MAKE THE
REUNNYIRIE
N/A\V/AN

Java EE 7 Hands-on Lab
With GlassFish 4 Open
Source Edition

Version 1.0.4

Arun Gupta, Java EE & GlassFish Guy
blogs.oracle.com/arungupta, @arungupta

Java EE 7 Hands-on Lab using GlassFish 4

Table of Contents

1.0 INTrodUCtiONccceeiiiiiiiiiii e s e e e e s e e s naans 3
1.1 SOftWare REQUITEIMENT ... cueeeeeereerseerreeseesseeesseessseessessssesssessss s ssssssssssssssess st sessssesssssssssssssssssssssssess 3
2.0 Problem Statementcooiiiiiiiiiiiemiieiic e 4
2.0 LA FLOW ouieeteceeeeeeeseiseesse ettt s s s sesss s sss s s b s8R R R bbbt 6
3.0 Walk-through of Sample Application......ccccceciiiiiiiiiiieiiiirrccrrece e reeeee e eneseesennes 6
4.0 Show Booking (JAvaServer FACES)ccuuuceirireeeunnieeiiieennnnceeereennnsssesseeennsssseesssennnnnns 13
5.0 Chat Room (Java APl for WebS0CKEeL).........cceiiiiemmcciiriirinnnceeeeeeennnneeeeseennnsnceeseeenns 21
6.0 View and Delete Movie (Java API for RESTful Web Services).....cccccceeerrrerennnccerrenees 28
7.0 Add Movie (Java API for JSON Processing)ccceceeeerreeennnnccerreeennnneeeeseennnnncessseenns 34
8.0 Ticket Sales (Batch Applications for the Java Platform)........ccccceeeuciiiriirnnnccennnnes 40
9.0 Movie Points (Java MeSSage SErViCe 2)ccevieeeeecierreeennnnceeeeeeennnsceeeeseennnssssesseenns 48
0 0o T 1] 1 TN 56
11.0 TroubleshOOtiNgccceuiiieeiiiiiiiirec et rrneecrennee s rnaseeseenssesenasseseensssssensssseennes 57
12.0 AcknOWIedgemeENtsS......ccceueiiiiiniiiieiiceieeecereneeerennnerennseeseenssesennssessensssssenssseennes 58
13.0 Completed SOIULIONSccceuciiiiniiieicirrecerrnecereeeeerrneeeeseeeneesennsecseensssssenssseennes 58
I 0 10 T 58
LA VI T o] o T 2 T (o] o VRN 58
APPENAIX c.eiieeiiiiieeiiieniieienreertnneereneseerenssesrenssssrensssssensssssensssssensssssensssssensssssenssessennes 59
Appendix A: Configure GlassFish 4 in NetBeans IDE.......eeeeesesseessessssssseeenns 59

Java EE 7 Hands-on Lab using GlassFish 4

1.0 Introduction

The Java EE 7 platform continues the ease of development push that
characterized prior releases by bringing further simplification to enterprise
development. It adds new and important APIs such as the REST client APl in
JAX-RS 2.0 and the long awaited Batch Processing API. Java Message Service
2.0 has undergone an extreme makeover to align with the improvements in the
Java language. There are plenty of improvements to several other components.
Newer web standards like HTML 5, WebSocket, and JSON processing are
embraced to build modern web applications.

This hands-on lab will build a typical 3-tier end-to-end application using the
following Java EE 7 technologies:

* Java Persistence API 2.1 (JSR 338)

* Java API for RESTful Web Services 2.0 (JSR 339)

* Java Message Service 2.0 (JSR 343)

» JavaServer Faces 2.2 (JSR 344)

* Contexts and Dependency Injection 1.1 (JSR 346)

* Bean Validation 1.1 (JSR 349)

* Batch Applications for the Java Platform 1.0 (JSR 352)
* Java API for JSON Processing 1.0 (JSR 353)

» Java API for WebSocket 1.0 (JSR 356)

* Java Transaction API 1.2 (JSR 907)

Together these APIs will allow you to be more productive by simplifying
enterprise development.

The latest version of this document can be downloaded from
glassfish.org/hol/javaee7-hol.pdf.

1.1 Software Requirement

The following software needs to be downloaded and installed:

e JDK7 from
http://www.oracle.com/technetwork/java/javase/downloads/index.html.

* NetBeans 7.3 or higher “All” or “Java EE” version from
http://netbeans.org/downloads/. A preview of the downloads page is
shown in Figure 1 and highlights the exact “Download” button to be
clicked.

Java EE 7 Hands-on Lab using GlassFish 4

Supported technologies * Java SE Java EE C/C++ PHP All
L NetBeans Platform SDK []] []
L Java SE . .]
L Java FX . °]
L Java EE []
i) Java ME

L HTML5 ° [] []
%) Java Card™ 3 Connected —
Y C/C++ 3 °
L Groovy L[]
L PHP ° []
Bundled servers

L) GlassFish Server Open Source Edition 3.1.2.2
i Apache Tomcat 7.0.34 [)

(_ Download §(Download | Download | (_ Download §(Download |

Free, 75 MB Free, 171 MB Free, 49 MB Free, 49 MB Free, 184 MB
Figure 1: NetBeans Download Bu

e GlassFish 4 from http://download.java.net/glassfish/4.0/release/glassfish-
4.0.zip.

Configure GlassFish 4 in NetBeans IDE following the instructions in Appendix A.

2.0 Problem Statement

This hands-on lab builds a typical 3-tier Java EE 7 Web application that allows
customers to view the show timings for a movie in a 7-theater Cineplex and make
reservations. Users can add new movies and delete existing movies. Customers
can discuss the movie in a chat room. Total sales from each showing are
calculated at the end of the day. Customers also accrue points for watching

movies.
> Show Booking +—>

> Add/Delete Movie 4+—

Database

User > Ticket Sales 4+

o
- G

Figure 2: Application Flow

Interface

Java EE 7 Hands-on Lab using GlassFish 4

Figure 2 shows the key components of the application. The User Interface
initiates all the flows in the application. Show Booking, Add/Delete Movie and
Ticket Sales interact with the database; Movie Points may interact with the
database, however, this is out of scope for this application; and Chat Room does
not interact with the database.

The different functions of the application, as detailed above, utilize various Java

technologies and web standards in their implementation. Figure 3 shows how
different Java EE technologies are used in different flows.

—>

+—>

4 Enterprise JavaBeans
' d RESTful Web Services

> Batch Artifacts

4 Java Message Service === >
A 1 WebSocket Endpoint

Figure 3: Technologies Used in the Application

Database

Table 1 details the components and the selected technology used in its’
implementation.

Flow Description

User Interface Written entirely in JavaServer Faces (JSF).

Show Booking Uses lightweight Enterprise JavaBeans to communicate
with the database using Java Persistence API

Add/Delete Movie Implemented using RESTful Web Services. JSON is
used as on-the-wire data format.

Ticket Sales Uses Batch Applications for the Java Platform to
calculate the total sales and persist to the database.

Movie Points Uses Java Message Service (JMS) to update and obtain
loyalty reward points; an optional implementation using
database technology may be performed.

Chat Room Utilizes client-side JavaScript and JSON to communicate
with a WebSocket endpoint

Table 1 Technologies Used in the Application

Java EE 7 Hands-on Lab using GlassFish 4

2.1 Lab Flow

The attendees will start with an existing maven application and by following the
instructions and guidance provided by this lab they will:

* Read existing source code to gain an understanding of the structure of
the application and use of the selected platform technologies

* Add new and update existing code with provided fragments in order to
demonstrate usage of different technology stacks in the Java EE 7

platform.

This is not a comprehensive tutorial of Java EE. The attendees are expected to
know the basic Java EE concepts such as EJB, JPA, JAX-RS, and CDI. The
Java EE 7 Tutorial is a good place to learn all these concepts. However enough
explanation is provided in this guide to get you started with the application.

Disclaimer: This is a sample application and the code may not be following the
best practices to prevent SQL injection, cross-side scripting attacks, escaping
parameters, and other similar features expected of a robust enterprise
application. This is intentional such as to stay focused on explaining the
technology. It is highly recommended to make sure that the code copied from this
sample application is updated to meet those requirements.

3.0 Walk-through of Sample Application

Purpose: This section will download the sample application to be used in this
hands-on lab. A walk-through of the application will be performed to provide an
understanding of the application architecture.

3.1 Download the
sample application
from
glassfish.org/hol/movie

e OO0 REST Resources Configuration

Specify the way REST resources will be registered in the application:

plex7-starting-

template.zip and unzip.

This will create a
“‘movieplex7” directory
and unzips all the
content there.

3.2 In NetBeans IDE,

User is responsible for REST resources registration,
e.g. by implementing a specific subclass of javax.ws.rs.core.Application,
or by registering a specific servlet adaptor in web.xml.

(s) Create default Jersey REST servlet adaptor in web.xml.

™ Add Jersey library (JAX-RS reference implementation) to project classpath.

REST Resources Path: /webresources
Cancel ' OK '

Figure 4: REST Resources Configuration Dialog

Java EE 7 Hands-on Lab using GlassFish 4

LTS

select “File”, “Open Project...”,

select the unzipped directory, and click on “Open

Project”. The project structure is shown in Figure 5.

Opening the project will prompt to
create a configuration file to configure
the base URI of the REST resources
bundled in the application. The
application already contains a source
file that provides the needed
configuration. Click on “Cancel” to
dismiss this dialog.

3.3 Maven Coordinates: Expand
“Project Files” and double click on
‘pom.xml”. In the “pom.xml”, the Java
EE 7 APl is specified as a
<dependency>:

<dependencies>
<dependency>
<groupld>javax</groupIld>
<artifactId>javaee-
api</artifactId>
<version>7.0</version>
</dependency>
</dependencies>

This will ensure that Java EE 7 APlIs
are retrieved from central Maven
repository.

The Java EE 6 platform introduced the
notion of “profiles”. A profile is a
configuration of the Java EE platform
targeted at a specific class of
applications. All Java EE profiles share
a set of common features, such as
naming and resource injection,

packaging rules, security requirements,
etc. A profile may contain a proper subset

v @)alava EE 7 Hands-on Lab

v [.d Web Pages
v @ [E
@] template.xhtml
[d web.xml
» (] resources
@] index.xhtml
» (g RESTful Web Services
v [Source Packages
v [org.glassfish.movieplex7.entities
Movie.java
Sales.java
ShowTiming.java
Theater.java
Timeslot.java
rg.glassfish.movieplex7.rest
AbstractFacade.java
ApplicationConfig.java
MovieFacadeREST.java
ShowTimingFacadeREST.java
TheaterFacadeREST.java
TimeslotFacadeREST.java
Sources
c/mam/resources
META-INF
|E] create.sql
[&] load.sql
£ persistence.xml
| sales.csv
» [g Dependencies
» [& Java Dependencies
» (&l Project Files

Figure 5: Project Structure

EEEEE

'L_I

EHE‘IE‘[ET[E[E

4
45‘
458

S

] -~

or superset of the technologies contained in the platform.

The Java EE Web Profile is a profile of the Java EE Platform specifically targeted
at modern web applications. The complete set of specifications defined in the

Java EE 7 Hands-on Lab using GlassFish 4

Web Profile is defined in the Java EE 7 Web Profile Specification. GlassFish can
be downloaded in two different flavors — Full Platform or Web Profile.

This lab requires Full Platform download. All technologies used in this lab, except
Java Message Service and Batch Applications for the Java Platform, can be
deployed on Web Profile.

3.4 Default Data Source: Expand “Other Sources”, “src/main/resources”,
‘META-INF”, and double-click on “persistence.xml”. By - -

default, NetBeans opens the file in Design View. Click on ———— encem; =33
Source tab to view the XML source. IR © persistencexmi © S

Design History
It looks like: 1 k?xml version="1.0" «
2 E <persistence version:

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.0"
xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence 2 0.xsd">
<persistence-unit name="movieplex7PU" transaction-type="JTA">
<l--
<jta-data-source>java:comp/DefaultDataSource</jta-data-source>
-——>
<properties>
<property
name="javax.persistence.schema-generation.database.action"
value="drop-and-create" />
<property
name="javax.persistence.schema-generation.create-source"
value="script"/>
<property
name="javax.persistence.schema-generation.create-script-source"
value="META-INF/create.sql"/>
<property
name="javax.persistence.sqgl-load-script-source"”
value="META-INF/load.sql"/>
<property
name="eclipselink.deploy-on-startup"
value="true"/>
<property
name="eclipselink.logging.exceptions"”
value="false"/>
</properties>
</persistence-unit>
</persistence>

Figure 6: "persistence.xml" Source Tab

Notice <jta-data-source> is commented out, i.e. no data source element is
specified. This element identifies the JDBC resource to connect to in the runtime
environment of the underlying application server.

Java EE 7 Hands-on Lab using GlassFish 4

The Java EE 7 platform defines a new default DataSource that must be
provided by the runtime. This pre-configured data source is accessible under the

JNDI name

java:comp/DefaultDataSource

The JPA 2.1 specification says if neither jta-data-source nor non-jta-
data-source elements are specified, the deployer must specify a JTA data
source or the default JTA data source must be provided by the container.

For GlassFish 4, the default data source is bound to the JDBC resource

jdbc/_default.

Clicking back and forth between “Design” and “Source” view may prompt the

error shown below:

e 00

Warning

The project does not have the target server set properly.

Resolve Missing Server Problem to set the target server.

O Java Persistence features are server-dependent.Right-click the project in the Project window and choose

Figure 7: Missing Server Problem Error Message

This will get resolved when we run the application. Click on “OK” to dismiss the

dialog.

3.5 Schema Generation: JPA 2.1 defines a new set of
javax.persistence.schema-generation. * properties that can be used to
generate database artifacts like tables, indexes, and constraints in a database
schema. This helps in prototyping of your application where the required artifacts
are generated either prior to application deployment or as part of
EntityManagerFactory creation. This feature will allow your JPA domain
object model to be directly generated in a database. The generated schema may
need to be tuned for actual production environment.

The “persistence.xml” in the application has the following
javax.persistence.schema-generation. * properties. Their meaning and
possible values are explained in Table 2.

Property Meaning Values
javax.persistence.schema- Specifies the action to be | “none”, “create”,
generation.database.action taken by the persistence | “drop-and-

provider with regard to

create”, “drop”

Java EE 7 Hands-on Lab using GlassFish 4

the database artifacts.

javax.persistence.schema-
generation.create-source

Specifies whether the
creation of database
artifacts is to occur on
the basis of the
object/relational mapping
metadata, DDL script, or
a combination of the two.

“metadata”,
“script”,
“metadata-then-

script”, “script-
then-metadata”

javax.persistence.schema-
generation.create-script-
source

Specifies a
java.IO.Reader
configured for reading of
the DDL script or a string
designating a file URL
for the DDL script.

javax.persistence.sql-load-
script-source

Specifies a
java.IO.Reader
configured for reading of
the SQL load script for
database initialization or
a string designating a file
URL for the script.

Table 2: JPA Schema Generation Properties

Refer to the JPA 2.1 Specification for a complete understanding of these

properties.

In the application, the scripts are bundled in the WAR file in “META-INF”
directory. As the location of these scripts is specified as a URL, the scripts may
be loaded from outside the WAR file as well.

Feel free to open “create.sql” and “load.sql” and read through the SQL scripts.
The database schema is shown in Figure 8.

10

Java EE 7 Hands-on Lab using GlassFish 4

a SALES ([Table]
ID INTEGER(10) NOT NULL
AMOUNT DOUBLE(52) NOT NULL

o SHOW_TIMING ([Table] o
ID INTEGER(10) NOT NULL ID

THEATER (Table]
INTEGER(10) NOT NULL

DAY INTEGER(10) NOT NULL CAPACITY INTEGER(10) NOT NULL
THEATER_ID INTEGER(10) NOT NULL
MOVIE_ID INTEGER(10) NOT NULL a MOVIE [Table]
TIMING_ID INTEGER(10) NOT NULL ID INTEGER(10) NOT NULL
NAME VARCHAR(50) NOT NULL
ACTORS VARCHAR(200) NOT NULL
a POINTS ([Table] a TIMESLOT (Table]
ID INTEGER(10) NOT NULL ID INTEGER(10) NOT NULL
CID INTEGER(10) NOT NULL START_TIME VARCHAR(5) NOT NULL
POINTS INTEGER(10) NOT NULL END_TIME VARCHAR(5) NOT NULL

Figure 8: Database Schema

This folder also contains “sales.csv”’ which carries some comma-separated data
used later in the application.

3.6 JPA entities, Stateless EJBs, and REST endpoints: Expand “Source
Packages”. The package “org.glassfish.movieplex7.entities” contains the JPA
entities corresponding to the database table definitions. Each JPA entity has
several convenient @NamedQuery defined and uses Bean Validation constraints
to enforce validation.

The package “org.glassfish.movieplex7.rest” contains stateless EJBs
corresponding to different JPA entities.

Each EJB has methods to perform CRUD operations on the JPA entity and
convenience query methods. Each EJB is also EL-injectable (eNamed) and
published as a REST endpoint (ePath). The AplicationConfig class defines
the base path of REST endpoint. The path for the REST endpoint is the same as
the JPA entity class name.

The mapping between JPA entity classes, EJB classes, and the URI of the
corresponding REST endpoint is shown in Table 3.

JPA Entity Class | EJB Class RESTful Path

Movie MovieFacadeREST /webresources/movie

Sales SalesFacadeREST /webresources/sales
ShowTiming ShowTimingFacadeREST | /webresources/showtiming
Theater TheaterFacadeREST /webresources/theater

11

Java EE 7 Hands-on Lab using GlassFish 4

| Timeslot | TimeslotFacadeREST | /webresources/timeslot

Table 3: JPA Entity and EJB Class Mapping with RESTful Path

Feel free to browse through the code.

3.7 JSF pages: “WEB-INF/template.xhtml” defines the template of the web page
and has a header, left navigation bar, and a main content section. “index.xhtml”
uses this template and the EJBs to display the number of movies and theaters.

Java EE 7 enables CDI discovery of beans by default. No “beans.xml” is required
in “WEB-INF”. This allows all beans with bean defining annotation, i.e. either a
bean with an explicit CDI scope or EJBs to be available for injection.

Note, “template.xhtml” is in “WEB-INF” folder as it allows the template to be
accessible from the pages bundled with the application only. If it were bundled
with rest of the pages then it would be accessible outside the application and
thus allowing other external pages to use it as well.

3.8 Run the sample: Right-click on the project and select “Run”. This will

download all the maven
O O Select deployment server

dependencies on your
laptop, build a WAR file, Server: | GlassFish Server 4.0 (86)

deploy on GlassFish 4,

and show the URL (¢) Remember in Current IDE Session
Iopalhost:8080/moweplex T G —
7 in the browser. , ;

1 moviepiex/

4»

During first run, the IDE

will ask you to select a

deployment server. Cancel OK
Choose the configured
GlassFish server and
click on “OK”.

Figure 9: Select Deployment Server

The output looks like as shown in Figure 10.

12

Java EE 7 Hands-on Lab using GlassFish 4

C' [localhost:8080/movieplex7/

Movie Plex 7

Item 1 Showing 20 movies in 7 theaters!
Item 2

Figure 10: Output from the Packaged Application

4.0 Show Booking (JavaServer Faces)

Purpose: Build pages that allow a user to book a particular movie show in a
theater. In doing so a new feature of JavaServer Faces 2.2 will be introduced and
demonstrated by using in the application.

JavaServer Faces 2.2 introduces a new feature called Faces Flow that provides
an encapsulation of related views/pages with application defined entry and exit
points. Faces Flow borrows core concepts from ADF TaskFlow, Spring Web
Flow, and Apache MyFaces CODI.

It introduces @FlowScoped CDI annotation for flow-local storage and
@FlowDefinition to define the flow using CDI producer methods. There are
clearly defined entry and exit points with well-defined parameters. This allows the
flow to be packaged together as a JAR or ZIP file and be reused. The application
thus becomes a collection of flows and non-flow pages. Usually the objects in a
flow are designed to allow the user to accomplish a task that requires input over
a number of different views.

This application will build a flow that allows the user to make a movie reservation.
The flow will contain four pages:

Display the list of movies

Display the list of available show timings
Confirm the choices

Make the reservation and show the ticket

N =

Name and Location

4.1 Iltems in a flow are logically ,
related to each other and so it is Folder Name: |booking
required to keep them together in

a directory_ Project: movieplex?
In NetBeans IDE, right-click on

Parent Folder: src/main/webapp Browse...

Created Folder: es/javaee7-hol/test/movieplex7/src/main/webapp/booking

Figure 11: Create a New Folder

Java EE 7 Hands-on Lab using GlassFish 4

the “Web Pages”, select “New”, “Folder...”, specify the folder name “booking”,
and click on “Finish”.

Categories: File Types:
4.2 Right-click on the newly £ web % JS;E :Aage .
“* it m
created folder, select “New”, L] Javaserver Faces & JSF i anagce fea" .

“ v o« (1] Bean Validation JSF Faces Configuration
Other...", “JavaServer Faces G stuts [é] JSF Composite Component
“Facelets Template Client’, and £ Spring Framework % e
click on “Next >". [Enterprise JavaBeans [ElllFacelets Template Client

] Contexts and Dependenc
Give the File Name as Figure 12: Selecting Facelets Template Client

“booking”. Click on “Browse...”
next to “Template:”, expand “Web Pages”, “WEB-INF”, select “template.xhtml”,
and click on “Select File”. Click on “Finish”.

In this file, remove <ui:define> sections with “top” and “left” names as these
are inherited from the template.

File Name: |booking

4.3 “booking.xhtml” is the

entry point to the flow Project: - |movieplex7

(more on this later). Folder: booking | Browse...
Replace the “content”

<ui:define> section Created File: ol/test/movieplex7/src/main/webapp/booking/booking.xhtml

such that it looks like:
Figure 13: Facelets Template Client File Name
<ui:define
name="content">
<h2>Pick a movie</h2>
<h:form prependId="false">

<h:selectOneRadio value="#{booking.movieId}"
layout="pageDirection" required="true">
<f:selectItems value="#{movieFacadeREST.all}" var="m
itemvValue="#{m.id}" itemLabel="#{m.name}"/>
</h:selectOneRadio>

<h:commandButton id="shows" value="Pick a time" action="showtimes"
/>
</h:form>
</ui:define>

The code builds an

10/ <ui:define name="content'>

H_TML form that 11 <h2>Pick a movie</h2>

displays the list of 2 <m Qmagmglg alse">

movies as radio 13 -

button choices. The @ T SETECTUNERAULT ; [ng.mo

chosen movie is @ <fiselectltems aLuc— ‘#{movieFacal
@ </h:selectOneRadio>

bound to 17
@ <h:commandButton id='"shows' value="Pi
19

Figure 14: Resolve Namespace Prefix/URI Mapping for h: and f:

Java EE 7 Hands-on Lab using GlassFish 4

#{booking.movieId} which will be defined as a flow-scoped bean. The value
of action attribute on commandButton refers to the next view in the flow, i.e.
“showtimes.xhtml” in the same directory in our case.

Click on the hint (shown as yellow bulb) and click on the suggestion to add
namespace prefix. Do the same for £: prefix as shown in Figure 14.

4.4 Right-click on “Source Packages”, select “New”, “Java Class...”. Specify the
class name as “Booking” and the package name as
“org.glassfish.movieplex7.booking”.

Add @Named class-level annotation to make the class EL-injectable. Add
@FlowScoped("booking") to define the scope of bean as the flow. The bean
is automatically activated and passivated as the flow is entered or exited.

Add the following field:

int movield;
and generate getters/setters by going to “Source”, “Insert Code...”, selecting
“Getter and Setter...”, and select the field.

Add the following convenience method:

public String getMovieName() {

try {
return em.createNamedQuery("Movie.findById",
Movie.class).setParameter("id", movieId).getSingleResult().getName();
} catch (NoResultException e) {
return "";

}
}

This method will return the movie name based upon the selected movie. Inject
EntityManager in this class by adding the following code:

@PersistenceContext
EntityManager em;

Alternatively, movie id and name may be passed from the selected radio button
and parsed in the backing bean. This will reduce an extra trip to the database.

4.5 Create “showtimes.xhtml” in the “booking” folder following the steps in 4.2.
Replace “content” <ui:define> section such that it looks like:

<uji:define name="content">

15

Java EE 7 Hands-on Lab using GlassFish 4

<h2>Show Timings for #{booking.movieName}</h2>
<h:form>
<h:selectOneRadio value="#{booking.startTime}"
layout="pageDirection" required="true">
<c:forEach items="#{timeslotFacadeREST.all}" var="s">
<f:selectItem itemvValue="#{s.id},#{s.startTime}"
itemLabel="#{s.startTime}" />
</c:forEach>
</h:selectOneRadio>
<h:commandButton value="Confirm" action="confirm" />
<h:commandButton id="back" value="Back" action="booking" />
</h:form>
</ui:define>

This code builds an HTML form that displays the chosen movie name and all the
show times. #{timeslotFacadeREST.all} returns the list of all the movies
and iterates over them using a c: forEach loop. The id and start time of the
selected show are bound to #{booking.startTime}. One command button
(value="Back") allows going back to the previous page and the other
command button (value="Confirm”) takes to next view in the flow,
“confirm.xhtml” in our case.

Typically a user will expect the show times only for the selected movie but all the
show times are shown here. This allows us to demonstrate going back and forth
within a flow if an incorrect show time for a movie is chosen. A different query
may be written that displays only the shows available for this movie; however this
is not part of the application.

4.6 Add the following fields to the Booking class:

String startTime;
int startTimeId;

And the following methods:

public String getStartTime() {
return startTime;

}

public void setStartTime(String startTime) {
StringTokenizer tokens = new StringTokenizer(startTime, ",");
startTimeId = Integer.parselnt(tokens.nextToken());
this.startTime = tokens.nextToken();

}

public int getStartTimeId() {
return startTimeId;

}

16

Java EE 7 Hands-on Lab using GlassFish 4

These methods will parse the values received from the form. Also add the
following method:

public String getTheater() {
// for a movie and show
try {
// Always return the first theater
List<ShowTiming> list =
em.createNamedQuery("ShowTiming.findByMovieAndTimingId",
ShowTiming.class)
.setParameter("movieId", movieId)
.setParameter("timingId", startTimeId)
.getResultList();
if (list.isEmpty())
return "none";

return list
.get(0)
.getTheaterId()
.getId().toString();
} catch (NoResultException e) {
return "none";

This method will find the first theater available for the chosen movie and show
timing.

Additionally a list of theaters offering that movie may be shown in a separate
page.
4.7 Create “confirm.xhtml” page in the “booking” folder by following the steps

defined in 4.2. Replace “content” <ui:define> section such that it looks like:

<uji:define name="content">
<c:choose>

<c:when test="#{booking.theater == 'none'}">
<h2>No theater found, choose a different time</h2>
<h:form>

Movie name: #{booking.movieName}<p/>
Starts at: #{booking.startTime}<p/>
<h:commandButton id="back" value="Back" action="showtimes"/>
</h:form>
</c:when>
<c:otherwise>
<h2>Confirm ?</h2>
<h:form>
Movie name: #{booking.movieName}<p/>
Starts at: #{booking.startTime}<p/>
Theater: #{booking.theater}<p/>
<p/><h:commandButton id="next" value="Book" action="print"/>
<h:commandButton id="back" value="Back" action="showtimes"/>
</h:form>
</c:otherwise>

17

Java EE 7 Hands-on Lab using GlassFish 4

</c:choose>
</ui:define>

The code displays the selected movie, show timing, and theater if available. The
reservation can proceed if all three are available. “print.xhtml”, identified by
action of commandButton with “Book” value, is the last page that shows the
confirmed reservation.

actionListener can be added to commandButton to invoke the business
logic for making the reservation. Additional pages may be added to take the
credit card details and email address.

4.8 Create “print.xhtml” page in the “booking” folder by following the steps
defined in 4.2 and replace “content” <ui:define> section such that it looks like:

<ui:define name="content">
<h2>Reservation Confirmed</h2>
<h:form>
Movie name: #{booking.movieName}<p/>
Starts at: #{booking.startTime}<p/>
Theater: #{booking.theater}<p/>
<p><h:commandButton id="home" value="home" action="goHome" /></p>
</h:form>
</ui:define>

This code displays the movie name, show timings, and the selected theater.

The commandButton initiates exit from the flow. The action attribute defines a
navigation rule that will be defined in the next step.

4.9 “booking.xhtml”, “showtimes.xhtml”, “confirm.xhtml”, and “print.xhtml” are all
in the same directory. Now the runtime needs to be informed that the views in
this directory are to be treated as view nodes in a flow. This can be done by
adding “booking/booking-flow.xml” or have a class with a method that
@Produces @FlowDefinition.

Right-click on “Web Pages/booking” folder, select “New”, “Other”, “XML”, “XML
Document”, give the name as “booking-flow”, click on “Next>", take the default of
“Well-formed Document”, and click on “Finish”. Edit the file such that it looks like:

<faces-config version="2.2" xmlns="http://xmlns.jcp.org/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="
http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/web-facesconfig 2 2.xsd">

<flow-definition id="booking">
<flow-return id="goHome">

18

Java EE 7 Hands-on Lab using GlassFish 4

<from-outcome>/index</from-outcome>
</flow-return>
</flow-definition>

</faces-config>

This defines the flow graph. It uses the standard parent element used in any
“faces-config.xml” but defines a <flow-definition>.

<flow-return> defines a return node in a flow graph. <from-outcome>
contains the node value, or an EL expression that defines the node, to return to.
In this case, the navigation returns to the home page.

4.10 Finally, invoke the flow by editing “WEB-INF/template.xhtml” and changing:
<h:commandLink action="iteml">Item 1</h:commandLink>
to

<h:commandLink action="booking">Book a movie</h:commandLink>

commandLink renders an HTML anchor tag that behaves like a form submit
button. The action attribute points to the directory where all views for the flow
are stored. This directory already contains “booking-flow.xml” which defines the
flow of the pages.

4.11 Run the project by right clicking on the project and selecting “Run”. The
browser shows the updated output.

C' [localhost:8080/movieplex7/

Movie Plex 7

Book a movie Showing 20 movies in 7 theaters!

Item 2

Figure 15: Book a Movie Link

Click on “Book a movie” to see the page as shown in Figure 16.

19

Java EE 7 Hands-on Lab using GlassFish 4

& C' [localhost:8080/movieplex7/faces/index.xhtml?jfwid=6534f5935020d1869b05087ba53b:0
Movie Plex 7
Book a movie
Ttem 2 Pick a movie
_ The Matrix
__ The Lord of The Rings
_ Inception
__ The Shining

. | Miecinn Tmnneasihle
Figure 16: Pick a Movie Page Output

Select a movie, say “The Shining” and click on “Pick a time” to see the page
output as shown in Figure 17.

€« C' | [[) localhost:8080/movieplex7/faces/booking/booking.xhtm?jfwid=6534f5935020d1869b05087ba53b:0

Movie Plex 7

Book a movie
Item 2 Show Timings for The Shining

_) 10:00
) 12:00
_ 02:00
_ 04:00
_ 06:00

Confirm | Back

Figure 17: Show Timings Page Output

Pick a time slot, say “04:00” to see the output as shown in Figure 18.

20

Java EE 7 Hands-on Lab using GlassFish 4

& C' [localhost:8080/movieplex7/faces/booking/showtimes.xhtml?jfwid=6534f5935020d1869b05087ba53b:0

Movie Plex 7

Book a movie

) Confirm ?

Movie name: The Shining
Starts at: 04:00
Theater: 1

Book = Back

Figure 18: Confirm Booking Page Output

Click on “Book” to confirm and see the output as:

€« = Y localhost:8080/movieplex7/faces/booking/confirm.xhtmi?jfwid=6534f5935020d1869b05087ba53b:0
L]

Movie Plex 7

Book a movie

Item 2 Reservation Confirmed

Movie name: The Shining
Starts at: 04:00
Theater: 1

home

Figure 19: Reservation Confirmed Page Output

Feel free to enter other combinations, go back and forth in the flow and notice
how the values in the bean are preserved.

Click on “home” takes to the main application page as shown in Figure 15.

5.0 Chat Room (Java API for WebSocket)

Purpose: Build a chat room for viewers. In doing so several new features of Java
API for WebSocket 1.0 will be introduced and demonstrated by using them in the
application.

WebSocket provide a full-duplex and bi-directional communication protocol over
a single TCP connection. WebSocket is a combination of IETF RFC 6455
Protocol and W3C JavaScript WebSocket API (a Candidate Recommendation as

21

Java EE 7 Hands-on Lab using GlassFish 4

of this writing). The protocol defines an opening handshake and data transfer.
The API enables Web pages to use the WebSocket protocol for two-way
communication with the remote host.

JSR 356 defines a standard API for creating WebSocket applications in the Java
EE 7 Platform. The JSR provides support for:

* Create WebSocket endpoint using annotations and interface

* Initiating and intercepting WebSocket events

* Creation and consumption of WebSocket text and binary messages
* Configuration and management of WebSocket sessions

* Integration with Java EE security model

This section will build a chat room for movie viewers.

5.1 Right-click on “Source Packages”, select “New”, “Java Class...”. Give the
class name as “ChatServer”, package as “org.glassfish.movieplex7.chat”, and
click on “Finish”.

5.2 Change the class such that it looks like:

@serverEndpoint (" /websocket")
public class ChatServer {

private static final Set<Session> peers =
Collections.synchronizedSet (new HashSet<Session>());

@OnOpen
public void onOpen(Session peer) {
peers.add(peer);

}

@OnClose
public void onClose(Session peer) {
peers.remove(peer);

}

@OnMessage
public void message(String message, Session client) throws
IOException, EncodeException {
for (Session peer : peers) {
if (!peers.equals(client))
peer.getBasicRemote().sendObject (message);

}

In this code:

22

Java EE 7 Hands-on Lab using GlassFish 4

* (@ServerEndpoint decorates the class to be a WebSocket endpoint.
The value defines the URI where this endpoint is published.

* @OnOpen and @OnClose decorate the methods that must be called when
WebSocket session is opened or closed. The peer parameter defines the
client requesting connection initiation and termination.

* @OnMessage decorates the message that receives the incoming
WebSocket message. The first parameter, message, is the payload of the
message. The second parameter, client, defines the other end of the
WebSocket connection. The method implementation transmits the
received message to all clients connected to this endpoint.

Resolve the imports. Make sure to pick java.websocket.Session instead of
the default.

5.3 In “Web Pages”, select “New”, “Folder...”, give the folder name as “chat” and
click on “Finish”.

5.4 Create “chatroom.xhtml” in “chat” folder following the steps outlined in 4.2.
Replace “content” <ui:define> section such that it looks like:

<ui:define name="content">
<form action="">
<table>
<tr>
<td>
Chat Log

<textarea readonly="true" rows="6" cols="50"
id="chatlog"></textarea>
</td>
<td>
Users

<textarea readonly="true" rows="6" cols="20"
id="users"></textarea>
</td>
</tr>
<tr>
<td colspan="2">
<input id="textField" name="name" value="Duke" type="text"/>
<input onclick="join();" value="Join" type="button"/>
<input onclick="send message();" value="Send"
type="button"/><p/>
<input onclick="disconnect();'
type="button"/>
</td>
</tr>
</table>
</form>
<div id="output"></div>

value="Disconnect"

23

Java EE 7 Hands-on Lab using GlassFish 4

<script language="javascript" type="text/javascript"
src="${facesContext.externalContext.requestContextPath}/chat/websocket.
js"></script>
</ui:define>

The code builds an HTML form that has two textareas — one to display the
chat log and the other to display the list of users currently logged. A single text
box is used to take the user name or the chat message. Clicking on “Join” button
takes the value as user name and clicking on “Send” takes the value as chat
message. JavaScript methods are invoked when these buttons are clicked and
these are explained in the next section. The chat messages are sent and

received as WebSocket Categories: File Types:

payloads. There is an explicit] web & Jsp

button to disconnect the (3] JavaServer Faces] JSF Page

WebSocket connection. (] Bean Validation &5 Servlet

“output” div is the placeholder 3 struts & Fiter
—) [&5] Web Application Listener

for status messages. The (] Spring Framework @ HTML

WebSocket initialization (] Enterprise JavaBeans [XHTML

occurs in “websocket.js” L] Contexts and Dependenc | Ty Cascading Style Sheet

included at the bottom of the - Java Eavascript File

fragment. Figure 20: Select JavaScript File Type

5.5 Right-click on “chat” in “Web Pages”, select “New”, “Web”, “JavaScript File”.

Give the name as “websocket” and click on “Finish”.

5.6 Edit the contents of “websocket.js” such that it looks like:

var wsUri = 'ws://' + document.location.host
+ document.location.pathname.substr (0,
document.location.pathname.indexOf("/faces"))
+ '/websocket';
console.log(wsUri);
var websocket = new WebSocket (wsUri);

var username;

websocket.onopen = function(evt) { onOpen(evt); };
websocket.onmessage = function(evt) { onMessage(evt); };
websocket.onerror = function(evt) { onError(evt); };
websocket.onclose = function(evt) { onClose(evt); };

var output = document.getElementById("output");

function join() {
username = textField.value;
websocket.send(username + " joined");

}

function send message() {

24

Java EE 7 Hands-on Lab using GlassFish 4

websocket.send(username + ": " + textField.value);

}

function onOpen() {
writeToScreen("CONNECTED");

}

function onClose() {
writeToScreen("DISCONNECTED");

}

function onMessage(evt) {
writeToScreen("RECEIVED: " + evt.data);
if (evt.data.indexOf("joined") !== -1) {
users.innerHTML += evt.data.substring(0, evt.data.indexOf (
joined")) + "\n";
} else {
chatlog.innerHTML += evt.data + "\n";

}
}

function onError(evt) {
writeToScreen('ERROR:
evt.data);

}

'+

function disconnect() {
websocket.close();

}

function writeToScreen(message) {
var pre = document.createElement("p");
pre.style.wordWrap = "break-word";
pre.innerHTML = message;
output.appendChild(pre);

The WebSocket endpoint URI is calculated by using standard JavaScript
variables and appending the URI specified in the ChatServer class.
WebSocket is initialized by calling new WebSocket (...). Event handlers are
registered for lifecycle events using onXXX messages. The listeners registered in
this script are explained in Table 4.

Listeners Called When

onOpen (evt) WebSocket connection is initiated
onMessage(evt) WebSocket message is received
onError (evt) Error occurs during the communication
onClose(evt) WebSocket connection is terminated

Table 4: WebSocket Event Listeners

Any relevant data is passed along as parameter to the function. Each method
prints the status on the browser using writeToScreen utility method. The join
method sends a message to the endpoint that a particular user has joined. The

25

Java EE 7 Hands-on Lab using GlassFish 4

endpoint then broadcasts the message to all the listening clients. The

send message method appends the logged in user name and the value of the
text field and broadcasts to all the clients similarly. The onMessage method
updates the list of logged in users as well.

5.7 Edit “WEB-INF/template.xhtm|” and change:

<h:outputLink value="item2.xhtml">Item 2</h:outputLink>

to

<h:outputLink
value="${facesContext.externalContext.requestContextPath}/faces/chat/ch
atroom.xhtml">Chat Room</h:outputLink>

The outputLink tag renders an HTML anchor tag with an href attribute.
${facesContext.externalContext.requestContextPath} provides the
request URI that identifies the web application context for this request. This
allows the links in the left navigation bar to be fully-qualified URLs.

5.8 Run the project by right clicking on the project and selecting “Run”. The
browser shows
localhost:8080/movieplex? as

shown in Figure 21. Movie Plex 7

Book a movie Showing 20 movies in 7 theaters!

&= C' | [localhost:8080/movieplex7/

Chat Room

Click on “Chat Room” to see the Figure 21: Chat Room Link

output as shown in Figure 22.

The “CONNECTED” status message is shown and indicates that the WebSocket
connection with the endpoint is established.

26

Java EE 7 Hands-on Lab using GlassFish 4

Movie Plex 7

Book a movie Chat Log Users
Chat Room
Duke ‘ Join Send
Disconnect
CONNECTED

Figure 22: Chat Room Page Output

Open the URI localhost:8080/movieplex7 in another browser window. Enter
“‘Duke” in the text box in the first browser and click “Join”. Notice that the user list
and the status message in both the browsers gets updated. Enter “Duke2” in the
text box of the second browser and click on “Join”. Once again the user list and
the status message in both the browsers is updated. Now you can type any
messages in any of the browser and click on “Send” to send the message.

The output from two different browsers after the initial greeting looks like as
shown in Figure 23. Here it shows output from Chrome on the top and Firefox on
the bottom.

27

Java EE 7 Hands-on Lab using GlassFish 4

& C' | [localhost:8080/movieplex7/faces/index.xhtmP?jfwid=71e6891ce27eed67db911a9d391d:0
Movie Plex 7
Book a movie Chat Log Users
Duke2: Hello Duke
Chat Room Duke: Hello there Duke?2
4
Hello Join Send

 Disconnect
— Movieplex 7
J 1 Movieplex 7 X I:._: s x l s l

0 localhost: /movieplex7/faces/index.xhtml?jfwid=71e e21dafdfcadcc19c2d:
‘ | Ih 8080 ieplex7/f. ind html?jfwid=71e73b7520e2 1dafdfcadcc19c2d:0

Movie Plex 7

Book a movie Chat Log Users
Duke2: Hello Duke

Chat Room Duke: Hello there Duke2
[Hello there ' Join | | Send

| Disconnect |

CONNECTED

RECEIVED: Duke joined
RECEIVED: Duke2 joined
RECEIVED: Duke2: Hello

RECEIVED: Duke: Hello there
Figure 23: Chat Room Output from Chrome and Firefox

Chrome Developer Tools can be used to monitor WebSocket traffic.

6.0 View and Delete Movie (Java API for RESTful Web Services)

Purpose: View, and delete a movie. In doing so several new features of JAX-RS
2 will be introduced and demonstrated by using them in the application.

28

Java EE 7 Hands-on Lab using GlassFish 4

JAX-RS 2 defines a standard API to create, publish, and invoke a REST
endpoint. JAX-RS 2 adds several new features to the API:

* Client API that can be used to access Web resources and provides
integration with JAX-RS Providers. Without this API, the users need to
use a low-level HttpUrlConnection to access the REST endpoint.

* Asynchronous processing capabilities in Client and Server that enables
more scalable applications.

* Message Filters and Entity Interceptors as well-defined extension points
to extend the capabilities of an implementation.

* Integration with Bean Validation

This section will provide the ability to view all the movies, details of a selected
movie, and delete an existing movie using the JAX-RS Client API.

6.1 Right-click on “Source Packages”, select “New”, “Java Class...”. Give the
class name as “MovieClientBean”, package as “org.glassfish.movieplex7.client”,
and click on “Finish”.

This bean will be used to invoke the REST endpoint.

6.2 Add @Named and @SessionScoped class-level annotations. This allows the
class to be injected in an EL expression and also defines the bean to be
automatically activated and passivated with the session.

The class also needs to implements Serializable because it's defined in
the session scope.

Make sure to resolve the imports by clicking on the yellow bulb or right-clicking
on the editor pane and selecting “Fix Imports” (Cmd + Shift + | shortcut on Mac).

6.3 Add the following code to the class:

Client client;
WebTarget target;

@PostConstruct
public void init() {
client = ClientBuilder.newClient();
target = client
.target("http://localhost:8080/movieplex7/webresources/movie/");

}

@PreDestroy
public void destroy() {
client.close();

29

Java EE 7 Hands-on Lab using GlassFish 4

}

ClientBuilder is the main entry point to the Client API. It uses a fluent builder
API to invoke REST endpoints. A new Client instance is created using the
default client builder implementation provided by the JAX-RS implementation
provider. Client are heavy-weight objects that manage the client-side
communication infrastructure. It is highly recommended to create only required
number of instances of Client and close it appropriately.

In this case, Client instance is created and destroyed in the lifecycle callback
methods. The endpoint URI is set on this instance by calling the target method.

6.4 Add the following code to the class:

public Movie[] getMovies() {
return target
.request()
.get(Movie[].class);

}

A request is prepared by calling the request method. HTTP GET method is
invoked by calling get method. The response type is specified in the last method
call and so return value is of the type Moviel[].

6.5 In NetBeans IDE, right-click on the “Web Pages”, select “New”, “Folder...”,
specify the folder name “client”, and click on “Finish”.

In this folder, create “movies.xhtml” following the steps outlined in 4.2.

6.6 Replace the content within <ui:define> with the code fragment shown
below:

<h:form prependId="false">
<h:selectOneRadio value="#{movieBackingBean.movieId}"
layout="pageDirection">
<c:forEach items="#{movieClientBean.movies}" var="m">
<f:selectItem itemValue="#{m.id}" itemLabel="#{m.name}"/>
</c:forEach>
</h:selectOneRadio>

<h:commandButton value="Details" action="movie" />
</h:form>

This code fragment invokes getMovies method from MovieClientBean,
iterates over the response in a for loop, and display the name of each movie
with a radio button. The selected radio button value is bound to the EL

30

Java EE 7 Hands-on Lab using GlassFish 4

expression #{movieBackingBean.movieId}.

10 & <ui:define name="coi

@ sh:form. prepend,
The code also has a button with “Details” label and & <hiselectOns
looks for “movie.xhtml” in the same directory. We © =g fork;
will create this file later. @ st

@ s/Lesforl
Click on the yellow bulb in the left bar to resolve % sAhiselect
the namespace prefix-to-URI resolution. This 2 <hzcommandBs
needs to be repeated thrice —for h:, c:,and f: (o </hiforms
prefixes. 20 </ui:define>

Figure 24: Resolve Namespace
Prefix/URI Mapping for h;, c, f:

6.7 Right-click on “org.glassfish.movieplex7.client”

package, select “New”, “Java Class...”, specify the value as “MovieBackingBean”
and click on “Finish”.

Add the following field: Movie Plex 7
int movieId; Book a movie The Matrix
Add getters/setters by right-clicking on ~ chat Reom The Lord of The Rings
the editor pane and selecting “Insert Movies Inception
Code...” (Ctrl + | shortcut on Mac). The Shining
Select the field and click on Mission Impossible
“Generate”. Terminator
) Titanic
Add @Named and @SessionScoped
Iron Man

class-level annotations and

implements Serializable. DGIGHOUS|Eastarcs

Million Dollar Baby
Resolve the imports. Make sure to Figure 25: Movies Page Output
import
javax.enterprise.context.SessionScoped instead of the default
javax.faces.bean.SessionScoped.

6.8 In “template.xhtml”, add the following code in <ui:insert> with
name="left"”.

<p/><h:outputLink
value="${facesContext.externalContext.requestContextPath}/faces/client/
movies.xhtml">Movies</h:outputLink>

Running the project (Fn + F6 shortcut on Mac) and clicking on “Movies” in the left
navigation bar shows the output as shown in Figure 25.

31

Java EE 7 Hands-on Lab using GlassFish 4

The list of all the movies with a radio button next to them is displayed. The output
is similar to as shown in 4.12 but it's using a REST endpoint for querying instead
of a traditional EJB/JPA-backed endpoint.

6.9 In “MovieClientBean”, inject “MovieBackingBean” to read the value of
selected movie from the page. Add the following code:

@Inject
MovieBackingBean bean;

6.10 In “MovieClientBean”, add the following method:

public Movie getMovie() {
Movie m = target
.path("{movie}")
.resolveTemplate("movie", bean.getMovieId())
.request()
.get(Movie.class);
return m;

}

This code reuses the Client and WebTarget instances created in
@PostConstruct. It also adds a variable part to the URI of the REST endpoint,
defined using {movie}, and binds it to a concrete value using
resolveTemplate method. The return type is specified as a parameter to the
get method.

6.11 Create “movie.xhtml” following the steps in 4.2. Change <ui:define>
element such that it's content looks like:

<hl>Movie Details</hl>
<h:form>
<table cellpadding="5" cellspacing="5">
<tr>
<th align="left">Movie Id:</th>
<td>#{movieClientBean.movie.id}</td>
</tr>
<tr>
<th align="left">Movie Name:</th>
<td>#{movieClientBean.movie.name}</td>
</tr>
<tr>
<th align="left">Movie Actors:</th>
<td>#{movieClientBean.movie.actors}</td>
</tr>

</table>
<h:commandButton value="Back" action="movies" />

32

Java EE 7 Hands-on Lab using GlassFish 4

</h:form>

Click on the yellow-bulb to resolve the namespace prefix-URI mapping for h:.
The output values are displayed by calling the getMovie method and using the
id, name, and actors property values.

6.12 Run the project, select “Movies” in the left navigation bar, select a radio
button next to any movie, and click on details to see the output as shown in
Figure 26.

Movie Plex 7

Book a movie Movie Details
Chat Room Movie Id: 10
Movies

Movie Name: Million Dollar Baby

Movie Actors: Hillary Swank, Client Eastwood
Back
Figure 26: Movie Details Page Output

Click on the “Back” button to select another movie.

6.13 Add the ability to delete a movie. In “movies.xhtml”, add the following code
with the other commandButton.

<h:commandButton
value="Delete"
action="movies"
actionListener="#{movieClientBean.deleteMovie()}"/>

This button displays a label “Delete”, invokes the method deleteMovie from
“MovieClientBean”, and then renders “movie.xhtml”.

6.14 Add the following code to “MovieClientBean”:

@Transactional
public void deleteMovie() {
target
.path("{movieId}")
.resolveTemplate("movieId", bean.getMovieId())
.request()
.delete();

33

Java EE 7 Hands-on Lab using GlassFish 4

This code again reuses the Client and WebTarget instances created in
@PostConstruct. It also adds a variable part to the URI of the REST endpoint,
defined using {movieId}, and binds it to a concrete value using
resolveTemplate method. The URI of the resource to be deleted is prepared
and then delete method is called to delete the resource.

The method also specifies @Transactional as a method level annotation. This
is a new annotation introduced by JTA 1.2 that provides the ability to control
transaction boundaries on CDI managed beans. This provides the semantics of
EJB transaction attributes in CDI beans without dependencies such as RMI. This
support is implemented via an implementation of a CDI interceptor that conducts
the necessary suspending, resuming, etc.

Make sure to resolve the imports.

Running the project shows the solulz el e s
output shown in Figure 27. The Curious Case of Benjamin Button

The Bourne Ultimatum

Select a movie and click on Delete The Pink Panther

button. This deletes the movie from :
the database and refreshes the Details || Delete

page.

Figure 27: Delete Button

7.0 Add Movie (Java API for JSON Processing)

Purpose: Add a new movie. In doing so several new features of Java API for
JSON Processing 1.0 will be introduced and demonstrated by using them in the
application.

Java API for JSON Processing provides a standard API to parse and generate
JSON so that the applications can rely upon a portable API. This API will provide:

* Produce/Consume JSON in a streaming fashion (similar to StAX API for
XML)
* Build a Java Object Model for JSON (similar to DOM API for XML)

This section will define a JAX-RS Entity Providers that will allow reading and
writing JSON for a Movie POJO. The JAX-RS Client API will request this JSON
representation.

JAX-RS Entity Providers supply mapping services between on-the-wire
representations and their associated Java types. Several standard Java types

34

Java EE 7 Hands-on Lab using GlassFish 4

such as String, byte[], javax.xml.bind.JAXBElement,
java.io.InputStream, java.io.File, and others have a pre-defined
mapping and is required by the specification. Applications may provide their own
mapping to custom types using MessageBodyReader and
MessageBodyWriter interfaces.

This section will provide the ability to add a new movie to the application.
Typically, this functionality will be available after proper authentication and
authorization.

7.1 Right-click on Source Packages, select “New”, “Java Package...”, specify the
value as “org.glassfish.movieplex7.json”, and click on “Finish”.

7.2 Right-click on newly created package, select “New”, “Java Class...”, specify
the name as “MovieReader”, and click on “Finish”. Add the following class-level
annotations:

@Provider
@Consumes (MediaType.APPLICATION JSON)

@Provider allows this implementation to be discovered by the JAX-RS runtime
during the provider scanning phase. @Consumes indicates that this
implementation will consume a JSON representation of the resource.

7.3 Make the class implements MessageBodyReader<Movie>.

52 @Provider
53 @Consumes (MediaType.APPLICATION_JSON)
@ bublic class MovieReader implements MessageBodyReader<Movie> {

55 ? Implement all abstract methods

56 @ Make class MovieReader abstract
57 @ Create Subclass =

Figure 28: Implement Abstract Methods for MessageBodyReader

Click on the hint (shown as yellow bulb) on the class definition and select
“Implement all abstract methods”.

7.4 Add implementation of the isReadable method as:

@Override
public boolean isReadable(Class<?> type, Type typel, Annotation]]
antns, MediaType mt) {

return Movie.class.isAssignableFrom(type);

}

35

Java EE 7 Hands-on Lab using GlassFish 4

This method ascertains if the MessageBodyReader can produce an instance of
a particular type.

7.5 Add implementation of the readFrom method as:

@override
public Movie readFrom(Class<Movie> type, Type typel, Annotation]]
antns, MediaType mt, MultivaluedMap<String, String> mm, InputStream in)
throws IOException, WebApplicationException {
Movie movie = new Movie();
JsonParser parser = Json.createParser(in);
while (parser.hasNext()) {
switch (parser.next()) {
case KEY NAME:
String key = parser.getString();
parser.next();
switch (key) {
case "id":
movie.setId(parser.getInt());
break;
case "name":
movie.setName(parser.getString());
break;
case "actors":
movie.setActors(parser.getString());
break;
default:
break;
}
break;
default:
break;
}
}

return movie;

This code reads a type from the input stream in. JsonParser, a streaming
parser, is created from the input stream. Key values are read from the parser and
a Movie instance is populated and returned.

Resolve the imports.
7.6 Right-click on newly created package, select “New”, “Java Class...”, specify

the name as “MovieWriter”, and click on “Finish”. Add the following class-level
annotations:

@Provider
@Produces(MediaType.APPLICATION_JSON)

36

Java EE 7 Hands-on Lab using GlassFish 4

@Provider allows this implementation to be discovered by the JAX-RS runtime
during the provider scanning phase. @Produces indicates that this
implementation will produce a JSON representation of the resource.

7.7 Make the class implements MessageBodyWriter<Movie>.

oL -
52 @Provider

53 @Produces(MediaType.APPLICATION_JSON)

@ public class MovieWriter implements MessageBodyWriter<Movie>{

55 ? Implement all abstract methods

56 @ Make class MovieWriter abstract
57 @ Create Subclass >

Figure 29: Implement Abstract Methods for MessageBodyWriter

Click on the hint (show as yellow bulb) on the class definition and select
“Implement all abstract methods”.

7.8 Add implementation of the isWritable method as:

public boolean isWriteable(Class<?> type, Type typel, Annotation]]
antns, MediaType mt) {
return Movie.class.isAssignableFrom(type);

}

This method ascertains if the MessageBodyWriter supports a particular type.

7.9 Add implementation of the getSize method as:

public long getSize(Movie t, Class<?> type, Type typel, Annotation[]
antns, MediaType mt) {
return -1;

}

Originally, this method was called to ascertain the length in bytes of the serialized
form of t. In JAX-RS 2.0, this method is deprecated and the value returned by
the method is ignored by a JAX-RS runtime. All MessageBodyWriter
implementations are advised to return -1.

7.10 Add implementation of the writeTo method as:

public void writeTo(Movie t, Class<?> type, Type typel, Annotation[]
antns, MediaType mt, MultivaluedMap<String, Object> mm, OutputStream
out) throws IOException, WebApplicationException {

JsonGenerator gen = Json.createGenerator(out);

37

Java EE 7 Hands-on Lab using GlassFish 4

gen.writeStartObject ()
.write("id", t.getId())
.write("name", t.getName())
.write("actors", t.getActors())
.writeEnd();

gen.flush();

}

This method writes a type to an HTTP message. JsonGenerator writes JSON
data to an output stream in a streaming way. Overloaded write methods are
used to write different data types to the stream.

Resolve the imports.

7.11 In “Web Pages”, “client” folder, create “addmovie.xhtml” following the steps
in 4.2. Change <ui:define> element (“top” and “left” elements need to be
removed) such that it's content looks like:

<h1>Add a New Movie</hl>

<h:form>
<table cellpadding="5" cellspacing="5">
<tr>
<th align="left">Movie Id:</th>
<td><h:inputText value="#{movieBackingBean.movieId}"/></td>
</tr>
<tr>
<th align="left">Movie Name:</th>
<td><h:inputText value="#{movieBackingBean.movieName}"/>
</td>
</tr>
<tr>
<th align="left">Movie Actors:</th>
<td><h:inputText value="#{movieBackingBean.actors}"/></td>
</tr>
</table>

<h:commandButton value="Add" action="movies"
actionListener="#{movieClientBean.addMovie()}"/>
</h:form>

This code creates a form to accept input of id, name, and actors of a movie.
These values are bound to fields in “MovieBackingBean”. The click of command
button invokes the addMovie method from “MovieClientBean” and then renders
“‘movies.xhtml”.

Click on the hint (show as yellow bulb) to resolve the namespace prefix/URI
mapping as shown.

38

Java EE 7 Hands-on Lab using GlassFish 4

10 1= <ui:dertine name="content >

11 <hl>Add a New Movie</hl>

@ shiform=

13 E ® Add h="http://java.sun.com/jsf/html" library declaration
14 - _cTr=

15 <th align="left">Movie Id:</th>
@ <td><h;inputText value="#{movieB
17+ </tr>

Figure 30: Resolving Namespace Prefix/URI Mapping for h:

7.12 Add movieName and actors field to “MovieBackingBean” as:

String movieName;
String actors;

Generate getters and setters.

7.13 Add the following code to “movies.xhtml”

<h:commandButton value="New Movie" action="addmovie" />

along with rest of the <commandButton>s.

7.14 Add the following method in “MovieClientBean”:

public void addMovie() {
Movie m = new Movie();
m.setId(bean.getMovieId());
m.setName (bean.getMovieName());
m.setActors(bean.getActors());
target
.register (MovieWriter.class)
.request()
.post(Entity.entity(m, MediaType.APPLICATION_JSON));

}

This method creates a new Movie instance, populates it with the values from the
backing bean, and POSTs the bean to the REST endpoint. The register
method registers a MovieWriter that provides conversion from the POJO to
JSON. Media type of “application/json” is specified using
MediaType.APPLICATION JSON.

Resolve the imports.

7.15 Run the project to see the updated main page as:

39

Java EE 7 Hands-on Lab using GlassFish 4

Avatar

Slumdog Millionaire

The Curious Case of Benjamin Button
The Bourne Ultimatum

The Pink Panther

Details Delete =~ New Movie

Figure 31: New Movie Button Page Output

A new movie can be added by clicking on “New Movie” button.

7.16 Enter the details as shown:

Movie Plex 7

Book a movie Add a New Movie
Chat Room Movie Id: 22
Movies

Movie Name: Skyfall

Movie Actors: Daniel Craig

Add
Figure 32: Add a New Movie Page Output Avatar

Slumdog Millionaire

Click on “Add” button. The “Movie Id” The Curious Case of Benjamin Button
value has to be greater than 20
otherwise the primary key constraint
will be violated. The table definition

The Bourne Ultimatum
The Pink Panther

may be updated to generate the () Skyfall

primary key based upon a sequence; Details = Delete = New Movie
however this is not done in the Figure 33: New Movie Added Page Output
application.

The updated page looks like as shown in Figure 33.

Note that the newly added movie is now displayed.

8.0 Ticket Sales (Batch Applications for the Java Platform)

40

Java EE 7 Hands-on Lab using GlassFish 4

Purpose: Read the total sales for each show and populate the database. In
doing so several new features of Java API for Batch Processing 1.0 will be
introduced and demonstrated by using them in the application.

Batch Processing is execution of series of "jobs" that is suitable for non-
interactive, bulk-oriented and long-running tasks. Batch Applications for the Java
Platform (JSR 352) will define a programming model for batch applications and a
runtime for scheduling and executing jobs. The core concepts of Batch
Processing are:

* A Job is an instance that encapsulates an entire batch process. A job is
typically put together using a Job Specification Language and consists of
multiple steps. The Job Specification Language for JSR 352 is
implemented with XML and is referred as "Job XML".

* A Step is a domain object that encapsulates an independent, sequential
phase of a job. A step contains all of the information necessary to define
and control the actual batch processing.

* JobOperator provides an interface to manage all aspects of job
processing, including operational commands, such as start, restart, and
stop, as well as job repository commands, such as retrieval of job and step
executions.

* JobRepository holds information about jobs current running and jobs that
run in the past. JobOperator provides access to this repository.

* Reader-Processor-Writer pattern is the primary pattern and is called
as Chunk-oriented Processing. In this, temReader reads one item at a
time, ItemProcessor processes the item based upon the business logic,
such as calculate account balance and hands it to ltemWriter for
aggregation. Once the 'chunk' numbers of items are aggregated, they are
written out, and the transaction is committed.

This section will read the cumulative sales for each show from a CSYV file and
populate them in a database.

8.1 Right-click on Source Packages, select “New”, “Java Package...”, specify the
value as “org.glassfish.movieplex7.batch”, and click on “Finish”.

8.2 Right-click on newly created package, select “New”, “Java Class...”, specify
the name as “SalesReader”. Change the class definition and add:

extends AbstractItemReader

AbstractItemReader is an abstract class that implements ItemReader
interface. The ItemReader interface defines methods that read a stream of

41

Java EE 7 Hands-on Lab using GlassFish 4

items for chunk processing. This reader implementation returns a String item
type as indicated in the class definition.

Add @Named as a class-level annotations and it allows the bean to be injected in
Job XML. Add @Dependent as another class-level annotation to mark this bean
as a bean defining annotation so that this bean is available for injection.

Resolve the imports.

8.3 Add the following field:

private BufferedReader reader;

Override open () method to initialize the reader:

public void open(Serializable checkpoint) throws Exception {
reader = new BufferedReader (
new InputStreamReader (
Thread.currentThread()
.getContextClassLoader ()
.getResourceAsStream("META-INF/sales.csv")));
}

v

[[EHzSource Packages

This method initializes a Buf feredReader from v [(daOther Sources
“META-INF/sales.csv” that is bundled with the v [src/main/resources
application and is shown in Figure 34. v [HgMETA-INF
[E] create.sql
[Q load.sql
. , . ; . B persistence.xml
Sampling of the first few lines from “sales.csv” is [sales.csv

shown below:

v

|.g Dependencies

g Java Dependencies

1,500.00 Figure 34: sales.csv
2,660.00

3,80.00

4,470.00

5,1100.x0

v

Each line has a show identifier comma separated by the total sales for that show.
Note that the last line (5th record in the sample) has an intentional typo. In
addition, 17™ record also has an additional typo. The lab will use these lines to
demonstrate how to handle parsing errors.

8.4 Override the following method from the abstract class:

@override

public String readItem() {
String string = null;
try {

42

Java EE 7 Hands-on Lab using GlassFish 4

string = reader.readLine();
} catch (IOException ex) {
ex.printStackTrace();

}

return string;

}

The readItem method returns the next item from the stream. It returns null to
indicate end of stream. Note end of stream indicates end of chunk, so the current
chunk will be committed and the step will end.

Resolve the imports.

8.5 Right-click on “org.glassfish.movieplex7.batch” package, select “New”, “Java
Class...”, specify the name as “SalesProcessor”. Change the class definition and
add:

implements ItemProcessor

ItemProcessor is an interface that defines a method that is used to operate on
an input item and produce an output item. This processor accepts a String
input item from the reader, SalesReader in our case, and returns a Sales
instance to the writer (coming shortly). Sales is the pre-packaged JPA entity
with the application starter source code.

Add @Named and @Dependent as class-level annotations so that it allows the
bean to be injected in Job XML.

Resolve the imports.

8.6 Add implementation of the abstract method from the interface as:

@Override
public Sales processItem(Object s) {
Sales sales = new Sales();

StringTokenizer tokens = new StringTokenizer((String)s, ",");
sales.setId(Integer.parseInt(tokens.nextToken()));
sales.setAmount (Float.parseFloat (tokens.nextToken()));

return sales;

}

This method takes a String parameter coming from the SalesReader, parses
the value, populates them in the Sales instance, and returns it. This is then
aggregated with the writer.

43

Java EE 7 Hands-on Lab using GlassFish 4

The method can return null indicating that the item should not be aggregated.
For example, the parsing errors can be handled within the method and return
null if the values are not correct. However this method is implemented where
any parsing errors are thrown as exception. Job XML can be instructed to skip
these exceptions and thus that particular record is skipped from aggregation as
well (shown later).

Resolve the imports.

8.7 Right-click on “org.glassfish.movieplex7.batch” package, select “New”, “Java
Class...”, specify the name as “SalesWriter”. Change the class definition and
add:

extends AbstractItemWriter

AbstractItemWriter is an abstract class that implements ItemWriter
interface. The ItemWriter interface defines methods that write to a stream of
items for chunk processing. This writer writes a list of Sales items.

Add @Named and @Dependent as class-level annotations so that it allows the
bean to be injected in Job XML.

Resolve the imports.

8.8 Inject EntityManager as:

@PersistenceContext EntityManager em;

Override the following method from the abstract class:

@Override
@Transactional
public void writeItems(List list) {
for (Sales s : (List<Sales>)list) {

em.persist(s);
}
}

Batch runtime aggregates the list of Sales instances returned from the
SalesProessor and makes it available as List in this method. This method
iterates over the list and persist each item in the database.

The method also has a @Transactional annotation. This is a new annotation
introduced in the Java Transaction API (JSR 907). It can be used by applications
to control transaction boundaries on CDI managed beans, as well as classes
defined as managed beans by the Java EE specification such as servlets, JAX-

44

Java EE 7 Hands-on Lab using GlassFish 4

RS resource classes, and JAX-WS service endpoints, declaratively. This
provides the semantics of EJB transaction attributes in CDI without
dependencies such as RMI. This support is implemented via an implementation
of a CDlI interceptor that conducts the necessary suspending, resuming, etc.

In this case, a transaction is automatically started before the method is called,
committed if no checked exceptions are thrown, and rolled back if runtime
exceptions are thrown. This behavior can be overridden using rollbackOn and
dontRollbackOn attributes of the annotation.

Resolve the imports.

8.9 Create Job XML that defines the job, step, and chunk.

In “Files” tab, expand the project -> “src” -> “main” -> “resources”, right-click on
“resources”, “META-INF”, select “New”, “Folder...”, specify the name as “batch-
jobs”, and click on “Finish”.

Right-click on the newly created folder, select “New”, “Other...”, select “XML”",
“XML Document”, click on “Next >”, give the name as “eod-sales”, click on “Next”,
take the default, and click on “Finish”.

Replace contents of the file with the following:

<job id="endOfDaySales" xmlns="http://xmlns.jcp.org/xml/ns/javaee”
version="1.0">
<step id="populateSales” >
<chunk item-count="3" skip-limit="5">
<reader ref="salesReader”/>
<processor ref="salesProcessor”/>
<writer ref="salesWriter”/>
<skippable-exception-classes>
<include class="java.lang.NumberFormatException” />
</skippable-exception-classes>
</chunk>
</step>
</job>

This code shows that the job has one step of chunk type. The <reader>,
<processor>, and <writer> elements define the CDI bean name of the
implementations of ItemReader, ItemProcessor, and ItemWriter
interfaces. The item-count attribute defines that 3 items are
read/processed/aggregated and then given to the writer. The entire
reader/processor/writer cycle is executed within a transaction. The
<skippable-exception-classes> element specifies a set of exceptions to
be skipped by chunk processing.

45

Java EE 7 Hands-on Lab using GlassFish 4

CSV file used for this lab has intentionally introduced couple of typos that would
generate NumberFormatException. Specifying this element allows skipping
the exception, ignore that particular element, and continue processing. If this
element is not specified then the batch processing will halt. The skip-limit
attribute specifies the number of exceptions a step will skip.

8.10 Lets invoke the batch job.
Right-click on “org.glassfish.movieplex7.batch” package, select “New”, “Session
Bean...”. Enter the name as “SalesBean” and click on “Finish” button.

Add the following code to the bean:

public void runJob() {

try {
JobOperator jo = BatchRuntime.getJobOperator();
long jobId = jo.start("eod-sales", new Properties());
System.out.println("Started job: with id: " + jobId);
} catch (JobStartException ex) {
ex.printStackTrace();

}
}

This method uses BatchRuntime to get an instance of JobOperator, which is
then used to start the job. JobOperator is the interface for operating on batch
jobs. It can be used to start, stop, and restart jobs. It can additionally inspect job
history, to discover what jobs are currently running and what jobs have previously
run.

Add @Named as class-level annotation and it allows the bean to be injectable in
an EL expression.

Resolve the imports.
8.11 Inject EntityManager in the class as:
@PersistenceContext EntityManager em;

and add the following method:

public List<Sales> getSalesData() {
return em.createNamedQuery("Sales.findAll", Sales.class)
.getResultList();

}

This method uses a pre-defined @NamedQuery to query the database and return
all the rows from the table.

Resolve the imports.

46

Java EE 7 Hands-on Lab using GlassFish 4

8.12 Add the following code in “template.xhtml” along with other
<outputLink>s:

<p/><h:outputLink
value="${facesContext.externalContext.requestContextPath}/faces/batch/s
ales.xhtml">Sales</h:outputLink>

8.13 Right-click on “Web Pages”, select “New”, “Folder...”, specify the name as
“batch”, and click on “Finish”. Create “sales.xhtml” in that folder following the
steps explained in 4.2.

Copy the following code inside <ui:define> with name="content”:

<hl1>Movie Sales</h1l>
<h:form>
<h:dataTable value="#{salesBean.salesData}" var="s" border="1">
<h:column>
<f:facet name="header">
<h:outputText value="Show ID" />
</f:facet>
#{s.1id}
</h:column>
<h:column>
<f:facet name="header">
<h:outputText value="Sales" />
</f:facet>
#{s.amount}
</h:column>
</h:dataTable>

<h:commandButton value="Run Job" action="sales"
actionListener="#{salesBean.runJob()}"/>

<h:commandButton value="Refresh" action="sales" />
</h:form>

This code displays the show identifier and sales from that show in a table by
invoking SalesBean.getSalesData(). First command button allows invoking
the job that processes the CSV file and populates the database. The second
command button refreshes the

page. Movie Plex 7

Right-click on the yellow bulb to
fix namespace prefix/URI Book a movie Showing 20 movies in 7 theaters!

mapping. This needs to be

) Chat Room
repeated for h: and £: prefix.

Movies

Sales

47

Java EE 7 Hands-on Lab using GlassFish 4

8.14 Run the project to see the

. . Figure 35: Sales Link
output as shown in Figure 35. gu

Notice, a new “Sales” entry is displayed in the left navigation bar.

8.15 Click on “Sales” to see the output B [\ ER 5 &4
as shown in Figure 36.

Book a movie i

The empty table indicates that there is Movie Sales

no sales data in the database. Chat Room |Show ID|Sales
Movies Run Job = Refresh
Sales

8.16 Click on “Run Job” button to
initiate data processing of CSV file. Figure 36: Movie Sales Page Output
Look for Wait for a couple of seconds

for the processing to finish and then click on “Refresh” button to see the updated

output as shown in Figure 37.
Movie Plex 7

Now the table is populated with the

sales data. Book a movie Movie Sales
Chat Room |Show 1D Sales |
Note that record 5 is missing from the o 1 |s00.0 |
table, as this records did not have 3 180.0 |
correct numeric entries for the sales Sales 2 [660.0 |
total. The Job XML for the application 4 [470.0 |
explicitly mentioned to skip such errors. 6 240.0 |
7 11000.0|
9 1230.0 |

Figure 37: Movie Sales Details Page Output

9.0 Movie Points (Java Message Service 2)
Purpose: Customers accrue points for watching a movie.

Java Message Service 2.0 allows sending and receiving messages between
distributed systems. JMS 2 introduced several improvements over the previous
version.

48

Java EE 7 Hands-on Lab using GlassFish 4

This section will provide a page to simulate submission of movie points accrued
by a customer. These points are submitted to a JMS queue that is then read
synchronously by another bean. JMS queue for further processing, possibly
storing in the database using JPA.

9.1 Right-click on Source Packages, select “New”, “Java Package...”, specify the
value as “org.glassfish.movieplex7.points”, and click on “Finish”.

9.2 Right-click on newly created package, select “New”, “Java Class...”, specify
the name as “SendPointsBean”. Change the class definition and add:

implements Serializable

Add the following class-level annotations:

@Named
@SessionScoped

This makes the bean to be EL-injectable and automatically activated and
passivated with the session.

9.3 Typically a message to a JMS Queue is sent after the customer has bought
the tickets. Another bean will then retrieve this message and update the points
for that customer. This allows the two systems, one generating the data about
tickets purchased and the other about crediting the account with the points,
completely decoupled.

This lab will mimic the sending and consuming of a message by an explicit call to
the bean from a JSF page.

Add the following field to the class:

@NotNull

@Pattern(regexp = ""“\\d{2},\\d{2}", message = "Message format must be 2
digits, comma, 2 digits, e.g. 12,12")

private String message;

This field contains the message sent to the queue. This field’s value is bound to
an inputText in a JSF page (created later). It also has a Bean Validation
constraint that enables validation of data on form submit. It requires the data to
consists of 2 numerical digits, followed by a comma, and then 2 more numerical
digits. If the message does not meet the validation criteria then the error
message to be displayed is specified using message attribute.

This could be thought as conveying the customer identifier and the points
accrued by that customer.

49

Java EE 7 Hands-on Lab using GlassFish 4

Generate getter/setters for this field. Right-click in the editor pane, select “Insert
Code” (Ctrl + | shortcut on Mac), select “Getter and Setter...”, select the field, and
click on “Generate”.

9.4 Add the following code to the class:

@Inject
JMSContext context;

@Resource (mappedName = "java:global/jms/pointsQueue")
Queue pointsQueue;

public void sendMessage() {
System.out.println("Sending message: " + message);

context.createProducer().send(pointsQueue, message);

The Java EE Platform requires a pre-configured JMS connection factory under
the JNDI name java:comp/DefaultJMSConnectionFactory. If no
connection factory is specified then the pre-configured connection factory is
used. In a Java EE environment, where CDI is enabled by default anyway, a
container-managed JMSContext can be injected as:

@Inject
JMSContext context;

This code uses the default factory to inject an instance of container-managed
JMSContext.

JMSContext is a new interface introduced in JMS 2. This combines in a single
object the functionality of two separate objects from the JMS 1.1 API: a
Connection and a Session.

When an application needs to send messages it use the createProducer
method to create a JMSProducer that provides methods to configure and send
messages. Messages may be sent either synchronously or asynchronously.

When an application needs to receive messages it uses one of several
createConsumer Or createDurableConsumer methods to create a
JMSConsumer. A JMSConsumer provides methods to receive messages either
synchronously or asynchronously.

50

Java EE 7 Hands-on Lab using GlassFish 4

All messages are then sent to a Queue instance (created later) identified by
java:global/jms/pointsQ
ueue JNDI name. The actual

Select the fully qualified name to use in the import statement.

Import Statements:

message is obtained from the

value entered in the JSF page Resource @s= javax.annotation.Resource
and bound to the message ConnectionFactory | ©© javax.jms.ConnectionFactory
field. — .
Queue %0 javax.jms.Queue
Resolve the imports_ Serializable =0 java.io.Serializable
JMSContext =0 javax.jms.JIMSConte

Make sure Queue class is

imported from Named @s= javax.inject.Named
javax. jms.Queue instead of SessionScoped @z javax.enterprise.context.SessionScoped
the default java.util.Queue
as shown in Figure 38. ™ Remove unused imports
Figure 38: Resolve Imports for Queue
Click on “OK”.

”

9.5 Right-click on “org.glassfish.movieplex7.points” package, select “New”, “Java
Class...”, specify the name as “ReceivePointsBean”. Change the class definition
and add:

implements Serializable

Add the following class-level annotations:

@JMSDestinationDefinition(name = "java:global/jms/pointsQueue"”,
interfaceName = "javax.jms.Queue”)

@Named

@SessionScoped

This allows the bean to refered from an EL expression. It also activates and
passivates the bean with the session.

JMSDestinationDefinition is a new annotations introduced in JMS 2. It is
used by the application to provision the required resources and allow an
application to be deployed into a Java EE environment with minimal
administrative configuration. This code will create Queue with the JNDI name
java:global/jms/pointsQueue.

9.6 Add the following code to the class:

51

Java EE 7 Hands-on Lab using GlassFish 4

@Inject
JMSContext context;

@Resource (mappedName="java:global/jms/pointsQueue")
Queue pointsQueue;

public String receiveMessage() {
String message =

context.createConsumer (pointsQueue).receiveBody(String.class);
System.out.println("Received message: " + message);
return message;

}

This code is very similar to SendPointsBean. createConsumer method
creates JMSConsumer which is then used to synchronously receive a message.

9.7 Add the following method to the class:

public int getQueueSize() {
int count = 0;

try {
QueueBrowser browser = context.createBrowser (pointsQueue);
Enumeration elems = browser.getEnumeration();

while (elems.hasMoreElements()) {
elems.nextElement();
count++;

}
} catch (JMSException ex) {
ex.printStackTrace();

}

return count;

This code creates a QueueBrowser to look at the messages on a queue without
removing them. It calculates and returns the total number of messages in the
queue.

Resolve the imports.

9.8 Right-click on “Web Pages”, select “New”, “Folder...”, specify the name as
“points”, and click on “Finish”. Create “points.xhtml” in that folder following the
steps explained in 4.2.

Copy the following code inside <ui:define> with name="content”:

<h1>Points</h1>

<h:form>
Queue size:
<h:outputText value="#{receivePointsBean.queueSize}"/><p/>
<h:inputText value="#{sendPointsBean.message}"/>

52

Java EE 7 Hands-on Lab using GlassFish 4

<h:commandButton
value="Send Message"
action="points"
actionListener="#{sendPointsBean.sendMessage()}"/>
</h:form>
<h:form>
<h:commandButton
value="Receive Message"
action="points"
actionListener="#{receivePointsBean.receiveMessage()}"/>
</h:form>

Click on the yellow bulb to resolve namespace prefix/URI mapping for h: prefix.

This page displays the number of messages in the current queue. It provides a
text box for entering the message that can be sent to the queue. The first
command button invokes sendMessage method from SendPointsBean and
refreshes the page. Updated queue count, incremented by 1 in this case, is
displayed. The second command button invokes receiveMessage method from
ReceivePointsBean and refreshes the page. The queue count is updated
again, decremented by 1 in this case.

If the message does not meet the validation criteria then the error message is

displayed on the screen.

9.9 Add the following code in “template.xhtml” along with other <outputLink>s:

<p/><h:outputLink value="
${facesContext.externalContext.requestContextPath}/faces/points/points.
xhtml">Points</h:outputLink>

9.10 Run the project. The update page looks like as shown:

Movie Plex 7

Book a movie Showing 20 movies in 7 theaters!
Chat Room

Movies

Sales

Points

Figure 39: Points Link

53

Java EE 7 Hands-on Lab using GlassFish 4

Click on “Points” to see the output as:

Movie Plex 7

Book a movie Points
Queue size: 0

Chat Room

Movies _Send Message
_Receive Message

Sales

Points

Figure 40: Points Page Default Output

The output shows that the queue has 0 messages. Enter a message “1212” in
the text box and click on “Send Message” to see the output as shown in Figure
41.

Movie Plex 7

Book a movie Points
Queue size: 0

Chat Room
Movies 1212 _Send Message
_Receive Message
Sales
Points ¢ Message format must be 2 digits, comma, 2 digits, e.g. 12,12

Figure 41: Bean Validation Error Message

This message is not meeting the validation criteria and so the error message is
displayed.

Enter a message as “12,12” in the text box and click on “Send Message” button
to see the output as:

54

Java EE 7 Hands-on Lab using GlassFish 4

Book a movie Points

Chat Room Queue size: 1

Movies 12,12 Send Message
Sales Receive Message

Points

Figure 42: Points Page Output: 1 Message in Queue

The updated count now shows that there is 1 message in the queue.
Click on “Receive Message” button to see output as:

Book a movie Points

Chat Room Queue size: 0

Movies 12,12 | Send Message
Sales Receive Message

Points

Figure 43: Points Page Output: 0 Message in Queue

The updated count now shows that the message has been consumed and the
queue has 0 messages.

Click on “Send Message” 4 times to see the output as:

Movie Plex 7

Book a movie Points

Chat Room Queue size: 4

Movies 12,12 Send Message
Receive Message

Sales

Points

Figure 44: Points Page Output: 4 Messages in Queue

Java EE 7 Hands-on Lab using GlassFish 4

The updated count now shows that the queue has 4 messages.

Click on “Receive Message” 2 times to see the output as:

Book a movie Points

Chat Room Queue size: 2

Movies 12,12 Send Message
Sales Receive Message

Points

Figure 45: Points Page Output: 2 Messages in Queue

The count is once again updated to reflect the 2 consumed and 2 remaining
messages in the queue.

10.0 Conclusion

This hands-on lab built a trivial 3-tier web application using Java EE 7 and
demonstrated the following features of the platform:

» Java EE 7 Platform (JSR 342)
o Maven coordinates
o Default DataSource
o Default JMSConnectionFactory
* Java Persistence API 2.1 (JSR 338)
o Schema generation properties
* Java API for RESTful Web Services 2.0 (JSR 339)
o Client API
o Custom Entity Providers
* Java Message Service 2.0 (JSR 343)
o Default ConnectionFactory
o Injecting JMSContext
o Synchronous message send and receive
» JavaServer Faces 2.2 (JSR 344)
o Faces Flow
* Contexts and Dependency Injection 1.1 (JSR 346)
o Automatic discovery of beans

56

Java EE 7 Hands-on Lab using GlassFish 4

o Injection of beans
* Bean Validation 1.1 (JSR 349)
o Integration with JavaServer Faces
* Batch Applications for the Java Platform 1.0 (JSR 352)
o Chunk-style processing
o Exception handling
» Java API for JSON Processing 1.0 (JSR 353)
o Streaming API for generating JSON
o Streaming API for consuming JSON
» Java API for WebSocket 1.0 (JSR 356)
o Annotated server endpoint
o JavaScript client
* Java Transaction API 1.2 (JSR 907)
o0 @Transactional

Hopefully this has raised your interest enough in trying out Java EE 7applications
using GlassFish 4.

Send us feedback at users@glassfish.java.net.

11.0 Troubleshooting

11.1 How can | start/stop/restart GlassFish from within
the IDE ?

In the “Services” tab, right-click on “GlassFish Server 4”.
All the commands to start, stop, and restart are available
from the pop-up menu. The server log can be viewed by
clicking on “View Server Log” and web-based
administration console can be seen by clicking on “View
Admin Console”.

View Domain Admin Console
View Domain Server Log
View Domain Update Center

11.2 | accidentally closed the GlassFish output log Properties

window. How do | bring it back ?

In “Services” tab of NetBeans, expand “Servers”, choose the GlassFish node,
and select “View Domain Server Log”.

57

Java EE 7 Hands-on Lab using GlassFish 4

12.0 Acknowledgements

The following GlassFish community members graciously reviewed this hands-on
lab:

* Antonio Goncalves (@agoncal)

* Markus Eisele (@myfear)

* Craig Sharpe (@dapugs)

* Marcus Vinicius Margarites (@mvfm)
* David Delabasse (@delabasse)

* John Clingan (@)jclingan)

Thank you very much for providing the valuable feedback!

13.0 Completed Solutions

The completed solution can be downloaded from glassfish.org/hol/movieplex7-
solution.zip.

14.0 TODO

1. Update the namespace from java.sun.com -> xmins.jcp.org. Waiting for
runtime and tooling to sync up.
2. Default Enabling of CDI.
3. Fix hyperlinking in the generated PDF.
4. Add the following use cases:
a. Concurrency Utilities for Java EE
b. WebSocket Java Client
c. JAX-RS Logging Filter
Replace @Stateless with @Transactional. Is it possible?
Disable errors in persistence.xml
How to override .m2/repository in NetBeans?

No o

Revision History

1. Incorporating typos, missing dialog boxes, and code optimizations
received during DevoxxUK.

2. Updating instructions after some of the bugs have been fixed.

3. Using the final GlassFish 4 build (b89).

4. Remove beans.xml dependency and pointed to the final release bits.

58

Java EE 7 Hands-on Lab using GlassFish 4

Appendix

Appendix A: Configure GlassFish 4 in NetBeans IDE Projects | Files |Services @ | |
» E Databases

A.1 In NetBeans, click on the “Services” tab. Serve
> @ Add Server...

A.2 Right-click on Servers, choose “Add Server...” in : % ::::oana:keresrs
the pop-up menu.

A.3 Select “GlassFish Server 3+” in the Add Server
Instance wizard, set the name to “GlassFish 4.0” and
click “Next >”. Choose Server

Add Server Instance

pache Tomcat

GlassFish Server 3+

Boss Application Se

A.4 Click on “Browse ...” and browse to where you
unzipped the GlassFish build and point to the
“glassfish4” directory that got created when you
unzipped the above archive. Click on “Finish”.

59

