot:

BER C\Windows\system32\emd.exe |£|E|i-J

> in S563ms
16:35:19,.743 INFO [org.jhoss.az.server] (DeploymentScanner—threads — 1> JBASALB
558: Undeployed “"jhoss—resteasy.war" <{runtime—name: “jhoss—resteasy.war')
16:36:872.897 INFO [org.jhoss.as.server.deployment] (MSC service thread 1-1> JBA
SBlSB?B:)StaPting deployment of “jhoss—resteasy.war" (runtime-—name: "jhoss—reste
asy . war"

236:11.558 INFO [org.wildfly.extension.undertow] (MSC service thread 1-2> JBA
5017534: Registered webh context: ~jhoss—resteasy
16:36:12.288 INFO [org.jhoss.as.server] (DeploymentScanner—threads — 1> JBASALE
552: Deployed "jhoss-resteasy.uwar' (runtime—name : “jhoss-resteasy.war')

16:36:3%,473 INFO I[stdout] {default task—-21> Request Method: GET

16:36:39,474 INFO [stdout] {default task—-21> Request URI: http:/slocalhost 3080

“jhoss—resteasys/restshellowvorld/timeout /68

16:36:37,475 INFO [stdout] {default task-21>

16:36:39.475 INFO [stdout] (default task- i; Acceptable Media Types:
i»

Media Type : null

16:36:37,.51A INFO I[stdout] {default task—
16:36:37,.558 INFO I[stdout] <{default task-

text.
timeout — enter with timeout=68s

After the suspended timeout has run, the response is returned as shown in the
following screenshot. The message output when the call returns immediately is
also shown here:

kdarkers Properties Servers Data Source Explorer Snippets & Console 52 Palette Errar Log q

] e L ™ -
AsyncClient [Java Application] C\Program Files\JawaljdkL7.0_51\bin'javaw.exe (Dec 3, 2014, £36:36 PM)
log4] :WARN Mo appenders could be found for logger (org.jboss.resteasy.plugins.providers.DocumentProvider).
loga] :WARN Please initialize the log4] swystem properly.
logd]j:WARN See http:/flogging. apache.org/logdj /1. 2/ fagq. html#noconfig for more info.
Call to get returns immediately
Invocation completed and response available

Fixing a common issue

A RESTEasy application may generate the following error:

The Provider must implement at least one of the following interfaces:
javax.ws.rs.ext.MessageBodyReader, javax.ws.rs.ext.MessageBodyWriter,
javax.ws.rs.ext.ExceptionMapper or javax.ws.rs.ext.ContextResolver."

[357]

www.it-ebooks.info

http://www.it-ebooks.info/

Using JAX-RS 2.0 in Java EE 7 with RESTEasy

To fix the error, select Windows | Preferences. In Preferences, select JBoss

Tools | JAX-RS | JAX-RS Validator. Select JAX-RS Providers and set Missing
Provider implementation to Ignore, and click on Apply and OK, as shown in the
following screenshot:

@] Preferences B) .
type filter text JAX-RS Validator v
- lawvaScript -

Configure Project Specific Setfings...

4 JBoss Tools

BrowserSirmn/Cordov Bilpeblebaliatng

- CDI(Context and De Maxirnurmn nurber of problems reported per file: 20
4 MRS - Wrong order of project builders: Errar -
JAX-R5Validator
IBoss Central Select the sewverity level for the following optional 1843-RE Validator problems:
JBoss Maven Integra type filter text (use ~ to filker on preference values, e.q. ~ignore or ~off)
JBoss Portlet b JAX-RS Activators o

JBoss Runtime Dete
» User-defined HTTP Methods

Openshift
. Project Exarnples » JAX-RS Resources
Remate Debug » JAX-RS Resource Methods

Rernote Repositaries

» JAX-RS Resources Fields and Properties
Source Lookup

Usage Reporting « JAX-RS Providers

+ Weh issing valid constructar Errar -
A bonitor ——
. Maven Missing @Provider annotation Wiarning -
+ Mylyn Missing Prowider implementation ———— |Ignore > | =
- Plug-in Developrnent | = —
Project Archives Duplicate MessageBodyReader Warning
+ Remote Systerns Duplicate MessageBodytidriter Wiarning -
- Run/Debug
. Server Duplicate Exception Mapper Wiarning -
- Tearn
Termminal » JAX-RS Name Bindings;
Walidation
- Wieb
- Weh Services
- WindowBuilder
- XML =
- = . | Restore Defaults | | Apply |
'/?3' [Ok] | Cancel |

Summary

In this chapter, we discussed the salient new features in JAX RS 2.0 with an example
using the RESTEasy implementation. We discussed the new client AP, the filters and
interceptors, asynchronous processing, cancelling a request, and using EJB as a REST
Web service resource.

In the next chapter, we will discuss another new feature introduced in Java EE 7,
support for JSON processing.

[358]

www.it-ebooks.info

http://www.it-ebooks.info/

10

Processing JSON with
Java EE 7

JavaScript Object Notation (JSON) is a lightweight data-interchange format that

is commonly used in web services to send and receive data. Currently, Java web
applications use different implementation libraries to consume/produce JSON.
JSR-353 introduces the Java API for JSON processing for generating, parsing,
transforming, and querying JSON. With standardized JSON API implementation,
libraries are not required, which makes the applications more portable. The objective
of JSR-353 is to provide JSON APIs to produce/consume streaming JSON and to
build a Java object model for JSON. Support for Java API for JSON has been added to
Java EE 7. In this chapter, we will discuss support for generating and parsing JSON.
This chapter has the following sections:

* Setting the environment

* Creating a Maven project

* Creating JSON

* Parsing JSON

* Processing JSON in a RESTful web service

Setting up the environment

We need to download and install the following software:

* WildFly 8.1.0.Final: Download wildfly-8.1.0.Final.zip from
http://wildfly.org/downloads/.

* MySQL 5.6 Database-Community Edition: Download this edition from
http://dev.mysql.com/downloads/mysql/. When installing MySQL, also
install Connector/J.

[359]

www.it-ebooks.info

http://www.it-ebooks.info/

Processing JSON with Java EE 7

* Eclipse IDE for Java EE Developers: Download Eclipse Luna from
https://www.eclipse.org/downloads/packages/release/Luna/SR1.

* JBoss Tools (Luna) 4.2.0.Final (or the latest version): Install this as a plugin
to Eclipse from Eclipse Marketplace (http://tools.jboss.org/downloads/

installation.html).

* Apache Maven: Download version 3.05 or higher from http://maven.

apache.org/download.cgi.

* Java 7: Download Java 7 from http://www.oracle.com/technetwork/
java/javase/downloads/index.html?ssSourceSiteId=ocomcn.

Set the JAVA HOME, JBOSS HOME, and MAVEN HOME environment variables Add
$JAVA_HOME%/bin, $MAVEN HOME$/bin, and $JBOSS HOME%/bin to the PATH

environment variable.

Create a WildFly 8.1.0 runtime as discussed in Chapter 1, Getting Started with E|B 3.x.

Creating a Maven project

Create a Maven project in the Eclipse IDE for JSON processing. Select File | New |
Other, and in the New gallery, select Maven | Maven Project, as shown here:

E.] New E |-
Select a wizard —
Create a Maven Project
Wizards:
type filter text

a = Maven
‘..._L Check out Maven Projects fraom SCM
@ Maven Module
@ Mzwen Project
» OpenShift
- Plug-in Developrment
» Rernote Systerm Explorer
- AR/ MBean Components
- Seam

R TR

- Server

» SQL Development

m

[Shows Al Wizards,

':?:' < Back

Finish

Cancel

[360]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

In the New Maven Project wizard, select Create a simple project and click on Next,
as shown in the following screenshot:

E Mew Maven Project l] | S
New Maven project
Select project narne and location M ‘

Create a simple project (skip archetype selection)

Use default Workspace location

Browse..,

[T] 2dd project(s) to warking set

hfare...
b Advanced
|
|
? sBeck [Met» N[Finish

[361]

www.it-ebooks.info

http://www.it-ebooks.info/

Processing JSON with Java EE 7

Specify Group Id (jboss-json), Artifact Id (json), Version (1. 0), Packaging (war),
and Name (json) for New Maven Project and click on Finish, as shown here:

@] New Maven Project [=l ﬁj
New Maven project L
Configure project M |
Artifact
Group Id: Jhozs-json -
ArifactId: Json -
Wersion: 100 -
Packaging: war -
Marme: json -
Description: -
. I
Parent Project I
Group Id: - I
Artifact [d: -
Wersion: - Clear
» Advanced
@' Mext = Finish !}J ’ Cancel

A new Maven project gets created as shown here:

[362]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[l
4 |LIZF 30N

4 [src

> [target

|._|>_‘, Project Explarer &3

4 [main
= java
== resources
= webapp
s test

[pornseml

- '2g Deployrnent Descriptor json
s A 1B WE Weh Services
> 25 Java Resources

> B lavaScript Resources

> [Deployed Resources

Next, add JSPs to process JSON. Add createdson.jsp to create JSON and add
parsedson. jsp to parse JSON. Select File | New | Other, and in the New gallery,

select Web | JSP File and click on Next, as shown here:

ﬂ Mew

Select a wizard

Create a new 5P file

Wifizards:
type filter text

4 [Wieh
If CESFile

16 Filter

sff HTMIL File
[ISP File
ﬁ JEP Tag
%4 Listener

€ Serelet

7% Dynamic Web Project

:'ﬁ Static Web Project
@& “Weh Fragment Project

la, |

1

[Showe A1 Wizards,

@

< Back

e

Finish

Cancel

[363]

www.it-ebooks.info

http://www.it-ebooks.info/

Processing JSON with Java EE 7

Select the webapp folder, specify File name (createdson. jsp), and click on Finish,
as shown here:

F8] New JSP File ' E=REEE

JSP

Create a new ISP file, V

Enter ar select the parent folder:

Jsonfsrefmainfnebapp

a = json
= settings
4 [src
4 (== main
= java
= resources
= webapp
s [test
» [target
=3 RemoteSysternsTempFiles

File name: createlson,jsp

?\ < Back ” Mext =] [Finish M [Cancel

[364]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

The createdson. jsp file gets added to the Maven project. Similarly, create

parseJdson. jsp. The directory structure of the Maven web application in the Eclipse

IDE is shown in the following screenshot:

™y Project Explorer 53 = <§> | =
4 =2 jsan
» 'z8 Deployment Descriptor: json
o A JAXMES Mdeh Services
- 28 Java Resources
» B lawabcript Resources
- [Deployed Resources
4 = srC
4 [main
= Java
= FesOurces
4 [webapp
ggd| createlsonjsp
=l parselsonjsp
s = test
¢ == target
[pornsxmi

Add the jboss-json-api 1.0 spec, webapp-javaee7 and javax.ws.rs-api

dependencies to pom. xm1:

<dependencies>

<dependencys>
<groupIds>org.jboss.spec.javax.json</grouplds>

<artifactId>jboss-json-api 1.0 spec</artifactId>

<version>1.0.0.Final</version>

</dependency>

<dependencys>

<groupId>org.codehaus.mojo.archetypes</groupId>

<artifactId>webapp-javaee7</artifactIds>
<versions>l.l</version>

</dependency>

<dependencys>
<grouplds>javax.ws.rs</groupId>
<artifactId>javax.ws.rs-api</artifactId>

[365]

www.it-ebooks.info

http://www.it-ebooks.info/

Processing JSON with Java EE 7

<version>2.0</version>
</dependency>

</dependencies>

The complete pom. xm1l file is available in the code download
= for this chapter.

Creating JSON

In this section, we will create a Java object model for JSON and output the JSON to
a file. We will use the Java API for JSON processing to create the following JSON
structure in createdson. jsp:

{

"journal":"Oracle Magazine",

"edition":

{"date":"March April 2013","cover":"Public Cloud. Private Cloud"},
"catalog":

"title":"PaaS Fits the Enterprise", "author":"David Baum"},
"title":"On Becoming Others, Limits, and Restoration", "author":"Tom
yte"}

D A

[

A JSON Java object model is represented by the dsonobject class. The
JsonObjectBuilder interface can be used to initialize a JSON object model
and create a JSON object. First, create a JsonObjectBuilder object using
createObjectBuilder (), the Json class static method, as follows:

JsonObjectBuilder builder = Json.createObjectBuilder () ;

JsonObjectBuilder provides the overloaded add () method to add name/value
pairs of different data types to the JSON object model. Add a name/value pair for
"journal", as follows:

builder=builder.add("journal", "Oracle Magazine") ;

To create a hierarchy of JSON Java object model structures, invoke Json.
createObjectBuilder () for each of the substructures. Add the "edition" JSON
object model, as follows:

builder=builder.add ("edition",
Json.createObjectBuilder () .add ("date", "March April
2013") .add("cover", "Public Cloud. Private Cloud")) ;

[366]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

A JSON array can be added using the static method createArrayBuilder (), which
returns a JSON array builder JsonArrayBuilder object, from the Json class. To
build the JSON array, invoke Json.createObjectBuilder () for each JSON object
model substructure, as follows:

builder=builder.add("catalog",

Json.createArrayBuilder () .add (Json.createObjectBuilder () .
add("title", "PaaS Fits the Enterprise") .add("author", "David
Baum")) .add (Json.createObjectBuilder () .add("title", "On Becoming
Others, Limits, and Restoration") .add("author", "Tom Kyte"))) ;

Create a JsonObject object from the JsonobjectBuilder object using the
build () method:

JsonObject value = builder.build() ;

The gsonwriter class is used to output a JSON object or array. Create a JsonWriter
object to output to the jsonoutput . txt file, as follows:

JsonWriter jsonWriter= Json.createWriter (new FileOutputStream(new
File("C:/json/jsonOutput.txt"))) ;

Output the gsonobject object using the writeobject method, as follows:

jsonWriter.writeObject (value) ;

An alternative method to create JsonObjectBuilder is to use the
JsonBuilderFactory interface, which is suitable if multiple instances of the
JsonObjectBuilder object are required. A JsonBuilderFactory object is created
using createBuilderFactory (), the Json class static method. Subsequently, invoke
the createObjectBuilder () method of the JsonBuilderFactory object to create a
JsonObjectBuilder object:

JsonBuilderFactory factory = Json.createBuilderFactory (null);
JsonObjectBuilder builder = factory.createObjectBuilder () ;

An alternative to creating a JsonWriter object is the JsonWriterFactory

interface, which is suitable if multiple JsonwWriter objects are required. Create a
JsonWriterFactory object using the static method createwriterFactory (), and
subsequently, create a Jsonwriter object using the factory method createwriter():

JsonWriterFactory jsonWriterFactory =
Json.createWriterFactory (null) ;

JsonWriter jsonWriter= jsonWriterFactory.createWriter (new
FileOutputStream(new File("C:/json/jsonOutput.txt"))) ;

[367]

www.it-ebooks.info

http://www.it-ebooks.info/

Processing JSON with Java EE 7

The gsonGenerator interface is provided to generate JSON in a streaming

way. A JsonGenerator object can be created using the Json class static method
createGenerator () or from a JsonGeneratorFactory factory, which can be
created using the Json class static method createGeneratorFactory (). The two
modes of creating a JsonGenerator object are:

JsonGenerator generator = Json.createGenerator (new
FileOutputStream(new File("C:/json/jsonOutput.txt"))) ;

JsonGeneratorFactory factory = Json.createGeneratorFactory (null) ;

JsonGenerator generator = factory.createGenerator (new
FileOutputStream(new File("C:/json/jsonOutput.txt"))) ;

JsonGenerator provides several methods to generate the Jsonobject and
JsonArray name/value pairs. The writeStartObject () method starts a
JsonObject object model. The writeStartArray () method starts a JsonArray
object model. The corresponding method to end a JsonObject or JsonArray object
model is writeEnd (). The generator methods can be invoked in a sequence to
generate a complete JSON object model:

generator

.writeStartObject ()

.write ("journal", "Oracle Magazine")

.writeStartObject ("edition")

.write("date", "March April 2013")

.write("cover", "Public Cloud. Private Cloud")
.writeEnd ()

.writeStartArray("catalog")

.writeStartObject ()
.write("title", "PaaS Fits the Enterprise")
.write ("author", "David Baum")

.writeEnd ()

.writeStartObject ()
.write("title", "On Becoming Others, Limits, and
Restoration")
.write ("author", "Tom Kyte")

.writeEnd ()

.writeEnd()
.writeEnd () ;

The createdson. jsp fileis listed as follows:

<%@ page language="java" contentType="text/html; charset=IS0-8859-
1"
pageEncoding="IS0-8859-1"%>

[368]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

<%@ page import="javax.json.*, java.io.*,javax.json.stream.*"$%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd" >
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=IS0-8859-1">
<title>JSON Array</titles>
</head>
<body>
<%
JsonObjectBuilder builder =
Json.createObjectBuilder() ;
builder=builder.add("journal", "Oracle Magazine") ;

builder=builder.add ("edition",
Json.createObjectBuilder () .add ("date", "March April
2013") .add("cover", "Public Cloud. Private
Cloud")) ;

builder=builder.add("catalog",
Json.createArrayBuilder ()

.add (Json.createObjectBuilder ()
.add("title","PaaS Fits the Enterprise")

.add ("author", "David Baum"))

.add (Json.createObjectBuilder ()
.add("title", "On Becoming Others, Limits, and
Restoration") .add ("author", "Tom Kyte")));

JsonObject value = builder.build() ;
JsonWriter jsonWriter= Json.createWriter (new
FileOutputStream (new
File("C:/json/jsonOutput.txt"))) ;
jsonWriter.writeObject (value) ;
jsonWriter.close() ;

out.println ("JSON Array output to
jsonOutput.txt") ;

/** JsonBuilderFactory factory =
Json.createBuilderFactory (null) ;
JsonObjectBuilder builder =
factory.createObjectBuilder () ;
builder=builder.add("journal", "Oracle Magazine") ;

builder=builder.add ("edition",
factory.createObjectBuilder () .add ("date", "March
April 2013") .add("cover", "Public Cloud. Private
Cloud")) ;

[369]

www.it-ebooks.info

http://www.it-ebooks.info/

Processing JSON with Java EE 7

builder=builder.add("catalog",
factory.createArrayBuilder ()

.add (factory.createObjectBuilder ()
.add("title","PaaS Fits the
Enterprise") .add ("author", "David Baum"))

.add (factory.createObjectBuilder ()
.add("title", "On Becoming Others, Limits, and
Restoration") .add ("author", "Tom Kyte")));

JsonObject value = builder.build() ;
JsonWriterFactory jsonWriterFactory =
Json.createWriterFactory (null) ;
JsonWriter jsonWriter=
jsonWriterFactory.createWriter (new
FileOutputStream (new
File("C:/json/jsonOutput.txt"))) ;
jsonWriter.writeObject (value) ;
jsonWriter.close() ;
out.println ("JSON Array output to
jsonOutput.txt") ;

*/

/** JsonGeneratorFactory factory =
Json.createGeneratorFactory (null) ;
JsonGenerator generator = factory.createGenerator (new
FileOutputStream(new File("C:/json/jsonOutput.txt"))) ;

// JsonGenerator generator = Json.createGenerator (new
FileOutputStream(new File ("C:/json/jsonOutput.txt"))) ;

generator
.writeStartObject ()
.write("journal", "Oracle Magazine")
.writeStartObject ("edition")
.write("date", "March April 2013")
.write("cover", "Public Cloud. Private Cloud")
.writeEnd ()
.writeStartArray("catalog")
.writeStartObject ()
.write("title", "PaaS Fits the Enterprise")
.write ("author", "David Baum")
.writeEnd ()
.writeStartObject ()
.write("title", "On Becoming Others, Limits, and
Restoration")
.write ("author", "Tom Kyte")
.writeEnd ()
.writeEnd ()
.writeEnd() ;

generator.close() ;
out.println("JSON Array output to jsonOutput.txt");*/

[370]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

o
s>

</body>

</html>

To run createdson. jsp, first build and install the Maven project. Right-click on
the project node in Package Explorer and select Run As | Maven install, as shown
in the following screenshot. All the JSPs in the chapter can be built together; for
retesting, the Maven project would need to be rebuilt.

I Project Explorer B
we)
a [£= json
g Deployt
e e
2 Java Re: x
- =i, Javascri
- g Deploye

N

== sre
4 (= mai
k==
= 1
PR=0

[test| o
(= target

M porm Sy

Copy

Copy Qualified Name
Paste

Delete

Rermowe from Contesxt
hdark as Landmark
Build Path

ol ove. ..

Renarne..,

Import.,
Export..,

Refresh
hark as Deployable

Validate

Showe in Remote Systerns view

Profile As
Debug s
Run Az

Teamn

Ctrl+C

Chrl+4f

Delete
Cirl+2lt+Shift + D own
Ctrl+Alt+Shift+Up

-

CQORORAARARAAA D

nitral createlson jsp

parselson,jsp m] jsonfpornsml 52

Alt+Shift+X, R
Alt+Shift+3, b

1Run on Server

2 Maven build

3 Maven build..,

4 Maven clean

5 Maven clean verify

i Mawven generate-sources

7 Maven install h

§ Maven test

9'Weh Application

Wifeb Application (GWT Classic Dew Mode)
Wifeb Application (GMWT Super Dew Mode)

Web Application {funning on an external server)

Run Configurations...

The JSON web application gets deployed to WildFly 8.1. The Maven build outputs

the message BUILD SUCCESS, as shown here:

Markers

[INFO]

[INFO]

Properties

Servers

13.533 =

Diata Source Explorer

2@14-12-@5T@8:51:15-25:20

[INFO] --- maven-war-plugin:2.1.1l:war (default-war) @ jseon ---
[INFO] Packaging webapp
[INFO] Assembling webapp [json] in [C:ihUsers\Deepak vohra\Eclipseh\workspacehjson\targetijson]
[INFO] Processing war project
[INFO] Copying webapp resources [C:\Users\Deepak Yohra\Eclipse\workspacet\jsoni\srcimainiuebapp]
[INFO] Webapp assembled in [212 msecs)

[INFO] Building war: C:hwildfly-&.1.8.Final\standalone\deploymentshjson.war

Snippets B Console 52

<terminated > ChProgram Files\avayjdkl.7.0_51\binyjavaw.exe (Dec 5, 2014, :50:53 AM)

[INFO] --- maven-install-plugin:2.4:install (default-install) @ jsen ---

[INFO] Installing C:h\wildfly-&.1.8.Finali\standalone‘\deployments'json.war to C:i\Users'\Deepak Yohra‘.m2\repository'jboss
[INFO] Installing C:\Users‘\Deepak Wohra‘Eclipsetworkspaceijsonipom.sml to C:'\lUsersiDeepak Yohra'.m2\repository'jboss-J:
[INFQ] == == mm m oo mmm o oo e o e oo o e e

[INFO] BUILD SUCCESS
[INFQ] == == mm mmm o mmm o oo e o o o e o o e
[INFO] Total time:
[INFO] Finished at:
[INFO] Final Memory: 13M/216M
[INFQ] == == mm mmmm = mmm o oo e o o e e o e

Palette Error Log

X% EBEEEE =2~y

www.it-ebooks.info

http://www.it-ebooks.info/

Processing JSON with Java EE 7

Start WildFly Administration Console with the URL http://localhost:8080.
Now, click on Administration Console. Specify the login Name and Password to log
in to Administration Console. Click on Manage Deployments. The json.war file is
listed and deployed, as shown here:

WildFly &.1.0.Final

Runtime Administr
= Server DEPLOYMENTS
Crverview
Manage Deployments Deplo\('mEﬂtS
Patch Managerment Currently deployed application compaonents,
= Status
Add Remove EnfDisable Replace
= Fatform
Tum L\\,} json.war L
Enviranment
= Subsystems
Datasources
1PA
MDD Wiew
Transaction Logs
Transactions
Vilebhservices Deplayment
Need Help?
Name: ison.uiar

Run createdson. jsp on the WildFly server with the URL http://localhost:8080/
json-1.0/createdson.jsp, as shown in the following screenshot. The createdson.
jsp yes runs on the server to output the JSON Java object model to ¢: /json/
jsonOutput.txt file.

@ JSON Array USSR

4| r | i@http:HIc--:alhu:-st:BUEU[jsu:-nfcreaternn.jsp ¢ | | Q- Google | O~ 3%~

JEOMN Array output to jsenCutput. tzt

[372]

www.it-ebooks.info

http://localhost:8080/
http://localhost:8080/json-1.0/createJson.jsp
http://localhost:8080/json-1.0/createJson.jsp
http://www.it-ebooks.info/

Chapter 10

The JSON output is shown here:

{"journal":"Oracle Magazine", "edition":{"date":"March April
2013","cover":"Public Cloud. Private

Cloud"}, "catalog": [{"title":"PaaS Fits the

Enterprise", "author":"David Baum"}, {"title":"On Becoming Others,
Limits, and Restoration","author":"Tom Kyte"}]}

Parsing JSON

In this section, we will parse the jsonoutput . txt file generated in the previous section.
The gsonParser interface is provided to parse JSON in a streaming way. Create
JsonParser using the static method createParser () from the Json class, as follows:

JsonParser parser=Json.createParser (new FileInputStream(new
File("C:/json/jsonOutput.txt"))) ;

An alternative to creating a JsonParser object is using a JsonParserFactory
factory, which can be created using the static method createParserFactory (),
as shown in the following lines of code:

JsonParserFactory factory = Json.createParserFactory(null) ;
JsonParser parser = factory.createParser (new FileInputStream(new
File("C:/json/jsonOutput.txt"))) ;

A JsonParser object can be used to parse a JSON string using stringReader. First,
create stringReader for JSON. Subsequently, create a JsonParser object using the
Json class static method createParser (Reader), as follows:

StringReader reader = new StringReader ("{\"journal\":\"Oracle
Magazine\",\"edition\":{\"date\":\"March April
2013\",\"cover\":\"Public Cloud. Private

Cloud\"},\"catalog\": [{\"title\":\"PaaS Fits the

Enterprise\", \"author\":\"David Baum\"}, {\"title\":\"On Becoming
Others, Limits, and Restoration\",\"author\":\"Tom Kyte\"}1}");
JsonParser parser = Json.createParser (reader) ;

JsonParser parses JSON using the pull parsing model, in which the client pulls
(calls) the next parsing event using the next () method. The following parsing
events are generated:

Parsing Event Description

START_OBJECT Start of a JSON object

END OBJECT End of a JSON object

START_ARRAY Start of a JSON array

END_ARRAY End of a JON array
[373]

www.it-ebooks.info

http://www.it-ebooks.info/

Processing JSON with Java EE 7

Parsing Event
KEY NAME
VALUE_ STRING
VALUE NUMBER
VALUE TRUE
VALUE FALSE
VALUE NULL

Description

Name in a key/value pair of a JSON object

String value in a JSON object or array

Number value in a JSON object or array

Boolean value true in a JSON object or array

Boolean value false

Null value in a JSON object or array

Use the hasNext () method to find if a next parsing event is available, and use the
next () method to obtain the next event. Use a switch statement to output the event
name and the name/value pairs:

while (parser.hasNext ()) {
JsonParser.Event parsingState= parser.next () ;
switch (parsingState) {

The parsedson. jsp is available in the code download
for this chapter.

Some sections in the code listing have been commented out to test the different
approaches to parsing. To deploy and run parsedson. jsp, we need to rebuild the

Maven project. First, clean the Maven project. Right-click on the json project node in
Eclipse and select Run As | Maven clean, as shown here:

L5 Project Exploy B Copy Ctrl+C }sp mE parselsongsp B2 Jsonfpormsmml
5= Copy Qualified Narme
wey
4 g Json % Paste Ctrl+y
3 Deplo 3 Delete Delete
e el
. 2 Java R Rermowve from Context Chrl +Alt+Shift+Dowen
. B Javas ark as Landrmark Ctrl+Alt+Shift+Up
> L9 Depla Build Path *[8 LRunon Server Alt+Shift+X, R
sl Mave.. m2 2 Maven build Blt+Shift+, M
¢ [target
il poma Rename.., m2 3 Maven build...
b Import.. m2 4 haven clean
. m2 5 Maven clean veri
B Export.. aven clean verify
m2 6 Maven generate-sources
&
&) Refresh e m2 T haven install
Sy Mark as Deployable m2 & Maven test
Validate @ 9eb Application
Show in Remote Systems view @ Web Application (GWT Classic Dew Mode)
Profile &s > @ Web Application (GWT Super Dev Made)
Debug As b @ Web Application (running on an external server)
Run &3 3 Run Configurations..,
[374]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

The BUILD SUCCESS message indicates that the files generated from the previous
build have been deleted. Invoke parseJson. jsp in a browser with the URL
http://localhost:8080/json-1.0/parseJson. jsp to output the event names
and key/value pairs in the JSON structure, as shown here:

& Parse JSon - - E=RRS X)
« + i‘] http:/flocalhost 8080/ son/parselsanjsp & | | O Google O %~
Start of a J3ON object

Matne in a namefralue pair of a TSON object: journal

String value i a JSOM array or object: Oracle IMagazine

Matne in a namefralue pair of a TJSON object: edition

Start of a J2ON object

Matne i a namefvralue pair of a JSON object: date

String value m a JSOM array or object March Apnl 2013
Marme m a namefvalue pair of a JSON object: cover

String value m a JSOW array or object Public Cloud. Private Cloud
End of a JTSOM object

Mame i a namefvalue pair of a JSON object: catalog

Start of a JSOMN array

Start of a JSON object

Mame m a namefvalue pair of a JSOM object: title

String value i a JSON array or object: PaaS Fits the Enterprize
IMame m a namefvalue pair of a JSOI object: author

String value m a JSOM array or object: Dawvid Baum

End of a JSOIT object

Start of a J3ON object

Mame i a namefvalue pair of a JSON object: title

String value m a JSON array or object: On Becommg Others, Lirmnits, and Eestoration
Matne in a namefralue pair of a JSON object: author

String value mn a JSOI array or object: Tom Kyte

End of a TSON object

End of a JSOM array

End of a TSON object

[375]

www.it-ebooks.info

http://localhost:8080/json-1.0/createJson.jsp
http://localhost:8080/json-1.0/createJson.jsp
http://www.it-ebooks.info/

Processing JSON with Java EE 7

An alternative interface for parsing a JSON structure is the JsonReader interface,
which reads a JSON object or an array from an input source. JsonReader can be
created from InputStream or Reader. A JsonReader interface can be created using
the Json class static method createReader () or using the JsonReaderFactory
factory, which is created with the Json class static method createReaderFactory ().
Here's how we accomplish this:

JsonReaderFactory factory = Json.createReaderFactory (null) ;
JsonReader jsonReader = factory.createReader (new

StringReader (" [{\"title\":\"PaaS Fits the

Enterprise\", \"author\":\"David Baum\"}, {\"title\":\"On Becoming
Others, Limits, and Restoration\",\"author\":\"Tom Kyte\"}1")):;

Alternatively, a JsonReader interface can be created using the Json class static
method createReader (). A JSON array (JsonArray object) is obtained from

a JsonReader interface using the readarray () method, and a JSON object
(JsonObject object) is obtained using the readobject () method. Subsequently,
the get () methods of JsonObject and JsonArray can be used to obtain key/value
pairs. For example, a JSON array is read from StringReader, and the name/value
pairs in the array output as follows:

JsonReader jsonReader = Json.createReader (new
StringReader (" [{\"title\":\"PaaS Fits the
Enterprise\", \"author\":\"David Baum\"}, {\"title\":\"On Becoming
Others, Limits, and Restoration\",\"author\":\"Tom Kyte\"}1"));
JsonArray array = jsonReader.readArray() ;
jsonReader.close() ;
JsonObject catalog = array.getdsonObject (0) ;
out.println("Title: "+catalog.getString("title"));
out.println ("Author: "+catalog.getString("author")) ;
JsonObject catalog2 = array.getdsonObject (1) ;
out.println("Title: "+catalog2.getString("title"));
out.println ("Author: "+catalog2.getString("author"));

Now, rerun parsedson. jsp to output the name/value pairs in a JSON array, as
shown here:

@ Parse Json B e

-« + @http:;’flncalhost:SlJSstDn;’parse.lson.jsp ¢ | | Qr Google O~ 3£t~

Title: PaaZ Fits the Enterprise

Auther: David Baum

Title: On Becoming Others, Limitz, and Eestoration
Author: Tom Eyte

[376]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

Processing JSON in a RESTful
web service

The JSON format is commonly used in RESTful web services to exchange messages.
In this section, we will discuss how the Java API or JSON processing is used in a
RESTful web service. First, add the RESTful web service dependency to pom.xm1:

<dependency>
<groupld>javax.ws.rs</grouplds>
<artifactId>javax.ws.rs-api</artifactIds>
<version>2.0</version>

</dependency>

Create a sample REST web service to test the JSON API. Create a resource class
JsonResource annotated with @PATH to identify the URI path. Here's how we
accomplish this:

package org.json;

import java.io.StringReader;
import javax.ws.rs.GET;
import javax.ws.rs.Produces;
import javax.ws.rs.Path;

import javax.json.*;

import javax.ws.rs.Consumes;
import javax.ws.rs.POST;

import javax.ws.rs.QueryParam;
import javax.ws.rs.core.MediaType;

@Path ("jaxrs")
public class JsonResource

}

To package the resource class, create a class that extends the javax.ws.rs.core.
Application class. Annotate the Application subclass with the @applicationPath
annotation to define the base URI pattern for the resource. Override the

getClasses () method to return the list of RESTful web service resources. Add the
org.json.JsonResource class to HashSet to return from the getClasses () method.
The JsonResourceApplication class extends Application subclass, as listed here:

package org.json;

import java.util.HashSet;
import java.util.Set;

[377]

www.it-ebooks.info

http://www.it-ebooks.info/

Processing JSON with Java EE 7

import javax.ws.rs.ApplicationPath;
import javax.ws.rs.core.Application;

@ApplicationPath ("resources")
public class JsonResourcelApplication extends Application {

@Override

public Set<Class<?>> getClasses() {
Set<Class<?>> set = new HashSet<Class<?>>() ;
set.add(org.json.JdsonResource.class) ;

return set;

JsonArray as a return type in the resource
method for a GET request

Java EE 7 provides support for the JsonObject/JIsonArray/JsonStructure

API in a RESTful web service. JsonObject/JsonArray/JsonStructure can be
used as return type and parameter type in a resource method. In this section, we
use JsonArray as the return type of a resource method. Add a resource method
(getdsonMessage ()) in the JsonResource class that produces application/
json and accepts GET requests. In the resource method, create JsonReader from
StringReader, and create JsonArray from JsonReader, which was also discussed
in the previous section. Return JsonaArray from the resource method listed here:

@GET

@Produces ({MediaType .APPLICATION JSON})

public JsonArray getJsonMessage ()
JsonReader jsonReader = Json.createReader (new
StringReader (" [{\"title\":\"PaaS Fits the
Enterprise\", \"author\":\"David Baum\"}, {\"title\":\"On
Becoming Others, Limits, and
Restoration\",\"author\":\"Tom Kyte\"}1"));

JsonArray array = jsonReader.readArray () ;
jsonReader.close() ;
return array;

[378]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

Create the jaxrsGetJsonReturnType.jsp JSP. In this JSP, use the new client API
introduced in JAX-RS 2.0 to create Client and invoke the RESTful web service.
Create a Client object from the clientBuilder static method newClient (). A
Client object is used to send requests and receive responses from a RESTful web
service. In the fluent client API method, invocations can be linked. Invoke the
target (String) method to build a new web resource target.

Build the resource path using the path () method. Add "resources" to the path
for the Application subclass. Add "jaxrs" to the path to access the resource class
JsonResource. As the getJsonMessage () method is not annotated with @PATH, we
won't add a path component for the resource method. Build the request with the
request () method, and specify the acceptable response type as application/json
(or MediaType .APPLICATION_JSON). Invoke the get () method for the request and
specify the Java type of the response entity as JsonArray.class:

Client client = ClientBuilder.newClient () ;

JsonArray array = client.target ("http://localhost:8080/json-
1.0") .path("resources") .path("jaxrs") .request (MediaType.APPLICATION
JSON) .get (JsonArray.class) ;

Obtain JsonObject in JsonArray, which is returned from the REST web service
using the getdsonObject (int index) method. For example, the name/value pairs
in the first JsonObject in JsonArray are output as follows:

JsonObject catalog = array.getdsonObject (0) ;
out.println("Title: "+catalog.getString("title"));
out.println ("Author: "+catalog.getString("author"));

The jaxrsGetJsonReturnType. jsp file is listed here:

<%@ page language="java" contentType="text/html; charset=IS0-8859-
1I|
pageEncoding="IS0-8859-1"%>
<%@ page import="javax.ws.rs.client.ClientBuilder,javax.ws.rs.client.
Client
,javax.json.*,javax.json.stream. *, javax.ws.rs.core.*"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd" >

<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=IS0-8859-1">
<title>JSON Array</title>
</head>
<body>

°
<%

[379]

www.it-ebooks.info

http://www.it-ebooks.info/

Processing JSON with Java EE 7

Client client = ClientBuilder.newClient () ;
JsonArray array =
client.target ("http://localhost:8080/json") .
path("resources") .path ("jaxrs") .request (MediaType.APPLICATION JSON) .
get (JsonArray.class) ;

JsonObject catalog = array.getdsonObject (0) ;

out.println("Title: "+catalog.getString("title"));
out.println("
");
out.println ("Author: "+catalog.getString("author")) ;
out.println("
");

JsonObject catalog2 = array.getdsonObject (1) ;

out.println("Title: "+catalog2.getString("title")) ;
out.println("
");
out.println ("Author: "+catalog2.getString("author"));
out.println("
");

%>
</body>
</html>

The directory structure of the json application is shown here:

L Project Explorer E3 = <},=|=";>| e ¥ = B
4 E]':‘J jsan
» 'zg Deployment Descriptor: json
o A JAME ek Services
. ﬁ% Jawa Resources
» B JavaScript Resources
» [Deployed Resources
PR
4 [= main
4 (= java
4 = org
4 [|son
lsonResource java
lsonResourcefpplication java
=% resources
4 [webapp
e createlson.jsp
e jasrsGetlsonReturn Type.jsp
1 patrselson,sp
¢l test
» = target
) pormxml

[380]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

Before deploying the application, run Maven clean to delete the deployment
classes from the previous Maven build. Remove the json.war file from the
deployments directory of the WildFly server. Run Maven install as explained
earlier to deploy the JSON application to WildFly. Start WildFly if it is not already
started. Run jaxrsGetJsonReturnType . jsp with the http://localhost:8080/
json/jaxrsGetJIsonReturnType.jsp URL in a browser to invoke the RESTful web
service, and output the name/value pairs in JsonArray, which is returned from the
web service, as shown here:

@ JSON Array S - TR o])]
8| + Ehttp:,’[lDcaIhost:8D8D[jsom‘jaxrsGeUsonRetumType.jsp ¢ | | Qr Google O~ &~

Title: PaaZ Fits the Enterprise

Author: Dand Baum

Title: On Becorning Others, Limits, and Bestoration
Author: Tom Eyte

Encoding a JsonObject object for a
GET request

JsonObject/JsonArray can be used as a resource method parameter type, but it has
a limitation; a JsonObject/JsonArray type cannot not be included in a GET request
because the GET request URI must not contain special characters (such as { ,}, [, and
1) that are used in JSON. A JSON object or array must be UTF-8 encoded to String
for the request URI and, therefore, the parameter type of a resource method cannot
be JsonObject /JsonArray without using a provider to convert from string to
JsonObject/JsonArray (an approach we discuss in a later section). In this section,
we encode JsonObject as String and send a request to a resource method with a
@QueryParam annotated parameter of the type string.

In the resource class JsonResource, add a resource method that has an annotated
parameter, @QueryParam, of the type String. In the resource method, create
JsonObject from String by first creating JsonReader using StringReader and
subsequently obtaining Jsonobject with the readobject () method. Obtain the
"catalog" JSON array from JsonObject using the getJsonArray () method
and return the JsonArray object. Add the following resource method to the
JsonResource class:

@Path ("jsonp")
@GET
@Produces ({MediaType . APPLICATION JSON})

[381]

www.it-ebooks.info

http://www.it-ebooks.info/

Processing JSON with Java EE 7

public JsonArray getdsonArray (@QueryParam("jsonObject") String
jsonObjectStr) {

JsonReader jsonReader = Json.createReader (new
StringReader (jsonObjectStr)) ;

JsonObject jsonObject = jsonReader.readObject () ;
jsonReader.close() ;

JsonArray jsonArray = jsonObject.getJsonArray("catalog") ;
return jsonArray;

}

Add the jaxrsGetJsonStringMethodParam. jsp JSP. In this JSP, build a
JsonObject object, as discussed in an earlier section Creating JSON. Encode
JsonObject to a UTF-8 string using the URLEncoder . encode (String, String)
static method, as follows:

String jsonObjectStr = URLEncoder.encode (jsonObject.toString(),
IIUTF_BII) ;

Build the client request using the fluent client API Create a Client object from
ClientBuilder using the static method newClient (). Build the web resource
target using http://localhost:8080/json as the base URL. Add URI paths for the
Application subclass (path ("resources")), resource class (path ("jaxrs")),
and resource method (path ("jsonp")).Set the jsonObject query parameter value
to the encoded jsonObjectstr string using the queryParam () method. Build the
request using the request method and invoke the request to get a response of the
JsonArray.class Java type using the get method:

Client client = ClientBuilder.newClient () ;

JsonArray array =

client.target ("http://localhost:8080/json") .path("resources") .path
("jaxrs") .path("jsonp") .queryParam("jsonObject", jsonObjectStr) .req
uest (MediaType.APPLICATION JSON) .get (JsonArray.class) ;

Output the name/value pairs in the JSON array, as discussed in the previous section.
The jaxrsGetJIsonStringMethodParam. jsp is listed here:

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"
pageEncoding="IS0-8859-1"%>

<%@ page
import="java.net.URLEncoder, java.io.StringReader,
javax.ws.rs.client.ClientBuilder,
javax.ws.rs.client.Client, javax.json.*,
javax.json.stream.*, javax.ws.rs.core.*"%>

[382]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd" >
<html>

<head>

<meta http-equiv="Content-Type" content="text/html;
charset=IS0-8859-1">

<title>JSON Array</titles>
</head>
<body>

<%

JsonObjectBuilder builder = Json.createObjectBuilder() ;

builder = builder.add("journal", "Oracle Magazine") ;
builder = builder.add("edition",
Json.createObjectBuilder () .add ("date", "March April
2013")

.add("cover", "Public Cloud. Private Cloud")) ;

builder = builder
.add("catalog",
Json.createArrayBuilder ()

.add (Json
.createObjectBuilder ()
.add("title",

"PaaS Fits the Enterprise")
.add ("author", "David Baum"))
.add (Json
.createObjectBuilder ()
.add("title",

"On Becoming Others, Limits, and Restoration")
.add ("author", "Tom Kyte")));

JsonObject jsonObject = builder.build();

String jsonObjectStr =
URLEncoder.encode (jsonObject.toString() ,

"UTF-8") ;
Client client = ClientBuilder.newClient () ;

JsonArray array =
client.target ("http://localhost:8080/json")

.path("resources") .path("jaxrs") .path("jsonp")
.queryParam("jsonObject", jsonObjectStr)

.request (MediaType .APPLICATION JSON) .get (JsonArray.class) ;
JsonObject catalog = array.getdsonObject (0) ;

out.println("Title: " + catalog.getString("title"));
out.println("
");

[383]

www.it-ebooks.info

http://www.it-ebooks.info/

Processing JSON with Java EE 7

out.println ("Author: " + catalog.getString("author")) ;
out.println("
");

JsonObject catalog2 = array.getdsonObject (1) ;

out.println("Title: " + catalog2.getString("title"));
out.println("
") ;
out.println ("Author: " + catalog2.getString("author")) ;
out.println("
") ;
%>
</body>
</html>

Run jaxrsGetJsonStringMethodParam. jsp with the URL http://localhost:8080/
json/jaxrsGetJsonStringMethodParam. jsp in a browser to output JSON array
name/value pairs, as shown in the next screenshot. Because of the UTF-8 encoding

of gsonObject to String, the whitespace is replaced with a + in the String

values output:

€ JSON Array = o e S
« + @http:,-‘,-‘localhost:BDED,-‘json,-‘jaxrsGeUsonStringMethodParam.jsp G| | Qr Google O~ &~

Title: PaaS+Fits+the+Enterprise

Author: David+Eaum

Title: On+Becoming+Cthers +Limits +and+Restoration
Auther: Tomt+Eyte

JsonObject as a parameter type in the
resource method for a POST request

We couldn't send the JSON object in a GET request without encoding it into
String, because a GET request includes the key/value pairs in the request URI
A JSON object in the request URI would generate an org.apache . jasper.
JasperException: javax.ws.rs.core.UriBuilderException: java.net.
URISyntaxException exception.

[384]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

A JSON object can be sent in a POST request as the key/value pairs are sent in the
request itself and not the request URI. In this section, we will send a POST request to a
resource method that has a JsonObject type parameter. In the resource method, obtain
the "catalog" JsonArray from JsonObject and return the JsonArray object. Add a
resource method annotated with @PoST and with a JsonObject parameter, as follows:

@Path ("post")

@POST

@Consumes (MediaType .APPLICATION JSON)

@Produces (MediaType .APPLICATION JSON)

public JsonArray post (final JsonObject jsonObject) {
JsonArray jsonArray = jsonObject.getJsonArray("catalog") ;

return jsonArray;

}

Create the jaxrsPostJsonMethodParam. jsp JSP, which creates a Jsonobject object
as in the previous subsections on Processing J[SON in a RESTful web service. Create a
Client object using the fluent client APL Build the web resource path by including
the path URI for the post resource method. Build a POST request invocation using the
buildPost (Entity<?> entity) method. Create an Entity<JsonObject> object
using the static method json (T entity) in javax.ws.rs.client.Entity<T>.
Invoke the request using the invoke (Class<T> responseType) method with the
response type JsonArray.class:

JsonObject jsonObject = builder.build() ;

Client client = ClientBuilder.newClient () ;

JsonArray array =

client.target ("http://localhost:8080/json") .

path ("resources") .path("jaxrs") .path("post") .

request (MediaType.APPLICATION_ JSON) .

buildPost (Entity.json(jsonObject)) .invoke (JsonArray.class) ;

Output the name/value pairs in the JSON array. The jaxrsPostJsonMethodParam.
jsp file is listed here:

<%@ page language="java" contentType="text/html; charset=IS0-8859-
1n
pageEncoding="IS0-8859-1"%>

<%@ page import="javax.ws.rs.client.*,java.io.StringReader,
javax.json.*,javax.json.stream.*,
javax.ws.rs.core.*"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd" >
<html>

<head>

[385]

www.it-ebooks.info

http://www.it-ebooks.info/

Processing JSON with Java EE 7

<meta http-equiv="Content-Type" content="text/html;

charset=

ISO-8859-1">

<title>JSON Array</titles>

</head>
<body>

)
<3

JsonObjectBuilder builder = Json.createObjectBuilder() ;

JsonArray array

builder=builder.add("journal", "Oracle Magazine") ;
builder=builder.add ("edition",
Json.createObjectBuilder () .add ("date", "March April
2013") .add("cover", "Public Cloud. Private
Cloud")) ;

builder=builder.add("catalog",
Json.createArrayBuilder () .

add (Json.createObjectBuilder() .

add("title","PaaS Fits the
Enterprise") .add ("author", "David

Baum")) .add (Json.createObjectBuilder() .
add("title","On Becoming Others, Limits, and
Restoration") .add ("author", "Tom Kyte")));

JsonObject jsonObject = builder.build() ;
Client client = ClientBuilder.newClient () ;

client.target ("http://localhost:8080/json") .path("resources") .path
("jaxrs") .path("post") .request (MediaType .APPLICATION JSON) .buildPo
st (Entity.json(jsonObject)) .invoke (JsonArray.class) ;

JsonObject catalog=array.getJsonObject (0) ;

out.println("Title: "+catalog.getString("title"));

out.println("
") ;

out.println ("Author: "+catalog.getString("author"));

out.println("
") ;

JsonObject catalog2 = array.getdsonObject (1) ;

out.println("Title: "+catalog2.getString("title")) ;

out.println("
") ;

out.println ("Author: "+catalog2.getString("author"));

out.println("
") ;

%>
</body>
</html>

[386]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

The directory structure of the json application is shown in Package Explorer in the
following screenshot:

[Project Explorer &3 =] <},==§>| ¢ - — O
P El]j jsan
- 'zg Deployment Descriptor: json
oo LASWES e b Services
» Eﬁ lawa Resources
- B JavaScript Resources
- [Deployed Resources
4 [srC
4 (== main
4 [java
4 [~ org
4 [json
lsonResource,java
lsonResourcedpplication,java
(= resources
4 = webapp
gl createlsonjsp
pad) jaxrsGetlsonReturnTypejsp
ma JaxrsGetlsonstringbdethodParam.jsp
mad| jaxrsPostlsonMethodPararm jsp
pEd parselsonsp
¢ o test
¢ [target
M pamaml

[387]

www.it-ebooks.info

http://www.it-ebooks.info/

Processing JSON with Java EE 7

Run Maven clean to delete previously generated deployment files, and run Maven
install to redeploy the json application. Then, run jaxrsPostJsonMethodParam.
jspin the http://localhost:8080/json/jaxrsPostIsonMethodParam.jsp URL
to output name/value pairs in the JSON array, as shown in next screenshot. As we
did not encode the JSON object sent with the request, the 7SON array string values
have whitespace instead of +.

@ JSON Array . R S | B
« + @http:,-’,-‘localhost:SUEUr‘json,-’jaxrsPosUsonMethodParam.jsp ¢ | | Q- Google 0~ &t~

Title: PaaZ Fits the Enterprize

Author: David Baum

Title: On Becoming Others, Limits, and Eestoration
Author: Tom Ewyte

Summary

In this chapter, we discussed the Java API for JSON processing in Java EE 7 to create
a JSON object, create a JSON array, and parse a JSON object/array. Processing JSON
in a RESTful web service was also discussed in this chapter. This chapter concludes
the book We explored the commonly used Java EE technologies as used with
WildFly and Maven in Eclipse. We also discussed the salient new technologies

in Java EE 7, support for JAX-RS 2.0, and support for processing JSON.

[388]

www.it-ebooks.info

http://www.it-ebooks.info/

Symbol

@WebService annotation
about 218
elements 218

A

Ajax
about 123
environment, setting 123, 124
Ajax application
deploying, with Maven 147-153
running 154-158
Apache Maven
URL 82
artifacts, Hibernate 71
asynchronous call, JAX-RS 2.0
making, from client 355, 356
Asynchronous JavaScript and
XML. See Ajax
asynchronous processing, JAX-RS 2.0
about 345-347
request, cancelling 354
request processing, resuming 349, 350
request, resuming with suspend timeout
handler 350-353
suspended response 347, 348
AsyncResource root resource class 349
AsyncTimeoutHandler class 352

BasicTemplate.xhtml Facelet template 102
BOM (Bill of Materials) 34

Index

C

Catalog.java entity class
URL 18
CDI (Context and Dependency Injection)
API 114
Client API, JAX-RS 2.0
about 329
client instance, creating 329
query parameter, setting 335
resource, accessing 330-334
template parameter, setting 335
client filter
about 336
creating 337-341
ClientFilter class 338
Common Annotations API 114
container filter
about 336, 342
creating 342-344
CRUD
JSPs, creating for 56-58

D

Data Access Object design pattern, Spring
MVC application
creating 288-290
data source
configuring, with MySQL database 10-13
DDL script 62
Dependency Injection 275
deployment structure descriptor, Spring
MVC application
creating 308-311
Document Object Model (DOM) 123

[389]

www.it-ebooks.info

http://www.it-ebooks.info/

E

EAR module
deploying 30-33
Eclipse
GWT project, creating 167-171
Eclipse IDE for Java EE Developers
URL 82
EJB 3.x
environment, setting up 2,3
objective 1
EJB (Enterprise JavaBeans) API 114
elements, @WebService annotation
endpointInterface 219
portName 218
serviceName 219
targetNamespace 219
entities
creating 14-18
entry-point class, GWT
creating 187-195
event handlers 190
events 190
panels 190
widgets 189
Errai 199

F

Facelets
about 81, 88
URL 88

Facelets application
configuration file 88
Facelets composition pages 88
Facelets header and footer pages 88
Facelets template page 88
managed bean 88
running 120

Facelets template
about 97
creating 97-102

filters, JAX-RS 2.0
about 336
client filter 336
ClientRequestFilter 337
ClientResponseFilter 337

container filter 336
ContainerRequestFilter 337
ContainerResponseFilter 337

G

Google Web Toolkit (GWT) 161
GWT module

creating 183-186

entry-point class, creating 187-192
entry-point class application name 183
source path, for GWT project 184

GWT project

creating 177-183

creating, in Eclipse 167-171

deploying, with Maven 199-202

environment, setting up 162-165

HTML host page, creating 195-198

running 203-207

starter project, deploying to
WildFly 8.1 172-175

starter project, running on
WildFly 8.1 165, 166, 176

H

header and footer JSF pages

creating 103-105

HelloWorldResource class 331
Hibernate

about 37
artifacts 71
URL, for properties 19

Hibernate Annotations API 26
Hibernate configuration file

advantages 52
creating 51-54

Hibernate Validator API 114
Hibernate web application

environment, setting 38

Hibernate XML Mapping file

creating 42-47
properties file, creating 48-51

HQL commands

URL 65

HTML host page, GWT

creating 195-198

[390]

www.it-ebooks.info

http://www.it-ebooks.info/

HTTP methods
URL 247

infrastructure deployment descriptor,
Spring MVC application
creating 308-311
input and output Facelets composition
pages
creating 106-109
interceptors, JAX-RS 2.0 336
Inversion of Control (IoC) principle 275

J

Java 7
URL 82

JavaBean class
creating 58

Java Database Connectivity (JDBC) 37

Java EE 7 Maven project
configuring 34, 35

Java EE design patterns
URL 20

Java EE project, EJB 3.x
creating 6-9

Java EE web project
creating, for Ajax 125-128
creating, for Hibernate 39-42
creating, for JAX-RS RESTful

Web Service 241-244

creating, for JAX-WS Web Service 211-214

creating, for JSF 2.x Facelets 84-88
deploying, with Maven 114-119
user interface, creating for
Ajax 129-138
Java Persistence API (JPA) 1,114
JavaScript Object Notation. See JSON
JavaServer Faces (JSF) 2.x 81
JAX-RS 2.0
about 317
asynchronous call, making from
client 355, 356
asynchronous processing 345-347
Client API 329
common issue, resolving 357
environment, setting 318

filters 336
interceptors 336
Java EE web project, creating 318-328
session bean EJB resource 355
JAX-RS API 114
JAX-RS RESTful Web Service
creating 244-252
deploying 252-261
environment, setting 240, 241
Java client, creating 263-265
Java client, running 266-268
JSP client, creating 269-271
JSP client, running 272
running 261-263
JAX-WS
about 209
application, deploying with Maven 228-236
application, running 238
JAX-WS Maven Plugin
about 228
URL 228
JAX-WS Web Service
about 209
components 209
creating 217-222
environment, setting up 210
web descriptor, creating 215, 216
jboss-ejb3-ear subproject
configuring 28, 29
jboss-ejb3-ejb subproject
configuring 25-27
jboss-ejb3-web subproject
configuring 27, 28
JBoss Tools (Luna) 4.2.0.Final
URL 82
JNDI contexts 24
JNDI (Java Naming and Directory
Interface) 24
JPA configuration file, Spring
MVC application
creating 281
JPA persistence configuration file
creating 19, 20
JSF2.2 81
JSF 2.x Facelets
environment, setting 82, 83
JSF Managed Bean Facility 89

[391]

www.it-ebooks.info

http://www.it-ebooks.info/

JSON
about 359
creating 366-372
environment, setting 359, 360
parsing 373-376
JSON, processing in RESTful Web Service
about 377
JsonArray, as return type in resource
method for GET request 378-381
JsonObject, as parameter type in resource
method for POST request 384-388
JsonObject, encoding for GET
request 381-384
JSP client
creating 22-25
running 34
JSPs
creating, for CRUD 56, 57
JSP Web Service client
creating 224-227
JSR 311
URL 317
JSR 339
URL 317

L

LoggingFilter.java class 343

managed bean
about 89
creating 89-96
Maven
Ajax application, deploying with 147-153
GWT project, deploying with 199-202
Java EE web project, deploying with 114
JAX-WS application, deploying
with 228-236
Spring MVC application, deploying
with 300-308
Maven project
creating, for JSON 360-365
installing 70-73

Model, Spring MVC application
creating 282-285
Model-View-Controller design pattern 275
MySQL 5.6 Database-Community Edition
URL 82
MySQL database
data source, configuring with 10-13
URL 10

P

Plain Old Java Object (POJO) 1, 239

R

Representational State Transfer (REST) 317
request handler, Spring MVC application
creating 292-294
RESTEasy
URL 317
RESTEasyClient.java class 330
RESTful principles 239, 240

S

schema
exporting 61, 62
schemaExport.jsp
running 73-75
servlet, Ajax application
creating 139-147
session bean EJB resource 355
session bean facade
creating 20, 21
Spring MVC application
context, creating 299, 300
creating 277-280
Data Access Object design pattern,
creating 288-290
deploying, with Maven 300-308
deployment structure descriptor,
creating 308-311
environment, setting 276
infrastructure deployment descriptor,
creating 308-311
JPA configuration file, creating 281

[392]

www.it-ebooks.info

http://www.it-ebooks.info/

Model, creating 282-286
request handler, creating 292
running 314, 315
View, creating 295, 296
web descriptor, creating 291
Spring MVC Maven project
installing 312-314
starter project, GWT
deploying, to WildFly 8.1 172-175
running, on WildFly 8.1 165, 166, 176

T

table

data, creating 63, 64
data, retrieving 65
row, creating 76
row, deleting 68-78
row, retrieving 76
row, updating 67
updating 77,78

U

URIs (Uniform Resource Identifiers) 317

\'

View Declaration Language (VDL) 81
View, Spring MVC application
creating 295, 296

w

W3C standards
URL 209
web descriptor
about 110
creating 111-113
creating, for JAX-WS Web Service 215, 216
creating, for Spring MVC application 291
Web Service Description Language (WSDL)
URL 209
WildFly 8.1.0.Final
URL 82
WildFly runtime
creating 3-5

[393]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

Thank you for buying
Advanced Java® EE Development
with WildFly®

About Packt Publishing

Packt, pronounced 'packed’, published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www . packtpub . com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub. com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled
"PUBLISHING

Java EE 7 Development with

WildFly
ISBN: 978-1-78217-198-0 Paperback: 434 pages

Leverage the power of the WildFly application server
from JBoss to develop modern Java EE 7 applications

1. Develop Java EE 7 applications using the
WildFly platform.

Java EE 7 Development 5

with WildFly Discover how to manage your WildFly

production environment.

3. A step-by-step tutorial guide to help you
THEET : get a firm grip on WildFly to create
Michal Matioka - engaging applications.

WildFly Performance Tuning
ISBN: 978-1-78398-056-7 Paperback: 330 pages

Develop high-performing server applications using
the widely successful WildFly platform

1. Enable performance tuning with the use of free
and quality software.

2. Tune the leading open source application
server WildFly and its related components.

WildFly Performance
Tuning 3.

Filled with clear step-by-step instructions to get
to know the ins-and-outs of the platform, its
components, and surrounding infrastructure to
get the most and best out of it in any situation.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

WildFly Configuration, Deployment,
and Administration

Second Edition

WildFly Configuration,
Deployment, and Administration

Second Edition
ISBN: 978-1-78328-623-2 Paperback: 402 pages

Build a functional and efficient WildFly server with
this step-by-step, practical guide

1. Install WildFly, deploy applications, and
administer servers with clear and concise
examples.

2. Understand the superiority of WildFly over
other parallel application servers and explore
its new features.

3. Step-by-step guide packed with examples and
screenshots on advanced WildFly topics.

WildFly: New Features

WildFly: New Features
ISBN: 978-1-78328-589-1 Paperback: 142 pages

Get acquainted with the exciting new features that
WildFly has to offer

1. Learn about the latest WildFly components,
including CLI management, classloading,
and custom modules.

1. Customize your web server and applications
by managing logs, virtual hosts, and the
context root.

1. Explore the vast variety of features and
configurations that can be implemented
through CLI and the Management Console.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Disclaimer
	Table of Contents
	Preface
	Chapter 1: Getting Started with EJB 3.x
	Setting up the Environment
	Creating a WildFly runtime
	Creating a Java EE project
	Configuring a data source with MySQL database
	Creating entities
	Creating a JPA persistence
configuration file
	Creating a session bean facade
	Creating a JSP client
	Configuring the jboss-ejb3-ejb subproject
	Configuring the jboss-ejb3-web subproject
	Configuring the jboss-ejb3-ear subproject
	Deploying the EAR module
	Running the JSP client
	Configuring a Java EE 7 Maven project
	Summary

	Chapter 2: Developing Object/Relational Mapping with Hibernate 4
	Setting up the environment
	Creating a Java EE web project
	Creating a Hibernate XML Mapping file
	Creating a properties file
	Creating a Hibernate configuration file
	Creating JSPs for CRUD
	Creating the JavaBean class
	Exporting schema
	Creating table data
	Retrieving table data
	Updating a table row
	Deleting a table row
	Installing the Maven project
	Running a schema export
	Creating table rows
	Retrieving table data
	Updating the table
	Deleting the table row
	Summary

	Chapter 3: Developing JSF 2.x Facelets
	Setting up the environment
	Creating a Java EE web project
	Creating a managed bean
	Creating a Facelets template
	Creating header and footer
	Creating input and output Facelets composition pages
	Creating a web descriptor
	Deploying the web project with Maven
	Running the Facelets application
	Summary

	Chapter 4: Using Ajax
	Setting up the environment
	Creating a Java EE web project
	Creating a user interface
	Creating a servlet
	Deploying the Ajax application
with Maven
	Running the Ajax application
	Summary

	Chapter 5: Using GWT
	Setting up the environment
	Running the starter project on WildFly 8.1
	Creating a GWT project in Eclipse
	Deploying the starter project to
WildFly 8.1
	Running the starter project on WildFly 8.1
	Creating a new GWT project
	Creating a GWT module
	Creating an entry-point class
	Creating an HTML host page
	Deploying the GWT project with Maven
	Running the GWT project
	Summary

	Chapter 6: Developing a JAX-WS 2.2 Web Service
	Setting up the environment
	Creating a Java EE web project
	Creating a web descriptor
	Creating a JAX-WS web service
	Creating a web service client
	Deploying the JAX-WS application with Maven
	Running the JAX-WS application
	Summary

	Chapter 7: Developing a JAX-RS 1.1 Web Service
	Setting up the environment
	Creating a Java EE web project
	Creating a sample RESTful web service
	Deploying the RESTful web service
	Running the RESTful web service
	Creating a Java client
	Running the Java client
	Creating a JSP client
	Running the JSP client
	Summary

	Chapter 8: Using Spring MVC 4.1
	Setting up the environment
	Creating a Spring MVC project
	Creating a JPA configuration file
	Creating the Model
	Creating the Data Access Object design pattern
	Creating a web descriptor
	Creating a request handler
	Creating the View
	Creating a Spring MVC context
	Deploying the Spring project with Maven
	Creating deployment structure and infrastructure deployment descriptors
	Installing the Spring MVC Maven project
	Running the Spring MVC application
	Summary

	Chapter 9: Using JAX-RS 2.0 in
Java EE 7 with RESTEasy
	Setting up the environment
	Creating a Java EE web project
	The Client API
	Creating a client instance
	Accessing a resource
	Setting a query parameter
	Setting a template parameter

	Filters and interceptors
	Creating a client filter

	Creating a container filter
	Asynchronous processing
	Suspended response
	Resuming request processing
	Resuming a request with a suspend
timeout handler
	Cancelling a request

	Session bean EJB resource
	Making an asynchronous call from
the client
	Fixing a common issue
	Summary

	Chapter 10: Processing JSON with
Java EE 7
	Setting up the environment
	Creating a Maven project
	Creating JSON
	Parsing JSON
	Processing JSON in a RESTful
web service
	JsonArray as a return type in the resource method for a GET request
	Encoding a JsonObject object for a
GET request
	JsonObject as a parameter type in the resource method for a POST request

	Summary

	Index

