als

4]

Essen

K

K

i

Wi
(e

0
4

ey

7

Enterprise Developer Handbook

Arun Gupia

O’REILLY"

Programming/Java

Java EE 7 Essentials

Get up to speed on the principal technologies in the Java Platform,
Enterprise Edition 7, and learn how the latest version embraces
HTML5, focuses on higher productivity, and provides functionality
to meet enterprise demands. Written by Arun Gupta, a key member
of the Java EE team, this book provides a chapter-by-chapter survey
of several Java EE 7 specifications, including WebSockets, Batch
Processing, RESTful Web Services, and Java Message Service.

You'll also get self-paced instructions for building an end-to-end
application with many of the technologies described in the book,
which will help you understand the design patterns vital to Java EE
development.

m Understand the key components of the Java EE platform, with
easy-to-understand explanations and extensive code samples

B Examine all the new components that have been added to
the Java EE 7 platform, such as WebSockets, JSON, Batch, and
Concurrency

B Learn about RESTful Web Services, SOAP XML-based
messaging protocol, and Java Message Service

B Explore Enterprise JavaBeans, Contexts and Dependency
Injection, and the Java Persistence API

m Discover how different components were updated from Java
EE 6 to Java EE 7

Arun Gupta, a Java evangelist working at Oracle, has several years
of experience working with the Java platform. He has been with
the Java EE team since its inception and has contributed to all of
the releases.

Twitter: @oreillymedia
facebook.com/oreilly

O’REILLY"

oreilly.com

US $39.99 CAN $41.99
ISBN: 978-1-449-37017-6

53999 -L
M [=];
781 176 " —

4491370

9 8

Java EE 7 Essentials

Arun Gupta

O’REILLY"

Beijing - Cambridge - Farnham - Kéln - Sebastopol - Tokyo

Java EE 7 Essentials
by Arun Gupta

Copyright © 2013 Arun Gupta. All rights reserved.
Printed in the United States of America.
Published by O’'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Mike Loukides and Meghan Blanchette Indexer: Angela Howard
Production Editor: Kara Ebrahim Cover Designer: Randy Comer
Copyeditor: Rachel Monaghan Interior Designer: David Futato
Proofreader: Linley Dolby lllustrator: Rebecca Demarest
August 2013: First Edition

Revision History for the First Edition:

2013-08-08: First release
See http://oreilly.com/catalog/errata.csp?isbn=9781449370176 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’'Reilly logo are registered trademarks of O'Reilly
Media, Inc. Java EE 7 Essentials, the image of glassfish, and related trade dress are trademarks of O’Reilly
Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade-
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-37017-6
[LSI]

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449370176

To Menka, the eternal sunshine in my life. You make my days shine and life upbeat.

To Aditya and Mihir, your stories and games are invaluable to me.

Foreword
Preface

1. Java Platform, Enterprise Edition

2. Servlets

Introduction
Deliverables
What’s New in Java EE 7

WebServlet

Servlet Filters

Event Listeners
Asynchronous Support
Nonblocking I/O

Web Fragments
Security

Resource Packaging
Error Mapping
Handling Multipart Requests
Upgrade Processing

. JavaServerFaces........covvvviviiininnes

Facelets

Resource Handling

Composite Components

Request Processing Life-Cycle Phases
Ajax

HTTP GET

Server and Client Extension Points

ooooooooooooooooooooooooooooooooooo

Table of Contents

................................. 33

34
37
38
41
43
46
47

Validating Data

Navigation Rules

Faces Flow

Resource Library Contracts

Passthrough Attributes and HTML5-Friendly Markup
Component Tags

RESTIUl Web Services. ..o v vriiiiiiiiiiiiiiiiieiinnenenenes

Resources

Binding HTTP Methods

Multiple Resource Representations
Binding a Request to a Resource
Entity Providers

Client API

Mapping Exceptions

Filters and Entity Interceptors
Validation of Resources

. SOAP-Based Webh Services.ovvuveririniineneenenenneneneenss

Web Service Endpoints
Provider-Based Dynamic Endpoints
Endpoint-Based Endpoints

Web Service Client

Dispatch-Based Dynamic Client
Handlers

 JSON Processing.ovvvveineeneenneunenneeneeneeneonnsnnsannes

Streaming API
Consuming JSON Using the Streaming API
Producing JSON Using the Streaming API
Object Model API
Consuming JSON Using the Object Model API
Producing JSON Using the Object Model API

B 111 1Y Yo <] R

Annotated Server Endpoint
Programmatic Server Endpoint
Annotated Client Endpoint
Programmatic Client Endpoint
JavaScript WebSocket Client
Encoders and Decoders

50
51
51
57
59
60

73
73
77
79
81
82
84
87
88
94

101
102
103
105
107

m
112
112
114
116
116
117

121
122
128
132
135
137
138

vi

| Table of Contents

10.

1.

12.

Integration with Java EE Security

Enterprise JavaBeans...............cooeiiiiiinntn

Stateful Session Beans
Stateless Session Beans
Singleton Session Beans
Life-Cycle Event Callbacks
Message-Driven Beans
Portable Global JNDI Names
Transactions
Asynchronous Invocation
Timers

Embeddable API

EJB Lite

. Contexts and Dependency Injection................

Discovery of Beans
Injection Points
Qualifier and Alternative
Producer and Disposer
Interceptors
Decorators

Scopes and Contexts
Stereotypes

Events

Portable Extensions
Built-in Beans
Life-Cycle Callbacks

Concurrency Utilities............coovvviiiinnnnns,

Asynchronous Tasks
Schedule Tasks

Managed Threads

Dynamic Contextual Objects

BeanValidation.........ccovvviviiiiniiininns.

Built-in Constraints

Defining a Custom Constraint
Validation Groups

Method and Constructor Constraint

JavaTransaction........covvevieiiiiiiniennnnnnns

142

......................... 145

145
148
150
151
154
156
157
159
160
164
165

.......................... 167

167
170
171
173
174
178
179
181
182
183
185
186

.......................... 189

189
194
197
198

.......................... 203

203
207
210
212

Table of Contents | vii

13.

14.

15.

16.

User-Managed Transactions
Container-Managed Transactions
@TransactionScoped

Java Persistence. ..ovviiii i e

Entities

Persistence Unit, Persistence Context, and Entity Manager

Schema Generation

Create, Read, Update, and Delete Entities

Entity Listeners

Stored Procedures
Validating the Entities
Transactions and Locking
Caching

Java Message Service.oovviiiiiiiiiiiiiiiienniennn,

Sending a Message

Receiving a Message Synchronously
Receiving a Message Asynchronously
Quality of Service

Temporary Destinations

BatchProcessing.........ccovviiiiiiiiiiiiiiiiiinnnnns.

Chunk-Oriented Processing
Custom Checkpointing
Exception Handling

Batchlet Processing

Listeners

Job Sequence
Flow
Split
Decision

Partitioning the Job

Build an End-to-End Application.................coveennnt

Introduction

Software Requirements
Problem Statement

Lab Flow
Walkthrough of a Sample Application
Show Booking (JavaServer Faces)
Chat Room (Java API for WebSocket)

215
216
218

219
219
222
226
229
232
235
237
239
241

245
247
251
253
254
255

257
258
263
264
265
266
267
268
269
269
271

275
275
275
276
277
278
283
292

viii

| Table of Contents

View and Delete Movies (Java API for RESTful Web Services)
Add Movie (Java API for JSON Processing)

Ticket Sales (Batch Applications for the Java Platform)

Movie Points (Java Message Service 2)

Conclusion

Troubleshooting

Completed Solution

A. Fu

rtherReading.covviiniiiiiiiiii ittt i iiie e eenenens

299
304
310
318
326
327
327

Table of Contents

ix

Foreword

As Java EE platform specification lead, I've been guiding the path of Java EE since its
introduction in 1999. Arun has been a key member of the Java EE team from the be-
ginning. The Java EE platform has evolved significantly over thelast 13 years. The release
of Java EE 5 in 2006 was just the beginning of a theme that continues today: making it
easier to develop Java EE applications. Java EE 6 in 2009 contributed significantly to this
theme with the inclusion of CDI. Java EE 7 is the latest release continuing this theme of
focusing on developer productivity. Arun has been involved in several different areas
of Java EE, but the common thread of his involvement has been understanding real
developers and real applications. His background with Java EE, and his current role as
technology evangelist for Java EE, make him uniquely qualified to introduce developers
to the latest Java EE technology.

In this book, Arun surveys all the key technologies of the latest version of Java EE, giving
developers a taste for these many new capabilities, and showing just how easy it is to
write Java EE applications. Arun expands on his popular Java EE 6 Pocket Guide to cover
more technologies in more depth. Particular attention is paid to technologies new to
Java EE 7, and to new features of existing technologies. Developers with some Java EE
experience, as well as developers new to Java EE, will find this a very helpful overview
of Java EE 7.

Each chapter covers a Java EE technology in just enough depth to help you understand
what the technology does, what it’s best used for, and how to get started using it. While
it’s not a complete tutorial, an experienced developer will find that it provides just the
right level of detail to understand the technology. The chapters are full of short code
fragments that developers will appreciate.

After describing the key technologies of Java EE, in the last chapter of the book, Arun
pullsitall together with a hands-on lab that walks you through the process of developing
a real application that uses most of these technologies. This is where Arun’s experience
really shines. There’s nothing like seeing the code for a running application to show you
how these technologies actually work in practice.

Xi

Java EE is a rich platform that we’ve been developing over many years. It can be daunting
to sort through all the old and new versions of technologies to find the best way to write
Java EE applications. We've made it much easier to write Java EE applications in recent
years, but sometimes that message doesn’t come through when reading our many Java
EE specifications. Arun’s years of experience in working with application developers,
teaching hands-on labs, and evangelizing Java EE put him in a unique position to pro-
vide all the key information at just the right depth. This book is a great way for developers
to get an overview of the Java EE platform, and especially the new features in Java EE 7.

—Bill Shannon
Architect Java EE Platform Specification Lead, Oracle
June 2013

xi | Foreword

Preface

The Java EE 7 platform builds upon previous versions of the platform and focuses on
higher productivity and embracing HTML5. This book is directed toward readers who
want to get a quick overview of the platform and to keep coming back to review the
basics.

This book provides an overview of the key specifications in the Java EE 7 platform (one
specification per chapter). This book is by no means intended to be an exhaustive guide
or tutorial that explains each and every concept of different specifications. However,
the main concepts from the different specifications are explained using simple code
samples. No prior knowledge of earlier versions of the platform is required, but you’ll
need some basic understanding of Java to understand the code.

A significant part of this book is derived from Java EE 6 Pocket Guide (O’Reilly). New
chapters have been added to cover the new technologies in the platform. New sections
have been added or existing sections updated to reflect the changes in the platform. If
you have read the Java EE 6 Pocket Guide, then you can read this book at a much faster
pace; otherwise, you can read this book from beginning to end. Alternatively, you can
read specific chapters based upon your interest.

I also provide self-paced instructions on how to build an end-to-end application using
most of the technologies described. This allows developers to understand the design
patterns they can apply to build a real-life application using Java EE 7.

I hope you will enjoy the book!

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Xiii

http://shop.oreilly.com/product/0636920026464.do

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at
http://oreil ly/javaee7-files.

This book is here to help you get your job done. In general, if this book includes code
examples, you may use the code in your programs and documentation. You do not need
to contact us for permission unless you're reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O'Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex-
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Java EE 7 Essentials by Arun Gupta (O’Reil-
ly). Copyright 2013 Arun Gupta, 978-1-449-37017-6”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online

Safari Books Online (www.safaribooksonline.com) is an on-

Sa fa Il demand digital library that delivers expert content in both book and

Booksontine yideo form from the world’s leading authors in technology and
business.

Technology professionals, software developers, web designers, and business and crea-
tive professionals use Safari Books Online as their primary resource for research, prob-
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O'Reilly Media, Prentice Hall Professional, Addison-Wesley

xiv | Preface

http://oreil.ly/javaee7-files
mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals

Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol-
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/javaee7.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

This book would not have been possible without support from a multitude of people.

First and foremost, many thanks to O’Reilly for trusting in me and providing an op-
portunity to write this book. Their team provided excellent support throughout the
editing, reviewing, proofreading, and publishing process.

At O’Reilly, Meghan Blanchette provided excellent editorial help throughout all the
stages, helping with interim reviews, providing feedback on styling, arranging technical
reviews, and connecting me with the rest of the team when required.

Rachel Monaghan and Kara Ebrahim helped with copyediting and making sure to pro-
vide the finishing touches. And thanks to the rest of the O’'Reilly team with whom I did
not interact directly, but who were helping in many other ways.

Preface | xv

http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/javaee7
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

The detailed proofreading and technical review by Markus Eisele (@myfear, http://
blog.eisele.net), John Yeary (@jyeary, http://javaevangelist.blogspot.com), and Bert Ert-
man (@BertErtman, http://bertertman.wordpress.com) ensured that the relevant con-
tent was covered accurately. Their vast experience and knowledge showed in the depth
of their comments.

Iam grateful for the numerous discussions with developers around the world that helped
me understand the technology better. Thanks to my colleagues at Oracle and the dif-
ferent JSR specification leads for explaining the intended use cases of different tech-
nologies. And thanks to everybody else in my life, who provided much-needed breaks
from book writing.

xvi | Preface

http://blog.eisele.net
http://blog.eisele.net
http://javaevangelist.blogspot.com
http://bertertman.wordpress.com

CHAPTER 1
Java Platform, Enterprise Edition

Introduction

The Java Platform, Enterprise Edition (Java EE), provides a standards-based platform
for developing web and enterprise applications. These applications are typically de-
signed as multitier applications, with a frontend tier consisting of a web framework, a
middle tier providing security and transactions, and a backend tier providing connec-
tivity to a database or a legacy system. These applications should be responsive and
capable of scaling to accommodate the growth in user demand.

The Java EE platform defines APIs for different components in each tier, and also pro-
vides some additional services such as naming, injection, and resource management
that span across the platform. These components are deployed in containers that provide
runtime support. Containers provide a federated view of the underlying Java EE APIs
to the application components. Java EE application components never interact directly
with other Java EE application components. They use the protocols and methods of the
container for interacting with each other and with platform services. Interposing a
container between the application components and the Java EE services allows the con-
tainer to transparently inject the services required by the component, such as declarative
transaction management, security checks, resource pooling, and state management.
This container-based model and abstraction of resource access allows the platform to
offload the developer from common infrastructure tasks.

Each component of the platform is defined in a separate specification that also describes
the API, javadocs, and expected runtime behavior.

Java EE 7 was released in June 2013 and provides a simple, easy-to-use, and complete
stack for building such web and enterprise applications. The previous versions of the
platform, starting with Java EE 5 and continuing with Java EE 6, took the first steps in
providing a simplified developer experience.

The Java EE 7 platform built upon the previous version with three main goals:
Embracing HTML5

The WebSocket protocol, developed as part of the collection of technologies that
make up HTMLS5, brings a new level of ease of development and network efficiency
to modern, interactive web applications. It provides a two-way, full-duplex com-
munication channel between a client and a server over a single TCP (transmission
control protocol) channel. Java EE 7 defines a new standard API to develop and
deploy WebSocket clients and endpoints.

JSON is the lingua franca of the Web for lightweight data exchange. Until now,
developers were required to bundle third-party libraries for JSON processing. Java
EE 7 defines a new portable API to parse, generate, transform, and query JSON
using a Streaming API or Object Model API.

JavaServer Faces (JSF) introduces pass-through attributes and elements that allow
near-total control over the user experience of each individual element in the view.
This allows HTML5-friendly markup to be easily embedded in a page.

Higher productivity

The JMS API has been greatly simplified. JMSContext provides the unified func-
tionality of Connection and Session objects. In addition, several JMS interfaces
implement Autocloseable and thus are automatically closed after use. Finally,
correct error handling, runtime exceptions instead of checked exceptions, method
chaining on JMSProducer, and simplified message sending are further examples of
features that the JMS API has simplified.

Without the Client API (introduced in JAX-RS 2), developers are required to use
basic HttpUrlConnection APIs and write all the surrounding code.

More defaults for the application’s use—such as a preconfigured DataSource for
accessing databases in operational environments, a preconfigured JMS Connec
tionFactory for accessing a JMS provider, and a preconﬁgured ManagedExecutor
Service—provide a seamless out-of-the-box experience for new developers start-
ing with the platform.

The Contexts and Dependency Injection (CDI) specification is now a core com-
ponent model, and is enabled by default. This makes the platform a lot more co-
hesive and integrated. CDI interceptors are now more widely applicable to beans.
@Transactional annotation brings transactional semantics to POJOs (plain old
Java objects), outside of an EJB (Enterprise JavaBean). Bean Validation allows au-
tomatic validation of method arguments and results using interceptors.

Less boilerplate text, more defaults, and a cohesive integrated platform together
boost developers’ productivity when building applications using the latest version
of the platform.

2

Chapter 1: Java Platform, Enterprise Edition

Enterprise demands
Batch Applications for the Java Platform is a new functionality in the platform and
very important for enterprise customers. It allows developers to easily define non-
interactive, bulk-oriented, long-running jobs in an item- or task-oriented way.

Concurrency Utilities for Java EE, another functionality new to the platform, is an
extension of the Java SE Concurrency Utilities API, for use in the Java EE container-
managed environment so that the proper container-managed runtime context can
be made available for the execution of these tasks.

This functionality in the platform allows the developer to leverage the standard
APIs and reduces the dependency on third-party frameworks.

Prior to Java EE 7, the Java EE 6 platform improved upon the developer productivity
features and added a lot more functionality.

Deliverables
The Java EE 7 platform was developed as Java Specification Request (JSR) 342 following
JCP 2.9. The JCP process defines three key deliverables for any JSR:
Specification
A formal document that describes the proposed component and its features.

Reference Implementation (RI)
Binary implementation of the proposed specification. The RI helps to ensure that
the proposed specifications can be implemented in a binary form and provides
constant feedback to the specification process.

The RI of Java EE is built in the GlassFish community.

Technology Compliance Kit (TCK)
A set of tests that verify that the RI is in compliance with the specification. This
allows multiple vendors to provide compliant implementations.

Java EE 7 consists of the platform specification that defines requirements across the
platform. It also consists of the following component specifications:

Web technologies
* JSR 45: Debugging Support for Other Languages 1.0

o JSR 52: Standard Tag Library for JavaServer Pages (JSTL) 1.2
o JSR 245: JavaServer Pages (JSP) 2.3

e JSR 340: Servlet 3.1

o JSR 341: Expression Language 3.0

o JSR 344: JavaServer Faces (JSF) 2.2

Deliverables | 3

http://jcp.org/en/jsr/detail?id=342
http://glassfish.org

o JSR 353: Java API for JSON Processing (JSON-P) 1.0
o JSR 356: Java API for WebSocket 1.0
Enterprise technologies
« JSR 236: Concurrency Utilities for Java EE 1.0
e JSR 250: Common Annotations for the Java Platform 1.2
o JSR 316: Managed Beans 1.0
o JSR 318: Interceptors 1.2
o JSR 322: Java EE Connector Architecture (JCA) 1.7
* JSR 330: Dependency Injection for Java 1.0
o JSR 338: Java Persistence API (JPA) 2.1
o JSR 343: Java Message Service (JMS) 2.0
o JSR 345: Enterprise JavaBeans (EJB) 3.2

o JSR 346: Contexts and Dependency Injection (CDI) for the Java EE
Platform 1.1

o JSR 349: Bean Validation 1.1
o JSR 352: Batch Applications for Java Platform 1.0
o JSR 907: Java Transaction API (JTA) 1.2
e JSR 919: JavaMail 1.5
Web service technologies
o JSR 93: Java API for XML Registries (JAXR) 1.0 (optional for Java EE 7)
o JSR 101: Java API for XML-based RPC (JAX-RPC) 1.1 (optional for Java EE 7)
 JSR 109: Implementing Enterprise Web Services 1.4
o JSR 181: Web Services Metadata for the Java Platform 2.1
o JSR 222: Java Architecture for XML Binding (JAXB) 2.2
o JSR 224: Java API for XML Web Services (JAX-WS) 2.2
o JSR 339: Java API for RESTful Web Services (JAX-RS) 2.0
Management and security technologies
o JSR 77: J2EE Management API 1.1

o JSR 88: Java Platform EE Application Deployment API 1.2 (optional for Java
EE7)

o JSR 115: Java Authorization Contract and Containers (JACC) 1.5

4 | Chapter 1:Java Platform, Enterprise Edition

o JSR 196: Java Authentication Service Provider Inteface for Containers
(JASPIC) 1.1

The different components work together to provide an integrated stack, as shown in

Figure 1-1.
Web EIE JAX-RS JSON Web
ol Fragments £L JAX-WS Socket

Extensions)
Servlets
(r N [N)| =
=
al Interceptors, Common Concurrency g2
JTA Annotations Utilities s°
. J \. J
e ™) ()
Managed Beans Enterprise JavaBeans
. 7 - 7

[JPA][IMS JCA][Batch

Figure 1-1. Java EE 7 architecture

In Figure 1-1:

« Different components can be logically divided into three tiers: backend tier, middle
tier, and web tier. This is only a logical representation, and the components can be
restricted to a different tier based upon the application’s requirements.

« JPA and JMS provide the basic services such as database access and messaging. JCA
allows connection to legacy systems. Batch is used for performing noninteractive,
bulk-oriented tasks.

« Managed Beans and EJB provide a simplified programming model using POJOs to
use the basic services.

o CDI, Interceptors, and Common Annotations provide concepts that are applicable
to awide variety of components, such as type-safe dependency injection, addressing
cross-cutting concerns using interceptors, and a common set of annotations. Con-
currency Utilities can be used to run tasks in a managed thread. JTA enables Trans-
actional Interceptors that can be applied to any POJO.

« CDI Extensions allow you to extend the platform beyond its existing capabilities in
a standard way.

Deliverables | 5

o Web Services using JAX-RS and JAX-WS, JSE JSP, and EL define the programming
model for web applications. Web Fragments allow automatic registration of third-
party web frameworks in a very natural way. JSON provides a way to parse and
generate JSON structures in the web tier. WebSocket allows the setup of a bidirec-
tional, full-duplex communication channel over a single TCP connection.

« Bean Validation provides a standard means to declare constraints and validate them
across different technologies.

JAX-RPC (JSR 101), JAXR (JSR 93), EJB Entity Beans (part of JSR 153), and Java EE
Application Deployment (JSR 88) are pruned in this version of the platform.

The RI of Java EE 7 is built in the GlassFish Community. The GlassFish Server Open
Source Edition 4.0 provides a full Java EE 7-compliant, free, and open source application
server. It is also available in a Web Profile distribution and can be downloaded from
http://glassfish.org. The application server is easy to use (ZIP installer and NetBeans/
Eclipse/Intelli] integration), lightweight (downloads starting at 37 MB, small disk/
memory footprint), and modular (OSGi-based, containers start on demand).

Prior to Java EE 7, GlassFish Server Open Source Edition 3.1.2.2 provides a Java EE
6—compliant version application server. It also provides clustering with high availability
and centralized administration using CLI, Web-based administration console, and
REST management/monitoring APIs. The Oracle GlassFish Server is Oracle’s com-
mercially supported GlassFish server distribution and can be downloaded from http://
oracle.com/goto/glassfish. As of this writing, there are 18 Java EE 6-compliant applica-
tion servers.

The TCK s available to all Java EE licensees for testing their respective implementations.

What’s New in Java EE 7

Some new specifications have been added to improve the functionality and richness of
the platform. Several existing component specifications were revised to make them
simpler and easier to use.

The main features of the new specifications are described as follows:

Java API for WebSocket
 Enables a WebSocket client and server endpoint to be defined declaratively via
annotations on a POJO, or programmatically via interface implementation.

o Provides server-specific configuration, such as mapping that identifies a Web-
Socket endpoint in the URI space of the container, subprotocols supported by
the endpoint, and extensions required by the applications.

o Oftfers client-specific configurations such as providing custom configuration
algorithms.

6 | Chapter 1:Java Platform, Enterprise Edition

http://glassfish.org
http://oracle.com/goto/glassfish
http://oracle.com/goto/glassfish
http://bit.ly/1bC2HA1
http://bit.ly/1bC2HA1

« Enables packaging and deployment on JDK or web containers.

o Allows for integration with existing Java EE technologies.

Java API for JSON Processing
o The streaming API provides a way to parse and generate JSON in a streaming
fashion.

+ The Object Model API creates a random-access, tree-like structure that rep-
resents the JSON data in memory.

Batch Applications for Java Platform
o Allows for description of a Batch Job using Job Specification Language defined
by an XML schema. It defines a complete execution sequence of the jobs.

o Features the Batch Programming Model using interfaces, abstract classes, and
field annotations.

o Offers the Chunked and Batchlet job-processing styles.

Concurrency Utilities for Java EE
« Provides concurrency capabilities to Java EE application components, without
compromising container integrity.
o Defines managed objects: ManagedExecutorService, ManagedScheduledExe
cutorService, ContextService, and ManagedThreadFactory.

The main features of the updated specifications are described as follows:

Java API for RESTful Web Services
o Offers a new Client API that can be used to access web resources and provides
integration with JAX-RS providers.

o Supports asynchronous processing in both the Client API and the Server API.

o Defines Message Filters and Entity Interceptors as extension points to cus-
tomize the request/response processing on the client and server side.

o Supports new server-side content negotiation using qs factor.

« Enables declarative validation of fields, properties, and parameters injected
using @HeaderParam, @QueryParam, etc. Resource classes may be annotated
with constraint annotations.

Java Message Service
o Several changes have been made to make the API simpler and easier to use. For
example, Connection, Session, and other objects with a close method now
implement the java.lang.Autocloseable interface to allow them to be used
in a Java SE 7 try-with-resources statement. New methods have been added to
create a session without the need to supply redundant arguments. A new

What's New in JavakE7 | 7

method, getBody, has been added to allow an application to extract the body
directly from a Message without the need to cast it first to an appropriate sub-
type.

« A message producer can now specify that a message must not be delivered until
after a specified time interval.

o New send methods have been added to allow an application to send messages
asynchronously.

o JMS providers must now set the JMSXDeliveryCount message property.

Expression Language
o Expression Language (EL) is a specification of its own. It can be configured and
used outside of a Java EE container using ELProcessor.

o The lambda syntax is now included in EL. Using lambdas, a complete set of
collection operations, such as map and filter is now supported.

o In addition to the usual arithmetic and comparison operators, new operators
—such as an assignment operator and string concatenation operator—have
been added to make EL more expressive.

Enterprise JavaBeans
o Support for EJB 2.1, EJB QL, and JAX-RPC-based Web Service endpoints and
client view is now optional.

o Enhanced message-driven beans (MDBs) contract with a no-method message
listener interface to expose all public methods as message listener methods.
This will allow custom Resource Adapters for future MDBs.

 EJB API Groups have been defined with clear rules for an EJB Lite Container
to support other API groups. This will help define how EJB features beyond
EJB Lite can be officially added to a product that does not support full Java EE
Profile.

 Asynchronous session bean invocations and nonpersistent EJB Timer Service
are included in EJB Lite.

 An option has been added to disable passivation of stateful session beans.
Servlets

« Defines a standard mechanism to upgrade existing HTTP connection to a dif-
ferent protocol using HttpUpgradeHandler.

o Offers nonblocking request and response processing for async servlets.

o Defines rules for which HTTP methods are covered by <security-
constraints>.

8 | Chapter 1: Java Platform, Enterprise Edition

JavaServer Faces
o Faces Flow provides an encapsulation of related views/pages with application-
defined entry and exit points.

 Resource Library Contracts enable developers to apply facelet templates to an
entire application in a reusable and interchangeable manner.

o HTML5-friendly markup allows near-total control over the user experience of
each individual element in the view.

o Stateless Views mean developers no longer have to save the UIComponent state.
This allows applications with JavaScript components to manage the state in-
stead of JSF doing it for them.

Java Persistence
o Database schema and tables may be generated by using
javax.persistence.schema-generation.* properties.

« Unsynchronized Persistence Contexts mean a persistence context does not
have to be enlisted in a transaction. Such persistence contexts can explicitly
join a transaction.

o Bulk update/delete is supported via Criteria APL
o Predefined and user-defined functions can be invoked using FUNCTION.
o Stored procedures can be invoked using StoredProcedureQuery and

@NamedStoredProcedureQuery.

Interceptors
o Associating interceptors using InterceptorBinding is now part of this speci-
fication, instead of CDL

o @AroundConstruct designates an interceptor method that receives a callback
when the target class constructor is invoked.

o Method-level interceptors can be extended to life-cycle callbacks, adding
constructor-level interceptors.

o Priority ranges can be dedicated for ordering interceptors using interceptor
binding.

Contexts and Dependency Injection
o Allows for automatic enabling of CDI for beans with a scope annotation, and
EJBs, in Java EE.

o Supports global ordering and enabling of interceptors, decorators, and alter-
natives using the @Priority annotation.

 Addsthe @Vetoed annotation, allowing easy programmatic disabling of classes.

What's NewinJavakE7 | 9

Bean Validation
« Validation constraints can be applied to the parameters and return values of
arbitrary methods and constructors.

« Integration points with CDI have been increased and reworked.

o The targeted group can be altered when validation cascading is happening.

Java Transaction
o @Transactional provides the application to declaratively control transaction
boundaries on CDI-managed beans, as well as classes defined as managed
beans by the Java EE specification, at both the class and method level where
method-level annotations override those at the class level.

o @TransactionScopedisanew CDI scope that defines bean instances whose life
cycle is scoped to the currently active JTA transaction.

JavaMail
o @YailSessionDefinition and @MailSessionDefintions defines MailSes
sion to be registered with JNDI.

Java EE Connector Architecture
e Provides @AdministeredObjectDefinition, @AdministeredObjectDefin
tions, @ConnectorFactoryDefinition, and @ConnectorFactoryDefinti
tions to define a connector-administered object and factory to be registered
in JNDI.

10 | Chapter1:Java Platform, Enterprise Edition

CHAPTER 2
Servlets

Servlets are defined as JSR 340, and the complete specification can be downloaded.

A servlet is a web component hosted in a servlet container and generates dynamic
content. The web clients interact with a servlet using a request/response pattern. The
servlet container is responsible for the life cycle of the servlet, receives requests and
sends responses, and performs any other encoding/decoding required as part of that.

WebServlet

A servlet is defined using the @WebServlet annotation on a POJO, and must extend the
javax.servlet.http.HttpServlet class.

Here is a sample servlet definition:

("/account")
public class AccountServlet extends javax.servlet.http.HttpServlet {
Y/
}

The fully qualified class name is the default servlet name, and may be overridden using
the name attribute of the annotation. The servlet may be deployed at multiple URLs:

(urlPatterns={"/account", "/accountServlet"})
public class AccountServlet extends javax.servlet.http.HttpServlet {
/). ..
}

The @WebInitParam can be used to specify an initialization parameter:

(urlPatterns="/account",
initParams={
(name="type", value="checking")

}

n

http://jcp.org/aboutJava/communityprocess/final/jsr340/index.html

public class AccountServlet extends javax.servlet.http.HttpServlet {

V/2
}

The HttpServlet interface has one doXXX method to handle each of HTTP GET, POST,
PUT, DELETE, HEAD, OPTIONS, and TRACE requests. Typically the developer is concerned
with overriding the doGet and doPost methods. The following code shows a servlet
handling the GET request:

("/account")
public class AccountServlet
extends javax.servlet.http.HttpServlet {

protected void doGet(
HttpServletRequest request,
HttpServletResponse response) {
/) ..
}
}

In this code:

o TheHttpServletRequestandHttpServletResponse capture the request/response
with the web client.

o The request parameters; HTTP headers; different parts of the path such as host,
port, and context; and much more information is available from HttpServletRe
quest.

The HTTP cookies can be sent and retrieved as well. The developer is responsible for
populating the HttpServletResponse, and the container then transmits the captured
HTTP headers and/or the message body to the client.

This code shows how an HTTP GET request received by a servlet displays a simple
response to the client:

protected void doGet(HttpServletRequest request,
HttpServletResponse response) {
try (PrintWriter out = response.getWriter()) {
out.println("<html><head>");
out.println("<title>MyServlet</title>");
out.println("</head><body>");
out.println("<h1>My First Servlet</h1>");
Y72
out.println("</body></html>");
} finally {
V72N
}

12 | Chapter2: Servlets

Request parameters may be passed in GET and POST requests. In a GET request, these
parameters are passed in the query string as name/value pairs. Here is a sample URL to
invoke the servlet explained earlier with request parameters:

. . ./account?tx=10

In a POST request, the request parameters can also be passed in the posted data that is
encoded in the body of the request. In both GET and POST requests, these parameters
can be obtained from HttpServletRequest:

protected void doGet(HttpServletRequest request,
HttpServletResponse response) {
String txValue = request.getParameter("tx");
/e ..
}

Request parameters can differ for each request.

Initialization parameters, also known as init params, may be defined on a servlet to store
startup and configuration information. As explained earlier, @ebInitParam is used to
specify init params for a servlet:

String type = null;

public void init(ServletConfig config) throws ServletException {
type = config.getInitParameter("type");
Y72

}

You can manipulate the default behavior of the servlet’s life-cycle call methods by over-
riding the init, service, and destroy methods of the javax.servlet.Servlet inter-
face. Typically, database connections are initialized in init and released in destroy.

You can also define a servlet using the servlet and servlet-mapping elements in the
deployment descriptor of the web application, web.xml. You can define the Account
Servlet using web.xml:

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.1"
xmlns="http://xmlns.jcp.org/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd"s
<servlet>
<servlet-name>AccountServlet</servlet-name>
<servlet-class>org.sample.AccountServliet</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>AccountServlet</servlet-name>
<url-pattern>/account</url-pattern>

WebServlet | 13

</servlet-mapping>
</web-app>
The annotations cover most of the common cases, so web.xml is not required in those
cases. But some cases, such as ordering of servlets, can only be done using web.xml.

If the metadata-complete element in web.xml is true, then the annotations in the class
are not processed:

<web-app version="3.1"
xmlns="http://xmlns.jcp.org/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd"
metadata-complete="true"s>

/...

</web-app>
The values defined in the deployment descriptor override the values defined using
annotations.

A servlet is packaged in a web application in a .war file. Multiple servlets may be pack-
aged together, and they all share a servlet context. The ServletContext provides detail
about the execution environment of the servlets and is used to communicate with the
container—for example, by reading a resource packaged in the web application, writing
to a logfile, or dispatching a request.

The ServletContext can be obtained from HttpServletRequest:

protected void doGet(HttpServletRequest request,
HttpServletResponse response) {
ServletContext context = request.getServletContext();
/) ..
}

A servlet can send an HTTP cookie, named JSESSIONID, to the client for session track-
ing. This cookie may be marked as HttpOnly, which ensures that the cookie is not
exposed to client-side scripting code, and thus helps mitigate certains kinds of cross-
site scripting attacks:

SessionCookieConfig config = request.getServletContext().
getSessionCookieConfig();
config.setHttpOnly(true);

Alternatively, URL rewriting may be used by the servlet as a basis for session tracking.
The ServletContext.getSessionCookieConfig method returns SessionCookieCon
fig, which can be used to configure different properties of the cookie.

The HttpSession interface can be used to view and manipulate information about a
session such as the session identifier and creation time, and to bind objects to the session.
A new session object may be created:

14 | Chapter2: Servlets

protected void doGet(HttpServletRequest request,
HttpServletResponse response) {
HttpSession session = request.getSession(true);
/) ..
}

The session.setAttribute and session.getAttribute methods are used to bind
objects to the session.

A servlet may forward a request to another servlet if further processing is required.
You can achieve this by dispatching the request to a different resource using Reques
tDispatcher, which can be obtained from HttpServletRequest.getRequestDispatch
er or ServletContext.getRequestDispatcher. The former can accept a relative path,
whereas the latter can accept a path relative to the current context only:

protected void doGet(HttpServletRequest request,
HttpServletResponse response) {
request.getRequestDispatcher("bank").forward(request, response);
/). ..
}

In this code, bank is another servlet deployed in the same context.

The ServletContext.getContext method can be used to obtain ServletContext for
foreign contexts. It can then be used to obtain aRequestDispatcher, which can dispatch
requests in that context.

You can redirect a servlet response to another resource by calling the HttpServletRes
ponse.sendRedirect method. This sends a temporary redirect response to the client,
and the client issues a new request to the specified URL. Note that in this case, the
original request object is not available to the redirected URL. The redirect may also be
marginally slower because it entails two requests from the client, whereas forward is
performed within the container:

protected void doGet(HttpServletRequest request,
HttpServletResponse response) {

/) ..

response.sendRedirect("http://example.com/SomeOtherServliet");

}

Here the response is redirected to the http://example.com/SomeOtherServiet URL. Note
that this URL could be on a different host/port and may be relative or absolute to the
container.

In addition to declaring servlets using @WebServlet and web.xml, you can define them
programmatically using ServletContext.addServlet methods. You can do this from
the ServletContainerInitializer.onStartup or ServletContextListener.contex
tInitialized method. You can read more about this in “Event Listeners” on page 17.

WebServlet | 15

The ServletContainerInitializer.onStartup method is invoked when the applica-
tion is starting up for the given ServletContext. The addServlet method returns
ServletRegistration.Dynamic, which can then be used to create URL mappings, set
security roles, set initialization parameters, and manage other configuration items:

public class MyInitializer implements ServletContainerInitializer {

public void onStartup (Set<Class<?>> clazz, ServletContext context) {
ServletRegistration.Dynamic reg =
context.addServlet("MyServlet", "org.example.MyServlet");
reg.addMapping("/myServliet");
}
}

Servlet Filters

A servlet filter may be used to update the request and response payload and header
information from and to the servlet. It is important to realize that filters do not create
the response—they only modify or adapt the requests and responses. Authentication,
logging, data compression, and encryption are some typical use cases for filters. The
filters are packaged along with a servlet and act upon the dynamic or static content.

You can associate filters with a servlet or with a group of servlets and static content by
specifying a URL pattern. You define a filter using the @WebFilter annotation:
)
public class LoggingFilter implements javax.servlet.Filter {

public void doFilter(HttpServletRequest request,
HttpServletResponse response) {

/) ..
}
}
In the code shown, the LoggingFilter is applied to all the servlets and static content
pages in the web application.

The @WebInitParam may be used to specify initialization parameters here as well.

A filter and the target servlet always execute in the same invocation thread. Multiple
filters may be arranged in a filter chain.

You can also define a filter using <filter> and <filter-mapping> elements in the
deployment descriptor:

<filter>
<filter-name>LoggingFilter</filter-name>
<filter-class>org.sample.LoggingFilter</filter-class>
</filter>

<filter-mapping>
<filter-name>LoggingFilter</filter-name>

16 | Chapter2: Servlets

<url-pattern>/*</url-pattern>
</filter-mapping>
In addition to declaring filters using @WebFilter and web.xml, you can define them
programmatically using ServletContext.addFilter methods. You can do this from
the ServletContainerInitializer.onStartup method or the ServletContextLis
tener.contextInitialized method. The addFilter method returns ServletRegis
tration.Dynamic, which can then be used to add mapping for URL patterns, set initi-
alization parameters, and handle other configuration items:

public class MyInitializer implements ServletContainerInitializer {
public void onStartup (Set<Class<?>> clazz, ServletContext context) {
FilterRegistration.Dynamic reg =
context.addFilter("LoggingFilter",
"org.example.LoggingFilter");
reg.addMappingForUrlPatterns(null, false, "/");
}
}

Event Listeners

Eventlisteners provide life-cycle callback events for ServletContext,HttpSession,and
ServletRequest objects. These listeners are classes that implement an interface that
supports event notifications for state changes in these objects. Each class is annotated
with @WebListener, declared in web.xml, or registered via one of the ServletCon
text.addListener methods. A typical example of these listeners is where an additional
servlet is registered programmatically without an explicit need for the programmer to
do so, or a database connection is initialized and restored back at the application level.

There may be multiple listener classes listening to each event type, and they may be
specified in the order in which the container invokes the listener beans for each event
type. The listeners are notified in the reverse order during application shutdown.

Servlet context listeners listen to the events from resources in that context:

public class MyContextListener implements ServletContextListener {

public void contextInitialized(ServletContextEvent sce) {
ServletContext context = sce.getServletContext();
Y/

}

public void contextDestroyed(ServletContextEvent sce) {
/) ..
}
}

Event Listeners | 17

The ServletContextAttributelListener is used to listen for attribute changes in the
context:

public class MyServletContextAttributelListener
implements ServletContextAttributelListener {

public void attributeAdded(ServletContextAttributeEvent event) {
//. . . event.getName();
//. . . event.getValue();

}

public void attributeRemoved(ServletContextAttributeEvent event) {
//-
}

public void attributeReplaced(ServletContextAttributeEvent event) {
//.
}

}

The HttpSessionListener listens to events from resources in that session:

public class MySessionlListener implements HttpSessionListener {

public void sessionCreated(HttpSessionEvent hse) {
HttpSession session = hse.getSession();
//-

}

public void sessionDestroyed(HttpSessionEvent hse) {
//-
}
}

The HttpSessionActivationListener is used to listen for events when the session is
passivated or activated:

public class MyHttpSessionActivationListener
implements HttpSessionActivationListener {

public void sessionWillPassivate(HttpSessionEvent hse) {
// ... hse.getSession();
}

18 | Chapter2: Servlets

public void sessionDidActivate(HttpSessionEvent hse) {
/) ...
}
}

The HttpSessionAttributeListener is used to listen for attribute changes in the
session:

public class MyHttpSessionAttributelListener
implements HttpSessionAttributelListener {

public void attributeAdded(HttpSessionBindingEvent event) {
HttpSession session = event.getSession();
//. . . event.getName();
//. . . event.getValue();

}

public void attributeRemoved(HttpSessionBindingEvent event) {
//.
}

public void attributeReplaced(HttpSessionBindingEvent event) {
//-
}
}

The HttpSessionBindingListener is used to listen to events when an object is bound
to or unbound from a session:

public class MyHttpSessionBindingListener
implements HttpSessionBindingListener {

public void valueBound(HttpSessionBindingEvent event) {
HttpSession session = event.getSession();
//. . . event.getName();
//. . . event.getValue();

}

public void valueUnbound(HttpSessionBindingEvent event) {
//-
}
}

The ServletRequestListener listens to the events from resources in that request:

public class MyRequestListener implements ServletRequestListener {

public void requestDestroyed(ServletRequestEvent sre) {

Event Listeners | 19

ServletRequest request = sre.getServletRequest();
/) ..
}

public void requestInitialized(ServletRequestEvent sre) {

/.
}
}
The ServletRequestAttributelListener is used to listen for attribute changes in the
request.

There is also AsyncListener, which is used to manage async events such as completed,
timed out, or an error.

Inaddition to declaring listeners using @WebListener and web.xml, you can define them
programmatically using ServletContext.addListener methods. You can do this from
the ServletContainerInitializer.onStartup or ServletContextListener.con
textInitialized method.

The ServletContainerInitializer.onStartup method is invoked when the applica-
tion is starting up for the given ServletContext:

public class MyInitializer implements ServletContainerInitializer {
public void onStartup(Set<Class<?>> clazz, ServletContext context) {
context.addListener("org.example.MyContextListener");

}
}

Asynchronous Support

Server resources are valuable and should be used conservatively. Consider a servlet that
has to wait for a JDBC connection to be available from the pool, receiving a JMS message
orreading a resource from the filesystem. Waiting for a “long-running” process to return
completely blocks the thread—waiting, sitting, and doing nothing—which is not an
optimal usage of your server resources. This is where the server can be asynchronously
processed such that the control (or thread) is returned to the container to perform other
tasks while waiting for the long-running process to complete. The request processing
continues in the same thread after the response from the long-running process is re-
turned, or may be dispatched to a new resource from within the long-running process.
A typical use case for a long-running process is a chat application.

The asynchronous behavior needs to be explicitly enabled on a servlet. You achieve this
by adding the asyncSupported attribute on @WebServlet:

(urlPatterns="/async", asyncSupported=true)
public class MyAsyncServlet extends HttpServlet {

20 | Chapter2:Servlets

Y/
}

You can also enable the asynchronous behavior by setting the <async-supported>
element to true in web.xml or calling ServletRegistration.setAsyncSupported
(true) during programmatic registration.

You can then start the asynchronous processing in a separate thread using the startA
sync method on the request. This method returns AsyncContext, which represents the
execution context of the asynchronous request. Then you can complete the asynchro-
nous request by calling AsyncContext.complete (explicit) or dispatching to another
resource (implicit). The container completes the invocation of the asynchronous request
in the latter case.

Let’s say the long-running process is implemented:

class MyAsyncService implements Runnable {
AsyncContext ac;

public MyAsyncService(AsyncContext ac) {
this.ac = ac;

}

public void run() {
/) ..
ac.complete();
}
}

This service may be invoked from the doGet method:

protected void doGet(HttpServletRequest request,
HttpServletResponse response) {

AsyncContext ac = request.startAsync();
ac.addListener(new AsyncListener() {

public void onComplete(AsyncEvent event)

throws IOException {
/) ..
}

public void onTimeout(AsyncEvent event)
throws IOException {
/) ..
}
/). ..
s

ScheduledThreadPoolExecutor executor = new ScheduledThreadPoolExecutor(10);
executor.execute(new MyAsyncService(ac));

}

Asynchronous Support | 21

In this code, the request is put into asynchronous mode. AsyncListener is registered
to listen for events when the request processing is complete, has timed out, or resulted
in an error. The long-running service is invoked in a separate thread and calls Async
Context.complete, signalling the completion of request processing.

A request may be dispatched from an asynchronous servlet to synchronous, but the
other way around is illegal.

The asynchronous behavior is available in the servlet filter as well.

Nonblocking 1/0

Servlet 3.0 allowed asynchronous request processing but only permitted traditional
I/0, which restricted the scalability of your applications. In a typical application, Serv
letInputStream is read in a while loop:

protected void doGet(HttpServletRequest request, HttpServletResponse response)
throws IOException, ServletException {
ServletInputStream input = request.getInputStream();
byte[] b = new byte[1024];
int len = -1;
while ((len = input.read(b)) != -1) {
/). ..
}
}

If the incoming data is blocking or streamed slower than the server can read, then the

server thread is waiting for that data. The same can happen if the data is written to
ServletOutputStream. This restricts the scalability of the Web Container.

Nonblocking I/0O allows developers to read data as it becomes available or write data
when it’s possible to do so. This increases not only the scalability of the Web Container
but also the number of connections that can be handled simultaneously. Nonblocking
I/O only works with async request processing in Servlets, Filters, and Upgrade
Processing.

Servlet 3.1 achieves nonblocking I/O by introducing two new interfaces: ReadListen
er and WriteListener. These listeners have callback methods that are invoked when
the content is available to be read or can be written without blocking.

The doGet method needs to be rewritten in this case:

AsyncContext context = request.startAsync();
ServletInputStream input = request.getInputStream();
input.setReadlListener(new MyReadListener(input, context));

Invoking setXXXListener methods indicates that nonblocking I/O is used instead of
traditional.

ReadListener has three callback methods:

22 | Chapter2:Servlets

o The onDataAvailable callback method is called whenever data can be read without
blocking.

o The onAllDataRead callback method is invoked whenever data for the current re-
quest is completely read.

o The onError callback is invoked if there is an error processing the request:

public void onDataAvailable() {

try {
StringBuilder sb = new StringBuilder();

int len = -1;

byte b[] = new byte[1024];

while (input.isReady() && (len = input.read(b)) != -1) {
String data = new String(b, 0, len);

}
} catch (IOException ex) {

/.
}
}

public void onAllDataRead() {
context.complete();

}

public void onError(Throwable t) {
t.printStackTrace();
context.complete();

}

In this code, the onDataAvailable callback is invoked whenever data can be read
without blocking. The ServletInputStream.isReady method is used to check if data
can be read without blocking and then the data is read. context.complete is called in
onAllDataRead and onError methods to signal the completion of data read. Servle
tInputStream.isFinished may be used to check the status of a nonblocking I/O read.

At most, one ReadListener can be registered on ServletIntputStreanm.

WritelListener has two callback methods:

o The onWritePossible callback method is called whenever data can be written
without blocking.

o The onError callback is invoked if there is an error processing the response.

At most, one WriteListener can be registered on ServletOutputStream. ServletOut
putStream.canWrite is anew method to check if data can be written without blocking.

Nonblocking1/0 | 23

Web Fragments

A web fragment is part or all of the web.xml file included in a library or framework JAR’s
META-INF directory. If this framework is bundled in the WEB-INF/lib directory, the
container will pick up and configure the framework without requiring the developer to
do it explicitly.

It can include almost all of the elements that can be specified in web.xml. However, the
top-level element must be web- fragment and the corresponding file must be called web-
fragment.xml. This allows logical partitioning of the web application:

<web-fragment>
<filter>
<filter-name>MyFilter</filter-name>
<filter-class>org.example.MyFilter</filter-class>
<init-param>
<param-name>myInitParam</param-name>
<param-value>...</param-value>
</init-param>
</filter>
<filter-mapping>
<filter-name>MyFilter</filter-name>
<url-pattern>/*</url-pattern>
</filter-mapping>
</web-fragment>

The developer can specify the order in which the resources specified in web.xml and
web-fragment.xml need to be loaded. The <absolute-ordering> element in web.xml is
used to specify the exact order in which the resources should be loaded, and the <or
dering> element within web-fragment.xml is used to specify relative ordering. The two
orders are mutually exclusive, and absolute ordering overrides relative.

The absolute ordering contains one or more <name> elements specifying the name of
the resources and the order in which they need to be loaded. Specifying <others/>
allows for the other resources not named in the ordering to be loaded:
<web-app>
<name>MyApp</name>
<absolute-ordering>
<name>MyServlet</name>
<name>MyFilter</name>
</absolute-ordering>
</web-app>
In this code, the resources specified in web.xml are loaded first and followed by MyServ
let and MyFilter.

Zero or one <before> and <after> elements in <ordering> are used to specify the
resources that need to be loaded before and after the resource named in the web-
fragment is loaded:

24 | Chapter2:Servlets

<web-fragment>
<name>MyFilter</name>
<ordering>
<after>MyServlet</after>
</ordering>
</web-fragment>

This code will require the container to load the resource MyFilter after the resource
MyServlet (defined elsewhere) is loaded.

If web.xml has metadata-complete set to true, then the web-fragment.xml file is not
processed. The web.xml file has the highest precedence when resolving conflicts between
web.xml and web-fragment.xml.

If a web-fragment.xml file does not have an <ordering> element and web.xml does not
have an <absolute-ordering> element, the resources are assumed to not have any
ordering dependency.

Security

Servlets are typically accessed over the Internet, and thus having a security requirement
is common. You can specify the servlet security model, including roles, access control,
and authentication requirements, using annotations or in web.xml.

@ServletSecurity is used to specify security constraints on the servlet implementation
class for all methods or a specific doXXX method. The container will enforce that the
corresponding doXXX messages can be invoked by users in the specified roles:

("/account")
(
value= (rolesAllowed = {"R1"}),
httpMethodConstraints={
(value="GET",
rolesAllowed="R2"),
(value="POST",
rolesAllowed={"R3", "R4"})
}
)
public class AccountServlet
extends javax.servlet.http.HttpServlet {
/) ..
}

In this code, @HttpMethodConstraint is used to specify that the doGet method can be
invoked by users in the R2 role, and the doPost method can be invoked by users in the
R3 and R4 roles. The @HttpConstraint specifies that all other methods can be invoked

by users in the role R1. The roles are mapped to security principals or groups in the
container.

Security | 25

The security constraints can also be specified using the <security-constraint> ele-
ment in web.xml. Within it, a <web-resource-collection> element is used to specify
constraints on HTTP operations and web resources, <auth-constraint> is used to
specify the roles permitted to access the resource, and <user-data-constraint> indi-
cates how data between the client and server should be protected by the subelement
<transport-guarantees>:

<security-constraint>
<web-resource-collection>
<url-pattern>/account/*</url-pattern>
<http-method>GET</http-method>
</web-resource-collection>

<auth-constraint>
<role-name>manager</role-name>
</auth-constraint>

<user-data-constraint>
<transport-guarantee>INTEGRITY</transport-guarantee>
</user-data-constraint>
</security-constraint>

This deployment descriptor requires that only the GET method at the /account/* URL
is protected. This method can only be accessed by a user in the manager role with a
requirement for content integrity. Al HTTP methods other than GET are unprotected.

If HTTP methods are not enumerated within a security-constraint, the protections
defined by the constraint apply to the complete set of HTTP (extension) methods:

<security-constraint>
<web-resource-collection>
<url-pattern>/account/*</url-pattern>
</web-resource-collection>

</;eéu;ity-constraint>
In this code, all HTTP methods at the /account/* URL are protected.

Servlet 3.1 defines uncovered HT TP protocol methods as the methods that are not listed
inthe<security-constraint>andifatleastone<http-method>islistedin<security-
constraint>:

<security-constraint>
<web-resource-collection>
<url-pattern>/account/*</url-pattern>
<http-method>GET</http-method>
</web-resource-collection>

</security-constraint>

26 | Chapter2:Servlets

In this code fragment, only the HTTP GET method is protected and all other HTTP
protocols methods such as POST and PUT are uncovered.

The <http-method-omission>element can be used to specify the list of HTTP methods
not protected by the constraint:

<security-constraint>
<web-resource-collection>
<url-pattern>/account/*</url-pattern>
<http-method-omission>GET</http-method-omission>
</web-resource-collection>

</security-constraint>

In this code, only the HTTP GET method is not protected and all other HTTP protocol
methods are protected.

The <deny-uncovered-http-methods> element, a new element in Servlet 3.1, can be
used to deny an HTTP method request for an uncovered HTTP method. The denied
request is returned with a 403 (SC_FORBIDDEN) status code:

<web-app xmlns="http://xmlns.jcp.org/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd"
version="3.1">
<deny-uncovered-http-methods/>
<web-resource-collection>
<url-pattern>/account/*</url-pattern>
<http-method>GET</http-method>
</web-resource-collection>

</web-app>
In this code, the <deny-uncovered-http-methods> element ensures that HTTP GET is

called with the required security credentials, and all other HTTP methods are denied
with a 403 status code.

@RolesAllowed, @DenyAll, @PermitAll, and @TransportProtected provide an alter-
native set of annotations to specify security roles on a particular resource or a method
of the resource:
(n R2 n)
protected void doGet(HttpServletRequest request, HttpServletResponse response) {

/..
}

If an annotation is specified on both the class and the method level, the one specified
on the method overrides the one specified on the class.

Servlet 3.1 introduces two new predefined roles:

Security | 27

 * maps to any defined role.

 ** maps to any authenticated user independent of the role.

This allows you to specify security constraints at a higher level than a particular role.

At most, one of @RolesAllowed, @enyAll, or @PermitAll may be specified on a target.
The @TransportProtected annotation may occur in combination with either the @Ro
lesAllowed or @PermitAll annotations.

The servlets can be configured for HT TP Basic, HTTP Digest, HTTPS Client, and form-
based authentication:

<form method="POST" action="j_security_check"s
<input type="text" name="j_username">
<input type="password" name="j_password" autocomplete="off">
<input type="button" value="submit"s

</form>

This code shows how form-based authentication can be achieved. The login form must
contain fields for entering a username and a password. These fields must be named
j_username and j_password, respectively. The action of the form is always j_securi
ty_check.

Servlet 3.1 requires autocomplete="off" on the password form field, further strength-
ening the security of servlet-based forms.

The HttpServletRequest also provides programmatic security with the login, log
out, and authenticate methods.

The login method validates the provided username and password in the password
validation realm (specific to a container) configured for the ServletContext. This en-
sures that the getUserPrincipal, getRemoteUser, and getAuthType methods return
valid values. The login method can be used as a replacement for form-based login.

The authenticate method uses the container login mechanism configured for the
ServletContext to authenticate the user making this request.

Resource Packaging

You can access resources bundled in the .war file using the ServletContext.getRe
source and .getResourceAsStream methods. The resource path is specified as a string
with a leading “/” This path is resolved relative to the root of the context or relative to
the META-INF/resources directory of the JAR files bundled in the WEB-INF/lib
directory:

myApplication.war
WEB-INF

28 | Chapter2:Servlets

1ib
library.jar

library.jar has the following structure:

library.jar
MyClassl.class
MyClass2.class
stylesheets
common.css
images
header.png
footer.png

Normally, if stylesheets and image directories need to be accessed in the servlet, you need
to manually extract them in the root of the web application. Servlet 3.0 allows the library
to package the resources in the META-INF/resources directory:
library.jar
MyClassl.class
MyClass2.class
META- INF
resources
stylesheets
common.css
images
header.png
footer.png

In this case, the resources need not be extracted in the root of the application and can

be accessed directly instead. This allows resources from third-party JARs bundled in
META-INF/resources to be accessed directly instead of manually extracted.

The application always looks for resources in the root before scanning through the JARs
bundled in the WEB-INF/Iib directory. The order in which it scans JAR files in the WEB-
INF/lib directory is undefined.

Error Mapping

An HTTP error code or an exception thrown by a serlvet can be mapped to a resource
bundled with the application to customize the appearance of content when a servlet
generates an error. This allows fine-grained mapping of errors from your web applica-
tion to custom pages. These pages are defined via <error-page>:

<error-page>
<error-code>404</error-code>
<location>/error-404. jsp</location>
</error-page>

Error Mapping | 29

Adding the preceding fragment to web.xml will display the /error-404.jsp page to a client
attempting to access a nonexistent resource. You can easily implement this mapping for
other HTTP status codes as well by adding other <error -page> elements.

The <exception-type> element is used to map an exception thrown by a servlet to a
resource in the web application:

<error-page>
<exception-type>org.example.MyException</exception-type>
<location>/error. jsp</location>
</error-page>
Adding the preceding fragment to web.xml will display the /error.jsp page to the client
if the servlet throws the org.example.MyException exception. You can easily imple-
ment this mapping for other exceptions as well by adding other <error - page> elements.

The <error-page> declaration must be unique for each class name and HTTP status
code.

Handling Multipart Requests

@MultipartConfig may be specified on a servlet, indicating that it expects a request of
typemultipart/form-data. The HttpServletRequest.getParts and .getPart meth-
ods then make the various parts of the multipart request available:

(urlPatterns = {"/FileUploadServlet"})
(location="/tmp")
public class FileUploadServlet extends HttpServlet {

protected void doPost(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
for (Part part : request.getParts()) {
part.write("myFile");

}

}

}

In this code:

o @MultipartConfigis specified on the class, indicating that the doPost method will
receive a request of type multipart/form-data.

o The location attribute is used to specify the directory location where the files are
stored.

o The getParts method provides a Collection of parts for this multipart request.

o part.write is used to write this uploaded part to disk.

30 | Chapter2:Servlets

Servlet 3.1 adds a new method, Part.getSubmittedFileName, to get the filename speci-
fied by the client.

This servlet can be invoked from a JSP page:

<form action="FileUploadServlet"
enctype="multipart/form-data"
method="POST">
<input type="file" name="myFile">

<input type="Submit" value="Upload File"s>

</form>

In this code, the form is POSTed to FileUploadServlet with encodingmultipart/form-
data.

Upgrade Processing

Section 14.42 of HTTP 1.1 (RFC 2616) defines an upgrade mechanism that allows you
to transition from HTTP 1.1 to some other, incompatible protocol. The capabilities and
nature of the application-layer communication after the protocol change are entirely
dependent upon the new protocol chosen. After an upgrade is negotiated between the
clientand the server, the subsequent requests use the newly chosen protocol for message
exchanges. A typical example is how the WebSocket protocol is upgraded from HTTP,
as described in the Opening Handshake section of RFC 6455.

The servlet container provides an HTTP upgrade mechanism. However, the servlet
container itself does not have any knowledge about the upgraded protocol. The protocol
processingis encapsulated in theHttpUpgradeHandler. Datareading or writing between
the servlet container and the HttpUpgradeHandler is in byte streams.

The decision to upgrade is made in the Servlet.service method. Upgrading is
achieved by adding a new method, HttpServletRequest.upgrade, and two new inter-
faces, javax.servlet.http.HttpUpgradeHandler and javax.servlet.http.WebCon
nection:

if (request.getHeader("Upgrade").equals("echo")) {
response.setStatus(HttpServletResponse.SC_SWITCHING_PROTOCOLS);
response.setHeader ("Connection", "Upgrade");
response.setHeader("Upgrade", "echo");
request.upgrade(MyProtocolHandler.class);
System.out.println("Request upgraded to MyProtocolHandler");

}

The request looks for the Upgrade header and makes a decision based upon its value.
In this case, the connection is upgraded if the Upgrade header is equal to echo. The
correct response status and headers are set. The upgrade method is called on HttpServ
letRequest by passing an instance of HttpUpgradeHandler.

Upgrade Processing | 31

http://www.ietf.org/rfc/rfc2616.txt
http://tools.ietf.org/html/rfc6455#section-1.3
http://tools.ietf.org/html/rfc6455

After exiting the service method of the servlet, the servlet container completes the
processing of all filters and marks the connection to be handled by the instance of
HttpUpgradeHandler:

public class MyProtocolHandler implements HttpUpgradeHandler {

public void init(WebConnection wc) {
Y/
}

public void destroy() {
/). ..
}
}

This code shows an implementation of Ht tpUpgradeHandler. The servlet container calls
the HttpUpgradeHandler’s init method, passing a WebConnection to allow the protocol
handler access to the data streams. When the upgrade processing is done, HttpUpgra
deHandler.destroy is invoked.

The servlet filters only process the initial HTTP request and response. They are not
involved in subsequent communications.

32 | Chapter2:Servlets

CHAPTER 3

JavaServer Faces

JavaServer Faces (JSF) is defined as JSR 344, and the complete specification can be
downloaded.

JavaServer Faces is a server-side user interface (UI) framework for Java-based web ap-
plications. JSF allows you to:

Create a web page with a set of reusable UI components following the Model-View-
Controller (MVC) design pattern.

Bind components to a server-side model. This allows a two-way migration of ap-
plication data with the UL

Handle page navigation in response to Ul events and model interactions.
Manage Ul component state across server requests.

Provide a simple model for wiring client-generated events to server-side application
code.

Easily build and reuse custom UI components.

A JSF application consists of:

A set of web pages in which the UI components are laid out.

A set of managed beans. One set of beans binds components to a server-side model
(typically CDIbeans) and another set acts as controller (typically EJB or CDIbeans).

An optional deployment descriptor, web.xml.
An optional configuration file, faces-config.xml.

An optional set of custom objects such as converters and listeners, created by the
application developer.

33

http://jcp.org/aboutJava/communityprocess/final/jsr344/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr344/index.html

Facelets

Facelets is the view declaration language (aka view handler) for JSE. It is the replacement
for JSP, which is now retained only for backward compatibility. New features introduced
in version 2 of the JSF specification, such as composite components and Ajax, are only
exposed to page authors using facelets. Key benefits of facelets include a powerful tem-
plating system, reuse and ease of development, better error reporting (including line
numbers), and designer-friendliness.

Facelets pages are authored using XHTML 1.0 and Cascading Style Sheets (CSS). An
XHTML 1.0 document is a reformulation of an HTML 4 document following the rules
of XML 1.0. The pages must conform with the XHTML-1.0-Transitional DTD.

You can define a simple Facelets page using XHTML:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://xmlns.jcp.org/jsf/html">
<h:head>
<title>My Facelet Page Title</title>
</h:head>
<h:body>
Hello from Facelets
</h:body>
</html>

In this code, an XML prologue is followed by a document type declaration (DTD). The
root element of the page is html in the namespace http://www.w3.0rg/1999/xhtml.
An XML namespace is declared for the tag library used in the web page. Facelets HTML
tags (those beginning with h:) and regular HTML tags are used to add components.

Table 3-1 shows the standard set of tag libraries supported by Facelets.
Table 3-1. Standard tag libraries supported by Facelets

Prefix URI Examples

h http://xmins.jcp.org/jst/html h:head, h:inputText

f http://xmins.jcp.org/jst/core f:facet, f:actionListener

c http://xmins.jcp.org/jsp/jstl/core c:forEach, c:if

fn http://xmins.jcp.org/jsp/jstl/functions fn:toUpperCase, fn:contains

ut http://xmins.jcp.org/jst/facelets ui:component, ui:insert

By convention, web pages built with XHTML have a .xhtml extension.

34 | Chapter3:JavaServer Faces

http://bit.ly/11q7IoK

Facelets provides Expression Language (EL) integration. This allows two-way data
binding between the backing beans and the UL

Hello from Facelets, my name is #{name.value}!

In this code, #{name} is an EL that refers to the value field of a request-scoped CDI
bean:

public class Name {
private String value;

/).
}

It's important to add @Named on a CDI bean to enable its injection in an EL.

In JSF 2.2, @javax.faces.bean.ManagedBean is targeted for deprecation in a future
version, so it is highly recommended that you use @amed.

JSF 2.2 also introduces a new CDI scope: javax.faces.view.ViewScoped. Specifying
this annotation on a bean binds it with the current view. javax.faces.bean.ViewSco
ped is targeted for deprecation in a future version, so it is strongly recommended that
you use the newly introduced scope.

Similarly, an EJB can be injected in an EL expression:

public class CustomerSessionBean {
public List<Name> getCustomerNames() {
/) ..
}
}

This is a stateless session bean and has a business method that returns a list of customer
names. @Named marKks it for injection in an EL. It can be used in Facelets EL:

<h:dataTable value="#{customerSessionBean.customerNames}" var="c">
<h:column>#{c.value}</h:column>
</h:dataTable>

In this code, the list of customer names returned is displayed in a table. Notice how the
getCustomerNames method is available as a property in the EL.

Facelets also provides compile-time EL validation.

In addition, Facelets provides a powerful templating system that allows you to provide
a consistent look and feel across multiple pages in a web application. A base page, called
a template, is created via Facelets templating tags. This page defines a default structure
for the page, including placeholders for the content that will be defined in the pages

Facelets | 35

using the template. A template client page uses the template and provides actual content
for the placeholders defined in the template.

Table 3-2 lists some of the common tags used in the template and template client pages.
Table 3-2. Common Facelets tags for a template

Tag Description

ui:composition Defines a page layout that optionally uses a template. If the template attribute is used, the children
of this tag define the template layout. If not, it’s just a group of elements—a composition—that can
be inserted anywhere. Content outside of this tag is ignored.

ui:insert Used in a template page and defines the placeholder for inserting content into a template. A matching
ui:define tag in the template client page replaces the content.

ui:define Used in a template client page; defines content that replaces the content defined in a template with a
matching ui:insert tag.

ui:component Inserts a new Ul component into the JSF component tree. Any component or content fragment outside
this tag is ignored.

ui:fragment Similar to ui: component, but does not disregard content outside this tag.

ui:include Includes the document pointed to by the src attribute as part of the current Facelets page.

A template page looks like:

<h:body>
<div id="top">
<ui:insert name="top">
<h1>Facelets are Cool!</h1>
</ui:insert>
</div>

<div id="content" class="center_content">
<ui:1insert name="content">Content</ui:insert>
</div>

<div id="bottom">
<uil:insert name="bottom">
<center>Powered by GlassFish</center>
</ui:insert>
</div>

</h:body>

In this code, the page defines the structure using <div> and CSS (not shown here).
uil:insert defines the content that gets replaced by a template client page.

A template client page looks like:

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
xmlns:h="http://xmlns.jcp.org/jsf/html">
<body>

36 | Chapter3:JavaServer Faces

<ui:composition template="./template.xhtml">
<ui:define name="content">

<h:dataTable
value="#{customerSessionBean.customerNames}
var="c">

<h:column>#{c.value}</h:column>
</h:dataTable>

</ui:define>

</ui:composition>
</body>
</html>

In this code, ui:insert with top and bottom names is not defined, so those sections are
used from the template page. There is a ui:define element with a name matching the
ui:insert element in the template, so the contents are replaced.

Resource Handling

JSFE defines a standard way of handling resources, such as images, CSS, or JavaScript
files. These resources are required by a component to be rendered properly.

Such resources can be packaged in the /resources directory in the web application or
in /META-INF/resources in the classpath. The resources may also be localized, ver-
sioned, and collected into libraries.

A resource can be referenced in EL:
click here

In this code, header.jpg is bundled in the standard resources directory.

If a resource is bundled in a library corp (a folder at the location where resources are
packaged), then you can access it using the library attribute:

<h:graphicImage library="corp" name="header.jpg" />
JavaScript may be included:

<h:outputScript
name="myScript.js"
library="scripts"
target="head"/>

In this code, myScript.js is a JavaScript resource packaged in the scripts directory in the
standard resources directory.

A CSS stylesheet can be included:

<h:outputStylesheet name="myCSS.css" library="css" />

Resource Handling | 37

The ResourceHandler API provides a programmatic way to serve these resources as
well.

Composite Components

Using features of Facelets and resource handling, JSF defines a composite component as
a component that consists of one or more JSF components defined in a Facelets markup
file. This .xhtml file resides inside of a resource library. This allows you to create a
reusable component from an arbitrary region of a page.

The composite component is defined in the defining page and used in the using page.
The defining page defines the metadata (or parameters) using <cc:interface> and the
implementation using <cc:implementation>, where cc is the prefix for the http://
xmlns.jcp.org/jsf/composite/ namespace. Future versions of the JSF specification
may relax the requirement to specify metadata, as it can be derived from the imple-
mentation itself.

You can define a composite component using JSF 1.2 as well, but it requires a much
deeper understanding of the JSF life cycle and also authoring multiple files. JSF2 really
simplifies the authoring of composite components using just an XHTML file.

Let’s say a Facelet has the following code fragment to display a login form:

<h:form>

<h:panelGrid columns="3">
outputText value="Name:" />
inputText value="#{user.name}" id="name"/>
message for="name" style="color: red" />
outputText value="Password:" />
inputText value="#{user.password}"

id="password"/>

<h:message for="password" style="color: red" />

</h:panelGrid>

A AN A AN A

<h:commandButton actionListener="#{userService.register}"
id="TloginButton"
action="status"
value="submit"/>
</h:form>

This code renders a table with two rows and three columns, as shown in Figure 3-1.

Name:
Password:

submit

Figure 3-1. JSF Facelets page output in a browser

38 | Chapter3:JavaServer Faces

The first column displays a prompt for the field to be entered; the second column dis-
plays an input text box where the data can be entered; and the third column (which is
empty to begin with) is for displaying a message for the corresponding field. The first
row binds the input value to the User.name field, and the second row binds the input
value to the User.password field. There is also a command button, and clicking the
button invokes the register method of the UserService bean.

If this login form is to be displayed in multiple pages, then instead of repeating this code
everywhere, it is beneficial to convert this fragment into a composite component. This
requires the code fragment to be copied to an .xhtml file, and the file itself is copied in
a library in the standard resources directory. Via convention-over-configuration, the
fragment is then automatically assigned a namespace and a tag name.

If the fragment shown earlier is copied to login.xhtmlin the resources/mycomp directory,
the defining page looks like:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:cc="http://xmlns.jcp.org/jsf/composite"
xmlns:h="http://xmlns.jcp.org/jsf/html">

<!-- INTERFACE -->
<cc:interface>
</cc:interface>

<!-- IMPLEMENTATION -->
<cc:implementation>
<h:form>
<h:panelGrid columns="3">
<h:outputText value="Name:" />
<h:inputText value="#{user.name}" id="name"/>

<l-- . . . -->
</h:form>
</cc:implementation>
</html>

In this code, cc:interface defines metadata that describes the characteristics of the
component, such as supported attributes, facets, and attach points for event listeners.
cc:implementation contains the markup substituted for the composite component.

The namespace of the composite component is constructed by concatenating http://
xmlns.jcp.org/jsf/composite/ and mycomp. The tag name is the filename without
the .xhtml suffix in the using page:

Composite Components | 39

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:mc="http://xmlns.jcp.org/jsf/composite/mycomp"

<l-- 0 .. -->
<mc:login/>

</html>

Let’s say that the code fragment needs to pass different value expressions (instead of
#{user.name}) and invoke a different method (instead of #{userService.register})
when the submit button is clicked in a different using page. The defining page can then
pass the values:

<!-- INTERFACE -->
<cc:interface>
<cc:attribute name="name"/>
<cc:attribute name="password"/>
<cc:attribute name="actionListener"
method-signature=
"void action(javax.faces.event.Event)"
targets="ccForm:loginButton"/>
</cc:interface>

<!-- IMPLEMENTATION -->
<cc:implementation>

<h:form id="ccForm">

<h:panelGrid columns="3">
outputText value="Name:" />
inputText value="#{cc.attrs.name}" id="name"/>
message for="name" style="color: red" />
outputText value="Password:" />
inputText value="#{cc.attrs.password}"
id="password"/>

<h:message for="password" style="color: red" />
</h:panelGrid>

AN A N A

<h:commandButton id="loginButton"
action="status"
value="submit"/>
</h:form>
</cc:implementation>

In this code, all the parameters are explicitly specified in cc: interface for clarity. The
third parameter has a targets attribute referring to ccForm: loginButton.

In cc:implementation:
o The h:formhas an id attribute. This is required so that the button within the form
can be explicitly referenced.

o h:inputTextisnow using#{cc.attrs.xxx} instead of #{user.xxx}. #{cc.attrs}
is a default EL expression that is available for composite component authors and

40 | Chapter3:JavaServer Faces

provides access to attributes of the current composite component. In this case,
#{cc.attrs} has name and password defined as attributes.

« actlonListener is an attach point for an event listener. It is defined as a method-
signature and describes the signature of the method.

o h:commandButton has an id attribute so that it can be clearly identified within the
h:form.

The user, password, and actionListener are then passed as required attributes in the
using page:
<ez:login
name="#{user .name}"

password="#{user.password}"
actionListener="#{userService.register}"/>

Now the using page can pass different backing beans, and different business methods
can be invoked when the submit button is clicked.

Overall, the composite component provides the following benefits:

o Follows the Don’t Repeat Yourself (DRY) design pattern and allows you to keep
code that can be repeated at multiple places in a single file.

o Allows developers to author new components without any Java code or XML
configuration.

Request Processing Life-Cycle Phases

JSF defines standard request processing life-cycle phases. Application developers don't
necessarily need to know the details of the life cycle, but it helps those who need to know
information such as when validations, conversions, and events are usually handled and
what they can do to change how and when they are handled.

AJSF page is represented by a tree of Ul components, called a view. When a client makes
a request for the page, the life cycle starts. During the life cycle, the JavaServer Faces
implementation must build the view while considering the state saved from a previous
submission of the page. When the client submits a page, the JavaServer Faces imple-
mentation must perform several tasks, such as validating the data input of components
in the view, converting input data to types specified on the server side, and binding data
to the backing beans. The JavaServer Faces implementation performs all these tasks as
a series of steps in the life cycle.

The different components of the application go through the following well-defined re-
quest processing life-cycle phases:

Request Processing Life-Cycle Phases | 41

Restore view

Restores and creates a server-side component tree to represent the UT information
from a client.

If the request is made to a URL for the first time, then a new View object is created
and rendered to the client. This view is also stored in the current FacesContext
instance. If the view state is already found in FacesContext, then it is restored and
displayed.

Any custom converters, validators, renderers, if attached for the UI components,
are restored in this phase. If the UI component values are directly mapped to the
property defined in a managed bean, then the value for the property is restored and
it is associated with the view. Most of the work is handled by the ViewHandler.re
storeView method.

Apply request values

This phase updates the server-side components with request parameters, headers,
cookies, and so on from the client.

More specifically, the UIComponent. processDecodes method is called on all com-
ponents. The outcome of this phase may either end in the process validations
phase or the render response phase. If any of the conversions or the validations fail,
then the current processing is terminated and the control directly goes to the render
response for rendering the conversion or the validation errors to the client.

Process validations

This phase will process any validations and data type conversions configured for
UIComponents.

In this phase, the UIComponent.processValidators method is called on all com-
ponents. If any conversion or validation error happens here, then the current pro-
cess is terminated and the control is directed to the render response phase for re-
porting any errors.

Update model values

Reaching this phase means that the request values are syntactically valid.

The values from UIComponents are synchronized with the model objects, which are
usually backing beans. In this phase, the ULComponent. processUpdates method is
called on all components. Setting the request value to the model object may also
result in events being queued and fired.

Invoke application

Invokes application logic and performs navigation processing.

)

| Chapter3: JavaServer Faces

All the listeners that are registered for the ULComponents are invoked. For example,
all action components, like the command button or the hyperlink, have default
action listeners that are invoked in this phase.

Render response
Renders the response back to the client application.

Before rendering the response, the application stores the state of View in the cache
by calling the UIViewRoot.saveState method.

Ajax
JSF provides native support for adding Ajax capabilities to web pages. It allows partial
view processing, where only some components from the view are used for processing

the response. It also enables partial page rendering, where selective components from
the page, as opposed to the complete page, are rendered.

There are two ways this support can be enabled:

« Programmatically using JavaScript resources

o Declaratively using f:ajax

Programmatic Ajax integration is enabled through the resource handling mechanism.
jsf.js is a predefined resource in the javax.faces library. This resource contains the
JavaScript API that facilitates Ajax interaction with JSF pages. You can make it available
in pages using the outputScript tag:

<h:body>

<l-- . .. -->

<h:outputScript
name="jsf.js"
library="javax.faces"
target="body"/>

<l-- -->

</h:body>
You can also make an asynchronous request to the server:

<h:form prependId="false">
<h:inputText value="#{user.name}" id="name"/>
<h:inputText value="#{user.password}" id="password"/>
<h:commandButton value="Login"
type="button"
actionListener="#{user.login}"
onclick="jsf.ajax.request(this, event, {execute:
'name password', render: 'status'}); return false;"/>

<h:outputText value="#{user.status}" id="status"/>
</h:form>

Ajax | 43

In this code:

Two input text fields accept the username and password, and the third output field
displays the status (whether the user is logged in or not).

The form has prependId set to false to ensure that the id of each element is pre-
served as mentioned in the form. Otherwise, JSF prepends the form’s id to the id
of its children.

The command button has an actionListener identifying the method in the back-
ing bean to be invoked when the button is clicked. Instead of the usual response
rendering and displaying a different page, jsf.ajax.request sends an asynchro-
nous request to the server. This request is made on the command button’s on
click event. execute and render provide a space-separated identifier of the com-
ponents. execute is the list of input components whose bean setters are invoked,
and render is the list of components that needs to be rendered after the asynchro-
nous response is received.

The ability to process only part of the view (name and password elements in this
case) is referred to as partial view processing. Similarly, rendering only part of the
output page (the status element in this case) is referred to as partial output
rendering.

Table 3-3 lists the possible values of the render attribute.
Table 3-3. Values for the render attribute in f:ajax

Value Description

@all All components on the page

@none No components on the page; this is the default value
@this Element that triggered the request

@form All components within the enclosing form

IDs Space-separated identifiers of the components

EL expression EL expression that resolves to a collection of strings

The execute attribute takes a similar set of values, but the default value for the
execute attribute is @thtis.

The User bean has fields, setters/getters, and a simple business method:

public class User implements Serializable {
private String name;
private String password;
private String status;

44

Chapter 3: JavaServer Faces

public void login(ActionEvent evt) {
if (name.equals(password))
status = "Login successful";
else
status = "Login failed";

}

Note the signature of the login method. It must return void and take javax.
faces.event.ActionEvent as the only parameter.

Declarative Ajax integration is enabled via f : ajax. This tag may be nested within a single
component (enabling Ajax for a single component), or it may be “wrapped” around
multiple components (enabling Ajax for many components).

The preceding code can be updated to use this style of Ajax:

<h:form prependId="false">
<h:inputText value="#{user.name}"
id="name" />
<h:inputText value="#{user.password}"
id="password"/>
<h:commandButton value="Login"
type="button"
actionListener="#{user.login}">
<f:ajax execute="name password"
render="status"/>
</h:commandButton>

<h:outputText value="#{user.status}"
id="status"/>
</h:form>
In this code, we use f:ajax to specify the list of input elements using the execute
attribute, and the output elements to be rendered using the render attribute. By default,
if f:ajax is nested within a single component and no event is specified, the asynchro-
nous request is fired based upon the default event for the parent component (the on
click event in the case of a command button).

A delay attribute may be specified on the f:ajax tag. This attribute takes a value in
milliseconds. If multiple requests are issued before the delay time elapses, then only the
most recent request is sent and all others are discarded.

<f:ajax delay="200" ...>
</. ;jéx>
This code fragment sets the delay to 200 milliseconds. The default value is 300 milli-

seconds, but you could also specify the special value of none to disable this mechanism.

The f:ajax tag may be wrapped around multiple components:

Ajax | 45

<f:ajax listener="#{user.checkFormat}">
<h:inputText value="#{user.name}" id="name"/>
<h:inputText value="#{user.password}" id="password"/>
</f:ajax>

In this code, f:ajax has a listener attribute and the corresponding Java method:

public void checkFormat(AjaxBehaviorEvent evt) {
[/ ..
}
This listener method is invoked for the default event for the child elements (the value
Change event for h:inputText, in this case). You can specify additional Ajax function-
ality on the child elements using a nested f:ajax.

HTTP GET

JSF provides support for mapping URL parameters in HTTP GET requests to an EL. It
also provides support to generate GET-friendly URLs.

View parameters can be used to map URL parameters in GET requests to an EL. You can
do so by adding the following fragment to a Facelets page:

<f:metadata>
<f:viewParam name="name" value="#{user.name}"/>
</f:metadata>

Accessing a web application at index.xhtml?name=jack will:

o Get the request parameter by the name name.

« Convert and validate if necessary. This is achieved by way of a nested f:convert
er and f:validator, just like with any h: inputText, and can be done as shown:

<f:metadata>
<f:viewParam name="name" value="#{user.name}">
<f:validateLength minimum="1" maximum="5"/>
</f:viewParam>
</f:metadata>

« If successful, bind it to #{user .name}.

You can postprocess the view parameters before the page is rendered using f:event:

<f:metadata>
<f:viewParam name="name" value="#{user.name}">
<f:validateLength minimum="1" maximum="5"/>
</f:viewParam>
<f:event type="preRenderView" listener="#{user.process}"/>
</f:metadata>

In this code, the method identified by #{user.process} can be used to perform any
initialization required prior to rendering the page.

46 | Chapter3:JavaServer Faces

You can generate GET-friendly URLs using h: link and h: button. You specify the desired
Facelets page instead of manually constructing the URL:

<h:1ink value="Login" outcome="login"/>
This is translated to the following HTML tag:

Login
View parameters can be easily specified:

<h:1ink value="Login" outcome="login">
<f:param name="name" value="#{user.name}"/>
</h:1ink>
In this code, if #{user.name} is bound to “Jack,” then this fragment is translated to the
following HTML tag:

Login
Similarly, h:button can be used to specify the outcome:
<h:button value="login"/>
This code will generate the following HTML tag:

<input
type="button"
onclick="window.location.href="'/JSFSample/faces/index.xhtml'; return false;"
value="login" />

Server and Client Extension Points

Converters, validators, and listeners are server-side attached objects that add more
functionality to the components on a page. Behaviors are client-side extension points
that can enhance a component’s rendered content with behavior-defined scripts.

A converter converts the data entered in a component from one format to another (e.g.,
string to number). JSF provides several built-in converters such as f:convertNumber
and f:convertDateTime. They can be applied to any editable component:

<h:form>
<h:inputText value="#{user.age}" id="age">
<f:convertNumber integerOnly="true"/>
</h:inputText>
<h:commandButton value="Submit"/>
</h:form>

In this code, the text entered in the text box will be converted to an integer if possible.
An error message is thrown if the text cannot be converted.

A custom converter can be easily created:

Server and Client Extension Points | 47

("myConverter")
public class MyConverter implements Converter {

public Object getAsObject(
FacesContext context,
UIComponent component,
String value) {
/) ..

public String getAsString(
FacesContext context,
UIComponent component,
Object value) {
/) ..

}
}
In this code, the methods getAsObject and getAsString perform object-to-string and
string-to-object conversions between model data objects and a string representation of
those objects that is suitable for rendering. The POJO implements the Converter in-
terface and is also marked with @FacesConverter. This converter can then be used in
a JSF page:
<h:inputText value="#{user.age}" id="age">
<f:converter converterId="myConverter"/>
</h:inputText>
The value attribute of @FacesConverter must match the value of the converterId
attribute here.

A validator is used to validate data that is received from the input components. JSF
provides several built-in validators such as f:validateLength and f:validateDou
bleRange. These validators can be applied to any editable component:

<h:inputText value="#{user.name}" id="name">
<f:validateLength min="1" maximum="10"/>
</h:inputText>
In this code, the length of the entered text is validated to be between 1 and 10 characters.
An error message is thrown if the length is outside the specified range.

A custom validator can be easily created:

("nameValidator")
public class NameValidator implements Validator {

public void validate(
FacesContext context,
UIComponent component,

48 | Chapter3:JavaServer Faces

Object value)
throws ValidatorException {

/..
}

}

In this code, the method validate returns if the value is successtully validated. Other-
wise, a ValidatorException is thrown. This validator can be applied to any editable
component:

<h:inputText value="#{user.name}" id="name">

<f:validator id="nameValidator"/>

</h:inputText>
The value attribute of @FacesValidator must match the value of the id attribute of
f:validator here.

JSFE also provides built-in integration with constraints defined using Bean Validation.
Other than placing annotation constraints on the bean, no additional work is required
by the developer. Any error message because of constraint violation is automatically
converted to a FacesMessage and displayed to the end user. f:validateBean may be
used to specify validationGroups to indicate which validation groups should be taken
into consideration when validating a particular component. This is explained in detail
in Chapter 11.

A listener listens for events on a component. The event can be a change of value, a click
ofabutton, a click on a link, or something else. A listener can be a method in a managed
bean or a class by itself.

A ValueChangelListener can be registered on any editable component:
<h:inputText value="#{user.age}"
id="age"
valueChangelistener="#{user.nameUpdated}">
In this code, the nameUpdated method in the User bean is called when the associated
form is submitted. You can create a class-level listener by implementing the ValueChan
gelListener interface and specify it in the page using the f:valueChangeListener tag.

Unlike converters, validators, and listeners, a behavior enhances the client-side func-
tionality of a component by declaratively attaching scripts to it. For example, f:ajax is
defined as a client-side behavior. Client-side behavior also allows you to perform client-
side validation and client-side logging, show tooltips, and other similar functionality.

You can define custom behaviors by extending ClientBehaviorBase and marking with
@FacesBehavior.

Server and Client Extension Points | 49

Validating Data

In addition to using built-in and creating custom JSF validators, you can specify con-
straints defined on a backing bean using Bean Validation.

Consider a simple web application that has one page with several text fields inside of a
form:

<h:form>
<h:inputText value="#{myBean.name}"/>
<h:inputText value="#{myBean.age}"/>
<h:inputText value="#{myBean.zip}"/>
<h:commandButton value="Submit"/>
</h:form>

Assume that every text field is bound to a managed bean property that has at least one
Bean Validation constraint annotation attached to it:

public class MyBean implements Serializable {

(min = 3, message = "At least 3 characters")
private String name;

(18)
(25)
private int age;

(regexp = "[0-9]{5}")
private String zip;

/...

}
Every h:inputText element that is backed by a UIInput component has an instance of
Validator with id javax.faces.Bean attached to it. The validate method of this
Validator is called for the user-specified validation constraints during the process val-
idations phase.

The javax.faces.Bean standard validator also ensures that every Constraintviola
tion that resulted in attempting to validate the model data is wrapped in a FacesMes
sage and added to the FacesContext as with every other kind of validator. This message
is then displayed to the user as other validator messages are handled.

One or more validation groups can be associated with an input tag:
<h:inputText value="#{person.name}" id="name">

<f:validateBean validationGroups=
"org.sample.PagelGroup, org.sample.OtherGroup"/>

50 | Chapter3:JavaServer Faces

</h:inputText>
<h:commandButton action="index2" value="Next >"/>

which can also be used to create validation across multiple pages.

The validation groups can also be associated with a group of input tags:

<f:validateBean validationGroups="org.sample.MyGroup">
<h:inputText value="#{person.name}"/>
<h:inputText value="#{person.age}"/>
</f:validateBean>

In this code, the constraints are validated for the fields identified by #{person.name}
and #{person.age}.

Navigation Rules

JSFE defines implicit and explicit navigation rules.

Implicit navigation rules look for the outcome of an action (e.g., a click on a link or a
button). If a Facelets page matching the action outcome is found, that page is then
rendered:

<h:commandButton action="login" value="Login"/>

In this code, clicking the button will render the page login.xhtml in the same directory.

You can specify explicit navigation using <navigation-rule> in faces-config.xml, and
you can specify conditional navigation using <if>:

<navigation-rule>
<from-view-id>/index.xhtml</from-view-id>
<navigation-case>
<from-outcome>success</from-outcome>
<to-view-id>/login.xhtml</to-view-id>
<if>#{user.isPremium}</if>
</navigation-case>
</navigation-rule>

In this code, the page navigation from index.xhtml to login.xhtml only occurs if the user
is a premium customer.

Faces Flow

JSE 2.2 introduces Faces Flow. This feature borrows core concepts from ADF Task Flows,
Spring Web Flow, and Apache MyFaces CODI to provide a modular approach for
defining control flow in an application and standardizes them as part of JSF 2.2.

Faces Flow provides an encapsulation of related pages and corresponding backing beans
as a module. This module has well-defined entry and exit points assigned by the appli-
cation developer. Usually the objects in a faces flow are designed to allow the user to

Navigation Rules | 51

accomplish a task that requires input over a number of different views. An application
thus becomes a collection of flows instead of just views.

Imagine a multipage shopping cart with one page for selecting the items, a second page
for choosing shipping options, a third page for entering credit card details, and a fourth
page for confirming the order. You can use managed beans to capture the data, session
scope variables to pass information between pages, button clicks to invoke the business
logic in backing E]Bs, and (conditional) navigation rules to go from one page to another.
There are a few issues with this approach:

This flow of sequence will typically be part of a bigger application. This application,
typically with several pages, is one large flow and everything has global visibility
with no logical partitioning.

The flow of pages or views cannot be encapsulated as a logical unit and thus cannot
be reused—that is, incorporated into another bigger application or flow easily.

The same flow cannot be opened in multiple windows because session scoped vari-
ables are used to pass information between pages. CDI defines @ConversationSco
ped, but that is only part of the solution.

A request-based scope is for a particular request. A session-based scope is more
than a request scope, but becomes invalid after the browser is closed. We require a
scope of something in between that can span multiple pages per the application
logic. This is what is missing.

The lowest logical granularity is a page. The only way to invoke application logic is
to tie it to a UI component activated by the user in a page. Business logic cannot be
invoked without any user-initiated action.

Faces Flow provides a solution to these issues:

The application is broken into a series of modular flows that can call one another.

The flow of pages can be packaged as a module that can be reused within the same
or an entirely different application.

Shared memory scope (for example, flow scope) enables data to be passed between
views within the task flow.

A new CDI scope, @F LlowScoped, can be specified on a bean. This allows automatic
activation/passivation of the bean as the scope is entered/exited.

Business logic can be invoked from anywhere in the page based upon the flow
definition.

The flow of application is no longer restricted to flow between pages but instead is
defined as flow between “nodes.” There are five different types of nodes:

52

Chapter 3: JavaServer Faces

View
Any JSF page in the application.

Method call
Invoke application logic from the flow graph via an EL.

Switch
Navigation decisions in the flow graph based on Boolean EL.

Flow call
Call another flow with parameters and receive return values.

Flow return
Return to the calling flow.

These nodes define the entry and exit points of a flow.

The newly introduced CDI scope @F lowScoped defines the scope of a bean in the speci-
fied flow. This enables automatic activation/passivation of the bean when the scope is
entered/exited:

("flowl")
public class MyFlowlBean {
String address;
String creditCard;
/e ..
}

In this code, the bean has two flow-scoped variables: address and creditCard. The
bean is defined for the flow flowl.

A new EL object for flow storage, #{flowScope}, is also introduced. This maps to
facesContext.getApplication().getFlowHandler().getCurrentFlowScope():

<h:inputText id="input" value="#{flowScope.value}" />

In this code, the value entered in the text box is bound to #{flowScope.value}. This
EL expression can be used in other pages in the flow to access the value.

You can define flows declaratively using <flow-definition>, or programmatically us-
ing the fluent FlowBuilder API The two mechanisms are mutually exclusive.

Flows can be packaged in JAR files or in directories. JAR packaging requires flows to be
explicitly declared in META-INF/faces-config.xml in the JAR file. Flow nodes are pack-
aged in META-INF/flows/<flowname> where <flowname> is a JAR directory entry
whose name is identical to that of a flow id in the corresponding FlowDefinition
classes. If @F LlowScoped beans and a flow defined via FlowBuilder are packaged in the
JAR file, they must be accompanied by META-INF/beans.xml:

META-INF/faces-config.xml
META-INF/flows/flowl/entry.xhtml

FacesFlow | 53

META-INF/flows/flowl/next.xhtml
META-INF/flows/flowl/end.xhtml
META-INF/flows/flow2/start.xhtml
META-INF/flows/flow2/next.xhtml
META-INF/flows/flow2/end.xhtml
META-INF/beans.xml
org/glassfish/sample/MyFlowlBean.class
org/glassfish/sample/MyFlow2Bean.class
org/glassfish/sample/MyFlowlDefintion.class
org/glassfish/sample/MyFlow2Defintion.class

In this JAR packaging:

o There are two flows, flowl and flow?2.

o META-INF/beans.xml is required to enable CDI. It may be implicitly enabled if
bean-defining annotations are used in the archive.

o MyFlowl1Bean and MyFlow2Bean are the flow-scoped beans. These beans are used to
store any flow-local data.

o MyFlowlDefinition defines the entry and exit points of a flow, inbound parameter
name and value coming from another flow, outbound parameter name and value
for another flow, and navigation to other nodes:

public class MyFlowlDefinition {

public Flow defineFlow(FlowBuilder flowBuilder) {
String flowId = "flowl";
flowBuilder.id("unique", flowId);
flowBuilder.viewNode(flowId, "/" + flowId + "/" + flowId + ".xhtml")
.markAsStartNode();

flowBuilder.returnNode("goHome").
fromOutcome("#{flowlBean.homeValue}");

flowBuilder.inboundParameter("paramiFromFlow2", "#{flowScope.paramiValue}");

flowBuilder.flowCallNode("call2").flowReference("", "flow2").
outboundParameter("paramiFromFlowl", "paraml flowl value");

return flowBuilder.getFlow();

}
}

In this code:

— Flow is defined programmatically via the CDI producer. @FlowDefinition isa
class-level annotation that allows the flow to be defined via the fluent Flow
Builder API

54 | Chapter3:JavaServer Faces

— A FlowBuilder instance is injected as a parameter via the @FlowBuilderPara
meter and is used to define the flow.

— flowl is defined as the flow identifier and flow1.xhtml is marked as the starting
node.

— The returnNode method is used to define an exit point from the flow. In this
case, the flow is directed to /index for the action goHome. The node value can be
specified as an EL expression as well—for example, “may be bound to a bean.”

— Named inbound parameters are named parameters from another flow and are
defined via the inboundParameter method. The method’s value is populated
elsewhere with a corresponding outboundParameter element. The value is stor-
ed in the flow local storage via #{flowScope}.

— flowCallNode method is used to define an exit point from the flow. In this case,
flow2 flow is called. A named outbound parameter and its value are set via the
outboundParameter method.

Similarly MyFlow2Definition class defines flow2.
Flows packaged in directories use convention-over-configuration. The conventions are:

o Every View Declaration Language file, defined by an .xhtml page, in that directory
is a view node of that flow.

o The start node of the flow is the view whose name is the same as the name of the
flow.

 Navigation among any of the views in the directory is considered to be within the
flow.

 Navigation to a view outside of that directory is considered to be an exit of the flow.

o An optional <flowname>-flow.xml file represents the flow definition. The rules in
this file override the conventions just described:

flowl/flowl.xhtml
flowl/flowla.xhtml
flowl/flowlb.xhtml
flow2/flow2-flow.xml
flow2/flow2.xhtml
flow2/flow2a.xhtml
flow2/flow2b.xhtml
WEB-INF/...

Following the conventions just defined, in this directory:

o flowl.xhtmlis the starting node of flow flow1, and flowlaand flowib are two other
nodes in the same flow.

FacesFlow | 55

o flow2 is the starting node of flow flow2, and flow2a and flow2b are two other
nodes in the same flow. flow2/flow2-flow.xml defines declarative navigation of the
flow flow2. It defines the entry and exit points of a flow, inbound parameter name
and value coming from another flow, outbound parameter name and value for
another flow, and navigation to other nodes:

<faces-config version="2.2"
xmlns="http://xmlns.jcp.org/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="
http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/web-facesconfig_2_2.xsd">

<flow-definition id="flowl">
<flow-return id="goHome">
<from-outcome>/index</from-outcome>
</flow-return>

<inbound-parameter>
<name>paramlFromFlowl</name>
<value>#{flowScope.paramiValue}</value>
</inbound-parameters>

<flow-call id="callFlow2">
<flow-reference>
<flow-id>flow2</flow-id>
</flow-reference>
<outbound-parameter>
<name>paramlFromFlowl</name>
<value>paraml flowl value</value>
</outbound-parameter>
</flow-call>
</flow-definition>
</faces-config>

In this fragment:
— <flow-definition> defines flow for flowi, identified by the id attribute.

— <flow-return> defines an exit point from the flow. In this case, the flow is di-
rected to /index for the action goHome. The node value can be specified as an EL
expression—for example, “may be bound to a bean.”

— A named inbound parameter is defined via <inbound-parameters>. Its value is
populated elsewhere with a corresponding <outbound-parameter> element.
The value is stored in the flow local storage via #{flowScope}.

— <flow-call>definesan exit point from the flow. In this case, f low2 flow is called.
A named outbound parameter and its value are set via <outbound-parameters.

56 | Chapter3:JavaServer Faces

o The WEB-INF directory will contain other resources required by the pages, such
as backing beans.

Resource Library Contracts

JSFE 2 introduced Facelets as the default View Declaration Language. Facelets allows you
to create templates using XHTML and CSS that can then be used to provide a consistent
look and feel across different pages of an application. JSF 2.2 defines Resource Library
Contracts, alibrary of templates and associated resources that can be applied to an entire
application in a reusable and interchangeable manner. A configurable set of views in
the application will be able to declare themselves as template-clients of any template in
the resource library contract.

Resource library contracts reside in the contracts directory of the web application’s root:

index.xhtml

new/index.xhtml
contracts/blue/layout.css
contracts/blue/template.xhtml
contracts/blue/footer.png
contracts/red
contracts/red/layout.css
contracts/red/template.xhtml
contracts/red/logo.png
WEB-INF/faces-config.xml

In this code:

o The application also has two pages: index.xhtml and new/index.xhtml. These are
template client pages.

o All contracts reside in the contracts directory of the WAR. All templates and re-
sources for a contract are in their own directory. For example, the preceding struc-
ture has two defined contracts, blue and red.

o Each contract has a template.xhtml file, a CSS, and an image. Each template is called
as a declared template. In the template, it is recommended that you refer to the
stylesheets using h:outputStylesheet so that they are resolved appropriately.

o The template.xhtml file has <ui:insert> tags called as declared insertion points.
o CSS, images, and other resources bundled in the directory are declared resources.

o The declared template, declared insertion points, and declared resources together
define the resource library contract. A template client needs to know the value of
all three in order to use the contract. The client pages will use the contract by re-
ferring to the template:

<uil:composition template="/template.xhtml">
<ui:define name="content">

Resource Library Contracts | 57

</ui:define>
</uil:composition>

o WEB-INF/faces-config.xml defines the usage of the contract:

<application>
<resource-library-contracts>
<contract-mapping>
<url-pattern>/new/*</url-pattern>
<contracts>blue</contracts>
</contract-mapping>
<contract-mapping>
<url-pattern>*</url-pattern>
<contracts>red</contracts>
</contract-mapping>
</resource-library-contracts>
</application>

A contract is applied based upon the URL pattern invoked. Based upon the con-
figuration specified here, the red contract will be applied to faces/index.xhtml and
the blue contract will be applied to faces/new/index.xhtml.

The contracts can be packaged in the META-INF/contracts entry of a JAR file. Each
contract in the JAR file must have a marker file. The filename is given by the value of
the symbolic constant javax.faces.application.ResourceHandler .RESOURCE_CON
TRACT_XML:

META-INF/contracts/blue/javax.faces.contract.xml
META-INF/contracts/blue/layout.css
META-INF/contracts/blue/template.xhtml
META-INF/contracts/blue/footer.png
META-INF/contracts/red/javax.faces.contract.xml
META-INF/contracts/red/layout.css
META-INF/contracts/red/template.xhtml
META-INF/contracts/red/logo.png

The contents of the contracts directory from our application can be packaged in the
META-INF/contracts entry of a JAR file, say layout.jar. This JAR can then be packaged
into WEB-INF/Iib, and the declared templates can be used in the application:
index.xhtml
new/index.xhtml
WEB-INF/1ib/layout.jar
You can use a new layout.jar file, providing a similar set of declared insertion points
and resources (likely with a different CSS), to change the look and feel of the application.

You can change the template of the page dynamically as well by enclosing the template
client page ui:compositioninan f:view:

<f:view contracts="#{contractsBean.contract}">
<ui:composition template="/template.xhtml">

58 | Chapter3:JavaServer Faces

<ui:define name="content">

<h:form>
<h:selectOneRadio value="#{contractsBean.contract}"s>
<f:selectItem itemValue="red" itemLabel="red"/>
<f:selectItem itemValue="blue" itemLabel="blue"/>
</h:selectOneRadio>
<h:commandButton value="Apply" action="index" />
</h:form>
</ui:define>
</uil:composition>
</f:view>

In this code:

o f:view has an attribute, contracts, that binds to an EL.

o The value of this EL is populated from the radio button in the form inside ui:de
fine.

o The radio button values match the contract names.

o Clicking on the Apply command button will apply the chosen template to this page.

The backing bean definition is trivial:

public class ContractsBean implements Serializable {
String contract = "red";

// getter & setter
}

Passthrough Attributes and HTML5-Friendly Markup

HTML5 adds a series of new attributes for existing elements. These attributes include
the type attribute for input elements, which supports values such as email, url, tel,
number, range, and date:

<input type="email" name="myEmail"/>

This code fragment allows the browser to check whether the entered text is in email
format.

In addition, custom data attributes, also known as data-* attributes, can be defined to
store custom data private to the page or application. Every HTML element may have
any number of custom data attributes specified, with any value:

<input id="myData" type="text" data-length="3"/>

This code fragment introduces data-length as a custom data attribute.

Passthrough Attributes and HTML5-Friendly Markup | 59

These attributes are not rendered but can be read by JavaScript. This attribute can be
accessed in JavaScript as:

document.getElementById("myData").dataset.length;

Prior to JSF 2.2, by default, these newly introduced types and data-* attributes were not
supported by the components. The set of available attributes supported by a JSF com-
ponent is determined by the combination of the UIComponent and Renderer for that
tag. In some cases, the value of the attribute is interpreted by the UIComponent or
Renderer (for example, the columns attribute of h: panelGrid), and in others, the value
is passed straight through to the user agent (for example, the lang attribute of h: input
Text). In both cases, the UIComponent/Renderer has a prior knowledge of the set of
allowable attributes.

JSF 2.2 introduces passthrough attributes, which allow us to list arbitrary name/value
pairs in a component that are passed straight through to the user agent without inter-
pretation by the UIComponent or Renderer. The passthrough attributes can be specified
in three different ways:

o Prefixing the attribute with the shortname assigned to the http: //xmlns. jcp.org/
jsf/passThrough XML namespace:

<h:inputText p:type="emaill" value="#{user.email}"/>
In this code, p is the shortname for the namespace.
o Nesting the <f:passThroughAttribute> tag within a component:

<h:inputText value="#{user.email}">
<f:passThroughAttribute name="type" value="email"/>
</h:inputText>

In this code, a type attribute of value email is marked as a passthrough attribute.

o Nesting the <f:passThroughAttributes> tag within a component:

<h:inputText value="#{user.data}">
<f:passThroughAttributes value="#{user.myAttributes}"/>
</h:inputText>
#{user.myAttributes} must point to a Map<String, Object> where the values
can be either literals or a value expression.

This mechanism can be applied to any JSF component and is not restricted to just
HTMLS5 elements.

Component Tags

JSE 2 defines a variety of component tags. Each component is backed by a UICompo
nent class. These component tags are rendered as an HTML element via the HTML
RenderKit Renderer.

60 | Chapter3:JavaServer Faces

Here are sme commonly used components:

h:commandButton
o Usage:

<h:commandButton
value="Next"
action="next"/>

« HTML:

<input
type="submit"
name="7j_1dt8"
value="Next" />

h:commandLink
o Usage:

<h:commandLink
value="myLink"
action="next"/>

« HTML:

<script
type="text/javascript"
src="/components/faces/javax.faces.resource/jsf.js?

ln=javax.faces&stage=Development">

</script>

<a
href="#"
onclick="mojarra.jsfcljs(document.getElementById('j_idt6'),

{'j_idt10':'j_idt10'},"'");return false">

myLink

h:dataTable
o Usage:

<h:dataTable
value="#{myBean.list}"
var="p">
<h:column>
<f:facet name="header">Id</f:facet>
#{p.1d}
</h:column>
<h:column>
<f:facet name="header">Name</f:facet>
#{p.name}
</h:column>
</h:dataTable>

Component Tags

61

« HTML:

<table>
<thead>
<tr>
<th scope="col">Id</th>
<th scope="col">Name</th>
</tr>
</thead>
<tbody>
<tr>
<td> 1 </td>
<td> Penny </td>
</tr>
<tr>
<td> 2 </td>
<td> Leonard </td>
</tr>
<tr>
<td> 3 </td>
<td> Sheldon </td>

</tr>
</tbody>
</table>
h:form
o Usage:
<h:form> ... </h:form>
« HTML:
<form
id="j_idte"
name="7j_1idt6"
method="post"
action="/components/faces/index.xhtml"
enctype="application/x-www-form-urlencoded"s
</form>
h:graphicImage
o Usage:
<h:graphicImage
value="/images/glassfish.png"/>
« HTML:

h:inputHidden
o Usage:

62 | Chapter3:JavaServer Faces

<h:inputHidden
value="myHiddenValue"/>

« HTML:

<input
type="hidden"
name="7j_1idt22"
value="myHiddenValue" />

h:inputSecret
o Usage:

<h:inputSecret
value="#{myBean.password}"/>

« HTML:

<input
type="password"
name="7j_1idt24"
value="" />

h:inputText
o Usage:
<h:inputText

id="myInputText"
value="#{myBean.inputText}"/>

« HTML:
<input
id="myInputText"
type="text"

name="myInputText" />

h:inputTextArea
o Usage:
<h:inputTextarea

value="#{myBean.inputTextarea}"/>

« HTML:

<textarea
name="7j_1idt27">
</textarea>

h:button
o Usage:
<h:button

value="myButton"
outcome="next"/>

Component Tags

63

« HTML:

<input
type="button"
onclick="window.location.href="'/components/faces/next.xhtml';
return false;"
value="myButton" />

h:1link
o Usage:
<h:1ink
value="Next"
outcome="next">
<f:param
name="foo0"
value="bar"/>
</h:1ink>
« HTML:

Next

h:body
o Usage:
<h:body>
This is body
</h:body>
« HTML:
<body>
This is body
</body>
h:outputFormat
o Usage:
<h:outputFormat
value="Hello {0}">
<f:param value="Duke"/>
</h:outputFormat>
« HTML:
Hello Duke
h:outputLabel
o Usage:
<label

for="1inputTextId">

64 | Chapter3:JavaServer Faces

myLabel

</label>

<input
id="1nputTextId"
type="text"
name="1inputTextId"
value="myInputText" />

« HTML:

<h:outputLabel
for="1inputTextId"
value="myLabel"/>

<h:inputText
id="1nputTextId"
value="myInputText"/>

h:outputLink
o Usage:
<h:outputLink
value="next.xhtml">
myOutput
</h:outputLink>

« HTML:

myOutput

h:outputText
o Usage:

<h:outputText
value="myOutputText"/>

« HTML:
myOutputText

h:outputScript
o Usage:
<h:outputScript
library="scripts"
name="main.js"/>

« HTML:

<script
type="text/javascript"
src="/components/faces/javax.faces.resource/main.js">

ComponentTags | 65

h:outputStylesheet
o Usage:

<h:outputStylesheet
library="stylesheets"
name="main.css"/>

« HTML:

<link
type="text/css"
rel="stylesheet"
href ="/components/faces/javax.faces.resource/main.css?
ln=stylesheets"/>

h:panelGrid
o Usage:

<h:panelGrid
columns="2">
<h:outputLabel
for="1nputText1l"
value="mylLabell"/>
<h:inputText
id="1inputText1"
value="#{myBean.inputText}"/>
<h:outputLabel
for="1nputText2"
value="mylLabel2"/>
<h:inputText
id="1inputText2"
value="#{myBean.inputText}"/>
</h:panelGrid>

« HTML:

<table>
<tbody>
<tr>
<td>
<label for="inputTextl"smyLabell</label>
</td>
<td>
<input
id="1inputText1"
type="text"
name="inputTextl" />
</td>
</tr>
<tr>
<td>
<label for="inputText2"smylLabel2</label>
</td>
<td>

66 | Chapter3:JavaServer Faces

<input
id="1inputText2"

type="text"
name="inputText2" />
</td>
</tr>
</tbody>
</table>

h:selectBooleanCheckbox
o Usage:

<h:selectBooleanCheckbox
value="#{myBean.selectBooleanCheckbox}" />

« HTML:

<input
type="checkbox"
name="j_1idt52" />

h:selectOneRadio
o Usage:

<h:selectOneRadio
value="#{myBean.selectBooleanCheckbox}">
<f:selectItem
itemValue="red"
itemLabel="Red" />
<f:selectItem
itemValue="green"
itemLabel="Green"/>
<f:selectItem
itemValue="blue"
itemLabel="Blue"/>
</h:selectOneRadio>

« HTML:
<table>
<tr>
<td>
<input
type="radio"
checked="checked"
name="7j_1idt54"
id="j_1idt54:0"
value="red" />
<label for="j_1dt54:0"> Red</label>
</td>
<td>
<input
type="radio"

checked="checked"

ComponentTags | 67

name="j_1idt54"
id="j_idt54:1"
value="green" [>
<label for="j_1idt54:1"> Green</label>
</td>
<td>
<input
type="radio"
checked="checked"
name="7j_1idt54"
id="j_idt54:2"
value="blue" />
<label for="j_1dt54:2"> Blue</label>
</td>
</tr>
</table>

h:selectOnelListbox
o Usage:

<h:selectOneListbox
value="#{myBean.selectBooleanCheckbox}">
<f:selectItem
itemValue="red"
itemLabel="Red" />
<f:selectItem
itemValue="green"
itemLabel="Green"/>
<f:selectItem
itemValue="blue"
itemLabel="Blue" />
</h:selectOnelListbox>

« HTML:
<select name="j_1dt59" size="3">
<option
value="red"
selected="selected">Red</option>
<option

value="green"
selected="selected">Green</option>
<option
value="blue"
selected="selected">Blue</option>
</select>

h:selectOneMenu
o Usage:
<h:selectOneMenu

value="#{myBean.selectBooleanCheckbox}">
<f:selectItem

68 | Chapter3:JavaServer Faces

itemValue="red"
itemLabel="Red"/>
<f:selectItem
itemValue="green"
itemLabel="Green"/>
<f:selectItem
itemValue="blue"
itemLabel="Blue"/>
</h:selectOneMenu>

« HTML:
<select name="j_1idt64" size="1">
<option
value="red"
selected="selected">Red</option>
<option

value="green"
selected="selected">Green</option>
<option
value="blue"
selected="selected">Blue</option>
</select>

h:selectManyCheckbox
o Usage:

<h:selectManyCheckbox
value="#{myBean.selectManyCheckbox}">
<f:selectItem
itemValue="red"
itemLabel="Red" />
<f:selectItem
itemValue="green"
itemLabel="Green"/>
<f:selectItem
itemValue="blue"
itemLabel="Blue" />
</h:selectManyCheckbox>

« HTML:
<table>
<tr>
<td>
<input
name="7j_1dt69"
id="j_1dt69:0"
value="red"
type="checkbox" />
<label

for="j_1dt69:0"
class=""> Red</label>
</td>

ComponentTags | 69

<td>

<input
name="j_1dt69"
id="j_idt69:1"

value="green"
type="checkbox" />
<label
for="j_idt69:1"
class=""> Green</label>
</td>
<td>
<input
name="j_1dt69"
id="j_1idt69:2"
value="blue"
type="checkbox" />
<label
for="j_idt69:2"
class=""> Blue</label>
</td>
</tr>
</table>

h:selectManyListbox
o Usage:

<h:selectManyListbox
value="#{myBean.selectBooleanCheckbox}"
size="2">
<f:selectItem
itemValue="red"
itemLabel="Red" />
<f:selectItem
itemValue="green"
itemLabel="Green"/>
<f:selectItem
itemValue="blue"
itemLabel="Blue"/>
</h:selectManyListbox>

« HTML:
<select name="j_idt74" size="2"s>
<option
value="red"
selected="selected">Red</option>
<option

value="green"

selected="selected">Green</option>
<option

value="blue"

70 | Chapter3:JavaServer Faces

selected="selected">Blue</option>
</select>

h:selectManyMenu
o Usage:

<h:selectManyMenu
value="#{myBean.selectBooleanCheckbox}">
<f:selectItem
itemValue="red"
itemLabel="Red"/>
<f:selectItem
itemValue="green"
itemLabel="Green"/>
<f:selectItem
itemValue="blue"
itemLabel="Blue" />
</h:selectManyMenu>

« HTML:

<select name="j_idt81" multiple="multiple" size="1">
<option value="red">Red</option>
<option value="green"sGreen</option>
<option value="blue">Blue</option>

</select>

<input
type="hidden"
name="javax.faces.ViewState"
id="j_1id1:javax.faces.ViewState:0"
value="-6389029500114305749:3536902027553202703"
autocomplete="off" [>

h:inputFile is a new component added in JSF 2.2. This component allows a file to be
uploaded. This component can be used inside an h: form and bound to a bean that has
a field of the type javax.servlet.http.Part:

<h:form enctype="multipart/form-data">
<h:inputFile value="#{fileUploadBean.file}"/>

<h:commandButton value="Upload"/><p/>
</h:form>

In this code:
o An HTML form is created via the h: form element. The form must have multipart/

form-data as the value of enctype. This is a standard MIME type that should be
used for submitting forms that contain files, non-ASCII data, and binary data.

o The value attribute of h:inputFile is bound to a bean:

ComponentTags | 71

public class FileUploadBean {
private Part file;

public Part getFile() {
return file;

}

public setFile(Part file) {
this.file = file;
}
}

o The file is uploaded when the Upload button is clicked.

The file upload can also be wrapped in a <f:ajax> tag:

<h:form enctype="multipart/form-data" prependId="false">
<h:inputFile value="#{fileUploadBean.file}"/>

<h:commandButton value="Upload">
<f:ajax onevent="statusUpdate"/>
</h:commandButton>
</h:form>
<textarea id="status" cols="40" rows="10" readonly="readonly"/>

This code is similar to that previously shown with the following differences:

o The <textarea> outside h:formis a placeholder for displaying the status of the file
upload.

o h:commandButton has a nested <f:ajax> tag. This tag invokes the statusUpdate
method defined separately in JavaScript:

var statusUpdate = function statusUpdate(data) {
var statusArea = document.getElementById("status");
var text = statusArea.value;
text = text + "Name: " + data.source.id;

if (data.type === "event") {

text = text + " Event: " + data.status + " ";
}
statusArea.value = text;

}

This code prints the event source and name as the Ajax request goes through the
JSF Ajax life cycle and receives the standard life-cycle events.

72 | Chapter3:JavaServer Faces

CHAPTER 4
RESTful Web Services

RESTful Web Services are defined as JSR 339, and the complete specification can be
downloaded.

REST is an architectural style of services that utilizes web standards. Web services de-
signed using REST are called RESTful web services, and their main principles are:

o Everything can be identified as a resource, and each resource can be uniquely iden-
tified by a URL

o A resource can be represented in multiple formats, defined by a media type. The
media type will provide enough information on how the requested format needs
to be generated. Standard methods are defined for the client and server to negotiate
on the content type of the resource.

o Use standard HTTP methods to interact with the resource: GET to retrieve a re-
source, POST to create a resource, PUT to update a resource, and DELETE to remove
a resource.

« Communication between the client and the endpoint is stateless. All the associated
state required by the server is passed by the client in each invocation.

Java API for RESTful web services (JAX-RS) defines a standard annotation-driven API
that helps developers build a RESTful web service in Java and invoke it. The standard
principles of REST, such as identifying a resource as a URI, a well-defined set of methods
to access the resource, and multiple representation formats of a resource, can be easily
marked in a POJO via annotations.

Resources

A simple RESTful web service can be defined as a resource using @Path:

3

http://jcp.org/aboutJava/communityprocess/final/jsr339/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr339/index.html

("orders")
public class OrderResource {

public List<Order> getAll() {
/). . .
}

("{oild}")
public Order getOrder(("old")int id) {
/). ..
}
}

public class Order {
int id;
/) ..

}

In this code:

o OrderResource is a POJO class and is published as a RESTful resource at the or
ders path when we add the class-level @Path annotation.

o The Order class is marked with the @mlRootElement annotation, allowing a con-
version between Java and XML.

o The getAll resource method, which provides a list of all orders, is invoked when
we access this resource using the HTTP GET method; we identify it by specifying
the @QGET annotation on the method.

o The @Path annotation on the getOrder resource method marks it as a subresource
that is accessible at orders/{oid}.

o The curly braces around oid identify it as a template parameter and bind its value
at runtime to the id parameter of the getOrder resource method.

o The @PathParam can also be used to bind template parameters to a resource class
field.

Typically, a RESTful resource is bundled in a .war file along with other classes and
resources. The Application classand @pplicationPathannotation are used to specify
the base path for all the RESTful resources in the packaged archive. The Application
class also provides additional metadata about the application.

Let’s say this POJO is packaged in the store.war file, deployed at localhost:86086, and
the Application class is defined:
("webresources")

public class ApplicationConfig extends Application {
}

74 | Chapter4: RESTful Web Services

You can access a list of all the orders by issuing a GET request to:
http://localhost:8080/store/webresources/orders

You can obtain a specific order by issuing a GET request to:
http://localhost:8080/store/webresources/orders/1

Here, the value 1 will be passed to getOrder’s method parameter id. The resource
method will locate the order with the correct order number and return back the Or
der class. The @XmlRootElement annotation ensures that an automatic mapping from
Javato XML occurs following JAXB mapping and an XML representation of the resource
is returned.

A URI may pass HTTP query parameters using name/value pairs. You can map these
to resource method parameters or fields using the @ueryParam annotation. If the re-
source method getAll is updated such that the returned results start from a specific
order number, the number of orders returned can also be specified:

public List<Order> getAll(("start")int from,
("page")int page) {
Y/
}

And the resource is accessed as:
http://localhost:8080/store/webresources/orders?start=108&page=20
Then 10 is mapped to the from parameter and 20 is mapped to the page parameter.

By default, a resource method is required to wait and produce a response before re-
turning to the JAX-RS implementation, which then returns control to the client. JAX-
RS 2 allows for an asynchronous endpoint that informs the JAX-RS implementation
that a response is not readily available upon return but will be produced at a future time.
It achieves this by first suspending the client connection and later resuming when the
response is available:

("orders")
public class OrderResource {

public void getAll(final AsyncResponse ar) {
executor.submit(new Runnable() {

public void run() {
List<Order> response = new ArraylList<>();
/) ..
ar.resume(response);

}

b
}
}

Resources | 75

In this code:

o The getAll method is marked to produce an asynchronous response. We identify
this by injecting a method parameter of the class AsyncResponse using the new
annotation @Suspended. The return type of this method is void.

o This method returns immediately after forking a new thread, likely using Manage
dExecutorService as defined by Concurrency Utilities for Java EE. The client con-
nection is suspended at this time.

o The new thread executes the long-running operation and resumes the connection
by calling resume when the response is ready.

You can receive request processing completion events by registering an implementation
of CompletionCallback:

public class OrderResource {
public void getAll(final AsyncResponse ar) {
ar.register(new MyCompletionCallback());

}

class MyCompletionCallback implements CompletionCallback {

public void onComplete(Throwable t) {
/) ..
}

}

}

In this code, the onComplete method is invoked when the request processing is finished,
after a response is processed and is sent back to the client, or when an unmapped
throwable has been propagated to the hosting I/O container.

You can receive connection-related life-cycle events by registering an implementation
of ConnectionCallback:

public class OrderResource {
public void getAll(final AsyncResponse ar) {
ar.register(new MyCompletionCallback());
}

class MyCompletionCallback implements CompletionCallback {

public void onDisconnect(AsyncResponse ar) {
/e ..
}

}

}

76 | Chapter4: RESTful Web Services

In this code, the onDisconnect method is invoked in case the container detects that the
remote client connection associated with the asynchronous response has been
disconnected.

Binding HTTP Methods

JAX-RS provides support for binding standard HTTP GET, POST, PUT, DELETE, HEAD, and
OPTIONS methods using the corresponding annotations described in Table 4-1.

Table 4-1. HTTP methods supported by JAX-RS

HTTP method JAX-RS annotation

GET @GET
POST @POST
PUT @PUT
DELETE @DELETE
HEAD @HEAD

OPTIONS @OPTIONS

Let’s take a look at how @POST is used. Consider the following HTML form, which takes
the order identifier and customer name and creates an order by posting the form to
webresources/orders/create:

<form method="post" action="webresources/orders/create"s
Order Number: <input type="text" name="id"/>

Customer Name: <input type="text" name="name"/>

<input type="submit" value="Create Order"/>

</form>

The updated resource definition uses the following annotations:

("create")
("application/x-www-form-urlencoded")
public Order createOrder(("id")int id,

("name")String name) {
Order order = new Order();
order.setId(id);
order.setName(name);
return order;

}

The @FormParam annotation binds the value of an HTML form parameter to a resource
method parameter or a field. The name attribute in the HTML form and the value of the
@FormParamannotation are exactly the same to ensure the binding. Clicking the submit
button in this form will return the XML representation of the created Order. A Re
sponse object may be used to create a custom response.

Binding HTTP Methods | 77

The following code shows how @PUT is used:

("{id}")
("*/xml")
public Order putXml(("id")int id,
String content) {
Order order = findOrder(id);
// update order from "content"

return order;
}
The resource method is marked as a subresource, and {id} is bound to the resource
method parameter id. The contents of the body can be any XML media type as defined
by @Consumes and are bound to the content method parameter. A PUT request to this
resource may be issued as:

curl -1 -X PUT -d "New Order"
//localhost:8080/store/webresources/orders/1

The content method parameter will have the value New Order.

Similarly, an @DELETE resource method can be defined as follows:

("{id}")
public void putXml(("id")int id) {
Order order = findOrder(id);
// delete order

}
The resource method is marked as a subresource, and {id} is bound to the resource
method parameter id. A DELETE request to this resource may be issued as:

curl -1 -X DELETE
//localhost:8080/store/webresources/orders/1

The content method parameter will have the value New Order.
The HEAD and OPTIONS methods receive automated support from JAX-RS.

The HTTP HEAD method is identical to GET except that no response body is returned.
This method is typically used to obtain metainformation about the resource without
requesting the body. The set of HT'TP headers in response to a HEAD request is identical
to the information sent in response to a GET request. If no method is marked with
@HEAD, an equivalent @QGET method is called, and the response body is discarded. The
@HEAD annotation is used to mark a method serving HEAD requests:

(II{.'Ld}H)
public void headOrder(("id")int id) {

78 | Chapter4: RESTful Web Services

System.out.println("HEAD");
}

This method is often used for testing hypertext links for validity, accessibility, and recent
modification. A HEAD request to this resource may be issued as:

curl -1 -X HEAD
//localhost:8080/store/webresources/orders/1

The HT TP response header contains HTTP/1.1 204 No Content and no content body.

The HTTP OPTIONS method requests the communication options available on the re-
quest/response identified by the URL. If no method is designated with @QOPTIONS, the
JAX-RS runtime generates an automatic response using the annotations on the match-
ing resource class and methods. The default response typically works in most cases.
@OPTIONS may be used to customize the response to the OPTIONS request:

("{1d}")
public Response options() {
// create a custom Response and return

}
An OPTIONS request to this resource may be issued as:

curl -1 -X OPTIONS
//localhost:8080/store/webresources/orders/1

The HTTP Allow response header provides information about the HTTP operations
permitted. The Content-Type header is used to specify the media type of the body, if
any is included.

In addition to the standard set of methods supported with corresponding annotations,
HttpMethod may be used to build extensions such as WebDAV.

Multiple Resource Representations

By default, a RESTful resource is published or consumed with the */* MIME type. A
RESTful resource can restrict the media types supported by request and response using
the @Consumes and @Produces annotations, respectively. These annotations may be
specified on the resource class or a resource method. The annotation specified on the
method overrides any on the resource class.

Here is an example showing how Order can be published using multiple MIME types:

("{oid}")
({"application/xml", "application/json"})
public Order getOrder(("old")int d) { . . .}

Multiple Resource Representations | 79

The resource method can generate an XML or JSON representation of Order. The exact
return type of the response is determined by the HTTP Accept header in the request.

Wildcard pattern matching is supported as well. The following resource method will be
dispatched if the HTTP Accept header specifies any application MIME type such as
application/xml, application/json, or any other media type:

(“{Oid}”)
("application/*")
public Order getOrder(("old")int id) { . . .}

Here is an example of how multiple MIME types may be consumed by a resource
method:

(II{O.‘Ld}II)
({"application/xml", "application/json"})
public Order getOrder(("old")int id) { . . .}

The resource method invoked is determined by the HT'TP Content-Type header of the
request.

JAX-RS 2.0 allows you to indicate a media preference on the server side using the gs
(short for “quality on server”) parameter.

gs is a floating-point number with a value in the range of 0.000 through 1.000 and
indicates the relative quality of a representation compared to the others available, in-
dependent of the client’s capabilities. A representation with a qs value of 0.000 will never
be chosen. A representation with no gs parameter value is given a gs factor of 1.0:

("{oid}")
({"application/xml; gs=0.75", "application/json; gs=1"})
public Order getOrder(("otd")int id) { . . .}

If a client issues a request with no preference for a particular representation or with an
Accept header of application/*;, then the server will select a representation with a
higher gs value—application/json in this case.

gs values are relative and, as such, are only comparable to other gs values within the
same @Produces annotation instance.

You can define a mapping between a custom representation and a corresponding Java
type by implementing the MessageBodyReader and MessageBodyWriter interfaces and
annotating with @Provider.

80 | Chapter4: RESTful Web Services

Binding a Request to a Resource

By default, a new resource is created for each request to access a resource. The resource
method parameters, fields, or bean properties are bound by way of xxxParam annota-
tions added during object creation time. In addition to @PathParam and @QueryParam,
the following annotations can be used to bind different parts of the request to a resource
method parameter, field, or bean property:

o @CookieParam binds the value of a cookie:

public Order getOrder(
("JSESSIONID")String sessionid) {
Y7
}
This code binds the value of the "JSESSIONID" cookie to the resource method pa-
rameter sessionid.

e @HeaderParam binds the value of an HTTP header:

public Order getOrder(
("Accept")String accept) {
/).
}
o @FormParam binds the value of a form parameter contained within a request entity
body. Its usage is displayed in “Binding HTTP Methods” on page 77.

o @MatrixParam binds the name/value parameters in the URI path:

public List<Order> getAll(
("start")int from,
("page")int page) {
Y/
}

And the resource is accessed as:

//localhost:8080/store/webresources/orders;
start=10;
page=20

Then 10 is mapped to the from parameter and 20 is mapped to the page parameter.
You can obtain more details about the application deployment context and the context
of individual requests using the @Context annotation.

Here is an updated resource definition where more details about the request context
are displayed before the method is invoked:

("orders")
public class OrderResource {

Application app;

Binding a Request to a Resource | 81

UriInfo uri;
HttpHeaders headers;
Request request;

SecurityContext security;
Providers providers;

("application/xml")
public List<Order> getAll(("start")int from,
("end")int to) {

//. . .(app.getClasses());
//. . .(uri.getPath());
//. . .(headers.getRequestHeader (HttpHeaders.ACCEPT));
//. . .(headers.getCookies());
//. . .(request.getMethod());
//. . .(security.isSecure());
/) ..

}

}

In this code:

o UriInfo provides access to application and request URI information.
 Application provides access to application configuration information.

o HttpHeaders provides access to HTTP header information either as a Map or as
convenience methods. Note that @HeaderParam can also be used to bind an HTTP
header to a resource method parameter, field, or bean property.

o Request provides a helper to request processing and is typically used with Re
sponse to dynamically build the response.

 SecurityContext providesaccess to security-related information about the current
request.

o Providers supplies information about runtime lookup of provider instances based
on a set of search criteria.

Entity Providers

JAX-RS defines entity providers that supply mapping services between on-the-wire rep-
resentations and their associated Java types. The entities, also known as “message pay-
load” or “payload,” represent the main part of an HTTP message. These are specified as
method parameters and return types of resource methods. Several standard Java types
—such as String, byte[], javax.xml.bind.JAXBElement, java.ilo.InputStream,
java.io.File, and others—have a predefined mapping and are required by the speci-
fication. Applications may provide their own mapping to custom types using the Mes

82 | Chapter4: RESTful Web Services

sageBodyReader and MessageBodyWriter interfaces. This allows us to extend the JAX-
RS runtime easily to support our own custom entity providers.

The MessageBodyReader interface defines the contract for a provider that supports the
conversion of a stream to a Java type. Conversely, the MessageBodyWriter interface
defines the contract for a provider that supports the conversion of a Java type to a stream.

If we do not specify @mlRootElement on OrderResource, then we need to define the
mapping between XML to Java and vice versa. Java API for XML Processing can be used
to define the mapping between the Java type to XML and vice versa. Similarly, Java API
for JSON Processing can be used to define the two-way mapping between Java and
JSON:

("application/json")
public class OrderReader implements MessageBodyReader<Order> {

/).

public void writeTo(Order o,
Class<?> type,
Type t,
Annotation[] as,
MediaType mt,
MultivaluedMap<String, Object> mm,
OutputStream out)
throws IOException, WebApplicationException {
JsonGeneratorFactory factory = Json.createGeneratorFactory();
JsonGenerator gen = factory.createGenerator(out);
gen.writeStartObject()
.write("1d", o.getId())
.writekEnd();
}
}

This code shows the implementation of the MessageBodyWriter.writeTo method,
which is responsible for writing the object to an HTTP response. The method is using
the Streaming API defined by Java API for JSON Processing to write Order o to the
underlying OutputStream out for the HTTP entity. The implementation class needs to
be marked with @Provider to make it discoverable by the JAX-RS runtime on the server
side. The providers need to be explicitly registered on the client side. @roduces ensures
that this entity provider will only support the specified media type:

("application/json")
public class OrderReader implements MessageBodyReader<Order> {

/...

public Order readFrom(Class<Order> type,

Entity Providers | 83

Type t,
Annotation[] as,
MediaType mt,
MultivaluedMap<String, String> mm,
InputStream in)
throws IOException, WebApplicationException {
Order o = new Order();
JsonParser parser = Json.createParser(in);
while (parser.hasNext()) {
switch (parser.next()) {
case
String key = parser.getString();
parser.next();
switch (key) {
case "id":
o.setId(parser.getIntValue());
break;
default:
break;
}
break;
default:
break;
}
}

return o;
}
}

This code shows the implementation of the MessageBodyReader . readFrom method,
which is responsible for reading the object from the HTTP request. This method is using
the Streaming API defined by Java API for JSON Processing to read Order o from the
InputStream in for the HTTP entity. The implementation class needs to be marked
with @Provider to make it discoverable by the JAX-RS runtime. The providers need to
be explicitly registered on the client side. @onsumes ensures that this entity provider
will only support the specified media type.

Client API

JAX-RS 2 adds a new Client API that can be used to access web resources and provides
integration with JAX-RS providers. Without this API, users must use a low-level
HttpUrlConnection to access the REST endpoint:

Client client = ClientBuilder.newClient();

Order order = client
.target("http://localhost:8080/store/webresources/orders")
.path("{oid}")

.resolveTemplate("oid", 1)

84 | Chapter4: RESTful Web Services

.request()
.get(Order.class);

This code uses the fluent builder pattern and works as follows:

o ClientBuilder is the entry point to the client API. It is used to obtain an instance
of Client that uses method chaining to build and execute client requests in order
to consume the responses returned.

Clients are heavyweight objects that manage the client-side communication in-
frastructure. Initialization as well as disposal of a Client instance may be a rather
expensive operation. It is therefore recommended that you construct only a small
number of Client instances in the application.

o We create WebTarget by specifying the URI of the web resource. We then use these
targets to prepare client request invocation by resolving the URI template, using
the resolveTemplate method for different names. We can specify additional query
or matrix parameters here using the queryParam and matrixParam methods,
respectively.

o We build the client request by invoking the request method.

o We invoke the HTTP GET method by calling the get method. The Java type of the
response entity is specified as the parameter to the invoked method.

The fluency of the APT hides its complexity, but a better understanding of the flow allows
us to write better code.

We can make HTTP POST or PUT requests by using the post or put methods, respectively:

Order order =
client
.target(...)
.request()
.post(Entity.entity(new Order(1), "application/json"),
Order.class);

In this code, a new message entity is created with the specified media type, a POST request
is created, and a response of type Order is expected. There are other variations of the
Entity.entity method that would allow us to manipulate the request. The Entity class
defines variants of the most popular media types. It also allows us to POST an HTML
form using the form method.

We can make an HTTP DELETE request by identifying the resource with the URI and
using the delete method:

client
.target("...")
.target("{old}")
.resolveTemplate("oid", 1)

ClientAPI | 85

.request()
.delete();

We need to explicity register entity providers using the register method:

Order o = client
.register(OrderReader.class)
.register(OrderWriter.class)
.target(...)

.request()
.get(Order.class);

By default, the client is invoked synchronously but can be invoked asynchronously if
we call the async method as part of the fluent builder API and (optionally) register an
instance of InvocationCallback:

Future<Order> f = client
.target("http://localhost:8080/store/webresources/orders")
.path("{old}")

.resolveTemplate("oid", 1)
.request()
.async()
.get();
/) ..
Order o = f.get();

In this code, the call to get after async is called returns immediately without blocking
the caller’s thread. The response is a Future instance that can be used to monitor or
cancel asynchronous invocation or retrieve results.

Optionally, InvocationCallback can be registered to receive the events from the asyn-
chronous invocation processing:

client
.target("http://localhost:8080/store/webresources/orders/{oid}")
.resolveTemplate("oid", 1)
.request()
.async()
.get(new InvocationCallback<Order>() {

public void completed(Order o) {
/e ..
}

public void failed(Throwable t) {
/). ..
}
s

86 | Chapter4: RESTful Web Services

The completed method is called on successful completion of invocation, and the re-
sponse data is made available in the parameter o. The failed method is called when the
invocation is failed for any reason, and the parameter t contains failure details.

A more generic client request can be prepared and executed at a later time. This enables
a separation of concerns between the creator and the submitter:

Invocation 11 = client.target(...).request().buildGet();
Invocation 12 = client
.target(...)
.request()
.post(Entity.entity(new Order(1),
"application/json"));

/) ..
Response r = i1.invoke();
Order o = 12.invoke(Order.class);

In this code, a GET request is prepared and stored as 11, and a POST request is prepared
and stored as 12. These requests are then executed at a later time via the invoke method
and the result retrieved. In the first case, a more generic Response is returned, which
can then be used to extract the result and other metadata about it. In the second case,
an Order instance is returned because of the type specified before.

You can submit these as asynchronous requests using the submit method:

Future<Response> f1 = 11.submit();
Future<Order> f2 = 12.submit(Order.class);

/e

Response r1 = fl.get();

Order r11 = ri.readEntity(Order.class);
Order r2 = f2.get();

In this code, we submit the Invocations for asynchronous execution using the sub
mit method. A Future response object is returned in both cases. After waiting for some
time, we can obtain the first result by calling the get method on the returned Future.
In the first case, we need to extract the exact result by calling the readEntity method.
In the second case, an Order response is returned directly because of the type specified
during the submit invocation.

Mapping Exceptions

An application-specific exception may be thrown from within the resource method and
propagated to the client. The application can supply checked or exception mapping to
an instance of the Response class. Let’s say the application throws the following excep-
tion if an order is not found:

public class OrderNotFoundException
extends RuntimeException {

Mapping Exceptions | 87

public OrderNotFoundException(int id) {
super(id + " order not found");

}

}
The method getOrder may look like:

("{id}")
public Order getOrder(("id")int 1d) {
Order order = null;
if (order == null) {
throw new OrderNotFoundException(id);
}
/) ..

return order;

}

The exception mapper will look like:

public class OrderNotFoundExceptionMapper
implements ExceptionMapper<OrderNotFoundException> {

public Response toResponse(
OrderNotFoundException exception) {
return Response
.status(Response.Status.PRECONDITION_FAILED)
.entity("Response not found")
.build();

}

This ensures that the client receives a formatted response instead of just the exception
being propagated from the resource.

Filters and Entity Interceptors

JAX-RS 2 defines extension points to customize the request/response processing on
both the client and server side. These are used to extend an implementation in order to
provide capabilities such as logging, confidentiality, and authentication. The two kinds
of extension points are: filters and entity interceptors.

Filters are mainly used to modify or process incoming and outgoing request or response
headers. Entity interceptors are mainly concerned with marshaling and unmarshaling
of HTTP message bodies.

Filters can be configured on the client and server, giving us four extension points for
filters, defined by four interfaces:

88 | Chapter4: RESTful Web Services

e ClientRequestFilter
¢ ClientResponseFilter
e ContainerRequestFilter

e ContainerResponseFilter

As the names indicate, ClientRequestFilter and ClientResponseFilter are client-
side filters, and ContainerRequestFilter and ContainerResponseFilter are server-
side filters. Similarly, ClientRequestFilter and ContainerRequestFilter operate on
the request, and ContainerResponseFilter and ClientResponseFilter operate on
the response.

The client-side or server-side filters may be implemented by the same class or different
classes:

public class ClientLoggingFilter implements ClientRequestFilter,
ClientResponseFilter {

public void filter(ClientRequestContext crc) throws IOException {
String method = crc.getMethod();
String uri = crc.getUri();
for (Entry e : crc.getHeaders().entrySet()) {

. = e.getKey();

. = e.getValue();

public void filter(ClientRequestContext crc, ClientResponseContext crcl)
throws IOException {
for (Entry e : crcl.getHeaders().entrySet()) {
. = e.getKey();
. = e.getValue();
}
}
}

This code shows a simple client-side filter that will log the headers sent as part of the
request and received in the response message. ClientRequestContext provides
request-specific information for the filter, such as the request URI, message headers,
and message entity or request-scoped properties. ClientResponseContext provides
response-specific information for the filter, such as message headers, the message entity,
or response-scoped properties.

On the client side, you can register this filter using the client-side API:

Client client = ClientBuilder.newClient();
client.register(ClientLoggingFilter.class);
WebTarget target = client.target(...);

Filters and Entity Interceptors | 89

A server-side filter that will log the headers received as part of the request and sent in
the response message can be implemented similarly:

public class ServerLoggingFilter implements ContainerRequestFilter,
ContainerResponseFilter {

public void filter(ContainerRequestContext crc) throws IOException {
String method = crc.getMethod();
String uri = crc.getUriInfo().getAbsolutePath();
for (String key : crc.getHeaders().keySet()) {
... = key;
crc.getHeaders().get(key);

public void filter(ContainerRequestContext crc, ContainerResponseContext crcil)
throws IOException {
for (String key : crcl.getHeaders().keySet()) {
= key;
. = crcl.getHeaders().get(key);

}

}
}

In this code, the filter is a provider class and thus must be marked with @Provider. This
ensures that the filters are automatically discovered. If the filter is not marked with
@Provider, it needs to be explicitly registered in the Application class:

("webresources")
public class MyApplication extends Application {

public Set<Class<?>> getClasses() {
Set<Class<?>> resources = new java.util.HashSet<>();
resources.add(org.sample.filter.ServerLoggingFilter.class);
return resources;
}
}

ContainerRequestFilter comes in two flavors: pre-match and post-match. A pre-
match filter is applied globally on all resources before the resource is matched with the
incoming HTTP request. A pre-match filter is typically used to update the HT TP meth-
od in the request and is capable of altering the matching algorithm. A post-match filter
is applied after the resource method has been matched. You can convert any Contatin
erRequestFilter to a pre-match filter by adding the @PreMatching annotation.

On the server side, the filters can be registered in four different ways:

90 | Chapter4: RESTful Web Services

Globally bound to all resources and all methods in them
By default, if no annotation is specified on the filter, then it is globally bound—that
is, it all applies to methods on all resources in an application.

Globally bound to all resources and methods via the meta-annotation @ameBinding
The annotation may be specified on the Application class and then the filter be-
comes globally enabled on all methods for all resources:

("webresources")

public class MyApplication extends Application {
/). ..
}

Statically bound to a specific resource/method via the meta-annotation @NameBinding

A filter may be statically targeted to a resource class or method via the meta-
annotation @NameBinding as follows:

({ElementType.TYPE, ElementType.METHOD})
(value = RetentionPolicy.RUNTIME)
public ServerLogged {}

This annotation then needs to be specified on the filter implementation and the
resource class and/or method:

public class ServerLoggingFilter implements ContainerRequestFilter,
ContainerResponseFilter {
/) ..
}

("orders")

public class MyResource {

Y72
}

If the annotation is specified on a resource, then the filter is applied to all methods

of the resource. If the annotation is specified on a specific resource method, then

the filter is applied only when that particular method is invoked.

@NameBinding annotation is ignored on filters marked with @PreMatch.

Dynamically bound to a specific resource/method via DynamicFeature
A non-globally bound filter (i.e., a filter annotated with @ameBinding) can be
dynamically bound to a resource or a method within a resource via DynamicFea
ture. For example, the following feature binds all resource methods in MyRe
source that are annotated with QGET:

Filters and Entity Interceptors | 91

public class DynamicServerLogggingFilterFeature implements DynamicFeature {

public void configure(ResourceInfo ri, Configurable c) {
if (MyResource.class.isAssignableFrom(ri.getResourceClass())
&& ri.getResourceMethod().isAnnotationPresent(GET.class)) {
c.register(new ServerLoggingFilter());
}
}
}

In this code, ServerLoggingFilter is configured on the methods of MyResource
marked with the GET annotation. This feature is marked with @Provider and is thus

automatically discovered by the JAX-RS runtime. Dynamic binding is ignored on
filters marked with @PreMatch.

Multiple filters may be implemented at each extension point and arranged in filter
chains. Filters in a chain are sorted based on their priorities and are executed in order.
Priorities are defined through the @javax.annotation.Priority annotation and rep-
resented by integer numbers. The Priorities class defines built-in priorities for secu-
rity, decoders/encoders, and more. The default binding priority is Priorities.USER.

The priorities for ClientRequestFilter and ContainerRequestFilter are sorted in
ascending order; the lower the number, the higher the priority. The priorities for Con
tailnerResponseFilter and ClientResponseFilter are sorted in descending order;
the higher the number, the higher the priority. These rules ensure that response filters
are executed in reverse order of request filters.

The priority of ClientLoggingFilter defined previously can be changed as shown:

(Priorities.HEADER_DECORATOR)
public class ClientLoggingFilter implements ClientRequestFilter,
ClientResponseFilter {
/) ..

}
Filters are executed without method invocation wrapping (i.e., filters execute in their
own silos and do not directly invoke the next filter in the chain). The JAX-RS runtime
decides whether to invoke the next filter or not.

ClientRequestFilter and ContailnerRequestFilter can stop the execution of their
corresponding chains by calling abortWith(Response).

Entity interceptors are mainly concerned with marshaling and unmarshaling of HTTP
message bodies. They implement ReaderInterceptor or WriterInterceptor, or both.

WriterInterceptor operates on the outbound request on the client side and on the
outbound response on the server side:

92 | Chapter4: RESTful Web Services

public class MylWriterInterceptor implements WriterInterceptor {

public void aroundWriteTo(WriterInterceptorContext wic)
throws IOException, WebApplicationException {

wic.setOutputStream(new FilterOutputStream(wic.getOutputStream()) {

final ByteArrayOutputStream baos = new ByteArrayOutputStream();

public void write(int b) throws IOException {
baos.write(b);
super.write(b);

}

public void close() throws IOException {
System.out.println("MyClientWriterInterceptor -->
super.close();
}
b
wic.proceed();
}
}

ReaderInterceptor operates on the outbound response on the client side and on the
inbound request on the server side:

+ baos.toString());

public class MyReaderInterceptor implements ReaderInterceptor {

public Object aroundReadFrom(ReaderInterceptorContext ric)
throws IOException, WebApplicationException {
final InputStream old = ric.getInputStream();
ByteArrayOutputStream baos = new ByteArrayOutputStream();
int c;
while ((c = old.read()) != -1) {
baos.write(c);

}
. = baos.toString();

ric.setInputStream(new ByteArrayInputStream(baos.toByteArray()));

return ric.proceed();

}
}
As with filters, there is an interceptor chain for each kind of entity interceptor. Entity
interceptors in a chain are sorted based on their priorities and are executed in order.
Priorities are defined via the @javax.annotation.Priority annotation and represent-
ed by integer numbers. The Priorities class defines built-in priorities for security,

Filters and Entity Interceptors | 93

decoders/encoders, and more. The default binding priority is Priorities.USER. The
priorities are sorted in ascending order; the lower the number, the higher the priority.

Filters and entity interceptors may be specified on a client and resource. Figure 4-1
shows the invocation sequence on both client and server.

Request
Matching

(lient Web Resource
We—
A: Client Request Filter B: Client Writer Interceptor
(: @PreMatch Filter D: Container Request Filter
E: Server Reader Interceptor F: Container Response Filter
G: Server Writer Interceptor H: Client Response Filter

|: Client Reader Interceptor

Figure 4-1. JAX-RS filters and interceptors sequencing

Validation of Resources

Bean Validation 1.1 allows declarative validation of resources. The constraints can be
specified in any location in which the JAX-RS binding annotations are allowed, with
the exception of constructors and property setters:

("/names")
public class NameResource {

(min=1)
("firstName")
private String firstName;

(min=1)
("lastName")
private String lastName;

("email")
public void setEmail(String email) {
this.email = email;

}

public String getEmail() {
return email;

}

94 | Chapter4: RESTful Web Services

Y/
}

In this code:

o firstName and lastName are fields initialized via injection. These fields cannot be
null and must be at least one character.

« emailisaresource class property, and the constraint annotation is specified on the
corresponding getter.

You can specify cross-field and cross-property constraints by declaring annotations on
the class:

public class NameResource {
("firstName")
private String firstName;

("lastName")
private String lastName;

/) ..
}
In this code, @otNullAndNonEmptyNames is a custom constraint that requires the first
and last name to be not null and both the names to be at least one character long.

You can map request entity bodies to resource method parameters and validate them
by specifying the constraint on the resource method parameter:

public class NameResource {

("application/json")
public void addAge((16) (25)int age) {
Y/
}
}

In this code, the request entity body is mapped to the age parameter and must be not
null and between the values of 16 and 25.

Validation of Resources | 95

Alternatively, if the request entity is mapped to a bean that is decorated with constraint
annotations already, then @valid can be used to trigger the validation:

public class NameResource {

public void addName(Name name) {
/) ..
}
}

JAX-RS constraint validations are carried out in the Default validation group only.
Processing other validation groups is not required.

96 | Chapter4: RESTful Web Services

CHAPTER'5
SOAP-Based Web Services

SOAP-Based Web Services are defined as JSR 224, and the complete specification can
be downloaded.

SOAP is an XML-based messaging protocol used as a data format for exchanging in-
formation over web services. The SOAP specification defines an envelope that repre-
sents the contents of a SOAP message and encoding rules for data types. It also defines
how SOAP messages may be sent over different transport protocols, such as exchanging
messages as the payload of HTTP POST. The SOAP protocol provides a way to com-
municate among applications running on different operating systems, with different
technologies, and different programming languages.

Java API for XML-Based Web Services (JAX-WS) hides the complexity of the SOAP
protocol and provides a simple API for development and deployment of web service
endpoints and clients. The developer writes a web service endpoint as a Java class. The
JAX-WS runtime publishes the web service and its capabilities using Web Services De-
scription Language (WSDL). Tools provided by a JAX-WS implementation, such as
wscompile by the JAX-WS Reference Implementation, are used to generate a proxy to
the service and invoke methods on it from the client code. The JAX-WS runtime con-
verts the API calls to and from SOAP messages and sends them over HTTP, as shown
in Figure 5-1.

In addition to sending SOAP messages over HT TP, JAX-WS provides XML-over-HTTP
protocol binding and is extensible to other protocols and transports. The XML-over-
HTTP binding use case is better served by JAX-RS and will not be discussed here.

Data mapping between Java and XML is defined through the Java API for XML Binding
(JAXB).

97

http://jcp.org/aboutJava/communityprocess/mrel/jsr224/index4.html
http://jcp.org/aboutJava/communityprocess/mrel/jsr224/index4.html

(Proxy)e wscompile (wsl)

r N\ N

Figure 5-1. JAX-WS client and server

Y A

JAX-WS JAX-WS
(_ Client Runtime | Server Runtime

J

The JAX-WS specification defines mapping from WSDL 1.1 to Java. This mapping de-
fines how different WSDL constructs such as wsdl:service, wsdl:portType, and
wsdl:operation are mapped to Java. This mapping is used when web service interfaces
for clients and endpoints are generated from a WSDL 1.1 description.

Java to WSDL 1.1 mapping is also defined by this specification. This mapping defines
how Java packages, classes, interfaces, methods, parameters, and other parts of a web
service endpoint are mapped to WSDL 1.1 constructs. This mapping is used when web
service endpoints are generated from existing Java interfaces.

JAX-WS uses technologies defined by the W3C: HTTP, SOAP, and WSDL. It also re-
quires compliance with the WS-I Basic Profile, the WS-I Simple SOAP Binding Profile,
and the WS-I Attachments Profile, which promotes interoperability between web serv-
ices. This allows a JAX-WS endpoint to be invoked by a client on another operating
system written in another programming language and vice versa.

JAX-WS also facilitates, using a nonstandard programming model, the publishing and
invoking of a web service that uses WS-* specifications such as WS-Security, WS-Secure
Conversation, and WS-Reliable Messaging. Some of these specifications are already
implemented in the JAX-WS implementation bundled as part of GlassFish. However,
this particular usage of JAX-WS will not be discussed here. More details about it can be
found at http://metro.java.net.

Web Service Endpoints

You can convert a POJO to a SOAP-based web service endpoint by adding the @WebSer
vice annotation:

public class SimpleWebService {

public String sayHello(String name) {
return "Hello " + name;

}
}

All public methods of the class are exposed as web service operations.

98 | Chapter5: SOAP-Based Web Services

http://metro.java.net

Thisis called a Service Endpoint Interface (SEI)-based endpoint. Even though the name
contains the word interface, an interface is not required for building a JAX-WS endpoint.
The web service implementation class implicitly defines an SEI. This approach of start-
ing with a POJO is also called the code-first approach. The other approach—in which
you start with a WSDL and generate Java classes from it—is called the contract-first

approach.

There are reasonable defaults for wsdl:service name, wsdl:portType name,
wsdl:port name, and other elements in the generated WSDL. The @WebService anno-
tation has several attributes to override the defaults, as defined in Table 5-1.

Table 5-1. @WebService attributes

Attributes Description

endpointInterface Fully qualified class name of the service endpoint interface defining the service’s abstract web
service contract

name Name of the web service (wsd1: portType)
portName Port name of the web service (wsdl:port)
serviceName Service name of the web service (wsd1:service)

targetNamespace Namespace for the web service (targetNamespace)

wsdlLocation Location of a predefined WSDL describing the service

The @WebMethod annotation can be used on each method to override the corresponding
default values:

(operationName="hello")
public String sayHello(String name) {
return "Hello " + name;

}

Specifying this annotation overrides the default name of the wsdl: operation matching
this method.

Additionally, if any method is annotated with @WebMethod, all other methods of the class
are implicitly not available at the SEI endpoint. Any additional methods are required to
be annotated.

If there are multiple methods in the POJO and a particular method needs to be excluded
from the web service description, the exclude attribute can be used:

(exclude=true)
public String sayHello(String name) {
return "Hello " + name;

}

You can customize the mapping of an individual parameter of a method to WSDL using
@WebParam, and the mapping of the return value using @WebResu'lt.

Web Service Endpoints | 99

The mapping of Java programming language types to and from XML definitions is
delegated to JAXB. It follows the default Java-to-XML and XML-to-Java mapping for
each method parameter and return type. The usual JAXB annotations can be used to
customize the mapping to the generated schema:

public class ShoppingCart {
public void purchase(List<Item> items) {
Y72
}
/) ..

class Item {
private String name;
/). ..

}

In this code, @XmlRootElement allows the Item class to be converted to XML and vice
versa.

By default, the generated WSDL uses the document/1literal style of binding. You can
change this by specifying the @0APBinding annotation on the class:

(style= SOAPBinding.Style.RPC)
public class SimpleWebService {

Y/
}

The business methods can throw a service-specific exception:

public String sayHello(String name) throws InvalidNameException {
/) ..
}

public class InvalidNameException extends Exception {
/..
}

If this exception is thrown in the business method on the server side, it is propagated
to the client side. If the exception is declared as an unchecked exception, it is mapped
to SOAPFaultException on the client side. The @WebFault annotation may be used to
customize the mapping of wsdl:fault in the generated WSDL.

By default, a message follows the request/response design pattern where a response is
received for each request. A method may follow the fire-and-forget design pattern by
specifying the @neway annotation on it so that a request can be sent from the message

100 | Chapter5: SOAP-Based Weh Services

but no response is received. Such a method must have a void return type and must not
throw any checked exceptions:

public void doSomething() {
/) ..
}

A WebServiceContext may be injected in an endpoint implementation class:

WebServiceContext context;

This provides information about message context (via the getMessageContext method)
and security information (via the getUserPrincipal and isUserInRole methods) rel-
ative to a request being served.

Provider-Based Dynamic Endpoints

A Provider-based endpoint provides a dynamic alternative to the SEI-based endpoint.
Instead of just the mapped Java types, the complete protocol message or protocol mes-
sage payload is available as Source, DataSource, or SOAPMessage at the endpoint. The
response message also needs to be prepared using these APIs.

The endpoint needs to implement the Provider<Source>, Provider<SOAPMessage>, or
Provider<DataSource> interface:

public class MyProvider implements Provider<Source> {

public Source invoke(Source request) {
/) ..
}

}

In this code, the SOAP body payload is available as a Source. @WebServiceProvider is
used to associate the class with awsdl:service and awsdl:port element in the WSDL
document.

Table 5-2 describes the attributes that can be used to provide additional information
about the mapping.

Provider-Based Dynamic Endpoints | 101

Table 5-2. @WebServiceProvider attributes

Attribute Description

portName Port name
serviceName Service name
targetNamespace Target namespace for the service

wsdlLocation Location of the WSDL for the service

By default, only the message payload (i.e., the SOAP body in the case of the SOAP
protocol) is received at the endpoint and sent in a response. The ServiceMode annota-
tion can be used to override this if the provider endpoint wishes to send and receive the
entire protocol message:

(ServiceMode.Mode.MESSAGE)
public class MyProvider implements Provider<Source> {

Y/
}

In this code, the complete SOAP message is received and sent from the endpoint.

Provider<Source> is the most commonly used Provider-based endpoint. A Provid
er<SOAP message> in PAYLOAD mode is not valid because the entire SOAP message
is received, not just the payload that corresponds to the body of the SOAP message.

The runtime catches the exception thrown by a Provider endpoint and converts it to a
protocol-specific exception (e.g., SOAPFaultException for the SOAP protocol).

Endpoint-Based Endpoints

An Endpoint-based endpoint offers a lightweight alternative for creating and publishing
an endpoint. This is a convenient way of deploying a JAX-WS-based web service end-
point from Java SE applications.

A code-first endpoint can be published:

public class SimpleWebService {

public String sayHello(String name) {
return "Hello " + name;
}
}

/...

Endpoint endpoint =
Endpoint.publish("http://localhost:8080" +
" /example/SimpleWebService",
new SimpleWebService());

102 | Chapter5: SOAP-Based Web Services

In this code, a POJO annotated with @WebService is used as the endpoint implemen-
tation. The address of the endpoint is passed as an argument to Endpoint.publish. This
method call publishes the endpoint and starts accepting incoming requests.

The endpoint can be taken down and stop receiving incoming requests:
endpoint.stop();

The endpoint implementation can be a Provider-based endpoint as well.

A mapped WSDL is automatically generated by the underlying runtime in this case.

You can publish a contract-first endpoint by packaging the WSDL and specifying the
wsdl:port and wsdl:service as part of the configuration:

Endpoint endpoint = Endpoint.create
(new SimpleWebService());

List<Source> metadata = new ArraylList<Source>();

Source source = new StreamSource(new InputStream(...));
metadata.add(source);

endpoint.setMetadata(metadata);

Map<String, Object> props = new HashMap<String, Object>();
props.put(Endpoint.WSDL_PORT, new QName(...));
props.put(Endpoint.WSDL_SERVICE, new QName(...));
endpoint.setProperties(props);

endpoint.publish("http://localhost:8080" +
" Jexample.com/SimpleWebService");

An Executor may be set on the endpoint to gain better control over the threads used
to dispatch incoming requests:

ThreadPoolExecutor executor = new
ThreadPoolExecutor (4, 10, 100,

TimeUnit.MILLISECONDS, new PriorityBlockingQueue());
endpoint.setExecutor(executor);

EndpointContext allows multiple endpoints in an application to share any information.

Web Service Client

The contract between the web service endpoint and a client is defined through WSDL.
As with an SEI-based web service endpoint, you can easily generate a high-level web
service client by importing the WSDL. Such tools follow the WSDL-to-Java mapping
defined by the JAX-WS specification and generate the corresponding classes.

Table 5-3 describes the mapped Java artifact names generated for some of the WSDL
elements.

Web Service Client | 103

Table 5-3. WSDL-to-Java mappings

WSDL element Java class

wsdl:service Service class extending javax.xml.ws.Service; provides the client view of a
web service

wsdl:portType Service endpoint interface

wsdl:operation Java method in the corresponding SEI

wsdl:input Wrapper- or nonwrapper-style Java method parameters

wsdl:output Wrapper- or nonwrapper-style Java method return value

wsdl:fault Service-specific exception

XML schema elements in As defined by XML-to-Java mapping in the JAXB specification

wsdl:types

You can generate a new instance of the proxy by calling one of the getPort methods on
the generated Service class:

(name="...",
targetNamespace="...",
wsdlLocation="...")

public class SimplelWebServiceService
extends Service {

URL wsdlLocation = ...
QName serviceQName = ...

public SimpleWebServiceService() {
super(wsdlLocation, serviceQName);

}
/7

public SimpleWebService getSimpleWebServicePort() {
return super.getPort(portQName,
SimpleWebService.class);

}
A client will then invoke a business method on the web service:

SimpleWebServiceService service = new SimpleWebServiceService();
SimpleWebService port = service.getSimpleWebServicePort();
port.sayHello("Duke");

A more generic getPort method may be used to obtain the endpoint:

SimpleWebServiceService service = new SimpleWebServiceService();
SimpleWebService port = service.getPort(SimpleWebService.class);
port.sayHello("Duke");

104 | Chapter5: SOAP-Based Web Services

Each generated proxy implements the BindingProvider interface. Table 5-4 describes
the properties that may be set on the provider.

Table 5-4. BindingProvider properties

Property name Description

ENDPOINT_ADDRESS_PROPERTY Target service endpoint address
USERNAME_PROPERTY Username for HTTP basic authentication
PASSWORD_PROPERTY Password for HTTP basic authentication

SESSION_MAINTAIN_PROPERTY Boolean property to indicate whether the client is participating in a session with
service endpoint

SOAPACTION_USE_PROPERTY Controls whether SOAPAction HTTP header is used in SOAP/HTTP requests; default
value is false

SOAPACTION_URI_PROPERTY Value of SOAPAction HTTP header; default value is empty string

Typically, a generated client has an endpoint address preconfigured based upon the
value of the soap:address element in the WSDL. The ENDPOINT_ADDRESS_PROPERTY
can be used to target the client to a different endpoint:

BindingProvider provider = (BindingProvider)port;

port.getRequestContext().put(
BindingProvider.ENDPOINT_ADDRESS_PROPERTY,
"http://example.com/NewWebServiceEndpoint");

Dispatch-Based Dynamic Client

A Dispatch-based endpoint provides a dynamic alternative to the generated proxy-
based client. Instead of just the mapped Java types, the complete protocol message or
protocol message payload is prepared by way of XML APIs.

The client can be implemented via Dispatch<Source>, Dispatch<SOAPMessage>, Dis
patch<DataSource>, or Dispatch<JAXB Objects>:

QName serviceQName = new QName("http://example.com",
"SimpleWebServiceService");
Service service = Service.create(serviceQName);

QName portQName = new QName("http://example.com",
"SimpleWebService");

Dispatch<Source> dispatch = service.createDispatch(
portQName,
Source.class,
Service.Mode.PAYLOAD);

/). ..

Source source = new StreamSource(...);

Source response = dispatch.invoke(source);

Dispatch-Based Dynamic Client | 105

In this code, we create a Service by specifying the fully qualified QName, a port is created
from the service, a Dispatch<Source> is created, and the web service endpoint is in-
voked. The business method invoked on the service endpoint is dispatched based upon
the received SOAP message.

A pregenerated Service object, generated by a tool following WSDL-to-Java mapping,
may be used to create the Dispatch client as well.

A Dispatch<SOAPMessage> can be created:

Dispatch<SOAPMessage> dispatch =
service.createDispatch(portQName,
SOAPMessage.class,
Service.Mode.MESSAGE);

The value of Service.Mode must be MESSAGE for Dispatch<SOAPMessages.

JAXB objects generated from XML-to-Java mapping may be used to create and manip-
ulate XML representations. Such a Dispatch client can be created:
Dispatch<Object> dispatch =
service.create(portQName,
jaxbContext,
Service.Mode.MESSAGE);
In this code, jaxbContext is the JAXBContext used to marshal and unmarshal messages
or message payloads.

A Dispatch client can also be invoked asynchronously:
Response<Source> response = dispatch.invoke(...);

The Response object can then be used to query (via the isDone method), cancel (via the
cancel method), or obtain the results from (via get methods) the method invocation.
You can convert the asynchronous invocation into a blocking request by invoking re
sponse.get right after obtaining the response object.

You can make an asynchronous request using a callback:

Future<?> response =
dispatch.invokeAsync(source, new MyAsyncHandler());

/) ..
class MyAsyncHandler implements AysnchHandler<Source> {

public void handleResponse(Response<Source> res) {
/) ..
}
}

A new class, MyAsyncHandler, registers a callback class that receives control when the
response is received from the endpoint. The response can be used to check if the web

106 | Chapter5: SOAP-Based Web Services

service invocation has completed, wait for its completion, or retrieve the result. The
handleResponse method of the callback is used to process the response received.

A one-way request using a Dispatch-based client may be made:

dispatch.invokeOneWay(source);

Handlers

Handlers are well-defined extension points that perform additional processing of the
request and response messages. They can be easily plugged into the JAX-WS runtime.
There are two types of handlers:

Logical handler
Logical handlers are protocol-agnostic and cannot change any protocol-specific
parts of a message (such as headers). Logical handlers act only on the payload of
the message.

Protocol handler
Protocol handlers are specific to a protocol and may access or change the protocol-
specific aspects of a message.

You can write logical handlers by implementing LogicalHandler:

public class MyLogicalHandler implements LogicalHandler {

public boolean handleMessage(MessageContext context) {
Source source =
((LogicalMessageContext)context)
.getMessage()
.getPayload();
/) ..

return true;

public boolean handleFault(MessageContext context) {
/..
}

public void close(MessageContext context) {
Y7
}
}
In this code, the handler has implemented the handleMessage, handleFault, and close
methods. The handleMessage method is called for inbound and outbound message
processing, and the handleFault method is invoked for fault processing. The handle

Handlers | 107

Message and handleFault messages return true to continue further processing, and
false to block processing.

MessageContext provides a context about the message that is currently being processed
by the handler instance. It provides a predefined set of properties that can be used to
communicate among different handlers. Properties are scoped to APPLICATION or
HANDLER.

The message payload may be obtained as a JAXB object:

LogicalMessage message = context.getMessage();
Object jaxbObject = message.getPayload(jaxbContext);
// Update the JAXB Object
message.setPayload(modifiedJaxbObject, jaxbContext);

In this code, jaxbObject is obtained as the payload, updated, and then sent back ex-
plicitly as the payload on the message.

Protocol handlers, specific to the SOAP protocol, are called by the SOAP handler:

public class MySOAPHandler implements SOAPHandler {

public Set getHeaders() {
/). ..
}

public boolean handleMessage(MessageContext context) {
SOAPMessage message = ((SOAPMessageContext) context).getMessage();
/). ..

return true;

public boolean handleFault(MessageContext context) {

/.
}

public void close(MessageContext context) { }

}

In this code, the handler has implemented the handleMessage, handleFault, close,
and getHeaders methods. SOAP handlers are generally used to process SOAP-specific
information, such as SOAP headers. The getHeaders method returns the set of SOAP
headers processed by this handler instance.

Handlers can be organized in a handler chain. The handlers within a handler chain are
invoked each time a message is sent or received. Inbound messages are processed by
handlers prior to dispatching a request to the service endpoint or returning a response

108 | Chapter5: SOAP-Based Web Services

to the client. Outbound messages are processed by handlers after a request is sent from
the client or a response is returned from the service endpoint.

During runtime, the handler chain is reordered such that logical handlers are executed
before the SOAP handlers on an outbound message and SOAP handlers are executed
before logical handlers on an inbound message.

The sequence of logical and SOAP handlers during a request and response is shown in
Figure 5-2.

Logical ~ SOAP SOAP Logical
Handlers Handlers\ l—landlers Handlers

JAX-WS
Client Runtime

Y A

JAX-WS
(_ Server Runtime

J

Figure 5-2. JAX-WS logical and SOAP handlers

Handlers | 109

CHAPTER 6
JSON Processing

JSON Processing is defined as the Java API for JSON Processing in JSR 353, and the
complete specification can be downloaded.

JSON (JavaScript Object Notation) is a lightweight data-interchange format. The format
is easy for humans and machines to read and write. JSON was based on a subset of
JavaScript and is commonly used with it, but it is a language-independent data format.
A JSON structure can be built as either of the following:

« A collection of name/value pairs, generally realized as dictionary, hash table, or
associative array

o An ordered list of values, generally realized as an array, list, or sequence

The following example shows the JSON representation of an object that describes a
movie:

{
"name": "The Matrix",
"actors": [
"Keanu Reeves",
"Laurence Fishburne",
"Carrie-Ann Moss"

1,
"year": 1999

}

The object has three name/value pairs. The first name is name with a string value for the
movie name, the second name is actors with an array value for the actors in the movie,
and the third name is year with a number value for the year the movie was released.

JSON is quickly becoming the primary choice for developers for consuming and cre-
ating web services. Currently, Java applications use different implementation libraries
to produce/consume JSON. These libraries are bundled along with the application,

m

http://jcp.org/aboutJava/communityprocess/final/jsr353/index.html

thereby increasing the overall size of the deployed archive. Java API for JSON Processing
will provide a standard API to parse and generate JSON so that the applications that
use the API are smaller and portable. The goals of the API are to:

o Produce/consume JSON text in a streaming fashion (similar to StAX API for XML)
o Build a Java object model for JSON text (similar to DOM API for XML)

Binding of JSON text to Java objects is outside the scope of this API.

Streaming API

The Streaming API provides a way to parse and generate JSON text in a streaming
fashion. The API provides an event-based parser and allows an application developer
to ask for the next event (i.e., pull the event), rather than handling the event in a callback.
This gives a developer more procedural control over processing of the JSON. Parser
events can be processed or discarded, or the next event may be generated.

The streaming model is adequate for local processing where only specific parts of the
JSON structure need to be accessed, and random access to other parts of the data is not
required. The streaming API is a low-level API designed to process large amounts of
JSON data efficiently. Other JSON frameworks (such as JSON binding) can be imple-
mented with this APL

The streaming API is similar to the StAX API for XML and consists of the interfaces
JsonParser for consuming JSON and JsonGenerator for producing JSON.

Consuming JSON Using the Streaming API

JsonParser contains methods to parse JSON data using the streaming model. Json
Parser provides forward, read-only access to JSON data using the pull parsing pro-
gramming model. In this model, the application code controls the thread and calls
methods in the parser interface to move the parser forward or to obtain JSON data from
the current state of the parser.

JsonParser can be created from an InputStream:
JsonParser parser = Json.createParser(new FileInputStream(...));

This code shows how to create a parser from an InputStream obtained from a new
FileInputStream.

JsonParser can also be created from a Reader:
JsonParser parser = Json.createParser(new StringReader(...));
This code shows how to create a parser from a StringReader.

You can create multiple parser instances using JsonParserFactory:

112 | Chapter6:JSON Processing

JsonParserFactory factory = Json.createParserFactory(null);
JsonParser parserl = factory.createParser(...);
JsonParser parser2 = factory.createParser(...);

The factory can be configured with the specified map of provider-specific configuration
properties. Any unsupported configuration properties specified in the map are ignored.

In this case, null properties are passed during the creation of the parser factory.

The pull-parsing programming model is used to to parse the JSON. The next method
returns the event for the next parsing state, which could be any of the following types:

« START_ARRAY
« END_ARRAY

« START_OBJECT
« END_OBJECT

« KEY_NAME

o VALUE_STRING
« VALUE_NUMBER
« VALUE_TRUE

« VALUE_FALSE
o VALUE_NULL

The parser generates START_OBJECT and END_OBJECT events for an empty JSON object

{1}

For an object with two name/value pairs:

{
"app'l.e": "red" s

"banana":"yellow"

}
The events generated are shown in bold:

{START_OBJECT
"apple"KEY_NAME: "red"VALUE_STRING,
"banana"KEY_NAME: "yellow"VALUE_STRING
}

The events generated for an array with two JSON objects are shown in bold:

[START_ARRAY
{START_OBJECT "apple"KEY_NAME:"red"VALUE_STRING }END_OBJECT,
{START_OBJECT "banana"KEY_NAME: "yellow"VALUE_STRING }END_OBJECT
JEND_ARRAY

The events generated for a nested structure are shown in bold:

Streaming API

| 113

{START_OBJECT
"title"KEY_NAME: "The Matrix"VALUE_STRING,
"year"KEY_NAME : 1999VALUE_NUMBER,
"cast"KEY_NAME : [START_ARRAY
"Keanu Reeves"VALUE_STRING,
"Laurence Fishburne"VALUE_STRING,
"Carrie-Anne Moss"VALUE_STRING
TEND_ARRAY
}END_OBJECT

Producing JSON Using the Streaming API

The Streaming API provides a way to generate well-formed JSON to a stream by writing
one event at a time.

JsonGenerator contains writeXXX methods to write name/value pairs in JSON objects
and values in JSON arrays:

JsonGeneratorFactory factory = Json.createGeneratorFactory(null);
JsonGenerator gen = factory.createGenerator(System.out);
gen.writeStartObject().writeEnd();

In this code:

« A JsonGenerator isobtained from JsonGeneratorFactory and configured to write
the output to System.out.

The factory can be configured with the specified map of provider-specific config-
uration properties. Any unsupported configuration properties specified in the map
are ignored. In this case, null properties are passed during the creation of the
generator factory.

 Anempty object, with no name/value pairs, is created and written to the configured
output stream. An object is started when the writeStartObject method is called,
and ended with the writeEnd method.

JsonGenerator may be configured to write to a Writer as well.
The generated JSON structure is:
{1

An object with two name/value pairs can be generated:

gen.writeStartObject()
.write("apple", "red")
.write("banana", "yellow")
.writekEnd();

A name/value pair is written via the write method, which takes a name as the first
parameter and a value as the second parameter. The value can be BigDecimal, BigIn
teger, boolean, double, int, long, String, and JsonValue.

114 | Chapter 6:JSON Processing

The generated JSON structure is:

{
"apple": uredu s
"banana":"yellow"

}
An array with two objects with each object with a name/value pair can be generated:

gen.writeStartArray()
.writeStartObject()
.write("apple", "red")
.writeEnd()
.writeStartObject()
.write("banana", "yellow")
.writeEnd()
writeEnd();

A new array is started when the writeStartArray method is called and ended when
the writeEnd method is called. An object within an array is written via the writeStar
tObject and writeEnd methods. The generated JSON structure is:

[
{ ||app1en: "red" }’
{ "banana":"yellow" }

]
A nested structure with two name/value pairs and a named array can be generated:

gen.writeStartObject()

write("title", "The Matrix")

.write("year", 1999)

.writeStartArray("cast")
.write("Keanu Reeves")
.write("Laurence Fishburne")
.write("Carrie-Anne Moss")

.writeEnd()

.writeEnd();

A named array is started via writeStartArray. Each element of the array is written via
the write method, which can take values of the type BigDecimal, BigInteger, boolean,
double, int, long, String, and JsonValue.

The generated JSON structure is:

{
"title":"The Matrix",

"year":1999,
"cast":[
"Keanu Reeves",
"Laurence Fishburne",
"Carrie-Anne Moss"
1
}

Streaming APl | 115

Object Model API

The Object Model APT is a high-level API that provides immutable object models for
JSON object and array structures. These JSON structures are represented as object
models via the Java types JsonObject and JsonArray. JsonObject provides a Map view
to access the unordered collection of zero or more name/value pairs from the model.
Similarly, JsonArray provides a List view to access the ordered sequence of zero or
more values from the model.

This programming model is most flexible and enables processing that requires random
access to the complete contents of the tree. However, it is often not as efficient as the
streaming model and requires more memory.

The Object Model API is similar to the DOM API for XML and uses builder patterns
to create these object models. It consists of the interfaces JsonReader (for consuming
JSON) and JsonObjectBuilder and JsonArrayBuilder (for producing JSON).

Consuming JSON Using the Object Model API

JsonReader contains methods to read JSON data using the object model from an input
source.

JsonReader can be created from InputStream:
JsonReader reader = Json.createReader(new FileInputStream(...));

This code shows how to create a new parser from an InputStream obtained from a new
FileInputStream.

JsonReader can also be created from Reader:

JsonParser parser = Json.createParser(new StringReader(...));
This code shows how to create a parser from a StringReader.
You can create multiple parser instances using JsonReaderFactory:

JsonReaderFactory factory = Json.createReaderFactory(null);
JsonReader parserl = factory.createReader(...);
JsonReader parser2 = factory.createReader(...);

The factory can be configured with the specified map of provider-specific configuration
properties. Any unsupported configuration properties specified in the map are ignored.
In this case, null properties are passed during the creation of the reader factory.

An empty JSON object can be read as:

JsonReader jsonReader = Json.createReader(new StringReader("{}"));
JsonObject json = jsonReader.readObject();

116 | Chapter 6:JSON Processing

In this code, a JsonReader is initialized via StringReader, which reads the empty JSON
object. Calling the readobject method returns an instance of JsonObject.

An object with two name/value pairs can be read as:

jsonReader = Json.createReader(new StringReader("{"
+ " \"apple\":\"red\","
+ " \"banana\":\"yellow\""
+"3"));

JsonObject json = jsonReader.readObject();

json.getString("apple");

json.getString("banana");

In this code, the getString method returns the string value for the specific key in the
object. Other get XXX methods can be used to access the value based upon the data type.

An array with two objects with each object with a name/value pair can be read as:

jsonReader = Json.createReader(new StringReader("["
+ n { \Happle\ﬂ:\ﬂred\ll },II

" { \"banana\":\"yellow\" }"

“1"));s

jsonReader.readArray();

n + +

JsonArray jsonArray

In this code, calling the readArray method returns an instance of the JsonArray inter-
face. This interface has convenience methods to get boolean, integer, and String
values at a specific index. This interface extends from java.util.List, so usually the
list operations are available as well.

A nested structure can be read as:

jsonReader = Json.createReader(new StringReader("{
+ " \"title\":\"The Matrix\","

" \"year\":1999,"

" \"cast\":["

\"Keanu Reeves\",
\"Laurence Fishburne\","
\"Carrie-Anne Moss\""

n]II
+"1);

json = jsonReader.readObject();

Producing JSON Using the Object Model API

JsonObjectBuilder can be used to create models that represent JSON objects. The
resulting model is of type JsonObject. Similarly, JsonArrayBuilder can be used to
create models that represent JSON arrays where the resulting model is of type
JsonArray:

+ + + + + +

JsonObject jsonObject = Json.createObjectBuilder().build();

Object Model APl | 117

In this code, a IJsonObjectBuilder is used to create an empty object. An empty object,
with no name/value pairs, is created. The generated JSON structure is:

{1
Multiple builder instances can be created via JsonBuilderFactory:

JsonBuilderFactory factory = Json.createBuilderFactory(null);
JsonArrayBuilder arrayBuilder = factory.createArrayBuilder();
JsonObjectBuilder objectBuilder = factory.createObjectBuilder();

The factory can be configured with the specified map of provider-specific configuration
properties. Any unsupported configuration properties specified in the map are ignored.
In this case, null properties are passed during the creation of the reader factory.

The generated JsonObject can be written to an output stream via JsonWriter:
Json.createlWriter(System.out).writeObject(jsonObject);

In this code, a new JsonWriter instance is created and configured to write to Sys
tem.out. The previously created jsonObject is then written when the writeObject
method is called.

JsonWriter may be configured to write to a Writer as well.

An object with two name/value pairs can be generated:

Json.createObjectBuilder()
.add("apple", "red")
.add("banana", "yellow")

.build();

A name/value pair is written via the add method, which takes a name as the first pa-
rameter and a value as the second parameter. The value can be BigDecimal, BigInteg
er, boolean, double, int, long, String, JsonValue, JsonObjectBuilder, or JsonAr
rayBuilder. Specifying the value as JsonObjectBuilder and JsonArrayBuilder allows
us to create nested objects and arrays.

The generated JSON structure is:

{
"apple": "red" s
"banana":"yellow"

}
An array with two objects with each object with a name/value pair can be generated:

JsonArray jsonArray = Json.createArrayBuilder()
.add(Json.createObjectBuilder().add("apple","red"))
.add(Json.createObjectBuilder().add("banana","yellow"))
.build();

118 | Chapter 6:JSON Processing

You start a new array by creating a JsonArrayBuilder. You write an object within an
array by calling the add method and creating a new object using the JsonObjectBuild
er method. The generated JSON structure is:

[
{ "apple": "red" }’
{ "banana":"yellow" }

1

The JsonWriter.writeArray methodis called to writean array to the configured output
stream.

A nested structure with two name/value pairs and a named array can be generated:

jsonArray = Json.createArrayBuilder()
.add(Json.createObjectBuilder()
.add("title", "The Matrix")
.add("year", 1999)
.add("cast", Json.createArrayBuilder()
.add("Keanu Reaves")
.add("Laurence Fishburne")
.add("Carrie-Anne Moss")))
.build();

You start a named array by calling the add method, passing the name of the array, and
creating a new array by calling the Json.createArrayBuilder method. Each element
of the array is written via the add method, which can take values of the type BigDeci
mal, BigInteger, boolean, double, int, long, String, JsonValue, JsonObjectBuild
er, and JsonArrayBuilder.

The generated JSON structure is:
{

"title":"The Matrix",

"year":1999,

"cast":[
"Keanu Reeves",
"Laurence Fishburne",
"Carrie-Anne Moss"

]

Object Model APl | 119

CHAPTER7
WebSocket

The Java API for WebSocket is defined as JSR 356, and the complete specification can
be downloaded.

WebSocket provides a full-duplex and bidirectional communication protocol over a
single TCP connection. Full-duplex means a client and server can send messages inde-
pendent of each other. Bidirectional means a client can send a message to the server and
vice versa. WebSocket is a combination of the IETF RFC 6455 Protocol and the W3C
JavaScript APL The protocol defines an opening handshake and basic message framing,
layered over TCP. The API enables web pages to use the WebSocket protocol for two-
way communication with the remote host.

Unlike HTTP, there is no need to create a new TCP connection and send a message
chock-full of headers for every exchange between client and server. Once the initial
handshake happens via HTTP Upgrade (defined in RFC 2616, section 14.42), the client
and server can send messages to each other, independent of the other. There are no
predefined message exchange patterns of request/response or one-way between client
and server. These need to be explicitly defined over the basic protocol.

The communication between client and server is pretty symmetric, but there are two
differences:

o A client initiates a connection to a server that is listening for a WebSocket request.

o A client connects to one server using a URI. A server may listen to requests from
multiple clients on the same URI.

Other than these two differences, the client and server behave symmetrically after the
opening handshake. In that sense, they are considered peers. After a successful hand-
shake, clients and servers transfer data back and forth in conceptual units referred to
as messages. On the wire, a message is composed of one or more frames. Application

121

http://jcp.org/aboutJava/communityprocess/final/jsr356/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr356/index.html
http://tools.ietf.org/html/rfc6455
http://www.w3.org/TR/websockets/
http://www.w3.org/TR/websockets/
http://www.ietf.org/rfc/rfc2616.txt

frames carry a payload intended for the application and can be text or binary data.
Control frames carry data intended for protocol-level signaling.

Java API for WebSocket defines a standard API for building WebSocket applications
and will provide support for:

« Creatinga WebSocket clientand server endpoint using annotations and an interface
 Creating and consuming WebSocket text, binary, and control messages
o Initiating and intercepting WebSocket life-cycle events

 Configuring and managing WebSocket sessions, like timeouts, retries, cookies, and
connection pooling

o Specifying how the WebSocket application will work within the Java EE security
model

Annotated Server Endpoint

You can convert a Plain Old Java Object (POJO) into a WebSocket server endpoint by
using @ServerEndpoint. Such an endpoint is also called an annotated endpoint:

(" /chat")
public class ChatServer {

public String receiveMessage(String message) {
/) ..
}
}

In this code:

o @ServerEndpoint decorates the class asa WebSocket endpoint published at the URI
mentioned as a value of the annotation. The annotated class must have a public
no-arg constructor. The annotation can have the attributes specified in Table 7-1.

Table 7-1. @ServerEndpoint attributes

value Required URI or URI template where the endpoint will be deployed.
encoders Optional ordered array of encoders used by this endpoint.
decoders Optional ordered array of decoders used by this endpoint.

subprotocols Optional ordered array of WebSocket protocols supported by this endpoint.

configurator Optional custom configurator class used to further configure new instances of this endpoint. This
will be an implementation of ServerEndpointConfig.Configurator.

122 | Chapter7: WebSocket

o @nMessage decorates a Java method that receives the incoming WebSocket mes-
sage. This message can process text, binary, and pong messages. The text and binary
messages contain the payload generated by the application. A pong message is a
WebSocket control message and is generally not dealt with at the application layer.

The method can have the following parameters:
— Each method can process text, binary, or pong messages.
If the method is handling text messages:
— Use a String to receive the whole text message:

public void receiveMessage(String s) {
/) ..
}
— Use a Java primitive or class equivalent to receive the whole message con-
verted to that type:
public void receiveMessage(int i) {

Y/
}

— Use a String and a boolean pair to receive the message in parts:

public void receiveBigText(String message, boolean last) {
/) ..
}
The Boolean parameter is true if the part received is the last part, and false
otherwise.

— Use a Reader to receive the whole text message as a blocking stream:

public void processReader(Reader reader) {
Y/
}
— Use any object parameter for which the endpoint has a text decoder (Decod
er.Text or Decoder.TextStream)—more on this later.

If the method is handling binary messages:
— Use byte[] or ByteBuffer to receive the whole binary message:

public void receilveMessage(ByteBuffer b) {
V72N
}

— Use byte[] and a boolean pair, or ByteBuffer and a boolean pair, to receive
the message in parts:
public void receiveBigBinary(ByteBuffer buf, boolean last) {

Y/
}

Annotated Server Endpoint | 123

The Boolean parameter is true if the part received is the last part, and false
otherwise.

— Use InputStream to receive the whole binary message as a blocking stream:

public void processStream(InputStream stream) {
/). ..
}

— Use any object parameter for which the endpoint has a binary decoder
(Decoder.Binary or Decoder.BinaryStream)—more on this later.

If the method is handling pong messages:
— Use PongMessage to receive the pong message:

public void processPong(PongMessage pong) {
/). ..
}

— Use a 0..n String or Java primitive parameters annotated with @PathParam for
server endpoints:

("/chat/{room}")
public class MyEndpoint {

public void receiveMessage(String message,
("room")String room) {
Y/
}
}

@PathParamis used to annotate the room method parameter on a server endpoint
where a URI template has been used in the path mapping of the ServerEnd
point annotation. The method parameter may be of type String, any Java
primitive type, or any boxed version thereof. If a client URI matches the URI
template, but the requested path parameter cannot be decoded, then the Web-
Socket’s error handler will be called.

— Use an optional Session parameter:

public void receiveMessage(String message, Session session) {
/..
}

Sesstion indicates a conversation between two WebSocket endpoints and rep-
resents the other end of the connection. In this case, a response to the client may
be returned:

public void receiveMessage(String message, Session session) {
session.getBasicRemote().sendText(...);

}

The parameters may be listed in any order.

124 | Chapter7: WebSocket

The method may have a void return type. Such a message is consumed at the end-
point without returning a response.

The method may have String, ByteBuffer, byte[], any Java primitive or class
equivalent, and any other class for which there is an encoder as the return value. If
a return type is specified, then a response is returned to the client.

The maxMessageSize attribute may be used to define the maximum size of the
message in bytes that this method will be able to process:
(maxMessageSize=6)
public void receiveMessage(String s) {

/) ..
}

In this code, if a message of more than 6 bytes is received, then an error is reported
and the connection is closed. You can receive the exact error code and message by

intercepting the life-cycle callback using @0nClose. The default value is -1 to indi-
cate that there is no maximum.

The maxMessageSize attribute only applies when the annotation is used to process
whole messages, not to those methods that process messages in parts or use a stream
or reader parameter to handle the incoming message.

Encoders provide a way to convert custom Java objects into WebSocket messages and
can be specified via the encoders attribute. Decoders provide a way to convert Web-
Socket messages to custom Java objects and can be specified via the decoders attribute.
(More on this later.)

An optional configurator attribute can be used to specify a custom configuration class
for configuring new instances of this endpoint:

public class MyConfigurator extends ServerEndpointConfig.Configurator {

public void modifyHandshake(ServerEndpointConfig sec,
HandshakeRequest request,
HandshakeResponse response) {
/). ..
}
}

(value="/websocket", configurator = MyConfigurator.class)
public class MyEndpoint {

public void receiveMessage(String name) {
/) ..
}
}

Annotated Server Endpoint | 125

In this code:

o The MyConfigurator class provides an implementation of ServerEndpointCon

fig.Configurator. This abstract class offers several methods to configure the end-
point, such as providing custom configuration algorithms and intercepting the
opening handshake.

The modifyHandshake method is called when a handshake response resulting from
a well-defined handshake request is prepared. ServerEndpointConfig is the end-
point configuration object used to configure this endpoint. HandshakeRequest
provides information about the WebSocket defined HTTP GET request for the
opening handshake. This class provides access to data such as the list of HTTP
headers that came with the request or the HttpSession that the handshake request
was part of. HandshakeResponse identifies the HT TP handshake response prepared
by the container.

The configurator attribute is used to specify the custom configurator class as part
of @ServerEndpoint.

@onOpen can be used to decorate a method to be called when a new connection from a
peer is received. Similarly, @nClose can be used to decorate a method to be called when
a connection is closed from the peer. @nError may be used to decorate a method to be
called when an error is received.

These methods may take any of the following parameters:

o Optional Session parameter

 Optional EndpointConfig for @nOpen, CloseReason for @OnClose, or Throwable

for @OnError parameter

o 0..n String parameters annotated with @PathParam:

public void open(Session s) {
/). ..
}

public void close(CloseReason c) {
Y/
}

public void error(Throwable t) {
/). ..
}

126

| Chapter7: WebSocket

In this code:

o The open method is called when a new connection is established with this endpoint.
The parameter s provides more details about other end of the connection.

o The close method is called when the connection is terminated. The parameter ¢
provides more details about why a WebSocket connection was closed.

o Theerror method is called when there is an error in the connection. The parameter
t provides more details about the error.

For endpoints deployed in the Java EE platform, full dependency injection support as
described in the CDI specification is available. Field, method, and constructor injection
is available in all WebSocket endpoint classes. Interceptors may be enabled for these
classes using the standard mechanism:

("/chat")
public class ChatServer {
User user;
/) ..
}

In this code, the User bean is injected using the standard injection mechanism.

The WebSocket annotation behaviors are not passed down the Java class inheritance
hierarchy. They apply only to the Java class on which they are marked. For example, a
Java class that inherits from a Java class annotated with a class-level @ServerEndpoint
annotation does not itself become an annotated endpoint, unless it itself is annotated
with a class-level @ServerEndpoint annotation:

(”/Chat")
public class ChatServer {

}

public class CustomChatServer extends ChatServer {
/..
}

In this code, the ChatServer class is identified as a WebSocket endpoint; however,

CustomChatServer is not. If it needs to be recognized as a WebSocket endpoint, then it
must be explicitly marked with a class-level @ServerEndpoint annotation.

Subclasses of an annotated endpoint may not use method-level WebSocket annotations
unless they themselves use a class-level WebSocket annotation. Subclasses that override
methods annotated with WebSocket method annotations do not obtain WebSocket
callbacks unless those subclass methods themselves are marked with a method-level
WebSocket annotation.

Annotated Server Endpoint | 127

Programmatic Server Endpoint

You can create a WebSocket server endpoint by extending the Endpoint class. Such an
endpoint is also called a programmatic endpoint:

public class MyEndpoint extends Endpoint {

public void onOpen(final Session session, EndpointConfig ec) {
/) ..
}
}
In this code, the onOpen method is called when a new connection is initiated. Endpoint
Config identifies the configuration object used to configure this endpoint.

Multiple MessageHandlers may be registered in this method to process incoming text,
binary, and pong messages. However, only one MessageHandler per text, binary, or
pong message may be registered per Endpoint:

session.addMessageHandler (new MessageHandler.Whole<String>() {

public void onMessage(String s) {
/). ..
}
s

session.addMessageHandler (new MessageHandler.Whole<ByteBuffer>() {

public void onMessage(ByteBuffer b) {

/..
}
s

session.addMessageHandler (new MessageHandler.Whole<PongMessage>() {

public void onMessage(PongMessage p) {
/) ..
}
s

In this code:
o MessageHandler.Whole<String>handler is registered to handle the incoming text

messages. The onMessage method of the handler is invoked when the message is
received. The parameter s is bound to the payload of the message.

128 | Chapter7: WebSocket

o The MessageHandler.Whole<ByteBuffer> handler is registered to handle the in-
coming binary messages. The onMessage method of the handler is invoked when
the message is received. The parameter b is bound to the payload of the message.

o The MessageHandler.Whole<PongMessage> handler is registered to handle the in-
coming PongMessage. The onMessage method of the handler is invoked when the
message is received. The parameter p is bound to the payload of the message.

Although not required, a response can be sent to the other end of the connection
synchronously:

session.addMessageHandler (new MessageHandler.Whole<String>() {

public void onMessage(String s) {
try {
session.getBasicRemote().sendText(s);
} catch (IOException ex) {
/) ..
}
}
s

A response may be returned asynchronously as well. The Session.getAsyncRemote
method returns an instance of RemoteEndpoint.Async that can be used to send mes-
sages asynchronously. Two variations are possible:

public void onMessage(String data) {
session.getAsyncRemote().sendText(data, new SendHandler() {

public void onResult(SendResult sr) {
Y/
}
s
}

In the first variation, a callback handler SendHandler is registered. The onResult meth-
od of the registered handler is called once the message has been transmitted. The pa-
rameter sr indicates whether the message was sent successfully, and if not, it carries an
exception to indicate what the problem was.

In the second variation, an instance of Future is returned:

public void onMessage(String data) {
Future f = session.getAsyncRemote().sendText(data);
/e ..
if (f.isDone()) {
Object o = f.get();

Programmatic Server Endpoint | 129

3
}
The sendXXX method returns before the message is transmitted. The returned Future
object is used to track the progress of the transmission. The Future’s get method returns
null upon successful completion. Errors in transmission are wrapped in the Execu
tlonException thrown when the Future object is queried.

The Endpoint.onClose and onError methods can be overridden to invoke other life-
cycle callbacks:

public class MyEndpoint extends Endpoint {
/). ..

public void onClose(Session session, CloseReason c) {

/.
}

public void onError(Session session, Throwable t) {

[/ ..
}
}
Inthe onClose method, the c parameter provides more details about why the WebSocket
connection was closed. Likewise, the t parameter provides more details about the error
received.

You receive a multipart message by overriding MessageHandler.Partial<T>, where T
is a String for text messages, and ByteBuffer or byte[] is for binary messages:

session.addMessageHandler (new MessageHandler.Partial<String>() {

public void onMessage(String name, boolean part) {

/) ..
}
19K

The Boolean parameter is true if the part received is the last part, and false otherwise.

You configure programmatic endpoints by implementing the ServerApplicationCon
fig interface. This interface provides methods to specify the WebSocket endpoints
within an archive that must be deployed:

public class MyApplicationConfig implements ServerApplicationConfig {

public Set<ServerEndpointConfig> getEndpointConfigs(
Set<Class<? extends Endpoint>> set) {
return new HashSet<ServerEndpointConfig>() {
add(ServerEndpointConfig

130 | Chapter7: WebSocket

.Builder
.create(MyEndpoint.class, "/chat")
.build());
}
1
}

V/2
}

In this code:

o The MyApplicationConfig class implements the ServerApplicationConfig in-
terface.

o The getEndpointConfig method provides a list of ServerEndpointConfig that is
used to deploy the programmatic endpoints. The URI of the endpoint is specified
here as well.

You can configure the endpoint with custom configuration algorithms by providing an
instance of ServerEndpointConfig.Configurator:

public Set<ServerEndpointConfig> getEndpointConfigs(
Set<Class<? extends Endpoint>> set) {
return new HashSet<ServerEndpointConfig>() {{
add(ServerEndpointConfig.Builder
.create(MyEndpoint.class, "/websocket")
.configurator(new ServerEndpointConfig.Configurator() {

public void modifyHandshake(ServerEndpointConfig sec,
HandshakeRequest request,
HandshakeResponse response) {
/e ..
}

H
.build());

1}
}

In this code:

o The ServerEndpointConfig.Configurator abstract class offers several methods
to configure the endpoint such as providing custom configuration algorithms, in-
tercepting the opening handshake, or providing arbitrary methods and algorithms
that can be accessed from each endpoint instance configured with this configurator.

o The modifyHandshake method is used to intercept the opening handshake. Serv
erEndpointConfig is the endpoint configuration object used to configure this

Programmatic Server Endpoint | 131

endpoint. HandshakeRequest provides information about the WebSocket-defined
HTTP GET request for the opening handshake. This class provides access to data
such as the list of HTTP headers that came with the request or the HttpSession
that the handshake request was part of. HandshakeResponse identifies the HT TP
handshake response prepared by the container.

You may override other methods of ServerEndpointConfig.Configurator to cus-
tomize the endpoint behavior. For example, you can specify the list of extensions
supported by the endpoint by overriding the getNegotiatedExtensions method,
and specify the list of subprotocols supported by the endpoint by overriding the
getNegotiatedSubprotocol method.

For endpoints deployed in the Java EE platform, full dependency injection support as
described in the CDI specification is available. Field, method, and constructor injection
is available in all WebSocket endpoint classes. Interceptors may be enabled for these
classes via the standard mechanism:

public class MyEndpoint extends Endpoint {
MyBean bean;
/) ..
}

In this code, the MyBean bean is injected via the standard injection mechanism.

Annotated Client Endpoint

You can convert a POJO to a WebSocket client endpoint by using @ClientEndpoint:

public class MyClientEndpoint {
/) ..
}

The @ClientEndpoint decorates the class as a WebSocket client endpoint. The anno-
tation can have the attributes described in Table 7-2.

Table 7-2. @ClientEndpoint attributes

Attribute Value

configurator An optional custom configurator class used to provide custom configuration of new instances of this
endpoint. This will be an implementation of ClientEndpointConfig.Configurator.

encoders Optional ordered array of encoders used by this endpoint.
decoders Optional ordered array of decoders used by this endpoint.

subprotocols Optional ordered array of WehSocket protocols supported by this endpoint.

You can intercept life-cycle events by specifying @0nOpen, @0nClose, and @OnError
annotations on methods:

132 | Chapter7: WebSocket

public class MyClientEndpoint {

public void open(Session s) {
/). ..
}

public void close(CloseReason c) {
/) ..
}

public void error(Throwable t) {
/). ..
}
}

In this code:

o The open method is called when a new connection is established with this endpoint.
The parameter s provides more details about the other end of the connection.

o The close method is called when the connection is terminated. The parameter c
provides more details about why a WebSocket connection was closed.

o Theerror method is called when there is an error in the connection. The parameter
t provides more details about the error.

A new outbound message from the client to the endpoint can be sent during the con-
nection initiation—for example, in the open method:

public void onOpen(Session session) {
try {
session.getBasicRemote().sendText("Duke");
} catch (IOException ex) {
/). ..
}
3

An inbound message from the endpoint can be received in any Java method decorated
with @OnMessage:

public void processMessage(String message, Session session) {
/). ..
}

In this code:

Annotated Client Endpoint | 133

o The processMessage method is invoked when a message is received from the
endpoint.

o The message parameter is bound to the payload of the message.

o The session parameter provides more details about the other end of the
connection.

The client can connect to the endpoint via ContainerProvider:

WebSocketContainer container = ContailnerProvider.getWebSocketContainer();
String uri = "ws://localhost:8080/myApp/websocket";
container.connectToServer (MyClient.class, URI.create(uri));

In this code:

 ContainerProvider usesthe ServiceLoader mechanism toload an implementation
of ContainerProvider and provide a new instance of WebSocketContainer.

o WebSocketContainer allows us to initiate a WebSocket handshake with the
endpoint.

o The server endpoint is published at the ws://localhost:8080/myApp/websocket
URL. The client connects to the endpoint by invoking the connectToServer method
and providing the decorated client class and the URI of the endpoint. This method
blocks until the connection is established, or throws an error if either the connection
could not be made or there was a problem with the supplied endpoint class.

You can use an optional configurator attribute to specify a custom configuration class
for configuring new instances of this endpoint:

public class MyConfigurator extends ClientEndpointConfig.Configurator {

public void beforeRequest(Map<String, List<String>> headers) {
/) ..
}
/). ..
}

(configurator = MyConfigurator.class)
public class MyClientEndpoint {
Y72
}

In this code:

o The MyConfigurator class provides an implementation of ClientEndpointCon
fig.Configurator. Thisabstract class provides two methods to configure the client
endpoint: beforeRequest and afterResponse. The beforeRequest method is
called after the handshake request that will be used to initiate the connection to the

134 | Chapter7: WebSocket

server is formulated, but before any part of the request is sent. The afterRes
ponse method is called after a handshake response is received from the server as a
result of a handshake interaction it initiated.

o The headers parameter is a mutable map of handshake request headers the imple-
mentation is about to send to start the handshake interaction.

o The configurator attribute is used to specify the custom configurator class as part
of @ClientEndpoint.

As for annotation-based server endpoints, the WebSocket annotation behaviors are not
passed down the Java class inheritance hierarchy. They apply only to the Java class on
which they are marked. For example, a Java class that inherits from a Java class annotated
with a class-level @ClientEndpoint annotation does not itself become an annotated
endpoint, unless it itself is annotated with a class-level @lientEndpoint annotation.

Subclasses of an annotated endpoint may not use method-level WebSocket annotations
unless they themselves use a class-level WebSocket annotation. Subclasses that override
methods annotated with WebSocket method annotations do not obtain WebSocket
callbacks unless those subclass methods themselves are marked with a method-level
WebSocket annotation.

Programmatic Client Endpoint

You can also create a WebSocket client endpoint by extending the Endpoint class. Such
an endpoint is also called a programmatic endpoint:

public class MyClientEndpoint extends Endpoint {

public void onOpen(final Session session, EndpointConfig ec) {
/). ..
}
}

In this code, the onOpen method is called when a new connection is initiated. Endpoint
Conf1ig identifies the configuration object used to configure this endpoint.

This endpoint is configured via multiple MessageHandlers, as for the interface-based
server endpoint. Similarly, you can initiate a synchronous or an asynchronous com-
munication with the other end of the communication using session.getBasicRe
mote and session.getAsyncRemote, respectively. You can receive the whole message
by registering the Messagehandler.Whole<T>handler, where T is a String for text mes-
sages,and ByteBuffer orbyte[] is for binary messages. You receive a multipart message
by overriding MessageHandler.Partial<T>.

The programmatic client endpoint can connect to the endpoint via ContainerProvider:

Programmatic Client Endpoint | 135

WebSocketContainer container = ContainerProvider.getWebSocketContainer();
String uri = "ws://localhost:8080/myApp/websocket";
container.connectToServer(MyClientEndpoint.class, null, URI.create(uri));

In this code:

o ContailnerProvider usesthe ServiceLoader mechanism to load an implementation
of ContainerProvider and provide a new instance of WebSocketContainer.

o WebSocketContainer allows us to initiate a WebSocket handshake with the
endpoint.

o The server endpoint is published at the ws: //localhost:8080/myApp/websocket
URI. The client connects to the endpoint by invoking the connectToServer method
and providing the programmatic client endpoint and the URI of the endpoint as
parameters. This method blocks until the connection is established, or throws an
error if either the connection could not be made or there was a problem with the
supplied endpoint class. You use the default configuration of the client endpoint by
passing null as the second parameter.

You can configure a programmatic client endpoint by providing an instance of Cli
entEndpointConfig.Configurator:

public class MyConfigurator extends ClientEndpointConfig.Configurator {

public void beforeRequest(Map<String, List<String>> headers) {
/) ..
}

public void afterResponse(HandshakeResponse response) {

/.
}
}

In this code, the MyConfigurator class provides an implementation of ClientEndpoint
Config.Configurator. This abstract class provides two methods to configure the client
endpoint: beforeRequest and afterResponse. The beforeRequest method is called
after the handshake request that will be used to initiate the connection to the server is
formulated, but before any part of the request is sent. The afterResponse method is
called after a handshake response is received from the server as a result of a handshake
interaction it initiated.

This configuration element can be specified in connectToServer:

container.connectToServer(MyClientEndpoint.class,
ClientEndpointConfig
.Builder

136 | Chapter7: WebSocket

.create()
.configurator(new MyConfigurator()).build(), URI.create(uri));

For endpoints deployed in the Java EE platform, full dependency injection support as
described in the CDI specification is available. Field, method, and constructor injection
is available in all WebSocket endpoint classes. Interceptors may be enabled for these
classes via the standard mechanism:

public class MyClientEndpoint extends Endpoint {
MyBean bean;
/) ..
}

In this code, the MyBean bean is injected using the standard injection mechanism.

JavaScript WebSocket Client

You can invoke a WebSocket endpoint using the W3C-defined JavaScript API. The API
allows us to connect to a WebSocket endpoint by specifying the URL and an optional
list of subprotocols:

var websocket = new WebSocket("ws://localhost:8080/myapp/chat");

In this code:

» We invoke the WebSocket constructor by specifying the URI where the endpoint is
published.

o The ws:// protocol scheme defines the URL to be a WebSocket endpoint. The
wss:// scheme may be used to initiate a secure connection.

o WebSocket endpoint is hosted at localhost host and port 8086.
o Application is deployed at the myapp context root.
o The endpoint is published at the /chat URI.

 You can specify an optional array of subprotocols in the constructor; the default
value is an empty array.

o An established WebSocket connection is available in the JavaScript websocket
variable.

The API defines event handlers that are invoked for different life-cycle methods:

o The onopen event handler is called when a new connection is initiated.

o The onerror event handler is called when an error is received during the
communication.

o The onclose event handler is called when the connection is terminated:

JavaScript WebSocket Client | 137

http://www.w3.org/TR/websockets/

websocket.onopen = function() {

/) ..

}

websocket.onerror = function(evt) {
/). ..

}

websocket.onclose = function() {
/) ..

}

Text or binary data can be sent via any of the send methods:
websocket.send(myField.value);
This code reads the value entered in a text field, myField, and sends it as a text message:

websocket.binaryType = "arraybuffer";

var buffer = new ArrayBuffer(myField.value);

var bytes = new Uint8Array(buffer);

for (var i1=0; i<bytes.length; i++) {
bytes[i] = 1;

}

websocket.send(buffer);

This code reads the value entered in a text field called myField, creates a binary array
buffer of the length specified in that field, and sends it as a binary message to the
WebSocket endpoint. The binaryType attribute can be set to blob or arraybuffer to
send different types of binary data.

A message can be received via the onmessage event handler:

websocket.onmessage = function(evt) {
console.log("message received: " + evt.data);

}

WebSocket defines a low-level message protocol. Any message exchange patterns, such
as request-response, need to be explicitly built at the application level.

Encoders and Decoders

Applications can receive and send a payload in raw text and binary format. You can
convert the text payload to an application-specific class by implementing Decod
er.Text<T> and Encoder.Text<T>. You can convert the binary payload to an
application-specific class by implementing the Decoder .Binary<T> and Encoder.Bina
ry<T> interfaces.

JSON is a typical format for a text payload. Instead of receving the payload as text and
then converting it to a JsonObject (for example, using the APIs defined in the jav
ax. json package), you can define an application-specific class to capture JsonObject:

138 | Chapter7: WebSocket

public class MyMessage {
private JsonObject jsonObject;

Y/
}

MyMessage is an application-specific class that contains JsonObject to capture the pay-
load of the message.

The Decoder.Text<T> interface can be implemented to decode the incoming string
payload to the application-specific class:

public class MyMessageDecoder implements Decoder.Text<MyMessage> {

public MyMessage decode(String string) throws DecodeException {
MyMessage myMessage = new MyMessage(
Json.createReader (
new StringReader(string))
.readObject()
);
return myMessage;

}

public boolean willDecode(String string) {
return true;

}

Y/
}

This code shows how a String payload is decoded to MyMessage type. The decode
method decodes the String parameter into an object of type MyMessage, and the will
Decode method returns true if the string can be decoded into the object of type MyMes
sage. Standard javax. json.* APIs are used to generate the JSON representation from
a string:

public class MyMessageEncoder implements Encoder.Text<MyMessage> {

public String encode(MyMessage myMessage) throws EncodeException {
return myMessage.getJsonObject().toString();
}

Y/
}

This code defines how a MyMessage type is encoded to a String, and the encode method
encodes the message parameter into a String.

Encoders and Decoders | 139

You can specify the encoders and decoders on an annotated endpoint using the encod
ers and decoders attributes of @ServerEndpoint:

(value = "/encoder",
encoders = {MyMessageEncoder.class},
decoders = {MyMessageDecoder.class})
public class MyEndpoint {
//-
}

Multiple encoders and decoders can be specified:

(value = "/encoder",
encoders = {MyMessageEncoder.class, MyMessageEncoder2.class},
decoders = {MyMessageDecoder.class, MyMessageDecoder2.class})
public class MyEndpoint {
//-
}

The first encoder that matches the given type is used. The first decoder where the
willDecode method returns true is used.

The encoders and decoders can be specified on a programmatic server endpoint during
endpoint configuration in ServerEndpointConfig.Builder:

public class MyEndpointConfiguration implements ServerApplicationConfig {

List<Class<? extends Encoder>> encoders = new ArraylList<>();
List<Class<? extends Decoder>> decoders = new ArraylList<>();

public MyEndpointConfiguration() {
encoders.add(MyMessageEncoder.class);
decoders.add(MyMessageDecoder.class);

}

public Set<ServerEndpointConfig> getEndpointConfigs(
Set<Class<? extends Endpoint>> set) {
return new HashSet<ServerEndpointConfig>() {
{

add(ServerEndpointConfig
.Builder
.create(MyEndpoint.class, "/chat")
.encoders(encoders)
.decoders(decoders)
.build());

};

//-

140 | Chapter7: WebSocket

In this code, the Encoder and Decoder list is initialized in the constructor and sets the
encoder and decoder implementation using the encoders and decoders methods.

You can specify the encoders and decoders on a client endpoint using the encoders and
decoders attributes of @ClientEndpoint:

(
encoders = {MyMessageEncoder.class},
decoders = {MyMessageDecoder.class}

)
public class MyClientEndpoint {

public void onOpen(Session session) {
MyMessage message = new MyMessage("{ \"foo\" : \"bar\"}");
session.getBasicRemote().sendObject(message);
}
}

In this code:

o MyMessageEncoder is specified via the encoders attribute.
o MyMessageDecoder is specified via the decoders attribute.
» MyMessage object is initialized with a JSON payload.

o The client endpoint sends a message using sendObject instead of sendString.

You can specify the encoders and decoders on the programmatic client endpoint during
endpoint configuration using ClientEndpointConfig.Builder:

List<Class<? extends Encoder>> encoders = new ArraylList<>();
List<Class<? extends Decoder>> decoders = new ArraylList<>();

encoders.add(MyMessageEncoder.class);
decoders.add(MyMessageDecoder.class);

WebSocketContainer container = ContailnerProvider.getWebSocketContainer();
String uri = "ws://localhost:8080" + request.getContextPath() + "/websocket";
container.connectToServer(MyClient.class,
ClientEndpointConfig
.Builder
.create()
.encoders(encoders)
.decoders(decoders)
.build(),
URI.create(uri));

In this code, the Encoder and Decoder list is initialized with the encoder and decoder
implementations. The encoders and decoders methods on ClientEndpointCon
fig.Builder can be used to set the encoders and decoders.

Encoders and Decoders | 141

Integration with Java EE Security

A WebSocket mapped to a given ws: // URI is protected in the deployment descriptor
with a listing to an http:// URI with same hostname, port, and path since this is the
URL of its opening handshake. The authentication and authorization of the WebSocket
endpoint builds on the servlet-defined security mechanism.

A WebSocket that requires authentication must rely on the opening handshake request
that seeks to initiate a connection to be previously authenticated. Typically, this will be
performed by an HTTP authentication (perhaps basic or form-based) in the web ap-
plication containing the WebSocket prior to the opening handshake to the WebSocket.

Accordingly, WebSocket developers may assign an authentication scheme, user-role-
based access, and a transport guarantee to their WebSocket endpoints.

You can set up basic authentication by using the web.xml deployment descriptor:

<web-app xmlns="http://xmlns.jcp.org/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd"
version="3.1">
<security-constraint>
<web-resource-collection>
<web-resource-name>WebSocket Endpoint</web-resource-name>
<url-pattern>/*</url-pattern>
<http-method>GET</http-method>
</web-resource-collection>
<auth-constraint>
<role-name>gl</role-name>
</auth-constraint>
</security-constraint>

<login-config>
<auth-method>BASIC</auth-method>
<realm-name>file</realm-name>
</login-config>

<security-role>
<role-name>gl</role-name>
</security-role>
</web-app>

In this code:

o All HTTP GET requests require basic authentication defined by BASIC in <auth-
method>. Invoking any page in the application will prompt the user to enter a user-
name and password. The entered credentials must match one of the users in the
group gl.

142 | Chapter7: WebSocket

« Any subsequent requests, including the WebSocket opening handshake, will occur
in the authenticated request.

If a client sends an unauthenticated opening handshake request for a WebSocket that
is protected by the security mechanism, a 401 (Unauthorized) response to the opening
handshake request is returned and the WebSocket connection is not initialized.

A transport guarantee of NONE allows unencrypted ws:// connections to the Web-
Socket. A transport guarantee of CONFIDENTIAL only allows access to the WebSocket
over an encrypted (wss://) connection.

Integration with Java EE Security | 143

CHAPTER 8
Enterprise JavaBeans

Enterprise JavaBeans (E]JB) is defined as JSR 345, and the complete specification can be
downloaded.

Enterprise JavaBeans are used for the development and deployment of component-
based distributed applications that are scalable, transactional, and secure. An EJB typ-
ically contains the business logic that operates on the enterprise’s data. The service in-
formation, such as transaction and security attributes, may be specified in the form of
metadata annotations, or separately in an XML deployment descriptor.

A bean instance is managed at runtime by a container. The bean is accessed on the client
and is mediated by the container in which it is deployed. The client can also be on the
server in the form of a managed bean, a CDI bean, or a servlet of some sort. In any case,
the EJB container provides all the plumbing required for an enterprise application. This
allows the application developer to focus on the business logic and not worry about low-
level transaction and state management details, remoting, concurrency, multithreading,
connection pooling, or other complex low-level APIs.

There are two types of enterprise beans:

« Session beans

+ Message-driven beans

Entity beans were marked for pruning in the EJB 3.1 version of the specification and
are made optional in EJB 3.2. It is strongly recommended to use the Java Persistence
API for all the persistence and object/relational mapping functionality.

Stateful Session Beans

A stateful session bean contains conversational state for a specific client. The state is
stored in the session bean instance’s field values, its associated interceptors and their

145

http://jcp.org/aboutJava/communityprocess/final/jsr345/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr345/index.html

instance field values, and all the objects and their instances’ field values, reachable by
following Java object references.

You can define a simple stateful session bean by using @Stateful:

package org.sample;

public class Cart {
List<String> items;

public ShoppingCart() {
items = new ArraylList<>();

}

public void addItem(String item) {
items.add(item);

}

public void removeltem(String item) {
items.remove(item);

}

public void purchase() {
/).
}

public void remove() {
items = null;
}
}

This is a POJO marked with the @Stateful annotation. That’s all it takes to convert a
POJO to a stateful session bean. All public methods of the bean may be invoked by a
client. The method remove is marked with the @Remove annotation. A client may remove
a stateful session bean by invoking the remove method. Calling this method will result
in the container calling the method marked with the @PreDestroy annotation. Remov-
ing a stateful session bean means that the instance state specific to that client is gone.

This style of bean declaration is called as a no-interface view. Such a bean is only locally
accessible to clients packaged in the same archive. If the bean needs to be remotely
accessible, it must define a separate business interface annotated with @Remote:

public interface Cart {
public void addItem(String item);
public void removeltem(String item);
public void purchase();

}

146 | Chapter 8: Enterprise JavaBeans

public class CartBean implements Cart {
public float addItem(String item) {

/..
}

public void removeltem(String item) {

/..
}

V/2
}

Now the bean is injected via the interface:
Cart cart;
A client of this stateful session bean can access this bean:

Cart cart;

cart.addItem("Apple");
cart.addItem("Mango");
cart.addItem("Kiwi");
cart.purchase();

EJB 3.2 relaxed the default rules for designating implementing interfaces as local or
remote. The bean class must implement the interface or the interface must be designated
as a local or remote business interface of the bean by means of the Local or Remote
annotation or in the deployment descriptor.

If the bean is implementing two interfaces:

public class CartBean implements Cart, Payment {

Y72
}

Inthis code, if Cart and Payment have no annotations of their own, then they are exposed

as local views of the bean. The beans may be explicitly marked @Local:

public class CartBean implements Cart, Payment {

/..
}

The two code fragments are semantically equivalent. If the bean is marked @Remote as:

public class CartBean implements Cart, Payment {

/..
}

Stateful Session Beans | 147

then Cart and Payment are remote views. If one of the interfaces is marked @Local or
@Remote, then each interface that needs to be exposed must be marked explicitly; other-
wise, it is ignored:

public interface Cart {

Y/
}

public class Bean implements Payment, Cart {
/) ..
}

In this code, the bean Bean only exposes one remote interface, Cart.

The PostConstruct and PreDestroy lifecycle callback methods are available for stateful
session beans.

An EJB container may decide to passivate a stateful session bean to some form of sec-
ondary storage and then activate it again. The container takes care of saving and re-
storing the state of the bean. However, if there are nonserializable objects such as open
sockets or JDBC connections, they need to be explicitly closed and restored as part of
that process.

EJB 3.2 adds the capability to opt out of passivation. For example, a stateful session bean
may contain nonserializable attributes, which would lead to runtime exceptions during
passivation, or passivation and acivation of such instances may cause degradation of an
application performance:
(passivationCapable=false)
public class Cart {
List<String> items;

/).
}

In this code, the stateful EJB will not be passivated.
The @PrePassivate life-cycle callback method is invoked to clean up resources before

the bean is passivated, and the PostActivate callback method is invoked to restore the
resources.

Stateless Session Beans

A stateless session bean does not contain any conversational state for a specific client.
All instances of a stateless bean are equivalent, so the container can choose to delegate
a client-invoked method to any available instance. Since stateless session beans do not
contain any state, they don’t need to be passivated.

You can define a simple stateless session bean by using @Stateless:

148 | Chapter 8: Enterprise JavaBeans

package org.sample;

public class AccountSessionBean {
public float withdraw() {
/). ..
}

public void deposit(float amount) {
/) ..
}
}

This is a POJO marked with the @Stateless annotation. That’s all it takes to convert a
POJO to a stateless session bean. All public methods of the bean may be invoked by a
client.

You can access this stateless session bean by using @EIB:

AcountSessionBean account;
account.withdraw();

This style of bean declaration is called as a no-interface view. Such a bean is only locally
accessible to clients packaged in the same archive. If the bean needs to be remotely
accessible, it must define a separate business interface annotated with @Remote:

public interface Account {
public float withdraw();
public void deposit(float amount);

public class AccountSessionBean implements Account {
float balance;

public float withdraw() {

/.
}

public void deposit(float amount) {

/.
}
}

Now the bean is injected via the interface:

Account account;

The PostConstruct and PreDestroy life-cycle callbacks are supported for stateless ses-
sion beans.

Stateless Session Beans | 149

The PostConstruct callback method is invoked after the no-args constructor is invoked
and all the dependencies have been injected, and before the first business method is
invoked on the bean. This method is typically where all the resources required for the
bean are initialized.

The PreDestroy life-cycle callback is called before the instance is removed by the con-
tainer. This method is where all the resources acquired during PostConstruct are
released.

As stateless beans do not store any state, the container can pool the instances, and all of
them are treated equally from a client’s perspective. Any instance of the bean can be
used to service the client’s request.

Singleton Session Beans

A singleton session bean is a session bean component that is instantiated once per ap-
plication and provides easy access to shared state. If the container is distributed over
multiple virtual machines, each application will have one instance of the singleton for
each JVM. A singleton session bean is explicitly designed to be shared and supports
concurrency.

You can define a simple singleton session bean by using @Singleton:

public class MySingleton {
Y/
}
The container is responsible for when to initialize a singleton bean instance. However,
you can optionally mark the bean for eager initialization by annotating it with @Star tup:

public class MySingleton {
Y/
}
The container now initializes all such startup-time singletons, executing the code
marked in @PostConstruct, before the application becomes available and any client
request is serviced.

You can specify an explicit initialization of singleton session beans using @ependsOn:
public class Foo {

Y/2u
}

("Foo")

150 | Chapter 8: Enterprise JavaBeans

public class Bar {
/) ..
}

The container ensures that Foo bean is initialized before Bar bean.
A singleton bean supports PostConstruct and PreDestroy life-cycle callback methods.

A singleton bean always supports concurrent access. By default, a singleton bean is
marked for container-managed concurrency, but alternatively may be marked for bean-
managed concurrency.

Container-managed concurrency is based on method-level locking metadata where
each method is associated with either a Read (shared) or Write (exclusive) lock. A Read
lock allows concurrent invocations of the method. A Write lock waits for the processing
of one invocation to complete before allowing the next invocation to proceed.

By default, a Write lock is associated with each method of the bean. The @Lock(Lock
Type.READ) and @Lock(LockType .WRITE) annotations are used to specify concurrency
locking attributes. These annotations may be specified on the class, a business method
of the class, or both. A value specified on a method overrides a value specified on the
bean.

Bean-managed concurrency requires the developer to manage concurrency using Java
language-level synchronization primitives such as synchronized and volatile.

Life-Cycle Event Callbacks

Life-cycle callback interceptor methods may be defined for session beans and message-
driven beans.

The @AroundConstruct, @PostConstruct, @PreDestroy, @PostActivate, and @PrePas
sivate annotations are used to define interceptor methods for life-cycle callback events.
An AroundConstruct life-cycle callback interceptor method may be defined on an in-
terceptor class only. All other interceptor methods can be defined on an interceptor
class and/or directly on the bean class.

@AroundConstruct
The AroundConstruct callback annotation designates an interceptor method that
receives a callback when the target class constructor is invoked. This callback in-
terceptor method may be defined only on interceptor classes and/or superclasses
of interceptor classes and cannot be defined on the target class.

An interceptor can be defined as:

(RUNTIME)
({CONSTRUCTOR, METHOD, TYPE})

Life-Cycle Event Callbacks | 151

public MyAroundConstruct {
}

Interceptor binding can be defined as:

public class MyAroundConstructInterceptor {

public void validateConstructor(InvocationContext context) {
/). ..
}
}

And finally the interceptor can be specified on the bean like so:

public class MyBean {
/). ..
}

The validateConstructor method is called every time MyBean’s constructor is
called.

@PostConstruct

The PostConstruct annotation is used on a method that needs to be executed after
dependency injection is done to perform any initialization and before the first
business method invocation on the bean instance. The method annotated with
PostConstruct is invoked even if the class does not request any resources to be
injected. Only one method can be annotated with @PostConstruct:

public class MyBean {
AnotherBean bean;

private void setupResources() {
/) ..
}

/).
}

In this code, the bean’s default constructor is called first, then AnotherBean is in-
jected, and finally the setupResources method is called before any of the business
methods can be called.

This life-cycle callback interceptor method for different types of session beans oc-
curs in the following transaction contexts:

o For a stateless session bean, it executes in an unspecified transaction context.

152

| Chapter 8: Enterprise JavaBeans

o For a stateful session bean, it executes in a transaction context determined by
the life-cycle callback method’s transaction attribute.

« For a singleton session bean, it executes in a transaction context determined
by the beans transaction management type and any applicable transaction
attribute.

@PreDestroy
The PreDestroy annotation is used on methods as a callback notification to signal
that the instance is in the process of being removed by the container. The method
annotated with PreDestroy is typically used to release resources that it has been
holding:

public class MyBean {
AnotherBean bean;

private void cleanupResources() {

/..
}

/). ..
}
In this code, the cleanupResources method is called before the instance is removed
by the container.

This life-cycle callback interceptor method for different types of session beans oc-
curs in the following transaction contexts:

o For a stateless session bean, it executes in an unspecified transaction context.

o For a stateful session bean, it executes in a transaction context determined by
the life-cycle callback method’s transaction attribute.

« For a singleton session bean, it executes in a transaction context determined
by the beans transaction management type and any applicable transaction
attribute.

@PrePassivate
The PrePassivate annotation can only be used on a stateful session bean. This
annotation designates a method to receive a callback before a stateful session bean
is passivated:

public class MyStatefulBean {
private void beforePassivation(InvocationContext context) {

[/ ..
}

Life-Cycle Event Callbacks | 153

V/2
}

These methods are ignored for stateless or singleton session beans.

This life-cycle callback interceptor method executes in a transaction context de-
termined by the life-cycle callback method’s transaction attribute.

@PostActivate
The PostActivate annotation can only be used on a stateful session bean. This
annotation designates a method to receive a callback after a stateful session bean is
activated:

public class MyStatefulBean {

private void afterActivation(InvocationContext context) {

/.
}

/) ..
}

These methods are ignored for stateless or singleton session beans.

This life-cycle callback interceptor method executes in a transaction context de-
termined by the life-cycle callback method’s transaction attribute.

Life-cycle callback interceptor methods may throw system runtime exceptions, but not
application exceptions.

Message-Driven Beans

A message-driven bean (MDB) is a container-managed bean that is used to process
messages asynchronously. An MDB can implement any messaging type, but is most
commonly used to process Java Message Service (JMS) messages. These beans are state-
less and are invoked by the container when a JMS message arrives at the destination. A
session bean can receive a JMS message synchronously, but a message-driven bean can
receive a message asynchronously.

You can convert a POJO to a message-driven bean by using @MessageDriven:

(mappedName = "myDestination")
public class MyMessageBean implements Messagelistener {

public void onMessage(Message message) {
try {
// process the message
} catch (JMSException ex) {

154 | Chapter 8: Enterprise JavaBeans

/.

}

In this code, @MessageDriven defines the bean to be a message-driven bean. The map
pedName attribute specifies the INDI name of the JMS destination from which the bean
will consume the message. The bean must implement the MessageListener interface,
which provides only one method, onMessage. This method is called by the container
whenever a message is received by the message-driven bean and contains the
application-specific business logic.

This code shows how a text message is received by the onMessage method and how the
message body can be retrieved and displayed:

public void onMessage(Message message) {
try {
TextMessage tm = (TextMessage)message;
System.out.println(tm.getText());
} catch (IMSException ex) {
Y/ 2R
}
3

Even though a message-driven bean cannot be invoked directly by a session bean, it can
still invoke other session beans. A message-driven bean can also send JMS messages.

@MessageDriven can take additional attributes to configure the bean. For example, the
activationConfig property can take an array of ActivationConfigProperty that pro-
vides information to the deployer about the configuration of the bean in its operational
environment.

Table 8-1 defines the standard set of configuration properties that are supported.

Table 8-1. Message-driven bean ActivationConfig properties

Property name Description

acknowledgeMode Specifies JMS acknowledgment mode for the message delivery when bean-managed
transaction demarcation is used. Supported values are Auto_acknowledge (default)
or Dups_ok_acknowledge.

messageSelector Specifies the JMS message selector to be used in determining which messages an MDB
receives.

destinationType Specifies whether the MDB is to be used with a Queue or Topic. Supported values are
javax. jms.Queue or javax.jms.Topic.

subscriptionDurability If MDB is used with a Topic, specifies whether a durable or nondurable subscription is
used. Supported values are Durable or NonDurable.

A single message-driven bean can process messages from multiple clients concurrently.
Just like stateless session beans, the container can pool the instances and allocate enough

Message-Driven Beans | 155

bean instances to handle the number of messages at a given time. All instances of the
bean are treated equally.

A message is delivered to a message-driven bean within a transaction context, so all
operations within the onMessage method are part of a single transaction. The transac-
tion context is propagated to the other methods invoked from within onMessage.

MessageDrivenContext may be injected in a message-driven bean. This provides access
to the runtime message-driven context that is associated with the instance for its lifetime:

MessageDrivenContext mdc;

public void onMessage(Message message) {
try {
TextMessage tm = (TextMessage)message;
System.out.println(tm.getText());
} catch (JMSException ex) {
mdc.setRollbackOnly();
}
}

EJB 3.2 allows a message-driven bean to implement a listener interface with no methods.
A bean that implements a no-method interface exposes as message listener methods all
public methods of the bean class and of any superclasses except the java.lang.0b
ject. This feature cannot be used today but provides an extension point that allows the
MDBs to provide additional functionality in the future.

Portable Global JNDI Names

A session bean can be packaged in an ejb-jar file or within a web application module
(.war). An optional EJB deployment descriptor, ejb-jar.xml, providing additional in-
formation about the deployment may be packaged in an ejb-jar or .war file. The ejb-
jar.xml file can be packaged as either WEB-INF/ejb-jar.xml or META-INF/ejb-jar.xml
within one of the WEB-INF/Iib JAR files, but not both.

A local or no-interface bean packaged in the .war file is accessible only to other com-
ponents within the same .war file, but abean marked with @emote is remotely accessible
independent of its packaging. The ejb-jar file may be deployed by itself or packaged
within an .ear file. The beans packaged in this ejb-jar can be accessed remotely.

You can access this EJB using a portable global JNDI name with the following syntax:

global[/<app-name>]
/<module-name>
/<bean-name>
[1<fully-qualified-interface-name>]

<app-name> applies only if the session bean is packaged with an .ear file.

156 | Chapter 8: Enterprise JavaBeans

<module-name> is the name of the module in which the session bean is packaged.
<bean-name> is the ejb-name of the enterprise bean.

If the bean exposes only one client interface (or alternatively has only a no-interface
view), the bean is also exposed with an additional JNDI name using the following syntax:

java:global[/<app-name>]/<module-name>/<bean-name>

The stateless session bean is also available through the java:app and java:module
namespaces.

If the AccountSessionBean is packaged in bank.war, then the following JNDI entries
are exposed:

global/bank/AccountSessionBean
global/bank/AccountSessionBean!org.sample.AccountSessionBean
app/AccountSessionBean
app/AccountSessionBean!org.sample.AccountSessionBean
module/AccountSessionBean
module/AccountSessionBean!org.sample.AccountSessionBean

Transactions

A bean may use programmatic transaction in the bean code, which is called a bean-
managed transaction. Alternatively, a declarative transaction may be used in which the
transactions are managed automatically by the container; this is called a container-
managed transaction.

By default, transactions in a bean are container-managed. The @TransactionManage
ment annotation is used to declare whether the session bean or message-driven bean
uses a bean-managed or container-managed transaction. The value of this annotation
is either CONTAINER (the default) or BEAN.

A bean-managed transaction requires you to specify @TransactionManagement(BEAN)
on the class and use the javax.transaction.UserTransaction interface. Within the
business method, a transaction is started with UserTransaction.begin and committed
with UserTransaction.commit:

(BEAN)
public class AccountSessionBean {
javax.transaction.UserTransaction tx;

public float deposit() {

/) ..
tx.begin();

Y/

tx.commit();

/). ..

Transactions | 157

}
}

Container-managed transaction is the default and does not require you to specify any
additional annotations on the class. The EJB container implements all the low-level
transaction protocols, such as the two-phase commit protocol between a transaction
manager and a database system or messaging provider, to honor the transactional se-
mantics. The changes to the underlying resources are all committed or rolled back.

A stateless session bean using a container-managed transaction can use @Transactio
nAttribute to specify transaction attributes on the bean class or the method. Specifying
the TransactionAttribute on a bean class means that it applies to all applicable meth-
ods of the bean. The absence of TransactionAttribute on the bean class is equivalent
to the specification of TransactionAttribute(REQUIRED) on the bean.

A bean class using a container-managed transaction looks like:

public class AccountSessionBean {

public float deposit() {
//-
}
3

There are no additional annotations specified on the bean class or the method.
The @TransactionAttribute values and meaning are defined in Table 8-2.

Table 8-2. @TransactionAttribute values

Value Description

MANDATORY Always called in client’s transaction context. If the client calls with a transaction context, then it behaves
as REQUIRED. If the client calls without a transaction context, then the container throws the jav
ax.ejb.EJBTransactionRequiredException.

REQUIRED If the dlient calls with a transaction context, then it is propagated to the bean. Otherwise, the container
starts a new transaction before delegating a call to the business method and attempts to commit the
transaction when the business process has completed.

REQUIRES_NEW The container always starts a new transaction context before delegating a call to the business method
and attempts to commit the transaction when the business process has completed. If the client calls
with a transaction context, then the suspended transaction is resumed after the new transaction has
committed.

SUPPORTS If the client calls with a transaction context, then it behaves as REQUIRED. If the client calls without a
transaction context, then it behaves as NOT_SUPPORTED.

NOT_SUPPORTED If the client calls with a transaction context, then the container suspends and resumes the association of
the transaction context before and after the business method is invoked. If the client calls without a
transaction context, then no new transaction context is created.

158 | Chapter 8: Enterprise JavaBeans

Value Description

NEVER The dlient is required to call without a transaction context. If the client calls with a transaction context,
then the container throws javax.ejb.EJBException. If the client calls without a transaction
context, then it behaves as NOT_SUPPORTED.

The container-transaction element in the deployment descriptor may be used in-
stead of annotations to specify the transaction attributes. The values specified in the
deployment descriptor override or supplement the transaction attributes specified in
the annotation.

Only the NOT_SUPPORTED and REQUIRED transaction attributes may be used for message-
driven beans. A JMS message is delivered to its final destination after the transaction is
committed, so the client will not receive the reply within the same transaction.

By default, the methods designated with @PostConstruct, @PreDestroy, @PrePasst
vate, and @PostActivate are executed in an unspecified transactional context. EJB 3.2
specifies that for a stateful session bean with container-managed transaction demarca-
tion, these methods can have REQUIRES_NEW and NOT_SUPPORTED attributes.

Asynchronous Invocation

Each method of a session bean is invoked synchronously (i.e., the client is blocked until
the server-side processing is complete and the result returned). A session bean may tag
a method for asynchronous invocation, and a client can then invoke that method
asynchronously.

This returns control to the client before the container dispatches the instance to a bean.
The asynchronous operations must have a return type of void or Future<v>. The meth-
ods with a void return type are used for a fire-and-forget pattern. The other version
allows the client to retrieve a result value, check for exceptions, or attempt to cancel any
in-progress invocations.

The @Asynchronous annotation is used to mark a specific method (method level) or all
methods (class level) of the bean as asynchronous. Here is an example of a stateless
session bean that is tagged as asynchronous at the class level:

public class MyAsyncBean {
public Future<Integer> addNumbers(int n1, int n2) {
Integer result;
result = n1 + n2;
// simulate a long running query
/) ..
return new AsyncResult(result);

}

Asynchronous Invocation | 159

The method signature returns Future<Integer>and the return typeis AsyncResult(In
teger). AsyncResult is a new class introduced in EJB 3.1 that wraps the result of an
asynchronous method as a Future object. Behind the scenes, the value is retrieved and
sent to the client. Adding any new methods to this class will automatically make them
asynchronous as well.

This session bean can be injected and invoked in any Java EE component:

MyAsyncBean asyncBean;

Future<Integer> future = asyncBean.addNumbers(10, 20);

The methods on the Future APIare used to query the availability of a result with isDone
or cancel the execution with cancel(boolean mayInterruptIfRunning).

The client transaction context does not propagate to the asynchronous business method.
This means that the semantics of the REQUIRED transaction attribute on an asynchronous
method are exactly the same as REQUIRES_NEW.

The client security principal propagates to the asynchronous business method. This
means the security context propagation behaves the same way for synchronous and
asynchronous method execution.

Timers

The EJB Timer Service is a container-managed service that allows callbacks to be sched-
uled for time-based events. These events are scheduled according to a calendar-based
schedule at a specific time, after a specific elapsed duration, or at specific recurring
intervals.

Time-based events can be scheduled in multiple ways:

o Automatic timers based upon the metadata specified with @Schedule
o Programmatically using TimerService
o Methods marked with @Timeout

« Deployment descriptors

The first way to execute time-based methods is by marking any method of the bean with
@Schedule:

public class MyTimer {
(hour="*", minute="*", second="+*/10")

public void printTime() {
/) ..

160 | Chapter 8: Enterprise JavaBeans

}
}

In this code, the printTime method is called every 10th second of every minute of every
hour. @Schedule also takes year and month fields, with a default value of * indicating to
execute this method each month of all years.

The EJB container reads the @Schedule annotations and automatically creates timers.

Table 8-3 shows some samples that can be specified via @Schedule and their
meanings.

Table 8-3. @Schedule expressions and meanings

@Schedule Meaning

hour="1,2,20" 1am, 2 am, and 10 pm on all days of the year

dayOfiWeek="Mon-Fri" Monday, Tuesday, Wednesday, Thursday, and Friday, at midnight (based upon
the default values of hour, minute, and second)

minute="30", hour="4", time Every morning at 4:30 US Pacific Time
zone="America/Los_Angeles"

dayOfMonth="-1,Last" One day before the last day and the last day of the month at midnight

@Schedules may be used to specify multiple timers.

Note that there is no need for an @Startup annotation here, as life-cycle callback meth-
ods are not required. Each redeploy of the application will automatically delete and
recreate all the schedule-based timers.

You can easily create interval timers by using the ScheduleExpression.start and end
methods. You can easily create the single-action timer by specifying fixed values for
each field:

(year="A",
month="B",
dayOfMonth="C",
hour="D",
minute="E",
second="F")

Timers are not for real time, as the container interleaves the calls to a timeout callback
method with the calls to the business methods and the life-cycle callback methods of

the bean. So the timed-out method may not be invoked at exactly the time specified at
timer creation.

The Timer Service allows for programmatic creation and cancellation of timers. You
can create programmatic timers using the createXXX methods on TimerService. The
method to be invoked at the scheduled time may be the ejbTimeout method from
TimedObject:

Timers | 161

public class MyTimer implements TimedObject {
TimerService timerService;

public void initTimer() {
if (timerService.getTimers() != null) {
for (Timer timer : timerService.getTimers()) {
timer.cancel();
}
}
timerService.createCalendarTimer(
new ScheduleExpression().
hour("*").
minute("*").
second("*/10"),
new TimerConfig("myTimer", true)

)s

public void ejbTimeout(Timer timer) {

Y/

}
}
}
The initTimer method is a life-cycle callback method that cleans up any previously
created timers and then creates a new timer that triggers every 10th second. The ejbTi
meout method, implemented from the TimedObject interface, is invoked every time the
timeout occurs. The timer parameter in this method can be used to cancel the timer,
get information on when the next timeout will occur, get information about the timer
itself, and gather other relevant data.

Note that the timers are created in the life-cycle callback methods, thus ensuring that
they are ready before any business method on the bean is invoked.

EJB 3.2 adds the Timer.getAllTimers API, which returns all active timers associated
with the beans in the same module in which the caller bean is packaged. These include
both the programmatically created timers and the automatically created timers.

The third way to create timers is for a method to have the following signatures:

void <METHOD>() {

/) ..

}

void <METHOD>(Timer timer) {
/). ..

}

The method needs to be marked with @Timeout:

162 | Chapter 8: Enterprise JavaBeans

public class MyTimer {

//-

public void timeout(Timer timer) {
//-
}
}

The fourth way to create timers is by tagging a method for execution on a timer expi-
ration using ejb-jar.xml. Let’s say the method looks like:

public class MyTimer {
public void timeout(Timer timer) {
//-
}
3

You can convert the method timeout into a timer method by adding the following
fragment to ejb-jar.xml:

<enterprise-beans>
<session>
<ejb-name>MyTimer</ejb-name>
<ejb-class>org.sample.MyTimer</ejb-class>
<session-type>Stateless</session-type>
<timer>
<schedule>
<second>*/10</second>
<minute>*</minute>
<hour>*</hour>
<month>*</month>
<year>*</year>
</schedule>
<timeout-method>
<method-name>timeout</method-name>
<method-params>
<method-param>javax.ejb.Timer</method-param>
</method-params>
</timeout-method>
</timer>
</session>
</enterprise-beans>

Timers can be created in stateless session beans, singleton session beans, and message-
driven beans, but not stateful session beans. This functionality may be added to a future
version of the specification.

Timers are persistent by default and can be made nonpersistent programmatically:

timerService.createCalendarTimer(
new ScheduleExpression().

Timers | 163

hour("*").
minute("*").
second("*/10"),
new TimerConfig("myTimer", true)
)
Alternatively, timerConfig.setPersistent(false); can be used to make the timer
nonpersistent.

Timers defined via annotations can be made nonpersistent:

(hour="*", minute="*", second="*/10", persistent="false")
public void printTime() {
/) ..
}

Persistent timers are not allowed in Web Profile.

The timer-based events can only be scheduled in stateless session beans and singleton
session beans.

Embeddable API

The Embeddable EJB API allows client code and its corresponding enterprise beans to
run within the same JVM and class loader. The client uses the bootstrapping API from
the javax.ejb package to start the container and identify the set of enterprise bean
components for execution. This provides better support for testing, offline processing,
and executing EJB components within a Java SE environment.

The following sample code shows how to write a test case that starts the embeddable
EJB container, looks up the loaded EJB using the Portable Global J]NDI Name, and
invokes a method on it:

public void testEJB() throws NamingException {
EJBContainer ejbC = EJBContainer.createEJBContainer();
Context ctx = ejbC.getContext();
MyBean bean = (MyBean) ctx.lookup ("java:global/classes/org/sample/MyBean");
assertNotNull(bean);
/) ..
ejbC.close();
}
With EJB 3.2, if Java SE 7 is used to run the embeddable container, then the client may
close the container implicitly by using the try-with-resources statement when ac-
quiring the EJBContainer instance:
public void testEJB() throws NamingException {

try (EJBContainer ejbC = EJBContainer.createEJBContainer()) {

/). ..
// no need to call ejbC.close();

164 | Chapter 8: Enterprise JavaBeans

}
}

The embeddable EJB container uses the JVM classpath to scan for the EJB modules to
beloaded. The client can override this behavior during setup by specifying an alternative
set of target modules:

Properties props = new Properties();
props.setProperty(EJBContainer . EMBEDDABLE_MODULES_PROPERTY, "bar");
EJBContainer ejbC = EJBContainer.createEJBContainer(props);

This code will load only the bar EJB module in the embeddable container.
Table 8-4 explains the properties that may be used to configure the EJB container.
Table 8-4. Embeddable EJB container initialization properties

Name Type Purpose
javax.ejb.embeddable.initialor String Fully qualified name of the embeddable
EJBContatiner.EMBEDDABLE_INI container provider class to be used for this
TIAL_PROPERTY application.
javax.ejb.embeddable.modulesor StringorString[] Modules to be initialized. If included in the
EJBContainer.EMBEDDABLE_MOD java.ilo.Fileor classpath, specified as String or Stringl[].
ULES_PROPERTY java.ilo.File[] If not in the classpath, specified as File or

File[] where each object refers to an ejb-jar
or exploded ejb-jar directory.

javax.ejb.embeddable.appName or String Application name for an EJB module. It
EJBContainer.EMBEDDA corresponds to the<app - name> portion of the
BLE_APP_NAME_PROPERTY Portable Global JNDI Name syntax.

The embeddable container implementation may support additional properties.

EJB Lite

The full set of EJB functionality may not be required for all enterprise applications. As
explained earlier, the Web Profile offers a reasonably complete stack composed of stan-
dard APIs, and is capable out-of-the-box of addressing a wide variety of web applica-
tions. The applications targeted toward web profiles will want to use transactions,
security, and other functionality defined in the EJB specification. EJB Lite was created
to meet that need.

EJB Lite is a minimum set of the complete EJB functionality. No new functionality is
defined as part of EJB Lite; it is merely a proper subset of the full functionality. This
allows the EJB API to be used in applications that may have much smaller installation
and runtime footprints than a typical full Java EE implementation.

Table 8-5 highlights the difference between EJB 3.2 Lite and EJB 3.2 Full APIL.

ElBLlite | 165

Table 8-5. Difference between EJB 3.2 Lite and EJB 3.2 Full API

EJB 3.2 Lite EJB 3.2 Full API

Session beans v
Message-driven beans

Java Persistence 2.0

Local business interface/No-interface

3.x Remote

2.x Remote/Home component

2.x Local/Home component

JAX-WS web service endpoint

Nonpersistent EJB Timer Service

Persistent EJB Timer Service

Local asynchronous session bean invocations
Remote asynchronous session bean invocations
Interceptors

RMI-IIOP interoperability
Container-managed/bean-managed transactions
Declarative and programmatic security
Embeddable API

S S SX AX A X A% X X X X%«
N N N N Y T U U U S N NN

Local asynchronous session bean invocations and the nonpersistent EJB Timer Service
are new additions in EJB 3.2 Lite. Everything else was categorized in EJB 3.1.

Functionality defined by EJB Lite is available in a Java EE Web Profile-compliant ap-
plication server. A full Java EE-compliant application server is required to implement
the complete set of functionality.

166 | Chapter 8: Enterprise JavaBeans

CHAPTER 9
Contexts and Dependency Injection

Contexts and Dependency Injection (CDI) is defined as JSR 346, and the complete
specification can be downloaded.

CDI defines a type-safe dependency injection mechanism in the Java EE platform. A
bean specifies only the type and semantics of other beans it depends upon, without a
string name and using the type information available in the Java object model. This
allows compile-time validation in addition to deployment. It also provides for easy
refactoring.

The injection request need not be aware of the actual life cycle, concrete implementation,
threading model, or other clients of the bean. This “strong typing, loose coupling” com-
bination makes your code easier to maintain. The bean so injected has a well-defined
life cycle and is bound to life-cycle contexts. The injected bean is also called a contextual
instance because it is always injected in a context.

Almost any POJO can be injected as a CDI bean. This includes E]JBs, JNDI resources,
entity classes, and persistence units and contexts. Even the objects that were earlier
created by a factory method can now be easily injected. Specifically, CDI allows EJB
components to be used as JSF managed beans, thus bridging the gap between the trans-
actional and the web tier. It is also integrated with Unified Expression Language (UEL),
allowing any contextual object to be used directly within a JSF or JSP page.

Discovery of Beans

Bean classes are deployed in bean archives. A bean archive has the bean discovery modes
listed in Table 9-1.

167

http://jcp.org/aboutJava/communityprocess/final/jsr346/index.html

Table 9-1. Bean discovery mode values

Value Meaning

all All types in the archive are considered for injection.
annotated Only types with bean-defining annotations will be considered for injection.

none Disable CDI.

A bean archive that does not contain beans.xml but contains one or more bean classes
with a bean-defining annotation, or one or more session beans, is considered an implicit
bean archive. A bean with a declared scope type is said to have a bean-defining
annotation.

An explicit bean archive is an archive that contains a beans.xml file with any of the
following conditions:

o A version number of 1.1 (or later), with the bean-discovery-mode of all:

<beans
xmlns="http://xmlns.jcp.org/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/beans_1_1.xsd"
bean-discovery-mode="all">
</beans>

A sample beans.xml file contains the starting and ending beans tag, with name-
spaces and attributes.

o No version number:

<beans xmlns="http://xmlns.jcp.org/xml/ns/javaee"s
</beans>

o An empty file.

An explicit bean archive has a bean discovery mode of all.

A bean archive that contains a beans.xml file with version 1.1 (or later) must specify
the bean-discovey-mode attribute. The default value for the attribute is annotated.

If it exists in the archive, then it must be present in the following locations:

o The WEB-INF or WEB-INF/classes/ META-INF directory for web applications.

o The META-INF directory for EJB modules or JAR files.
beans.xml can define exclude filters to exclude beans and package names from discovery.
You define these by using <exclude> elements as children of the <scan> element:

<beans ...>
<scan>

168 | Chapter9: Contexts and Dependency Injection

<exclude name="...">

</exclude>
</scan>
</beans>
Package names can be excluded if a particular class is found:

<exclude name="org.sample.beans.*">
<if-class-available name="org.sample.beans.SimpleGreeting"/>
</exclude>

In this code, all beans in the org.sample.beans. * package are excluded if the org.sam
ple.beans.SimpleGreeting class is found.

Package names can be excluded if a particular class is not found:

<exclude name="org.sample.beans.*">
<if-class-not-available name="org.sample.beans.FancyGreeting"/>
</exclude>

In this code, all beans in the org.sample.beans. * package are excluded if the org.sam
ple.beans.FancyGreeting class is not found.

Package names can be excluded if a system property is not defined for a particular name
or a system property is not defined with a particular value:

<exclude name="org.sample.beans.*">
<if-system-property name="myProperty" value="myValue"/>
</exclude>

In this code, all beans in the org.sample.beans.* package are excluded if a system
property with the name myProperty is not defined with the value myvalue.

The package name and all subpackages can be excluded if the filter name ends with . **:

<exclude name="org.sample.beans.**">
<if-system-property name="exclude-beans"/>
</exclude>

In this code, all beans in the org.sample.beans. * package and subpackages are exclu-
ded if a system property with the name exclude-beans is set.

CDI 1.1 introduces a new annotation, @Vetoed. You can prevent a bean from injection
by adding this annotation:

public class SimpleGreeting implements Greeting {
}
In this code, the SimpleGreeting bean is not considered for injection.

All beans in a package may be prevented from injection:

Discovery of Beans | 169

package org.sample.beans;

import javax.enterprise.inject.Vetoed;

This code in package-info.java in the org.sample.beans package will prevent all
beans from this package from injection.

Java EE components, such as stateless EJBs or JAX-RS resource endpoints, can be
marked with @vetoed to prevent them from being considered beans.

Injection Points

You can inject a bean at a field, method, or constructor using @Inject.

The following code shows a Greeting interface, a POJO SimpleGreeting as its imple-
mentation, and the injection of the interface as a field in GreetingService:

public interface Greeting {
public String greet(String name);
}

public class SimpleGreeting implements Greeting {
public String greet(String name) {
return "Hello" + name;

3

public class GreetingService {
Greeting greeting;

public String greet(String name) {
return greeting.greet(name);
}
}

@Inject specifies the injection point, Greeting specifies what needs to be injected, and
greeting is the variable that gets the injection.

A bean may define one or more methods as targets of injection as well:

Greeting greeting;

public setGreeting(Greeting greeting) {
this.greeting = greeting;

}
Finally, a bean can have at most one constructor marked with @Inject:

Greeting greeting;

170 | Chapter9: Contexts and Dependency Injection

public SimpleGreeting(Greeting greeting) {
this.greeting = greeting;
}
All method parameters are then automatically injected. This constructor may have any
number of parameters, and all of them are injection points. A constructor marked with
@Inject need not have public access. This allows a bean with constructor injection to
be immutable.

Here is the bean initialization sequence:

1. Default constructor or the one annotated with @Inject
2. All fields of the bean annotated with @Inject

3. All methods of the bean annotated with @Inject (the call order is not portable,
though)

4. The @PostConstruct method, if any

Qualifier and Alternative

Qualifier allows you to uniquely specify a bean to be injected among its multiple im-
plementations. For example, this code declares a new qualifier, @Fancy:

(RUNTIME)
({METHOD, FIELD, PARAMETER, TYPE})
public Fancy {
}

This defines a new implementation of the Greeting interface:

public class FancyGreeting implements Greeting {
public String greet(String name) {
return "Nice to meet you, hello" + name;
}
}

and injects it in the GreetingService by specifying @Fancy as the qualifer:

public class GreetingService {
Greeting greeting;

public String sayHello(String name) {
return greeting.greet(name);

3

Qualifier and Alternative | 171

This removes any direct dependency to any particular implementation of the interface.
Qualifiers may take parameters for further discrimination. Multiple qualifiers may be
specified at an injection point.

Table 9-2 lists the built-in qualifiers and their meanings.
Table 9-2. Built-in CDI qualifiers

Qualifier ~ Description

@Named String-based qualifier, required for usage in Expression Language
@efault Default qualifier on all beans without an explicit qualifier, except @Named
@Any Default qualifier on all beans except @New

@New Allows the application to obtain a new instance independent of the declared scope; deprecated in (DI 1.1, and
injecting @Dependent scoped beans is encouraged instead

Using the SimpleGreeting and FancyGreeting implementations defined earlier, the
injection points are explained as follows:

Greeting greeting;
Greeting greeting;
Greeting greeting;

The three injection points are equivalent, as each bean has @efault and @Any (except
for @New) qualifiers and specifying them does not provide any additional information.
The SimpleGreeting bean is injected in each statement. Thus:

Greeting greeting;

will inject the FancyGreeting implementation. This is because specifying @Fancy on
FancyGreeting means it does not have the @efault qualifier. This statement:

Greeting greeting;

will result in ambiguous dependency and require us to further qualify the bean by spec-
ifying @Default or @Fancy.

The use of @amed as an injection point qualifier is not recommended, except in the case
of integration with legacy code that uses string-based names to identify beans.

The beans marked with @Alternative are unavailable for injection, lookup, or EL res-
olution. We need to explicitly enable them in beans.xml using <alternatives>:

public class SimpleGreeting implements Greeting {

Y/
}

public class FancyGreeting implements Greeting {
/..
}

172 | Chapter9: Contexts and Dependency Injection

Now the following injection will give an error about unresolved dependency:
Greeting greeting;

because both the beans are disabled for injection. We can resolve this error by explicitly
enabling one of the beans in beans.xml:

<beans

xmlns="http://xmlns.jcp.org/xml/ns/javaee"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="
http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/beans_1_1.xsd"

bean-discovery-mode="annotated">

<alternatives>
<class>org.sample.FancyGreeting</class>

</alternatives>

</beans>

@Alternative allows us to package multiple implementations of a bean with the same
qualifiers in the .war file and selectively enable them by changing the deployment
descriptor based upon the environment. For example, this can allow you to target sep-
arate beans for injection in development, testing, and production environments by en-
abling the classes in beans.xml. This provides deployment-type polymorphism.

Producer and Disposer

@Inject and @ualifier provide static injection of a bean (i.e., the concrete type of the
bean to be injected is known). However, this may not always be possible. The producer
methods provide runtime polymorphism where the concrete type of the bean to be
injected may vary at runtime, the injected object may not even be a bean, and objects
may require custom initialization. This is similar to the well-known factory pattern.

Here is an example that shows how List<String> can be made available as a target for
injection:

public List<String> getGreetings() {
List<String> response = new ArraylList<String>();

Y/2

return response;

}

In this code, the getGreetings method can populate List<String> from a Data
Source or by invoking some other external operation.

And now it can be injected as:

List<String> list;

Producer and Disposer | 173

By default, a bean is injected in @Dependent scope, but we can change it by explicitly
specitying the required scope. Let’s say Connection is a bean that encapsulates a con-
nection to a resource—for example, a database accessible via JDBC—and User provides
credentials to the resource. The following code shows how a Connection bean is avail-
able for injection in request scope:

Connection connect(User user) {
return createConnection(user.getId(), user.getPassword());

}

Here is another example of how PersistenceContext may be exposed as a type-safe
bean. This is typical of how an EntityManager is injected:

(unitName="...")
EntityManager em;

All such references can be unified in a single file as:

(unitName="...")

EntityManager em;

where CustomerDatabase is a qualifier. The EntityManager can now be injected as:

EntityManager em;
Similarly, JMS factories and destinations can be injected in a type-safe way.

Some objects that are made available for injection via @Produces may require explicit
destruction. For example, the JMS factories and destinations need to be closed. Here is
a code example that shows how the Connection produced earlier may be closed:

void close(Connection connection) {
connection.close();
}
Interceptors

Interceptors are used to implement cross-cutting concerns, such as logging, auditing,
and security, from the business logic.

The specification is not entirely new, as the concept already existed in the EJB 3.0 spec-
ification. However, it is now abstracted at a higher level so that it can be more generically
applied to a broader set of specifications in the platform. Interceptors do what their
name implies—they intercept invocations and life-cycle events on an associated target
class. Basically, an interceptor is a class whose methods are invoked when business
methods on a target class are invoked, life-cycle events such as methods that create/

174 | Chapter9: Contexts and Dependency Injection

destroy the bean occur, or an EJB timeout method occurs. The CDI specification defines
a type-safe mechanism for associating interceptors to beans using interceptor bindings.

We need to define an interceptor binding type in order to intercept a business method.
We can do this by specifying the @InterceptorBinding meta-annotation:

(RUNTIME)
({METHOD,TYPE})
public Logging {
}
@Target defines the program element to which this interceptor can be applied. In this
case, the annotation @Logging can be applied to a method or a type (class, interface, or
enum).

The interceptor is implemented as follows:

public class LoggingInterceptor {

public Object log(InvocationContext context) throws Exception {
String name = context.getMethod().getName();
String params = context.getParameters().toString();

Y/

return context.proceed();
}
}

Adding the @Interceptor annotation marks this class as an interceptor, and @Log
ging specifies that this is an implementation of the earlier defined interceptor binding
type. @AroundInvoke indicates that this interceptor method interposes on business
methods. Only one method of an interceptor may be marked with this annotation.
InvocationContext provides context information about the intercepted invocation and
operations and can be used to control the behavior of the invocation chain. Name of
the business method invoked and the parameters passed to it can be retrieved from the
context.

This interceptor may be attached to any managed bean:

public class SimpleGreeting {
/e ..
}

Alternatively, we can log individual methods by attaching the interceptor:

public class SimpleGreeting {

public String greet(String name) {
/) ..

Interceptors | 175

}
}

You can define multiple interceptors using the same interceptor binding.

By default, all interceptors are disabled. They need to be explicitly enabled and ordered
via the @Priority annotation, along with a priority value on the interceptor class:

(Interceptor.Priority.APPLICATION+10)

public class LoggingInterceptor {

/...
}

The priority values are defined in the javax.interceptor.Interceptor.Priority
class, as specified in Table 9-3.

Table 9-3. Interceptor priority values

Priority value Constant field value

Interceptor.Priority.PLATFORM_BEFORE 0

Interceptor.Priority.LIBRARY_BEFORE 1000
Interceptor.Priority.APPLICATION 2000
Interceptor.Priority.LIBRARY_AFTER 3000
Interceptor.Priority.PLATFORM_AFTER 4000

Interceptors with the smaller priority values are called first. If more than one interceptor
has the same priority, the relative order of these interceptor is undefined.

The values in Table 9-4 define the following interceptor ranges to order interceptors for
a specific interposed method or event in the interceptor chain.

Table 9-4. Interceptor priority value ranges

Range Invocation sequence

> PLATFORM_BEFORE and < Interceptors defined by the Java EE Platform specifications that are to be
LIBRARY_BEFORE executed at the beginning of the interceptor chain

> LIBRARY_BEFORE and < APPLICATION Interceptors defined by extension libraries that are intended to be
executed earlier in the interceptor chain

> APPLICATION and < LIBRARY_AFTER Interceptors defined by applications

> LIBRARY_AFTER and < Interceptors defined by extension libraries that are intended to be
PLATFORM_AFTER executed later in the interceptor chain
> PLATFORM_AFTER Interceptors defined by the Java EE Platform specifications that are to be

executed at the end of the interceptor chain

The LoggingInterceptor defined earlier is executed after all application-specific in-
terceptors are called but before interceptors defined by extension libraries.

176 | Chapter9: Contexts and Dependency Injection

You can also explicitly enable interceptors by specifying them in beans.xmi:

<beans xmlns="http://xmlns.jcp.org/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="
http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/beans_1_1.xsd"
bean-discovery-mode="annotated">
<interceptors>
<class>org.sample.LoggingInterceptor</class>
</interceptors>
</beans>

Note that the actual interceptor implementation class is mentioned here.

Defining interceptor bindings provides one level of indirection but removes the de-
pendency from the actual interceptor implementation class. It also allows you to vary
the actual interceptor implementation based upon the deployment environment as well,
and to provide a central ordering of interceptors for that archive. The interceptors are
invoked in the order in which they are specified inside the <interceptors> element.

Interceptors also support dependency injection. An interceptor that adds basic trans-
actional behavior to a managed bean may be defined thusly:

public class MyTransactionInterceptor {
UserTransaction tx;

public Object manageTransaction(InvocationContext context) {
tx.begin();
/) ..

Object response = context.proceed();

/) ..
tx.commit();
return response;

}
}

UserTransaction is injected in the interceptor and is then used to start and commit the
transaction in the interceptor method. @MyTransactional can now be specified on any
managed bean or a method thereof to indicate the transactional behavior.

The Java Transaction API introduces a new @javax.transaction.Transactional an-
notation that enables an application to declaratively control transaction boundaries on
CDI-managed beans, as well as classes defined as managed beans, such as servlets, JAX-
RS resource classes, and JAX-WS service endpoints.

A life-cycle callback interceptor can be implemented as follows:

Interceptors | 177

public class LifecycleInterceptor {

public void init(InvocationContext context) {
/). ..
}
}

An EJB timeout interceptor can be implemented like so:

public class TimeoutInterceptor {

public Object timeout(InvocationContext context) {
/). ..
}

Decorators

Decorators are used to implement business concerns. Interceptors are unaware of the
business semantics of the invoked bean and thus are more widely applicable; decorators
complement interceptors, as they are business-semantics-aware and applicable to beans
of a particular type. A decorator is a bean that implements the bean it decorates and is
annotated with the @ecorator stereotype (see “Stereotypes” on page 181 for more
details):

class MyDecorator implements Greeting {
public String greet(String name) {
/). ..
}
}

The decorator class may be abstract, as it may not be implementing all methods of the
bean.

A decorator class has a delegate injection point that is an injection point for the same
type as the bean it decorates. The delegate injection point follows the normal rules for
injection and therefore must be an injected field, initializer method parameter, or bean
constructor method parameter:

Greeting greeting;

This delegate injection point specifies that the decorator is bound to all beans that im-
plement Greeting.

A delegate injection point may specify qualifiers, and the decorator is then bound to
beans with the same qualifiers.

By default, all decorators are disabled and need to be explicitly enabled and ordered via
the @Priority annotation, along with a priority value on the decorator class:

178 | Chapter9: Contexts and Dependency Injection

(Interceptor.Priority.APPLICATION+10)
class MyDecorator implements Greeting {
public String greet(String name) {
/) ..
}
}

The priority values are defined in the javax.interceptor.Interceptor.Priority
class, as explained earlier in Table 9-3. Decorators with the smaller priority values are
called first. The order of more than one decorator with the same priority is undefined.

A decorator enabled via the @Priority annotation is enabled for the entire application.
Just like interceptors, this allows you to specify a central ordering of decorators for that
archive and vary the set of decorators based upon the deployment environment.

The priority value ranges for decorators were defined previously in Table 9-4.
You can enable a decorator by specifying it in beans.xml:

<beans xmlns="http://xmlns.jcp.org/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="
http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/beans_1_1.xsd"
bean-discovery-mode="annotated">
<decorators>
<class>org.sample.MyDecorator</class>
</decorators>
</beans>

In this case, the decorator is enabled for the bean archive that contains beans.xml.

The order of the decorator declarations using <class> determines the decorator or-
dering. Decorators that occur earlier in the list are called first.

Decorators enabled via @Priority are called before decorators enabled via beans.xml.

In order of execution, the interceptors for a method are called before the decorators
that apply to the method.

Scopes and Contexts

A bean is said to be in a scope and is associated with a context. The associated context
manages the life cycle and visibility of all beans in that scope. A bean is created once per
scope and then reused. When a bean is requested in a particular scope, a new instance
is created if it does not exist already. If it does exist, that instance is returned instead.
The runtime makes sure the bean in the right scope is created, if required; the client
does not have to be scope-aware. This provides loose coupling between the client and
the bean to be injected.

Scopes and Contexts | 179

There are four predefined scopes and one default scope, as shown in Table 9-5.

Table 9-5. Predefined scopes in CDI

Scope Description

@RequestScoped A bean is scoped to a request. The bean is available during a single request and destroyed
when the request is complete.

@SessionScoped A bean is scoped to a session. The bean is shared between all requests that occur in the same
HTTP session, holds state throughout the session, and is destroyed when the HTTP session
times out or is invalidated.

@ApplicationScoped A beanisscoped to an application. The bean is created when the application is started, holds
state throughout the application, and is destroyed when the application is shut down.

@ConversationScoped A beanis scoped to a conversation and is of two types: transient or long-running. By default, a
bean in this scope is transient, is created with a JSF request, and is destroyed at the end of the
request. A transient conversation can be converted to a long-running one via Conversa
tion.begtin. This long-running conversation can be ended via Conversation.end. All
long-running conversations are scoped to a particular HTTP servlet session and may be
propagated to other JSF requests. Multiple parallel conversations can run within a session,
each uniquely identified by a string-valued identifier that is either set by the application or
generated by the container. This allows multiple tabs in a browser to hold state corresponding
to a conversation, unike session cookies, which are shared across tabs.

@Dependent A bean belongs to the dependent pseudoscope. This is the default scope of the bean that does
not explicitly declare a scope.

A contextual reference to the bean is not a direct reference to the bean (unless it is in
@ependent scope). Instead, it is a client proxy object. This client proxy is responsible
for ensuring that the bean instance that receives a method invocation is the instance
that is associated with the current context. This allows you to invoke the bean in the
current context instead of using a stale reference.

Ifthe bean is in @ependent scope, then the client holds a direct reference to its instance.
A new instance of the bean is bound to the life cycle of the newly created object. A bean
in @Dependent scope is never shared between multiple injection points. If an
@ependent-scoped bean is used in an EL expression, then an instance of the bean is
created for each EL expression. So a wider life-cycle context, such as @RequestScoped
or @SessionScoped, needs to be used if the values evaluated by the EL expression need
to be accessible in other beans.

You can define a new scope using the extensible context model (@Contextual, @Crea
tionalContext, and @Context interfaces), but that is generally not required by an ap-
plication developer.

180 | Chapter9: Contexts and Dependency Injection

Stereotypes

A stereotype encapsulates architectural patterns or common metadata for beans that
produce recurring roles in a central place. It encapsulates scope, interceptor bindings,
qualifiers, and other properties of the role.

A stereotype is a meta-annotation annotated with @Stereotype:

(RUNTIME)
(TYPE)

/) ..
public MyStereotype { }

A stereotype that adds transactional behavior can be defined as:

(RUNTIME)
(TYPE)

public MyStereotype { }

In this code, an interceptor binding defined earlier, @Transactional, is used to define
the stereotype. A single interceptor binding defines this stereotype instead of the inter-
ceptor binding. However, it allows you to update the stereotype definition later with
other scopes, qualifiers, and properties, and those values are then automatically applied
on the bean.

A stereotype can be specified on a target bean like any other annotation:

public class MyBean {
/) ..
}

The metadata defined by the stereotype is now applicable on the bean.

A stereotype may declare the default scope of a bean:

(RUNTIME)
(TYPE)
public MyStereotype { }

Specifying this stereotype on a bean marks it to have @RequestScoped unless the bean
explicitly specifies the scope. A stereotype may declare at most one scope.

A stereotype may declare zero, one, or multiple interceptor bindings:

(RUNTIME)

Stereotypes | 181

(TYPE)
public MyStereotype { }

Adding @Alternative to the stereotype definition marks all the target beans to be
alternatives.

Stereotypes can be stacked together to create new stereotypes as well.

@Interceptor, @ecorator, and @Model are predefined stereotypes. The @Model ster-
eotype is predefined:

({TYPE, METHOD})
(RUNTIME)
public Model {}

This stereotype provides a default name for the bean and marks it @RequestScoped.
Adding this stereotype on a bean will enable it to pass values from a JSF view to a
controller, say, an EJB.

Events

Events provide an annotation-based event model based upon the observer pattern. Event
producers raise events that are consumed by observers. The event object, typically a
POJO, carries state from producer to consumer. The producer and the observer are
completely decoupled from each other and only communicate using the state.

A producer bean will fire an event using the Event interface:

Event<Customer> event;

Y/

event.fire(customer);
An observer bean with the following method signature will receive the event:

void onCustomer(Customer event) {

/.
}

In this code, Customer is carrying the state of the event.
The producer bean can specify a set of qualifiers when injecting the event:
Event<Customer> event;

The observer bean’s method signature has to match the exact set of qualifiers in order
to receive the events fired by this bean:

void onCustomer(Customer event) {
/) ..
}

182 | Chapter9: Contexts and Dependency Injection

Qualifiers with parameters and multiple qualifiers may be specified to further narrow
the scope of an observer bean.

By default, an existing instance of the bean or a new instance of the bean is created in
the current context to deliver the event. This behavior can be altered so that the event
is delivered only if the bean already exists in the current scope:

void onCustomer(

(
notifyObserver= Reception.IF_EXISTS)

Customer event){
Y/
}
Transactional observer methods receive their event notifications during the before com-
pletion or after completion phases of the transaction in which the event was fired. Trans
actionPhase identifies the kind of transactional observer methods, as defined in
Table 9-6.

Table 9-6. Transactional observers

Transactional observers Description

IN_PROGRESS Default behavior; observers are called immediately
BEFORE_COMPLETION Observers are called during the before completion phase of the transaction
AFTER_COMPLETION Observers are called during the after completion phase of the transaction

AFTER_FAILURE Observers are called during the after completion phase of the transaction, only when the
transaction fails

AFTER_SUCCESS Observers are called during the after completion phase of the transaction, only when the
transaction succeeds

For example, the following observer method will be called after the transaction has
successfully completed:

void onCustomer(

(
during= TransactionPhase.AFTER_SUCCESS)
Customer event) {

Y/
}

An event is not fired for any bean annotated with @etoed, or in a package annotated
with @Vetoed.

Portable Extensions

CDI exposes an Service Provider Interface (SPI) allowing portable extensions to extend
the functionality of the container easily. A portable extension may integrate with the
container by:

Portable Extensions | 183

« Providing its own beans, interceptors, and decorators to the container
o Injecting dependencies into its own objects using the dependency injection service
« Providing a contextual implementation for a custom scope

o Augmenting or overriding the annotation-based metadata with metadata from
some other source

Here is a simple extension:

public class MyExtension implements Extension {

<T> void processAnnotatedType(
ProcessAnnotatedType<T> pat) {
Logger.global.log(Level.INFO,

"processing annotation: {0}",

pat.
getAnnotatedType().
getJavaClass().
getName());

}

This extension prints the list of annotations on a bean packaged in a web application.

The extension needs to implement the Extension marker interface. You then need to
register this extension using the service provider mechanism by creating a file named
META-INF/services/javax.enterprise.inject.spi.Extension. This file contains the fully
qualified name of the class implementing the extension:

org.sample.MyExtension
The bean can listen to a variety of container life-cycle events, as listed in Table 9-7.

Table 9-7. CDI container life-cycle events

Event When fired?

BeforeBeanDiscovery Before the bean discovery process begins
AfterBeanDiscovery After the bean discovery process is complete

AfterDeploymentValidation After no deployment problems are found and before contexts are created and
requests processed

BeforeShutdown After all requests are finished processing and all contexts destroyed

ProcessAnnotatedType For each Java class or interface discovered in the application, before the annotations
are read

ProcessInjectionTarget For every Java EE component class supporting injection

ProcessProducer For each producer method or field of each enabled bean

184 | Chapter9: Contexts and Dependency Injection

Each of these events allows a portable extension to integrate with the container initial-
ization. For example, BeforeBeanDiscovery can be used to add new interceptors, quali-
fiers, scope, and stereotypes on an existing bean.

BeanManager provides operations for obtaining contextual references for beans, along
with many other operations of use to portable extensions. It can be injected into the
observer methods as follows:

<T> voild processAnnotatedType(
ProcessAnnotatedType<T> pat,
BeanManager bm) {
Y/
}

BeanManager is also available for field injection and can be looked up by the name
java:comp/BeanManager.

Built-in Beans

A Java EE or embeddable EJB container must provide the following built-in beans, all
of which have the qualifer @efault:

A bean with bean type javax.transaction.UserTransaction, allowing injection
of a reference to the JTA UserTransaction:

(TransactionManagementType.BEAN)
public class SimpleGreeting {
UserTransaction ut;

V/2R

public String greet(String name) {
ut.start();
/) ..

ut.commit();
}
}

In this code, a UserTransaction instance is injected in a bean-managed transac-
tion EJB. The injected instance can be used to start and commit/roll back the
transaction.

A bean with bean type javax.security.Principal, allowing injection of a Prin
cipal representing the current caller identity:

public class SimpleGreeting {
Principal principal;
public String greet(String name) {
if (principal.getName().equals("manager")) {
Y72

Built-inBeans | 185

} else {
/e ..
}
}
}

In this code, a Principal instance is injected in an EJB. The injected instance can
be used to check the security principal name.

A servlet container must provide the following built-in beans, all of which have the
qualifer @Default:

A bean with bean type javax.servlet.http.HttpServletRequest, allowing in-
jection of a reference to the HttpServletRequest:

HttpServletRequest request;
o A bean with bean type javax.servlet.http.HttpSession, allowing injection of a
reference to the HttpSession:
HttpSession session;
o A bean with bean type javax.servlet.ServletContext, allowing injection of a
reference to the ServletContext:

ServletContext context;

Life-Cycle Callbacks

The standard annotations javax.annotation.PostConstruct and javax.annota
tion.PreDestroy from JSR 250 can be applied to any methods in a bean to perform
resource initialization or cleanup:

public class MyBean {

public void setupResources() {
/). ..
}

public void cleanupResources() {
/) ..
}

public String sayHello() {
return "Hello " + name;
}
}

186 | Chapter9: Contexts and Dependency Injection

The setupResources method is where any resources required during business method
execution can be acquired, and the cleanupResources method is where those resources
are closed or released. The life-cycle callback methods are invoked after the no-args
constructor.

Life-Cycle Callbacks | 187

CHAPTER 10
Concurrency Utilities

Concurrency Utilities for Java EE are defined as JSR 236, and the complete specification
can be downloaded.

Concurrency Utilities for Java EE provides a simple, standardized API for using con-
currency from application components without compromising container integrity
while still preserving the Java EE platform’s fundamental benefits.

Java EE containers such as the EJB or web container do not allow using common Java
SE concurrency APIs such as java.util.concurrent.ThreadPoolExecutor,
java.lang.Thread, or java.util.Timer directly. This is because all application code
is run on a thread managed by the container, and each container typically expects all
access to container-supplied objects to occur on the same thread. This allows the con-
tainer to manage the resources and provide centralized administration. Further, using
resources in a nonmanaged way is discouraged, because it can potentially undermine
the enterprise features that the platform is designed to provide, such as availability,
security, reliability, and scalability.

This API extends the Concurrency Utilities API developed under JSR-166y and found
in Java 2 Platform, Standard Edition 7 (Java SE 7) in the java.util.concurrent pack-
age. Application developers familiar with this API can leverage existing libraries and
usage patterns with little modification. This will allow you to add concurrency design
principles to existing Java EE applications using existing design patterns.

Asynchronous Tasks

javax.enterprise.concurrent.ManagedExecutorService is a managed version of
java.util.concurrent.ExecutorService and provides methods for submitting asyn-
chronous tasks in a Java EE environment.

189

http://jcp.org/aboutJava/communityprocess/final/jsr236/index.html
http://bit.ly/15rkVhX

You can obtain an instance of ManagedExecutorService with a JNDI lookup using
resource environment references. A default ManagedExecutorService is available un-
der the JNDI name java:comp/DefaultManagedExecutorService.

You can obtain ManagedExecutorService as follows:

InitialContext ctx = new InitialContext();
ManagedExecutorService executor =
(ManagedExecutorService)ctx. lookup("java:comp/DefaultManagedExecutorService");

You can also inject ManagedExecutorService into the application using @Resource:

(lookup="java:comp/DefaultManagedExecutorService")
ManagedExecutorService executor;

You can obtain an application-specific ManagedExecutorService by adding the fol-
lowing fragment to web.xml:

<resource-env-ref>
<resource-env-ref-name>
concurrent/myExecutor
</resource-env-ref-name>
<resource-env-ref-type>
javax.enterprise.concurrent.ManagedExecutorService
</resource-env-ref-type>
</resource-env-ref>

In this code:

o <resource-env-ref-name> defines the JNDI name of the resource relative to
java:comp/env. Itis recommended that you have resource environment references
in the java:comp/env/concurrent subcontext.

o <resource-env-ref-type> defines the type of resource environment reference.

o ManagedScheduledExecutor can then be obtained with the usual JNDI reference
or @Resource, but with the lookup name of concurrent/myExecutor.

The unit of work that needs to be executed concurently is called a task. A task is a
concrete implementation of the java.lang.Runnable interface:

public class MyTaskl implements Runnable {

public void run() {
//-
}
}

A task may be defined as a concrete implementation of the java.util.concur
rent.Callable interface:

public class MyTask2 implements Callable<Product> {
private int id;

190 | Chapter10: Concurrency Utilities

public MyTask2(int id) {
this.id = id;
}

public Product call() {
Product product = new Product(id);

/..

return product;
}
}

In this code:

o Product is an application-specific class.
o id provides an identifier of the task and is used to initialize the Product.

o Thecallmethodis called to compute the result of the task, and throws an exception
if unable to do so.

There are two differences between a task implementing Callable and Runnable:

o A Callable task can return a result, whereas a Runnable task does not.

o A Callable task can throw checked exceptions, whereas a Runnable task cannot.

Each task runs within the application component context that submitted the task.

CDI beans may be submitted as tasks, but it is recommended that they not be in @Re
questScoped, @SessionScoped, or @ConversationScoped. CDI beans with the @Appli
cation or @Dependent scope can be used as tasks. It is possible that the task could be
running beyond the life cycle of the submitting component, such as when the compo-
nent is destroyed.

You submit task instances to a ManagedExecutorService using any of the submit,
execute, invokeAll, or invokeAny methods.

o The submit method submits a Runnable or Callable task and returns a Future
representing that task:

Future future = executor.submit(new MyTask1());

o The execute method executes a Runnable task at some time in the future:
executor.execute(new MyTask1());

o The invokeAll method executes all the submitted Collection<? extends Calla

ble<T>> tasks and returns a List<Future<T>> holding their status and results,
when completed:

Asynchronous Tasks | 191

Collection<Callable<Product>> tasks = new ArraylList<>();
tasks.add(new MyTask2(1));

tasks.add(new MyTask2(2));

/) ..

List<Future<Product>> results = executor.invokeAll(tasks);
Product result = results.get(0).get();

In this code, a Collection of Callable<Product> is created and submitted via
invokeAll. The result is returned as List<Future<Product>> and the first result
is accessed.

The invokeAll method has another variation where the timeout can be specified.

o The invokeAny method executes any of the submitted Collection<? extends
Callable<T>> tasks, and returns the result of one that has completed successfully
(i.e., without throwing any exception), if any do:

Collection<Callable<Product>> tasks = new ArraylList<>();
tasks.add(new MyTask2(1));

tasks.add(new MyTask2(2));

/) ..

Product result = executor.invokeAny(tasks);
In this code, a Collection of Callable<Product> is created and submitted via
invokeAny. The result of one task that has completed successfully is returned.

The invokeAny method has another variation where the timeout can be specified.

ManagedExecutorService supports at most one quality of service. This ensures that a
task will execute at most one time.

The security context of the calling thread is propagated to the called thread. The trans-
action context is not propagated. However, transactions can be explicitly started and
committed or rolled back via javax.transaction.UserTransaction:

public class MyTask implements Runnable {

public void run() {
InitialContext context = new InitialContext();
UserTransaction tx = (UserTransaction)context

. lookup("java:comp/UserTransaction");

tx.start();
/). ..
tx.commit();

}

}

Each task can implement the ManagedTask interface to provide identity information
about the task, get notification of life-cycle events of the task, or provide additional
execution properties.

192 | Chapter10: Concurrency Utilities

Atask can also implement the ManagedTaskListener interface to receive life-cycle event

notifications. This interface provides the methods listed in Table 10-1.

Table 10-1. ManagedTaskListener methods

Method Description

taskSubmitted (alled after the task is submitted to the Executor
taskStarting (alled before the task is about to start
taskDone (alled when a submitted task has completed running, successful or otherwise

taskAborted (alled when a task’s Future has been cancelled any time during the life of a task

A task implementing these methods looks like:

public class MyTask implements Runnable, ManagedTask, ManagedTaskListener {

public void run() {
//.
}

public void taskSubmitted(Future<?> f,
ManagedExecutorService m,
Object o) {
/7

public void taskStarting(Future<?> f,
ManagedExecutorService m,
Object o) {
//.

public void taskAborted(Future<?> f,
ManagedExecutorService m,
Object o,
Throwable t) {
//.

public void taskDone(Future<?> f,
ManagedExecutorService m,
Object o,
Throwable t) {
/7.

Asynchronous Tasks

193

public ManagedTaskListener getManagedTaskListener() {
return this;

}

public Map<String, String> getExecutionProperties() {
Y/
}

}

In this code, the getManagedTaskListener and getExecutionProperties methods are
implemented from the ManagedTask interface. The execution properties provide addi-
tional information to ManagedExecutorService when executing this task. Some stan-
dard property keys are defined in this class, such as the ManagedTask.IDENTITY_NAME
property, which can be used to uniquely identify a task. The run method is implemented
from the Runnable interface, and all other methods are implemented from the Managed
TaskListener interface.

Each listener method will run with an unspecified context. All listeners run without an
explicit transaction (they do not enlist in the application component’s transaction).
UserTransaction instance can be used if transactions are required.

ManagedExecutorService can be configured with Application Server—specific at-
tributes. The specification does not define any standard configuration attributes.

Schedule Tasks

javax.enterprise.concurrent.ManagedScheduledExecutorService provides a
managed version of ScheduledExecutorService and can be used to schedule tasks at
specified and periodic times.

You can obtain an instance of ManagedScheduledExecutorService with a JNDIlookup
using resource environment references. A default ManagedScheduledExecutorSer
vice is available under the JNDI name java:comp/DefaultManagedScheduledExecu
torService.

You can then obtain ManagedScheduledExecutorService like so:

InitialContext ctx = new InitialContext();
ManagedScheduledExecutorService executor =
(ManagedScheduledExecutorService)ctx

. lookup("java:comp/DefaultManagedScheduledExecutorService");

You can also inject ManagedScheduledExecutorService into the application using
@Resource:

(lookup="7java:comp/DefaultManagedScheduledExecutorService")
ManagedScheduledExecutorService executor;

194 | Chapter 10: Concurrency Utilities

You can obtain an application-specific ManagedScheduledExecutorService by adding
the following fragment to web.xml:
<resource-env-ref>
<resource-env-ref-name>
concurrent/myScheduledExecutor
</resource-env-ref-name>
<resource-env-ref-type>
javax.enterprise.concurrent.ManagedScheduledExecutorService
</resource-env-ref-type>
</resource-env-ref>

In this code:

o <resource-env-ref-name> defines the JNDI name of the resource relative to
java:comp/env. It is recommended that you have resource environment references
in the java:comp/env/concurrent subcontext.

e <resource-env-ref-type> defines the type of resource environment reference.

o ManagedScheduledExecutorService can then be obtained with the usual JNDI
reference and @Resource, but with the lookup name of concurrent/mySchedule
dExecutor.

AsinManagedExectorService, a task is a concrete implementation of java.lang.Runn
able or java.util.concurrent.Callable interface.

You submit task instances to a ManagedScheduledExecutorService using any of the
submit, execute, invokeAll, invokeAny, schedule, scheduleAtFixedRate, or schedu
leWithFixedDelay methods.

The submit, execute, invokeAll, and invokeAny methods behave as in ManagedExecu
torService. The other methods are explained next.

e <V> ScheduledFuture<V> schedule(Callable<V> callable, Trigger trig
ger) creates and executes a task based on a Trigger.

e ScheduledFuture<?> schedule(Runnable command, Trigger trigger) creates
and executes a task based on a Trigger.

e <V> ScheduledFuture<V> schedule(Callable<V> callable, long delay,
TimeUnit unit) creates and executes a one-shot ScheduledFuture that becomes
enabled after the given delay.

A task using Callable can be defined as:
public class MyTask implements Callable<Product> {
public Product call() {

Product product = ...;

[/ ..

return product;

Schedule Tasks | 195

}
}

Product is an application-specific class. This task can be scheduled as:

ScheduledFuture<Product> future =
executor.schedule(new MyTask(), 5, TimeUnit.SECONDS);

This code will schedule the task after five seconds of initial delay. The returned
ScheduledFuture can be used to check the status of the task, cancel the execution,
and retrieve the result.

ScheduledFuture<V> schedule(Runnable command, long delay, TimeUnit
unit) creates and executes a one-shot action that becomes enabled after the given
delay.

A task using Runnable can be defined as:

public class MyTask implements Runnable {

public void run() {
/) ..
}
}

This task can be scheduled as:

ScheduledFuture<?> f = executor.schedule(new MyTask(),
5 B
TimeUnit.SECONDS);
This code will schedule the task after five seconds of initial delay. The returned
ScheduledFuture can be used to check the status of the task, cancel the execution,
and retrieve the result.

ScheduledFuture<?> scheduleAtFixedRate(Runnable command, long initial
Delay, long period, TimeUnit unit) createsand executesa periodicaction that
becomes enabled first after the given initial delay, and subsequently with the given
period; that is, executions will commence after initialDelay, then initialDelay
+period, then initialDelay + 2 * period, and so on:
ScheduledFuture<?> f = executor
.scheduleAtFixedRate(new MyRunnableTask(5),

2,

3,

TimeUnit.SECONDS);
This code will schedule the task after an initial delay of two seconds and then every
three seconds after that. If any execution of the task encounters an exception, sub-
sequent executions are suppressed. If any execution of this task takes longer than
its period, then subsequent executions may start late, but will not concurrently
execute. Otherwise, the task will only terminate via cancellation or termination of
the executor.

196

| Chapter 10: Concurrency Utilities

The returned ScheduledFuture can be used to check the status of the task, cancel
the execution, and retrieve the result.

ScheduledFuture <?> scheduleWithFixedDelay(Runnable command, long in
itialDelay, long delay, TimeUnit unit) createsand executesa periodicaction
that becomes enabled first after the given initial delay, and subsequently with the
given delay between the termination of one execution and the commencement of
the next:
ScheduledFuture<?> f = executor
.scheduleAtFixedRate(new MyRunnableTask(5),

2 s

3,

TimeUnit.SECONDS);
This code will schedule the task after an initial delay of two seconds and then every
three seconds after that. A new task is started only after the previous task has ter-
minated successfully. If any execution of the task encounters an exception, subse-
quent executions are suppressed. Otherwise, the task will only terminate via can-

cellation or termination of the executor.

Each task can implement the ManagedTask and ManagedTaskListener interfaces to
provide identity information about the task, get notification of life-cycle events of the
task, or provide additional execution properties. This behaves in a similar manner to

ManagedExecutorService.

Managed Threads

javax.enterprise.concurrent.ManagedThreadFactory can be used to create man-

aged threads for execution in a Java EE environment.

You can obtain an instance of ManagedThreadFactory with a JNDI lookup using re-
source environment references. A default ManagedThreadFactory is available under the

JNDI name java:comp/DefaultManagedThreadFactory.
You can then obtain ManagedThreadFactory like so:

InitialContext ctx = new InitialContext();
ManagedThreadFactory factory =
(ManagedThreadFactory)ctx. lookup("java:comp/DefaultManagedThreadFactory");

You can also inject ManagedThreadFactory into the application using @Resource:

(lookup="java:comp/DefaultManagedThreadFactory")
ManagedThreadFactory factory;

You can obtain an application-specific ManagedThreadFactory by adding the following

fragment to web.xml:

Managed Threads |

197

<resource-env-ref>
<resource-env-ref-name>
concurrent/myFactory
</resource-env-ref-name>
<resource-env-ref-type>
javax.enterprise.concurrent.ManagedThreadFactory
</resource-env-ref-type>
</resource-env-ref>

In this code:

o <resource-env-ref-name> defines the JNDI name of the resource relative to
java:comp/env. Itis recommended that you have resource environment references
in the java:comp/env/concurrent subcontext.

o <resource-env-ref-type> defines the type of resource environment reference.

o ManagedThreadFactory can then be obtained with the usual JNDI reference and
@Resource, but with the lookup name of concurrent/myFactory.

You can create new threads from this factory using newThread(Runnable r). For a task
definition:

public class MyTask implements Runnable {

public void run() {
/) ..
}
}

A new thread can be created and started:

Thread thread = factory.newThread(new MyTask());
thread.start();

The returned threads implement the ManageableThread interface.

The container context information is propagated to the thread’s Runnable. Naming
context, class loader, and security context information is propagated to the thread. Use
a UserTransaction instance if a transaction is required.

Dynamic Contextual Objects

Application component container contexts, such as classloading, namespace, and se-
curity, can be associated with an object instance via ContextService. Dynamic proxy
capabilities found in the java.lang.reflect package are used for the context associ-
ation. The object becomes a contextual object, and whenever a method on the contextual
object is invoked, the method executes with the thread context of the associated appli-
cation component instance.

198 | Chapter 10: Concurrency Utilities

The JNDI naming context, classloader, and security context is propagated to the proxied
object. Proxy methods suspend any transactional context on the thread and allow com-
ponents to manually control global transaction demarcation boundaries. The User
Transaction instance can be used if a transaction is required within the proxy object.

This allows non-Java EE service callbacks, such as JMS MessagelListeners, to run in
the context of the container instead of the implementation provider’s undefined thread
context. This also allows customized Java SE platform ExecutorService to be used.

You can obtain an instance of ContextService with the JNDI lookup using resource
environment references. A default ContextService is available under the JNDI name
java:comp/DefaultContextService.

You can then obtain ContextService like so:

InitialContext ctx = new InitialContext();
ContextService cs =
(ContextService)ctx.lookup("java:comp/DefaultContextService");

You can also inject ContextService into the application using @Resource:

(lookup="java:comp/DefaultContextService")
ContextService cs;

You can obtain an application-specific ContextService by adding the following frag-
ment to web.xml:

<resource-env-ref>
<resource-env-ref-name>
concurrent/myContextService
</resource-env-ref-name>
<resource-env-ref-type>
javax.enterprise.concurrent.ContextService
</resource-env-ref-type>
</resource-env-ref>

In this code:

o <resource-env-ref-name> defines the JNDI name of the resource relative to
java:comp/env. It is recommended that you have resource environment references
in the java:comp/env/concurrent subcontext.

e <resource-env-ref-type> defines the type of resource environment reference.

o ContextExecutor can then be obtained with the usual JNDI reference or @Re
source, but with the lookup name of concurrent/myContextService.

You create contextual object proxy instances with a ContextService instance using the
createContextualProxy method. Contextual object proxies will run as an extension of
the application component instance that created the proxy and may interact with Java
EE container resources.

Dynamic Contextual Objects | 199

A contextual instance of a Runnable executed with Java SE ExecutorService can be
created as:

public class MyRunnable implements Runnable {

public void run() {
/) ..
}
}

(lookup="DefaultContextService")
ContextService cs;

(lookup="DefaultManagedThreadFactory")
ThreadFactory factory;

MyRunnable r = new MyRunnable();
Runnable proxy = cs.createContextualProxy(r, Runnable.class);
ExecutorService es = Executors.newFixedThreadPool(10, factory);

Future f = es.submit(proxy);

In this code:

« MyRunnable is the object to be proxied.

o A default ContextService and ManagedThreadFactory are obtained via @Re
source.

» You create the contextual proxy of a Runnable task by calling the createContex
tualProxy method.

+ The Java SE-style ExecutorService is obtained with ManagedThreads and submits
the contextual proxy.

If the object instance supports multiple interfaces, then you can specify the interfaces
for which the contextual proxy needs to be created as follows:

public class MyRunnableWork implements Runnable, MyWork {

public void run() {

Y/
}

public void myWork() {
/) ..
}
}

[/ ..

200 | Chapter 10: Concurrency Utilities

MyRunnableWork r = new MyRunnableWork();

Object proxy = cs.createContextualProxy(r, Runnable.class, MyWork.class);
((MyWork)proxy) .myWork();

ExecutorService es = Executors.newThreadPool(10, factory);

Future f = es.submit((Runnable)proxy);

In this code:

o MyRunnableWork is the object to be proxied and implements the Runnable and
MyWork interfaces.

« You create the contextual proxy by passing both the interfaces, and the return type
is Object.

» You can invoke methods on a non-Runnable interface by casting to the MyWork
interface.

 You can submit a proxied instance to the ExecutorService by casting to the Runn
able interface.

Dynamic Contextual Objects | 201

CHAPTER 11
Bean Validation

Bean Validation is defined as JSR 349, and the complete specification can be
downloaded.

Bean Validation provides a class-level constraint declaration and validation facility for
Java applications.

The constraints can be declared in the form of annotations placed on a field, property,
method parameter, or class. Constraints can be defined on interfaces or superclasses.
Specifying a constraint on an interface ensures the constraint is enforced on classes
implementing the interface. Similarly, all classes inheriting from a superclass inherit the
validation behavior as well. Constraints declared on an interface or superclass are vali-
dated along with any constraints defined on the implementing or overriding class.

Validation constraints and configuration information can also be defined through XML
validation descriptors in META-INF/validation.xml. The descriptors override and ex-
tend the metadata defined via annotations. This chapter will cover annotation-based
constraint validations only.

The specification also includes a constraint metadata repository and the capability to
query it. This is primarily targeted toward tool development as well as integration with
other frameworks and libraries.

Built-in Constraints

Bean Validation offers a built-in set of constraint definitions that can be used on beans.
Multiple constraints can be specified on a bean to ensure different validation require-
ments are met. These constraints can also be used for composing other constraints.

Allbuilt-in constraints are defined in the javax.validation.constraints packageand
are explained as follows:

203

http://jcp.org/aboutJava/communityprocess/final/jsr349/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr349/index.html

@Null
Annotated element must be null and can be applied to any type:

String httpErrorCode;
The httpErrorCode field captures the HT TP status code from a RESTful endpoint.

@NotNull
Annotated element must not be null and can be applied to any type:

String name;

name captures the name of, say, a customer. Specifying @otNull will trigger a val-
idation error if the instance variable is assigned a null value.

@AssertTrue
The annotated element must be true and can be applied to boolean or Boolean
types only:

boolean isConnected;
isConnected can be a field in a class managing resource connections.

@AssertFalse
The annotated element must be false and can be applied to boolean or Boolean
types only:

Boolean 1isWorking;
isWorking can be a field in an Employee class.

@Min, @DecimalMin
The annotated element must be a number whose value is higher or equal to the
specified minimum. byte, short, int, long, Byte, Short, Integer, Long, BigDect
mal, and BigInteger are supported types:

(10)
int quantity;

quantity can be a field in a class storing the quantity of stock.

@Max, @DecimalMax
The annotated element must be a number whose value is lower or equal to the
specified maximum. byte, short, int, long, Byte, Short, Integer, Long, BigDect
mal, and BigInteger are supported types:

(20)
int quantity;

204 | Chapter 11:Bean Validation

quantity can be a field in a class storing the quantity of stock.
Multiple constraints may be specified on the same field:

(10)
(20)
int quantity;

@Size
The annotated element size must be between the specified boundaries. String,
Collection, Map, and Array are supported types:
(min=5, max9)
String zip;

zip can be a field capturing the zip code of a city. The length of the string is used
for validation critieria. min and max define the length of the targeted field, specified
values included. By default, min is 0 and max is 2147483647.

Another example is:

(min=1)
<Item> items;

The List.size method is used for validation in this case.

@igits
The annotated element must be a number within the accepted range. byte, short,
int, long, Byte, Short, Integer, Long, BigDecimal, BigInteger, and String are
supported types:
(integer=3,fraction=0)
int age;

integer defines the maximum number of integral digits and fraction defines the
number of fractional digits for this number. So 1, 28, 262, and 987 are valid values.
Specifying multiple constraints may make this field more meaningful:

(18)

(25)
(integer=3,fraction=0)

int age;

@Past
The annotated element must be a date in the past. The present time is defined as

the current time according to the virtual machine. Date and Calendar are sup-

ported:

Date dob;
dob captures the date of birth.

Built-in Constraints | 205

@Future
The annotated element must be a date in the future. The present time is defined as

the current time according to the virtual machine. Date and Calendar are sup-
ported:

Date retirementDate;
retirementDate stores the retirement date of an employee.

@Pattern
The annotated string must match the specified regular expression:
(regexp="[0-9]*")
String zip;
z1ip stores the zip code of a city. The regular expression says that only digits from

0 to 9 are permitted. You can make this field more meaningful by adding the @Size
constraint:

(regexp="[0-9]*")
(min=5, max=5)
String zip;

Each constraint declaration can also override the message, group, and payload fields.

message is used to override the default error message when the constraint is violated.
group is used to override the default validation group, explained later. payload is used
to associate metadata with the constraint.

Java EE 7 adds a new attribute, validationAppliesTo, to constraint declaration that
defines the constraint target (i.e., the annotated element, the method return value, or
the method parameters). The attribute can have the following values:
ConstraintTarget.IMPLICIT
This is the default value and discovers the target when no ambiguity is present. It
implies the annotated element if it is not specified on a method or a constructor. If
specified on a method or constructor with no parameter, it implies RETURN_VALUE.
If specified on a method with no return value, then it implies PARAMETERS. If there
is ambiguity, then either RETURN_VALUE or PARAMETERS is required.

ConstraintTarget.RETURN_VALUE
Applies to the return value of a method or constructor.

ConstraintTarget.PARAMETERS
Applies to the parameters of a method or constructor.

206 | Chapter 11:Bean Validation

Defining a Custom Constraint

Custom constraints designed to meet specific validation criteria can be defined by the
combination of a constraint annotation and a list of custom validation implementations.

This code shows a custom constraint annotation to validate a zip code:

({ ElementType.ANNOTATION_TYPE,
ElementType.METHOD,
ElementType.FIELD,
ElementType.CONSTRUCTOR,
ElementType.PARAMETER })
(RetentionPolicy.RUNTIME)
(validatedBy=ZipCodeValidator.class)
(min=5, message="{org.sample.zipcode.min_size}")
(regexp="[0-9]*")
(message="{org.sample.zipcode.cannot_be_null}")
public ZipCode {
String message() default
"{org.sample.zipcode.invalid_zipcode}";

Class<?>[] groups() default {};
Class<? extends Payload>[] payload() default {};

Country country() default Country.US;
public enum Country {

us,

CANADA,

MEXICO,

BRASIL

}

In this code:

o @Target indicates that this constraint can be declared on types, methods, fields,
constructors, and method parameters.

o @Constraint marks the annotation as a constraint definition. It also creates a link
with its constraint validation implementation, defined by the attribute validated
By. ZipCodeValidator.class provides the validation implementation in this case.
Multiple validator implementations may be specified as an array of classes.

o @Size, @Pattern, and @NotNull are primitive constraints used to create this com-
posite custom constraint. Annotating an element with @ZipCode (the composed
annotation) is equivalent to annotating it with @Size, @Pattern, and @NotNull (the
composing annotations) and @ZipCode.

Defining a Custom Constraint | 207

By default, each violation of a composing annotation raises an individual error
report. All the error reports are collected together, and each violation is reported.
However, @ReportAsSingleViolation on a constraint annotation can be used to
suppress the error reports generated by the composing annotations. In this case,
the error report from the composed annotation is generated instead.

message’s value is used to create the error message. In this case, the message value
is a resource bundle key that enables internationalization.

group specifies a validation group, which is used to perform partial validation of
the bean or control the order in which constraints are evaluated. By default, the
value is an empty array and belongs to the Default group.

payload is used to associate metadata information with a constraint.

country is defined as an additional element to parameterize the constraint. The
possible set of values for this parameter is defined as an enum with the constraint
definition. A default value of the parameter, Country.US, is also specified.

A simple zip code constraint validator implementation looks like:

public class ZipCodeValidator

implements ConstraintValidator<ZipCode, String> {

List<String> zipcodes;

public void initialize(ZipCode constraintAnnotation) {
zipcodes = new ArraylList<>();
switch (constraintAnnotation.country()) {
case
zipcodes.add("95054");
zipcodes.add("95051");
zipcodes.add("94043");
break;
case
//
break;
case
//
break;
case
//

break;

public boolean isValid(
String value,
ConstraintValidatorContext context) {
return zipcodes.contains(value);

208

| Chapter 11: Bean Validation

}

In this code:

o The constraint validator implementation class implements the Constraintvalida
tor interface. A given constraint can apply to multiple Java types. This requires
defining multiple constraint validator implementations, one each for a specific type.
This validator can only be applied to string types:

String zip;

o The initialize method initializes any resources or data structures used for vali-
dation. This code initializes the array of valid zip codes for a specific country. The
values of the country attribute and other attributes are available from the con
straintAnnotation parameter. This method is guaranteed to be called before any
use of this instance for validation.

o The isvalid method implements the validation logic. The method returns true if
the constraint is valid, and false otherwise. The value parameter is the object to
validate, and ConstraintValidatorContext provides the context in which the
constraint is executed. This method’s implementation must be thread-safe. This
code returns true if the zip code exists in the array of valid zip codes.

If abean X contains a field of type Y, by default, the validation of type X does not trigger
the validation of type Y. However, annotating the field of type Y with @valid will be
cascaded along with the validation of X.

@valid also provides polymorphic validation. If field Y is an interface or an abstract
class, then the validation constraints applied at runtime are from the actual implement-
ing class or subtype.

Any Iterable fields and properties may also be decorated with @valid to ensure all
elements of the iterator are validated. @valid is applied recursively, so each element of
the iterator is validated as well:

public class Order {
(...)
String orderlId;

private List<OrderItem> items;

}

In this code, the list of order items is recursively validated along with the orderId field,
because @Valid has been specified on items. If @/alid is not specified, only the order
Id field is validated when the bean is validated.

The validationAppliesTo attribute can be used to specify the target of the constraint:

Defining a Custom Constraint | 209

(validationAppliesTo=ConstraintTarget.PARAMETERS)
public void addPerson(Person person, String zip) {

/).
}
In this code, the ZipCode constraint is applied to method parameters only (i.e., zip
parameter in this case).

Validation Groups

By default, all constraints are defined in the Default validation group. Also by default,
all validation constraints are executed and in no particular order. A constraint may be
defined in an explicitly created validation group in order to perform partial validation
of the bean or control the order in which constraints are evaluated.

A validation group is defined as an interface:

public interface ZipCodeGroup {
}

This validation group can now be assigned to a constraint definition:

(groups=ZipCodeGroup.class)
String zip;
In this code, zip will be validated only when the ZipCodeGroup validation group is
targeted for validation.

By default, the Default validation group is not included if an explicit set of groups is
specified:

(groups={Default.class,ZipCodeGroup.class})
String zip;
Groups can inherit other groups through interface inheritance. You can define a new
group that consists of Default and ZipCodeGroup:

public interface DefaultZipCodeGroup
extends Default, ZipCodeGroup {

}

This new validation group can now be specified as part of the constraint, and is seman-
tically equivalent to specifying two groups separately:
(groups=DefaultZipCodeGroup.class)
String zip;
Partial validation of a bean may be required when validation of certain fields is optional
or resource intensive. For example, entering data in a multipage HTML form requires

only the field values entered in each page to be validated. Validating previously validated
fields will be redundant, and validating fields that do not yet have a value assigned will

210 | Chapter 11: Bean Validation

throw a validation error. You can achieve partial validation by creating a validation
group for each page:

public interface PagelGroup {
}

public interface Page2Group {

}

public interface Page3Group {
}

Assign the group to the corresponding fields:

(min=4, groups=PagelGroup.class)
private String name;

(integer=3,fraction=0, groups=Page2Group.class)
int age;

(groups={Page3Group.class})
private String zipcode;

And finally, pass the validation group in the JSF page using f:validateBean:

<h:form>
<h:inputText value="#{person.name}" id="name">
<f:validateBean validationGroups="org.sample.PagelGroup"/>
</h:inputText>
<h:commandButton action="index2" value="Next >"/>
</h:form>

The fully qualified class name of the validation group needs to be specified in the
validationGroups attribute of f:validateBean. Other pages will specify the corre-
sponding validation group.

You can specify multiple validation groups using a comma-separated list:

<h:form>

<h:inputText value="#{person.name}" id="name">
<f:validateBean
validationGroups="org.sample.PagelGroup,
org.sample.OtherGroup"/>
</h:inputText>
<h:commandButton action="index2" value="Next >"/>
</h:form>

@GroupSequence is used to define a sequence of groups in which the groups must be
validated. This can be useful where simple validation constraints such as @NotNull or
@Size can be validated before more complex constraints are enforced:

({Simple.class, Complex.class})

Validation Groups | 211

In this code, Simple and Complex are validation groups that are specified on simple and
complex validators of a bean. The definitions of simple and complex will depend upon
the business domain, of course.

If one of the groups from the sequence generates a constraint violation, the subsequent
groups are not processed.

Specifying @GroupSequence on a class changes the default validation group for that
class.

Method and Constructor Constraint

Bean Validaton 1.1 allows us to specify constraints on arbitrary methods and construc-
tors, and/or the parameters of a POJO by directly adding constraint annotations. In the
former case, all the parameters or the return value is constrained. In the latter, individual
parameters are constrained.

This allows us to describe and validate the contract by ensuring that the preconditions
must be met by the caller before the method or constructor may be invoked. This also
ensures that the postconditions are guaranteed to the caller after a method or construc-
tor invocation returns. This enables a programming style known as Programming by
Contract (PbC). This approach has two advantages:

o Checks are expressed declaratively and don’t have to be performed manually, which
results in less code to write, read, and maintain.

o The pre- and postconditions applying for a method or constructor don't have to be
expressed again in the documentation, since any of its annotations will automati-
cally be included in the generated JavaDoc. This reduces redundancies, thus avoid-
ing efforts and inconsistencies between implementation and documentation.

You can specify the constraints using either actual Java annotations or an XML con-
straint mapping file:

public class AddressBook {
public void addNames(String priority,
(min=1, max=10) List<Name> names) {
/). ..
}

public String getName(Date dob) {
/) ..
}
}

In this code:

212 | Chapter 11: Bean Validation

o AddressBook is a POJO with two methods, addNames and getName.

o The addNames method takes two parameters. The first parameter, priority, cannot
be null and is also validated by a custom constraint, @PriorityCode. The second
parameter, names, cannot be null and the list must have a minimum of 1 element
and a maximum of 10 elements.

o Method getNames takes a parameter, dob, that cannot be null and must be in the
past. The return value also cannot be null.

Annotating the methods or constructors with parameter or return value constraints
does not automatically enforce these constraints. The declared constraints need to be
explicitly triggered via a method interceptor or a similar mechanism. In Java EE, typi-
cally you achieve this by using CDI interceptors or dynamic proxies. Meeting all the
constraints ensures that the method or constructor is called if the caller has satisified
the preconditions and returns to the caller if the postconditions are guaranteed. If the
specified constraints are not met, then a ConstraintviolationException is thrown.

Cross-parameter constraints can be declared on a method and allow you to express
constraints based on the value of several method parameters:

public List<Name> getNames(Date startDob,
Date endDob) {
Y/

}
This method retrieves the list of names born between startDob and endDob. @Valida
teDates is a cross-parameter constraint that checks that the startDob is before end
Dob. It is often useful to combine constraints directly placed on individual parameters
and cross-parameter constraints.

Some constraints can target the return value as well as its array of parameters. They are
known to be both generic and cross-parameter constraints. validationAppliesTo can
be used to resolve ambiguity in this case. Even without ambiguity, it is recommended
that you explicitly set validationAppliesTo to ConstraintTarget.PARAMETERS, as it
improves readability.

The ParameterNameProvider interface can be used to identify the parameter that re-
sulted in ConstraintViolation.

By default, only constructors and nongetter methods are validated. You can change this
default behavior by specifying @/alidateExecutable on the class or the method to be
validated (see Table 11-1).

Method and Constructor Constraint | 213

Table 11-1. @ValidateExecutable values

Value What is validated?

NONE No constructors or methods

CONSTRUCTORS Only constructors

NON_GETTER_METHODS All methods except the ones following the JavaBeans getter pattern
GETTER_METHODS All methods following the JavaBeans getter pattern

ALL All constructors and methods (this is the default value)

public class AddressBook {
public class AddressBook() {
}

(min=5)
List<Name> getNames() {
/) ..
}

public void addName(Name name) {
/). ..
}
}

In this code, all constructors and methods are validated. If @ValidateExecutable is not
specified on the class, then only the constructor and the addName method are validated.

Static methods are ignored by validation. Putting constraints on a static method is not
portable.

214 | Chapter 11: Bean Validation

CHAPTER 12
Java Transaction

The Java Transaction API (JTA) is defined as JSR 907, and the complete specification
can be downloaded.

The JTA specifies local interfaces between a transaction manager and the parties in-
volved in a distributed transaction system: the application, the resource manager, and
the application server.

The API defines a high-level interface, annotation, and scope to demarcate transaction
boundaries in a transactional application.

User-Managed Transactions

The UserTransaction interface enables the application to control transaction bound-
aries programmatically. This interface is typically used in EJBs with bean-managed
transactions (BMT).

You can obtain UserTransaction using injection:
UserTransaction ut;
or through a JNDI lookup using the name java:comp/UserTransaction:

Context context = new InitialContext();
UserTransaction ut = (UserTransaction)context.lookup("java:comp/UserTransaction");

The begin method starts a global transaction and associates the transaction with the
calling thread. The commit method completes the transaction associated with the cur-
rent thread. All statements within begin and commit execute in the transaction scope:

ut.begin();
/e

ut.commit();

215

http://jcp.org/aboutJava/communityprocess/maintenance/jsr907/index5.html

When the commit method completes, the thread is no longer associated with a
transaction.

A transaction can be rolled back via the rollback method:

ut.begin();
//-

ut.rollback();
When the rollback method completes, the thread is no longer associated with a
transaction.

You can change the timeout value associated with the transaction started by the current
thread with the begin method:

ut.setTransactionTimeout(3);

In this code, the transaction timeout is set to three seconds. If the value is zero, the
transaction service restores the default value.

Support for nested transactions is not required.

Container-Managed Transactions

JTA 1.2 introduces the @javax.transaction.Transactional annotation. It enables an
application to declaratively control transaction boundaries on CDI-managed beans, as
well as classes defined as managed beans, such as servlets, JAX-RS resource classes, and
JAX-WS service endpoints. The annotation can be specified at both the class and method
level, where method-level annotations override those at the class level:

public class MyBean {

Y/
}

In this code, all methods of the bean are executed in a transaction:

public class MyBean {
public void myMethod1() {
V72N
}

public void myMethod2() {
/) ..

}

}

In this code, only the myMethod2 method is executed in a transaction context.

This support is provided via an implementation of CDI interceptors that conduct the
necessary suspending, resuming, etc. The Transactional interceptor interposes on

216 | Chapter 12: Java Transaction

business method invocations and life-cycle events. Life-cycle methods are invoked in
an unspecified transaction context unless the method is annotated explicitly with
@Transactional.

The Transactional interceptors must have a priority of Interceptor.Priority.PLAT
FORM_BEFORE+200.

The TxType element of the annotation provides the semantic equivalent of the trans-
action attributes in E]JB (see Table 12-1).

Table 12-1. Transactional. TxType

TxType Outside a transaction context Inside a transaction context
REQUIRED The interceptor must begin a new JTA The managed bean method execution must then
(default) transaction, the managed bean method continue inside this transaction context.

execution must then continue inside this
transaction context, and the transaction must
be completed by the interceptor.

REQUIRES_NEW The interceptor must begin a new JTA The current transaction context must be suspended,

transaction, the managed bean method
execution must then continue inside this
transaction context, and the transaction must
be completed by the interceptor.

MANDATORY ATransactionalException witha
nested TransactionRequiredExcep
tion must be thrown.

SUPPORTS The managed bean method execution must

then continue outside a transaction context.

NOT_SUPPORTED The managed bean method execution must
then continue outside a transaction context.

NEVER The managed bean method execution must

then continue outside a transaction context.

a new JTA transaction will begin, the managed bean
method execution must then continue inside this
transaction context, the transaction must be
completed, and the previously suspended transaction
must be resumed.

The managed bean method execution will then
continue under that context.

The managed bean method execution must then
continue inside this transaction context.

The current transaction context must be suspended,
the managed bean method execution must then
continue outside a transaction context, and the
previously suspended transaction must be resumed
by the interceptor that suspended it after the
method execution has completed.

ATransactionalException with a nested In
validTransactionException must be
thrown.

You can change the transaction type semantics by specifying the value of TxType:

(TxType.REQUIRES_NEW)
public class MyBean {
/7.
}

By default, checked exceptions do not result in the transactional interceptor marking
the transaction for rollback, and instances of RuntimeException and its subclasses do.

Container-Managed Transactions | 217

The rollbackOn element can be set to indicate exceptions that must cause the inter-
ceptor to mark the transaction for rollback:

(rollbackOn={Exception.class})

This code will override behavior for checked exceptions, causing the transaction to be
marked for rollback for all checked exceptions.

The dontRollbackOn element can be set to indicate exceptions that must not cause the
interceptor to mark the transaction for rollback:

(dontRollbackOn={IllegalStateException.class})

This code will prevent transactions from being marked for rollback by the interceptor
when an IllegalStateException or any of its subclasses are thrown. When a class is
specified for either of these elements, the designated behavior applies to subclasses of
that class as well.

If both elements are specified, dontRollbackOn takes precedence.

@TransactionScoped

JTA 1.2 defines a new CDI scope: javax.transaction.TransactionScoped. It defines
a bean instance whose life cycle is scoped to the currently active JTA transaction. If
multiple instances of such a bean are injected within a transaction, the underlying CDI
proxy refers to the same instance, ensuring that only one instance of the bean is injected.

The transaction scope is active when the return from a call to UserTransaction.get
Status or TransactionManager.getStatus is one of the following states:

o Status.STATUS_ACTIVE

e Status.STATUS_MARKED_ROLLBACK
e Status.STATUS_PREPARED

e Status.STATUS_UNKNOWN

e Status.STATUS_PREPARING

e Status.STATUS_COMMITTING

e Status.STATUS_ROLLING_BACK

The object with this annotation will be associated with the current active JTA transaction
when the object is used. The way in which the JTA transaction is begun and completed
(for example, via UserTransaction, Transactional interceptor, etc.) is of no
consequence.

218 | Chapter 12: Java Transaction

CHAPTER 13
Java Persistence

The Java Persistence API (JPA) is defined as JSR 338, and the complete specification can
be downloaded.

JPA defines an API for the management of persistence and object/relational mapping
using a Java domain model.

A database table, typically with multiple columns, stores the persistent state of an ap-
plication. Multiple rows are stored in the database table to capture different states. A
single column or combination of columns may define the uniqueness of each row using
primary key constraint. Typically, an application accesses and stores data to multiple
tables. These tables generally have relationships defined among them using foreign key
constraint.

JPA defines a standard mapping between a database table and a POJO. It defines syntax
to capture primary and foreign key constraints and how these rows can be created, read,
updated, and deleted using these POJOs. Transactions, caching, validation, and other

similar capabilities required by an application accessing a database are also defined by
JPA.

This chapter will discuss the key concepts of JPA.

Entities

A POJO with a no-arg public constructor is used to define the mapping with one or
more relational database tables. Each such class is annotated with @Entity, and the
instance variables that follow JavaBeans-style properties represent the persistent state
of the entity. The mapping between the table column and the field name is derived
following reasonable defaults and can be overridden by annotations. For example, the
table name is the same as the class name, and the column names are the same as the
persistent field names.

219

http://jcp.org/aboutJava/communityprocess/final/jsr338/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr338/index.html

Here is a simple entity definition describing a student:

public class Student implements Serializable {
private int id;
private String name;

private String grade;

private Address address;

("StudentCourse")
List<Course> courses;

Y/
}

A few things to observe in this code:

This class has a no-arg constructor by default, as no other constructors are defined.

The entity’s persistent state is defined by four fields; the identity is defined by the
field id and is annotated with @Id. A composite primary key may also be defined
where the primary key corresponds to one or more fields of the entity class.

The class implements a Serializable interface, and that allows it to be passed by
value through a remote interface.

Address is a POJO class that does not have a persistent identity of its own and
exclusively belongs to the Student class. This class is called as an embeddable
class, is identified by @Embedded on the field in the entity class, and is annotated
with @Embeddable in the class definition:

public class Address {
private String street;
private String city;
private String zip;
/). ..

}

This allows the database structure to be more naturally mapped in Java.

The @ElementCollection annotation signifies that a student’s courses are listed in
a different table. By default, you derive the table name by combining the name of
the owning class, the string “_,” and the field name. @CollectionTable can be used
to override the default name of the table, and @AttributeOverrides can be used
to override the default column names. @ElementCollection can also be applied to

an embeddable class.

The persistent fields or properties of an entity may be of the following types:

220

| Chapter 13: Java Persistence

e Java primitive type
e java.lang.String
o java.math.BigInteger and java.math.BigDecimal

o java.util.Date and java.util.Calendar; the @Temporal annotation may be
specified on fields of type java.util.Date and java.util.Calendar to indicate
the temporal type of the field

e java.sql.Date, java.sql.Time, and java.sql.Timestamp
o byte[],Byte[], char[], Character[], enums, and other Java serializable types

« Entity types, collections of entity types, embeddable classes, and collections of basic
and embeddable classes

An entity may inherit from a superclass that provides persistent entity state and mapping
information, but which itself may or may not be an entity. An entity superclass is abstract
and cannot be directly instantiated but can be used to create polymorphic queries.

The @Inheritance and @iscriminator annotations are used to specify the inheritance
from an entity superclass. The @appedSuperclass annotation is used to designate a
nonentity superclass and captures state and mapping information that is common to
multiple entity classes. Such a class has no separate table defined for it, so the mappings
will only apply to its subclasses. An entity may inherit from a superclass that provides
inheritance of behavior only. Such a class does not contain any persistent state.

You define the relationships between different entities using the @neToOne, @neToMa
ny, @ManyToOne, and @ManyToMany annotations on the corresponding field of the refer-
encing entity. A unidirectional relationship requires the owning side to specify the an-
notation. A bidirectional relationship also requires the nonowning side to refer to its
owning side by use of the mappedBy element of the OneToOne, OneToMany, or ManyToMa
ny annotation.

The FetchType. EAGER annotation may be specified on an entity to eagerly load the data
from the database. The FetchType.LAZY annotation may be specified as a hint that the
data should be fetched lazily when it is first accessed.

The entities may display a collection of elements and entity relationships as
java.util.Map collections. The map key may be the primary key or a persistent field
or property of the entity. @MapKey is used to specify the key for the association. For
example, all the Courses by a Student can be modeled as:

public class Student {

private Map<Integer, Course> courses;
/) ..
}

Entities | 221

In this code, specifying @apKey on the Map indicates that the map key is the primary
key as well.

The map key can be a basic type, an embeddable class, or an entity. If a persistent field
or property other than the primary key is used as a map key, then it is expected to have
auniqueness constraint associated with it. In this case, @apKeyColumn is used to specify
the mapping for the key column of the map:

public class Student {
(name="year")
private Map<Integer, Course> courses;

Y/
}

In this code, Map represents all the Courses taken by a Student in a year. If the name
element is not specified, it defaults to the concatenation of the following: the name of
the referencing relationship field or property, “_” and “KEY.” In this case, the default
name will be COURSES_KEY.

@MapKeyClass can be used to specify the map key for the association. If the value is an
entity, then @0neToMany and @anyToMany may be used to specify the mapping:

public class Student {

(PhoneType.class)
private Map<PhoneType, Phone> phones;

/) ..
}

@MapKeyClass and @MapKey are mutually exclusive.

If the value is a basic type or embeddable class, then @ElementCollection is used to
specify the mapping.

Persistence Unit, Persistence Context, and Entity Manager

An entity is managed within a persistence context. Each entity has a unique instance for
any persistent entity identity within the context. Within the persistence context, the
entity instances and their life cycles are managed by the entity manager. The entity
manager may be container-managed or application-managed.

A container-managed entity manager is obtained by the application directly through
dependency injection:

EntityManager em;
The entity manager can also be obtained via JNDI:

(name="persistence/myJNDI")

222 | Chapter 13:Java Persistence

Context context = new InitialContext();
EntityManager em = context.lookup("java:comp/env/persistence/myINDI");

In this code, we assign a JNDI name to the entity manager and then look it up using
InitialContext.

The persistence context is propagated across multiple transactions for a container-
managed entity manager, and the container is responsible for managing the life cycle
of the entity manager.

An application-managed entity manager is obtained by the application from an entity
manager factory:

EntityManagerFactory emf;
/). ..

EntityManager em = emf.createEntityManager();

A new isolated persistence context is created when a new entity manager is requested,
and the application is responsible for managing the life cycle of the entity manager.

A container-managed entity manager is typically used in a Java EE environment. The
application-managed entity manager is typically used in a Java SE environment and will
not be discussed here.

An entity manager and persistence context are not required to be threadsafe. This re-
quires an entity manager to be obtained from an entity manager factory in Java EE
components that are not required to be threadsafe, such as servlets.

The entity managers, together with their configuration information, the set of entities
managed by the entity managers, and metadata that specifies mapping of the classes to
the database, are packaged together as a persistence unit. A persistence unit is defined
by a persistence.xml file and is contained within an ejb-jar, .war, .ear, or application-
client JAR. Multiple persistence units may be defined within a persistence.xml file.

A sample persistence.xml for the entity can be defined like so:

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.1"
xmlns="http://xmlns.jcp.org/xml/ns/persistence"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation=
"http://xmlns.jcp.org/xml/ns/persistence
http://xmlns.jcp.org/xml/ns/persistence/persistence_2_1.xsd"s
<persistence-unit name="MyPU" transaction-type="JTA">
<jta-data-source>jdbc/sample</jta-data-source>
<exclude-unlisted-classes>
false
</exclude-unlisted-classes>
<properties/>

Persistence Unit, Persistence Context, and Entity Manager | 223

</persistence-unit>
</persistence>

In this code:

The persistence unit’s name is MyPU.

The transaction-type attribute’s value of JTA signifies that a JTA data source is
provided.

The jta-data-source element defines the global INDI name of the JTA data source
defined in the container. In a Java EE environment, this ensures that all the database
configuration information, such as host, port, username, and password, are speci-
fied in the container, and just the JTA data source name is used in the application.

You can specify an explicit list of entity classes to be managed using multiple class
elements, or include all the entities (as above) by specifying the exclude-unlisted-
classes element.

The <properties> element is used to specify both standard and vendor-specific
properties. The following standard properties may be specified:

— javax.persistence. jdbc.driver
— javax.persistence.jdbc.url

— javax.persistence. jdbc.user

— javax.persistence. jdbc.password

JPA 2.1 introduces new javax.persistence.schema-generation.* property
names that allow generation of database artifacts. These are explained in the next
section.

The Java EE 7 platform defines a new default DataSource that must be provided by a
Java EE 7—compliant runtime. This preconfigured data source can be used by the ap-
plication for accessing the associated database. It is accessible to the application under
the JNDI name:

comp/DefaultDataSource

The persistence.xml file can then be defined:

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.1"
xmlns="http://xmlns.jcp.org/xml/ns/persistence"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation=
"http://xmlns.jcp.org/xml/ns/persistence
http://xmlns.jcp.org/xml/ns/persistence/persistence_2_1.xsd"s>
<persistence-unit name="MyPU" transaction-type="JTA">
<jta-data-source>java:comp/DefaultDataSource</jta-data-source>
</persistence-unit>
</persistence>

224

| Chapter 13: Java Persistence

The JPA 2.1 specification says that if neither the jta-data-source nor the non-jta-
data-source element is specified, the deployer must specify a JTA data source at de-
ployment or the default JTA data source must be provided by the container, and a JTA
EntityManagerFactory will be created to correspond to it.

This persistence.xml file defined earlier is then semantically equivalent to:

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.1"
xmlns="http://xmlns.jcp.org/xml/ns/persistence"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation=
"http://xmlns.jcp.org/xml/ns/persistence
http://xmlns.jcp.org/xml/ns/persistence/persistence_2_1.xsd"s
<persistence-unit name="MyPU" transaction-type="JTA">
</persistence-unit>
</persistence>

In both cases, the default data source will be provisioned and available to the application.

By default, a container-managed persistence context is scoped to a single transaction,
and entities are detached at the end of a transaction. For stateful session beans, the
persistence context may be marked to span multiple transactions and is called an ex-
tended persistence context. The entities stay managed across multiple transactions in
this case. An extended persistence context can be created:

(type=PersistenceContextType.EXTENDED)
EntityManager em;

In JPA 2, the persistence context is of the type SynchronizationType.SYNCHRONIZED.
Such a context is automatically joined to the current JTA transaction, and updates made
to the persistence context are propagated to the resource manager (i.e., stored in the
database). JPA 2.1 introduces SynchronizedType.UNSYNCHRONIZED. Such a persistence
context is not enlisted in any JTA transaction unless explicitly joined to that transaction
by the application:

(synchronization=SynchronizationType.UNSYNCHRONIZED)
EntityManager em;

Such an EntityManager can be enlisted in a JTA transaction and registered for subse-
quent transaction notifications by the invocation of EntityManager.joinTransac
tion. The persistence context remains joined to the transaction until the transaction
commits or rolls back. The persistence context remains unsynchronized after that and
explicitly needs to join a transaction in the new scope.

The application can invoke the persist, merge, remove, and refresh entity life-cycle
operations on an unsynchronized persistence context. After joining the transaction, any
changes in persistence context may be flushed to the database either explicitly by ap-
plication via flush or by the provider. If not explicitly flushed, then the persistence

Persistence Unit, Persistence Context, and Entity Manager | 225

provider may defer flushing until commit time depending on the operations invoked
and the flush mode setting in effect.

Schema Generation

JPA 2.1intheJava EE 7 platform introduces a new set of properties that allows generation
of database artifacts like tables, indexes, and constraints in a database schema. It may
or may not involve generation of a proper database schema depending upon the cre-
dentials and authorization of the user. This helps in prototyping of your application
where the required artifacts are generated either prior to application deployment or as
part of EntityManagerFactory creation. Thisis also useful in environments that require
provisioning a database on demand (e.g., in a cloud).

This feature will allow your JPA domain object model to be directly generated in a
database. The generated schema may need to be tuned for the actual production envi-
ronment. This use case is supported by allowing the schema generation to occur into
DDL scripts, which can then be further tuned by a DBA.

Table 13-1 lists the set of properties in persistence.xml or specified during EntityMana
gerFactory creation that control the behavior of schema generation.

Table 13-1. JPA 2.1 schema generation properties

Property name Purpose Values
javax.persistence.schema- Specifies the action to be taken by the none, create, drop-
generation.database.action persistence provider. If this property isnot and-create, drop

specified, no schema generation actions
must be taken on the database.

javax.persistence.schema- Specifies which scripts are to be generated none, create, drop-
generation.scripts.action by the persistence provider. A scriptwillonly - and-create, drop
be generated if the script target is specified.
Ifthis property is not specified, no scripts will
be generated.

javax.persistence.schema- Specifies whether the creation or deletion of metadata, script,
generation.create-source, database artifacts is to occur on the basis of metadata-then-
javax.persistence.schema- the object/relational mapping metadata, script, script-
generation.drop-source DDL script, or a combination of the two. then-metadata
javax.persistence.schema- Specifies whether the persistence provider ~ true, false
generation.create-database- needs to create schema in addition to

schemas creating database objects such as tables,

sequences, constraints, etc.

javax.persistence.schema- Controls target locations for writing of java.io.Writer (eg.,
generation.scripts.create-target, scripts. Writers are preconfigured for the ~ MyWriter.class)or
javax.persistence.schema- persistence provider. Need to be specified URL strings
generation.scripts.drop-target only if scripts are to be generated.

226 | Chapter 13:Java Persistence

Property name

javax.persistence.schema-
generation.create-script-source
javax.persistence.schema-
generation.drop-script-source

javax.persistence.database-
product-name,
javax.persistence.database-major-
version,
javax.persistence.database-minor-
version

javax.persistence.schema-
generation-connection

javax.persistence.sql-load-
script-source

Purpose Values

Specifies locations from which DDL scripts java.io.Reader (e,
are to be read. Readers are preconfigured ~ MyReader.class) or
for the persistence provider. URL strings

Needed if scripts are to be generated and
no connection to the target database is
supplied. Values are those obtained from
JDBC DatabaseMetaData.

JDBC connection to be used for schema
generation.

Specifies location of SQL bulk load script. ~ java.io.Reader (e,
MyReader.class) or
URL string

An application that requires database tables to be dropped and created via the scripts
bundled in the META-INF directory of the application can have the following persis-

tence.xml:

<persistence version="2.1"

xmlns="http://xmlns.jcp.org/xml/ns/persistence"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://xmlns.jcp.org/xml/ns/persistence
http://xmlns.jcp.org/xml/ns/persistence/persistence_2_1.xsd">
<persistence-unit name="myPU" transaction-type="JTA">

<properties>

<property name="javax.persistence.schema-generation.database.action"
value="drop-and-create"/>

<property name="javax.persistence.schema-generation.create-source"
value="script"/>

<property name="javax.persistence.schema-generation.drop-source"
value="script"/>

<property name="javax.persistence.schema-generation.create-script-source"
value="META-INF/create.sql"/>

<property name="javax.persistence.schema-generation.drop-script-source"
value="META-INF/drop.sql"/>

<property name="javax.persistence.sql-load-script-source"
value="META-INF/load.sql"/>

</properties>
</persistence-unit>
</persistence>

The usual annotations—such as @Table, @Column, @CollectionTable, @JoinTable, and
@JoinColumn—are used to define the generated schema. Several layers of defaulting may
be involved. For example, the table name is defaulted from the entity name and the

Schema Generation | 227

entity name (which can be specified explicitly as well) is defaulted from the class name.
However, annotations may be used to override or customize the values:

public class Employee {
private int id;

private String name;

private Department dept;

}
This entity is generated in the database with the following attributes:

o Maps to the EMPLOYEE table in the default schema.
o The id field is mapped to the ID column as the primary key.

o The name is mapped to the NAME column with a default VARCHAR(255). The length
of this field can be easily tuned via @Column.

o @ManyToOne is mapped to the DEPT_ID foreign key column and can be customized
via JOIN_COLUMN.

In addition to these properties, a couple of new annotations are added to JPA 2.1.

@Index
An index for the primary key is generated by default in a database. This new an-
notation will allow you to define additional indexes, over a single or multiple col-
umns, for better performance. This is specified as part of @Table, @SecondaryTa
ble, @CollectionTable, @JoinTable, and @TableGenerator:
(indexes = {
(columnList="NAME"),

(columnList="DEPT_ID DESC")

1))
public class Employee {

Y/2u
}

In this case, the generated table will have a default index on the primary key. In

addition, two new indexes are defined on the NAME column (default ascending) and
the foreign key that maps to the department in descending order.

@ForeignKey
This is used to define a foreign key constraint or to otherwise override or disable
the persistence provider’s default foreign key definition. It can be specified as part
of JoinColumn(s), MapKeyJoinColumn(s), and PrimaryKeyJoinColumn(s):

public class Employee {
private int id;

228 | Chapter 13:Java Persistence

private String name;

(foreignKey= (
foreignKeyDefinition="FOREIGN KEY (MANAGER_ID) REFERENCES MANAGER"))
private Manager manager;
V/2
}

In this entity, the employee’s manager is mapped by the MANAGER_ID column in the
MANAGER table. The value of foreignKeyDefinition would be a database-specific
string.

Create, Read, Update, and Delete Entities

An entity goes through create, read, update, and delete (CRUD) operations during its
life cycle. A create operation means a new entity is created and persisted in the database.
A read operation means querying for an entity from the database based upon selection
criteria. An update operation means updating the state of an existing entity in the da-
tabase. And a delete operation means removing an entity from the database. Typically,
an entity is created once, read and updated a few times, and deleted once.

The JPA specification outlines the following ways to perform CRUD operations:

Java Persistence Query Language (JPQL)

The Java Persistence Query Language is a string-based typed query language used
to define queries over entities and their persistent state. The query language uses a
SQL-like syntax and uses the abstract persistence schema of entities as its data
model. This portable query language syntax is translated into SQL queries that are
executed over the database schema where the entities are mapped. The EntityMan
ager .createNamedXXX methods are used to create the JPQL statements. The query
statements can be used to select, update, or delete rows from the database.

Criteria API

The Criteria API is an object-based, type-safe API and operates on a metamodel of
the entities. Criteria queries are very useful for constructing dynamic queries. Typ-
ically, the static metamodel classes are generated by way of an annotation processor,
and model the persistent state and relationships of the entities. The javax.perstis
tence.criteria and javax.persistence.metamodel APIs are used to create the
strongly typed queries. In JPA 2, the Criteria API allowed only querying the entities.
JPA 2.1 allows you to update and delete entities using the Criteria APT as well.

Native SQL statement
Create a native SQL query specific to a database. @SQLResultSetMapping is used to
specify the mapping of the result of a native SQL query. The EntityManager.cre
ateNativeXXX methods are used to create native queries.

A new entity can be persisted in the database with an entity manager:

(reate, Read, Update, and Delete Entities | 229

Student student = new Student();
student.setId(1234);

Y/

em.persist(student);

In this code, emis an entity manager obtained as explained earlier. The entity is persisted
to the database at the transaction commit.

A simple JPQL statement to query all the Student entities and retrieve the results looks
like:

em.createQuery("SELECT s FROM Student s").getResultList();

@NamedQuery and @NamedQueries are used to define a mapping between a static JPQL
query statement and a symbolic name. This follows the “Don’t Repeat Yourself” (DRY)
design pattern and allows you to centralize the JPQL statements:

(

name="findStudent"
value="SELECT s FROM Student s WHERE p.grade = :grade")
/) ..

Query query = em.createNamedQuery("findStudent");

List<Student> list = List<Student>query
.setParameter("grade", "4")
.getResultList();

This code will query the database for all the students in grade 4 and return the result as
List<Student>.

The usual WHERE, GROUP BY, HAVING, and ORDER BY clauses may be specified in the JPQL
statements to restrict the results returned by the query. Other SQL keywords such as
JOIN and DISTINCT and functions like ABS, MIN, SIZE, SUM, and TRIM are also permitted.
The KEY, VALUE, and ENTRY operators may be applied where map-valued associations or
collections are returned.

The return type of the query result list may be specified:

TypedQuery<Student> query = em.createNamedQuery(
"findStudent",
Student.class);
List<Student> list = query.setParameter("grade", "4")
.getResultList();

Typically, a persistence provider will precompile the static named queries.

You can define a dynamic JPQL query by directly passing the query string to the cor-
responding createQuery methods:

TypedQuery<Student> query = em.createQuery(
"SELECT s FROM Student s",
Student.class);

The query string is dynamically constructed in this case.

230 | Chapter 13:Java Persistence

Dynamic queries can also be constructed via the type-safe Criteria API. Here is a code
sample that explains how to use the Criteria API to query the list of Students:

CriteriaBuilder builder = em.getCriteriaBuilder();
CriteriaQuery criteria = builder.createQuery(Student.class);

Root<Student> root = criteria.from(Student.class);
criteria.select(root);

TypedQuery<Student> query = em.createQuery(criteria);
List<Student> list = query.getResultList();

The Criteria API is very useful in building dynamic queries at runtime—for example,
an elaborate search page in an application that searches for content based on input fields.
Using the Critiera AP, instead of JPQL, would eliminate the need for string concate-
nation operations to build the query.

The static @NamedQuery may be more appropriate for simple use cases. In a complex
query where SELECT, FROM, WHERE, and other clauses are defined at runtime, the dynamic
JPQL may be more error prone, typically because of string concatenation. The type-safe
Criteria API offers a more robust way of dealing with such queries. All the clauses can
be easily specified in a type-safe manner, providing the advantages of compile-time
validation of queries.

The JPA2 metamodel classes capture the metamodel of the persistent state and rela-
tionships of the managed classes of a persistence unit. This abstract persistence schema
is then used to author the type-safe queries via the Criteria API. The canonical meta-
model classes can be generated statically by way of an annotation processor following
the rules defined by the specification. The good thing is that no extra configuration is
required to generate these metamodel classes.

To update an existing entity, you need to first find it, change the fields, and call the
EntityManager.merge method:

Student student = em.find(Student.class, 1234);
/) ..

student.setGrade("5");

em.merge(student);

You can then update the entity using JPQL:

Query query = em.createQuery("UPDATE Student s"
+ "SET s.grade = :grade WHERE s.id = :1d");
query.setParameter("grade", "5");
query.setParameter("id", "1234");
query.executeUpdate();

With JPA 2.1, you can update the entity using the Criteria API:

CriteriaBuilder builder = em.getCriteriaBuilder();
CriteriaUpdate updateCriteria = builder.createCriteriaUpdate(Student.class);
Root<Student> updateRoot = updateCriteria.from(Student.class);

(reate, Read, Update, and Delete Entities | 231

updateCriteria.where(builder.equal(updateRoot.get(Student_.1id), "1234"));
updateCriteria.set(updateRoot.get(Student_.grade), "5");

Query q = em.createQuery(updateCriteria);

q.executeUpdate();

To remove an existing entity, you need to find it and then call the EntityManager.re
move method:

Student student = em.find(Student.class, 1234);
em.remove(student);

You may delete the entity using JPQL:
Query query = em.createQuery("DELETE FROM Student s"
+ "WHERE s.id = :1d");

query.setParameter("id", "1234");
query.executeUpdate();

Removing an entity removes the corresponding record from the underlying data store
as well.

With JPA 2.1, you can delete the entity using the Criteria API:

CriteriaBuilder builder = em.getCriteriaBuilder();

CriteriaDelete deleteCriteria = builder.createCriteriaDelete(Student.class);
Root<Student> updateRoot = deleteCriteria.from(Student.class);
deleteCriteria.where(builder.equal(updateRoot.get(Student_.1id), "1234"));
Query q = em.createQuery(deleteCriteria);

q.executeUpdate();

Entity Listeners

An entity goes through multiple life-cycle events such as load, persist, update, and re-
move. You can place the annotations listed in Table 13-2 on methods in the entity class
or mapped superclass to receive notification of these life-cycle events.

Table 13-2. Entity listener annotations

Annotation Description

@PostLoad Executed after an entity has been loaded in the current persistence context or an entity has been
refreshed.

@PerPersist Executed before the entity manager persist operation is actually executed or cascaded. If entities are
merged, then this is invoked after the entity state has been copied. This method is synchronous with the
persist operation.

@PostPersist Executed after the entity has been persisted or cascaded. Invoked after the database INSERT is
executed. Generated key values are available in this method.

@PreUpdate Executed before the database UPDATE operation.
@PostUpdate Executed after the database UPDATE operation.

@PreRemove Executed before the entity manager remove operation is actually executed or cascaded. This method is
synchronous with the remove operation.

232 | Chapter 13:Java Persistence

Annotation Description

@PostRemove Executed after the entity has been removed. Invoked after the database DELETE is executed.

public class Student implements Serializable {

/...

public void studentlLoaded() {
/) ..

public void newStudentAlert() {
Y72

public void studentUpdateAlert() {
/) ..

public void studentDeleteAlert() {
Y72
}
}

In this code:

o The method studentLoaded is called after the entity has been loaded into the cur-
rent persistence context or after the refresh operation has been applied to it.

o The method newStudentAlert is called after the entity has been persisted to the
data store.

o The method studentUpdateAlert is called after the entity has been updated.
o The method studentDeleteAlert is called before the entity is deleted.

The callback methods can have public, private, protected, or package-level access, but
must not be static or final.

JPA 2.1 supports dependency injection. For a Java EE 7 archive where CDI is enabled
by default, additional life-cycle callback methods annotated with @PostConstruct and
@PreDestroy may be used.

The callback methods may be defined on a separate class and associated with this entity
via @EntityListeners. The method signature in that case will be different:

(StudentListener.class)

Entity Listeners | 233

public class Student implements Serializable {
/- -
}

public class StudentListener

public void studentLoaded(Student student) {
//-
}

public void newStudentAlert(Student student) {
//-
}

public void studentUpdateAlert(Student student) {
//-
}

public void studentDeleteAlert(Student student) {
//-
}
}

The argument is the entity instance for which the callback method is invoked.

Multiple entity listeners may be defined for an entity class or mapped superclass. Each
listener is invoked in the same order as it is specified in the EntityListeners
annotation.

You can define the callback listeners using the XML descriptors bundled in META-INF/
orm.xml:

<entity-mappings xmlns="http://xmlns.jcp.org/xml/ns/persistence/orm"
xsi:schemalocation="http://xmlns.jcp.org/xml/ns/persistence/orm
http://xmlns.jcp.org/xml/ns/persistence/orm/orm_2_1.xsd"
version="2.1">
<persistence-unit-metadata>
<entity class="org.sample.Student"s>
<entity-listeners>
<entity-listener class="org.sample.StudentListener"s
<post-load method-name="studentlLoaded"/>
</entity-listener>
</entity-listeners>
</entity>
</persistence-unit-metadata>
</entity-mappings>

Default entity listeners can be specified by way of the XML descriptor. The callback
methods from such a listener class will apply to all entities in the persistence unit:

234 | Chapter 13:Java Persistence

<entity-mappings xmlns="http://xmlns.jcp.org/xml/ns/persistence/orm"
xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/persistence/orm
http://xmlns.jcp.org/xml/ns/persistence/orm/orm_2_1.xsd"
version="2.1">
<persistence-unit-metadata>
<persistence-unit-defaults>
<entity-listeners>
<entity-listener class="MyListener"/>
</entity-listeners>
</persistence-unit-defaults>
</persistence-unit-metadata>
</entity-mappings>
In this code, MyListener is defined as the default entity listener that will be applied to
all entities in the persistence unit.

The order specified in the XML descriptor overrides the order specified via metadata
annotations, either in the entity class or through @EntityListeners.

Stored Procedures

JPA 2.1 adds the capability to execute queries that invoke stored procedures defined in
the database. You can specify stored procedures either using @NamedStoredProcedure
Query or dynamically.

Similar to @NamedQuery, there is @NamedStoredProcedureQuery, which specifies and
names a stored procedure, its parameters, corresponding parameter modes (IN, OUT,
INOUT, REF_CURSOR) and its result type, if any. Unlike @NamedQuery, @NamedStoredPro
cedureQuery names a stored procedure that exists in the database rather than providing
a stored procedure definition. This annotation can be specified on an entity or mapped
superclass:

(name="topGiftsStoredProcedure",
procedureName="Top10Gifts")
public class Product {
Y/
}

In this code, name uniquely defines this stored procedure query element within a per-

sistence unit, and procedureName identifies the name of the stored procedure in the
database.

There are different variants of the EntityManager.createXXXStoredProcedureQuery
methods that return a StoredProcedureQuery for executing a stored procedure. The
name specified in the annotation is used in EntityManager.createNamedStoredProce
dureQuery. You specify different parameters of the stored procedure using the setPara
meter method. The parameters must be specified in the order in which they occur in
the parameter list of the stored procedure. Either the parameter name or position can

Stored Procedures | 235

be used to bind the parameter with the value or to extract the value (if the parameter is
OUT or INOUT):

StoredProcedureQuery query = EntityManager.createNamedStoredProcedureQuery
("topGiftsStoredProcedure");

query.setParameter(1, "topl0");

query.setParameter(2, 100);

query.execute();

String response = query.getOutputParameterValue(1);

In this code:

o The stored procedure name from @NamedStoredProcedureQuery is used to create

StoredProcedureQuery.

Positional parameters are used to bind the value of the two parameters. There are
different setParameter methods for defining the temporal type of a parameter.

After the query is executed, the results are extracted via getOutputParameterval
ue with positional parameters as well.

If the execute method returns true, then the first result is a result set; it returns
false if it is an update count or there are no other results other than through the
INOUT and OUT parameters, if any. If a single result set plus any other results are
passed back via the INOUT and OUT parameters, then you can obtain the results using
the getResultList and getSingleResult methods. The getUpdateCount method
may be called to obtain the results if it is an update count. The results from getRe
sultList, getSingleResult, and getUpdateCount must be processed before the
INOUT or OUT parameter values are extracted.

If you do not define the stored procedure using parameters, resultClasses, and re
sultSetMappings in @NamedStoredProcedureQuery, you must provide the parameter
and result information dynamically:

StoredProcedureQuery query =

EntityManager

.createNamedStoredProcedureQuery("topGiftsStoredProcedure");

query.registerStoredProcedureParameter(1, String.class, ParameterMode.INOUT);
query.setParameter(1, "top10");
query.registerStoredProcedureParameter(2, Integer.class, ParameterMode.IN);
query.setParameter(2, 100);
query.execute();
String response = query.getOutputParameterValue(1);

In this code, the two parameters are registered via the registerStoredProcedurePara
meter method. The parameter mode is specified during the registration.

You can provide result mapping information using the EntityManager.createStored
ProcedureQuery method.

236

| Chapter 13: Java Persistence

Validating the Entities

Bean Validation allows you to specify validation metadata on JavaBeans. For JPA, all
managed classes (entities, managed superclasses, and embeddable classes) may be con-
figured to include Bean Validation constraints. These constraints are then enforced
when the entity is persisted, updated, or removed in the database. Bean Validation has
some predefined constraints like @in, @Max, @Pattern, and @Size. You can easily create
a custom constraint by using the mechanisms defined in the Bean Validation specifi-
cation and explained in this book.

The Student entity with validation constraints can be defined as:

public class Student implements Serializable {
private int id;

(max=30)
private String name; (min=2, max=5)
private String grade;

Y/
}

This ensures that the id field is never null, the size of the name field is at most 30 char-
acters with a default minimum of 0, and the size of the grade field is a minimum of 2
characters and a maximum of 5. With these constraints, attempting to add the following
Student to the database will throw a ConstraintViolationException, as the grade
field must be at least 2 characters long:

Student student = new Student();
student.setId(1234);
student.setName("Joe Smith");
student.setGrade("1");
em.persist(student);

Embeddable attributes are validated only if the Valid annotation has been specified on
them. So the updated Address class will look like:

public class Address {
(max=20)
private String street;

(max=20)
private String city;

(max=20)
private String zip;

Validating the Entities | 237

Y/
}

By default, the validation of entity beans is automatically turned on. You can change the
default validation behavior by specifying the validation-mode element in persis
tence.xml. Its values are defined in Table 13-3.

Table 13-3. Values for validation-mode in persistence.xml

validation-mode Description

auto Automatic validation of entities; this is the default behavior. No validation takes place if no Bean
Validation provider is found.

callback Life-cycle validation of entities. An error is reported if no Bean Validation provider is found.

none No validation is performed.

You can specify this attribute in persistence.xml:

<persistence-unit name="MySamplePU" transaction-type="JTA">
<validation-mode>CALLBACK</validation-mode>
</persistence-unit>

You can also specify these values using the javax.persistence.validation.mode
property if you create the entity manager factory using Persistence.createEntityMa
nagerFactory:

Map props = new HashMap();

props.put("javax.persistence.validation.mode", "callback");

EntityManagerFactory emf =
Persistence.createEntityManagerFactory("MySamplePU", props);

By default, all entities in a web application are in the Default validation group. The
Default group is targeted in pre-persist and pre-update events, and no groups are tar-
geted in pre-remove events. So the constraints are validated when an entity is persisted
or updated, but not when it is deleted.

You can override this default behavior by specifying the target groups using the follow-

ing validation properties in persistence.xml:

e javax.persistence.validation.group.pre-persist
e javax.persistence.validation.group.pre-update

¢ javax.persistence.validation.group.pre-remove

You can define a new validation group by declaring a new interface:
public interface MyGroup { }

You can target a field in the Student entity to this validation group:

public class Student implements Serializable {

238 | (Chapter 13:Java Persistence

int id;

(groups=MyGroup.class)
private boolean canBeDeleted;

}

And persistence.xml needs to have the following property defined:

/) ..

<property
name="javax.persistence.validation.group.pre-remove"
value="org.sample.MyGroup"/>

These properties can also be passed to Persistence.createEntityManagerFactory in
a Map.

You can also achieve validation in the application by calling the Validator.validate
method upon an instance of a managed class. The life-cycle event validation only occurs
when a Bean Validation provider exists in the runtime.

If a constraint is violated, the current transaction is marked for rollback.

Transactions and Locking

The EntityManager.persist, .merge, .remove, and .refresh methods must be in-
voked within a transaction context when an entity manager with a transaction-scoped
persistence context is used. The transactions are controlled either through JTA or
through the use of the resource-local EntityTransaction API. A container-managed
entity manager must use JTA and is the typical way of having transactional behavior in
a Java EE container. A resource-local entity manager is typically used in a Java SE
environment.

A transaction for a JTA entity manager is started and committed external to the entity
manager:

public class StudentSessionBean {
EntityManager em;

public void addStudent(Student student) {
em.persist(student);
}
}

In this Enterprise JavaBean, a JTA transaction is started before the addStudent method
and commiitted after the method is completed. The transaction is automatically rolled
back if an exception is thrown in the method.

Transactions and Locking | 239

The resource-local EntityTransaction API can be used:

EntityManagerFactory emf = Persistence.createEntityManagerFactory("student");
EntityManager em = emf.getEntityManager();

em.getTransaction().begin();

Student student = new Student();

/) ..

em.persist(student);
em.getTransaction().commit();
em.close();

emf.close();

The transaction may be rolled back via the EntityTransaction.rollback method.
In addition to transactions, an entity may be locked when the transaction is active.

By default, optimistic concurrency control is assumed. Optimistic locking allows anyone
to read and update an entity; however, a version check is made upon commit and an
exception is thrown if the version was updated in the database since the entity was read.

The @Version attribute can be specified on an entity’s field of type int, Integer, short,
Short, long, Long, or java.sql.Timestamp. An entity is automatically enabled for op-
timistic locking if it has a property or field mapped with a Version mapping.

The application must never update this field. Only the persistence provider is permitted
to set or update the value of the version attribute. This field is used by the persistence
provider to perform optimistic locking:

public class Student implements Serializable {
private int id;

private int version;

/) ..
}
The version attribute is incremented with a successful commit. If another concurrent
transaction tries to update the entity and the version attribute has been updated since
the entity was read, then javax.persistence.OptimisticLockException is thrown.

No database locks are held in optimistic locking, which delivers better scalability. The
disadvantages are that the user or application must refresh and retry failed updates.

Pessimistic locking gives an exclusive lock on the entity until the application is finished
processing it. Pessimistic locking ensures that multiple transactions cannot update the
same entity at the same time, which can simplify application code, but it limits concur-
rent access to the data.

240 | Chapter 13:Java Persistence

You can obtain a pessimistic lock on an entity by passing a LockModeType enum value
during the find method:

Student student = em.find(Student.class, 1234, LockModeType.PESSIMISTIC_WRITE);
Alternatively, you can obtain a lock on an entity afterward:
em.lock(student, LockModeType.PESSIMISTIC_WRITE);

This code can throw OptimisticLockException during flush or commit if the entity
was updated after reading but before locking.

When an entity instance is locked via pessimistic locking, the persistence provider must
lock the database row(s) that correspond to the non-collection-valued persistent state
of that instance. Element collections and relationships owned by the entity that are
contained in join tables will be locked if the javax.persistence.lock.scope property
is specified with a value of PessimisticLockScope.EXTENDED.

This property may be specified on @amedQuery:
(

name="findStudent"
value="SELECT s FROM Student s WHERE p.grade = :grade",
lockMode = PessimisticLockScope.EXTENDED)

Caching

JPA provides two levels of caching. The entities are cached by the entity manager at the
first level in the persistence context. The entity manager guarantees that within a single
persistence context, for any particular database row, there will only be one object in-
stance. However, the same entity could be managed in another transaction, so appro-
priate locking should be used.

Second-level caching by the persistence provider can be enabled by the value of the
shared-cache-mode element in persistence.xml. This element can have the values de-
fined in Table 13-4.

Table 13-4. shared-cache-mode values in persistence.xml

Value Description

ALL All entities and entity-related state are cached.

NONE No entities or entity-related state is cached.

ENABLE_SELECTIVE Only cache entities marked with @acheable(true) are cached.
DISABLE_SELECTIVE Only cache entities that are not marked @Cacheable(false) are cached.
UNSPECIFIED Persistence-provider-specific defaults apply.

The exact value can be specified:

<shared-cache-element>ALL</shared-cache-element>

Caching | 241

This allows entity state to be shared across multiple persistence contexts.

The Cache interface can be used to interface with the second-level cache as well. This
interface can be obtained from EntityManagerFactory, and can be used to check
whether a particular entity exists in the cache or to invalidate a particular entity, an
entire class, or the entire cache:

EntityMangagerFactory emf;

public void myMethod() {
/). ..
Cache cache = emf.getCache();
boolean inCache = cache.contains(Student.class, 1234);
/) ..
}

A specific entity can be cleared:
cache.evict(Student.class, 1234);

All entities of a class can be invalidated:
cache.evict(Student.class);

And the complete cache can be invalidated as:
cache.evictAll();

A standard set of query hints are also available to allow refreshing or bypassing the
cache. The query hints are specified as javax.persistence.cache.retrieveMode and
javax.persistence.cache.storeMode properties on the Query object. The first prop-
erty is used to specify the behavior when data is retrieved by the find methods and by
queries. The second property is used to specify the behavior when data is read from the
database and committed into the database:

Query query = em.createQuery("SELECT s FROM Student s");
query.setHint("javax.persistence.cache.storeMode",
CacheStoreMode.BYPASS);

The property values are defined on CacheRetrieveMode and CacheStoreMode enums
and explained in Table 13-5.

242 | Chapter 13:Java Persistence

Table 13-5. CacheStoreMode and CacheRetrieveMode values

Cache query hint Description

CacheStoreMode.BYPASS Don't insert into cache.

CacheStoreMode .REFRESH Insert/update entity data into cache when read from database and when committed
into database.

CacheStoreMode.USE Insert/update entity data into cache when read from database and when committed
into database; this is the default behavior.

CacheRetrieveMode.BYPASS Bypass the cache: get data directly from the database.
CacheRetrieveMode.USE Read entity data from the cache; this is the default behavior.

Caching | 243

CHAPTER 14
Java Message Service

The Java Message Service is defined as JSR 343, and the complete specification can be
downloaded.

Message-oriented middleware (MOM) allows sending and receiving messages between
distributed systems. Java Message Service (JMS) is a MOM that provides a way for Java
programs to create, send, receive, and read an enterprise messaging system’s messages.

JMS defines the following concepts:

JMS provider
An implementation of the JMS interfaces, included in a Java EE implementation.

JMS client
A Java program that produces and/or receives messages. Any Java EE application
component can act as a JMS client.

JMS message
An object that contains the data transferred between JMS clients. A JMS producer/
publisher creates and sends messages. A JMS consumer/subscriber receives and
consumes messages.

Administered objects
Objects created and preconfigured by an administrator. They typically refer to
ConnectionFactory and Destination, and are identified by a JNDI name. The
ConnectionFactory is used to create a connection with the provider. The Destina
tion is the object used by the client to specify the destination of messages it is
sending and the source of messages it is receiving.

JMS supports two messaging models: Point-to-Point and Publish-Subscribe.

In the Point-to-Point model, a publisher sends a message to a specific destination, called
a queue, targeted to a subscriber. Multiple publishers can send messages to the queue,

245

http://jcp.org/aboutJava/communityprocess/final/jsr343/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr343/index.html

but each message is delivered and consumed by one consumer only. Queues retain all
messages sent to them until the messages are consumed or expire.

In the Publish-Subscribe model, a publisher publishes a message to a particular desti-
nation, called a topic, and a subscriber registers interest by subscribing to that topic.
Multiple publishers can publish messages to the topic, and multiple subscribers can
subscribe to the topic. By default, a subscriber will receive messages only when it is
active. However, a subscriber may establish a durable connection, so that any messages
published while the subscriber is not active are redistributed whenever it reconnects.

The publisher and subscriber are loosely coupled from each other; in fact, they have no
knowledge of each other’s existence. They only need to know the destination and the
message format.

Different levels of quality of service, such as missed or duplicate messages or deliver-
once, can be configured. The messsages may be received synchronously or
asynchronously.

A JMS message is composed of three parts:

Header
This is a required part of the message and is used to identify and route messages.
All messages have the same set of header fields. Some fields are initialized by the
JMS provider and others are initialized by the client on a per-message basis.

The standard header fields are defined in Table 14-1.
Table 14-1. JMS header fields

Message header field Description

JMSDestination Destination to which the message is sent.

JMSDeliveryMode Delivery mode is PERSISTENT (for durable topics) or NON_PERSISTENT.
JIMSMessageID String value with the prefix “ID:" that uniquely identifies each message sent by a provider.

JIMSTimestamp Time the message was handed off to a provider to be sent. This value may be different from
the time the message was actually transmitted.

JIMSCorrelationID Used to link one message to another (e.g., a response message with its request message).
JIMSReplyTo Destination supplied by a client where a reply message should be sent.

JMSRedelivered Set by the provider if the message was delivered but not acknowledged in the past.

JIMSType Message type identifier; may refer to a message definition in the provider’s respository.
JIMSExpiration Expiration time of the message.
JIMSPriority Priority of the message.

Properties

These are optional header fields added by the client. Just like standard header fields,
these are name/value pairs. The value canbe boolean, byte, short, int, long, float,

246 | Chapter 14: Java Message Service

double, and String. The producer/publisher can set these values and the consum-
er/subscriber can use these values as selection criteria to fine-tune the selection of
messages to be processed.

Properties may be either application-specific (standard properties defined by JMS)
or provider-specific. JMS-defined properties are prefixed JMSX, and provider-
specific properties are prefixed with JMS_<vendor_name>.

Body
This is the actual payload of the message, which contains the application data.

Different types of body messages are shown in Table 14-2.
Table 14-2. JMS message types

Message type Description
StreamMessage Payload is a stream of Java primitive types, written and read sequentially.

MapMessage Payload is a set of name/value pairs; order of the entries is undefined, and can be accessed
randomly or sequentially.

TextMessage Payload isa String.
ObjectMessage Payload is a serializable Java object.

ByteMessage Payload is a stream of uninterpreted bytes.

JMS refers to the API introduced in JMS 1.1 as the classic API. It provides a single set
of interfaces that could be used for both point-to-point and pub/sub messaging. JMS
2.0 introduces a simplified API that offers all the features of classic API but requires
fewer interfaces and is simpler to use. The following sections will explain the key JMS
concepts using both the classic API and the simplified APL

Sending a Message

Using the JMS 2 simplified API, you can send a message from a stateless session bean:

(name = "java:global/jms/myQueue",
interfaceName = "javax.jms.Queue")
}
)

public class MessageSender {

JMSContext context;

(mappedName="7java:global/jms/myQueue")
Destination myQueue;

Sending a Message | 247

public void sendMessage(String message) {
context.createProducer().send(myQueue, message);
}
}

In this code:

o @IMSDestinationDefinitions is used to define one or more JMSDestinationDe

finition.

@IMSDestinationDefinition defines a JMS Destination required in the opera-
tional environment. This annotation provides information that can be used at the
application’s deployment to provision the required resource and allows an appli-
cation to be deployed into a Java EE environment with less administrative config-
uration. (See Table 14-3.)

Table 14-3. @ MSDestinationDefinition attributes

Attribute Meaning

interfaceName Required fully qualified name of the JMS destination interface. Permitted values are
javax. jms.Queue or javax.jms.Topic.

name Required JNDI name of the destination resource being defined.
className Optional fully qualified name of the JMS destination implementation class.
description Optional description of this JMS destination.

destinationName Optional name of the queue or topic.

properties Optional properties of the JMS destination. Properties are specified in the format property
Name=propertyValue with one property per array element.

resourceAdapter Optional resource adapter name.

JMSContext is the main interface in the simplified JMS API. This combines in a
single object the functionality of two separate objects from the JMS 1.1 API: a
ConnectionandaSession. It providesaphysicallink to the JMS server and a single-
threaded context for sending and receiving messages.

A container-managed JMSContext is injected via the @Inject annotation. Such a
context is created and closed by the container, not the application. The annotation
@IMSConnectionFactory may be used to specify the INDI lookup name of the con-
nection factory used to create the JMSContext:

("jms/myConnectionFactory")
private JMSContext context;

A preconfigured and a default JMSConnectionFactory are accessible under the
JNDI name java:comp/DefaultIMSConnectionFactory. If the @IMSConnection
Factory annotation is omitted, then the platform default connection factory is used.

248

| Chapter 14: Java Message Service

The @IMSPasswordCredential annotation can be used to specify the username and
password that will be used when the JMSContext is created. Passwords may be
specified as an alias, which allows the password to be defined in a secure manner
separately from the application.

Destination encapsulates a provider-specific address. A Queue or Topic may be
injected here instead. You inject both of these objects by using @Resource and
specifying the JNDI name of the resource.

When an application needs to send messages, it uses the createProducer method
to create a JMSProducer, which provides methods to configure and send messages.
It provides various send methods to send a message to a specified destination.

Note that no explicit exception handling is required, as send methods throw only
an instance of a runtime exception.

Various setter methods on JMSProducer all return the JMSProducer object. This
allows method calls to be chained together, allowing a fluid programming style:
context

.createProducer()

.setProperty(...)

.setTimeToLive(...)

.setDeliveryMode(...)

.setPriorty(...)

.send(...);

By default, a message is sent synchronously. You can send messages asynchronously
by calling setAsync(CompletionListener listener) on the JMSProducer. This
is not permitted in the Java EE or EJB container because it registers a callback
method that is executed in a separate thread:

context.createProducer().setAsync(new CompletionListener() {

public void onCompletion(Message m) {
/) ..
}

public void onException(Message msg, Exception e) {
/). ..
}
s

For an asynchronous message, part of the work involved in sending the message
will be performed in a separate thread, and the specified CompletionListener will
be notified when the operation has completed.

When the message has been successfully sent, the JMS provider invokes the callback
method onCompletion on the CompletionListener object. If an exception occurs

Sending a Message | 249

during the attempt to send the message, then the onException callback method is
called.

Using the JMS 1.1 classic API, a JMS message can be sent from a stateless session bean:

(mappedName="7java:global/jms/myConnection")
ConnectionFactory connectionFactory;

(mappedName="java:global/jms/myQueue")
Destination inboundQueue;

public void sendMessage(String text) {
try {
Connection connection = connectionFactory.createConnection();
Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);
MessageProducer messageProducer = session.createProducer(inboundQueue);
TextMessage textMessage = session.createTextMessage(text);
messageProducer.send(textMessage);
} catch (IMSException ex) {
/) ..
}
}

In this code:

o ConnectionFactoryisaJMS-administered objectandisused to create a connection

with a JMS provider. QueueConnectionFactory or TopicConnectionFactory may
be injected instead to perform Queue- or Topic-specific operations, respectively.

Destination is also an administered object and encapsulates a provider-specific
address. A Queue or Topic may be injected here instead. You inject both of these
objects by using @Resource and specifying the JNDI name of the resource.

A Connection representsan active connection to the provider and must be explicitly
closed.

A Session object is created from the Connection that provides a transaction in
which the producers and consumers send and receive messages as an atomic unit
of work. The first argument to the method indicates whether the session is trans-
acted; the second argument indicates whether the consumer or the client will ac-
knowledge any messages it receives, and is ignored if the session is transacted.

If the session is transacted, as indicated by a true value in the first parameter, then
an explicit call to Session.commit is required in order for the produced messages
to be sent and for the consumed messages to be acknowledged. A transaction roll-
back, initiated by Session.rollback, means that all produced messages are de-
stroyed, and consumed messages are recovered and redelivered unless they have
expired.

250

| Chapter 14: Java Message Service

The second argument indicates the acknowledgment mode of the received message.
The permitted values are defined in Table 14-4.

Table 14-4. JMS message acknowledgment mode

Acknowledgment mode Description

Session.AUTO_ACKNOWLEDGE Session automatically acknowledges a client’s receipt of a message either
when the session has successfully returned from a call to receive or
when the MessageListener session has called to process the message
returns successfully.

Session.CLIENT_ACKNOWLEDGE Client explicitly calls the Message . acknowledge method to
acknowledge all consumed messages for a session.

Session.DUPS_OK_ACKNOWLEDGE Instructs the session to lazily acknowledge the delivery of messages. This
will likely result in the delivery of some duplicate messages (with the
IMSRedelivered message header set to true). However, it can reduce
the session overhead by minimizing the work the session does to prevent
duplicates.

The session must be explicitly closed.

o Use the session and the injected Destination object, inboundQueue in this case,
to create a MessageProducer to send messages to the specified destination. A Topic
or Queue may be used as the parameter to this method, as both inherit from Desti
nation.

o Use one of the Session.createXXXMessage methods to create an appropriate
message.

o Send the message using messageProducer.send(...).

You can use this code to send messages via both messaging models.

Receiving a Message Synchronously

A JMS message can be received synchronously.

Using the JMS 2 simplified API, you can receive a message:

private JMSContext context;

(mappedName="7java:global/jms/myQueue")
Destination myQueue;

public void receiveMessage() {
context.createConsumer(myQueue).receiveBody(String.class, 1000);
//. .

}

In this code:

Receiving a Message Synchronously | 251

JMSContext provides the main entry to the simplified API. It provides a combina-
tion of Connection and Session from the classic APL

Destination is an administered object and encapsulates a provider-specific ad-
dress. A Queue or Topic may be injected here instead. You inject both of these objects
by using @Resource and specifying the JNDI name of the resource.

When an application needs to receive messages, it uses one of several createCon
sumer or createDurableConsumer methods to create a JMSConsumer. A JMSConsum
er provides methods to receive messages either synchronously or asynchronously.

The receiveBody method is used to receive the next message produced for this
JMSConsumer within the specified timeout period and returns its body as an object
of the specified type. This method does not give access to the message headers or
properties (such as the JMSRedelivered message header field or the JMSXDeliver
yCount message property) and should only be used if the application has no need
to access them.

This call blocks until a message arrives, the timeout expires, or this IMSConsumer is
closed. A timeout of zero never expires, and the call blocks indefinitely.

If this method is called within a transaction, the JMSConsumer retains the message
until the transaction commits.

Using the JMS 1.1 classic API, a JMS message can be received:

(mappedName="7java:global/jms/myConnection")
ConnectionFactory connectionFactory;

(mappedName="7java:global/jms/myQueue")
Destination inboundQueue;

public void receiveMessage() {
try {
Connection connection = connectionFactory.createConnection();
Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);
MessageConsumer consumer = session.createConsumer(inboundQueue);
connection.start();
while (true) {
Message m = consumer.receive();
// process the message
}
} catch (JMSException ex) {
/) ..
}
}

In this code:

252

| Chapter 14: Java Message Service

» ConnectionFactoryandDestination are administered objects and are injected by
the container via the specified JNDI name. This is similar to what was done during
the message sending.

o Aswas the case during message sending, a Connection object and a Session object
are created. Instead of MessageProducer, a MessageConsumer is created from ses
sion and is used for receiving a message.

o In an infinite loop, consumer.receive waits for a synchronous receipt of the
message.

There are multiple publishers and subscribers to a topic. The subscribers receive the
message only when they are active. However, a durable subscriber may be created that
receives messages published while the subscriber is not active:

(lookup = "myTopicConnection")
TopicConnectionFactory topicConnectionFactory;

(lookup = "myTopic")
Topic myTopic;

public void receiveMessage() {
TopicConnection connection = topicConnectionFactory.createTopicConnection();
TopicSession session = connection
.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);
TopicSubscriber subscriber = session.createDurableSubscriber(myTopic, "myID");

//-
}

In this code, TopicConnectionFactory and Topic are injected via @Resource. Topic
Connection is created from the factory, which is then used to create TopicSession.
TopicSession.createDurableSubscriber creates a durable subscriber. This method
takes two arguments: the first is the durable Topic to subscribe to, and the second is the
name used to uniquely identify this subscription. A durable subscription can have only
one active subscriber at a time. The JMS provider retains all the messages until they are
received by the subscriber or expire.

A client may use QueueBrowser to look at messages on a queue without removing them:

QueueBrowser browser = session.createBrowser(inboundQueue);
Enumeration messageEnum = browser.getEnumeration();
while (messageEnum.hasMoreElements()) {
Message message = (Message)messageEnum.nextElement();
//-
}

Receiving a Message Asynchronously

You can receive a JMS message asynchronously using a message-driven bean:

Receiving a Message Asynchronously | 253

(mappedName = "myDestination")
public class MyMessageBean implements Messagelistener {

public void onMessage(Message message) {

try {
// process the message
} catch (JMSException ex) {

/...
}
}
}

In this code:

o @MessageDriven defines the bean to be a message-driven bean.

o The mappedName attribute specifies the JNDI name of the JMS destination from
which the bean will consume the message. This is the same destination to which
the message was targeted from the producer.

o Thebean mustimplement the MessageListener interface, which provides only one
method, onMessage. This method is called by the container whenever a message is
received by the message-driven bean and contains the application-specific business
logic.

This code shows how a message received by the onMessage method is a text message,
and how the message body can be retrieved and displayed:

public void onMessage(Message message) {
try {
TextMessage tm = (TextMessage)message;
String message = tm.getText();
} catch (JMSException ex) {
/). ..
}
}

Even though a message-driven bean cannot be invoked directly by a session bean, it can
still invoke other session beans. A message-driven bean can also send JMS messages.

Quality of Service

By default,aJMS provider ensures thata message is notlost in transit in case of a provider
failure. This is called a durable publisher/producer. The messages are logged to stable
storage for recovery from a provider failure. However, this has performance overheads
and requires additional storage for persisting the messages. If a receiver can afford to
miss the messages, NON_PERSISTENT delivery mode may be specified. A JMS provider
must deliver a NON_PERSISTENT message at most once. This means it may lose the

254 | Chapter 14: Java Message Service

message, but it must not deliver it twice. This does not require the JMS provider to store
the message or otherwise guarantee that it is not lost if the provider fails.

Using the JMS 2 simplified API, this delivery mode can be specified:
context.createProducer().setDeliveryMode(DeliveryMode.NON_PERSISTENT);

All messages sent by JMSProducer created here will follow the semantics defined by
NON_PERSISTENT delivery mode.

Using the JMS 1.1 classic API, you can specify the delivery mode:
messageProducer.setDeliveryMode(DeliveryMode .NON_PERSISTENT);

Using the JMS 1.1 classic API, you can also specify the delivery mode for each message:
messageProducer.send(textMessage, DeliveryMode.NON_PERSISTENT, 6, 5000);

In this code, textMessage is the message to be sent with the NON_PERSISTENT delivery
mode. The third argument defines the priority of the message and the last argument
defines the expiration time.

JMS defines the priority of a message on a scale of 0 (lowest) to 9 (highest). By default,
the priority of a message is 4 (Message.DEFAULT_PRIORITY). You can also change mes-
sage priority by invoking the Message.setJMSPriority method.

By default, a message never expires, as defined by Message.DEFAULT_TIME_TO_LIVE.
You can change this by calling the Message . setIMSExpiration method.

Temporary Destinations

Typically, JMS Destination objects (i.e., Queue and Topic) are administered objects
and identified by a JNDI name. These objects can also be created dynamically, where
their scope is bound to the JMSContext or Connection from which they are created.

Using the JMS 2 simplified API, you can create a temporary destination object:

JMSContext context;

TemporaryQueue tempQueue = context.createTemporaryQueue();
TemporaryTopic tempTopic = context.createTemporaryTopic();

Using the JMS 1.1 classic AP, you can create a temporary topic:

TopicConnection connection = topicConnectionFactory.createTopicConnection();

TopicSession session = connection.createTopicSession(false,
Session.AUTO_ACKNOWLEDGE);

TemporaryTopic tempTopic = session.createTemporaryTopic();

Similarly, you can create a temporary topic:

Temporary Destinations | 255

QueueConnection connection = queueConnectionFactory.createQueueConnection();

QueueSession session = connection.createQueueSession(false,
Session.AUTO_ACKNOWLEDGE);

TemporaryQueue tempQueue = session.createTemporaryQueue();

These temporary destinations are automatically closed and deleted, and their contents
are lost when the connection is closed. You can also explicitly delete them by calling the
TemporaryQueue.delete or TemporaryTopic.delete method.

You can use these temporary destinations to simulate a request-reply design pattern by
using the JMSReplyTo and JMSCorrelationID header fields.

256 | Chapter 14: Java Message Service

CHAPTER 15
Batch Processing

Batch Applications for the Java Platform is defined as JSR 352, and the complete spec-
ification can be downloaded.

Batch processing is the execution of a series of jobs and is suitable for noninteractive,
bulk-oriented, and long-running tasks. Typical examples are end-of-month bank state-
ment generation, end-of-day jobs such as interest calculation, and ETL (extract-
transform-load) in a data warehouse. These tasks are typically data or computationally
intensive, execute sequentially or in parallel, and may be initiated through various in-
vocation models, including ad hoc, scheduled, and on-demand.

This specification defines a programming model for batch applications and a runtime
for scheduling and executing jobs. Key concepts of a batch reference architecture are
shown in Figure 15-1 and explained following it.

[temReader

ItemProcessorl

|J0b0perat0r|—| Job |E| Step
7'y y

h V' N

[temWriter

v \4 \4
| JobRepository |

Figure 15-1. Key concepts of a batch reference architecture

A job is an entity that encapsulates an entire batch process. A job is typically put
together with a Job Specification Language and consists of one or more steps. The
Job Specification Language in the Java EE 7 platform is implemented with XML and
is referred to as “Job XML

257

http://jcp.org/aboutJava/communityprocess/final/jsr352/index.html

o A step is a domain object that encapsulates an independent, sequential phase of a
job. A step contains all of the information necessary to define and control the actual
batch processing.

« JobOperator provides an interface to manage all aspects of job processing, includ-
ing operational commands (such as start, restart, and stop) and job repository
commands (such as job retrieval and step executions).

« JobRepository holds information about jobs currently running and jobs that have
run in the past. The JobOperator provides access to this repository.

o TheReader-Processor-Writer pattern is the primary pattern and uses the chunk-
oriented processing style, in which ItemReader is an abstraction that represents the
retrieval of an input for a step, ItemProcessor is an abstraction that represents the
business processing of an item, and ItemWriter is an abstraction that represents
the output of a step. ItemReader and ItemProcessor read and process one item at
atime and give it to ItemWriter for aggregation. Once the “chunk” number of items
is aggregated, they are written out, and the transaction is committed.

Alternatively, there is a roll-your-own batch pattern, called a batchlet. This batch
pattern is invoked once, runs to completion, and returns an exit status. This pattern

must implement and honor a “cancel” callback to enable operational termination
of the batchlet.

Chunk-Oriented Processing

The chunk-oriented processing style is the primary pattern for batch processing in the
specification. It is an item-oriented way of processing where multiple items are read and
processed to create “chunks” that are then written out, all within a transaction boundary.

The ItemReader interface is used to read a stream of items, one item at a time. An
ItemReader provides an indicator when it has exhausted the items it can supply.

The ItemProcessor interface operates on an input item and produces an output item
by transforming or applying other business processing. An I'temProcessor hands over
the processed item to ItemWriter for aggregation.

The ItemWriter interface is used to write a stream of a “chunk” number of aggregated
items. Generally, an item writer has no knowledge of the input it will receive next, only
the item that was passed in its current invocation.

The convenience abstract classes AbstractItemReader and AbstractItemWriter pro-
vide implementations of less commonly implemented methods.

Table 15-1 shows the list of interfaces and corresponding abstract classes for different
chunk-oriented artifacts.

258 | Chapter 15: Batch Processing

Table 15-1. Interfaces and classes for chunk-oriented artifacts

Batch artifact Interface Abstract class

Reader ItemReader AbstractItemReader
Processor ItemProcessor None

Writer ItemWriter AbstractItemWriter

A simple input record can be defined thusly:

public class MyInputRecord {
private String s;

public MyInputRecord() { }

public MyInputRecord(String s) {
this.s = s;;

}

V/ZR
}

MyInputRecord is an item that is read from the input source.
A simple output record can be defined as follows:

public class MyOutputRecord {
private String s;

public MyOutputRecord() { }

public MyOutputRecord(String s) {
this.s = s;

}

/) ..
}

MyOutputRecord is an item that is generated after the item is processed. The MyInpu
tRecord and MyOutpuRecord classes look very similar in this case, but they might be
very different in the real world. For example, an input record might be reading account
information and an output record might be an email statement.

Job XML is used to define the chunk step:

<job id="myJob" xmlns="http://xmlns.jcp.org/xml/ns/javaee" version="1.0">
<step id="myStep">
<chunk item-count="3">
<reader ref="myItemReader"/>
<processor ref="myItemProcessor"/>
<writer ref="myItemWriter"/>
</chunk>

Chunk-Oriented Processing | 259

</step>
</job>

In this code:

o The jobelementidentifiesajob. It hasalogicalname id and is used for identification

purposes.

A job may contain any number of steps identified by the step element. Each step
has a logical name id and is used for identification purposes.

The chunk element defines a chunk type step. A chunk type step is periodically
checkpointed according to a configured checkpoint policy. By default, the check-
point policy is “item,” which means the chunk is checkpointed after a specified
number of items are read/processed/written. You can specify a “custom” value using
the checkpoint-policy attribute, in which case the checkpointing algorithm needs
to be specified as well.

item-count specifies the number of items to process per chunk. The default value
is 10. This attribute is ignored for the “custom” checkpoint policy.

This value is used to define the transaction boundary as well.

myItemReader is identified as the reader; its value is the CDI bean name of a class
implementing the ItemReader interface or extending AbstractItemReader.

myItemProcessor is identified as the processor; its value is the CDI bean name of
a class implementing the ItemProcessor interface.

This is an optional element. If this item is not specified, then all the elements from
the item reader are passed to the item writer for aggregation.

myItemWriter is identified as the writer; its value is the CDI bean name of a class
implementing the ItemWriter interface or extending the AbstractItemWriter
class.

The item reader is an implementation of the ItemReader interface or extends the Ab
stractItemReader class:

public class MyItemReader extends AbstractItemReader {
List<String> list;
public void open(Serializable c) throws Exception {

list = ...
}

public MyInputRecord readItem() {
for (String s : list) {

260

| Chapter 15: Batch Processing

return new MyInputRecord(s);

}

return null;
}
}

In this code:

o We mark MyItemReader as an item reader by extending the convenient AbstractI
temReader class.

The open method prepares the reader to read items. List<String> is initialized in
this method.

The input parameter c represents the last checkpoint for this reader in a given job
instance. The checkpoint data is defined by this reader and is provided by the
checkpointInfo method. The checkpoint data provides the reader whatever in-
formation it needs to resume reading items upon restart. A checkpoint value of
null is passed upon initial start.

The readItem method returns the next item for chunk processing. For all strings
read from the List, a new MyInputRecord instance is created and returned from
the readItem method. Returning a null indicates the end of stream.

o The @Named annotation ensures that this bean can be referenced in Job XML.

The item processor is an implementation of the ItemProcessor interface:

public class MyItemProcessor implements ItemProcessor {

public MyOutputRecord processItem(Object t) {
MyOutputRecord o = new MyOutputRecord();
Y/
return o;
}
}

In this code:

o We mark MyItemProcessor as an item processor by implementing the ItemProces
sor interface.

The processItem method is part of a chunk step. This method accepts an input
from the item reader and returns an output that gets passed to the output writer
for aggregation. In this case, the method receives an item of type MyInputRecord,
applies the business logic, and returns an output item of type MyOutputRecord. The
output item is then aggregated and written. In the real world, the business logic of
generating an email record from the account will be defined here.

Chunk-Oriented Processing | 261

Returning null indicates that the item should not continue to be processed. This
effectively enables processIten to filter out unwanted input items.

o @Named ensures that this bean can be referenced in Job XML.

The item writer is an implementation of the ItemWriter interface or extends Ab
stractItemWriter class:

public class MyItemWriter extends AbstractItemWriter {

public void writeItems(List list) {
/) ..
}
}

In this code:

o We mark MyItemWriter as an item writer by extending the convenient AbstractI
temWriter class.

o The writeItems method receives the aggregated items and implements the write
logic for the item writer. A List of MyOutputRecord is received in this case.

o @Named ensures that this bean can be referenced in Job XML.

If the Job XML is defined in a file named myJob.xml and packaged in the META-INF/
batch-jobs directory in the classpath, then we can start this chunk-oriented job using
JobOperator:

JobOperator jo = BatchRuntime.getJobOperator();
long jid = jo.start("myJob", new Properties());

In this code:

« JobOperator provides the interface for operating on batch jobs. The start method
creates a new job instance and starts the first execution of that instance.

o The Job XML describing the job must be available in the META-INF/batch-jobs
directory for .jar files or the WEB-INF/classes/ META-INF/batch-jobs directory
for .war files. Job XML files follow a naming convention of <name>.xml where
<name> is the value of the first parameter. The method returns the execution ID
for the first instance.

You can restart the job using the JobOperator.restart method:

Properties props = ...
jo.restart(jid, props);

262 | Chapter 15: Batch Processing

In this code, the execution ID of the job is used to restart a particular job instance. A
new set of properties may be specified when the job is restarted.

You can cancel the job using the JobOperator.abandon method:

jo.abandon(jid);
In this code, the execution ID of the job is used to cancel a particular job instance.
You can obtain metadata about the running job:

JobExecution je = jo.getJobExecution(jid);
Date createTime = je.getCreateTime();
Date startTime = je.getStartTime();

You may specify a different set of properties during multiple executions of the same job.
The number of instances of a job with a particular name can be found as follows:

int count = jo.getJobInstanceCount("myJob");

In this code, the number of myJob instances submitted by this application, running or
not, are returned.

All job names known to the batch runtime can be obtained like so:
Set<String> jobs = jo.getJobNames();

This returns the unique set of job names submitted by this application.

Custom Checkpointing

Checkpoints allow a step execution to periodically bookmark its current progress to
enable restart from the last point of consistency, following a planned or unplanned
interruption. By default, the end of processing for each chunk is a natural point for
taking a checkpoint.

You can specify a custom checkpoint policy using the checkpoint-policy attribute in
Job XML:

<chunk item-count="3" checkpoint-policy="custom">
<reader ref="myItemReader"/>
<processor ref="myItemProcessor"/>
<writer ref="myItemWriter"/>
<checkpoint-algorithm ref="myCheckpointAlgorithm"/>
</chunk>

In this Job XML fragment:

o The checkpoint-policy value is specified to custom, indicating that a custom
checkpoint algorithm is used.

Chunk-Oriented Processing | 263

o checkpoint-algorithmisasubelement within the chunk step whose value is a CDI
bean name implementing the CheckpointAlgorithm interface or extending the
AbstractCheckpointAlgorithm class.

public class MyCheckpointAlgorithm extends AbstractCheckpointAlgorithm {

public boolean isReadyToCheckpoint() throws Exception {
if (MyItemReader.COUNT % 5 == 0)
return true;
else
return false;
}
}

In this code, isReadyToCheckpoint is invoked by the runtime as each item is read to
determine if it is time to checkpoint the current chunk. The method returns true if the
chunk needs to be checkpointed, and false otherwise.

Exception Handling

By default, when any batch artifact that is part of a chunk step throws an exception, the
job execution ends with a batch status of FAILED. You can override this default behavior
for reader, processor, and writer artifacts by configuring exceptions to skip or to retry:

<chunk item-count="3" skip-limit="3">

<reader .../>
<processor .../>
<writer .../>

<skippable-exception-classes>
<include class="java.lang.Exception"/>
<exclude class="java.lo.IOException"/>
</skippable-exception-classes>
<retryable-exception-classes>
<include class="java.lang.Exception"/>
</retryable-exception-classes>
</chunk>

In this code fragment:

o skip-limit specifies the number of exceptions this step will skip.

o skippable-exception-class specifies a set of exceptions that chunk processing
will skip. retryable-exception-class specifies a set of exceptions that chunk
processing will retry.

« include specifies a fully qualified class name of an exception or exception super-
class to skip or retry. Multiple include elements may be specified.

o exclude specifies a fully qualified class name of an exception or exception super-
class to not skip or retry. Multiple exclude elements may be specified. Classes

264 | Chapter 15: Batch Processing

specified here reduce the number of exceptions eligible to skip or retry as specified
by include.

o This code fragment will skip all Exceptions except java.ilo.IOException.

The SkipReadlListener, SkipProcessListener<T>,and SkipWritelListener<T> inter-
faces can be implemented to receive control when a skippable exception is thrown.
The RetryReadlListener, RetryProcessListener<T>, and RetryWritelListener<T>
interfaces can be implemented to receive control when a retriable exception is thrown.

Batchlet Processing

The batchlet style implements a roll-your-own batch pattern. It is a task-oriented pro-
cessing style where a task is invoked once, runs to completion, and returns an exit status.

The Batch'let interface is used to implement a batch step. The convenience abstract
class AbstractBatchlet provides implementations of less commonly implemented
methods.

Job XML is used to define the batchlet step:

<job id="myJob" xmlns="http://xmlns.jcp.org/xml/ns/javaee" version="1.0">
<step id="myStep" >
<batchlet ref="myBatchlet"/>
</step>
</job>

In this code:

o The jobelementidentifiesajob.Ithasalogical name id and is used for identification
purposes.

o A job may contain any number of steps identified by the step element. It has a
logical name 1d and is used for identification purposes.

o The batchlet element defines the batchlet type step. It is mutually exclusive with
the chunk element. The ref attribute is identified as the CDI bean name of a class
implementing the Batchlet interface or extending AbstractBatchlet:

public class MyBatchlet extends AbstractBatchlet {

public String process() {

[/ ..
return "COMPLETED";

}
}

In this code:

Batchlet Processing | 265

o MyBatchlet is the implementation of the batchlet step.

o The process method is called to perform the work of the batchlet. Note, in this
case, an explicit status of COMPLETE is returned as the job status. If this method
throws an exception, the batchlet step ends with a status of FAILED.

o @Named ensures that this bean can be referenced in Job XML.

Listeners

Listeners can be used to intercept batch execution. Listeners can be specified on job,
step, chunk, reader/writer/processor for a chunk, skipping, and retrying exceptions.
Table 15-2 lists the interfaces and abstract classes that can be implemented to intercept
batch execution.

Table 15-2. Batch listeners

Interface Abstract class Receive control

JobListener AbstractJobListener Before and after a job execution runs,
and also if an exception is thrown
during job processing

StepListener AbstractSteplListener Before and after a step runs, and also
if an exception is thrown during step
processing

ChunkListener AbstractChunkListener At the beginning and end of chunk

processing and before and after a
chunk checkpoint is taken

ItemReadListener AbstractItemReadListener Before and after an item is read by an
item reader, and also if the reader
throws an exception

ItemProcessListener AbstractItemProcessListener Before and after an item is processed
by an item processor, and also if the
processor throws an exception

ItemWriteListener AbstractItemWriteListener Before and after an item is written by
an item writer, and also if the writer
throws an exception

SkipReadListener, SkipProces None When a skippable exception is thrown

sListener, SkipWriteListener from an item reader, processor, or
writer

RetryReadlListener, None When a retriable exception is thrown

RetryProcessListener,Retry from an item reader, processor, or

WriteListener writer

The listeners can be specified in Job XML:

266 | Chapter 15: Batch Processing

<job id="myJob" xmlns="http://xmlns.jcp.org/xml/ns/javaee" version="1.0">

<listeners>

<listener ref="myJobListener"/>
</listeners>
<step id="myStep" >

<listeners>

<listener ref="myStepListener"/>
<listener ref="myChunkListener"/>
<listener ref="myItemReadlListener"/>
<listener ref="myItemProcessorListener"/>
<listener ref="myItemWritelListener"/>

</listeners>

<chunk>

</chunk>

</step>
</job>

The listeners for the job are specified as a child of <job>. All other listeners are specified

as a child of <step>. The value of the ref attribute is the CDI bean name of a class
implementing the corresponding listener.

Job Sequence

A step is a basic execution element that encapsulates an independent, sequential phase
of a job.

A job may contain any number of steps. Each step may be either a chunk type step or
batchlet type step. By default, each step is the last step in the job. The next step in the
job execution sequence needs to be explicitly specified via the next attribute:

<job id="myJob" xmlns="http://xmlns.jcp.org/xml/ns/javaee" version="1.0">
<step id="stepl" next="step2">
<chunk item-count="3">
<reader ref="myItemReader"></reader>
<processor ref="myItemProcessor'"></processors>
<writer ref="myItemWriter"></writer>
</chunk>
</step>
<step id="step2" >
<batchlet ref="myBatchlet"/>
</step>
</job>

In this Job XML:

o We define a job using two steps with the logical names step1 and step2.

o steplis defined as a chunk type step and step2 is defined as a batchlet type step.

JobSequence | 267

o steplis executed first and then followed by step2. The order of steps is identified
by the next attribute on stepl. step2 is the last step in the job; this is the default.

Other than the step, the specification outlines other execution elements that define the
sequence of a job:

Flow
Defines a sequence of execution elements that execute together as a unit.

Split
Defines a set of flows that execute concurrently.

Decision
Provides a customized way of determining sequencing among steps, flows, and
splits.

The first step, flow; or split defines the first step (flow or split) to execute for a given Job
XML.

Flow

A flow execution element defines a sequence of execution elements that execute together
as a unit. When the flow is finished, it is the entire flow that transitions to the next
execution element:

<job id="myJob" xmlns="http://xmlns.jcp.org/xml/ns/javaee" version="1.0">

<flow id="flowl" next="step3">
<step id="stepl" next="step2"s

</step>
<step id="step2" >
</step>

</flow>

<step id="step3" >

</;tép;
</job>
In this Job XML:

» We define a job using a flow with the logical name flow1 and a step with the logical
name step3.

o We define flowl using two steps: stepl and step2. Within the flow, step1 is fol-
lowed by step2.

A flow may contain any of the execution elements. The execution elements within
a flow may only transition among themselves; they may not transition to elements
outside of the flow.

268 | Chapter 15: Batch Processing

o By default, flow is the last execution element in the job. We can specify the next
execution element using the next attribute. step3 is executed after all steps in flow1
are finished. The value of the next attribute can be a logical name of a step, flow,
split, or decision.

Split
A split execution element defines a set of flows that execute concurrently:

<job id="myJob" xmlns="http://xmlns.jcp.org/xml/ns/javaee" version="1.0">
<split id="splitl" next="step3"s
<flow id="flowl">
<step id="stepl"s

</step>
</flow>

<flow id="flow2">
<step id="step2">

</step>
</flow>

</split>
<step id="step3"s

</;tép;
</job>
In this Job XML:

o We define a job using a split with the logical name splitl and a step with the
logical name step3.

o A split can only contain flow elements. This split contains two flow elements with
the logical names flowl and flow2. flowl has a step, step1, and flow2 has a step,
step2.

Each flow runs on a separate thread.

o By default, split is the last execution element in the job. You can specify the next
execution element using the next attribute. The split is finished after all flows com-
plete. When the split is finished, the entire split transitions to the next execution
element. step3 is executed after all steps in the split1 are finished.

The value of the next attribute can be alogical name of a step, flow, split, or decision.

Decision

A decision execution element provides a customized way of determining sequencing
among steps, flows, and splits.

JobSequence | 269

Four transition elements are defined to direct job execution sequence or to terminate
job execution:

next
Directs execution flow to the next execution element.

fail
Causes a job to end with a FAILED batch status.

end
Causes a job to end with a COMPLETED batch status.

stop
Causes a job to end with a STOPPED batch status.

The decision uses any of the transition elements to select the next transition:

<job id="myJob" xmlns="http://xmlns.jcp.org/xml/ns/javaee" version="1.0">
<step i1d="stepl" next="decider1"s
</step>
<decision id="decider1" ref="myDecider"s
<next on="DATA_LOADED" to="step2"/>
<end on="NOT_LOADED"/>
</decision>
<step id="step2">

</;tép;
</job>
In this Job XML:

o We define a job using a step with the logical name step1, a decision execution
element with the logical name decider1, and another step with the logical name
step2.

o A decision element is the target of the next attribute from a job-level step, flow,
split, or another decision. In this case, decider1 is specified as the value of the next
attribute of step1.

o The decision element follows a step, flow, or split execution element.

This element has areference to the Decider batch artifact. A decider receives control
as part of a decision element in a job and decides the next transition. The decide
method receives an array of StepExecution objects as input. These objects repre-
sent the execution element that transitions to this decider. The decider method
returns an exit status that updates the current job execution’s exit status. This exit
status value also directs the execution transition using transition elements config-
ured on the same decision element as the decider:

public class MyDecider implements Decider {

270 | Chapter 15: Batch Processing

public String decide(StepExecution[] ses) throws Exception {

/) ..
if (...)

return "NOT_LOADED";
if (...)

return "DATA_LOADED";
}
}

This method returns NOT_LOADED and DATA_LOADED exit status.

« The decision execution element uses the next transition element to transfer the
control to step2 if the exit status is DATA_LOADED. The job is terminated via the end
transition element if the exit status is NOT_LOADED.

Fail, end, and stop are terminating elements, because they cause a job execution to
terminate.

Partitioning the Job

A batch step can run as a partitioned step. A partitioned step runs as multiple instances
of the same step definition across multiple threads, one partition per thread. Each par-
tition can have unique parameters that specify on which data it should operate. This
allows a step to be partitioned and run across multiple threads, without any change in
the existing Java code.

The number of partitions and the number of threads is controlled through a static
specification in the Job XML:

<step id="myStep" >
<chunk item-count="3">
<reader ref="myItemReader"s
<properties>
<property name="start" value="#{partitionPlan['start']}" />
<property name="end" value="#{partitionPlan['end']}" />
</properties>
</reader>
<processor ref="myItemProcessor"></processors>
<writer ref="myItemWriter"s</writer>
</chunk>
<partition>
<plan partitions="4" threads="2">
<properties partition="0">
<property name="start" value="1"/>
<property name="end" value="10"/>
</properties>
<properties partition="1">
<property name="start" value="11"/>
<property name="end" value="20"/>

Partitioning theJob | 271

</properties>
</plan>
</partition>
</step>

In this code:

o <partition>, an optional element, is used to specify that a <step> is a partitioned
step. The partition plan is specified for a chunk step but can be specified for a
batchlet step as well.

 Each <partition> has a plan that specifies the number of partitions via the parti
tions attribute, the number of partitions to execute concurrently via the threads
attribute, and the properties for each partition via the <properties> element. The
partition to which the properties belong is specified via the partition attribute.

By default, the number of threads is equal to the number of partitions.

» Unique property values are passed to each partition via the property element. If
these properties need to be accessed in the item reader, then they are specified with
#{partitionPlan['<PROPERTY-NAME']} where PROPERTY-NAME is the name of the
property. Each partition specifies two properties, start and end, which are then
made available to the item reader as #{partitionPlan['start']} and #{parti
tionPlan['end']}.

These properties are then accessible in the item reader as:

(name = "start")
private String startProp;

(name = "end")
private String endProp;

These properties are then available in the open method of the item reader.

Each thread runs a separate copy of the step: chunking and checkpointing occur inde-
pendently on each thread for chunk type steps.

The number of partitions and the number of threads can also be specified through a
batch artifact called a partition mapper:
<partition>

<mapper ref="myMapper"/>
</partition>

In this code:
o The <mapper> element provides a programmatic means for calculating the number

of partitions and threads for a partitioned step. The ref attribute refers to the CDI
bean name of a class implementing PartitionMapper interface.

272 | Chapter 15: Batch Processing

The <mapper> element and the <plan> element are mutually exclusive.

You can define the mapper batch artifact by implementing the PartitionMapper
interface:

public class MyMapper implements PartitionMapper {

public PartitionPlan mapPartitions() throws Exception {
return new PartitionPlanImpl() {

public int getPartitions() {
return 2;

}

public int getThreads() {
return 2;

}

public Properties[] getPartitionProperties() {
Properties[] props = new Properties[getPartitions()];

for (int 1=0; i<getPartitions(); i++) {
props[i] = new Properties();
props[i].setProperty("start", String.valueOf(i*10+1));
props[i].setProperty("end", String.valueOf((i+1)*10));
}

return props;
}
b
}
}

In this code:

o The mapPartitions method returns an implementation of the PartitionPlan
interface. This code returns PartitionPlanImpl, a convenient basic implementa-
tion of the PartitionPlan interface.

o The getPartitions method returns the number of partitions.

o The getThreads method returns the number of threads used to concurrently exe-
cute the partitions. By default, the number of threads is equal to the number of
partitions.

o The getPartitionProperties method returns an array of Properties for each
partition.

PartitioningtheJob | 273

The partitions of a partitioned step may need to share results with a control point to
decide the overall outcome of the step. The PartitionCollector and PartitionAna
lyzer batch artifact pair provide for this need.

274 | Chapter 15: Batch Processing

CHAPTER 16
Build an End-to-End Application

Introduction

This chapter provides self-paced instructions for building a typical three-tier end-to-
end application using the following Java EE 7 technologies:

o Java Persistence API 2.1

o Java API for RESTful Web Services 2.0

o Java Message Service 2.0

o JavaServer Faces 2.2

« Contexts and Dependency Injection 1.1

o Bean Validation 1.1

o Batch Applications for the Java Platform 1.0

o Java API for JSON Processing 1.0

« Java API for WebSocket 1.0

o Java Transaction API 1.2

Software Requirements

You need to download and install the following software:

1. JDK7
2. NetBeans 7.4 or higher (All or Java EE version)

Figure 16-1 shows a preview of the downloads page and highlights the exact Down-
load button to click.

275

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://netbeans.org/downloads/

Supported technologies * Java SE Java EE CfC++ PHP All
i NetBeans Platform SDK - - -
i Java SE - - -
i Java FX - - -
i Java EE - .
i Java ME =
i HTMLS - - -
& Java Card™ 3 Connected =
i CfC++ - -
i Groovy -
i PHP - -
Bundled servers
i) GlassFish Server Open Source Edition 4.0 - -
4 Apache Tomcat 7.0.41 - -
(D) b) (o) (o) b)
Free, 87 MB Free, 201 MB Free, 58 MB Free, 60 MB Free, 217 MB

Figure 16-1. NetBeans download bundles

NetBeans comes prebundled with GlassFish 4, which provides a complete deploy-
ment and runtime environment for Java EE 7 applications.

Problem Statement

This hands-on lab builds a typical three-tier Java EE 7 web application that allows cus-
tomers to view the show times for a movie in a seven-theater cineplex and make reser-
vations. Users can add new movies and delete existing movies. Customers can discuss
the movie in a chat room. Total sales from each showing are calculated at the end of the
day. Customers also accrue points for watching movies.

Figure 16-2 shows the key components of the application. The User Interface initiates
all the flows in the application. Show Booking, Add/Delete Movie, and Ticket Sales
interact with the database; Movie Points may interact with the database (but this is out
of scope for this application); and Chat Room does not interact with the database.

Show Booking

Add/Delete Movie

Database
User

Interface Ticket Sales

Figure 16-2. Application flow

276 | Chapter 16: Build an End-to-End Application

The different functions of the application, as previously detailed, utilize various Java
technologies and web standards in their implementation. Figure 16-3 shows how dif-
ferent Java EE technologies are used in different flows.

Batch Artifacts Database

Java Message Service [€ -----
WebSocket Endpoint
—_

Figure 16-3. Technologies used in the application

Enterprise JavaBeans

JSF
Pages

RESTful Web Services

Table 16-1 details the components and the selected technology used in its
implementation.

Table 16-1. Technologies used in the application

Flow Description

User Interface Written entirely in JavaServer Faces (JSF).

Show Booking Uses lightweight Enterprise JavaBeans to communicate with the database using the Java Persistence API.
Add/Delete Movie Implemented using RESTful Web Services. JSON is used as on-the-wire data format.

Ticket Sales Uses Batch Applications for the Java Platform to calculate the total sales and persist to the database.

Movie Points Uses Java Message Service (JMS) to update and obtain loyalty reward points; an optional implementation
using database technology may be performed.

Chat Room Uses client-side JavaScript and JSON to communicate with a WebSocket endpoint.

Lab Flow

The attendees will start with an existing maven application, and by following the in-
structions and guidance provided by this lab, they will:

 Read existing source code to gain an understanding of the structure of the appli-
cation and use of the selected platform technologies.

o Addnewand update existing code with provided fragments in order to demonstrate
usage of different technology stacks in the Java EE 7 platform.

This lab is not a comprehensive tutorial of Java EE. You can learn Java EE concepts by
reading through the previous chapters of this book. The Java EE 7 Tutorial is also a good
place to learn the concepts.

Problem Statement | 277

http://docs.oracle.com/javaee/7/tutorial/doc/

This is a sample application and the code may not follow the best
practices to prevent SQL injection, cross-side scripting attacks, escap-
ing parameters, and other similar features expected of a robust enter-
prise application. This is intentional so as to stay focused on explain-
ing the technology. It is highly recommended that you make sure that
the code copied from this sample application is updated to meet those
requirements.

Walkthrough of a Sample Application

PURPOSE: In this section, you will download the sample application to be used in this
hands-on lab. Then T'll give you a walkthrough of the application to help you understand
the application architecture.

1. Download the sample application and unzip it. This will create a movieplex7 di-
rectory and unzip all the content there.

2. In the NetBeans IDE, select File and then Open Project, select the unzipped direc-
tory, and click Open Project. The project structure is shown in Figure 16-4.

3. Maven coordinates: expand Project Files and double-click pom.xml. In the pom.xml
file, the Java EE 7 API is specified as a <dependency>:

<dependencies>
<dependency>
<groupId>javax</groupId>
<artifactId>javaee-api</artifactId>
<version>7.0</version>
<scope>provided</scope>
</dependency>
</dependencies>

This will ensure that Java EE 7 APIs are retrieved from Maven. Note that the APIs
are specified in the “provided” scope and thus are not bundled with the application
and instead provided by the container.

278 | Chapter 16: Build an End-to-End Application

http://glassfish.org/hol/movieplex7-starting-template.zip

L= Niava EE 7 Hands-on Lab

v (g Web Pages
¥ [] WEB-INF
(€] template.xhtml
[E web.xml
» [resources
@ index.xhtml
» (@ RESTful Web Services
v [H Source Packages
v [org.glassfish.movieplex7.entities
Mavie.java
Sales.java
ShowTiming.java
Theater.java
Timeslot.java
rg.glassfish.movieplex7.rest
AbstractFacade.java
ApplicationConfig.java
MovieFacadeREST.java
ShowTimingFacadeREST . java
TheaterFacadeREST.java
TimeslotFacadeREST.java
Other Sources
[E src/main/resources
¥ [META-INF
[E] create.sql
[E] drop.sgl
[E] load.sql
S persistence.xml
[sales.csv
» (g Dependencies
» [g Java Dependencies
» [& Project Files

o (B[] (B [B

v 6

EUEA EUEA Y Y

v &8

Figure 16-4. Project structure

4. Default DataSource: expand Other Sources, sr¢/main/resources, META-INF, and
double-click persistence.xml. By default, NetBeans opens the file in Design view.
Click the Source tab to view the XML source.

It looks like Figure 16-5.

Walkthrough of a Sample Application | 279

£) persistence.xml| © |E| tem)
‘ D!ﬂgn‘ r!HM!r1| Huuwy|'

1 k?xml version="1.0"
2 T <persistence version:

Figure 16-5. persistence.xml source tab

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.1"
xmlns="http://xmlns.jcp.org/xml/ns/persistence"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://xmlns.jcp.org/xml/ns/persistence
http://xmlns.jcp.org/xml/ns/persistence/persistence_2_1.xsd"s
<persistence-unit name="movieplex7PU" transaction-type="JTA">
<!--
<jta-data-source>java:comp/DefaultDataSource</jta-data-source>
-->
<properties>
<property
name="javax.persistence.schema-generation.database.action"
value="drop-and-create"/>
<property
name="javax.persistence.schema-generation.create-source"
value="script"/>
<property
name="javax.persistence.schema-generation.create-script-source"
value="META-INF/create.sql"/>
<property
name="7javax.persistence.sql-load-script-source"
value="META-INF/load.sql"/>
<property
name="eclipselink.logging.exceptions"
value="false"/[>
</properties>
</persistence-unit>
</persistence>

In this code:

a. The default DataSource is used, as <jta-data-source> is commented out. For
GlassFish 4, the default DataSource is bound to the JDBC resource jdbc/__de
fault.

280 | Chapter 16: Build an End-to-End Application

b. The database schema will be dropped and generated by way of scripts. The create
script is in META-INF/create.sql and the data load script is in META-INF/

load.sql.

Feel free to open and read through the SQL scripts. The database schema is

shown in Figure 16-6.

& 5 SHOW_TIMING [Table]

ID INTEGER(10) NOT NULL

DAY INTEGER(10) NOT NULL
THEATER ID INTEGER(10) NOT NULL
MOVIE_ID INTEGER(10) NOT NULL
TIMING_ID INTEGER(10) NOT NULL

o 2 POINTS [Table]

ID INTEGER(10) NOT NULL

CD INTEGER(10) NOT NULL
POINTS INTEGER(10) NOT NULL

o) & SALES [Table]
ID INTEGER(10) NOT NULL
AMOUNT DOUBLE(52) NOT NULL

& 5 THEATER (Table]
ID INTEGER(10) NOT NULL
CAPACITY INTEGER(10) NOT NULL

&/ 2 MOVIE [Table]

ID INTEGER(10) NOT NULL

NAME VARCHAR(50) NOT NULL
ACTORS VARCHAR(200) NOT NULL

o/ 2 TIMESLOT ([Table]

ID INTEGER(10) NOT NULL
START_TIME VARCHAR(S) NOT NULL
END_TIME VARCHAR(S) NOT NULL

Figure 16-6. Database schema

This folder also contains sales.csv, which carries some comma-separated data
used later in the application.

c. A persistence-provider-specific property is mentioned to suppress exception

logging.

Clicking back and forth between the Design and Source views may prompt the error
shown in Figure 16-7.

Warning

O

The project does not have the target server set properly.

Java Persistence features are server-dependent.Right-click the project in the Project window and choose

Resolve Missing Server Problem to set the target server.

o)

Figure 16-7. Missing server error message

This will get resolved when we run the application. Click OK to dismiss the dialog.

Walkthrough of a Sample Application | 281

5.

JPA entities, stateless EJBs, and REST endpoints: expand Source Packages. The
package org.glassfish.movieplex7.entities contains the JPA entities corre-
sponding to the database table definitions. Each JPA entity has several convenient
@NamedQuery annotations defined and uses Bean Validation constraints to enforce
validation.

The package org.glassfish.movieplex7.rest contains stateless EJBs corre-
sponding to different JPA entities.

Each EJB has methods to perform CRUD operations on the JPA entity and conve-
nience query methods. Each EJB is also EL-injectable (@Named) and published as a
REST endpoint (@Path). The ApplicationConfig class defines the base path of the
REST endpoint. The path for the REST endpoint is the same as the JPA entity class
name.

The mapping between JPA entity classes, EJB classes, and the URI of the corre-
sponding REST endpoint is shown in Table 16-2.
Table 16-2. JPA entity and EJB class mapping with RESTful path

JPA entity class EJB class RESTful path

Movie MovieFacadeREST /webresources/movie
Sales SalesFacadeREST /webresources/sales
ShowTiming ShowTimingFacadeREST /webresources/showtiming
Theater TheaterFacadeREST /webresources/theater

Timeslot TimeslotFacadeREST /webresources/timeslot

Feel free to browse through the code.

. JSF pages: WEB-INF/template.xhtml defines the template of the web page and has

a header, left navigation bar, and a main content section. index.xhtml uses this tem-
plate and the E]Bs to display the number of movies and theaters.

By default, Java EE 7 enables CDI discovery of beans. There is no need to bundle
beans.xml, and you’ll notice none exists in the WEB-INF folder.

Note, template.xhtml is in the WEB-INF folder, as it allows the template to be ac-
cessible from the pages bundled with the application only. If it were bundled with
the rest of the pages, it would be accessible outside the application and thus would
allow other external pages to use it as well.

. Run the sample: right-click the project and select Run. This will download all the

Maven dependencies on your machine, build a WAR file, deploy on GlassFish 4,
and show the URL localhost:8080/movieplex7 in the browser.

During the first run, the IDE will ask you to select a deployment server. Choose the
configured GlassFish server and click OK.

The output looks like Figure 16-8.

282

| Chapter 16: Build an End-to-End Application

C |7 localhost:8080/movieplex7/

Movie Plex 7

Item 1 Showing 20 movies in 7 theaters!

Item 2

Figure 16-8. Output from the packaged application

Show Booking (JavaServer Faces)

PURPOSE: Build pages that allow a user to book a particular movie in a theater. A new
feature of JavaServer Faces 2.2 will be introduced and demonstrated in this application.

This application will build a Faces Flow that allows the user to make a movie reservation.
Starting from the home page, the flow will contain four pages, shown in Figure 16-9.

. Available
List of Confirm Book
Home . Show . -
l | I| Movies l " Timings | I| Choices | I| Tickets
7y \

Figure 16-9. Show booking flow

1. Items in a flow are logically related to each other, so they must be kept together in
a directory (Figure 16-10).

In the NetBeans IDE, right-click the Web Pages, select New and then Folder, specify
the folder name booking, and click Finish.

Show Booking (JavaServer Faces) | 283

Name and Location

Folder Name: 'booking

Project: movieplex?

Parent Folder: | src/main/webapp | Browse...

Created Folder: es/javaee7-hol/test/movieplex7/src/main/webapp/booking

Figure 16-10. Create a new folder

. Right-click the newly created folder; select New and then Facelets Template Client;

and click Next >.

Specify the filename as booking. Click Browse next to Template:, expand Web Pages
and then WEB-INF, select template.xhtml, and click Select File such that it looks
like Figure 16-11. Click Finish.

In this file, remove the <ui:define> sections with “top” and “left” names, as these
are inherited from the template.

File Name: booking

Project: movieplex?

Folder: booking | Browse...

Created File: ol/test/movieplex?/src/main/webapp/booking/booking.xhtml

Template: :/main/webapp/WEB-INF /template.xhtml Browse...

Figure 16-11. Facelets template client filename

3. booking.xhtml is the entry point to the flow (more on this later). Replace the “con-

tent” <ui:define> section such that it looks like the following code fragment:

<ui:define name="content">
<h2>Pick a movie</h2>
<h:form prependId="false">

<h:selectOneRadio value="#{booking.movieId}"

Chapter 16: Build an End-to-End Application

layout="pageDirection"
required="true">
<f:selectItems value="#{movieFacadeREST.all}"
var="m"
itemValue="#{m.id}"
itemLabel="#{m.name}" />
</h:selectOneRadio>

<h:commandButton id="shows" value="Pick a time" action="showtimes" />
</h:form>
</ui:define>

The code builds an HTML form that displays the list of movies as radio button
choices. The chosen movie is bound to #{booking.movieId}, which will be defined

as a flow-scoped bean. The value of the action attribute on commandButton refers
to the next view in the flow—showtimes.xhtml in the same directory, in our case.

Click the hint (shown as a yellow lightbulb) and click the suggestion to add the
namespace prefix. Do the same for the f: prefix, as shown in Figure 16-12.

10|31 <ui:define name="content's

11 <h2>Pick a movie</h2>

| <h: —n calls
13

declaration

() = ng.mo
@ <fiselectItems value="#{movieFacas
@ </hiselectOneRadio>
17
@ <h:commandButton id="shows" value="Pii
19

Figure 16-12. Resolve namespace prefix/URI mapping for h: and f:

. Right-click Source Packages and select New and then Java Class. Specify the class
name as Booking and the package name as org.glassfish.movieplex7.booking.

Add the @Named class-level annotation to make the class EL-injectable. Add @Flow
Scoped("booking") to define the scope of the bean as the flow. The bean is auto-
matically activated and passivated as the flow is entered or exited.

Add the following field:
int movield;
and generate getters/setters by going to Source and then Insert Code, selecting
Getter and Setter, and then selecting the field.
Add the following convenience method:

public String getMovieName() {
try {
return em.createNamedQuery("Movie.findById", Movie.class)
.setParameter("id", movield)

Show Booking (JavaServer Faces) | 285

6.

.getSingleResult()
.getName();
} catch (NoResultException e) {
return "";

}
}

This method will return the movie name based upon the selected movie. Inject
EntityManager in this class by adding the following code:

EntityManager em;

Alternatively, the movie ID and name may be passed from the selected radio button
and parsed in the backing bean. This will save an extra trip to the database.

. Create showtimes.xhtml in the booking folder following the directions in step 2 on

page 284. Replace the “content” <ui:define> section such that it looks like:

<ui:define name="content">
<h2>Show Timings for #{booking.movieName}</h2>
<h:form>
<h:selectOneRadio value="#{booking.startTime}"
layout="pageDirection"
required="true">
<c:forEach items="#{timeslotFacadeREST.all}" var="s">
<f:selectItem itemValue="#{s.1d},#{s.startTime}"
itemLabel="#{s.startTime}"/>
</c:forEach>
</h:selectOneRadio>
<h:commandButton value="Confirm" action="confirm" />
<h:commandButton id="back" value="Back" action="booking" />
</h:form>
</ui:define>

This code builds an HTML form that displays the chosen movie name and all the
showtimes. #{timeslotFacadeREST.all} returns the list of all the movies and iter-
ates over them via a c: forEach loop. The ID and start time of the selected show are
bound to #{booking.startTime}. One command button (value="Back") allows
the user to go back to the previous page, and the other command button (val
ue="Confirm") takes the user to the next view in the flow—confirm.xhtml, in our
case.

Typically a user will expect the showtimes only for the selected movie, but all the
showtimes are shown here. This allows us to demonstrate going back and forth
within a flow if an incorrect showtime for a movie is chosen. You could write a
different query that displays only the shows available for the chosen movie; however,
this is not part of the application.

Add the following fields to the Booking class:

String startTime;
int startTimeld;

286

| Chapter 16: Build an End-to-End Application

And the following methods:

public String getStartTime() {
return startTime;

}

public void setStartTime(String startTime) {
StringTokenizer tokens = new StringTokenizer(startTime, ",");
startTimeId = Integer.parselnt(tokens.nextToken());
this.startTime = tokens.nextToken();

}

public int getStartTimeId() {
return startTimeld;

}

These methods will parse the values received from the form. Also add the following
method:

public String getTheater() {
// for a movie and show
try {
// Always return the first theater
List<ShowTiming> list =
em.createNamedQuery("ShowTiming.findByMovieAndTimingId",
ShowTiming.class)
.setParameter("movieId", movield)
.setParameter("timingId", startTimeld)
.getResultList();
if (list.isEmpty())
return "none";

return list
.get(0)
.getTheaterId()
.getId().toString();
} catch (NoResultException e) {
return "none";
}
}

This method will find the first theater available for the chosen movie and show
timing.
Additionally, a list of theaters offering that movie may be shown in a separate page.

7. Create a confirm.xhtml page in the booking folder by following the directions de-
fined in step 2 on page 284. Replace the “content” <ui:define> section:

<uil:define name="content">
<c:choose>

<c:when test="#{booking.theater == 'none'}">
<h2>No theater found, choose a different time</h2>
<h:form>

Show Booking (JavaServer Faces) | 287

Movie #{booking.movieName}<p/>

Starts #{booking.startTime}<p/>
<h:commandButton id="back" value="Back" action="showtimes"/>
</h:form>
</c:when>

<c:otherwise>
<h2>Confirm ?</h2>

<h:form>
Movie #{booking.movieName}<p/>
Starts #{booking.startTime}<p/>

#{booking.theater}<p/>
<p/><h:commandButton id="next" value="Book" action="print"/>
<h:commandButton id="back" value="Back" action="showtimes"/>
</h:form>
</c:otherwise>
</c:choose>
</ui:define>

The code displays the selected movie, showtime, and theater if available. The res-
ervation can proceed if all three are available. print.xhtml, identitied by the action
of commandButton with Book value, is the last page that shows the confirmed
reservation.

You can add actionListener to commandButton to invoke the business logic for
making the reservation. Additional pages may be added to take the credit card
details and email address.

. Create the print.xhtmlpage in the booking folder by following the directions defined

in step 2 on page 284 and replace the “content” <ui:define> section such that it
looks like:

<ui:define name="content">
<h2>Reservation Confirmed</h2>

<h:form>
Movie #{booking.movieName}<p/>
Starts #{booking.startTime}<p/>

#{booking.theater}<p/>
<p><h:commandButton id="home" value="home" action="goHome" /></p>
</h:form>
</ui:define>

This code displays the movie name, showtimes, and the selected theater.

The commandButton initiates exit from the flow. The action attribute defines a
navigation rule that will be defined in the next step.

. booking.xhtml, showtimes.xhtml, confirm.xhtml, and print.xhtml are all in the same

directory. Now we need to inform the runtime that the views in this directory are
to be treated as view nodes in a flow. We can do this by adding booking/booking-
flow.xml or by having a class that has a method with @Produces @FlowDefinition.

288

| Chapter 16: Build an End-to-End Application

Right-click the Web Pages/booking folder; select New, Other, XML, and then XML
Document; specify the name as booking-flow; click Next >; leave the default of Well-
Formed Document; and click Finish. Edit the file such that it looks like:
<faces-config version="2.2" xmlns="http://xmlns.jcp.org/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="

http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/web-facesconfig_2_2.xsd"s>

<flow-definition id="booking">
<flow-return id="goHome">
<from-outcome>/index</from-outcome>
</flow-return>
</flow-definition>

</faces-config>
This defines the flow graph. It uses the standard parent element used in any faces-
config.xml file but defines a <flow-definition>.

<flow-return> defines a return node in a flow graph. <from-outcome> contains
the node value, or an EL expression that defines the node, to return to. In this case,
the navigation returns to the home page.

10. Finally, invoke the flow by editing WEB-INF/template.xhtml and changing:

<h:commandLink action="1item1">Item 1</h:commandLink>

to:

<h:commandLink action="booking">Book a movie</h:commandLink>

commandLink renders an HTML anchor tag that behaves like a form submit button.
The action attribute points to the directory where all views for the flow are stored.
This directory already contains booking-flow.xml, which defines the flow of the
pages.

11. Run the project by right-clicking the project and selecting Run. The browser shows
the updated output (Figure 16-13).

Show Booking (JavaServer Faces) | 289

€« C' [localhost:8080/movieplex7/faces/index.xhtmPjfwid=6534f5935020d1869b05087ba53b:0

Movie Plex 7

Book a movie
Item 2 Pick a movie

_ The Matrix

_ The Lord of The Rings
Inception

_ The Shining

| Migcinn Tmnnsa<ihle

Figure 16-13. “Pick a movie” page output

Click “Book a movie” to see the page shown in Figure 16-14.

C [9 localhost:8080/movieplex7/

Movie Plex 7

Book a movie Showing 20 movies in 7 theaters!
Item 2

Figure 16-14. The “Book a movie” link

Select a movie, say The Shining, and click “Pick a time” to see the page output shown
in Figure 16-15.

29 |

Chapter 16: Build an End-to-End Application

€« C | [localhost:8080/ movieplex?/faces/booking/booking.xhtmI?jfwid=6534f5935020d1869b05087ba53b:0

Movie Plex 7

Book a movie
Item 2

Show Timings for The Shining

. 10:00
. 12:00
_ 02:00
_ 04:00
_ 06:00

Confirm = Back

Figure 16-15. Showtimes page output

Pick a time slot, say “04:00,” to see the output shown in Figure 16-16.

‘1 localhost: /movieplex?/faces/booking/showtimes.xhtml?jfwid= 4 a :
€« | localhost:8080 lex7/f: book h htmP?jfwid=6534f5935020d1869b05087ba53b:0

Book a movie
Item 2

Confirm ?

Movie name: The Shining
Starts at: 04:00
Theater: 1

Book | Back

Movie Plex 7

Figure 16-16. “Confirm booking” page output

Click Book to confirm and see the output in Figure 16-17.

Show Booking (JavaServer Faces)

291

<« C [localhost:8080/movieplex7/faces/booking/confirm.xhtml?jfwid=6534f5935020d1869b05087ba53b:0

Movie Plex 7

Book a movie
Item 2 Reservation Confirmed

Movie name: The Shining
Starts at: 04:00
Theater: 1

home

Figure 16-17. “Reservation confirmed” page output

Feel free to enter other combinations, go back and forth in the flow, and notice how
the values in the bean are preserved.

Clicking Home takes the user to the main application page as shown in Figure 16-13.

Chat Room (Java API for WebSocket)

PURPOSE: Build a chat room for viewers. Several new features of the Java API for
WebSocket 1.0 will be introduced and demonstrated in this application.

This section will build a chat room for movie viewers.

1. Right-click Source Packages; select New and then Java Class. Specify the class name
as ChatServer and the package as org.glassfish.movieplex7.chat, and click
Finish.

2. Change the class such that it looks like:

(" /websocket")
public class ChatServer {

private static final Set<Session> peers =
Collections.synchronizedSet(new HashSet<Session>());

public void onOpen(Session peer) {
peers.add(peer);

}

public void onClose(Session peer) {
peers.remove(peer);

}

292 | Chapter 16: Build an End-to-End Application

public void message(String message, Session client)
throws IOException, EncodeException {
for (Session peer : peers) {
peer.getBasicRemote().sendObject(message);
}
}
}

In this code:

o @ServerEndpoint decorates the class to be a WebSocket endpoint. The value
defines the URI where this endpoint is published.

o @onOpen and @OnClose decorate the methods that must be called when the Web-
Socket session is opened or closed. The peer parameter defines the client re-
questing connection initiation and termination.

 @0OnMessage decorates the message that receives the incoming WebSocket mes-
sage. The first parameter, message, is the payload of the message. The second
parameter, client, defines the other end of the WebSocket connection. The
method implementation transmits the received message to all clients connected
to this endpoint.

Resolve the imports. Make sure to pick the java.websocket.Session instead of
the default.

. In Web Pages, select New and then Folder, specify the folder name as chat, and click
Finish.

. Create chatroom.xhtml in the chat folder following the directions outlined in step
2 on page 284. Replace the “content” <ui:define> section such that it looks like:

<ui:define name="content">
<form action="">
<table>
<tr>
<td>
Chat Log

<textarea readonly="true" rows="6" cols="50" id="chatlog">
</textarea>
</td>
<td>
Users

<textarea readonly="true" rows="6" cols="20" id="users">
</textarea>
</td>
</tr>
<tr>
<td colspan="2">
<input id="textField" name="name" value="Duke" type="text"/>
<input onclick="join();" value="Join" type="button"/>

Chat Room (Java API for WebSocket) | 293

<input onclick="send_message();" value="Send" type="button"/><p/>
<input onclick="disconnect();" value="Disconnect" type="button"/>
</td>
</tr>
</table>
</form>
<div id="output"></div>
<script language="javascript"
type="text/javascript"
src="${facesContext.externalContext.requestContextPath}
/chat/websocket.js">
</script>
</ui:define>

The code builds an HTML form that has two textareas—one to display the chat
log and the other to display the list of users currently logged in. A single text box is
used for the username or the chat message. Clicking the Join button takes the user-
name as the value, while clicking Send takes the chat message as the value. JavaScript
methods, which will be explained in the next section, are invoked when these but-
tons are clicked. The chat messages are sent and received as WebSocket payloads.
There is an explicit button to disconnect the WebSocket connection. The output
div is the placeholder for status messages. The WebSocket initialization occurs in
the websocket.js file included at the bottom of the fragment. See Figure 16-18.

Categories: File Types:
L Web JSP
(3 JavaServer Faces GB] JSF Page
(] Bean Validation & Serviet
[:l Struts @ Filter
—) & Web Application Listener
| Spring Framework @ HTML
Q Enterprise JavaBeans @ XHTML
(] Contexts and Dependenc Ty Cascading Style Sheet
& Jaw E

Figure 16-18. Select JavaScript file type

. Right-click “chat” in Web Pages and then select New, Web, and JavaScript File.

Specify the name as “websocket” and click Finish.

6. Edit the contents of websocket.js such that it looks like:

var wsuUri = //' + document. location.host

+ document.location.pathname.substr(0,
document.location.pathname.index0f("/faces"))

+ '/websocket';

console.log(wsUri);

| Chapter 16: Build an End-to-End Application

var websocket = new WebSocket(wsUri);

var textField = document.getElementById("textField");
var users = document.getElementById("users");
var chatlog = document.getElementById("chatlog");

var username;
websocket.onopen = function(evt) { onOpen(evt); };

websocket.onmessage = function(evt) { onMessage(evt); };

websocket.onerror = function(evt) { onError(evt); };
websocket.onclose = function(evt) { onClose(evt); };
var output = document.getElementById("output");

function join() {
username = textField.value;
websocket.send(username + " joined");

}

function send_message() {
websocket.send(username +

}

function onOpen() {
writeToScreen("CONNECTED");
}

function onClose() {
writeToScreen("DISCONNECTED");
}

function onMessage(evt) {
writeToScreen("RECEIVED: " + evt.data);
if (evt.data.indexOf("joined") !== -1) {
users.innerHTML +=

evt.data.substring(0®, evt.data.indexOf(" joined")) + "\n";

} else {
chatlog.innerHTML += evt.data + "\n";
}
}

function onError(evt) {

writeToScreen(' ' + evt.data);

}

function disconnect() {
websocket.close();

}

function writeToScreen(message) {
var pre = document.createElement("p");
pre.style.wordWrap = "break-word";
pre.innerHTML = message;

" + textField.value);

Chat Room (Java API for WebSocket)

295

output.appendChild(pre);
}

You calculate the WebSocket endpoint URI by using standard JavaScript variables
and appending the URI specified in the ChatServer class. You initialize the Web-
Socket by calling new WebSocket(...).Event handlers are registered for life-cycle
events via onXXX messages. The listeners registered in this script are explained in
Table 16-3.

Table 16-3. WebSocket event listeners

Listeners (Called when

onOpen(evt) WebSocket connection is initiated
onMessage(evt) WebSocket message is received
onError(evt) Error occurs during the communication

onClose(evt) WebSocket connection is terminated

Any relevant data is passed along as a parameter to the function. Each method prints
the status on the browser using the writeToScreen utility method. The join meth-
od sends a message to the endpoint indicating that a particular user has joined. The
endpoint then broadcasts the message to all the listening clients. The send_mes
sage method appends the logged-in username and the value of the text field and
broadcasts to all the clients similarly. The onMessage method updates the list of
logged-in users as well.

Edit WEB-INF/template.xhtml and change:

<h:outputLink value="item2.xhtml">Item 2</h:outputLink>

to:

<h:outputLink
value="${facesContext.externalContext.requestContextPath}/faces
/chat/chatroom.xhtml">
Chat Room</h:outputLink>

The outputLink tag renders an HTML anchor tag with an href attribute. ${face
sContext.externalContext.requestContextPath} providesthe request URI that

identifies the web application context for this request. This allows the links in the
left navigation bar to be fully qualified URLs.

. Run the project by right-clicking the project and selecting Run. The browser shows

localhost:8080/movieplex7, as shown in Figure 16-19.

296

| Chapter 16: Build an End-to-End Application

“~— C [localhost:8080/movieplex7/

Movie Plex 7

Book a movie Showing 20 movies in 7 theaters!

Chat Room

Figure 16-19. Chat room link

Click Chat Room to see the output shown in Figure 16-20.

The “CONNECTED” status message is shown and indicates that a WebSocket con-
nection with the endpoint has been established.

Movie Plex 7
Book a movie Chat Log Users
Chat Room
Duke ' Join Send
Disconnect
CONNECTED

Figure 16-20. Chat room page output

Please make sure your browser supports WebSocket in order for this page to show
up successfully. Chrome 14.0+, Firefox 11.0+, Safari 6.0+, and IE 10.0+ are the
browsers that support WebSocket. A complete list of supported browsers is available
at caniuse.com/websockets.

Open the URI localhost:8080/movieplex7 in another browser window. Enter Duke
in the text box in the first browser and click Join. Notice that the user list and the
status message in both the browsers gets updated. Enter Duke2 in the text box of
the second browser and click Join. Once again, the user list and the status message
in both the browsers is updated. Now you can type any message in either browser
and click Send to send the message.

Chat Room (Java API for WebSocket) | 297

http://caniuse.com/websockets

The output from two different browsers after the initial greeting looks like
Figure 16-21. Chrome output is shown on the top and Firefox on the bottom.

&= C' [localhost:8080/movieplex7/faces/index.xhtmI?jfwid=71e6891ce27eed67db911a9d391d:0
Movie Plex 7
Book a movie chat Log ; USEYS
Duke2: Hello Duke
Chat Room Duke: Hello there Duke2
'Hello Join | Send |
Disconnect
(- NsNs) Movieplex 7
& Movieplex 7 x |3 _Movieplex 7 x|+

(<) @ localhost:8080/movieplex7 /faces/index.xhtml?jfwid=71e73b7520e2 1dafdfcadcc19c2d:0

Movie Plex 7

Book a movie Chat Log Users

Duke2: Hello Duke
Chat Room Duke: Hello there Duke2

' Disconnect |
CONNECTED

RECEIVED: Duke joined
RECEIVED: Duke2 joined
RECEIVED: Duke2: Hello

RECEIVED: Duke: Hello there

Figure 16-21. Chat room output from Chrome (top) and Firefox (bottom)

Chrome Developer Tools can be used to monitor WebSocket traffic.

298

| Chapter 16: Build an End-to-End Application

View and Delete Movies (Java API for RESTful
Web Services)

PURPOSE: View and delete a movie. Several new features of JAX-RS 2 will be intro-
duced and demonstrated in this application.

This section will enable us to view all the movies, view details of a selected movie, and
delete an existing movie using the JAX-RS Client AP

1. Right-click Source Packages and then select New and Java Class. Specify the class
name as MovieClientBean and the package as org.glassfish.movieplex7.cli
ent, and click Finish.

This bean will be used to invoke the REST endpoint.

2. Add the @Named and @RequestScoped class-level annotations. This allows the class
to be injected in an EL expression and also defines the bean to be automatically
activated and passivated with the request.

Make sure to resolve the imports by clicking the yellow lightbulb or right-clicking
the editor pane and selecting Fix Imports (use the Command + Shift + I shortcut
on Mac).

3. Add the following code to the class:

Client client;
WebTarget target;

public void init() {
client = ClientBuilder.newClient();
target = client
.target("http://localhost:8080/movieplex7/webresources/movie/");

public void destroy() {
client.close();

}

In this code:

o ClientBuilder is used to create an instance of Client.

o The Client instance is created and destroyed in the life-cycle callback methods.
We set the endpoint URI on this instance by calling the target method.

» We set the URI of the endpoint on the Client instance using the target method.

4. Add the following code to the class:

View and Delete Movies (Java API for RESTful Web Services) | 299

public Movie[] getMovies() {
return target
.request()
.get(Movie[].class);
}

Prepare a request by calling the request method. Invoke the HTTP GET method by
calling the get method. The response type is specified in the last method call, so
the return value is of the type Movie[].

5. In NetBeans IDE, right-click Web Pages, select New and then Folder, specify the
folder name client, and click Finish.
In this folder, create movies.xhtml following the directions outlined in step 2 on
page 284.
6. Replace the content within <ui:define> with the following code fragment:
<h:form prependId="false">
<h:selectOneRadio
value="#{movieBackingBean.movieId}"
layout="pageDirection">
<c:forEach items="#{movieClientBean.movies}" var="m">
<f:selectItem itemValue="#{m.1d}" itemLabel="#{m.name}"/>
</c:forEach>
</h:selectOneRadio>
<h:commandButton value="Details" action="movie" />
</h:form>
This code fragment invokes the getMovies method from MovieClientBean, iterates
over the response in a for loop, and displays the name of each movie with a radio
button. The selected radio button value is bound to the EL expression #{movie
BackingBean.movieId}.
The code also has a button with the label Details and looks for movie.xhtml in the
same directory. We will create this file later.
Click the yellow lightbulb in the left bar to resolve the namespace prefix-to-URI
resolution. This needs to be repeated three times—for the h:, c:, and f: prefixes
(see Figure 16-22).
300 | Chapter 16: Build an End-to-End Application

108 <ui:define name="co:
S shiform. prepend,
@ <h:selectOny
o =g forks
® =fi
1 sigaforl
® =/hiselectOs
17

@ =h: commandB)
% s/hiform=

20 + </ui:define>

Figure 16-22. Resolve namespace prefix/URI mapping for h:, c, f:

. Right-click the org.glassfish.movieplex7.client package, select New and then
Java Class, specify the value as MovieBackingBean, and click Finish.

Add the following field:

int movield;

Add getters/setters by right-clicking on the editor pane and selecting Insert Code
(use the Control + I shortcut on Mac). Select the field and click Generate.

Add the @Named and @RequestScoped class-level annotations.

Resolve the imports. Make sure to import javax.enterprise.context.Reques
tScoped.

. In template.xhtml, add the following code in <ui:insert> with name="1left":

<p/>
<h:outputLink
value="${facesContext.externalContext.requestContextPath}/faces
/client/movies.xhtml">
Movies</h:outputLink>

Running the project (Fn + F6 on Mac) and clicking Movies in the left navigation
bar shows the output in Figure 16-23. All movies are displayed in a list with a radio
button next to them. This output uses a REST endpoint for querying instead of a
traditional EJB/JPA-backed endpoint.

View and Delete Movies (Java API for RESTful Web Services) | 301

10.

11.

Book a movie " The Matrix
Chat Room The Lord of The Rings
Movies _ Inception
_ The Shining
Mission Impossible
_ Terminator
Titanic
Iron Man
- Inglorious Bastards
Million Dollar Baby

Figure 16-23. Movies page output

. In MovieClientBean, inject MovieBackingBean to read the value of the selected

movie from the page. Add the following code:

@Inject
MovieBackingBean bean;

In MovieClientBean, add the following method:

public Movie getMovie() {
Movie m = target
.path("{movie}")
.resolveTemplate("movie", bean.getMovielId())
.request()
.get(Movie.class);
return m;

}

This code reuses the Client and WebTarget instances created in @PostConstruct.
It also adds a variable part to the URI of the REST endpoint, defined via {movie},
and binds it to a concrete value via the resolveTemplate method. The return type
is specified as a parameter to the get method.

Create movie.xhtml following the directions in step 2 on page 284. Change the
<ui:define> element such that its content looks like:
<h1>Movie Details</h1>

<h:form>
<table cellpadding="5" cellspacing="5">

302

| Chapter 16: Build an End-to-End Application

12.

13.

<tr>
<th align="left">Movie Id:</th>
<td>#{movieClientBean.movie.id}</td>
</tr>
<tr>
<th align="left">Movie Name:</th>
<td>#{movieClientBean.movie.name}</td>
</tr>
<tr>
<th align="left">Movie Actors:</th>
<td>#{movieClientBean.movie.actors}</td>
</tr>

</table>
<h:commandButton value="Back" action="movies" />
</h:form>
Click the yellow lightbulb to resolve the namespace prefix-URI mapping for h:.
Display the output values by calling the getMovie method and using the id, name,
and actors property values.

Run the project, select Movies in the left navigation bar, select a radio button next
to any movie, and click on details to see the output shown in Figure 16-24.

Movie Plex 7

Book a movie Movie Details
Chat Room Movie Id: 10
Movies Movie Name: Million Dollar Baby

Movie Actors: Hillary Swank, Client Eastwood
Back

Figure 16-24. “Movie details” page output

Click the Back button to select another movie.

Add the ability to delete a movie. In movies.xhtml, add the following code with the
other commandButton:
<h:commandButton
value="Delete"

action="movies"
actionListener="#{movieClientBean.deleteMovie()}"/>

This button displays a Delete label, invokes the method deleteMovie from Movie
ClientBean, and then renders movie.xhtml.

View and Delete Movies (Java API for RESTful Web Services) | 303

14. Add the following code to MovieClientBean:

public void deleteMovie() {
target
.path("{movieId}")
.resolveTemplate("movield", bean.getMovield())
.request()
.delete();
}

This code again reuses the Client and WebTarget instances created in @PostCon
struct. It also adds a variable part to the URI of the REST endpoint, defined via
{movieId}, and binds it to a concrete value via the resolveTemplate method. The
URI of the resource to be deleted is prepared and the delete method is called to
delete the resource.

Make sure to resolve the imports.

Running the project yields the output shown in Figure 16-25.

Slumaog Milonaire
The Curious Case of Benjamin Button
The Bourne Ultimatum
The Pink Panther

Details = Delete

Figure 16-25. Delete button

Select a movie and click the Delete button. This deletes the movie from the database
and refreshes the page.

Add Movie (Java API for JSON Processing)

PURPOSE: Add a new movie. Several new features of the Java API for JSON Processing
1.0 will be introduced and demonstrated in this application.

This section will define JAX-RS entity providers that will allow reading and writing
JSON for a Movie POJO. The JAX-RS Client API will request this JSON representation.

This section will enable us to add a new movie to the application. Typically, this func-
tionality will be available after proper authentication and authorization.

1. Right-click Source Packages, select New and then Java Package, specify the value as
org.glassfish.movieplex7.json, and click Finish.

304 | Chapter 16: Build an End-to-End Application

2. Right-click the newly created package, select New and then Java Class, specify the
name as MovieReader, and click Finish. Add the following class-level annotations:

(MediaType.APPLICATION_JSON)

@Provider allows this implementation to be discovered by the JAX-RS runtime
during the provider scanning phase. @onsumes indicates that this implementation
will consume a JSON representation of the resource.

3. Make the class implements MessageBodyReader<Movie>. See Figure 16-26.

52 @Provider
53 @Consumes (MediaType.APPLICATION_JSON)
@ bublic class MovieReader implements MessageBodyReader<Movie> {

35 ? Implement all abstract methods

56 @ Make class MovieReader abstract
57 @ Create Subclass >

Figure 16-26. Implement abstract methods for MessageBodyReader

Click on the hint (shown as a yellow lightbulb) on the class definition and select
“Implement all abstract methods”

4. Add an implementation of the i{sReadable method as:

public boolean isReadable(Class<?> type,
Type typel,
Annotation[] antns,
MediaType mt) {
return Movie.class.isAssignableFrom(type);

}

This method ascertains if the MessageBodyReader can produce an instance of a
particular type.

5. Add an implementation of the readFrom method as:

public Movie readFrom(Class<Movie> type,
Type typel,
Annotation[] antns,
MediaType mt,
MultivaluedMap<String, String> mm,
InputStream in)
throws IOException, WebApplicationException {
Movie movie = new Movie();
JsonParser parser = Json.createParser(in);
while (parser.hasNext()) {
switch (parser.next()) {

Add Movie (Java API for JSON Processing) | 305

case
String key = parser.getString();
parser.next();
switch (key) {
case "id":
movie.setId(parser.getInt());
break;
case "name":
movie.setName(parser.getString());
break;
case "actors":
movie.setActors(parser.getString());
break;
default:
break;
}
break;
default:
break;
}
}
return movie;

}

This code reads a type from the input stream in. JsonParser, a streaming parser,
is created from the input stream. Key values are read from the parser and a Movie

instance is populated and returned.

Resolve the imports.

6. Right-click the newly created package, select New and then Java Class, specify the
name as MovieWriter, and click Finish. Add the following class-level annotations:

(MediaType.APPLICATION_JSON)

@Provider allows this implementation to be discovered by the JAX-RS runtime
during the provider-scanning phase. @Produces indicates that this implementation

will produce a JSON representation of the resource.

7. Make the class implements MessageBodyWriter<Movie>. See Figure 16-27.

21 -
52 @Provider
53 @Produces(MediaType.APPLICATION_JSON)

55 ? Implement all abstract methods

56 @ Make class MovieWriter abstract
57 @ Create Subclass >

& public class MovieWriter implements MessageBodyWriter<Movie>{

Figure 16-27. Implement abstract methods for MessageBody Writer

306 | Chapter 16: Build an End-to-End Application

Click the hint (shown as a yellow lightbulb) on the class definition and select “Im-
plement all abstract methods.”

8. Add an implementation of the isWritable method as:

public boolean isWriteable(Class<?> type,
Type typel,
Annotation[] antns,
MediaType mt) {
return Movie.class.isAssignableFrom(type);

}
This method ascertains if the MessageBodyWriter supports a particular type.
9. Add an implementation of the getSize method as:

public long getSize(Movie t,
Class<?> type,
Type typel,
Annotation[] antns,
MediaType mt) {
return -1;

}

Originally, this method was called to ascertain the length in bytes of the serialized
form of t. In JAX-RS 2.0, this method is deprecated, and the value returned by the
method is ignored by a JAX-RS runtime. All MessageBodyWriter implementations
are advised to return -1.

10. Add an implementation of the writeTo method as:

public void writeTo(Movie t,
Class<?> type,
Type typel,
Annotation[] antns,
MediaType mt,
MultivaluedMap<String, Object> mm,
OutputStream out)
throws IOException, WebApplicationException {
JsonGenerator gen = Json.createGenerator(out);
gen.writeStartObject()
write("id", t.getId())
.write("name", t.getName())
.write("actors", t.getActors())
.writeEnd();
gen.flush();
}

This method writes a type to an HTTP message. JsonGenerator writes JSON data
to an output stream in a streaming way. Overloaded write methods are used to
write different data types to the stream.

Resolve the imports.

Add Movie (Java API for JSON Processing) | 307

11. In Web Pages, in the client folder, create addmovie.xhtml following the directions
in step 2 on page 284. Change the <ui:define> element (the “top” and “left” ele-
ments need to be removed) such that its content looks like:

<h1>Add a New Movie</h1>
<h:form>
<table cellpadding="5" cellspacing="5">
<tr>
<th align="left">Movie Id:</th>
<td><h:inputText value="#{movieBackingBean.movieId}"/></td>
</tr>
<tr>
<th align="left">Movie Name:</th>
<td><h:inputText value="#{movieBackingBean.movieName}"/> </td>
</tr>
<tr>
<th align="left">Movie Actors:</th>
<td><h:inputText value="#{movieBackingBean.actors}"/></td>
</tr>

</table>
<h:commandButton
value="Add"
action="movies"
actionListener="#{movieClientBean.addMovie()}"/>
</h:form>
This code creates a form to accept as input the movie’s 1d, name, and actors. These
values are bound to fields in MovieBackingBean. The click of the command button
invokes the addMovie method from MovieClientBean and then renders mov-
ies.xhtml.

Click the hint (shown as a yellow lightbulb) to resolve the namespace prefix/URI
mapping.
12. Add movieName and actors fields to MovieBackingBean as:

String movieName;
String actors;

Generate getters and setters.
13. Add the following code to movies.xhtml:
<h:commandButton value="New Movie" action="addmovie" />
along with rest of the <commandButton>s.

14. Add the following method in MovieClientBean:

public void addMovie() {
Movie m = new Movie();
m.setId(bean.getMovield());
m.setName(bean.getMovieName());
m.setActors(bean.getActors());

308 | Chapter 16: Build an End-to-End Application

target
.register(MovieWriter.class)
.request()
.post(Entity.entity(m, MediaType.APPLICATION_JSON));

}

This method creates a new Movie instance, populates it with the values from the
backing bean, and POSTs the bean to the REST endpoint. The register method
registers aMovieWriter thatenables conversion from the POJO to JSON. We specify
a media type of application/json using MediaType.APPLICATION_JSON.

Resolve the imports.

15. Run the project to see the updated main page as shown in Figure 16-28.

Avatar
_ Slumdog Millionaire
The Curious Case of Benjamin Button
_ The Bourne Ultimatum
_ The Pink Panther
Details Delete = New Movie

Figure 16-28. “New movie button” page output

You can add a new movie by clicking the New Movie button.

16. Enter the details as shown in Figure 16-29.

Movie Plex 7

Book a movie Add a New Movie
Chat Room Movie Id: 22
Movies

Movie Name: Skyfall

Movie Actors: {Daniel Craig]

Add

Figure 16-29. “Add a new movie” page output

Add Movie (Java API for JSON Processing) | 309

Click the Add button. The Movie Id value has to be greater than 20; otherwise, the
primary key constraint will be violated. The table definition may be updated to
generate the primary key based upon a sequence; however, this is not done in the
application.

The updated page looks like Figure 16-30.

Avatar
Slumdog Millionaire
The Curious Case of Benjamin Button
The Bourne Ultimatum
The Pink Panther
(=) Skyfall

Details Delete = New Movie

Figure 16-30. “New movie added” page output

Note that the newly added movie is now displayed.

Ticket Sales (Batch Applications for the Java Platform)

PURPOSE: Read the total sales for each show and populate the database. Several new
features of the Java API for Batch Processing 1.0 will be introduced and demonstrated
in this application.

This section will read the cumulative sales for each show from a CSV file and populate
them in a database.

1.

Right-click Source Packages, select New and then Java Package, specify the value as
org.glassfish.movieplex7.batch, and click Finish.

. Right-click the newly created package, select New and then Java Class, and specify

the name as SalesReader. Change the class definition and add:
extends AbstractItemReader
AbstractItemReader isanabstract class thatimplements the ItemReader interface.

The ItemReader interface defines methods that read a stream of items for chunk
processing. This reader implementation returns a String item type.

Add @Named as a class-level annotation; it allows the bean to be injected in Job XML.
Add @pependent as another class-level annotation to mark this bean as a bean-
defining annotation so that this bean is available for injection.

Resolve the imports.

310

| Chapter 16: Build an End-to-End Application

3. Add the following field:

private BufferedReader reader;

Override the open method to initialize the reader:

public void open(Serializable checkpoint) throws Exception {
reader = new BufferedReader(
new InputStreamReader(
Thread.currentThread()
.getContextClassLoader()
.getResourceAsStream("META-INF/sales.csv")));
}

This method initializes a BufferedReader from META-INF/sales.csv that is bun-
dled with the application and is shown in Figure 16-31.

» [Test Packages
v [Other Sources
v E src/main/resources
v [META-INF

(] create.sql
[2] drop.sql
[2] load.sql
) persistence.xml
EI sales.csv

» [@ Dependencies

» (g Java Dependencies

= - -

Figure 16-31. sales.csv

The following is a sampling of the first few lines from sales.csv:

1,500.00
2,660.00
3,80.00
4,470.00
5,1100.x0

Each line has a show identifier comma-separated by the total sales for that show.
Note that the last line (5" record in the sample) has an intentional typo. In addition,
the 17" record has a typo. The lab will use these lines to demonstrate how to handle
parsing errors.

4. Override the following method from the abstract class:

Ticket Sales (Batch Applications for the Java Platform) | 311

public String readItem() {
String string = null;
try {
string = reader.readlLine();
} catch (IOException ex) {
ex.printStackTrace();

}

return string;

}

The readItem method returns the next item from the stream. It returns null to
indicate end of stream. Note that the end of the stream indicates the end of the
chunk, so the current chunk will be committed and the step will end.

Resolve the imports.

. Right-click the org.glassfish.movieplex7.batch package, select New and then

Java Class, and specify the name as SalesProcessor. Change the class definition
and add:

implements ItemProcessor

ItemProcessor is an interface that defines a method that is used to operate on an
inputitem and produce an output item. This processor accepts a String input item
from the reader, SalesReader in our case, and returns a Sales instance to the writer
(coming shortly). Sales is the prepackaged JPA entity with the application starter
source code.

Add @Named and @ependent as class-level annotations to allow the bean to be in-
jected in Job XML.

Resolve the imports.

. Add an implementation of the abstract method from the interface as:

public Sales processItem(Object s) {
Sales sales = new Sales();

StringTokenizer tokens = new StringTokenizer((String)s, ",");
sales.setId(Integer.parselnt(tokens.nextToken()));
sales.setAmount(Float.parseFloat(tokens.nextToken()));

return sales;

}

This method takes a String parameter coming from the SalesReader, parses the
value, populates it in the Sales instance, and returns it. This is then aggregated with
the writer.

The method can return null, indicating that the item should not be aggregated. For
example, the parsing errors can be handled within the method and return null if

312

| Chapter 16: Build an End-to-End Application

the values are not correct. However, this method is implemented where any parsing
errorsare thrown as exceptions. Job XML can be instructed to skip these exceptions,
and thus that particular record is skipped from aggregation as well (shown later).

Resolve the imports.

. Right-click the org.glassfish.movieplex7.batch package, select New and then
Java Class, and specify the name as SalesWriter. Change the class definition and
add:

extends AbstractItemWriter
AbstractItemWriter isanabstractclass thatimplementsthe ItemWriter interface.

The ItemWriter interface defines methods that write to a stream of items for chunk
processing. This writer writes a list of Sales items.

Add @\Named and @ependent as class-level annotations to allow the bean to be in-
jected in Job XML.

Resolve the imports.
. Inject EntityManager as:
EntityManager em;

Override the following method from the abstract class:

public void writeItems(List list) {
for (Sales s : (List<Sales>)list) {
em.persist(s);
}
}

The batch runtime aggregates the list of Sales instances returned from the Sales
Processor and makes it available as a List in this method. This method iterates
over the list and persists each item in the database.

The method also has a @Transactional annotation that provides transactional se-
mantics to this method.

Resolve the imports.
. Create a Job XML that defines the job, step, and chunk.

In the Files tab, expand the project - src & main — resources; right-click resour-
ces and then META-INF; select New and then Folder; specify the name as batch-
jobs; and click Finish.

Right-click the newly created folder, select New and then Other, select XML and

then XML Document, click Next >, specify the name as eod-sales, click Next, leave
the default, and click Finish.

Replace the contents of the file with the following:

Ticket Sales (Batch Applications for the Java Platform) | 313

10.

<job>
id="end0fDaySales"
xmlns="http://xmlns.jcp.org/xml/ns/javaee"
version="1.0">
<step id="populateSales" >
<chunk item-count="3" skip-limit="5">
<reader ref="salesReader"/[>
<processor ref="salesProcessor"/>
<writer ref="salesWriter"/>
<skippable-exception-classes>
<include class="java.lang.NumberFormatException"/>
</skippable-exception-classes>
</chunk>
</step>
</job>

In this code:

« job has one step of chunk type.

o The <reader>, <processor>, and <writer> elements define the CDI bean name
of the implementations of the ItemReader, ItemProcessor, and ItemWriter
interfaces.

 The item-count attribute indicates that three items are read/processed/aggre-
gated and then given to the writer. The entire reader/processor/writer cycle is
executed within a transaction.

o The <skippable-exception-classes> element specifies a set of exceptions to
be skipped by chunk processing.

The CSV file used for this lab has intentionally introduced a couple of typos that
would generate a NumberFormatException. Specifying this element allows the ap-
plication to skip the exception, ignore that particular element, and continue pro-
cessing. If this element is not specified, then the batch processing will halt. The
skip-limit attribute specifies the number of exceptions a step will skip.

Invoke the batch job.

Right-click the org.glassfish.movieplex7.batch package, and select New and
then Session Bean. Enter the name as SalesBean and click Finish.

Add the following code to the bean:

public void runJob() {
try {
JobOperator jo = BatchRuntime.getJobOperator();
long jobId = jo.start("eod-sales", new Properties());
System.out.println("Started job: with id: " + jobId);
} catch (JobStartException ex) {
ex.printStackTrace();

}

314

| Chapter 16: Build an End-to-End Application

This method uses BatchRuntime to get an instance of JobOperator, which is then
used to start the job. JobOperator is the interface for operating on batch jobs. It can
be used to start, stop, and restart jobs. It can additionally inspect job history, to
discover what jobs are currently running and what jobs have previously run.

Add @\Named and @RequestScoped as a class-level annotation; it allows the bean to
be injectable in an EL expression and automatically activated and passivated with
the request.

Resolve the imports.
11. Inject EntityManager in the class as:

EntityManager em;

and add the following method:

public List<Sales> getSalesData() {
return em.createNamedQuery("Sales.findAll", Sales.class)
.getResultList();
}

This method uses a predefined @NamedQuery to query the database and return all
rows from the table.

Resolve the imports.
12. Add the following code in template.xhtml along with other <outputLink>s:

<p/>
<h:outputLink
value="${facesContext.externalContext.requestContextPath}
/faces/batch/sales.xhtml">
Sales</h:outputLink>

13. Right-click Web Pages, select New and then Folder, specify the name as batch, and
click Finish. Create sales.xhtml in that folder following the directions explained in
step 2 on page 284.

Copy the following code inside <ui:define> with name="content":

<h1>Movie Sales</h1>
<h:form>
<h:dataTable value="#{salesBean.salesData}" var="s" border="1">
<h:column>
<f:facet name="header">
<h:outputText value="Show ID" />
</f:facet>
#{s.1d}
</h:column>
<h:column>
<f:facet name="header">
<h:outputText value="Sales" />
</f:facet>
#{s.amount}

Ticket Sales (Batch Applications for the Java Platform) | 315

14.

15.

</h:column>
</h:dataTable>

<h:commandButton
value="Run Job"
action="sales"
actionListener="#{salesBean.runJob()}"/>
<h:commandButton
value="Refresh"
action="sales" />
</h:form>

This code displays the show identifier and sales from that show in a table by invoking
SalesBean.getSalesData(). The first command button invokes the job that pro-
cesses the CSV file and populates the database. The second command button re-
freshes the page.

Right-click the yellow lightbulb to fix the namespace prefix/URI mapping. Repeat
this process for the h: and f: prefixes.

Run the project to see the output shown in Figure 16-32.

Movie Plex 7

Book a movie Showing 20 movies in 7 theaters!
Chat Room
Movies

Figure 16-32. Sales link

Notice that a new Sales entry is displayed in the left navigation bar.
Click Sales to see the output shown in Figure 16-33.
The empty table indicates that there is no sales data in the database.

316

| Chapter 16: Build an End-to-End Application

Movie Plex 7

Book a movie Movie Sales
Chat Room 'Show ID Sales
Movies ~ Run Job Refresh
Sales

Figure 36: Movie Sales Page Output

Figure 16-33. “Movie sales” page output

16. Click the Run Job button to initiate data processing of the CSV file. Wait a couple
of seconds for the processing to finish and then click the Refresh button to see the
updated output, as shown in Figure 16-34.

Movie Plex 7
Book a movie Movie Sales
Chat Room [Show 1D | Sales
Movies 1 1500.0 |
3 (80.0 |
Sales |2 “660.0 |
4 470.0 |
6 [240.0 |
7 (1000.0|
9 (230.0 |
Figure 37: Movie Sales Detalails Page Duliput |

Figure 16-34. “Movie sales details” page output

Now the table is populated with the sales data.

Ticket Sales (Batch Applications for the Java Platform) | 317

Note that record 5 is missing from the table, as this record did not have the correct
numeric entries for the sales total. The Job XML for the application explicitly states
to skip such errors.

Movie Points (Java Message Service 2)

PURPOSE: Customers accrue points for watching a movie.

This section will provide a page to simulate submission of movie points accrued by a
customer. These points are submitted to a JMS queue that is then read synchronously
by another bean. The JMS queue can continue further processing, possibly storing
messages in the database using JPA.

1.

Right-click Source Packages, select New and then Java Package, specify the value as
org.glassfish.movieplex7.points, and click Finish.

Right-click the newly created package, select New and then Java Class, and specify
the name as SendPointsBean.

Add the following class-level annotations:

This marks the bean to be EL-injectable and automatically activated and passivated
with the request.

Typically, a message to a JMS queue is sent after the customer has bought the tickets.
Another bean will then retrieve this message and update the points for that cus-
tomer. This allows the two systems, one generating the data about tickets purchased
and the other about crediting the account with the points, to be completely
decoupled.

This lab will mimic the sending and consuming of a message via an explicit call to
the bean from a JSF page.

Add the following field to the class:

(regexp = "M\\d{2},\\d{2}",
message = "Message format must be 2 digits, comma, 2 digits, e.g. 12,12")
private String message;

318

| Chapter 16: Build an End-to-End Application

This field contains the message sent to the queue. This field’s value is bound to an
inputText in a JSF page (created later). It also has a Bean Validation constraint that
enables validation of data on form submit. It requires the data to consist of two
digits, followed by a comma, and then two more digits. If the message does not
meet the validation criteria, then the error message to be displayed is specified via
a message attribute.

You could think of this as conveying the customer identifier and the points accrued
by that customer.

Generate getter/setters for this field. Right-click in the editor pane, select Insert
Code (use the Control + I shortcut on Mac), select “Getter and Setter,” select the
field, and click Generate.

. Add the following code to the class:

JMSContext context;

(lookup = "java:global/jms/pointsQueue")
Queue pointsQueue;

public void sendMessage() {
System.out.println("Sending message:

+ message);

context.createProducer().send(pointsQueue, message);

}

This code uses the default factory to inject an instance of container-managed
JMSContext.

All messages are then sent to a Queue instance (created later) identified by the
java:global/jms/pointsQueue JNDI name. The actual message is obtained from
the value entered in the JSF page and bound to the message field.

Resolve the imports.

Make sure the Queue class is imported from javax. jms.Queue instead of the default
java.util.Queue, as shown in Figure 16-35.

Movie Points (Java Message Service2) | 319

Select the fully qualified name to use in the import statement.

Import Statements:

Resource @:= javax.annotation.Resource
ConnectionFactory &0 javax.]ms.ConnectionFactory

Queue L =G javax.jms.Queue

Serializable =0 java.lo.Serializable

JMSContext Q0 javax.jms.IMSContext

Named @:= javax.inject.Named

SessionScoped @: javax.enterprise.context.SessionScoped

[2] Remove unused imports

Figure 16-35. Resolve imports for Queue

Click OK.

5. Right-click the org.glassfish.movieplex7.points package, select New and then
Java Class, and specify the name as ReceivePointsBean.

Add the following class-level annotations:

@IMSDestinationDefinition(name = "java:global/jms/pointsQueue",
interfaceName = "javax.jms.Queue")

@Named

@RequestScoped

This marks the bean to be referenced from an EL expression. It also activates and
passivates the bean with the session.

JMSDestinationDefinition will create Queue with the JNDI name java:global/
jms/pointsQueue.

6. Add the following code to the class:

@Inject
JMSContext context;

@Resource(lookup ="java:global/jms/pointsQueue")
Queue pointsQueue;

public String receiveMessage() {
String message = context
.createConsumer (pointsQueue)
.receiveBody(String.class);
System.out.println("Received message: " + message);

320 | Chapter 16: Build an End-to-End Application

return message;

}

This code is very similar to SendPointsBean. The createConsumer method creates
JMSConsumer, which is then used to synchronously receive a message.

7. Add the following method to the class:

public int getQueueSize() {
int count = 0;
try {
QueueBrowser browser = context.createBrowser(pointsQueue);
Enumeration elems = browser.getEnumeration();
while (elems.hasMoreElements()) {
elems.nextElement();
count++;
}
} catch (JMSException ex) {
ex.printStackTrace();
}
return count;

}

This code creates a QueueBrowser to look at the messages on a queue without re-
moving them. It calculates and returns the total number of messages in the queue.

Resolve the imports.

8. Right-click Web Pages, select New and then Folder, specify the name as points, and
click Finish. Create points.xhtml in that folder following the directions explained
in step 2 on page 284.

Copy the following code inside <ui:define> with name="content":

<h1>Points</h1>

<h:form>
Queue
<h:outputText value="#{receivePointsBean.queueSize}"/><p/>
<h:inputText value="#{sendPointsBean.message}"/>

<h:commandButton
value="Send Message"
action="points"
actionListener="#{sendPointsBean.sendMessage()}"/>
</h:form>
<h:form>
<h:commandButton
value="Receive Message"
action="points"
actionListener="#{receivePointsBean.receiveMessage()}"/>
</h:form>

Click the yellow lightbulb to resolve namespace prefix/URI mapping for the h:
prefix.

Movie Points (Java Message Service2) | 321

This page displays the number of messages in the current queue. It provides a text
box for entering the message that can be sent to the queue. The first command
button invokes the sendMessage method from SendPointsBean and refreshes the
page. An updated queue count, incremented by 1 in this case, is displayed. The
second command button invokes the receiveMessage method from Receive
PointsBean and refreshes the page. The queue count is updated again, decremented
by 1 in this case.

If the message does not meet the validation criteria, then the error message is dis-
played on the screen.

9. Add the following code in template.xhtml along with other <outputLink>s:

<p/>
<h:outputLink
value="${facesContext.externalContext.requestContextPath}
/faces/points/points.xhtml">
Points</h:outputLink>

10. Run the project. The update page looks like Figure 16-36.

Movie Plex 7

Book a movie Showing 20 movies in 7 theaters!
Chat Room

Movies

Sales

Points

Figure 16-36. Points link

Click Points to see the output in Figure 16-37.

322 | Chapter 16: Build an End-to-End Application

Movie Plex 7

Book a movie Points
Chat Room Queue size: 0

Movies | " Send Message
Sales . Receive Message

Points

Figure 16-37. Points page default output

The output shows that the queue has 0 messages. Enter the message 1212 in the text
box and click Send Message to see the output shown in Figure 16-38.

Movie Plex 7

Book a movie Points
Chat Room Queue size: 0

Movies 1212 Send Message

Sales Receive Message

Points e Message format must be 2 digits, comma, 2 digits, e.q. 12,12

Figure 16-38. Bean Validation error message

This message does not meet the validation criteria, so the error message is displayed.

Enter the message 12,12 in the text box and click the Send Message button to see
the output in Figure 16-39.

Movie Points (Java Message Service2) | 323

Book a movie Points

Chat Room Queue size: 1

Movies 12,12 | Send Message
Sales _Receive Message

Points

Figure 16-39. Points page output: one message in queue

The updated count now shows that there is one message in the queue.

Click the Receive Message button to see the output in Figure 16-40.

Book a movie Points

Chat Room Quevue size: 0

Movies 12,12 '~ Send Message
Sales Receive Message

Points

Figure 16-40. Points page output: zero messages in queue

The updated count now shows that the message has been consumed and the queue
has zero messages.

Click Send Message four times to see the output in Figure 16-41.

324

| Chapter 16: Build an End-to-End Application

Movie Plex 7

Book a movie Points

Chat Room Queue size: 4

Movies 12,12 Send Message
Receive Message

Sales

Points

Figure 16-41. Points page output: four messages in queue

The updated count now shows that the queue has four messages.

Click Receive Message twice to see the output in Figure 16-42.

Book a movie Points

Chat Room Queue size: 2

Movies 12,12 [send Message.
Sales Receive Message |

Points

Figure 16-42. Points page output: two messages in queue

The count is once again updated to reflect the two consumed and two remaining
messages in the queue.

Movie Points (Java Message Service2) | 325

Conclusion

This hands-on lab built a trivial three-tier web application using Java EE 7 and demon-
strated the following features of the platform:

« Java EE 7 Platform
— Maven coordinates
— Default DataSource
— Default JMSConnectionFactory
o Java Persistence API 2.1
— Schema generation properties
o Java API for RESTful Web Services 2.0
— Client API
— Custom entity providers
 Java Message Service 2.0
— Default JMS ConnectionFactory
— Injecting JMSContext
— Synchronous message send and receive
o JavaServer Faces 2.2
— Faces Flow
» Contexts and Dependency Injection 1.1
— Automatic discovery of beans
— Injection of beans
« Bean Validation 1.1
— Integration with JavaServer Faces
o Batch Applications for the Java Platform 1.0
— Chunk-style processing
— Exception handling
o Java API for JSON Processing 1.0
— Streaming API for generating JSON
— Streaming API for consuming JSON
e Java API for WebSocket 1.0

— Annotated server endpoint

326 | Chapter 16: Build an End-to-End Application

— JavaScript client
o Java Transaction API 1.2
— @Transactional

Hopefully, this has piqued your interest in trying out Java EE 7 applications using
GlassFish 4.

Send us feedback at users@glassfish.java.net.

Troubleshooting

1. How can I start/stop/restart GlassFish from within the IDE?

In the Services tab, right-click GlassFish Server 4. All the commands to start, stop,
and restart are available from the pop-up menu. View the server log by clicking
View Server Log, and view the web-based administration console by clicking View
Admin Console.

View Domain Admin Console
View Domain Server Log
View Domain Update Center

Properties

2. Taccidentally closed the GlassFish output log window. How do I bring it back?

In the Services tab of NetBeans, expand Servers, choose the GlassFish node, and
select View Domain Server Log.

Completed Solution

The completed solution can be downloaded as a zip.

Troubleshooting | 327

mailto:users@glassfish.java.net
http://glassfish.org/hol/movieplex7-solution.zip

APPENDIX A
Further Reading

This appendix provides a reference to the specifications for different technologies in-
cluded in the Java EE 7 platform.

Web Technology Specifications

« JSR 45: Debugging Support for Other Languages 1.0

o JSR 52: Standard Tag Library for JavaServer Pages (JSTL)1.2
o JSR 245: JavaServer Pages (JSP) 2.3

o JSR 340: Java Servlet 3.1

o JSR 341: Expression Language 3.1

o JSR 344: JavaServer Faces (JSF) 2.2

« JSR 353: Java API for JSON Processing (JSON-P) 1.0

o JSR 356: Java API for WebSocket 1.0

Enterprise Technology Specifications

o JSR 236: Concurrency Utilities for Java EE 1.0

o JSR 250: Common Annotations for the Java Platform 1.2
o JSR 318: Interceptors 1.2

o JSR 322: Java EE Connector Architecture 1.7

« JSR 330: Dependency Injection for Java 1.0

o JSR 338: Java Persistence API (JPA) 2.1

o JSR 343: Java Message Service (JMS) 2.0

329

http://bit.ly/1e6mrrq
http://bit.ly/11qaUk4
http://bit.ly/15396AI
http://bit.ly/11qaWsk
http://bit.ly/14dZKTB
http://bit.ly/11qaYjY
http://bit.ly/15rok02
http://bit.ly/1aT42yz
http://bit.ly/15ZXWcJ
http://bit.ly/12yzxOk
http://bit.ly/15ZY107
http://bit.ly/15roqVy
http://bit.ly/17Pc8GN
http://bit.ly/17bCbpg
http://bit.ly/1ch5TPl

« JSR 345: Enterprise JavaBeans (EJB) 3.2

¢ JSR 346: Contexts and Dependency Injection (CDI) for the Java EE Platform 1.1
o JSR 349: Bean Validation 1.1

o JSR 352: Batch Applications for Java Platform 1.0

e JSR 907: Java Transaction API (JTA) 1.2

e JSR 919: JavaMail 1.5

Web Service Technologies

o JSR 93: Java API for XML Registries (JAXR) 1.0

e JSR 101: Java API for XML-based RPC (JAX-RPC) 1.1
 JSR 109: Implementing Enterprise Web Services 1.4

o JSR 181: Web Services Metadata for the Java Platform 2.1
o JSR 222: Java Architecture for XML Binding (JAXB) 2.2

o JSR 224: Java API for XML Web Services (JAX-WS) 2.2

o JSR 339: Java API for RESTful Web Services (JAX-RS) 2.0

Management and Security Technologies

o JSR77:J2EE Management API 1.1
o JSR 88: Java Platform EE Application Deployment API 1.2
o JSR 115: Java Authorization Contract and Containers (JACC) 1.5

e JSR 196: Java Authentication Service Provider Interface for Containers
(JASPIC) 1.0

330 | Appendix A: Further Reading

http://bit.ly/16fbtix
http://bit.ly/13hceqI
http://bit.ly/13hcgyR
http://bit.ly/12Y8o29
http://bit.ly/1ch6sZz
http://bit.ly/14e0mIU
http://bit.ly/1bCdevg
http://bit.ly/1aT4Nrs
http://bit.ly/13U6xyL
http://bit.ly/18J7YkO
http://bit.ly/11qbE8X
http://bit.ly/13U6EdQ
http://bit.ly/15ZZ7J8
http://bit.ly/18NcQsE
http://bit.ly/17PcOMl
http://bit.ly/19t3oKd
http://bit.ly/11qbK0k
http://bit.ly/11qbK0k

A

absolute-ordering element, 24
AbstractBatchlet class, 265
AbstractCheckpointAlgorithm class, 264
AbstractChunkListener class, 266
AbstractltemProcessListener class, 266
AbstractltemReader class, 258, 260, 261
AbstractltemReadListener class, 266
AbstractltemWriter class, 258, 260, 262
AbstractJobListener class, 266
AbstractStepListener class, 266
AbstractWriteListener class, 266
ActionEvent class, 45
@AdministeredObjectDefinition annotation, 10
AfterBeanDiscovery event, 184
AfterDeploymentValidation event, 184
Ajax, JSF support for, 43-46, 72
@Alternative annotation, 172-173, 182
alternative beans, CDI, 172-173, 182
annotated client endpoints, WebSocket, 132
135
annotated server endpoints, WebSocket, 122—
127
annotations, 5
(see also specific annotations)
@Any annotation, 172
Application class, 74, 82
application-managed entity manager, 222
@ApplicationPath annotation, 74

Index

@ApplicationScoped annotation, 180
apply request values phase, JSE, 42
@AroundConstruct annotation, 9, 151
@AroundInvoke annotation, 175
@AssertFalse annotation, 204
@AssertTrue annotation, 204
async-supported element, 21
AsyncContext class, 21
asynchronous processing
client invocations with JAX-RS, 86, 87
dispatch-based dynamic client, 106
JMS messages, 249, 253-254
message-driven beans, 154
programmatic client endpoints, 135
programmatic server endpoints, 129
server requests with Ajax, 43
server responses with JAX-RS, 76
servlets, 20-22
session bean methods, 159-160
tasks, 189-194
AsyncListener interface, 20, 22
attached objects, server-side, 47-49
@AttributeOverrides annotation, 220
auth-constraint element, 26
authentication, WebSocket endpoints, 142-143

B

Batch Applications, 3, 7, 257-258
batchlets, 258, 265-266

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

331

chunk-oriented processing for, 258-265 stereotypes for, 181-182

checkpoints in, 263 submitting as tasks, 191
exception handling in, 264 beans element, 168
interfaces and classes for, 258 beans.xml file, 168
item processor, 261 enabling decorators in, 179
item reader, 260 enabling interceptors in, 177
item writer, 262 BeforeBeanDiscovery event, 184
starting and stopping jobs, 262 BeforeShutdown event, 184
steps in, 259 behaviors, JSE, 49

jobs, 257 BindingProvider interface, 105
decisions in, 269-271 BMT (bean-managed transactions), 157-159,
flows in, 268 215
partitioning, 271-274 built-in beans, 185-186
sequence of, specifying, 267-271 ByteMessage type, 247

splits in, 269
listeners for, 266-267
movie application using, 277, 310-318, 326
steps, 258, 267 c: prefix, 34

batchlet element, 265 Cache inte.rface, 242 .
Batchlet interface, 265 CacheRetrieveMode enumeration, 242

bean archives, 167 CacheStoreMode eumeration, 242

Bean Validation, 2, 6, 10, 203 caching entities, 241-243
built-in constraints, 203-206 Callable interface, 190, 195
custom constraints. 207-210 Cascading Style Sheets (CSS), facelets using, 34

JPA entities, 237-239 cc: prefix, 38-41
JSF using, 49, 50-51 cc:implementation element, 38, 40

method and constructor constraints, 212- cc:interface element, 38-40
214 CDI (Contexts and Dependency Injection), 2, 5,
9,167
alternative beans, 172-173, 182
bean discovery, 167-170
bean qualifiers, 171-172
built-in beans, 185-186

movie application using, 326

for resources, 94-96

validation groups, 210-212
bean-defining annotation, 168
bean-managed transactions (see BMT)

beans, 167-170 container life-cycle events, 184
(see also EJB) contexts, 179, 180
alternative, 172173, 182 decorators, 178-179
built-in beans, 185-186 disposer methods for beans, 174

events, 182-183
injection points, 35, 170-171
interceptors, 5, 9, 174-178
life-cycle callback methods, 186
movie application using, 326
portable extensions, 183-185
producer methods for beans, 173-174
scopes, 179-180
@ApplicationScoped, 180
@ConversationScoped, 180
@Dependent, 180
@FlowScoped, 53
@RequestScoped, 180

contexts of, 179, 180
decorators for, 178-179
disposer methods for, 174
events with, 182-183

injection points for, 35, 170-171
interceptors for, 5, 9, 174-178
observer beans, 182

portable extensions with, 183
producer beans, 182

producer methods for, 173-174
qualifiers for, 171-172

scope of, 179-180

332 | Index

@SessionScoped, 180
@TransactionScoped, 10, 218
@ViewScoped, 35
stereotypes, 181-182
submitting beans as tasks, 191
checkpoint-algorithm element, 263
checkpoints, Batch Applications, 263
chunk element, 259, 263
chunk-oriented processing, 258-265
checkpoints in, 263
exception handling in, 264
interfaces and classes for, 258
item processor, 261
item reader, 260
item writer, 262
starting and stopping jobs, 262
steps in, 259
ChunkListener interface, 266
class element, 177, 179
client API, JAX-RS, 84-87
Client class, 85
client proxy object, 180
client, JMS, 245
client-side extension points, 47-49
ClientBehaviorBase class, 49
ClientBuilder class, 85
@ClientEndpoint annotation, 132-135, 141
ClientEndpointConfig.Configurator class, 136
ClientRequestContext interface, 89
ClientRequestFilter interface, 88, 92
ClientResponseContext interface, 89
ClientResponseFilter interface, 88, 92
code examples (see example movie application)
@CollectionTable annotation, 220
Common Annotations, 5
component specifications, 3-5
component tags, JSE, 60-72
composite components, 38-41
Concurrency Utilities, 3, 5, 7, 189
asynchronous tasks, 189-194
dynamic contextual objects, 198-201
managed threads, 197-198
scheduled tasks, 194-197
Connection interface, 250, 253, 255
ConnectionFactory interface, 2, 250, 253
@ConnectorFactoryDefinitions annotation, 10
@ConnectorFactoryDefinition annotation, 10
@Constraint annotation, 207

constraints

built-in, 203-206

custom, 207-210

method and constructor, 212-214

security constraints, 25-28, 142

validation groups for, 210-212
ConstraintViolationException class, 237
constructors, constraints for, 212-214
@Consumes annotation, 79
contact information for this book, xv
container life-cycle events, CDI, 184
container-managed entity manager, 222
container-managed transactions, 157-159, 216-

218
ContainerProvider class, 134
ContainerRequestFilter interface, 88, 90, 92
ContainerResponseFilter interface, 88, 92
@Context annotation, 81
Contexts and Dependency Injection (see CDI)
contexts, CDI, 179, 180
ContextService interface, 198-201
conventions used in this book, xiii
@ConversationScoped annotation, 180
Converter interface, 48
converters, JSE, 47
@CookieParam annotation, 81
cookies (see HTTP cookies)
Criteria API, 229-232
CRUD operations on entities, 229-232
CSS (Cascading Style Sheets), facelets using, 34

D

data validation (see Bean Validation; con-
straints; validators, JSF)

data-* attributes, input element, 59

DataSource class, 2

Decider interface, 270

@DecimalMax annotation, 204

@DecimalMin annotation, 204

decision element, 269-271

Decoder interface, 138-141

@Decorator annotation, 178

decorators, 178-179

decorators element, 179

@Default annotation, 172

Default validation group, 210

defining page, 38

delegate injection point, decorators, 178

@DELETE annotation, 77, 78

Index | 333

deny-uncovered-http-methods element, 27 Endpoint class, 102, 128-132, 135-137

@DenyAll annotation, 27 onClose method, 130
@Dependent annotation, 180 onError method, 130
@DependsOn annotation, 150 Endpoint-based endpoints, JAX-WS, 102-103
Destination interface, 250-253, 255 Enterprise Technologies, 4
@Digits annotation, 205 entities, 219-222
@Discriminator annotation, 221 caching, 241-243
Dispatch-based dynamic client, JAX-WS, 105- CRUD operations on, 229-232
107 entity manager, 222-226

disposer methods, 174 inheriting from superclasses, 221
@Disposes annotation, 174 locking for, 239-241
Don't Repeat Yourself design pattern, 41 persistence context, 222-226
durable publisher/producer, 254 persistence unit, 222-226
dynamic contextual objects, 198-201 transactions for, 239-241
DynamicFeature interface, 91 validating, 237-239

@Entity annotation, 219
E entity interceptors, JAX-RS, 88, 92-94

entity listeners, 232-235
. entity manager, 222-226
EJB (Enterprise JavaBeans), 5, 8, 145 entity providers, JAX-RS, 82-84, 86
asynchronous invocation of methods, 159-
160

.ear file extension, 156

entity-listeners element, 234
entity-mappings element, 234
Embeddable API for, 164-165 @EntityListeners annotation, 233
injecting in EL expressions, 35 EntityManager interface

life-cycle callback methods, 151-154, 186 createNamed XXX methods, 229
message-driven beans (MDB), 154-156, 253 createNativeXXX methods, 229
movie application using, 277
no-interface view of, 146, 149
passivation of, 148

portable global JNDI name for, 156-157
remote access of, 146, 149

session beans

merge method, 231

remove method, 232
EntityManagerFactory interface, 226, 242
EntityTransaction interface, 239

merge method, 239

persist method, 239

singleton, 150-151 refresh method, 239
stateful, 145-148 remove method, 239
stateless, 148-150 rollback method, 240

Timer Service, 160-164

error mapping, 29
transactions with, 157-159

error-page element, 29

@EJB annotation, 149 event listeners, 17-20, 22, 41, 44, 46, 49
EJB Lite, 165-166 events, CDI, 182-183

ejb-jar.xml file, 156 example movie application

EL (Expression Language), 8 Add Movie component, 304-310

facelets using, 35

referencing resources, 37
@ElementCollection annotation, 220, 222
@Embeddable annotation, 220
embeddable classes, 220
Embeddable EJB API, 164-165
@Embedded annotation, 220
Encoder interface, 138-141
end element, 270

Chat Room component, 292-298
Movie Points component, 318-325
problem statement for, 276-278
sample application for, 278-282
Show Booking component, 283-292
software requirements for, 275
Ticket Sales component, 310-318

334 | Index

View and Delete Movies component, 299-
304
exception handling
chunk-oriented batch processing, 264
mapping exceptions, 29, 87-88
exception-type element, 30
exclude element, 168, 264
explicit bean archive, 168
Expression Language (see EL)
extended persistence context, 225
extension points, client-side, 47-49

F

f: prefix, 34
fiajax element, 43-46, 49, 72
f:convertDateTime element, 47
f:converter element, 46
f:convertNumber element, 47
f:event element, 46
f:passThroughAttribute element, 60
f:passThroughAttributes element, 60
f:validateBean element, 49, 211
fivalidateDoubleRange element, 48
fivalidateLength element, 48
f:validator element, 46, 49
fivalueChangeListener element, 49
f:view element, 58
facelets, 34-37

tag libraries for, 34

template client pages for, 36-37

templates for, 35-37, 57
Faces Flow, 51-57

defining flows, 53

nodes in, 52

packaging flows, 53-57

scope of beans in a flow, 53
faces-config.xml file, 51
@FacesBehavior annotation, 49
@FacesConverter annotation, 48
FacesMessage class, 49
@FacesValidator annotation, 49
fail element, 270
FetchType enumeration, 221
filter chains, JAX-RS, 92
filter element, 16
filter-mapping element, 16
filters

JAX-RS, 88-92

servlet, 16-17

flow element, 268

flow-call element, 56
flow-definition element, 53, 56
flow-return element, 56
FlowBuilder class, 53

flows, JSF (see Faces Flow)
@FlowScoped annotation, 53
fn: prefix, 34

@ForeignKey annotation, 228
@FormParam annotation, 77, 81
@Future annotation, 206

G

@GET annotation, 74, 77
GlassFish server, 6, 327
@GroupSequence annotation, 211

H

h: prefix, 34, 40

h:body element, 64

h:button element, 47, 63
h:commandButton element, 41, 44, 61, 72
h:commandLink element, 61
h:dataTable element, 61

h:form element, 62, 71
h:graphicImage element, 62
h:inputFile element, 71
h:inputHidden element, 62
h:inputSecret element, 63
h:inputText element, 40, 44, 63
h:inputTextArea element, 63

h:link element, 47, 64
h:outputFormat element, 64
h:outputLabel element, 64
h:outputLink element, 65
h:outputScript element, 43, 65
h:outputStylesheet element, 66
h:outputText element, 65
h:panelGrid element, 66
h:selectBooleanCheckbox element, 67
h:selectManyCheckbox element, 69
h:selectManyListbox element, 70
h:selectManyMenu element, 71
h:selectOneListbox element, 68
h:selectOneMenu element, 68
h:selectOneRadio element, 67
handlers, JAX-WS, 107-109
@HEAD annotation, 77, 78

Index

335

@HeaderParam annotation, 7, 81
HTMLS, 2
HTTP cookies, sending and receiving, 12, 14
HTTP headers, filters for, 88
HTTP messages, entity interceptors for, 88
HTTP methods, binding with JAX-RS, 77-79
HTTP requests

binding resources to, 81-82

JAX-RS client API handling, 84-87

JSF support for, 46-47

servlets handling, 12-13
HTTP upgrade processing, 31-32
http-method-omission element, 27
@HttpConstraint annotation, 25
HttpHeaders interface, 82
HttpMethod class, 79
@HttpMethodConstraint annotation, 25
HttpServlet class, 11

(see also servlets)
HttpServletRequest bean type, 186
HttpServletRequest class, 12

authenticate method, 28

getPart method, 30

getParts method, 30

getRequestDispatcher method, 15

login method, 28

logout method, 28

upgrade method, 31
HttpServletResponse class, 12
HttpServletResponse.sendRedirect method, 15
HttpSession bean type, 186
HttpSession interface, 14
HttpSessionActivationListener interface, 18
HttpSessionAttributeListener interface, 19
HttpSessionBindingListener interface, 19
HttpSessionListener interface, 18
HttpUpgradeHandler interface, 31

1/0, nonblocking, 22-23

@Id annotation, 220, 228

IETF RFC 6455 Protocol, 121

if element, 51

implicit bean archive, 168
inbound-parameter element, 56
include element, 264

@Index annotation, 228
@Inheritance annotation, 221
inheritance from superclasses, 221

@Inject annotation, 170-171, 248
injection points, 35, 170-171
input element, 59

@Interceptor annotation, 175
interceptor chains, JAX-RS, 93
@InterceptorBinding annotation, 175
interceptors, 5, 9, 174-178
interceptors element, 177
InvocationCallback interface, 86
invoke application phase, JSE 42
ItemProcessListener interface, 266
ItemProcessor interface, 258, 261
ItemReader interface, 258, 260
ItemReadListener interface, 266
ItemWriteListener interface, 266
ItemWriter interface, 258, 260

J

Java API for XML Binding (see JAXB)
Java API for XML Web Services (see JAX-WS)
Java Community Process (see JCP)
Java EE 6 Pocket Guide (O’Reilly), xiii
Java EE 7, 1-3

architecture, 5-6

component specifications, 3-5

deliverables, 3

new features, 6

specifications, list of, 329-330

tutorial for, 277
Java EE Connector Architecture (see JCA)
Java Message Service (see JMS)
Java Persistence API (see JPA)
Java Persistence Query Language (see JPQL)
Java Specification Request (see JSR)
Java Transaction API (see JTA)
JavaMail, 10
JavaScript Object Notation (see JSON)
JavaServer Faces (see JSF)
javax.ejb package, 164
javax.faces library, 43
javax.persistence.criteria package, 229
javax.persistence.metamodel package, 229
JAX-RS (Java API for RESTful Web Services), 7,

73

Bean Validation with, 94-96

binding HT TP methods, 77-79

client API, 84-87

entity interceptors, 88, 92-94

entity providers, 82-84, 86

336 | Index

exceptions, mapping, 87-88
filters, 88-92
movie application using, 277, 299-304, 326
resources
accessing, 73-77
binding requests to, 81-82
restricting media types of, 79-80
JAX-WS (Java API for XML Web Services), 97—
98
Dispatch-based dynamic client, 105-107
Endpoint-based endpoints, 102-103
handlers, 107-109
Provider-based dynamic endpoints, 101-102
web service client, 103-105
web service endpoints, 98-101
WSDL mapping, 98
JAXB (Java API for XML Binding), 97, 100, 106
JCA (Java EE Connector Architecture), 10
JCP (Java Community Process), 3
JMS (Java Message Service), 2, 5, 7, 245
administered objects, 245
classic API for, 247
client, 245
message-driven beans for, 154
messages, 245
acknowledgment mode, 251
body component, 247
header component, 246
property component, 246
receiving asynchronously, 249, 253-254
receiving synchronously, 251-253
sending, 247-251
types of, 247
movie application using, 277, 318-325
Point-to-Point messaging model, 245
providers, 245
Publish-Subscribe messaging model, 246
quality of service, 246, 254
simplified API for, 247
temporary destinations, 255
JMSConnectionFactory class, 248
JMSConsumer interface, 252
JMSContext interface, 2, 248, 252, 255
@JMSDestinationDefinition annotation, 248
@JSMDestinationDefinitions annotation, 248
@JMSPasswordCredential annotation, 249
JMSProducer interface, 2, 255
JNDI name, for EJB, 156-157
job element, 259, 265, 267

JobListener interface, 266
JobOperator interface, 258, 262
JobRepository interface, 258
jobs, batch, 257
decisions in, 269-271
flows in, 268
partitioning, 271-274
sequence of, specifying, 267-271
splits in, 269
JPA (Java Persistence API), 5,219
Bean Validation with, 237-239
caching entities, 241-243
CRUD operations on entities, 229-232
entities, 219-222
entity listeners, 232-235
locking, 239-241
movie application using, 326
persistence context, 222-226
persistence unit, 222-226
schema generation, 226-229
stored procedures, 235-236
transactions, 239-241
JPQL (Java Persistence Query Language), 229
232
JSESSIONID cookie, 14
JSF (JavaServer Faces), 2, 9, 33
Ajax supported by, 43-46, 72
Bean Validation with, 49, 50-51
client-side extension points, 47-49
component tags, 60-72
composite components, 38-41
facelets, 34-37
Faces Flow, 51-57
HTTP GET requests with, 46-47
movie application using, 277, 283-292, 326
navigation rules, 51
passthrough attributes with, 59
request processing life-cycle phases, 41-43
resource handling, 37
resource library contracts, 57
server-side attached objects, 47-49
UI component tree for, 41
jst.js file, 43
JSON (JavaScript Object Notation), 111-112
consuming, 112-113, 116
generating, 114-115, 117-119
movie application using, 304-310, 326
JSON Processing, 2, 6, 7, 83, 111-112
Object Model API, 116-119

Index | 337

streaming API, 112-115
JsonArray interface, 117
JsonArrayBuilder interface, 117
JsonBuilderFactory class, 118
JsonGenerator class, 114
JsonObject class, 117
JsonObjectBuilder class, 117
JsonParser class, 112
JsonParserFactory class, 112
JsonReader class, 116
JsonReaderFactory class, 116
JsonWriter class, 118
JSR (Java Specification Request), 329-330

JSR 101, 4, 6, 330

JSR 109, 4, 330

JSR 115, 4, 330

JSR 153, 6

JSR 181, 4, 330

JSR 196, 5, 330

JSR 222, 4, 330

JSR 224, 4,97, 330

JSR 236, 4, 189, 329

JSR 245, 3, 329

JSR 250, 4, 329

JSR 316, 4

JSR 318, 4, 329

JSR 322, 4, 329

JSR 330, 4, 329

JSR 338, 4, 219, 329

JSR 339, 4, 73, 330

JSR 340, 3, 11, 329

JSR 341, 3, 329

JSR 342, 3

JSR 343, 4, 245, 329

JSR 344, 3, 33, 329

JSR 345, 4, 145, 330

JSR 346, 4, 167, 330

JSR 349, 4, 203, 330

JSR 352, 4, 257, 330

JSR 353, 4,111, 329

JSR 356, 4, 121, 329

JSR 45, 3, 329

JSR 52, 3,329

JSR 77, 4, 330

JSR 88, 4, 6, 330

JSR 907, 4, 215, 330

JSR 919, 4, 330

JSR 93, 4, 6, 330

JTA (Java Transaction API), 215

container-managed transactions, 216-218
entities, 239

movie application using, 327
@TransactionScoped annotation, 218
user-managed transactions, 215-216

jta-data-source element, 224

L

life-cycle contexts, 167
life-cycle events

CDI container, 184

entity listeners for, 232-235

entity validation for, 238

interceptors for, 151-154, 177
resource initialization or cleanup, 186

listener element, 267
listeners, 17

(see also event listeners)
for batch execution, 266-267
entity listeners, 232-235

listeners element, 267

@Local annotation, 147
@Lock annotation, 151
locking entities, 239-241
@Logging annotation, 175
logical handlers, JAX-WS, 107
LogicalHandler interface, 107

M

@MailSessionDefinition annotation, 10
@MailSessionDefinitions annotation, 10
ManageableThread interface, 198

managed beans, 5

managed threads, 197-198
ManagedExecutorService interface, 2, 189-194

execute method, 191
invokeAll method, 191
invokeAny method, 192
submit method, 191

ManagedScheduledExecutorService interface,

194-197

schedule method, 195
scheduleAtFixedRate method, 196
scheduleWithFixedDelay method, 197

ManagedTask interface, 192
ManagedTaskListener interface, 193

taskAborted method, 193

338 | Index

taskDone method, 193 for facelets tag libraries, 34

taskStarting method, 193 navigation rules, JSE 51
taskSubmitted method, 193 navigation-rule element, 51
ManagedThreadFactor interface, 197-198 NetBeans, 275
Management and Security Technologies, 4 @New annotation, 172
@ManyToMany annotation, 221 next element, 270
@ManyToOne annotation, 221, 228 nonblocking I/0, 22-23
@MapKey annotation, 222 @NotNull annotation, 204, 207, 237
@MapKeyClass annotation, 222 @Null annotation, 204
@MapKeyColumn annotation, 222
MapMessage type, 247 0

@MappedSuperclass annotation, 221
mapper element, 272
@MatrixParam annotation, 81
@Max annotation, 204 ;
MDB (message-driven beans), 154-156, 253 @OnClose annotat}on, 126, 132
message payload (see entity providers) @OnError annotatlon,'126, 132
message-driven beans (see MDB) @OneToMany annotation, 221
message-oriented middleware (see MOM) @OneToOne aIll’lO.tatIOIl, 221
Message.set)MSExpiration method, 255 @Oneway annotatlon,_ 100
MessageBodyReader interface, 80, 83 @OnMessage anno.tatlon, 123,133
MessageBodyWriter interface, 80, 83 @O'nO'pfzn annotation, 126, 132
MessageConsumer interface, 253 optimistic concurrency control, 240
@MessageDriven annotation, 154, 254 @OPTIONS annotation, 77, 79
MessageDrivenContext class, 156 Oraclfe GlassFish Server, 6
MessageHandler class, 128, 135 ordering element, 24

MessageListener interface, 155 orm.xml file, 234
MessageListener.onMessage method, 254

MessageProducer interface, 251, 253 P

messages, JMS (see JMS: messages) Part.getSubmittedFileName method, 31
metadata-complete element, 14, 25 partial page rendering, 43

methods, constraints for, 212-214 partial view processing, 43

@Min annotation, 204 partition element, 272
Model-View-Controller (see MVC) PartitionMapper interface, 273

Object Model API, JSON Processing, 116-119
ObjectMessage type, 247
observer beans, 182

MOM (message-oriented middleware), 245 @Past annotation, 205

movie application example (see example movie @Path annotation, 73, 74
application) @PathParam annotation, 74, 124

@MultipartConfig annotation, 30 @Pattern annotation, 206, 207

MVC (Model-View-Controller), 33 payload (see entity providers)

PbC (Programming by Contract), 212
N @PermitAll annotation, 27

@NameBinding annotation. 91 @PerPersist annotation, 232

@Named annotation, 35, 172, 261 pers%stence, 9 (see JPA)
@NamedQueries annotation, 230 pers¥stence context, 222-226
@NamedQuery annotation, 230, 231, 241 persistence element, 224
@NamedStoredProcedureQuery annotation, persistence unit, 222-226

235-236 persistence-unit element, 224
namespaces persistence-unit-metadata element, 234

for composite components, 39 persistence.xml file, 223, 226, 238, 241

Index | 339

@PersistenceContext annotation, 222

@PersistenceUnit annotation, 223

Point-to-Point messaging model, 245

portable extensions, CDI, 183-185

@POST annotation, 77

@PostActivate annotation, 154

@PostConstruct annotation, 150, 152, 186

@PostLoad annotation, 232

@PostPersist annotation, 232

@PostRemove annotation, 233

@PostUpdate annotation, 232

pre-persist life-cycle callback method, 238

pre-remove life-cycle callback method, 238

pre-update life-cycle callback method, 238

@PreDestroy annotation, 153, 186

@PreMatching annotation, 90

@PrePassivate annotation, 148, 153

@PreRemove annotation, 232

@PreUpdate annotation, 232

Principal bean type, 185

Priorities class, 93

@Priority annotation, 9, 93, 176, 178

process validations phase, JSF, 42

ProcessAnnotatedType event, 184

ProcessInjectionTarget event, 184

ProcessProducer event, 184

producer beans, 182

producer methods, 173-174

@Produces annotation, 79, 173-174

programmatic client endpoints, WebSocket,
135-137

programmatic server endpoints, WebSocket,
128-132

Programming by Contract (see PbC)

properties element, 224

protocol handlers, JAX-WS, 107, 108

@Provider annotation, 80, 90

Provider-based dynamic endpoints, JAX-WS,
101-102

Providers interface, 82

providers, JMS, 245

Publish-Subscribe messaging model, 246

@PUT annotation, 77, 78

Q

@Qualifier annotation, 171-172
quality of service, JMS, 246, 254
@QueryParam annotation, 7, 75
Queue interface, 251

QueueBrowser interface, 253
QueueConnectionFactory interface, 250
queues, JMS, 245

R

Reader-Processor-Writer pattern, 258
ReaderInterceptor interface, 92
ReadListener interface, 22
Reference Implementation (see RI)
@Remote annotation, 146, 147, 149, 156
render response phase, JSF, 43
Request interface, 82
request processing lifecycle phases, 41-43
RequestDispatcher class, 15
@RequestScoped annotation, 180
@Resource annotation, 190, 194, 197, 199, 253
resource library contracts, JSE, 57
resource packaging, 28-29
resource-env-ref element, 190
resource-env-ref-name element, 195, 198, 199
resource-env-ref-type element, 190, 195, 198,
199
resources
files, referencing, 37
RESTful Web Services
accessing, 73-77
binding requests to, 81-82
restricting media types of, 79-80
validation of, 94-96
server, conserving, 20-22
Response class, 87
RESTful Web Services, 7, 73
(see also JAX-RS)
restore view phase, JSF, 42
retryable-exception-classes element, 264
RetryProcessListener interface, 265, 266
RetryReadListener interface, 265, 266
RetryWriteListener interface, 265, 266
RI (Reference Implementation), 3, 6
@RolesAllowed annotation, 27
Runnable interface, 190, 195

S

scan element, 168
@Schedule annotation, 160
scheduled tasks, 194-197
schema generation, 226-229

340 | Index

scopes, CDI, 179-180
@ApplicationScoped, 180
@ConversationScoped, 180
@DependentScoped, 180
@FlowScoped, 53
@RequestScoped, 180
@SessionScoped, 180
@TransactionScoped, 10, 218
@ViewScoped, 35
security
authentication for WebSocket endpoints,
142-143
security principal name, checking, 185
servlets, 25-28
security-constraint element, 26
SecurityContext interface, 82
SEI (Service Endpoint Interface)-based end-
point, 99
Serializable interface, 220
server-side attached objects, 47-49
ServerApplicationConfig interface, 130
@ServerEndpoint annotation, 122-127, 140
ServerEndpointConfig.Configurator class, 131
Service Endpoint Interface-based endpoint (see
SEI-based endpoint)
Service Provider Interface (see SPI)
@ServiceMode annotation, 102
servlet element, 13
servlet-mapping element, 13
Servlet.service method, 31
ServletContainerlInitializer.onStartup method,
15,17, 20
ServletContext bean type, 186
ServletContext class, 14
addFilter method, 17
addListener method, 17, 20
addServlet method, 15
getContext method, 15
getRequestDispatcher method, 15
getResource method, 28
getResourceAsStream method, 28
getSessionCookieConfig method, 14
ServletContextAttributeListener interface, 18
ServletContextListener interface, 17
ServletContextListener.contextInitialized meth-
od, 15, 17,20
ServletInputStream class, 22
ServletOutputStream class, 22

ServletRegistration.setAsyncSupported method,
21
ServletRequestAttributeListener interface, 20
ServletRequestListener interface, 19
servlets, 8, 11
asynchronous processing of, 20-22
context for, 14
defining, 11, 13, 15
error mapping for, 29
event listeners for, 17-20
filters for, 16-17
HTTP cookies sent and received by, 12, 14
HTTP requests forwarded by, 15
HTTP requests handled by, 12-13
HTTP responses redirected by, 15
HTTP upgrade processing for, 31-32
initialization parameters for, 11, 13
lifecycle call methods, overriding, 13
multipart requests handled by, 30
nonblocking I/O for, 22-23
packaging, 14
resource packaging for, 28-29
security for, 25-28
URLs deployed at, 11
@ServletSecurity annotation, 25
session beans
asynchronous processing of, 159-160
portable global JNDI name for, 156-157
singleton, 150-151
stateful, 145-148
stateless, 35, 148-150
Session interface, 253
commit method, 250
createXXXMessage methods, 251
getAsyncRemote method, 129, 135
getBasicRemote method, 129, 135
rollback method, 250
session tracking, 14
@SessionScoped annotation, 180
@Singleton annotation, 150
singleton session beans, 150-151
@Size annotation, 205, 207, 237
skippable-exception-classes element, 264
SkipProcessListener interface, 265, 266
SkipReadListener interface, 265, 266
SkipWriteListener interface, 265, 266
SOAP-Based Web Services, 97-98
(see also JAX-WS)
@SOAPBinding annotation, 100

Index | 341

SOAPHandler interface, 108
specifications, 3-5, 329-330
(see also component specifications; JSR)
SPI (Service Provider Interface), 183-185
split element, 269
SQL queries, 229-232
@SQLResultSetMapping annotation, 229
@Startup annotation, 150
@Stateful annotation, 146
stateful session beans, 145-148
@Stateless annotation, 35, 148
stateless session beans, 35, 148-150
step element, 259, 265, 267
StepListener interface, 266
@Stereotype annotation, 181
stereotypes, CDI, 181-182
stop element, 270
stored procedures, 235-236
streaming API, JSON Processing, 112-115
StreamMessage type, 247
superclasses, entities inheriting from, 221
synchronous communication, JMS messages,
251-253

T

tag libraries, for facelets, 34
@Target annotation, 175, 207
tasks

CDI beans as, 191

scheduling, 194-197

submitting asynchronously, 189-194
TCK (Technology Compliance Kit), 3, 6
template client pages, for facelets, 36-37
templates, for facelets, 35-37, 57
templating system, 34
@Temporal annotation, 221
TemporaryQueue.delete method, 256
TemporaryTopic.delete method, 256
TextMessage type, 247
threads, managed (see managed threads)
@Timeout annotation, 162
Timer Service, E]B, 160-164
TimerService class, 161
Topic interface, 251, 253
TopicConnection interface, 253
TopicConnectionFactory interface, 250, 253
topics, JMS, 246
TopicSession.createDurableSubscriber method,

253

@Transactional annotation, 2, 10, 177, 216-218
transactional observers, 183
@Transactional. TxType annotation, 217
@TransactionAttribute annotation, 158
@TransactionManagement annotation, 157
TransactionManager.getStatus method, 218
transactions, 10

for asynchronous tasks, 192

committing, 250

container-managed, 157-159, 216-218

bean-managed, 157-159

entity, 239-241

rolling back, 250

user-managed, 215-216
@TransactionScoped annotation, 10, 218
@TransportProtected annotation, 27
type attribute, input element, 59

U

ui: prefix, 34

ui:component element, 36
ui:composition element, 36

ui:define element, 36, 37

ui:fragment element, 36

uizinclude element, 36

uizinsert element, 36, 57
UIComponent class, 60

update model values phase, JSF, 42
Urilnfo interface, 82
user-data-constraint element, 26

user- managed transactions, 215-216
User.nameUpdated method, 49
UserTransaction bean type, 185
UserTransaction interface, 157, 192, 215-216
UserTransaction.getStatus method, 218
using page, 38

v

@Valid annotation, 96, 209, 237

@ValidateExecutable annotation, 213

validation (see Bean Validation; constraints; val-
idators, JSF)

Validator.validate method, 239

ValidatorException class, 49

validators, JSE, 48

ValueChangeListener interface, 49

@Version annotation, 240

@Vetoed annotation, 9, 169

342 | Index

view declaration language, 34 @WebFilter annotation, 16

(see also facelets) @WeblnitParam annotation, 11, 13, 16
@ViewScoped annotation, 35 @WebListener annotation, 17
@WebMethod annotation, 99
w @WebParam annotation, 99

@WebService annotation, 98, 103
@WebServiceProvider annotation, 101
@WebServlet annotation, 11

(see also servlets)
. ; WebSocket constructor, 137
session beans in, 156 WebSocket protocol, 2, 6, 121-122

web fragments, 6 ?4_25 annotated client endpoints, 132-135
web service endpoints, JAX-WS, 98-101 annotated server endpoints, 122-127

Web Service Technologies, 4 authentication for, 142-143
Web Services Description Language (see encoders and decoders. 138—141

WSDL) . JavaScript API for, 137-138
Web Technologies, 3 movie application using, 277, 292-298, 326
web-fragment element, 24 programmatic client endpoints, 135-137
web-fragment.xml ﬁl_e’ 24 programmatic server endpoints, 128-132
web-resource-collection element, 26 WriteListener interface, 22, 23
web.xml file WriterInterceptor interface, 92

asynchronous tasks in, 190 WSDL (Web Services Description Language),
context services in, 199 97.98.103-105

defining servlet filters in, 16
defining servlets in, 13

W3C JavaScript API, 121, 137-138
.war file extension, 28
RESTful resources in, 74
servlets packaged in, 14

enabling asynchronous behavior in, 21 X
error mapping in, 30 XHTML 1.0, facelets using, 34
managed threads in, 197 xhtml file extension, 34, 38
scheduled tasks in, 195 XML, mapping to and from Java, 83, 97, 100,
security constraints in, 26, 142 106
WebConnection interface, 31 @XmlRootElement annotation, 74, 75, 100

@WebFault annotation, 100

Index | 343

About the Author

Arun Gupta is a Java Evangelist working at Oracle. As a founding member of the Java
EE team, he works to create and foster the community around Java EE, GlassFish, and
WebLogic. He led a cross-functional team to drive the global launch of the Java EE 7
platform through strategy, planning, and execution of content, marketing campaigns,
and programs. He is extremely passionate about developers and loves to engage with
partners, customers, Java user groups, Java champions, and others around the world to
spread the goodness of Java. Arun has extensive speaking experience in more than 30
countries on myriad topics. An author, a prolific blogger at blogs.oracle.com/arungup-
ta, an avid runner, and a globe trotter, Arun is easily accessible at @arungupta.

Colophon

The animals on the cover of Java EE 7 Essentials are Asiatic glassfish (members of the
family Ambassidae). Found only in the waters of Asia and Oceania, the fish in this family
are divided into eight genera that include around 40 species. In addition to the Asiatic
glassfish, the family also includes the Striped Glass Catfish, the Borneo Glass Catfish,
the Duskyfin glassfish, and the Three-Striped African Glass Catfish. Most members of
this family are quite small, but the larger species can grow to a maximum of 10 inches.

The most popular member of Ambassidae among aquarium hobbyists is the Indian
glassfish, due to its distinctive transparent body. In many species of glassfish, the internal
organs and skeleton are visible through the skin. Unfortunately, this remarkable trait
has led to the practice of injecting dye directly into fish to produce neon stripes or spots.
This process is incredibly harmful to the fish, and most die during the procedure. Any
that live are sold as “painted” or “disco” fish, but they are very susceptible to infection
and disease and usually die within weeks or months. In 1997, the UK publication Prac-
tical Fishkeeping started a largely successful campaign to stop merchants from stocking
fish that have been dyed. While the movement was able to halt the sale of these fish in
almost half the stores in the UK, the problem still persists in global markets.

Despite a reputation of being difficult to keep, glassfish actually make excellent aquar-
ium additions if given the right environment. Their natural habitats range from fresh
to salt water depending on the species, but most prefer standing freshwater as opposed
to brackish salt water. It is better to keep a school instead of an individual or a pair, as
a group of these fish will act much more energetically and boldly than would one or two
alone.

The cover image is from a loose plate, origin unknown. The cover font is Adobe ITC
Garamond. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Con-
densed; and the code font is Dalton Maag’s Ubuntu Mono.

https://blogs.oracle.com/arungupta/
https://blogs.oracle.com/arungupta/

	Copyright
	Table of Contents
	Foreword
	Preface
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Java Platform, Enterprise Edition
	Introduction
	Deliverables
	What’s New in Java EE 7

	Chapter 2. Servlets
	WebServlet
	Servlet Filters
	Event Listeners
	Asynchronous Support
	Nonblocking I/O
	Web Fragments
	Security
	Resource Packaging
	Error Mapping
	Handling Multipart Requests
	Upgrade Processing

	Chapter 3. JavaServer Faces
	Facelets
	Resource Handling
	Composite Components
	Request Processing Life-Cycle Phases
	Ajax
	HTTP GET
	Server and Client Extension Points
	Validating Data
	Navigation Rules
	Faces Flow
	Resource Library Contracts
	Passthrough Attributes and HTML5-Friendly Markup
	Component Tags

	Chapter 4. RESTful Web Services
	Resources
	Binding HTTP Methods
	Multiple Resource Representations
	Binding a Request to a Resource
	Entity Providers
	Client API
	Mapping Exceptions
	Filters and Entity Interceptors
	Validation of Resources

	Chapter 5. SOAP-Based Web Services
	Web Service Endpoints
	Provider-Based Dynamic Endpoints
	Endpoint-Based Endpoints
	Web Service Client
	Dispatch-Based Dynamic Client
	Handlers

	Chapter 6. JSON Processing
	Streaming API
	Consuming JSON Using the Streaming API
	Producing JSON Using the Streaming API

	Object Model API
	Consuming JSON Using the Object Model API
	Producing JSON Using the Object Model API

	Chapter 7. WebSocket
	Annotated Server Endpoint
	Programmatic Server Endpoint
	Annotated Client Endpoint
	Programmatic Client Endpoint
	JavaScript WebSocket Client
	Encoders and Decoders
	Integration with Java EE Security

	Chapter 8. Enterprise JavaBeans
	Stateful Session Beans
	Stateless Session Beans
	Singleton Session Beans
	Life-Cycle Event Callbacks
	Message-Driven Beans
	Portable Global JNDI Names
	Transactions
	Asynchronous Invocation
	Timers
	Embeddable API
	EJB Lite

	Chapter 9. Contexts and Dependency Injection
	Discovery of Beans
	Injection Points
	Qualifier and Alternative
	Producer and Disposer
	Interceptors
	Decorators
	Scopes and Contexts
	Stereotypes
	Events
	Portable Extensions
	Built-in Beans
	Life-Cycle Callbacks

	Chapter 10. Concurrency Utilities
	Asynchronous Tasks
	Schedule Tasks
	Managed Threads
	Dynamic Contextual Objects

	Chapter 11. Bean Validation
	Built-in Constraints
	Defining a Custom Constraint
	Validation Groups
	Method and Constructor Constraint

	Chapter 12. Java Transaction
	User-Managed Transactions
	Container-Managed Transactions
	@TransactionScoped

	Chapter 13. Java Persistence
	Entities
	Persistence Unit, Persistence Context, and Entity Manager
	Schema Generation
	Create, Read, Update, and Delete Entities
	Entity Listeners
	Stored Procedures
	Validating the Entities
	Transactions and Locking
	Caching

	Chapter 14. Java Message Service
	Sending a Message
	Receiving a Message Synchronously
	Receiving a Message Asynchronously
	Quality of Service
	Temporary Destinations

	Chapter 15. Batch Processing
	Chunk-Oriented Processing
	Custom Checkpointing
	Exception Handling

	Batchlet Processing
	Listeners
	Job Sequence
	Flow
	Split
	Decision

	Partitioning the Job

	Chapter 16. Build an End-to-End Application
	Introduction
	Software Requirements

	Problem Statement
	Lab Flow

	Walkthrough of a Sample Application
	Show Booking (JavaServer Faces)
	Chat Room (Java API for WebSocket)
	View and Delete Movies (Java API for RESTful Web Services)
	Add Movie (Java API for JSON Processing)
	Ticket Sales (Batch Applications for the Java Platform)
	Movie Points (Java Message Service 2)
	Conclusion
	Troubleshooting
	Completed Solution

	Appendix A. Further Reading
	Web Technology Specifications
	Enterprise Technology Specifications
	Web Service Technologies
	Management and Security Technologies

	Index
	About the Author

