


EJB 3.1 Cookbook

Build real world EJB solutions with a collection of simple
but incredibly effective recipes

Richard M. Reese

P U B L I S H I N G

professional expert ise dist i l led

BIRMINGHAM - MUMBAI



EJB 3.1 Cookbook

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without war-
ranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers and 
distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: June 2011

Production Reference: 1030611

Published by Packt Publishing Ltd. 
32 Lincoln Road 
Olton 
Birmingham, B27 6PA, UK.

ISBN 978-1-849682-38-1

www.packtpub.com 

Cover Image by Dan Anderson (Dan@CAndersonAssociates.com)



Credits

Author
Richard M. Reese

Reviewers
Krum Bakalsky

Andrey Gotchalk

Deepak Vohra

Acquisition Editor
Amey Kanse

Development Editor
Chris Rodrigues

Technical Editor
Arun Nadar

Project Coordinator
Vishal Bodwani

Proofreader
Mario Cecere

Indexer
Monica Ajmera Mehta

Graphics
Geetanjali Sawant

Production Coordinator 
Shantanu Zagade

Cover Work
Shantanu Zagade



About the Author

Richard Reese is an Associate Professor teaching Computer Science at Tarleton
State University in Stephenville, Texas. Previously, he worked in the aerospace and 
telephony industries for over 16 years. He earned his Ph.D. in Computer Science from
Texas A&M University. He also served four years in the Air Force primarily in the field of 
communication intelligence.

Outside of classroom, he enjoys tending his vegetable garden, maintaining his aquariums,
and running with his dog, Zoey. He also enjoys relaxing with an episode of Firefly and is ever 
hopeful for the return of the epic series.

Dr. Reese has written numerous publications and contributed to Turbo Pascal: Advanced
Applications.

No book can be written without the help from others. To this end I am
thankful for my wife Karla and daughter Jennifer whose patience, support,
and reviews have made this effort possible. In addition, I would like to 
thank the editorial staff of Packt and my reviewers for their input which 
has resulted in a much better book than it might otherwise have been.  

Lastly, I am indebted to my doctorial committee chairman, Dr. Sallie
Sheppard, who years ago spent countless hours helping me to learn 
how to write.



About the Reviewers

Krum Bakalsky has finished his MSc studies in theoretical computer science from Sofia 
University. Afterwards he joined SAP, where he is currently part of the Java server team. He
drives different EJB related topics, and is responsible for JPA tasks as well. He is SCJP6,
SCBCD5, and SCWCD5 certified, and is very enthusiastic about the new Java EE 6 platform, 
hoping that it will gain great adoption and will receive good popularity. His professional
interests include popular open source frameworks, like Spring, Hibernate, and Quartz. He has
some basic involvement in several tooling projects in the Eclipse family, and is interested in
cloud computing topics as well.

Being an amateur mathematician, in his spare time Krum likes to enjoy different math
activities, often related to his great math library, that he continues to maintain and expand.
Krum is a great koala lover and donator. His dream is to live one day a peaceful idyllic life in
his own house, far from civilization and surrounded by several koalas.

Andrey Gotchalk has more than 12 years of experience in software development. He 
is certified by Sun Microsystems and Microsoft. He has worked for multiple multilingual 
international software companies in Europe and North America, where has served in different
roles as senior software developer, team leader, and project manager. He speaks four
languages and he has lived and traveled at many places of the world. Currently he lives  
and works in Montreal, Canada.

He has strong OOA/OOD and RDBMS skills, extensive experience in various technologies as
Java/JEE, PHP5, X++, Object Pascal, PL/SQL, Web development, ERP systems, and so on. But
his last preferences are JEE and mostly standard solutions like EJB, JPA, JSP, JSF, and much
more. He is also interested in analyzing and using various JEE open source projects. You can
reach him at a.gotchalk@gmail.com.



Deepak Vohra is a consultant and a principal member of the NuBean.com software
company. Deepak is a Sun Certified Java Programmer and Web Component Developer, and 
has worked in the fields of XML and Java programming and J2EE for over five years. Deepak 
is the co-author of the Apress book, Pro XML Development with Java Technology and was
the technical reviewer for the O’Reilly book, WebLogic: The Definitive Guide. Deepak was
also the technical reviewer for the Course Technology PTR book, Ruby Programming for the
Absolute Beginner, and the technical editor for the Manning Publications book, Prototype
and Scriptaculous in Action. Deepak is also the author of the Packt Publishing books JDBC 
4.0 and Oracle JDeveloper for J2EE Development, and Processing XML Documents with
Oracle JDeveloper 11g.



www.PacktPub.com

Support files, eBooks, discount offers 
and more
You might want to visit www.PacktPub.com for support files and downloads related to 
your book. 

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files 
available? You can upgrade to the eBook version at www.PacktPub.com and, as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

 




Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content 
On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant updates on new Packt books
Get notified! Find out when new books are published by following @PacktEnterprise on Twitter,
or the Packt Enterprise Facebook page.











Table of Contents
	 1
	 7

	 8
	 9
	 11
	 14
	 17
	 20
	 23
	 27
	 30
	 35
	 38
Accessing an EJB from a Java Application using JNDI 40
Accessing an EJB from a Java Application using an embeddable container 42
Accessing the EJB container 44

Chapter 2: Session Beans 47
	 47
	 50
	 54
	 58
	 61
	 64
	 67
	 70
	 72
	 76
	 81



ii

Table of Contents

	 85
	 85
	 90
	 94
	 97
	 101
	 105
	 109
Using MDB in a publish-and-subscribe application 113
Specifying which types of message to receive using the message selector 118
Browsing messages in a message queue 122

Chapter 4: EJB Persistence 125
	 126
	 127
	 130
	 133
	 136
	 139
	 141
	 145
	 149
	 150
	 151
	 153
	 154
	 155
	 156

Chapter 5: Querying Entities using JPQL and the Criteria API 159
	 159
	 161
	 169
	 174
	 180
	 183
	 185
	 187
	 190
	 193



iii

Table of Contents

	 197
	 197
	 199
Handling transactions the easy way 203
Using the SessionSynchronization interface with session beans 207
Understanding how the TransactionAttributeType affects transactions 210
Handling transactions manually 216
Rolling back a transaction 222
Handling errors in a transaction 226
Using timeouts with transactions 229

Chapter 7: EJB Security 233
	 233
	 235
	 240
	 246
	 248
	 252
	 255

	 261
	 261
	 263
	 267
	 274
	 278
	 281
	 284
	 291

	 295
	 295
	 297
	 299
	 303
	 309
	 315
	 319
	 320
	 323



iv

Table of Contents

	 327
	 327
	 328
	 334
	 340

	 345
Introduction 345
Understanding an application's JAR files using the jar command 347
Understanding class loading 351
Using deployment descriptors for interceptors 354
Using deployment descriptors for timer interceptors 359
Using deployment descriptors for default interceptors 361
Using deployment descriptors for callbacks interceptors 363
Using a deployment descriptors for transactions 366
Using deployment descriptors for security 369

Chapter 12: EJB Techniques 373
	 373
	 375
	 380
	 386
	 389
	 392
	 395
	 400

	 405



Preface
Enterprise Java Beans enable rapid and simplified development of secure and portable 
applications based on Java technology. Creating and using EJBs can be challenging and
rewarding. Among the challenges are learning the EJB technology itself, learning how to use
the development environment you have chosen for EJB development, and the testing of
the EJBs.

EJB 3.1 Cookbook addresses all these challenges and covers the new 3.1 features, along with
an explanation of useful features retained from previous versions. It brings the reader quickly
up to speed on how to use EJB 3.1 techniques through the use of step-by-step examples
without the need to use multiple incompatible resources. The coverage is concise and to the
point, and is organized to allow you to quickly find and master those features of interest  
to you.

The book starts with coverage of EJB clients. The reader can choose the chapters and recipes
which best address his or her specific needs. The newer EJB technologies presented include 
singleton beans which support application-wide needs and interceptors to permit processing
before and after a target method is invoked. Asynchronous invocation of methods and
enhancements to the timer service are also covered.

EJB 3.1 Cookbook is a very straightforward and rewarding source of techniques used to
support Java EE applications.

What this book covers
Chapter 1, Getting Started With EJBs presents the creation of a few simple EJBs followed by
recipes explaining how they can be invoked by a client. Client examples include the use of
servlets, JSP, JSF, SE applications, and applets. The use of JNDI and dependency injection is
also presented.

Chapter 2, Session Beans talks about the stateless, stateful, and the new singleton session
bean. The use of single and multiple singletons is illustrated along with how concurrency can
be managed. In addition, examples of how to use asynchronous methods are presented.



Preface

�

Chapter 3, Message-Driven Beans explains how these EJBs provide a useful asynchronous
approach for supporting an application. The numerous types of messages that can be sent
are illustrated along with typical application scenarios. Access to the message queue is
also discussed.

Chapter 4, EJB Persistence covers the creation and use of entities including the use of a
facade class. In addition, numerous validation techniques are presented in support of entities.

Chapter 5, Querying Entities using JPQL and the Criteria API covers how to query an
underlying data store with emphasis on the use of JPQL and the Criteria API. The use 
of annotations in support of these queries is illustrated.

Chapter 6, Transaction Processing, covers transaction processing which is central to many
EJB supported applications. In this chapter, we examine how this support is provided using
both container-managed transactions using annotations, and bean-managed transactions
using code. Also, the use of timeouts and exception handling in support of transactions  
is illustrated.

Chapter 7, EJB Security covers the process of handling security using annotations and using
code. The relationship between the support provided by the server and the roles used by an
application is examined.

Chapter 8, Interceptors, explains how the interceptors provide a means of moving code
that is not central to a business method outside of the method. Here, we learn how to use
interceptors to handle a number of different concerns including security and transactions.

Chapter 9, Timer Services, explains how the timer services provide a means of periodically
executing a method. We will examine the use of declarative and programmatic timers along
with the use of persistent and non-persistent timers.

Chapter 10, Web Services explores how to create and use EJBs with JAX-RS and JAX-WS web
services. Also covered is the use of a message-driven bean with a web service.

Chapter 11, Packaging the EJB details the packaging and deployment of EJBs. It covers the
class loading process and the use of deployment descriptors for various interceptors such as
timers and callbacks. The use of deployment descriptors with transactions and security is
also addressed.

Chapter 12, EJB Techniques, examines techniques that are applicable to a variety of EJB
technologies in this chapter. These include the use of logging and exception handling as they
apply to EJBs. Also presented is how to create your own interceptor and efficient techniques 
for using strings, time and currency.



Preface

�

What you need for this book
The software required for this book includes NetBeans 6.9.1 and GlassFish Server Open
Source Edition v3.0.1. Mozilla Firefox or Google Chrome can be used to display the output
of servlets.

Who this book is for
The book is aimed at Java EE and EJB developers and programmers. Readers should be
familiar with the use of servlets in the construction of a web application. A working knowledge
of XML is also desirable.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of 
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "The ApplicationStateBean uses an
enumeration variable called state to store the state of the application."

A block of code is set as follows:

@Stateful
@DeclareRoles("manager")
@RolesAllowed("manager")
public class VoucherManager {

...
}

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

public class VoucherManager {
...
@EJB
VoucherVerification voucherVerification;
...
@RolesAllowed("employee")
public void submit() {

System.out.println("Voucher submitted");
voucherVerification.submit();

}
...

}



Preface

�

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Enter a name and press the
Add Name button".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the
SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your 
account at http://www.PacktPub.com. If you purchased this book elsewhere, you can 
visit http://www.PacktPub.com/support and register to have the files e-mailed 
directly to you.



Preface

�

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be 
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them 
by visiting http://www.packtpub.com/support, selecting your book, clicking on the errata
submission form link, and entering the details of your errata. Once your errata are verified, your 
submission will be accepted and the errata will be uploaded on our website, or added to any 
list of existing errata, under the Errata section of that title. Any existing errata can be viewed by
selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.





1
Getting Started   

With EJBs

In this chapter, we will cover:

Creating a simple session EJB 

Accessing a session bean using dependency injection 

Accessing the session bean using JNDI 

Creating a simple message-driven bean 

Sending a message to a message-driven bean 

Accessing an EJB from a web service (JAX-WS)

Accessing an EJB from a web service (JAX-RS)

Accessing an EJB from an Applet 

Accessing an EJB from JSP 

Calling an EJB from JSF 

Accessing an EJB from a Java Application using JNDI 

Accessing an EJB from a Java Application using an embeddable container

Accessing the EJB container





























Getting Started With EJBs

�

Introduction
Creating and using Enterprise Java Beans (EJBs) can be challenging and rewarding. Among
the challenges are learning the EJB technology itself, learning how to use the development
environment you have chosen for EJB development and the testing of the EJBs. The examples
used throughout the book were developed and tested using NetBeans 6.9.1 and GlassFish
Server Open Source Edition v3.0.1. NetBeans and GlassFish can be downloaded bundled
from http://netbeans.org/downloads/index.html. On this page are several bundle
combinations. Use the one title Java. The GlassFish Enterprise Server v3 Prelude also
supports EJB 3.1.

In addition, Windows 7 Professional 64 bit edition, service pack 1, was used to develop the
applications. The Mozilla Firefox v3.6.15 browser was used to display web pages.

EJBs can be used in many different contexts and called from many different types of
applications. In presenting EJBs, a fundamental question is this: how do we go about
illustrating the use of an EJB before we know what an EJB is? How do we learn about EJBs
unless we know how to call them? The approach taken in this chapter is to first demonstrate 
how to create simple Session Beans and Message-Driven Beans. Knowing how to create
these beans will then allow us to use them from different contexts. The details of session
and message bean construction and their use are covered in subsequent chapters. We are
concerned with identifying some of the more common clients and then seeing how they call
and use EJBs. EJBs can be used within a number of different clients including servlets, JSP,
JSF, applets, Java SE type applications, and other EJBs.

From the client perspective, it is accessing an EJB as if the EJB existed in the same Java
Virtual Machine (JVM). Depending on the client, this may be true. Regardless, EJBs are
managed by an EJB container that provides support not readily available to other objects. This
support can be in the form of security, transaction processing or concurrency management.

Using a bean involves declaring a reference to the bean, creating an instance of the bean
and then calling the methods of the bean. There are two techniques for gaining access to an
EJB: Dependency Injection (DI) and the Java Naming and Directory Service (JNDI). DI is the
easiest when we can use it, but JNDI can be used in places where DI is not supported. We will
look at both of these approaches. However, EJBs should not be created using the Java new
keyword. If the EJB is created using this keyword, then it will no longer be an EJB but rather a
regular object. It will not be able to take advantage of the support provided by the  
EJB container.

When an application is created using NetBeans, it will normally consist of an
application-ejb and an application-war module. Other development
environments may take a different approach. In addition, Java EE applications are 
normally deployed as an .ear file.



Chapter 1

�

An important element of Java EE applications is entities which support the persistence
of application data. The Java Persistence API (JPA) supports the use of entities in an EE
application and the traditional Java application. While they are not introduced here, they 
are typically called indirectly through a session bean. This topic is covered in Chapter 4, 
EJB Persistence.

Some of the recipes are dependent on earlier recipes. For example, the session EJB
developed in the first recipe is reused in the second recipe. This approach permits the 
reuse of code which is always a good development practice.

Creating a simple session EJB
In this recipe, we will create a simple session bean that returns either a formal or an informal
salutation based on a string parameter. In the next recipe we will see how to invoke this EJB
from a servlet.

Specifically we will create a stateless session bean. A stateless session bean does not 
remember its previous invocations. A user will call the bean and the bean will return a result.
A stateless bean is not good for maintaining the state of an interactive session such as
required to maintain a list of purchases. However, it is useful for one-time calculations.  
Our bean returns one of two simple greetings.

Getting ready
The creation of a session EJB consists of two steps:

1. Create the EJB class annotated with a session bean annotation
2. Add business method to the EJB

These steps have been made easier through the use of annotations.

How to do it...
In this example we will use the @Stateless annotation. Create a Java EE ap-
plication called SalutationApplication. The application should have both a
SalutationApplication-ejb and a SalutationApplication-war module. 
Add the following Stateless session bean to a package called packt and name the 
bean Salutation.

Downloading the example code
You can download the example code files for all Packt books you have 
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.



Getting Started With EJBs

10

In this EJB we will add two simple business methods which return different types of greetings.
package packt;
import javax.ejb.Stateless;

@Stateless
public class Salutation {

public String getFormalSalutation(String name) {
return "Dear " + name;

}
public String getInformalSalutation(String name) {

return "Hi " + name;
}

}

How it works...
The process of creating a stateless session EJB involved defining a class to support the desired 
functionality of the bean and using the @Stateless annotation to specify the class as a stateless
session EJB. In order to use the @Stateless annotation we needed to use an import statement.

The two class methods took a string as an argument and returned the string prefixed with 
either a formal or informal greeting.

There's more...
Annotation is at the heart of the EJB declaration. Annotations are embedded in the
application's source code and allow further processing of the source code either:

Before a source code file is compiled 
During development by a compiler, IDE deployment tool or similar application
During the execution of the application

An annotation can be applied to many different program elements including but not limited
to classes, methods, parameters, fields, and packages. In essence, annotations are used 
to provide metadata about an element. Metadata is usually defined as data about data. We 
may have a program element, such as a method, requiring in some circumstances additional
information about how it is used.

For example, we might want a particular method to correctly override a base class method.
The @Override annotation does exactly this. This annotation is useful should we accidentally
mistype the method name and fail to actually override the annotation. We may think we are
overriding it but we are not. If we use the @Override annotation and fail to actually override
the method a syntax error is issued by the compiler.









Chapter 1

11

The @Stateless annotation provides information to configure the environment and treat the 
class as an EJB. The annotation is used at runtime and has attributes affecting its visibility. 
In particular, the mappedName attribute is used in the generation of the bean's JNDI name.

@Stateless(mappedName="salutationBean")
public class Salutation {

The bean can now be referenced in certain contexts using the name: salutationBean. 
An alias can also be defined for an EJB in the project's ejb-jar.xml file.

Session beans are not limited to a stateless form. The use of the @Stateful annotation
declares a bean to be stateful. This means field variables can maintain their values as 
a user interacts with the application over a period of time called a session. In addition, 
session beans frequently interact with entities to persist data to a database.

A session bean can also have a local, remote and no-interface client view. The interface used
determines the intent and scope of the bean. The no-interface view is new to EJB 3.1. This
approach allows the developer to use EJB without having to declare a business interface. In
later recipes we will see how these aspects of session beans are used.

See also
The next recipe illustrates how we can use the session bean in other parts of our application.

Accessing a session bean using dependency
injection

A session bean has limited value by itself. To be useful it needs to be used by a client such
as a servlet or JSF page. In this recipe we will see how to use dependency injection to use a
session bean in a servlet.

Getting ready
The essential steps to access a session EJB using dependency injection include:

1. Inject the EJB using the @EJB annotation

2. Access its methods as needed

First we need a session bean. To keep things simple, we will use the Salutation session EJB
developed in the previous recipe. We will add our servlet to the SalutationApplication.



Getting Started With EJBs

12

How to do it...
We will be developing a HyperText Transfer Protocol (HTTP) based servlet named
SalutationServlet. This servlet will use the Salutation EJB's methods and display 
their return value. Create a package in the WAR module called servlet. Add the servlet 
to this package.

The servlet consists of a class declaration and three methods:

doGet—A standard servlet method 
doPost—A standard servlet method 
processRequest—Is invoked by both the doGet and doPost methods

The servlet begins with the @WebServlet annotation then declares an instance of the Servlet
EJB and uses it in the processRequest method.

package servlet;
import javax.ejb.EJB;
import packt.Salutation;

@WebServlet(urlPatterns = {"/SalutationServlet"})
public class SalutationServlet extends HttpServlet {

@EJB
private Salutation salutation;

protected void processRequest(HttpServletRequest request,  
HttpServletResponse response)
throws ServletException, IOException {
response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();
try {

out.println("<html>");
out.println("<head>");
out.println("<title>Servlet SalutationServlet</title>");
out.println("</head>");
out.println("<body>");
out.println("<h1>" +  

salutation.getFormalSalutation("Sherlock Holmes") +  
"</h1>");

out.println("</body>");
out.println("</html>");

} finally {
out.flush();
out.close();

}

}

@Override
protected void doGet(HttpServletRequest request,  

HttpServletResponse response)









Chapter 1

13

throws ServletException, IOException {
processRequest(request, response);

}

@Override
protected void doPost(HttpServletRequest request,  

HttpServletResponse response)
throws ServletException, IOException {
processRequest(request, response);

}
}

Enter the URL as shown in the following screenshot into a browser. When executed, the
salutation Dear Sherlock Holmes will be displayed in the browser.

How it works...
To provide a reference to an EJB in a servlet we used the @EJB annotation to inject the bean.
However, before we could use the annotation two import statements were required. The first 
one was for the annotation and the second one is for the Salutation EJB.

import javax.ejb.EJB;
import packt.Salutation;

The declaration of the servlet began with @WebServlet annotation. The @WebServlet is 
a class level annotation marking the class as an HTTP servlet. The urlPatterns parameter
specifies the URL pattern which maps to this servlet. This pattern is important because this 
is how a user of the servlet is able to locate it on the server.

@WebServlet(urlPatterns = {"/SalutationServlet"})
public class SalutationServlet extends HttpServlet {

The salutation variable was declared as a field of the servlet. The @EJB annotation
immediately preceded the variable declaration and effected dependency injection.
This allows the EJB container to support the EJB.

@EJB
private Salutation salutation;



Getting Started With EJBs

14

HTTP Servlets typically respond to doGet and doPost HTTP commands. The doGet and
doPost methods are invoked depending on whether a GET or POST HTTP command is
issued. In this example, both of these methods called the processRequest method using 
the common servlet logic in the processRequest method.

The processRequest method used standard servlet code to generate the HTML response
sent back to the browser. Of particular interest to us was the use of the salutation object. 
The getFormalSalutation method was invoked and its return value was sent forward to 
the browser.

...
out.println("<h1>" +  

salutation.getFormalSalutation("Sherlock Holmes") + "</h1>");
...

See also
The next recipe illustrates the use of JNDI to access an EJB.

Accessing the session bean using JNDI
JNDI can also be used to access an EJB but using this technique is not as easy as DI. The
Salutation EJB from the first recipe and the servlet from the second recipe are used to 
illustrate this technique.

Getting ready
To use JNDI in a client:

1. Obtain an InitialContext object

2. Use the context to look up the EJB

Familiarize yourself with the Salutation session bean and its two methods as developed in
the Creating a Simple Session EJB recipe. We will also modify the SalutationServlet from
the second recipe to use JNDI instead of DI.

How to do it...
A portable JNDI name syntax has been added to EJB 3.1. We will use this syntax as it makes
the use of JNDI less dependent on the deployment server.



Chapter 1

15

The modification of the SalutationServlet involves removing the @EJB annotation and
adding code to perform the JNDI look up. This code is placed immediately before the servlet's
try block.

...
Context context = null;
try {

context = new InitialContext();
salutation = (Salutation) context.lookup( 
"java:global/SalutationApplication/ 
SalutationApplication-ejb/Salutation");

} catch (Exception e) {
e.printStackTrace();

}
...

How it works...
In order to initialize and assign an instance of the bean to the salutation variable, the
bean needed to be looked up using an object implementing the Context interface. The
Context interface provided the information necessary to locate the server and to create a
reference to a Salutation object. First, we needed to create an InitialContext object.
This class implemented the Context interface. Exceptions resulting from the creation of the
InitialContext object and the subsequent lookup method were caught.

Once the Context has been established, the Context object's lookup method was invoked
and a reference to the Salutation EJB was provided. The lookup method used a portable
JNDI name to identify the EJB. In this case, a global name was used.

The syntax starts with one of three different prefixes. In this example the prefix was 
java:global specifying a global name. Following the prefix is a series of names 
separated by forward slashes. The first name was the name of the application, 
SalutationApplication. The second name was the name of the JAR file where the bean 
is held, SalutationApplication-ejb. The name of the bean was the last name. Names
are automatically generated for EJBs.

Prior to EJB 3.1, a JNDI name was server-specific and limited the portability of EJBS. With EJB 
3.1 this problem goes away and we can create more portable and maintainable applications.

There's more...
There are two features of JNDI needing further scrutiny.

Portable JNDI naming syntax

EJBS supporting multiple interfaces







Getting Started With EJBs

16

Portable JNDI naming syntax
JNDI is used to look up resources such as session beans within an application and across the
network. A JNDI server allows resources to be registered and then clients can look up and use
these resources. Each EJB is automatically assigned a unique name by the server though it is
possible to assign a specific name if desired. This name is then combined with one of three 
JNDI namespace prefixes to form a complete portable JNDI name.

The following table details the string prefixes and implications.

String prefix Visibility of the resulting name
"java:global/" A globally accessible name
"java:app/" Can only be seen by code in the same application
"java:module/" Can only be seen by code in the same module

A Java EE application is organized around a series of JAR files. An EJB may be packaged in 
either an application-ejb.jar or an application-war.war file. The application-
ejb.jar can also be packaged within the application.ear file.

Let's look at the syntax for portable global session beans in more detail.

java:global[/<app-name>]/<module-name>/<bean-name>

There are three sections that follow the java:global prefix:

<app-name>—This name is optional and is only used if the bean is packaged in an
.ear file. The <app-name> is the name of the .ear file minus the file extension. 
The <app-name> can also be specified in the application.xml file.

<module-name>—This is the name of the ejb-jar file or the .war file containing 
the bean excluding its extension. An explicit name can be specified for the 
<module-name> using either the ejb-jar.xml or web.xml files.

<bean-name>—This is the name of the bean. As mentioned earlier, this name is
automatically generated but can be given an alias.

The JNDI name used is dependent on the location of the client in relationship to the EJB
module. For example, the module namespace can be used for looking up names within the
same module.

java:module/<bean-name>

The application namespace can be used for looking up names within the same application.

java:app[/<module-name>]/<bean-name>

Using more than one namespace can make our code more stable and less susceptible to
breaking when code changes. For example, we could use a global namespace for a client
and a bean within the same module.

java:global/app1/module1/bean1









Chapter 1

17

If the client and bean are moved into a different module then this lookup will fail. However, if
we had used the module namespace, the lookup would not fail.

java:module/bean1

EJBs supporting multiple interfaces
Each of the JNDI names may be terminated with [/interface-name] and are only required
if the EJB implements more than one business interface. For example, a session bean may
implement a local interface and a remote interface.

public class Salutation implements 
SalutationLocalInterface, 
SalutationRemoteInterface {
}

Either of these two names could then be used:

java:global[/<app-name>]/<module-name>/Salutation/
SalutationLocalInterface 
java:global[/<app-name>]/<module-name>/Salutation/ 
SalutationRemoteInterface

Creating a simple message-driven bean
Message-Driven Beans (MDB) are used to support asynchronous communication within an
application. Typically, they are used in conjunction with a queue. A client will send a message
to a queue and the MDB will then process the message in the queue. The client does not call
the MDB directly, but instead communicates through messages. The MDB never returns a
value to the client.

Java Message Service (JMS) is the basis for communication between a client and the MDB.
Fortunately, many of the details needed to use JMS are hidden thus making the job of the EJB
developer easier.

In this recipe we show how to create the MDB. In the next recipe, we will modify the
SalutationServlet developed in the second recipe to send a message to our MDB.

Getting ready
The creation of an MDB involves three tasks:

1. Using the @MessageDriven annotation to designate the class as an MDB

2. Implementing the javax.jms.MessageListener interface

3. Overriding the onMessage method



Getting Started With EJBs

8

Our MDB, which is called SalutationMessageBean, will simply log each time a salutation
message is processed.

How to do it...
Open the SalutationApplication and add the SalutationMessageBean to the
SalutationApplication-ejb module and the packt package.

@MessageDriven(mappedName = "jms/SalutationQueue",  
activationConfig =  {
@ActivationConfigProperty(propertyName = "acknowledgeMode",  
propertyValue = "Auto-acknowledge"),
@ActivationConfigProperty(propertyName = "destinationType",  
propertyValue = "javax.jms.Queue")
}) 
public class SalutationMessageBean implements MessageListener {
public SalutationMessageBean() {
}
@Override
public void onMessage(Message message) {
try {
String name = message.getStringProperty("name");
Logger.getLogger("SalutationLog").log(Level.INFO,
"Salutation processed", "");
} catch (JMSException e) {
throw new RuntimeException(e);
}
}

}

The next recipe will demonstrate the use of this MDB.

How it works...
The @MessageDriven annotation is more complex than most annotations but 
understanding it is by no means insurmountable. The annotation has five possible 
attributes. For our SalutationMessageBean we used only two of them, mappedName
and activationConfig.



Chapter 1

9

The mappedName attribute is the simplest one. It is a vendor-specific name and maps 
the MDB to a JMS queue. When a message appears in the queue, it is sent to the MDB's
onMessage method. We used the name jms/SalutationQueue. This is the name
configured by the server and represents the queue we want to use. Most servers provide a 
way of creating and naming JMS resources, such as a queue.

mappedName = "jms/SalutationQueue", 

The activationConfig attribute is concerned with how the MDB works in its environment.
This can include issues such as how messages are acknowledged and the type of destination
used. We addressed these two issues in our MDB. Nested within the @MessageDriven
annotation were two @ActivationConfigProperty annotations. These were used to specify 
the acknowledgement mode and the destination type.

The @ActivationConfigProperty annotation has a propertyName attribute and a
propertyValue attribute. These are used together to specify the name and value of a
property. For our MDB the acknowledgement mode was set to "Auto-acknowledge" and the
destination type was the javax.jms.Queue interface.

@MessageDriven(mappedName = "jms/SalutationQueue",  
activationConfig =  {

@ActivationConfigProperty(propertyName = "acknowledgeMode",  
propertyValue = "Auto-acknowledge"), 
@ActivationConfigProperty(propertyName = "destinationType",  
propertyValue = "javax.jms.Queue")
})

When a message arrives at the message queue it is sent to the onMessage method of the
MDB. This method has a single parameter, a javax.jms.Message object. Depending 
on the type of message sent, various methods can be applied against this object to return
information needed by the bean. In the earlier code sequence, the value of a name property
was returned and used as part of the logging operation.

There's more...
There is a lot more to MDBs than what we have seen here. But let's not spoil the fun; many
useful MDB recipes are found in Chapter 3, Message-Driven Beans.

See also
The next recipe shows how to send a message to this MDB.



Getting Started With EJBs

20

Sending a message to a message-driven
bean

Message-Driven Beans (MDB) are used in an asynchronous fashion. A client will create a
message and then send it to a queue for processing. The MDB will effectively remove the
message from the queue and act on it.

In this recipe, we will use the SalutationServlet to send a message to the queue each
time a salutation is processed. 

Getting ready
The process consists of two steps: 

1. Adding declarations for a queue factory and a message

2. Adding code to actually send the message

Review the SalutationApplication project as developed in the Accessing a session bean
using dependency injection recipe. We will be modifying the SalutationServlet.

How to do it...
Start by adding declarations for a queue factory and a message queue as instance variables
in the SalutationServlet.

@Resource(mappedName = "jms/SalutationQueueFactory")
private QueueConnectionFactory queueConnectionFactory;
@Resource(mappedName = "jms/SalutationQueue")
private Queue queue;

Next, we need to add code to send the message. This code is placed in front of the servlet's
try block. This code can be used regardless of whether the salutation object is instantiated
using DI or JNDI. In this code we will create a connection to a server-based queue. Once  
we have a connection we create a session which serves to facilitate communication. The
session creates a message producer which sends the message. And of course, we need to
handle exceptions.

This might sound kind of involved but don't worry; most of the individual steps are simple.

try {
String message = "Salutation generated";

Connection connection =  
queueConnectionFactory.createConnection();



Chapter 1

21

Session session = connection.createSession(false,  
Session.AUTO_ACKNOWLEDGE);

MessageProducer messageProducer = (MessageProducer)  
session.createProducer(queue);

TextMessage textMessage = session.createTextMessage();
textMessage.setText(message);
messageProducer.send(textMessage);
Logger.getLogger("SalutationLog").log(Level.WARNING,
"Message sent successfully", "Message sent successfully2");

} catch (JMSException ex) {
Logger.getLogger("SalutationLog").log(Level.WARNING, 

"JMSException in SalutationServlet",  
"JMSException in SalutationServlet");

}

How it works...
First, we needed to create a connection to the queue. This step used a connection factory. As
you are probably aware, the software factory pattern is used to, among other things, hide the
details of how an object is created.

In addition to a connection factory, a destination queue was created. Most IDEs will assist in the
creation of these resources. However, it may be necessary to use the server's administration
console to create these resources. The connection factory was created by the server,
GlassFish in this case, with the name jms/SalutationQueueFactory which is of type
QueueConnectionFactory. The @Resource annotation was used to inject it into the servlet. 

@Resource(mappedName = "jms/SalutationQueueFactory")
private QueueConnectionFactory queueConnectionFactory;

The queue is of type javax.jms.Queue and used the name jms/SalutationQueue as
defined within the server. The @Resource annotation was used again to inject this resource.

Resource(mappedName = "jms/SalutationQueue")
private Queue queue;

A try block was needed to catch and handle any JMS exception thrown. Within the 
try block a message string was defined. This string was sent to the queue. Next, the 
QueueConnectionFactory object is used to create a QueueConnection. The
QueueConnection represents a connection between two point-to-point JMS elements. 
Any exceptions were handled in the catch block.

try {
String message = "Salutation generated";
Connection connection =  
queueConnectionFactory.createConnection();

...



Getting Started With EJBs

22

} catch (JMSException ex) {
Logger.getLogger("SalutationLog").log(Level.WARNING, 

"JMSException in SalutationServlet",  
"JMSException in SalutationServlet");

}  

The next step created a Session object used for sending and receiving messages. The
Connection object's createSession method uses two parameters. The first one 
indicates that the session is part of a transaction. The second argument specifies the type 
of acknowledgment to be made. Using Session.AUTO_ACKNOWLEDGE meant the session
automatically acknowledged the receipt of the message.

Session session = connection.createSession(false,
Session.AUTO_ACKNOWLEDGE);

The Session object was used to create a MessageProducer. The MessageProducer
object was used later in this code sequence to send a message to the destination queue. 
The queue was used as the argument in the createProducer method. 

MessageProducer messageProducer = (MessageProducer)
session.createProducer(queue);

Next, a TextMessage was created using the createTextMessage method. A
TextMessage is one of several interfaces derived from the Message interface. These JMS
interfaces represent different types of messages used within JMS. The setText method
assigned a string to be sent.

TextMessage textMessage = session.createTextMessage();
textMessage.setText(message);

The messageProducer then sent the message.

messageProducer.send(textMessage);

The output was displayed in the log file used by the SalutationMessageBean.

INFO: Salutation processed

See also
The previous recipe explains the MDB used in this recipe.



Chapter 1

23

Accessing an EJB from a web service
(JAX-WS)

Java EE 6 supports Java API for XML Web Services (JAX-WS) based web applications. 
These are frequently referred to as "big" web services because they use Simple Object
Access Protocol (SOAP) XML messages. This protocol provides a standard approach for
accessing remote objects. The functionality supported by the service is provided in a Web
Services Description Language (WSDL) file. This file is a standard way of describing an 
application's services.

In this example, we will create a TimeOfDay class with a single method. The method will
return a string representing the current date and time. We will use a singleton session bean
to support the time service. A singleton is a session bean for which there is one and only one
instance ever present in the application.

Getting ready
To create a web service:

1. Create a supporting EJB for the functionality of the service

2. Create a class annotated with the @WebService annotation to provide the service

Creating the EJB and web service are both straightforward.

How to do it...
Create a new web application called TODService. Within the application we will create a web
service and a stateless EJB. Next, create the singleton EJB in a package called ejb. Add an
EJB called TimeOfDay using the @Singleton annotation.

package ejb;

import java.text.SimpleDateFormat;
import java.util.Calendar; 
import javax.ejb.Singleton;

@Singleton 
public class TimeOfDay {
private static final String DATE_TIME =  
"yyyy-MM-dd HH:mm:ss";
public String timeOfDay() {



Getting Started With EJBs

24

Calendar calendar = Calendar.getInstance();
SimpleDateFormat simpleDateFormat =  
new SimpleDateFormat(DATE_TIME);
return simpleDateFormat.format(calendar.getTime());
} }

The next step is to create the Web Service. The JAX-WS Web Service is defined using the 
@WebService annotation. We will use the @EJB annotation to inject the TimeOfDay EJB 
and then create a single @WebMethod, called timeOfDay.

package service;

import ejb.TimeOfDay; import
javax.ejb.EJB; import
javax.jws.WebMethod; import
javax.jws.WebService;

@WebService 
public class Time {
@EJB

private TimeOfDay timeOfDay;
@WebMethod(operationName = "timeOfDay")

public String timeOfDay() {
return timeOfDay.timeOfDay();
}

}

The easiest way to demonstrate service is to use the testing service available as part of the
server. Enter the following URL into a browser to observe the behavior of the service:

http://localhost:8080/TODService/TimeService?Tester 

The following screenshot shows the TimeService Web Service Tester. This page is auto-
matically generated and provides a way of testing web services. Since this type of application 
uses the SOAP protocol to invoke a service, the service tester provides an easier to use 
graphical technique to test the service. Without this capability the developer would have to 
develop a more convoluted SOAP message.



Chapter 1

25

Click on the timeOfDay button. The following screenshot displays the string returned. The
SOAP request and response used for the service are not shown in the screenshot but can be
seen in the window by scrolling down.



Getting Started With EJBs

26

How it works...
The TimeOfDay class used a single method, called timeOfDay, which returns a string
representing the time. To support the formatting of the string we created another string,
DATE_TIME to hold the string's format pattern. This pattern was used with the format
method to yield a properly formatted return string.

private static final String DATE_TIME = "yyyy-MM-dd HH:mm:ss";

The timeOfDay method obtained an instance of the Calendar class. Its getTime method
was used to get the current day and time. The SimpleDateFormat class along with the
format method were used to format the string. The string is then returned.

The @WebService annotation identifies as a web service provided by the application. This 
is followed by the class declaration. The TimeOfDay object was injected using the @EJB
annotation. Notice that we used the no-interface view of the TimeOfDay EJB. That is, there
was no explicit interface defined for the EJB.

The method immediately following the @WebMethod annotation is available for use by the
client. The operationName attribute specified the method name as seen by the client.

The timeOfDay method is simple enough. It used the timeOfDay method of the 
TimeOfDay object.

There's more...
Notice the URL used to test the application TODService contains the context root of
the application.

http://localhost:8080/TODService/TimeService?Tester

This value is configured in the application's sun-web.xml file.

... 
<sun-web-app error-url="">
<context-root>/TODService</context-root>
... 
</sun-web-app>



Chapter 1

27

Accessing an EJB from a web service
(JAX-RS)

Java EE 6 supports Java API for RESTful Web Services (JAX-RS), a Representational State
Transfer (RESTful) web service. This type of service does not require WDSL or XML messages.
In this recipe we will create a simple RESTful application, RESTApplication, which returns
a random tip of the day message.

The beauty of this application is its simplicity and ease of development. We will create two
EJBs: one for the application's functionality and a second one to represent the Web Service.

Getting ready
To create a JAX-RS application we need to:

1. Create an EJB to support the functionality of the web service
2. Create a web service EJB annotated with the @Path annotation

The use of annotations makes both of these steps easy to do.

How to do it...
Create a new Web Service called RESTApplication. In this application we will be adding
two stateless session beans: TipSessionBean and TipOfTheDay.

Next, create a packt package for the two stateless EJBs. Follow this by creating a stateless
session bean, TipSessionBean, to support an application returning a random tip of the day
message. Next, we will create the Web Service to access and use the bean.

The TipSessionBean is straight forward. The EJB uses an array of strings to hold the tips.
The getTip method randomly returns a tip from the array.

package packt; 
import javax.ejb.Stateless;

@Stateless 
public class TipSessionBean {

private final static String tips[] = {
"I hear and I forget. I see and I remember. I do and  
I understand", "Study the past if you would define  
the future", " Life is simple, it's just not easy."};

public String getTip() {
return tips[(int)(Math.random()*tips.length)];

}

}



Getting Started With EJBs

8

Now let's turn our attention to the RESTful application. A stateless session bean, called
TipOfTheDay, is used to represent the service.

@Path("tipoftheday")
@Stateless 
public class TipOfTheDay {
@EJB

TipSessionBean tips;
@GET

@Produces("text/html")

public String processGet() {
return getTip();
}
@POST

@Produces("text/html")

public String processPost() {
return getTip();
}
private String getTip() {
return tips.getTip();
}

}

The service can be tested using an IDE tester or by typing the URL of the service into a
browser as illustrated in the following screenshot:



Chapter 1

9

How it works...
At the heart of the TipSessionBean is the getTip method. This method used the Math
class' random method to return a double number greater than or equal to 0.0 but is less
than 1.0. The return value was multiplied by the length of the array, three in this case. This
returned a number between 0 and 2.999997. The result was cast to an integer (between 0
and 2 inclusive) and then used to select the tip.

public String getTip() {
return tips[(int)(Math.random()*tips.length)];

}

In the TipOfTheDay class, the @Path annotation used a string to specify the name of
the service. This name is part of the URL used by a client. The class itself used the @EJB
annotation to inject the TipSessionBean for the field tips.

The @GET annotation configured the processGet method as the method to use when a
HTTP GET request is made. The @Produces annotation specified the type of output as 
text/html. While we did not actually generate any HTML tags, we could if needed.

Most web applications will support both the GET and POST operations. However, from a Java
EE perspective there is little difference between them. This allows us to create one method
which handles both requests in the same way.

The processGet method calls a private getTip method of the service. A third method,
processPost, was added to POST requests and also called the servlet's getTip method.
The getTip method then used the Tip's object to return a tip.

The service can be tested using an IDE tester or typing in the URL of the service into 
a browser.

There's more...
The actual URL is dependent on the configuration of the application. Consider the URL:

http://localhost:8080/RESTApplication/resources/tipoftheday

The context path for the application is http://localhost:8080/RESTApplication
where RESTApplication is the name of the project. The relative URL is /resources as
specified in the @ApplicationPath annotation discussed next. The last part, tipoftheday, 
is specified in the @Path annotation.

When a RESTLess application is created in an IDE such as NetBeans, an
ApplicationConfig class is automatically generated. You may be prompted
to choose between various options. Normally, the default option will suffice.



Getting Started With EJBs

30

This class, shown below, defines the components used in the application and supplies any 
metadata needed for the application. The ApplicationConfig used for the tip of the day 
application uses the @ApplicationPath annotation to specify the base URI for all of the
resources of the application. Notice that annotations can also be written prefixed with the 
package name as we sometimes do with Java classes.

package org.netbeans.rest.application.config;

@javax.ws.rs.ApplicationPath("resources") 
public class ApplicationConfig extends javax.ws.rs.core.Application {
}

Notice in this example the application path is given as resources. This is why the URL used
to test the application uses this string in front of the resource name.

Accessing an EJB from an Applet
EJBs can be accessed from a number of different application clients. Here we will see how
an EJB can be accessed from an Applet. Applets are still used extensively to provide a richer
browser interface than that provided using standard HTML. This includes the use of graphics
and animations. Knowing how to access an EJB from an applet gives the applet developer
even more opportunities.

Getting ready
Accessing an EJB from an applet uses three steps:

1. Creating an EJB for the actual functionality

2. Creating a remote interface

3. Using JNDI in the applet to obtain a reference to the EJB

The remote interface determines which methods are available to the Applet.

How to do it...
Create two different applications. The first application will be called CapitalApplication,
packaged as EJB-JAR, and contains an EJB called CapitalBean. It possesses a method
which, when passed the name of a country, returns its capital. The second is a stand-alone
JApplet application which uses the CapitalBean.



Chapter 1

31

For this recipe, we will create three classes:

CapitalBean containing the desired functionality

CapitalBeanRemote exposing the interface used by a client

EJBApplet using the CapitalBean

EJBs used outside of a Java EE application normally need to implement a remote interface.
This interface specifies the methods available to a client. The CapitalBean EJB implements
CapitalBeanRemote interface. This interface has a single method called getCapital.

package packt; 
import javax.ejb.Remote;

@Remote 
public interface CapitalBeanRemote {

public String getCapital(String state);
}

The CapitalBean implements the getCapital method using a HashMap initialized with
countries and their capitals.

@Stateless 
public class CapitalBean implements CapitalBeanRemote {

private HashMap<String, String> capitals = new HashMap<String,
String>();

public CapitalBean() {
capitals.put("United Kingdom", "London");
capitals.put("Japan", "Tokyo");
capitals.put("India", "New Delhi");

}

@Override
public String getCapital(String country) {

return capitals.get(country);
}

}

Create a separate application called CapitalApplet. Add a JApplet called EJBApplet.
The applet includes a JButton that when pressed will populate a JTextField with the
capital of Japan. 









Getting Started With EJBs

32

The applet as shown below includes the following methods:

init—Executes when the applet starts and calls the initComponents method

initComponents—Sets up the user interface and enables the JButton

invokeEJB—Uses JNDI to access and use the getCaptial method of the
CapitalBean

public class EJBApplet extends JApplet {
private JButton invokeButton = new JButton("Invoke EJB");
private JTextField messageTextField = new JTextField("Waiting  

for results");

public void init() {
try {
java.awt.EventQueue.invokeAndWait(new Runnable() {

public void run() {
initComponents();

}
});

} catch (Exception ex) {
ex.printStackTrace();

}
}

private void initComponents() {
Container container = this.getContentPane();
container.setLayout(new FlowLayout());
container.add(invokeButton);
container.add(messageTextField);

invokeButton.addActionListener(new  
java.awt.event.ActionListener() {

public void actionPerformed(java.awt.event. 
ActionEvent evt)  

{
invokeEJB();

}
});

}                    

public void invokeEJB() {
try {
InitialContext context =new InitialContext();
CapitalBeanRemote bean = (CapitalBeanRemote)
context.lookup(









Chapter 1

33

"java:global/CapitalApplication/CapitalBean");
messageTextField.setText(bean.getCapital("Japan"));
context.close();
} catch (Exception e) {
e.printStackTrace();
}
}

}

When setting up the project add libraries for the CapitalApplication
(CapitalApplication.jar) and for the server (appserv-rt.jar). These files 
can be added using the properties tab of the CapitalApplet.

Most IDEs provide a way of executing an applet without actually creating an HTML page for
the applet. Use the IDE to execute the EJBApplet. The applet will appear as shown in the
following screenshot.

How it works...
The CapitalBean EJB used a HashMap to maintain a list of countries and their capitals. This
HashMap was initialized in the constructor. The getCapital method was passed the name
of the country and returned the corresponding capital name.

In a HashMap, the first string represents a key (which for us is the name of a country), and a 
value (which is the country's capital). The put method adds the pair to the HashMap. The get
method returns a value based on a key.

The applet InitialContext object bears further explanation. When the applet is created
there are at least two JAR files placed on the application's classpath: the CapitalBean EJB
JAR and an appserv-rt.jar file.

The EJB JAR contains the class declarations needed for the references to the EJB to be used
correctly within the applet. Without this file, the compiler will be unable to know whether we 
are using the CapitalBean correctly.



Getting Started With EJBs

34

The appserv-rt.jar file contains a manifest.mf file. This file contains the information 
needed to configure the client side of JNDI enabling it to successfully locate a resource 
and return a reference to it. In our case, the client side was our applet. Unless this JNDI
information is configured properly, the InitialContext object may not be constructed
correctly. This often results in an annoying naming exception message.

The declarations for the JApplet consisted of a JButton and a JTextField. The init
method used a standard Swing technique of creating a thread which works gracefully with
the AWTEvent thread to call the initComponents method. The initComponents method
created a simple user interface. The invokeButton used an anonymous inner class to call
the invokeEJB method when the button is selected. 

The invokeEJB method is the interesting part of the applet. An InitialContext object
was created and used with a global JNDI name to locate and return a reference to the
CapitalBean EJB.

There's more...
It is sometimes useful to examine the applet JNDI context in more detail. The
InitialContext object's getEnvironment method returns a Hashtable we 
can use to list the environmental properties.

The Hashtable consists of key/value pairs which we can iterate through using an
Enumeration object. The keys method of the Hashtable returns the Enumeration.

Hashtable table = context.getEnvironment();
Enumeration<String> enumeration = table.keys();
while (enumeration.hasMoreElements()) {

String key = enumeration.nextElement();
System.out.println(key + " - " + table.get(key));

}

One possible list may include the following properties and values:

java.naming.factory.initial -  
com.sun.enterprise.naming.impl.SerialInitContextFactory

java.naming.factory.url.pkgs - com.sun.enterprise.naming
java.naming.factory.state -  

com.sun.corba.ee.impl.presentation.rmi.JNDIStateFactoryImpl

See also
The Accessing the session bean using JNDI recipe, discusses the use of JNDI in more detail.



Chapter 1

35

Accessing an EJB from JSP
Yet another way of accessing an EJB is from a JavaServer Pages (JSP) page. While JSP has
largely been supplemented by newer technologies such as JavaServer Faces (JSF), it is still
useful to understand how to incorporate an EJB into a JSP page since you may find yourself 
maintaining JSP code.

Getting ready
To use an EJB from a JSP client:

1. Create the supporting EJB

2. Use JNDI in the JSP client

JNDI is required because JSP does not support DI.

How to do it...
Create a Java EE application called JSPExample. It should contain both a JSPExample-ejb
and a JSPExample-war module. In the JSPExample-ejb module, we will create a remote
session bean called ConstantsBean with methods returning common math constants. We
will place it in the packt package. The JSPExample-war module has an index.jsp from
which we will invoke the EJB.

The ConstantsBean is a remote stateless session bean. The bean extends a remote
interface, ConstantsBeanRemote, which defines the methods of the bean. These methods 
include getPI and getGoldenRatio both returning a double value.

@Remote 
public interface ConstantsBeanRemote {

public double getPI();
public double getGoldenRatio();

}

The ConstantsBean implements this interface and is declared as a stateless session bean.
The methods return the Math class PI constant and in the case of the golden ratio the actual
golden ratio value.

@Stateless 
public class ConstantsBean implements ConstantsBeanRemote {

public double getPI() {
return Math.PI;

}



Getting Started With EJBs

36

public double getGoldenRatio() {
return 1.6180339887;
} }

Create an index.jsp page in the JSPExample-war module. Next, modify the page to
invoke and display the result of the EJB's methods.

<%@page contentType="text/html" pageEncoding="UTF-8"%> <!
DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">

<%@ page import="packt.ConstantsBeanRemote" %> <
%@ page import="javax.naming.InitialContext" %>
<%@ page import="javax.naming.Context" %> <html>
<head><title>Constants</title></head> 
<body> 
<%!
ConstantsBeanRemote constantsBean; 
%> 
<%
Context context = null; 
try {
context = new InitialContext();
constantsBean = (ConstantsBeanRemote) context.lookup( 
"java:global/JSPExample/JSPExample-ejb/ConstantsBean"); } 
catch(Exception e) {
e.printStackTrace(); 
} 
%><p> 
<h1>Constants</h1>
PI: <%= constantsBean.getPI() %><br>
Golden Rule: <%= constantsBean.getGoldenRatio() %>
</body> 
</html>



Chapter 1

37

Execute the application. Its output should be similar to the following screenshot:

How it works...
The ConstantsBean is straight forward; however, the index.jsp page requires more
explanation. It invoked and displayed the result of the EJB's methods.

There are three sections of the JSP page referencing and using the bean. The first section 
declared the reference variable constantsBean.

<%!
ConstantsBeanRemote constantsBean;
%>

The second created the initial context and returned a reference to the bean. Notice the global
JNDI name was used to locate the bean.

<%
Context context = null;
try {

context = new InitialContext();
constantsBean = (ConstantsBeanRemote) context.lookup(

"java:global/JSPExample/JSPExample-ejb/ConstantsBean");
} 
catch(Exception e) {

e.printStackTrace();
} 
%>

The last section used both methods of the ConstantsBean.

<h1>Constants</h1>
PI: <%= constantsBean.getPI() %><br>
Golden Rule: <%= constantsBean.getGoldenRatio() %>



Getting Started With EJBs

8

See also
The Accessing the session bean using JNDI recipe, discusses the use of JNDI in more detail.

Calling an EJB from JSF
Java Server Faces (JSF) and Facelets have largely supplemented JSP and permit the use of DI.
This simplifies access to the EJB but JNDI can be used if desired. JSF uses the concept of a 
managed bean to hold business logic. In EJB 3.1 it is not necessary to actually use a managed
bean. However, both using an EJB directly and using a managed bean to access an EJB will be
presented. Knowing how to use the managed bean approach can be useful especially when
reviewing older code.

Getting ready
To access an EJB from a JSF page:

1. Create a supporting EJB
2. Annotate the EJB with the @Named annotation

In this example we will also package the beans in the .war file to demonstrate this new 
feature of EJB 3.1. Packaging in .war file makes it easier to access EJBs from a web page.

How to do it...
Create a Java EE application called JSFExample and include only the JSFExample-war
module. Be sure to enable contexts and dependency injection when creating the Java EE
application. If you don't, you cannot use DI.

We will reuse the ConstantsBean from the JSPExample application detailed in 
the Accessing an EJB from JSP recipe in this chapter. Create a new package called
packt and recreate the ConstantsBean inside of it. However, do not implement the
ConstantsBeanRemote interface. Add the following annotation after the @Stateless
annotation in the Constantsbean class. This will make the EJB visible to the JSF client.

@Named("constants")

Next, create a JSF managed bean called ConstantsManagedBean. This class will use DI to
create and use the ConstantsBean.

@ManagedBean
public class ConstantsManagedBean {

@EJB
ConstantsBean constants;



Chapter 1

9

public ConstantsManagedBean() {
}
public double getGoldenRatio() {
return constants.getGoldenRatio();
}
public double getPI() {
return constants.getPI();
}

}

To demonstrate the use of both the EJB and the JSF-managed bean, create a JSF page titled
index.xhtml.

<?xml version='1.0' encoding='UTF-8' ?> 
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core">
<h:head>
<title>Constants</title>
</h:head>
<h:body>
<f:view>
<h:form>
<h:outputLabel for="name">
<h:panelGrid columns="1">
<h:outputText value="Managed Bean Length:  
#{constantsManagedBean.PI}" />
<h:outputText value="Managed Bean Status:  
#{constantsManagedBean.goldenRatio}" />
<h:outputText value="EJB Bean Length:  
#{constants.PI}" />
<h:outputText value="EJB Bean Status:  
#{constants.goldenRatio}" />
</h:panelGrid>
</h:outputLabel>
</h:form>
</f:view>
</h:body>
</html>



Getting Started With EJBs

40

Execute the application. The following screenshot illustrates its output.

How it works...
The ConstantsBean was explained in the previous Accessing an EJB from JSP recipe. 
The JSF managed bean, ConstantsManagedBean, was declared as such using the 
@ManagedBean annotation. DI was used to create and use the ConstantsBean. 
The managed bean has two methods, getGoldenRatio and getPI, which called  
the corresponding methods of the ConstantsBean.

The JSF page used both the ConstantsBean directly and the managed bean with
h:outputText elements. As a developer you can choose to use either technique
though the managed bean approach is no longer necessary.

<h:outputText value=
"Managed Bean Length: #{constantsManagedBean.PI}" />

<h:outputText value=
"Managed Bean Status: #{constantsManagedBean.goldenRatio}" />

<h:outputText value="EJB Bean Length: #{constants.PI}" />
<h:outputText value=

"EJB Bean Status: #{constants.goldenRatio}" />

Accessing an EJB from a Java Application
using JNDI

It would be nice if we could use dependency injection outside of a server container. However,
this is not possible from a Java SE application unless we use an embeddable container. 
Using an embeddable container is covered in the next recipe. Here we need to use JNDI.
Accessing an EJB from a Java SE application using JNDI is similar to using JNDI in other
types of applications.



Chapter 1

41

Getting ready
To use this approach we need:

1. A supporting EJB

2. JNDI code to obtain a reference to the EJB

We will be using the CapitalApplication developed in the Accessing an EJB from an
Applet recipe found in this chapter. This recipe uses a CapitalBean to return the name
of the capital given a state. Make sure the server and this application are executing before
testing the Java application.

How to do it...
The EJB used here is the CapitalBean. Create a Java SE application using an IDE of your
choice. It does not have to be the same one you used to develop the CapitalApplication.
In the main method add:

try {
InitialContext context = new InitialContext();
String name = "java:global/CapitalApplication/CapitalBean";
CapitalBeanRemote bean =  
(CapitalBeanRemote)context.lookup(name);

System.out.println(bean.getCapital("India"));
} 
catch(javax.naming.NoInitialContextException e) {

e.printStackTrace();
}
catch (NamingException e) {

e.printStackTrace();
}

Make sure the application's classpath contains .jar files for the CapitalBean and the
appserv-rt.jar file.

When executed, the output should appear as:

New Delhi

How it works...
The application JAR file was needed to resolve the class names and the appserv-rt.jar
file was needed so JNDI could function properly. This file provided the necessary information 
for JNDI to locate the server and look up the name correctly.



Getting Started With EJBs

42

See also
The Accessing the session bean using JNDI recipe provides more detail on the use of JNDI.

Accessing an EJB from a Java Application
using an embeddable container

The embeddable EJB container allows EJBs to be executed outside of a Java EE environment.
Standalone Java SE applications can use the embeddable container to execute EJBs. In
addition, it can be used for unit testing of EJBs.

The embeddable container does not require the installation of a server. As a result it has
a smaller footprint and will start faster. However, MDBs and inbound RMI over IIOP (RMI/
IIOP) (Remote Method Invocation (RMI) (Internet Inter-Orb Protocol (IIOP)) calls are not
supported. Efficiency features found in the Java EE environment, like clustering, are  
not available.

How to do it...
Create a standard Java SE application with the following main method. 

public class Main {

public static void main(String[] args) {
try {
Map properties = new HashMap();
properties.put(EJBContainer.MODULES, new java.io.File( 

"E:\\Packt\\Projects\\CapitalApplication\\ 
build\\classes"));

properties.put(EJBContainer.APP_NAME,"CapitalApplication");
EJBContainer ejbC =  

EJBContainer.createEJBContainer(properties);
Context context = ejbC.getContext();
String name = "java:global/CapitalApplication/CapitalBean";
CapitalBeanRemote bean =  

(CapitalBeanRemote)context.lookup(name);
System.out.println(bean.getCapital("Japan"));

} catch (NamingException e) {
e.printStackTrace();

}
}

}



Chapter 1

43

The Java SE application requires a few JAR files be included in its classpath. These include:

The embedded EJB container supplied by the server. In the case of GlassFish it is the
glassfish-embedded-static-shell.jar file.

The javax.ejb.jar file also provided by the server.

The JAR file containing the CapitalBean class.

Use the property window of the application to add these files before executing the application.

How it works...
We declared a Map variable called properties and assigned to it a new HashMap. The
variable was used to initialize the EJBContainer. This container has a property, MODULES,
specifying the modules to be used by the container. The Map object's put method was used to
assign the location of the directory containing the CapitalApplication's classes.

The EJBContainer.APP_NAME field was used to specify the name of the application. 
Next, the EJBContainer class's static method, createEJBContainer, was called with 
the properties variable as an argument. The createEJBContainer method returns an
EJBContainer object. This class's getContext method was used to get a Context object.
The Context object represents the environment needed to find and use the CapitalBean.

Next, a portable JNDI name for CapitalBean was used as an argument to the lookup
method. This returned an effective reference to the CapitalBean.

The bean variable was used to invoke the getCapital method and to display the results.
The last step caught any exceptions thrown.

The output should appear as:

Tokyo

The embeddable container is a new EJB 3.1 feature. Not all development
environments or servers support this feature. Using NetBeans 6.91 with
GlassFish 3.0.1 may not work consistently. However, NetBeans 7 Beta does
provide better support.

See also
The previous Accessing an EJB from a Java Application using JNDI recipe, provides an
alternative technique for accessing EJBs.









Getting Started With EJBs

44

Accessing the EJB container
An EJB will always reside inside of an EJB. Normally, this container is part of the server. There
are times when it is desirable for the EJB to gain access to this container. This access is
provided through an instance of the EJBContext interface, which represents the container
holding the current bean. The object provides methods to access various aspects of the
container including:

Security issues

Transactions

Access to the timer service of the bean

References to objects available in the JNDI registry

An object allowing the methods of the bean to be invoked

In this recipe we will obtain a SessionContext object for the Salutation EJB developed in
the Creating a Simple Session Bean recipe.

How to do it...
The Salutation bean developed in the first recipe will be modified. First, we start to 
modify the bean by adding a SessionContext object. The easiest way of obtaining
a SessionContext object is to use dependency injection. In order to inject a
SessionContext object we will need to use the @Resource annotation. Both the 
annotation and the SessionContext declaration require imports.

import javax.annotation.Resource;
import javax.ejb.SessionContext;

Next we add the @Resource annotation and declare our SessionContext variable
context as a field of the class. 

@Stateless 
public class Salutation {
...

@Resource
private SessionContext context;

...













Chapter 1

45

Next, create a getContextInformation method returning a string. We can use the
StringBuilder class to build a string containing context information. There are several
SessionContext methods available. The result of these methods is appended to
contextInformation variable.

public String getContextInformation() {
StringBuilder contextInformation = new StringBuilder();
contextInformation.append(context.toString() + "<br/>");
try {
contextInformation.append( 

context.getInvokedBusinessInterface().toString() +  
"<br/>");

} catch (IllegalStateException e) {
contextInformation.append(e);
}

return contextInformation.toString();
}

The simplest way to demonstrate the use of the method is to modify the
SalutationServlet. Add the getContextInformation method call after the 
statement where the getFormalGreeting method is used.

out.println("<h1>" +  
salutation.getFormalSalutation("Sherlock Holmes") + "</h1>");

out.println("<h2>" + salutation.getContextInformation() +  
"</h2>");

Execute the servlet using the URL http://localhost:8080/SalutationApplication-
war/SalutationServlet as illustrated in the following screenshot:

How it works...
The stateless session bean, as we used it, limits the amount of useful context information
available. In the example, we only displayed a string to represent the SessionContext
object and the business interface used by the client, neither of which are terribly exciting.
Since the Salutation EJB used a no-interface view, we get back the class name. An EJB not
implementing an interface is said to have a no-interface view.



Getting Started With EJBs

46

There's more...
The EJBContext is the super class for SessionContext. It possesses methods common to
the three sub-interfaces of the EBJContext interface:

SessionContext for Session Beans

MessageDrivenContext for MDB

EntityContext for an Entity

Always choose the corresponding context interface for the EJB or entity in use. The
EJBContext can be obtained using either dependency inject or JNDI. We have already seen
how dependency injection can be used. If we need to use JNDI instead, we need to follow the
standard JNDI look up process: 

1. Establish an initial context

2. Use the lookup method to locate the object

3. Use the methods of the object

public String getContextInformationJNDI() {
SessionContext sctxLookup;
try {
InitialContext ic = new InitialContext();
sctxLookup = (SessionContext)  

ic.lookup("java:comp/EJBContext");
} catch (NamingException ex) {

return "NamingException: " + ex.toString();
}

return sctxLookup.toString() + "<br/>" +
sctxLookup.getInvokedBusinessInterface().toString() +  
"<br/>";

}

Notice the structure of the JNDI look up string, java:comp/EJBContext. It is different 
from the previous JNDI names we have seen. The java:comp prefix is used to allow
applications to expose their components. In this case, it specifies the standard name 
for a SessionContext.









2
Session Beans

In this chapter, we will cover:

Creating a stateless session bean

Creating a stateful session bean

Creating a singleton bean

Using multiple singleton beans

Using container managed concurrency

Using bean managed concurrency

Controlling the initialization process

Using session beans with more than one business interface

Understanding parameter behavior and granularity

Using an asynchronous method to create a background process

Introduction
The three basic session beans: stateless, stateful, and singleton, are at the heart of most
EJB applications. They each differ in their purpose and capabilities. This chapter provides
numerous examples of how they can be used and provides insight into how they work.

Many of the examples in this chapter are based on servlets. The use of servlets, specifically 
the doGet and doPost methods are detailed in Chapter 1, Getting Started With EJBs. When
you create your projects, be sure to enable context and dependency injection. The code
examples do not include import statements.























Session Beans

8

Also note that in IDEs such as NetBeans, wizards are frequently used to add elements such
as servlets to an application. During this process they will automatically modify the web.xml
file to map a servlet's name to an URL pattern. If you choose not to use a wizard, you will need 
to explicitly modify the file itself. Deployment descriptor files are discussed in more detail  
in Chapter 11, Packaging the EJB.

Let's start our discussion with the stateless EJB. This type of session bean has no
conversational state. Whenever a client invokes a method of a stateless EJB, it is as if this or
any other method of the EJB has never been executed. For example, a method may be passed
a height and width to compute the area of a surface and return a result. Any previous height
or width values stored with the bean are to be ignored.

Since no state information is maintained, all stateless EJBs of this type are considered to
be equivalent by the EJB container. The server's EJB container allocates stateless EJBs and
typically reuses them within and between clients. No permanent reference between a client
and a stateless EJB is maintained.

A stateful session bean, in contrast, will maintain its state between subsequent client calls.
The client uses setter type methods to affect the state of the EJB. Subsequent method calls
can use these values to compute and return a value to the client. As such, a stateful bean 
is not shared between clients. In addition, it can be passivated, that is, temporarily stored
between invocations by the server should the server need to remove the bean from memory.
Later the bean and its state can be restored as if nothing has happened. A bean may be
passivated for a number of reasons. For example, the EJB container may fail yet the server
may stay up. When the container is restored the bean can be activated.

A singleton bean is similar to a stateful bean in that state information is maintained between
method invocations. However, there is only one singleton bean for the application and it is
shared by all of the EJBs and clients of an application. This type of bean provides a convenient
means of maintaining the overall state of an application.

The first three recipes illustrate how to create stateless, stateful, and singleton session beans. 
They further expound upon the behavior of these types of beans.

There is only one instance of a singleton available to an application at a time. However, it is
possible to have multiple different singletons in an application. When distributed over multiple
Java Virtual Machine (JVM)s, there is only one singleton per JVM.

By default, singletons are not created until a method of the bean is invoked. However, 
the creation of the singleton can be forced using the @Startup annotation. This creation
technique is referred to as eager initialization. The effect of most annotations can also be
affected using deployment descriptors. The use of deployment descriptors is covered in
Chapter 11, Packaging the EJB.



Chapter 2

9

There are occasions when it can be advantageous to use multiple singleton beans in 
the same application. Each singleton can be used to manage a particular aspect of the
application. In some applications where multiple singletons are used, the order in which the
singletons are created and initialized can be an issue. The @DependsOn annotation provides
a way of explicitly controlling the order of singleton initialization. The recipe, Using multiple
singleton beans, addresses this topic.

EJBs can be accessed either locally or remotely. Local access uses a no-interface view 
or implements a local interface declaration. A no-interface view exposes all of the public
methods of an EJB whereas the local and remote interfaces usually expose only a subset 
of the public methods. Remote EJBs implement a remote interface. The difference between
these interfaces involves which methods are made visible and how information is passed
between the EJB and a client.

The use of a local interface does not involve a remote procedure call but does require the
client to be part of the same JVM process. In addition, parameters are passed by reference.
An EJB accessed remotely will use a remote procedure call and parameters are passed by
value. That is, only a copy of the object is passed and any modification of the object will not 
be reflected in the original object. This may be a problem if, for example, the client needs to 
modify the original object.

The Using session beans with more than one business interface and Understanding
parameter behavior and granularity recipes, address these issues in more detail.

Concurrency is concerned with multiple access of a method by more than one client at a time.
If this concurrent access is not planned carefully, data can be corrupted and unpredictable
results can occur.

There are two types of locks that can be assigned to an EJB and/or its methods: a read
lock and a write lock. When a lock is applied to a class, all of the methods of the class use
that locking mechanism. This lock can be overridden by specifying the locking type for an
individual method.

A read lock indicates concurrent access to the method is permitted. It is assumed that
multiple read operations will not be a problem and will not corrupt the state of the EJB.

A write lock does not permit concurrent access to the method. Once a client begins executing
a method marked with a write lock, no other clients are permitted access to the method until
the method invocation completes. Other clients are blocked. This is the default concurrent
behavior of singletons.

There is nothing the programmer needs to do to enforce concurrent access. However, if more
control on the type of concurrent access used is needed, then the programmer can change
the type of lock on a method by method basis or use bean-managed concurrency.

The Using container managed concurrency and Using bean managed concurrency recipes
address the concurrency issues.



Session Beans

50

Sometimes it is desirable to invoke a method of an EJB and not wait for the method to
complete its execution. Either the client may not necessarily be concerned with whether the
method executes successfully or the client may want to check on its success or failure later.
Asynchronous methods provide this capability and the Using an asynchronous method to
create a background process recipe illustrates this approach.

While it is not obvious from this discussion, EJB 3.1 introduced several new features. For
example, there is no need to define explicit interfaces for beans as required in the previous 
version. Another significant addition is the singleton bean. Prior to EJB 3.1, it was more 
difficult to implement the singleton design pattern. The ability to invoke session beans 
asynchronously was also added in this version.

Creating a stateless session bean
In this recipe we will create a stateless session bean called SphereBean. This bean will
demonstrate the essential elements of a stateless bean and its life cycle. The servlet
SphereServlet will be used to demonstrate the bean.

Getting ready
Creating a stateless session bean consists of two steps:

1. Annotate the class with the @Stateless annotation

2. Add appropriate business methods

Earlier versions of EJB required the use of local and/or remote interfaces. This is no
longer necessary.

To use a session bean, inject the EJB into the client using the @EJB annotation followed by 
the declaration of the bean. In this recipe, we will use a servlet to demonstrate this process.
It is important to use the @EJB annotation, otherwise the bean will not be managed by the
EJB container and it will not be able to take advantage of the support provided to EJB such
as transaction processing and interceptors.

How to do it...
We will start with an initial version of a stateless session bean called SphereBean. From 
this we will add capability to incrementally demonstrate various aspects of a stateless bean.
Start by creating a Java EE application called StatelessExample. In the application add a
stateless session bean called SphereBean in the EJB module under a packt package. Add a
HttpServlet called SphereServlet in the WAR module in a servlet package.

@Stateless
@LocalBean



Chapter 2

51

public class SphereBean {
public double computeVolume(double radius) {
return (4.0/3.0)*Math.PI*(radius*radius*radius);
}

}

Notice the use of the @LocalBean annotation. This is the default annotation for a session
bean and is normally automatically added by the IDE. However, it is not absolutely required
and will often be removed from subsequent examples so as not to distract from the topic
at hand.

The SphereServlet illustrates the use of the stateless bean. The SphereServlet invokes
computeVolume method and displays the result.

public class SphereServlet extends HttpServlet {
@EJB
SphereBean sphere;
protected void processRequest(HttpServletRequest request,  
HttpServletResponse response)
throws ServletException, IOException {
response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();
try { 
out.println("<html>");
out.println("<head>");
out.println("<title>Servlet VolumeServlet</title>");  
out.println("</head>");
out.println("<body>");
out.printf("<h3>Volume: %6.2f </h3>",  
sphere.computeVolume(3.0));
out.println("</body>");
out.println("</html>");
out.flush();
} finally { 
out.close();
}
} 
@Override
protected void doGet(HttpServletRequest request,  
HttpServletResponse response)
throws ServletException, IOException {
processRequest(request, response);



Session Beans

52

} 

@Override
protected void doPost(HttpServletRequest request,  
HttpServletResponse response)
throws ServletException, IOException {
processRequest(request, response);
}

}

How it works...
The SphereBean possesses a computeVolume method that accepts a radius and returns
the volume of a sphere with this radius. The session bean is declared as a stateless session
bean by using the @Stateless annotation. The SphereBean implements the formula for
calculating the volume of a sphere: Volume = 4/3*PI*radius3.

Stateless session beans do not retain state information. The SphereBean typifies this 
type of session bean. In this EJB there are no instance variables and thus no state can 
be maintained.

Notice the use of the printf method used in the SphereServlet. This method was
introduced in Java SE 6. It mimics the printf statement found in the C language. The first 
argument is a string that provides a format used to display values. These values are the
subsequent parameters of the method. In the format string, place holders are used to 
indicate the type of value to be displayed and any formatting to be applied to the value.

The printf statement was used in the servlet to display the volume of the sphere. This
statement used a single place holder that corresponds to the second parameter. The place
holder was the %6.2f. The %6.2f indicated that a floating point number was to be displayed. 
In addition, six characters are used to display the number with two digits following the 
decimal point.

There's more...
There are two other aspects of stateless session beans that should be considered:

Use of instance variables

Stateless bean life cycle







Chapter 2

53

Use of Instance variables
It is possible to add instance variables to the session bean. In this version we add a string to
the SphereBean to specify the measure unit used.

@Stateless 
public class SphereBean {
private String unit;
public String getUnit() {
return unit;
}
public void setUnit(String unit) {
this.unit = unit;
}

...

}

These methods can be used in the SphereServlet to set and retrieve the 
measurement unit.

try {
sphere.setUnit("kilometers"); ...
out.printf("<h3>Volume: %6.2f %s</h3>",  
sphere.computeVolume(3.0),
sphere.getUnit()); ...
} 

Notice the use of two placeholders in this example. The %s field specifies that a string is to 
be displayed. There is no width specified by the field meaning that the entire string should 
be displayed.

While the use of these methods is not always desirable, they do illustrate the use of an in-
stance variable within a stateless session bean. However, there is no guarantee that the
same bean instance will be used for these methods. The EJB container may choose to use
different instances of the SphereBean for each of these calls resulting in unpredictable
behavior. As a result, it is not recommended that stateless session beans be used in this
way. Methods of a stateless session bean should be designed to work independently of
other method invocations or previous invocations of the same method.



Session Beans

54

Stateless Bean Life Cycle
The life cycle of a stateless bean supports two call back methods. After the stateless session
bean has been constructed, the @PostConstruct annotation can be used to designate a
method that will be executed before any other methods of the bean are invoked. This method
is invoked after all of the bean's dependencies have been resolved. Before the bean is
destroyed, the @PreDestroy annotated method can likewise be used to designate a 
method to be executed before the bean goes away.

In this example, the initialize method sets a unit value and displays a simple message. In
the destroy method another message is displayed to indicate that the bean is going away.

@Stateless 
public class SphereBean {

private String unit;

@PostConstruct
private void initialize() {

unit = "meters";
System.out.println("SphereBean initialized");

}

@PreDestroy
private void destroy() {

System.out.println("Clean up SphereBean");
}

...
}

When some sort of initialization or termination action is needed, then these methods can be
useful. Normally, most stateless beans do not require such initialization or termination action.

Creating a stateful session bean
In order to illustrate the creation of a stateful EJB, we will use a bean to maintain a list 
of names. A name will be entered in the index.jsp page and passed to a servlet. The
servlet will add the name to the stateful bean. Unique to the stateful EJB is the process of
passivation. When a stateful bean is experiencing a period of inactivity, the EJB container may
decide to remove it from memory temporarily. This process is called passivation. Most of the
state of the EJB is saved automatically except for transient fields. When the EJB is restored, 
the stateless EJB has its original content except for the transient fields.



Chapter 2

55

Getting ready
Creating a stateful session bean requires:

1. Annotating a class with the @Stateful annotation

2. Adding appropriate business methods

Earlier versions of EJB required the use of local and/or remote interfaces. This is no
longer necessary.

To use a session bean, inject the EJB into the client using the @EJB annotation followed 
by the declaration of the bean. In this recipe, we will use a servlet to demonstrate this
process. Remember, it is important to use the @EJB annotation, otherwise the bean will not
be managed by the EJB container and it will not be able to take advantage of the support
provided to EJBs.

How to do it...
Let's start by creating a Java EE application called StatefulExample. Add a package called
packt and a stateful EJB called NamesBean to the EJB module. Also, add a package called
servlet and a servlet called NamesServlet to the WAR module.

The NamesBean EJB maintains a list of names. Two methods are used. The addName method
adds a name to the list and the getNames method returns a list of names.

@Stateful
@LocalBean 
public class NamesBean {

private List<String> names;

@PostConstruct
private void initialize() {

names = new ArrayList<String>();
}

public void addName(String name) {
names.add(name);

}

public List<String> getNames() {
return names;

}

}



Session Beans

56

The NamesServlet injects the NamesBean and uses it to add names passed to it.

public class NamesServlet extends HttpServlet {
@EJB
private NamesBean names;
private  List<String> list;
protected void processRequest(HttpServletRequest request,  
HttpServletResponse response)
throws ServletException, IOException {
response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();
try {
names.addName(request.getParameter("name"));
list = names.getNames();
out.println("<html>");
out.println("<head>");
out.println("<title>NamesServlet</title>");  
out.println("</head>");
out.println("<body>");
out.println("<h3>Current List of Names</h3>");
for(String name: list) {
out.println(name  + "<br>");
}
out.println("</body>");
out.println("</html>");
} finally {
System.out.println("Error");
out.close();
}
} 

}

A simple implementation of the index.jsp pages prompts the user for a name and passes
the name to the NamesServlet.

<%@page contentType="text/html" pageEncoding="UTF-8"%> <!
DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">

<html>



Chapter 2

57

<head>
<meta http-equiv="Content-Type" content="text/html;  
charset=UTF-8">

<title>Stateful EJB Example</title>
</head>
<body>

<h1>Names Example</h1>
<form action="NamesServlet" method="get">
Name: <input type="text" name="name" /><br />
<input type="submit" value="Add Name" />

</form>
</body>

</html>

Start the application using the URL provided in the following screenshot. Enter a name and
press the Add Name button:

When the index.jsp page is executed repeatedly, names are added to the list and the
NamesServlet page displays a list similar to the one shown in the following screenshot:



Session Beans

8

How it works...
The NamesBean class used an ArrayList to maintain a list of names. A method was
provided to add a name and to return a List of the names. The addName method used the
add method of the List to add a name. The getNames method returned this ArrayList.
Notice that names is a reference to an object that implements the List interface. However, an
ArrayList object was actually assigned. By using the more generic List interface, in the
future if we change our implementation, calling methods are not affected. 

In the NamesServlet, the getParameter method returned a value associated with the
parameter name. Notice this name was declared in the input tag of the index.jsp file. 
The value entered by the user was passed to the servlet using this parameter.

There's more...
When the stateful EJB is passivated, it is sometimes necessary for the EJB to perform
additional actions. For example, certain resources, such as database connections may need
to be closed. Likewise, when the EJB is restored the resources may need to be restored. The
@PrePassivate and @PostActivate methods are used to designate which methods need to
be executed when passivation or restoration occurs.

@PrePassivate
private void prepareForPassivation() {

// Perform prepassivation tasks
}

@PostActivate
private void restoreFromPassivation() {

// Restore stateful EJB
}

Creating a singleton bean
We will use a singleton to support a game application. A PlayerBean will be created to
support the attributes of a player. We will assume that our game will never have more than
one player so a singleton is an appropriate choice for this type of bean.

Getting ready
The process of creating a singleton bean uses two steps:

1. Use the @Singleton annotation to designate the bean as a singleton

2. Add appropriate methods to the class



Chapter 2

9

These methods will reflect the functionality desired for the singleton.

How to do it...
Begin this recipe by creating a Java EE application called SingletonExample. Within the
EJB module, create a package called packt and add the singleton PlayerBean. In the WAR
module, create a servlet package and add a GameServlet servlet.

Let's start with the game bean which is declared as a singleton using the @Singleton
annotation. This version of the bean maintains only the name of the player.

@Singleton
public class PlayerBean {
private String name;
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}

}

Add the GameServlet that follows. It is assumed that the GameServlet is invoked from
an HTML page that passes the player's name as a request parameter. The use of request
parameters will be demonstrated after the servlet has been explained. The name passed is
used to set the PlayerBean's name and later is retrieved and displayed.

public class GameServlet extends HttpServlet {
@EJB
private PlayerBean player;
protected void processRequest(HttpServletRequest request,  
HttpServletResponse response)
throws ServletException, IOException {
response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();
try {
player.setName(request.getParameter("name"));
out.println("<html>");
out.println("<head>");
out.println("<title>Servlet GameServlet</title>");  
out.println("</head>");
out.println("<body>");



Session Beans

60

out.println("<h3>Name: " + player.getName() + "</h3>");
out.println("</body>");
out.println("</html>");

} finally { 
out.close();

}
} 

Execute the servlet using the URL found in the following screenshot. It will invoke the servlet
with "Edison" as its argument.

How it works...
The servlet was able to access parameters sent using the HttpServletRequest object's
getParameter method. In this example the name parameter was identified using the word 
name. The name of the player returned from the getParameter method was then used as
the argument to the PlayerBean class' setName method. Next, the PlayerBean class'
getName method was used to retrieve the name and then displayed.

There's more...
The singleton session bean also supports the @PostConstruct and @PreDestroy annotations.
The @PostConstruct annotation specifies which method to invoke after the bean has been 
instantiated but before any business methods are invoked. The @PreDestroy annotation
designates the method to execute before the bean is destroyed.

In this example we assumed that a support file or possible database entry needs to be 
created before any of the singleton's methods are executed. In the initialize method
these files or database operations are performed. Likewise, in the destroy method, any
cleanup operations are performed.

@Singleton 
public class PlayerBean {

String name;

@PostConstruct



Chapter 2

61

private void initialize() {
this.name = "Ultimate Software Warrior";
// Initialize player file/database
System.out.println("PlayerBean initialized " + this.name);
}
@PreDestroy
private void destroy() {
// Clean up player files/database
System.out.println("PlayerBean destroyed " + this.name);
}
...

}

See also
The next recipe shows how multiple singletons are used in an application. In addition, the
Container Managed Concurrency recipe illustrates the use of singletons.

Using multiple singleton beans
Multiple singletons can be useful when it becomes necessary or desirable to represent
multiple objects in an application that need to be shared across the application. In this
recipe, we will expand upon the previous recipe's SingletonExample application by 
adding a GameBean.

The second singleton is called GameBean and maintains the state of the game. It is assumed
that player information maintained in the PlayerBean and this EJB, and its supporting files, 
need to be created before the GameBean is created. The GameBean will use the player files or 
initialized database to support the game.

Getting ready
Adding multiple singleton session beans to an application generally requires:

1. Adding multiple beans annotated with the @Singleton annotation

2. Specifying interdependencies between the beans using the @DependsOn annotation

The @DependsOn annotation is added to the dependent bean. That is the bean that is to be
created last.



Session Beans

62

How to do it...
In this recipe, we will reuse the SingletonExample application. Start by adding a second
singleton to the packt package called GameBean as listed below. We will follow this with
modifications to the application's servlet.

@Singleton 
@Startup
@DependsOn("PlayerBean")
public class GameBean {
private String state;
@PostConstruct
private void initialize() {
// Use player files/database to initialize the state of the game
playerState = "Initilizing";
System.out.println("GameBean initialized");
}
public String getState() {
return state;
}
public void setState(String state) {
this.state = state;
}

}

Modify the GameServlet to use the GameBean and retrieve the state of the player.

public class GameServlet extends HttpServlet {
@EJB
private GameBean game;
protected void processRequest(HttpServletRequest request,  
HttpServletResponse response)
throws ServletException, IOException {
response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();
try {
out.println("<html>");
out.println("<head>");
out.println("<title>Servlet GameServlet</title>");  



Chapter 2

63

out.println("</head>");
out.println("<body>");
out.println("<h3>State: " + game.getState() + "</h3>");
out.println("</body>");
out.println("</html>");

} finally { 
out.close();

}
}

...
}

Execute the servlet using the URL shown in the following screenshot:

How it works...
The GameBean used the @Singleton annotation to designate the bean as a singleton. The 
@Startup annotation was used to force the creation of the bean as soon as the application
started. The @DependsOn annotation specified that the PlayerBean must be created first.

The GameServlet wass simple. DI is used to inject a GameBean and then it used the
getState method to retrieve its state.

There's more...
More than one singleton bean can be used in the @DependsOn annotation with their names
separated by commas. However, the actual order of construction of the dependent beans 
is indeterminate. If the order of singleton creation is important, then multiple @DependsOn
annotations are needed.

For example, if we introduce a third singleton called, EnemyBean, we may want to force the
PlayerBean and the EnemyBean to be created before the creation of the GameBean. This
is done in the @DependsOn annotation by listing the two dependent beans separated by  
a comma.

@DependsOn("PlayerBean, EnemyBean")
public class GameBean {



Session Beans

64

This declaration will force the creation of the PlayerBean and the EnemyBean first  
but it does not specify the order in which these two EJBS will be created. When it is desir-
able to create the PlayerBean first followed by the EnemyBean, and then finally  
the GameBean, the @DependsOn annotation will need to be used with both the GameBean
and EnemyBean singletons.

@DependsOn("EnemyBean")
public class GameBean {...}

@DependsOn("PlayerBean ")
public class EnemyBean {...}

public class PlayerBean {...}

Using container managed concurrency
Concurrent access to a singleton EJB is by default controlled by the container. Both read and
write access to a singleton is limited to one client at a time. However, it is possible to provide
a finer level of concurrency control through the use of annotations. In this recipe we will 
examine how this is done.

Getting ready
The steps used to incorporate container managed concurrency involve:

1. Specify the currency approach using the @ConcurrencyManagement annotation

2. Annotate each method with the @Lock annotation

The concurrency management approach used by an EJB is specified using the 
@ConcurrencyManagement annotation. Its argument determines whether concurrency
management is maintained by the container, or as we will see in the next recipe, by the bean.

Once this annotation has been added, methods of the EJB are annotated with the 
@Lock annotation. Its argument determines the type of concurrency access permitted
for the method.

How to do it...
Start by creating a Java EE application called ConcurrencyExample. Add a singleton
EJB called SimulationContainerManaged to the EJB module under a package 
named packt. In the WAR module add a package called servlet and a servlet 
named ConcurrencyServlet.



Chapter 2

65

The SimulationContainerManaged singleton uses an enumeration to maintain the state
of the application. A get and set method is provided to access and change the state.

@Singleton
@ConcurrencyManagement(ConcurrencyManagementType.CONTAINER)
public class SimulationContainerManaged {
public enum State {PAUSED, RUNNING, TERMINATED};
private State state;
@Lock(LockType.READ)
public State getState() {
return state;
}
@Lock(LockType.WRITE)
public void setState(State state) {
this.state = state;
}

}

To demonstrate the use of this EJB we will use the ConcurrencyServlet. This servlet uses
dependency injection for the SimulationContainerManaged EJB. It then invokes the
setState and getState methods of the singleton. There is nothing in the invocation of the
get or set methods that suggests a locking mechanism is used. The behavior of the locking
mechanism is hidden from the client.

public class ConcurrencyServlet extends HttpServlet {
@EJB
SimulationContainerManaged simulationContainerManaged;
protected void processRequest(HttpServletRequest request,  
HttpServletResponse response)
throws ServletException, IOException {
response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();
try {
simulationContainerManaged.setState( 
SimulationContainerManaged.State.PAUSED);
out.println("<html>");
out.println("<head>");
out.println("<title>Servlet ConcurrencyServlet</title>");
out.println("</head>");
out.println("<body>");



Session Beans

66

out.println("<h3>Simulation Container Managed State: " +  
simulationContainerManaged.getState() + "</h3>");

out.println("</body>");
out.println("</html>");

} finally {
out.close();

}
}

Execute the application using the URL specified in the following screenshot. It will show the 
application in a paused state:

How it works...
The @ConcurrencyManagement annotation was used to explicitly denote the concurrency
management scheme used. ConcurrencyManagementType.CONTAINER was used to specify
that the EJB container will manage concurrency. This statement was not necessary as this is
the default type of concurrency management. However, it never hurts to be clear about  
our intentions.

The SimulationContainerManaged singleton used an enumeration to maintain the state
of the application. A read lock was specified for the getState method and a write lock was
used for the setState method. The @Lock annotation with either a LockType.READ or
LockType.WRITE is used to specify a read lock or a write lock respectively.

There's more...
When a lock is obtained for a method, it is possible to specify how long to wait for the method.
If it takes too long then it may be desirable to throw an exception. The @AccessTimeout
annotation is used to specify the timeout limit.

The timeout is specified in milliseconds. To specify a timeout of five seconds, use 5000 as the 
argument of the annotation.

@AccessTimeout(5000)



Chapter 2

67

If a value of 0 is used then concurrent access is not permitted. Should a client attempt a
concurrent access to the method, a javax.ejb.ConcurrentAccess exception is thrown.

A value of -1 indicates that the client will wait as long as necessary. A value of
less than -1 is not permitted. If the timeout limit is exceeded a javax.ejb.
ConcurrentAccessTimeoutException is thrown.

Note that concurrency can also be controlled through deployment descriptors.

See also
The Using bean managed concurrency recipe that follows addresses bean managed
concurrency. 

Using bean managed concurrency
While concurrency of a singleton is container managed by default, the developer can elect 
to manage the concurrency directly. The techniques used for this effort are illustrated in
this recipe.

Getting ready
The steps used to incorporate bean managed concurrency involve:

1. Specify the currency approach using the @ConcurrencyManagement annotation

2. Designate critical methods with the Java synchronized keyword

Critical methods are those methods which allow only a single thread at a time to use it.

How to do it...
We will reuse the ConcurrencyExample application developed in the previous recipe to
illustrate bean-managed concurrency. In the EJB module add a singleton EJB to the packt
package called SimulationBeanManaged. Use the @ConcurrencyManagement annotation
with an argument of ConcurrencyManagementType.BEAN to designate the EJB as a 
bean-managed EJB.

@Singleton
@ConcurrencyManagement(ConcurrencyManagementType.BEAN)
public class SimulationBeanManaged {

public enum State {PAUSED, RUNNING, TERMINATED};
private State state;

public State getState() {



Session Beans

8

return state;
}

public synchronized void setState(State state) {
this.state = state;

}
}

Modify the ConcurrencyServlet servlet to use the SimulationBeanManaged bean
instead of the SimulationContainerManaged bean. From the client perspective there 
is no indication of how concurrency is supported.

public class ConcurrencyServlet extends HttpServlet {

@EJB
SimulationBeanManaged simulationBeanManaged;

protected void processRequest(HttpServletRequest request,  
HttpServletResponse response)

throws ServletException, IOException {
...

simulationBeanManaged.setState( 
SimulationBeanManaged.State.PAUSED);

...
out.println("<h3>Simulation Bean Managed State: " +  
simulationBeanManaged.getState() + "</h3>");

...
}

Execute the application using the URL found in the following screenshot. It will show the
application in a paused state.



Chapter 2

9

How to do it...
The SimulationBeanManaged EJB used an enumeration to reflect the state of the 
application with a get and set method to control the state. The synchronized keyword was
used for the setState method. This restricted access to the method to one client at a time.
It has the same effect as the @Write annotation used with container-managed concurrency.

The getState method is not synchronized thus allowing concurrent access to the method.
For a get method, this should not be a problem since it is a read type operation.

There's more...
The synchronized keyword was also be used on a block of code instead of a method. The
following rewrite of the setState method illustrates how to synchronize a block. Concurrent
access is restricted when a thread enters the synchronized block. That is, no other methods
are allowed to access the object while the current thread is in the block.

public void setState(State state) {
synchronized  (this) {
this.state = state;

}
}

A Java compiler may use various optimization techniques to speed up the execution of an
application. Some optimization techniques may move the value of a variable into a register to
increase the speed of execution. However, when this occurs, changes to the original variable
may not necessarily be reflected in the register. To avoid this problem the volatile keyword
was introduced. The volatile keyword is used as part of the declaration of a class'
instance variable.

private volatile int serverID;

The volatile keyword guarantees that any thread that accesses the variable will get the
most current value. When synchronizing EJB methods using bean-managed concurrency, it
may be necessary to use this keyword. 

See also
The previous recipe, Using container managed concurrency, illustrates how to use the EJB
container to manage concurrency.



Session Beans

70

Controlling the initialization process
In this recipe, we will examine how the initialization and termination of a singleton is
controlled. We will use the @Startup annotation to force eager initialization of the singleton.
The annotation does not have any arguments and is simple to use. We will use the 
@PostConstruct annotation to illustrate the process.

How to do it...
Create a Java EE application called ApplicationIntializationExample. In the EJB
module add a package called packt and a singleton bean called ApplicationStateBean. 
In the WAR module create a package called servlet and add a servlet called
ApplicationServlet.

Create the ApplicationStateBean EJB and add the @Startup annotation to the EJB as
shown below. This results in the singleton being created as soon as the application starts up.
The ApplicationStateBean uses an enumeration variable called state to store the state
of the application. Add an initialize and a terminate method: 

@Singleton 
@Startup 
public class ApplicationStateBean {

public enum States {PENDING, STARTED, PAUSED, TERMINATING};
private States state;

@PostConstruct
public void initialize() {

state = States.PENDING;
// Perform intialization
state = States.STARTED;
System.out.println("---ApplicationStateBean Started");

}

@PreDestroy
public void terminate() {

state = States.TERMINATING;
// Perform termination
System.out.println("---ApplicationStateBean Terminating");

}

public States getState() {
return state;

}



Chapter 2

71

public void setState(States state) {
this.state = state;
}

}

Next, create the ApplicationServlet as shown below. An ApplicationStateBean is
injected and used to get the state of the application.

public class ApplicationServlet extends HttpServlet {
@EJB
ApplicationStateBean state;
protected void processRequest(HttpServletRequest request,  
HttpServletResponse response)
throws ServletException, IOException {
response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();
try {
out.println("<html>");
out.println("<head>");
out.println("<title>Servlet ApplicationServlet</title>");  
out.println("</head>");
out.println("<body>");
out.println("<h3>" + state.getState() + "</h3>");
out.println("</body>");
out.println("</html>");
} finally { 
out.close();
}
} 

}

Deploy your application. The initialize method will execute and the console window 
will produce the following output. Note, that the INFO prefix is appended to the output 
by NetBeans.

INFO: ---ApplicationStateBean Started



Session Beans

72

Next, execute the servlet using the URL shown in the following screenshot:

When the application terminates, such as when it is redeployed, the console will reflect the 
execution of the terminate method as shown here:

INFO: ---ApplicationStateBean Terminating

How it works...
Let's examine the ApplicationStateBean first. The assumption is that we need to 
maintain state information about the application and the singleton needs to be initialized
before other EJBs in the application are used.

The initialize method was annotated with the @PostConstruct annotation. This
means the method was executed as soon as the bean was created. The state variable 
was set to STARTED.

The terminate method was annotated with @PreDestroy. This marks the terminate
method as the method to execute immediately before the singleton is destroyed. In this
method any cleanup activities should be executed.

See also
The Using multiple singleton beans recipe is also concerned with the initialization process.

Using session beans with more than one
business interface

A session bean can use more than one business interface. In this recipe we will use multiple
interfaces to illustrate how a subset of methods can be exposed to a client while providing a
larger set of methods to the beans of the application. An account EJB is used exposing the
discount rates based on the type of client.



Chapter 2

73

Getting ready
The process of adding more than one business interface involves two steps:

1. Defining the interfaces

2. Implementing the interfaces in the EJB.

Each of these steps is not difficult. However, the implementation of the business methods can 
be a different matter.

How to do it...
Start by creating a Java EE application called MultipleInterfacesExample. In the EJB
module add a packt package with two interfaces and one class:

AccountBeanRemote interface

AccountBeanLocal interface

AccountBean stateless session bean

In the WAR module add an index.jsp file if your IDE does not automatically add one for you. 
When the file is created, select a JavaServer Faces (JSF) page or later add a JSF framework to
the module. Failure to do this may result in a run-time exception.

Create an AccountBeanLocal interface that exposes getters and setters for both a
corporate and a non-profit discount rate. Use the @Local annotation to designate this as a
local interface.

@Local
public interface AccountBeanLocal {

public float getCorporateDiscount();
public void setCorporateDiscount(float corporateDiscount);
public float getNonProfitDiscount();
public void setNonProfitDiscount(float nonProfitDiscount);

}

Next, create an AccountBeanRemote interface that exposes only get methods for the
discounts. This can be used to restrict access to the implementing class. Use the @Remote
annotation to designate this as a remote interface.

@Remote
public interface AccountBeanRemote {

public float getCorporateDiscount();
public float getNonProfitDiscount();

}









Session Beans

74

The next step is to implement these interfaces. Add the AccountBean such that it
implements both of these interfaces. The implementation below is simple and uses
different percentages for the two types of discounts.

@Stateless 
@Named("account") 
public class AccountBean implements AccountBeanRemote, 
AccountBeanLocal {
private float corporateDiscount;
private float nonProfitDiscount;
@PostConstruct
public void initialize() {
corporateDiscount = 0.15f;
nonProfitDiscount = 0.25f;
}
public float getCorporateDiscount() {
return corporateDiscount;
}
public void setCorporateDiscount(float corporateDiscount) {
this.corporateDiscount = corporateDiscount;
}
public float getNonProfitDiscount() {
return nonProfitDiscount;
}
public void setNonProfitDiscount(float nonProfitDiscount) {
this.nonProfitDiscount = nonProfitDiscount;
}

}

To demonstrate the use of these interfaces, create an index.jsp file that displays the 
corporate and non-profit discount rates. Notice this implementation uses JSF. When creating 
this file, or once it has been created, make sure it is associated with a JSF framework. From 
NetBeans this can be accomplished by modifying the properties of the WAR module and
adding a JSF framework.

<%@page contentType="text/html" pageEncoding="UTF-8"%> <!
DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">



Chapter 2

75

<%@taglib prefix="f" uri="http://java.sun.com/jsf/core"%>
<%@taglib prefix="h" uri="http://java.sun.com/jsf/html"%>
<f:view>

<html>
<head>

<meta http-equiv="Content-Type" content="text/html;  
charset=UTF-8">

<title>Account</title>
</head>
<body>

<h1>Discount Rates</h1>
<h:form>
<h:outputText value="Corporate Discount:  

#{account.corporateDiscount}"/><br/>
<h:outputText value="Non-Profit Discount:  

#{account.nonProfitDiscount}"/><br/>
</h:form>

</body>
</html>
</f:view>

The following screenshot shows the two discount rates available:

How it works...
Notice the use of the @Named annotation with the AccountBean. It was used to associate
the name "account" with this EJB when used within a JSF page. In the index.jsp page, this
name was followed by a period and either corporateDiscount or nonProfitDiscount.
This had the effect of invoking the corresponding getCorporateDiscount and
getNonProfitDiscount methods of the AccountBean. There was no need to use  
the get prefix as this is a feature of JSF.



Session Beans

76

In this application, a client that is not part of the application is only able to access the getter
methods. This effectively limits its access to the full capabilities of the EJB. As we will see in
Chapter 7, EJB Security, there are other techniques based on the credentials of the actual
user, which can be used to limit access to an EJB's methods. These techniques can be used to
provide a finer grained way of limiting access to an EJB's methods.

Understanding parameter behavior and
granularity

It is important to invoke the methods of a remote EJB in an efficient manner. This recipe 
illustrates how to return data from a remote EJB using a coarse-grained approach. This is
then contrasted with a fine-grained approach to accessing the elements of an EJB which is 
less efficient.

The position of a satellite in orbit can be specified using a set of six orbital parameters. For 
the interested reader, a good discussion of these parameters is found in the Wikipedia article
at http://en.wikipedia.org/wiki/Orbital_elements. We will create the class
PositionBean to hold these parameters. We will also use an OrbitalElements EJB 
to return an instance of the PositionBean using a remote interface. A client can directly
access the PositionBean in a fine-grained manner or access the PositionBean from the
OrbitalElements bean in a coarse-grained manner.

Getting ready
This technique is about how to organize your code. You can return information as a single
object or you provide methods to return individual elements one at a time. Either approach
is valid. However, the latter approach will not be as efficient.

The approach illustrated here uses an interface to define methods to access elements of 
an object. The object is returned as a single object and its methods permit access to the
information of interest.

How to do it...
Let's begin by creating a Java Web application called ParameterExample. Add a packt
package with the following EJBs and interfaces:

OrbitalElements – A singleton EJB

OrbitalElementsRemote – An interface

PositionBean – A stateless EJB

PositionBeanRemote – An interface

Also create a second package called servlet and add a servlet called PositionServlet.











Chapter 2

77

Beginning with the PositionBeanRemote interface, this simple interface has only get 
type methods.

package packt;

public interface PositionBeanRemote {
public double getArgumentOfPeriapsis();
public double getEccentricity();
public double getInclination();
public double getLongitudeOfTheAscendingNode();
public double getMeanAnomaly();
public double getSemimajorAxis(); }

Next, the PositionBean implements the remote interface methods and in this example only
initializes the eccentricity instance variable. In a more sophisticated version of the application,
other fields of the PositionBean would be initialized.

@Stateless 
@Remote 
@Startup 
public class PositionBean implements PositionBeanRemote{
private double eccentricity;
private double semimajorAxis;
private double inclination;
private double longitudeOfTheAscendingNode;
private double argumentOfPeriapsis;
private double meanAnomaly;
//@PostConstruct
public PositionBean() {
eccentricity = 1.0;
}
public double getArgumentOfPeriapsis() {
return argumentOfPeriapsis;
}
public double getEccentricity() {
System.out.println("--- Return eccentricity");
return eccentricity;
}
public double getInclination() {



Session Beans

8

return inclination;
}

public double getLongitudeOfTheAscendingNode() {
return longitudeOfTheAscendingNode;

}

public double getMeanAnomaly() {
return meanAnomaly;

}

public double getSemimajorAxis() {
return semimajorAxis;

}

}

To illustrate the use of the PositionBean the PostionServlet declares an instance
of the bean and uses the getEccentricity method. This technique illustrates a 
fine-grained approach.

public class PositionServlet extends HttpServlet {

@EJB
PositionBeanRemote position;

protected void processRequest(HttpServletRequest request,  
HttpServletResponse response)
throws ServletException, IOException {
response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();
try {

out.println("<html>");
out.println("<head>");
out.println("<title>Servlet PositionServlet</title>");  
out.println("</head>");
out.println("<body>");
out.println("<h3>Eccentricity: " +  

position.getEccentricity() + "</h3>");
out.println("</body>");
out.println("</html>");

} finally { 
out.close();

}
} 

}



Chapter 2

9

The OrbitalElements EJB implements the OrbitalElementsRemote interface with
a single method, getPosition, returning a PositionBean. This technique illustrates a
coarse-grained approach.

@Remote 
public interface OrbitalElementsRemote {
public PositionBean getPosition(); }

The OrbitalElements EJB creates an instance of the PositionBean and then returns
the bean. This example did not provide a means of initializing the PositionBean to unique
values or perhaps treating the bean as a singleton. Its actual type and creation will depend
on the needs of the application.

@Singleton 
public class OrbitalElements implements OrbitalElementsRemote {
public PositionBean getPosition() {
return new PositionBean();
}

}

In the PostionServlet declare a reference to the OrbitalElementsRemote interface
and use the getPosition method to return an instance of the PositionBean.

public class PositionServlet extends HttpServlet {
@EJB
PositionBeanRemote position;
@EJB
OrbitalElementsRemote orbitalElements;
protected void processRequest(HttpServletRequest request,  
HttpServletResponse response)
throws ServletException, IOException {
response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();
try {
out.println("<html>");
out.println("<head>");
out.println("<title>Servlet PositionServlet</title>");  
out.println("</head>");
out.println("<body>");
out.println("<h3>Eccentricity: " +  
position.getEccentricity() + "</h3>");



Session Beans

�0

out.println("<h3>Eccentricity: " +  
orbitalElements.getPosition().getEccentricity() + "</h3>");

out.println("</body>");
out.println("</html>");

} finally { 
out.close();

}
}

Execute the servlet using the URL shown in the following screenshot:

How it works...
Notice the creation of the PositionBean using the new keyword in the OrbitalElements
EJB. This illustrates an easily made potential problem. The object created is not managed 
by the EJB container. As a result, the benefits of an EJB such as security and transaction 
management are not supported. This may not be a problem depending on the intended use of
the object. Use dependency injection if the object needs to be managed by the EJB container.

There's more...
Local beans execute in the same JVM as the client. This type of access is typically faster
than using remote access which occurs when the client is in a different JVM. There is less
communication overhead required to execute a method and to pass parameters. However,
there are times when it is necessary to access an EJB in a remote fashion. Be aware that
some servers are able to optimize such access and avoid the overhead costs.

Consider a class with several private instance variables. If individual calls are made to access
each variable one at a time, then this requires repeated method invocations. This type of
access is referred to as fine-grained access.



Chapter 2

�1

In contrast, when the entire object is passed, only a single remote method invocation is
needed. This is called coarse-grained access. It will still be necessary to invoke the individual
methods, but these are local to the client. Fine-grained access becomes more of a problem
when the client resides on a different JVM.

One coarse-grained remote procedure call followed by multiple "local" method calls in the
client is more efficient than multiple fine-grained remote procedure calls. If it is necessary to 
modify the original object, then fine-grained access for the setter type methods is required 
along with its performance penalties.

When passing or returning an object in a different JVM, the object is passed by value. That is,
a copy of the object is passed to the client. Should the client attempt to modify the object, only
the copy of the object is modified. The original object is not touched.

When passing an object by value it is a good idea to pass an immutable object so as to make
it clear that it cannot be modified. The creation of an immutable object means at minimum 
the class should not have setter type methods.

Using an asynchronous method to create a
background process

Accessing an EJB synchronously allows the client to continue its work without having to wait
for the EJB to return. This can be used in one of two ways. The first technique is done in 
an "invoke and forget" manner where the request is made of the EJB and the client is not
concerned about the success or failure of the request. The second technique invokes the
method but does not wait for the method to complete. The method returns a Future object.
This object is used later to determine the result of the request. 

In this recipe, we will develop a stateless PrintServlet EJB with two methods:
printAndForget and printAndCheckLater, used to demonstrate the use of
asynchronous methods.

How to do it...
Create a Java EE application called AsynchronousExample. Add a packt package to the
EJB module and a stateless EJB called PrintBean. Add a servlet package to the WAR
module and a servlet called PrintServlet. The PrintServlet uses the PrintBean to
simulate the printing of a message.

First, let's start with the PrintBean. Create the stateless session bean with two methods:
printAndForget and printAndCheckLater, as shown here:

@Stateless 
@LocalBean 
public class PrintBean {



Session Beans

�2

@Asynchronous
public void printAndForget() {
System.out.println("***printAndForget  ***");
}
@Asynchronous
public Future<String> printAndCheckLater() {
System.out.println("***printAndCheckLater ***");
return new AsyncResult<String>("OK");
}

}

Next, in the PrintServlet create an instance of PrintBean and use the two asynchronous
methods. The printAndCheckLater method will return the value assigned to the
AsyncResult object. Later, the futureResult instance's get method returns the results.

public class PrintServlet extends HttpServlet {
@EJB
PrintBean printBean;
protected void processRequest(HttpServletRequest request,  
HttpServletResponse response)
throws ServletException, IOException {
response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();
try {
printBean.printAndForget();
out.println("<html>");
out.println("<head>");
out.println("<title>Servlet PrintServlet</title>");  
out.println("</head>");
out.println("<body>");
out.println("<h3>printAndForget executed</h3>");
Future<String> futureResult = printBean.printAndCheckLater();
String result = "";
try {
result = futureResult.get();
} catch (InterruptedException ex) {
Logger.getLogger(PrintServlet.class.getName()). 
log(Level.SEVERE, null, ex);
} catch (ExecutionException ex) {



Chapter 2

�3

Logger.getLogger(PrintServlet.class.getName()). 
log(Level.SEVERE, null, ex);
}
out.println("<h3>printAndCheckLater executed - Result: " +  
result + "</h3>");
out.println("</body>");
out.println("</html>");
} finally { 
out.close();
}
} 

}

When executed, the printAndForget method does exactly that. The
printAndCheckLater method returns as "OK", as seen in the following screenshot.

How it works...
Let's examine the printAndForget method first. The method was preceded with the 
@Asynchronous annotation. This designated the method as an asynchronous method. Since
the method returns void, the method was not obligated to return the success or failure of
the request to the client. In addition, the use of the @Asynchronous annotation means the
method will return immediately and not block until the completion of the method.

The printAndCheckLater method, in contrast, returned a Future object. This object was
used later in the servlet to obtain the results of the printAndCheckLater execution. An
AsyncResult is a class that implements the Future interface. It is not used directly by
the client but is a way of associating the result of the method with the Future object that is
returned immediately.



Session Beans

�4

There's more...
The Future object can be used not only to get the results but also to cancel an asynchronous
invocation in some situations or determine if the invocation is complete. The Future object's
cancel method is used to cancel the task. The isCancelled and isDone methods  
return Boolean values reflecting whether the task has been cancelled or whether it is  
done respectively.



3
Message-Driven 

Beans

In this chapter, we will cover:

Handling a text-based message

Handling a byte-based message

Handling a stream-based message

Handling a map-based message

Handling an object-based message

Using MDB in a publish-and-subscribe application

Using MDB in a point-to-point application

Specifying which types of messages to receive using the message selector

Browsing messages in a message queue

Introduction
A Message-Driven Bean (MDB) implements business logic in an asynchronous fashion. The
client does not receive a response to the message from the MDB. A client will send a message
to a queue or topic. The message is then retrieved and processed by the MDB. A queue differs
from a topic in that a message in a queue is sent to a single MDB. In contrast, a message in a
topic will be sent to each MDB that is registered with that topic.





















Message-Driven Beans

�6

From the client's perspective, the MDB is anonymous. There is no way for the client to identify
or otherwise select a specific MDB. The EJB container decides which MDB object to use in 
response to a request. In order to send a message to an MDB, the client can use dependency
injection or JNDI lookup to locate the queue or topic.

MDBs are managed by the server EJB container. The EJB container will treat all instances of
the same MDB class identically. A message will be delivered to the next available instance
of the MDB. The container will create and destroy MDBs as necessary. While an MDB has
no conversational state, instance variables in an MDB may hold information needed to work
correctly. This can include database connection and references to other EJBs.

An MDB may use a MessageDrivenContext to obtain information regarding the server's
EJB container. This interface is based on the EJBContext interface that deals with
transaction and security issues among other things. The MessageDrivenContext  
will be addressed in other chapters.

The Java EE server uses Java Message Service (JMS) to support MDBs. Many of the details
of JMS are hidden, making the use of MDBs easier. As a result, MDBs should not attempt 
to use the JMS to acknowledge the receipt of messages. This type of response is handled
by the container. While not covered here, MDBs can be driven by other connector-driven
technologies. For example, the Java EE Connector Architecture (JCA) provides a means 
of interfacing with Enterprise Information Systems (EIS). These types of technologies can
expand the potential uses of MDBs.

The creation of an MDB involves three tasks:

1. Using the @MessageDriven annotation to designate the class as an MDB

2. Implementing the javax.jms.MessageListener interface for JMS-driven beans

3. Overriding the onMessage method

The MDB must be defined as public and cannot be declared as final or abstract. In addition, it 
needs a public default constructor and cannot have a finalize method.

The javax.jms.MessageListener interface has a single method, onMessage. This
method is passed a javax.jms.Message object. Five sub-interfaces exist based on the
Message interface:

TextMessage – A Java String object 

BytesMessage – An unformatted stream of bytes 

StreamMessage – A stream of bytes based on primitive Java data types

MapMessage – A set of key/value pairs 

ObjectMessage – Contains a Java object

When a message is sent to the onMessage method, the message is cast to one of these
interface types and processed.













Chapter 3

�7

There are two life cycle call back methods used with MDBs: PostConstruct and
PreDestroy. The PostConstruct annotated method will be invoked after the MDB has
been created and before any business methods of the MDB are used (and after dependency
injection has been done). The PreDestroy annotated method will be called before the MDB
is destroyed. The PreDestroy method may not be invoked if the EJB container crashes or a
system exception is thrown by the MDB. 

When a method of an MDB instance is invoked, it will be executed to completion before that
instance of the MDB is called again. This means that MDBs do not have to be re-entrant. The
calls to an MDB are done in a serial fashion. However, if a client sends out multiple messages
to the server containing an MDB, there is no guarantee the same MDB instance will be used
for each message or that the messages will be processed in the same order the client sent
them. This means that the application should be designed to handle messages arriving out 
of order.

For example, an MDB may be created to receive a bill and then process the bill. If the order in
which the bills are processed is important, then special processing may be required to ensure
they are handled in the correct order. If an MDB is designed to receive commands and then
add a command entry in a log, the command to close the log may arrive before a message to
append an entry.

As mentioned before, there are several types of messages that can be sent to an MDB. In this
chapter, we will compare and contrasts these types by developing five different applications 
using the five different types of messages to send an order to an MDB for processing. An 
order will consist of a part number (12345), a weight (12.5f) and a quantity (50). Each
application will use a servlet to compose the message but will send it with a different
Message derived interface.

Each servlet uses the same structure as illustrated below. Both doGet and doPost methods
are used to call a common processRequest method that contains the code for the client.

public class ServletName extends HttpServlet {

@Resource(mappedName="jms/SomeMessageFactory")
private QueueConnectionFactory queueConnectionFactory;

@Resource(mappedName="jms/SomeMessageQueue")
private Queue queue;
protected void processRequest(HttpServletRequest request,  

HttpServletResponse response)
throws ServletException, IOException {
response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();
try {

Connection connection;
try {



Message-Driven Beans

88

connection = queueConnectionFactory.createConnection();
Session session = connection.createSession(false,  

Session.AUTO_ACKNOWLEDGE);
MessageProducer messageProducer = (MessageProducer)  

session.createProducer(queue);
// Create message
// Initialize message

messageProducer.send(SomeMessage);
System.out.println("---> Text Message Sent");

} catch (JMSException ex) {
Logger.getLogger(TextServlet.class.getName()). 
log(Level.SEVERE, null, ex);

}

// HTML output            
} finally { 

out.close();
}

}
}

@Override
protected void doGet(HttpServletRequest request,  

HttpServletResponse response)
throws ServletException, IOException {
processRequest(request, response);

}

@Override
protected void doPost(HttpServletRequest request,  

HttpServletResponse response)
throws ServletException, IOException {
processRequest(request, response);

}

The servlet is declared and a queueConnectionFactory and queue variables are
injected using the @Resource annotation. In this example, the mappedName attribute was
assigned a value of jms/SomeMessageFactory and jms/SomeMessageQueue for the
queueConnectionFactory and queue variables respectively. The creation of the queue
and factory along with the assignment of their names will need to be done using the EE
server. In GlassFish, this is done from the administration console under JMS Resources.
You can use whatever naming convention you want, just be consistent.

In the servlet's processRequest method, a Connection variable is declared. A try block is
used to catch javax.jms.JMSException. 



Chapter 3

89

The process of connecting to a queue and sending a message to the queue involves:

1. Establishing a connection using the Connection object
2. Creating a Session object that represents the communications between the servlet

and the queue.  It is also used to send the message.
3. Creating a MessageProducer object to create the Message 

The connection to the queue/topic is established using the QueueConnectionFactory 
interface's createConnection method. Once a connection is made, a Session object is
declared and initialized using the connection.

The first parameter of the createSession method determines whether the connection
needs to support transactions. We used false since we are not using transactions in this
chapter. The second parameter specifies the acknowledge mode used. For this chapter 
we will use auto-acknowledge.

Before a message can be created, the Session object creates a MessageProducer object.
At this point, we can use any one of several MessageProducer create type methods to
create the message type of interest.

This code is followed by a message-type specific sequence of statements used to create and 
initialize the message. The last part of the try block will use the Session object to send the
message to the destination queue/topic.

The actual MDB is annotated with @MessageDriven. The following illustrates a typical MDB
structure. Notice the implementation of the MessageListener interface and the presence
of the onMessage method.

@MessageDriven(mappedName = "jms/MapQueue",  
activationConfig =  { 

@ActivationConfigProperty(propertyName = "acknowledgeMode",  
propertyValue = "Auto-acknowledge"),
@ActivationConfigProperty(propertyName = "destinationType",  
propertyValue = "javax.jms.Queue")

}) 
public class SampleMDB implements MessageListener {

...
public void onMessage(Message message) {
...        
}

}

The @MessageDriven annotation uses a mappedName element and an activationConfig
element to declare the class. The mappedName element is assigned the name of the 
queue to associate with this MDB. In this example the queue name is jms/MapQueue. 
The mappedName attribute is vendor-specific and is frequently a JNDI name.



Message-Driven Beans

�0

The activationConfig element is a bit more complex. In this example, two 
@ActivationConfigProperty annotations are used to further define the characteristics  
of the MDB. The first one establishes how JMS is to acknowledge the receipt of a message 
from a client. The second one indicates the destination type. The acknowledgement is
auto-acknowledge and the destination is a JMS Queue.

There are two common techniques for structuring an MDB application:

Point-to-Point – One or more producers will send messages to a queue. These
messages are then consumed by one or more consumers (MDBs). Once removed
from a queue it is no longer available to other consumers.

Publish/Subscribe – One or more producers will send messages to a topic. Each
message in the topic will then be sent to each consumer (MDB) that is currently
subscribing to the topic.

When a message is placed in a queue it will remain there until it is removed and sent to
an MDB. The QueueBrowser class provides a way of determining the messages currently
in a queue. The Browsing messages in a message queue recipe illustrates the use of the
QueueBrowser.

Sometimes messages of a similar type are sent to the same queue. However, it may be
desirable that the messages be sent to different MDBs based on these differences in
message type. A message selector enables this behavior. The approach is sometimes called
"message filtering" and is illustrated in the Specifying which types of messages to receive
using the message selector recipe.

Handling a string-based message
In this recipe, we will use a TextMessage to send an order to an MDB. The TextMessage
interface uses a String object to hold the order. We will use the java.util.Scanner class
to parse the order information from this string.

Getting ready
The essential structure of a servlet used to generate a message was introduced in the in-
troduction. Here we will address the unique elements of creating and using a TextMessage
which include:

1. Creating a TextMessage using the createTextMessage method

2. Creating a string containing the message

3. Sending the message







Chapter 3

�1

How to do it...
Create a Queue named jms/TextQueue and a QueueConnectionFactory named jms/
TextFactoryPool as described in the introduction. Next, create a Java EE application called
TextMessageApplication. In the EJB module, add a package called packt with an MDB
called TextBean. In the WAR module add a package called servlet and a servlet called
TextServlet.

Create the TextServlet as follows. The doGet and doPost methods are not listed here.

public class TextServlet extends HttpServlet {

@Resource(mappedName="jms/TextFactoryPool")
private QueueConnectionFactory queueConnectionFactory;
@Resource(mappedName="jms/TextQueue")
private Queue queue;

protected void processRequest(HttpServletRequest request,  
HttpServletResponse response)
throws ServletException, IOException {
response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();
try {

Connection connection;

try {
connection = queueConnectionFactory.createConnection();
Session session = connection.createSession(false,  

Session.AUTO_ACKNOWLEDGE);
MessageProducer messageProducer = (MessageProducer)  

session.createProducer(queue);
TextMessage textMessage = session.createTextMessage();

// Part number – 12345
// Weight – 12.5f
// Quantity - 50

String message = "12345 12.5 50";
textMessage.setText(message);
messageProducer.send(textMessage);
System.out.println("---> Text Message Sent");

} catch (JMSException ex) {
Logger.getLogger(TextServlet.class.getName()). 

log(Level.SEVERE, null, ex);
}



Message-Driven Beans

�2

out.println("<html>");
out.println("<head>");
out.println("<title>Servlet TextServlet</title>");  
out.println("</head>");
out.println("<body>");
out.println("<h1>Servlet TextServlet at " +  

request.getContextPath () + "</h1>");
out.println("</body>");
out.println("</html>");

} finally { 
out.close();

}
}

}

Next, let's look at the TextBean. Use the @MessageDriven annotation to designate the 
EJB as an MDB. Be sure to implement the MessageListener interface and add the 
onMessage method.

@MessageDriven(mappedName = "jms/TextQueue", activationConfig = { 
@ActivationConfigProperty(propertyName = "acknowledgeMode",  
propertyValue = "Auto-acknowledge"), 
@ActivationConfigProperty(propertyName = "destinationType",  
propertyValue = "javax.jms.Queue") 

}) 
public class TextBean implements MessageListener {

public TextBean() {
}

public void onMessage(Message message) {
TextMessage textMessage = (TextMessage) message;
try {
Scanner scanner = new Scanner(textMessage.getText());
System.out.println("---> Part Number: " + scanner.nextInt());
System.out.println("---> Weight: " + scanner.nextFloat());
System.out.println("---> Quantity: " + scanner.nextInt());
System.out.println("---> TextMessage Received");

} catch (JMSException ex) {
Logger.getLogger(TextBean.class.getName()).log(Level.SEVERE,  

null, ex);
}

}

}



Chapter 3

�3

Execute the servlet. The server's log will display the output of the println methods.

INFO: ---> Text Message Sent

INFO: ---> Part Number: 12345

INFO: ---> Weight: 12.5

INFO: ---> Quantity: 50

INFO: ---> TextMessage Received

How it works...
In the TextServlet, the @Resource annotation injected a QueueConnectionFactory
and a Queue. The general details of connecting to a Queue are detailed in the introduction.
Notice that we used the jms/TextQueue in this example.

In the processRequest method, the TextMessage was created using the session's
createTextMessage method. A string was declared to hold the parts information (part
number, weight, and quantity) and was then assigned to the TextMessage with the setText
method. Next, the MessageProducer object's send method transferred the message to  
the queue.

The TextBean started with the @MessageDriven annotation and used the mappedName
attribute to specify the queue used. Two @ActivationConfigProperty elements were used to
specify the acknowledgement mode and that the destination is a queue.

The Message received in the onMessage method was cast to a TextMessage. A Scanner
object was created to retrieve the individual elements of the order. Using the nextInt and
nextFloat methods, the elements of the message were easily extracted and displayed.

There's more...
Once the TextMessage object has been created in the servlet, writing to and
reading from TextMessage is permitted. When it is received by the MDB, it is in 
a read-only mode. Attempts to write to the message will result in a javax.jms.
MessageNotWriteableException. However, the clearBody method in the MDB 
can be used to permit subsequent writing and reading of the message. Normally, this
is not necessary.

This example illustrates a simple use of the TextMessage. Using an ObjectMessage may
be the best approach for handling orders or similar object-oriented requests. However, the
TextMessage is well suited for XML type messages.



Message-Driven Beans

�4

See also
The first five recipes present alternative techniques for sending messages.

Handling a byte-based message
Sometimes it is necessary to send an unformatted stream of bytes as a message. This recipe
illustrates this process using the BytesMessage interface. However, when possible, other
message types such as string and objects should be used.

The advantages of using an unformatted stream of bytes include ease of read and write
operations and a fixed size message. When data is written or read using the BytesMessage
methods, it is stored using the appropriate primitive data format. For example, when an
integer is written, it will be stored as a 32-bit two's complement number. The size of the
number will always be four bytes regardless of the number of digits comprising the number.

Getting ready
The essential structure of a servlet used to generate a message was introduced in
the introduction. Here we will address the unique elements of creating and using a
BytesMessage which include:

1. Creating a BytesMessage using the createBytesMessage method

2. Writing values to the BytesMessage

3. Sending the message

How to do it...
Create a Queue named jms/PartsQueue and a QueueConnectionFactory named jms/
PartsFactory as described in the introduction. Next, create a Java EE application called
BytesMessageApplication. In the EJB module add a package called packt and then an
MDB called PartsBean. In the WAR module create a package called servlet with a servlet
called PartsServlet.

Create the PartsServlet as follows. The doGet and doPost methods are not listed here.

public class PartsServlet extends HttpServlet { 
@Resource(mappedName="jms/PartsFactory")
private QueueConnectionFactory queueConnectionFactory;
@Resource(mappedName="jms/PartsQueue")
private Queue queue;

protected void processRequest(HttpServletRequest request,  
HttpServletResponse response)



Chapter 3

�5

throws ServletException, IOException {
response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();
try {

Connection connection;

try {
connection = queueConnectionFactory.createConnection();
Session session = connection.createSession(false,  

Session.AUTO_ACKNOWLEDGE);
MessageProducer messageProducer = (MessageProducer)  

session.createProducer(queue);
BytesMessage bytesMessage = session.createBytesMessage();
bytesMessage.writeInt(12345);   // part number
bytesMessage.writeFloat(12.5f); // weight
bytesMessage.writeInt(50);      // quantity
messageProducer.send(bytesMessage);
System.out.println("---> comment sent");

} catch (JMSException ex) {
Logger.getLogger(PartsServlet.class.getName()). 

log(Level.SEVERE, null, ex);
}
out.println("<html>");
out.println("<head>");
out.println("<title>Servlet PartsServlet</title>");  
out.println("</head>");
out.println("<body>");
out.println("<h1>Servlet PartsServlet at " +  

request.getContextPath () + "</h1>");
out.println("</body>");
out.println("</html>");

} finally { 
out.close();

}
}

The PartsBean starts with the @MessageDriven annotation where we specify we want to
listen to the jms/PartsQueue. The onMessage method receives a BytesMessage and 
is displayed.

@MessageDriven(mappedName = "jms/PartsQueue", activationConfig =  { 
@ActivationConfigProperty(propertyName = "acknowledgeMode",  
propertyValue = "Auto-acknowledge"), 
@ActivationConfigProperty(propertyName = "destinationType",  
propertyValue = "javax.jms.Queue")



Message-Driven Beans

�6

}) 
public class PartsBean implements MessageListener {

public PartsBean() {
}

public void onMessage(Message message) {
BytesMessage bytesMessage = (BytesMessage) message;
try {
System.out.println("Part Numer: " + bytesMessage.readInt());
System.out.println("Weight: " + bytesMessage.readFloat());
System.out.println("Quantity: " + bytesMessage.readInt());

} catch (JMSException ex) {
Logger.getLogger(PartsBean.class.getName()).log(Level.SEVERE,  

null, ex);
}
System.out.println("---> parts received");

}

}

Execute the PartsServlet. The output will appear as follows:

INFO: ---> comment sent

INFO: Part Numer: 12345

INFO: Weight: 12.5

INFO: Quantity: 50

INFO: ---> parts received

How it works...
In the PartsServlet, the @Resource annotation injected a QueueConnectionFactory
and a Queue. This chapter's introduction details the process for establishing a connection to a
queue. In this application we use the jms/PartsQueue.

The interesting part is the creation and use of the BytesMessage. The Session object's
createByteMessage method returns a BytesMessage object. The methods available to
this object are similar to those used by the java.io.DataOutputStream. In this example,
we wrote the order's parts ID number, weight, and quantity to the BytesMessage object
using the writeInt and writeFloat methods. As the method's names imply, one writes
out an integer and the other a float. Once all needed information was written, the message 
was sent to the jms/PartsQueue using the send method.



Chapter 3

�7

The PartsBean started with the @MessageDriven annotation and used the mappedName
attribute to specify the queue used. Two @ActivationConfigProperty elements were used to
specify the acknowledgement mode and that the destination was a queue.

The Message received in the onMessage method was cast to a BytesMessage. The
BytesMessage object's methods are similar to that of the java.io.DataInputStream.
Using the readInt and readFloat methods, the elements of the message were easily
extracted and displayed.

There's more...
Note that it is possible to write data out as one data type and read it in using a different 
type. For example, an integer is written out as a four byte two's complement number. On
the receiving end, the same four byte quantity can be read as two short values. While this
is possible, it does not make sense to interpret the data using different data types in
most situations.

When the BytesMessage object is first created it is placed in a write-only mode. The client is 
able to write to it. Once the message is received, the message is in a read-only mode.

The Message object's clearBody method has the effect of clearing out the contents of the
message and placing the message in a write-only mode. It is possible for the client to send
the message and then continue writing to the BytesMessage object. However, subsequent
writing does not affect the message previously sent. The BytesMessage object can be sent
multiple times if necessary.

There are several methods of the BytesMessage object that permit the writing and reading
of Java's primitive data types and strings along with the writing of an unsigned byte and short
value. In addition, the getBodyLength returns the length of the message body. This method
is only available when the message is in the read-only mode.

See also
The StreamMessage, as described in the next recipe, is similar to the BytesMessage
interface. However, it requires that for each write operation of a specific data type, the 
corresponding read data type operation be performed on the receiving end.

Handling a stream-based message
Sometimes it is desirable to send a stream of primitive values as a message. This recipe
illustrates this process using the StreamMessage interface.



Message-Driven Beans

98

The advantages of using a stream of bytes are essentially the same as those for the
BytesMessage: ease of read and write operations and a fixed size message. Data is written 
or read by storing the data in primitive format. In addition, information about the type of
data written is also stored. This means that if an integer is written then only a corresponding
integer read operation can be used against the data.

The StreamMessage interface differs from the BytesMessage in that data stored using
StreamMessage interface incorporates information about the data type. This prevents
mismatched read/write operations that can occur in BytesMessage message. 

Getting ready
The essential structure of a servlet used to generate a message was introduced in
the introduction. Here we will address the unique elements of creating and using a
StreamMessage which include:

1. Creating a StreamMessage using the createStreamMessage method

2. Writing values to the BytesMessage

3. Sending the message

How to do it...
Create a Queue named jms/ItemsQueue and a QueueConnectionFactory named jms/
ItemsFactory as described in the introduction. Next, create a Java EE application called
StreamMessageApplication. In the EJB module add a package called packt and then an
MDB called ItemBean. When creating the MDB use a queue named jms/ItemsQueue. In
the WAR module add a package called servlet with a servlet called ItemsServlet.

The ItemsServlet follows. The doGet and doPost methods are not listed here.

public class ItemsServlet extends HttpServlet {

@Resource(mappedName="jms/ItemsFactory")
private QueueConnectionFactory queueConnectionFactory;
@Resource(mappedName="jms/ItemsQueue")
private Queue queue;

protected void processRequest(HttpServletRequest request,  
HttpServletResponse response)
throws ServletException, IOException {
response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();
try {

Connection connection;



Chapter 3

99

try {
connection = queueConnectionFactory.createConnection();
Session session = connection.createSession(false,  

Session.AUTO_ACKNOWLEDGE);
MessageProducer messageProducer = (MessageProducer)  

session.createProducer(queue);
StreamMessage streamMessage =  

session.createStreamMessage();
streamMessage.writeInt(12345);   // part number
streamMessage.writeFloat(12.5f); // weight
streamMessage.writeInt(50);      // quantity
messageProducer.send(streamMessage);
System.out.println("---> Item sent");

} catch (JMSException ex) {
Logger.getLogger(ItemsServlet.class.getName()). 

log(Level.SEVERE, null, ex);
}
out.println("<html>");
out.println("<head>");
out.println("<title>Servlet ItemsServlet</title>");
out.println("</head>");
out.println("<body>");
out.println("<h1>Servlet ItemsServlet at " +  

request.getContextPath () + "</h1>");
out.println("</body>");
out.println("</html>");

} finally {
out.close();

}
}

Next, create the ItemBean. Notice that jms/ItemsQueue is used in the @MessageDriven
annotation. In the onMessage method, the message elements are retrieved and displayed.

@MessageDriven(mappedName = "jms/ItemsQueue", activationConfig =  { 
@ActivationConfigProperty(propertyName = "acknowledgeMode",  
propertyValue = "Auto-acknowledge"), 
@ActivationConfigProperty(propertyName = "destinationType",  
propertyValue = "javax.jms.Queue") 

}) 
public class ItemBean implements MessageListener {

public ItemBean() {
}



Message-Driven Beans

100

public void onMessage(Message message) {
StreamMessage streamMessage = (StreamMessage) message;
try {
System.out.println("Part Number: " + streamMessage.readInt());
System.out.println("Weight: " + streamMessage.readFloat());
System.out.println("Quantity: " + streamMessage.readInt());

} catch (JMSException ex) {
Logger.getLogger(ItemBean.class.getName()).log(Level.SEVERE,  

null, ex);
}
System.out.println("---> Item received");

}

}

Execute the PartsServlet. The output will appear as follows:

INFO: ---> Item sent

INFO: Part Number: 12345

INFO: Weight: 12.5

INFO: Quantity: 50

INFO: ---> Item received

How it works...
In the ItemsServlet, the @Resource annotation injected a QueueConnectionFactory
and a Queue. This chapter's introduction details the process for establishing a connection
to a queue. 

The Session object's createStreamMessage method returns a StreamMessage object.
As with the BytesMessage, the read/write methods result in the data being stored using
primitive data format. In this example, we wrote a parts ID number, weight, and quantity to
order to the streamMessage object using the writeInt and writeFloat methods. Once
all needed information was written, the message was sent to the jms/ItemsQueue using the
send method.

Let's examine the ItemBean next. In the @MessageDriven annotation the mappedName was
set to jms/ItemsQueue. In the onMessage method, the message received was cast to a
StreamMessage and read type methods were used to extract the part information.



Chapter 3

101

There's more...
When the StreamMessage object is first created it is placed in a write-only mode. The client 
is able to write to it. Once the message is received, the message is in a read-only mode.

As with the BytesMessage, it is possible for the client to send the message and then
continue writing to the StreamMessage object. Subsequent writing does not affect the
message previously sent. Sending the StreamMessage object to the queue multiple times 
is permitted.

There are other methods available to write and read primitive data. In addition, the
getBodyLength returns the length of the message body. However, this method is only
available when the message is in the read-only mode.

See also
The BytesMessage is similar to the StreamMessage interface except that it does not
require that for each write operation of a specific data type, the corresponding read data 
type operation be performed. See the Handling byte-based message recipe.

Handling a map-based message
The MapMessage interface supports a message consisting of a set of mapped key/value
pairs. This is similar to the Java HashMap class where a key, such as a name, can be assigned
a value, such as a telephone number. It allows this type of information to be transferred as a
set of key/value pairs. In this recipe we will develop an application that illustrates their use.

Getting ready
The essential structure of a servlet used to generate a message was introduced in the in-
troduction. Here we will address the unique elements of creating and using a MapMessage
which include:

1. Creating a MapMessage using the createMapMessage method

2. Writing key/value pairs to the MapMessage

3. Sending the message



Message-Driven Beans

102

How to do it...
Create a Queue named jms/MapQueue and a QueueConnectionFactory named jms/
MapFactory as described in the introduction. Next, create a Java EE application called
MapMessageApplication. In the EJB module add a package called packt and then an
MDB called MapBean. When creating the MDB use a queue named jms/MapQueue. In the
WAR module add a package called servlet with a servlet called MapServlet.

The MapServlet follows. The doGet and doPost methods are not listed here.

public class MapServlet extends HttpServlet {

@Resource(mappedName="jms/MapFactory")
private QueueConnectionFactory queueConnectionFactory;
@Resource(mappedName="jms/MapQueue")
private Queue queue;

protected void processRequest(HttpServletRequest request,  
HttpServletResponse response)
throws ServletException, IOException {
response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();
try {

Connection connection;

try {
connection = queueConnectionFactory.createConnection();
Session session = connection.createSession(false,  

Session.AUTO_ACKNOWLEDGE);
MessageProducer messageProducer = (MessageProducer)  

session.createProducer(queue);
MapMessage mapMessage = session.createMapMessage();
mapMessage.setInt("PartNumber",12345);
mapMessage.setFloat("Weight",12.5f);
mapMessage.setInt("Quantity",50);
messageProducer.send(mapMessage);
System.out.println("---> mapMessage sent " +  

mapMessage.getInt("PartNumber"));
} catch (JMSException ex) {

Logger.getLogger(MapServlet.class.getName()). 
log(Level.SEVERE, null, ex);

}

out.println("<html>");
out.println("<head>");



Chapter 3

103

out.println("<title>Servlet MapServlet</title>");  
out.println("</head>");
out.println("<body>");
out.println("<h1>Servlet MapServlet at " +  

request.getContextPath () + "</h1>");
out.println("</body>");
out.println("</html>");

} finally { 
out.close();

}
}

The MapBean uses the jms/MapQueue. In the onMessage method the message is cast to a
MapMessage and its paired key/values are retrieved and displayed.

@MessageDriven(mappedName = "jms/MapQueue", activationConfig =  { 
@ActivationConfigProperty(propertyName = "acknowledgeMode",  
propertyValue = "Auto-acknowledge"), 
@ActivationConfigProperty(propertyName = "destinationType",  
propertyValue = "javax.jms.Queue")

}) 
public class MapBean implements MessageListener {

public MapBean() {
}

public void onMessage(Message message) {
MapMessage mapMessage = (MapMessage) message;
try {
System.out.println("Part Number: " +  

mapMessage.getInt("PartNumber"));
System.out.println("Weight: " + mapMessage.getFloat("Weight"));
System.out.println("Quantity: " +  

mapMessage.getInt("Quantity"));

} catch (JMSException ex) {
Logger.getLogger(MapBean.class.getName()).log(Level.SEVERE,  

null, ex);
}
System.out.println("---> map message received");

}

}



Message-Driven Beans

104

Execute the MapServlet. The output will appear as follows:

INFO: ---> mapMessage sent 12345

INFO: Part Number: 12345

INFO: Weight: 12.5

INFO: Quantity: 50

INFO: ---> map message received

How it works...
In the MapServlet, the @Resource annotation injected a QueueConnectionFactory and 
a Queue. This chapter's introduction discusses the process for establishing a connection  
to a queue. 

Once a MapMessage object was created, a series of set methods were used to store the 
order information. The argument of each method used a set of key/value pair representing
the order's fields. The key was a string and the value was either a Java primitive data type or 
a string. Null keys and values are not permitted. The message was then sent.

In the MapBean, the @MessageDriven annotation used the mappedName attribute to
specify the queue used. Two @ActivationConfigProperty elements were used to specify the
acknowledgement mode and that the destination was a queue.

The MapBean received the message and cast it to a MapMessage in the onMessage method.
A series of get methods were used to retrieve the order information. Each method argument
corresponded to the key of the map values.

There's more...
When an instance of the MapMessage is created in the MapServlet, key/value pairs can be
written to the message and read from the message. Normally, only write operations are used
here. When MapMessage is received by an MDB it is in a read-only mode.

The itemExists method accepts a string and returns a boolean value indicating whether
that key specified by its argument exists in the map. This can be useful in determining 
whether a message has assigned a particular key to a message.

The getMapNames method returns a java.util.Enumeration object. This method
allows the retrieval of all key/value pairs without necessarily knowing what pairs make 
up the map. If we wanted to list all of the key/value pairs we could use the Enumeration's
hasMoreElements and nextElement methods to traverse the enumeration. It is necessary
to cast the return of the nextElement method to String because they are stored in the
map as an object.



Chapter 3

105

System.out.println("List of key/value pairs");
Enumeration enumeration = mapMessage.getMapNames();
while(enumeration.hasMoreElements()) {

String key = (String)enumeration.nextElement();
System.out.println(key + ": " +  
mapMessage.getString(key));

}

The output of this code sequence, when added to the end of the try block in the onMessage
method, follows:

INFO: List of key/value pairs

INFO: Quantity: 50

INFO: Weight: 12.5

INFO: PartNumber: 12345

Notice that only string keys and primitive values can be used. It is possible to use a setBytes
and a setObject method to construct a message. However, the setObject method only
works for primitive data types such as Integer. As a result, serialization of the key/value pairs
is not an issue.

See also
The first five recipes present alternative techniques for sending messages.

Handling an object-based message
This is the last in the series of recipes illustrating how to send an order type message.
In this recipe we will use a simple Java class called Order to represent the order and 
an ObjectMessage object to encapsulate the Order object. Since an order is best
represented as a class, the ObjectMessage is the preferred technique for sending 
an order.

Getting ready
The essential structure of a servlet used to generate a message was introduced in
the introduction. Here we will address the unique elements of creating and using an
ObjectMessage which include:

1. Creating an ObjectMessage using the createObjectMessage method

2. Attaching the object to the ObjectMessage using the setObject method

3. Sending the message



Message-Driven Beans

106

How to do it...
Create a Queue named jms/OrderQueue and a QueueConnectionFactory named
jms/OrderFactory as described in the introduction. Next, create a Java EE application
called ObjectMessageApplication. In the EJB module add a package called packt with
an MDB called OrderBean. Also, add a Java class called Order. In the WAR module add a
package called servlet and a servlet called OrderServlet.

Let's start with the Order class which, as its names implies, encapsulates an order. It 
holds the part number, weight, and quantity as private variables. The Order class needs to
implement the Serializable interface. Otherwise, it would not be possible to send it across
the network. Setter/getter methods are provided to facilitate access to the member variables.

package packt;

import java.io.Serializable;

public class Order implements Serializable {
private int partNumber;
private float weight;
private int quantity;
public Order(int partNumber, float weight, int quantity) {
this.partNumber = partNumber;
this.weight = weight;
this.quantity = quantity;
}
public int getPartNumber() {
return partNumber;
}
public void setPartNumber(int partNumber) {
this.partNumber = partNumber;
}
public int getQuantity() {
return quantity;
}
public void setQuantity(int quantity) {
this.quantity = quantity;
}
public float getWeight() {



Chapter 3

107

return weight;
}

public void setWeight(float weight) {
this.weight = weight;

}

}

Next, add the OrderServlet. Once again, the doGet and doPost methods are not shown.

public class OrderServlet extends HttpServlet {

@Resource(mappedName="jms/OrderFactoryPool")
private QueueConnectionFactory queueConnectionFactory;
@Resource(mappedName="jms/OrderQueue")
private Queue queue;

protected void processRequest(HttpServletRequest request,  
HttpServletResponse response)
throws ServletException, IOException {
response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();
try {

Connection connection;

try {
connection = queueConnectionFactory.createConnection();
Session session = connection.createSession(false,  

Session.AUTO_ACKNOWLEDGE);
MessageProducer messageProducer = (MessageProducer)  

session.createProducer(queue);
ObjectMessage objectMessage =  

session.createObjectMessage();
objectMessage.setObject(new Order(1234,12.5f,50));
messageProducer.send(objectMessage);
System.out.println("---> objectMessage sent ");

} catch (JMSException ex) {
Logger.getLogger(OrderServlet.class.getName()). 

log(Level.SEVERE, null, ex);
}

out.println("<html>");
out.println("<head>");



Message-Driven Beans

8

out.println("<title>Servlet OrderServlet</title>");  
out.println("</head>");
out.println("<body>");
out.println("<h1>Servlet OrderServlet at " +  

request.getContextPath () + "</h1>");
out.println("</body>");
out.println("</html>");

} finally { 
out.close();

}
}

Add the OrderBean as shown below:

@MessageDriven(mappedName = "jms/OrderQueue", activationConfig =  {
@ActivationConfigProperty(propertyName = "acknowledgeMode",  
propertyValue = "Auto-acknowledge"), 
@ActivationConfigProperty(propertyName = "destinationType",  
propertyValue = "javax.jms.Queue")
}) 

public class OrderBean implements MessageListener {

public OrderBean() {
}

@Override
public void onMessage(Message message) {

try {
ObjectMessage objectMessage = (ObjectMessage) message;
Order order = (Order)objectMessage.getObject();
System.out.println("Part Number: " + order.getPartNumber());
System.out.println("Weight: " + order.getWeight());
System.out.println("Quantity: " + order.getQuantity());
System.out.println("Order Received");

} catch (JMSException ex) {
Logger.getLogger(OrderBean.class.getName()).log(Level.SEVERE,  

null, ex);
}

}

}



Chapter 3

9

Execute the application using the OrderServlet. The output will reflect the sending and 
reception of the message.

INFO: ---> objectMessage sent 

INFO: Part Number: 1234

INFO: Weight: 12.5

INFO: Quantity: 50

INFO: Order Received

How it works...
In the OrderServlet, the @Resource annotation injected a QueueConnectionFactory
and a Queue. This chapter's introduction details the process for establishing a connection
to a queue.

The ObjectMessage object was created using the createObjectMessage method. Next,
an Order object was created, initialized with the order information and assigned to the
ObjectMessage using the setObject method. The message was then sent to the queue.

In the OrderBean, the @MessageDriven annotation used the mappedName to associate 
the MDB with the jms/OrderQueue. The primary aspect of the OrderBean of interest is
the object's onMessage method which received a message from the jms/OrderQueue. 
The message was cast to an ObjectMessage to obtain the Order object. The values of
the Order object were then processed using the getter methods of the Order class.

See also
The first five recipes present alternative techniques for sending messages.

Using an MDB in a point-to-point application
The first five recipes are point-to-point applications. They represent a simple type of 
point-to-point application as there is only one producer of information, a servlet, and only a
single consumer, the MDB. In this recipe, we will further develop this type of application by
reusing the ObjectMessageApplication developed in the previous recipe.



Message-Driven Beans

110

Getting ready
Make sure you are familiar with the ObjectMessageApplication. We will add a minimal
amount of code to illustrate variations of the point-to-point application architecture. This type
of application is sometimes referred to as a producer-consumer application. One or more
producers will generate messages which are placed in a queue. One or more consumers will
retrieve and process the messages.

How to do it...
In the figure that follows, one or more producers will create items such as a purchase order 
and place them in a queue. At a later time, one or more consumers may pull an item off of the
queue and process it. This decouples the production and consumption of items and can result
in performance enhancements.

The ObjectMessageApplication creates an order that is placed in a queue. More than
one servlet, or other types of client, can generate an order. A single MDB will handle only a
single request at a time. However, with multiple MDBs available in the container, multiple
messages can be consumed concurrently.

A variation of this architecture is where an MDB consumes and sends messages to the
queue. For example, the OrderBean may receive an order and based on factors, such as the
customer's purchase history, decide to provide an additional "bonus" order as thanks for their
patronage. The MDB may then place an additional order as a bonus and add this new order to
the queue.

The following is a modified version of the OrderBean. The @Resource annotations have
been added as instance variables to permit the MDB to send messages to the queue. The
onMessage method has been modified to send a message to the queue under certain 
circumstances.

@MessageDriven(mappedName = "jms/OrderQueue", activationConfig =  {
@ActivationConfigProperty(propertyName = "acknowledgeMode",  
propertyValue = "Auto-acknowledge"),
@ActivationConfigProperty(propertyName = "destinationType",  
propertyValue = "javax.jms.Queue")
})



Chapter 3

111

public class OrderBean implements MessageListener {

// These declarations are used to send out a thank you order
@Resource(mappedName="jms/OrderFactoryPool")
private QueueConnectionFactory queueConnectionFactory;
@Resource(mappedName="jms/OrderQueue")
private Queue queue;

public OrderBean() {
}

@Override
public void onMessage(Message message) {

try {
ObjectMessage objectMessage = (ObjectMessage) message;
Order order = (Order)objectMessage.getObject();
System.out.println("Part Number: " + order.getPartNumber());
System.out.println("Weight: " + order.getWeight());
System.out.println("Quantity: " + order.getQuantity());
System.out.println("Order Received");

// Send out a thank you order
if(order.getQuantity() > 40) {

Connection connection;

try {
connection = queueConnectionFactory.createConnection();
Session session = connection.createSession(false,  

Session.AUTO_ACKNOWLEDGE);
MessageProducer messageProducer = (MessageProducer)  

session.createProducer(queue);
objectMessage = session.createObjectMessage();
objectMessage.setObject(new Order(54321,5.5f,1));
messageProducer.send(objectMessage);
System.out.println("---> Thank you order sent ");

} catch (JMSException ex) {
Logger.getLogger(OrderBean.class.getName()). 

log(Level.SEVERE, null, ex);
}

}

} catch (JMSException ex) {
Logger.getLogger(OrderBean.class.getName()).log(Level.SEVERE,  
null, ex);

}
}

}



Message-Driven Beans

112

Execute the application and observe that the order has been placed from the MDB.

INFO: ---> Thank you order sent 

INFO: Part Number: 54321

INFO: Weight: 5.5

INFO: Quantity: 1

INFO: Order Received

How it works...
To send a message from an MDB we use essentially the same code as that found in the
servlet. The @Resource annotations have been added to allow us to send a message.

A test was made in the onMessage method to determine if the bonus order should be placed.
This was accomplished by determining if the order's quantity was greater than 40. If this was
the case, then a new connection and message was created and sent to the queue.

There's more...
Another version of the architecture uses more than one queue. In some situations the
consumer of the message may need to validate or otherwise process the order. Once the
validation is complete, then it is sent to a second queue. Messages from the second queue
are consumed by another MDB that may actually place the order. The figure below illustrates 
this process.

The advantage of this approach is that the number of MDBs required to perform the validation
versus the order placement can be controlled and administered separately. The time it takes
to validate an order can be more or less than it takes to place the order. Splitting the work
across multiple queues and MDBs provides more flexibility in administrating the overall 
application.

See also
The next recipe illustrates another common architecture for MDBs.



Chapter 3

113

Using MDB in a publish-and-subscribe 
application

The publish-and-subscribe architecture can be useful in keeping track of the availability of
individuals. In this recipe, we will develop an application that uses a topic to monitor and
record when a person is available. That is, when a person is at his/her desk, logged on to a
computer or otherwise able to respond to requests.

Getting ready
A topic is similar to a queue. Messages are sent to a topic just as they are sent to a queue.
However, once there they may be accessed by more than one consumer. The essential
structure of a servlet used to generate a message was introduced in the introduction. 
Here we will address the unique elements of creating and using a topic to support a 
publish-and-subscribe application which include:

1. Creating a message and sending it to the topic
2. Registering a subscriber for the topic
3. Receiving and processing the message

How to do it...
Create a Topic named jms/AvailabilityTopic and a TopicConnectionFactory
named jms/AvailabilityFactoryPool as described in the introduction. Next, create a
new Java EE application called PublishAndSubscribeApplication. In the EJB module
add a package called packt and three classes:

Availability – a simple Java class representing the availability of an individual

LoggingBean – an MDB that logs a person's availability 

SubscriberBean – an MDB that may be interested in whether someone is available 
or not

In the WAR module add a package called servlet with a servlet called
AvailabilityServlet.  

The Availability class associates a name with that person's availability. It consists of a
string variable for a name and a Boolean variable to indicate whether they are available or
not. The class must implement the Serializable interface otherwise the object cannot be
sent as part of a message.

import java.io.Serializable;

public class Availability implements Serializable {









Message-Driven Beans

114

private String name;
private boolean available;

public Availability(String name, boolean available) {
this.name = name;
this.available = available;

}

public boolean isAvailable() {
return available;

}

public String getName() {
return name;

}

}

Next, create the AvailabilityServlet as listed below. The doGet and doPost methods
are not shown.

public class AvailabilityServlet extends HttpServlet {

private Availability availability;
@Resource(mappedName="jms/AvailabilityFactoryPool")
private TopicConnectionFactory topicConnectionFactory;
@Resource(mappedName="jms/AvailabilityTopic")
private Topic topic;

protected void processRequest(HttpServletRequest request,  
HttpServletResponse response)
throws ServletException, IOException {
response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();
try {

Connection connection;
availability = new Availability("Tom",true);

try {
connection = topicConnectionFactory.createConnection();
Session session = connection.createSession(false,  

Session.AUTO_ACKNOWLEDGE);
MessageProducer messageProducer = (MessageProducer)  

session.createProducer(topic);



Chapter 3

115

ObjectMessage availabilityMessage =  
session.createObjectMessage(availability);

availabilityMessage.setStringProperty("test", "tested");
messageProducer.send(availabilityMessage);

System.out.println("---> availability status sent");
} catch (JMSException ex) {

Logger.getLogger(AvailabilityServlet.class.getName()). 
log(Level.SEVERE, null, ex);

}

out.println("<html>");
out.println("<head>");
out.println("<title>Servlet  

AvailabilityServlet</title>");
out.println("</head>");
out.println("<body>");
out.println("<h1>Servlet AvailabilityServlet at " +  

request.getContextPath () + "</h1>");
out.println("</body>");
out.println("</html>");

} finally { 
out.close();

}
}

We will use two MDBs. The LoggingBean EJB logs an individual's availability for later
analysis. The SubscriberBean EJB listens to the messages and indicates it has received
the message.

Add the LoggingBean as follows:

@MessageDriven(mappedName = "jms/AvailabilityTopic",  
activationConfig = {

@ActivationConfigProperty(propertyName = "acknowledgeMode",  
propertyValue = "Auto-acknowledge"),
@ActivationConfigProperty(propertyName = "destinationType",  
propertyValue = "javax.jms.Topic"),
@ActivationConfigProperty(propertyName =  
"subscriptionDurability", propertyValue = "Durable"),
@ActivationConfigProperty(propertyName = "clientId",  
propertyValue = "LoggingBean"),
@ActivationConfigProperty(propertyName = "subscriptionName",  
propertyValue = "LoggingBean") 

}) 
public class LoggingBean implements MessageListener {



Message-Driven Beans

116

public LoggingBean() {
}

public void onMessage(Message message) {
ObjectMessage objectMessage = (ObjectMessage) message;
try {
Availability availability = (Availability)  

objectMessage.getObject();
if(availability.isAvailable()) {

Logger.getLogger(LoggingBean.class.getName()). 
log(Level.SEVERE, 
availability.getName() + " is available");

} else {
Logger.getLogger(LoggingBean.class.getName()). 

log(Level.SEVERE,
availability.getName() + " is not available");

}
System.out.println("---> logging ");

} catch (JMSException ex) {
Logger.getLogger(LoggingBean.class.getName()). 
log(Level.SEVERE, null, ex);

}
}

}

Create the SubscriberBean next.

@MessageDriven(mappedName = "jms/AvailabilityTopic",  
activationConfig =  {
@ActivationConfigProperty(propertyName = "acknowledgeMode",  
propertyValue = "Auto-acknowledge"),
@ActivationConfigProperty(propertyName = "destinationType",  
propertyValue = "javax.jms.Topic"),
@ActivationConfigProperty(propertyName = "subscriptionDurability",  
propertyValue = "Durable"),
@ActivationConfigProperty(propertyName = "clientId",  
propertyValue = "SubscriberBean"),
@ActivationConfigProperty(propertyName = "subscriptionName",  
propertyValue = "SubscriberBean") 

}) 
public class SubscriberBean implements MessageListener {

public SubscriberBean() {
}

public void onMessage(Message message) {
System.out.println("---> subscriber ");

}

}



Chapter 3

117

Execute the AvailabilityServlet.  You will observe the following output in the 
console window:

INFO: ---> availability status sent

INFO: ---> subscriber 

SEVERE: Jonathan is available

INFO: ---> logging

How it works...
The AvailabilityServlet created a message that was sent to a topic. The @Resource
annotation injected a TopicConnectionFactory and a Topic. This chapter's introduction
discusses the process for establishing a connection to a queue. The approach is essentially
the same for a topic except a topic is used instead of a queue.

Notice how the Availability object was created and sent. An ObjectMessge was used
for the message and is discussed in the Handling an object-based message recipe earlier in
this chapter.

The LoggingBean is responsible for maintaining a log of the availability of individuals.  
The @MessageDriven annotation used the mappedName attribute to specify the topic used.
Two @ActivationConfigProperty elements were used to specify the acknowledgement mode
and that the destination was a topic. In addition, three other @ActivationConfigProperty 
elements were set for the topic:

subscriptionDurability – Durable

clientId – LoggingBean

subscriptionName – LoggingBean

A durable message is held in the topic temporarily if the subscriber happens to become
temporarily unavailable. It is sent to the subscriber once the subscriber is able to receive
the message. However, it is necessary for the subscriber to register with the topic using a
unique clientId and subscriptionName as affected by the @ActivationConfigProperty
annotation.

The onMessage method retrieved the Availability object and used the isAvailable
method to determine whether the individual was available or not. It then logged a message to 
that effect.

The SubscriberBean represents an individual or entity that is interested in knowing whether
someone is available or not. Its @MessageDriven annotation is similar to the LoggingBean.
The onMessage implementation simply displayed a message indicating the subscriber has
handled the message.









Message-Driven Beans

8

See also
The Using an MDB in a point-to-point application recipe illustrates another common strategy
for using MDBs. Also, the Handling an object-based message recipe details the use of the
ObjectMessage.

Specifying which types of message to
receive using the message selector

A message selector is a string containing an expression used to control which messages are
consumed by which MDBs. The application used in this recipe submits different messages
to the same queue. The messages are then sent to different MDBs based on their message
selector settings.

Getting ready
The essential structure of a servlet used to generate a message was introduced in the
introduction. We will be using a TextMessage to demonstrate the message selection
process. This message type is discussed earlier in this chapter under the Handling a 
text-based message recipe. Here we will address the unique elements of creating and 
using a TextMessage to support a message selector which include:

1. Creating a message and assigning a type to it

2. Sending the message

3. Specifying the MDB's property to select based on the type message

How to do it...
Create a Queue named jms/PostingsQueue and a QueueConnectionFactory named
jms/PostngsQueueFactory as described in the introduction. Next, create a Java EE
application called MessageSelectorApplication. In the EJB module create a packt
package and two MDBs: PublicPostingBean and PrivatePostingBean. In the WAR
module add a servlet package and a servlet called PostingServlet.

The PostingServlet follows without its doGet and doPost methods. Two TextMessages
are created and sent to the queue.

public class PostingServlet extends HttpServlet {

@Resource(mappedName="jms/PostingsQueueFactory")
private QueueConnectionFactory queueConnectionFactory;
@Resource(mappedName="jms/PostingsQueue")
private Queue queue;



Chapter 3

9

protected void processRequest(HttpServletRequest request,  
HttpServletResponse response)
throws ServletException, IOException {
response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();
try {

Connection connection;

try {
connection = queueConnectionFactory.createConnection();
Session session = connection.createSession(false,  

Session.AUTO_ACKNOWLEDGE);
MessageProducer messageProducer = (MessageProducer)  

session.createProducer(queue);
TextMessage textMessage = session.createTextMessage();

textMessage.setText("For your eyes only");
textMessage.setStringProperty("PostingType", "private");
messageProducer.send(textMessage);
System.out.println("---> Public textMessage sent");

textMessage.setText("Distribute freely");
textMessage.setStringProperty("PostingType", "public");
messageProducer.send(textMessage);
System.out.println("--->Private textMessage sent");

} catch (JMSException ex) {
Logger.getLogger(PostingServlet.class.getName()). 

log(Level.SEVERE, null, ex);
}

out.println("<html>");
out.println("<head>");
out.println("<title>Servlet PostingServlet</title>");  
out.println("</head>");
out.println("<body>");
out.println("<h1>Servlet PostingServlet at " +  

request.getContextPath () + "</h1>");
out.println("</body>");
out.println("</html>");

} finally { 
out.close();

}
}



Message-Driven Beans

120

The PublicPostingBean is created to handle public messages. The selection of public
versus private messages is specified in the @MessageDriven annotation.

@MessageDriven(mappedName = "jms/PostingsQueue",  
activationConfig =  {
@ActivationConfigProperty(propertyName = "acknowledgeMode",  
propertyValue = "Auto-acknowledge"),
@ActivationConfigProperty(propertyName = "destinationType",  
propertyValue = "javax.jms.Queue"),
@ActivationConfigProperty(propertyName = "messageSelector",  
propertyValue = "PostingType = 'public'")
}) 

public class PublicPostingBean implements MessageListener {

public PublicPostingBean() {
}

public void onMessage(Message message) {
TextMessage textMessage = (TextMessage)message;
try {
System.out.println("Public Post Received - " +  

textMessage.getText());
} catch (JMSException ex) {

Logger.getLogger(PublicPostingBean.class.getName()). 
log(Level.SEVERE, null, ex);

}
}

}

The PrivatePostingBean is very similar to the PublicPostingBean except it is
configured to handle private messages.

@MessageDriven(mappedName = "jms/PostingsQueue",  
activationConfig =  {
@ActivationConfigProperty(propertyName = "acknowledgeMode",  

propertyValue = "Auto-acknowledge"),
@ActivationConfigProperty(propertyName = "destinationType",  
propertyValue = "javax.jms.Queue"),
@ActivationConfigProperty(propertyName = "messageSelector",  
propertyValue = "PostingType = 'private'")

}) 
public class PrivatePostingBean implements MessageListener {

public PrivatePostingBean() {
}



Chapter 3

121

public void onMessage(Message message) {
TextMessage textMessage = (TextMessage)message;
try {
System.out.println("Private Post Received - " +  

textMessage.getText());
} catch (JMSException ex) {

Logger.getLogger(PublicPostingBean.class.getName()). 
log(Level.SEVERE, null, ex);

}
}

}

Execute the PostingServlet.  Your output should appear as follows:

INFO: ---> Public textMessage sent

INFO: --->Private textMessage sent

INFO: Private Post Received - For your eyes only

INFO: Public Post Received - Distribute freely

How it works...
The PostingServlet was associated with the jms/PostingsQueueFactory and 
jms/PostingsQueue factory and queue. This chapter's introduction discusses the 
process for establishing a connection to a queue.

After the connection and session had been established, two TextMessages were created. The
first one was a private message. The TextMessage object's setStringProperty method
assigned a value of private to the PostingType property. It is this string property that is
ultimately used to determine which MDB will receive the message. The message was then sent.

This was followed by the creation of a public message and setting the PostingType property
to public. The setStringProperty method was used to assign a value to a message. 
A message selector is a string. The string contains an expression whose syntax is based on
SQL92. This means that more complex message selectors can be defined to meet the needs 
of an application.

Next, let's examine the two MDBs. The @ActivationConfigProperty element of the 
@MessageDriven annotation limits messages received by an MDB. This element has a
propertyName and a propertyValue field. The propertyName was set to messageSelector
and the propertyValue was set to a string used to limit the messages that the MDB receives.
In this recipe, the value used a PostingType field that was assigned a value of either 
public or private. For the PublicPostingBean it was set to public. The onMessage
method then received and processed the message.



Message-Driven Beans

122

The PrivatePostingBean used the same approach for messages marked as private.
Like the PublicPostingBean, the PostingType setting restricted the message that the
MDB received.

Browsing messages in a message queue
The JMS queue can contain a number of messages that have not been processed. It is
possible to use the QueueBrowser class to examine the contents of a queue. This recipe
will build upon the MessageSelectorApplication to illustrate how the QueueBrowser
is used.

Getting ready
We will reuse the MessageSelectorApplication as found in the Specifying which types
of messages to receive using the message selector recipe.

How to do it...
In the MessageSelectorApplication, modify the PostingServlet to send a
"protected" message and to incorporate the QueueBrowser as shown below:

public class PostingServlet extends HttpServlet {
@Resource(mappedName="jms/PostingsQueueFactory")
private QueueConnectionFactory queueConnectionFactory;
@Resource(mappedName="jms/PostingsQueue")
private Queue queue;

protected void processRequest(HttpServletRequest request,  
HttpServletResponse response)
throws ServletException, IOException {
response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();
try {
Connection connection;

try {
connection = queueConnectionFactory.createConnection();
Session session = connection.createSession(false,  

Session.AUTO_ACKNOWLEDGE);
MessageProducer messageProducer = (MessageProducer)  

session.createProducer(queue);
TextMessage textMessage = session.createTextMessage();

textMessage.setText("For your eyes only");



Chapter 3

123

textMessage.setStringProperty("PostingType", "private");
messageProducer.send(textMessage);
System.out.println("---> Public textMessage sent");

textMessage.setText("Distribute freely");
textMessage.setStringProperty("PostingType", "public");
messageProducer.send(textMessage);
System.out.println("--->Private textMessage sent");

// Used by Browsing Messages in a Message Queue recipe
textMessage.setText("Distribute in house only");
textMessage.setStringProperty("PostingType", "protected");
messageProducer.send(textMessage);

QueueBrowser queueBrowser = session.createBrowser(queue);
Enumeration messages = queueBrowser.getEnumeration();
while(messages.hasMoreElements()) {

TextMessage message = (TextMessage) messages.nextElement();
System.out.println("Message: " + message.getText());

}

} catch (JMSException ex) {
Logger.getLogger(PostingServlet.class.getName()). 

log(Level.SEVERE, null, ex);
}

out.println("<html>");
out.println("<head>");
out.println("<title>Servlet PostingServlet</title>");  
out.println("</head>");
out.println("<body>");
out.println("<h1>Servlet PostingServlet at " +  

request.getContextPath () + "</h1>");
out.println("</body>");
out.println("</html>");

} finally { 
out.close();

}
}



Message-Driven Beans

124

Execute the PostingServlet. Repeated execution of the servlet will result in a number of
protected messages being sent to the queue as shown below. They will remain in the queue
until they expire.

INFO: Message: Distribute in house only

INFO: Message: Distribute in house only

INFO: Message: Distribute in house only

INFO: Message: Distribute in house only

INFO: Message: Distribute in house only

INFO: Message: Distribute in house only

INFO: Message: Distribute in house only

How it works...
Code was added to send a "Distribute in house only" message to the queue so the
QueueBrowser has something to display. Since there are no MDBs to process this  
type of message, they will sit there. The QueueBrowser object was obtained using the
Session object's createBrowser method. The getEnumeration method returns a 
java.util.Enumeration object. This object was then used to list or otherwise process 
the messages in the queue.

There's more...
The createBrowser method also accepts a second argument specifying a message
selector. The message selector will narrow down the messages returned by the
QueueBrowser.

Messages will stay in a queue indefinitely. However, if the useful lifetime of a message is 
limited, the MessageProducer object's setTimeToLive method takes a long argument to
specify when the message will expire. In addition, the overloaded send method has a version
that specifies the expiration time.

producer.send(message, DeliveryMode.NON_PERSISTENT, 3, 10000);

The second argument specifies the delivery mode. The third specifies the message's priority 
and the last argument is the timeout.



4
EJB Persistence

In this chapter, we will cover:

Creating an entity

Creating an entity facade

Using the EntityManager

Controlling the Object-Relationship Mapping (ORM) process

Using embeddable classes in entities

Using application-managed persistence

Validating persistent fields and properties

Validating null fields

Validating string fields

Validating temporal fields

Validation using regular expressions

Validating Boolean fields

Validating Integer fields

Using the Validator class































EJB Persistence

126

Introduction
Most applications have a need to store and retrieve data. The data may be stored in a file 
or other location such as a database. This location is sometimes referred to as the backing
store. This need is also present for object-oriented applications. The Java class provides a
convenient unit for organizing data and is a natural place to start when saving and retrieving
data. There are technologies that persist data in the form of an object to a data store. For
us, the Java Persistence API (JPA) provides the underlying mechanism in support of this
approach. JPA usage is not restricted to EJBs but can be used in other Java applications
including SE applications.

An entity is a class representing data persisted to a backing store using JPA. The @Entity
annotation designates a class as an entity. It can also be declared in an orm.xml file. In 
addition to the @Entity annotation, there is a series of annotations to further define and tie 
the class to a backing store. In general, and for our purposes, we will assume the data store
will be a relational database. While entity classes are quite useful, they are sometimes hidden
behind a facade to facilitate their use. The Creating an entity facade recipe illustrates the use
of facades.

To actually use the entity with the backing store, a persistence unit, persistence context, 
and an EntityManager is needed. The persistence unit defines mapping between the 
entity and the data store. A persistence context is a set of entities. Each entity within the 
set is unique. The persistence context keeps track of the state and changes made to its
entities. When an EntityManager is created it is associated with a persistence context. The
EntityManager manages the entities and their interaction with the data store. The use of
the EntityManager to persist the entity is covered in the Using the EntityManager recipe.

Object-Relationship Mapping (ORM) is the process of mapping an object to a database. 
Most servers, in conjunction with IDEs, provide means of performing this mapping
automatically. However, there exist a number of annotations that can provide more
information to guide the mapping.

The Creating an entity recipe details how to declare an entity. The actual relationship between
an entity and the database is explained in the Controlling the Object-Relationship Mapping
(ORM) process recipe. When one class is used as a field of a second class, this relationship 
is referred to as composition. This relationship is supported using embeddable classes and is
discussed in the Using embeddable classes in entities recipe.

Normally, persistence is accomplished using what is known as container-managed
persistence. In certain circumstances it can be desirable to allow the application to 
exercise more control over the persistence process. This technique is addressed in
the Using application-managed persistence recipe.



Chapter 4

127

An important issue in most applications is the validation of the data. Before data is saved 
to a database, it is usually a good idea to ensure its correctness and conformity to any rules
governing its values. The Java API for JavaBean Validation API provides a way of validating
fields of a class. As with the JPA API, the use of the JavaBean Validation API is not restricted 
to JBs. The use of this validation technique for entities is covered in the Validating persistent
fields and properties recipe.

Creating an entity 
The creation of a simple entity is not difficult and is accomplished using the @Entity
annotation. The essence of the process is demonstrated here and elaborated upon in
subsequent recipes.

Getting ready
The creation of an entity involves two steps:

1. Annotating a class with the @Entity annotation

2. Adding methods to provide access to the fields of the entity

An entity is frequently added using a wizard provided by an IDE. This frequently involves
specifying a primary key and the creation of a persistence unit. The primary key is used to
optimize access to the underlying database table and the persistence unit provides mapping
from the entity to the underlying data store.

How to do it...
Create a Java EE application called EntityBeanApplication. In the EJB module, add a
package called packt with an entity called PartsBean. While we will use the EJB module,
EJB components do not have to be packaged in the EJB jar but can now be packaged as part
of the WAR file in EJB 3.1.

The PartsBean is intended to represent a part. The initial version of the class has fields for:

name – The part's name

partNumber – A part number

weight – The weight of a part

quantity – The quantity on hand











EJB Persistence

8

The first step is to declare the class an entity using the @Entity annotation. If an entity is
passed by value then it must implement the Serializable interface. We implement the
interface here in case we need to pass the entity later.

@Entity
public class PartsBean implements Serializable { 

@Id 
@GeneratedValue(strategy = GenerationType.AUTO) 
private Long id;

public Long getId() {
return id;

}
private String name;
private int partNumber;
private float weight;
private int quantity;

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

public int getPartNumber() {
return partNumber;

}

public void setPartNumber(int partNumber) {
this.partNumber = partNumber;

}

public int getQuantity() {
return quantity;

}

public void setQuantity(int quantity) {
this.quantity = quantity;

}

public float getWeight() {
return weight;

}



Chapter 4

9

public void setWeight(float weight) {
this.weight = weight;
}

}

How it works...
Each entity has a unique key used to identify it. For the PartsBean we used a long  
value called id. The @Id annotation identified the field as a primary key. The use of the 
@GeneratedValue field with the strategy of GeneratationType.AUTO, means the key will be
generated automatically. AAA gggeeettt mmmeeettthhhoooddd wwwaaasss ppprrrooovvviiidddeeeddd fffooorrr ttthhheee fififieeelllddd... WWWeee cccaaannnnnnooottt ccchhhaaannngggeee ttthhheee            
primary key so we did not provide a set mmmeeettthhhoooddd fffooorrr iiittt...

Since the id field was auto-generated, when an entity is created the value assigned may differ 
from what is shown in the examples in this chapter. The number provided depends on the
actual generator and the number of entities of that type created.

There's more...
The class developed so far represents a minimal entity. However, there are other methods
proven to be useful for an entity. Two commonly provided methods include: equals and
toString. Both of these methods override the base class object.

The equals method is used to compare the equality of two entities. It first determines 
whether the object it is being compared to is an actual PartsBean. If so, it verifies that 
the id fields are the same. 

@Override
public boolean equals(Object object) {

if (!(object instanceof PartsBean)) {
return false;

}
PartsBean other = (PartsBean) object;
if ((this.id == null && other.id != null) || (this.id != null &&  
!this.id.equals(other.id))) {
return false;

}
return true;

}



EJB Persistence

130

The implementation of this toString method returns a String containing the id of the
PartsBean.

@Override
public String toString() {

return "packt.PartsBean[id=" + id + "]";
}

See also
The next recipe illustrates the persistence of the PartsBean.

Creating an entity facade
A building facade is a false front to a building. Movie sets frequently use facades to give
the appearance of an actual building avoiding the cost of a real building. In programming, a
facade is an object which provides an interface to another class to make the hidden class
easier to use or reduce dependencies among classes.

Getting ready
We will build upon the EntityBeanApplication application from the previous recipe. We
will be adding to the EJB module two new classes to the packt package: AbstractFacade
and PartsBeanFacade.

An entity facade is commonly used to hide the entity class. A typical approach is to create 
a base class encapsulating much of the common functionality of an entity and then extend
this class with one providing specific entity support. For example, NetBeans provides a wizard
which creates an abstract class possessing a number of useful methods:

getEntityManager – Returns a reference to the EntityManager for the
persistence unit containing the entity

create – Persists an object 

edit – Modifies an existing entry in the database 

remove – Removes an entry from the database 

find – Finds a specific entry 

findAll – Returns a List of all entries 

findRange – Returns a List of entries within a specified range

















Chapter 4

131

How to do it...
First, create an abstract AbstractFacade class to support the basic persistence methods
listed previously.

package packt;

import java.util.List; 
import javax.persistence.EntityManager;

public abstract class AbstractFacade<T> {
private Class<T> entityClass;
public AbstractFacade(Class<T> entityClass) {
this.entityClass = entityClass;
}
protected abstract EntityManager getEntityManager();
public void create(T entity) {
getEntityManager().persist(entity);
}
public void edit(T entity) {
getEntityManager().merge(entity);
}
public void remove(T entity) {
getEntityManager().remove(getEntityManager().merge(entity));
}
public T find(Object id) {
return getEntityManager().find(entityClass, id);
}
public List<T> findAll() {
javax.persistence.criteria.CriteriaQuery cq =  
getEntityManager().getCriteriaBuilder().createQuery();
cq.select(cq.from(entityClass));
return getEntityManager().createQuery(cq).getResultList();
}
public List<T> findRange(int[] range) {



EJB Persistence

132

javax.persistence.criteria.CriteriaQuery cq =  
getEntityManager().getCriteriaBuilder().createQuery();
cq.select(cq.from(entityClass));
javax.persistence.Query q = getEntityManager().createQuery(cq);
q.setMaxResults(range[1] - range[0]);
q.setFirstResult(range[0]);
return q.getResultList();
}
public int count() {
javax.persistence.criteria.CriteriaQuery cq =  
getEntityManager().getCriteriaBuilder().createQuery();
javax.persistence.criteria.Root<T> rt = cq.from(entityClass);
cq.select(getEntityManager().getCriteriaBuilder().count(rt));
javax.persistence.Query q = getEntityManager().createQuery(cq);
return ((Long) q.getSingleResult()).intValue();
}

}

Next, create the PartsBeanFacade class and extend the AbstractFacade class. To as-
sociate this class with an underlying database, use the @PersistenceContext annotation.
Notice in its default constructor the PartsBean class is specified as the entity class to  
be managed.

Most IDEs provide a means of creating the persistence unit when a facade type class is used.
In NetBeans, the wizard used to create an entity provides the option to create a persistence
unit in the first step. In the second step, a name is automatically generated but can be 
changed. Also the persistence provided and data source can be selected. If you are using
NetBeans accept the default persistence provider and use jdbc/__default as the data source.

package packt;

import javax.ejb.Stateless; 
import javax.persistence.EntityManager; im-
port javax.persistence.PersistenceContext;

@Stateless 
public class PartsBeanFacade extends AbstractFacade<PartsBean> {
@PersistenceContext(unitName = "EntityBeanApplication-ejbPU")
private EntityManager em;
protected EntityManager getEntityManager() {
return em;
}



Chapter 4

133

public PartsBeanFacade() {
super(PartsBean.class);
}

}

How it works...
The AbstractFacade class uses several base EntityManager methods in support of
the entity. Most of these are straightforward mapping of an EntityManager method to an
AbstractFacade method. However, for the create method the EntityManager class
method persist was used and merge was used for edit.

The AbstractFacade class is a generic class capable of being used with a number of
different entities. A specific entity is assigned and retrieved using the AbstractFacade's
constructor and its getEntityManager method. Notice that this method is abstract in
AbstractFacade and was implemented in PartsBeanFacade.

The AbstractFacade class's findAll, findRange, and count methods do not map
directly to an EntityManager method. Instead, they provide additional capabilities often
needed by an entity.

All of these methods use CriteriaQuery interface methods to return either a list of entities
or a count of the number of entities available. This interface is discussed in more detail in
Chapter 5, Querying Entities using JPQL and the Criteria API.

The PartsBeanFacade class associated the PartsBean with a persistence unit using the 
@PersistenceContext. This annotation injected the entity manager for the persistence unit. 
It used the attribute, unitName, to specify the name of the persistence unit.

The PartsBeanFacade class overrode one method, getEntityManager. This method
returned a reference to the EntityManager used with the PartsBean.

See also
The Using the EntityManager recipe illustrates the use of these facade classes.

Using the EntityManager
The entity is used in conjunction with an EntityManager to persist and otherwise ensure
the state of the entity is consistent with the database. In this recipe we will examine the use 
of the PartsBeanFacade class.



EJB Persistence

134

Getting ready
To use the entity in a client we need to:

1. Inject the session facade EJB into the client

2. Use the methods of the facade

We will build upon the EntityBeanApplication application developed in the first recipe.

How to do it...
Add a package called servlet and a servlet called PartsServlet to the WAR module.
The PartsBeanFacade class extends the AbstractFacade class as developed in the
Creating an entity facade recipe. It is associated with a persistence unit through the use of
the @PersistenceContext annotation. We will use this as a part of a servlet to manage the
underlying PartsBean.

Within the PartsServlet servlet we will use two instances of the PartsBean and a single
instance of the PartsBeanFacade to manage instances of the entity.

public class PartsServlet extends HttpServlet {

@EJB
PartsBeanFacade partsFacade;

PartsBean parts;
PartsBean otherParts;

Add a processRequest method to create a PartsBean and use the PartsBeanFacade
class method to persist the entity. The servlet's doGet and doPost methods are not 
shown here.

protected void processRequest(HttpServletRequest request,  
HttpServletResponse response)
throws ServletException, IOException {
response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();
try {

parts = new PartsBean();
parts.setName("Traverse Gear");
parts.setPartNumber(12345);
parts.setWeight(2.54f);
parts.setQuantity(2);



Chapter 4

135

partsFacade.create(parts);

parts = new PartsBean();
parts.setName("Differential Axle");
parts.setPartNumber(90334);
parts.setWeight(12.35f);
parts.setQuantity(1);

partsFacade.create(parts);

otherParts = partsFacade.find(parts.getId());

out.println("<html>");
out.println("<head>");
out.println("<title>Servlet PartsServlet</title>");
out.println("</head>");
out.println("<body>");
out.println("<h1>Servlet PartsServlet at " +  

otherParts.getName() +  
" id: " + otherParts.getId()+ "</h1>");

out.println("</body>");
out.println("</html>");

} finally { 
out.close();

}
}

Execute the PartsServlet using the URL shown in the following screenshot:



EJB Persistence

136

How it works...
The PartsBeanFacade was injected using the @EJB annotation. Notice since the
PartsBeanFacade did not implement an interface we used the no-interface client
view which is new in EJB 3.1.

Two PartsBean reference variables were declared: parts and otherParts. The
parts variable was used to create two PartsBean and assign values to its fields. The 
PartsFacade class's create method was used to persist the two entities.

To verify a part had actually been created in the database, the find method retrieved the last
part created and displayed its name and ID using otherParts.

There's more...
There is a lot that's going on in this servlet. When we use the create method, JPA is
using the PartsBean we created and persisting it to some data store. In this case, it is
persisted to a database (Derby if you are using NetBeans) represented by persistence unit
EntityBeanApplication-ejbPU we created in the Creating an entity facade recipe. 
A table within the database representing the entity was updated using a Java DataBase
Connectivity (JDBC) driver.

Controlling the Object-Relationship Mapping
(ORM) process

Object-Relationship Mapping (ORM) is concerned with persisting an object to a database.
There exist a number of annotations which provide information to guide the mapping process.
The uses of these annotations are illustrated in this recipe.

Getting ready
When we persist an entity it is sometimes desirable to exercise more control over which table
in a database should be used. In addition, we may want to specify the field names to use 
within the table. ORM allows us to control these factors by using the @Table and @Column
annotations. The use of these annotations will be demonstrated by expanding upon the
previous recipe and augmenting the EntityBeanApplication application.

How to do it...
The PartsBean developed so far provides little guidance in terms of which database table
to use or how the fields of the object are mapped to columns of a table. The first thing we will 
look at is how to specify the database to be used for the PartsBean.



Chapter 4

137

This database is specified in the persistence.xml file which we created using an IDE 
wizard in the Creating an Entity Facade recipe. This file is found in the EJB module and 
should appear as shown below. The presentence unit EntityBeanApplication-ejbPU
is declared as and is associated with the database jdbc/__default.

<?xml version="1.0" encoding="UTF-8"?> 
<persistence version="2.0" xmlns="http://java.sun.com/xml/ns/
persistence" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence http://
java.sun.com/xml/ns/persistence/persistence_2_0.xsd">

<persistence-unit name="EntityBeanApplication-ejbPU"  
transaction-type="JTA">
<provider>org.eclipse.persistence.jpa.PersistenceProvider 
</provider>

<jta-data-source>jdbc/__default</jta-data-source>
<properties>
<property name="eclipselink.ddl-generation"  

value="create-tables"/>
</properties>

</persistence-unit>
</persistence>

Having specified the database, we will probably want to specify the table to use. If we don't 
explicitly choose a table, one is automatically provided by the server. To specify the table we
use the @Table annotation. We could have also modified the orm.xml file to achieve the 
same effect. Modify the PartsBean to add the @Table annotation. The name attribute of
the annotation specifies the database table to use.

@Entity 
@Table(name="PARTS") 
public class PartsBean implements Serializable {

Next, add a series of @Column annotations to the entity as shown here:

@Column(name="NAME")
private String name;

@Column(name="PARTNUMBER")
private int partNumber;

@Column(name="WEIGHT")
private float weight;

@Column(name="QUANTITY")
private int quantity;

The persistence of the PartsBean is performed as illustrated in the Using the EntityManager
recipe. The use of these annotations does not require modification of the PartsServlet.



EJB Persistence

8

How it works...
Notice for the EntityBeanApplication, the source was specified in the <jta-data-
source> element. The value, jdbc/__default, specified the database to use. The 
available databases are a function of the Java EE server and its configuration. This application 
was developed using Glassfish. The jdbc/__default database was one of the available
options. Using a different server or adding a different data store to a server will provide you
with other options. Also, note that the database table's catalog and schema can also be
specified using the catalog and schema elements.

Specific fields of an entity are mapped to columns of a table using the @Column annotation.
The name element of the annotation determines the name to be used for the table column.
In this example we used the same name as the field and in all caps. However, you can always 
use fields and naming conventions appropriate for your application.

There's more...
There are other elements of the @Column annotation which control the configuration of a 
column including but not limited to:

unique – Specifies whether the column represents a unique key

nullable – The column can or cannot hold a null value

length  -  The length of a string column

precision – The precision of a decimal column

We will not discuss these options here.

So far the fields of the PartsBean have been simple Java primitives or the String
class. If we need to use a collection, such as a Map or Set of basic types, then the 
@ElementCollection annotation can be used.

To illustrate this annotation, add an enumeration called ColorEnumeration to the class.
Next, declare a Set of this type called colors. This field is intended to allow us to specify 
the available part's colors. Also add a get and set method for colors.

public enum ColorEnumeration {RED, GREEN, BLUE}
@ElementCollection
private Set<ColorEnumeration> colors;

public Set<ColorEnumeration> getColors() {
return colors;

}

public void setColors(Set<ColorEnumeration> colors) {
this.colors = colors; 

}











Chapter 4

9

The @ElementCollection annotation has two attributes: targetClass used with collections
of basic or embeddable classes; and fetch which specifies either a LAZY or EAGER retrieval
of the field. The fetch attribute controls when the field is retrieved. With a lazy retrieval, 
the value for the field is not retrieved until it is needed. An eager fetch will retrieve the value 
immediately. If a generic class is used, as was the case with the set of colors above, the
targetClass attribute is not required.  

Modify the PartsServlet to create a set of objects and then populate the set with
various colors.

parts = new PartsBean();
...
HashSet<PartsBean.ColorEnumeration> colors = new  

HashSet<PartsBean.ColorEnumeration>();
colors.add(PartsBean.ColorEnumeration.RED);
colors.add(PartsBean.ColorEnumeration.BLUE);
parts.setColors(colors);
partsFacade.create(parts);

See also
The Using the EntityManager recipe illustrates the complete process to persist a PartsBean.

Using embeddable classes in entities
A common relationship between classes is composition. One class may declare and use
another class as a field to support some common functionality. For example, the PartsBean
may have a need to maintain the location of the part using some sort of bin location scheme.
This scheme may also be used for classes other than a part. This need is addressed for
entities using the @Embeddable and @Embedded annotations.

Getting ready
The steps to embed a class within another class involves:

1. Designating the class that can be embedded with the @Embeddable annotation

2. Embedding the embeddable class into the other class using the
@Embedded annotation

We will expand upon the previous recipe and augment the EntityBeanApplication
application.



EJB Persistence

140

How to do it...
The @Embeddable annotation is used to declare a class which can be embedded within
another class. Add the BinLocation class to the EntityBeanApplication application
as part of the packt package. This class possesses aisle and level fields to specify the 
location of an item. Add get and set methods for these fields.

@Embeddable
public class BinLocation implements Serializable {

private int aisle;
private int level;

public int getAisle() {
return aisle;

}

public void setAisle(int aisle) {
this.aisle = aisle;

}

public int getLevel() {
return level;

}

public void setLevel(int level) {
this.level = level;

}

}

The next step is to embed the BinLocation class into the PartsBean. The 
@Embedded annotation designates a class as one which will be included in the class.
Modify the PartsBean class by adding a reference variable to this class using the 
@Embedded annotation.

@Embedded
BinLocation binLocation;

Add get and set methods to allow modification of the bin location. We could have also added 
individual methods for the aisle and level.

public BinLocation getBinLocation() {
return binLocation;

}

public void setBinLocation(BinLocation binLocation) {
this.binLocation = binLocation;

}



Chapter 4

141

Modify the PartsServlet to create and use a new BinLocation object as follows:

parts = new PartsBean();
...
BinLocation binLocation = new BinLocation();
binLocation.setAisle(12);
binLocation.setLevel(3);
parts.setBinLocation(binLocation);
partsFacade.create(parts);

How it works...
The BinLocation class is simple. In order to use it in the PartsBean we used the 
@Embedded annotation. However, to make this object available to users of PartsBean 
we had to add the getBinLocation and setBinLocation methods to the entity. In the
PartsServlet, we created a new BinLocation object and set aisle and level values for a
part. The setBinLocation method was used to associate the BinLocation object with the
PartsBean instance.

See also
The Using the EntityManager recipe illustrates the complete process to persist a PartsBean.

Using application-managed persistence
Application-managed persistence is useful when special handling of persistence is required
such as the explicit management of an EntityManager life cycle or more explicit control
over Java Transaction API (JTA) transactions is needed. Application-managed persistence is
the focus of this recipe.

Getting ready
The essential process for using application-managed persistence involves:

1. Injecting an EntityManagerFactory to provide a means to create an
EntityManager

2. Creating the EntityManager to control the persistence process

3. Using the EntityManager method to manage the entity



EJB Persistence

142

How to do it...
Create a new Java EE application called ApplicationManagedPersistenceApplication.
In this application we will only use the WAR module. Add a packt package and a servlet
package to the module. Add a RegistrationBean to the packt package and a
RegistrationServlet to the servlet package. 

We will use a RegistrationBean to illustrate application-managed persistence. This entity
represents a registration for some event and includes fields for:

name – The name of the participant 

company – The name of the participant's company 

session – An integer representing the session to be attended

Add the RegistrationBean along with an id field and getters and setters.

@Entity
public class RegistrationBean implements Serializable {

private String name;
private String company;
private int session;

public String getCompany() {
return company;

}

public void setCompany(String company) {
this.company = company;

}

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

public int getSession() {
return session;

}

public void setSession(int session) {
this.session = session;









Chapter 4

143

}

private static final long serialVersionUID = 1L;
@Id
@GeneratedValue(strategy = GenerationType.AUTO)
private Long id;

public Long getId() {
return id;

}

...
}

Next add the RegistrationServlet as shown below. The doGet and doPost methods are
not shown.

public class RegistrationServlet extends HttpServlet {

@PersistenceUnit(unitName =  
"ApplicationManagedPersistenceApplication-warPU")

EntityManagerFactory entityManagerFactory;

protected void processRequest(HttpServletRequest request,  
HttpServletResponse response)
throws ServletException, IOException {
RegistrationBean registration;
RegistrationBean secondRegistration;
EntityManager entityManager;

response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();
try {

try {

registration = new RegistrationBean();
registration.setName("Steve Best");
registration.setCompany("Grey Beard Software");
registration.setSession(10);

entityManager = entityManagerFactory.createEntityManager();
entityManager.persist(registration);

secondRegistration = entityManager.find(



EJB Persistence

144

RegistrationBean.class, registration.getId());
out.println("<html>");
out.println("<head>");
out.println("<title>Servlet RegistrationServlet</title>");
out.println("</head>");
out.println("<body>");
out.println("<h1>" + secondRegistration.getName()  

+ " ID: " + secondRegistration.getId()+ "</h1>");
out.println("</body>");
out.println("</html>");
entityManager.close();

} catch (SecurityException ex) {
Logger.getLogger(RegistrationServlet.class.getName()). 

log(Level.SEVERE, null, ex);
} catch (IllegalStateException ex) {

Logger.getLogger(RegistrationServlet.class.getName()). 
log(Level.SEVERE, null, ex);

}

} finally {
out.close();

}
}

Next, execute the application using the URL shown in the following screenshot:

How it works...
The RegistrationServlet began with the insertion of the EntityManagerFactory
object as a persistence unit. Since we are executing as a client, an EntityManagerFactory
is needed to create the EntityManager.



Chapter 4

145

In this example, two RegistrationBeans variables were defined: registration and
secondRegistration. Next, a RegistrationBean was created and its fields were 
assigned values for a name, company, and a session. The EntityManagerFactory
class's createEntityManager method created an instance of an EntityManager. 
The EntityManager was used to persist the RegistrationBean.

In order to verify the entity was actually saved, secondRegistration was used to hold
a reference to the entity retrieved from the table. The secondRegistration variable's
name and id fields were then displayed. The close method was used to close the
EntityManager as it was not longer needed. This is a good practice as it helps free  
up database connections.

There's more...
With application-managed persistence, the management of transactions is delegated to the
application. In this example we did not use transactions. However, this topic is addressed in
Chapter 6, Transaction Processing.

Validating persistent fields and properties
The integrity of most, if not all, applications depend on the correctness of its data. The 
Java API for JavaBeans Validation provides a means to validate data through the use 
of annotations.

This recipe explains this technique by introducing a driver's license entity. The next set of
recipes illustrates how to specify constraints on several different types of fields. The last 
recipe pulls these techniques together and illustrates the use of the javax.validation.
Validator class to determine if the constraints were met.

Getting ready
First we will create an entity representing a driver's license and its supporting classes. Once
this is working we will enhance the entity to incorporate validation annotations.

How to do it...
Create a Java EE application named ValidationApplication. In the EJB module
add a package called packt and an entity called LicenseBean. In addition, add an
AbstractFacade and LicenseBeanFacade as illustrated in the Creating an Entity
Facade recipe. In the WAR module add a package called servlet. To this package add 
a servlet called LicenseServlet.



EJB Persistence

146

Create an entity representing a driver's license called LicenseBean. Its attributes include:

name – The name of the driver 

dateOfBirth – The birth date (java.util.Date)

restrictions – A field to hold any restrictions

monthsToExpire – The duration of the license in months

We will use these fields to demonstrate how validation can be performed. 

@Entity 
public class LicenseBean implements Serializable {

private String name;
@Temporal(javax.persistence.TemporalType.DATE)
private Date dateOfBirth;
private String restrictions;
private int monthsToExpire;

public Date getDateOfBirth() {
return dateOfBirth;

}

public void setDateOfBirth(Date dateOfBirth) {
this.dateOfBirth = dateOfBirth;

}

public int getMonthsToExpire() {
return monthsToExpire;

}

public void setMonthsToExpire(int monthsToExpire) {
this.monthsToExpire = monthsToExpire;

}

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

public boolean isResident() {
return resident;











Chapter 4

147

}

public void setResident(boolean resident) {
this.resident = resident;
}
public String getRestrictions() {
return restrictions;
}
public void setRestrictions(String restrictions) {
this.restrictions = restrictions;
}
private static final long serialVersionUID = 1L;
@Id
@GeneratedValue(strategy = GenerationType.AUTO)
private Long id;
public Long getId() {
return id;
}
...

}

We will use the AbstractFacade class developed in the Creating an entity facade recipe
and derive the LicenseBeanFacade class from it.

@Stateless 
public class LicenseBeanFacade extends AbstractFacade<LicenseBean> {
@PersistenceContext(unitName = "ValidationApplication-ejbPU")
private EntityManager em;
protected EntityManager getEntityManager() {
return em;
}
public LicenseBeanFacade() {
super(LicenseBean.class);
}

}



EJB Persistence

8

The LicenseServlet demonstrates the use of these classes.

public class LicenseServlet extends HttpServlet {

@EJB
LicenseBeanFacade licenseBeanFacade;

LicenseBean license;

protected void processRequest(HttpServletRequest request,  
HttpServletResponse response)
throws ServletException, IOException {
response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();
try {

license = new LicenseBean();
license.setName("Pax Maxwell");
Calendar calendar = Calendar.getInstance();
calendar.set(1981, 4, 18);
license.setDateOfBirth(calendar.getTime());
license.setMonthsToExpire(24);
license.setResident(true);
license.setRestrictions("C6");

licenseBeanFacade.create(license);

out.println("<html>");
out.println("<head>");
out.println("<title>Servlet LicenseServlet</title>");  
out.println("</head>");
out.println("<body>");
out.println("<h1>Name: " +license.getName() + " -  

License ID: "  + license.getId() + "</h1>");
out.println("</body>");
out.println("</html>");

} finally { 
out.close();

}
}



Chapter 4

9

Execute the application using the URL shown in the following screenshot: 

How it works...
This recipe sets up the LicenseBean and LicenseServlet for use in this chapter's
remaining recipes. The LicenseBean maintains information regarding a license. Notice the
use of the @Temporal annotation in the LicenseBean. When a time-based field, such as the 
java.util.Date class is used, this annotation is required.

In the LicenseServlet, a license was created and then persisted using the
LicenseBeanFacade instance. In later recipes we will modify the LicenseBean
and LicenseServlet to demonstrate various validation techniques.

See also
The remaining recipes build upon this entity and illustrate various validation techniques.

Validating null fields
Object references are used extensively in Java. Assigning a null value is not an uncommon
practice though they need to be assigned a value before a method can be executed against 
it. Fields of a database may or may not be allowed to contain a null value. The @Null and 
@NotNull annotations can be used to indicate whether a reference field can be assigned a 
null value or not.

Getting ready
We will use the LicenseBean and LicenseBeanFacade classes from the
ValidationApplication as discussed in the Validating persistent fields and 
properties recipe.



EJB Persistence

150

How to do it...
If we want to prevent a column of a database from being assigned a value of null, then we can
enforce this with the @NotNull annotation. 

@NotNull
private String name;

If the field must contain a null, then the @Null annotation is used.

@Null
private String name;

How it works...
These annotations are used to control the assignment of null values to fields. The Validator
class is used in conjunction with these annotations to detect and handle violations. This
technique is illustrated in the Using the Validator class recipe

See also
The Using the Validator class recipe illustrates the use of this annotation.

Validating string fields
Strings are used extensively in many Java applications. When strings are persisted to a
database, the database column may be restricted in size. The entity can use annotations 
to enforce a size constraint of these fields.

Getting ready
We will use the LicenseBean and LicenseBeanFacade classes from the
ValidationApplication as discussed in the Validating persistent fields and 
properties recipe.

How to do it...
We can specify the size of a String using the @Size annotation. This annotation has a min
and a max attribute. The min attribute specifies the minimum length allowed while the max
attribute specifies the upper bound on the length of the string. Here we specify a minimum 
length of 12 characters and a maximum length of 36 characters for the string field name.

@Size(min=12, max=36)
private String name;



Chapter 4

151

The min and max attributes can be used together or by themselves. Here, only the minimum
length is specified. There is no upper bound on the length of the string.

@Size(min=12)
private String name;

Using only the max attribute indicates an upper bound. The string can have a zero length.

@Size(max=36)
private String name;

The @Size annotation can also be used with the @Null or @NotNull annotations.

@Size(min=12, max=36)
@NotNull
private String name;

How it works...
By assigning a value to the min or max fields, these annotations are used to control the 
assignment the number of characters assigned to a String field. The Validator class is
used in conjunction with these annotations to detect and handle violations. This technique is
illustrated in the Using the Validator class recipe

See also
The Using the Validator class recipe illustrates the use of this annotation.

Validating temporal fields
The java.util.Date and java.util.Calendar classes can be used to represent time in
Java. If these classes are used for fields of an entity, the @Temporal annotation needs to be
used. In addition, the @Future or @Past annotations are used to specify constraints on the
relationship of the assigned date to the current time.

Getting ready
We will use the LicenseBean and LicenseBeanFacade classes from the
ValidationApplication as discussed in the Validating persistent fields and 
properties recipe.



EJB Persistence

152

The @Temporal annotation designates a field as a time unit. JPA permits three 
basic mappings:

TemporalType.DATE – java.util.Date

TemporalType.CALENDAR – java.util.Calendar

TemporalType.TIMESTAMP – java.sql.Timestamp

How to do it...
This annotation is used to annotate a Date or Calendar field as temporal data for a
database column.

@Temporal(javax.persistence.TemporalType.DATE)
private Date dateOfBirth;

The @Temporal annotation can be used in conjunction with the @Future or @Past
annotations to establish a constraint on the value of a field. The @Future requires the value
of the field to be in the future. The use of the @Past requires the value of the field to be in the 
past which is expected for a field such as a birth date. 

@Past
@Temporal(javax.persistence.TemporalType.DATE)
private Date dateOfBirth;

Below, we use the @Future annotation with the dateOfBirth field. While we would normally 
use the @Past annotation for this type of field, we will use it to illustrate a temporal constraint 
violation in the Using Validator class recipe.

@Future
@Temporal(javax.persistence.TemporalType.DATE)
private Date dateOfBirth;

How it works...
These annotations are used to control the assignment of temporal values to time-based
fields. The javax.validation.Validator class is used in conjunction with these
annotations to detect and handle violations. This technique is illustrated in the Using the
Validator class recipe.

See also
The Using the Validator class recipe illustrates the use of this annotation.









Chapter 4

153

Validating using regular expressions
Regular expressions provide a powerful technique for validating fields. Phone numbers and 
Zip codes can be easily verified using regular expressions. The @Pattern annotation allows us
to use a regular expression to verify the correct usage of these types of fields.

Getting ready
We will use the LicenseBean and LicenseBeanFacade classes from the
ValidationApplication as discussed in the Validating persistent fields and 
properties recipe.

In order to illustrate the use of regular expressions we need to define allowable values for the 
restrictions field. This field may hold a combination of values reflecting driving constraints 
such as:

C – Requires the use of corrective lenses

A – Must be accompanied by an adult driver

6 – Limited to vehicles with 6 or less axles

N – Not permitted to drive at night

How to do it...
The @Pattern annotation uses a regexp argument to define a regular expression. The regular 
expression is applied to the field declaration that follows it. Regular expressions follow the 
convention as defined in java.util.regex.Pattern.

Let's start by using a simple regular expression to test for patterns which meet these
restrictions. The "??" regular expression qualifiers specify that the preceding character will 
appear once or not all. 

@Pattern(regexp="C??A??6??N??")
private String restrictions;

More sophisticated regular expressions can be developed. For example, a zipCode field 
might be defined as follows:

@Pattern(regexp="\\d{5}(-\\d{4})?")
private String zipCode;











EJB Persistence

154

How it works...
Regular expressions provide a powerful, if not sometimes cryptic, technique for validating
more complex string patterns. It is not possible to adequately cover regular expression in this
recipe. There are a number of books that are devoted entirely to this topic.

The Validator class is used in conjunction with this annotation to detect and handle
violations. This technique is illustrated in the Using the Validator Class recipe

See also
The Using the Validator class recipe illustrates the use of this annotation.

Validating Boolean fields
Some fields are Boolean. If we want to ensure the field will be assigned a true value in some 
situations and a false in others, the @AssertTrue and @AssertFalse annotations can be used.

Getting ready
We will use the LicenseBean and LicenseBeanFacade classes from the
ValidationApplication as discussed in the Validating persistent fields and 
properties recipe.

How to do it...
Here, the @AssertTrue annotation is used to indicate that the license holder should be a
resident. This means the resident field must be true.

@AssertTrue
private boolean resident;

The @AssertFalse annotation means that the field should be assigned a false value.

@AssertFalse
private boolean resident;

How it works...
These annotations are used to control the assignment of Boolean values to fields. The 
Validator class is used in conjunction with these annotations to detect and handle
violations. This technique is illustrated in the Using the Validator class recipe.



Chapter 4

155

See also
The Using the Validator class recipe illustrates the use of this annotation.

Validating Integer fields
Integers are widely used in most applications. When these variables are persisted, it is useful
to be able to limit their values to a specific range. The @Min and @Max annotations are used
for this purpose.

Getting ready
We will use the LicenseBean and LicenseBeanFacade classes from the
ValidationApplication as discussed in the Validating persistent fields and 
properties recipe.

How to do it...
The size of an integer field can also be validated using the @Min and @Max annotations. The
monthsToExpire field in the following declaration must have a value between 12 and 48
inclusive to avoid a constraint violation.

@Min(12)
@Max(48)
private int monthsToExpire;

The @Min or @Max annotations can be used without the other one. In such situations, there
is no lower or upper bound depending on which annotation is not used.

How it works...
These annotations are used to control the assignment of integer values to fields. The 
Validator class is used in conjunction with these annotations to detect and handle
violations. This technique is illustrated in the Using the Validator class recipe

See also
The Using the Validator class recipe illustrates the use of this annotation.



EJB Persistence

156

Using the Validator class
Before the create method of a facade class is used to add the license to the database, we
need to validate the values for the fields. The Validator class provides this capability. It allows
an object to be checked to see if any of the fields have failed to meet its validation criteria.

Getting ready
We will use the LicenseBean and LicenseBeanFacade classes from the
ValidationApplication as discussed in the Validating persistent fields and 
properties recipe.

How to do it...
In order to demonstrate this approach we need to modify both the LicenseBean and the
LicenseServlet. First, modify the field declarations of the LicenseBean as shown here:

public class LicenseBean implements Serializable {

@Size(min=12)
@NotNull
private String name;

@Future
@Temporal(javax.persistence.TemporalType.DATE)
private Date dateOfBirth;

@Pattern(regexp="C??A??6??N??")
private String restrictions;

@AssertFalse
private boolean resident;

@Min(12)
@Max(48)
private int monthsToExpire;

...
}



Chapter 4

157

Next, replace the try block in the LicenseServlet with the following code:

try {

out.println("<html>");
out.println("<head>");
out.println("<title>Servlet LicenseServlet</title>");
out.println("</head>");
out.println("<body>");
license = new LicenseBean();
license.setName("Pax Maxwell");
Calendar calendar = Calendar.getInstance();
calendar.set(1981, 4, 18);
license.setDateOfBirth(calendar.getTime());
license.setMonthsToExpire(50);
license.setResident(true);
license.setRestrictions("CT6");

Validator validator =  
Validation.buildDefaultValidatorFactory().getValidator();

Set constraintViolations = validator.validate(license);
Iterator iter = constraintViolations.iterator();
if (iter.hasNext()) {
while (iter.hasNext()) {

ConstraintViolation constraintViolation =  
(ConstraintViolation) iter.next();

out.println("<h3>Message: " +  
constraintViolation.getMessage());

out.println(" however value given was: " +  
constraintViolation.getInvalidValue() + "</h3>");

}
} else {

licenseBeanFacade.create(license);
out.println("<h1>Name: " + license.getName() + " -  

License ID: " + license.getId() + "</h1>");

}

out.println("</body>");
out.println("</html>");

} finally {
out.close();

}



EJB Persistence

8

Execute the application using the URL found in the following screenshot: 

How it works...
The LicenseBean class's declarations have been annotated to use various validators
illustrated in the previous set of validation recipes. For example, the minimum of the 
name field is 12. The reader is encouraged to experiment with other settings.

In the LicenseServlet, a Validator instance was obtained using the 
static buildDefaultValidatorFactory method to return an instance of a
ValidatorFactory interface. In this example, the object returned was not explicitly 
saved, but was chained with its getValidator method to return a Validator object.

The Validator uses a validate method which is passed the object to be validated and
returns a Set of ConstraintViolations. Using the ConstraintViolation object, an
Iterator object was returned from the set. If it was not empty, then the constraint violations
were displayed. Otherwise, the servlet continued normally.

There were two ConstraintViolation methods used to display the violations:

getMessage – This returned a message describing the violation

getInvalidValue – Returned the value which caused the violation

They can be used to display information about the violations or used to isolate and deal
with violations.

In this simple application, we dealt with the violations by displaying them. In a more
robust application we would need to determine and act upon each violation in a more
user friendly fashion.







5
Querying Entities

using JPQL and the 
Criteria API

In this chapter, we will cover:

Populating the Patient and Medication tables

Using the Select clause

Using the Where clause

Controlling the number of entities returned by a select query

Using the Delete query

Using the Update query

Using parameters in a query

Using a named query

Using the Criteria API

Introduction
There are two primary Java EE technologies for querying a database: Java Persistence Query
Language (JPQL) and the Criteria API. JPQL is similar in appearance and usage to SQL while
the Criteria API provides a more type-safe and object-oriented entity querying capability.





















Querying Entities using JPQL and the Criteria API

160

When using EJB 2.0, developers used EJB QL as the query language. With the introduction of
J2EE 5.0, JPQL was introduced and replaced EJB QL. JPQL is based on the Hiberate Query
Language (HQL) and is a subset of HQL. It is portable and allows queries to be executed
against different data stores. This is in contrast to the use of a native query where the query 
is expressed in the native SQL of the data store. Another older, yet still viable technique is the
Java database classes and interfaces found in the java.sql package. In this chapter we will
focus on JPQL and the Criteria API.

JPQL statements are similar to those of SQL and are written as a string. However, JPQL is not
type-safe. When the query is processed its string representation is evaluated and executed.
If there are any errors in the query, they cannot be caught at compile-time and cannot be
handled very easily during run-time. Another difference between JPQL and SQL is the focus
of the languages. JPQL deals with entities while SQL is concerned with records.

The Criteria API offers better performance than JPQL but it is more verbose and difficult to 
use. It is essentially another Java API that has the benefit of being type-safe. Exceptions 
occurring during execution are more easily handled. The Using the Criteria API recipe
provides an introduction to the Criteria API.

There are two types of JPQL queries: dynamic and static. A dynamic query is used as  
an argument of the Query's createQuery method. A static query is also called a 
named query. A named query is declared as part of an entity class and used with the
createNamedQuery method. Static queries are more efficient and are detailed in the Using
a Named query recipe. Most of the recipes used in this chapter are dynamic queries as they
simplify the presentation of the various JPQL techniques. Regardless of the type of query
used, JPQL works in the same manner.

The recipes found in this chapter are built around two tables: Patient and Medication. 
The Patient table maintains information about patients such as the patient's name and
medications. The Medication table maintains information about a specific medication a 
patient is taking such as its name and dosage level. These two tables are related. One Patient
may have zero or more medications. This is reflected in the methods of the two entity classes 
and the @OneToMany and @ManyToOne annotations used in defining the entity classes.

We will create two facade classes for these entity classes: PatientFacade and
MedicationFacade. Both of these use the AbstractFacade as their base class. These 
entities, facades and their relational mapping are explained in the Populating the Patient
and Medication tables recipe.

By the way, these tables are used throughout the recipes addressed in this chapter. We will
populate the database in the PatientServlet. Populating the tables in code does not impose
on the reader the need to import or otherwise use an existing database. The execution of
multiple queries against a table will result in a table whose state may be different from what
we expect. If we always execute queries against a table with the same initial state we can
more easily understand and verify the results. This is the approach we will use in this chapter.



Chapter 5

161

To create a query we need to use an instance of the EntityManager class. The entity facade
classes expose the EntityManager class. This means we should normally execute our queries
as a method of the facade class.

The JPQL language is similar to SQL. However, the parts of the query are expressed using the
entity's names and its fields as opposed to specifying tables and columns. These fields are 
selected using an identification variable as illustrated in the Using the Select query recipe.
One nice benefit of this approach is if the table or column names are changed, it does not 
affect the query. However, if we modify the entities then this may affect the JPQL queries.

There are three basic types of queries supported by JPQL.

Select

Update

Delete

In addition, the Where clause is frequently used in conjunction with these queries. This clause
provides considerable control over which entities will be affected by a query. The Using the
Where clause recipe covers this clause.

Populating the Patient and Medication
tables

In this recipe, we will learn how to create and populate the Patient and a Medication table.
These tables will be used for the other recipes in this chapter. This approach means you 
do not have to import or otherwise use an existing database. The process of creating these
tables is facilitated through several helper methods.  Upon completion of this recipe, you will
have the base for learning how to use JPQL as illustrated in the remaining recipes.

Getting ready
The process of creating this application consists of:

1. Creating five classes

Patient – An entity representing a patient 

Medication – An entity representing the medications used by a patient

AbstractFacade – A base class used by the next two classes

PatientFacade – A facade class for the Patient entity

MedicationFacade – A facade class for the Medication entity

2. Creating a servlet to populate and demonstrate the use of JPQL



















Querying Entities using JPQL and the Criteria API

162

We will start with the description of a patient and a medication entity. The facade classes 
are then defined and a servlet will be created to actually use the facade classes to populate 
the tables.

The Patient class represents a patient with several attributes:

id – A long integer automatically generated 

firstName – A simple string 

lastName – A simple string 

sex – A character 

dateOfBirth – An instance of the java.util.Date class

medications – A collection of medication for the patient

The Medication class represents a medication with several attributes:

name – The name of the drug 

type – The type of the drug 

dosage – The dosage level 

frequency – The frequency the medication is taken

patient – A reference to the patient using this medication

How to do it...
Create a new Java EE application called PatientApplication. Add a package called
packt to the EJB module and a package called servlet to the WAR module.

We will create two entity classes that deal with patients and their medications; Patient and
Medication. A patient can have zero or more medications. This relationship between the
entities is called a One-To-Many relationship.

Create the Patient entity in the package packt. The creation of an entity is detailed  
in the Chapter 4, Creating an entity recipe. We will augment this entity with the @Table
annotation to associate the entity with the table PATIENT. Add fields for the patient attributes 
listed previously along with getter and setter methods. The fields are annotated with 
@Column which specifies the field name for the corresponding table. In addition, we will need 
constructors and two methods: addMedication and removeMedication which associates
a medication with a patient. Until the Medication class is added, these methods will result
in a syntax error.

@Entity
@Table(name="PATIENT")

public class Patient implements Serializable {

























Chapter 5

163

@Column(name="FIRSTNAME")

private String firstName;

@Column(name="LASTNAME")

private String lastName;

@Column(name="SEX")

private char sex;

@Column(name="DATEOFBIRTH")

@Temporal(javax.persistence.TemporalType.DATE)

private Date dateOfBirth;

@OneToMany(mappedBy="patient")

private Collection<Medication> medications;

@Id
@GeneratedValue(strategy = GenerationType.AUTO)
private Long id;

public Patient() {

}

public Patient(String firstName, String lastName, char sex,  
Date dob) {
this.firstName = firstName;
this.lastName = lastName;
this.sex = sex;
this.dateOfBirth = dob;

}
public void addMedication(Medication medication) {

medications.add(medication);
}

public Medication removeMedication(Medication medication) {
medications.remove(medication);
medication.setPatient(null);
return medication;

}



Querying Entities using JPQL and the Criteria API

164

Next, add the Medication entity to the packt package. Use the @Table annotation to
associate this entity with the MEDICATION table. Add getter and setter methods to the class
for the fields listed earlier. Also add a default and four argument constructor to facilitate the 
construction of a Medication instance.

@Entity 
@Table(name = "MEDICATION") 
public class Medication implements Serializable {

@ManyToOne
private Patient patient;

@Column(name = "NAME")
private String name;

@Column(name = "TYPE")
private String type;

@Column(name = "DOSAGE")
private int dosage;

@Column(name = "FREQUENCY")
private int frequency;

@Id
@GeneratedValue(strategy = GenerationType.AUTO)
private Long id;

public Medication() {
}

public Medication(String medication, String type, int dosage,  
int frequency) {
this.patientId = patientId;
this.name = medication;
this.type = type;
this.dosage = dosage;
this.frequency = frequency;

}
public Patient getPatient() {

return patient;
}

public void setPatient(Patient patient) {
this.patient = patient;

}



Chapter 5

165

Create and add an AbstractFacade class to the packt package as detailed in the previous
chapter. Also add a PatientFacade and a MedicationFacade class to persist the entities
as discussed in Chapter 4, Creating an entity facade recipe. We will later add methods to
these classes to illustrate the use of JPQL and the Criteria API.

The last class we need to create is the PatientServlet which we will add to the servlet
package. Here, only the first part of the servlet is shown. The basic servlet class is discussed 
in Chapter 1, Accessing a session bean using dependency injection recipe. Note the
declaration and injection of the entity class and their facade class variables. These will be
used later to illustrate the use of JPQL.

public class PatientServlet extends HttpServlet {

private Patient patient;
@EJB
private PatientFacade patientFacade;

private Medication medication;
@EJB
private MedicationFacade medicationFacade;

// Helper methods

protected void processRequest(HttpServletRequest request,  
HttpServletResponse response)
throws ServletException, IOException {
response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();
try {

// Populate the tables
populateTables();
...

} finally {
out.close();

}
}

...
}

Our main task here is to populate the PATIENT and MEDICATION tables. To assist in this
process create two methods: createPatient and createMedication, and add them
after the helper methods comment. Also, add a method called populateTables to actually
add entries to these tables. 

// Helper methods
private Patient createPatient(String firstName, String lastName,  

char sex, int year, int month, int day) {
Calendar calendar = Calendar.getInstance();
calendar.set(year, month, day);



Querying Entities using JPQL and the Criteria API

166

patient = new Patient(firstName, lastName, sex,  
calendar.getTime());

patientFacade.create(patient);
return patient;

}

private Medication createMedication(String name, String type, 
int dosage, int frequency) {
Medication medication;
medication = new Medication(name, type, dosage, frequency);
medicationFacade.create(medication);
return medication;

}

private void populateTables() {
patient = createPatient("Donald", "Baker", 'M', 1976, 3, 13);
patient.addMedication(createMedication("Accupril", "ACE",  
10, 1));

patient.addMedication(createMedication("Cleocin",  
"Anti-Bacterial", 2, 2));

patient = createPatient("Jennifer", "Campbell", 'F', 1982,  
5, 23);

patient.addMedication(createMedication("Urex", "Anti-Bacterial",  
5, 2));

patient.addMedication(createMedication("Lasix", "Diuretic",  
12, 1));

patient = createPatient("Steven", "Young", 'M', 1965, 6, 12);
patient.addMedication(createMedication("Vasitec", "ACE",  
10, 2));

patient = createPatient("George", "Thompson", 'M', 1957, 12, 2);
patient.addMedication(createMedication("Altace", "ACE", 25, 1));
patient.addMedication(createMedication("Amoxil",  
"Anti-Bacterial", 10, 4));

patient.addMedication(createMedication("Mycelex", "Anti-Fungal",  
12, 2));

patient = createPatient("Sandra", "Taylor", 'F', 1998, 1, 23);
patient.addMedication(createMedication("Accupril", "ACE",  
10, 1));

patient = createPatient("Maria", "Green", 'F', 1978, 7, 21);
patient.addMedication(createMedication("Altace", "ACE", 25, 1));

patient = createPatient("Sarah", "Walker", 'F', 1980, 10, 10);
patient.addMedication(createMedication("Accupril", "ACE",  
10, 1));



Chapter 5

167

patient.addMedication(createMedication("Ilosone",  
"Anti-Bacterial", 5, 2));

patient.addMedication(createMedication("Terazol", "Anti-Fungal",  
20, 1));

patient.addMedication(createMedication("Aldactone", "Diuretic",  
5, 3));

patient = createPatient("Kevin", "Hall", 'M', 2005, 4, 2);

patient = createPatient("Carol", "Harris", 'F', 1958, 8, 11);
patient.addMedication(createMedication("Zyvox", "Anti-Bacterial",  
10, 3));

}

When the servlet is executed the tables should be created and populated.

In this recipe we set up the foundation for the other recipes in this chapter. While we now have
populated these tables, it would be nice if we could examine and verify that our code works as
expected. We will delay this activity until the Using the Select query recipe.

How it works...
Let's examine the Patient class first. Notice the use of the @OneToMany annotation. One
patient entity may possess zero or more medications. The mappedBy attribute indicates a 
bi-directional relationship. This means we can use JPQL or the Criteria API to navigate in
either direction.

Getter and setter methods are easy to add to a class. Most IDEs provide some mechanism 
to quickly generate and insert these methods based on the existing class fields. For example, 
from NetBeans right-clicking on the source code and selecting the insert code menu  
allows you to use a Getter option that presents a set of options for generating these  
types of methods.

The dateOfBirth field was declared as a Date. Either the java.util.Date or the 
java.sql.Date class could have been used. The java.util.Date stores a date as a long
value representing the time elapsed since January 1, 1970 00:00:00.000 Greenwich Mean
Time. The java.sql.Date class extends the java.util.Date class and is used where a
JDBC SQL DATE value is used. The use of time is covered in more detail in Chapter 12, Using
time within an EJB recipe.

In the Medication entity notice the use of the @ManyToOne annotation. It was used to
create a bi-directional connection between the Patient and Medication entities. It
allowed us to determine which patient uses which medication.



Querying Entities using JPQL and the Criteria API

8

In the servlet, the createPatient and createMedication methods used their arguments
as parameters to their respective constructors. The createPatient method also used a
Calendar instance to convert the date information into a form assignable to the Patient's
dateOfBirth field.

The populateTables method used these helper methods to populate the database. This
simple, but lengthy method added a series of patients each with zero or more medications.

There's more...
Throughout this chapter we will create and use queries to illustrate the various techniques
available. Some of these queries will retrieve information from a table while others may delete
and modify the contents of a table. In order to insure consistent and predictable behavior, it is
best if the tables always start with the same initial contents. We can insure this by removing
and then restoring the contents of the tables each time the PatientServlet executes. 
By using the following code we can make this possible. The findAll method is part of the
facade classes and returns a list of all of the entities in that table. Add the following code
sequence before the call to the populateTables method.

// Remove all medications from the database
List<Patient> patientList = patientFacade.findAll();
for (Patient patient : patientList) {

patientFacade.remove(patient);
}

// Remove all medications from the database
List<Medication> medicationList = medicationFacade.findAll();
for (Medication medication : medicationList) {

medicationFacade.remove(medication);
}

// Populate the tables
populateTables();

See also
The remainder of the recipes in this chapter builds upon this recipe. The next recipe develops
a JPQL query to display the contents of our tables.



Chapter 5

9

Using the Select query
The Select query is a very useful query as it returns a subset of one or more tables of a
database. The query can be used to select which rows of a table should be returned and
which fields of each row. When the query is executed a list of results is returned and can be 
processed and/or displayed by the application.

Getting ready
The steps used to create and use a JPQL Select query include:

1. Obtaining an instance of an EntityManager

2. Using the createQuery method to create an instance of a Query based on a Select
JPQL string argument

3. Using a method such as the getResultList to execute and return the results of
the query

The easiest place to find an instance of the EntityManager is in a facade class. This is
where we will place our JPQL-based methods.  

How to do it...
The findAll method is provided as part of the AbstractFacade base class. However, it
uses the Criteria API to return a list of every entity in the underlying database. In this recipe,
we will focus on how to use JPQL to accomplish the same task.

Add a findAll method to the PatientFacade. Use the @Override annotation to explicitly
override the base class method.

@Stateless 
public class PatientFacade extends AbstractFacade<Patient> {

@PersistenceContext(unitName = "PatientApplication-ejbPU")
private EntityManager entityManager;
...
@Override
public List<Patient> findAll() {
Query query = entityManager.createQuery("select p FROM Patient p");
List<Patient> list = query.getResultList();
return list;
}
...

}



Querying Entities using JPQL and the Criteria API

170

Add a call to the method in the PatientServlet after the body tag is displayed.

...
out.println("<body>");
List<Patient> firstNameList = patientFacade.findAll();
for (Patient patient : firstNameList) {

out.println("<h5>" + patient.getLastName() +  
", " + patient.getFirstName() + "</h5>");

}

Execute the servlet. The result is shown in the following screenshot:

How it works...
The first step created the Query instance using the createQuery method. This required the
use of the EntityManager class and a JPQL string. Since this method is a member of the
PatientFacade, we used the entityManager variable and the createQuery method to
create a Query object.

A JPQL query statement string was used as the argument to the createQuery method. 
What we would like the query to do is to make a request such as: "Return a list of all patients
from the PATIENT table". The Select JPQL statement is designed to return this type of result.
The statement consists of two parts: a Select clause and a From clause. The Select
clause indicates what we want to retrieve and the From clause determines the origin of  
this information.



Chapter 5

171

SELECT and FROM are keywords and are not case-sensitive. In these examples, they will
be written in upper case to clarify the queries. A JPQL statement meeting our needs looks
like this: SELECT p FROM Patient p. We can add this string to complete the process of
creating the query.

Notice the use of the entity name, Patient, as opposed to the name of the table, PATIENT.
The variable, p, is called an identification variable. All identification variables are declared in 
a From clause. They can be referenced from a Select clause, or as we will see later, from a
Where clause. Optionally, we can use the AS keyword to be more explicit.

SELECT p FROM Patient AS p

For those familiar with SQL, we would use an * to identify all of the fields of the table row. In 
JPQL, we simply use the identification variable.

Since we are dealing at the entity level, we need an identifier to specify what we want to 
select. For example, if we had been interested in only the first name of the entity we would 
use a dot and the field name. The dot is called a navigation operator.

SELECT p.firstName FROM Patient p

To complete the process of creating and executing a query we needed to actually execute the
query. The createQuery method only creates the query, it does not execute it. There are
several methods we can use to execute the query. Since we are using a Select query and we
need multiple entities returned, we used the getResultList method which returns a 
java.util.List object.  

There's more...
A more condensed way of writing the method is to use Java's invocation chaining. This process
simply eliminates the middleman and avoids intermediate variables.

public List<Patient> findAll() {
return em.createQuery("SELECT e FROM Patient e").getResultList();

}

There is more to the Select query than we can present here. However, there are several issues
we should address including:

Eliminating duplicate entities

Using the Order By clause







Querying Entities using JPQL and the Criteria API

172

Eliminating duplicate entities
For some tables, certain Select queries may return multiple entities which are identical. For
example, add the following method to the Medication class that will return all medications
of type ACE (Angiotensin Converting Enzyme Inhibitors):

public List<String> findByType() {
Query query = entityManager.createQuery("SELECT m.name FROM  
Medication m WHERE m.type = 'ACE'");

List<String> list = query.getResultList();
return list;

}

Add the following code sequence to the PatientServlet after the body tag is displayed.

...
out.println("<body>");
List<String> medications = medicationFacade.findByType();
out.println("<h3>Medications of type ACE</h3>");
for (String m : medications) {

out.println("<h3>Medication: " + m + "</h3>");
}

Execute the PatientServlet. Altace is returned twice as illustrated in the 
following screenshot:

To avoid this duplication of medication names we can use the DISTINCT keyword. Only those
entities with a distinct set of values will be returned. Replace the query in the findByType
method with this query:

SELECT DISTINCT m.name FROM Medication m WHERE m.type = 'ACE'



Chapter 5

173

Re-execute the PatientServlet. Duplicate names are now removed as shown here:

Using the Order By clause
The Order By clause is useful in controlling the order of entities returned by a Select
statement. The clause follows the Where clause and can consist of a comma delimited list
of entity fields. Modify the findAll method to use the query:

SELECT DISTINCT m.name FROM Medication m ORDER BY m.name

Re-execute the PatientServlet. The list returned is sorted in ascending order by the
medication's name as shown here:



Querying Entities using JPQL and the Criteria API

174

If we need to sort the elements in descending order the DESC keyword is used.

SELECT DISTINCT m.name FROM Medication m ORDER BY m.name DESC

While the keyword ASC can be used explicitly to indicate an ascending sort, the Order By
clause defaults to ascending. If multiple elements are included in the clause, the left-most
elements have higher precedence.

See also
The Using the Where clause recipe that follows illustrates how to limit the number of rows of a
table returned.

Using the Where clause
The Where clause is used to narrow down the number of entities handled by a query. In the
case of the Select statement, it determines the number of entities returned. With a Delete
statement it determines which entities will be removed from a table.

The Where clause uses a number of operators to control which entities will be affected. In this
recipe we will illustrate how many of them are used.

Getting ready
The Where clause consists of the WHERE keyword followed by a conditional expression. The
conditional expression determines which entities are affected by the query. The Where clause
is optional and if omitted will identify all of the entities in a table. If it is present, only those
entities matching the conditional expression will be affected.

The process of using a Where clause consists of:

1. Adding the WHERE keyword to the query

2. Adding a condition expression

3. Executing the query

The condition expression possesses a number of operators that can be used to select a set of
entities. The expression will evaluate to either true or false. If the expression is true, then the
row will be returned otherwise it will not be returned.



Chapter 5

175

How to do it...
To illustrate these operators we will use a Select query. This query, in its initial form, simply
returns all entities in the Medication table. The displayAll method implements this query
and is passed a PrintWriter object. The query is created and executed with the resulting
list being displayed.

public void displayAll(PrintWriter out) {
Query query = entityManager.createQuery("SELECT m FROM Medication  
m WHERE m.dosage = 10");

List<Medication> list = query.getResultList();
for (Medication medication : list) {
out.println(

"<h5>Medication ID: " + medication.getId() +
" Name: " + medication.getName() +
" Type: " + medication.getType() +
" Dosage: " + medication.getDosage() +
" Frequency: " + medication.getFrequency()+ "</h5>");

}
}

Add a call to displayAll in the PatientFacade class after the body tag is displayed:

...
out.println("<body>");
medicationFacade.displayAll(out);

Execute the servlet using the URL displayed in the following screenshot:



Querying Entities using JPQL and the Criteria API

176

How it works...
In the Select query, only those medications whose dosage level is 10 will be returned. It
used the navigation operator to select the dosage field and used the equality operator to
compare it to 10. The getResultList method was executed returning a list of medications.
Each element of the list was then displayed using the PrintWriter object.

There's more...
There are numerous operators available for use with a conditional expression. Specialized
comparison operators include:

[NOT] BETWEEN – Used to define a range of values

[NOT] LIKE – Useful when used with wild card characters

[NOT] IN – Used with lists

IS [NOT] NULL – Whether the field is NULL or not

IS [NOT] EMPTY – Whether the field is EMPTY or not

[NOT] MEMBER OF – Used with collections

There are also three logical operators: NOT, AND, and OR and they perform as you would
expect. The Where clause also supports these literals:

String – Enclosed in single quotes (Use two single quotes back-to-back to represent a
single quote)

Numeric – Such as 12, 3.407, and +45

Boolean – Use either TRUE or FALSE

Enum – Any enum used as a field of an entity can also be used as part of the 
Where clause

Here we will examine several different types:

Comparison operators

Between operator

Like operator

IN and IS operators































Chapter 5

177

Comparison operators
The comparison operators are similar to those used in Java. They include:

Operator Symbol
Equal =
Greater than >
Less than <
Greater than or equal >=
Less than or equal <=
Not equal <>

For example, the following query will select those medications whose dosage level exceeds 5.

SELECT m FROM Medication m WHERE m.dosage > 5

Arithmetic operators are also available and perform simple arithmetic operations including:
unary + and -, *, /, + and -. These operators work in the same way as they do in Java.

Between operator
The Between operator is used to determine whether a number falls between a range of
values. We can also use arithmetic operators in conjunction with logical operators to 
make the same determination. For example, these two expressions are equivalent:

SELECT m FROM Medication m WHERE m.dosage >= 5 AND m.dosage <= 10
SELECT m FROM Medication m WHERE m.dosage BETWEEN 5 AND 10

Notice the entity and field name had to be used twice in the first expression. One of the 
advantages of the Between operator is the entity and field name is used only once. The 
Not operator is not inclusive, that is, in this case the dosage is not 5 or 10 or any number
in between.

SELECT m FROM Medication m WHERE m.dosage <5 OR m.dosage > 10
SELECT m FROM Medication m WHERE m.dosage NOT BETWEEN 5 AND 10

Replace the query used in the MedicationFacde class's displayAll method with the
following query: 

SELECT m FROM Medication m WHERE m.dosage BETWEEN 5 AND 10



Querying Entities using JPQL and the Criteria API

8

Execute the PatientServlet and you should get the results as shown in the 
following screenshot:

Like operator
The Like expression allows us to use wild cards to specify a match using either strings or
numbers. Two wild card characters are supported:

% – Percent which matches 0 or more characters

_ – Underscore character which matches any single character

For example, the % character can be used to match any medication name starting with
a capital A.

SELECT m FROM Medication m WHERE m. name LIKE 'A%'







Chapter 5

9

Replace the query used in the MedicationFacde class's displayAll method with this
query and you should get the same values as shown in the following screenshot:

The underscore is used here to match any six character last name starting with 'B' and ending
with 'nson' such as 'Benson' or 'Binson'.

WHERE patient.lastName LIKE 'B_nson'

If either of these wild card characters needs to be used as part of an expression, then
they can be escaped using the back slash character. Here, the name must start with
an underscore.

WHERE patient.lastName LIKE '\_%'

IN and IS Operators
The IN operator can be used with strings or numbers to determine whether a value is in a set 
of values. The values representing the set are enclosed in parentheses. For example, the
following illustrates using the IN operator to select from a set of frequencies.

SELECT m FROM Medication m WHERE m.frequency IN (1, 2)
SELECT m FROM Medication m WHERE m.frequency NOT IN (1, 2)

Strings can also be used in a list.

SELECT m FROM Medication m WHERE m.type IN ('Anti-Fungal',  
'Diuretic')
SELECT m FROM Medication m WHERE m.type NOT IN ('Anti-Fungal',  
'Diuretic')



Querying Entities using JPQL and the Criteria API

1�0

Replace the query used in the MedicationFacde class's displayAll method with
the second to last query and you should get the same values as shown in the following
screenshot:

The IS NULL operator determines whether a field is NULL. The following queries illustrate how
this operator can be used.

SELECT m FROM Medication m WHERE m.type IS NULL
SELECT m FROM Medication m WHERE m.type IS NOT NULL

See also
The next recipe illustrates a different way of limiting the number of entities returned at
one time.

Controlling the number of entities returned
by a Select query

In addition to using a Where clause to limit the number of entities returned, there are a
couple of other approaches possible. This recipe addresses the use of methods to control the
number of entities returned and to specify the first entity of the set to return. This permits us 
to retrieve the results of a query as a series of subsets.

This technique is useful when we want to display only a subset of entities at a time. By
displaying a partial set, the user is not overwhelmed with a long list and a partial list will be
returned faster than a complete list.



Chapter 5

1�1

Getting ready
We will execute a query in the same way as before, but limit the number returned using a
combination of Query methods. If only one entity is needed then the getSingleResult
method can be used.

If subsets are needed, then the getResultList method can be used in conjunction with the
setMaxResults and setFirstResult methods. The steps used for this approach include:

1. Creating the query

2. Setting the number of entities to return and a beginning index

3. Executing the query

4. Processing the entities returned

How to do it...
To illustrate this technique, add a method called processAllPatients to the
PatientFacade class. In this method we will create a query to return all of the entities in the
corresponding table. We will then use the setMaxResults method to restrict the number 
of entities returned and the setFirstResult to specify the first entity to be returned. The 
resulting list is then used to display the patient's name.

public void processAllPatients(PrintWriter out) {
int querySize = 5;
int beginIndex = 0;
while(true) {
Query query = entityManager.createQuery("SELECT p FROM  
Patient p");

query.setMaxResults(querySize);
query.setFirstResult(beginIndex);
List<Patient> list = query.getResultList();
// Process list
if (list.isEmpty()) {
break;

} else {
// Process
for (Patient patient : list) {
out.println("<h5>"+patient.getFirstName()+"</h5>");
}
entityManager.clear();
beginIndex = beginIndex + list.size();

}
}

}
}



Querying Entities using JPQL and the Criteria API

1�2

Add a call to the method in the PatientServlet after the body tag is displayed.

...
out.println("<body>");
patientFacade.processAllPatients(out);

Execute the PatientServlet and you should get the output as illustrated in the 
following screenshot:

How it works...
The query used will normally return all of the elements from the patient table. However, 
the setMaxResults was set to querySize restricting the number of entities actually
returned. In this example it was set to 5. The setFirstResult method determined the 
index of the first entity of the larger result set to return. The query was then executed using 
the getResultList method.

If the list is empty then the loop is terminated with the break statement. This will happen
when all of the entities have been returned. 

The processing simply displayed the first name of each entity returned. After the processing 
was complete, the clear method was executed to detach the objects processed so far. This
resulted in a more efficient retrieval of the entities. Next, the beginIndex was incremented
by the size of the list. During subsequent iterations of the loop, different sets of entities will
be retrieved.



Chapter 5

1�3

There's more...
Instead of retrieving several entities at a time, it is possible to return a single entity at
a time. If you know the query will return a single entity, it is more efficient to use the 
getSingleResult method.  

Query query = entityManager.createQuery("...");
Patient patient = query.getSingleResult();

The getSingleResult method will throw an EntityNotFoundException if it
is unsuccessful.

We can also limit the number of entities returned to one using the setMaxResults method.
We can achieve the same result using a value of one.

query.setMaxResults(1);

See also
The previous recipe illustrates how to control which entities are returned using a 
Where clause.

Using the Delete query
Deleting records from a database is a common activity. We can use JPQL to delete individual
records or multiple records. JPQL query deals with entities as opposed to database records. In
this recipe we will explore the process of deleting entities.

Getting ready
The basic form of the Delete query consists of:

DELETE FROM entity entityIdentificationVariable WHERE condition

For example, to delete the entity whose name is "Donald Baker" we would use the query.  

DELETE FROM Patient p WHERE p.firstName = 'Donald' AND p.lastName =  
'Baker'

The steps used to create and use a JPQL Delete query include:

1. Obtaining an instance of an EntityManager

2. Using the createQuery method to create an instance of a Query based on a Delete
JPQL string argument

3. Using the executeUpdate method to execute and return the result of the query



Querying Entities using JPQL and the Criteria API

1�4

The easiest place to find an instance of the EntityManager is in a facade class. This is
where we will place our JPQL-based methods.

How to do it...
To illustrate the process add a delete method to the PatientFacade. The method should
have first and last name parameters and should return an integer. The return value will 
indicate whether any entities have actually been deleted.

@Stateless 
public class PatientFacade extends AbstractFacade<Patient> {

@PersistenceContext(unitName = "PatientApplication-ejbPU")
private EntityManager entityManager;
...
public int delete(String firstName, String lastName) {

Query query = entityManager.createQuery("DELETE FROM Patient p  
WHERE p.firstName = '" + firstName + "' AND p.lastName = '" +  
lastName + "'");

int numberDeleted = query.executeUpdate();
return numberDeleted;

}
...

}

Next, modify the PatientServlet to use this method after the body tag is written.

...
out.println("<body>");
int numberDeleted = patientFacade.delete("Donald", "Baker");
out.println("<h3>" + numberDeleted + " Entities deleted</h3>");

Execute the PatientServlet and you should see a message indicating the deletion of the
entity as illustrated next:



Chapter 5

1�5

How it works...
The EntityManager was inserted using the @PersistenceContext annotation. In the 
delete method, string concatenation was used to integrate the two method parameters 
into the query string.

To execute the query, we used the executeUpdate method. This method can be used for
both a Delete query and an Update query as discussed in the next recipe. The method
returned the number of entities affected, in this case, the number of entities deleted.  
We used this number as the method's return value.

There's more...
The AbstractFacade class provides a remove method to delete an entity. This method
is passed a reference to the entity and uses the Criteria API to delete the entity from the
database. The delete method we used provides the foundation for more powerful queries
where we can select one or more entities to delete based on an arbitrarily complex Where
clause. The Criteria API can be used to achieve similar results.

See also
The Using the Criteria API recipe examines the use of the Criteria API.

Using the Update query
The Update query will modify one or more stored entities. This query is used to modify the
content of a data store. It specifies the fields of the entity to be modified, their new values and 
which entities to be affected.

Getting ready
The Update query normally will include the Update clause, a Set clause and a Where clause.
The Update clause is similar in structure to a Select clause, but uses the UPDATE keyword
instead. The Set clause follows and starts with the SET keyword and has an assignment
looking expression. The Where clause follows the Set clause.

For example, to update the dosage for a specific type of mediation we can use this query:

UPDATE Medication m SET m.dosage = 6 WHERE m.type = 'ACE'

The Update clause specifies the name of the entity and declares an identification variable. 
The Set clause assigns 6 to the dosage field and the While clause selects only those
medications whose type is ACE.



Querying Entities using JPQL and the Criteria API

1�6

The steps used to create and use a JPQL Update query include:

1. Obtaining an instance of an EntityManager

2. Using the createQuery method to create an instance of a Query based on an
Update query JPQL string argument

3. Using the executeUpdate method to execute and return the result of the 
query

The easiest place to find an instance of the EntityManager is in a facade class. This is
where we will place our JPQL-based methods.  

How to do it...
We will modify the MedicationFacade class to illustrate the UPDATE query. Add an
updateDosage method to the MedicationFacade class and pass two string arguments
representing a type and a dosage. The method will invoke the executeUpdate method and
return the number of entities affected.

@Stateless 
public class MedicationFacade extends AbstractFacade<Medication> {

@PersistenceContext(unitName="PatientApplication-ejbPU")
private EntityManager entityManager;
...
public int updateDosage(String type, int dosage) {

Query query = entityManager.createQuery("UPDATE Medication m " +  
"SET m.dosage = " + dosage + " WHERE m.type = '" + type + "'");

int numberUpdated = query.executeUpdate();
return numberUpdated;

}
...

}

Next, modify the PatientServlet by adding code to call updateDosage and display the
results. Add this code after the body tag is written.

...
out.println("<body>");
int numberUpdated = medicationFacade.updateDosage("ACE", 6);
out.println("<h3>" + numberUpdated + " Entities updated</h3>");



Chapter 5

1�7

Execute the PatientServlet and you should get a message similar to the following
indicating that 6 entities have been updated.

How it works...
We used the entityManager variable to create a new query. Notice, the query used string
concatenation to create a query with the two method parameters.

The executeUpdate method was used to execute the query. The actual number of
entities affected by the query was returned. If necessary, we can use this number to 
verify the correctness of the operation. The number of entities affected was then
returned by the method.

See also
The Using the Delete query recipe to learn how to delete an entity from a database.

Using parameters in a query
If a query could not use parameters in the same manner as methods, they would have limited
utility. JPQL supports two types of query parameters: named and positional. This recipe
illustrates their use and how they can enhance the utility of a query. The use of this technique
will improve your ability to use JPQL in an efficient and reusable manner.

Getting ready
Named and positional parameters are used as part of the query string and are assigned
values using the setParameter method. We use parameters in a query by:

1. Creating a query using either a named or positional parameter

2. Using the setParameter method to assign a value to the parameter

3. Executing the query



Querying Entities using JPQL and the Criteria API

88

Named parameters are prefixed with a : and are embedded as part of a query statement.  

SELECT p FROM Patient p WHERE p.lastName = :lastName

Positional parameters are prefaced with a ? and are also embedded in the query.

SELECT p FROM Patient p WHERE p.lastName = ?1

The setParameter method assigns a value to the parameter before it is executed.
Otherwise, queries using parameters are created and executed in the same way as non-
parameterized queries.

How to do it...
Let's examine named parameters first. Add a method to the PatientFacade called
findByLastname. Pass it a single string argument and have it return a list of patients.

@Stateless 
public class MedicationFacade extends AbstractFacade<Medication> {

@PersistenceContext(unitName="PatientApplication-ejbPU")
private EntityManager entityManager;
...
public List<Patient> findByLastName(String lastName) {

Query query = em.createQuery("SELECT p FROM Patient p WHERE  
p.lastName = :lastName");

query.setParameter("lastName", lastName);
List<Patient> list = query.getResultList();
return list;

}
...

}

Next, add code to call this method and display the results in the PatientServlet after the
statement that writes out the body tag.

...
out.println("<body>");
List<Patient> patients = patientFacade.findByLastName("Walker");
out.println("<h3>Patient with a last name of Walker</h3>");
for(Patient patient : patients) {

out.println("<h3>Patient: " + patient.getLastName() + ", " +  
patient.getFirstName() + "</h3>"); 

}



Chapter 5

89

Execute the PatientServlet. Since there is only one person with a last name of "Walker",
only one entity is returned as shown in the following screenshot:

Positional parameters use a question mark and a number to denote parameters. We will
rewrite the findByLastName method to use positional parameters. The only difference
between the first version of the findByLastName method and this version is the query.
The setParameter method uses an integer as its first argument which corresponds to the 
parameter ?1. Input parameters are numbered starting with 1.

public List<Patient> findByLastName(String lastName) {
Query query = em.createQuery("SELECT p FROM Patient p WHERE  
p.lastName = ?1");

query.setParameter(1, lastName);
List<Patient> list = query.getResultList();
return list;

}

Re-execute the PatientServlet. You should get the same results as before.

How it works...
We used the entityManager variable to create a new query. Notice, the query did not use
string concatenation to create a query.

A value was assigned to the parameter using the setParameter method. Notice with the
named parameter, the first parameter contained the name of the parameter and did not 
include the colon. Named parameters are case-sensitive. With a positional parameter, the
question mark is not used in the setParameter method. Only its ordinal position is used.

Instead of using a named parameter, we could have used string concatenation to build 
the query.

Query query = em.createQuery("SELECT p FROM Patient p WHERE  
p.lastName = " + lastName);



Querying Entities using JPQL and the Criteria API

1�0

However, the use of the named parameter offers more flexibility in the construction of 
the query.

There's more...
We can make the findByLastName method more flexible by using the LIKE operator
instead of the = operator.

public List<Patient> findByLastName(String lastName) {
Query query = em.createQuery("SELECT p FROM Patient p WHERE  
p.lastName LIKE :lastName");

query.setParameter("lastName", lastName);
List<Patient> list = query.getResultList();
return list;

}

We can use either the original query or use the wildcard characters _ or % as explained in the
Using the Where clause recipe. Here we use the % to select those patients whose last name
starts with a "T".

List<Patient> patients = patientFacade.findByLastName("T%");

See also
The Using the Where clause recipe discusses the use of wildcard characters.

Using a Named query
A named query, also called a static query, is defined with the entity class. When the query 
is deployed, JPA can translate the query into native SQL resulting in an improvement in the
query's performance.

Getting ready
The process of creating and using a named query has three steps:

1. Declaring the named query using the @NamedQuery annotation as part of an
entity class

2. Using the createNamedQuery method to create the query

3. Executing the query



Chapter 5

1�1

A named query is declared as part of the entity class. In its simplest form, the @NamedQuery
annotation precedes the class declaration and uses two attributes. The first attribute, name,
sets the name of the query and the second attribute, query, contains the query. The query
itself can be any valid JPQL statement.

Once we have defined the named query, we can use it in the same manner as for other 
queries. However, instead of creating the query using the createQuery method we will
use the createNamedQuery method.

How to do it...
We will use the Medication entity to illustrate the use of named queries. Add a named query
to the Medication class called findByType. As with all annotations, attribute names are
enclosed within the annotation's parentheses and are followed by an equal sign and then its
value enclosed in parentheses.

@Entity
@Table(name="MEDICATIONS")
@NamedQuery(name="findByType",

query="SELECT m FROM Medication m WHERE m.type = ?1")
public class Medication implements Serializable {

As the name of the query implies, we will return a list of entities based on their type. For
this query, we used positional notation to pass the type of medication as discussed in the
previous recipe.  

To demonstrate the use of the named query, add a method called findByType to the
MedicationFacade class. The method is passed a string representing the medication
type. The method will use the named query and return a list of Medication entities.

@Stateless 
public class MedicationFacade extends AbstractFacade<Medication> {

@PersistenceContext(unitName="PatientApplication-ejbPU")
private EntityManager entityManager;
...
public List<Medication> findByType(String type) {

Query query = entityManager.createNamedQuery("findByType");
query.setParameter(1,type);
return query.getResultList();

}
...

}



Querying Entities using JPQL and the Criteria API

1�2

Next, add code to use the findByType method and display the results to the
PatientServlet after the statement that writes out the body tag.

...
out.println("<body>");
List<Medication> medications = medicationFacade.findByType("ACE");
out.println("<h3>Medications of type ACE</h3>");
for (Medication m : medications) {

out.println("<h3>Medication: " + m.getName() + "</h3>");
}

Execute the PatientServlet and you should get a list of medications as shown in the
following screenshot:

How it works...
The EntityManager was inserted using the @PersistenceContext annotation. We used
the entityManager variable to create a new query. Notice that the createNamedQuery
method was passed a string containing the name of the query. The setParameter method
assigned the method parameter, type, to the first and only argument of the named query. 
The query was then executed with the list of entities of that type being returned.



Chapter 5

1�3

There's more...
For many entities, more than one named query may be needed. To add additional
named queries, use the @NamedQueries annotation.  This annotation groups named 
queries together.

The @NamedQueries annotation's value attribute consists of an array of NamedQuery
objects. The default property for @NamedQueries annotation is value so there is no need to
explicitly use it. An easy way to create this array is to use a set of curly braces to group the
named queries. Curly braces can be used in Java to initialize an array. Here, a second named
query called deleteByType has been added to the Medication class.

@NamedQueries({
@NamedQuery(name = "findByType", query = "SELECT m FROM Medication  

m WHERE m.type = ?1"),
@NamedQuery(name = "deleteByType", query = "DELETE m FROM  

Medication m WHERE m.type = ?1") 
}) 
public class Medication implements Serializable {

See also
The Using parameters in a query recipe shows how to build queries using parameters.

Using the Criteria API
The Criteria API provides a way of creating type-safe queries. Its type-safe quality is the result
of the Java compiler's ability to perform syntax checking at compile-time and the run-time
environment's ability to catch and handle exceptions. Using this API can result in more robust
and stable applications.

The Criteria API is a complex API. Complete coverage is not possible here. The intent is to
provide an introduction to its use.

Getting ready
The essential steps in creating and using a Criteria API-based query are:

1. Creating an instance of the CriteriaBuilder class

2. Using this instance to create an instance of a CriteriaQuery class containing
a query

3. Executing the query



Querying Entities using JPQL and the Criteria API

1�4

How to do it...
There are two basic approaches for using the Criteria API. The first is through the use of 
strongly-typed queries based on the use of java.persistence.metamodel interfaces. This
is a more complex approach requiring the use of metamodel objects for the management of
the queries. A second approach uses strings but is not as type safe. It is this latter approach
that we will demonstrate here.

Add a method called findAllMales to the PatientFacade class. The method is passed
a PrintWriter object and returns void. Within the method, Criteria API classes are used to
return a list of male patients and then the list is displayed.

public void findAllMales(PrintWriter out) {
CriteriaBuilder criteriaBuilder;
criteriaBuilder = getEntityManager().getCriteriaBuilder();

CriteriaQuery<Patient> criteriaQuery =  
criteriaBuilder.createQuery(Patient.class);

Root<Patient> patientRoot = criteriaQuery.from(Patient.class);

criteriaQuery.where(criteriaBuilder.equal(
patientRoot.get("sex"),"M"));
List<Patient> patients =  
getEntityManager().createQuery(criteriaQuery).getResultList();

for (Patient p : patients) {
out.println("<h5>" + p.getFirstName() + "</h5>");

}

Modify the Patient Servlet and add a call to the findAllMales method after the display of
the body tag.

...
out.println("<body>");
patientFacade.findAllMales(out);



Chapter 5

1�5

Execute the PatientServlet and you should get a list of male patients as shown in the
following screenshot:

How it works...
An instance of the CriteriaBuilder was created using the EntityManager class's
getCriteriaBuilder method. Next, an instance of a CriteriaQuery was created based
on the Patient class. This instance represents a query. A Root instance was created using
the from method. This root referenced the Patient entity.

The where method was executed against the CriteriaQuery object to restrict the query
results to those specified by its argument. This argument was a Predicate object returned
by the equal method. The argument of this method restricted matches to those where the
patient was a male. The get method used an argument of sex which was compared to the
"M" string to determine if the patient was male.

A List of patients was then returned using the getResultList method executed against
the CriteriaQuery object. The list was then displayed.





6
Transaction
Processing

In this chapter, we will cover:

Creating the Demonstration classes

Handling transactions the easy way

Using the SessionSynchronization interface with session beans

Understanding how the TransactionAttributeType affects transactions

Handling transactions manually

Rolling back a transaction

Handling errors in a transaction

Using timeouts with transactions

Introduction
Transactions are concerned with the execution of a sequence of database operations which
execute to completion or, if there is a problem, any changes made are reversed and the
database is restored to its initial state. The process of restoring the database to its initial state
is called rolling back the transaction. A transaction is considered to be an indivisible unit used
to ensure the integrity of data.

EJB support transactions using the Java Transaction API (JTA). Many of the details of this API
are hidden from the developer through the use of annotations. This API uses a transaction
manager to control the process. While transactions are not restricted to database operations,
most transactions execute against a database.



















Transaction Processing

98

Transactions can be incorporated in session beans, message-driven beans, and entities.
These transactions can be JTA transactions or local resource-based transactions. Local
resources include database connections which avoid the overhead of distributed transaction
support as provided by JTA. The type of transaction support used is determined when the
EntityManager is specified for an application.

In many applications a decision is made as to whether the database operations require a
transaction or not. If transactions are required, the next decision is to determine whether
the container should manage the transaction or if the transaction should be managed by
the developer. Transactions managed by the EE container are called Container Managed
Transactions (CMT) and those managed by the developer are called Bean Managed
Transactions (BMT). The Handling transactions the easy way recipe details CMT while the
Handling transactions manually recipe explains BMT.

In most situations BMTs should be used with care. They are more complex and verbose. In
addition, this approach results in transactional code being intermixed with the business logic
of your application. If your transaction is part of a session bean which spans multiple methods
then it is necessary to use BMTs. BMT is useful for complex transactions and rollback
situations. Chapter 8, Using interceptors to handle transactions recipe, illustrates how to
separate an EJB's BMT transaction code from the business logic.

As little time as possible should be spent in transactions since normally they will lock any
resources being used. This lock results in the inability of other processes to access the
resource and thus slows them down.

The management of a transaction involves starting the transaction, specifying the database
operations to perform and then either committing or rolling back the transaction. Beginning a
transaction and committing a transaction form the boundaries of the transaction. With CMT,
the boundaries normally begin when a method starts and commits just before the method
terminates. With BMT, the developer explicitly sets the boundaries using a begin and a
commit method.

CMTs can be used with session beans, message-driven beans, and entities. However, BMTs
can only be used with session- and message-driven beans.

Transactions are designated using the @TransactionManagement annotation. 
This annotation has a TransactionManagementType attribute which can be set to
either: TransactionManagementType.CONTAINER or TransactionManagementType.
BEAN. If the TransactionManagementType attribute is not used, then it defaults to
TransactionManagementType.CONTAINER.

In this chapter, we will demonstrate transaction processing using a series of classes
built around a city. The City class holds the name of a city, its country and population.
Transactions will be executed against these and supporting classes to facilitate the
understanding of transactions as used in EJBs.



Chapter 6

99

The first recipe, Creating the Demonstration classes, explains how these and their supporting
classes work together. An updatePopulation method is used to modify the populations of
the entity. We will use the updatePopulation method to demonstrate transactions.

A SessionSynchronization interface provides insight into the progress of a CMT. This
interface is examined in the Using the SessionSynchronization interface with session beans
recipe. Later, in the Understanding how the TransactionAttributeType affects transactions
recipe, it is used to explain transaction attribute types.

The Rolling back a transaction recipe explains the mechanics of this important process. EJB
support for exception handling is explained in the Handling errors in a transaction recipe.
Another important aspect of a transaction is the duration of a transaction. The control of a
transaction's duration is detailed in the Using timeouts with transactions recipe.

Creating the Demonstration classes
The City entity and its supporting classes will provide methods which will illustrate the
use of transactions. A session facade is created for the class along with a servlet and a
PopulationManager class. This class along with the session facade is where we will find 
most of the transactions used in this chapter.

Getting ready
In this recipe, we will create a series of classes to support the illustration of transaction
processing. These classes include:

City – An entity class representing a city 

CityFacade – A facade class supporting the City entity

AbstractFacade – The base class for CityFacade

PopulationServlet – A servlet to drive the application

Subsequent recipes will build upon these classes.

How to do it...
Create a new Java EE application called PopulationApplication with an EJB and a 
WAR module. Add a packt package to the EJB module and a servlet package to the WAR
module. Create the City entity in the packt package and add instance variables for its ID,
name, country, and population. While not shown below, add getter and setter methods for
the instance variables. Add a default and a three argument constructor.

@Entity
public class City implements Serializable {

private String name;











Transaction Processing

200

private String country;
private long population;
@Id
@GeneratedValue(strategy = GenerationType.AUTO)
private Long id;
public City() {
}
public City(String name, String country, long population) {
this.name = name;
this.country = country;
this.population = population;
}

Next, create a CityFacade class based on the AbstractFacade class developed in
Chapter 4, Creating an entity facade recipe.

@Stateful
@TransactionManagement(TransactionManagementType.CONTAINER)
public class CityFacade extends AbstractFacade<City> {
@PersistenceContext(unitName = "PopulationApplication-ejbPU")
private EntityManager em;
protected EntityManager getEntityManager() {
return em;
}
public void create(City entity) {
getEntityManager().persist(entity);
}
public CityFacade() {
super(City.class);
}

}



Chapter 6

201

Add a changePopulation method to this class. The method is passed the name of a city
and a population. Within the method, add a println statement to reflect the progress 
through the method and a query to modify the population. The use of the Query object and
the Java Persistence Query Language (JPQL) is covered in Chapter 5, Using the Update 
query recipe:.

public void changePopulation(String cityName, long count) throws  
IllegalPopulationException {
System.out.println("Executing changePopulation");
Query query = em.createQuery( "UPDATE City c " +  
"SET c.population = c.population+:count " +  
"WHERE c.name = :cityName");

query.setParameter("count", count);
query.setParameter("cityName", cityName);
int result = query.executeUpdate();
System.out.println("result: " + result);
System.out.println("--- end changePopulation");

}

Next, add a PopulationServlet to a servlet package in the WAR module. It should appear
similar to the following:

public class PopulationServlet extends HttpServlet {

protected void processRequest(HttpServletRequest request,  
HttpServletResponse response)
throws ServletException, IOException {
response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();
try {

out.println("<html>");
out.println("<head>");
out.println("<title>Servlet PopulationServlet</title>");
out.println("</head>");
out.println("<body>");
out.println("</body>");
out.println("</html>");

} finally {
out.close();

}
}

@Override
protected void doGet(HttpServletRequest request,  

HttpServletResponse response)



Transaction Processing

202

throws ServletException, IOException {
processRequest(request, response);
}
@Override
protected void doPost(HttpServletRequest request,  
HttpServletResponse response)
throws ServletException, IOException {
processRequest(request, response);
}

}

Execute the servlet as illustrated in the following screenshot. Notice, there is no output for the
current servlet. Subsequent recipes will provide output.

That's it for the moment. In the next recipe, we will augment these classes to support
transactions.

How it works...
The City entity was used to hold information about a city. The CityFacade used the
changePopulation method to update the population for a city. It was passed the name of
the city and a count value. A new query was created using the createQuery method that
contained a JPQL UPDATE query command. Named parameters, as detailed in Chapter 5,
Using parameters in a query recipe, was used to specify the city to be changed. In this query, 
count was simply added to the city's population.

The PopulationServlet does not display anything at this point. In later recipes, we will
modify the servlet display population information.  



Chapter 6

203

Handling transactions the easy way
The easiest way of handling transactions is to let the EJB container manage transactions. This
is facilitated through the use of the @TransactionManagement annotation. When Container
Managed Transactions (CMT) are used, the developer can select the appropriate transaction
attributes for the class and/or methods.

Getting ready
The use of CMT is effected by:

1. Using the @TransactionManagement annotation for the class

2. Using the TransactionManagementType.CONTAINER element, as part of the 
previous annotation, to specify that CMT is being used

3. Using the @TransactionAttribute annotation at the class or method level to specify
the scope of the transaction 

By default, classes and methods use CMT. This means that the above annotations are not
strictly needed but it is a good practice to include them so as to convey explicitly the intent 
of the code.

Next, the class and/or its methods should be annotated with a @TransactionAttribute
annotation along with a TransactionAttributeType element. The TransactionAttributeType
element is assigned one of six possible values as detailed in the There's more section.

The default TransactionAttributeType element is REQUIRED. The transaction type can 
be applied to the entire class and/or overridden at the method level. The transaction type
effectively determines the scope of the transaction and how a method of another class in-
voked from a transaction sequence is handled. In some situations, it may be necessary to
explicitly rollback the transaction.

How to do it...
We will use a PopulationManager session bean to demonstrate the use of CMTs. If the
EJB using transactions is a stateful bean, then it is possible for the bean to receive messages
relating to the state of the transaction. We will make this EJB a stateful bean to explore the
usefulness of accessing state information in the Using the SessionSynchronization interface
with session beans recipe.



Transaction Processing

204

Add a stateful session bean called PopulationManager to the packt package and add
the @TransactionManagement annotation specifying CMT.  Use dependency injection to add
references to the CityFacade. Also, add a default constructor to the class along with utility
methods addCity and updatePopulation.

@Stateful
@TransactionManagement(TransactionManagementType.CONTAINER)
public class PopulationManager {

@EJB
CityFacade cityFacade;

public PopulationManager() {
}

public void addCity(String cityName, String county,  
long population) {
City city = new City(cityName, county, population);
cityFacade.create(city);

}

public void updatePopulation(String cityName, long count) {
cityFacade.changePopulation(cityName, count);

}

To test these methods, we need to modify the PopulationServlet. Use the 
@EJB annotation to inject the following references to the CityFacade and
PopulationManager classes.

@EJB
CityFacade cityFacade;
@EJB
PopulationManager populationManager;

In order to simplify the demonstrations of transactions, it is convenient if the tables are always
in the same initial state. This can be achieved by removing all of their contents and then 
add just those entities we want to affect. To remove all of the records in the tables, add the
clearTables method to the PopulationServlet.

private void clearTables() {
List<City> cities = cityFacade.findAll();
for (City c : cities) {
cityFacade.remove(c);

}
}



Chapter 6

205

We can demonstrate an initial use of transactions using the addCity method and then
update the city's population.  Replace the body of the processRequest method's try block
with the following code sequence:

clearTables();
populationManager.addCity("Tokyo", "Japan", 32450000);
populationManager.updatePopulation("Tokyo", 1000);

cities = cityFacade.findAll();

out.println("<html>");
out.println("<head>");
out.println("<title>Servlet PopulationServlet</title>");  
out.println("</head>");
out.println("<body>");
for(City c : cities) {

out.println("<h5>" + c.getName() + " - " + c.getPopulation() +  
"</h5>");

}

out.println("</body>");
out.println("</html>");

Execute the PopulationServlet and you should get output as shown in the 
following screenshot:

How it works...
When the servlet was executed, the clearTables method removed the entries in the City
table. A new city was added using the addCity method and then its population was updated
using the updatePopulation method. A list of all of the cities was then displayed. In this
case, only one city was added.



Transaction Processing

206

Notice while CMT has been explicitly specified, there is no visible indication that a transaction 
has been performed. We will use the SessionSynchronization interface in the next
recipe to show the execution of a transaction. Also notice we did not explicitly use the 
@TransactionAttribute annotation for any method. This is automatically added as
explained in the next section.

There's more...
The TransactionAttributeType element is used with the @TransactionAttribute annotation. It
can be assigned one of six possible values:

REQUIRED – Must always be part of a transaction

REQUIRES_NEW – Requires the creation of a new transaction

SUPPORTS – Becomes part of another transaction if present

MANDATORY – Must be used as part of another transaction

NOT_SUPPORTED – May not be used as part of a transaction

NEVER – Similar to NOT_SUPPORTED but will result in an EJBException
being thrown

A Message Driven Bean (MDB) only supports the REQUIRED and NOT_SUPPORTED values.
These attributes determine whether and which transactions should be used with a specific 
method. The @TransactionAttribute annotation is used with a method or at the class level.
Here, a changePopulation method uses the REQUIRES_NEW attribute.

@TransactionAttribute(TransactionAttributeType.REQUIRES_NEW)
public void changePopulation(String cityName, long count)

These attributes require further explanation. However, instead of providing the explanation
here, we will postpone discussion of their exact meanings to the Understanding how the
TransactionAttributeType affects transactions recipe.

See also
See the next recipe: Using the SessionSynchronization interface with session beans for more
details regarding the SessionSynchronization interface.















Chapter 6

207

Using the SessionSynchronization interface
with session beans

When a transaction executes as part of a stateful session bean, the bean can 
receive synchronous notifications of the progress of the transaction using the 
SessionSynchronization interface. While there is not a specific field or variable which 
indicates the state of a transaction when using CMT, the invocation of one of its interface
methods implies the transaction's state.

One possible use of this technique is to synchronize the instance variables of the bean to their
corresponding values in a database. In this recipe, we will examine how the interface works. In
the next recipe, Understanding how the TransactionAttributeType affects transactions, we will
demonstrate how CMT work with different transaction attribute type settings.

Getting ready
The steps for using the SessionSynchronization interface include:

1. Declaring that the class implements the interface

2. Implementing the methods of the interface

In order for a stateful session bean to become aware of the state of a transaction, it must
implement the SessionSynchronization interface. The methods of this interface include:

afterBegin – Indicates when a transaction begins

beforeCompletion – Occurs after the method is complete but before the 
transaction commits.

afterCompletion – Occurs after the transaction has completed

The afterBegin method is invoked before the business method is invoked. Any special
processing needed by the session bean may be performed at this time.

The beforeCompletion method provides an opportunity for the session bean to rollback
the transaction using the setRollbackOnly method. The transaction is not rolled back at
this time but the use of the method will eventually result in rolling back of the transaction.

The afterCompletion method receives a Boolean value. A value of true is received when
the transaction is committed. A value of false is received when the transaction is rolled back.









Transaction Processing

8

How to do it...
Modify the CityFacade class to implement the SessionSynchronization interface. Add
println statements to reflect the execution of the methods.

@Stateful
@TransactionManagement(TransactionManagementType.CONTAINER)
public class CityFacade extends AbstractFacade<City>  

implements SessionSynchronization {
...

@Override
public void afterBegin() throws EJBException, RemoteException {

System.out.println("\nCityFacade afterBegin");
}

@Override
public void beforeCompletion() throws EJBException,  

RemoteException {
System.out.println("CityFacade beforeCompletion");

}

@Override
public void afterCompletion(boolean committed) throws EJBException,  

RemoteException {
System.out.println("CityFacade afterCompletion\n");

}
}

By default, each method of the CityFacade requires a transaction. To illustrate the
execution of the transaction, we will modify the remove and findAll methods of the
AbstractFacade class by adding println methods showing when the methods 
are executed.

public void remove(T entity) {
System.out.println("--- AbstractFacade remove - " +  
this.getClass().getSimpleName());

getEntityManager().remove(getEntityManager().merge(entity));
}

public List<T> findAll() {
System.out.println("--- AbstractFacade findAll - " +  
this.getClass().getSimpleName());

javax.persistence.criteria.CriteriaQuery cq =  
getEntityManager().getCriteriaBuilder().createQuery();

cq.select(cq.from(entityClass));
return getEntityManager().createQuery(cq).getResultList();

}



Chapter 6

9

In the PopulationServlet, modify the processRequest method and use the following
code sequence for the body of the try block:

clearTables();
out.println("<html>");
out.println("<head>");
out.println("<title>Servlet PopulationServlet</title>");
out.println("</head>");
out.println("<body>");

Execute the PopulationServlet.  The browser output should be empty; however, the
console window for the server should appear as follows.  Notice the start and end of the
transactions when the CityFacade's findAll and remove methods are invoked from
within the clearTables methods.  Using the methods of the SessionSynchronization
interface clearly illustrates the use of transactions.

INFO: CityFacade afterBegin

INFO: --- AbstractFacade findAll - _CityFacade_Serializable

INFO: CityFacade beforeCompletion

INFO: CityFacade afterCompletion

INFO: CityFacade afterBegin

INFO: --- AbstractFacade remove - _CityFacade_Serializable

INFO: CityFacade beforeCompletion

INFO: CityFacade afterCompletion

How it works...
When the servlet was executed, the clearTables method was called. This method
called the findAll and remove methods. As these two methods executed, the
SessionSynchronization interface methods were executed.

Within the findAll and remove methods, the getClass method was executed against the
Java keyword: this. It returns a reference to a java.lang.Class object for the current
object. The getSimpleName method returned a simple name which was then displayed.



Transaction Processing

210

See also
The next recipe, Understanding how the TransactionAttributeType affects transactions, uses
this interface to illustrate transaction type attribute settings.

Understanding how the 
TransactionAttributeType affects
transactions

The TransactionAttributeType attribute is used with the @TransactionAttribute annotation.
It can be assigned one of six possible values which controls the creation and use of
transactions. In this recipe, we will use the SessionSynchronization interface  
to illustrate how the TransactionAttributeType element works.

Getting ready
The use of CMT is effected by:

1. Using the @TransactionManagement annotation for the class

2. Using the TransactionManagementType.CONTAINER element, as part of the above 
annotation, to specify that CMT is being used

3. Using the @TransactionAttribute annotation at the class or method level to specify
the scope of the transaction 

The @TransactionAttribute annotation, along with a TransactionAttributeType attribute,
is often used at the method level. While the annotation can be applied to a class, it is
more frequently applied to individual methods. When the method is invoked, a transaction
may or may not be present. The meaning of these attributes is dependent upon whether a
transaction is present or not. The table below details the meaning of these attributes.

Attribute Value Transaction
Present

Meaning

REQUIRED Yes Join the existing transaction
No Create a new transaction

REQUIRES_NEW Yes Suspend the current transaction and start a new one.
The success or failure of this new transaction has no
effect on the suspended transaction

No Create a new transaction
SUPPORTS Yes Join the existing transaction

No No transaction is created or used



Chapter 6

211

Attribute Value Transaction
Present

Meaning

MANDATORY Yes Join the existing transaction
No Throws an

EJBTransactionRequiredException

NOT_SUPPORTED Yes Suspend the current exception but does not create a
new one

No No transaction is created or used
NEVER Yes Throws an EJBException

No No transaction is created or used

The transaction type can be applied to the entire class and/or overridden at the method level.
To use this annotation, use the annotation immediately before the method.

@TransactionAttribute(TransactionAttributeType.REQUIRES_NEW)
public void changePopulation(String cityName, long count)

The REQUIRED attribute is the default attribute making the following annotations equivalent:

@TransactionAttribute(TransactionAttributeType.REQUIRED)
@TransactionAttribute()

How to do it...
Here we will use the SessionSynchronization interface to demonstrate the use of
the transaction attributes. Modify the PopulationManager class to implement the
SessionSynchronization interface and display messages indicating when the 
call back methods are invoked.

@Stateful
@TransactionManagement(TransactionManagementType.CONTAINER)
public class PopulationManager

implements SessionSynchronization {
...

@Override
public void afterBegin() throws EJBException, RemoteException {

System.out.println("\nPopulationManager afterBegin");
}

@Override
public void beforeCompletion() throws EJBException,  

RemoteException {
System.out.println("PopulationManager beforeCompletion");



Transaction Processing

212

}

@Override
public void afterCompletion(boolean committed) throws EJBException,  

RemoteException {
System.out.println("PopulationManager afterCompletion\n");

}
}

Modify the updatePopulation method to use the REQUIRED transaction attribute.

@TransactionAttribute(TransactionAttributeType.REQUIRED)
public void updatePopulation(String cityName, long count) {

cityFacade.changePopulation(cityName, count);
}

Modify the CityFacade's changePopulation method to use the REQUIRED attribute.

@TransactionAttribute(TransactionAttributeType.REQUIRED)
public void changePopulation(String cityName, long count) {

System.out.println("--- start changePopulation");
Query query = em.createQuery(
"UPDATE City c " + "SET c.population = c.population+:count " +  
"WHERE c.name = :cityName");

query.setParameter("count", count);
query.setParameter("cityName", cityName);
int result = query.executeUpdate();
System.out.println("result: " + result);
System.out.println("--- end changePopulation");

}

Next, in the PopulationServlet's processRequest method, replace the body of the try
block with the following code:

clearTables();

populationManager.addCity("Tokyo", "Japan", 32450000);
populationManager.updatePopulation("Tokyo", 1000);

List<City> cities = cityFacade.findAll();

out.println("<html>");
out.println("<head>");
out.println("<title>Servlet PopulationServlet</title>");
out.println("</head>");
out.println("<body>");
for (City c : cities) {



Chapter 6

213

out.println("<h5>Rio: " + c.getName() + " - " +  
c.getPopulation() + "</h5>");

}

out.println("</body>");
out.println("</html>");

Execute the code and examine the output. Ignore the output generated from the
clearTables method. What remains illustrates the start of a transaction in the
updatePopulation, its continued use in the changePopulation method and 
eventually the completion of the transaction.

...

INFO: PopulationManager afterBegin

INFO: CityFacade afterBegin

INFO: --- start changePopulation

INFO: result: 1

INFO: --- end changePopulation

INFO: PopulationManager beforeCompletion

INFO: CityFacade beforeCompletion

INFO: PopulationManager afterCompletion

INFO: CityFacade afterCompletion

The combination of using the REQUIRED attribute for both methods illustrates the
execution sequence of the methods. Next, we will look at various combinations of the
TransactionAttributeType attribute.

First, we will look at a combination of REQUIRED and REQUIRES_NEW attributes. Change the
attribute setting for the changePopulation method to REQUIRES_NEW. When the servlet
is executed, the output, in part, appears as follows:

INFO: PopulationManager afterBegin

INFO: CityFacade afterBegin

INFO: Executing changePopulation

INFO: CityFacade beforeCompletion

INFO: CityFacade afterCompletion

INFO: PopulationManager beforeCompletion

INFO: PopulationManager afterCompletion



Transaction Processing

214

Notice that the CityFacade methods are executed between the afterBegin and
beforeCompletion methods of the PopulationManager class. This illustrates the 
start of a new transaction.

Next, let's look at a combination of REQUIRED and SUPPORTS. Change the attribute setting
for changePopulation method to SUPPORTS. When the servlet is executed, the output
appears as follows:

INFO: PopulationManager afterBegin

INFO: CityFacade afterBegin

INFO: Executing changePopulation

INFO: PopulationManager beforeCompletion

INFO: CityFacade beforeCompletion

INFO: PopulationManager afterCompletion

INFO: CityFacade afterCompletion

The SessionSynchronization interface methods are grouped together. This illustrates the
joining of the CityFacade transaction with the PopulationManager transaction. There is
only a single transaction used here.

Next, let's use a combination of MANDATORY and SUPPORTS. Change the attribute setting for
the updatePopulation method to MANDATORY. When the servlet is executed, the output
appears as follows:

INFO: PopulationManager afterBegin

INFO: CityFacade afterBegin

INFO: Executing changePopulation

INFO: PopulationManager beforeCompletion

INFO: CityFacade beforeCompletion

INFO: PopulationManager afterCompletion

The SessionSynchronization interface methods are again grouped together. There is
only a single transaction used with this combination of attribute types.



Chapter 6

215

Next, use a combination of MANDATORY and NOT_SUPPORTED. Change the attribute setting
for the changePopulation method to NOT_SUPPORTED. When the servlet is executed, the
output appears as follows:

…

javax.persistence.TransactionRequiredException: executeUpdate is not supported for
a Query object obtained through non-transactional access of a container-managed
transactional EntityManager

...

The normal result of this combination of attribute type values is a suspension of the current
transaction without creating a new one. However, the executeUpdate method must execute
within a transaction and thus an exception is thrown. If the changePopulation method did
not use a method such as executeUpdate, the exception would not have been thrown and
the overall process would execute to completion successfully.

Next, use a combination of MANDATORY and NEVER. Change the attribute setting for the
changePopulation method to NEVER. When the servlet is executed, the output appears 
as follows:

…

javax.ejb.EJBException: EJB cannot be invoked in global transaction

…

This executes as it should. NEVER means never and the EJBException is thrown when the
changePopulation method is executed as part of a transaction.

So far we have looked at those situations where the first method uses a transaction. 
The effect of not using a transaction is not as clearly illustrated using the
SessionSynchronization interface as long as we are using a method requiring a
transaction, as we do in the changePopulation method. This is because most of the
attribute types will not create or use a transaction. Since the executeUpdate method
requires one, these combinations will throw exceptions.

When a transaction is not present, the effect of an invocation of a method 
possessing a transaction type attribute of either REQUIRED or REQUIRES_NEW 
results in a new transaction being created. If the attribute is MANDATORY then an
EJBTransactionRequiredException exception is thrown. Otherwise, no transaction 
is either created or used.



Transaction Processing

216

How it works...
In these examples, we set the TransactionAttributeType attribute to one of several values.
The effects of these assignments were dependent on the nature of the transaction  
in place. These effects were summarized in the table presented earlier in this recipe.

When the application was executed, the creation and use of transactions was controlled by
the attribute settings. The use of the TransactionAttributeType attribute provided us with
considerable flexibility in how our application behaved. We can use this control to create more 
reliable and robust applications.

There's more...
There are a few restrictions on the use of transaction attributes. First, the REQUIRED
attribute cannot be used for methods of web service endpoints. This is because the caller of
the endpoint has not started a transaction and since the REQUIRED attribute requires one,
it will fail.

While all transaction attributes are available for session beans, some of the attributes are not
available for a timeout call back method. In addition, MDB only supports the REQUIRED and
NOT_SUPPORTED attributes.

See also
The SessionSynchronization interface is explained in the Using the
SessionSynchronization interface with session beans recipe.

Handling transactions manually
Handling a transaction manually provides the developer with more control over the
transaction, but requires more work. This type of transaction control is called a BMT.

It is possible to begin and start a transaction anywhere within a method. The boundaries
of a transaction are explicitly set using the begin and commit transaction methods. For
CMT the boundaries of a transaction are effectively the method. BMTs are only possible
for session- and message-driven beans. They cannot be used for entities.



Chapter 6

217

Getting ready
The steps used to handle transactions manually include:

1. Using the @TransactionManagement annotation to specify bean-managed
transactions

2. Injecting an instance of the UserTransaction object

3. Enclosing the transaction code using the begin and commit methods

We specify that an EJB uses BMT by using the @TransactionManagement annotation and
setting its TransactionManagementType element to BEAN.

@TransactionManagement(TransactionManagementType.BEAN)

Within methods using BMT, an instance of a UserTransaction object is needed. This
class possesses the methods used to control a transaction.  The class can be injected as
an instance variable of the class.

// Injects UserTransaction 
@Resource
private UserTransaction userTransaction;

Next, the transaction operations are enclosed in a code sequence starting with the
UserTransaction's begin method and ending with the commit method. Since any
transaction may encounter problems requiring the transaction to be rolled backed, the
setRollbackOnly method can be used in one or more places to affect the rollback. 
This method is frequently found in catch blocks. The basic structure of the process is
illustrated below.

try {
// Starts the transaction 
userTransaction.begin;
...
// Commits the transaction 
userTransaction.commit(); 
} catch (FirstException fe ) {
userTransaction.setRollbackOnly();
} catch (SecondException se ) {
userTransaction.setRollbackOnly();
}



Transaction Processing

8

How to do it...
It is not possible for one EJB to support both CMT and BMT. If the 
@TransactionManagement annotation is not used, the EJB will default to CMT.

To illustrate BMT using the PopulationApplication, we will add another class to the
packt package called BeanManagedPopulationManager. This class will use essentially
the same changePopulation methods as used in the CityFacade class.

Once you have created the BeanManagedPopulationManager stateful session bean, add
the @TransactionManagement annotation for BMT. Use dependency injection to provide
access to a UserTransaction object and an EntityManager object.

@Stateful
@TransactionManagement(TransactionManagementType.BEAN)
public class BeanManagedPopulationManager {

@Resource
private UserTransaction userTransaction;

@PersistenceContext(unitName = "PopulationApplication-ejbPU")
private EntityManager em;

The persistence unit name, PopulationApplication-ejbPU, was created when the entity was
defined. Next, add a changePopulation method which is passed the name of the city and
a population count to add to its current population. In a try block, add code for beginning and
committing a transaction where a JPQL UPDATE command is used to change the population
of a city. Use println methods to show the execution of the method.

public void changePopulation(String cityName, long count) {
try {
System.out.println("Executing changePopulation");
userTransaction.begin();
Query query = em.createQuery(

"UPDATE City c " + "SET c.population = c.population+:count "  
+ "WHERE c.name = :cityName");

query.setParameter("count", count);
query.setParameter("cityName", cityName);
int result = query.executeUpdate();
userTransaction.commit();

} catch (Exception e) {
e.printStackTrace();

}
}

}



Chapter 6

9

In this example, we don't use the return value from the executeUpdate method. Other
println statements can be used to clarify the operation of the method.

To illustrate the use of this method, we will modify the PopulationServlet. First, inject an
instance of the BeanManagedPopulationManager. Failure to use injection will result in
errors when trying to inject resources in the changePopulation method.

@EJB
BeanManagedPopulationManager bean;

Replace the body of the try block in the processRequest method with the following
statements:

clearTables();
bean.changePopulation("Tokyo", 1000); 
List<City> cities = cityFacade.findAll();

out.println("<html>");
out.println("<head>");
out.println("<title>Servlet PopulationServlet</title>");
out.println("</head>");
out.println("<body>");
for (City c : cities) {

out.println("<h5>Rio: " + c.getName() + " - " + c.getPopulation()  
+ "</h5>");

}
out.println("</body>");
out.println("</html>");

Execute the servlet. Notice the population has increased and the output of the println
method does not show the use of CMT for the query execution.

...

INFO: Executing changePopulation

INFO: CityFacade afterBegin

INFO: --- AbstractFacade findAll - _CityFacade_Serializable

INFO: CityFacade beforeCompletion

INFO: CityFacade afterCompletion



Transaction Processing

220

How it works...
The begin method specified the start of a transaction. All operations that constituted the 
transaction were included between this method and the commit method. The CityFacade
output lines reflect the use of the SessionSynchronization methods that are discussed
in the Using the SessionSynchronization interface with session beans recipe. They reflected 
the execution sequence of the transaction. The JPQL UPDATE command used a named query
as discussed in Chapter 5, Using a Named query recipe.

There's more...
There are two other issues that need to be addressed:

General transaction restrictions

Using the getStatus method

General transaction restrictions
Transactions are supported for either JDBC or JTA transactions. JTA transactions can work
with multiple databases whereas a particular JDBC transaction manager may not work with
multiple databases. JTA does not support nested transactions.

A transaction can be maintained across multiple client calls using session beans. When using
a transaction with message-driven beans, the transaction must commit or rollback before the
method returns.

Do not use the EJBContext methods, getRollbackOnly and setRollbackOnly from
BMTs. These methods are only valid for CMTs. Instead, use the getStatus and rollback
methods of the UserTransaction class.

Using ttthhheee gggeeetttSSStttaaatttuuusss MMMeeettthhhoooddd
The UserTransaction class possesses a getStatus method which returns 
the status of a transaction. To demonstrate the use of this method, create a
getTransactionStateString method. This method returns a string based on an integer
value passed to it. This value corresponds to the values found in the javax.transaction.
Status interface and explains the meaning of the status values.

private String getTransactionStateString (int state) {
switch (state) {
case Status.STATUS_ACTIVE:
return "STATUS_ACTIVE: The transaction is active";
case Status.STATUS_COMMITTED:
return "STATUS_COMMITTED: The transaction has been committed";







Chapter 6

221

case Status.STATUS_COMMITTING:
return "STATUS_COMMITTING: The transaction is being committed";

case Status.STATUS_MARKED_ROLLBACK:
return "STATUS_MARKED_ROLLBACK: The transaction is marked for  

rollback";

case Status.STATUS_NO_TRANSACTION:
return "STATUS_NO_TRANSACTION: There is not transaction";

case Status.STATUS_PREPARED:
return "STATUS_PREPARED: The transaction is in a prepared  

state, ready to commit";

case Status.STATUS_PREPARING:
return "STATUS_PREPARING: The transaction is preparing to  

commit";

case Status.STATUS_ROLLEDBACK:
return "STATUS_ROLLEDBACK: The transaction has been  

rollbacked";

case Status.STATUS_ROLLING_BACK:
return "STATUS_ROLLING_BACK: The transaction is being  

rollbacked";

case Status.STATUS_UNKNOWN:
return "STATUS_UNKNOWN: The transaction is in a unknown state";

default:
return "Status is not available";

}
}

Next, augment the changePopulation method to use the getTransactionStateString
to display the status of the transaction at various points in the method.

public void changePopulation(String cityName, long count) {
try {
System.out.println("Executing changePopulation");
System.out.println("Transaction State: " +  

getTransactionStateString (userTransaction.getStatus()));
userTransaction.begin();
System.out.println("Transaction State: " +  

getTransactionStateString (userTransaction.getStatus()));
Query query = em.createQuery(



Transaction Processing

222

"UPDATE City c " + "SET c.population = c.population+:count "  
+ "WHERE c.name = :cityName");

query.setParameter("count", count);
query.setParameter("cityName", cityName);
int result = query.executeUpdate();
userTransaction.commit();
System.out.println("Transaction State: " +  

getTransactionStateString (userTransaction.getStatus()));
System.out.println("result: " + result);
System.out.println("--- end changePopulation");

} catch (Exception e) {
e.printStackTrace();

}
}

Execute the PopulationServlet.  Its output should contain:

...

INFO: Executing changePopulation

INFO: Transaction State: STATUS_NO_TRANSACTION: There is no transaction

INFO: Transaction State: STATUS_ACTIVE: The transaction is active

INFO: Transaction State: STATUS_NO_TRANSACTION: There is no transaction

See also
The Handling transactions the easy way recipe explains how to use CMTs.

Rolling back a transaction
Transaction errors will frequently result in the transaction being roll backed. That is, any and
all operations performed would be reversed and the database will be restored to its previous
state. Rollback will automatically occur when a Java unchecked exception is thrown. A rollback
may also be performed explicitly by the EJB when conditions warrant a rollback. In a BMT
either the UserTransaction's rollback or setRollbackOnly methods are used to
explicitly rollback the transaction. In a CMT, the setRollbackOnly method is used. The
setRollbackOnly method is designed to be used with a two-phase commit protocol. The
invocation of the method is a way to vote for a rollback.



Chapter 6

223

Getting ready
The general approach to rolling back a transaction involves:

1. Structuring the code to determine points of failure

2. Using the appropriate rollback method to actually roll back the transaction

Most rollbacks will normally occur in a catch block. This is where you should use the
UserTransaction's rollback method or the SessionContext's setRollbackOnly
method. There is nothing magical about catch blocks and rollbacks. They are simply a good
place to perform a rollback since an exception has occurred and probably means there is a
problem with the transaction.

How to do it...
To illustrate rollbacks, we will augment the BeanManagedPopulationManager class's
changePopulation method developed in the Handling transactions manually recipe. In this
method, use the rollback method to roll back the transaction when an exception occurs.

public void changePopulation(String cityName, long count) throws  
SystemException {
try {
System.out.println("BeanManagedPopulationManager -Executing  

changePopulation");
userTransaction.begin();
Query query = em.createQuery(

"UPDATE City c " + "SET c.population = c.population+:count "  
+ "WHERE c.name = :cityName");

query.setParameter("count", count);
query.setParameter("cityName", cityName);
int result = query.executeUpdate();
userTransaction.commit();

} catch (Exception e) {
userTransaction.rollback();

}
}

}

The use of the rollback method results in the immediate rollback of the transaction.
However, using the setRollbackOnly method only marks the transaction for rollback.
It will not be rolled back until the transaction actually ends. Delaying the rollback can be
advantageous since it permits other activities to be performed, such as logging the 
error conditions.



Transaction Processing

224

Create a new version of the CityFacade's changePopulation method to illustrate the use
of the setRollbackOnly method in a CMT EJB. First, inject the SessionContext variable. 

@Resource
private SessionContext context;

Next, have the changePopulation method check the return value of the executeUpdate
method and, if it is greater than 1, assume an error condition and issue the
setRollbackOnly method.

@TransactionAttribute(TransactionAttributeType.REQUIRED)
public void changePopulation(String cityName, long count) {

System.out.println("Executing changePopulation");
Query query = em.createQuery(
"UPDATE City c " + "SET c.population = c.population+:count " +  
"WHERE c.name = :cityName");

query.setParameter("count", count);
query.setParameter("cityName", cityName);
int result = query.executeUpdate();
if(result>1) {
context.setRollbackOnly();

}
System.out.println("result: " + result);
System.out.println("--- end changePopulation");

}

Modify the PopulationServlet to add the following code sequence after the
updatePopulationManager method is called:

try {
bean.changePopulation("Tokyo", 1000);

} catch (SystemException ex) {
System.out.println("SystemException");
Logger.getLogger(PopulationServlet.class.getName()) 

.log(Level.SEVERE, null, ex);
}

Execute the PopulationServlet. The server console should reflect the following output 
illustrating the execution of the BeanManagedPopulationManager call and the subsequent
use of a transaction.

...

INFO: BeanManagedPopulationManager - Executing changePopulation

INFO: CityFacade afterBegin

INFO: --- AbstractFacade findAll - _CityFacade_Serializable

INFO: CityFacade beforeCompletion

INFO: CityFacade afterCompletion



Chapter 6

225

How it works...
Notice the BeanManagedPopulationManager class's changePopulation method
throws a SystemException. This was needed because the UserTransaction's commit
method may throw this exception to indicate that the thread was not permitted to roll back the
transaction. This exception was caught in the PopulationServlet.

There's more...
A CMT cannot use the UserTransaction class. Even the declaration of an instance of the
class in a CMT will result in an error. In a CMT, there are only two rollback-related methods
available: getRollbackOnly and setRollbackOnly. Both of them are methods of the
SessionContext class. As their names imply, the getRollbackOnly returns a Boolean
value indicating whether the transaction has been rolled back or not. The setRollbackOnly
method marks the transaction for rollback. In addition, the getRollbackOnly method can
only be used in a CMT whose transaction attribute is either: REQUIRED, REQUIRES_NEW or
MANDATORY.

The getRollbackOnly method is not available in a BMT. Instead, use the getStatus
method as detailed in the Handling transactions manually recipe. For example, if the result of
a previous operation in a transaction used the setRollbackOnly method, the getStatus
method will return a value of Status.STATUS_MARKED_ROLLBACK.  This can then be used
to explicitly roll back the transaction.

if(userTransaction.getStatus() ==  
javax.transaction.Status.STATUS_MARKED_ROLLBACK) { 

userTransaction.rollback(); 
}

It is possible a BMT will start a transaction and then invoke a method of a CMT. As a 
result, the CMT will not be aware who started the transaction. In contrast, a BMT can only
participate in a transaction that it started. It is not possible to propagate a transaction to
another BMT EJB.

When a rollback is affected within an MDB, the message being processed is pushed back on
the message queue. It will be redelivered to another MDB. If repeated attempts to use the
message fail and it reaches the server's retry limit, it will be placed in a "dead letter" queue.
This process can be expensive.

To avoid this expense, the javax.jms.Message's getJMSRedelivered method can be
invoked to determine if the message is being redelivered. If it is, then the method can decide
to discard the message.



Transaction Processing

226

Handling errors in a transaction
When an error occurs during the execution of a transaction, the transaction may or may not
need to be rolled back. It all depends on the nature of the error. Exceptions are classified 
as either checked exceptions, a java.lang.Exception derived class, or unchecked
exceptions, a java.lang.RuntimeException derived class.

If an unchecked exception is thrown, a transaction is automatically rolled back. For checked
exceptions, the UserTransaction's rollback method or the SessionContext's
setRollbackOnly method are used to explicitly force a rollback.

Checked exceptions are considered to be application exceptions while unchecked exceptions
are system exceptions. However, an application can declare its own unique exceptions which
can be checked or unchecked.

To assist in the creation and use of application-specific exceptions, the 
@ApplicationException annotation is available. This annotation is used to mark
an application-specific exception and specify whether a rollback should occur when this 
exception occurs. Here we focus on the use of this annotation.

Getting ready
The steps used to create such an application-specific exception involve:

1. Creating the exception class

2. Applying the @ApplicationException annotation

3. Creating and throwing the exception where appropriate

The EJB @ApplicationException annotation is used to declare a class as an application
exception. The annotation has two optional elements: inherited and rollback. The inherited
element is used to indicate whether any derived classes should have the annotation applied
to them. The rollback element indicates whether the exception should force a rollback of a
transaction or not. Both of these elements are Boolean. The inherited element defaults to
true and the rollback element defaults to false.

How to do it...
To illustrate the use of this annotation, add a class called IllegalPopulationException,
which extends the Exception class to the packt package. Add a default constructor and a
single argument constructor that uses a simple error message. The rollback element should
be set to true.

@ApplicationException(rollback=true)
public class IllegalPopulationException extends Exception {



Chapter 6

227

public IllegalPopulationException() {

}

public IllegalPopulationException(String message) {
super("IllegalPopulationException");

}
}

To test its use, modify the CityFacade's changePopulation method to throw an
IllegalPopulationException exception if the count parameter is a negative value.
While a negative value is not necessarily an incorrect value, we will use this test to illustrate
the exception handling process.

@TransactionAttribute(TransactionAttributeType.REQUIRED)
public void changePopulation(String cityName, long count) throws  

IllegalPopulationException {
System.out.println("Executing changePopulation");
if(count<0) {
throw new IllegalPopulationException();

}
...

}

Next, modify the PopulationManager's updatePopulation method by catching the
IllegalPopulationException when the changePopulation method is invoked. In
the catch block, use the println method to display a message that the exception has 
been caught.

@TransactionAttribute(TransactionAttributeType.REQUIRED)
public void updatePopulation(String cityName, long count) {

try {
cityFacade.changePopulation(cityName, count);

} catch(IllegalPopulationException e) {
System.out.println("IllegalPopulationException caught");

}
}

Modify the PopulationServlet's processRequest method. Replace the body of the try
block with the following:

clearTables();
populationManager.addCity("Tokyo", "Japan", 32450000);
populationManager.updatePopulation("Tokyo", -1000);
List<City> cities = cityFacade.findAll();

out.println("<html>");



Transaction Processing

8

out.println("<head>");
out.println("<title>Servlet PopulationServlet</title>");
out.println("</head>");
out.println("<body>");
for (City c : cities) {

out.println("<h5>Rio: " + c.getName() + " - " + c.getPopulation()  
+ "</h5>");

}

out.println("</body>");
out.println("</html>");

This code sequence adds a city and then attempts to update its population with a 
negative number.

Execute the PopulationServlet. The browser output will show that the population has not
been updated as shown in the following screenshot:

The console output will show the IllegalPopulationException exception being caught.

INFO: PopulationManager afterBegin

INFO: CityFacade afterBegin

INFO: Executing changePopulation

INFO: IllegalPopulationException caught

INFO: PopulationManager afterCompletion

INFO: CityFacade afterCompletion



Chapter 6

9

How it works...
The ApplicationException annotation marked the IllegalPopulationException as
one which will result in a rollback if thrown. The exception was created and thrown in the
changePopulation method and propagated to the updatePopulation method where it
was caught. Notice that the output from the changePopulation method did not reflect the 
execution of the last two println methods:

INFO: result: 1

INFO: --- end changePopulation

These statements were bypassed and the population was not changed. 

See also
The Rolling back a transaction recipe explains the roll back process in more detail.

Using timeouts with transactions
There are situations where the time used to execute a transaction takes too long. This can
result in unresponsive applications or the appearance that the application has locked up. To
control this behavioral aspect of transaction we need to limit the amount of time allocated to
a transaction. In this recipe, we will address how this is done. 

Getting ready
Using timeouts involves:

1. Determining whether a timeout period is needed

2. Determining what that period should be

3. Using the setTransactionTimeout method in the case of BMT

Determining whether timeouts should occur or what the timeout period should be is
application-specific. As a result we will not address the first two steps here.



Transaction Processing

230

If it is a CMT, we can use the container services to set this limit. The process for doing this
is container-specific. For example, in GlassFish the Transaction Timeout period can be
configured using the Transaction Service as illustrated in the following screenshot.
Notice a Retry Timeout value can also be specified.

For a BMT transaction, we can use the setTransactionTimeout method. The focus of this
recipe is on the use of this method.

How to do it...
Using the setTransactionTimeout method is pretty simple. The method has a single
argument which represents the duration of the time out in seconds. To illustrate its use,
modify the changePopulation method of the BeanManagedPopulationManager 
as developed in the Handling transactions manually recipe. Add a call to the
setTransactionTimeout with an argument of 10. After the begin method, add a sleep
method to force the current thread to sleep for 20 seconds.

public void changePopulation(String cityName, long count) throws  
SystemException {
try {
System.out.println("Executing changePopulation");
userTransaction.setTransactionTimeout(10);
userTransaction.begin();
System.out.println("Transaction State: " +  

getTransactionStateString(userTransaction.getStatus()));
Thread.sleep(20000);
Query query = em.createQuery(



Chapter 6

231

"UPDATE City c " + "SET c.population = c.population+:count "  
+ "WHERE c.name = :cityName");

query.setParameter("count", count);
query.setParameter("cityName", cityName);
int result = query.executeUpdate();
userTransaction.commit();
System.out.println("result: " + result);
System.out.println("--- end changePopulation");

} catch (Exception e) {
System.out.println("Transaction State: " +  

getTransactionStateString(userTransaction.getStatus()));
}

}

Modify the PopulationServlet's processRequest method. Replace the body of the try
block with the following:

clearTables();
populationManager.addCity("Tokyo", "Japan", 32450000);
try {

bean.changePopulation("Tokyo", 1000);
} catch (SystemException ex) {

System.out.println("SystemException");
Logger.getLogger(PopulationServlet.class.getName()) 

.log(Level.SEVERE, null, ex);
}

List<City> cities = cityFacade.findAll();

out.println("<html>");
out.println("<head>");
out.println("<title>Servlet PopulationServlet</title>");
out.println("</head>");
out.println("<body>");
for (City c : cities) {

out.println("<h5>Rio: " + c.getName() + " - " + c.getPopulation()  
+ "</h5>");

}

out.println("</body>");
out.println("</html>");



Transaction Processing

232

Execute the PopulationServlet. It will pause and after 20 seconds the output of the
servlet will show that the population has not been updated. In the console you will see the
following output:

...

INFO: Executing changePopulation

INFO: Transaction State: STATUS_ACTIVE: The transaction is active

INFO: Transaction State: STATUS_NO_TRANSACTION: There is no transaction

...

How it works...
The setTransactionTimeout argument is expressed in seconds. The value of 10 meant it
should not wait for more than 10 seconds before rolling back the transaction.

To test the method, we used the sleep method to suspend the current thread for  
20 seconds. This argument is expressed in milliseconds so we used a value of 20000 
to direct the method to sleep for 20 seconds.

In the console output, the transaction's status was displayed as explained in the Handling
transactions manually recipe. It reflected an initial active transaction but when the exception 
was thrown, the status indicated that a transaction was no longer present.

See also
The Handling transactions manually recipe illustrates how to use BMTs and the Rolling back a
transaction recipe explains the process of rolling back a transaction.



7
EJB Security

In this chapter, we will cover:

Creating the SecurityApplication

Configuring the server to handle security

Understanding and declaring roles

Controlling security using declarations

Propagating identity

Controlling security programmatically

Introduction
Security is an important aspect of many applications. Central to EJB security is the control 
of access to classes and methods. There are two approaches to controlling access to EJBs.
The first, and the simplest, is through the use of declarative annotations to specify the types 
of access permitted. The second approach is to use code to control access to the business
methods of an EJB. This second approach should not be used unless the declarative approach
does not meet the needs of the application. For example, access to a method may be denied
during certain times of the day or during certain maintenance periods. Declarative security is
not able to handle these types of situations.

In order to incorporate security into an application, it is necessary to understand the Java EE
environment and its terminology. The administration of security for the underlying operating
system is different from that provided by the EE server. The EE server is concerned with
realms, users and groups. The application is largely concerned with roles. The roles need to
be mapped to users and groups of a realm for the application to function properly.















EJB Security

234

A realm is a domain for a server that incorporates security policies. It possesses a set of users
and groups which are considered valid users of an application. A user typically corresponds to
an individual while a group is a collection of individuals. Group members frequently share a
common set of responsibilities. A Java EE server may manage multiple realms. 

An application is concerned with roles. Access to EJBs and their methods is determined by 
the role of a user. Roles are defined in such a manner as to provide a logical way of deciding 
which users/groups can access which methods. For example, a management type role may
have the capability to approve a travel voucher whereas an employee role should not have
that capability. By assigning certain users to a role and then specifying which roles can access
which methods, we are able to control access to EJBs.

The use of groups makes the process of assigning roles easier. Instead of having to map
each individual to a role, the user is assigned to a group and the group is mapped to a role.
The business code does not have to check every individual. The Java EE server manages the
assignment of users to groups. The application needs only be concerned with controlling a
group's access.

A group is a server level concept. Roles are application level. One group can be associated
with multiple applications. For example, a student group may use a student club and student
registration application while a faculty group might also use the registration application but
with more capability.

A role is simply a name for a set of capabilities. For example, an auditor role may be to review
and certify a set of accounts. This role would require read access to many, if not all, of the
accounts. However, modification privileges may be restricted. Each application has its own set 
of roles which have been defined to meet the security needs of the application.

The EE server manages realms consisting of users, groups, and resources. The server will
authenticate users using Java's underlying security features. The user is then referred to as a
principal and has a credential containing the user's security attributes. During the deployment
of an application, users and groups are mapped to roles of the application using a deployment
descriptor. The configuration of the deployment descriptor is normally the responsibility of the 
application deployer. During the execution of the application, the Java Authentication and
Authorization Service (JAAS) API authenticates a user and creates a principal representing
the user. The principal is then passed to an EJB.

Security in a Java EE environment can be viewed from different perspectives. When
information is passed between clients and servers, transport level security comes into play.
Security at this level can include Secure HTTP (HTTPS) and Secure Sockets Layer (SSL).
Messages can be sent across a network in the form of Simple Object Access Protocol (SOAP)
messages. These messages can be encrypted. The EE container for EJBs provides application
level security which is the focus of the chapter. Most servers provide unified security support 
between the web container and the EJB container. For example, calls from a servlet in a web
container to an EJB are handled automatically resulting in a flexible security mechanism.



Chapter 7

235

Most of the recipes presented in this chapter are interrelated. If your intention is to try out the
code examples, then make sure you cover the first two recipes as they provide the framework 
for the execution of the other recipes. In the first recipe, Creating the SecurityApplication, we
create the foundation application for the remaining recipes. In the second recipe, Configuring 
the server to handle security, the basic steps needed to configure security for an application 
are presented.

The use of declarative security is covered in the Controlling security using declarations
recipe while programmatic security is discussed in the Controlling security programmatically
recipe. The Understanding and declaring roles recipe examines roles in more detail and 
the Propagating identity recipe talks about how the identity of a user is managed in  
an application.

Creating the SecurityApplication
In this chapter we will create a SecurityApplication built around a simple Voucher entity
to persist travel information. This is a simplified version of an application that allows a user to 
submit a voucher and for a manager to approve or disapprove it. The voucher entity itself will
hold only minimal information.

Getting ready
The illustration of security will be based on a series of classes:

Voucher – An entity holding travel-related information 

VoucherFacade – A facade class for the entity 

AbstractFacade – The base class of the VoucherFacade class as described in 
Chapter 4, Creating an entity facade recipe 

VoucherManager – A class used to manage vouchers and where most of the
security techniques will be demonstrated

SecurityServlet – A servlet used to drive the demonstrations

All of these classes will be members of the packt package in the EJB module except for the
servlet which will be placed in the servlet package of the WAR module.

How to do it...
Create a Java EE application called SecurityApplication with an EJB and a WAR module.
Add a packt package to the EJB module and an entity called Voucher to the package. 













EJB Security

236

Add five private instance variables to hold a minimal amount of travel information: name,
destination, amount, approved, and an id. Also, add a default and a three argument
constructor to the class to initialize the name, destination, and amount fields. The ap-
proved field is also set to false. The intent of this field is to indicate whether the voucher 
has been approved or not. Though not shown below, also add getter and setter methods for
these fields. You may want to add other methods such as a toString method if desired.

@Entity
public class Voucher implements Serializable {
private String name;
private String destination;
private BigDecimal amount;
private boolean approved;
@Id
@GeneratedValue(strategy = GenerationType.AUTO)
private Long id;
public Voucher() {
}
public Voucher(String name, String destination,  
BigDecimal amount) {
this.name = name;
this.destination = destination;
this.amount = amount;
this.approved = false;
}
...

}

Next, add an AbstractFacade class described in Chapter 4, EJB Persistence and a
VoucherFacade class derived from it. The VoucherFacade class is shown below. As with
other facade classes found in previous chapters, the class provides a way of accessing an
entity manager and the base class methods of the AbstractFacade class.

@Stateless 
public class VoucherFacade extends AbstractFacade<Voucher> {
@PersistenceContext(unitName = "SecurityApplication-ejbPU")
private EntityManager em;
protected EntityManager getEntityManager() {
return em;
}



Chapter 7

237

public VoucherFacade() {
super(Voucher.class);
}

}

Next, add a stateful EJB called VoucherManager. Inject an instance of the VoucherFacade
class using the @EJB annotation. Also add an instance variable for a Voucher. We need a
createVoucher method that accepts a name, destination, and amount arguments, and
then creates and subsequently persists the Voucher. Also, add get methods to return the
name, destination, and amount of the voucher.

@Stateful 
public class VoucherManager {
@EJB
VoucherFacade voucherFacade;
Voucher voucher;
public void createVoucher(String name, String destination,  
BigDecimal amount) {
voucher = new Voucher(name, destination, amount);
voucherFacade.create(voucher);
}
public String getName() {
return voucher.getName();
}
public String getDestination() {
return voucher.getDestination();
}
public BigDecimal getAmount() {
return voucher.getAmount();
}
... }

Next add three methods: 

1. submit – This method is intended to be used by an employee to submit a voucher
for approval by a manager.  To help explain the example, display a message showing
when the method has been submitted.

2. approve – This method is used by a manager to approve a voucher.  It should set
the approved field to true and return true.



EJB Security

8

3. reject – This method is used by a manager to reject a voucher.  It should set the
approved field to false and return false.

@Stateful 
public class VoucherManager {
...
public void submit() {
System.out.println("Voucher submitted");
}
public boolean approve() {
voucher.setApproved(true);
return true;
}
public boolean reject() {
voucher.setApproved(false);
return false;
} }

To complete the application framework, add a package called servlet to the WAR module
and a servlet called SecurityServlet to the package. Use the @EJB annotation to inject a
VoucherManager instance field into the servlet. 

In the try block of the processRequest method, add code to create a new voucher and then
use the submit method to submit it. Next, display a message indicating the submission of
the voucher.

public class SecurityServlet extends HttpServlet {
@EJB

VoucherManager voucherManager;
protected void processRequest(HttpServletRequest request,  
HttpServletResponse response)
throws ServletException, IOException {
response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();
try {
voucherManager.createVoucher("Susan Billings",  
"SanFrancisco", BigDecimal.valueOf(2150.75));

voucherManager.submit();

out.println("<html>");
out.println("<head>");



Chapter 7

9

out.println("<title>Servlet SecurityServlet</title>");  
out.println("</head>");
out.println("<body>");
out.println("<h3>Voucher was submitted</h3>");

out.println("</body>");
out.println("</html>");

} finally { 
out.close();

}
} 
...

}

Execute the SecurityServlet. Its output should appear as shown in the following screenshot:

How it works...
In the Voucher entity, notice the use of BigDecimal for the amount field. This java.
math package class is a better choice for currency data than float or double. Its use
avoids problems which can occur with rounding as discussed in Chapter 12, How to support
currency recipe. The @GeneratedValue annotation, used with the id field, is discussed in 
Chapter 4, Creating an entity facade recipe.

In the VoucherManager class, notice the injection of the stateless VoucherFacade session
EJB into a stateful VoucherManager EJB. Each invocation of a VoucherFacade method
may result in the method being executed against a different instance of VoucherManager.
This is the correct use of a stateless session EJB. The injection of a stateful EJB into a
stateless EJB is not recommended.

See also
The next recipe, Configuring the server to handle security, enables the server to support
security for this application.



EJB Security

240

Configuring the server to handle security
Enabling a server to handle security involves configuring the actual server and configuring 
the deployment file. In order for the server to handle the application, the application needs 
to specify certain application security attributes in a deployment descriptor file. This recipe 
addresses these issues.

Getting ready
Before a Java EE application can use security, the EE server must be configured to handle 
security. The configuration process involves several steps:

1. Enabling the security manager

2. Selecting a realm

3. Adding users and groups to the realm

4. Optional: Enabling the default principal to role mapping

The actual steps are server-specific. On the application side, this process involves modifying 
a deployment file. For the SecurityApplication, we will modify the web.xml file. This 
process involves:

1. Setting the realm

2. Setting the login configuration

3. Adding the security role

4. Setting the security constraint

5. Enabling the security constraint

How to do it...
The first step is to enable the security manager. Typically, a server administration console is
provided as part of the Java EE server and allows the administrator to configure the server. 
The actual use of the console is server-specific. Here, we will illustrate the process using 
GlassFish.

For this recipe, you will need to access the administrator console and enable the security
manager. This is often simply a checkbox selection. In addition, either use an existing realm 
or create one if you are comfortable dealing with realms.



Chapter 7

241

The actual realm to use is dependent on the Java EE server you are using. In Glassfish, the file 
realm is normally available and easy to use. This example will use the file realm but you can 
choose a different realm for your implementation.

Enabling the security manager and selecting the file realm in Glassfish is shown in the 
following screenshot:

Next, add the following users and associate them with the groups: employee and manager. For
each user assign a simple password to use when logging on.

sally – employee

mary – manager and employee







EJB Security

242

From GlassFish, under the Security element select Realms and then the file realm. Select the
Manage Users button found at the top of the window. From this window add these two users
as shown in the following screenshot:

Some servers have the capability to automatically associate a group name with a role if they
are identical. This will avoid having to perform explicit mapping. Should your server support
this option, then go ahead and exercise it. In addition, the server may require you to restart
the server before some of these configuration actions take effect. The following screenshot 
shows the mapping enabled in GlassFish.



Chapter 7

243

The next step involves modifying a deployment file. For the SecurityApplication, we will
modify the web.xml file. Your development environment may provide a wizard or similar set 
of dialog boxes to configure the deployment file. Sometimes it is necessary to manually create 
and modify the web.xml. It all depends on the development environment.

The basic settings we will use include:

Setting the login configuration to basic authentication
Setting the realm to file 
Setting the initial security role 
Setting the security constraint to the URL pattern
Enabling the security constraint 
Optionally mapping groups to roles

When the user makes a request which requires authentication, there are several possible
authentication techniques available on most servers including:

None – No authentication of users will be performed 
Digest – A cryptographic hash of the user ID and password are used 
Client certificate – Authentication is based on the client's public key certificate
Basic – The server authenticates using a user ID and password 
Form – The developer provides a customized login screen

























EJB Security

244

For simplicity's sake we will use basic authentication. With this technique, the user is
prompted for a user ID and a password that the server uses to authenticate the user. 
This approach may not be the best for many applications as it is not as secure as other
approaches. It sends the user information as Base64 encoded which allows the user ID
and password to be easily decoded. However, if used in conjunction with a secure transport
mechanism such as SSL, the approach becomes more secure.

Modify the <login-config> element of the web.xml file to specify the basic authentication 
method and the file realm as shown below. This can be done manually or using a development 
environment tool. In NetBeans, the edit window for the file supports this task.

<login-config>
<auth-method>BASIC</auth-method>
<realm-name>file</realm-name>

</login-config>

The roles used in the SecurityApplication include employee and manager. Initially, the
employee role should be added.

<security-role>
<description/>
<role-name>employee</role-name>

</security-role>

A security constraint also needs to be added to the application. This constraint will specify
that when the SecurityServlet is accessed, the server needs to prompt the user for  
a user ID and password. This is accomplished using the <security-constraint>
XML element.

Nested within this element is a <web-resource-collection> element. It
includes a <web-resource-name> element to hold the name of the resource and 
the <url-pattern> element to specify the resource to authenticate. The name of the
resource can be any reasonable descriptive name you choose. The URL pattern should
match those pages the security constraint should be applied to. The following code
specifies a constraint for our servlet:

<security-constraint>
...

<web-resource-collection>
<web-resource-name>SecurityApplicationResouces 

</web-resource-name>
<description/>
<url-pattern>/SecurityServlet</url-pattern>

</web-resource-collection>
...
</security-constraint>



Chapter 7

245

To enable the security constraint, the <role-name> element is added to the 
<auth-constraint> element. Use a role name of employee.

<security-constraint>
...

<auth-constraint>
<description/>
<role-name>employee</role-name>

</auth-constraint>
</security-constraint>

Roles need to be mapped to users and groups. As an application developer, it is not necessary
to know the names of the users or groups of a realm. In fact, this information may not be
known at the time the application is developed. The application may be deployed, and
redeployed, to any number of different servers and the group names used by the servers 
may vary. Mapping the roles to the realm is the responsibility of the deployer. In some
circumstances, the deployer and the developer may be one and the same. This is often true
during the testing process and within smaller organizations.

If the server has been configured to automatically map groups to roles, it is not necessary 
to perform this mapping explicitly in a deployment file. If explicit mapping is required, the 
mapping of roles to groups is performed using the <security-role-mapping> element 
of the runtime deployment descriptor. This descriptor may be in one of several files 
depending on how the application is deployed (sun-application.xml, sun-web.xml, or
sun-ejb-jar.xml). For example, roles can be mapped to either a single user or to a group.
Here, the employee role is mapped to a single user: "sally" and the manager group is mapped
to the group: "manager".

<security-role-mapping>
<role-name>employee</role-name>
<principal-name>sally</principal-name>

</security-role-mapping>

<security-role-mapping>
<role-name>manager</role-name>
<group-name>manager</group-name>

</security-role-mapping>

The use of explicit mapping is not used here as the server was configured to automatically 
map groups to roles where the name of the role and the group is identical. This allows  
us to conveniently skip this step. In Glassfish, the sun-web.xml contains the 
<security-role-mapping elements>.

This configures the application. Next, execute the application. The results should be the same 
as in the previous application since no additional security restrictions have been incorporated.



EJB Security

246

How it works...
We had to configure the server to handle the security requirements of our application. 
We also needed to modify the web.xml file to work with the server. These steps involved 
enabling security and coordinating the realm, roles, and groups. It was also necessary 
to specify which web pages were subjected to security constraints using the 
<security-constraint> element.

See also
The next recipe, Understanding and declaring roles, adds roles to the application and
demonstrates how access to methods is controlled. Subsequent recipes use this framework 
to demonstrate the implementation of security for EJBs.

Understanding and declaring roles
Roles are defined within an application in one of two ways: using the @DeclareRoles
annotation and the @RolesAllowed annotation. In this recipe we will detail the 
@DeclareRoles annotation while the @RolesAllowed annotation will be introduced
but developed further in the Controlling security using declarations recipe.

Getting ready
The two basic steps used to configure roles involve:

1. Using the @DeclareRoles annotation to specify the roles used by the class

2. Adding the @RolesAllowed annotation to restrict access to methods

The @DeclareRoles annotation, as its name implies, declares the roles used by the
application and is applied at the class level. That is, these are the roles to be used with
the annotated EJB. The annotation can only be used once per class.

The @RolesAllowed annotation is used to specify which methods are accessible by the roles
declared within the annotation. If the roles listed in this annotation are not found in the 
@DeclareRoles annotation, the roles are automatically declared.

How to do it...
The @DeclareRoles annotation simply declares roles to be used by the EJB. This annotation
can only be used at the class level. It does not specify any permission granted for the class or
methods within the class.



Chapter 7

247

The annotation takes either a single string argument or an array of string arguments. The
following first example declares a single role while the second specifies two roles for a class.

@DeclareRoles ("employee")
@DeclareRoles ({"employee", "manager"})

Add the second @DeclareRoles annotation example to the VoucherManager class.

@Stateful 
@DeclareRoles ({"employee", "manager"})
public class VoucherManager {

...
}

Execute the application. You should not see any difference in its behavior.

Next, add a @RolesAllowed("employee") annotation to the VoucherManager's submit
method.

@Stateful 
@DeclareRoles ({"employee", "manager"})
public class VoucherManager {

...
@RolesAllowed("employee")
public void submit() {

System.out.println("Voucher submitted");
}
...

}

This annotation will be elaborated upon in the next recipe. However, the use of the annotation
restricts use of the method to only those users who are members of the employee role.

Execute the application. Since we are using basic authentication (see Configuring the server 
to handle security recipe) you should be prompted to log on. Use "sally" as the username
and "password" as the password. The following screenshot illustrates the dialog box used
by GlassFish.



EJB Security

8

The output of the application should appear as shown in the following screenshot:

How it works...
The @RolesAllowed annotation restricted access to the submit method to only those users
belonging to the employee role. An exception was thrown otherwise. Since we were using
basic authentication, the server-provided login dialog box was used.

Note, if you resubmit the request, the user is not prompted for a name or password. If you
want to force the use of the login again, the HttpSession's invalidate method or
HttpServletRequest's logout method can be used to close a session. However, this does
not always work in a testing environment and frequently it is necessary to close the browser
and open it up again to force the authentication of a user.

See also
The next recipe, Controlling security using Declarations, goes into more depth regarding
the use of the @RolesAllowed annotation and other annotations used to control access to
classes and methods.

Controlling security using declarations
Declarative security allows users, defined by roles, to access methods of a class. This is 
accomplished using a series of annotations to permit either certain roles to use a method, 
to permit all roles to use a method, or to deny access for all roles.

Getting ready
The application developer needs to determine which users (roles) should be permitted
to access which methods. Once this has been determined, the classes and methods are
annotated to affect these decisions.



Chapter 7

9

Declarative security can be achieved using any of several annotations including 
@RolesAllowed, @PermitAll, and @DenyAll annotations. Each of these annotations 
has restrictions on where they can be used.

Annotation Use With Description

@PermitAll Bean, Method Allows access by all users

@DenyAll Method No roles are permitted access to the method

@RolesAllowed Bean, Method A list of roles permitted access

The steps used to control access include:

1. Specifying the role permitted using one of the above annotations

2. Applying the annotation at the desired level 

How to do it...
The @RolesAllowed is configured with either a single string or an array of strings. These 
strings are the names of the roles allowed access to the EJB or a method. When applied to
a method, the assignment will override any class level assignment. Here the use of both an
array and a single role are specified.

@RolesAllowed({"bankemployee", "bankcustomer"})
@RolesAllowed("bankemployee")

In the VoucherManager EJB, add an @RolesAllowed annotation to both the approve and
reject methods. Specify a role of manager.

@RolesAllowed("manager")
public boolean approve() {

voucher.setApproved(true);
return true;

}

@RolesAllowed("manager")
public boolean reject() {

voucher.setApproved(false);
return false;

}



EJB Security

250

Next, modify the SecurityServlet's processRequest method's try block to create a
voucher and approve it using the approve method. Also, display a message to indicate
whether the voucher was approved or not and add a catch block at the end of the try block to
handle any access exceptions. The javax.ejb.EJBAccessException is thrown when an
access restriction is violated.

voucherManager.createVoucher("Susan Billings", "SanFrancisco",  
BigDecimal.valueOf(2150.75));

boolean voucherApproved = voucherManager.approve();
...
if(voucherApproved) {

out.println("<h3>Voucher was approved</h3>");
} else {

out.println("<h3>Voucher was not approved</h3>");
}
...

catch(EJBAccessException e) {
System.out.println("Access exception");

}

Execute the servlet and enter "mary" as the user. The application should execute normally with
the voucher being approved since "mary" is authorized to use the approve method as shown
in the following screenshot:

Close the browser and re-execute the servlet. This time, use "sally" as the user. Since "sally" is
not authorized to use the approve method, an EJBAccessException is thrown.

INFO: Access exception

The @PermitAll annotation permits access to the EJB or a specific method by all roles. 
Anyone is able to access and use such methods. This is the default annotation for methods.
For example, the VoucherManager's getName method is not annotated. Add the following
statement to the SecurityServlet immediately after the code which displays the voucher
approval message.

out.println("<h3>Voucher name: " + voucherManager.getName() +  
"</h3>");



Chapter 7

251

Execute the servlet using "mary". The voucher's username is displayed as illustrated in the
following screenshot:

If we add the @PermitAll annotation to the getName method we will see no change in
behavior. So what is the use of this annotation?

At the class level, one or more roles may have been declared using the @DeclareRoles
annotation. The @PermitAll annotation can be used to permit a method to be used by some
role other than those declared at the class level. For example, use the following annotations
for the VoucherManager EJB:

@Stateful
@DeclareRoles("manager")
@RolesAllowed("manager")
public class VoucherManager {

...
}

In the SecurityServlet, remove the code dealing with the submit method.

try {
out.println("<html>");
out.println("<head>");
out.println("<title>Servlet SecurityServlet</title>");
out.println("</head>");
out.println("<body>");

voucherManager.createVoucher("Susan Billings", "SanFrancisco",
BigDecimal.valueOf(2150.75));

out.println("<h3>Voucher name: " + voucherManager.getName() +  
"</h3>");



EJB Security

252

out.println("</body>");
out.println("</html>");

}
catch(EJBAccessException e) {

System.out.println("Access exception");
}
finally {

out.close();
}

Next, use the @RolesAllowed("manager") annotation only for the VoucherManager's
approve and reject methods. Do not use annotations for any of the other methods. If the
servlet is executed using a user in the manager role ("mary"), the application executes cleanly.
However, if you log in as "sally", an exception occurs because "sally" is no longer an authorized
user. This is to be expected.

Add the @PermitAll annotation to the createVoucher and getName methods. Re-execute
the application using "sally". This time the application should execute correctly. While we have
only specified the manager role for the class, the @PermitAll annotation allows other groups
to use those methods.

The @DenyAll annotation denies access to all roles and users. However, this annotation has
limited utility. If access to the method should be denied to all users, then it can easily be
removed from the EJB.

How it works...
The @PermitAll, @DenyAll, and @RolesAllowed annotations provided an easy-to-use
mechanism for controlling access to methods based upon the user's role. When an
unauthorized user attempted to access a method, an exception was thrown which was
caught and dealt with.

However, sometimes it is necessary to allow an unauthorized user access to a method
under certain conditions. The need for this access and how to achieve it is detailed in the 
next recipe.

Propagating identity
In certain situations, the identity of the user may need to be changed to enable a different,
possibly more powerful, role. Consider the following analogy:



Chapter 7

253

If you are familiar with the way most operating systems work, a user is not permitted to
directly read or write to a file. Low-level access to the file is restricted. When a user needs 
to read or write to a file, the operating system will verify the individual's access rights to the 
file and then temporarily grant read/write access privileges to the user. The user assumes a 
higher level of privilege on a temporary basis.

This is analogous to the use of the @RunAs annotation. It allows a new role to be temporarily
assigned to the methods of an EJB.

Getting ready
The steps used to propagate an identity include:

1. Executing a method of an EJB using one role which invokes a method of a second EJB

2. Executing the method of the second EJB using a different, more restrictive role as
specified by the @RunAs annotation

When a method of the second EJB is invoked from the first EJB, the identity (principal) is 
passed with the invocation as part of the security context. The @RunAs annotation is used to
temporarily assign a new role to the current principal. When the second class' methods are
invoked, the new role is assumed. 

This annotation is applied at the class level. The annotation has a single argument, a string
containing the name of the role. Only one role can be assumed at a time.

@RunAs("manager")

When the @RunAs annotation is used, it is normally used in conjunction with the 
@DeclareRoles annotation.

How to do it...
We will add another class to the packt package to demonstrate the use of the @RunAs
annotation. Let's assume when a voucher is submitted it should be verified. If it fails 
verification, then an exception can be thrown. In this example, we will not throw an exception 
so as to keep it simple. An additional restriction, which we will use to illustrate this technique,
requires the methods of this verification EJB to run in the manager role.



EJB Security

254

Add a class to the packt package called VoucherVerification. Annotate the 
class with the @RunAs annotation using a value of "manager". In the class, inject a
SessionContext object using the @Resource annotation. Add a submit method which
passes and returns void. In the method, add code to use the SessionContext variable 
to return a principal object. This principal represents the user who invoked the method. The
getCallerPrincipal method returns a Principal object. Follow the call with a println
method invoking the getName method of the principal to display the principal's name.

@Stateless
@DeclareRoles("manager")
@RunAs("manager") 
public class VoucherVerification {

@Resource
private SessionContext sessionContext;

public void submit() {
Principal principal = sessionContext.getCallerPrincipal();
System.out.println("Principal: " + principal.getName());
// Perform verification checks

}
}

Modify the VoucherManager class to inject an instance of the VerificationManager
class. Modify its submit method to call the VerificationVoucher's submit method.

public class VoucherManager {
...
@EJB
VoucherVerification voucherVerification;
...
@RolesAllowed("employee")
public void submit() {

System.out.println("Voucher submitted");
voucherVerification.submit();

}
...

}

Modify the SecurityServlet try block to appear as follows:

out.println("<html>");
out.println("<head>");
out.println("<title>Servlet SecurityServlet</title>");
out.println("</head>");
out.println("<body>");



Chapter 7

255

voucherManager.createVoucher("Susan Billings", "SanFrancisco",  
BigDecimal.valueOf(2150.75));

voucherManager.submit();

out.println("<h3>Voucher name: " + voucherManager.getName() +  
"</h3>");

out.println("</body>");
out.println("</html>");

Execute the application using the user, "mary", first and then "sally". The output from the 
println method reflects the different users.

INFO: Voucher submitted

INFO: Principal: mary

INFO: Voucher submitted

INFO: Principal: sally

Even though the user, "sally", is not a manager, the submit method is still executed.

How it works...
The VoucherManager's submit method executed using the role of employee. However, 
we decided the VoucherValidation's submit method needed to run in the manager 
role. Allowing an employee to temporarily use the manager role was achieved using the 
@RunAs annotation.

The use of the @RunAs annotation should be used with care. Sufficient checks should be 
made to ensure the selected method is executed only when any restrictions placed on its use
have been met. In a sense, we are augmenting declarative security with a set of criteria to
meet special conditions.

Controlling security programmatically
Programmatic security is based upon the Java Authentication and Authorization Service
(JAAS) API. It should be used when declarative annotation is not adequate to affect the level
of security desired. This can occur when access is time-based. For example, a user may only
be allowed to access certain services during normal business hours such as when the stock
market is open.



EJB Security

256

Getting ready
Programmatic security is affected by adding code within methods to determine who the 
caller is and then allowing certain actions to be performed based on their capabilities. 
There are two EJBContext interface methods available to support this type of security:
getCallerPrincipal and isCallerInRole. The SessionContext object implements
the EJBContext interface. The SessionContext's getCallerPrincipal method returns
a Principal object which can be used to get the name or other attributes of the user. The
isCallerInRole method takes a string representing a role and returns a Boolean value
indicating whether the caller of the method is a member of the role or not.

The steps for controlling security programmatically involve:

1. Injecting a SessionContext instance

2. Using either of the above two methods to effect security

How to do it...
To demonstrate these two methods we will modify the SecurityServlet to use the
VoucherManager's approve method and then augment the approve method with code
using these methods.

First modify the SecurityServlet try block to use the following code. We create a voucher
as usual and then follow with a call to the submit and approve methods.

out.println("<html>");
out.println("<head>");
out.println("<title>Servlet SecurityServlet</title>");
out.println("</head>");
out.println("<body>");

voucherManager.createVoucher("Susan Billings", "SanFrancisco",  
BigDecimal.valueOf(2150.75));

voucherManager.submit();
boolean voucherApproved = voucherManager.approve();

if(voucherApproved) {
out.println("<h3>Voucher was approved</h3>");

} else {
out.println("<h3>Voucher was not approved</h3>");

}

out.println("<h3>Voucher name: " + voucherManager.getName() +  
"</h3>");

out.println("</body>");
out.println("</html>");



Chapter 7

257

Next, modify the VoucherManager EJB by injecting a SessionContext object using the 
@Resource annotation.

public class VoucherManager {
...
@Resource
private SessionContext sessionContext;

Let's look at the getCallerPrincipal method first. This method returns a Principal
object (java.security.Principal) which has only one method of immediate interest:
getName. This method returns the name of the principal.

Modify the approve method so it uses the SessionContext object to get the Principal
and then determines if the name of the principal is "mary" or not. If it is, then approve  
the voucher.

public boolean approve() {
Principal principal = sessionContext.getCallerPrincipal();
System.out.println("Principal: " + principal.getName());
if("mary".equals(principal.getName())) {
voucher.setApproved(true);
System.out.println("approve method returned true");
return true;

} else {
System.out.println("approve method returned false");
return false;

}
}

Execute the SecurityApplication using "mary" as the user. The application should
approve the voucher with the output as shown in the following screenshot:

Execute the application again with a user of "sally". This execution will result in an exception.

INFO: Access exception



EJB Security

8

The getCallerPrincipal method simply returns the principal. This frequently results in
the need to explicitly include the name of a user in code. The hard coding of user names is
not recommended. Checking against each individual user can be time consuming. It is more
efficient to check to see if a user is in a role.

The isCallerInRole method allows us to determine whether the user is in a particular
role or not. It returns a Boolean value indicating whether the user is in the role specified by 
the method's string argument. Rewrite the approve method to call the isCallerInRole
method and pass the string "manager" to it. If the return value returns true, approve  
the voucher.

public boolean approve() {
if(sessionContext.isCallerInRole("manager")) {
voucher.setApproved(true);
System.out.println("approve method returned true");
return true;

} else {
System.out.println("approve method returned false");
return false;

}
}

Execute the application using both "mary" and "sally". The results of the application should be
the same as the previous example where the getCallerPrincipal method was used.

How it works...
The SessionContext class was used to obtain either a Principal object or to
determine whether a user was in a particular role or not. This required the injection of a
SessionContext instance and adding code to determine if the user was permitted to
perform certain actions.

This approach resulted in more code than the declarative approach. However, it provided more
flexibility in controlling access to the application. These techniques provided the developer 
with choices as to how to best meet the needs of the application.

There's more...
It is possible to take different actions depending on the user's role using the
isCallerInRole method. Let's assume we are using programmatic security
with multiple roles.

@DeclareRoles ({"employee", "manager","auditor"})



Chapter 7

9

We can use a validateAllowance method to accept a travel allowance amount and
determine whether it is appropriate based on the role of the user.

public boolean validateAllowance(BigDecimal allowance) {
if(sessionContext.isCallerInRole("manager")) {
if(allowance.compareTo(BigDecimal.valueOf(2500)) <= 0) {

return true;
} else {

return false;
}

} else  if(sessionContext.isCallerInRole("employee")) {
if(allowance.compareTo(BigDecimal.valueOf(1500)) <= 0) {

return true;
} else {

return false;
}

} else  if(sessionContext.isCallerInRole("auditor")) {
if(allowance.compareTo(BigDecimal.valueOf(1000)) <= 0) {

return true;
} else {

return false;
}

} else {
return false;

}
}

The compareTo method compares two BigDecimal values and returns one of three values:

-1 – If the first number is less than the second number

0 – If the first and second numbers are equal

1 – If the first number is greater than the second number

The valueOf static method converts a number to a BigDecimal value. The value is then
compared to allowance. This data type is discussed in more detail in Chapter 12, How to
support currency recipe.











8
Interceptors

In this chapter, we will cover:

Creating the Registration Application

Defining and using interceptors

Using the InvocationContext to verify parameters

Using interceptors to enforce security

Using interceptors to handle transactions

Using interceptors to handle application statistics

Using lifecycle methods in interceptors

Introduction
Most applications have cross-cutting functions which must be performed. These cross-cutting
functions may include logging, managing transactions, security, and other aspects of an
application. Interceptors provide a way to achieve these cross-cutting activities.

The use of interceptors provides a way of adding functionality to a business method without
modifying the business method itself. The added functionality is not intermeshed with the
business logic resulting in a cleaner and easier to maintain application.

Aspect Oriented Programming (AOP) is concerned with providing support for these 
cross-cutting functions in a transparent fashion. While interceptors do not provide as
much support as other AOP languages, they do offer a good level of support.

















Interceptors

262

Interceptors can be:

Used to keep business logic separate from non-business related activities

Easily enabled/disabled

Provide consistent behavior across an application

Interceptors are specific methods invoked around a method or methods of a target EJB. We 
will use the term target, to refer to the class containing the method(s) an interceptor will be
executing around.

The interceptor's method will be executed before the EJB's method is executed. When the
interceptor method executes, it is passed as an InvocationContext object. This object
provides information relating to the state of the interceptor and the target. Within the
interceptor method, the InvocationContext's method proceed can be issued that will
result in the target's business method being executed or, as we will see shortly, the next
interceptor in the chain. When the business method returns, the interceptor continues
execution. This permits execution of code before and after the execution of a business method.

Interceptors can be used with:

Stateless session EJBs

Stateful session EJBs

Singleton session EJBs

Message-driven beans

The @Interceptors annotation defines which interceptors will be executed for all or individual 
methods of a class. Interceptor classes use the same lifecycle of the EJB they are applied to,
in the case of stateful EJBs, which means the interceptor could be passivated and activated.
In addition, they support the use of dependency injection. The injection is done using the
EJB's naming context.

More than one interceptor can be used at a time. The sequence of interceptor execution
is referred to as an interceptor chain. For example, an application may need to start a
transaction based on the privileges of a user. These actions should also be logged. An
interceptor can be defined for each of these activities: validating the user, starting the 
transaction, and logging the event. The use of interceptor chaining is illustrated in the 
Using interceptors to handle application statistics recipe.

Lifecycle callbacks such as @PreDestroy and @PostConstruct can also be used within
interceptors. They can access interceptor state information as discussed in the Using 
lifecycle methods in interceptors recipe.

















Chapter 8

263

Interceptors are useful for:

Validating parameters and potentially changing them before they are sent to
a method

Performing security checks

Performing logging

Performing profiling

Gathering statistics

An example of parameter validation can be found in the Using the InvocationContext to verify
parameters recipe. Security checks are illustrated in the Using interceptors to enforce security
recipe. The use of interceptor chaining to record a method's hit count and the time spent 
in the method is discussed in the Using interceptors to handle application statistics recipe.
Interceptors can also be used in conjunction with timer services, however this discussion is
deferred to Chapter 9, Using interceptors with timers recipe.

The recipes in this chapter are based largely around a conference registration application as
developed in the first recipe. It will be necessary to create this application before the other 
recipes can be demonstrated.

Creating the Registration Application
A RegistrationApplication is developed in this recipe. It provides the ability of
attendees to register for a conference. The application will record their personal information
using an entity and other supporting EJBs. This recipe details how to create this application.

Getting ready
The RegistrationApplication consists of the following classes:

Attendee – An entity representing a person attending the conference

AbstractFacade – A facade-based class as detailed in Chapter 4, EJB Persistence

AttendeeFacade – The facade class for the Attendee class

RegistrationManager – Used to control the registration process

RegistrationServlet – The GUI interface for the application

The steps used to create this application include:

1. Creating the Attendee entity and its supporting classes

2. Creating a RegistrationManager EJB to control the registration process

3. Creating a RegistrationServlet to drive the application























Interceptors

264

The RegistrationManager will be the primary vehicle for the demonstration of interceptors.

How to do it...
Create a Java EE application called RegistrationApplication. Add a packt package to
the EJB module and a servlet package in the application's WAR module.

Next, add an Attendee entity to the packt package. This entity possesses four fields: name,
title, company, and id. The id field should be auto generated. Add getters and setters for
the fields. Also add a default constructor and a three argument constructor for the first three 
fields. The major components of the class are shown below without the getters and setters.

@Entity
public class Attendee implements Serializable {
private String name;
private String title;
private String company;
private static final long serialVersionUID = 1L;
@Id
@GeneratedValue(strategy = GenerationType.AUTO)
private Long id;
public Attendee() {
}
public Attendee(String name, String title, String company) {
this.name = name;
this.title = title;
this.company = company;
}

}

Next, add an AttendeeFacade stateless session bean which is derived from the
AbstractFacade class. Details of the AbstractFacade can be found in the Chapter 4,
Creating an entity facade recipe. The AbstractFacade class is not shown here.

@Stateless
public class AttendeeFacade extends AbstractFacade<Attendee> {
@PersistenceContext(unitName = "RegistrationApplication-ejbPU")
private EntityManager em;
protected EntityManager getEntityManager() {
return em;



Chapter 8

265

}

public AttendeeFacade() {
super(Attendee.class);
}

}

Add a RegistrationManager stateful session bean to the packt package. Add a single
method, register, to the class. The method should be passed three strings for the name,
title, and company of the attendee. It should return an Attendee reference. Use dependency
injection to add a reference to the AttendeeFacade. In the register method, create a new
Attendee and then use the AttendeeFacade class to create it. Next, return a reference to
the Attendee.

@Stateful
public class RegistrationManager {
@EJB

AttendeeFacade attendeeFacade;
Attendee attendee;
public Attendee register(String name, String title,  
String company) {
attendee = new Attendee(name, title, company);
attendeeFacade.create(attendee);

return attendee;
} }

In the servlet package of the WAR module, add a servlet called RegistrationServlet.
This servlet will follow the same structure as detailed in the Chapter 1, Accessing a session
bean using dependency injection recipe. Use dependency injection to add a reference to 
the RegistrationManager. In the try block of the processRequest method, use the
register method to register an attendee and then display the attendee's name.

public class RegistrationServlet extends HttpServlet {
@EJB

RegistrationManager registrationManager;
protected void processRequest(HttpServletRequest request,  
HttpServletResponse response)
throws ServletException, IOException {
response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();



Interceptors

266

try {

out.println("<html>");
out.println("<head>");
out.println("<title>Servlet RegistrationServlet</title>");  
out.println("</head>");
out.println("<body>");
Attendee attendee = registrationManager.register("Bill  

Schroder", "Manager", "Acme Software");

out.println("<h3>" + attendee.getName() + " has been  
registered</h3>");

out.println("</body>");
out.println("</html>");

} finally { 
out.close();

}
} 
...

}

Execute the servlet. The output should appear as shown in the following screenshot:

How it works...
The Attendee entity holds the registration information for each participant. The
RegistrationManager session bean only has a single method at this time. In later recipes
we will augment this class to add other capabilities. The RegistrationServlet is the
client for the EJBs.

See also
See Chapter 1, Accessing a session bean using dependency injection recipe for details on
the creation of a servlet and Chapter 4, Creating an entity facade recipe for details about the
entity facade.



Chapter 8

267

Defining and using interceptors
In this recipe, we will examine the process of creating and using a simple interceptor. An
interceptor method will be invoked before a target method is executed. When the target
method returns, additional code within the interceptor can be executed. This approach is
useful for performing orthogonal tasks and for manipulating the parameters sent to a method
and/or returned from a method.

Getting ready
There are two major steps in the creation and use of an interceptor:

1. Creating a class containing an @AroundInvoke annotated method

2. Specifying the target method using the @Interceptors annotation

To use an interceptor, we must first create it and then specify where it will be used. The 
@AroundInvoke annotation designates a method as an interceptor method. The method
that follows must have a specific signature as shown here:

public Object methodName(InvocationContext context) throws Exception

The interceptor method can be declared either within the target class or in a separate class.

How to do it...
Add a class called SimpleInterceptor to the packt package. Within this class add a
method called simpleMethod which is preceded with the @AroundInvoke annotation. 
Within the method display the name of the target method, invoke the target method with
the proceed method and then display the target method name again as shown here:

public class SimpleInterceptor {
@AroundInvoke
public Object simpleMethod(InvocationContext context) throws  

Exception{
System.out.println("SimpleInterceptor entered: " +  
context.getMethod().getName());

Object result =  context.proceed();
System.out.println("SimpleInterceptor exited: " +  
context.getMethod().getName());

return result;
}

}



Interceptors

8

The second step is to indicate where the interceptor is to be used. It can be applied in
one of three places. Here it is used at the class level using the @Interceptors annotation.
Add an @Interceptors annotation to the RegistrationManager class. Notice the
annotation takes the interceptor class as its argument. In this example, only the business
methods of the RegistrationManager class will be intercepted and handled by the
SimpleInterceptor.

@Stateful
@Interceptors(SimpleInterceptor.class)

public class RegistrationManager {
...

}

Execute the servlet.  It should behave the same way it did earlier but you should notice
the following messages being displayed in the server or development environment
console window:

INFO SimpleInterceptor entered: register

INFO: register

INFO: SimpleInterceptor exited: register

How it works...
The interceptor will be executed before the EJB's method is executed. The sequence of
actions an interceptor will take depends on the specific interceptor. However, this list 
details possible actions:

Perform any processing needed before the target method is invoked (possibly
modifying the target method parameters)

Invoke the target using the proceed method

Perform post target processing (possibly modifying the target method's return value)

If no exceptions have been thrown, return the target method's result

The interceptor is responsible for invoking the target. If the interceptor does not invoke the
target, then it must still return a result or throw an exception. The InvocationContext's
proceed method invokes the target method. When the interceptor returns, it will normally use
the return value of the target method. The target method can be invoked zero or more times.

In the method, simpleMethod, an InvocationContext object was passed that contains
information regarding the invocation such as the name of the target method. This object's
getMethod returns another object representing the target method whose getName method
will return the target method's name. We used this technique twice: once before the proceed
method was called and once after the target method returned. Notice the proceed method
returned a value we stored in result which was then returned by the interceptor.











Chapter 8

9

Interceptors can be defined either:

Inside of the class where they will be used, or

In an interceptor class

Binding an interceptor to a class or a method can be done using either annotations or a
deployment descriptor. The use of a deployment descriptor is detailed in Chapter 11, Using
deployment descriptors for business interceptors recipe.

There's more...
Interceptors can be created in three different ways:

1. For all EJBs in an EJB module

2. For all of the methods of a class

3. For a specific method

Interceptors can also be declared within the target class itself. In addition, more than one
interceptor class can be specified in the @Interceptors annotation. Here we have three
interceptors defined for use with the register method.

@Interceptors({LogInterceptor.class, SecurityInterceptor.class,  
TransactionInterceptor.class}) 
public Attendee register(String name, String title, String company) {
... }

These interceptors will be executed in the order they appear in the annotation.

Creating an Interceptor for all EJBs in an EJB module
We can associate an interceptor with all of the EJBs of an application by adding an
<interceptor-binding> element to the application's EJB jar. Java EE 6 application 
no longer requires deployment descriptors as annotations have largely taken their place.
However, there are certain situations where they are still needed. One of these situations is
when we want to use a default interceptor.

You will probably have to create an ejb-jar.xml file for your application. This process is
development-environment specific. For example, in NetBeans, right-click on the EJB module 
for your project in the Project Explorer and select New ... Standard Deployment Descriptor.
This will create the ejb-jar.xml file.







Interceptors

270

The process of associating an interceptor with all of the EJBs of an application involves:

1. Adding an <interceptors> element to define the interceptor

2. Adding an <assembly-descriptor> element to associate the interceptor with all 
of the methods of the application

3. Creating the interceptor class

Once you have created the ejb-jar.xml, add an <interceptors> element to declare
your default interceptor. Within the element add one <interceptor> element for each in-
terceptor. In this case, there is only one. The <interceptor-class> element is needed
to specify the name of the interceptor class.

<interceptors>
<interceptor>
<interceptor-class>packt.DefaultInterceptor</interceptor-class>
</interceptor>
</interceptors>

Next, add an <interceptor-binding> element inside of an <assembly-descriptor>
element to bind the interceptor to all of the EJBS in the module. The <ejb-name> element
uses an asterisk to specify all EJBs in the module. The <interceptor-class> element
specifies the name of the interceptor.

<assembly-descriptor>
<interceptor-binding>
<ejb-name>*</ejb-name>
<interceptor-class>packt.DefaultInterceptor</interceptor-class>
</interceptor-binding>
</assembly-descriptor>

One possible version of the ejb-jar.xml file follows:

<?xml version="1.0" encoding="UTF-8"?>

<ejb-jar xmlns = "http://java.sun.com/xml/ns/javaee" 
version = "3.1"
xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation = "http://java.sun.com/xml/ns/javaee  
http://java.sun.com/xml/ns/javaee/ejb-jar_3_1.xsd">
<interceptors>
<interceptor>
<interceptor-class>packt.DefaultInterceptor</interceptor-class>
</interceptor>
</interceptors>
<assembly-descriptor>
<interceptor-binding>



Chapter 8

271

<ejb-name>*</ejb-name>
<interceptor-class>packt.DefaultInterceptor</interceptor-class>

</interceptor-binding>
</assembly-descriptor>
</ejb-jar>

We need to create the default interceptor before we can run our application. Add a new 
class to the packt package called DefaultInterceptor. It should be very similar to the
SimpleInterceptor except for the use of the method name defaultMethod and there
will be no need to use the @Interceptors annotation at the class level. Add println methods
to indicate we are executing from the default interceptor.

public class DefaultInterceptor {
@AroundInvoke
public Object defaultMethod(InvocationContext context) throws  

Exception{
System.out.println("Default Interceptor: Invoking method: " +  
context.getMethod().getName());

Object result =  context.proceed();
System.out.println("Default Interceptor: Returned from method: "  
+ context.getMethod().getName());

return result;
}

Execute the application. Once again we should not see any difference in the output 
of the servlet. However, the output in the console will reflect the execution of both the 
SimpleInterceptor and the DefaultInterceptor as shown here:

INFO: Default Interceptor: Invoking method: register

INFO SimpleInterceptor entered: register

INFO: register

INFO: Default Interceptor: Invoking method: create

INFO: Default Interceptor: Returned from method: create

INFO: SimpleInterceptor exited: register

INFO: Default Interceptor: Returned from method: register

Notice the DefaultInterceptor begins execution before the SimpleInterceptor and
completes after it. This is an example of an interceptor chain. One interceptor is executed
followed by another and then by the target method. The order of interceptor chaining is
detailed in the Using interceptors to handle application statistics recipe.



Interceptors

272

Using XML notation means we can change the interceptor used without recompiling the
source code. This is of particular value if the interceptor is concerned with "system" type
functions such as counting the number of times an application is accessed.

Creating an interceptor for all methods of a class
If the intent is to use the same interceptor for all methods of an EJB, then we simply apply the
@Interceptors annotation to the class as we did with the SimpleInterceptor.

@Stateful
@Interceptors({SimpleInterceptor.class})

public class RegistrationManager {

If we don't want a class level interceptor to be executed for a particular method, we can
use the @ExcludeClassInterceptors annotation with the method. This annotation has no
arguments and will not use any interceptors declared at the class level.

@ExcludeClassInterceptors

public Attendee register(String name, String title,  
String company) {
...
}

Execute the application using this annotation. The output should be the same except you
should not see the SimpleInterceptor being used with the register method.

Creating an interceptor for a specific method
Interceptors can also be declared at the method level. The @Interceptors annotation is used
the same way but precedes the method declaration instead of the class declaration. The basic
steps include:

1. Defining an interceptor to use

2. Annotating the method with the @Interceptors annotation

To illustrate this type of interceptor, add a new interceptor class called, MethodInterceptor
to the packt package. It will be very similar to the previous interceptors except it uses a
method name of methodLevel. Add println methods to indicate we are executing from
this interceptor.

public class MethodInterceptor {
@AroundInvoke
public Object methodLevel(InvocationContext context) throws  
Exception{
System.out.println("Method Interceptor: Invoking method: " +  
context.getMethod().getName());
Object result =  context.proceed();



Chapter 8

273

System.out.println("Method Interceptor: Returned from method: " +  
context.getMethod().getName());
return result;
} }

Add the @Interceptors annotation to the RegistrationManager's register method
specifying the MethodInterceptor class.

@Interceptors({MethodInterceptor.class})

public Attendee register(String name, String title,  
String company) {
...
}

Execute the servlet. If the DefaultInterceptor and SimpleInterceptor are still being
used, then you will see all three executing.

INFO: Default Interceptor: Invoking method: register

INFO: SimpleInterceptor entered: register

INFO: Method Interceptor: Invoking method: register

INFO: register

INFO: Default Interceptor: Invoking method: create

INFO: Default Interceptor: Returned from method: create

INFO: Method Interceptor: Returned from method: register

INFO: SimpleInterceptor exited: register

INFO: Default Interceptor: Returned from method: register

Declaring an interceptor in the target class
An interceptor method can be declared within a target class in the same way as in a separate
class using the @AroundInvoke annotation. The interceptor will be applied to all methods of
the EJB unless specified otherwise.

Add a new method to the RegistrationManager class called, internalMethod. Place
the @AroundInvoke annotation in front of it. The method should have the same structure as
previous interceptors but with the new method name and different println methods.

@AroundInvoke

public Object internalMethod(InvocationContext context) throws  
Exception{



Interceptors

274

System.out.println("internalMethod: Invoking method: " +  
context.getMethod().getName());

Object result =  context.proceed();
System.out.println("internalMethod: Returned from method: " +  
context.getMethod().getName());

return result;
}

Execute the servlet. Assuming the previous interceptors are still in place, your output should
be as follows:

INFO: Default Interceptor: Invoking method: register

INFO: SimpleInterceptor entered: register

INFO: Method Interceptor: Invoking method: register

INFO: internalMethod: Invoking method: register

INFO: register

INFO: Default Interceptor: Invoking method: create

INFO: Default Interceptor: Returned from method: create

INFO: internalMethod: Returned from method: register

INFO: Method Interceptor: Returned from method: register

INFO: SimpleInterceptor exited: register

INFO: Default Interceptor: Returned from method: register

Using the InvocationContext to verify 
parameters

The InvocationContext interface is used to support information handling within and
between interceptors. It is passed as the single argument to a method annotated with the 
@AroundInvoke annotation. It possesses several methods which can assist in the handling of
interceptors. In this recipe we will focus on those methods which provide access to the target
method's parameter list and use them to manipulate the parameters.



Chapter 8

275

Getting ready
The basic approach for using an interceptor to validate a target method's parameters involves:

1. Accessing the target's parameters using the getParameters method

2. Validating and possibly modifying the parameters

3. Using the setParameters method to apply any changes to the parameters

4. Invoking the proceed method

How to do it...
To keep the example simple, we will perform a simple validation. We will call the
RegistrationManager's register method and make sure the parameters do
not have any leading or trailing blanks.

First, add a new interceptor to the packt package called ValidationInterceptor. Call
its method validateParameters as shown below. In this method we use the println
method to display the execution sequence of the interceptor and the parameters as they 
are modified.

public class ValidationInterceptor {
@AroundInvoke
public Object validateParameters(InvocationContext context) throws  

Exception{
System.out.println("ValidationInterceptor");

Object parameters[] = context.getParameters();
for(int i=0; i<parameters.length; i++) {
System.out.println("Before: ["+(String)parameters[i] + "]");
parameters[i] = ((String)parameters[i]).trim();
System.out.println("After: ["+(String)parameters[i]+"]");

}
context.setParameters(parameters);

Object result =  context.proceed();
return result;

}
}

Next, precede the RegistrationManager's register method with the 
interceptor annotation.

@Interceptors(ValidationInterceptor.class)



Interceptors

276

In addition, change the output of the RegistrationServlet to create an attendee that has
a combination of leading and trailing blanks for its arguments.

Attendee attendee = registrationManager.register(" Bill Schroder ",  
"Manager", "Acme Software");

out.println("<h3>" + attendee.getName() + " has been  
registered</h3>");

Execute the servlet and examine the console output. Depending on the interceptors in place,
your output should be similar to the following:

INFO: ValidationInterceptor

INFO: Before: [  Bill Schroder  ]

INFO: After: [Bill Schroder]

INFO: Before: [Manager   ]

INFO: After: [Manager]

INFO: Before: [       Acme Software]

INFO: After: [Acme Software]

How it works...
When the interceptor is first executed we used the getParameters method to retrieve the
parameters passed to the target method. The String method trim was used to remove any
leading or trailing blanks for each parameter. The setParameters method was then used
to pass these new values to the target method. The target method was then invoked with 
the proceed method. Additional println methods have be included to help illustrate the
execution sequence.

The InvocationContext interface provides information about the state of a chain of
interceptors and the target. During the execution of this invocation chain, it can be useful to
maintain state information. The InvocationContext interface has seven methods useful
for this purpose as listed in the following table. The interceptor has complete access to the
target method's name and its parameters.



Chapter 8

277

Method Return Value Description
getContextData java.util.Map The Map containing the context

data.
getMethod java.lang.reflect.Method The object represents the method 

for which the interceptor was ex-
ecuted

getParameters  Objects[] The array represents the arguments
passed to the method

getTarget Object A reference to the target
getTimer Object A reference to the Timer object for

the target if present
proceed Object Control is passed to the next

interceptor in the chain or the
business method if there are no
more interceptors. The return value
comes from the next method in the
interceptor chain

setParameters void It is passed an array of objects
which will be passed to the target's
method

There's more...
The InvocationContext interface has a number of other useful methods. The
getContextData method is used to pass information between interceptors. This
is illustrated in the Using interceptors to handle application statistics recipe.

Here we will examine two other methods:

Using getTarget to return information about the target 

Using getMethod to return information about the target's method

Using gggeeetttTTTaaarrrgggeeettt tttooo rrreeetttuuurrrnnn iiinnnfffooorrrmmmaaatttiiiooonnn aaabbbooouuuttt ttthhheee tttaaarrrgggeeettt
The getTarget method returns a reference to the target. Add this statement to
the beginning of the validateParameters method. It returns a reference to the
RegistrationManager.

System.out.println("ValidationInterceptor");
System.out.println(context.getTarget());







Interceptors

8

One possible output appears as follows:

INFO: ValidationInterceptor

INFO: packt._RegistrationManager_Serializable@101b74e

This reference can be used to access fields and methods of the class. For example, to execute 
a method we could use code similar to the following:

((RegistrationManager)context.getTarget()).methodName();

Using gggeeetttMMMeeettthhhoooddd tttooo rrreeetttuuurrrnnn iiinnnfffooorrrmmmaaatttiiiooonnn aaabbbooouuuttt ttthhheee tttaaarrrgggeeettt'''sss mmmeeettthhhoooddd
The getMethod returns a java.lang.reflect.Method object which is useful if you
need more detailed information about the method such as the annotations used, exceptions
thrown, and parameter types to mention a few.

For example, to determine which annotations are used with the target method, insert
the following code at the beginning of the validateParameters method. The
getAnnotations method returns an array of annotations used with the method. 
Using a for each statement and println method we can display this list.

System.out.println("ValidationInterceptor");
Annotation annotations[] = context.getMethod().getAnnotations();
for(Annotation annotation: annotations) {
System.out.println(annotation);
}

The output below shows only one annotation being used at this time.

INFO: ValidationInterceptor

INFO: @javax.interceptor.Interceptors(value=[class packt.ValidationInterceptor])

See the Reflection API (java.lang.reflect) to further explore the capabilities of the
Method class.

Using interceptors to enforce security
While security is an important aspect of many applications, the use of programmatic
security can clutter up business logic. The use of declarative annotations has come a long
way in making security easier to use and less intrusive. However, there are still times when
programmatic security is necessary. When it is, then the use of interceptors can help remove
the security code from the business logic.



Chapter 8

9

Getting ready
The process for using an interceptor to enforce security involves:

1. Configuring and enabling security for the application server

2. Adding a @DeclareRoles to the target class and the interceptor class

3. Creating a security interceptor

How to do it...
Configure the application to handle security as detailed in Chapter 7, Configuring 
the server to handle security recipe. Add the @DeclareRoles("employee") to the
RegistrationManager class. 

Add a SecurityInterceptor class to the packt package. Inject a SessionContext
object into the class. We will use this object to perform programmatic security. Also use the 
@DeclareRoles annotation.

Next, add an interceptor method, verifyAccess, to the class. Use the SessionContext
object and its isCallerInRole method to determine if the user is in the "employee" role.
If so, invoke the proceed method and display a message to that effect. Otherwise, throw an
EJBAccessException.

@DeclareRoles("employee")

public class SecurityInterceptor {

@Resource

private SessionContext sessionContext;

@AroundInvoke

public Object verifyAccess(InvocationContext context) throws  
Exception {

System.out.println("SecurityInterceptor: Invoking method: " +  
context.getMethod().getName());

if (sessionContext.isCallerInRole("employee")) {
Object result = context.proceed();
System.out.println("SecurityInterceptor: Returned from method: "  
+ context.getMethod().getName());

return result;
} else {

throw new EJBAccessException();

}
}

}



Interceptors

2�0

Execute the application. The user should be prompted for a username and password as
shown in the following screenshot. Provide a user in the employee role.  

The application should execute to completion.

Depending on the interceptors in place, you will console output similar to the following:

INFO: Default Interceptor: Invoking method: register 

INFO: SimpleInterceptor entered: register 

INFO: SecurityInterceptor: Invoking method: register 

INFO: InternalMethod: Invoking method: register 

INFO: register 

INFO: Default Interceptor: Invoking method: create 

INFO: Default Interceptor: Returned from method: create 

INFO: InternalMethod: Returned from method: register 

INFO: SecurityInterceptor: Returned from method: register 

INFO: SimpleInterceptor exited: register 

INFO: Default Interceptor: Returned from method: register



Chapter 8

2�1

How it works...
The @DeclareRoles annotation was used to specify that users in the employee role are
associated with the class. The isCallerInRole method checked to see if the current user
is in the employee role. When the target method is called, if the user is authorized then the
InterceptorContext's proceed method is executed. If the user is not authorized, then
the target method is not invoked and an exception is thrown.

See also
Programmatic security is detailed in Chapter 7, Configuring the server to handle 
security recipe.

Using interceptors to handle transactions
Transaction processing is used in many applications. However, the implementation of
transactions can clutter up business logic. The use of declarative annotations can make
transaction processing easier to use. But there are still times when programmatic transaction
is necessary such as with long running transactions. When it is, interceptors can be useful.

Getting ready
The essential steps to use interceptors for handling transactions include:

1. Creating a transaction interceptor

2. Annotating the target class to use bean-managed transactions

3. Annotating the target method with the transaction interceptor 

The Handling transactions manually recipe in Chapter 6 explains how to implement bean 
managed transactions. 

How to do it...
To illustrate the use of interceptors to effect transaction processing, add a
TransactionInterceptor class to the packt package. Using dependency
injection, inject a UserTransaction object.

Next, add a verifyAccess method using the @AroundInvoke annotation. Within the
method, begin the transaction, invoke the proceed method and then commit the transaction.

public class TransactionInterceptor {

@Resource



Interceptors

2�2

private UserTransaction userTransaction;

@AroundInvoke

public Object verifyAccess(InvocationContext context) throws  
Exception {
userTransaction.begin();

System.out.println("Beginning transaction");
Object result = context.proceed();
System.out.println("Committing the transaction");
userTransaction.commit();

return result;
}

}

In the RegistrationManager class, add the @TransactionManagement annotation at the
class level and specify bean-managed transactions. Also add an EntityManager instance
for your application.

@TransactionManagement(TransactionManagementType.BEAN)
public class RegistrationManager {

...
@PersistenceContext(unitName = "RegistrationApplication-ejbPU")
private EntityManager entityManager;

Next, add a method called bulkRegister. The intent of this method is to provide a way 
of adding multiple attendees all from the same company at one time. It is passed an array 
of names and titles along with the company name. It then iterates through the arrays
adding one attendee at a time. Add the @Interceptor annotation to the method using  
the transaction interceptor.

@Interceptors({TransactionInterceptor.class})
public void bulkRegister(String names[], String titles[],  

String company) {
for(int i=0; i<names.length; i++) {
attendeeFacade.create(new Attendee(names[i], 

titles[i],company));
}

}

Modify the RegistrationServlet to test the interceptor. Add two arrays for the 
names and titles along with a company variable. Initialize the arrays then invoke the
bulkRegister method.

String names[] = {"John", "Paul", "Karen"};
String titles[] = {"Lead", "Programmer", "Adminsitrator"};
String company = "Acme Software";
registrationManager.bulkRegister(names, titles, company);



Chapter 8

2�3

Execute the servlet. Depending on which interceptors are in place for the application, you
should see an output sequence reflecting this registration process.

INFO: Beginning transaction 

INFO: InternalMethod: Invoking method: bulkRegister

INFO: Default Interceptor: Invoking method: create 

INFO: Default Interceptor: Returned from method: create

INFO: Default Interceptor: Invoking method: create 

INFO: Default Interceptor: Returned from method: create

INFO: Default Interceptor: Invoking method: create 

INFO: Default Interceptor: Returned from method: create

INFO: InternalMethod: Returned from method: bulkRegister

INFO: Committing the transaction

How it works...
When the bulkRegister method was called, the verifyAccess method of the
TransactionInterceptor class was called first. The method started a transaction using 
the begin method and then invoked the target method, bulkRegister, with the proceed
method. When this method returned, the transaction was committed using the commit method.

There's more...
Transaction processing can be more complex than illustrated in the previous example. When
a method is invoked, it may or may not be part of another transaction. Exceptions may be
thrown which force the roll back of a transaction. These and potentially other issues must be
taken into consideration when using an interceptor to handle transactions.

To illustrate the issues involved, the following table outlines the steps needed to handle
container-based transactions based on the transaction attribute of the target method. 
Pre-processing refers to those activities which should be performed before the proceed
method is executed. The post-processing activities are those which should be performed 
when the proceed method returns.



Interceptors

2�4

Transaction attribute Pre-processing Post-processing

Required Create a new
transaction if one is
not present

Rollback the transaction and throw a
TransactionRolledbackException if
the transaction is marked for rollback or an
exception is thrown. Otherwise commit the
transaction.

Mandatory If no transaction
exists throw an
exception

Rollback the transaction and throw a
TransactionRolledbackException if
the transaction is marked for rollback or an
exception is thrown.

RequiresNew Create a new
transaction

Rollback the transaction and throw a
TransactionRolledbackException if
the transaction is marked for rollback or an
exception is thrown. Otherwise commit the
transaction.

See also
The Handling transactions manually recipe in Chapter 6 covers bean-managed transactions in
more depth.

Using interceptors to handle application
statistics

The gathering of application statistics is a common requirement.  It may be desirable to
determine how many times a method is executed or how much time is spent in a method. 
This recipe illustrates collecting both of these types of statistics using a chain of interceptors.

Getting ready
The process for developing and using interceptors for an application's statistics is similar to
previous techniques and include:

1. Creating a class to maintain the application's statistics

2. Creating interceptors to support the gathering of the statistics

3. Using the @Interceptors annotation to designate a target method

In this recipe we will create two interceptors. The first will keep track of the number of times a 
method is executed and the second will keep track of the amount of time spent in a method.
We will apply the interceptors against the RegistrationManager's register method. 
If we need to keep track of statistics for more than one method, then a more sophisticated
version of the statistic class would need to be created.



Chapter 8

2�5

How to do it...
In both of the interceptors we will be using an instance of the ApplicationStatistics
class to record information about the application.  Since only one instance of this class is
needed at a time, we will develop it as a singleton.  Add the class to the packt package 
along with three member variables:

instance – Used to implement the singleton pattern

count – Keeps track of how many times a method is executed

totalTime – Keeps track of the total amount of time spent in a method

To implement the singleton, add a private default constructor to the class. This means there
are no constructors available to create an instance of the class. Add a static getInstance
method that creates a single instance of the class and returns the instance.

public class ApplicationStatistics {
private static ApplicationStatistics instance;
private static int count;
private long totalTime;

public static ApplicationStatistics getInstance() {
if(instance == null) {
instance = new ApplicationStatistics();

}
return instance;

}

...
}

Add four methods to the class:

getCount – Returns the value of count

increment – Increments the count

increaseTotalTime – Adds a time to totalTime

getTotalTime – Returns totalTime

public int getCount() {
return count;

}

public void increment() {
this.count++;

}

















Interceptors

2�6

public void increaseTotalTime(long time) {
totalTime += time;
}
public long getTotalTime() {
return this.totalTime;
}

}

Next, create two interceptors: HitCounterInterceptor and
TimeInMethodInterceptor.  Both of these interceptors will use the
ApplicationStatistics class.

In the HitCounterInterceptor class, add an instance variable for
ApplicationStatistics and a method called incrementCounter. In this method,
obtain an instance of the ApplicationStatistics using its getInstance method and
then invoke its increment method. Next, call the proceed method and then return the
result of the method.

public class HitCounterInterceptor {
ApplicationStatistics applicationStatistics;
@AroundInvoke
public Object incrementCounter(InvocationContext context) throws  
Exception {
System.out.println("HitCounterInterceptor - Starting");
applicationStatistics = ApplicationStatistics.getInstance();
applicationStatistics.increment();

Object result = context.proceed();

System.out.println("HitCounterInterceptor - Terminating");
return result;
} }

In the TimeInMethodInterceptor class, add an instance variable for
ApplicationStatistics and a method called recordTime. In this method, obtain
an instance of the ApplicationStatistics using its getInstance method. We 
will use the System class' currentTimeMillis method to get a start and an ending
time. The difference between these two times will be used as an argument to the 
ApplicationStatistics's increaseTotalTime method. As we did in the
HitCounterInterceptor interceptor, call the proceed method and then return  
the result of the method.



Chapter 8

2�7

public class TimeInMethodInterceptor {

ApplicationStatistics applicationStatistics;

@AroundInvoke
public Object recordTime(InvocationContext context) throws  

Exception {
System.out.println("TimeInMethodInterceptor - Starting");
applicationStatistics = ApplicationStatistics.getInstance();
long startTime = System.currentTimeMillis();

Object result = context.proceed();
long endTime = System.currentTimeMillis();

applicationStatistics.increaseTotalTime(endTime-startTime);

System.out.println("TimeInMethodInterceptor - Terminating");
return result;

}
}

In the RegistrationManager class, add an interceptor annotation to the register
method for the two interceptors.

@Interceptors({HitCounterInterceptor.class, 
TimeInMethodInterceptor.class})

public Attendee register(String name,  
String title, String company) { 

Modify the RegistrationServlet to get an instance of the ApplicationStatistics
class and then create an attendee. Display the number of attendees and time spent in the
register method.

ApplicationStatistics applicationStatus =  
ApplicationStatistics.getInstance();

...
Attendee attendee = registrationManager.register("Bill Schroder",  

"Manager", "Acme Software"); 
out.println("<h3>" + attendee.getName() + " has been  

registered</h3>");
out.println("<h3>Number of attendees: " +  

applicationStatus.getCount() + "</h3>"); 
out.println("<h3>Total Time: " + applicationStatus.getTotalTime() +  

"</h3>");



Interceptors

88

Execute the servlet. Its output will appear similar to the following screenshot:

The server console should illustrate the execution order of the interceptors:

INFO: HitCounterInterceptor - Starting 

INFO: TimeInMethodInterceptor - Starting 

INFO: register 

INFO: TimeInMethodInterceptor - Terminating 

INFO: HitCounterInterceptor - Terminating

How it works...
Notice the @Interceptors annotation for the register method included both interceptors.
This is an example of interceptor chaining which will be discussed in the next section.  
Also note, the use of the currentTimeMillis method may not be accurate enough  
for some applications.

There's more...
There are three other topics regarding interceptor chaining we need to address:

Using the getContextData method

Understanding interceptor chaining

Excluding interceptors









Chapter 8

89

Using ttthhheee gggeeetttCCCooonnnttteeexxxtttDDDaaatttaaa mmmeeettthhhoooddd
The InvocationContext interface has a getContextData method that can be used to
pass information between interceptors. This can be illustrated through simple modification of 
HitCounterInterceptor and TimeInMethodInterceptor.

A java.util.Map object is returned from the getContextData method. We can add data
to the map in one interceptor and retrieve it in a later interceptor. In this example, we will pass
the count value generated in the HitCounterInterceptor. While this can be retrieved
easily from the ApplicationStatistics class, using this is a simple way of demonstrating
the use of the map.

In the HitCounterInterceptor add these two lines of code before the invocation of the
proceed method. This retrieves the map and then assigns the count value to the key "count".

Map<String,Object> data = context.getContextData();
data.put("count", applicationStatistics.getCount());

In the TimeInMethodInterceptor, add this code at the beginning of the recordTime
method. The map is retrieved and the "count" element is returned.

Map<String,Object> data = context.getContextData();
System.out.println("ContextData count: " + data.get("count"));

When the application executes, you will see the value display in the console window.

INFO: HitCounterInterceptor

INFO: TimeInMethodInterceptor

INFO: ContextData count: 2

Understanding interceptor chaining
When multiple interceptors are used, understanding the order of execution of the interceptors
can be important. The rules for determining the order of interceptor execution are:

The default interceptors, specified in the ejb.jar file, will be executed first

Interceptors are executed in the order in which they are declared

EJB level interceptors are executed before method level interceptors

Interceptors defined within the target class are executed last

The interceptors of the super class of an EJB or interceptor classes are executed
before the derived classes are.













Interceptors

2�0

We can see this in the execution sequence for the interceptors of this recipe. Consider the use
of the following interceptors for the RegistrationManager class:

// DefaultInterceptor declared in the ejb-jar.xml file

@Interceptors(SimpleInterceptor.class)
public class RegistrationManager {
...
@Interceptors({HitCounterInterceptor.class, 
TimeInMethodInterceptor.class})
public Attendee register(String name, String title,  
String company) {
...
@AroundInvoke
public Object internalMethod(InvocationContext context) throws  
Exception{
... }

The output sequence illustrates the execution order for the register method. Comments
have been added to clarify the sequence.

INFO: Default Interceptor: Invoking method: register     // Default interceptor 

INFO: SimpleInterceptor entered: register                       // Defined at class level 

INFO: HitCounterInterceptor                                              // Method level – first in list

INFO: TimeInMethodInterceptor                                       // Method level – second in list

INFO: internalMethod: Invoking method: register          // Class interceptor 

INFO: register 

...

The use of super classes is not illustrated here; however any interceptors of the EJB super
class or an interceptor super class are executed before the derived class interceptors are
executed. A super class interceptor for a class level interceptor will be executed before the
super class of a method level interceptor.

Excluding interceptors
Sometimes it may be desirable to ignore certain interceptors. There are two annotations
whose use will exclude the annotated method from execution:

@ExcludeDefaultInterceptors

@ExcludeClassInterceptors





Chapter 8

2�1

The @ExcludeDefaultInterceptors annotation is used at the class level and will exclude
default interceptors. The @ExcludeClassInterceptors annotation is used at the method
level and will exclude annotations declared at the class level.

Use these interceptors with the RegistrationManager class as outlined below to exclude
the use of the DefaultInterceptor and SimpleInterceptor.

@Interceptors(SimpleInterceptor.class)
@ExcludeDefaultInterceptors 
public class RegistrationManager {

...
@Interceptors({HitCounterInterceptor.class,  

TimeInMethodInterceptor.class})
@ExcludeClassInterceptors
public Attendee register(String name, String title,  

String company) {
...
@AroundInvoke
public Object internalMethod(InvocationContext context) throws  

Exception{
...

}

The output reflects the use of only the HitCounterInterceptor,
TimeInMethodInterceptor and internal interceptors.

INFO: HitCounterInterceptor

INFO: TimeInMethodInterceptor

INFO: internalMethod: Invoking method: register

INFO: register

...

Using lifecycle methods in interceptors
Methods marked with annotations such as @PreDestroy and @PostConstruct are 
lifecycle methods. They are invoked during various phases in the lifecycle of an EJB. The 
@PrePassivate and @PostActivate annotations are also life cycle methods for stateful
session beans. Each EJB type has a different set of lifecycle events. These lifecycle methods
can also be used in interceptors.



Interceptors

2�2

Getting ready
We will be reusing the SimpleInterceptor class as defined in the Defining and using 
interceptors recipe. In this recipe, we will add a @PostConstruct annotation to illustrate the
incorporation of lifecycle methods.  

How to do it...
Modify the SimpleInterceptor and add a constructed method annotated with
@PostConstruct. In the method, use the println method to display a simple message
indicating the execution of the method.

public class SimpleInterceptor {

@PostConstruct

private void constructed(InvocationContext invocationContext) {

System.out.println("SimpleInterceptor constructed: ");

}

@AroundInvoke
public Object simpleMethod(InvocationContext context) throws  

Exception {
System.out.println("SimpleInterceptor entered: " +  
context.getMethod().getName());

Object result = context.proceed();
System.out.println("SimpleInterceptor exited: " +  
context.getMethod().getName());

return result;
}

}

Execute the servlet using the interceptor declared at the class level for the
RegistrationManager class. The output will show the constructed method
being executed before the interceptor's simpleMethod is executed.

INFO: SimpleInterceptor constructed: 

INFO: SimpleInterceptor entered: register



Chapter 8

2�3

How it works...
Since the SimpleInterceptor's constructed method executes when the instance 
is created, it will execute before its simpleMethod executes for a target. Adding lifecycle
methods to an interceptor can enhance the utility of the interceptor.

A lifecycle method is annotated with one of several possible lifecycle annotations. These
methods must return void and normally are passed void. However, if they are used in an
interceptor, then they have an InvocationContext argument.





9
Timer Services

In this chapter, we will cover:

Setting up the ReportsApplication

Creating and using declarative timers

Creating and using programmatic timers

Understanding calendar-based scheduling

Using the timer interface

Using persistent and non-persistent timers

Creating timers upon application deployment

Using interceptors with timers

Introduction
Many business functions are periodic in nature. For example, reports need to be generated,
statistics need to be computed, and administrative cleanup tasks need to be performed; all
on a regular basis. The EJB container's timer server supports time-delayed, asynchronous
callbacks to an EJB to address these needs. An EJB will register with the timer service and a
method will be called back.  

Timers can be created for all EJB types except for a stateful session bean. Java EE 6 
supports two types of timers: automatic and programmatic. Automatic timers are 
created using annotations. Programmatic timers are created using methods of the
TimerService interface.  



















Timer Services

2�6

The callback methods of an EJB may be called:

At a specific time

After an elapsed period of time

At specific intervals

The signature of a callback must use one of these two signatures: 

void methodName() 

void methodName(Timer timer)

The second signature provides access to the Timer object that provides additional control
and information about the timer. There is no restriction on the method's access modifier. It 
can be public, private, protected, or package level. However, the method cannot be declared
as final or static and cannot throw application exceptions. The use of the Timer interface is
discussed in the Using the timer interface recipe.

A callback method for an automatic timer is defined using either:

@Timeout annotation, or

@Schedule annotation

The Understanding calendar-based scheduling recipe discusses how to create a schedule
for a timer. Once created, a timer can be cancelled using the cancel method. When it is
cancelled, the callback method is no longer called.  

Sometimes it is necessary to perform auxiliary operations such as logging or security when
a callback method is executed. The use of interceptors, as detailed in the Using interceptors
with timers recipe, facilitates this need.

Timers can be persistent or non-persistent. Persistent timers are able to survive application
and server crashes. The Using persistent and non-persistent timers recipe covers this topic in
more depth.

An application called, ReportsApplication, will be used in this chapter to illustrate the
use of timers. The Setting up the ReportsApplication recipe details the steps needed to create
the application.

A timer can be created in any number of different circumstances. The second and third
recipes detail how to create a timer automatically and programmatically respectively. In the
Creating timers upon application deployment recipe, singleton EJBs are used to create timers.

If a timer is involved in a transaction and an exception occurs, the transaction can be rolled
backed. If a transaction is rolled back, then the creation of any timers will also be rolled back.
If the timer is cancelled and its transaction is rolled back, then the cancellation of the timer is
rolled back.

















Chapter 9

2�7

The timer service is not designed for use as part of a real-time application. The time duration
used by the service is measured in milliseconds which is often inadequate for a real-time
application. The timer service is designed for use with business applications where a time
unit precision of hours, minutes, or seconds is sufficient.

Many of the examples used in this chapter are based on the "current" time. Feel free to
change the time specified in the examples to a more appropriate value based on your needs.

Setting up the ReportsApplication
The recipes used in this chapter are built around a ReportsApplication. To keep the
demonstration of timers simple, a SystemReportManager class is created which issues
reports detailing the memory usage of the current JVM. The actual report generated is
secondary to learning how to create and use timers. Reporting on JVM memory usage is
easy and simple, and its use does not distract from the explanation of timers.

Getting ready
We will create a Java 6 EE application called ReportsApplication. As usual, we will use a
packt package to hold our classes and a servlet package to hold the servlet used to drive
the application. We will add a simple SystemReportManager class to generate reports and
a ReportsServlet to drive many of the timers.

How to do it...
Create a new Java 6 EE application called ReportsApplication. In the EJB module 
add a packt package. In the WAR module add a package called servlet. Next, add a
stateless EJB called SystemReportManager to the packt package. Create a method called
getMemoryReport. This method returns a string representing the memory utilized by the
current JVM. Within the method add a StringBuilder variable called report. We will build
a string containing memory utilization data acquired using the java.lang.Runtime class. It
has three methods of interest:

totalMemory – Returns the amount of JVM's total memory

maxMemory – Returns the maximum amount of memory to be used

freeMemory – Returns the amount of JVM's free memory

Use the report variable to build a report and then return it as shown here:

@Stateless 
public class SystemReportManager {

long duration = 1000;   









Timer Services

98

public String getMemoryReport() {
StringBuilder report = new StringBuilder();
GregorianCalendar reportCalendar = new GregorianCalendar();
Date reportDate = reportCalendar.getTime();
Runtime runtime = Runtime.getRuntime();

DateFormat dateFormat =  
DateFormat.getDateTimeInstance(DateFormat.MEDIUM,  
DateFormat.MEDIUM);

report.append("\n").append(dateFormat.format(reportDate));
report.append("\nTotal Memory: ").append(runtime.totalMemory());
report.append("\n");
report.append("Maximum Memory: ").append(runtime.maxMemory());
report.append("\n");
report.append("Free Memory: ").append(runtime.freeMemory());
report.append("\n");

return report.toString();
}

}

Next, create a servlet called ReportsServlet in the WAR module. Use dependency
injection to create an instance of the SystemReportManager. Modify the try block 
of the processRequest method to call the getMemoryReport method.

public class ReportsServlet extends HttpServlet {

@EJB
SystemReportManager systemReportManager;

protected void processRequest(HttpServletRequest request,  
HttpServletResponse response)
throws ServletException, IOException {
response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();
try {

out.println("<html>");
out.println("<head>");
out.println("<title>Servlet ReportsServlet</title>");
out.println("</head>");
out.println("<body>");
out.println("<h3>" + systemReportManager.getMemoryReport() +  

"</h3>");
out.println("</body>");
out.println("</html>");



Chapter 9

99

} finally {
out.close();
}
}
protected void doGet(HttpServletRequest request,  
HttpServletResponse response)
throws ServletException, IOException {
processRequest(request, response);
}
protected void doPost(HttpServletRequest request,  
HttpServletResponse response)
throws ServletException, IOException {
processRequest(request, response);
}

}

Execute the servlet. The output should be similar to the following screenshot:

How it works...
The getMemoryReport method used a Runtime object to get JVM memory usage
information. A date was created using the GregorianCalendar class as detailed in
Chapter 12, Using time within an EJB recipe. All of this was pulled together in a
StringBuilder object and returned as a string.

Creating and using declarative timers
Declarative timers, also called automatic timers, offer a technique to declare a timer using
annotations. The @Schedule annotation accepts a set of arguments defining a timer event. 
The annotation specifies the time the event is to occur and declares the callback method. 
This technique provides an easy to use and intuitive way of scheduling application tasks.



Timer Services

300

Getting ready
The process of creating a declarative timer includes: 

1. Creating a method to perform some task

2. Adding the @Schedule or @Schedules annotation to a method

The argument of the @Schedule consists of a set of time elements that correspond to fields 
of a ScheduleExpression object. These fields specify when and how often a timer callback 
will be made. Multiple timers can be assigned to a method using the @Schedules annotation.

The callback method will frequently be passed a single Timer object. The Timer object
passed can be used to obtain additional information about the timer. 

How to do it...
Add a method to the SystemReportManager class called displayMemoryReport.
Annotate the method with the @Schedule annotation as shown below. This set of arguments
defines a timer that will call back the displayMemoryReport every 10 seconds. The use
of the calendar-based timer is explained in more detail in the Understanding calendar-based
scheduling recipe. In the method, add println statements to display the execution of the
method and the results of the getMemoryReport method.

@Schedule(second = "0,10,20,30,40,50", minute="*", hour = "*")
public void displayMemoryReport(Timer timer) {

System.out.println("SystemReportManager: displayMemoryReport  
occurred");

System.out.println(getMemoryReport());
}

Deploy the application. There is no need to execute the application as the timer starts when
the EJB is loaded. The output should be similar to the following. While it is not complete, your
output should show the execution of the callback method every 10 seconds.

INFO: SystemReportManager: displayMemoryReport occurred

INFO: Jan 5, 2011 4:22:50 PM

Total Memory: 270569472

Maximum Memory: 518979584

Free Memory: 149789352



Chapter 9

301

INFO: SystemReportManager: displayMemoryReport occurred

INFO: Jan 5, 2011 4:23:00 PM

Total Memory: 270569472

Maximum Memory: 518979584

Free Memory: 148865080

INFO: SystemReportManager: displayMemoryReport occurred

INFO: Jan 5, 2011 4:23:10 PM

Total Memory: 270569472

Maximum Memory: 518979584

Free Memory: 147933616

How it works...
The @Schedule annotation consisted of a list of 10 second increments which specified 
when the report was generated. The asterisk in the minute and hour fields indicated that 
it should execute every minute and hour. This resulted in the displayMemoryReport
executing every 10 seconds. It displayed memory usage information obtained from the
getMemoryReport method.

There's more...
In addition to the single use of the @Schedule annotation, we can use @Schedule
annotations with multiple methods in an EJB. In addition, we can apply more than
one @Schedule annotation to a method using the @Schedules annotation.

Using @Schedule with multiple methods
More than one method of an EJB can be annotated with @Schedule. Here, a second method
called clearStatistics has been added and is called once a minute.

@Schedule(second = "0", minute="*", hour = "*")
public void clearStatistics(Timer timer) {
System.out.println("clearStatistics executed");
}



Timer Services

302

When the application deploys you should see the execution of both of the callback methods.

INFO: SystemReportManager: displayMemoryReport occurred

INFO: Jan 5, 2011 4:32:50 PM

Total Memory: 270569472

Maximum Memory: 518979584

Free Memory: 143028648

INFO: clearStatistics executed

INFO: SystemReportManager: displayMemoryReport occurred

INFO: Jan 5, 2011 4:33:00 PM

Total Memory: 270569472

Maximum Memory: 518979584

Free Memory: 141976424

Using @Schedules with a single method
The @Schedules annotation allows us to assign multiple timers to the same method. This
annotation has an argument consisting of an array of @Schedule annotations. In this exam-
ple, the displayMemoryReport method is annotated with the @Schedules annotation and 
two @Schedule annotations. They specify that the callback method should be executed every 
minute and at 20 and 30 seconds after the minute.

@Schedules(
{@Schedule(second = "0", minute="*", hour = "*"),
@Schedule(second = "20,30", minute="*", hour = "*")})
public void displayMemoryReport(Timer timer) {
System.out.println("SystemReportManager: displayMemoryReport  
occurred");
System.out.println(getMemoryReport());
}



Chapter 9

303

When deployed, your output should appear similar to the following:

INFO: SystemReportManager: displayMemoryReport occurred

INFO: Jan 5, 2011 4:43:00 PM

Total Memory: 270569472

Maximum Memory: 518979584

Free Memory: 146682928

INFO: SystemReportManager: displayMemoryReport occurred

INFO: Jan 5, 2011 4:43:20 PM

Total Memory: 270569472

Maximum Memory: 518979584

Free Memory: 144880096

INFO: SystemReportManager: displayMemoryReport occurred

INFO: Jan 5, 2011 4:43:30 PM

Total Memory: 270569472

Maximum Memory: 518979584

Free Memory: 144050896

See also
The use of calendar-based expressions is detailed in the Understanding calendar-based
scheduling recipe. Instead of using declarative annotations, programmatic timers can also
be created as explained in the next recipe.

Creating and using programmatic timers
Timers can be created using methods of the TimerService interface. This interface
supports methods for creating timers which generate events at a specific time, after an 
elapsed time, after a specific interval, or according to a schedule. This approach provides 
the client with the ability to initiate a timer.



Timer Services

304

Getting ready
There are two basic steps needed to create a programmatic timer:

1. Using a TimerService instance to create the timer, and

2. Declaring a callback method using the @Timeout annotation

As we will see, there are several TimerService interface methods available to create a
timer. Most of these will be explored in the There's more section of this recipe. Initially, we 
will use the createSingleActionTimer method to create a simple one-time timer. When
a timer is created, a callback method must be identified. With programmatic timers, the 
@Timeout annotation is used to mark the method as the callback method. This annotation
can only be used once per class.

How to do it...
The simplest way of getting a TimerService instance is to use dependency injection. In the
SystemReportManager, use the @Resource annotation to inject a TimerService object.
Also, add a long variable called duration and initialize it to 1000.

@Resource
TimerService timerService;
long duration = 1000;

Next, add a method called createTimer. The method is passed and returns void. In the
method, use the TimerService method, createSingleActionTimer, to create a timer.
This method has two arguments:

First argument – A long number specifying the number of milliseconds to wait until
the timer event occurs

Second argument – A TimerConfig object containing timer configuration 
information

Use the duration variable as the first argument and create a new TimerConfig object as
the second argument. The use of the TimerConfig argument is explored in the Using the
timer interface recipe and holds additional timer-related information.

public void createTimer() {
timerService.createSingleActionTimer(duration, new  
TimerConfig());

}







Chapter 9

305

Next, we will create a callback method called timeout. Use the @Timeout annotation with
the method. In the method, display a message indicating the method has executed and then
display the value returned from the getMemoryReport method.

@Timeout
public void timeout(Timer timer) {

System.out.println("timeout: timeout occurred");
System.out.println("getMemoryReport: " + getMemoryReport());

}

In the ReportsServlet, comment out the statement which calls the getMemoryReport
method. Instead, add the following statement which calls the createTimer method:

systemReportManager.createTimer();

Execute the ReportsServlet. Its output should closely match the following:

INFO: timeout: timeout occurred

INFO: getMemoryReport: 

Total Memory: 266604544

Maximum Memory: 518979584

Free Memory: 149822400

How it works...
A TimerService object was injected into the EJB and later used in the createTimer
method to create the timer. This createTimer method had a duration argument of one
second which meant that the timer would not fire until approximately one second after its 
creation. The timer method, timeout, was designated using the @Timeout annotation. The
createTimer method was called from the ReportsServlet.

There's more...
The TimerService interface has several methods to create timers. Each of these 
methods returns a Timer object representing the timer except for the getTimers method
which returns a Collection of Timers. They differ in how they specify the time of the
callback event.

All timers created with these methods are persistent by default. The control of a timer's
persistent is detailed in the Using persistent and non-persistent timers recipe. Also, 
timers can be cancelled using the Timer's cancel method.



Timer Services

306

The methods of the TimerService interface supports three types of events:

Single event – The event occurs only once

Interval events – Events occur at regular recurring intervals 

Calendar events – Events occur based on the value of a ScheduleExpression

In addition, the getTimer method allows us to obtain a list of currently scheduled timers for
the EJB.

Single event timers
Single event timers result in the callback method executing only once. There are two
createSingleActionTimer methods supporting this type of event. In addition, there 
are two createTimer methods supporting single events.

Let's look at the createSingleActionTimer methods first. Both of its methods have two 
arguments. The first argument is either a Date object or a long value. The second argument
is a TimerConfig object used to hold additional timer-related information.

The event will occur at the time specified by the Date object. Using the long argument
specifies the event will occur in that number of milliseconds in the future.

To demonstrate the use of the Date parameter, replace the body of the
SystemReportManager's createTimer method with the following code. When the code is
executed, a callback should be made on January 5, 2014 at 11:12. Depending on the current
time, you may or may not want to wait for this event.

GregorianCalendar reportCalendar = new GregorianCalendar(2014, 
Calendar.JANUARY, 5, 11, 12);
Date reportDate = reportCalendar.getTime();
timerService.createSingleActionTimer(reportDate, new  
TimerConfig());

Like the createSingleActionTimer, the createTimer methods have two 
arguments. The first is either a Date or a long value and behaves the same way as the
createSingleActionTimer methods. Its second argument is a Serializable argument
whose value is associated with the timer and can be retrieved by the Timer's getInfo
method. The use of this argument is explored in the Using the timer interface recipe.

The code sequence below achieves the same result as the previous example. The
Serializable object is set to null in this case.

GregorianCalendar reportCalendar = new GregorianCalendar(2014, 
Calendar.JANUARY, 5, 11, 12);
Date reportDate = reportCalendar.getTime();
timerService.createTimer(reportDate, null);









Chapter 9

307

Interval event timers
The createIntervalTimer method can also be used to create timers which execute at
intervals. In addition, there are two versions of the createTimer method that will do the
same thing.

Both versions of the createIntervalTimer method take three arguments. The first ar-
gument is either a Date or a delay value specifying the time the first callback is to occur. 
The second argument is a long value which determines the time between subsequent
callbacks. The last argument is a TimerConfig object.

The following example results in a series of callbacks which occur one second after the timer
is created and are repeated every three seconds.

timerService.createIntervalTimer(1000, 3000, new TimerConfig());

Two of the createTimer methods support the creation of interval timers. These methods
also have three arguments which are the same as those of the createIntervalTimer
except for the last argument. The last argument is a Serializable object whose value
becomes part of the Timer. The Timer's getInfo method can be used to retrieve this
information as detailed in the Using the timer interface recipe.

Here, the previous interval timer is duplicated using the createTimer method. A null value
is passed as the Serializable object.

timerService.createTimer(1000, 3000, null);

Calendar event timers
The callback event in a calendar-based timer is controlled by a ScheduleExpression
object. This expression is detailed in the Understanding calendar-based scheduling recipe.
The overloaded createCalendarTimer method supports the creation of this type of timer.

The first of the two overloaded methods has a single argument: ScheduleExpression. The 
expression represented by this object specifies when the callback will occur. The second 
version of the method has two arguments with the first being the ScheduleExpression
object and the second being a TimerConfig object which conveys additional information to
the timer.

Replace the body of the createTimer method with a call to the createCalendarTimer
method as shown below. A ScheduleExpression is created first and initialized to January 
5, 2014 at 14:7:40. 

ScheduleExpression scheduleExpression = new ScheduleExpression();
scheduleExpression.year(2014);
scheduleExpression.month(1);
scheduleExpression.dayOfMonth(5);
scheduleExpression.hour(14);
scheduleExpression.minute(7);



Timer Services

8

scheduleExpression.second(40);
timerService.createCalendarTimer(scheduleExpression, new  
TimerConfig());

When the method is executed, a callback will be made at the specified time.

Getting a collection of scheduled timers
Periodically, it may be desirable to determine which timers have been scheduled. The
TimerService's getTimers method returns a collection of currently scheduled timers.
Replace the body of the createTimer method with the following code sequence. In this
sequence, two Timer objects are created. The first is for January 1, 2012 and the second is 
for January 1, 2013. This is followed by the use of the getTimers method and a for loop to
display the timer's schedule expressions.

ScheduleExpression scheduleExpression = new ScheduleExpression();
scheduleExpression.year(2012);
scheduleExpression.month(1);
scheduleExpression.dayOfMonth(1);
timerService.createCalendarTimer(scheduleExpression, new  
TimerConfig());
scheduleExpression = new ScheduleExpression();
scheduleExpression.year(2013);
scheduleExpression.month(1);
scheduleExpression.dayOfMonth(1);
timerService.createCalendarTimer(scheduleExpression, new  
TimerConfig());
Collection<Timer> timers = timerService.getTimers();
for(Timer timer : timers) {
System.out.println(timer.getSchedule());
}

The execution of the code will result in output similar to the following:

INFO: ScheduleExpression [second=0;minute=0;hour=0;dayOfMonth=1;month=1;dayOfWe
ek=*;year=2013;timezoneID=null;start=null;end=null]

INFO: ScheduleExpression [second=0;minute=0;hour=0;dayOfMonth=1;month=1;dayOfWe
ek=*;year=2012;timezoneID=null;start=null;end=null]



Chapter 9

9

Understanding calendar-based scheduling
Calendar-based scheduling is used with the @Schedule annotation and with the
ScheduleExpression class. It provides an alternative approach for specifying the time
when a callback should be made. The calendar-based timer expressions are similar to those
used by the UNIX Cron facility.

Using a calendar expression we can express one of several types of events:

A single event in time

A repeating set of times

A time interval

This approach provides a more powerful technique for expressing a point in time.

Getting ready
A calendar expression can be expressed using the @Schedule annotation or using a
ScheduleExpression object. These two approaches are closely related. In fact, the Timer
class has an isCalendarTimer and a getSchedule method. If the timer was created
using calendar scheduling, then the getSchedule method returns a ScheduleExpression
object representing the schedule. These methods are illustrated in the Using the timer
interface recipe.

The @Schedule annotation takes a series of comma delimited settings to express a time 
or set of times. Each setting corresponds to a unit of time such as hour or minute. A simple
repeating event occurring every minute can be expressed using the @Schedule annotation
as follows:

@Schedule(second="0", minute = "*", hour = "*")

The ScheduleExpression class represents a time or set of times. It possesses a number
of methods to set the time. This class is used in conjunction with the TimerService's
createCalendarTimer method.









Timer Services

310

Let's examine the attributes used with the @Schedule annotation first. The table below, 
summaries the attribute names, default values and permissible values. The table is adapted
from Table 16.1 found at http://ze-zo0m.ru/javaeesuntutorial6/bnboy.html. The 
* represents all possible values. String constants are case-insensitive.

Attribute Default Value Permissible Values
second 0 0-59
minute 0 0-59
hour 0 0-23
dayOfMonth * 1-31 

-7 through -1 (day before the last day of the month)

"Last" or 

{"1st", "2nd", "3rd", "4th", "5th", "Last"}  
{"Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"}

month * 1-12 

{"Jan", "Feb", "Mar", ''Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", 
"Nov", Dec"}

dayOfWeek * 0-7 (0 and 7 are both Sunday) 

{"Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"}
year * Four digit calendar year
timezone Container's

default time
zone

String found in the tz database

The tz database is also known as the zoneinfo database and is a collection of the world's time
zones. The database can be found at http://www.twinsun.com/tz/tz-link.htm.

How to do it...
The following expression consists of a series of attribute assignments. The combination of
these assignments defines a particular time. Let's examine some of the more straightforward 
expressions. Here, the weekly time statements are generated every Sunday at 1 AM.

@Schedule(hour="1", dayOfWeek="Sun") 
public void generateWeeklyTimeStatement() {...}

In this example, weekly meeting notices are sent out at 3 PM every Wednesday.

@Schedule(hour="15", dayOfWeek="3")  
public void sendWeeklyMeetingReminder() {...}



Chapter 9

311

We could use the following expression to invoke the computeStackAverages method at 1
AM Europe/Stockholm time on the first day of each month.

@Schedule(hour="1", dayOfMonth="1", timezone=" Europe/Stockholm")
public void computeStackAverages() {...}

The ScheduleExpression class has methods corresponding to the attribute fields listed 
previously. For example, to set the month of an expression to the month of March, the month
method can be used.

scheduleExpression = new ScheduleExpression();
scheduleExpression.month("Mar");

Also, ScheduleExpression has additional methods which further constrain the schedule
based on an optional start date and/or end date using the start and end methods. In this
example, the timeout method is executed starting on January 10, 2013 at noon.

GregorianCalendar reportCalendar = new GregorianCalendar(2013,  
Calendar.JANUARY, 10, 12, 0);

Date startDate = reportCalendar.getTime();
scheduleExpression = new ScheduleExpression();
scheduleExpression.start(startDate);
scheduleExpression.second(0);
scheduleExpression.minute("*");
scheduleExpression.hour("*");
timerService.createCalendarTimer(scheduleExpression, new

TimerConfig());
...

@Timeout
public void timeout(Timer timer) {

System.out.println("timeout: timeout occurred");
System.out.println("getMemoryReport: " + getMemoryReport());

}

How it works...
The @Schedule annotation was used with one or more attributes which were used to control
when the event would occur. When a ScheduleExpression object was used, methods were 
used to set the value for the corresponding attributes. As seen with the start method,  
it is possible to further constrain the schedule.



Timer Services

312

There's more...
Another open source scheduler is Quartz. It has inspired several parts of the EJB 3.1 timers
and can be used outside of the Java EE environment. More information about Quartz can be
found at http://www.quartz-scheduler.org/.

There are several other features of schedule expression that should be addressed including:

Using lists in schedule expressions

Using ranges in schedule expressions

Using increments in schedule expressions

An optional information string can be used with the annotation. This feature is discussed in
the Using the timer interface recipe.

Using lists in schedule expressions
The use of lists provides a means of specifying multiple callback times. For a given field, 
a list can be specified by separating values with commas. For example, to cause the 
displayMemoryReport to be executed at 5, 10, and 15 seconds after each minute,
the @Schedule annotation could be configured as follows:

@Schedule(second = "5,10,15", minute = "*", hour = "*")
public void displayMemoryReport(Timer timer) {
System.out.println("SystemReportManager: displayMemoryReport  
occurred");
System.out.println(getMemoryReport());
}

One possible output follows:

INFO: Jan 5, 2011 7:57:05 PM

Total Memory: 270569472

Maximum Memory: 518979584

Free Memory: 156212800

INFO: SystemReportManager: displayMemoryReport occurred

INFO: Jan 5, 2011 7:57:10 PM

Total Memory: 270569472

Maximum Memory: 518979584

Free Memory: 155517272









Chapter 9

313

INFO: SystemReportManager: displayMemoryReport occurred

INFO: Jan 5, 2011 7:57:15 PM

Total Memory: 270569472

Maximum Memory: 518979584

Free Memory: 155134888

INFO: SystemReportManager: displayMemoryReport occurred

INFO: Jan 5, 2011 7:58:05 PM

Total Memory: 270569472

Maximum Memory: 518979584

Free Memory: 150765240

Using ranges in schedule expressions
A range can also be used to specify a multiple set of callback times. A range is created using
the dash character to separate start and end values. Here, the displayMemoryReport is
called on a daily basis at midnight except for Saturdays and Sundays.

@Schedule(minute = "0", hour = "0", dayOfWeek="Mon-Fri")
public void displayMemoryReport(Timer timer) {
System.out.println("SystemReportManager: displayMemoryReport  
occurred");
System.out.println(getMemoryReport());
}

Using increments in schedule expressions
Increments are used to express a progression of time starting at some value and repeated
at regular intervals. An increment expression consists of an initial value separated by a for-
ward slash and then followed by an interval value. The first value specifies the initial value
with subsequent times determined by adding the interval value repeatedly to the initial
value. It can only be used with second, minute, and hour and the values must fall within the
acceptable range for each unit.  



Timer Services

314

In this example, the displayMemoryReport executes at 15 seconds after the minute and
then every 20 seconds.

@Schedule(second = "15/20", minute = "*", hour = "*")
public void displayMemoryReport(Timer timer) {
System.out.println("SystemReportManager: displayMemoryReport  
occurred");
System.out.println(getMemoryReport());
}

Your output should be similar to the following:

INFO: SystemReportManager: displayMemoryReport occurred

INFO: Jan 5, 2011 8:06:15 PM

Total Memory: 270569472

Maximum Memory: 518979584

Free Memory: 93179256

INFO: SystemReportManager: displayMemoryReport occurred

INFO: Jan 5, 2011 8:06:35 PM

Total Memory: 270569472

Maximum Memory: 518979584

Free Memory: 91437032

INFO: SystemReportManager: displayMemoryReport occurred

INFO: Jan 5, 2011 8:06:55 PM

Total Memory: 270569472

Maximum Memory: 518979584

Free Memory: 89611656

INFO: SystemReportManager: displayMemoryReport occurred

INFO: Jan 5, 2011 8:07:15 PM

Total Memory: 270569472

Maximum Memory: 518979584

Free Memory: 87862224



Chapter 9

315

See also
The Creating and using programmatic timers recipe illustrates the use of the
ScheduleExpression class in the creation of a timer.

Using the timer interface
The Timer interface has a number of methods that can be used by the callback method to
assist in the execution of the callback. This interface is useful to obtain information about the
timer event and in passing information to the event. The use of these methods is illustrated in
this recipe.

Getting ready
The basic steps involve:

1. Obtaining an instance of the Timer object

2. Using the Timer interface methods

The @Schedule annotated method is passed an instance of the Timer object. For
programmatic timers, the @Timeout annotated method is passed the Timer object. These
callback methods can subsequently use this object to control the callback. The Timer
interface's methods of interest to us include:

getInfo – Returns information provided by the caller when the timer was created

getNextTimeout – Returns a Date object representing the time when the callback 
method will be executed next

getSchedule – Returns a ScheduleExpression for the timer 

getTimeRemaining - Returns the number of milliseconds until the callback method
will be called back

isCalendarTimer – Returns true if the timer is a calendar-based timer

isPersistent – Returns true if the timer is persistent

How to do it....
To demonstrate the use of the Timer interface, add a getTimerData method which is
passed a Timer object. In the method, call each of the previous Timer interface methods.
Use these methods to build a string to return at the completion of the method.

public String getTimerData(Timer timer) {
StringBuilder timerData = new StringBuilder();
timerData.append("\nInfo: ").append(timer.getInfo());















Timer Services

316

timerData.append("\nNext timeout:  
").append(timer.getNextTimeout());
timerData.append("\nSchedule: ").append(timer.getSchedule());
timerData.append("\nTime remaining:  
").append(timer.getTimeRemaining());
timerData.append("\nCalendar timer: ").append(timer. 
isCalendarTimer());
timerData.append("\nPersistent: ").append(timer.isPersistent());
return timerData.toString();
}

Next, modify the displayMemoryReport's @Schedule annotation so it is call backed once a
second. Also, invoke the getTimerData method with the timer variable.

@Schedule(second="0", minute="*", hour = "*")
public void displayMemoryReport(Timer timer) {
System.out.println("SystemReportManager: displayMemoryReport  
occurred");
System.out.println(getMemoryReport());
System.out.println(getTimerData(timer));
}

When the application is deployed, your output will appear similar to the following:

INFO: Jan 5, 2011 8:38:00 PM

Total Memory: 270569472

Maximum Memory: 518979584

Free Memory: 107203800

INFO: Info: null

Next timeout: Wed Jan 05 20:39:00 CST 2011

Schedule: ScheduleExpression [second=0;minute=*;hour=*;dayOfMonth=*;month=*;dayO
fWeek=*;year=*;timezoneID=null;start=null;end=null]

Time remaining: 59320

Calendar timer: true

Persistent: true



Chapter 9

317

Notice that the getInfo method returns null. If we wanted to pass additional information
to the callback method, we could use the information attribute, info, and assign it a value.
Here, a simple string is assigned. The displayMemoryReport has been modified below to 
not display the timer data if the string is set to NoTimerData.

@Schedule(second="0", minute="*", hour = "*", )
public void displayMemoryReport(Timer timer) {

System.out.println("SystemReportManager: displayMemoryReport  
occurred");

System.out.println(getMemoryReport());
if(!"NoTimerData".equals(timer.getInfo())) {
System.out.println(getTimerData(timer));

}
}

The output should not display the timer data. This data should be Serializable in the case
of a persistent timer. Should a failure occur, it will be necessary to restore the timer and any
data associated with it.

How it works...
We created a getTimerData method that used several of the Timer interface methods. The
output of these methods was concatenated to a StringBuilder object and returned as a
string to the displayMemoryReport method. In the last example, we used the info attribute
to control whether timer information was displayed or not.

There's more...
Information can also be added to the Timer object when a timer is created programmatically.
The createCalendarTimer method has a TimerConfig argument. Using its  
setInfo method, we can assign a string or any other object which implements the Serial-
izable interface. 

In addition, two of the createTimer methods support the creation of interval timers. The
last argument of these methods is a Serializable object whose value becomes part of the
Timer. The Timer's getInfo method can be used to retrieve this information.

Using the TimerConfig object to pass information
Here, we pass a string to the timer. In the createTimer method, add the following code to
create a timer. The timer is set up to call back the timeout method every 10 seconds. The
setInfo method is passed the string, "information".

scheduleExpression = new ScheduleExpression();
scheduleExpression.second("0/10");
scheduleExpression.minute("*");



Timer Services

8

scheduleExpression.hour("*");
TimerConfig timerConfig =  new TimerConfig();
timerConfig.setInfo("information");
timerService.createCalendarTimer(scheduleExpression,timerConfig);

The memory usage report should be displayed every 10 seconds with the timer data.

Using the Serializable object to pass information
In the Single event timers section of the Creating and using programmatic timers recipe, a
timer was created using the createTimer method. Its second argument is an object that
implements the Serializable interface. This object is associated with the timer and can be
retrieved by the Timer's getInfo method.

Replace the SystemReportManager's createTimer method with the following code. Here,
we create a calendar to use with the createTimer method. Modify the date to reflect a time 
convenient for you. Next, create an ArrayList which is initialized with three strings. In this
case, they are intended to present font information. Using the createTimer method, pass
the reportDate and the ArrayList as its parameters.

public void createTimer() {
GregorianCalendar reportCalendar = new GregorianCalendar(2011, 
Calendar.JANUARY, 6, 19, 56);
Date reportDate = reportCalendar.getTime();
ArrayList<String> list = new ArrayList<String>();
list.add("capitalize");
list.add("center");
list.add("arial");
timerService.createTimer(reportDate, list);
}

Modify the timeout method to use the getInfo method to return a list of strings and then
display the list.

@Timeout
public void timeout(Timer timer) {
ArrayList<String> list = (ArrayList<String>) timer.getInfo();
System.out.println("List Elements");
for(String element : list) {
System.out.println(element);
}
}



Chapter 9

9

When the application is executed your output should display the following:

INFO: List Elements

INFO: capitalize

INFO: center

INFO: arial

Using persistent and non-persistent timers
Timers can be either persistent or non-persistent. In this recipe, we will learn more about what
persistence means and how to create either a persistent or non-persistent timer.

Getting ready
A persistent/non-persistent timer is created using the @Schedule annotation and setting
its persistent attribute to true/false. If programmatic timers are being used, the
TimerConfig's setPersistent method is passed an argument of true/false.

Persistent timers are able to survive application and server crashes. When the system
recovers, any persistent timers will be recreated and missed callback events will be executed.
When replay of missed timer events is not desired, then a non-persistent timer should be
used. For example, we probably do not want to send out meeting notices for a meeting
which has already been held. 

A persistent timer survives when:

The container crashes

The server shuts down

From activation/passivation

How to do it...
By default, timers are persistent. A non-persistent timer is created using the @Schedule
annotation and setting its persistent attribute to false.

@Schedule(second="0", minute="*", hour = "*", info="",  
persistent=false)









Timer Services

320

Programmatic calendar-based timers can be created using the createCalendarTimer
method. The second argument of this overloaded method is a TimerConfig argument. 
By passing false to its setPersistent method we can create a non-persistent timer.

TimerConfig timerConfig =  new TimerConfig();
timerConfig.setPersistent(false);
...
timerService.createCalendarTimer(scheduleExpression,timerConfig);

How it works...
Timers are persistent by default. However, by setting the persistent attribute to false or
using the setPersistent method with a false argument we saw how they can be
made non-persistent. You may want to stop and then restart to server to verify how 
these settings work.

There's more...
There is only one instance of a persistent timer per application regardless of the number of
JVMs the application is deployed to. Non-persistent timers are created within their JVM.

From a callback method, the Timer's isPersistent method can be used to determine
whether the timer is persistent or not. This method is illustrated in the Using the timer
interface recipe.

Creating timers upon application
deployment

Sometimes it is useful to create a timer as soon as the application is deployed. Many
applications have actions that need to occur on a regular basis. Creating timers for these
actions at application start up is a convenient way of addressing this need.

One way to achieve this is to use a singleton EJB. Here we will programmatically create a timer
that generates a JVM memory report after the application has been deployed.

Getting ready
The steps to achieve the creation of timers in this fashion include:

1. Creating a singleton session bean using the @Startup annotation

2. Marking a method with the @PostConstruct annotation

3. Creating timers from this method



Chapter 9

321

We will create a singleton EJB and then use the @PostConstruct annotation with a
method which creates the timer. In this method, we will also create an instance of the
SystemReportManager so we can get ready access to the report.

How to do it...
Create a singleton EJB called ReportsSingleton. Details on how singletons work is found
in the Singleton session bean and Using multiple singleton beans recipes of Chapter 2,
Session Beans. Use the @Startup annotation to request immediate instantiation of the  
EJB when the application is loaded.

@Singleton 
@Startup 
public class ReportsSingleton {

...
}

First, set up three instance variables for the application:

timerService – Use resource injection to create an instance of the
TimerService 

duration – A long value set to 1000 milliseconds specifying the delay before the 
report is generated

systemReportManager – Use dependency injection to create an instance of the
SystemReportManager  

@Resource
TimerService timerService;
long duration = 1000;
@EJB
SystemReportManager systemReportManager;

Create a method called initialization which returns void and is passed void. Add the
@PostConstruct annotation to the method. In the method, add a println method to show
the method is executing. Next, use the createSingleActionTimer method to create  
a timer.

@PostConstruct
public void initialization() {

System.out.println("ReportsSingleton initialization");
timerService.createSingleActionTimer(duration, new  
TimerConfig());

}









Timer Services

322

The last step is to create the @Timeout method. Name the method, timeout, and use the
getMemoryReport to display the memory used.

@Timeout
public void timeout(Timer timer) {
System.out.println("timeout occurred");
System.out.println("\n" + systemReportManager.getMemoryReport());
}

}

Deploy the application. The output should appear similar to the following:

INFO: ReportsSingleton initialization

INFO: Loading application ReportsApplication#ReportsApplication-war.war at
ReportsApplication-war

INFO: ReportsApplication was successfully deployed in 420 milliseconds.

INFO: timeout occurred

INFO: Total Memory: 235073536

Maximum Memory: 518979584

Free Memory: 91557120

How it works...
Annotating the singleton with the @Startup annotation resulted in the creation of the
singleton when the application was deployed. The @PostConstruct annotated method,
initialization, was executed after the singleton was created. Within this method
we created a new timer event that executed one second later. The timeout method was
executed at that time. 

See also
The use of the createSingleActionTimer method and @Timeout annotation is explained
in more detail in the Creating and using programmatic timers recipe.



Chapter 9

323

Using interceptors with timers
Interceptors provide a convenient way of incorporating required functionality of an application
into the application without cluttering up the business logic. For example, security and logging
operations may be required when certain methods of an application execute. Code could be
added directly to the method to perform these actions. However, they are tangential to the
method itself and can obscure the business logic of the method.

An interceptor is a technique permitting the addition of this functionality, but places the code
implementing the functionality outside of the actual function. When the method executes,
the interceptor is executed first. Within the interceptor, its code can be executed before and 
after the body of the target method is executed. Interceptors are discussed in more detail in
Chapter 8, Interceptors.

Getting ready
The essential steps include:

1. Creating the interceptor

2. Performing the required processing in the interceptor

Interceptors can be declared within a separate class or within the current class. Here, we will
use the current class. To use interceptors with timeouts, the @AroundTimeout annotation is
used to declare an interceptor method. There are no restrictions on the name of the method,
but it must be passed an InvocationContext object and must return an Object.

The interceptor is invoked before the target callback method is invoked. The target method
is called from within the interceptor using the InvocationContext's proceed method.
Placing interceptor code before and after this call allows the interceptor to perform its
functions before and after the target method executes.

The InvocationContext has a getTimer method which returns the Timer object
associated with the callback method. There are also other InvocationContext methods
available which can be used in support of the interceptor such as those accessing the target
method's parameters. The interceptor normally returns the object returned by the proceed
method. This is necessary to propagate any target method return values.



Timer Services

324

How to do it... 
To demonstrate the use of a timer interceptor, add a method to the SystemReportManager
class called interceptorTimeout. The method is passed an InvocationContext object,
returns an Object and can potentially throw an Exception. Use the @AroundTimeout
annotation before the method. To clearly see the behavior of the method, add println
statements to show when the method starts and when it is about to return. Next, add a call to
get the target method's Timer object and display its schedule. Follow this with the use of the
proceed method.

@AroundTimeout
public Object interceptorTimeout(InvocationContext  

invocationContext) throws Exception {
System.out.println("interceptTimeout executing");
Timer timer = (Timer)invocationContext.getTimer();
System.out.println("Timer: " + timer.getSchedule());
Object object = invocationContext.proceed();
System.out.println("interceptTimeout returning");
return object;

}

Use the following displayMemoryReport method developed in the Using the timer
interface recipe:

@Schedule(second="0", minute="*", hour = "*")
public void displayMemoryReport(Timer timer) {

System.out.println("SystemReportManager: displayMemoryReport  
occurred");

System.out.println(getMemoryReport());
System.out.println(getTimerData(timer));

}

The output of this sequence should be similar to the following:

INFO: interceptorTimeout executing

INFO: Timer: ScheduleExpression [second=0;minute=*;hour=*;dayOfMonth=*;month=*;da
yOfWeek=*;year=*;timezoneID=null;start=null;end=null]

INFO: SystemReportManager: displayMemoryReport occurred

INFO: Jan 6, 2011 1:11:00 PM

Total Memory: 276893696

Maximum Memory: 518979584

Free Memory: 99677928



Chapter 9

325

INFO: Info: null

Next timeout: Thu Jan 06 13:12:00 CST 2011

Schedule: ScheduleExpression [second=0;minute=*;hour=*;dayOfMonth=*;month=*;dayO
fWeek=*;year=*;timezoneID=null;start=null;end=null]

Time remaining: 59898

Calendar timer: true

Persistent: true

INFO: interceptorTimeout returning 

How it works...
We created an interceptor called interceptorTimeout and annotated it with the 
@AroundTimeout annotation. When the interceptor executed, the start of the interceptor
and the Timer's schedule was displayed. Next, the timeout method was executed using
the proceed method. When the proceed method returned, its return value was assigned
to the object variable. This value was returned by the interceptor method after a message
was displayed indicating the interceptor was terminating. The timer was triggered by the
displayMemeoryReport method using the @Schedule annotation.

There's more...
When the interceptor executes, it is part of the same transaction and uses the same security
context as that of the target method. In addition, it may throw any exception which may be
thrown by the target method. It can also suppress these exceptions if appropriate.

See also
Chapter 8, Interceptors covers the use and capabilities of interceptors in more depth.





10
Web Services

In this chapter, we will cover:

Creating an EJB-based web service using JAX-WS

Creating an EJB-based web service using JAX-RS

Using an MDB as part of a web service

Introduction
A Web Service is an application which provides functionality for a client. Clients are typically
web browsers but can also be standard applications. The communication between a client
and a service is facilitated through standard protocols that connect to end-points created for
the services. The term, endpoint, refers to a specific location used to access the web service.

From a Java perspective, web services can be divided into two broad categories. The first 
category is the Java API for XML Web Services (JAX-WS)  and is based on XML and the
Simple Object Access Protocol (SOAP). The capabilities of a service are published in an
XML-based Web Services Description Language (WSDL). It supports message-oriented and
remote procedure call type services. This approach is more complex but provides support for
applications in terms of transactions, security, and other features.

The second category is Representational State Transfer )(RESTful) web services as
supported by JAX-RS. This type of service is useful for simpler applications having less
stringent demands placed upon them. It is good for stateless services where caching 
can be used to improve its performance.

The first two recipes address using JAX-WS and JAX-RS respectively. The third recipe, 
Using an MDB as part of a web service, examines an approach for using an MDB in
support of a web service.









Web Services

8

A Java Web Service application called CustomerApplication is used to demonstrate
the creation of web services in this chapter. The application simply returns the number
of customers in a given region. The session EJB CustomerManager supports this basic
functionality. These classes are developed in the first recipe.

There is a lot more to web services than is covered in this chapter. The intent here is to
provide examples of web services as they relates to EJBs and many of the commonly used
features of web services.

Creating an EJB-based web service using
JAX-WS

In this recipe, we will demonstrate how to create a JAX-WS application based on a stateless
session EJB. There are several variations on how this can be done, however, they all use 
a class as the web service and embed other session EJBs to provide the web service's
functionality. Stateless and singleton session beans can be used as endpoints. As of  
EJB 3.1, stateful session beans can also be used for endpoints.

Getting rrreeeaaadddyyy
The two fundamental steps involved in the creation of a JAX-WS web service include:

•	 Creating an EJB which provides the application's functionality

•	 Creating a Web Service (JAX-WS) which utilizes the EJB

The creation of the EJB is detailed in earlier chapters, particularly Chapter 2, Session Beans
that deals with session EJBs. The focus of this recipe is how to create the web service. To
create a web service endpoint based on JAX-WS we need to:

1. Use the @WebService annotation to designate a class as an endpoint

2. Annotate the methods of the service with the @WebMethod annotation

Within the web service class methods we need to use the supporting EJB to implement the
service's functionality.

To demonstrate the creation of a web service, we will use a CustomerManager 
class which provides simple customer information. The EJB will support two methods:
getCustomerCount and getCustomerCountByRegion. These methods are simple 
by design so as not to distract from the details of creating the web service.



Chapter 10

9

How to do it...
Create a Java Web Application called CustomerApplication. In NetBeans this type of
project is found in the Java Web category of the New Project wizard. Go ahead and add three
packages to the project's Source Packages folder though we will only be using two of them in
this recipe.

packt – Holds the CustomerManager class 

jaxws – Used for the JAX-WS web service class 

jaxrs – Used in the next recipe to hold the RESTful application classes

Next, create the CustomerManager stateless session bean in the packt package.
Add two methods:

getCustomerCount – This method is passed void and returns an integer

getCustomerCountByRegion – This method also returns an integer but is passed 
a string representing the region of interest.

To keep the application simple, the getCustomerCount will always return 27. Implement
the getCustomerCountByRegion method such that when passed the string, "West", it will
return 12 and when passed the string, "East", it will return 15. Otherwise, we will return 0
keeping the method simple. One possible implementation follows:

@Stateless 
public class CustomerManager {

public int getCustomerCount() {
return 27;

}

public int getCustomerCountByRegion(String region) {
if("West".equals(region)) {
return 12;

} else  if("East".equals(region)) {
return 15;

} else {
return 0;

}
}

}













Web Services

330

This completes our session EJB. Now let's see what we need to do to create the actual web
service. The basic steps we will use include:

1. Create an @WebService annotated class

2. Inject the supporting EJB

3. Create @WebMethod annotated methods to expose the desired web service
functionality

Classes that act as a web service endpoint are designated with the @WebService an-
notation. A Service Endpoint Interface (SEI) is an interface that declares the endpoint's
methods. An explicit interface is not required but can be specified using the @WebService
endpointInterface element.

Create a class called Customer in the jaxws package. Annotate it using the @WebService
annotation. In the class inject an instance of the CustomerManager class and add
getCustomerCount and getCustomerCountByRegion methods mimicking those  
of the CustomerManager class.

Add the @WebMethod annotation to these two methods. In the getCustomerCount
method, use the CustomerManager's getCustomerCount as the return value. In the
getCustomerCountByRegion method, use the region parameter as the argument to 
the CustomerManager's getCustomerCountByRegion method and return this value.

@WebService()

public class Customer {
@EJB
private CustomerManager customerManager;
@WebMethod

public int getCustomerCount() {
return customerManager.getCustomerCount();
}
@WebMethod
public int getCustomerCountByRegion (String region) {
return customerManager.getCustomerCountByRegion(region);
}

}



Chapter 10

331

To test this service, use the URL, http://localhost:8080/CustomerApplication/
CustomerService?Tester with a browser. This should result in output similar to the
following screenshot:

Execute both methods. Notice the resulting output shows a SOAP Request and SOAP
Response further down in the browser's window. In the case of the second method, 
notice the name of the argument is arg0.

<?xml version="1.0" encoding="UTF-8"?>

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

<S:Header/>

<S:Body>

<ns2:getCustomerCountByRegion xmlns:ns2="http://jaxws/">

<arg0>West</arg0>

</ns2:getCustomerCountByRegion>

</S:Body>

</S:Envelope>

In the There's more section we will see how we can control this name and other aspects of
the service.



Web Services

332

How it wwwooorrrkkksss.........
The @WebService annotation designated the class as a web service endpoint. Its
serviceName element provided the name of the service as known to a client. In this case
it was CustomerService as used in the URL. Notice while our class name is Customer,
the string, "Service" was automatically appended to the class name. The @WebMethod
designates a method available as part of the service. When these methods are invoked, 
they used the corresponding methods provided by the injected EJB CustomerManager.

The getCustomerCount method returned 27. We could have developed a more
sophisticated application using a database and entity classes, however, the added
sophistication would have distracted from the creation of the web service. 

Actually, this additional functionality is where JAX-WS becomes more important. When issues
such as security and transaction processing are an important part of an application, JAX-WS is
a better choice than JAX-RS.

There's mmmooorrreee.........
Here we will address the web service-related annotations in more depth:

Variations of the @WebService annotation

Using the @WebMethod annotation

Using the @WebParam annotation

Variations of the @WebService annotation
The @WebService annotation has several elements permitting us to control the names used
with the service. Here we are only interested in the serviceName element. Using this element
allows us to use a name other than the default name provided for us, "CustomerService".
Notice while our class name is Customer, the string, "Service" is automatically appended to
the class name. The serviceName element allows us to change the name of the service.

Modify the @WebService as shown below:

@WebService(serviceName="Customer")

Use the following URL in place of the old one: 

http://localhost:8080/CustomerApplication/Customer?Tester

Notice the behavior is the same.









Chapter 10

333

Using the @WebMethod aaannnnnnoootttaaatttiiiooonnn
Business methods of the web service interface must be declared as public and cannot be
declared as static or final. They are annotated with the @WebMethod annotation to
designate them as endpoint methods.

Parameters of these methods must be JAXB-compatible. The Java Architecture for XML
Binding (JAXB) is an API used to simplify access to XML documents. This API provides 
an alternative to using the Simple API for XML (SAX) or the Document Object Module
(DOM) to access an XML document. A list of JAXB-compatible data types is found at: 
http://download.oracle.com/javaee/5/tutorial/doc/bnazq.html#bnazs.

To control the name of the method as exposed by the web service, we can use the
operationName element of the @WebMethod annotation. For example, use the 
following @WebMethod annotation for the getCustomerCount method:

@WebMethod(operationName="getTotalCount")

When the application is executed you should see the new method name in the browser.

Using ttthhheee @@@WWWeeebbbPPPaaarrraaammm aaannnnnnoootttaaatttiiiooonnn
As pointed out earlier, the name of the getCustomerCountByRegion's argument is arg0.
While this is not necessarily a problem, we can control this name using the @WebParam
annotation. Modify the getCustomerCountByRegion method as shown below. This
annotation specifies the web name of the parameter to be "region".

public int getCustomerCountByRegion(@WebParam(name = "region")  
String region) {

When the application is executed you should see the new parameter name in the SOAP
Request message as shown here:

<?xml version="1.0" encoding="UTF-8"?>

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

<S:Header/>

<S:Body>

<ns2:getCustomerCountByRegion xmlns:ns2="http://jaxws/">

<region>West</region>

</ns2:getCustomerCountByRegion>

</S:Body>

</S:Envelope>



Web Services

334

See aaalllsssooo
The first three recipes in Chapter 2, Session Beans provide more detail about the use and
creation of session EJBs.

Creating an EEEJJJBBB---bbbaaassseeeddd wwweeebbb ssseeerrrvvviiiccceee uuusssiiinnnggg
JAX-RS

A RESTful web service is useful for applications which do not require the use of transactions,
security and other features that can adversely impact its performance. JAX-RS supports 
the creation of RESTful applications. These types of services are typified through the use of 
HTTP commands such as GET and POST. In this recipe, we will use annotations that identify
methods of a service corresponding to these commands.

Getting rrreeeaaadddyyy
The two basic steps involved in creating a JAX-RS web service include:

1. Creating an EJB which provides the application's functionality

2. Creating a Web Service (JAX-RS) which utilizes the EJB

We will reuse the CustomerManager class as described in the first recipe to provide our 
service's functionality.

The focus of this recipe is how to create the Web Service. To create a web service endpoint we
need to:

1. Use the @Path annotation to designate a class as an endpoint

2. Annotate the methods of the service with one of several annotations depending on
the service provided by the method

3. Use a supporting EJB to implement the desired functionality of the service

How to do it...
We will create our JAX-RS web service by adding two classes to the jaxrs package. The
classes will use the two CustomerManager methods. Start by creating a stateless session
EJB called Customer in the jaxrs package.

Sometime during the process of creating the Customer using NetBeans, you may be
prompted with the following dialog box. When encountered, select the first option and 
proceed. In other development environments you may have to take different steps. The
ApplicationConfig class created here is detailed in a later section of this recipe.



Chapter 10

335

In this version of the Customer class, we will provide a simple method which responds to an
HTTP GET request and returns an HTML string containing the number of customers returned
by the CustomerManager's getCustomerCount method.

Annotate the class with an @Path annotation as shown below. Inject an instance of the
CustomerManager class as an instance variable and add a method called doGet which 
uses this class. Annotate the method with a @GET and @Produces annotation.

@Path("customer")

@Stateless 
public class Customer {
@EJB
private CustomerManager customerManager;
@GET

@Produces("text/html")

public String doGet() {
return "<h3>Customer Count: " +  
customerManager.getCustomerCount() + "</h3>";
}

}



Web Services

336

To test the service after it has been deployed, use the following URL in a browser: 
http://localhost:8080/CustomerApplication/resources/customer. The
"resources" part of the URL will be explained shortly. The browser output should appear
as shown in the following screenshot:

From this example, you can see how easy it is to respond to a user's request. When the use of
an EJB is needed to support this type of interaction, JAX-RS provides a good solution.

How it wwwooorrrkkksss.........
The @Path annotation was used to designate the class as a web service endpoint. Its value,
the string, "customer" was used as part of the path used to access this web page. This was
reflected in the URL.

A JAX-RS application responds to standard HTTP commands such as GET and POST. To
respond to a GET request, we added the doGet method. The @GET annotation specified 
the method as the one to execute when the HTTP GET command arrived. The @Produces
annotation means the data returned by the method is HTML. The body of the method returned
a simple HTML string reflecting the return value of the getCustomerCount method.

�������
Notice in the URL the use of the string resources. JAX-RS uses an Application derived
class in support of applications. How this works is detailed next. In addition, we will look into
the use of the GET command in more depth and also see how to use HTML FORM data.

Understanding the Application class
As we saw earlier, NetBeans generated an ApplicationConfig class which extends the
javax.ws.rs.core.Application class. The purpose of the class is to manage all of the
resources used by the application. The ApplicationConfig class provided by NetBeans
provides default support for all the basic operations.



Chapter 10

337

The ApplicationConfig class is shown below and is annotated with the @ApplicationPath
annotation. It is found under the Generated Sources (rest) folder of the application. The string
used specifies the root name of the application as we saw reflected in the URL. 

package org.netbeans.rest.application.config;
/**
* This class is generated by the Netbeans IDE,
* and registers all REST root resources created in the project.
* Please, DO NOT EDIT this class !
*/
@javax.ws.rs.ApplicationPath("resources")

public class ApplicationConfig extends javax.ws.rs.core.Application {
}

Using the GET command with parameters
The getCustomerCountByRegion method is passed a string representing the region of
interest. So how do we handle requests when parameters need to be passed? The answer
involves using the @QueryParam and @DefaultValue annotations. The @QueryParam
annotation associates the name of an HTML parameter with a parameter of the method
responding to the GET command. The @DefaultValue annotation specifies a default value 
for the parameter.

Add a new stateless EJB called CustomerByRegion to the jaxrs package. Inject an
instance of the CustomerManager class.

@Path("customerByRegion")
@Stateless 
public class CustomerByRegion {
@EJB
private CustomerManager customerManager;

... }

Add a doGet method using the @GET and @Produces annotations as we did with the
Customer class. However, use the following parameter list and inside of the method
use the getCustomerCountByRegion method.

@GET
@Produces("text/html")
public String doGet(
@DefaultValue("East") @QueryParam("region") String region) {
return "<h3>Customer Count: " +  
customerManager.getCustomerCountByRegion(region) + "</h3>";
}



Web Services

8

The @QueryParam annotation associates the HTML parameter "region" with the 
methods parameter region. A default value of "East" is also assigned using the 
@DefaultValue annotation.

To test the method, use the following URL. Notice the use of the name as specified by the 
@Path annotation. The question mark is used to indicate that a parameter is being passed. 
In this case, the parameter is region and is assigned a value of West.

http://localhost:8080/CustomerApplication/resources/customerByRegion?
region=West

Your output should appear as shown in the following screenshot:

Using the POST command with form data
The POST command is an alternative to the GET command and is also used to send
information to the server. The GET command encodes form data into the URL while the POST
command places data within the HTTP message body. The POST command can also be used
to retrieve information passed as part of an HTML FORM tag.

To illustrate the use of this command, create an index.html file as shown below. This file 
contains a FORM tag with an input element allowing the user to enter a region name. The
FORM tag has two fields of interest. The first is the action field. This specifies the URL to 
use when the user presses the submit button. In this case it specifies the Customer class we
developed at the beginning of this recipe. The second field is the method field. This specifies 
the HTTP command to use. Here we specify the use of the POST command.

<html>
<head>

<title></title>
<meta http-equiv="Content-Type" content="text/html;  
charset=UTF-8">

</head>
<body>

<form action="/CustomerApplication/resources/customer"  
method="post" >
Region<input name="region" value="East"><br>
<input type="submit">

</form>
</body>

</html>



Chapter 10

9

However, in order to use the POST command we need to add a supporting method to the
Customer class. Add a doPost method to the jaxr's Customer class as shown below. 
In this simple method, we return the number of customers based on the region.

@POST

@Produces("text/html")

@Consumes("application/x-www-form-urlencoded")

public String doPost(@FormParam("region") String region) {
return "<h3>Customer Count: " +  
customerManager.getCustomerCountByRegion(region) + "</h3>";

}

This method uses the @Produces annotation as we had used earlier. It also uses a 
@Consumes annotation which determines the type of input accepted by the method. In this
case we use "application/x-www-form-urlencoded". This means the method accepts data
encoded by an HTML FORM. The server will generate an exception if the wrong type of
data is sent.

The @FormParam annotation associates the FORM's region parameter with the
method's region parameter. The region parameter is used as an argument of the
getCustomerCountByRegion method.

Use the URL http://localhost:8080/CustomerApplication/index.html to test the
application. The following screenshot shows the expected output:

Selecting the Submit button should result in output as shown in the following screenshot:



Web Services

340

���������������������   
An MDB can be used in the support of a web service. When the need exists to asynchronously
perform some action, a web client can send information to a web service which then
repackages it in a message. The message can then be sent to a queue for processing  
at a later date. A framework for this type of task is presented here.

The use of asynchronous session beans can also be used to support this type of operation.
The use of asynchronous methods is discussed in Chapter 2, Using an asynchronous method
to create a background process recipe.

Getting rrreeeaaadddyyy
Essentially we will reuse parts of the recipes in Chapter 3, Message-Driven Beans dealing with
Message-Driven Beans (MDB), specifically the Handling a text-based message recipe. There
are two steps in this process. 

1. Creating an MDB

2. Adding code to the web service to create a message and send it to the queue

In this example, we will create an MDB called AddMessage. The onMessage method, which
handles a dequeued message, will simply display the text message in the console window. We
will then modify the jaxrs.Customer's doPost method developed in the previous recipe to
create the message. Together, this will demonstrate the approach.

In order for this approach to work, we need to setup a queue in the server. The step used to
create the queue is server-specific. Refer to your server's documentation to set up a queue. 
In this example, we will use a queue called jms/Customer.

��������
Add an MDB called AddMessage, which implements the MessageListener interface, to 
the packt package. Use the following @MessageDriven annotation to specify the use of
the jms/Customer queue. Details of this annotation can be found in the introduction of
Chapter 3, Message-Driven Beans.

@MessageDriven(mappedName = "jms/Customer", activationConfig = {
@ActivationConfigProperty(propertyName = "acknowledgeMode",  

propertyValue = "Auto-acknowledge"),
@ActivationConfigProperty(propertyName = "destinationType",  

propertyValue = "javax.jms.Queue")
})



Chapter 10

341

public class AddMessage implements MessageListener {

...

}

Add a public default constructor and an onMessage method which is passed a Message
object. In the onMessage method, cast the message parameter to a TextMessage and 
then use its getText method to retrieve and display the message.

public AddMessage() {
}

public void onMessage(Message message) {
System.out.print("onMessage");
TextMessage textMessage = (TextMessage) message;
try {
System.out.println(textMessage.getText());

} catch (JMSException e) {
throw new RuntimeException(e);

}

}

Next we will augment the jaxrs.Customer class to send a message to the customer queue.
Inject a reference to the QueueConnectionFactory and a Queue.

@Path("customer")
@Stateless 
public class Customer {

@EJB
private CustomerManager customerManager;

@Resource(mappedName="jms/CustomerFactory")

private QueueConnectionFactory queueConnectionFactory;

@Resource(mappedName="jms/Customer")

private Queue queue;



Web Services

342

Add the following code to the jaxr's Customer's doPost method before its 
return statement.

try {
String message = region + " passed";

Connection connection =  
queueConnectionFactory.createConnection();

Session session = connection.createSession(false,  
Session.AUTO_ACKNOWLEDGE);

MessageProducer messageProducer = (MessageProducer)  
session.createProducer(queue);

TextMessage textMessage = session.createTextMessage();
textMessage.setText(message);
messageProducer.send(textMessage);
System.out.println("Message sent successfully");

} catch (JMSException ex) {
System.out.println("JMSException in SalutationServlet");

}

In your browser load the index.html page using the URL: http://localhost:8080/
CustomerApplication/index.html. The output should appear as shown in the 
following screenshot:

Enter East and then press the Submit Query button. The output of the browser should be
similar to the following screenshot:



Chapter 10

343

In the console window you should see output similar to the following:

INFO: Message sent successfully 

INFO: onMessage 

INFO: East

��������
When the index.html Submit button was pressed, the region parameter was passed to the
doPost method. Within the doPost method, a TextMessage was created and sent to the
jms/Customer queue. The details of these steps are explained in Chapter 3, Handling a 
text-based message recipe.

In the AddMessage MDB, the onMessage method processed the dequeued message
and displayed the text message in the console window. The @MessageDriven annotation
associated the MDB with the jms/Customer queue.

See also
MDBs are discussed in Chapter 3, Message-Driven Beans. Of immediate relevance are the
introduction and the first recipe which deals with text-based messages.





11
Packaging the EJB

In this chapter, we will cover:

Understanding an application's JAR files using the jar command

Understanding class loading

Using deployment descriptors for interceptors

Using deployment descriptors for timer interceptors

Using deployment descriptors for default interceptors

Using deployment descriptors for callback interceptors

Using deployment descriptors for transactions

Using deployment descriptors for security

Introduction
Before a Java EE application can be used it must be deployed to a server. The process of
deployment consists of packaging the components of the application together and then
installing these components on a server. Once they are installed, individual classes are
loaded into memory. This process can be complicated; however, the deployment descriptors
examined in this chapter provide additional opportunities for tailoring an application for
specific servers and making applications more portable and maintainable.

The packaging of a Java EE application is accomplished using Java ARchive (JAR) files. 
These files are stored in ZIP format and contain the classes and resources needed by the 
application. In Java EE, there are specialized versions of the JAR files including EAR, WAR, 
and EJB-JAR.



















Packaging the EJB

346

The deployment process is controlled by deployment descriptors. These files specify how 
the application should be installed and how many of the behavioral characteristics of a
component, such as how transactions are handled or which roles can access a component.
In the context of EJB development roles, the management of deployment descriptors is the
responsibility of the application assembler. In a larger organization, an individual may be
tasked with the assembly of EJB JAR and WAR files into EAR files. The individual would 
also be responsible for configuring the deployment descriptors for the application.

Annotations or elements of a deployment descriptor can be used to configure an EJB. 
Annotations are easy to use but may not be the best choice if application settings change
frequently. Hard coding names for JNDI and JMS resources will require the code to be
re-compiled if they change. Also, some settings such as specifying default interceptors 
cannot be done using annotations.

While there is some argument as to which approach is best, you are free as a developer
to use the most appropriate approach for your application. In general, annotations are 
better suited for static environments while deployment descriptors are better suited  
for dynamic environments. The approaches can be intermixed. When this happens,
deployment descriptors override annotations.

Some annotations cannot be overridden:

@Stateless

@Stateful

@MessageDriven

@Service

@Consumer

Deployment descriptors are optional in Java EE 5 and later. When a deployment 
descriptor is not present, the server determines the makeup of the application by 
examining the contents of the JAR files and using a standard naming convention as 
detailed in http://java.sun.com/blueprints/code/namingconventions.html.

A Java EE application typically consists of many different types of components including EJBs,
HTML, JSP, and servlets. EJBs execute from within an EJB container while servlets execute
from a web container. These components can be packaged in different JAR files. The various 
packaging types include:

CAR – A Client Application Archive file is used to hold the components needed for 
Java clients not normally managed by a browser

EAR – The Enterprise Application Archive file contains other EE modules such as the 
EJB-JAR and WAR modules

EJB-JAR – The EJB Java Archive file is intended to contain session and message 
driven beans. Entities may also be packaged in this file and elsewhere.



















Chapter 11

347

RAR – The Resource Adaptor Archive file holds resource adapters.

WAR – The Web Application Archive file holds user interface files such as servlets, 
JSPs, JSF, and similar type classes. Entities and other EJBs can also be packaged in
this file.

Entities can be deployed in most JAR files except RAR modules. When entities are packaged in 
a file, a persistence.xml file is frequently placed in the JAR file also.

An important aspect of deployment and the execution of the application is the class loading
process. The Understanding class loading recipe addresses this issue.

Chapter 8, Interceptors details the creation and use of interceptors. There are several kinds of
interceptor methods and these can be configured using a deployment descriptor:

Business method interceptors – Covered in the Using deployment descriptors for
interceptors recipe

Timeout method interceptors – Detailed in the Using deployment descriptors for
timer interceptors recipe

Lifecycle callback interceptors – Covered in the Using deployment descriptors for
callback interceptors recipe

Default interceptors – Covered in the Using deployment descriptors for default
interceptors recipe

We also examine the use of deployment descriptors for transactions and security in the Using
a deployment descriptor for transactions and Using deployment descriptors for security
recipes respectively.

Understanding an application's JAR files 
using the jar command

The EAR file is a top level JAR file and holds other JAR files. This packaging provides a single 
JAR file to simplify the deployment process. The use and organization of this JAR and those for 
EJB and WEB modules is explained in this recipe using the Java JDK jar command. While this
command is more often used to create a JAR file, it can also be used to examine the structure 
of an existing JAR file. Upon the creation of a JAR file is it good to be able to verify its contents 
when a deployment tool performs other than as expected.

Getting ready
There are several different types of files used in the deployment of an application. 
The following table lists these files along with the internal file which serves as the 
deployment descriptor.















Packaging the EJB

8

Type Typical file 
name

Deployment
descriptor file

Location of
deployment
descriptor

Contents

CAR *-app-
client.jar

application-
client.xml

/META-INF
directory of 
app-client.
jar

Contains an
application-
client.xml file or a 
Main-Class declaration
in the manifest file.

EAR *.ear application.xml Standalone Will contain other JAR
files along with manifest

EJB-
JAR

*-ejb.jar ejb-jar.xml /META-INF
directory of
ejb-jar.jar

Will include an ejb-
jar.xml file and/or 
contain EJB annotated
classes. May also
contain entities along
with a persistence.
xml file

RAR *.rar ra.xml /META-INF
directory of 
*.rar

Contains resource
adapters.

WAR *-war.war web.xml /WEB-INF
directory of
war.jar

Files such as servlets,
JSPs, and JSFs. 
May also contain
entities along with a
persistence.xml
file

The * is normally replaced with the name of the application.

The steps required to use the Java SDK jar command include:

1. Opening a command window

2. Setting the path environmental variable

3. Executing the jar command

How to do it...
The structure of the EAR files is simple. It consists of a MANIFEST.MF manifest file used 
to describe the contents of the JAR. It also contains an *-ejb.jar file and *-war.jar
files. A JAR file can be created using the jar.exe program. Development environments 
such as NetBeans incorporate the tool into the environment and create the various JAR
files transparently.



Chapter 11

9

To use the jar command we need to open a command window. On Windows this can 
be done by selecting Start | All Programs and then Accessories. Select the Command
Prompt menu item. A Command Prompt window should appear similar to that found in
the following screenshot:

The jar.exe command file is located in the bin directory of the Java SDK directory. 
Depending on the version of the SDK installed on your machine, the path environmental
variable needs to be set to reference this location. This environmental variable is used by the
command prompt to locate executable files. The following command set the variable to search 
the bin directory of the jdk1.6.0_20 version found on the C drive in the \Program Files
(x86)\Java\ directory. The last part of the command preserves the previous path setting.

C:\>set path=C:\Program Files (x86)\Java\jdk1.6.0_20\bin;%path%

Next, navigate to the directory where the JAR file to be examined is found.

Using the jar command with the arguments -tf allows us to display the contents of a JAR.
Using the command against the EAR file for the SingletonExample application found 
in Chapter 2, Creating a singleton bean recipe, allows us to examine the file. The following 
illustrates the use of the command. However, note that the command has been issued at
the root level instead of the directory where the JAR file resides. The actual path you use will 
depend on where the application was developed.

C:\>jar -tf SingletonExample.ear

The file should contain the following items:

META-INF/

META-INF/MANIFEST.MF

SingletonExample-ejb.jar

SingletonExample-war.war



Packaging the EJB

350

We can use the jar command against the SingletonApplication-ejb.jar file and 
the SingleApplication-war.war files also. The contents of the EJB file will contain 
the following:

META-INF/

META-INF/MANIFEST.MF

META-INF/beans.xml

packt/

packt/GameBean.class

packt/PlayerBean.class

.netbeans_automatic_build

.netbeans_update_resources

The actual contents of your file will be dependent on the development environment you 
used to create the JAR. In this example, we see NetBeans-specific files. These files are not 
of immediate interest to us. However, notice the two EJB are packaged as members of the
packt package.

The WAR file will contain:

META-INF/

META-INF/MANIFEST.MF

WEB-INF/

WEB-INF/classes/

WEB-INF/classes/servlet/

WEB-INF/classes/servlet/GameServlet.class

WEB-INF/classes/.netbeans_automatic_build

WEB-INF/classes/.netbeans_update_resources

WEB-INF/beans.xml

WEB-INF/sun-web.xml

WEB-INF/web.xml

index.jsp



Chapter 11

351

We can see the NetBeans-specific files and the GameServlet class found in the servlet
package. An index.jsp file is also included which is an artifact of the application as 
generated by NetBeans. 

How it works...
The jar command executes from a command window. Once the window was brought up 
it was necessary to set the path environmental variable to the directory containing the
executable jar file. It was then necessary to navigate to the directory where the JAR file of 
interest was located. The jar command was then executed against the file.

Instead of using the jar command, we could have also used a windows-based tool such as
7-ZIP. Details of the use of the JAR tool can be found at http://download.oracle.com/
javase/6/docs/technotes/tools/windows/jar.html.

Also, most JAR files contain a manifest file which details the contents of the JAR or provides 
additional information about the JAR. Other references to JAR file components can be specified 
using the Class-Path attribute of the JAR file. Details of the JAR file format can be found at 
http://download.oracle.com/javase/1.4.2/docs/guide/jar/jar.html.

See also
Most of the recipes in this chapter address the specific of the deployment descriptor 
for applications.

Understanding class loading
In this recipe, we will examine how classes are loaded and the class loader hierarchy typically
found in a Java EE server. An understanding of this process also explains the dependencies
found between modules. In addition, a class not found type of exception is not uncommon.
Understanding the loading process will help resolve these types of errors.

Getting ready
Not all of the application's classes are loaded immediately upon deployment of an application.
Classes are generally loaded as needed at runtime when a client needs it. When an instance
of a class is created, the class must be in memory.



Packaging the EJB

352

It is not uncommon for an application to generate a ClassNotfoundException or a
ClassNoDefException during execution. Thus, it can be important to understand the class
loading process to correct these types of problems. Most environments use what is called
Parent-First Delegation class loading process. The basic steps of this process include:

The loader checks its local cache to see if it is available

If not, it asks the parent loader to load the class

If the parent cannot load the class it uses a local source such as a JAR file

By checking for the presence of a class in a cache, the loading process can be sped up. By
using the parent loader, we can be confident that malicious classes were not inadvertently 
loaded. If desired, it is possible to create your own class loader.

How to do it...
The actual loading process is vendor-specific. There are no specifications on how class 
loading is to be accomplished by a Java EE server. This limitation can make it difficult to 
port an application to a different server if the order of class loading is important.

One way of determining when a class loads is to use a static initialization block for the class
and displaying a message indicating that the class has been loaded. This block is executed
only once when the class is loaded. However, this technique can only be applied to those
classes whose source code is available. The JVM -verbose option can also be used which will
show when each class is loaded. However, as the option name implies, the output can be
verbose and hard to follow.

How it works...
The overall process of class loading begins when a JVM starts up. The CLASSPATH
environment variable frequently defines the locations of classes. Essential classes are loaded 
first and then application-specific classes are loaded as needed. The JVM frequently uses 
multiple class loaders. For example, the Sun JVM uses a hierarchy of class loaders:

Boot class loader – Loads classes from $JAVAHOME/jre/rt.jar which contain the
standard JDK classes

Extension class loader – Follows the boot class loader and loads classes from
$JAVAHOME/jre/lib/ext/*.jar

System class loader – Loads application-specific classes

The boot class loader loads core classes such as those found in java.lang and java.util
packages. The JVM command line argument, bootclasspath can be used to direct the JVM to
load additional classes.















Chapter 11

353

The extension class loader is concerned with additional classes such as those used in
cryptography. It will load files from the $JAVAHOME/jre/lib/ext/ directory and any 
found in the java.ext.dirs system property.

The system class loader, also called the application class loader, loads the application classes
as specified by the CLASSPATH environment variable or a Class-Path entry in a JAR file.

Application server-specific class loaders are used by the JVM when the JVM starts up. In the 
case of the Java EE server, an application server class loader then starts loading classes as
specified by the environment variable, $APP_SERVER_HOME/lib.

As mentioned before, the actual loading process is vendor-specific. However, frequently an 
EJB class loader is used by an application to load its classes. This loader is often the parent
of a WAR class loader. This arrangement results in the classes loaded by the EJB class loader
being visible to those loaded by the WAR class loader.

When a class loader loads classes, it does so from a code source location. These locations
are dependent on the module. The following table details these locations by module.

Type Code source
EAR JAR file in its /lib directory

Those JARs specified in the Class-Path manifest element of the above 
JAR files

EJB-JAR Those in the EJB-JAR file
Those JARs specified in the Class-Path manifest element of the above 
EJB-JAR file
Those JARs specified in the Class-Path manifest element of the above 
JAR files

WAR WEB-INF/classes
JARs in the WEB-INF/lib directory
Those JARs specified in the Class-Path manifest element of WAR
Those JARs specified in the Class-Path manifest element of the above 
two JAR categories

There's more...
Session and message-driven beans are normally packaged in an EJB-JAR file. Entities can also 
be packaged there. There are several ways of packaging classes into a JAR.

One approach uses the jar command, which is executed at a command prompt. Most
development environments perform this task automatically, hiding the details of this
process. The Apache Ant tool or Maven tool is often used for this purpose.



Packaging the EJB

354

Helper classes contain functionality that can be useful to one or several classes. The visibility
of these helper classes can be controlled. To make them visible to all of the application's
modules, package them in the EAR's lib directory. To restrict access to them, place the classes
in a separate JAR file and add a Class-Path attribute referencing the helper class JAR file in 
those modules requiring access to them. The Class-Path attribute is found in the containing
EJB-JAR or WAR module's Manifest.mf file. However, when a top level JAR file is processed 
by a deployment tool it should not contain a Class-Path entry.

Using deployment descriptors for
interceptors

To specify interceptor methods of an interceptor class, we use the <interceptors> element
with other elements in the ejb-jar.xml file. In this recipe, we examine how this is done. 
Interceptors are discussed in more detail in Chapter 8, Interceptors. 

Java EE 6 application no longer requires deployment descriptors as annotations have largely
taken their place. However, there are certain situations where they are still needed. One 
of these situations is when we want to use a default interceptor as detailed in the Using
deployment descriptors for default interceptors recipe.

Getting ready
The steps to use deployment descriptors include:

1. Adding an ejb-jar.xml file to your application

2. Using the <interceptors> element to define interceptors

3. Using the <interceptor-binding> element to define the interceptor bindings

4. Deploying the application

The interceptor bindings defined in the ejb-jar.xml file will override the annotations found 
in a class. The advantage of using deployment descriptors lies in the ability to control the in-
terceptors without having to modify the EJB source code. This can result in a more portable
and malleable application.

How to do it...
To use deployment descriptors for interceptors, you will need to create an ejb-jar.xml
file in the EJB module under the META-INF directory. This process is development 
environment-specific. For example, in NetBeans, right-click on the EJB module for  
your project in the Project Explorer and select New | Standard Deployment Descriptor. 
This will create the ejb-jar.xml file.



Chapter 11

355

Consider the SimpleInterceptor class defined in Chapter 8, Defining and Using 
Interceptor recipe.

public class SimpleInterceptor {
@AroundInvoke
public Object simpleMethod(InvocationContext context) throws  
Exception{
...
} }

Using the @Interceptors annotation as shown below will result in all methods of the
RegistrationManager class being intercepted and handled by SimpleInterceptor.

@Stateful
@Interceptors(SimpleInterceptor.class)
public class RegistrationManager {
... }

We can achieve the same result using the <assembly-binding> element within the
<assembly-descriptor> element. First, add an ejb-jar.xml file to your application. 
Add an <ejb-jar> element as the root element of the file.

<?xml version="1.0" encoding="UTF-8"?>

<ejb-jar xmlns = "http://java.sun.com/xml/ns/javaee" 
version = "3.1"
xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation = "http://java.sun.com/xml/ns/javaee 
http://java.sun.com/xml/ns/javaee/ejb-jar_3_1.xsd">
... </ejb-
jar>

Within the root element, we will add an <interceptors> element followed by an
<assembly-descriptor> element. The first element is used to declare an interceptor 
and the second binds the interceptor to an EJB.

<?xml version="1.0" encoding="UTF-8"?>

<ejb-jar xmlns = "http://java.sun.com/xml/ns/javaee" 
version = "3.1"
xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation = "http://java.sun.com/xml/ns/javaee 
http://java.sun.com/xml/ns/javaee/ejb-jar_3_1.xsd">
<interceptors>
...



Packaging the EJB

356

</interceptors>
<assembly-descriptor>

...
</assembly-descriptor>

</ejb-jar>

The <interceptor-class> element is nested inside the <interceptor> element. Its
value identifies the interceptor class. In this case, it is packt.SimpleInterceptor.

<interceptor>
<interceptor-class>packt.SimpleInterceptor</interceptor-class>
</interceptor>

</interceptors>

The <assembly-descriptor> element contains an <interceptor-binding> element.
Within this element, the name of the EJB is declared using an <ejb-name> element and
the name of the interceptor class using an <interceptor-class> element. Here the
RegistrationManager EJB is associated with the SimpleInterceptor.

<assembly-descriptor>
<interceptor-binding>
<ejb-name>RegistrationManager</ejb-name>
<interceptor-class>packt.SimpleInterceptor</interceptor-class>

</interceptor-binding>
</assembly-descriptor>

To specify the use of an interceptor for all classes, use the asterisk wildcard character.

<interceptor-binding>
<ejb-name>*</ejb-name>
<interceptor-class>packt.SimpleInterceptor</interceptor-class>

</interceptor-binding>

How it works...
The ejb-jar.xml file was used to specify the configuration of the SimpleInterceptor
for use with the methods of the RegistrationManager. The <interceptors> element
was used to define the interceptor and the <assembly-descriptor> element was used 
to associate the methods of the RegistrationManager with the interceptor. When the
application is deployed, the server will intercept calls to the RegistrationManager's
methods using the SimpleInterceptor. This technique provides a way of allowing the
deployer to determine when the interceptor should be used without having to use annotations.



Chapter 11

357

There's more...
Interceptors can be bound to:

All target classes. These are called default interceptors and are covered in Using
deployment descriptors for default interceptors recipe
One target class (class-level interceptors)
Methods of a class (method-level interceptors)

In the previous section, the use of class-level interceptors was illustrated. In addition, we can
exclude interceptors for classes and/or methods. We can also control the execution order of
interceptors using deployment descriptors.

Using method-level interceptor descriptors
To restrict the use of the interceptor to a specific method of a class, use the <method-
name> element in conjunction with the <method> element. If the method is overloaded,
the interceptor is applied to all of the methods. In the following example, we associate the
SimpleInterceptor with the RegistrationManager's register method.

...
<interceptor-binding>
<ejb-name>RegistrationManager</ejb-name>
<interceptor-class>packt.SimpleInterceptor</interceptor-class>
<method>
<method-name>register</method-name>
</method>
</interceptor-binding>

If we need to identify a specific overloaded method, then we use one or more 
<method-params> elements inside of the <method-params> element. These
immediately follow the <method-name> element. The <method-param> element
contains the data type of the parameter.

While the register method is not overloaded, the following illustrates the use of these
elements. This matches a register method with three string parameters.

<interceptor-binding>
<ejb-name>RegistrationManager</ejb-name>
<interceptor-class>packt.SimpleInterceptor</interceptor-class>
<method>
<method-name>register</method-name>
<method-params>
<method-param>java.lang.String</method-param>
<method-param>java.lang.String</method-param>
<method-param>java.lang.String</method-param>
</method-params>
</method>
</interceptor-binding>









Packaging the EJB

8

If the parameter data type is void, then the element is left empty.

<method-param></method-param>

Excluding interceptors
Interceptors can be assigned at the class level. They will apply to all methods of the class.
However, if you wish to exclude an interceptor for a specific method, you can use the 
@ExcludeClassInterceptors annotation or use the <exclude-class-interceptors>
element in the deployment descriptor.

To demonstrate the use of the deployment descriptor approach, use the @Interceptors
annotation with the RegistrationManager class.

@Interceptors(SimpleInterceptor.class)
public class RegistrationManager {

Next, modify the ejb-jar.xml file to use the <exclude-class-interceptors> element.
The element uses a true or false value to exclude or include the class-level interceptors.
The following illustrates how to exclude the use of any class-level interceptors for the
RegistrationManager's register method:

<interceptor-binding>
<ejb-name>RegistrationManager</ejb-name>
<exclude-class-interceptors>true</exclude-class-interceptors>
<method>
<method-name>register</method-name>
</method>
</interceptor-binding>

Default interceptors can also be excluded from a method using the <exclude-default-
interceptors> element. It works in the same way as the <exclude-class-inter-
ceptors> element and is illustrated here:

<interceptor-binding>
<ejb-name>RegistrationManager</ejb-name>
<exclude-default-interceptors>true</exclude-default-interceptors>
<exclude-class-interceptors>true</exclude-class-interceptors>
<method>
<method-name>register</method-name>
</method>
</interceptor-binding>



Chapter 11

9

Controlling the execution order of interceptors
Interceptors are normally executed in the order they are declared in an annotation. However,
the order can be controlled in a deployment descriptor using the <interceptor-order>
element. Within this element the <interceptor-class> element specifies the interceptors 
to use and their order. They are executed in the order they are listed. The following illustrates
this technique for the register method where the SimpleInterceptor is executed before
the DefaultInterceptor:

<interceptor-binding>
<ejb-name>RegistrationManager</ejb-name>
<interceptor-order>
<interceptor-class>packt.SimpleInterceptor</interceptor-class>
<interceptor-class>packt.DefaultInterceptor</interceptor-class>

</interceptor-order>
<method>
<method-name>register</method-name>

</method>
</interceptor-binding>

See also
Timer interceptors are discussed in the Using deployment descriptors for timer interceptors
recipe and callback interceptors are detailed in the Using deployment descriptors for callback
interceptors recipe.

Using deployment descriptors for timer 
interceptors

The @AroundTimeout annotation is used to specify an interceptor method for a timer. The
interceptor method will be executed before and after the timer method executes. The creation
and use of timers is detailed in Chapter 9, Timer Services. In this recipe, we will learn how to
specify a timer interceptor using a deployment descriptor.

Getting ready
The process for creating a deployment descriptor for a timer interceptor includes:

1. Creating an ejb-jar.xml file for the EJB module

2. Adding an <around-timeout> element to the file

3. Deploying the application



Packaging the EJB

360

We will reuse the code developed in the Chapter 9, Using interceptors with timers recipe.
In the recipe, the @Schedule annotation was used with the SystemReportManager's
displayMemoryReport method. This configuration displays the JVM memory utilization 
every 10 seconds. The @Schedule annotation used and the displayMemoryReport
method minus its body are shown here:

@Schedule(second = "0,10,20,30,40,50", minute="*", hour = "*")
public void displayMemoryReport(Timer timer) {...}

The interceptorTimeout method follows:

public Object interceptorTimeout(InvocationContext  
invocationContext) throws Exception {
System.out.println("interceptorTimeout executing");
Timer timer = (Timer) invocationContext.getTimer();
System.out.println("Timer: " + timer.getSchedule());
Object object = invocationContext.proceed();
System.out.println("interceptorTimeout returning");
return object;

}

How to do it...
Create an ejb-jar.xml if one does not already exist. Add a declaration for the
SystemReportManager session EJB using the <enterprise-beans> and
<session> elements. Within the <session> element, use the <ejb-name> to spec-
ify the SystemReportManager EJB followed by an <around-timeout> element.
Within the <around-timeout> element, add a <method-name> element using
interceptorTimeout as its value. These elements are listed here:

<?xml version="1.0" encoding="UTF-8"?>

<ejb-jar xmlns = "http://java.sun.com/xml/ns/javaee" 
version = "3.1"
xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation = "http://java.sun.com/xml/ns/javaee 
http://java.sun.com/xml/ns/javaee/ejb-jar_3_1.xsd">
<enterprise-beans>
<session>
<ejb-name>SystemReportManager</ejb-name>
<around-timeout>
<method-name>interceptorTimeout</method-name>
</around-timeout>
</session>
</enterprise-beans>
</ejb-jar>



Chapter 11

361

Redeploy the application.  When the deployment is complete, the timer along with its
interceptor should execute every 10 seconds.

How it works...
The ejb-jar.xml file was used for associating the interceptorTimeout method with the
SystemReportManager's displayMemoryReport method. In the <session> element,
the SystemReportManager was declared using the <ejb-name> element. Following this
was the <around-timeout> element where the interceptor was named. At deployment, the
server will associate this interceptor with the SystemReportManager methods.

See also
The Using deployment descriptors for interceptor recipe covers the general aspects of
using interceptors.

Using deployment descriptor for default
interceptors

Default interceptors are intended to be executed for every session and message-driven EJB in
the EJB module. However, default interceptors can only be declared within the ejb-jar.xml
deployment descriptor. This recipe will illustrate this technique.

Getting ready
The process for creating a deployment descriptor for default interceptors includes:

1. Creating an ejb-jar.xml file for the EJB module

2. Using the <interceptors> element to define your interceptors

3. Adding an <interceptor-binding> element to bind the interceptor to an EJB

4. Deploying the application

The basic structure of the XML elements is as follows:

<interceptors>
<interceptor>
<interceptor-class>interceptorClass</interceptor-class>
</interceptor>
</interceptors>
<assembly-descriptor>
<interceptor-binding>
<ejb-name>*</ejb-name>



Packaging the EJB

362

<interceptor-class>interceptorClass</interceptor-class>
</interceptor-binding>

</assembly-descriptor>

The use of the asterisk in this position means the interceptor is to be used with all of the EJBs
in the EJB module.

How to do it...
We will use the Chapter 8, Defining and using interceptors recipe, to illustrate deployment
descriptors. In the ejb-jar.xml file, add an <interceptors> element to declare 
your default interceptor. Within the element add one <interceptor> element for each
interceptor. In this case there is only one. The <interceptor-class> element is needed
to specify the name of the interceptor class.

<interceptors>
<interceptor>
<interceptor-class>packt.DefaultInterceptor</interceptor-class>

</interceptor>
</interceptors>

Next, add an <interceptor-binding> element inside of an <assembly-descriptor>
element to bind the interceptor to all of the EJBs in the module. Next, add an <ejb-name>
element within the <interceptor-binding> element and use an asterisk for its value to
specify all EJBs in the module. Add the <interceptor-class> element next to specify the
name of the interceptor.

<assembly-descriptor>
<interceptor-binding>

<ejb-name>*</ejb-name>
<interceptor-class>packt.DefaultInterceptor</interceptor-class>

</interceptor-binding>
</assembly-descriptor>

We need to create the default interceptor before we can run our application. Add a new
class to the packt package called DefaultInterceptor. It should be very similar to the
SimpleInterceptor except for the use of the method name defaultMethod. Modify the
println methods to indicate we are executing from the default interceptor.

public class DefaultInterceptor {
@AroundInvoke
public Object defaultMethod(InvocationContext context) throws  

Exception{
System.out.println("Default Interceptor: Invoking method: " +  
context.getMethod().getName());

Object result =  context.proceed();



Chapter 11

363

System.out.println("Default Interceptor: Returned from method: "  
+ context.getMethod().getName());

return result;
}

Execute the application. The output should be similar to the following:

INFO: Default Interceptor: Invoking method: register

INFO SimpleInterceptor entered: register

INFO: register

INFO: Default Interceptor: Invoking method: create

INFO: Default Interceptor: Returned from method: create

INFO: SimpleInterceptor exited: register

INFO: Default Interceptor: Returned from method: register

How it works...
The ejb-jar.xml file contained the XML elements used to associate the 
DefaultInterceptor with all of the EJBs of an application. The DefaultInterceptor
was added to the packt package and declared with the <interceptors> element. Within
the <assembly-descriptor> element it was bound to the application's EJBs. Upon
execution of the application, the interceptors were invoked as expected.

See also
The Using deployment descriptors for interceptors recipe covers the general aspects of
using interceptors.

Using deployment descriptors for callback
interceptors

Lifecycle callback methods are used to perform special processing during the creation,
destruction and other events of an EJB. The callback events available are EJB-specific.  
In this recipe we will examine the use of deployment descriptors to specify a callback event.



Packaging the EJB

364

Getting ready
The process for creating a deployment descriptor for interceptors includes:

Creating an ejb-jar.xml file for the EJB module

Using the <interceptors> element to define interceptors

Adding a lifecycle element to bind the interceptor to an EJB

Deploying the application

To illustrate the use of a deployment descriptor for a lifecycle method, we will modify the
RegistrationApplication along with the SimpleInterceptor class developed in the
first two recipes of Chapter 8, Interceptors. The SimpleInterceptor class has a method
called constructed, as shown below, which we want to be a post construct method. Post
construct methods will be executed after its class has been created and after any dependency
injection has been performed. We could use the @PostConstruct annotation to mark the
method as a post construct method. Instead we will use a deployment descriptor.

public class SimpleInterceptor {

private void constructed(InvocationContext invocationContext) {
System.out.println("SimpleInterceptor constructed: ");

}
...

}

How to do it...
Create an ejb-jar.xml file. The root element is <ejb-jar> as shown here:

<?xml version="1.0" encoding="UTF-8"?> 
<ejb-jar xmlns = "http://java.sun.com/xml/ns/javaee" 

version = "3.1"
xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation = "http://java.sun.com/xml/ns/javaee 
http://java.sun.com/xml/ns/javaee/ejb-jar_3_1.xsd">
...

</ejb-jar>

For a post construction life cycle callback, the <post-construct> element is used. Add an
<interceptors> element within the <ejb-jar> element. Within this element you can add
one or more <interceptor> elements to declare interceptors and their callback methods.











Chapter 11

365

Add an <interceptor> element and within this element add the following two elements:

<lifecycle-callback-class> – Used to specify the class

<lifecycle-callback-method> – Used to specify the method

The following code illustrates the deployment code to affect the use of this lifecycle method.

<interceptors>
<interceptor>
<interceptor-class>packt.DefaultInterceptor</interceptor-class>

</interceptor>
<interceptor>
<interceptor-class>packt.SimpleInterceptor</interceptor-class>
<post-construct>

<lifecycle-callback-class>packt.SimpleInterceptor 
</lifecycle-callback-class>

<lifecycle-callback-method>constructed 
</lifecycle-callback-method>

</post-construct>
</interceptor>

</interceptors>

How it works...
In the ejb-jar.xml file, the SimpleInterceptor was declared using the
<interceptor> element. As part of this element, the <post-construct> element was
used to associate the SimpleInterceptor with the constructed method. At deployment
the server will effect these specifications.

There's more...
There are other lifecycle methods which can be configured using a deployment descriptor. A 
list of common events is found in the following table:

Annotation Element

@AroundInvoke <around-invoke>
@PostActivate <post-activate>
@PostConstruct <post-construct>
@PreDestroy <pre-destroy>
@PrePassivate <pre-passivate>







Packaging the EJB

366

When multiple lifecycle events are handled by the same class, the lifecycle elements follow
each other within the same <interceptor> element for the same class. Here post-construct
and pre-destroy methods are declared.

<interceptors>
<interceptor>
<interceptor-class>interceptorClass</interceptor-class>

<post-construct>
<lifecycle-callback-class>package.interceptorClassName 

</lifecycle-callback-class>
<lifecycle-callback-method>someMethodName 

</lifecycle-callback-method>
</post-construct>
<pre-destroy>

<lifecycle-callback-class>package.interceptorClassName 
</lifecycle-callback-class>

<lifecycle-callback-method>someMethodName 
</lifecycle-callback-method>

</pre-destroy>
</interceptor>

</interceptors>

See also
The Using deployment descriptors for interceptors recipe covers the general aspects of using
interceptors with business methods.

Using a deployment descriptors for
transactions

Transaction types can be specified using annotations or deployment descriptors. In this 
recipe, we illustrate how to use a deployment descriptor to specify the transaction type
for an EJB and its methods.

Getting ready
The process for creating a deployment descriptor for transactions includes:

Creating an ejb-jar.xml file for the EJB module

Using the <container-transaction> element to define interceptors

Deploying the application









Chapter 11

367

We will base this example on the PopulationManager class from the Chapter 6,
Understanding how the TransactionAttributeType affects transactions recipe. The
PopulationManager class as shown below, uses container-managed transactions and
annotates the updateCityPopulation method with RequiresNew. The other methods 
of the class default to Required.

@Stateful
@TransactionManagement(TransactionManagementType.CONTAINER) public
class PopulationManager implements SessionSynchronization {
@EJB
CityFacade cityFacade;
...

@TransactionAttribute(TransactionAttributeType.REQUIRES_NEW)
public void updateCityPopulation(String cityName, long count) {
// Update city's population
try {
cityFacade.changePopulation(cityName, count);
} catch(IllegalPopulationException e) {
System.out.println("IllegalPopulationException caught");
}
} }

How to do it...
Transaction attributes are specified in the ejb-jar.xml file.   Create an ejb-jar.xml file.  
The root element is <ejb-jar> as shown here:

<?xml version="1.0" encoding="UTF-8"?> 
<ejb-jar xmlns = "http://java.sun.com/xml/ns/javaee" 

version = "3.1"
xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation = "http://java.sun.com/xml/ns/javaee 
http://java.sun.com/xml/ns/javaee/ejb-jar_3_1.xsd">
...

</ejb-jar>



Packaging the EJB

8

Within the <ejb-jar> element add an <assembly-descriptor> element. Within this
element add two <container-transaction> elements which will be used to define 
the transactions.

<?xml version="1.0" encoding="UTF-8"?>
<ejb-jar>

<assembly-descriptor>
<container-transaction>
...

</container-transaction>
<container-transaction>
...

</container-transaction>
</assembly-descriptor>

</ejb-jar>

Within the <container-transaction> element the <method> element is used
to specify those methods that transactions will be applied to. This is followed by a 
<trans-attribute> element which contains the transactions type.

The <method> element contains an <ejb-name> element to specify the name of the EJB
and a <method-name> element to specify the method. The following example shows the
complete ejb-jar.xml file which declares the same configuration as obtained from the 
annotations used earlier.

<?xml version="1.0" encoding="UTF-8"?>
<ejb-jar>

<assembly-descriptor>
<container-transaction>
<method>

<ejb-name>PopulationManager</ejb-name>
<method-name>*</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
<container-transaction>
<method>

<ejb-name>PopulationManager</ejb-name>
<method-name>updateCityPopulation</method-name>

</method>
<trans-attribute>RequiresNew</trans-attribute>
</container-transaction>

</assembly-descriptor>
</ejb-jar>

When the PopulationServlet is executed, the application should execute successfully.



Chapter 11

9

To verify that the ejb-jar.xml is controlling the transaction type, change the 
<trans-attribute> for the updateCityPopulation method to Mandatory. 
Re-executing the application results in an exception being thrown since the method
requires a transaction to be present but there is none at this point.

How it works...
In the ejb-jar.xml file <container-transaction> elements were used to  
specify the transaction attribute to be used for methods of the application. The default
transaction attribute for the PopulationManager was declared as Required except for the
updateCityPopulation method which was specified as RequiresNew. These associations
are applied by the server upon deployment of the application. This permits associations to
differ by server.

Using deployment descriptors for security
Several of the security-related annotations can be overridden in a deployment descriptor. This
recipe examines how this is done. This can be useful when access to a method may differ
depending on the server it is deployed to. Configuring access in a deployment descriptor will 
provide this type of flexibility. 

Getting ready
The process for creating a deployment descriptor for security configuration includes:

Creating an ejb-jar.xml file for the EJB module

Using the <enterprise-beans> element to define the EJB

Using the <assembly-descriptor> to declare security roles and the 
method permissions

Deploying the application

Each security role is granted access to a set of classes and methods. This can be achieved
through descriptors using the <method-permission> element. Roles can be assigned to all
of the methods of an EJB or specific methods of an EJB. In this example, all methods of the 
VoucherManager EJB found in the Chapter 7, Creating the SecurityApplication recipe, will
be accessible by users possessing the manager role.











Packaging the EJB

370

How to do it...
Create an ejb-jar.xml file if it does not already exist. Add an <enterprise-beans>
element to define the VoucherManager EJB. The <session> element identifies the class 
as a session EJB and the <ejb-name> element holds the name of the EJB.

<?xml version="1.0" encoding="UTF-8"?> 
<ejb-jar xmlns = "http://java.sun.com/xml/ns/javaee" 

version = "3.1"
xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation = "http://java.sun.com/xml/ns/javaee 
http://java.sun.com/xml/ns/javaee/ejb-jar_3_1.xsd">

<enterprise-beans>
<session>

<ejb-name>VoucherManager</ejb-name>
</session>

</enterprise-beans>
...

</ejb-jar>

Next, add an <assembly-descriptor> element to the file. Within this element we 
will declare security roles and the methods granted access by these roles. First, add 
the <security-role> element which contains a <role-name> element and the 
name manager.

<?xml version="1.0" encoding="UTF-8"?>
...

<assembly-descriptor>
<security-role>

<role-name>manager</role-name>
</security-role>

...
</assembly-descriptor>

</ejb-jar>

Next, add a <method-permission> element which we will use to define the method  
the role can access. Within the element, add a <role-name> element with the name
manager. Follow this with a <method> element. This element contains two sub-elements:
<ejb-name> which should match an EJB defined earlier in the file and a <method-name>
element containing the name of the method.

<?xml version="1.0" encoding="UTF-8"?>
...

<assembly-descriptor>
<security-role>

<role-name>manager</role-name>



Chapter 11

371

</security-role>
<method-permission>

<role-name>manager</role-name>
<method>

<ejb-name>VoucherManager</ejb-name>
<method-name>approve</method-name>

</method>
</method-permission>

</assembly-descriptor>
</ejb-jar>

If the <method-name> element contains an asterisk, then all methods of the EJB are
accessible by the role.

If the method is overloaded, then the <method-params> needs to be used in conjunction
with the <method-param> element to identify the method. While the approve method is
not overloaded, these elements have been specified to illustrate the use of these elements. 

<method-permission>
<role-name>manager</role-name>
<method>
<ejb-name>VoucherManager</ejb-name>
<method-name>approve</method-name>
<method-params>

<method-param></method-param>
</method-params>

</method>
</method-permission>

Notice the <method-param> element is left empty in the example. This signifies a void 
argument. If the argument had not been void, then the data type for the parameter would
be used such as java.lang.String or long. Each parameter of a method should have a
corresponding <method-param> element.

How it works...
The ejb-jar.xml file was used to configure the security roles for the VoucherManager
class. Within the <assembly-descriptor> element, the manager security role was
declared. The <method-permission> element was then used to associate this role with the
VoucherManager's approve method. This configuration was performed by the server upon 
deployment of the application.





12
EJB Techniques

In this chapter, we will cover:

Exception handling and EJBs

Using logging within an EJB

Using an interceptor for logging and exception handling

Creating your own interceptor

Using time within an EJB

How to support currency

Efficient manipulation of strings

Introduction
Java EE applications address a wide range of application types. The use of specific EJB 
technologies as addressed in earlier chapters is application-specific. There are techniques, 
while not necessarily EJB-specific, are useful in many EJB applications. This chapter examines 
a few of these techniques.

We start with exception handling which is an important aspect of any production application.
The failure to handle exceptions cleanly can result in an unreliable application. A common
technique to assist in dealing with exceptions for simpler applications is to use the println
method within a catch block to display exception-related information. Frequently, stack
traces are also displayed to the console. This technique is not advisable in a production
application for a number of reasons including:

It is not a very elegant approach

The console may not be available on a production system





















EJB Techniques

374

System managers may redirect System.out and System.err streams to a 
null device

If the system crashes, the console will not be available

Redirecting the console output to a file may not work because these files are frequently 
overridden by the server. Logging is the preferred technique and is the process of recording
events and information about events to provide an audit trail for the execution of the
application. This can be useful for determining the root causes of application failures and
to provide feedback on how the application is used. While most servers provide a degree 
of automatic logging, customized logging is often needed to provide sufficient detail to 
troubleshoot a problem. The essence of this approach is discussed in the Using logging 
within an EJB recipe.

Exceptions can be grouped into three categories:

JVM exceptions

Application exceptions

System exceptions

JVM exceptions are thrown by the JVM and there is little the developer can do to handle them.
For example, if the JVM runs out of memory then an exception is thrown. The only reasonable
thing to do is to restart the server with potentially additional resources.

Application exceptions generally reflect business logic errors that we can usually handle. If 
an exception is thrown because the account is low on funds, then we can usually remedy the
situation in a controlled and predictable manner. Exceptions of this type are derived from the
java.lang.Exception class and are called checked exceptions. Checked exceptions must
be handled in code otherwise a compile-time error is generated.

System exceptions that derive from the java.lang.RuntimeException class are called
unchecked exceptions and are not required to be handled in application code. If they are not
handled, then the application will terminate.

The EJB container intercepts EJB method invocations and deals with application and system
exceptions. When an application exception occurs, the EJB container will not automatically
rollback transactions, which might be present, but allows the application to deal with them.

With system exceptions, the EJB container will automatically rollback any transactions and
returns an EJBException to the client. Servers will automatically log system exceptions,
though the format of the logs will differ by vendor.

We have seen interceptors used for a variety of purposes in earlier chapters. Their use for
logging and exception handling is illustrated in the Using an interceptor for logging and
exception handling recipe. While there are many predefined interceptors available, it may 
be advantageous to create our own. An introduction to creating interceptors is found in the
Creating your own interceptor recipe.













Chapter 12

375

Dates and times are frequent components of applications. However, the use of time as
supported by Java can be confusing. The Using time within an EJB recipe examines 
several of the more common uses of time and the mistakes made using time.

Likewise, the use of currency and its localization is important. The How to support currency
recipe looks at the techniques used to represent currency and provides an introduction to the
use of the BigDecimal class in support of currency. 

Lastly, strings are found in most applications. There are efficient and inefficient ways of 
representing and manipulating strings. The Efficient manipulation of strings recipe examines
these issues.

Exception handling and EJBs
Exception handling is essential to any robust application. Understanding what constitutes
a good exception handling technique is important in creating robust applications. In this
recipe, we will examine several of these techniques, and see how we can apply them to 
Java EE applications.

Knowing where to handle exceptions is the key to the proper use of exception handling.
The organization of the exception handling code is dependent upon the structure of the
application. Exception handling can be viewed from a development and a production
standpoint, both of which are important.

When an exception occurs in an EJB that it cannot recover from, it is typically wrapped in an
EJBException and then thrown to the caller.

Getting ready
Exceptions are not something we want to avoid, but rather we should embrace them as
another tool in our arsenal to create good applications. Exceptions will occur. They may be the
result of user input, system problems such as a network being down, or a server crashing, or
simply events that were not anticipated during the development of the application.

When an exception occurs, the developer can either have the containing method throw the
exception to the caller or handle the exception using try-catch blocks. Throwing the exception
back to the caller is appropriate when the caller is in a better position to handle the exception.
If the exception can be handled within the method, then try-catch blocks should be used.



EJB Techniques

376

In this recipe, we are concerned with how to structure and handle exceptions we catch.
However, we may still return the exception to the caller. The basic approach is to use a 
try block followed by one or more catch blocks, and optionally, a finally block.

...
try {

// Attempt to execute code which might throw an exception
}
catch(Exception1 e) {

//Handle execption1
}
catch(Exception2 e) {

//Handle execption2
}

...
finally {

// Clean up actions
}
...

The order of the catch blocks is important. The base-most exception should be listed last
since the first catch clause that matches the exception will handle the exception thrown. If 
the base-most exception is listed first, the other derived exceptions will never be executed. 
A compile-time error may be generated in some situations depending on the inheritance
relationship between the exceptions.

How to do it...
Let's examine a situation where we inadvertently lose information about an exception.
Consider the following catch block which recasts the exception as an EJBException. 
The EJBException single string argument is used to pass an error message describing
the exception.

catch(Exception e) {
throw new EJBException("Some Exception");

}

The problem here is the name of the original exception and where in our code the exception
occurred is unknown. It is possible the exception could have been generated at more than one
point, and understanding where the exception occurred can be important in recovering from
the exception.

A better technique is to wrap the exception context information inside the new exception.

catch(exception e) {
throw new EJBException(e);

}



Chapter 12

377

A variation of this is to use the toString method when recasting the exception.

catch(exception e) {
throw new EJBException(e.toString());

}

The usefulness of this technique depends on what is returned by the toString method. The
getMessage method could have been used but it may not provide much more information
than the toString version.

catch(exception e) {
throw new EJBException(e.getMessage());

}

Frequently, the best approach is to propagate the message and the exception as follows:

catch(exception e) {
throw new EJBException(e.getMessage(),e);

}

How it works...
We saw that it is important to avoid losing information about an exception. The first example 
illustrated how the name of the exception can be lost along with its location. Using the
toString method to retrieve exception information was shown not to be a reliable technique.
The last example illustrates a better technique where the getMessage method was used  
to convey the essence of the problem and the exception itself was propagated to the  
calling method.

There's more...
There are other aspects to exception handling including:

Logging exceptions to the console

Incomplete exception handling

Exceptions that are ignored

Logging exceptions to the console
Problems can occur when exception information is written to the console.  

catch(exception e) {
e.printStackTrace();
throw new EJBException(e.getMessage(),e); }









EJB Techniques

8

The problem here is that the console may not always be available. During the development
process, it may work fine. The development server and the application may actually reside on 
the same machine or the server is easily accessible. In a production environment we may not
have access to the server. In addition, the administrators of the server may have redirected
System.out and System.err output to a null file. Worst yet, we may not even know where 
the server resides.

Logging is a better technique for reporting exceptions as illustrated here:

catch(exception e) {
log.error(e.getMessage), e);
throw new EJBException(e.getMessage(),e); }

Even better, let the caller decide whether or not to log the exception. This can avoid situations
where the same exception is logged twice, once in the current method and again by the caller.
In this situation, we may want to get rid of the whole try-catch block and have the current
method throw the exception.

Incomplete exception handling
Exception handling can be complicated at times. Consider the following sequence where two
files are used:

try {
inputFile = new FileInputStream(someFile);
outputFile = new OutputFileStream(someOtherFile);
...
}
catch(exception e) {
...
}
finally {
try {
inputFile.close();
outputFile.close();
}
catch(IOException e) {
// Handle exception
}
}

When using system resources such as files, it is important to release them. In the case of 
files, they should be closed when the application no longer needs them. The above sequence 
attempts to close the files whether an exception has occurred or not.



Chapter 12

9

There are a couple of problems with this approach. First, it is possible that the 
attempt to create the input file will throw an exception. When this occurs, executing 
the outFile.close() statement will throw a NullPointerException. Second, 
if the inputFile.close() statement throws an exception, it will skip the 
outputFile.close() statement.

A better way of handling this situation is shown here:

try {
inputFile = new FileInputStream(someFile);
outputFile = new OutputFileStream(someOtherFile);
...

}
catch(exception e) {
...
}
finally {
try {

if(inputFile != null) {
inputFile.close();

} catch(IOException e) { 
// Nothing to do

}
}
try {

if(outputFile != null) {
outputFile.close();

} catch(IOException e) { 
// Nothing to do

}
}

}

Both file reference variables are checked separately to determine if they are null. If they are
not, then the file is closed. If an exception occurs trying to close the file, then there is little we 
can do. Even with this example, depending on how the first catch block is written, we may not 
be able to determine which line caused the exception.

While we have focused on an IO sequence, any set of operations which require cleanup
performed in a finally block, should be examined carefully to determine if the exception 
handling approach used is complete.



EJB Techniques

3�0

Exceptions that are ignored
Sometimes we may be tempted not to handle or propagate exceptions we know will never
be thrown. We may consider the likelihood of the exception occurring so unlikely that if it did
happen, we wouldn't know what to do anyway.

try {
...

}
catch(SomeException e) {
// Do nothing
// This should never happen

}

While the current environment may never generate the exception, who knows what may
happen in the future when things change. The implementation of the code throwing the
exception may change resulting in the exception being thrown. In addition, we may be
wrong and in a very rare set of circumstances the exception may actually be thrown.

If we ignore the exception, then the exception is lost, potentially making it much more difficult 
to find the error in our application. A better approach is to catch the exception and then throw 
a runtime exception.

try {
...

}
catch(SomeException e) {
// Should never happen
throw new RuntimeException(e.getMessage(),e);

}

In addition, it may be desirable to log the exception. This will provide yet another avenue to
help us determine the nature of the problem.

See also
The Using an interceptor for logging and exception handling recipe uses interceptors to
handle exceptions.

Using logging within an EJB
Logging is a useful technique for recording exceptions and significant events which 
occur during the execution of an application. While there are many different logging APIs
available, we will focus on those classes found in the java.util.logging package.
If you are interested you may find alternate logging technologies such as log4j 
(http://logging.apache.org/log4j/1.2/) or the Simple Logging Facade  
for Java (SLF4J) (http://www.slf4j.org/) to be useful.



Chapter 12

3�1

Getting ready
The process of creating using a logger involves:

1. Importing the java.util.logging package

2. Using the Logger class' static method getLogger to obtain an instance of a logger

3. Using methods of the Logger to record application data

4. Optionally, various filters, handlers, and formatter can be added to control the 
logging process

Logging involves writing messages to a data store. The logged messages can be controlled
using levels and filters. The Logging API has seven predefined logging levels:

Level Meaning
SEVERE The highest level normally reserved for critical errors
WARNING Used for warning type messages
INFO This message does not necessarily indicate an error but

rather conveys general information
CONFIG Used for configuration-type information
FINE First of three levels of detail
FINER Intermediate level of detail
FINEST Indicates the greatest level of detail

The Logger's overloaded log method's first argument is a Level value. The value assigned
to this argument denotes the level of the log. However, this does not mean the message will
be logged. A logger will have a level specified for it and will log all messages at this or a higher 
level. The setLevel method determines the level of logging. Any request using levels below
that value will be ignored. In addition, even if the message is accepted for logging, a filter may 
restrict those messages from being logged.

When the message is logged, it can be processed and formatted to add additional content to
the message. For example, a time stamp can be added to the message eliminating the need
to include this information in each log method call.

A java.util.logging.Handler derived class actually writes the message to a data
store. A data store can be one of several different types of stores, though files are the most 
common type. There are two standard Handler classes available: MemoryHandler and
StreamHandler. It is possible to create your own handler if needed.



EJB Techniques

3�2

The following figure depicts the structure of the Java Logging API.

How to do it...
Create a Java EE application called LoggingApplication. We will use this application to
demonstrate various logging techniques. In the EJB module create a package called packt
and a stateless session bean called PhoneNumber. This EJB consists of a default constructor
and four methods. The purpose of the EJB is to validate and format a phone number. Using
these elements of the EJB, we will demonstrate logging.

First add a private logger variable and a default constructor. Within the constructor, create
an instance of a Logger using the getLogger method and use the instance to log the
creation of the Logger.

@Stateless 
public class PhoneNumber {

private Logger logger;

public PhoneNumber() {
logger = Logger.getLogger("phonenumber");
logger.log(Level.INFO, "Phone number logger created");

}
...
}

Next, add a format method which accepts three integers representing the three parts 
of a standard telephone number. Within this method we will call three different validation
methods, each of which may throw an exception. If there are no errors, then a simple
formatted string is returned and this event is logged at the level FINEST. If there are errors,
then the exception is logged as a simple message at the level FINE. Using different levels
allows us to record events in the application based on our interest.

public String format(int areaCode, int prefix, int lineNumber) {
try {
validateAreaCode(areaCode);
validatePrefix(prefix);
validateLineNumber(lineNumber);



Chapter 12

3�3

logger.log(Level.FINEST, "Formatted phone number returned");
return "(" + areaCode + ")" + prefix + "-" + lineNumber;
}
catch(InvalidAreaCodeException e) {
logger.log(Level.FINE, "InvalidAreaCodeException");
}
catch(InvalidPrefixException e) {
logger.log(Level.FINE, "InvalidPrefixException");
}
catch(InvalidLineNumberException e) {
logger.log(Level.FINE, "InvalidLineNumberException");
}
return "";
}

Next, add the three methods used for validation. These methods perform a simple test on
their arguments. A more sophisticated test would be needed in a production application.

private boolean validateAreaCode(int areaCode) throws  
InvalidAreaCodeException {
if (areaCode < 0 || areaCode > 999) {
throw new InvalidAreaCodeException();
}
return true;
}
private boolean validatePrefix(int prefix) throws  
InvalidPrefixException {
if (prefix < 0 || prefix > 999) {
throw new InvalidPrefixException();
}
return true;
}
private boolean validateLineNumber(int lineNumber) throws  
InvalidLineNumberException {
if (lineNumber < 0 || lineNumber > 9999) {
throw new InvalidLineNumberException();
}
return true;
}

}



EJB Techniques

3�4

Add three classes for the three different exceptions.

public class InvalidAreaCodeException extends java.lang.Exception {
public InvalidAreaCodeException() {}
public InvalidAreaCodeException(String message) {super(message);} }

public class InvalidLineNumberException extends Exception {
public InvalidLineNumberException() {}
public InvalidLineNumberException(String message) {super(message);} }

public class InvalidPrefixException extends Exception{
public InvalidPrefixException() {}
public InvalidPrefixException(String message) {super(message);} }

Create a servlet called LoggingServlet in the servlet package of the Web module. 
Inject the PhoneNumber EJB and invoke its format method as shown below. Notice the 
line number is too large.

public class LoggingServlet extends HttpServlet {
@EJB
PhoneNumber phoneNumber;
protected void processRequest(HttpServletRequest request,  
HttpServletResponse response)
throws ServletException, IOException {
response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();
try {
out.println("<html>");
out.println("<head>");
out.println("<title>Servlet LoggingServlet</title>");  
out.println("</head>");
out.println("<body>");
out.println("<h1>Phone Number: " + phoneNumber.format(202,  
555, 10003) + "</h1>");
out.println("</body>");
out.println("</html>");
} finally { 
out.close();
}
}



Chapter 12

3�5

Execute the servlet. The output in part shows the creation of the logger. The INFO: prefix is 
added automatically reflecting the level of the message.

...

INFO: Phone number logger created

The reason the InvalidLineNumberException is not displayed is because, by default, the
Logger is set to the level INFO. It will only log those messages at that level or above. Since
the exception is logged at the level FINE, it does not show up.

To rectify this situation, use the Logger's setLevel command after the creation of logger
with an argument of Level.ALL.

logger.setLevel(Level.ALL);

Re-executing the servlet will produce the expected results.

...

INFO: Phone number logger created

FINE: InvalidLineNumberException

How it works...
The PhoneNumber EJB was created to illustrate the logging approach. In its constructor an
instance of a Logger class was created. The string argument of the getLogger method
was used to name the Logger instance. While it is not discussed here, the Java Logger
API provides a sophisticated hierarchy of Loggers that can provide a richer set of logging
capabilities than presented here. 

The log method is overloaded. In this example, we used a simple variation of the method.
The first argument specified the logging level and the second argument was the message we 
wanted to log. In the format method, exceptions that were caught were logged. The servlet
used an invalid line number which resulted in the exception being logged once the appropriate
logging level was set using the setLevel method.

There's more...
At the beginning of this recipe the creation of a Logger was accomplished as follows:

@Stateless 
public class PhoneNumber {

private Logger logger;

public PhoneNumber() {



EJB Techniques

3�6

logger = Logger.getLogger("phonenumber");
logger.log(Level.INFO, "Phone number logger created");

}
...
}

However, this approach may not be suitable in all environments. The technique is not 
thread-safe and we cannot use the logger from a static method. An alternative approach
declares the logger as follows:

@Stateless 
public class PhoneNumber {

private static final Logger logger =  
Logger.getLogger("phonenumber");

public PhoneNumber() {
logger.log(Level.INFO, "Phone number logger created");

}
...
}

The static keyword means the logger can be used by static and instance methods. Making
it final results in a single instance of the object and avoids many thread issues as the
methods of the Logger class are thread-safe.

See also
The Using an interceptor for logging and exception handling recipe that follows incorporates
logging in an interceptor.

Using an interceptor for logging and 
exception handling

Interceptors are good for removing extraneous code from a method. In the format method
developed in the Using logging within an EJB recipe, most of the code was concerned with
handling exceptions. This recipe shows how an interceptor can be used to greatly simplify the
format method.



Chapter 12

3�7

Getting ready
The general process of using an interceptor for logging includes:

1. Accessing the parameters of the target method

2. Using the validation methods to validate the parameters

3. Catching and logging any thrown exceptions

We will also need to modify the target class to accommodate the use of an interceptor.

The process of creating and using an interceptor class is detailed in Chapter 8, Interceptors.
Here, we will create an interceptor class called PhoneNumberInterceptor in the packt
package. We will also access the target method's parameters using the getParameters
method as discussed in Chapter 8, Using the InvocationContext to verify parameters recipe.

How to do it...
Create the PhoneNumberInterceptor class and add a validatePhoneNumber method
annotated with @AroundInvoke.

public class PhoneNumberInterceptor {

@AroundInvoke
public Object validatePhoneNumber(InvocationContext context) throws  

Exception {
...
}
...

}

Next, copy the current body of the PhoneNumber's format method and paste it into the
validatePhoneNumber method. You will need to make a few tweaks to the code including:

Moving the declaration of the result variable to the top of the method and
initializing it to an empty string

Adding code to get and convert the target method's parameters to integers

Obtain a reference to the Logger

Replacing the first return statement with a call to the proceed method

Replacing the last return statement so it returns result

Use the following declaration for the result variable:

Object result="";













EJB Techniques

88

The parameters of the target method are obtained using the getParameters method. They
are then converted to integers using the Integer class's intValue method.

Object parameters[] = context.getParameters();
int areaCode = new Integer(parameters[0].toString()).intValue();
int prefix = new Integer(parameters[1].toString()).intValue();
int lineNumber = new Integer(parameters[2].toString()).intValue();

To use the logger variable we use the InvocationContext's getTarget method to
obtain a reference to the target. This gives us access to logger. Notice, that we will get an
error until we modify the PhoneNumber's logger variable which we will do shortly.

Logger logger = ((PhoneNumber) context.getTarget()).logger;

The proceed method returns control to the target method as explained in
Chapter 8, Interceptors.

result = context.proceed();

Notice the interceptor uses the validation methods used in the PhoneNumber EJB. Move
these to the PhoneNumberInterceptor.

Next, we need to rework the PhoneNumber's format method developed in the Using logging
within an EJB recipe. This will involve:

Changing the protection level of the logger variable

Adding @Interceptor annotation to the format method

Returning the formatted string

We need to change the declaration of the logger variable so we can access the variable in
the interceptor. This default access declaration gives access to the variable to all classes of
the package.

Logger logger;

Add the @Interceptor annotation using the PhoneNumberInterceptor.class as its value. 

  @Interceptors(PhoneNumberInterceptor.class)
public String format(int areaCode, int prefix, int lineNumber) {
...
}

Use the following statement as the body of the method:

return "(" + areaCode + ")" + prefix + "-" + lineNumber;









Chapter 12

89

Execute the application. It should behave the same way as before but with a simpler format
method. While this technique uses essentially the same code as the original technique, it
removes the complexity from the business method. In addition, if the application is structured
correctly, other parts of the application may be able to benefit from and reuse the interceptor.

How it works...
We created the PhoneNumberInterceptor class to move the validation code out of the
format method. Adding the @AroundInvoke annotation to the validatePhoneNumber
method resulted in the method being invoked before the format method is executed. We
used the getParameters method to retrieve the phone number and then validated the
phone number using the validation methods developed earlier. When an exception was
thrown, it was caught and logged. We added the @Interceptors annotation to the format
method so that when executed, the validatePhoneNumber interceptor would execute.

See also
The Exception handling and EJBs and Using logging within an EJB recipes discuss exception
handling and logging, respectively.

Creating your own interceptor
Interceptors can be configured to execute before and after a method is executed. This 
permits moving orthogonal functionality out of the method thus reducing the complexity 
and clutter of the method. As we have seen in previous chapters, interceptors have been
used for a variety of tasks such as handling transactions and security. In this recipe, we will
demonstrate the technique for creating our own interceptors to meet any unique requirements
of our application.

Getting ready
The process to create and use an interceptor involves:

1. Creating an interceptor binding to define the characteristics of the interceptor

2. Implementing the interceptor class

3. Adding the interceptor to the application

An interceptor binding is used to define the type of interceptor we want to create. The 
@InterceptorBinding annotation precedes a series of annotations used to define the 
interceptor's characteristics. These can include:

@Target – Used to specify the type of element the interceptor can be applied to

@Retention – Identifies when the interceptor is used







EJB Techniques

3�0

The @Target annotation can use the attributes: CONSTRUCTOR, METHOD, FIELD,
PARAMETER, LOCAL_VARIABLE, PACKAGE, and TYPE. TYPE refers to a class interface 
or enum.

An annotation is inserted into the source code of an application. It can be processed in one
or more of three places: source code, class file, runtime. The place is determined by the 
annotation's retention policy as specified using the @Retention annotation. This annotation
is assigned one of three values: SOURCE, CLASS, or RUNTIME.

We will create an interceptor, CountInterceptor, to keep count of the number of times
a method is invoked. This is a simple interceptor whose functionality could have been
implemented using other techniques. However, using this approach provides a simple
demonstration of the interceptor creation process, uncluttered by a more complex 
interceptor example.

The class that implements the interceptor is annotated with the @Interceptor annotation. This
is followed by the name of the binding annotation. Within the interceptor class, a method is
annotated with @AroundInvoke. This method will be executed as appropriate and must return
an Object. It is passed an InvocationContext object that contains information about the
target method.

Within the method annotated with @AroundInvoke, code can be executed before and after
the target method invocation. It is also possible to modify the parameters sent to the target
and to modify the target method's return value.

The general organization of the @AroundInvoke method is:

Execute code before the target method is invoked, possibly using and/or modifying
any target method parameters

Execute the target method using the InvocationContext's proceed method. The
proceed method returns the target method's return value.

Execute code possibly modifying the target return value

Return an object

How to do it...
Add the CountInteceptorBinding code declared below to the packt package. It defines 
the characteristics of the interceptor.

@InterceptorBinding
@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.METHOD, ElementType.TYPE})
public @interface CountInterceptorBinding { 
}











Chapter 12

3�1

Next, add the CountInterceptor class as shown below to the packt package. Declare a
static counter variable which is incremented and displayed from within the @AroundInvoke
method increment. The target method is then called. Upon return from the target, no other
processing occurs and the result from the target method is returned.

@Interceptor
@CountInterceptorBinding public
class CountInterceptor {
private static int counter;
@AroundInvoke
public Object increment(InvocationContext context) throws  
Exception {
counter++;
System.out.println("counter: " + counter);
Object result = context.proceed();
return result;
}

}

To test the interceptor, add the @Interceptors annotation in front of the
LoggingApplication's format method.

@Interceptors({PhoneNumberInterceptor.class,CountInterceptor.
class})
public String format(int areaCode, int prefix, int lineNumber) {
...
}

Modify the LoggingServlet to call the format method with a valid phone number and
then execute the servlet. The output as seen in the console window should reflect the use of 
the interceptor.

INFO: Phone number logger created

FINEST: 202 - Formatted phone number returned

INFO: counter: 1

How it works...
We created the CountInterceptorBinding annotation permitting the annotation to be
retained at runtime. The use of the @Rentention annotation value of RUNTIME means the
annotation will be used at runtime. It will be present in the application's byte codes. The 
@Target annotation means the interceptor can be applied to a TYPE (class, interface or
enum) and/or a method. The @interface annotation declared the name of the annotation.



EJB Techniques

3�2

The interceptor, CountInterceptor, was created next with the increment method. Since
the method was annotated with @AroundInvoke, it was executed before the target method
format was executed. Within the increment method a simple counter was incremented.

The format method was annotated with @Interceptors associating both the
PhoneNumberInterceptor and the CountInterceptor with the method. When the
format method was executed, PhoneNumberInterceptor was executed first followed 
by CountInterceptor.

See also
Chapter 8, Interceptors discusses the uses of interceptors in more depth.

Using time within an EJB
Time is a complex topic with many aspects of time being beyond the scope of this book.
Within this recipe, we will examine several common problems that can occur when working
with time in a Java EE application.

Getting ready
To use time in a Java application we normally use a Date instance in conjunction with a
Calendar instance. The Date object represents a time while the Calendar instance
maps it to a specific calendar system.

Normally we will use the DateFormat or a DateFormat derived class to convert a time into
a string for display purposes. While the use of these classes appears straightforward, there
are several areas where a developer can go astray.

Time is represented using an instance of the Date class. However, this class does not
represent a date in the sense of a calendar. It is the number of milliseconds which have
elapsed since the epoch, midnight January 1, 1970 GMT. The java.util.Date class
reflects this time using the coordinated universal time (UTC). This is the current time at the 
Greenwich Meridian Line at the Royal Observatory in Greenwich England. GMT (Greenwich
Mean Time) and UTC are essentially the same time zone. GMT is the time zone used by UTC.

The time represented by the Date class is not accurate enough for some scientific 
applications but is normally sufficient for business applications. Do not use the deprecated 
methods of the Date class. Most of these deprecated methods are concerned with getting
the current day, hour, or similar measure. Instead, use java.util.Calendar to convert
between dates and time fields.



Chapter 12

3�3

A Date reflects a time. A Calendar represents a mapping of a Date to a particular day,
month and year convention. For example, the java.util.GregorianCalendar represents
a calendar system used throughout the business world. While it is not the only calendar in
existence, it has found widespread usage.

How to do it...
Let's start by adding 24 hours to a Date object. Create a Date object and then, using its
getTime method, add the product of 24 hours times 3600 seconds in an hour times 1000
milliseconds. The getTime method returns the time in milliseconds since the epoch. 

Date today = new Date();
System.out.println(today);
Date tomorrow = new Date(today.getTime() + 24L * 3600L * 1000L);
System.out.println(tomorrow);

The results of this code sequence will be displayed similar to:

INFO: Thu Feb 03 16:28:59 CST 2011

INFO: Fri Feb 04 16:28:59 CST 2011

However, adding 24 hours is not the same as adding a calendar day. Not every day consists
of 24 hours. For example, many countries use daylight saving time which means the number
of hours in a day will vary depending on the time of the year. When we deal with days in this
sense, then we need to use the Calendar class or a class derived from Calendar.

When we talk about the current time and date, we are usually talking about the local time.
This time is dependent upon the time zone we are in, and whether daylight saving time is in
effect or not.

Here we will use the java.text.DateFormat class to format Date strings. There
are several ways to use this class; however the example below uses the static
getDateTimeInstance method with two DateFormat.MEDIUM arguments to 
specify the appearance of a formatted date.

Calendar day = ...
DateFormat dateFormat =  

DateFormat.getDateTimeInstance(DateFormat.MEDIUM,  
DateFormat.MEDIUM);

System.out.println(dateFormat.format(day.getTime()));

The output will appear formatted as shown here:

INFO: Feb 3, 2011 5:02:05 PM



EJB Techniques

3�4

How it works...
The examples demonstrated differences between the Date class and the Calendar class. 
In the first example, the addition of 24 hours to a date worked fine. However, for days that are 
not 24 hours long this approach will result in incorrect values. In the println method, the
tomorrow variable was displayed. Displaying a Date object will invoke its toString method
that returns a string representation based on the current time zone.

The use of the DateFormat's getDateInstance involved using two apparently very similar
arguments. However, the first argument governed the formatting of the date while the second 
controlled the time formatting. The DateFormat instance returned has a format method.
The argument of the format method is a Date object. This method formatted the time
represented by the object and returned a string.

There's more...
There are two other areas we need to address:

Inadvertent use of the default TimeZone

Thread issues with the DateFormat class

Inadvertent Use of the Default TimeZone
The Calendar.getInstance uses the default local calendar. This could conceivably be set
to a calendar other than GregorianCalendar. It also uses the local time zone. For a server-
based application, this may not always be appropriate. The time in Singapore is different from
the time in New York City. If we want a certain event to execute at 10:00 on every Monday for
a specific client, then it is imperative to know the client's time zone.

The TimeZone's getDefault method returns the default time zone. To get a TimeZone ob-
ject to represent a specific time zone, use its getTimeZone method with a string argument
representing the time zone needed. The following code sequence sets the time zone to Zurich
and the date to today. The date is then formatted and displayed.

Calendar day = Calendar.getInstance();
TimeZone timeZone = TimeZone.getTimeZone("Europe/Zurich");
day.setTimeZone(timeZone);
day.setTime(new Date());
DateFormat dateFormat =  
DateFormat.getDateTimeInstance(DateFormat.MEDIUM,  
DateFormat.MEDIUM);
dateFormat.setTimeZone(timeZone);
System.out.println(dateFormat.format(day.getTime()));







Chapter 12

3�5

The output will be similar to the following:

INFO: Feb 4, 2011 2:07:10 AM

The getTimeZone method accepts a string representing a time zone. Valid time zone strings
can and do change over time. If an invalid string is passed, then the GMT time zone is retuned
and no exceptions are thrown.

Thread issues with the DateFormat class
The methods of the DateFormat class are not synchronized and thus are not thread-safe.
It is a good practice to use a separate instance of a DateFormat class per thread. The
following code does not provide protection against potential synchronization problems:

public static final DateFormat dateFormat = new ...

While there is only one instance of the object, the final keyword means a new instance
of the DateFormat cannot be assigned to it. However, there is nothing in the statement
prohibiting the object from being modified since the DateFormat object is not immutable.
Wrapping such an object with synchronized get and set methods can provide additional
protection against unintentional modification.

How to support currency
Many applications deal with currency and it is frequently an integral component of business
applications. There are many issues that complicate the representation and use of currency
values such as precision and accuracy. In addition, there are differences between how
currency types such as rubles and the yen are displayed. In this recipe, we will examine the
data types we can use to represent currency and locale-specific issues regarding currency.

Getting ready
There are several potential data types that can be used for representing currency including:

Floating point numbers

Integer

BigDecimal 

To determine which is best we need to consider issues such as precision and accuracy. Ease
of use is another concern since we will need to be able to manipulate currency values. We
also need to consider the locale to insure the currency we are using is expressed in a 
locale-specific format.









EJB Techniques

3�6

Floating points are a poor choice for representing currency. Their major drawback is their
lack of precision. To understand this limitation, consider how we represent the fraction 1/3
as a decimal number: 0.33333. We cannot precisely represent this fraction as a decimal
number since it would take an infinite number of trailing 3s. The fraction 2/3 has a similar 
problem: 0.66666. Adding 1/3 plus 2/3 gives 1. However, adding 0.33333 plus 0.66666
gives 0.99999. Close, but it does not provide sufficient precision. While we can round the 
result, floating point numbers do not provide us with much control over the rounding process. 
Floating point numbers are not exact while currency values require exactness.

Integers could be used but it requires the developer to explicitly keep track of the decimal
point. Assuming this is not too burdensome, which it probably is in operations like
multiplication, we still need to display the results of our calculations. This will require  
us to extract the last two digits (assuming cents and dollars is our currency) and convert 
the result to a properly formatted string. This approach has not been widely used due to 
the lack of support.

The BigDecimal class is a member of the java.math package. It supports arbitrary
precision decimal numbers and standard arithmetic operations. One drawback to its use is
each BigDecimal object is immutable which can result in inefficiencies associated with the 
creation and garbage collection of objects. However, it is the preferred approach.

How to do it...
A BigDecimal number can be created using a number of overloaded constructors. One
approach is to use a single double number as the argument of the constructor. Here,
1045.32 is used to create a BigDecimal object. The value is displayed without formatting
and the scale method is used to determine the number of digits to the right of the 
decimal point.

BigDecimal amount;
amount = amount.add(new BigDecimal(1045.32));
System.out.println("amount Unformatted: " + amount.toString());
System.out.println("Scale of amount: " + amount.scale());

The console output appears as follows:

INFO: amount Unformatted: 1045.319999999999936335370875895023345947265625

INFO: Scale of amount: 42

Contrast this with creating a BigDecimal number using a string.

BigDecimal amount2;
amount2= new BigDecimal("1045.32");
System.out.println("amount2 Unformatted: " + amount2.toString());
System.out.println("Scale of amount: " + amount2.scale());



Chapter 12

3�7

The output follows:

INFO: amount2 Unformatted: 1045.32

INFO: Scale of amount: 2

When formatting a BigDecimal, we can use the java.text.NumberFormat class. Its
getCurrencyInstance method returns a NumberFormat object formatted according to 
a specific locale. Below, we use the Locale.US with the amount2 variable:

NumberFormat numberFormat =  
NumberFormat.getCurrencyInstance(Locale.US);

System.out.println("amount2 formatted: " +  
numberFormat.format(amount2));

The output will appear as follows:

INFO: amount2 formatted: $1,045.32

Basic arithmetic operations are supported by BigDecimal. For example, to add two numbers
we can use the add method.

BigDecimal number1 = new BigDecimal("32.54");
BigDecimal number2 = new BigDecimal("8.44");
number1 = number1.add(number2);
System.out.println(numberFormat.format(number1));

This results in the following console output:

INFO: $40.98

BigDecimal supports other operations including subtraction, multiplication, division, 
and exponentiation.

How it works...
The first set of code examples illustrated the use of a string to construct a BigDecimal
object. This approach simplified the setting of its scale. The scale is determined by the 
number contained in the string. A number represented as a string with three digits after the
decimal point would have a scale of 3. Using a string is the preferred way of converting a
floating point value to a BigDecimal. The use of a constructor using a float or double
value can sometimes be unpredictable.

The third example illustrated the use of the NumberFormat class to format the appearance
of a number. The getCurrencyInstance method used a Local value to format the value
based on a particular local.



EJB Techniques

98

The fourth example demonstrated how to perform arithmetic operations on BigDecimal
objects. This is further elaborated in the next section.

There's more...
The BigDecimal class is a useful tool for dealing with currency. However, we need to be
careful in a few areas:

Understanding the implications of immutable BigDecimal objects

Comparison of BigDecimal objects 

When to perform rounding

Understanding the implications of immutable BigDecimal objects
In the previous example, two numbers were added together and assigned to the first number.

BigDecimal number1 = new BigDecimal("32.54");
BigDecimal number2 = new BigDecimal("8.44");
number1 = number1.add(number2);

This is the correct way to add the numbers. However, do not use the following approach and
expect number1 to be modified:

number1.add(number2);

Remember, BigDecimal objects are immutable. This operation modifies neither number1
nor number2 but returns a new BigDecimal object containing their sum.

A common requirement is to keep a cumulative sum. The following code illustrates the
essential elements of this technique:

BigDecimal total = BigDecimal.ZERO;
for(...) {
total = total.add(numbers[i]);
}

Notice the use of BigDecimal.ZERO. This constant represents a zero and is used to initial-
ize total. The value returned by numbers[i] is added with total and the residual value
is assigned to total. There are two other constants available: BigDecimal.ONE and
BigDecimal.TEN representing the values of 1 and 10 respectively.

Comparison of BigDecimal numbers
When comparing two BigDecimal numbers, we have to be careful when using the equals
method. Normally, this is the preferred method for comparing two objects as the equality
operator simply compares reference values.









Chapter 12

99

The BigDecimal's equals method bases its comparison on the values of the number and
the scale used. Consider the following example. Two BigDecimal numbers are assigned the
same number except for the number of digits to the right of the decimal point. The equals
method returns false. However, the compareTo method works properly.

number1 = new BigDecimal("1.00");
number2 = new BigDecimal("1.000");
System.out.println(number1.equals(number2));
System.out.println(number1.compareTo(number2)==0);
System.out.println();

The output:

INFO: false

INFO: true

The equals method uses the number and the scale to determine equality. Since the two
numbers have a different scale, they are not considered to be equal. The compareTo method
returns a negative value if number1 is less than number2, a zero if they are equal and a
positive number if number1 is greater than number2.

When to perform rounding
Rounding can be an important part of a computation. BigDecimal provides several rounding
options. When rounding should be applied is dependent upon the nature of the calculation.
Consider the addition of 0.134 and 0.133. If we add the numbers together and then round  
to two decimal places we get 0.27. However, if we round the two numbers first to 0.13 then 
add them together their sum is 0.26. The right approach is dependent on the problem we  
are trying to solve.

Rounding is supported using the round method. This method takes a java.math.
MathContext object. The two argument constructor used below takes the precision as its
first argument and a rounding method as its second argument. The rounding options are 
similar to those used with BigDecimal as explained shortly.

In the following example, we implement the addition problem discussed previously. The
variables, number1 and number2, are added together and then rounded. The numbers,
number3 and number4 corresponding to the first two numbers, are rounded and then 
added. All rounding uses a precision of two digits.

number1 = new BigDecimal("0.0134");
number2 = new BigDecimal("0.0133");
BigDecimal number3 = number1.round(new  
MathContext(2,RoundingMode.HALF_UP));
BigDecimal number4 = number2.round(new  
MathContext(2,RoundingMode.HALF_UP));



EJB Techniques

400

System.out.println(number1.add(number2).round(new  
MathContext(2,RoundingMode.HALF_UP)));

System.out.println(number3.add(number4).round(new  
MathContext(2,RoundingMode.HALF_UP)));

System.out.println();

The output below confirms the differences in the addition using the two rounding approaches.

INFO: 0.027

INFO: 0.026

The BigDecimal class provides eight rounding techniques. If the rounding mode is not
specified, it uses the most appropriate scale and rounding based on the operation performed. 
While not detailed here, the BigDecimal.ROUND_HALF_UP will round up if the fraction part
is greater than or equal to 0.5. However, BigDecimal.ROUND_HALF_EVEN best minimizes
errors that can accumulate over a series of calculations.

Efficient manipulation of strings
The use of strings is an important component of most applications and can contribute to poor
performance if not managed correctly. This recipe examines techniques used to improve the
use of strings.

Getting ready
String manipulation in Java is supported through three java.lang classes:

String – An immutable object 

StringBuilder – Performs string manipulation but does not use  
synchronized methods

StringBuffer – Performs string manipulation using synchronized methods

Each of these classes has its place. For simple strings that are not changed, the String
class is a good choice. If strings are manipulated using operations such as concatenation,
StringBuilder and StringBuffer are better choices. However, since StringBuffer
synchronizes most of its methods to achieve thread safety, use of this class can be more
expensive than using StringBuilder. If the string is used in a multi-threaded environment,
then StringBuffer should be used.









Chapter 12

401

A few general string guidelines:
Do not use the String class when significant string manipulation is 
needed

When the string length is known initialize the length of a
StringBuilder or StringBuffer object using its constructor

Make sure you understand how testing for string equality works







String concatenation is expensive when performed using the String class. This is because
the String object is immutable. For many situations this is fine. However, if it is necessary to 
repeatedly change the string, then using the String class means new String objects will be
created which introduces the expense of object creation and, potentially, garbage collection.

How to do it...
Consider the following getList method below which returns a comma-delimited string
based on an array of names. The array, names, is initialized with four names and the
String variable, list, is initialized to an empty string. Within the for loop, each name is
concatenated to list with a comma appended between them. Each time the list is modified 
a new String object is created and the old one is discarded.

public String getList() {
String names[] = {"Bill", "Sue", "Mary", "Fred"};
String list = "";
for(int i=0; i<names.length; i++) {
list += names[i];
if(i < names.length-1) {

list += ", ";
}

}
return list;

}

A more efficient version of this method follows and uses a StringBuilder object instead.
Notice the initialization of list to 100. This size is more than adequate for the data used
here. Concatenation is achieved using the append method which adds its argument to  
the end of list. The toString method converts the StringBuilder instance to a
String object.

public String getList() {
String names[] = {"Bill", "Sue", "Mary", "Fred"};
StringBuilder list = new StringBuilder(100);
for(String name : names){
if(list.length() > 0) {

list.append(", ");



EJB Techniques

402

}
list.append(name);

}
return list.toString();

}

Only one StringBuilder object and one String object has been created. This reduces the
overhead of multiple object creation required in the first version of the method.

The initialization of the StringBuffer size is larger than needed. It is often possible
to calculate the size beforehand which can save space but at the expense of an
additional calculation.

Testing for string equality can be performed using one of several techniques. The first 
approach uses the equality operator.

if(name == "Peter") ...

This approach checks if the variable name references the string literal "Peter". Most likely
this is not the case. Remember, the equality operator in this situation tests for equality of
references, not if the two referenced objects are the same.

The next approach uses the compareTo method. While it works, it is more complicated than it
needs to be. The compareTo operator returns a negative value if name is less than "Peter", 0
if they are equal to each other and a positive number if name follows "Peter" lexicographically.

if(name.compareTo("Peter") == 0) ...

A better approach is to use the equals method. Alternatively, the equalsIgnoreCase
method can be used if the case of the strings is not important.

if(name.equals("Peter")) ...

When dealing with null strings there are two considerations which deserve attention. If we
need to test for an empty string it is better to use the length method.

if(name.length() == 0) ...

Also, using the following statement will avoid a NullPointerException should name
contain a null value.

if("".equals(name)) ...



Chapter 12

403

How it works...
The string list examples illustrated the efficiency gained though the use of the 
StringBuilder class. Fewer object creations were required. Several approaches were
demonstrated for comparing strings. These illustrate either a more valid, convenient, or
efficient technique for the comparison of two strings.

Bear in mind most compilers perform optimization on source code. Any compiler level
optimization can render source level optimizations mute or at least more of a style issue.
Optimizations should always begin with making sure the application is implementing the
correct functionality, uses a sound architecture and the most efficient algorithms before 
too much effort is devoted to source level optimizations.





Index
Symbols
<around-timeout> element  361
<assembly-descriptor> element  356
<auth-constraint> element  245
<ejb-name> element  270
<interceptor-binding> element  269, 270
<interceptor-class> element  270, 356
<interceptors> element  355
<method-param> element  357
@AccessTimeout annotation  66
@ActivationConfigProperty annotation  19, 90
@ApplicationException annotation  226
@ApplicationPath annotation  29
@AroundInvoke annotated method  267
@AroundInvoke annotation  267, 273, 274, 

365, 390
@AroundInvoke method  390
@AroundTimeout annotation  325
@AssertFalse annotation  154
@AssertTrue annotation  154
@Column annotation  136

length  138
nullable  138
precision  138
unique  138

@ConcurrencyManagement annotation  64
@Consumer annotation  346
@DeclareRoles annotation  246, 248, 251
@DefaultValue annotation  337, 338
@DenyAll annotation  249, 252
@DependsOn annotation  49 
@EJB annotation  11, 13, 55, 237
@ElementCollection annotation  138
@Embeddable annotation  139
@Embedded annotation  139

@Entity annotation  126, 127
@ExcludeClassInterceptors annotation  272, 

291, 358
@ExcludeDefaultInterceptors annotation  290
@Future annotation  151
@GeneratedValue field  129 
@Get annotation  337 
@Id annotation  129 
@Interceptors annotation  268, 269, 273, 

288, 355 
@LocalBean annotation  51 
@ManyToOne annotation  160
@MessageDriven annotation  17-19, 86, 89, 

92, 93, 346 
@NamedQueries annotation  193
@NamedQuery annotation  191 
@NotNull annotation  149 
@Null annotation  149 
@OneToMany annotation  160, 167
@Override annotation  10, 169 
@Past annotation  151 
@Pattern annotation  153 
@PermitAll annotation  249, 250, 252
@PersistenceContext annotation  134, 185, 

192 
@PostActivate annotation  291, 365
@PostActivate method  58
@PostConstruct annotation  54, 292, 321, 

365 
@PreDestroy annotation  365
@PreDestroy annotated method  54
@PreDestroy lifecycle method  291
@PrePassivate annotation  291, 365
@PrePassivate method  58
@Produces annotation  337
@QueryParam annotation  337, 338



�06

@Remote annotation  73 
@Rentention annotation  391
@Resource annotation  44, 93, 104
@RolesAllowed annotation  246, 249, 252
@RunAs annotation  253 
@Schedule

using, with multiple methods  301
using, with single method  302

@Schedule annotation  296, 299, 300, 309, 
312, 319 

@Service annotation  346 
@Singleton annotation  23 
@Startup annotation  321 
@Stateful annotation  11, 48, 346
@Stateless annotation  10, 55, 346 
@Table annotation  136, 164 
@Target annotation  389 
@Temporal annotation  149 
@Timeout annotation  296, 305
@TransactionAttribute annotation  203, 206, 

210 
@TransactionManagement annotation  198, 

203, 204, 210, 217, 218, 282
@TransactionManagement annotation used  

217
@WebMethod annotation

about  24, 330
using  333

@WebParam annotation
using  333

@WebService annotation
about  24, 330
variations  332

@WebServlet annotation  12, 13

A
AbstractFacade base class  169
AbstractFacade class  131-133, 147, 160, 

161, 185, 199, 200, 208, 235, 236, 
263, 264

AbstractFacade method  133
activationConfig attribute  19
activationConfig element  90
addCity method  205
addMedication method  162
Add Name button  57

afterBegin method  207
afterCompletion method  207
applet

EJB, accessing from  30-34
application-managed persistence

using  141-145 
ApplicationConfig class  29, 337
ApplicationException annotation  229
ApplicationPath annotation  337
ApplicationStatistics class  285-289
approve method  237, 250 
ArrayList object  58 
AS keyword  171 
Aspect Oriented Programming (AOP)  261
asynchronous method

used, for creating background process  81-84
AsyncResult object  82 
Attendee class  263 
Attendee entity  263 
AttendeeFacade class  263, 265
AttendeeFacade stateless session bean  264
Attendee reference  265

B
background process

creating, asynchronous method used  81-84
BeanManagedPopulationManager  218, 219
Bean Managed Transactions (BMT)  198
bean managed concurrency

using  67-69 
bean variable  43
beforeCompletion method  207, 214
begin method  198 
between operator  177
BigDecimal number  396, 397

about  396, 397
comparing  398, 399

BigDecimal object  396
implications  398

BinLocation class  140
BinLocation object  141
boolean fields

validating  154 
break statement  182
bulkRegister  282
bulkRegister method  282, 283



�07

business method interceptors  347
byte-based message

handling  94-97
BytesMessage, sub-interface  86
BytesMessage message  98
BytesMessage method  94
BytesMessage object  96, 97

C
calendar base scheduling

@Schedule annotation  309, 310
about  309
computeStackAverages method  311
getSchedule method  309
ScheduleExpression class  309
ScheduleExpression object  309
Timer class  309

calendar event timers
about  307
createCalendarTimer method  307
createTimer method  307
ScheduleExpression object  307
TimerConfig object  307

Calendar field  152
calendar method  306
callback methods

@Schedule annotation  296
@Timeout annotation  296
need for  296 
signature, types  296

callbacks interceptors, deployment  
descriptors

using for  363-365 
CapitalApplet  31
CapitalApplication  30 
CapitalBean  31
CapitalBeanRemote  31
CapitalBeanRemote interface  31
CAR  346-348 
catch block  21 
changePopulation method  201, 206,  

213-215, 218-221, 224-230 
city class  198, 199 
City entity  199 
CityFacade class  199, 200, 202, 208, 218
CityFacade output lines  220

Class-Path attribute  354
class loading

about  351
working  352, 353

CLASSPATH environment variable  352
clearBody method  93, 97 
clear method  182 
clearTables method  204, 205, 213
close method  145 
commit method  198, 217, 220
compareTo method  259
comparision operator, where clause

equal  177 
greater than  177 
greater than or equal to  177
less than  177 
less than or equal  177 
not equal  177

computeStackAverages method  311
computeVolume method  51
Connection variable  88
ConstraintViolation method

getInvalidValue  158
getMessage  158

constructed method, adding  292
container managed concurrency

using  64-67 
Container Managed Transactions (CMT)  198, 

203 
CountInterceptor  390 
count variable  285 
createByteMessage method  96
createCalendarTimer method  307, 317, 320
createConnection method  89
createEJBContainer method  43
createInterval method  307
createMedication method  168 
create method  130, 136, 156
createNamedQuery method  160, 191, 192
createPatient method  168
createProducer method  22 
createQuery method  160, 170, 171, 202
createSession method  89
createSingleActionTimer method  304, 306, 

322
createStreamMessage method  100



�08

createTextMessage method  90
createTimer method  306, 307
createVoucher method  237
Criteria API

about  193 
creating, steps  193
findAllMales method, adding  194
getCriteriaBuilder method  195
getResultList method  195
PatientFacade class  194
PatientServlet  195 
using, steps  193, 194

CriteriaBuilder class  193
CriteriaQuery interface methods  133
currency

data types, for representing  395, 396
currentTimeMillis method  288
customer application  328
CustomerManager class  330, 337

D
Date field  152 
DateFormat class, thread issues  395
dateOfBirth field  167 
Date parameter  306 
dayOfMonth attribute  310
dayOfWeek attribute  310
declarative methods

@Schedule annotation  299, 300
creating  299
displayMemoryReport  301
using  299

declarative security
@DenyAll annotation  252
@PermitAll annotation  252
@RolesAllowed  249
@RolesAllowed annotation  252
about  248 
access controlling, steps  249
approve method  250
getName method  252
SecurityServlet  251

DefaultInterceptor  271, 273 
default interceptors, deployment descriptors

about  347 
using for  361-363

delete method  184, 185
delete query

@PersistenceContext annotation  185 
about  183 
AbstractFacade class  185 
delete method  185 
delete method, adding to PatientFacade  184
executeUpdate method  185 
form  183 
PatientServlet, executing  184

demonstration class
AbstractFacade class  200
changePopulation method  201
CityFacade  202 
CityFacade class, creating  200
createQuery method  202
creating  199 
Java EE application, creating  199
PopulationApplication  199
PopulationServlet  201, 202
println statement  201 
UPDATE query command  202

Dependency Injection. See  DI
deployment descriptors

<assembly-descriptor> element  356
<interceptor-class> element  356
@Interceptors annotation  355 
excluding interceptors  358 
interceptors execution order, controlling  359
method-level interceptor descriptors, using  

357 
using, for callbacks interceptors  363-365
using, for default interceptors  361-363
using, for interceptors  354 
using, for security  369-371 
using, for timer interceptors  359, 360
using, for transactions  366-369

destroy method  58, 60
DI

about  8 
used, for accessing session bean  11-14

displayAll method  175
displayMemoryReport  301 
doGet HTTP command  14 
doGet method  12, 47, 87, 91, 134
doPost HTTP command  14 
doPost method  12, 47, 87, 91, 134



�09

dosage field  176
duplicate entities

eliminating  172, 173
duration, instance variable  321
dynamic query  160

E
EAR  346, 348
EAR file

structure  348
EBJContext interface  46
edit method  130 
EJB

about  8 
accessing  49 
accessing, from applet  30-34 
accessing, from JSP  35, 36, 37, 38
accessing, from web service (JAX-RS)  27-29
accessing, from web service (JAX-WS)  23-26
accessing from Java Application, embeddable 

container used  42, 43 
accessing from Java Application, JNDI used  

40, 41 
and exception handling  375-377
calling, from JSF  38-40 
locks  49 
logging, using  380-385 
time, using  392-394 
uses  8

ejb  23 
EJB-Based Web Service

@WebMethod annotation, using  333
@WebParam annotation, using  333
@WebService annotation, variations  332
creating, JAX-RS used  334-336
creating, JAX-WS used  328-331

EJB-JAR  346, 348
ejb-jar.xml file  269
EJBApplet  31 
EJB container

accessing  44-46 
EJBContext interface  44, 86
EJBException single string argument  376
endpoint  327 
Enterprise Information Systems (EIS)  86

Enterprise Java Beans. See  EJB
entity

creating  127, 130 
creating, steps  127-129
embeddable classes, using  139-141

EntityBeanApplication  127
EntityBeanApplication application  130
entity facade

creating  130-133
EntityManager  126

using  133-136
EntityManager class  161, 170
EntityManager class method  133
EntityManager method  133
entityManager variable  187, 189
equals method  129 
Exception class  226 
exception handling

about  378, 379 
and EJBs  375-377 
exceptions, logging into console  377, 378
interceptor, using, for  386-389

excluding interceptors, deployment 
descriptors

@ExcludeClassInterceptors annotation  358
executeUpdate method  183-187, 219, 224

F
fetch attribute  139 
findAllMales method  194 
findAll method  130, 168, 169, 208
findByLastname  188
findByLastName method  189, 190
findByType method  192 
find method  130 
findRange method  130 
format method  26, 392 
FORM tag  338 
freeMemory method  297

G
GameBean  62 
getAnnotations method  278
getCallerPrincipal method  257, 258
getClass method  209



�10

getContextData method  277, 288
getContextInformation method  45
getCorporateDiscount method  75
getCount method  285
getCriteriaBuilder method  195
getCustomerCountByRegion method  329, 

333 
getCustomerCount method  329
getEntityManager method  130, 133
getEnumeration method  124
getFormalGreeting method  45
getFormalSalutation method  14 
getInfo method  315, 317 
getInstance method  285
getMemoryReport method  297 
getName method  55, 251-254, 268
getNextTimeout method  315
getNonProfitDiscount method  75
getParameters method  276 
getPosition method  79 
getResultList method  171, 176, 182, 195
getRollbackOnly method  225 
getSchedule method  309, 315
getSimpleName method  209
getSingleResult method  181, 183 
getState method  69 
getStatus method  220 
getTarget method  277 
getter method  162, 199 
getTimers method  308 
getTip method  27, 29 
getTotalTime method  285
getTransactionStateString  221
getTransactionStateString method  220
GlassFish  8 
GlassFish Enterprise Server v3 prelude  8
GlassFish Server Open Source Edition v3.0.1. 

NetBeans  8
granularity  76-81

H
HashMap class  101 
Hiberate Query Language (HQL)  160
HitCounterInterceptor, creating  286
HitCounterInterceptor class  286

hour attribute  310 
HyperText Transfer Protocol (HTTP)  11

I
identity

@RunAs annotation  253 
getName method  254 
propagating  252, 253 
propagating, steps  253
SecurityServlet try block, modifying  254
SessionContext object  254 
submit method  254

id field  264
increaseTotalTime method  285
incrementCounter method  286
increment method  285
inherited element  226
initComponents method  32, 34
InitialContext object  33, 34
init method  32 
initialization process, singleton

controlling  70-72
initialize method  54, 60, 71
IN operator   179, 180
instance  285 
instance variable  285
integer fields

validating  155
interceptors

<ejb-name> element  270
<interceptor-binding> element  269, 270
<interceptor-class> element  270
@AroundInvoke annotated method  267
@AroundInvoke method  390
@AroundInvoke annotation  267, 273, 390
@AroundTimeout annotation  325
@ExcludeClassInterceptors annotation  272
@Interceptors annotation  262, 268, 269, 

273 
@PostActivate annotation  291
@PostConstruct annotation  292
@PostConstruct lifecycle method  291
@PreDestroy lifecycle method  291
@PrePassivate annotation  291
@Target annotation  389 
about  262



�11

constructed method, adding  292
CountInterceptor  390 
creating  389 
creating, for all class  272 
creating, for all methods  272 
creating, for EJBs in EJB module  269
creating, for specific class  272 
creating, for specific method  272
creating, steps  267 
declaring, in target class  273
DefaultInterceptor  271, 273 
defining  269 
deployment descriptors, using  354
ejb-jar.xml file  269 
getName method  268
interceptorTimeout  325
InvocationContext’s proceed method  268
InvocationContext argument  293
InvocationContext object  324 
lifecycle methods, using  291
LoggingApplication’s format method  391
MethodInterceptor class, adding  272
methodLevel  272 
println method  271-273, 292 
proceed method  267, 268 
register method  269, 272
RegistrationManager class  268, 273, 292
SimpleInterceptor  271, 273
SimpleInterceptor class  292
simpleMethod, adding  267 
uses  262, 263 
using, for exception handling  386-389
using, for logging  386-389 
using, steps  267 
using, to enforce security  278 
using, with timers  323, 324

interceptors, using to enforce security
isCallerInRole method  279, 281
proceed method  279
RegistrationManager class  279
SecurityInterceptor class, adding  279

interceptors, using to handle application
statistics

@ExcludeClassInterceptors annotation  291
@ExcludeDefaultInterceptors annotation  290
@Interceptors annotation  288 
about  284

ApplicationStatistics  286
ApplicationStatistics class  285-289
count variable  285 
currentTimeMillis method  288
developing, process  284
getContextData method  288
getContextData method, using  289
getCount method  285 
getInstance method  285, 286
getTotalTime method  285
HitCounterInterceptor, creating  286
HitCounterInterceptor class  286
increaseTotalTime method  285
incrementCounter method  286
increment method  285 
instance variable  285 
interceptor execution order, steps  289
interceptors, excluding  290
java.util.Map object  289 
packt package  285 
proceed method  286, 289 
register method  287
RegistrationManager class  287, 290, 291
TimeInMethodInterceptor  289
TimeInMethodInterceptor, creating  286
TimeInMethodInterceptor class  286
totalTime variable  285 
using, process  284

interceptors, using to handle transactions
@TransactionManagement annotation  282
about  281 
bulkRegister  282 
bulkRegister method  282, 283
RegistrationManager class  282
transaction attribute  284
TransactionInterceptor class, adding  281
verifyAccess method  281

interceptors execution order, deployment
descriptors

controlling  359
interceptorTimeout  325 
Internet Inter-Orb Protocol (IIOP)  42
interval event timers

createInterval method  307
createTimer method  307
serializable object  307
Timer’s getInfo method  307



2

TimerConfig object  307
intervals method  306
InvocationContext

@AroundInvoke annotation  274
getAnnotations method  278
getContextData method  277
getMethod  277 
getMethod, using  278
getParameters method  276, 277
getTarget method  277 
getTimer method  277
InvocationContext interface  277
java.lang.reflect.Method object  278
println method  275, 276 
proceed method  277
RegistrationServlet  276
setParameters method  276, 277
using, to verify parameters  274
validateParameters method  277, 278
ValidationInterceptor  275

InvocationContext’s proceed method  268
InvocationContext argument  293
InvocationContext interface  277
InvocationContext object  324 
invokeEJB method  32, 34
isCallerInRole method  256, 258, 279, 281
IS operator  179, 180 
isPersistent method  315 
itemExists method  104 
ItemsServlet  98

J
jar command

used, for understanding JAR files  347-351
JAR files

understanding, jar command used  347-351
java:app/, string prefix  16 
java:comp prefix  46 
java:global/, string prefix  16
java:module/, string prefix  16

<app-name>  16
<bean-name>  16
<module-name>  16

java.lang.Exception derived class  226
java.lang.reflect.Method object  278
java.sql.Date class  167

java.util.Date class  167
java.util.Map object  289 
Java API for RESTful Web Services.  

See  JAX-RS 
Java API for XML Web Services (JAX-WS)  327
Java ARchive (JAR)  345 
Java Authentication and Authorization Service 

(JAAS)  234 
Java DataBase Connectivity (JDBC) driver  136
Java EE Connector Architecture (JCA)  86 
Java Message Service. See  JMS 
Java Naming and Directory Service. See  JNDI
Java Persistence API. See  JPA 
Java Persistence Query Language (JPQL)

about  159, 201
delete query  161
dynamic query  160
queries  161 
select query  161
static query  160
update query  161

Java SDK jar command
using, steps  348 

Java synchronized keyword  67
JavaServer Faces. See  JSF 
JavaServer Pages. See  JSP 
Java Transaction API (JTA)  197 
Java Virtual Machine. See  JVM
javax.jms.MessageListener interface  86
javax.jms.Message object  86
javax.jms.Queue interface  19
javax.transaction.Status interface  220
JAX-RS

about  27 
application, creating  27
EJB, accessing from  27

JAX-RS web service
@DefaultValue annotation  337, 338
@Get annotation  337 
@Produces annotation  337-339
@QueryParam annotation  337, 338
ApplicationConfig class  337
ApplicationPath annotation  337
creating, steps  334
CustomerManager class  337



3

GET command, with parameters  337
PUT command  338

JAX-WS
EJB, accessing from  23-26

JAX-WS web service
@WebMethod annotation  330
@WebParam annotation, using  333, 334
@WebService annotation  330
@WebService Annotation, variations  332
getCustomerCountByRegion method  329
getCustomerCount method  329 
region parameter  330 
WebService endpointInterface element  330
working  329

JMS  17, 86
JNDI

about  8 
naming syntax  16 
used, for accessing session bean  14, 15

JPA  9, 126 
JPQL UPDATE command  220
JSF

about  35 
EJB, accessing from  38-42

JSFExample-war module  38
JSP

about  35 
EJB, accessing from  35-38

JSPExample-war module  35, 36
JVM  8, 48

K
keys method  34

L
LicenseBean

dateOfBirth attribute  146
monthsToExpire attribute  146
name attribute  146
restrictions attribute  146

LicenseBeanFacade class  147
lifecycle callback interceptors  347
like operator  178, 179 
lists

using, in schedule expressions  312
local resource based transactions  198

locks, EJB       
read lock  49
write lock  49

logging
interceptor, using, for  386-389
setLevel command  385 
using, within EJB  380, 381-385

LoggingApplication’s format method  391
LoggingBean  117 
log method  385 
lookup method  15

M
MANDATORY attribute  211
MANDATORY value  206
map-based message

handling  101-104 
MapMessage, sub-interface  86
mappedBy attribute  167
mappedName attribute  10, 19, 88, 89
mappedName element  89 
Map variable  43 
max attribute  151 
maxMemory method  297 
MDB

about  85, 206, 262 
creating  17, 19 
creating, steps  17 
example  87-90 
message, sending to  20-22 
onMessage method  340 
tasks  86 
using, as web service part  340, 343
using, in point-to-point application  109-112
using, in publish-and-subscribe application  

113-118 
medication class  161, 191 
Medication entity  191 
MedicationFacade class  160, 161, 165, 186, 

191 
medication instance  164
medication table

medication class  162
populating  161-168

message
browsing, in message queue  122-124



4

byte-based message, handling  94-96
map-based message, handling  101-104
object-based message, handling  105-107
sending, to MDB  20-22 
stream-based message, handling  97-100
string-based message, handling  90, 91

Message-Driven Beans. See  MDB
MessageDrivenContext  86
MessageListener interface  89
MessageProducer create type method  89
MessageProducer object  22 
message queue

messages, browsing in  122, 123
message selector

message type, selecting  118-122
method-level interceptor descriptors,  

deployment descriptors
using  357

MethodInterceptor class  272
methodLevel  272 
min attribute  151 
minute attribute  310 
month attribute  310
monthsToExpire field  155
multiple business interface

session beans, using with  72-76
multiple singleton bean

creating  61-64

N
named query

@NamedQueries annotation  193
@NamedQuery annotation  191
createNamedQuery method  191, 192
creating, steps  190 
deleteByType  193 
findByType method  192 
Medication class  191 
Medication entity  191
MedicationFacade class  191
setParameter method  192 
using  190 
working  192

name field  127
NamesBean class  58
NamesServlet page  57

NEVER attribute  211
NEVER value  206
nextFloat method  93
nextInt method  93
non-persistent timer

@Schedule annotation  319
createCalendarTimer method  320
setPersistent method  320 
using  319

NOT_SUPPORTED attribute  211
NOT_SUPPORTED value  206
null fields

validating  149-151
number of entities

break statement  182 
controlling, by select query  180, 181
getResultList method  182
getSingleResult method  181-183
processAllPatients  181
setFirstResult method  181, 182
setMaxResults method  181

O
object-based message

handling  105-109 
Object-Relationship Mapping (ORM) process

about  126
controlling  136, 139

ObjectMessage, sub-interface  86
ObjectMessage object  109 
onMessage method  17, 19, 86, 89, 97, 110, 

112, 340 
operationName attribute  26
OrbitalElementsRemote interface,  79
Order By clause

using  173
Order class  106

P
packt package  285
parameter behavior  76-81
parameters

entityManager variable  189
findByLastname  188
findByLastName method  189, 190
PatientFacade  188



5

PatientServlet  189
setParameter method  187-189
using, in query  187

partNumber field  127 
PartsBean  127 
PartsBean class  132
PartsBeanFacade class  132, 133
PatientApplication  162 
patient class  161, 162 
PatientFacade class  160, 161, 175, 188
PatientServlet  170, 186, 189 
patient table

patient class  162
populating  161-168

persistent fields
validating  145-149

persistent properties
validating  145-149

persistent timer
@Schedule annotation  319
createCalendarTimer method  320
setPersistent method  320 
using  319, 320

point-to-point application
MDB, using  109-112 

populateTables  165 
populateTables method  168
PopulationApplication  199
PopulationManager class  199, 211
PopulationServlet  201, 202, 224
PopulationServlet class  199
PopulationServlet exception  225
PostConstruct annotated method  87
PositionBeanRemote interface  77
PostingServlet  124 
PostingType property  121 
PreDestroy method  87
printAndCheckLater method, 41
printAndForget method, 41 
printf method  52 
printf statement  52 
println method  219, 271, 273, 275, 276, 292, 

373 
println methods  218
println statement  201
println statements  208

PrintServlet  82 
PrintWriter object  175, 176 
proceed method  267, 268, 279, 286, 289
processAllPatients  181 
processGet method  29 
processRequest method  12, 14, 87, 88, 134, 

205, 209, 219, 238, 298
programmatic security

about  255 
compareTo method  259 
controlling, steps  256
getCallerPrincipal method  257, 258
isCallerInRole method  258
SecurityServlet try block  256
SessionContext class  258
SessionContext object  257
validateAllowance method  259 
valueOf static method  259
VoucherManager’s approve method  256

programmatic timers
@Timeout annotation  305 
calendar method  306
createSingleActionTimer method  304
creating  303 
creating, steps  304 
intervals method  306 
scheduled timers colection, getting  308
scheduled timers collection, getting  308
single event method  306 
single event timers  306 
TimerService instance  305
TimerService interface  303, 305 
using  303

propertie  43 
propertyName attribute  19
publish-and-subscribe application

MDB, using  113-118
PUT command  338

Q
quantity field  127 
QueueBrowser class  90
QueueBrowser object  124
QueueConnectionFactory  93
QueueConnectionFactory object  21



�16

R
ranges

using, in schedule expressions  313
RAR  347, 348 
read lock  49 
regexp argument  153 
region parameter  330 
register method  265, 269, 272, 287
RegistrationApplication

AbstractFacade class  263, 264 
Attendee class  263 
Attendee entity  263, 266
AttendeeFacade class  263, 265
AttendeeFacade stateless session bean  264
Attendee reference  265 
creating  263 
creating, steps  263 
id field  264 
Java EE application, creating  264 
packt package, adding  264 
register method  265
RegistrationManager class  263
RegistrationManager EJB, creating  263
RegistrationManager session bean  266
RegistrationManager stateful session bean  

265 
RegistrationServlet, adding  265
RegistrationServlet, creating  263
RegistrationServlet class  263

RegistrationBeans variable  145
RegistrationManager’s register method  357
RegistrationManager class  263, 268, 273, 

282, 287, 290, 291, 292, 355
RegistrationManager session bean  266
RegistrationManager stateful session bean  

265
RegistrationServlet  276
RegistrationServlet, adding  265
RegistrationServlet class  263
regular expressions

used, for validation  153, 154
reject method  238 
Remote Method Invocation (RMI)  42
removeMedication method  162
remove method  130, 185, 209

ReportsApplication
freeMemory method  297
getMemoryReport method  297, 298
Java 6 EE application, creating  297
maxMemory method  297 
packt package  297 
processRequest method  298 
setting up  297
SystemReportManager, adding to packt  

package  297
SystemReportManager class  297
totalMemory method  297

Representational State Transfer (RESTful)  
327 

Representational State Transfer (RESTful) web 
service  27 

REQUIRED attribute  210
REQUIRED value  206
REQUIRES_NEW attribute  210
REQUIRES_NEW value  206
resident field  154 
RMI over IIOP (RMI/IIOP)  42
roles

@DeclareRoles annotation  246
@RolesAllowed annotation  246
configuring, @DeclareRoles annotation used  

246 
configuring, @RolesAllowed annotation used  

246
configuring, steps  246
declaring  246

rollback element  226
rollback method  223

S
SalutationApplication  9
SalutationApplication-ejb module  18
SalutationApplication-war module  9
SalutationApplication project  20
Salutation object  15 
Salutation session bean  14 
scale method  396
ScheduleExpression class  309, 311
ScheduleExpression object  307, 309
schedule expressions

increments, using  313-315



�17

lists, using  312, 313
ranges, using  313

second attribute  310 
Secure HTTP (HTTPS)  234
Secure Sockets Layer (SSL)  234
security

handling, by configuring server  240
security, deployment descriptors

using for  369-371
SecurityApplication

@EJB annotation  237 
about  240 
AbstractFacade class  235, 236 
approve method  237 
createVoucher method  237 
creating  235 
packt package, adding to EJB module  235
processRequest method  238 
reject method  238
SecurityApplication, creating  235
SecurityServlet class  235 
submit method  237 
toString method  236 
voucher class  235 
VoucherFacade class  235-237
VoucherManager class  235, 239

SecurityInterceptor class  279
SecurityServlet class  235
SecurityServlet try block  256
select query

about  169, 171
AbstractFacade base class  169
createQuery method  170, 171
duplicate entities, eliminating  172
EntityManager class  170 
findAll method  169
getResultList method  171 
Order By clause, using  173, 174
PatientServlet  170

Serializable interface  128
serializable object  307

using, to pass information  318
server

<auth-constraint> element  245
<login-config> element, modifying  244
<web-resource-name> element  244
configuring, to handle security  240

SecurityApplication  240
security manager, enabling  240
settings  243

Service Endpoint Interface (SEI)  330
servlet  91 
session bean

accessing, dependency injection used  11-14
accessing, JNDI used  14, 15 
EJBs supporting multiple interfaces  17 
JNDI naming syntax  16 
types  47 
using, with multiple business interface  72-76

SessionContext class  225, 258
SessionContext method  45
SessionContext object  44, 45, 254, 256, 257
SessionContext variable  224 
session EJB

creating, steps  9
working  10

SessionSynchronization interface  199, 207
afterBegin method  207
afterCompletion method  207
beforeCompletion method  207
CityFacade class  208 
findAll method  208
getSimpleName method  209
println statements  208
processRequest method  209
setRollbackOnly method  207
transactions  209 
using, with session beans  207
working  209

SessionSynchronization interface method  
209 

setBinLocation method  141 
Set clause  185 
setFirstResult method  181, 182
setMaxResults method  181 
setParameter method  187, 189, 192
setParameters method  276 
setPersistent method  320
setRollbackOnly method  207, 217, 222, 223, 

224, 225, 226
setState method  69
setStringProperty method  121
setter method  162, 199
setText method  22



�18

setTimeToLive method  124
setTransactionTimeout  230
setTransactionTimeout argument  232
setTransactionTimeout method  229, 230
SimpleDateFormat class  26
SimpleInterceptor  271, 273
SimpleInterceptor class  292, 355
simpleMethod  267 
Simple Object Access Protocol (SOAP)  327
Simple Object Access Protocol (SOAP)  

messages  234 
Simple Object Access Protocol (SOAP) XML 

messages  23
SimulationContainerManaged singleton  64
single event method  306 
single event timers

about  306
createSingleActionTimer method  306
createTimer method  306 
Date parameter  306 
TimerConfig object  306

singleton bean
creating  58-60 

singleton session bean  48
singleton session EJBs  262
sleep method  230, 232
SphereBean  51
SphereServlet  51 
stateful session bean

about  48, 54 
creating  55-58
requisites, for creating  55

stateful session EJBs  262
stateless session bean

creating  50 
creating, steps  50, 51
instance variables, uses  53
lifecycle  54

stateless session EJBs  262 
static keyword  386 
static query  160. See  named query
Status.STATUS_MARKED_ROLLBACK  225
stream-based message

handling  97-100
StreamMessage, sub-interface  86
StreamMessage interface  98
StreamMessage object  100, 101

string-based message
handling  90-93

StringBuilder class  45
string fields

validating  150, 151
string manipulation

about  400-402
in Java  400
working  403

submit method  237, 254
SubscriberBean  117
SubscriberBean EJB  115
SUPPORTS attribute  210
SUPPORTS value  206
SystemReportManager class  297

T
targetClass attribute  139
temporal fields

validating  151-153
terminate method  72
termination process, singleton

controlling  70-72
TextMessage  22
TextMessage, sub-interface  86
TextMessageApplication  91
TextMessage interface  90
TextServlet  91 
time

DateFormat class, thread issues  395
TimeInMethodInterceptor  289
TimeInMethodInterceptor, creating  286
TimeInMethodInterceptor class  286
timeOfDay  24 
TimeOfDay class  23, 26 
timeOfDay method  26 
timeout method interceptors  347
timeouts, using with transactions

about  229 
changePopulation method  230
PopulationServlet, executing  232
setTransactionTimeout  230
setTransactionTimeout argument  232
setTransactionTimeout method  229, 230
sleep method  230 
steps  229



�19

timer
@PostConstruct annotation  321 
@Startup annotation  321
createSingleActionTimer method  322
creating, while application deployment  320, 

322 
duration, instance variable  321
interceptors, using with  323, 324
systemReportManager, instance variable  321
timerService, instance variable  321

Timer’s getInfo method  306, 307
Timer class  309 
TimerConfig Object

using, to pass information  317
TimerConfig object  306, 307 
timer interceptors, deployment descriptors

using  359, 360
timer interface

about  315 
createCalendarTimer method  317 
getInfo method  315, 317 
getNextTimeout method  315 
getSchedule method  315
getTimeRemaining method  315
isCalendarTimer method  315 
isPersistent method  315 
serializable object, using to pass information  

318 
TimerConfig Object, using to pass information  

317
using  315

TimerService instance  305 
TimerService interface  295, 303, 305
timezone attribute  310 
TipOfTheDay class  29 
TipSessionBean  27 
TipSessionBean method  29 
toString method  129, 130, 236
totalMemory method  297 
totalTime variable  285 
Transaction API (JTA) transaction  141
TransactionAttributeType attribute  210, 213

@TransactionAttribute annotation  210
@TransactionManagement annotation  210
about  210 
changePopulation method  213, 214
clearTables method  213

MANDATORY attribute  211 
NEVER attribute  211 
NOT_SUPPORTED attribute  211
PopulationManager class  211
REQUIRED attribute  210
REQUIRES_NEW attribute  210
SessionSynchronization interface method  

214 
SUPPORTS attribute  210
TransactionAttributeType attribute  213
TransactionAttributeType element  210
updatePopulation method  212
working  216

TransactionAttributeType element  206, 210
TransactionInterceptor class, adding  281
TransactionManagementType.CONTAINER 

element  203
TransactionManagementType attribute  198
transactions

@ApplicationException annotation  226
@TransactionManagement annotation  217, 

218 
@TransactionManagement annotation used  

217 
about  197 
ApplicationException annotation  229
BeanManagedPopulationManager  218, 219
begin method  220 
changePopulation method  218-229
CityFacade class  218 
CityFacade output lines  220 
commit method  217, 220 
errors, handling  226 
Exception class  226 
executeUpdate method  219, 224
getRollbackOnly method  225 
getStatus method, using  220
getTransactionStateString  221
getTransactionStateString method  220
handling, manually  216 
handling, ways  203 
java.lang.Exception derived class  226
javax.transaction.Status interface  220
JPQL UPDATE command  220
PopulationServlet, executing  224
PopulationServlet exception  225 
println method  219



��0

println methods  218 
processRequest method  219
restrictions  220 
rollback method  223 
rolling back  222 
rolling back, approach  223
SessionContext variable  224
setRollbackOnly method  217, 222-224
Status.STATUS_MARKED_ROLLBACK  225
timeouts, using with  229
updatePopulationManager method  224
UserTransaction’s begin method  217
UserTransaction’s rollback  222
UserTransaction’s rollback method  223
UserTransaction class  225
UserTransaction object  217

transactions, deployment descriptors
using for  366-369

try block  15, 21

U
Update clause  185
updatePopulationManager method  224
updatePopulation method  199, 212
update query

about  185 
entityManager variable  187
executeUpdate method  186, 187
MedicationFacade class  186
PatientServlet  186 
Set clause  185 
Update clause  185 
working  187

UPDATE query command  202
urlPatterns parameter  13
UserTransaction’s begin method  217
UserTransaction’s rollback  222
UserTransaction’s rollback method  223
UserTransaction class  220, 225
UserTransaction object  217

V
validateAllowance method  259
validate method  158
validateParameters method  277, 278
ValidationInterceptor  275

validator class
about  151, 154, 155
using  156-158

valueOf static method  259
verifyAccess method  281 
volatile keyword  69 
voucher class  235 
VoucherFacade class  235, 236, 237
VoucherManager’s approve method  256
VoucherManager class  235, 239

W
WAR  347, 348 
WebService endpointInterface element  330
Web Services Description Language (WSDL)  

327 
Web Services Description Language (WSDL) 

file  23
weight field  127
where clause

about  174 
between operator  177, 178
comparison operators  177
displayAll method  175
dosage field  176
getResultList method  176
IN Operator  179, 180 
IS NULL operator  180 
IS Operator  179, 180 
Like operator  178
PatientFacade class  175
PrintWriter object  175, 176
using, process  174
WHERE keyword  174
working  176

WHERE keyword  174 
write lock  49 
Windows 7 Professional 64 bit edition  8

Y
year attribute  310

Z
zoneinfo database  310



Thank you for buying
EJB 3.1 Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective 
MySQL Management" in April 2004 and subsequently continued to specialize in publishing 
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting 
and customizing today's systems, applications, and frameworks. Our solution based books give 
you the knowledge and power to customize the software and technologies you're using to get 
the job done. Packt books are more specific and less general than the IT books you have seen in 
the past. Our unique business model allows us to bring you more focused information, giving 
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, 
cutting-edge books for communities of developers, administrators, and newbies alike.  
For more information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to 
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to 
books published on enterprise software – software created by major vendors, including (but 
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer 
information relevant to a range of users of this software, including administrators, developers, 
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should 
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like 
to discuss it first before writing a formal book proposal, contact us; one of our commissioning 
editors will get in touch with you. 

We're not just looking for published authors; if you have strong technical skills but no writing 
experience, our experienced editors can help you develop a writing career, or simply get some 
additional reward for your expertise.



EJB 3 Developer Guide
ISBN: 78-1-847195-60-9             Paperback: 276 pages

A Practical Guide for developers and architects to the 
Enterprise Java Beans Standard 

1. A rapid introduction to the features of EJB 3

2. EJB 3 features explored concisely with 
accompanying code examples

3. Easily enhance Java applications with new, 
improved Enterprise Java Beans

EJB 3.0 Database Persistence
with Oracle Fusion Middleware
11g
ISBN: 978-1-849681-56-8             Paperback: 448 pages

A complete guide to building EJB 3.0 database 
persistent applications with Oracle Fusion 
Middleware 11g tools

1. Integrate EJB 3.0 database persistence with 
Oracle Fusion Middleware tools: WebLogic 
Server, JDeveloper, and Enterprise Pack for 
Eclipse

2. Automatically create EJB 3.0 entity beans from 
database tables

3. Learn to wrap entity beans with session beans 
and create EJB 3.0 relationships

Please check www.PacktPub.com for information on our titles



JDBC 4.0 and Oracle JDeveloper
for J2EE Development
ISBN: 978-1-847194-30-5             Paperback: 444 pages

A J2EE developer's guide to using Oracle 
JDeveloper's integrated database features to build 
data-driven applications

1. Develop your Java applications using JDBC and 
Oracle JDeveloper

2. Explore the new features of JDBC 4.0

3. Use JDBC and the data tools in Oracle 
JDeveloper

4. Configure JDBC with various application servers

Processing XML documents with
Oracle JDeveloper 11g
ISBN: 978-1-847196-66-8            Paperback: 384  pages

Creating, validating, and transforming XML 
documents with Oracle's ID

1. Will get the reader developing applications for 
processing XML in JDeveloper 11g quickly and 
easily

2. Self-contained chapters provide thorough, 
comprehensive instructions on how to use 
JDeveloper to create, validate, parse, transform, 
and compare XML documents.

3. The only title to cover XML processing in 
Oracle JDeveloper 11g, this book includes 
information on the Oracle XDK 11g APIs.

Please check www.PacktPub.com for information on our titles


	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started With EJBs
	Introduction
	Creating a simple session EJB
	Accessing a session bean using dependency injection
	Accessing the session bean using JNDI
	Creating a simple message-driven bean
	Sending a message to a message-driven bean
	Accessing an EJB from a web service (JAX-WS)
	Accessing an EJB from a web service (JAX-RS)
	Accessing an EJB from an Applet
	Accessing an EJB from JSP
	Calling an EJB from JSF
	Accessing an EJB from a Java Application using JNDI
	Accessing an EJB from a Java Application using an embeddable container
	Accessing the EJB container

	Chapter 2: Session Beans
	Introduction
	Creating a stateless session bean
	Creating a stateful session bean
	Creating a singleton bean
	Using multiple singleton beans
	Using container managed concurrency
	Using bean managed concurrency
	Controlling the initialization process
	Using session beans with more than one business interface
	Understanding parameter behavior and granularity
	Using an asynchronous method to create a background process

	Chapter 3: Message-Driven Beans
	Introduction
	Handling a string-based message
	Handling a byte-based message
	Handling a stream-based message
	Handling a map-based message
	Handling an object-based message
	Using an MDB in a point-to-point application
	Using MDB in a publish-and-subscribe application
	Specifying which types of message to receive using the message selector
	Browsing messages in a message queue

	Chapter 4: EJB Persistence
	Introduction
	Creating an entity 
	Creating an entity facade
	Using the EntityManager
	Controlling the Object-Relationship Mapping (ORM) process
	Using embeddable classes in entities
	Using application-managed persistence
	Validating persistent fields and properties
	Validating null fields
	Validating string fields
	Validating temporal fields
	Validation using regular expressions
	Validating Boolean Fields
	Validating Integer Fields
	Using the Validator class

	Chapter 5: Querying Entities using JPQL and the Criteria API
	Introduction
	Populating the Patient and Medication tables
	Using the Select query
	Using the Where clause
	Controlling the number of entities returned by a Select query
	Using the Delete query
	Using the Update query
	Using parameters in a query
	Using a Named query
	Using the Criteria API

	Chapter 6: Transaction Processing
	Introduction
	Creating the Demonstration classes
	Handling transactions the easy way
	Using the SessionSynchronization interface with session beans
	Understanding how the 
	TransactionAttributeType affects transactions
	Handling transactions manually
	Rolling back a transaction
	Handling errors in a transaction
	Using timeouts with transactions

	Chapter 7: EJB Security
	Introduction
	Creating the SecurityApplication
	Configuring the server to handle security
	Understanding and declaring roles
	Controlling security using declarations
	Propagating Identity
	Controlling security programmatically

	Chapter 8: Interceptors
	Introduction
	Creating the Registration Application
	Defining and using interceptors
	Using the InvocationContext to verify parameters
	Using interceptors to enforce security
	Using interceptors to handle transactions
	Using interceptors to handle application statistics
	Using lifecycle methods in interceptors

	Chapter 9: Timer Services
	Introduction
	Setting up the ReportsApplication
	Creating and using declarative timers
	Creating and using programmatic timers
	Understanding calendar-based scheduling
	Using the timer interface
	Using persistent and non-persistent timers
	Creating timers upon application deployment
	Using interceptors with timers

	Chapter 10: Web Services
	Introduction
	Creating an EJB-based web service using JAX-WS
	Creating an EJB-based web service using JAX-RS
	Using an MDB as part of a web service

	Chapter 11: Packaging the EJB
	Introduction
	Understanding an application's JAR files using the jar command
	Understanding class loading
	Using deployment descriptors for interceptors
	Using deployment descriptors for timer interceptors
	Using deployment descriptor for default interceptors
	Using deployment descriptors for callbacks interceptors
	Using a deployment descriptor for transactions
	Using deployment descriptors for security

	Chapter 12: EJB Techniques
	Introduction
	Exception handling and EJBs
	Using logging within an EJB
	Using an interceptor for logging and exception handling
	Creating your own interceptor
	Using time within an EJB
	How to support currency
	Efficient manipulation of strings

	Index



