Java EE 7 with GlassFish 4
Application Server

A practical guide to install and configure the GlassFish 4
application server and develop Java EE 7 applications
to be deployed to this server

Java EE 7 with GlassFish 4
Application Server

A practical guide to install and configure the GlassFish 4
application server and develop Java EE 7 applications
to be deployed to this server

David R. Heffelfinger

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

Java EE 7 with GlassFish 4 Application Server

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2007
Second Edition: July 2010
Third Edition: March 2014

Production Reference: 1200314

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78217-688-6
www . packtpub.com

Cover Image by Aniket Sawant (aniket_sawant_ photography@hotmail.com)

Credits

Author
David R. Heffelfinger

Reviewers
Stefan Horochovec

Tim Pinet

Chirag Sangani

Acquisition Editors
Subho Gupta

Rubal Kaur

Content Development Editor
Akshay Nair

Technical Editors
Pratik More

Humera Shaikh
Rohit Kumar Singh

Pratish Soman

Copy Editors
Tanvi Gaitonde

Dipti Kapadia
Aditya Nair
Kirti Pai

Stuti Srivastava

Project Coordinator
Amey Sawant

Proofreaders
Maria Gould

Sandra Hopper

Linda Morris

Indexers
Mehreen Deshmukh

Rekha Nair

Graphics
Yuvraj Mannari

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

About the Author

David R. Heffelfinger is the Chief Technology Officer at Ensode Technology,
LLC, a software consulting firm based in the Greater Washington DC area. He

has been architecting, designing, and developing software professionally since
1995. He has been using Java as his primary programming language since 1996.
He has worked on many large-scale projects for several clients including the

U.S. Department of Homeland Security, Freddie Mac, Fannie Mae, and the U.S.
Department of Defense. He has a master's degree in Software Engineering from
Southern Methodist University. David is the Editor-in-chief of Ensode.net
(http://www.ensode.net), a website on Java, Linux, and other technologies. David
is a frequent speaker at Java conference such as JavaOne. You can follow David on
Twitter, @ensode.

About the Reviewers

Stefan Horochovec is from Brazil. He has a graduate degree in Software
Engineering and also in Project Management and currently works as a software
architect.

Over the past 10 years, he has been dedicated to the development of Enterprise
Applications using Java as the backend technology and application servers,
such as GlassFish, JBoss, Weblogic, and WildFly.

With regards to frontend, Stefan has worked for 4 years with technologies such as
Apache Flex (speaking for three consecutive years at FlexMania, the biggest event
on Apache Flex in Latin America), Struts, and JSF. Today, his focus is on projects
involving JSF 2 and JavaScript frameworks, with a strong focus on Angular]S.

He has worked with the mobile world for about 6 years, having extensive experience
on the Android platform. He was one of the first Android instructors in Brazil and a
speaker at the Android conference in Brazil. For about 2 years, he has been working
with the HTML-based mobile development using frameworks such as PhoneGap to
build enterprise applications.

In 2014, Stefan was invited to join the BlackBerry Elite Member program, which
gathers around 100 people worldwide, emphasizing the importance of mobile
development, technologies for their development, and using the operating system
and BlackBerry devices on the mobile platform.

Stefan also teaches in University courses related to web and Mobile development
and is an instructor of in-company courses related to Java, HTML/]JS/CSS3,
PhoneGap, Git, and Java application servers.

Tim Pinet is a practicing software engineer and web developer currently residing
in Ottawa, Canada. From an early age, he was always fascinated with all electronic
things and went on to graduate with a bachelor's degree in Engineering in the
Software Engineering stream. As Ottawa is a large capital city with a technology
sector rich with opportunity, Tim has had the fortune to practice software
engineering and systems integration in both private (Computer Associates, Emergis,
Telus, Nortel) and public (City of Ottawa) companies and in numerous industries
such as transportation and road/weather information systems, healthcare recording,
communications and telephony infrastructure, and municipal citizen-centric services
and payment handling.

Tim's open source mantra helps him to focus on working for low cost, but high
productivity in any environment and has him giving back to projects (such as
Apache and SourceForge) and community knowledge bases (such as Stackoverflow
and his personal blog). He has brought open source tools to his employers, saving
them thousands of dollars and giving them best-practice accelerated development
and testing capabilities without giving up dollars or quality.

Loving all things software and web, Tim constantly indulges himself in the newest
technologies to better improve service to the end client. He has a vast experience
in Java using enterprise technologies, web services, client GUI development,
server backend development, database management integration, and SOA services
integration. He is a very focused team player and works best in leading teams and
architecting solutions.

Chirag Sangani is a computer scientist living in the Seattle area. He obtained
his MS from Stanford University, CA, and his B. Tech. from IIT Kanpur, India. He
currently works as a software development engineer for Microsoft.

www.PacktPub.com

Support files, eBooks, discount offers and more

You might want to visit www . Packt Pub . com for support files and downloads related to your
book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www . PacktPub. com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

[a]PACKT)

http://PacktLib.PacktPub.com
Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?

* Fully searchable across every book published by Packt
* Copy and paste, print and bookmark content

¢ On demand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www . Packt Pub . com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books

Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

Table of Contents

Preface 1
Chapter 1: Getting Started with GlassFish 7
An Overview of Java EE and GlassFish 7
What's new in Java EE 77 8
JavaServer Faces (JSF) 2.2 8
Java Persistence API (JPA) 2.1 8
Java API for RESTful Web Services (JAX-RS) 2.0 9
Java Message Service (JMS) 2.0 9
Java API for JSON Processing (JSON-P) 1.0 10
Java API for WebSocket 1.0 10
GlassFish advantages 10
Obtaining GlassFish 1"
Installing GlassFish 13
GlassFish dependencies 13
Performing the installation 13
Starting GlassFish 14
Deploying our first Java EE application 16
Deploying an application through the Web Console 16
Undeploying an application through the GlassFish Admin Console 19
Deploying an application through the command line 20
GlassFish domains 23
Creating Domains 23
Deleting domains 25
Stopping a domain 25
Setting up Database Connectivity 26
Setting up connection pools 26
Setting up the data sources 30
Summary 31

Table of Contents

Chapter 2: JavaServer Faces 33
Introduction to JSF 33
Facelets 33
Optional faces-config.xml 34
Standard resource locations 34
Developing our first JSF application 35
Facelets 35
Project stages 41
Validation 44
Grouping components 45
Form submission 46
Named beans 46
Navigation 48
Custom data validation 50
Creating custom validators 50
Validator methods 53
Customizing JSF's default messages 56
Customizing message styles 57
Customizing message text 59
Ajax-enabling JSF applications 61
JSF 2.2 HTMLS5 support 66
The HTML5-friendly markup 66
Pass-through elements 68
JSF 2.2 Faces Flows 70
Additional JSF component libraries 74
Summary 74
Chapter 3: Object Relational Mapping with JPA 75
The CustomerDB database 75
Introducing the Java Persistence API 77
Entity relationships 82
One-to-one relationships 83
One-to-many relationships 89
Many-to-many relationships 95
Composite primary keys 102
Introducing the Java Persistence Query Language 108
Introducing the Criteria API 11
Updating data with the Criteria API 115
Deleting data with the Criteria API 117
Bean Validation support 119
Final notes 121

Summary 122

Lii]

Table of Contents

Chapter 4: Enterprise JavaBeans 123
Introduction to session beans 124
Developing a simple session bean 124

A more realistic example 128
Invoking session beans from web applications 130
Introduction to singleton session beans 132
Asynchronous method calls 133
Message-driven beans 136
Transactions in Enterprise JavaBeans 137
Container-managed transactions 137
Bean-managed transactions 140
Enterprise JavaBean life cycles 143
The stateful session bean life cycle 143
The stateless session bean life cycle 146
Message-driven bean life cycle 148
Introduction to the EJB Timer Service 149
Calendar-based EJB timer expressions 152
EJB Security 155
Client authentication 158
Summary 159
Chapter 5: Contexts and Dependency Injection 161
Named beans 161
Dependency injection 164
Working with CDI Qualifiers 165
Named bean scopes 169
Summary 176
Chapter 6: JSON Processing with JSON-P 177
The JSON-P Model API 178
Generating JSON data with the Model API 178
Parsing JSON data with the Model API 181
The JSON-P Streaming API 183
Generating JSON data with the Streaming API 183
Parsing JSON data with the Streaming API 185
Summary 188
Chapter 7: WebSockets 189
Developing a WebSocket server endpoint 189
Developing an annotated WebSocket server endpoint 190
Developing WebSocket clients 193
Developing JavaScript client-side WebSocket code 193
Developing WebSocket clients in Java 197

[iii]

Table of Contents

Additional information about the Java API for WebSocket 201
Summary 201
Chapter 8: The Java Message Service 203
Setting up GlassFish for JMS 203
Setting up a JMS connection factory 204
Setting up a JMS queue 207
Setting up a JMS topic 208
Working with message queues 209
Sending messages to a message queue 209
Retrieving messages from a message queue 212
Asynchronously receiving messages from a message queue 214
Browsing message queues 217
Working with message topics 219
Sending messages to a message topic 219
Receiving messages from a message topic 220
Creating durable subscribers 222
Summary 225
Chapter 9: Securing Java EE Applications 227
Security realms 227
Predefined security realms 228
The admin-realm 228

The file realm 231
The certificate realm 247
Defining additional realms 256
Defining additional file realms 256
Defining additional certificate realms 258
Defining an LDAP realm 260
Defining a Solaris realm 261
Defining a JDBC realm 262
Defining custom realms 267
Summary 273
Chapter 10: Web Services with JAX-WS 275
Developing web services with the JAX-WS API 275
Developing a web service client 281
Sending attachments to web services 287
Exposing EJBs as web services 290
EJB web service clients 291
Securing web services 292
Securing EJB web services 295
Summary 297

[iv]

Table of Contents

Chapter 11: Developing RESTful Web Services with JAX-RS 299
Introducing RESTful web services and JAX-RS 299
Developing a simple RESTful web service 300

Configuring the REST resources path for our application 303
Configuring via the @ApplicationPath annotation 304
Testing our web service 304
Converting data between Java and XML with JAXB 307
Developing a RESTful web service client 311
Working with query and path parameters 312
Query parameters 312
Sending query parameters via the JAX-RS client API 315
Path parameters 316
Sending path parameters via the JAX-RS Client API 318
Summary 320

Index 321

[v]

Preface

Java Enterprise Edition 7, the latest version of Java EE, adds several new features

to the specification. Several existing Java EE APIs have gone through major
improvements in this version of the specification; additionally, some brand new
APIs have been added to Java EE. This book includes coverage of the latest versions
of the most popular Java EE specifications, including JavaServer Faces (JSF), Java
Persistence API (JPA), Enterprise JavaBeans (E]B), Contexts and Dependency
Injection (CDI), the new Java API for JSON Processing (JSON-P), WebSocket, the
completely revamped Java Messaging Service (JMS) API 2.0, the Java API for XML
Web Services (JAX-WS) and the Java API for RESTful Web Services (JAX-RS), as well
as securing Java EE applications.

The GlassFish application server is the reference implementation for Java EE; it is the
first Java EE application server in the market to support Java EE 7. This book covers
GlassFish 4.0, the latest version of this powerful open source application server.

What this book covers

Chapter 1, Getting Started with GlassFish, explains how to install and configure
GlassFish. Deploying Java EE applications through the GlassFish web console are
also explained. Finally, basic GlassFish administration tasks such as setting up
domains and database connectivity by adding connection pools and data sources
are discussed.

Chapter 2, JavaServer Faces, covers development of web applications using JSF,
including new features such as HTML5-friendly markup and Faces Flows. It also
covers how to validate user input using JSF's standard validators and also by
creating our own custom validators or by writing validator methods.

Preface

Chapter 3, Object Relational Mapping with [PA, discusses how to develop code that
interacts with a Relational Database Management System (RDBMS) such as Oracle
or MySQL through the Java Persistence API.

Chapter 4, Enterprise JavaBeans, explains how to develop applications using

both session and message-driven beans. Major E]B features such as transaction
management, the EJB timer service, and security are covered. The life cycle of the
different types of Enterprise JavaBeans are covered, including an explanation of
how to have EJB methods automatically invoked by the E]JB container at certain
points in the life cycle.

Chapter 5, Contexts and Dependency Injection, provides an introduction to Contexts
and Dependency Injection (CDI). The chapter covers CDI named beans, dependency
injection using CDI, and CDI qualifiers.

Chapter 6, [SON Processing with [SON-P, covers how to generate and parse JavaScript
Object Notation (JSON) data using the new JSON-P API. It also covers both APIs for
processing JSON: the Model API and the Streaming APL

Chapter 7, WebSockets, explains how to develop web-based applications that feature
full duplex communication between the browser and the server as opposed to
relying on the traditional HTTP request/response cycle.

Chapter 8, The Java Message Service, covers how to set up JMS connection factories,
JMS message queues, and JMS message topics in GlassFish using the GlassFish web
console. The chapter also discusses how to develop messaging applications using
the completely revamped JMS 2.0 APL

Chapter 9, Securing Java EE Applications, covers how to secure Java EE applications
through provided security realms as well as how to add custom security realms.

Chapter 10, Web Services with JAX-WS, covers how to develop web services and web
service clients via the JAX-WS API. Web service client code generation using ANT
or Maven as a build tool has been explained.

Chapter 11, Developing RESTful Web Services with JAX-RS, discusses how to develop
RESTful Web services via the Java API for RESTful Web services as well as how to
develop RESTful Web service clients via the brand new standard JAX-RS client API.
It also explains how to automatically convert data between Java and XML by taking
advantage of the Java API for XML Binding (JAXB).

[2]

Preface

What you need for this book

The following software needs to be installed to follow the material in this book:

* The Java Development Kit (JDK) 1.7 or newer
* GlassFish 4.0

* Maven 3 or newer is needed to build the examples

* AJava IDE such as NetBeans, Eclipse, or Intelli] IDEA (optional, but
recommended).

Who this book is for

This book assumes familiarity with the Java language. The target market for this
book is the existing Java developers who wish to learn Java EE and the existing Java
EE developers who wish to update their skills to the latest Java EE specification.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"The @eNamed class annotation designates this bean as a CDI named bean."

A block of code is set as follows:

if (lemailvValidator.isValid(email))

FacesMessage facesMessage = new FacesMessage (htmlInputText.
getLabel ()
+ ": email format is not wvalid");

throw new ValidatorException (facesMessage) ;

}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

<ejb>
<ejb-name>CustomerDaocBean</ejb-name>
<ior-security-configs>
<as-context>
<auth-method>username password</auth-method>

[31]

Preface

<realm>file</realm>
<required>true</required>
</as-context>
</ior-security-config>
</ejb>

Any command-line input or output is written as follows:

$ ~/GlassFish/glassfish4/bin $./asadmin start-domain

Waiting for domainl to start

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"Clicking on the Next button moves you to the next screen."

Warnings or important notes appear in a box like this.

a1

~Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbacke@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

[4]

Preface

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http: //www.packtpub.com. If you purchased this book
elsewhere, you can visit http: //www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books —maybe a mistake in the text or the
code —we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http: //www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questionse@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[51]

Getting Started with
GlassFish

In this chapter, we will discuss how to get started with GlassFish. The following are
some of the topics discussed in this chapter:

* An overview of Java EE and GlassFish

* Obtaining GlassFish

* Installing and starting GlassFish

* Explaining the concept of GlassFish domains
* Deploying Java EE applications

* Setting up Database Connectivity

An Overview of Java EE and GlassFish

Java Enterprise Edition (Java EE, formerly called J2EE or Java 2 Enterprise

Edition) is a standard set of technologies for server-side Java development. Java

EE technologies include JavaServer Faces (JSF), Enterprise JavaBeans (E]Bs), the
Java Messaging Service (JMS), the Java Persistence API (JPA), the Java API for
WebSocket, Contexts and Dependency Injection (CDI), the Java API for XML Web
Services (JAX-WS), the Java API for RESTful Web Services (JAX-RS), and the Java
API for JSON Processing (JSON-P), among others.

Several commercial and open source application servers exist. Java EE application
servers allow developers to develop and deploy Java EE-compliant applications,
GlassFish being one of them. Other open source Java EE application servers include
Red Hat's WildFly (formerly JBoss), the Apache Software Foundation's Geronimo,
and ObjectWeb's JOnAS. Commercial application servers include Oracle's WebLogic,
IBM's WebSphere, and the Oracle Application Server.

Getting Started with GlassFish

GlassFish is the Java EE 7 reference implementation; as such, it implements the latest
Java EE APIs before any other application server in the market. GlassFish is open
source and freely available, and is licensed under the Common Development and
Distribution License (CDDL).

You can find out more about the CDDL license at http://opensource.
s org/licenses/CDDL-1.0.

Like all Java EE-compliant application servers, GlassFish provides the necessary
libraries to allow us to develop and deploy Java applications compliant with
Java EE specifications.

What's new in Java EE 7?

Java EE 7, the latest version of the Java EE specification, includes several improvements
and additions to the specification. The following sections list the major improvements
to the specifications that are of interest to enterprise application developers:

JavaServer Faces (JSF) 2.2

Java EE 7 includes a new version of the JavaServer Faces (JSF) specification. JSF 2.2
includes the following notable new features:

* JSF 2.2 features the HTMLS5 friendly markup, that is, web pages can be
written using the standard HTML 5 markup and using JSF-specific attributes
on the HTML tags.

* JSF 2.2 also includes Faces Flows, which provides a way to encapsulate
related pages with defined entry and exit points.

* Resource library contracts are the third major JSF feature introduced in JSF
2.2. Resource library contracts allow us to easily develop web applications
that can have a different look and feel for different users using JSF.

Java Persistence API (JPA) 2.1

JPA was introduced as a standard part of Java EE in version 5 of the specification.
JPA replaced entity beans as the standard object relational mapping framework for
Java EE. JPA adopted ideas from third-party object relational frameworks such as
Hibernate and JDO, and made them a part of the standard.

[8]

Chapter 1

JPA 2.1 introduces the following new features:

JPA 2.1 introduces the concept of Converters, which allows custom code
conversions between values stored in the database and values stored in
Java objects. For instance, a common problem when working with database
data is that the desired value in Java code differs from the value stored in
the database. For example, the values 1 and 0 are commonly stored in the
database to denote true and false respectively. Java has a perfectly good
boolean type, so true and false can be used directly.

The JPA Criteria API can now perform bulk updates and deletes.
JPA 2.1 now supports stored procedures.

JPA 2.1 introduces the @ConstructorResult annotation, which allows
returning standard Java classes (but not the JPA entities) from native
SQL queries.

Java API for RESTful Web Services (JAX-RS) 2.0

JAX-RS is a Java API for developing RESTful web services. RESTful web services use
the Representational State Transfer (REST) architecture. Java EE 6 adopted JAX-RS
as an official part of the Java EE specification.

JAX-RS 2.0 includes the following new features:

JAX-RS 2.0 introduces a new client-side API. While previous versions of
JAX-RS made it easy to develop RESTful web services, each implementation
defined its own proprietary client-side API.

Extension points, method filters, and entity interceptors are also introduced
in JAX-RS 2.0. These features allow Aspect Oriented Programming (AOP)
when developing RESTful web services.

JAX-RS 2.0 also introduces asynchronous processing both on the server side
and as part of the client APIL.

Java Message Service (JMS) 2.0

The Java Message Service (JMS) API has been completely revamped in Java EE 7.
Previous versions of JMS required lots of boilerplate code; with the new revamped
JMS 2.0 AP, this is no longer the case.

[o]

Getting Started with GlassFish

Java API for JSON Processing (JSON-P) 1.0

JSON-P is a brand new API introduced in Java EE 7. JSON-P allows us to parse and
generate JSON (JavaScript Object Notation) strings.

Java API for WebSocket 1.0

Traditional web applications use a request-response model, that is, a client (typically
a web browser) requests resources and the server provides a response. In this model,
communication is always initiated by the client.

WebSockets were introduced as part of the HTMLS5 specification; they provide full-
duplex communication between the client and the server.

GlassFish advantages

With so many options in Java EE application servers, why choose GlassFish? Besides
the obvious advantage of GlassFish being available free of charge, it offers the
following benefits:

* Java EE reference implementation: GlassFish is the Java EE reference
implementation. What this means is that other application servers may
use GlassFish to make sure their product complies with the specification.
GlassFish could theoretically be used to debug other application servers. If
an application deployed under another application server is not behaving
properly, but it does behave properly when deployed under GlassFish,
then more than likely the improper behavior is due to a bug in the other
application server.

* Supports the latest versions of the Java EE specification: Since GlassFish
is the reference Java EE specification, it tends to implement the latest
specifications before any other application server in the market. As a matter
of fact, at the time of writing, GlassFish is the only Java EE application server
in the market that supports the complete Java EE 7 specification.

[10]

Chapter 1

Obtaining GlassFish

GlassFish can be downloaded at https://glassfish.java.net.

GlassFish 4.0 is also bundled with the NetBeans IDE
s version 7.4 or newer.

Once there, you will see a window as shown in the following screenshot:

—e e
GlassFish Server - Mozilla Firefox - + x
Fle Edit View History Bookmarks Tools Help
J GlassFish Server " + ‘
| @ https://glassfish java.net v | ' ee 7 application 5Erversod & &® » v
("\ { GlassFish - World's first Java EE 7 Application Server About =
o

GlassFish 4 ____ 4, s

Developer Productivity
Enterprise Ready.
Open Source

irce Edition is ilable, download it now!

" Get Started #£» Download @ Documentation

How to quickly start with GlassFish How to download GlassFish Documentation, guides and other useful
resources

* Forum £ Issue Tracker & Contribute

Forum and mailing lists Issues and RFEs How to get involved

¥ IDEs «; Related Projects @ Oracle GlassFish Server

NetBeans, Eclipse, etc. Grizzly, Jersey, OpenMQ, stc. The commercial, supported version of
GlassFish

[11]

Getting Started with GlassFish

Clicking on the Download link takes us to a wizard page that provides several
options to download GlassFish as shown in the following screenshot:

K_‘:\

Cogk R

World's first Java EE 7 Application Server

sFish Server Java EE SDK

Please take the Java EE £

E Java EE 7 requires JDK
Prerequisite
: Zip (quick start) or a specific installer
Download
L glassfish-4.0.zif Java EE7 Full Java EE platform = Java EE Web Profile

Installer | zip Native installer

Windows | Linux, Solaris, Mac 05 X

Localisation English Multilingual

Download Link b glassfish-4.0.zip

| Install

Note: This command will extract GlassFish with a preconfigured
‘Domaini’domain.

[ETT) Load Console Go fo http://localhost:484¢

[EF35) Check the documentation

Visit the document page for additional guides and documentations.

The download page has several options; we can get the full Java EE platform or the
web profile. We can also download GlassFish as a compressed ZIP file or as a native
installer for the operating system of our choice.

To be able to follow all of the examples in this book, we need to download the
full Java EE platform version of GlassFish. We will download the compressed ZIP
file version since the instructions to install it are very similar across any operating
system; feel free to download a platform-specific installer if you prefer.

[12]

Chapter 1

Installing GlassFish

We will use the ZIP installer to illustrate the installation process. This installation
process works under all major operating systems.

Installing GlassFish is an easy process; however, GlassFish assumes that some
dependencies are present in your system.

GlassFish dependencies

In order to install GlassFish 4, a recent version of the Java Development Kit (JDK)
must be installed on your workstation (JDK 1.7 or newer required), and the Java
executable file must be in your system PATH. The latest JDK can be downloaded at
http://www.oracle.com/technetwork/java/javase/downloads/index.html.
Please refer to the JDK installation instructions for your particular platform at
http://docs.oracle.com/javase/7/docs/webnotes/install/index.html.

Performing the installation

Once JDK has been installed, the GlassFish installation can begin by simply
extracting the download compressed file as shown in the following screenshot:

—
GlassFish — 4

Ale Edit View Go Bookmarks Help
« = 4 O @& W (| 5 ol) 2 q|;;;|5_=5

- B Open Wilh Archive Mans,

| Open With Archive Maunter
Open With Gther application..,
¥ out
O capy
Make Link
Rename..

* My Computar

e

Capy ta
Move to]
+ Devices B openn Termina

s Open as Aoal
4 Send with Thunderbird

A Mowe to Trash
X Dolete
&

Bl eropertices

+ HMetwork

B Metwork

Extract the sebectad archive to the current position —

[13]

Getting Started with GlassFish

All modern operating systems including Linux, Windows, and Mac
% OS X include out-of-the-box support to extract compressed ZIP files;
’ consult your operating system documentation for details.

After extracting the ZIP file, a new directory named glassfish4 will be created. This
new directory contains our GlassFish installation.

Starting GlassFish

To start GlassFish from the command line, change your directory to [glassfish
installation directoryl]/glassfish4/bin and execute the following command:

./asadmin start-domain domainl

The preceding command, and most commands shown in this chapter,
%‘ assume a Unix or Unix-like operating system such as Linux or Mac
’ OS. For Windows systems, the initial . / is not necessary.

A few short seconds after executing the preceding command, we should see a
message similar to the following at the bottom of the terminal:

$ ~/GlassFish/glassfish4/bin $./asadmin start-domain
Waiting for domainl to start
Successfully started the domain : domainl

domain Location: /home/heffel/GlassFish/glassfish4/glassfish/domains/
domainl

Log File: /home/heffel/GlassFish/glassfish4/glassfish/domains/domainl/
logs/server.log

Admin Port: 4848

Command start-domain executed successfully.

Downloading the example code

\l You can download the sample code files for all the Packt
5 books that you have purchased from your account at
Q http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http: //www.packtpub.com/support
and register to have the files e-mailed directly to you.

[14]

Chapter 1

We can then open a browser window and type the following URL in the browser's
location text field:

http://localhost:8080

If everything goes well, we should see a page indicating that your GlassFish server is
now running as shown in the following screenshot:

GlassFish Server - Server Running - Mozilla Firefox

Firefox v] GlassFish Server - Server Running |[+*]

[@ localhost 2080 v ol [v Google Q| @ * v T

oracle.com

Your server is now running

To replace this page, overwrita the file index.html in the document root folder of this server. The document root folder for this server is the
docroot subdirectory of this server's domain directory.

To manage a server on the local host with the default administration port, 9o to the Administration Console.

Install and update additional softiware components

Use the Update Tool to install and update additional technologies and frameworks such as:
® DSGI HTTP Service
* Generic Resource Adapter for JMS

* OSGi Administration Console

If you are using the web profile, you can also use Update Tool to obtain technologies that are included by defaultin the full platform, such as:
* Enterprise Java Beans
® Metro
* Jersey

To improve the user experience and optimize offerings to users, Cracle collects data about GlassFish Server usage that is transmitted by the
Update Tool installer as part of the automatic update processes. No personally identifiable information is collected by this process.

Join the GlassFish communitv

Qv =

Getting Help
a1

T If any of the preceding steps fail or for help with GlassFish in general,
a great resource is the GlassFish forum at https://www.java.net/
forums/glassfish/glassfish.

[15]

Getting Started with GlassFish

Deploying our first Java EE application

To further confirm that our GlassFish installation is running properly, we will deploy
a WAR (Web ARchive) file and make sure the file deploys and executes properly.
Before moving on, please download the file simpleapp.war from this book's web
site at www . packtpub.com.

Deploying an application through the Web Console

To deploy simpleapp.war, open a browser and navigate to http://
localhost:4848. You should be greeted with the default GlassFish server
administration page as shown in the following screenshot:

Home About....

User: admin Domain: domaini Server: localhost

GlassFish™ Server Open Source Edition

&

Tree
e Gomemon T GlassFish Console - Common Tasks
a Domain
E server (Admin Server)
g Clusters GlassFish News Documentation
E Standalone Instances I
> [Noo | Support Open Source Edition
i . . Documentation Set
[Applications l Registration " — -
&% Lifecycle Modules ClassFish News Quick Start Guide
[E@ Monitoring Data | Administration Guide "
Y N oo Deployment . Application Development Guide |
L2 E Concurrent Resources A N ¥ 2 i
» ¢y Comnectors ha List Deployed Applications " | Application Deployment Guide
> Eﬂ JDBC . Deploy an Application "
> g3 JMS Resources Update Center
* [JNDI Administration | Installed Components
[JavaMail Sessions . Change Administrator Password | Available Updates
— Resource Adapter Configs e : i .
_.H] List Password Aliases y Available Add-Ons
v m Configurations . . el
* (g7 default-confi Frill,
(o : Menitoring Resources
L3 |.I+J server-config
(5 Update Tool . Monitoring Data 5 .| Create New JOBC Resource
Create New JDBC Connection
. Pool

[16]

Chapter 1

By default, GlassFish is installed in development mode. In this mode, it is not
necessary to enter a username and password to access the GlassFish web console. In
production environments, it is highly advisable to configure the web console so that
it is password protected.

At this point, we should click on the Deploy an Application item under the
Deployment section on the main screen.

To deploy our application, we should select the Local Packaged File or Directory
That is Accessible from GlassFish Server radio button and either type the path to
our WAR file or select it by clicking on the Browse Files... button. Once this is done,
you will see a window as shown in the following screenshot:

Mozilla Firefox S L

% localhost:4848/common/applications/fileChooser.sf Ea

Browse Server

Server Mame: heffel-Aspire4820TG
Look In: /home/heffel/6EBE_code/Chapter 1
File Filter: [= i

To apply a new field value, press Enter in that field.

BIE Sort By: |Name (A-Z) =]
 Name Size DatelTime i
Selected File: [simpleapp.war

ﬂmﬂb&ll(ﬂmel |

[17]

Getting Started with GlassFish

After we have selected our WAR file, a number of input fields that allow us to
specify several options are shown. For our purposes, all defaults are fine. We
can simply click on the OK button at the top right of the page as shown in the
following screenshot:

Deploy Applications or Modules [ok |

Specify the location of the application or module to deploy. An application can be in a packaged file or specified as a directory.

* Indicates required field

Location: ~ packaged File to Be Uploaded to the Server

" Browse.. | Mofile selected.

@ Local Packaged File or Directory That Is Accessible from GlassFish Server

[/nome/heffel/6BB6_code/Chapter 1/simpleapp.war | {Erowse Files.}| | Browse Folders...

Context Root:

Virtual Servers:

Status:

Precompile JSPs:

Run Verifier:

Force Redeploy:

Keep State:

Libraries:

Description:

Application Name: "

Deployment Order:

Type: * [Web Application =]

[simpleapp |
Path relative to server's base URL.

[simpleapp |

SEMFEr

Associates an Intemet domain name with & physical server.

[£)] Enabled

Allows users to access the application.

O

Precompiles J5P pages during deployment.

O

Verifies the syntax and semantics of the deployment descriptor. Verifier packages must be installed.
O

Forces redeployment even if this application has already been deployed or already exists.

O

Retains web sessions, SF5B instances, and persistently created EJB timers between redeployments.

A number that determines the loading order of the application at server startup. Lower numbers are loaded
first. The default is 100.

A comma-separated list of library JAR files. Specify the library JAR files by their relative or absolute paths.
Specify relative paths relative to nsfance-00{/11b/apa11ns. The libranes are made available to the
application in the order specified.

[18]

Chapter 1

Once we deploy our application, the GlassFish web console displays the Applications
window, with our application listed as one of the deployed applications as shown in
the following screenshot:

Applications

Applications can be enterprise or web applications, or various kinds of modules. Restart an application or module by clicking on
the reload link, this action will apply only to the targets that the application or module is enabled on.

Deployed Applications (1)
EIEN Undeploy | | Enable | | Disable | | Filter: -
Select | Name | Deployment Order | Enabled | Engines | Action
[T simpleapp 100 v web Launch | Redeploy | Reload

To execute the simpleapp application, type the following URL in the browser's
location text field:

http://localhost:8080/simpleapp/simpleserviet

The resulting page should look like the following screenshot:

Mozilla Firefox = + x
Firefox v I http:/flocalhost:...app/simpleserviet H L l

4 [@ localhost:2080/simpleapp/simpleserviet v 0| [Bvcooge Q) & & v @y

If you are reading this, your application server is good to
go!

That's it! We have successfully deployed our first Java EE application.

Undeploying an application through the GlassFish

Admin Console

To undeploy the application we just deployed, log in to the GlassFish Admin
Console by typing the following URL in the browser:

http://localhost:4848

[19]

Getting Started with GlassFish

Then, either click on the Applications menu item in the navigation pane on the left,
or click on the List Deployed Applications item on the administration console's
home page.

Either way should take us to the application management page as shown in the
following screenshot:

Applications

Applications can be enterprise or web applications, or various kinds of modules. Restart an application or module by clicking on the
reload link, this action will apply only to the targets that the application or module is enabled on.

Deployed Applications (1)
(B (Ba) Undeploy | | Enable | | Disable | | Filter: -
Select | Name | Deployment Order | Enabled | Engines | Action
O simpleapp 100 14 web Launch | Redeploy | Reload

The application can be undeployed simply by selecting the checkbox next to
the simpleapp name from the list of deployed applications and clicking on the
Undeploy button above the list of deployed applications.

Once our application has been undeployed, it is no longer shown on the application
management page as shown in the following screenshot:

Applications

Applications can be enterprise or web applications, or various kinds of modules. Restart an application or module by clicking on the
reload link, this action will apply only to the targets that the application or module is enabled on.

Deployed Applications (0}

Undeploy | | Enable || Disable Filter:| ~

Select | Name Deployment Order Enabled Engines Action
Mo items found.

Deploying an application through the command line

There are two ways in which an application can be deployed through the command
line —it can be done either by copying the artifact we want to deploy to an
autodeploy directory, or by using GlassFish's asadmin command-line utility.

[20]

Chapter 1

The autodeploy directory

Now that we have undeployed the simpleapp WAR file, we are ready to deploy

it using the command line. To deploy the application in this manner, simply

copy simpleapp.war to [glassfish installation directoryl/glassfish4/
glassfish/domains/domainl/autodeploy. The application will automatically be
deployed just by copying it to this directory.

We can verify that the application has successfully been deployed by looking at
the server log. The server log can be found by typing [glassfish installation
directory] /glassfish4/glassfish/domains/domainl/logs/server.log. The
last few lines on this file should look something like the following:

[2013-08-02T10:57:45.387-0400] [glassfish 4.0] [INFO] [NCLS-
DEPLOYMENT-00027] [javax.enterprise.system.tools.deployment.autodeployl]
[tid: _ThreadID=91 ThreadName=AutoDeployer] [timeMillis: 1375455465387]
[levelValue: 800] [I[

Selecting file /home/heffel/GlassFish/glassfish4/glassfish/domains/
domainl/autodeploy/simpleapp.war for autodeployment]]

[2013-08-02T10:57:45.490-0400] [glassfish 4.0] [INFO] [] [javax.
enterprise.system.tools.deployment.common] [tid: ThreadID=91 _
ThreadName=AutoDeployer] [timeMillis: 1375455465490] [levelValue: 800] I[I[

visiting unvisited references]]

[2013-08-02T10:57:45.628-0400] [glassfish 4.0] [INFO] [AS-WEB-GLUE-00172]
[javax.enterprise.web] [tid: ThreadID=91 ThreadName=AutoDeployer]
[timeMillis: 1375455465628] [levelValue: 800] I[I[

Loading application [simpleappl at [/simpleappll]

[2013-08-02T10:57:45.714-0400] [glassfish 4.0] [INFO] [] [javax.
enterprise.system.core] [tid: ThreadID=91 ThreadName=AutoDeployer]
[timeMillis: 1375455465714] [levelValue: 800] I[I[

simpleapp was successfully deployed in 302 milliseconds.]]

[2013-08-02T10:57:45.723-0400] [glassfish 4.0] [INFO] [NCLS-
DEPLOYMENT-00035] [javax.enterprise.system.tools.deployment.autodeployl]
[tid: _ThreadID=91 ThreadName=AutoDeployer] [timeMillis: 1375455465723]
[levelValue: 800] [I[

[AutoDeploy] Successfully autodeployed : /home/heffel/GlassFish/
glassfish4/glassfish/domains/domainl/autodeploy/simpleapp.war.]]

[21]

Getting Started with GlassFish

We can, of course, also verify the deployment by navigating to the same URL
for the application, which we used when deploying through the web console:
http://localhost:8080/simpleapp/simpleservlet

Once here, the application should execute properly.

An application deployed this way can be undeployed by simply deleting the artifact
(WAR file, in our case) from the autodeploy directory. After deleting the file, we
should see a message similar to the following in the server log:

[2013-08-02T11:01:57.410-0400] [glassfish 4.0] [INFO] [NCLS-
DEPLOYMENT-00026] [javax.enterprise.system.tools.deployment.autodeployl]
[tid: ThreadID=91 ThreadName=AutoDeployer] [timeMillis: 1375455717410]
[levelValue: 800] [I[

Autoundeploying application: simpleappl]

[2013-08-02T11:01:57.475-0400] [glassfish 4.0] [INFO] [NCLS-
DEPLOYMENT-00035] [javax.enterprise.system.tools.deployment.autodeployl]
[tid: ThreadID=91 ThreadName=AutoDeployer] [timeMillis: 1375455717475]
[levelValue: 800] [I[

[AutoDeploy] Successfully autoundeployed : /home/heffel/GlassFish/
glassfish4/glassfish/domains/domainl/autodeploy/simpleapp.war.]]

The asadmin command-line utility

An alternate way of deploying an application through the command line is to use the
following command:

asadmin deploy [path to file]/simpleapp.war

The preceding command must be executed from the [glassfish
s installation directoryl/glassfish4/bin path.

We should see the following confirmation on the command line terminal letting us
know that the file was deployed successfully:

Application deployed with name simpleapp.

Command deploy executed successfully.

[22]

Chapter 1

The server logfile should show a message similar to the following:

[2013-08-02T11:05:34.583-0400] [glassfish 4.0] [INFO] [AS-WEB-GLUE-00172]
[javax.enterprise.web] [tid: ThreadID=37 ThreadName=admin-listener(5)]
[timeMillis: 1375455934583] [levelValue: 800] I[I

Loading application [simpleappl at [/simpleapplll]

[2013-08-02T11:05:34.608-0400] [glassfish 4.0] [INFO] [l [javax.
enterprise.system.core] [tid: ThreadID=37 ThreadName=admin-listener(5)]
[timeMillis: 1375455934608] [levelValue: 800] I[I

simpleapp was successfully deployed in 202 milliseconds.]]

The asadmin executable can be used to undeploy an application as well by issuing
a command like the following:

asadmin undeploy simpleapp
The following message should be shown at the bottom of the terminal window:
Command undeploy executed successfully.

Please note that the file extension is not used to undeploy the application, the
argument to asadmin undeploy should be the application name, which is, by
default, the WAR file name (minus the extension).

GlassFish domains

Alert readers might have noticed that the autodeploy directory is under a
domains/domainl subdirectory. GlassFish has a concept of domains. Domains allow
a collection of related applications to be deployed together. Several domains can be
started concurrently. GlassFish domains behave like individual GlassFish instances;
a default domain called domain1 is created when installing GlassFish.

Creating Domains

Additional domains can be created from the command line by issuing the
following command:

asadmin create-domain domainname

[23]

Getting Started with GlassFish

The preceding command takes several parameters to specify ports where the domain
will listen to for several services (HTTP, Admin, JMS, IIOP, Secure HTTP, and so on).
Type the following command in the command line to see these parameters:

asadmin create-domain --help

If we want several domains to execute concurrently on the same server, these ports
must be chosen carefully since specifying the same ports for different services

(or even the same service across domains) will prevent one of the domains from
working properly.

The default ports for the default domainl domain are listed in the following table:

Service Port
Admin 4848
HTTP 8080
Java Messaging System (JMS) 7676
Internet Inter-ORB Protocol (IIOP) 3700
Secure HTTP (HTTPS) 8181
Secure IIOP 3820
Mutual Authorization IIOP 3920

Java Management Extensions (JMX) administration = 8686

Please note that when creating a domain, the only port that needs to be specified

is the admin port. If the other ports are not specified, the default ports listed in the
preceding table will be used. Care must be taken when creating a domain, since, as
explained above, two domains cannot run concurrently in the same server if any of
their services listen for connections on the same port.

An alternate method of creating a domain, without having to specify ports for every
service, is to issue the following command:

asadmin create-domain --portbase [port number] domainname

The value of the - -portbase parameter dictates the base port for the domain; ports
for the different services will be offsets of the given port number. The following table
lists the ports assigned to all the different services:

Service Port

Admin portbase + 48
HTTP portbase + 80
Java Messaging System (JMS) portbase + 76

[24]

Chapter 1

Service Port

Internet Inter-ORB Protocol (IIOP) portbase + 37
Secure HTTP (HTTPS) portbase + 81
Secure IIOP portbase + 38
Mutual Authorization IIOP portbase + 39
Java Management Extensions (JMX) administration portbase + 86

Of course, care must be taken when choosing the value for - -portbase, making sure
that none of the assigned ports collide with any other domain.

As arule of thumb, creating domains using a portbase number
M greater than 8000 and divisible by 1000 should create domains that
Q don't conflict with each other. For example, it should be safe to create
a domain using a portbase of 9000, another one using a portbase of
10000, so on and so forth.

Deleting domains

Deleting a domain is very simple. It can be accomplished by issuing the following
command in the command line:

asadmin delete-domain domainname
We should see the following message on the terminal window:

Command delete-domain executed successfully.

M Please use the preceding command with care. Once a domain is
Q deleted, it cannot be easily recreated (all deployed applications as
well as any connection pools, data sources, and so on will be gone).

Stopping a domain

A domain that is running can be stopped by issuing the following command:
asadmin stop-domain domainname

The preceding command will stop the domain named domainname.

[25]

Getting Started with GlassFish

If only one domain is running, the domainname argument is optional, that is, we can
simply stop the running domain by issuing the following command:

asadmin stop-domain

. This book will assume that the reader is working with the default
domain called domainl and the default ports. If this is not the case,
s instructions given need to be modified to match the appropriate
domain and port.

Setting up Database Connectivity

Any nontrivial Java EE application will connect to a Relational Database
Management System (RDBMS). Supported RDBMS systems include Java DB, Oracle,
Derby, Sybase, DB2, PointBase, MySQL, PostgreSQL, Informix, Cloudscape, and SQL
Server. In this section, we will demonstrate how to set up GlassFish to communicate
with a MySQL database. The procedure is similar for other RDBMS systems.

GlassFish comes bundled with an RDBMS called JavaDB. This RDBMS
* is based on Apache Derby. To limit the download and configuration
% needed to follow this book's code, all examples needing an RDBMS
g will use the bundled JavaDB RDBMS. The instructions in this section
are to illustrate how to connect GlassFish to a third-party RDBMS.

Setting up connection pools

Opening and closing the database connections is a relatively slow operation. For
performance reasons, GlassFish and other Java EE application servers keep a pool
of open database connections; when a deployed application requires a database
connection, one is provided from the pool; when the application no longer needs
the database connection, the said connection is returned to the pool.

The first step to follow when setting up a connection pool is to copy the JAR file
containing the JDBC driver for our RDBMS in the 1ib directory of the domain
(consult your RDBMS documentation for information on where to obtain this JAR
file). If the GlassFish domain where we want to add the connection pool is running
when copying the JDBC driver, it must be restarted for the change to take effect.
The domain can be restarted by executing the following command:

asadmin restart-domain domainname

[26]

Chapter 1

Once the JDBC driver has been copied to the appropriate location and the application
server has been restarted, log in to the admin console by pointing the browser to

http://localhost:4848.

Then, navigate to Resources | JDBC | JDBC Connection Pools. The browser should
now look something like what is shown in the following screenshot:

JDBC Connection Pools
To store, organize, and retrieve data, most applications use relational databases. Java EE applications access relational databases
through the JDBC API. Before an application can access a database, it must get a connection.

Pools (2)
88) | | Mews || Delete

Eelnt:tl Pool Name LN | Resource Type + Classname 5 |Dm|:riptiun
O DerbyPool jevax.sgl.DataSource org.apache.derby.jdbc. ClientDataSource
O _ TimerPool jevax. sgl XADataSource org.apache.derby.jdbc. EmbeddedX ADataSource

Click on the New... button. After entering the appropriate values for our RDBMS, the
main area of the page should look something like the following screenshot:

New JDBC Connection Pool (Step 1 of 2)

Identify the general settings for the connection pool.
* Indicates required field

General Settings

Pool Name: * FlightStatsDB

Resource Type: javax.sql.DataSource j
Must be specified if the datasource class implements more than 1 of the interface.

Database Driver Vendor: [}, 5q j

Select or enter a database driver vendor

Introspect: [7] Enabled
If enabled, data source or driver implementation class names will enable introspection.

[27]

Getting Started with GlassFish

After clicking on the Next button, we should see a page similar to the one shown in
the following screenshot:

New JDBC Connection Pool (Step 2 of 2) Previous | | Finish || Cancel |
Identify the general settings for the connection pool. Datasource Classname or Driver Classname must be specified for the connection
poal.

* Indicates required field

General Settings

Pool Name: FlightStatsDB
Resource Type: jevax.sgl.DataSource

Database Driver MySal
Vendor: y=
Datasource com.m\,fsql.jdbc.jdbczDptionaI.M‘,fsqIDataSwrcej
Classname:
Select or enter vendor-specific classname that implements the DataSource andlor XADataSource APls

Driver Classname: j

Select or enter vendor-specific classname that implements the java.sgl.Driver interface.

Ping: Enabled
A enabled, the pool is pinged during creation or reconfiguration to identify and warn of any erroneous

s for its attributes

Description:

Pool Settings

Initial and Minimum Pool Size: g Connections

Most of the default values on the top portion of the page shown in the preceding
screenshot are sensible. Scroll all the way down and enter the appropriate property
values for our RDBMS (at a minimum, username, password, and URL). Then, click
on the Finish button at the top right of the screen.

Property names vary depending on the RDBMS we are using, but usually there is a
URL property where we should enter the JDBC URL for our database, plus username
and password properties where we should enter authentication credentials for

our database.

[28]

Chapter 1

Our newly created connection pool should now be visible in the list of connection
pools as shown in the following screenshot:

JDBC Connection Pools
To store, organize, and retrieve data, most applications use relational databases. Java EE applications access relational databases
through the JDBC API. Before an application can access a database, it must get a connection.

Pools (3)
898) | |[Mew. || Delete
Seiu:t| Pool Name :,l Resource Type LN |CIassnnme n|Des|:rip‘linn
O DerbyPool jevax.sgl.DataSource org.apache.derby. jdbe.ClientDataSource
O FlightStatsDB jevax. sgl.DataSource com.mysql.jdbe.jdbec2.optional MysglDataSource
O __ TimerPool jevax sgl. XADataSource org.apache.derby. jdbc. EmbeddedX ADataSource

In some cases, the GlassFish domain may need to be restarted after setting up a new
connection pool.

We can verify that our connection pool was successfully set up by clicking on its
pool name and then enabling the Ping button on the resulting page as shown in
the following screenshot:

J General ‘ Advanced ‘ Additional Properties
&) Ping Succeeded

Edit JDBC Connection Pool

Modify an existing JDBC connection pool. A JDBEC connection pool is a group of reusable connections for a particular database.
| Load Defaults | | Flush | [Ping |

* Indicates required field

General Settings

Pool Name: FlightStatsDE

Resource Type: javex.sqgl.DataSource -]
Must be specified if the datasource class implements more than 1 of the interface.

Datasource Classname: |com.mysql.jdbc.jdbc2.optional MysqlDataSource
Vendor-specific classname that implements the DataSource and'or XADataSource APls

Driver Classname:
Vendor-specific classname that implements the java.sgl.Driver interface.

Ping: [Enabled
‘When enabled, the pool is pinged during creation or reconfiguration to identify and warn of any erroneous
walues for its attributes

Deployment Order: 100
Specifies the loading order of the resource at server startup. Lower numbers are loaded first.

Description:

Our connection pool is now ready to be used by our applications.

[29]

Getting Started with GlassFish

Setting up the data sources

Java EE applications don't access connection pools directly; they access a data
source instead, which points to a connection pool. To set up a new data source,

click on the JDBC icon under the Resources menu item on the left-hand side of the
web console, then click on the JDBC Connection Pools tab, and then click on the
New... button. After filling out the appropriate information for our new data source,
the main area of the web console should look something like what is shown in the

following screenshot:

New JDBC Resource [[ok]

Specify a unigue JNDI name that identifies the JDBC resource you want to create. The name must contain only &lphanumeric, underscore,
dash, or dot characters.

INDI Name: * [jdbe/FlightStatsPool

Pool Name: | FlightStatsDE

Use the JDBC Connection Pools page to create new pools

Description: | Flight Statistics Database]
Status: [t| Enabled

Additional Properties (0)
Delete Properties

Select | MName | Value | Description
Mo items found.

After clicking on the OK button, we can see our newly created data source as shown
in the following screenshot:

JDBC Resources

JDBC resources provide applications with a means to connect to a database.

Resources (3)

[82) (8] | |WMewsss| = Delete || Enable | | Disable

Select | INDI Name -, | Logical INDI Name -, | Enabled ., | Connection Pool ., | Description
[| jdbc/FlightStatsPool v FlightStatsDE Flight Statistics Database
[jdbe/_TimerPool v __TimerPool
O jdbcd__default java:comp/DefaultDataSource v DerbyPool

[30]

Chapter 1

Summary

In this chapter, we discussed how to download and install GlassFish. We also
discussed several methods of deploying the Java EE application through the
GlassFish web console, through the asadmin command, and by copying the file to
the autodeploy directory. We also discussed basic GlassFish administration tasks
like setting up domains and setting up Database Connectivity by adding connection
pools and data sources. In the next chapter, we will cover how to develop web
applications using JSF.

[31]

JavaServer Faces

In this chapter, we will cover JavaServer Faces (JSF), the standard component
framework of the Java EE platform. Java EE 7 includes JSF 2.2, the latest version of
JSE. JSF relies a lot on convention over configuration. If we follow JSF conventions,
then we don't need to write a lot of configuration. In most cases, we don't need to
write any configuration at all. This fact, combined with the fact that web . xm1 has
been optional since Java EE 6, means that in many cases, we can write complete
web applications without having to write a single line of XML configuration.

Introduction to JSF

JSF 2.0 introduced a number of enhancements to make JSF application development
easier. In the following few sections, we will explain some of these features.

Readers unfamiliar with the earlier versions of JSF may not
understand the following few sections completely. Don't worry,
"~ everything will be perfectly clear by the end of this chapter.

Facelets

One notable difference between the modern versions of JSF and the earlier versions
is that Facelets is now the preferred view technology. The earlier versions of JSF used
JSP as their default view technology. Since JSP technology predates JSF, sometimes
using JSP with JSF felt unnatural or created problems. For example, the lifecycle of
JSPs is different from the lifecycle of JSFs; this mismatch introduced some problems
for JSF 1.x application developers.

JavaServer Faces

JSF was designed from the beginning to support multiple view technologies. To take
advantage of this capability, Jacob Hookom wrote a view technology specifically

for JSF. He named his view technology Facelets. Facelets was so successful that

it became a de facto standard for JSF. The JSF expert group recognized Facelets'
popularity and made it the official view technology for JSF in Version 2.0 of the

JSF specification.

Optional faces-config.xml

Legacy J2EE applications suffered what some would have considered being
excessive XML configuration.

Java EE 5 took some measures to reduce the XML configuration considerably. Java
EE 6 reduced the required configuration even further, making the faces-config.
xml JSF configuration file optional in JSF 2.0.

In JSF 2.0 and newer, JSF managed beans can be configured via the @ManagedBean
annotation, obviating the need to configure them in faces-config.xml. Java EE 6
introduced the Contexts and Dependency Injection (CDI) API, which provides
an alternative way to implement the functionality that was typically implemented
with JSF managed beans. As of JSF 2.2, CDI named beans are preferred over JSF
managed beans.

Additionally, there is a convention for JSF navigation. If the value of the action
attribute of a JSF 2 command link or command button matches the name of a facelet
(minus the XHTML extension), then by convention, the application will navigate to
the facelet that matches the action name. This convention allows us to avoid having
to configure an application's navigation in faces-config.xml.

For many modern JSF applications, faces-config.xml is completely unnecessary as
long as the established JSF conventions are followed.

Standard resource locations

JSF 2.0 introduced standard resource locations. Resources are the artifacts that a page
or JSF component needs to render properly, such as CSS style sheets, JavaScript files,
and images.

In JSF 2.0 and newer, resources can be placed in a subdirectory under a folder called
resources either at the root of the WAR file or under META- INF. By convention, JSF
components know that they can retrieve resources from one of these two locations.

[34]

Chapter 2

In order to avoid cluttering the resources directory, resources are typically placed
in a subdirectory. This subdirectory is referred to from the 1ibrary attribute of
JSF components.

For example, we could place a CSS style sheet called styles.css under /
resources/css/.

In our JSF pages, we can retrieve this CSS file using the <h:outputStylesheet> tag
as follows:

<h:outputStylesheet library="css" name="styles.css"/>

The value of the 1ibrary attribute must match the subdirectory where our style
sheet is located.

Similarly, we can have a JavaScript file, somescript.js, under /resources/
scripts/ and we can access it using the following code:

<h:outputScript library="scripts" name="somescript.js"/>

We can have an image, 1ogo.png, under /resources/images/ and we can access
this resource with the following code:

<h:graphicImage library="images" name="logo.png"/>

Note that in each case, the value of the 1ibrary attribute matches the corresponding
subdirectory name under the resources directory and the value of the name
attribute matches the resource's filename.

Developing our first JSF application

To illustrate basic JSF concepts, we will develop a simple application consisting
of two Facelets pages and a single CDI named bean.

Facelets

As we mentioned in this chapter's introduction, the default view technology for JSF
2 is Facelets. Facelets need to be written using standard XML. The most popular way
of developing Facelets pages is to use XHTML in conjunction with JSF-specific XML
namespaces. The following example shows how a typical Facelets page looks:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.o0org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"

[35]

JavaServer Faces

xmlns: f="http://java.sun.com/jsf/core">
<h:head>
<title>Enter Customer Data</title>
</h:head>
<h:body>
<h:outputStylesheet library="css" name="styles.css"/>
<h:form id="customerForm">
<h:messages></h:messages>
<h:panelGrid columns="2"
columnClasses="rightAlign, leftAlign">
<h:outputLabel for="firstName" value="First
Name: ">
</h:outputLabel>
<h:inputText id="firstName"
label="First Name"
value="#{customer.firstName}"
required="true">
<f:validateLength minimum="2" maximum="30">
</f:validateLength>
</h:inputText>
<h:outputLabel for="lastName" value="Last Name:">
</h:outputLabel>
<h:inputText id="lastName"
label="Last Name"
value="#{customer.lastName}"
required="true">
<f:validateLength minimum="2" maximum="30">
</f:validateLength>
</h:inputText>
<h:outputLabel for="email" value="Email:">
</h:outputLabel>
<h:inputText id="email"
label="Email™"
value="#{customer.email}">
<f:validateLength minimum="3" maximum="30">
</f:validateLength>
</h:inputText>
<h:panelGroup></h:panelGroup>
<h:commandButton action="confirmation"
value="Save">
</h:commandButton>
</h:panelGrid>
</h:form>
</h:body>
</html>

[36]

Chapter 2

The following screenshot illustrates how our example page is rendered in
the browser:

Enter Customer Data - Mozilla Firefox
Firefox v]E::} Enter Customer Data " - |

« » | localhost:8080/jsf/faces/customer_data_entry.xhtm volll

First Name: [Amold |

Last Name: [Stallone

Email: [asta@lavista.com

| Save |

The preceding screenshot, of course, was taken after entering some data in every text
tield; originally, each text field was blank.

Pretty much any Facelets JSF page will include the two namespaces illustrated in the
example. The first namespace (xmlns:h="http://java.sun.com/jsf/html") is for
the tags that render HTML components; by convention, the prefix h (for HTML) is
used when using this tag library.

The second namespace (xmlns:f="http://java.sun.com/jsf/core") is the core
JSF tag library; by convention, the prefix £ (for faces) is used when using this
tag library.

The first JSF-specific tags we see in our example are the <h:head> and the <h:body>
tags. These tags are analogous to the standard HTML <head> and <body> tags and
are rendered as such when the page is displayed in the browser.

The <h:outputStylesheet> tag is used to load a CSS style sheet from a well-known
location. (JSF standardizes the locations of resources such as CSS style sheets and
JavaScript files; this will be discussed in detail later in the chapter.) The value of the
library attribute must correspond to the directory where the CSS file resides

(this directory must be under a resources directory). The name attribute must
correspond to the name of the CSS style sheet we wish to load.

The next tag that we see is the <h: form> tag. This tag generates an HTML form
when the page is rendered. As can be seen in the example, there is no need to specify
an action or a method attribute for this tag; as a matter of fact, there is neither an
action attribute nor a method attribute for this tag. The action attribute for the
rendered HTML form will be generated automatically, and the method attribute will
always be "post". The id attribute of <h: form> is optional; however, it is a good
idea to always add it since it makes debugging JSF applications easier.

[37]

JavaServer Faces

The next tag we see is the <h:messages> tag. As its name implies, this tag is used
to display any messages. As we will see shortly, JSF can automatically generate
validation messages. These will be displayed inside this tag. Additionally, arbitrary
messages can be added programmatically via the addMessage () method defined in
javax.faces.context.FacesContext.

The next JSF tag we see is <h:panelGrids. This tag is roughly equivalent to an
HTML table, but it works a bit differently. Instead of declaring rows and columns,
the <h:panelGrid> tag has a columns attribute; the value of this attribute indicates
the number of columns in the table rendered by this tag. As we place components
inside this tag, they will be placed in a row until the number of columns defined in
the columns attribute is reached, and then the next component will be placed in the
next row. In the example, the value of the columns attribute is two. Therefore, the
first two tags will be placed in the first row, the next two will be placed in the
second row, and so forth.

Another interesting attribute of <h:panelGrids is the columnClasses attribute. This
attribute assigns a CSS class to each column in the rendered table. In the example,
two CSS classes (separated by a comma) are used as the value for this attribute. This
has the effect of assigning the first CSS class to the first column and the second one
to the second column. Had there been three or more columns, the third one would
have gotten the first CSS class, the fourth one would have gotten the second one,
and so on, alternating between the first one and the second one. To clarify how this
works, the next code snippet illustrates a portion of the source of the HTML markup
generated by our example page:

<table>
<tbody>
<tr>
<td class="rightAlign">
<label for="customerForm:firstName">
First Name:
</label>
</td>
<td class="leftAlign">
<input id="customerForm:firstName" type="text"
name="customerForm: firstName" />
</td>
</tr>
<tr>
<td class="rightAlign">
<label for="customerForm:lastName">
Last Name:
</label>

[38]

Chapter 2

</td>
<td class="leftAlign">
<input id="customerForm:lastName" type="text"
name="customerForm:lastName" />
</td>
</tr>
<tr>
<td class="rightAlign">
<label for="customerForm:lastName">
Email:
</label>
</td>
<td class="leftAlign">
<input id="customerForm:email" type="text"
name="customerForm:email" />
</td>
</tr>
<tr>
<td class="rightAlign"></td>
<td class="leftAlign">
<input type="submit" name="customerForm:j idtl2"
value="Save" />
</td>
</tr>
</tbody>
</table>

Note how each <td> tag has an alternating CSS tag of "rightAlign" or
"leftalign". We achieved this by assigning the value "rightAlign, leftAlign"

to the columnClasses attribute of <h:panelGrids. The CSS classes we have

used in our example are defined in the CSS style sheet we loaded via the
<h:outputStylesheet> tag we discussed earlier. The IDs of the generated markup
are a combination of the ID we gave to the <h: form> component plus the ID of
each individual component. We didn't assign an ID to the <h: commandButton>
component near the end of the page, so the JSF runtime assigned one automatically.

At this point in the example, we start adding components inside <h:panelGrids.
These components will be rendered inside the table rendered by <h:panelGrids. As
we have mentioned before, the number of columns in the rendered table is defined
by the columns attribute of <h:panelGrids. Therefore, we don't need to worry
about columns (or rows); we have to just start adding components, and they will be
inserted in the right place.

[39]

JavaServer Faces

The next tag we see is the <h:outputLabels> tag. This tag renders an HTML label
element. Labels are associated with other components via the for attribute, whose
value must match the ID of the component that the label is for.

Next, we see the <h:inputText> tag. This tag generates a text field in the rendered
page; its label attribute is used for any validation messages. It lets the user know
which field the message refers to.

R Although it is not required for the value of the 1abel attribute of
~ <h:inputText> to match the label displayed on the page, it is highly
Q recommended to use this value. In case of an error, this will let the
user know exactly which field the message is referring to.

Of particular interest is the tag's value attribute. What we see as the value for

this attribute is a value-binding expression. This means that this value is tied to a
property of one of the application's named beans. In the example, this particular text
field is tied to a property called firstName in a named bean called customer. When
a user enters a value for this text field and submits the form, the corresponding
property in the named bean is updated with this value. The tag's required attribute
is optional, and valid values for it are true and false. If this attribute is set to true,
the container will not let the user submit the form until the user enters some data

in the text field. If the user attempts to submit the form without entering a required
value, the page will be reloaded and an error message will be displayed inside the
<h:messages> tag. The following screenshot shows the error message:

Enter Customer Data - Mozilla Firefox
Firefox v | i Enter Customer Data " + |

-« | localhost:8080/jsf/faces/customer_data_entry.xhtm vl

s First Name: Validation Error: Value is required.

First Name: | |

Last Name: [Stallone |

Email: [asta@lavista.com |

Save

[40]

Chapter 2

The preceding screenshot illustrates the default error message shown when the user
attempts to save the form in the example without entering a value for the customer's
first name. The first part of the message (First Name) is taken from the value of the
label attribute of the corresponding <h: inputTextField> tag. You can customize
the text as well as the style of the message (font, color, and so on). We will cover how
to do this later in this chapter.

Project stages

Having an <h:messages> tag on every JSF page is a good idea; without it, the

user might not see the validation messages and will have no idea why the form
submission is not going through. By default, JSF validation messages do not generate
any output in the GlassFish log. A common mistake new JSF developers make is that
they fail to add an <h:messages> tag to their pages. Without the tag, if the validation
fails, then the navigation seems to fail for no reason. (The same page is rendered

if the navigation fails, and without an <h:messages> tag, no error messages are
displayed in the browser.)

To avoid the situation described in the previous paragraph, JSF 2.0 introduced the
concept of project stages.

The following project stages are defined in JSF 2:

* Production

* Development
* UnitTest

* SystemTest

We can define the project stage as an initialization parameter to the faces servlet

in the web.xml file or as a custom JNDI resource. Since web . xml is now optional
and altering it makes it relatively easy to use the wrong project stage if we forget to
modify it when we move our code from one environment to another, the preferred
way of setting the project stage is through a custom JNDI resource.

[41]

JavaServer Faces

With GlassFish, we can do this by logging in to the web console, navigating to JNDI
| Custom Resources, and then clicking on the New... button. The page that appears
looks as shown in the following screenshot:

New Custom Resource [ok |

Create a custom JNDI resource so that applications can gain access to resources stored in a local repository.

JNDI Name: javax faces PROJECT_STA

Resource Type: .@) java.lang.String =

~

Enter a fully qualified type following the format xxx .o (for example, javax.jms. Topic)

Factory Class: * | org glassfish.resources.custom factory. Primitives AndStringFactory
Factory class for resource; implements javax.naming.spi.ObjectFactory

Description:

Status: [£| Enabled

Additional Properties (1)

8+ 18 | Delete Properties

|3ele:l | Name | Value Description

O stage Developmenﬂ

In the resulting page, we need to enter the following information:

JNDI Name javax.faces.PROJECT_ STAGE

Resource Type java.lang.String

After you enter the preceding two values, the Factory Class field will be
automatically populated with the value org.glassfish.resources.custom.
factory.PrimitivesAndStringFactory.

After entering the values, we need to add a new property with a name of the stage
and a value corresponding to the project stage we wish to use.

Setting the project stage allows us to perform some logic only if we are running the
program in a specific stage. For instance, in one of our named beans, we could have
code that looks as follows:

FacesContext facesContext =
FacesContext.getCurrentInstance () ;
Application application = facesContext.getApplication() ;

[42]

Chapter 2

if (application.getProjectStage () .equals(
ProjectStage.Production)) {
//do production stuff
} else if (application.getProjectStage () .equals (
ProjectStage.Development)) {
//do development stuff
} else if (application.getProjectStage () .equals (
ProjectStage.UnitTest)) {
//do unit test stuff
} else if (application.getProjectStage () .equals (
ProjectStage.SystemTest)) {
//do system test stuff

}

As we can see, project stages allow us to modify our code's behavior for different
environments. More importantly, setting the project stage allows the JSF engine to
behave a bit differently based on the project stage setting. Relevant to our discussion,
setting the project stage to Development results in additional logging statements in
the application server log. Therefore, if we forget to add an <h:messages> tag to

our page —our project stage is Development —and validation fails, a validation error
will be displayed on the page even if we omit the <h:messages> component. The
following screenshot shows the validation error message:

Enter Customer Data - Mozilla Firefox
Firefox v] Enter Customer Data " L |

-« | localhost:8080/jsf/faces/customer_data_entry.xhtm v o

First Name: | |

Last Name: [Stallone '

Fmail: [asta@lavista.com |

| Save |

s First Name: Validation Error: Value is required.

In the default Production stage, this error message is not displayed on the page,
leaving us confused as to why our page navigation doesn't seem to work.

[43]

JavaServer Faces

Validation

JSF provides built-in input validation capabilities.

In the previous section's example, note that each <h:inputField> tag has a nested
<f:validateLength> tag. As its name implies, this tag validates that the entered
value for the text field is between a minimum and maximum length. The minimum
and maximum values are defined by the tag's minimum and maximum attributes.
<f:validateLengths> is one of the standard validators included in JSF. Just like
with the required attribute of <h: inputText >, JSF will automatically display a
default error message when a user attempts to submit a form with a value that
does not validate.

Enter Customer Data - Mozilla Firefox
Firefox v]” Enter Customer Data ” +* |

- | localhost:8080/jsf/faces/customer_data_entry.xhtm v o fﬁ

» First Name: Validation Error: Length is less than allowable minimum of '2*

First Name: [A]

Last Name: [stallone |

Email: [asta@lavista.com |

| Sawe |

Again, the default message and style can be overridden; we will cover how to do this
later in this chapter in the Customizing JSF's default messages section.

In addition to <f :validateLengths, JSF includes other standard validators, which
are listed in the following table:

Validation tag Description

<f:validateBean> Bean validation allows us to validate named bean
values using annotations in our named beans without
having to add validators to our JSF tags. These tags
allow us to fine-tune Bean Validation if necessary.

<f:validateDoubleRange> This tag validates that the input is a valid Double value
between the two values specified by the tag's minimum
and maximum attributes, inclusive.

<f:validateLength> This tag validates that the input's length is between the
values specified by the tag's minimum and maximum
values, inclusive.

[44]

Chapter 2

Validation tag Description

<f:validateLongRange> This tag validates that the input is a valid Long value
between the values specified by the tag's minimum and
maximum attributes, inclusive.

<f:validateRegex> This tag validates that the input matches a regular
expression pattern specified in the tag's pattern
attribute.

<f:validateRequired> This tag validates that the input is not empty. This tag is

equivalent to setting the required attribute to true in
the parent input field.

Note that in the description for <f : validateBeans, we briefly mentioned Bean
Validation. The Bean Validation JSR aims to standardize JavaBean validation.
JavaBeans are used across several other API's that, up until recently, had to
implement their own validation logic. JSF 2.0 adopted the Bean Validation standard
to help validate named bean properties.

If we wish to take advantage of Bean Validation, all we need to do is annotate the
desired field with the appropriate Bean Validation annotation, without having to
explicitly use a JSF validator.

For the complete list of Bean Validation annotations, refer to the

javax.validation.constraints package in the Java EE 7 APl
’ athttp://docs.oracle.com/javaee/7/api/.

Grouping components

<h:panelGroups> is the next new tag in the example. Typically, <h:panelGroup>

is used to group several components together so that they occupy a single cell in

a <h:panelGrid> tag. This can be accomplished by adding components inside
<h:panelGroup> and adding <h:panelGroup> to <h:panelGrids. As can be seen in
the example, this particular instance of <h:panelGroup> has no child components.
In this particular case, the purpose of <h:panelGroups> is to have an "empty" cell
and have the next component, <h: commandButtons, align with all other input fields
in the form.

[45]

JavaServer Faces

Form submission

<h:commandButtons> renders an HTML submit button in the browser. Just like with
standard HTML, its purpose is to submit the form. Its value attribute simply sets

the button's label. This tag's action attribute is used for navigation. The next page
shown is based on the value of this attribute. The action attribute can have a String
constant or a method binding expression, meaning that it can point to a method in a
named bean that returns a String value.

If the base name of a page in our application matches the value of the action
attribute of an <h: commandButton> tag, then we navigate to this page when clicking
on the button. This JSF feature frees us from having to define navigation rules, as

we used to do in the older versions of JSF. In our example, our confirmation page is
called confirmation.xhtml; therefore, by convention, this page will be shown when
the button is clicked since the value of its action attribute ("confirmation") matches
the base name of the page.

Even though the label for the button reads Save, in our simple
= example clicking on the button won't actually save any data.

Named beans

There are two types of JavaBeans that can interact with JSF pages: JSF managed
beans and CDI named beans. JSF managed beans have been around since the first
version of the JSF specification and can be used only in a JSF context. CDI named
beans were introduced in Java EE 6 and can interoperate with other Java EE APIs
such as Enterprise JavaBeans. For these reasons, CDI named beans are preferred
over JSF managed beans.

To make a Java class a CDI named bean, all we need to do is make sure that the
class has a public, no-argument constructor (one is created implicitly if there are no
other constructors declared, which is the case in our example), and add the eNamed
annotation at the class level. The following code snippet is the managed bean for
our example:

package net.ensode.glassfishbook.jsf;
import javax.enterprise.context.RequestScoped;
import javax.inject.Named;

@Named
@RequestScoped
public class Customer {

[46]

Chapter 2

private String firstName;
private String lastName;
private String email;

public String getEmail() {
return email;

public void setEmail (String email) {
this.email = email;

public String getFirstName () {
return firstName;

public void setFirstName (String firstName)
this.firstName = firstName;

public String getLastName () {
return lastName;

public void setLastName (String lastName)
this.lastName = lastName;

}

The @Named class annotation designates this bean as a CDI named bean. This
annotation has an optional value attribute that we can use to give our bean a logical
name to use in our JSF pages. However, by convention, the value of this attribute is
the same as the class name (Customer, in our case) with its first character switched to
lowercase. In our example, we retain this default behavior; therefore, we access our
bean's properties via the customer logical name. Notice the value attribute of any of
the input fields in our example page to see this logical name in action.

Notice that other than the eNamed and @RequestScoped annotations, there is nothing
special about this bean. It is a standard JavaBean with private properties and
corresponding getter and setter methods. The @RequestScoped annotation specifies
that the bean should live through a single request.

[47]

JavaServer Faces

Named beans always have a scope. A named bean scope defines the lifespan of the
bean, and it is defined by a class-level annotation. The following table lists all valid
named bean scopes:

Named bean scope Description
annotation

@ApplicationScoped The same instance of the application scoped named beans
are available to all of our application's clients. If one client
modifies the value of an application scoped managed
bean, the change is reflected across all clients.

@SessionScoped An instance of each session scoped named bean is
assigned to each of our application's clients. A session
scoped named bean can be used to hold client-specific
data across requests.

@RequestScoped Request scoped named beans only live through a
single request.

@Dependent Dependent scoped named beans are assigned the same
scope as the bean they are injected into. This is the default
scope if none is specified.

@ConversationScoped The conversation scope can span multiple requests and is
typically shorter than the session scope.

Navigation

As can be seen on our input page, when we click on the Save button in the
customer_data_entry.xhtml page, our application will navigate to a page called
confirmation.xhtml. This happens because we are taking advantage of the JSF's
convention over configuration feature, in which if the value of the action attribute
of a command button or link matches the base name of another page, then the
navigation takes us to this page.

Does the same page reload when you click on a button or link that
should navigate to another page?

When JSF does not recognize the value of the action attribute of a
command button or command link, it will, by default, navigate to the

~ same page that was displayed in the browser when the user clicked on a
button or link that was meant to navigate to another page.

If navigation does not seem to be working properly, chances are there is
a typo in the value of this attribute. Remember that by convention, JSF
will look for a page whose base name matches the value of the action
attribute of a command button or link.

[48]

Chapter 2

The source for confirmation.xhtml looks as follows:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">
<h:head>
<title>Customer Data Entered</title>
</h:head>
<h:body>
<h:panelGrid columns="2" columnClasses="rightAlign,leftAlign"s>
<h:outputText value="First Name:"></h:outputText>
<h:outputText value="#{customer.firstName}"></h:outputTexts>
<h:outputText value="Last Name:"></h:outputText>
<h:outputText value="#{customer.lastName}"></h:outputTexts>
<h:outputText value="Email:"></h:outputText>
<h:outputText value="#{customer.email}"></h:outputTexts>
</h:panelGrid>
</h:body>
</html>

The <h:outputText> tag is the only tag on this page that we haven't covered before.
This tag simply displays the value of its value attribute to the rendered page; its
value attribute can be a simple string or a value binding expression. Since the value
binding expressions in our <h:outputText> tags are the same expressions that were
used in the previous page for the <h:inputText> tags, their values will correspond
to the data that the user entered.

Customer Data Entered
Firefox v J Customer Data Entered “ + |

- | localhost:8080/jsfffaces/custome

First Name: Arnold
Last Name: Stallone
Email: asta@lavista.com

In traditional (that is, non-JSF) Java web applications, we defined URL patterns to be
processed by specific servlets. Specifically for JSF, the suffixes .jsf or . faces were
commonly used; another commonly used URL mapping for JSF was the /faces
prefix. By default, GlassFish automatically adds the /faces prefix to the faces servlet;
therefore, we don't have to specify any URL mappings at all. If, for any reason, we
need to specify a different mapping, then we need to add a web.xml configuration
file to our application. However, the default will suffice in most cases.

[49]

JavaServer Faces

The URL we used for the pages in our application was the name of our Facelets page,
prefixed by /faces. This takes advantage of the default URL mapping.

Custom data validation

In addition to providing standard validators, JSF allows us to create custom validators.
This can be done in two ways: by creating a custom validator class or by adding
validation methods to our named beans.

Creating custom validators

In addition to the standard validators, JSF allows us to create custom validators
by creating a Java class that implements the javax.faces.validator.vValidator
interface.

The following class implements an e-mail validator, which we will use to validate the
e-mail text input field in our customer data entry screen.

package net.ensode.glassfishbook.jsfcustomval;

import javax.faces.application.FacesMessage;
import javax.faces.component.UIComponent;

import javax.faces.component.html.HtmlInputText;
import javax.faces.context.FacesContext;

import javax.faces.validator.FacesValidator;
import javax.faces.validator.Validator;

import javax.faces.validator.ValidatorException;
import org.apache.commons.lang.StringUtils;

@FacesValidator (value = "emailValidator")
public class EmailValidator implements Validator ({

@Override
public void validate (FacesContext facesContext,
UIComponent uiComponent,
Object value) throws ValidatorException {
org.apache.commons.validator.EmailValidator emailValidator =
org.apache.commons.validator.EmailValidator.getInstance () ;
HtmlInputText htmlInputText = (HtmlInputText) uiComponent;

String email = (String) value;

[50]

Chapter 2

if (!StringUtils.isEmpty(email))
if (lemailvValidator.isValid(email))
FacesMessage facesMessage = new
FacesMessage (htmlInputText.
getLabel ()
+ ": email format is not wvalid") ;
throw new ValidatorException (facesMessage) ;

}

}

The @Facesvalidator annotation registers our class as a JSF custom validator class.
The value of its value attribute is the logical name that JSF pages can use for reference.

As can be seen in the example, the only method we need to implement when
implementing the validator interface is a method called validate (). This method
takes three parameters: an instance of javax.faces.context.FacesContext,

an instance of javax. faces.component . UIComponent, and an object. Typically,
application developers only need to be concerned with the last two. The second
parameter is the component whose data we are validating, and the third parameter is
the actual value. In the example, we cast uiComponent to javax.faces.component.
html.HtmlInputText; in this way, we get access to its getLabel () method, which
we can use as part of the error message.

If the entered value is not in a valid e-mail address format, a new instance of
javax.faces.application.FacesMessage is created, passing the error message
to be displayed in the browser as its constructor parameter. We then throw a new
exception as javax.faces.validator.ValidatorException. The error message
is then displayed in the browser.

Apache Commons Validator

M Our custom JSF validator uses the Apache Commons Validator
to do the actual validation. This library includes many common
Q validations such as dates, credit card numbers, ISBN numbers,
and e-mails. When implementing a custom validator, it is worth
investigating if this library already has a validator that we can use.

[51]

JavaServer Faces

In order to use our validator in our page, we need to use the <f:validator> JSF tag.
The following Facelets page is a modified version of the customer data entry screen.
This version uses the <f:validators> tag to validate e-mails.

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core">
<h:head>
<title>Enter Customer Data</title>
</h:head>
<h:body>
<h:outputStylesheet library="css" name="styles.css"/>
<h:form>
<h:messages></h:messages>
<h:panelGrid columns="2"
columnClasses="rightAlign, leftAlign">
<h:outputText value="First Name:">
</h:outputText>
<h:inputText label="First Name"
value="#{customer.firstName}"
required="true">
<f:validateLength minimum="2" maximum="30">
</f:validateLength>
</h:inputText>
<h:outputText value="Last Name:"></h:outputText>
<h:inputText label="Last Name"
value="#{customer.lastName}"
required="true" >
<f:validateLength minimum="2" maximum="30">
</f:validateLength>
</h:inputText>
<h:outputText value="Email:">
</h:outputText>
<h:inputText label="Email" value="#{customer.emaill}">
<f:validator validatorId="emailValidator" />
</h:inputText>
<h:panelGroup></h:panelGroup>
<h:commandButton action="confirmation" value="Save">
</h:commandButtons>
</h:panelGrid>
</h:form>
</h:body>
</html>

[52]

Chapter 2

Notice that the value of the validatorId attribute of <f:validator> matches the
value attribute of the @Facesvalidator annotation in our custom validator.

After writing our custom validator and modifying our page to take advantage of it,
we can see our validator in action as shown in the following screenshot:

Enter Customer Data - Mozilla i
Firefox v JE:}Enter Customer Data ” L |

< [@ localhost:808aC jsfcustomvalffaces/custome

¢ Email: email format is not valid

First Name: [Amold

Last Name: [stallone |

Email: [a |

| Save |

Validator methods

Another way we can implement custom validation is by adding validation methods
to one or more of the application's named beans. The following Java class illustrates
the use of validator methods for JSF validation:

package net.ensode.glassfishbook.jsfcustomval;

import javax.enterprise.context.RequestScoped;
import javax.faces.application.FacesMessage;
import javax.faces.component.UIComponent;

import javax.faces.component.html.HtmlInputText;
import javax.faces.context.FacesContext;

import javax.faces.validator.ValidatorException;

import javax.inject.Named;
import org.apache.commons.lang.StringUtils;

@Named
@RequestScoped
public class Alphavalidator {

public void validateAlpha (FacesContext facesContext,
UIComponent uiComponent,
Object value) throws ValidatorException {
if (!StringUtils.isAlphaSpace ((String) value))
HtmlInputText htmlInputText = (HtmlInputText) uiComponent;

[53]

JavaServer Faces

FacesMessage facesMessage = new FacesMessage (htmlInputText.
getLabel ()
+ ": only alphabetic characters are allowed.") ;

throw new ValidatorException (facesMessage) ;

}
}

In this example, the class contains only the validator method. We can give our
validator method any name we want; however, its return value must be void, and
it must take the three parameters illustrated in the example, in that order. In other
words, except for the method name, the signature of a validator method must be
identical to the signature of the validate () method defined in the javax.faces.
validator.Validator interface.

As we can see, the body of our validator method is nearly identical to the body of
our custom validator's validate () method. We check the value entered by the user
to make sure that it contains only alphabetic characters and/or spaces. If it does
not, then we throw validatorException, passing an instance of FacesMessage
containing an appropriate String error message.

StringUtils

M In the example, we used org.apache.commons . lang.StringUtils
to perform the actual validation logic. In addition to the method used
Q in the example, this class contains several methods to verify whether
a string is numeric or alphanumeric. This class, part of the Apache
commons -1lang library, is very useful when writing custom validators.

Since every validator method must be in a named bean, we need to make sure that
the class containing our validator method is annotated with the eNamed annotation,
as illustrated in our example.

The last thing we need to do in order to use our validator method is to bind it to our
component via the tag's validator attribute. The code to do so is as follows:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-transitional.dtd" >
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core">
<h:head>
<title>Enter Customer Data</title>
</h:head>

[54]

Chapter 2

<h:body>
<h:outputStylesheet library="css" name="styles.css"/>
<h:form>
<h:messages></h:messages>
<h:panelGrid columns="2"
columnClasses="rightAlign, leftAlign">
<h:outputText value="First Name:">
</h:outputText>
<h:inputText label="First Name"
value="#{customer.firstName}"
required="true"
validator="#{alphavValidator.validateAlpha}">
<f:validateLength minimum="2" maximum="30">
</f:validateLength>
</h:inputText>
<h:outputText value="Last Name:"></h:outputText>
<h:inputText label="Last Name"
value="#{customer.lastName}"
required="true"
validator="#{alphavValidator.validateAlpha}">
<f:validateLength minimum="2" maximum="30">
</f:validateLength>
</h:inputText>
<h:outputText value="Email:">
</h:outputText>
<h:inputText label="Email" value="#{customer.email}">
<f:validateLength minimum="3" maximum="30">
</f:validateLength>
<f:validator validatorId="emailValidator" />
</h:inputText>
<h:panelGroup></h:panelGroup>
<h:commandButton action="confirmation" value="Save">
</h:commandButton>
</h:panelGrid>
</h:form>
</h:body>
</html>

Since neither the first name nor the last name fields would accept anything other
than alphabetic characters or spaces, we added our custom validator method
to both of these fields.

[55]

JavaServer Faces

Notice that the value of the validator attribute of the <h: inputText> tag is
a JSF expression language expression that uses the default name for the bean
containing our validation method. alphavalidator is the name of our bean,
and validateAlpha is the name of our validator method.

After modifying our page to use our custom validator, we can now see it in action
as follows:

Enter Customer Data - Mozilla Firefox
Firefox v J Enter Customer Data " +* |

4 | @ localhost:8080/jsfcustomvalffaces/customer_data_entry.xhtm v I.ﬁ

» First Name: only alphabetic characters are allowed.
¢ First Name: Validation Error: Length is less than allowable minimum of '2’

First Name: [1

Last Name: [stallone

Email: [asta@lavista.com

| Save |

Note how for the First Name field both our custom validator message and the
standard length validator were executed.

The advantage of implementing validator methods is that you do not need the
overhead of creating a whole class just for a single validator method. (Our example
does just that, but in many cases, validator methods are added to an existing named
bean containing other methods.) The disadvantage of validator methods is that each
component can only be validated by a single validator method. When using validator
classes, several <f :validators tags can be nested inside the tag to be validated;
therefore, multiple validations, both custom and standard, can be done to the field.

Customizing JSF's default messages

As we mentioned earlier, it is possible to customize the style (font, color, text, and so
on) of JSF default validation messages. Additionally, it is possible to modify the text
of the default JSF validation messages. In the following sections, we will explain how
to modify error message formatting and text.

[56]

Chapter 2

Customizing message styles

Customizing message styles can be done via Cascading Style Sheets (CSS). This
can be accomplished using the <h:message> style or the styleClass attributes.
The style attribute is used when we want to declare the CSS style inline. The
styleClass attribute is used when we want to use a predefined style in a CSS style
sheet or inside a <style> tag in our page.

The following markup illustrates the use of the styleClass attribute to alter the
style of error messages. It is a modified version of the input page that we saw in
the previous section.

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core">
<h:head>
<title>Enter Customer Data</title>
</h:head>
<h:body>
<h:outputStylesheet library="css" name="styles.css" />
<h:form>
<h:messages styleClass="errorMsg"></h:messages>
<h:panelGrid columns="2"
columnClasses="rightAlign, leftAlign">
<h:outputText value="First Name:">
</h:outputText>
<h:inputText label="First Name"
value="#{customer.firstName}"
required="true"
validator="#{alphavValidator.validateAlpha}">
<f:validateLength minimum="2" maximum="30">
</f:validateLength>
</h:inputText>
<h:outputText value="Last Name:"></h:outputText>
<h:inputText label="Last Name"
value="#{customer.lastName}"
required="true"
validator="#{alphavValidator.validateAlpha}">
<f:validateLength minimum="2" maximum="30">
</f:validateLength>
</h:inputText>
<h:outputText value="Email:">

[57]

JavaServer Faces

</h:outputText>
<h:inputText label="Email" value="#{customer.email}">
<f:validator validatorId="emailValidator" />
</h:inputText>
<h:panelGroup></h:panelGroup>
<h:commandButton action="confirmation" value="Save"s>
</h:commandButton>
</h:panelGrid>
</h:form>
</h:body>
</html>

The only difference between this page and the previous one is the use of the
styleClass attribute of the <h:messages> tag. As mentioned earlier, the value of
the styleClass attribute must match the name of a CSS style defined in a cascading
style sheet that our page can access.

In our case, we defined a CSS style in style.css for messages as follows:

.errorMsg {
color: red;

}

We then used this style as the value of the styleClass attribute of our
<h:messages> tag.

The following screenshot illustrates how the validation error messages look after we
have implemented this change:

Enter Customer Data - M
Firefox v]{::} Enter Customer Data H * |

« | localhost:8080/jsfcustommess/faces/custome

s First Name: minimum allowed length is ‘2"
¢ Last Name: minimum allowed length is '2°
¢ Email: email format is not valid

First Name: |A |
Last Name: B |

Email: [C |

| Save |

In this particular case, we just set the color of the error message text to red, but we
are only limited by CSS capabilities in setting the style of the error messages.

[58]

Chapter 2

Customizing message text

Sometimes it is desirable to override JSF's default validation errors. Default
validation errors are defined in a resource bundle called Messages.properties. This
file can be found inside the javax.faces.jar file under [glassfish installation
directory] /glassfish/modules. It can be found under the javax/faces folder
inside the JAR file. The file contains several messages, but we are only interested in
validation errors at this point. The default validation error messages are defined

as follows:

javax.faces.validator.DoubleRangeValidator .MAXIMUM={1}: Validation
Error: Value is greater than allowable maximum of "{0}"
javax.faces.validator.DoubleRangeValidator .MINIMUM={1}: Validation
Error: Value is less than allowable minimum of ''{0}''
javax.faces.validator.DoubleRangeValidator.NOT IN RANGE={2}:
Validation Error: Specified attribute is not between the
expected values of {0} and {1}.
javax.faces.validator.DoubleRangeValidator.TYPE={0}: Validation
Error: Value is not of the correct type
javax.faces.validator.LengthValidator .MAXIMUM={1}: Validation

Error: Value is greater than allowable maximum of ''{0}'’
javax.faces.validator.LengthValidator .MINIMUM={1}: Validation
Error: Value is less than allowable minimum of ''{0}''

javax.faces.validator.LongRangeValidator .MAXIMUM={1}: Validation
Error: Value is greater than allowable maximum of ''{0}'’
javax.faces.validator.LongRangeValidator .MINIMUM={1}: Validation
Error: Value is less than allowable minimum of ''{0}''
javax.faces.validator.LongRangeValidator.NOT_IN_RANGE:{2}:
Validation Error: Specified attribute is not between the
expected values of {0} and {1}.
javax.faces.validator.LongRangeValidator.TYPE={0}: Validation
Error: Value is not of the correct type.
javax.faces.validator.NOT_IN RANGE=Validation Error: Specified
attribute is not between the expected values of {0} and {1}.
javax.faces.validator.RegexValidator.PATTERN_NOT SET=Regex pattern
must be set.
javax.faces.validator.RegexValidator.PATTERN_NOT SET detail=Regex
pattern must be set to non-empty value.
javax.faces.validator.RegexValidator .NOT MATCHED=Regex Pattern not
matched
javax.faces.validator.RegexValidator .NOT MATCHED detail=Regex
pattern of ''{0}'' not matched
javax.faces.validator.RegexValidator .MATCH EXCEPTION=Error in
regular expression.

[59]

JavaServer Faces

javax.faces.validator.RegexValidator .MATCH EXCEPTION detail=Error
in regular expression, ''{0}''
javax.faces.validator.BeanValidator.MESSAGE={0}

In order to override the default error messages, we need to create our own resource
bundle using the same keys used in the default one, but altering the values to

suit our needs. The following is a very simple customized resource bundle for

our application:

javax.faces.validator.LengthvValidator .MINIMUM={1}: minimum allowed
length is ''{0}'"

In this resource bundle, we override the error message for when the value entered for
a field validated by the <f:validateLength> tag is less than the allowed minimum.
In order to let our application know that we have a custom resource bundle for
message properties, we need to modify the application's faces-config.xml file

as follows:

<?xml version='1.0' encoding='UTF-8'?>
<faces-config version="2.0"
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
Xsi:schemalocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-facesconfig 2 0.xsd">
<application>
<message-bundle>net.ensode.Messages</message-bundle>
</application>
</faces-config>

As we can see, the only thing we need to do to the application's faces-config.xml
file is to add a <message-bundle> element indicating the name and location of the
resource bundle containing our custom messages.

A custom error message text definition is one of the few cases in which
. westill need to define a faces-config.xml file for modern JSF
% applications. However, note how simple our faces-config.xml file is;
— itis afar cry from a typical faces-config.xml file for JSF 1.x, which
typically contains named bean definitions, navigation rules, JSF validator
definitions, and so on.

[60]

Chapter 2

After adding our custom message resource bundle and modifying the application's
faces-config.xml file, we can see our custom validation message in action, as
shown in the following screenshot:

Enter Customer Data - Mozilla Firefox
Firefox v | {} Enter Customer Data ” L |

-« | localhost:8080/jsfcustommess/faces/customer_data_entry.xhtm v [E]v Goog

First Name: minimum allowed length is '2*
Last Name: only alphabetic characters are allowed.
Last Name: Validation Error: Length is greater than allowable maximum of ‘30

.
L]
.
¢ Email: email format is not valid

First Name: [A

Last Name: [123452bcdefghijkimnopgrst|

Email: [unknown |

| Save |

As can be seen in the screenshot, if we haven't overridden a validation message,

the default will still be displayed. In our resource bundle, we only overrode the
minimum length validation error message; therefore, our custom error message is
shown for the First Name text field. Since we didn't override the error messages for
the other standard JSF validators, the default error message is shown for each one of
them. The e-mail validator is the custom validator we developed previously in this
chapter. Since it is a custom validator, its error message is not affected.

Ajax-enabling JSF applications

Early versions of JSF did not include native Ajax support. Custom JSF library
vendors were forced to implement Ajax in their own way. Unfortunately, this state
of events introduced incompatibilities between JSF component libraries. JSF 2.0
standardized Ajax support by introducing the <f :ajax> tag.

The following page illustrates the typical usage of the <f:ajax> tag:

<?xml versgion='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core">
<h:heads>

[61]

JavaServer Faces

<title>JSF Ajax Demo</title>
</h:head>
<h:body>
<h2>JSF Ajax Demo</h2>
<h:form>
<h:messages/>
<h:panelGrid columns="2">

<h:outputText value="Echo input:"/>

<h:inputText id="textInput" value="#{controller.text}">
<f:ajax render="textVal" event="keyup"/>

</h:inputText>

<h:outputText value="Echo output:"/>
<h:outputText id="textVal" value="#{controller.text}"/>
</h:panelGrid>
<hr/>
<h:panelGrid columns="2">
<h:panelGroup/>
<h:panelGroup/>
<h:outputText value="First Operand:"/>
<h:inputText id="first" value="#{controller.firstOperand}"
size="3"/>
<h:outputText value="Second Operand:"/>
<h:inputText id="second"
value="#{controller.secondOperand}"
size="3"/>
<h:outputText value="Total:"/>
<h:outputText id="sum" value="#{controller.total}"/>
<h:commandButton
actionListener="#{controller.calculateTotal}"
value="Calculate Sum">
<f:ajax execute="first second" render="sum"/>
</h:commandButton>
</h:panelGrid>
</h:form>
</h:body>
</html>

[62]

Chapter 2

After deploying our application, our page renders as illustrated in the following
screenshot:

Firefox v | {1)SF Ajax Demo "

localhost:8080/jsfajax

JSF Ajax Demo

Echo input: [abcd
Echo output: abed

First Operand: [3 |
Second Operand: ¢ |
Total: 7

| Calculate Sum |

This example page illustrates two uses of the <f :ajax> tag. At the top of the page,
we have used this tag for implementing a typical Ajax Echo example, in which we
have an <h:outputText> component updating itself with the value of an input text
component. Any time a character is entered into the input field, the value of the
<h:outputText> component is automatically updated.

To implement the functionality described in the previous paragraph, we put an
<f:ajax> tag inside an <h: inputText> tag. The value of the render attribute of the
<f:ajax> tag must correspond to the ID of a component we wish to update after
the Ajax request finishes. In our example, we wish to update the <h:outputText>
component with an ID of "textval"; therefore, we will use this value for the render
attribute of our <f:ajax> tag.

. In some cases, we may need to render more than one JSF component
& after an Ajax event finishes; in order to accommodate this, we can
% add several IDs as the value of the render attribute, and we simply
need to separate them by spaces.

The other <f:ajax> attribute we used in this instance is the event attribute. This
attribute indicates the JavaScript event that triggers the Ajax event. In this particular
case, we need to trigger the event any time a key is released while a user is typing
into the input field; therefore, the appropriate event to use is keyup.

[63]

JavaServer Faces

The following table lists all supported JavaScript events:

Event Description

blur The component loses focus.

change The component loses focus, and its value is modified.

click The component is clicked on.

dblclick The component is double-clicked on.

focus The component gains focus.

keydown A key is depressed while the component has focus.

keypress A key is pressed or held down while the component has focus.
keyup A key is released while the component has focus.

mousedown The mouse button is depressed while the component has focus.
mousemove The mouse pointer is moved over the component.

mouseout The mouse pointer leaves the component.

mouseover The mouse pointer is placed over the component.

mouseup The mouse button is released while the component has focus.
select The component's text is selected.

valueChange Equivalent to change; the component loses focus and its value

has been modified.

We use the <f :ajax> tag once again farther down in the page to Ajax-enable a
command button component. In this instance, we want to recalculate a value based
on the value of two input components. In order to have the values on the server
updated with the latest user input, we used the execute attribute of <£f :ajax>; this
attribute takes a space-separated list of component IDs to use as input. We then
use the render attribute just as before to specify which components need to be
re-rendered after the Ajax request finishes.

Notice that we used the actionListener attribute of <h:commandButtons.

This attribute is typically used when we don't need to navigate to another page after
clicking on the button. The value for this attribute is an action listener method we
wrote in one of our named beans. Action listener methods must return void and
take an instance of javax.faces.event .ActionEvent as their sole parameter.

The named bean for our application looks as follows:
package net.ensode.glassfishbook.jsfajax;

import javax.faces.event.ActionEvent;
import javax.faces.view.ViewScoped;
import javax.inject.Named;

[64]

Chapter 2

@Named
@ViewScoped
public class Controller

private String text;
private int firstOperand;
private int secondOperand;
private int total;

public Controller() {

}

public void calculateTotal (ActionEvent actionEvent) {
total = firstOperand + secondOperand;

}

public String getText ()
return text;

}

public void setText (String text) {
this.text = text;

}

public int getFirstOperand() {
return firstOperand;

}

public void setFirstOperand(int firstOperand)
this.firstOperand = firstOperand;

}

public int getSecondOperand()
return secondOperand;

}

public void setSecondOperand (int secondOperand) {
this.secondOperand = secondOperand;

}

public int getTotal() {
return total;

}

public void setTotal (int total) {
this.total = total;

[65]

JavaServer Faces

Notice that we didn't have to do anything special in our named bean to enable Ajax
in our application. It is all controlled by the <f :ajax> tag on the page.

As we can see from this example, Ajax-enabling JSF applications is very simple. We
simply need to use a single tag to Ajax-enable our page, without having to write a
single line of JavaScript, JSON, or XML.

JSF 2.2 HTMLS5 support

HTML 5 is the latest version of the HTML specification. It includes several
improvements over the previous version of HTML. JSF 2.2 includes several
updates to make JSF pages work nicely with HTML5.

The HTML5-friendly markup

Through the use of pass-through elements, we can develop our pages using HTML
5 tags and also treat them as JSF components. To do this, we need to specify at least
one of the element attributes using the http://xmlns.jcp.org/jsf namespace.
The following example demonstrates this approach in action:

<!DOCTYPE html>
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:jsf="http://xmlns.jcp.org/jsf">
<head jsf:id="head">
<title>JSF Page with HTML5 Markup</titles>
<link jsf:library="css" jsf:name="styles.css"
rel="stylesheet"
type="text/css"
href="resources/css/styles.css"/>
</head>
<body jsf:id="body">
<form jsf:prependId="false">
<table style="border-spacing: 0; border-collapse:
collapse">
<tr>
<td class="rightAlign">
<label jsf:for="firstName">First
Name</label>
</td>
<td class="leftAlign">
<input type="text" jsf:id="firstName"
jsf:value="#{customer.firstName}"/>
</td>

[66]

Chapter 2

</tr>
<tr>
<td class="rightAlign">
<label jsf:for="lastName">Last Name</label>
</td>
<td class="leftAlign">
<input type="text" jsf:id="lastName"
jsf:value="#{customer.lastName}"/>
</td>
</tr>
<tr>
<td class="rightAlign">
<label jsf:for="email">Email
Address</label>
</td>
<td class="leftAlign">
<input type="email" jsf:id="email"
jsf:value="#{customer.email}"/></td>
</tr>
<tr>
<td></td>
<td>
<input type="submit"
jsf:action="confirmation"
value="Submit"/>
</td>
</tr>
</table>
</form>
</body>
</html>

The first thing we should notice about this example is the XML namespace prefixed
by jsf near the top of the page. This namespace allows us to add JSF-specific
attributes to HTML 5 pages. When the JSF runtime encounters attributes prefixed
by jsf in any of the tags on the page, it automatically converts the HTML5 tag to
the equivalent JSF component. JSF-specific tags are the same as in regular JSF pages,
except that they are prefixed with jsf. Therefore, at this point, they should be
self-explanatory and will not be discussed in detail. Our example will render and
behave just like the first example in this chapter.

[67]

JavaServer Faces

The technique described in this section is useful if you have experienced HTML web
designers in your team who prefer to have full control over the look of the page. The
pages are developed using standard HTML5 with JSE-specific attributes so that the
JSF runtime can manage user input.

If your team consists primarily of Java developers with limited CSS/HTML
knowledge, then it is preferable to develop the web pages for your web application
using JSF components. HTML 5 introduced several new attributes that didn't exist
in the previous versions of HTML. For this reason, JSF 2.2 introduces the ability to
add arbitrary attributes to JSF components. This JSF/HTMLS5 integration technique
is discussed in the next section.

Pass-through elements

JSF 2.2 allows the definition of any arbitrary attributes (not processed by the

JSF engine). These attributes are simply rendered as is on the generated HTML
displayed in the browser. The following example is a new version of an earlier
example in this chapter, which has been modified to take advantage of the HTML5
pass-through elements:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:p="http://xmlns.jcp.org/jsf/passthrough">
<h:head>
<titles>Enter Customer Data</title>
</h:head>
<h:body>
<h:outputStylesheet library="css" name="styles.css"/>
<h:form id="customerForm">
<h:messages/>
<h:panelGrid columns="2"
columnClasses="rightAlign, leftAlign">
<h:outputLabel for="firstName" value="First Name:">
</h:outputLabel >
<h:inputText id="firstName"
label="First Name"
value="#{customer.firstName}"
required="true"
p:placeholder="First Name">

[68]

Chapter 2

<f:validateLength minimum="2" maximum="30">
</f:validateLength>
</h:inputText>
<h:outputlLabel for="lastName" value="Last Name:">
</h:outputLabel>
<h:inputText id="lastName"
label="Last Name"
value="#{customer.lastName}"
required="true"
p:placeholder="Last Name">
<f:validateLength minimum="2" maximum="30">
</f:validateLength>
</h:inputText>
<h:outputLabel for="email" value="Email:">
</h:outputLabel>
<h:inputText id="email"
label="Email"
value="#{customer.email}"
p:placeholder="Email Address">
<f:validateLength minimum="3" maximum="30">
</f:validateLength>
</h:inputText>
<h:panelGroup></h:panelGroup>
<h:commandButton action="confirmation" value="Save">
</h:commandButton>
</h:panelGrid>
</h:form>
</h:body>
</html>

The first thing we should notice about this example is the addition of the
xmlns:p="http://xmlns.jcp.org/jsf/passthrough namespace; this
namespace allows us to add any arbitrary attributes to our JSF components.

In our example, we added the HTML5 placeholder attribute to all input text
fields in our page; as we can see, it needs to be prefixed by the defined prefix

for the namespace at the top of the application (p, in our case). The placeholder
HTML attribute simply adds some placeholder text to the input fields, which is
automatically deleted once the user starts typing in the input field (this technique
was commonly implemented "by hand" using JavaScript before HTML5).

[69]

JavaServer Faces

The following screenshot shows our updated page in action:

Enter Customer Data
Firefox v] Enter Customer Data |] + |

o | localhast:2080/isfpassthroughattrs/faces/customer data ent

First Name: [Frst Name |

Last Name: [Last Name |

Email: "E"' Addre 1

Save

JSF 2.2 Faces Flows

Faces Flows is a new JSF 2.2 feature that defines a scope that can span several pages.
Flow scoped beans are created when the user enters a flow (a set of web pages) and
are destroyed when the user leaves the flow.

Faces Flows adopts the convention over configuration principle of JSF. The
following conventions are typically used when developing applications employing
Faces Flows:

* All pages in the flow must be placed in a directory with a name that defines
the name of the flow

* An XML configuration file named after the directory name and suffixed with
- flow must exist inside the directory that contains the pages in the flow (the
file may be empty, but it must exist)

* The first page in the flow must be named after the directory name that
contains the flow

* The last page in the flow must not be located inside the directory containing
the flow and must be named after the directory name and suffixed
with -return

[70]

Chapter 2

The following screenshot illustrates these conventions:

-1 @ facesflow
-1 3 Web Pages

+ @ WEB-IMF

-8 customerinfo
customerinfo-flow.xml
customerinfo-page2.xhtml
customerinfo-page3.xhtml
customerinfo-paged.xhtml
customerinfo.xhtml
@ customerinfo-return.xhtml
[indexxhtml

[&) [&) &2

In this example, we define a flow named customerinfo; by convention, these files
are inside a directory named customerinfo, and the first page of the flow is named
customerinfo.xhtml (there are no restrictions on the names of other pages in the
flow). When we exit the flow, we navigate to customerinfo-return.xhtml, which
follows the naming convention and takes us out of the flow.

The markup for the pages doesn't illustrate anything we haven't seen before, so
we will not show it. All example code is available as part of this book's code
download bundle.

All the pages in our example store data in a named bean called customer, which has
a scope of flow.

@Named

@FlowScoped ("customerinfo")

public class Customer implements Serializable {
//class body omitted

}

The @FlowScoped annotation has a value attribute that must match the name of the
flow that the bean is meant to work with (customerinfo in this example).

This example creates a wizard-style set of pages in which data for a user is entered
across several pages in the flow.

[71]

JavaServer Faces

On the first page, we enter information about the name.

Custo

Firefox v I i} customer Information H &+]

- I @ localhost:8080/facesflow/faces/index.xhtm?jfwid={589457

Enter Customer Information (Page 1 of 4)

First Name [Piper]

Middle Name [Nicole |

Last Name |vause]
Next

On the second page, we enter address information as shown in the following
screenshot:

Custo|

Firefox ¥ J[::} Customer Information H +*]

- [e localhost:8080/facesflow/faces/customerinfofcustomerinfo.x

Enter Customer Information (Page 2 of 4)

Line 1 [123 Basketball Ct |

Line2 | |

City [Litenfield |

State California *

Zip [12345 |
Previous [M

[72]

Chapter 2

On the next page, we enter phone number information as shown in the following

screenshot:

Finally, we display a confirmation page as shown in the following screenshot:

Cust

Firefox ¥ J i} customer Information |[+* 1

Enter Customer Information (Page 3 of 4)

Home Phone [555-555-1234 |
Work Phone [555-555-5678]
Mobile Phone [555-555-9012]
| Previous | | Mext |

Firefox v] "} confirmation "T]

- [& localhost: 2080 flow/faces/customerinfo/customerinf

Enter Customer Information (Page 4 of 4)

You entered the following information:

First Name: Piper

Middle Name: Nicole

Last Name: Vause

Address Line 1: 123 Basketball Ct
Address Line 2:

City: Litchfield

State: CA

Zip: 12345

Home Phone: 555-555-1234
Work Phone: 555-555-5678
Mobile Phone555-555-9012

Is this correct?

[Yes (Continue)] [Mo (Go back])]

[73]

JavaServer Faces

If the user verifies that the information is correct, we navigate outside the flow to
customerinfo-return.xhtml; otherwise, we go back to the first page in the flow to
allow the user to make any necessary corrections.

Additional JSF component libraries

In addition to the standard JSF component libraries, there are a number of
third-party JSF tag libraries available. The following table lists some of the
most popular ones:

Tag library Distributor License URL

ICEfaces ICEsoft MPL 1.1 http://www.icefaces.org

RichFaces Red Hat/ LGPL http://www.jboss.org/richfaces
JBoss

Primefaces Prime Apache http://www.primefaces.org

Technology 2.0

Summary

In this chapter, we covered how to develop web-based applications using JavaServer
Faces, the standard component framework for the Java EE platform. We covered
how to write a simple application by creating pages using Facelets as the view
technology and CDI named beans. We also covered how to validate user input by
using JSF's standard validators and by creating our own custom validators or by
writing validator methods. Additionally, we covered how to customize standard JSF
error messages, both the message text and the message style (font, color, and so on).
Also, we covered how to develop Ajax-enabled JSF pages as well as how to integrate
JSF and HTMLS5.

In the next chapter, we will cover how to interact with relational databases via the
Java Persistence API.

[74]

Object Relational Mapping
with JPA

Any non-trivial Java EE application will persist data to a relational database. In this
chapter, we will cover how to connect to a database and perform CRUD operations
(Create, Read, Update, Delete).

The Java Persistence API (JPA) is the standard Java EE Object Relational Mapping
(ORM) tool. We will discuss this API in detail in this chapter.

Some of the topics covered in this chapter include:

* Retrieving data from a database through JPA

* Inserting data into a database through JPA

* Updating data in a database through JPA

* Deleting data in a database through JPA

* Building queries programmatically through the JPA Criteria API

* Automating data validation through JPA 2.0's Bean Validation support

The CustomerDB database

Examples in this chapter will use a database called cusToMERDB. This database
contains tables to track customer and order information for a fictitious store. The
database uses JavaDB for its Relational Database Management System (RDBMS)
since it comes bundled with GlassFish.

Object Relational Mapping with JPA

A script is included with this book's code download to create this database and
prepopulate some of its tables. Instructions on how to execute the script and add a
connection pool and datasource to access it are included in the download as well.
The schema for the cUSTOMERDB database is depicted in the following diagram:

US_STATES

UE_STATE_ID INTEGER(LOY MOT MULL (FID
U5S_STATE_CD CHAR(2) NOT NULL
U5_STATE_NM WARCHAR(Z0) NOT MULL

ADDRESS_TVPES

SO DRESS_TYPE_ID INTEGERGL 0) MOT MULL (P)
WODRESE_TVPE_CODE CHARIL) MULL
WODRESS_TYPE_TEXT WARCHARGO) MULL

ADDRESSES

PODRESS_ID INTEGER(L 0 HOT NULL (Fky
LJADDORESS_TYPE_IOD INTEGEREL 0y MULL (FK)

TELEPHONE_TYPES

ITELEFHOME_TYFE_CD CHAR(L) HULL
TELEPHOME_TYPE_TEXT WARCHAR{ZO) MULL

TELEFHOME_TYPE_ID IMTECGERSL D) NOT MULL (P WODOR_LIME_1 WARCHARCL O0) MULL

—CUSTOMER_ID INTEGER(L0) MULL (FE)

WODOR_LIME_2 WARCHARLL O0) MULL
CITY WARCHAR OO MULL
—US_STATE_ID INTEGER(10) NULL (FKY

TELEPHONES

TELEFHOME_ID IMTECER{10) MOT MULL iPE)
TELEFHOME_TYFE_ID INTEGERSL 0 MULL (FKY
CUSTOMER_ID INTECER{10) NULL (FE)
TELEFHOME_NUMEER CHAR(L2) NULL

EIP CHAR(S) NULL

CUSTOMERS
CUSTOMER_ID INTEGER:L 0} MOT MULL (PkY

¥

ORDER_ITEMS

ORDER_IDO INTEGER{LOY NULL (FE)
ITEM_ID INTECER{L 0) NULL {FED
ITEM_OTY INTEGER{L Oy NULL

FIRST_NAME WARCHARZO) MULL
LAST_MNAME WARCHAR(20) NULL
EMAIL WARCHAR(ZO) NULL

ORDERS
#ORDER_ID INTEGER{10) MOT MULL (PK)

ITEMS

ITEM_ID INTECER(10) NOT MULL {FK)
ITEM _NUMBER. WARCHARIL Oy NULL

ITEM _SHORT_DESC WARCHAR(I OOy NULL
ITEM _LONG_DESC WARCHAR(SOO) MULL

FCUSTOMER_ID INTEGER:L 0} MULL §FE)
ORDER_MWUMEER WARCHAR) MULL
ORDER_DESCRIFTION WARCHARGZO0) MULL

LOGIMN_INFD

LOGIM_IMFO_ID INTECER{L O} MOT MULL (P}
L CUSTOMER_ID INTEGER(L0) MULL {FK)
LOGIM_MAME WARCHARL0) MULL
FASIWORD WARCHARIL D) MULL

As can be seen in the preceding diagram, the database contains tables to store
customer information such as name, address, and e-mail address. It also contains
tables to store order and item information.

The ADDRESS_TYPES table will store values such as "Home", "Mailing", and
"Shipping" to distinguish the type of address in the ADDRESSES table; similarly, the
TELEPHONE TYPES table stores the values "Cell", "Home", and "Work". These two
tables are prepopulated when creating the database as well as the us_STATES table.

% For simplicity, our database only deals with US addresses.

[76]

Chapter 3

Introducing the Java Persistence API

JPA was introduced to Java EE in Version 5 of the specification. As its name implies,
it is used to persist data to an RDBMS. JPA is a replacement for Entity Beans that
were used in J2EE. JPA Entities are regular Java classes; the Java EE container
recognizes these classes as JPA entities. Let's look at an Entity mapping to the
CUSTOMER table in the cUSTOMERDB database, shown in the following code:

package net.ensode.glassfishbook.jpaintro.entity;

import java.io.Serializable;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.Table;

@Entity
@Table (name = "CUSTOMERS")
public class Customer implements Serializable

{

@Id
@Column (name = "CUSTOMER_ID")
private Long customerId;

@Column (name = "FIRST NAME")
private String firstName;

@Column (name = "LAST NAME")
private String lastName;

private String email;

public Long getCustomerId ()

{

return customerId;

}

public void setCustomerId(Long customerId)

{

this.customerId = customerId;

}

public String getEmail ()

{

[77]

Object Relational Mapping with JPA

return email;

}

public void setEmail (String email)

{
}

public String getFirstName ()

{
}

public void setFirstName (String firstName)

{
}

public String getLastName ()

{
}

public void setLastName (String lastName)

{

}
}

In the preceding code, the @Entity annotation lets GlassFish (or, for that matter,
any other application server that is compliant with Java EE) know that this class
is an entity.

this.email = email;

return firstName;

this.firstName = firstName;

return lastName;

this.lastName = lastName;

The @Table (name = "CUSTOMERS") annotation lets the application server know
what table to map the entity to. The value of the name element contains the name of
the database table that the entity maps to. This annotation is optional; if the name
of the class is the same as the name of the database table, then it isn't necessary to
specify what table the entity maps to.

The @1d annotation indicates that the customer1d field is the primary key (unique
identifier) for our Entity.

The @Column annotation maps each field to a column in the table. If the name of the
field matches the name of the database column, then this annotation is not needed.
This is the reason why the email field is not annotated.

The EntityManager class (EntityManager is actually an interface; each Java EE
compliant application server provides its own implementation) is used to persist
Entities to a database. The following example illustrates its usage:

package net.ensode.glassfishbook.jpaintro.namedbean;

import javax.annotation.Resource;

[78]

Chapter 3

import
import
import
import
import
import
import
import
import
import
import

@Named

javax.enterprise.context.RequestScoped;
javax.inject .Named;
javax.persistence.EntityManager;
javax.persistence.PersistenceContext;
javax.transaction.HeuristicMixedException;
javax.transaction.HeuristicRollbackException;
javax.transaction.NotSupportedException;
javax.transaction.RollbackException;
javax.transaction.SystemException;
javax.transaction.UserTransaction;
net.ensode.glassfishbook.jpaintro.entity.Customer;

@RequestScoped

public

class JpaDemoBean {

@PersistenceContext

private EntityManager entityManager;

@Resource

private UserTransaction userTransaction;

public String updateDatabase() {

String retVal = "confirmation";

Customer customer = new Customer () ;
Customer customer2 = new Customer () ;
Customer customer3;

customer.setCustomerId (3L) ;
customer.setFirstName ("James") ;
customer.setLastName ("McKenzie") ;
customer.setEmail ("jamesm@notreal.com") ;

customer2.setCustomerId (4L) ;
customer2.setFirstName ("Charles") ;
customer?2.setLastName ("Jonson") ;
customer2.setEmail ("cjohnson@ephony.org") ;

try {
userTransaction.begin() ;
entityManager.persist (customer) ;
entityManager.persist (customer2) ;

[79]

Object Relational Mapping with JPA

customer3 = entityManager.find (Customer.class, 4L);
customer3.setLastName ("Johnson") ;
entityManager.persist (customer3) ;
entityManager.remove (customer) ;

userTransaction.commit () ;

} catch (HeuristicMixedException |
HeuristicRollbackException |
IllegalStateException |
NotSupportedException |
RollbackException |
SecurityException |
SystemException e) {

retvVal = "error";
e.printStackTrace() ;

return retval;

}

The CDI named bean in the preceding code obtains an instance of a class implementing
the javax.persistence.EntityManager interface via dependency injection. This

is done by decorating the Ent ityManager variable with the @PersistenceContext
annotation.

An instance of a class implementing the javax.transaction.UserTransaction
interface is then injected via the @Resource annotation. This object is necessary since
without it, invoking calls to persist Entities to the database would result in the code
throwing a javax.persistence.TransactionRequiredException.

The EntityManager class performs many database-related tasks such as finding
entities in the database, updating them, and deleting them.

Since JPA Entities are Plain Old Java Objects (POJOs), they can be instantiated via
the new operator.

POJOs are Java objects that do not need to extend any specific parent
class or implement any specific interface

* The call to the setCustomerid () method takes advantage of

%@‘ autoboxing, a feature added to the Java language in JDK 1.5.
Note that the method takes an instance of java.lang.Long as its
parameter, but we are using long primitives. The code compiles

- and executes properly thanks to this feature.. -

[80]

Chapter 3

Calls to the persist () method on EntityManager must be in a transaction; therefore,
it is necessary to start one by calling the begin () method on UserTransaction.

We then insert two new rows to the CUSTOMERS table by calling the persist ()
method on entityManager for the two instances of the Customer class we
populated earlier in the code.

After persisting the data contained in the customer and customer2 objects, we
search the database for a row in the CUSTOMERS table with a primary key of 4. We
do this by invoking the £ind () method on entityManager. This method takes the
class of the Entity we are searching for as its first parameter and the primary key

of the row corresponding to the object we want to obtain. This method is roughly
equivalent to the findByPrimaryKey () method on an Entity Bean's home interface.

The primary key we set for the customer2 object was 4; therefore, what we have
now is a copy of this object. The last name for this customer was misspelled when
we originally inserted his data into the database; we now correct Mr. Johnson's last
name by invoking the setLastName () method on customer3 and then update the
information in the database by invoking entityManager.persist ().

We then delete the information for the customer object by invoking entityManager.
remove () and passing the customer object as a parameter.

Finally, we commit the changes to the database by invoking the commit () method
on userTransaction.

In order for our code to work as expected, an XML configuration file named
persistence.xml must be deployed in the WAR file containing JpADemoBean. This
file must be placed in the WEB- INF/classes/META-INF/ directory inside the WAR
file. The contents of this file corresponding to our code are shown next:

<?xml version="1.0" encoding="UTF-8"?>

<persistence version="2.1"

xmlns="http://java.sun.com/xml/ns/persistence"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="http://java.sun.com/xml/ns/persistence http://

java.sun.com/xml/ns/persistence/persistence 1 0.xsd">
<persistence-unit name="customerPersistenceUnit">

<jta-data-source>jdbc/ CustomerDBPool</jta-data-sources

</persistence-units>

</persistences

The persistence.xml file must contain at least one <persistence-unit> element.
Each <persistence-unit> element must provide a value for its name attribute and
must contain a <jta-data-sources child element whose value is the JNDI name of
the datasource to be used for the persistence unit.

[81]

Object Relational Mapping with JPA

More than one <persistence-units> element is allowed because an application
may access more than one database. A <persistence-unit> element is required for
each database the application will access. If the application defines more than one
<persistence-unit> element, then the @PersistenceContext annotation used to
inject EntityManager must provide a value for its unitName element. The value for
this element must match the name attribute of the corresponding <persistence-
unit> element in persistence.xml.

Cannot persist the detached object exception

An application will frequently retrieve a JPA entity via the
EntityManager.find () method and then pass this entity to a
M business or user interface layer, where it will potentially be modified.

Later, the database data corresponding to the entity will be updated. In

Q cases like this, invoking EntityManager.persist () will resultin an
exception. In order to update JPA entities this way, we need to invoke
EntityManager.merge (). This method takes an instance of the JPA
entity as its single argument and updates the corresponding row in the
database with the data stored in it.

Entity relationships

In the previous section, we saw how to retrieve, insert, update, and delete single
entities from the database. Entities are rarely isolated; in the vast majority of cases,
they are related to other entities.

Entities can have one-to-one, one-to-many, many-to-one, and many-to-many
relationships.

In the customerDB database, for example, there is a one-to-one relationship between
the LOGIN INFO table and the CUSTOMERS tables. This means that each customer has
exactly one corresponding row in the LOGIN_INFO table. There is also a one-to-many
relationship between the CUSTOMERS table and the ORDERS table. This is because a
customer can place many orders, but each order belongs only to a single customer.
Additionally, there is a many-to-many relationship between the oRDERS table and
the 1TEMS table. This is because an order can contain many items and an item can be
in many orders.

In the next few sections, we discuss how to establish relationships between
JPA entities.

[82]

Chapter 3

One-to-one relationships

One-to-one relationships occur when an instance of an entity can have zero or one
corresponding instance of another entity.

One-to-one entity relationships can be bidirectional (each entity is aware of the
relationship) or unidirectional (only one of the entities is aware of the relationship). In
the customerDB example database, the one-to-one mapping between the LOGIN_ INFO
and the CUSTOMERS tables is unidirectional. This is because the LOGIN INFO table has
a foreign key to the CUSTOMERS table, but not the other way around. As we will soon
see, this fact does not stop us from creating a bidirectional one-to-one relationship
between the Customer entity and the LoginInfo entity.

The source code for the LoginInfo entity, which maps to the LOGIN_ INFO table, can
be seen next:

package net.ensode.glassfishbook.entityrelationship.entity;

import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;

import javax.persistence.JoinColumn;
import javax.persistence.Table;

@Entity
@Table (name = "LOGIN INFO")
public class LoginInfo

{

@Id
@Column (name = "LOGIN INFO_ID")
private Long loginInfoId;

@Column (name = "LOGIN NAME")
private String loginName;

private String password;

@OneToOne
@JoinColumn (name="CUSTOMER ID")
private Customer customer;

public Long getLoginInfoId()

{

return loginInfoId;

[83]

Object Relational Mapping with JPA

public void setLoginInfoId(Long loginInfoId)

{

this.loginInfoId = loginInfoId;

}

public String getPassword ()

{

return password;

}

public void setPassword (String password)

{

this.password = password;

}

public String getLoginName ()

{

return loginName;

}

public void setLoginName (String userName)

{

this.loginName = userName;

}

public Customer getCustomer ()

{

return customer;

}

public void setCustomer (Customer customer)

{

this.customer = customer;

}

The code for this entity is very similar to the code for the Customer entity; it defines
fields that map to database columns. Each field whose name does not match the
database column name is decorated with the @Ccolumn annotation; in addition to that,
the primary key is decorated with the @1d annotation.

[84]

Chapter 3

This code gets interesting in the declaration of the customer field. As can be seen
in the code, the customer field is decorated with the @oneToone annotation. This
lets the application server (GlassFish) know that there is a one-to-one relationship
between this entity and the customer entity. The customer field is also decorated
with the @JoinColumn annotation. This annotation lets the container know what
column in the LOGIN_INFO table is the foreign key corresponding to the primary
key on the CUSTOMER table. Since LOGIN_INFO, the table that the LoginInfo entity
maps to, has a foreign key to the cUSTOMER table, the LoginInfo entity owns the
relationship. If the relationship was unidirectional, we wouldn't have to make any
changes to the customer entity. However, since we would like to have a bidirectional
relationship between these two entities, we need to add a LoginInfo field to the
Customer entity, along with the corresponding getter and setter methods, as shown
in the following code

package net.ensode.glassfishbook.entityrelationship.entity;

import java.io.Serializable;
import java.util.Set;

import javax.persistence.CascadeType;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;

import javax.persistence.OneToMany;
import javax.persistence.OneToOne;
import javax.persistence.Table;

@Entity
@Table (name = "CUSTOMERS")
public class Customer implements Serializable

{

@Id
@Column (name = "CUSTOMER ID")
private Long customerId;

@Column (name = "FIRST NAME")
private String firstName;

@Column (name = "LAST NAME")
private String lastName;

private String email;

[85]

Object Relational Mapping with JPA

@OneToOne (mappedBy = "customer")
private LoginInfo loginInfo;

public Long getCustomerId()

{

return customerId;

public void setCustomerId(Long customerId)

{

this.customerId = customerId;

public String getEmail ()

{

return email;

public void setEmail (String email)

{

this.email = email;

public String getFirstName ()

{

return firstName;

public void setFirstName (String firstName)

{

this.firstName = firstName;

public String getLastName ()

{

return lastName;

public void setLastName (String lastName)

{

this.lastName = lastName;

[86]

Chapter 3

public LoginInfo getLoginInfo()

{

return loginInfo;

public void setlLoginInfo(LoginInfo loginInfo)

{

this.loginInfo = loginInfo;

}

The only change we need to make to the Customer entity to make the one-to-

one relationship bidirectional is to add a LoginInfo field to it, along with the
corresponding setter and getter methods. The LoginInfo field is decorated with

the @oneToOne annotation. Since the Customer entity does not own the relationship
(the table it maps to does not have a foreign key to the corresponding table), the
mappedBy element of the @oneToOne annotation needs to be added. This element
specifies what field in the corresponding entity has the other end of the relationship.
In this particular case, the customer field in the LoginInfo entity corresponds to the
other end of this one-to-one relationship.

The following Java class illustrates the use of the preceding entity:

package net.ensode.glassfishbook.entityrelationship.namedbean;

import
import
import
import
import
import
import
import
import
import
import
import
import

@Named

javax

javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.

.annotation.Resource;

persistence

transaction
transaction
transaction
transaction
transaction
transaction

persistence.

enterprise.context.RequestScoped;
inject.Named;
.EntityManager;

PersistenceContext;

.HeuristicMixedException;
.HeuristicRollbackException;
.NotSupportedException;
.RollbackException;
.SystemException;
.UserTransaction;

net.ensode.glassfishbook.entityrelationship.entity.Customer;

net.ensode.glassfishbook.entityrelationship.entity.LoginInfo;

@RequestScoped

public class OneToOneRelationshipDemoBean

@PersistenceContext

private EntityManager entityManager;

[87]

Object Relational Mapping with JPA

@Resource
private UserTransaction userTransaction;

public String updateDatabase() {
String retVal = "confirmation";
Customer customer;
LoginInfo loginInfo = new LoginInfo() ;

loginInfo.setLoginInfoId (1L) ;
loginInfo.setLoginName ("charlesj") ;
loginInfo.setPassword ("iwonttellyou") ;

try {
userTransaction.begin() ;

customer = entityManager.find(Customer.class, 4L);
loginInfo.setCustomer (customer) ;

entityManager.persist (loginInfo) ;
userTransaction.commit () ;

} catch (NotSupportedException |
SystemException |
SecurityException |
IllegalStateException |
RollbackException |
HeuristicMixedException |
HeuristicRollbackException e)

retVal = "error";
e.printStackTrace() ;

return retVal;

}

In this example, we first create an instance of the LoginInfo entity and populate it
with some data. We then obtain an instance of the Customer entity from the database
by invoking the £ind () method of EntityManager (the data for this entity was
inserted into the CUSTOMERS table in one of the previous examples). We then invoke
the setCustomer () method on the LoginInfo entity, passing the customer object as
a parameter. Finally, we invoke the EntityManager.persist () method to save the
data in the database.

[88]

Chapter 3

Behind the scenes, the CUSTOMER_ID column of the LOGIN INFO table gets populated
with the primary key of the corresponding row in the CUSTOMERS table. This can be
easily verified by querying the cuSTOMERDB database.

Notice how the call to EntityManager.find () to obtain the
customer entity is inside the same transaction where we call
EntityManager.persist (). This must be the case; otherwise the
database will not be updated successfully.

One-to-many relationships

JPA one-to-many entity relationships can be bidirectional (one entity contains
a many-to-one relationship and the corresponding entity contains an inverse
one-to-many relationship).

With SQL, one-to-many relationships are defined by foreign keys in one of the
tables. The "many" part of the relationship is the one containing a foreign key to
the "one" part of the relationship. One-to-many relationships defined in an RDBMS
are typically unidirectional, since making them bidirectional usually results in
denormalized data.

Just as when defining a unidirectional one-to-many relationship in an RDBMS, in

JPA, the "many" part of the relationship is the one that has a reference to the "one"
part of the relationship; therefore, the annotation used to decorate the appropriate
setter method is @ManyToOne.

In the cUSTOMERDB database, there is a unidirectional one-to-many relationship
between customers and orders. We define this relationship in the order entity,
as shown in the following code:

package net.ensode.glassfishbook.entityrelationship.entity;

import
import
import
import
import
import

javax.
javax.
javax.
javax.
javax.
javax.

persistence.
persistence.
persistence.

persistence
persistence
persistence

Column;
Entity;
Id;

.JoinColumn;
.ManyToOne;
.Table;

@Entity
@Table (name = "ORDERS")
public class Order

{

@Id

[89]

Object Relational Mapping with JPA

@Column (name = "ORDER_ID")
private Long orderId;

@Column (name = "ORDER NUMBER")
private String orderNumber;

@Column (name = "ORDER_DESCRIPTION")
private String orderDescription;

@ManyToOne
@JoinColumn (name = "CUSTOMER ID")
private Customer customer;

public Customer getCustomer ()

{

return customer;

public void setCustomer (Customer customer)

{

this.customer = customer;

public String getOrderDescription ()

{

return orderDescription;

public void setOrderDescription (String orderDescription)

{

this.orderDescription = orderDescription;

public Long getOrderId()

{

return orderId;

public void setOrderId(Long orderId)

{

this.orderId = orderId;

[90]

Chapter 3

public String getOrderNumber ()

{

return orderNumber;

public void setOrderNumber (String orderNumber)

{

this.orderNumber = orderNumber;

}

If we were to define a unidirectional many-to-one relationship between the orders
entity and the customer entity, we wouldn't need to make any changes to the
Customer entity. To define a bidirectional one-to-many relationship between the two
entities, a new field decorated with the @oneToMany annotation needs to be added to
the customer entity, as shown in the following code:

package net.ensode.glassfishbook.entityrelationship.entity;

import java.io.Serializable;
import java.util.Set;

import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;

import javax.persistence.OneToMany;
import javax.persistence.Table;

@Entity
@Table (name = "CUSTOMERS")
public class Customer implements Serializable

{

@Id
@Column (name = "CUSTOMER_ID")
private Long customerId;

@Column (name = "FIRST NAME")
private String firstName;

@Column (name = "LAST NAME")
private String lastName;

private String email;

[91]

Object Relational Mapping with JPA

@OneToOne (mappedBy = "customer")
private LoginInfo loginInfo;

@OneToMany (mappedBy="customer")
private Set<Order> orders;

public Long getCustomerId ()

{

return customerId;

public void setCustomerId(Long customerId)

{

this.customerId = customerId;

public String getEmail ()

{

return email;

public void setEmail (String email)

{

this.email = email;

public String getFirstName ()

{

return firstName;

public void setFirstName (String firstName)

{

this.firstName = firstName;

public String getLastName ()

{

return lastName;

public void setLastName (String lastName)

{

this.lastName = lastName;

[92]

Chapter 3

public LoginInfo getLoginInfo()

{

return loginInfo;

public void setLoginInfo (LoginInfo loginInfo)

{

this.loginInfo = loginInfo;

public Set<Order> getOrders()

{

return orders;

public void setOrders(Set<Order> orders)

{

this.orders = orders;

}

The only difference between this version of the Customer entity and the previous one
is the addition of the orders field and related getter and setter methods. Of special
interest is the @oneToMany annotation decorating this field. The mappedBy attribute
must match the name of the corresponding field in the entity corresponding to the
"many" part of the relationship. In simple terms, the value of the mappedBy attribute
must match the name of the field decorated with the @ManyTooOne annotation in the
bean at the other side of the relationship.

The following example code illustrates how to persist one-to-many relationships to
the database:

package net.ensode.glassfishbook.entityrelationship.namedbean;

import javax.annotation.Resource;

import javax.enterprise.context.RequestScoped;
import javax.inject.Named;

import javax.persistence.EntityManager;

import javax.persistence.PersistenceContext;

import javax.transaction.HeuristicMixedException;
import javax.transaction.HeuristicRollbackException;
import javax.transaction.NotSupportedException;
import javax.transaction.RollbackException;

[93]

Object Relational Mapping with JPA

import javax.transaction.SystemException;

import javax.transaction.UserTransaction;

import net.ensode.glassfishbook.entityrelationship.entity.Customer;
import net.ensode.glassfishbook.entityrelationship.entity.Order;

@Named
@RequestScoped
public class OneToManyRelationshipDemoBean

@PersistenceContext
private EntityManager entityManager;

@Resource
private UserTransaction userTransaction;

public String updateDatabase() {
String retVal = "confirmation";

Customer customer;
Order orderl;
Order order2;

orderl = new Order () ;
orderl.setOrderId (1L) ;
orderl.setOrderNumber ("SFX12345") ;
orderl.setOrderDescription ("Dummy order.") ;

order2 = new Order () ;

order2.setOrderId (2L) ;

order?2.setOrderNumber ("SFX23456") ;
order2.setOrderDescription ("Another dummy order.");

try {
userTransaction.begin() ;

customer = entityManager.find(Customer.class, 4L);

orderl.setCustomer (customer) ;
order2.setCustomer (customer) ;

entityManager.persist (orderl) ;
entityManager.persist (order2) ;

[94]

Chapter 3

userTransaction.commit () ;

} catch (NotSupportedException |
SystemException |
SecurityException |
IllegalStateException |
RollbackException |
HeuristicMixedException |
HeuristicRollbackException e)

retVal = "error";
e.printStackTrace() ;

return retVal;

}

The preceding code is pretty similar to the previous example. It instantiates two
instances of the order entity, populates them with some data; then, an instance

of the Customer entity is located in a transaction and used as the parameter of the
setCustomer () method of both instances of the order entity. We then persist both
order entities by invoking EntityManager.persist () for each one of them.

Just as when dealing with one-to-one relationships, behind the scenes, the
CUSTOMER_ID column of the ORDERS table in the CUSTOMERDB database is populated
with the primary key corresponding to the related row in the cuSTOMERS table.

Since the relationship is bidirectional, we can obtain all orders related to a customer
by invoking the getorders () method on the Customer entity.

Many-to-many relationships

In the cuSTOMERDB database, there is a many-to-many relationship between the
ORDERS table and the 1TEMS table. We can map this relationship by adding a new
Collection<Items field to the Order entity and decorating it with the @ManyToMany
annotation, as shown in the following code:

package net.ensode.glassfishbook.entityrelationship.entity;
import java.util.Collection;

import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;

import javax.persistence.JoinColumn;

[95]

Object Relational Mapping with JPA

import javax.persistence.JoinTable;

import javax.persistence.ManyToMany;

import javax.persistence.ManyToOne;

import javax.persistence.Table;

@Entity
@Table (name = "ORDERS")
public class Order

{

@Id
@Column (name = "ORDER_ID")
private Long orderId;

@Column (name = "ORDER NUMBER")
private String orderNumber;

@Column (name = "ORDER_DESCRIPTION")
private String orderDescription;

@ManyToOne
@JoinColumn (name = "CUSTOMER ID")
private Customer customer;

@ManyToMany
@JoinTable (name = "ORDER_ ITEMS",
joinColumns = @JoinColumn(name = "ORDER ID",
referencedColumnName = "ORDER ID"),
inverseJoinColumns = @JoinColumn (name =
referencedColumnName = "ITEM ID"))

private Collection<Item> items;

public Customer getCustomer ()

{

return customer;

public void setCustomer (Customer customer)

{

this.customer = customer;

public String getOrderDescription ()

{

"ITEM ID",

[96]

Chapter 3

return orderDescription;

public void setOrderDescription (String orderDescription)

{

this.orderDescription = orderDescription;

public Long getOrderId()

{

return orderId;

public void setOrderId(Long orderId)

{

this.orderId = orderId;

public String getOrderNumber ()

{

return orderNumber;

public void setOrderNumber (String orderNumber)

{

this.orderNumber = orderNumber;

public Collection<Item> getItems ()

{

return items;

public void setItems(Collection<Item> items)

{

this.items = items;

[97]

Object Relational Mapping with JPA

As we can see in the preceding code, in addition to being decorated with the @
ManyToMany annotation, the items field is also decorated with the @JoinTable
annotation. As its name suggests, this annotation lets the application server

know what table is used as a join table to create the many-to-many relationship
between the two entities. This annotation has three relevant elements: the name
element, which defines the name of the join table, and the joinColumns and
inverseJoinColumns elements, which define the columns that serve as foreign keys
in the join table pointing to the entities' primary keys. Values for the joinColumns
and inverseJoinColumns elements are yet another annotation, the @JoinColumn
annotation. This annotation has two relevant elements: the name element, which
defines the name of the column in the join table, and the referencedColumnName
element, which defines the name of the column in the entity table.

The 1tem entity is a simple entity mapping to the ITEMS table in the CUSTOMERDB
database, as shown in the following code:

package net.ensode.glassfishbook.entityrelationship.entity;
import java.util.Collection;

import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;

import javax.persistence.ManyToMany;
import javax.persistence.Table;

@Entity
@Table (name = "ITEMS")
public class Item

{

@Id
@Column (name = "ITEM ID")
private Long itemId;

@Column (name = "ITEM NUMBER")
private String itemNumber;

@Column (name = "ITEM SHORT_DESC")
private String itemShortDesc;

@Column (name = "ITEM LONG DESC")
private String itemLongDesc;

[98]

Chapter 3

@ManyToMany (mappedBy="items")
private Collection<Order> orders;

public Long getItemId()

{

return itemId;

public void setItemId(Long itemId)

{

this.itemId = itemId;

public String getItemLongDesc ()

{

return itemLongDesc;

public void setItemLongDesc (String itemLongDesc)

{

this.itemLongDesc = itemLongDesc;

public String getItemNumber ()

{

return itemNumber;

public void setItemNumber (String itemNumber)

{

this.itemNumber = itemNumber;

public String getItemShortDesc ()

{

return itemShortDesc;

public void setItemShortDesc (String itemShortDesc)

{

this.itemShortDesc = itemShortDesc;

[99]

Object Relational Mapping with JPA

public Collection<Order> getOrders|()

{

return orders;

public void setOrders(Collection<Order> orders)

{

this.orders = orders;

}

Just like one-to-one and one-to-many relationships, many-to-many relationships
can be unidirectional or bidirectional. Since we would like the many-to-many
relationship between the order and Item entities to be bidirectional, we added

a Collection<Orders field and decorated it with the @ManyToMany annotation.
Since the corresponding field in the order entity already has the join table defined,
it is not necessary to do it again here. The entity containing the @JoinTable
annotation is said to own the relationship. In a many-to-many relationship, either
entity can own the relationship. In our example, the Order entity owns it, since its
Collection<Items field is decorated with the @JoinTable annotation.

Just as with the one-to-one and one-to-many relationships, the @ManyToMany
annotation in the non-owning side of a bidirectional many-to-many relationship
must contain a mappedBy element indicating what field in the owning entity defines
the relationship.

Now that we have seen the changes necessary to establish a bidirectional many-to-
many relationship between the order and Item entities, we can see the relationship
in action in the following example:

package net.ensode.glassfishbook.entityrelationship.namedbean;

import java.util.ArrayList;

import java.util.Collection;

import javax.annotation.Resource;

import javax.enterprise.context.RequestScoped;
import javax.inject.Named;

import javax.persistence.EntityManager;

import javax.persistence.PersistenceContext;
import javax.transaction.HeuristicMixedException;
import javax.transaction.HeuristicRollbackException;
import javax.transaction.NotSupportedException;
import javax.transaction.RollbackException;
import javax.transaction.SystemException;

[100]

Chapter 3

import javax.transaction.UserTransaction;
import net.ensode.glassfishbook.entityrelationship.entity.Item;
import net.ensode.glassfishbook.entityrelationship.entity.Order;

@Named
@RequestScoped
public class ManyToManyRelationshipDemoBean {

@PersistenceContext
private EntityManager entityManager;

@Resource
private UserTransaction userTransaction;

public String updateDatabase() {
String retVal = "confirmation";

Order order;

Collection<Item> items = new ArrayList<Items> () ;
Item iteml = new Item();

Item item2 = new Item();

iteml.setItemId(1L) ;

iteml.setItemNumber ("BCD1234™") ;

iteml.setItemShortDesc ("Notebook Computer") ;
iteml.setItemLongDesc ("64 bit Quad core CPU, 4GB memory") ;

item2.setItemId (2L) ;
item2.setItemNumber ("CDF2345") ;
item2.setItemShortDesc ("Cordless Mouse") ;
item2.setItemLongDesc ("Three button, infrared, "

+ "vertical and horizontal scrollwheels") ;

items.add (iteml) ;
items.add (item2) ;

try {
userTransaction.begin() ;

entityManager.persist(iteml) ;
entityManager.persist(item2) ;

order = entityManager.find(Order.class, 1lL);
order.setItems (items) ;

[101]

Object Relational Mapping with JPA

entityManager.persist (order) ;
userTransaction.commit () ;

} catch (NotSupportedException |
SystemException |
SecurityException |
IllegalStateException |
RollbackException |
HeuristicMixedException |
HeuristicRollbackException e)

retVal = "error";
e.printStackTrace() ;

return retVal;

}

The preceding code creates two instances of the Item entity and populates them
with some data. It then adds these two instances to a collection. A transaction is

then started. The two Item instances are persisted to the database. Then, an instance
of the order entity is retrieved from the database. The setItems () method of the
order entity instance is then invoked, passing the collection containing the two Item
instances as a parameter. The Customer instance is then persisted into the database.
At this point, two rows are created behind the scenes in the ORDER_ITEMS table,
which is the join table between the ORDERS and ITEMS tables.

Composite primary keys

Most tables in the cuUSTOMERDB database have a column that exists for the sole
purpose of serving as a primary key (this type of primary key is sometimes referred
to as a surrogate primary key or as an artificial primary key). However, some
databases are not designed this way; instead, a column in the database that is known
to be unique across rows is used as the primary key. If there is no column whose
value is not guaranteed to be unique across rows, then a combination of two or more
columns is used as the table's primary key. It is possible to map this kind of primary
key to JPA entities using a primary key class.

[102]

Chapter 3

There is one table in the cUSTOMERDB database that does not have a surrogate
primary key; this table is the ORDER _ITEMS table. This table serves as a join table
between the ORDERS table and the 1TEMS table. In addition to having foreign keys for
these two tables, the ORDER_ITEMS table has an additional column called ITEM QTY
that stores the quantity of each item in an order. Since this table does not have a
surrogate primary key, the JPA entity mapping to it must have a custom primary key
class. In this table, the combination of the ORDER_ID and ITEM ID columns must be
unique. Therefore, this is a good combination for a composite primary key, as shown
in the following code example:

package net.ensode.glassfishbook.compositeprimarykeys.entity;

import java.io.Serializable;

public class OrderItemPK implements Serializable

{
public
public

public

{
}

public

Long orderId;
Long itemId;

OrderItemPK ()

OrderItemPK (Long orderId, Long itemId)

this.orderId = orderId;
this.itemId = itemId;
@Override

public boolean equals (Object obj)

{

boolean returnval = false;

if (obj == null)

{

returnval = false;

}

else

{

if (!obj.getClass() .equals(this.getClass()))

returnval = false;

}

else

{

[103]

Object Relational Mapping with JPA

OrderItemPK other = (OrderItemPK) obj;
if (this == other)
{
returnvVal = true;
1
else if (orderId != null && other.orderId != null

&& this.orderId.equals (other.orderId))

if (itemId != null && other.itemId != null
&& itemId.equals (other.itemId))

returnvVal = true;

}

else

{

returnval = false;

return returnvVal;

@Override
public int hashCode ()

{

if (orderId == null || itemId == null)

{

return O0;

}

else

{

A

return orderId.hashCode () itemId.hashCode () ;

}
A custom primary key class must satisfy the following requirements:

¢ The class must be public
* It must implement java.io.Serializable

* It must have a public constructor that takes no arguments

[104]

Chapter 3

Its fields must be public or protected

Its field names and types must match those of the entity

It must override the default hashCode () and equals () methods defined in

the java.lang.Object class

The orderItempk class in the preceding code meets all of these requirements. It
also has a convenient constructor that takes two Long objects meant to initialize its
orderid and itemId fields. This constructor was added for convenience and is not

a requirement for the class to be used as a primary key class.

When an entity uses a custom primary key class, it must be decorated with the

@IdClass annotation. Since the OrderItem class uses OrderItemPK as its custom
primary key class, it must be decorated with the said annotation, as shown in the
following code example:

package net.ensode.glassfishbook.compositeprimarykeys.entity;

import javax.persistence.Column;

import javax.persistence.Entity;

import javax.persistence.Id;

import javax.persistence.IdClass;

import javax.persistence.Table;

@Entity

@Table (name = "ORDER_ITEMS")
@IdClass (value = OrderItemPK.class)
public class OrderItem

{

@Id
@Column (name = "ORDER_ID")
private Long orderId;

@Id
@Column (name = "ITEM ID")
private Long itemId;

@Column (name = "ITEM_QTY")
private Long itemQty;

public Long getItemId ()

{

return itemId;

[105]

Object Relational Mapping with JPA

public void setItemId(Long itemId)

{

this.itemId = itemId;

public Long getItemQty ()

{

return itemQty;

public void setItemQty(Long itemQty)

{

this.itemQty = itemQty;

public Long getOrderId()

{

return orderId;

public void setOrderId(Long orderId)

{

this.orderId = orderId;

}

There are two differences between this entity and entities we have seen previously.
The first difference is that this entity is decorated with the @rdclass annotation,
indicating the primary key class corresponding to it. The second difference is that
this entity has more than one field decorated with the @rd annotation. Since this
entity has a composite primary key, each field that is part of the primary key must
be decorated with this annotation.

Obtaining a reference of an entity with a composite primary key is not very different
from obtaining a reference to an entity with a primary key consisting of a single field.
The following example demonstrates how to do this:

package net.ensode.glassfishbook.compositeprimarykeys.namedbean;

import
import
import
import
import

javax.enterprise.context.RequestScoped;

javax.inject .Named;

javax.persistence.EntityManager;
javax.persistence.PersistenceContext;
net.ensode.glassfishbook.compositeprimarykeys.entity.OrderItem;

[106]

Chapter 3

import net.ensode.glassfishbook.compositeprimarykeys.entity.
OrderItemPK;

@Named
@RequestScoped
public class CompositePrimaryKeyDemoBean

@PersistenceContext
private EntityManager entityManager;

private OrderItem orderItem;

public String findOrderItem()
String retVal = "confirmation";

try {
orderItem = entityManager.find(OrderItem.class, new

OrderItemPK (1L, 2L));
} catch (Exception e) {
retVal = "error";
e.printStackTrace () ;

return retVval;

public OrderItem getOrderItem()
return orderItem;

public void setOrderItem(OrderItem orderItem) {
this.orderItem = orderItem;

}

As can be seen in this example, the only difference between locating an entity with a
composite primary key and an entity with a primary key consisting of a single field
is that an instance of the custom primary key class must be passed as the second
argument of the EntityManager.find () method; fields for this instance must be
populated with the appropriate values for each field that is part of the primary key.

[107]

Object Relational Mapping with JPA

Introducing the Java Persistence Query
Language

All of our examples that obtain entities from the database so far have conveniently
assumed that the primary key for the entity is known ahead of time. We all know
that, frequently, this is not the case. Whenever we need to search for an entity by a
field other than the entity's primary key, we must use the Java Persistence Query

Language (JPQL).

JPQL is a SQL-like language used for retrieving, updating, and deleting entities in a
database. The following example illustrates how to use JPQL to retrieve a subset of
states from the US_STATES table in the CUSTOMERDB database:

package net.ensode.glassfishbook.jpgl.namedbean;

import java.util.List;

import javax.enterprise.context.RequestScoped;
import javax.inject.Named;

import javax.persistence.EntityManager;

import javax.persistence.PersistenceContext;

import javax.persistence.Query;

import net.ensode.glassfishbook.jpgl.entity.UsState;

@Named
@RequestScoped
public class SelectQueryDemoBean

@PersistenceContext
private EntityManager entityManager;

private List<UsState> matchingStatesList;

public String findStates() {
String retVal = "confirmation";

try {
Query query = entityManager
.createQuery (
"SELECT s FROM UsState s WHERE s.usStateNm "
+ "LIKE :name");
query.setParameter ("name", "New%");
matchingStatesList = query.getResultList();
} catch (Exception e) {
retvVal = "error";

[108]

Chapter 3

e.printStackTrace () ;

}

return retVal;

public List<UsState> getMatchingStatesList() {
return matchingStatesList;

}

public void setMatchingStatesList (List<UsState>
matchingStatesList)

this.matchingStatesList = matchingStatesList;

}
}

The preceding code invokes the EntityManager.createQuery () method, passing
a string containing a JPQL query as a parameter. This method returns an instance of
javax.persistence.Query. The query retrieves all UsState entities whose names
start with the string "New".

As can be seen in the preceding code, JPQL is similar to SQL. However there are
some differences that may confuse readers with SQL knowledge. The equivalent
SQL code for the query in the code will be:

SELECT * from US_STATES s where s.US_STATE NM like 'New%'

The first difference between JPQL and SQL is that in JPQL, we always use entity
names, whereas in SQL table names are used. The s after the entity name in the JPQL
query is an alias for the entity. Table aliases are optional in SQL, but entity aliases are
required in JPQL. Keeping these differences in mind, the JPQL query should now be
a lot less confusing.

The :name parameter in the query is a named parameter; named parameters

are meant to be substituted with actual values. This is done by invoking the
setParameter () method in the instance of javax.persistence.Query returned
by the call to EntityManager.createQuery (). A JPQL query can have multiple
named parameters.

To actually run the query and retrieve the entities from the database, the
getResultList () method must be invoked in the instance of javax.persistence.
Query obtained from EntityManager.createQuery (). This method returns an
instance of a class implementing the java.util.List interface. This list contains the
entities matching the query criteria. If no entities match the criteria, then an empty
list is returned.

[109]

Object Relational Mapping with JPA

If we are certain that the query will return exactly one entity, then the
getSingleResult () method may be alternatively called on Query; this method
returns an object that must be cast to the appropriate entity.

Our example uses the LIKE operator to find entities whose names start with the
string "New". This is accomplished by substituting the query's named parameter
with the value "New%". The percent sign at the end of the parameter value means
that any number of characters after the word "New" will match the expression. The
percent sign can be used anywhere in the parameter value; for example, a value of
"$Dakota" would match any entities whose name end in "Dakota" and a value of
"A%sa" would match any states whose name start with an uppercase "A" and end
with a lowercase "a". There can be more than one percent sign in a parameter value.
The underscore sign (_) can be used to match a single character; all the rules for the
percent sign apply to the underscore as well.

In addition to the LIKE operator, there are other operators that can be used to
retrieve entities from the database, as follows:

* The = operator will retrieve entities whose field to the left of the operator
exactly match the value to the right of the operator

* The > operator will retrieve entities whose field to the left of the operator is
greater than the value to the right of the operator

* The < operator will retrieve entities whose field to the left of the operator is
less than the value to the right of the operator

e The >= operator will retrieve entities whose field to the left of the operator is
greater than, or equal to, the value to the right of the operator

* The <= operator will retrieve entities whose field to the left of the operator is
less than, or equal to, the value to the right of the operator

All of the preceding operators work the same way as the equivalent operators in
SQL. Just as in SQL, the preceding operators can be combined with the AND and or
operators. Conditions combined with the AND operator match if both conditions
are true, and conditions combined with the Or operator match if at least one of the
conditions are true.

If we intend to use a query many times, it can be stored in a named query. Named
queries can be defined by decorating the relevant entity class with the @eNamedQuery
annotation. This annotation has two elements, a name element used to set the

name of the query and a query element that defines the query itself. To execute a
named query, the createNamedQuery () method must be invoked in an instance of
EntityManager. This method takes a string of type string containing the query
name as its sole parameter and returns an instance of javax.persistence.Query.

[110]

Chapter 3

In addition to retrieving entities, JPQL can be used to modify or delete entities.
However, entity modification and deletion can be done programmatically via the
EntityManager interface too; doing so results in code that tends to be more readable
than when using JPQL. Because of this, we will not cover entity modification and
deletion via JPQL. Readers interested in writing JPQL queries to modify and delete
entities, as well as readers wishing to know more about JPQL are encouraged to
review the Java Persistence 2.1 specification. This specification can be downloaded
from http://jcp.org/en/jsr/detail?id=338.

Introducing the Criteria API

One of the main additions to JPA in Version 2.0 was the introduction of the Criteria
API. The Criteria API is meant as a complement to the JPQL.

Although JPQL is very flexible, it has some problems that make working with it
more difficult than necessary. For starters, JPQL queries are stored as strings, and the
compiler has no way of validating JPQL syntax. Additionally, JPQL is not type safe;
we could write a JPQL query in which our where clause could have a string value for
a numeric property and our code would compile and deploy just fine.

To get around the JPQL limitations described in the previous paragraph, the Criteria
API was introduced in JPA in Version 2.0 of the specification. The Criteria API allows
us to write JPA queries programmatically, without having to rely on JPQL.

The following code example illustrates how to use the Criteria API in our Java
EE applications:

package net.ensode.glassfishbook.criteriaapi.namedbean;

import java.util.List;

import javax.enterprise.context.RequestScoped;

import javax.inject.Named;

import javax.persistence.EntityManager;

import javax.persistence.PersistenceContext;

import javax.persistence.TypedQuery;

import javax.persistence.criteria.CriteriaBuilder;
import javax.persistence.criteria.CriteriaQuery;
import javax.persistence.criteria.Path;

import javax.persistence.criteria.Predicate;

import javax.persistence.criteria.Root;

import javax.persistence.metamodel.EntityType;

import javax.persistence.metamodel.Metamodel;

import javax.persistence.metamodel.SingularAttribute;
import net.ensode.glassfishbook.criteriaapi.entity.UsState;

[111]

Object Relational Mapping with JPA

@Named
@RequestScoped
public class CriteriaApiDemoBean

@PersistenceContext
private EntityManager entityManager;

private List<UsState> matchingStatesList;

public String findStates() {
String retVal = "confirmation";
try {
CriteriaBuilder criteriaBuilder =
entityManager.getCriteriaBuilder();

CriteriaQuery<UsState> criteriaQuery =
criteriaBuilder.

createQuery (UsState.class);

Root<UsState> root =
criteriaQuery.from(UsState.class);

Metamodel metamodel = entityManager.getMetamodel () ;
EntityType<UsState> usStateEntityType =
metamodel.entity (
UsState.class);
SingularAttribute<UsState, String> usStateAttribute

usStateEntityType.getDeclaredSingularAttribute (
"usStateNm",
String.class);
Path<String> path = root.get(usStateAttribute);
Predicate predicate = criteriaBuilder.like(
path, "New%");
criteriaQuery = criteriaQuery.where(predicate);

TypedQuery typedQuery = entityManager.createQuery (
criteriaQuery)

~

matchingStatesList = typedQuery.getResultList();

catch (Exception e)
P
retVal = "error";
e.printStackTrace() ;

[112]

Chapter 3

return retVal;

public List<UsState> getMatchingStatesList() {
return matchingStatesList;

}

public void setMatchingStatesList (List<UsState>
matchingStatesList)
this.matchingStatesList = matchingStatesList;

}

This example is equivalent to the JPQL example we saw earlier in this chapter. This
example, however, takes advantage of the Criteria API instead of relying on JPQL.

When writing code using the Criteria API, the first thing we need to do is
obtain an instance of a class implementing the javax.persistence.criteria.
CriteriaBuilder interface. As we can see in our example, we need to obtain
the said instance by invoking the getCriteriaBuilder () method on our
EntityManager instance.

From our CriteriaBuilder implementation, we need to obtain an instance of a
class implementing the javax.persistence.criteria.CriteriaQuery interface.
We do this by invoking the createQuery () method in our CriteriaBuilder
implementation. Note that CriteriaQuery is generically typed. The generic type
argument dictates the type of result that our criteriaQuery implementation will
return upon execution. By taking advantage of generics in this way, the Criteria API
allows us to write type-safe code.

Once we have obtained a CriteriaQuery implementation, from it we can obtain an
instance of a class implementing the javax.persistence.criteria.Root interface.
The rRoot implementation dictates what JPA Entity we will be querying from. It is
analogous to the FrROM query in JPQL (and SQL).

The next two lines in our example take advantage of another new addition to

the JPA specification, the Metamodel API. In order to take advantage of the
Metamodel API, we need to obtain an implementation of the javax.persistence.
metamodel .Metamodel interface by invoking the getMetamodel () method on our
EntityManager instance.

[113]

Object Relational Mapping with JPA

From our Metamodel implementation, we can obtain a generically typed instance
of the javax.persistence.metamodel .EntityType interface. The generic type
argument indicates the JPA entity our EntityType implementation corresponds

to. The EntityType interface implementation allows us to browse the persistent
attributes of our JPA entities at runtime, which is exactly what we do in the next
line in our example. In our case, we are getting an instance of SingularAttribute,
which maps to a simple, singular attribute in our JPA entity. The EntityType
interface implementation has methods to obtain attributes that map to collections,
sets, lists, and maps. Obtaining these types of attributes is very similar to obtaining
SingularAttribute; therefore, we won't be covering those in depth. Please refer to
the Java EE 7 API documentation at http://docs.oracle.com/javaee/7/api/ for
more information.

As we can see in our example, singularAttribute contains two generic type
arguments. The first argument dictates the JPA entity we are working with, and the
second one indicates the type of the attribute. We obtain our singularaAttribute
implementation by invoking the getDeclaredSsingularAttribute () method on our
EntityType interface implementation and passing the attribute name (as declared in
our JPA entity) as a string.

Once we have obtained our singularAttribute implementation, we need to obtain
a javax.persistence.criteria.Pathimplementation by invoking the get ()
method in our Root instance and passing SingularAttribute as a parameter.

In our example, we will get a list of all the states in the United States whose names
start with the string "New". This, of course, is a job for the 1ike condition. We can do
this with the criteria API by invoking the 1ike () method on our CriteriaBuilder
implementation. The 1ike () method takes our Path implementation as its first
parameter and the value to search for as its second parameter.

The criteriaBuilder interface implementation has a number of methods that are
analogous to SQL and JPQL clauses such as equals (), greaterThan (), lessThan (),
and (), or (), and so on and so forth (for the complete list, refer to the Java EE 7
documentation at http://docs.oracle.com/javaee/7/api/). These methods can
be combined to create complex queries via the Criteria APL

The 1ike () method in CriteriaBuilder returns an implementation of the javax.
persistence.criteria.Predicate interface, which we need to pass to the where ()
method in our CriteriaQuery implementation. This method returns a new instance
of CriteriaBuilder, which we assign to our CriteriaBuilder variable.

[114]

Chapter 3

At this point, we are ready to build our query. When working with the Criteria API,
we deal with the javax.persistence.TypedQuery interface, which can be thought
of as a type-safe version of the Query interface we use with JPQL. We obtain an
instance of TypedQuery by invoking the createQuery () method in EntityManager
and passing our CriteriaQuery implementation as a parameter.

To obtain our query results as a list, we simply invoke getResultList () on our
TypedQuery implementation. It is worth reiterating that the Criteria API is type safe;
therefore, attempting to assign the results of getResultList () to a list of the wrong
type would result in a compilation error.

Updating data with the Criteria API

When the JPA Criteria API was initially added to JPA 2.0, it only supported selecting
data from the database. Modifying existing data was not supported.

JPA 2.1, introduced in Java EE 7, adds support for updating database data via the
CriteriaUpdate interface; the following example illustrates how to use it:

package net.ensode.glassfishbook.criteriaupdate.namedbean;
//imports omitted for brevity

@Named

@RequestScoped

public class CriteriaUpdateDemoBean {

@PersistenceContext
private EntityManager entityManager;

@Resource
private UserTransaction userTransaction;

private int updatedRows;

public String updateData()
String retvVal = "confirmation";

try {

userTransaction.begin() ;
insertTempData () ;

CriteriaBuilder criteriaBuilder =
entityManager.getCriteriaBuilder () ;

[115]

Object Relational Mapping with JPA

CriteriaUpdate<Address> criteriaUpdate =
criteriaBuilder.createCriteriaUpdate (Address.class);

Root<Address> root =
criteriaUpdate.from(Address.class);

criteriaUpdate.set("city", "New York"):;
criteriaUpdate.where(criteriaBuilder.equal (
root.get("city"), "New Yorc")):;

Query query =
entityManager.createQuery (criteriaUpdate) ;

updatedRows = query.executeUpdate();
userTransaction.commit () ;

} catch (Exception e) {
retVal = "error";
e.printStackTrace() ;

}

return retVal;

public int getUpdatedRows () {
return updatedRows;

public void setUpdatedRows (int updatedRows) {
this.updatedRows = updatedRows;

private void insertTempData () throws NotSupportedException,
SystemException, RollbackException,
HeuristicMixedException,
HeuristicRollbackException
//body omitted since it is not relevant to the discussion at
hand
//full source code available as part of this book's code
download

}

What this example is actually doing is finding all of the database rows with a city
"New Yorc" (a typo) and replacing the value with the correct spelling, "New York".

Just as in the previous example, we obtain an instance of a class implementing the
CriteriaBuilder interface by invoking the getCriteriaBuilder () method on our
EntityManager instance.

[116]

Chapter 3

We then obtain an instance of a class implementing CriteriaUpdate by invoking
createCriteriaUpdate () on our CriteriaBuilder instance.

The next step is to obtain an instance of a class implementing Root by invoking the
from() method on our CriteriaUpdate instance.

We then invoke the set () method on criteriaUpdate to specify the new values
our rows will have after they have been updated. The first parameter of the set ()
method must be a string matching the property name in the Entity class, and the
second parameter must be the new value.

At this point, we build the where clause by invoking the where () method on
CriteriaUpdate and passing the Predicate returned by the equal () method
invoked in CriteriaBuilder.

Then, we get a Query implementation by invoking createQuery () on
EntityManager and passing our CriteriaUpdate instance as a parameter.

Finally, we execute our query, as usual, by invoking executeUpdate () on our
Query implementation.

Deleting data with the Criteria API

In addition to adding support for data update via the Criteria API, JPA 2.1 added the
ability to bulk-delete database rows with the new criteriaDelete interface. The
following code snippet illustrates its usage:

package net.ensode.glassfishbook.criteriadelete.namedbean;
//imports omitted

@Named
@RequestScoped
public class CriteriaDeleteDemoBean {

@PersistenceContext
private EntityManager entityManager;

@Resource
private UserTransaction userTransaction;

private int deletedRows;

public String deleteData() {
String retVal = "confirmation";

[117]

Object Relational Mapping with JPA

try {

userTransaction.begin() ;

CriteriaBuilder criteriaBuilder =
entityManager.getCriteriaBuilder () ;
CriteriaDelete<Address> criteriaDelete =
criteriaBuilder.createCriteriaDelete (Address.class);
Root<Address> root =
criteriaDelete.from(Address.class);
criteriaDelete.where(criteriaBuilder.or (criteriaBuilder.
equal (
root.get("city"), "New York"),
criteriaBuilder.equal (root.get ("city"), "New
York")));

entityManager.createQuery (criteriaDelete) ;

Query query

deletedRows = query.executeUpdate () ;
userTransaction.commit () ;

} catch (Exception e) {
retVal = "error";
e.printStackTrace () ;

}

return retVval;

}

public int getDeletedRows () {
return deletedRows;

}

public void setDeletedRows (int updatedRows) {
this.deletedRows = updatedRows;

}

To use CriteriaDelete, we first obtain an instance of CriteriaBuilder as usual,
and then invoke the createCriteriaDelete () method on our CriteriaBuilder
instance to obtain an implementation of CriteriaDelete.

Once we have an instance of CriteriaDelete, we build the where clause as it is
usually done with the Criteria APL

Once we have built our where clause, we obtain an implementation of the Query
interface and invoke executeUpdate () on it as usual.

[118]

Chapter 3

Bean Validation support

Another feature introduced in JPA 2.0 is support for JSR 303, Bean Validation. Bean
Validation support allows us to annotate our JPA entities with Bean Validation
annotations. These annotations allow us to easily validate user input and perform
data sanitation.

Taking advantage of Bean Validation is very simple. All we need to do is annotate
our JPA Entity fields or getter methods with any of the validation annotations
defined in the javax.validation.constraints package. Once our fields are
annotated as needed, the EntityManager will prevent non-validated data from
being persisted.

The following code example is a modified version of the Customer JPA entity we
saw earlier in this chapter. It has been modified to take advantage of Bean Validation
in some of its fields.

net .ensode.glassfishbook.beanvalidation.entity;
import java.io.Serializable;

import javax.persistence.Column;

import javax.persistence.Entity;

import javax.persistence.Id;

import javax.persistence.Table;

import javax.validation.constraints.NotNull;
import javax.validation.constraints.Size;

@Entity
@Table (name = "CUSTOMERS")
public class Customer implements Serializable
{
@Id
@Column (name = "CUSTOMER_ ID")
private Long customerId;

@Column (name = "FIRST NAME")
@NotNull

@Size (min=2, max=20)

private String firstName;

@Column (name = "LAST NAME")
@NotNull

@Size (min=2, max=20)
private String lastName;

[119]

Object Relational Mapping with JPA

private String email;

public Long getCustomerId()

{

return customerId;

}

public void setCustomerId(Long customerId)

{

this.customerId = customerId;

}

public String getEmail ()

{

return email;

}

public void setEmail (String email)

{

this.email = email;

}

public String getFirstName ()

{

return firstName;

}

public void setFirstName (String firstName)

{

this.firstName = firstName;

}

public String getLastName ()

{

return lastName;

}

public void setLastName (String lastName)

{

this.lastName = lastName;

[120]

Chapter 3

In this example, we used the @NotNull annotation to prevent firstName and
lastName of our entity from being persisted with null values. We also used the
@Size annotation to restrict the minimum and maximum length of these fields.

That is all we need to do to take advantage of Bean Validation in JPA. If

our code attempts to persist or update an instance of our entity that does

not pass the declared validation, an exception of type javax.validation.
ConstraintViolationException will be thrown, and the entity will not be persisted.

As we can see, Bean Validation pretty much automates data validation, freeing us
from having to manually write validation code.

In addition to the two annotations discussed in the previous example, the javax.
validation.constraints package contains several additional annotations we can
use to automate validation on our JPA entities. Please refer to the Java EE 7 API
documentation at http://docs.oracle.com/javaee/7/api/ for the complete list.

Final notes

In the examples of this chapter, we showed how a database is accessed directly from
CDI named beans serving as controllers. We did this to get the point across without
bogging ourselves down with details. In general, accessing the database directly
from controllers is not a good practice. Database access code should be encapsulated
in Data Access Objects (DAOs).

For more information on the DAO design pattern, see http://www.
s oracle.com/technetwork/java/dao-138818.html.

Named beans typically assume the role of controllers and/or models when using
the Model-View-Controller (MVC) design pattern: a practice so common that it has
become the de facto standard for Java EE applications.

For more information about the MVC design pattern, see http://
s www.oracle.com/technetwork/java/mvc-140477 .html.

Additionally, we chose not to show any user interface code in our examples since
it is irrelevant to the topic at hand; however, the code downloads for this chapter
includes JSF pages that invoke the named beans in this chapter and display a
confirmation page once the named bean invocation finishes.

[121]

Object Relational Mapping with JPA

Summary

This chapter covered how to access data in a database via JPA.

We covered how to mark a Java class as a JPA entity by decorating it with the
@Entity annotation. Additionally, we covered how to map an entity to a database
table via the @Table annotation. We also covered how to map entity fields to
database columns via the @Column annotation, as well as how to declare an entity's
primary key via the @1d annotation.

Using the javax.persistence.EntityManager interface to find, persist, and update
JPA entities was also covered.

Defining both unidirectional and bidirectional one-to-one, one-to-many, and
many-to-many relationships between JPA entities was covered as well.

Additionally, we covered how to use JPA composite primary keys by developing
custom primary key classes.

We then went on to cover how to retrieve entities from a database by using the JPQL.

We discussed additional JPA features, such as the Criteria API, which allows us to
build JPA queries programmatically; the Metamodel API, which allows us to take
advantage of Java's type safety when working with JPA; and Bean Validation, which
allows us to easily validate input by simply annotating our JPA entity fields.

In the next chapter, we will cover Enterprise JavaBeans (E]Bs).

[122]

Enterprise JavaBeans

Enterprise JavaBeans are server side components that encapsulate business

logic of an application. Enterprise JavaBeans simplify application development
by automatically managing transaction management and security. There are two
types of Enterprise JavaBeans: Session beans, which execute business logic, and
message-driven beans, which act as a message listener.

Readers familiar with J2EE may notice that Entity Beans haven't been mentioned

in the previous paragraph. In Java EE 5, Entity Beans were deprecated in favor

of the Java Persistence API (JPA). Entity Beans are still supported for backwards
compatibility, however, the preferred way of performing Object-relational mapping
is through JPA.

The following topics will be covered in this chapter:

e Session beans

[e]

A simple session bean

o

A more realistic example

[e]

Using a session bean to implement the DAO design pattern

Singleton session beans

* Message-driven beans

* Transactions in Enterprise JavaBeans

[e]

Container-managed transactions
° Bean-managed transactions
* Enterprise JavaBeans life cycles

o

A stateful session bean life cycle

[e]

A stateless session bean life cycle

Enterprise JavaBeans

[e]

Message-driven bean life cycle
° The EJB Timer Service
° EJB Security

Introduction to session beans

As we've previously mentioned, session beans typically encapsulate business logic.
In Java EE, only one or two artifacts need to be created in order to create a session
bean, namely, the bean itself and an optional business interface. These artifacts need
to be decorated with the proper annotations to let the EJB container know they are
session beans.

J2EE required application developers to create several artifacts in
_order to create a session bean. These artifacts included the bean
itself, a local or remote interface (or both), a local home or a remote
. home interface (or both), and an XML deployment descriptor. As we
shall see in this chapter, EJB development was greatly simplified in
Java EE.

Developing a simple session bean

The following example illustrates a very simple session bean:

package net.ensode.glassfishbook;
import javax.ejb.Stateless;

@Stateless
public class SimpleSessionBean implements SimpleSession

{

private String message =
"If you don't see this, it didn't work!";

public String getMessage ()

{

return message;

}

[124]

Chapter 4

The @stateless annotation lets the EJB container know that this class is a stateless
session bean. There are three types of session beans: stateless, stateful, and singleton.
Before we explain the difference between these types of session beans, we need to
clarify how an instance of an EJB is provided to an EJB client application.

When a stateless or stateful session bean is deployed, the EJB container creates a
series of instances of each session bean. This is what is typically referred to as an
EJB pool. When an EJB client application obtains an instance of EJB, the application
server (GlassFish, in our case) provides one of the instances in the pool to the
client application.

The difference between stateful and stateless session beans is that stateful session
beans maintain a conversational state with the client, whereas stateless session beans
do not. In simple terms, what this means is that when an E]B client application
obtains an instance of a stateful session bean, we are guaranteed that the values of
any instance variables in the bean will be consistent across method calls. It is safe to
modify any instance variables on a stateful session bean, since they will retain their
values for the next method call. The EJB container saves the conversational state by
passivating stateful session beans, and retrieves that state when the bean is activated.
Conversational state is the reason why the life cycle of stateful session beans is a bit
more complex than that of stateless session beans and message driven beans (E]B life
cycle is discussed later in this chapter).

The EJB container may provide any instance of E]B from the pool when an EJB
client application requests an instance of a stateless session bean. Since we are not
guaranteed the same instance for every method call, values set to any instance
variables in a stateless session bean may be "lost" (they are not really lost; the
modification is in another instance of the E]B in the pool).

Other than being decorated with the @stateless annotation, there is nothing
special about the previous class. Notice that it implements an interface called
SimpleSession. This interface is the bean's business interface. The SimpleSession
interface is shown in the following code:

package net.ensode.glassfishbook;
import javax.ejb.Remote;

@Remote
public interface SimpleSession

{

public String getMessage() ;

}

[125]

Enterprise JavaBeans

The only peculiar thing about this interface is that it is decorated with the @Remote
annotation. This annotation indicates that this is a remote business interface. What
this means is that the interface may be in a different JVM than the client application
invoking it. Remote business interfaces may even be invoked across the network.

Business interfaces may also be decorated with the @eLocal interface. This annotation
indicates that the business interface is a local business interface. Local business
interface implementations must be in the same JVM as the client application
invoking its methods.

Since remote business interfaces can be invoked either from the same JVM or a
different one than the client application, at first glance, we might be tempted to make
all of our business interfaces remote. Before doing so, we must remind ourselves

of the fact that the flexibility provided by remote business interfaces comes with

a performance penalty, since method invocations are made under the assumption
that they will be made across the network. As a matter of fact, most typical Java EE
applications consist of web applications acting as client applications for EJBs; in such
cases, the client application and the EJB are running on the same JVM, therefore local
interfaces are used a lot more frequently than remote business interfaces.

Once we have compiled the session bean and its corresponding business interface,
we need to place them in a JAR file and deploy them. Just like with WAR files, the
easiest way to deploy an EJB JAR file is by copying it to [glassfish installation
directory] /glassfish/domains/domainl/autodeploy.

Now that we have seen the session bean and its corresponding business interface,
let's take a look at a client sample application:

package net.ensode.glassfishbook;
import javax.ejb.EJB;

public class SessionBeanClient

{

@EJB
private static SimpleSession simpleSession;

private void invokeSessionBeanMethods ()

{

System.out.println(simpleSession.getMessage()) ;

System.out.println("\nSimpleSession is of type: "
+ simpleSession.getClass () .getName()) ;

[126]

Chapter 4

public static void main(String[] args)

{

new SessionBeanClient () .invokeSessionBeanMethods () ;

}
}

The previous code simply declares an instance variable of the type net.ensode.
SimpleSession, which is the business interface for our session bean. The instance
variable is decorated with the @EJB annotation. The @EJB annotation lets the EJB
container know that this variable is a business interface for a session bean. The EJB
container then injects an implementation of the business interface for the client code
to use.

Since our client is a standalone application (as opposed to being a Java EE artifact,
such as a WAR file or another EJB JAR file), in order for it to be able to access the
code deployed in the server, it must be placed in a JAR file and executed through
the appclient utility. The appclient utility is a GlassFish-specific tool that allows
standalone Java applications to access resources deployed to the application server.
This utility can be found at [glassfish installation directory]/glassfish/
bin/. Assuming that this directory is in the PATH environment variable and that
we've placed our client code in a JAR file called simplesessionbeanclient.jar,
we will execute the previous client code by typing the following command in the
command line:

appclient -client simplesessionbeanclient.jar

Executing the previous command results in the following console output:

If you don't see this, it didn't work!

SimpleSession is of type: net.ensode.glassfishbook. SimpleSession Wrapper
That is the output of the SessionBeanClient class.

We are using Maven to build our code. For this example, we used
the Maven Assembly plugin (http://maven.apache.org/
* plugins/maven-assembly-plugin/) to build a client JAR file
% that includes all dependencies; this frees us from having to specify
"~ all the dependent JAR files in the -classpath command-line option
of the appclient utility. To build this JAR file, simply invoke mvn
assembly:assembly from the command line.

[127]

Enterprise JavaBeans

The first line of the output is simply the return value of the getMessage () method
we implemented in the session bean. The second line of output displays the fully
qualified class name of the class implementing the business interface. Notice that the
class name is not the fully qualified name of the session bean we wrote; instead, what
is actually provided is an implementation of the business interface created behind
the scenes by the EJB container.

A more realistic example

In the previous section, we saw a very simple, "Hello world" type of example. In this
section, we will show a more realistic example. Session beans are frequently used as
Data Access Objects (DAOs). Sometimes, they are used as wrappers for JDBC calls
and other times, they are used to wrap calls to obtain or modify JPA entities. In this
section, we will take the latter approach.

The following example illustrates how to implement the DAO design pattern in a
session bean. Before looking at the bean implementation, let's look at the business
interface it corresponds to:

package net.ensode.glassfishbook;
import javax.ejb.Remote;

@Remote
public interface CustomerDao

{

public void saveCustomer (Customer customer) ;
public Customer getCustomer (Long customerId) ;

public void deleteCustomer (Customer customer) ;

}

As we can see, the previous code is a remote interface implementing three

methods: the saveCustomer () method saves customer data to the database, the
getCustomer () method obtains data for a customer from the database, and the
deleteCustomer () method deletes customer data from the database. Two of these
methods take an instance of the Customer entity we developed in Chapter 3, Object
Relational Mapping with JPA, as their parameters. The third method, getCustomer (),
takes a Long value representing the ID of the Customer object we wish to retrieve
from the database.

[128]

Chapter 4

Let's now take a look at the session bean implementing the previous business
interface. As we are about to see in the following code, there are some differences
between the way the JPA code is implemented in a session bean and the way it is
implemented in a plain old Java object:

package net.ensode.glassfishbook;

import javax.ejb.Stateful;
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;

@Stateful
public class CustomerDaoBean implements CustomerDao

@PersistenceContext
private EntityManager entityManager;

public void saveCustomer (Customer customer) {
if (customer.getCustomerId() == null) {
saveNewCustomer (customer) ;
} else {
updateCustomer (customer) ;

}

private void saveNewCustomer (Customer customer) {
entityManager.persist (customer) ;

}

private void updateCustomer (Customer customer)
entityManager.merge (customer) ;

}

public Customer getCustomer (Long customerId)
Customer customer;

customer = entityManager.find(Customer.class, customerId);

return customer;

}

public void deleteCustomer (Customer customer) {
entityManager.remove (customer) ;

[129]

Enterprise JavaBeans

The main difference between our session bean and previous JPA examples is

that JPA calls were wrapped between calls to UserTransaction.begin() and
UserTransaction.commit (). The reason we had to do this is because JPA calls are
required to be wrapped in a transaction; if they are not wrapped in a transaction, most
JPA calls will throw TransactionRequiredException. In this case we don't have to
explicitly wrap JPA calls in a transaction as in previous examples, since session bean
methods are implicitly transactional; there is nothing we need to do to make them that
way. This default behavior is what is known as Container-Managed Transactions.
Container-managed transactions are discussed in detail later in this chapter.

As mentioned in Chapter 3, Object Relational Mapping with JPA,

. when a JPA entity is retrieved from one transaction and updated
to a different transaction, the EntityManager.merge () method
=" needs to be invoked to update the data in the database. Invoking
EntityManager.persist () in this case will result in a Cannot

persist detached object exception.

Invoking session beans from web
applications

Frequently, Java EE applications consist of web applications acting as clients for
EJBs. Before Java EE 6, the most common way of deploying a Java EE application
that consists of both a web application and one or more session beans was by
packaging both the WAR file for the web application and the EJB JAR files into
an EAR (Enterprise Archive) file.

Java EE 6 simplified the packaging and deployment of applications consisting of
both EJB's and web components.

In this section, we will develop a JSF application with a CDI named bean acting
as a client to the DAO session bean we just discussed in the previous section.

In order to make this application act as an E]JB client, we will develop a
CustomerController named bean so that it delegates the logic to save a new
customer to the database to the CustomerDaoBean session bean we developed in the
previous section. We will develop a CustomerController named bean, as shown in
the following code:

package net.ensode.glassfishbook.jsfjpa;

//imports omitted for brevity

[130]

Chapter 4

@Named
@RequestScoped
public class CustomerController implements Serializable

@EJB
private CustomerDaoBean customerDaoBean;

private Customer customer;
private String firstName;
private String lastName;

private String email;

public CustomerController()
customer = new Customer () ;

public String saveCustomer ()
String returnValue = "customer saved";
try {
populateCustomer () ;

customerDaoBean.saveCustomer (customer) ;
} catch (Exception e) {

e.printStackTrace() ;

returnValue = "error saving customer";

return returnValue;

private void populateCustomer () {
if (customer == null) {
customer = new Customer () ;
}
customer.setFirstName (getFirstName ()) ;
customer.setLastName (getLastName ()) ;
customer.setEmail (getEmail ()) ;

//setters and getters omitted for brevity

[131]

Enterprise JavaBeans

As we can see, all we had to do was declare an instance of the CustomerDaoBean
session bean and decorate it with the @EJB annotation so that an instance of the
corresponding EJB is injected, and then invoke the E]JB saveCustomer () method.

Notice that we injected an instance of the session bean directly into our client code.
The reason we can do this is because of a feature introduced in Java EE 6. When
using Java EE 6 or newer, we can do away with local interfaces and use session
bean instances directly in our client code.

Now that we have modified our web application to be a client for our session bean,
we need to package it in a WAR (web archive) file and deploy it in order to use it.

Introduction to singleton session beans

A new type of session bean that was introduced in Java EE 6 is the singleton session
bean. A single instance of each singleton session bean exists per application.

Singleton session beans are useful to cache database data. Caching frequently used
data in a singleton session bean increases performance, since it greatly minimizes
trips to the database. The common pattern is to have a method in our bean decorated
with the @PostConstruct annotation; in this method, we retrieve the data we want
to cache. Then we provide a setter method for the bean's clients to call. The following
example illustrates this technique:

package net.ensode.glassfishbook.singletonsession;

import java.util.List;

import javax.annotation.PostConstruct;

import javax.ejb.Singleton;

import javax.persistence.EntityManager;

import javax.persistence.PersistenceContext;
import javax.persistence.Query;

import net.ensode.glassfishbook.entity.UsStates;

@Singleton
public class SingletonSessionBean implements
SingletonSessionBeanRemote {

@PersistenceContext
private EntityManager entityManager;
private List<UsStates> statelList;

@PostConstruct
public void init () {

[132]

Chapter 4

Query query = entityManager.createQuery (
"Select us from UsStates us") ;
statelList = query.getResultList () ;

@Override
public List<UsStates> getStatelList() {
return statelList;

}

Since our bean is a singleton, all of its clients would access the same instance,
avoiding multiple queries to the database. Additionally, since it is a singleton, it is
safe to specify an instance variable, as all clients access the same instance of the bean.

Asynchronous method calls

Sometimes it is useful to do some processing asynchronously, that is, invoke a
method call and return control to the client immediately, without making the
client wait for the method to finish.

In earlier versions of Java EE, the only way to invoke EJB methods asynchronously
was using message-driven beans (which is discussed in the next section). Although
message-driven beans are fairly easy to write, they do require some configuration
before they can be used, such as setting up JMS message queues or topics.

EJB 3.1 introduced the @asynchronous annotation, which can be used to mark
a method in a session bean as asynchronous. When an EJB client invokes an
asynchronous method, control immediately goes back to the client, without
waiting for the method to finish.

Asynchronous methods can only return void or an implementation of the java.
util.concurrent.Future interface. The Future interface was introduced in Java 5
and represents the result of an asynchronous computation. The following example
illustrates both scenarios:

package net.ensode.glassfishbook.asynchronousmethods;

import java.util.concurrent.Future;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.ejb.AsyncResult;
import javax.ejb.Asynchronous;
import javax.ejb.Stateless;

[133]

Enterprise JavaBeans

@Stateless
public class AsynchronousSessionBean implements
AsynchronousSessionBeanRemote {

private static Logger logger = Logger.getLogger (
AsynchronousSessionBean.class.getName ()) ;

@Asynchronous
@Override
public void slowMethod() {
long startTime = System.currentTimeMillis () ;

logger.info("entering " + this.getClass () .getCanonicalName ()
+ ".slowMethod () ") ;

try {
Thread.sleep(10000); //simulate processing for 10 seconds

} catch (InterruptedException ex) {
Logger .getLogger (AsynchronousSessionBean.class.getName ()) .
log(Level.SEVERE, null, ex);

}

logger.info("leaving " + this.getClass () .getCanonicalName ()
+ ".slowMethod () ") ;

long endTime = System.currentTimeMillis() ;

logger.info("execution took " + (endTime - startTime)

+ " milliseconds") ;

@Asynchronous
@Override
public Future<Long> slowMethodWithReturnValue() {

try {
Thread.sleep(15000); //simulate processing for 15 seconds

} catch (InterruptedException ex) {
Logger .getLogger (AsynchronousSessionBean.class.getName ()) .
log(Level.SEVERE, null, ex);

return new AsyncResult<Longs (42L) ;

}

When our asynchronous method returns void, the only thing we need to do is
decorate the method with the @Asynchronous annotation, then call it as usual
from the client code.

[134]

Chapter 4

If we need a return value, this value needs to be wrapped in an implementation

of the jav.util.concurrent.Future interface. The Java EE API provides a
convenience implementation in the form of the javax.ejb.AsyncResult class. Both
the Future interface and the AsyncResult class use generics, so we need to specify
our return type as the type parameter of these artifacts.

The Future interface has several methods we can use to cancel the execution of an
asynchronous method, check to see whether or not the method is finished, get the
return value of the method, and check to see whether or not the method is canceled.
The following table lists these methods:

Method Description
cancel (boolean This method cancels method execution. If the
mayInterruptIfRunning) boolean parameter is true, this method will

attempt to cancel the method execution even if
it is already running.

get () This method will return the "unwrapped"
return value of the method; it will be of the type
parameter of the Future interface implementation
returned by the method.

get (long timeout, TimeUnit This method will attempt to get the unwrapped
unit) return value of the method; the return value
will be of the type parameter of the Future
interface implementation returned by the
method. This method will block for the amount
of time specified by the first parameter. The
unit of time to wait is determined by the second
parameter, the TimeUnit enum has constants for
NANOSECONDS, MILLISECONDS, SECONDS,
MINUTES, and so on. Refer to its Javadoc
documentation for the complete list.

isCancelled() This method returns true if the method has been
cancelled; otherwise, it returns false.

isDone () This method returns true if the method has
finished executing; otherwise, it returns false.

As we can see, the @Asynchronous annotation makes it very easy to make
asynchronous calls without suffering the overhead of having to set up message
queues or topics. It is certainly a welcome addition to the EJB specification.

[135]

Enterprise JavaBeans

Message-driven beans

The Java Message Service (JMS) is a Java EE API used for asynchronous
communication between different applications. JMS messages are stored in
either message queues or message topics.

The purpose of a message-driven bean is to consume messages from a JMS

queue or a JMS topic, depending on the messaging domain used (refer to Chapter 8,
The Java Message Service). A message-driven bean must be decorated with the
@MessageDriven annotation. The mappedName attribute of this annotation must
contain the JNDI name of the JMS message queue or JMS message topic that the
bean will be consuming messages from. The following example illustrates a simple
message driven bean:

package net.ensode.glassfishbook;

import javax.ejb.MessageDriven;
import javax.jms.JMSException;
import javax.jms.Message;

import javax.jms.MessageListener;
import javax.jms.TextMessage;

@MessageDriven (mappedName = "jms/GlassFishBookQueue")
public class ExampleMessageDrivenBean implements Messagelistener

{

public void onMessage (Message message)
{
TextMessage textMessage = (TextMessage) message;
try
{
System.out.print ("Received the following message: ") ;
System.out.println (textMessage.getText ()) ;
System.out.println() ;

}

catch (JMSException e)

{

e.printStackTrace () ;

[136]

Chapter 4

It is recommended, but not required, for message-driven beans to implement the
javax.jms.MessageListener interface. However, message-driven beans must
have a method called onMessage () whose signature is identical to that in

the previous example.

Client applications never invoke a message-driven bean's methods directly. Instead,
they put messages in a message queue or topic, then the bean consumes those
messages and acts appropriately. The previous example simply prints the message
to standard output, since message-driven beans execute within an EJB container;
standard output gets redirected to a log. To see the messages in the GlassFish's
server log, open the [GlassFish installation directory]/glassfish/domains/
domainl/logs/server. log file.

Transactions in Enterprise JavaBeans

As we mentioned earlier in this chapter, by default, all EJB methods are
automatically wrapped in a transaction. This default behavior is known as
Container-managed transactions, since transactions are managed by the E]B
container. Application developers may also choose to manage transactions
themselves; this can be accomplished using bean-managed transactions. Both
of these approaches are discussed in the following sections.

Container-managed transactions

Because EJB methods are transactional by default, we run into an interesting
dilemma when an EJB method is invoked from client code that is already in a
transaction. How should the E]JB container behave? Should it suspend the client
transaction, execute its method in a new transaction, then resume the client
transaction? Should it not create a new transaction and execute its method as
part of the client transaction? Should it throw an exception?

By default, if an EJB method is invoked by a client code that is already in a
transaction, the EJB container will simply execute the session bean method as part

of the client transaction. If this is not the behavior we need, we can change it by
decorating the method with the @TransactionAttribute annotation. This annotation
has a value attribute that determines how the E]JB container will behave when the
session bean method is invoked within an existing transaction and also when it is
invoked outside any transactions. The value of the value attribute is typically a
constant defined in the javax.ejb.TransactionAttributeType enum.

[137]

Enterprise JavaBeans

The following table lists the possible values for the @TransactionAttribute

annotation:

@TransactionAttribute value

Description

TransactionAttributeType.

MANDATORY

TransactionAttributeType.

NEVER

TransactionAttributeType.

NOT_ SUPPORTED

TransactionAttributeType.

REQUIRED

TransactionAttributeType.

REQUIRES NEW

TransactionAttributeType.

SUPPORTS

Forces the method to be invoked as part of

a client transaction. If this method is called
outside any transactions, it will throw a
TransactionRequiredException exceptiom

The method is never executed in a transaction. If it is
invoked as part of a client transaction, it will throw a
RemoteException exception No transaction is created
if the method is not invoked within a client transaction.

The method is invoked as part of a client transaction,
the client transaction is suspended and the method is
executed outside any transaction. After the method
is executed, the client transaction is resumed. No
transaction is created if the method is not invoked
within the client transaction.

The method is invoked as part of a client transaction,
it is executed as part of that transaction. If the method
is invoked outside a transaction, a new transaction is
created for the method. This is the default behavior.

The method is invoked as part of a client transaction,
that transaction is suspended, and a new transaction is
created for the method. Once the method executes, the
client transaction is resumed. If the method is called
outside a transaction, a new transaction is created for
the method.

The method is invoked as part of a client transaction,
it is executed as part of that transaction. If the method
is invoked outside a transaction, no new transaction is
created for the method.

Although the default transaction attribute is reasonable in most cases, it is good

to be able to override this default if necessary. For example, transactions have a
performance impact. Therefore, being able to turn off transactions for a method that
does not need them is beneficial. For a case like this, we would decorate our method,
as illustrated in the following code snippet:

@TransactionAttribute (value=TransactionAttributeType.NEVER)
public void doitAsFastAsPossible ()

{

//performance critical code goes here.

[138]

Chapter 4

Other transaction attribute types can be declared by annotating the methods with the
corresponding constant in the TransactionAttributeType enum.

If we wish to override the default transaction attribute consistently across all
methods in a session bean, we can decorate the session bean class with the
@TransactionAttribute annotation; the value of its value attribute will

be applied to every method in the session bean.

Container-managed transactions are automatically rolled back whenever an
exception is thrown within an EJB method. Additionally, we can programmatically
roll back a container-managed transaction by invoking the setRollbackoOnly ()
method on an instance of javax.ejb.EJBContext corresponding to the session bean
in question. The following example is a new version of the session bean we saw
earlier in this chapter, modified to roll back transactions if necessary:

package net.ensode.glassfishbook;

//imports omitted

@Stateless

public class CustomerDaoRollbackBean implements

CustomerDaoRollback

@Resource
private EJBContext ejbContext;

@PersistenceContext
private EntityManager entityManager;

@Resource (name = "jdbc/_ CustomerDBPool")
private DataSource dataSource;

public void saveNewCustomer (Customer customer)

{

if (customer == null || customer.getCustomerId() != null)
{
ejbContext.setRollbackOnly() ;
}
else

{

customer.setCustomerId (getNewCustomerId()) ;
entityManager.persist (customer) ;

[139]

Enterprise JavaBeans

public void updateCustomer (Customer customer)

{

if (customer == null || customer.getCustomerId() == null)
{
ejbContext.setRollbackOnly () ;
}
else

{
entityManager.merge (customer) ;
}
}

//Additional methods omitted for brevity.

}

In this version of the DAO session bean, we deleted the saveCustomer () method
and made the saveNewCustomer () and updateCustomer () methods public. Each
of these methods now checks to see whether or not the customer1d field is set
correctly for the operation we are trying to perform (null for inserts and not null
for updates). It also checks to make sure the object to be persisted is not null. If any
of the checks result in invalid data, the method simply rolls back the transaction by
invoking the setRol1BackOnly () method on the injected instance of EJBContext
and does not update the database.

Bean-managed transactions

As we have seen, container-managed transactions make it ridiculously easy to write
code that is wrapped in a transaction. After all, there is nothing special that we need
to do to make them that way; as a matter of fact, some developers are sometimes not
even aware that they are writing code that will be transactional in nature when they
develop session beans. Container-managed transactions cover most of the typical
cases that we will encounter. However, they do have a limitation: each method can
be wrapped in at most a single transaction. With container-managed transactions,

it is not possible to implement a method that generates more than one transaction,
this can be accomplished using bean-managed transactions, as shown in the
following code:

package net.ensode.glassfishbook;

import java.sqgl.Connection;

import java.sqgl.PreparedStatement;
import java.sqgl.ResultSet;

import java.sqgl.SQLException;
import java.util.List;

[140]

Chapter 4

import
import
import
import
import

javax.
javax.
javax.
javax.
javax.

annotation.Resource;
ejb.Stateless;
ejb.TransactionManagement ;
ejb.TransactionManagementType;
persistence.EntityManager;

//imports omitted

@Stateless
@TransactionManagement (value = TransactionManagementType.BEAN)

public class CustomerDaoBmtBean implements CustomerDaoBmt

{

@Resource

private UserTransaction userTransaction;

@PersistenceContext

private EntityManager entityManager;

@Resource (name = "jdbc/_ CustomerDBPool")

private DataSource dataSource;

public void saveMultipleNewCustomers (

for

{

List<Customer> customerList)

(Customer customer : customerList)

try

{

}

userTransaction.begin () ;

customer.setCustomerId (getNewCustomerId()) ;

entityManager.persist (customer) ;

userTransaction.commit () ;

catch

{

(Exception e)

e.printStackTrace () ;

private Long getNewCustomerId ()

{

Connection connection;

Long newCustomerId = null;

[141]

Enterprise JavaBeans

try

{

connection = dataSource.getConnection() ;

PreparedStatement preparedStatement =
connection.prepareStatement ("select " +
"max (customer_id)+1 as new customer_ id " +
"from customers") ;

ResultSet resultSet = preparedStatement.executeQuery () ;

if (resultSet != null && resultSet.next())

{

newCustomerId = resultSet.getLong("new customer id");

connection.close() ;

}

catch (SQLException e)

{
}

e.printStackTrace () ;

return newCustomerId;

}
}

In this example, we implemented a method named saveMultipleNewCustomers ().
This method takes a List of customers as its sole parameter. The intention of

this method is to save as many elements in ArrayList as possible. An exception
saving one of the entities should not stop the method from attempting to save

the remaining elements. This behavior is not possible using container-managed
transactions, since if an exception is thrown when saving one of the entities it would
roll back the whole transaction. The only way to achieve this behavior is through
bean-managed transactions.

As shown in the previous example, we declare that the session bean uses bean-
managed transactions by decorating the class with the @TransactionManagement
annotation, and using TransactionManagementType . BEAN as the value for its value
attribute (the only other valid value for this attribute is TransactionManagementType.
CONTAINER, but since this is the default value, it is not necessary to specify it).

[142]

Chapter 4

To be able to programmatically control transactions, we inject an instance of
javax.transaction.UserTransaction, which is then used in the for loop within
the saveMultipleNewCustomers () method to begin and commit transactions in
each iteration of the loop.

If we need to roll back a bean-managed transaction, we can do so by simply calling
the rollback () method on the appropriate instance of javax.transaction.
UserTransaction.

Before moving on, it is worth noting that even though all the examples in this section
were implemented as session beans, the concepts apply to message-driven beans
as well.

Enterprise JavaBean life cycles

Enterprise JavaBeans go through different states in their life cycle. Each type of
EJB has different states. States specific to each type of E]JB are discussed in the
next sections.

The stateful session bean life cycle

Readers with experience in previous versions of J2EE may remember that in previous
versions of the specification, session beans were required to implement the javax.
ejb.SessionBean interface. This interface provided methods to be executed at
certain points in the session bean's life cycle. Methods provided by the sessionBean
interface include:

® ejbActivate()
® ejbPassivate()
® ejbRemove ()

® gsetSessionContext (SessionContext ctx)

The first three methods were meant to be executed at certain points in the bean's life
cycle. In most cases, there was nothing to do in the implementation of these methods.
This fact resulted in the vast majority of session beans implementing empty versions
of these methods. Thankfully, starting with Java EE 5, it is no longer necessary to
implement the SessionBean interface, however, if necessary, we can still write
methods that will get executed at certain points in the bean's life cycle. We can
achieve this by decorating methods with specific annotations.

[143]

Enterprise JavaBeans

Before explaining the annotations available to implement life cycle methods,
a brief explanation of the session bean life cycle is in order. The life cycle of
a stateful session bean is different from that of a stateless session bean.

A stateful session bean's life cycle contains three states: Does Not Exist, Ready, and
Passive, as shown in the following diagram:

Before a stateful session bean is deployed, it is in the Does Not Exist state. Upon
successful deployment, the EJB container does any required dependency injections
for the bean and the bean goes into the Ready state. At this point, the bean is ready
to have its methods called by a client application.

When a stateful session bean is in Ready state, the EJB container may decide to
passivate it, that is, to move it from main memory to secondary storage. When this
happens, the bean goes into Passive state. If an instance of a stateful session bean
hasn't been accessed for a period of time, the EJB container will set the bean to the
Does Not Exist state. By default, GlassFish will send a stateful session bean to the
Does Not Exist state after 90 minutes of inactivity. This default can be changed by
going through the following steps:

Log in to the GlassFish administration console.

Expand the Configuration node in the tree to the left-hand side.
Expand the server-config node.

Click on the EJB Container node.

Scroll down towards the bottom of the page and modify the value of the
Removal Timeout text field.

SANE S

[144]

Chapter 4

6. Click on the Save button, as shown in the following screenshot:

e < Minimum and initial number of connections maintained in the pool

» 7 Connectors a Maximum Pool Size: 32] Number of beans
. @ JDBC Maximum number of connections that can be created to satisfy client reguests
» g JMS Resources Pool Resize Quantity: B Number of beans
>] JNDI Number of connections to be removed when pool idle timeout expires
[JavaMail Sessions Pool ldle Timeout: 600 Seconds
& Resource Adapter Configs Mumber of connections to be removed when pool idle timeout timer expires

v & Configurations

Cache Settings
* |§% default-config

v [§f server-config g Max Cache Size: 512 Number of beans
g Admin Service Default is 512 beans
i Connector Service ‘Cache Resize Quantity: 32

@d EJB Container Number of beans to passivate when cache is full; default is 32

Q HTTP Service Removal Timeout: 5400
& JVM Settings
[g Java Message Service
g; Logger Settings
1] Monitoring
> Q‘ Network Config
» =% ORB

Seconds

Default is 5400 seconds

Removal Selection Policy:
Specify how objects are selected for removal from the cache
Cache Idle Timeout: 800 Seconds

Maximum time that a cache can remain idle

This technique sets the timeout value for all stateful session beans. If we need

to modify the timeout value for a specific session bean, we need to include a
glassfish-ejb-jar.xml deployment descriptor in the JAR file containing the
session bean. In this deployment descriptor, we can set the timeout value as the value
of the <removal-timeout-in-seconds> element, as shown in the following code:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE glassfish-ejb-jar PUBLIC "-//GlassFish.org//DTD
GlassFish Application Server 3.1 EJB 3.1//EN"
"http://glassfish.org/dtds/glassfish-ejb-jar 3 1-1.dtd">
<glassfish-ejb-jar>
<enterprise-beanss>
<ejb>
<ejb-name>MyStatefulSessionBean</ejb-name>
<bean-caches>
<removal-timeout-in-seconds>
600
</removal-timeout-in-seconds>
</bean-cache>
</ejb>
</enterprise-beans>
</glassfish-ejb-jar>

[145]

Enterprise JavaBeans

Even though we are not required to create an ejb-jar.xml file for our session beans
anymore (which used to be the case in previous versions of the J2EE specification),
we can still write one if we wish to. The <ejb-name> element in the glassfish-ejb-
jar.xml deployment descriptor must match the value of the element of the same
name in ejb-jar.xml. If we choose not to create an ejb-jar.xml file, this value
must match the name of the EJB class. The timeout value for the stateful session bean
must be the value of the <removal-timeout-in-seconds> element; as the name of
the element suggests, the unit of time to use is seconds. In the previous example, we
set the timeout value to 600 seconds, or 10 minutes.

Any methods in a stateful session bean decorated with the @Postactivate
annotation will be invoked just after the stateful session bean has been activated.
This is equivalent to implementing the ejbActivate () method in previous versions
of J2EE. Similarly, any method decorated with the @ePrepPassivate annotation will
be invoked just before the stateful session bean is passivated; this is equivalent to
implementing the ejbPassivate () method in previous versions of J2EE.

When a stateful session bean in the Ready state times out and is sent to the Does not
Exist state, any method decorated with the @PreDestroy annotation is executed.

If the session bean times out in the Passive state, methods decorated with the
@PreDestroy annotation are not executed. Additionally, if a client of the stateful
session bean executes a method decorated with the @Remove annotation, all methods
decorated with the @PreDestroy annotation are executed and the bean is marked for
garbage collection. Decorating a method with the @Remove annotation is equivalent to
implementing the ejbRemove () method in previous versions of the J2EE specification.

The @PostActivate, @PrePassivate, and @Remove annotations are valid only for
stateful session beans, whereas the @PreDestroy and @PostConstruct annotations
are valid for stateful session beans, stateless session beans, and message-driven beans.

The stateless session bean life cycle

A stateless session bean life cycle contains only the Does Not Exist and Ready states,
as shown in the following diagram:

Does Not Exist

[146]

Chapter 4

Stateless session beans are never passivated. A stateless session bean's methods
can be decorated with the @PostConstruct and @PreDestroy annotations. Just
like with stateful session beans, any methods decorated with the @Postconstruct
annotation will be executed when the stateless session bean goes from the Does
Not Exist to the Ready State, and any methods decorated with the @PreDestroy
annotation will be executed when a stateless session bean goes from the Ready
state to the Does Not Exist state. Stateless session beans are never passivated, any
@PrePassivate and @PostActivate annotations in a stateless session bean

are simply ignored by the E]JB container.

Just like with stateful session beans, we can control how GlassFish manages the life
cycle of stateless session beans (and message-driven beans) via the administration
web console, as shown in the following screenshot:

" B Configurations Pool Settings
> |§f default-config
v Bt server-config Initial and Minimum Pool Size: Mumber of beans
{4 Admin Service Minimum and initial number of connections maintained in the pool
(=3 Connector Service Maximum Pool Size: a2 Number of beans
4= EJB Container Maximum number of connections that can be created to satisfy client requests
g g HTTP Service Pool Resize Quantity:] Mumber of beans
& JWVM Settings Mumber of connections to be removed when pool idle timeout expires
» o Java Message Service Pool Idle Timeout: 600 Seconds
i Looger Settings Mumber of connections to be removed when pool idle imeout timer expires
= X

e Initial and Minimum Pool Size refers to the minimum number of beans
in the pool

* Maximum Pool Size refers to the maximum number of beans in the pool

* Pool Resize Quantity refers to how many beans will be removed from the
pool when the Pool Idle Timeout value expires

* Pool Idle Timeout refers to the number of seconds of inactivity to let pass
before removing beans from the pool

The previous settings affect all poolable E]Bs, such as stateless session beans

and message-driven beans. Just as with stateful session beans, these settings

can be overridden on a case-by-case basis by adding a GlassFish specific
glassfish-ejb-jar.xml deployment descriptor, as shown in the following code:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE glassfish-ejb-jar PUBLIC "-//GlassFish.org//DTD
GlassFish Application Server 3.1 EJB 3.1//EN"
"http://glassfish.org/dtds/glassfish-ejb-jar 3 1-1.dtd">
<glassfish-ejb-jars>

[147]

Enterprise JavaBeans

<enterprise-beanss>
<ejb>
<ejb-name>MyStatelessSessionBean</ejb-name>
<bean-pool>
<steady-pool-size>10</steady-pool-size>
<max-pool-size>60</max-pool-size>
<resize-quantity>5</resize-quantity>
<pool-idle-timeout-in-seconds>
900
</pool-idle-timeout-in-seconds>
</bean-pool>
</ejb>
</enterprise-beans>
</glassfish-ejb-jar>

* The <steady-pool-size> line corresponds to Initial and Minimum Pool
Size in the GlassFish web console

* The <max-pool-sizes> line corresponds to Maximum Pool Size in the
GlassFish web console

* The <resize-quantity> line corresponds to Pool Resize Quantity in the
GlassFish web console

* The <pool-idle-timeout-in-seconds> line corresponds to Pool Idle
Timeout in the GlassFish web console

Message-driven bean life cycle

Just like stateless session beans, message-driven beans exist only in the Does Not
Exist and Ready states, as shown in the following diagram:

Does Not Exist

The above image is exactly the same as the previous one. Message-driven beans have
the same life cycle as stateless session beans. Therefore, the image to illustrate the life
cycle was re-used.

[148]

Chapter 4

A message-driven bean can have methods decorated with the @PostConstruct and
@PreDestroy methods. Methods decorated with the @PostConstruct method are
executed just before the bean goes into the Ready state. Methods decorated with
the @preDestroy annotation are executed just before the bean goes to the Does Not
Exist state.

Introduction to the EJB Timer Service

Stateless session beans and message-driven beans can have a method that is
executed periodically at regular intervals of time. This can be accomplished using
the EJB Timer Service. The following example illustrates how to take advantage
of this feature:

package net.ensode.glassfishbook;
//imports omitted

@Stateless
public class EjbTimerExampleBean implements EjbTimerExample

{

private static Logger logger = Logger.getLogger (EjbTimerExampleBean.
class

.getName ()) ;
@Resource
TimerService timerService;

public void startTimer (Serializable info)

{

Timer timer = timerService.createTimer
(new Date (), 5000, info);

public void stopTimer (Serializable info)

{

Timer timer;

Collection timers = timerService.getTimers() ;
for (Object object : timers)
timer = ((Timer) object);

if (timer.getInfo() .equals(info))

{

timer.cancel () ;

[149]

Enterprise JavaBeans

break;

}
}
}

@Timeout
public void logMessage (Timer timer)

{

logger.info("This message was triggered by :" +
timer.getInfo() + " at "
+ System.currentTimeMillis()) ;

}
}

In our example, we injected an implementation of the javax.ejb.TimerService
interface by decorating an instance variable of this type with the @resource
annotation. We then created a timer by invoking the createTimer () method

of the TimerService instance.

There are several overloaded versions of the createTimer () method. The one

we chose to use takes an instance of java.util.Date as its first parameter; this
parameter is used to indicate the first time the timer should expire (go off). In the
example, we chose to use a brand new instance of the Date class, which, in effect,
makes the timer expire immediately. The second parameter of the createTimer ()
method is the amount of time to wait, in milliseconds, before the timer expires again.
In our example, the timer is set to expire every five seconds. The third parameter of
the createTimer () method can be an instance of any class implementing the java.
io.Serializable interface. Since a single EJB can have several timers executing
concurrently, this third parameter is used to uniquely identify each of the timers. If
we don't need to identify the timers, null can be passed as a value for this parameter.

The EJB method invoking TimerService.createTimer () must
M be called from an EJB client. Placing this call in an EJB method
Q decorated with the @PostConstruct annotation to start the timer
automatically when the bean is placed in the Ready state will result
inan IllegalStateException exception to be thrown.

We can stop a timer by invoking its cancel () method. There is no way to directly
obtain a single timer associated with an EJB. What we need to do is invoke the
getTimers () method on the instance of TimerService that is linked to the EJB; this
method will return a Collection containing all the timers associated with the EJB.
We can then iterate through the collection and cancel the correct one by invoking its
getInfo () method. This method will return the serializable object we passed as
a parameter to the createTimer () method.

[150]

Chapter 4

Finally, any E]B method decorated with the @Timeout annotation will be executed
when a timer expires. Methods decorated with this annotation must return void
and take a single parameter of type javax.ejb.Timer. In our example, the method

simply writes a message to the server log.

The following class is a standalone client for the previous EJB:

package net.ensode.glassfishbook;
import javax.ejb.EJB;

public class Client

{

@EJB
private static EjbTimerExample ejbTimerExample;

public static void main(String[] args)

try
System.out.println("Starting timer 1...");
ejbTimerExample.startTimer ("Timer 1");

System.out.println("Sleeping for 2 seconds...

Thread.sleep(2000) ;
System.out.println("Starting timer 2...");
ejbTimerExample.startTimer ("Timer 2") ;

System.out.println("Sleeping for 30 seconds...

Thread.sleep(30000) ;
System.out.println("Stopping timer 1...");
ejbTimerExample.stopTimer ("Timer 1");
System.out.println("Stopping timer 2...");
ejbTimerExample.stopTimer ("Timer 2");
System.out.println("Done.") ;

}

catch (InterruptedException e)

{

e.printStackTrace() ;

")

[151]

Enterprise JavaBeans

The previous example simply starts a timer, waits for a couple of seconds, and then
starts a second timer. It then sleeps for 30 seconds and then stops both timers. After
deploying the EJB and executing the client, we should see some entries like the
following in the server log:

[2013-08-26T20:44:55.180-0400] [glassfish 4.0] [INFO] []
[net.ensode.glassfishbook.EjbTimerExampleBean] [tid:
_ThreadID=147 _ThreadName=__ejb-thread-pooll] [timeMillis:
1377564295180] [levelValue: 800] [I

This message was triggered by :Timer 1 at 1377564295180]]

[2013-08-26T20:44:57.203-0400] [glassfish 4.0] [INFO] []
[net.ensode.glassfishbook.EjbTimerExampleBean] [tid:
_ThreadID=148 ThreadName=__ejb-thread-pool2] [timeMillis:
1377564297203] [levelValue: 800] [I[

This message was triggered by :Timer 2 at 1377564297203]]

[2013-08-26T20:44:58.888-0400] [glassfish 4.0] [INFO] []
[net.ensode.glassfishbook.EjbTimerExampleBean] [tid:
_ThreadID=149 _ThreadName=__ejb-thread-pool3] [timeMillis:
1377564298888] [levelValue: 800] [I

This message was triggered by :Timer 1 at 1377564298888]]
[2013-08-26T20:45:01.156-0400] [glassfish 4.0] [INFO] []
[net.ensode.glassfishbook.EjbTimerExampleBean] [tid:

_ThreadID=150 _ThreadName=__ejb-thread-pool4] [timeMillis:
1377564301156] [levelValue: 800] [I[

This message was triggered by :Timer 2 at 1377564301156]]

These entries are created each time one of the timers expires.

Calendar-based EJB timer expressions

The example in the previous section has one disadvantage: the startTimer () method
in the session bean must be invoked from a client in order to start the timer. This
restriction makes it difficult to have the timer start as soon as the bean is deployed.

Java EE 6 introduced calendar-based EJB timer expressions. Calendar-based
expressions allow one or more methods in our session beans to be executed at a
certain date and time. For example, we could configure one of our methods to be
executed every night at 8:10 p.m., which is exactly what the following example does:

package com.ensode.glassfishbook.calendarbasedtimer;

import java.util.logging.Logger;

[152]

Chapter 4

import javax.ejb.Stateless;
import javax.ejb.LocalBean;
import javax.ejb.Schedule;

@Stateless
@LocalBean
public class CalendarBasedTimerEjbExampleBean {

private static Logger logger = Logger.getLogger (
CalendarBasedTimerEjbExampleBean.class.getName ()) ;

@Schedule (hour = "20", minute = "10")
public void logMessage () {
logger.info("This message was triggered at:"
+ System.currentTimeMillis()) ;

}
}

As you can see in this example, we set up the time when the method will be executed
via the javax.ejb.Schedule annotation. In this particular example, we set up our
method to be executed at 8:10 p.m. by setting the hour attribute of the @schedule
annotation to "20", and its minute attribute to "10". The value of the hour attribute
is 24 hour based; hour 20 is equivalent to 8:00 p.m.

The @schedule annotation has several other attributes that allows a lot of flexibility
in specifying when the method should be executed; we could, for instance, have a
method being executed on the third Friday of every month, or the last day of the
month, and so on and so forth.

The following table lists all the attributes in the @schedule annotation that allow us
to control when the annotated method will be executed:

Attribute Description Example values Default value
dayOfMonth Thedayof "3":the third day of the month trn
themonth. wpastn: the last day of the month

"-2": two days before the end of the month
"lst Tue": the first Tuesday of the month

dayOfWeek Thedayof "3":every Wednesday e
the week "Thu": every Thursday

[153]

Enterprise JavaBeans

Attribute Description Example values Default value

hour The hour of "14":2:00 p.m. "o"
the day (24
hour based)

minute The minute "10": ten minutes after the hour "on
of the hour

month The month of "2": February e
the year "March": March

second The second "5":five seconds after the minute "o
of the minute

timezone The timezone "America/New York" n
1D

year The four~ "2010" "k n
digit year

In addition to single values, most attributes accept the asterisk ("*") as a wildcard,
meaning that the annotated method will be executed regularly (every day, hour,
and so on).

Additionally, we can specify more than one value by separating the values with
commas, for example, if we need a method to be executed every Tuesday and
Thursday, we could annotate the method as @schedule (dayOfWeek="Tue, Thu").

We can also specify a range of values; the first and last values are separated by
a hyphen (-). To execute a method from Monday through Friday, we could use
@Schedule (dayOfWeek="Mon-Fri").

Additionally, we could specify that we need the method to be executed every n units
of time (for example, every day, every 2 hours, every 10 minutes, and so on). To do
something like this, we could use @schedule (hour="*/12"), which would execute
the method every 12 hours.

As we can see, the @Schedule annotation provides a lot of flexibility in terms of
how to specify when we need our methods executed. In addition, it provides us
the advantage of not needing a client call to activate the scheduling. It also has the
advantage of using cron-like syntax; therefore, developers familiar with this Unix
tool will feel right at home using this annotation.

[154]

Chapter 4

EJB Security

Enterprise JavaBeans allow us to declaratively decide which users can access their
methods. For example, some methods might only be available to users in certain
roles. A typical scenario is that only users with the role of administrator can add,
delete, or modify other users in the system.

The following example is a slightly modified version of the DAO session bean we
saw earlier in this chapter. In this version, some methods that were previously
private are made public. Additionally, the session bean was modified to allow
only users in certain roles to access its methods.

package net.ensode.glassfishbook;
// imports omitted

@Stateless
@RolesAllowed ("appadmin")
public class CustomerDaoBean implements CustomerDao

{

@PersistenceContext
private EntityManager entityManager;

@Resource (name = "jdbc/ CustomerDBPool")
private DataSource dataSource;

public void saveCustomer (Customer customer)

{

if (customer.getCustomerId() == null)

{

saveNewCustomer (customer) ;

}

else

{

updateCustomer (customer) ;

}

public Long saveNewCustomer (Customer customer)

{

entityManager.persist (customer) ;

return customer.getCustomerId() ;

[155]

Enterprise JavaBeans

}

public void updateCustomer (Customer customer)

{

entityManager.merge (customer) ;

}

@RolesAllowed (
{ "appuser", "appadmin" })
public Customer getCustomer (Long customerId)

{

Customer customer;
customer = entityManager.find(Customer.class,

return customer;

public void deleteCustomer (Customer customer)

{

entityManager.remove (customer) ;

}

customerId) ;

As we can see, we declare what roles have access to the methods using the
@RolesAllowed annotation. This annotation can take either a single string or an
array of strings as its parameter. When a single string is used as a parameter for
this annotation, only users with the role specified by the parameter can access the
method. If an array of Strings is used as the parameter, users with any of the roles
specified by the array's elements can access the method.

The @RolesAllowed annotation can be used to decorate an EJB class, in which case,
its values apply to either all the methods in the EJB, or to one or more methods. In
the second case, its values apply only to the method the annotation is decorating.
If, like in our previous example, both the EJB class and one or more of its methods
are decorated with the @RolesAllowed annotation, the method level annotation
takes precedence.

Application roles need to be mapped to a security realm's group name (refer to
Chapter 9, Securing Java EE Applications, for details). This mapping, along with what

realm to use, is set in the glassfish-ejb-jar.xml deployment descriptor, as shown

in the following code:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE glassfish-ejb-jar PUBLIC "-//GlassFish.org//DTD

GlassFish Application Server 3.1 EJB 3.1//EN"

"http://glassfish.org/dtds/glassfish-ejb-jar 3 1-1.dtd">
<glassfish-ejb-jars>

[156]

Chapter 4

<security-role-mapping>
<role-name>appuser</role-name>
<group-name>appuser</group-name>
</security-role-mapping>
<security-role-mapping>
<role-name>appadmin</role-name>
<group-name>appadmin</group-name>
</security-role-mapping>
<enterprise-beanss>
<ejb>
<ejb-name>CustomerDaoBean</ejb-name>
<ior-security-configs>
<as-context>
<auth-method>username password</auth-method>
<realm>file</realm>
<required>true</required>
</as-context>
</ior-security-config>
</ejb>
</enterprise-beans>

</glassfish-ejb-jar>

The <security-role-mapping> element of glassfish-ejb-jar.xml performs the
mapping between application roles and the security realm's group. The value of the
<role-name> subelement must contain the application role; this value must match
the value used in the @Rolesallowed annotation. The value of the <group-name>
subelement must contain the name of the security group in the security realm used
by the EJB. In our example, we map two application roles to their corresponding
groups in the security realm. Although in this particular example the name of the
application role and the security group match, this does not need to be the case.

Al

Automatically matching roles to security groups

It is possible to automatically match any application roles to identically
named security groups in the security realm. This can be accomplished
by logging in to the GlassFish web console, clicking on the Configuration
node, clicking on Security, then clicking on the checkbox labeled Default
Principal To Role Mapping, and saving this configuration change.

[157]

Enterprise JavaBeans

As shown in our example, the security realm to use for authentication is defined in
the <realm> subelement of the <as-context> element. The value of this subelement
must match the name of a valid security realm in the application server. Other sub
elements of the <as-context> element include <auth-method>, the only valid value
for this element is username_password, and <requireds, the only valid values of
which are true and false.

Client authentication

If the client code accessing a secured E]B is part of a web application the user of
which has already been authenticated (the user logged in through the web interface),
then the user's credentials will be used to determine whether or not the user should
be allowed to access the method they are trying to execute.

Standalone clients must be executed through the appclient utility. The following
code illustrates a typical client for the previous, secured session bean:

package net.ensode.glassfishbook;
import javax.ejb.EJB;

public class Client
@EJB
private static CustomerDao customerDao;

public static void main(String[] args)

{

Long newCustomerId;

Customer customer = new Customer() ;
customer.setFirstName ("Mark") ;
customer.setLastName ("Butcher") ;
customer.setEmail ("butchere@ephony.org") ;

System.out.println("Saving New Customer...");
newCustomerId = customerDao.saveNewCustomer (customer) ;

System.out.println("Retrieving customer...");
customer = customerDao.getCustomer (newCustomerId) ;
System.out.println (customer) ;

[158]

Chapter 4

As we can see, there is nothing the code is doing in order to authenticate the

user. The session bean is simply injected into the code via the @EJB annotation and
used as usual. The reason this works is because the appclient utility takes care
of authenticating the user after invoking the client code via the appclient utility
as follows:

appclient -client ejbsecurityclient.jar

The appclient utility will present the user with a log in window when it attempts
to invoke a secure method on EJB, as shown in the following screenshot:

Login for user:

Enter Username: |peter |

Enter Password: | ----- |

| oK | | Cancel |

Assuming that the credentials are correct and the user has the appropriate permissions,
the EJB code will execute, and we should see the expected output from the client
class:

Saving New Customer...

Retrieving customer...

customerId = 29

firstName = Mark

lastName = Butcher

email = butcher@phony.org

Summary

In this chapter, we covered how to implement business logic via stateless and
stateful session beans. Additionally, we covered how to implement message-driven
beans to consume JMS messages.

We also explained how to take advantage of the transactional nature of EJBs
to simplify implementing the Data Access Object (DAO) pattern.

[159]

Enterprise JavaBeans

Additionally, we explained the concept of container-managed transactions and
how to control them using the appropriate annotations. We also explained how
to implement Bean Managed Transactions for cases in which container-managed
transactions are not enough to satisfy our requirements.

Life cycles for the different types of Enterprise JavaBeans were covered, including an
explanation on how to have EJB methods automatically invoked by the EJB container
at certain points in the life cycle.

We also covered how to have EJB methods invoked periodically by the EJB container
by taking advantage of the EJB timer service.

Finally, we explained how to make sure EJB methods are only invoked by authorized
users by annotating the E]B classes and/or methods and by adding the appropriate
entries to the glassfish-ejb-jar.xml deployment descriptor.

In the next chapter, we will cover Contexts and Dependency Injection.

[160]

Contexts and Dependency
Injection

Contexts and Dependency Injection (CDI) was added to the Java EE specification
in Java EE 6. It provides several advantages that were previously unavailable to Java
EE developers, such as allowing any JavaBean to be used as a JavaServer Faces (JSF)
managed bean, including stateless and stateful session beans. As the name implies,
CDI simplifies dependency injection in Java EE applications.

In this chapter, we will cover the following topics:

¢ Named beans
* Dependency injection
* Scopes

* Qualifiers

Named beans

CDI provides us with the ability to name our beans via the @Named annotation.
Named beans allow us to easily inject our beans into other classes that depend

on them (see the Dependency injection section), and to easily refer to them from JSF
pages via the unified expression language.

The following example shows us the @Named annotation in action:

package net.ensode.cdidependencyinjection.beans;

import javax.enterprise.context.RequestScoped;

import javax.inject.Named;

Contexts and Dependency Injection

@Named
@RequestScoped
public class Customer

private String firstName;
private String lastName;

public String getFirstName () {
return firstName;

}

public void setFirstName (String firstName)
this.firstName = firstName;

}

public String getLastName () {
return lastName;

}

public void setLastName (String lastName)
this.lastName = lastName;

}

As we can see, all we need to do to name our class is to decorate it with the eNamed
annotation. By default, the name of the bean will be the class name with its first letter
switched to lowercase; in our example, the name of the bean would be customer. If
we wish to use a different name, we can do so by setting the value attribute of the
@Named annotation. For example, if we wanted to use the name customerBean for
our bean in the previous example, we could have done so by modifying the eNamed
annotation as follows:

@Named (value="customerBean")

Or, we could have simply used the following code:

@Named ("customerBean")

Since the value attribute's name does not need to be specified, if we don't use an
attribute name, then value is implied.

The CDI name can be used to access our bean from JSF pages using the unified
expression language, as shown in the following code:

<?xml version='1.0' encoding='UTF-8' ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"

[162]

xmlns:h="http://java.sun.com/jsf/html">
<h:head>
<titlesEnter Customer Information</titles>
</h:head>
<h:body>
<h:form>
<h:panelGrid columns="2">
<h:outputLabel for="firstName" value="First Name"/>
<h:inputText id="firstName"
value="#{customer.firstName}"/>
<h:outputLabel for="lastName" value="Last Name"/>
<h:inputText id="lastName"
value="#{customer.lastName}"/>
<h:panelGroup/>
</h:panelGrid>
</h:form>
</h:body>
</html>

As we can see, named beans are accessed from JSF pages exactly like standard JSF
managed beans. This allows JSF to access any named bean, decoupling the Java code

from the JSF APIL.

When deployed and executed, our simple application looks like the following
screenshot (shown after the user has entered some data):

@ Enter) Custome
File Edit View History Bookmarks Tools Help

» v = @ [[s] http:yiocalhost:8080/net.e
[I_gl Enter Customer Information 1 i

First Name (john }

Last Name |[Doe |

Submit

[163]

Contexts and Dependency Injection

Dependency injection

Dependency injection is a technique that is used to supply external dependencies to a
Java class. Java EE 5 introduced dependency injection via the @Resource annotation;
however, this annotation is limited to injecting resources such as database
connections, JMS resources, and so on. CDI includes the @Inject annotation, which
can be used to inject instances of Java classes into any dependent objects.

JSF applications typically follow the Model-View-Controller (MVC) design
pattern. As such, some JSF-managed beans frequently take on the role of controllers
in the pattern, while others take on the role of the model. This approach typically
requires the controller-managed bean to have access to one or more of the
model-managed beans.

Because of the pattern described in the previous paragraph, one of the most
frequently asked JSF questions is how to access one managed bean from another.
There is more than one way to do this; however, before CDI, none of the ways were
straightforward. Before CDI, the easiest way was to declare a managed property in
the controller-managed bean, which required modifying the application's faces-
config.xml file; another approach was to use code like the following one:

ELContext elc = FacesContext.getCurrentInstance () .getELContext () ;
SomeBean someBean
= (SomeBean) FacesContext.getCurrentInstance () .getApplication ()
.getELResolver () .getValue (elc, null, "someBean");

In this example, someBean is the name of the bean as specified in the application's
faces-config.xml. As we can see, neither approach is simple or easy to remember.
Fortunately, code like this is not needed anymore thanks to CDI's dependency
injection capabilities, as shown in the following code:

package net.ensode.cdidependencyinjection.ejb;

import java.util.logging.Logger;
import javax.inject.Inject;
import javax.inject.Named;

@Named
@RequestScoped
public class CustomerController

private static final Logger logger = Logger.getLogger (
CustomerController.class.getName()) ;
@Inject

[164]

Chapter 5

private Customer customer;
public String saveCustomer ()

logger.info("Saving the following information \n" + customer.
toString()) ;

//If this was a real application, we would have code to save
//customer data to the database here.

return "confirmation";

}

Notice that all we had to do to initialize our customer instance was to decorate it
with the @Inject annotation. When the bean is constructed by the application server,
an instance of the customer bean is automatically injected into this field. Notice that
the injected bean is used in the saveCustomer () method. As we can see, CDI makes
accessing one bean from another a snap, a far cry from the code we had to use in
previous versions of the Java EE specification.

Working with CDI Qualifiers

In some instances, the type of the bean we wish to inject into our code may be an
interface or a Java superclass, but we may be interested in injecting a subclass or a
class implementing the interface. For cases like this, CDI provides qualifiers that we
can use to indicate the specific type we wish to inject into our code.

A CDI qualifier is an annotation that must be decorated with the eQualifier
annotation. This annotation can then be used to decorate the specific subclass or
interface implementation that we wish to qualify. Additionally, the injected field in
the client code needs to be decorated with the qualifier as well.

Suppose our application could have a special kind of customer; for example,
frequent customers could be given the status of premium customers. To handle these
premium customers, we could extend our Customer named bean and decorate it
with the following qualifier:

package net.ensode.cdidependencyinjection.qualifiers;

import static java.lang.annotation.ElementType.TYPE;

import static java.lang.annotation.ElementType.FIELD;
import static java.lang.annotation.ElementType.PARAMETER;
import static java.lang.annotation.ElementType.METHOD;
import static java.lang.annotation.RetentionPolicy.RUNTIME;
import java.lang.annotation.Retention;

[165]

Contexts and Dependency Injection

import java.lang.annotation.Target;
import javax.inject.Qualifier;

@Qualifier

@Retention (RUNTIME)

@Target ({METHOD, FIELD, PARAMETER, TYPE})
public @interface Premium {

}

Like we mentioned previously, qualifiers are standard annotations; they typically
have retention of runtime and can target methods, fields, parameters, or types, as
illustrated in the previous example by the value of the @Retention annotation. The
only difference between a qualifier and a standard annotation is that qualifiers are
decorated with the eQualifier annotation.

Once we have our qualifier in place, we need to use it to decorate the specific
subclass or interface implementation:

package net.ensode.cdidependencyinjection.beans;

import javax.enterprise.context.RequestScoped;
import javax.inject.Named;
import net.ensode.cdidependencyinjection.qualifiers.Premium;

@Named

@RequestScoped

@Premium

public class PremiumCustomer extends Customer {

private Integer discountCode;

public Integer getDiscountCode () {
return discountCode;

}

public void setDiscountCode (Integer discountCode) {
this.discountCode = discountCode;

}

Once we have decorated the specific instance that we need to qualify, we can use our
qualifiers in the client code to specify the exact type of dependency we need:

package net.ensode.cdidependencyinjection.beans;

import java.util.Random;
import java.util.logging.Logger;

[166]

Chapter 5

import javax.enterprise.context.RequestScoped;

import javax.inject.Inject;

import javax.inject.Named;

import net.ensode.cdidependencyinjection.qualifiers.Premium;

@Named
@RequestScoped

public class CustomerController

}

private static final Logger logger = Logger.getLogger (
CustomerController.class.getName()) ;

@Inject

@Premium

private Customer customer;

public String saveCustomer () {
PremiumCustomer premiumCustomer = (PremiumCustomer) customer;
premiumCustomer.setDiscountCode (generateDiscountCode ()) ;

logger.info("Saving the following information \n"
+ premiumCustomer.getFirstName () + " "
+ premiumCustomer.getLastName ()
+ ", discount code = "
+ premiumCustomer.getDiscountCode ()) ;

//If this was a real application, we would have code to save

//customer data to the database here.

return "confirmation";

}

public Integer generateDiscountCode()
return new Random() .nextInt (100000) ;

As we used our ePremium qualifier to decorate the customer field, an instance of

PremiumCustomer is injected into that field, since this class is also decorated with
the @Premium qualifier.

[167]

Contexts and Dependency Injection

As far as our JSF pages go, we simply access our named bean as usual, using
its name:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">
<h:head>
<titles>Enter Customer Information</title>
</h:head>
<h:body>
<h:form>
<h:panelGrid columns="2">
<h:outputLabel for="firstName" value="First
Name" />
<h:inputText id="firstName"
value="#{premiumCustomer.firstName}"/>
<h:outputLabel for="lastName" value="Last Name"/>
<h:inputText id="lastName"
value="#{premiumCustomer.lastName}"/>
<h:outputLabel for="discountCode" wvalue="Discount
Code"/>
<h:inputText id="discountCode"
value="#{premiumCustomer.discountCode}"/>
<h:panelGroup/>
<h:commandButton value="Submit"
action="#{customerController.saveCustomer}"/>
</h:panelGrid>
</h:form>
</h:body>
</html>

In this example, we are using the default name for our bean, which is the class name
with the first letter switched to lowercase.

[168]

Chapter 5

Our simple application renders and acts just like a plain (that is, not using CDI) JSF
application as far as the user is concerned. Take a look at the following screenshot:

@ Enter Custq
File Edit View History Bookmarks Tools Help

» v S @ || http:/ocalhost:8080/ng

[(@] Enter Customer Information ! ap

First Name [Benjamin |

Last Name [Smith |

Discount Code [123 |

Submit

Named bean scopes

Just like JSF-managed beans, CDI named beans are scoped. This means that CDI
beans are contextual objects. When a named bean is needed, either because of
injection or because it is referred from a JSF page, CDI looks for an instance of the
bean in the scope it belongs to and injects it to the dependent code. If no instance is
found, one is created and stored in the appropriate scope for future use. The different
scopes are the context in which the bean exists.

The following table lists the different valid CDI scopes:

Scope Annotation Description

Request @RequestScoped Request scoped beans are shared through
the duration of a single request. A single
request could refer to an HTTP request, an
invocation to a method in an EJB, a web
service invocation, or sending a JMS message
to a message-driven bean.

Conversation @ConversationScoped The conversation scope can span multiple
requests, but it is typically shorter than the
session scope.

Session @SessionScoped Session scoped beans are shared across all
requests in an HTTP session. Each user of an
application gets its own instance of a session
scoped bean.

[169]

Contexts and Dependency Injection

Scope Annotation Description

Application @rpplicationScoped Application scoped beans live through the
whole application lifetime. Beans in this
scope are shared across user sessions.

Dependent @Dependent Dependent scoped beans are not shared; any
time a dependent scoped bean is injected, a
new instance is created.

As we can see, CDI includes all scopes supported by JSF; it also adds a couple of its
own. CDI's request scope differs from JSF's request scope in which a request does
not necessarily refer to an HTTP request; it could simply be an invocation on an
EJB method, a web service invocation, or sending a JMS message to a message
driven bean.

The conversation scope does not exist in JSF. This scope is longer than the request
scope but shorter than the session scope, and it typically spans three or more pages.
Classes wishing to access a conversation scoped bean must have an instance of javax.
enterprise.context.Conversation injected. At the point where we want to start the
conversation, the begin () method must be invoked on this object. At the point where
we want to end the conversation, the end () method must be invoked on it.

CDI's session scope behaves just like its JSF counterpart. The lifecycle of session
scoped beans is tied to the life of an HTTP session.

CDI's application scope also behaves just like the equivalent scope in JSF.
Application scoped beans are tied to the life of an application. A single instance of
each application scoped beans exists per application, which means that the same
instance is accessible to all HTTP sessions.

Just like the conversation scope, CDI's dependent scope does not exist in JSF. A new
dependent scoped bean is instantiated every time it is needed, usually, when it is
injected into a class that depends on it.

Suppose we wanted to have a user enter some data that would be stored in a

single named bean; however, this bean has several fields and therefore, we would
like to split the data entry into several pages. This is a fairly common situation

and one that was not easy to handle using previous versions of JSF (JSF 2.2 added
Faces Flows to solve this problem; refer to Chapter 2, JavaServer Faces) or the servlet
API, for that matter. The reason this situation is not trivial to manage using these
technologies is that we can only put a class in the request scope, in which case, the
class is destroyed after every single request, losing its data in the process; or in
session scope, in which the class sticks around in the memory long after it is needed.

[170]

Chapter 5

For cases like this, CDI's conversation scope is a good solution, as shown in the

following code:

package net.ensode.conversationscope.model;

import java.io.Serializable;

import javax.enterprise.context.ConversationScoped;

import javax.inject.Named;
import org.apache.commons.lang.builder.ReflectionToStringBuilder;

@Named

@ConversationScoped

public class Customer implements Serializable

private
private
private
private
private
private
private
private
private
private
private

String
String
String
String
String
String
String
String
String
String
String

firstName;
middleName;
lastName;
addrLinel;
addrLine2;
addrCity;
state;

zip;
phoneHome ;
phoneWork;
phoneMobile;

//getters and setters omitted for brevity

@Override

public String toString() {

return ReflectionToStringBuilder.reflectionToString(this) ;

}

We declare that our bean is conversation scoped by decorating it with the @
ConversationScoped annotation. Conversation scoped beans also need to
implement java.io.Serializable. Other than these two requirements, there is
nothing special about our code. It is a simple JavaBean code with private properties
and corresponding getter and setter methods.

We are using the Apache commons-lang library in our code
to easily implement a toString () method for our bean. The
Q commons - 1lang library has several utility methods like this that
L= implement frequently needed, tedious to code functionality.
commons-lang is available in the central Maven repositories at
http://commons.apache.org/lang.

[171]

Contexts and Dependency Injection

In addition to having our conversation scoped bean injected, our client code must
also have an instance of javax.enterprise.context.Conversation injected, as
illustrated in the following example:

package net.ensode.conversationscope.controller;

import java.io.Serializable;

import javax.enterprise.context.Conversation;
import javax.enterprise.context.RequestScoped;
import javax.inject.Inject;

import javax.inject.Named;

import net.ensode.conversationscope.model.Customer;

@Named
@RequestScoped
public class CustomerInfoController implements Serializable

@Inject

private Conversation conversation;
@Inject

private Customer customer;

public String customerInfoEntry() {
conversation.begin() ;
System.out.println (customer) ;
return "pagel";

}

public String navigateToPagel () {
System.out.println (customer) ;
return "pagel";

}

public String navigateToPage2 () {
System.out.println (customer) ;
return "page2";

}

public String navigateToPage3 () {
System.out.println (customer) ;
return "page3";

}

public String navigateToConfirmationPage ()
System.out.println (customer) ;
conversation.end () ;

[172]

Chapter 5

return "confirmation";

}

Conversations can be either long running or transient. Transient conversations finish
at the end of a request. Long running conversations span multiple requests. In most
cases, we will use long running conversations to hold a reference to a conversation
scoped bean across multiple HTTP requests in a web application.

A long running conversation starts when the begin () method is invoked in the
injected conversation instance, and it ends when we invoke the end () method on
this same object.

JSF pages simply access our CDI beans as usual:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">
<h:head>
<title>Customer Information</titles>
</h:head>
<h:body>
<h3>Enter Customer Information (Page 1 of 3)</h3>
<h:form>
<h:panelGrid columns="2">
<h:outputLabel for="firstName" value="First Name"/>
<h:inputText id="firstName"
value="#{customer.firstName}"/>
<h:outputLabel for="middleName" value="Middle Name"/>
<h:inputText id="middleName"
value="#{customer.middleName}"/>
<h:outputLabel for="lastName" value="Last Name"/>
<h:inputText id="lastName"
value="#{customer.lastName}"/>
<h:panelGroup/>
<h:commandButton value="Next"
action="#{customerInfoController.navigateToPage2}"/>
</h:panelGrid>
</h:form>
</h:body>
</html>

[173]

Contexts and Dependency Injection

As we navigate from one page to the next, we keep the same instance of our
conversation scoped bean. Therefore, all user-entered data remains. When the
end () method is called on our conversation bean, the conversation ends and our
conversation scoped bean is destroyed.

Keeping our bean in the conversation scope simplifies the task of implementing
wizard-style user interfaces, where data can be entered across several pages, as
shown in the following screenshot:

File Edit View History Bookmarks Tools Help

| {} Customer Information |I +* |

% | @ localhost

Enter Customer Information (Page 1 of 3)

First Name [Daniel
Middle Name |

Last Name |ones

Next

In our example, after clicking on the Next button on the first page, we can see our
partially populated bean in the GlassFish log:

INFO: HYPERLINK "mailto:net.ensode.conversationscope.model.
Customer@6elc51b4"net.ensode.conversationscope.model.Customer@6elc
51b4 [firstName=Daniel,middleName=, lastName=Jones, addrLinel=, addrLi
ne2=,addrCity=, state=AL, zip=<null>, phoneHome=<null>, phoneWork=<nul-
1>,phoneMobile=<null>]

At this point, the second page in our simple wizard is displayed as follows:

File Edit View History Bookmarks Tools Help

| {7 customer Information |J - |

& | & localhost

Enter Customer Information (Page 2 of 3)

Line 1 [123Basketballct
Line 2

City Montgomery
State Alabama 4

Zip 3s01

Previous Mext

[174]

Chapter 5

By clicking on Next, we can see that additional fields are populated in our

conversation scoped bean.

INFO: net.ensode.conversationscope.model.Customer@6elc51b4 [firstName=Dani
el,middleName=, lastName=Jones,addrLinel=123 Basketball Ct,addrLine2=,addr
City=Montgomery, state=AL, zip=36101, phoneHome=<null>, phoneWork=<null>, phon

eMobile=<null>]

When we submit the third page in our wizard, additional bean properties
corresponding to the fields on that page are populated, as shown in the

following screenshot:

File Edit View History Bookmarks Tools Help

| {_} Customer Information |] & |

4 | @ localhost

Enter Customer Information (Page 3 of 3)

Home Phone |555-555-1234
Work Phone [555-555-2345
Mobile Phone [555-555-3456

Previous Next

When we are at the point where we don't need to keep the customer information in
mind anymore, we need to call the end () method on the conversation bean that was
injected into our code. This is exactly what we do in our code before displaying the

confirmation page:

public String navigateToConfirmationPage () {

System.out.println (customer) ;

conversation.end() ;

return "confirmation";

}

After the request to show the confirmation page is completed, our conversation

scoped bean is destroyed, as we invoked the end () method in our injected

Conversation class.

[175]

Contexts and Dependency Injection

Summary

In this chapter, we provided an introduction to Contexts and Dependency Injection.
We covered how JSF pages can access CDI named beans as if they were JSF managed
beans. We also covered how CDI makes it easy to inject dependencies into our code
via the @Inject annotation. Additionally, we explained how we can use qualifiers to
determine the specific implementation of a dependency to be injected into our code.
Finally, we covered all the scopes that a CDI bean can be placed into, which include
the equivalents to all the JSF scopes, plus an additional two scopes not included in
JSF, namely, the conversation scope and the dependent scope.

In the next chapter, we will cover processing JavaScript Object Notation (JSON)
formatted data using the new JSON-P APIL

[176]

JSON Processing
with JSON-P

JSON, or the JavaScript Object Notation, is a human-readable data interchange
format. As its name implies, JSON is derived from JavaScript. Java EE 7 introduced
JSON-P, the Java API for JSON Processing as Java Specification Request (JSR) 353.

Traditionally, XML has been the format of choice for data interchange between
disparate systems. While XML is undoubtedly very popular, JSON has been gaining
ground in recent years as an arguably simpler format for data exchange. Several
Java libraries exist for parsing and generating JSON data from Java code. Java EE
standardized this functionality via the Java API for JSON Processing.

JSON-P includes two APIs for processing JSON — the Model API and the Streaming
AP both of these APIs will be covered in this chapter.

In this chapter, we will cover the following topics:

e The JSON-P Model API
° Generating JSON data with the Model API
° Parsing JSON data with the Model API

* The JSON-P Streaming API
° Generating JSON data with the Streaming API
° Parsing JSON data with the Streaming API

JSON Processing with [SON-P

The JSON-P Model API

The JSON-P Model API allows us to generate a preloaded, fully traversable,
in-memory representation of a JSON object. This API is more flexible than the
Streaming API discussed in the The [SON-P Streaming API section. However, the
JSON-P Model API is slower and requires more memory, which can be a concern
when handling large volumes of data.

Generating JSON data with the Model API

At the heart of the JSON-P Model APl is the JsonObjectBuilder class. This class
has several overloaded add () methods that can be used to add properties and their
corresponding values to the generated JSON data.

The following code sample illustrates how to generate JSON data using the
Model API:

packagepackagenet . ensode.glassfishbook. jsonpobject;

//other imports omitted for brevity.
importimportjavax.inject.Named;
importimportjavax.json.Json;
importimportjavax.json.JsonObject;
importimportjavax.json.JsonReader;
importimportjavax.json.JsonWriter;

@Named
@SessionScoped
public class JsonpBean implements Serializable(

private String jsonStr;

@Inject
private Customer customer;

public String builddson()
JsonObjectBuilderjsonObjectBuilder =

Json.createObjectBuilder () ;

JsonObjectjsonObject = jsonObjectBuilder.
add("firstName", "Scott").
add ("lastName", "Gosling").
add("email", "sgosling@example.com").
build();

[178]

Chapter 6

StringWriterstringWriter = new StringWriter () ;

try (JsonWriter jsonWriter = Json.createWriter (stringWriter))

{

jsonWriter.writeObject (jsonObject) ;

}

setJdsonStr (stringWriter.toString());
return "display json";

}

//getters and setters omitted for brevity

}

. Our example is a CDI named bean that corresponds to a larger JSF
% application; the other parts of the application are not shown since they
= are not relevant to the discussion. The complete sample application is

included as part of this book's example code download.

As can be seen in the previous example, we generate an instance of JsonObject by
invoking the add () method on JsonObjectBuilder. In our example, we see how
we can add String values to our JsonObject by invoking the add () method on
JsonObjectBuilder. The first parameter of the add () method is the property name
of the generated JSON object, and the second parameter corresponds to the value

of the said property. The return value of the add () method is another instance of
JsonObjectBuilder; therefore, invocations to the add () method can be chained as
shown in the example.

Once we have added all the desired properties, we need to invoke the build ()
method of gsonObjectBuilder, which returns an instance of a class implementing
the JsonObject interface.

In many cases, we may want to generate a String representation of the JSON object
we created so that it can be processed by another process or service. We can do this
by creating an instance of a class implementing the Jsonwriter interface; invoking
the static createWriter () method of the Json class, and passing an instance of
StringWriter as its sole parameter. Once we have an instance of the Jsonwriter
implementation, we need to invoke its writeObject () method, passing our
JsonObject instance as its sole parameter.

At this point, our stringWriter instance will have the string representation of our
JSON object as its value. So, invoking its toString () method will return a string
value containing our JSON object.

[179]

JSON Processing with [SON-P

Our specific example will generate a JSON string that looks as follows:

{rfirstName":"Scott", "lastName":"Gosling", "email":

"sgosling@example.com" }

Although we added only string objects to our JSON object in our example, we
are not limited to this type of value. JsonObjectBuilder has several overloaded
versions of its add () method, allowing us to add several different types of values

to our JSON objects.

The following table summarizes all of the available versions of the add () method:

JsonObjectBuilder methods

Description

add (String name, BigDecimal
value)

add (String name, BigInteger
value)

add (String name,
JsonArrayBuilder value)

add (String name,
JsonObjectBuilder wvalue)

add (String name, JsonValue
value)

add (String name, String
value)

add (String name, boolean
value)

add (String name, double
value)

add (String name, int value)

add (String name, long value)

This method adds a BigDecimal value to our
JSON object.

This method adds a BigInteger value to our
JSON object.

This method adds an array to our JSON object.
A JsonArrayBuilder implementation allows
us to create JSON arrays.

This method adds another JSON object to our
original JSON object (the property values for
JSON objects can be other JSON objects). The
added JsonObject implementation is built
from the provided JsonObjectBuilder
parameter.

This method adds another JSON object to our
original JSON object (the property values for
JSON objects can be other JSON objects).

This method adds a String value to our JSON
object.

This method adds a boolean value to our
JSON object.

This method adds a double value to our JSON
object.

This method adds an int value to our [SON
object.

This method adds a 1ong value to our JSON
object.

In all cases, the first parameter of the add () method corresponds to the name of the
property in our JSON object and the second parameter corresponds to the value of

the property.

[180]

Chapter 6

Parsing JSON data with the Model API

In the last section, we saw how to generate JSON data from our Java code with the
Model API. In this section, we will see how we can read and parse the existing JSON
data. The following code sample illustrates how to do this:

packagepackagenet .ensode.glassfishbook. jsonpobject;

//other imports omitted
importimportjavax.json.Json;
importimportjavax.json.JsonObject;
importimportjavax.json.JsonReader;
importimportjavax.json.JsonWriter;

@Named
@SessionScoped
public class JsonpBean implements Serializable(

private String jsonStr;

@Inject
private Customer customer;

public String parsedson() {
JsonObjectjsonObject;

try (JsonReaderjsonReader = Json.createReader (
new StringReader (jsonStr))) {
jsonObject = jsonReader.readObject();

customer.setFirstName (

jsonObject.getString ("firstName")) ;
customer.setLastName (

jsonObject.getString ("lastName")) ;
customer.setEmail (jsonObject.getString("email")) ;

return "display parsed_json";

}

//getters and setters omitted

[181]

JSON Processing with [SON-P

To parse an existing JSON string, we need to create a StringReader object, passing
a string object containing the JSON data to be parsed as a parameter. We then pass
the resulting stringReader instance to the static createReader () method of the
Json class. This method invocation will return an instance of JsonReader. We can
then obtain an instance of JsonoObject by invoking the readobject () method.

In our example, we used the getString () method to obtain the values for all the
properties in our JSON object; the first and only argument for this method is the
name of the property we wish to retrieve. Unsurprisingly, the return value is the
value of the property.

In addition to the getString () method, there are several other similar methods to
obtain the values of other types. The following table summarizes these methods:

JsonObject methods Description

get (Object key) This method returns an instance of a class
implementing the JsonValue interface.

getBoolean (String name) This method returns a boolean value
corresponding to the given key.

getInt (String name) This method returns an int value
corresponding to the given key.

getJsonArray (String name) This method returns the instance of a class
implementing the JsonArray interface that
corresponds to the given key.

getJsonNumber (String name) This method returns the instance of a class
implementing the JsonNumber interface that
corresponds to the given key.

getJsonObject (String name) This method returns the instance of a class
implementing the JsonObject interface that
corresponds to the given key.

getJsonString (String name) This method returns the instance of a class
implementing the JsonString interface that
corresponds to the given key.

getString (String Name) This method returns a String corresponding to
the given key.

In all cases, the string parameter of the method corresponds to the key name and
the return value is the JSON property value that we wish to retrieve.

[182]

Chapter 6

The JSON-P Streaming API

The JSON-P Streaming API allows the sequential reading of a JSON object from a
stream (a subclass of java.io.OutputStream, or a subclass of java.io.Writer).
It is faster and more memory efficient than the Model API. However, the tradeoff
is that it is more limited, since the JSON data needs to be read sequentially and we
cannot access specific JSON properties directly, the way the Model API allows.

Generating JSON data with the Streaming API

The JSON Streaming API has a JsonGenerator class that we can use to generate
JSON data and write it to a stream. This class has several overloaded write ()
methods which can be used to add properties and their corresponding values

to the generated JSON data.

The following code sample illustrates how to generate JSON data using the
Streaming API:

packagepackagenet .ensode.glassfishbook. jsonpstreaming;

//other imports omitted

import javax.json.Json;

import javax.json.stream.JsonGenerator;
import javax.json.stream.JsonParser;
import javax.json.stream.JsonParser.Event;

@Named
@SessionScoped
public class JsonpBean implements Serializable {

private String jsonStr;

@Inject
private Customer customer;

public String builddson()

StringWriterstringWriter = new StringWriter();
try (JsonGeneratorjsonGenerator =

Json.createGenerator (stringWriter)) {
jsonGenerator.writeStartObject ().
write("firstName", "Larry").
write("lastName", "Gates").
write("email", "lgates@example.com").
writeEnd() ;

[183]

JSON Processing with [SON-P

setJsonStr (stringWriter.toString()) ;
return "display json";

}

//getters and setters omitted

}

We create an instance of JsonGenerator by invoking the createGenerator () static
method of the Json class. The JSON-P Streaming API provides two overloaded
versions of the createGenerator () method; one takes an instance of a class that
extends java.io.Writer (such as StringWriter, which we used in our example),
and the other takes an instance of a class that extends java.io.OutputStream.

Before we can start adding properties to the generated JSON stream, we need to
invoke the writeStartObject () method on JsonGenerator. This method writes
the JSON start object character (represented by an opening curly brace ({) in JSON
strings) and returns another instance of JsonGenerator, allowing us to chain the
write () invocations to add properties to our JSON stream.

The write () method in JsonGenerator allows us to add properties to the JSON
stream that we generate. Its first parameter is a String corresponding to the name
of the property we add, and the second parameter is the value of the property.

In our example, we are adding only the string values to the JSON stream that we
create; however, we are not limited to strings. The JSON-P Streaming API provides
several overloaded write () methods that allow us to add several different types

of data to our JSON stream. The following table summarizes all of the available
versions of the write () method:

JsonGenerator write() methods Description

write (String name, BigDecimal This method writes a BigDecimal value to

value) our JSON stream.

write (String name, BigInteger This method writes a BigInteger value to

value) our JSON stream.

write (String name, JsonValue This method writes a JSON object to our

value) JSON stream (the property values for JSON
streams can be other JSON objects).

write (String name, String value) This method writes a String value to our
JSON stream.

write (String name, boolean value) This method writes a boolean value to our
JSON stream.

[184]

Chapter 6

JsonGenerator write() methods Description

write (String name, double value) This method writes a double value to our
JSON stream.

write (String name, int value) This method writes an int value to our
JSON stream.

write (String name, long value) This method writes a 1ong value to our
JSON stream.

In all cases, the first parameter of the write () method corresponds to the name
of the property we are adding to our JSON stream, and the second parameter
corresponds to the value of the property.

Once we are done adding properties to our JSON stream, we need to invoke the
writeEnd () method on dsonGenerator; this method adds the JSON end object
character (represented by a closing curly brace (}) in JSON strings).

At this point, our stream or reader is populated with the JSON data we generated;
what we do with it depends on our application logic. In our example, we simply
invoked the toString () method of our StringReader class to obtain the String
representation of the JSON data we created.

Parsing JSON data with the Streaming API

In the last section, we saw how to generate JSON data from our Java code with the
Streaming API. In this section, we will see how we can read and parse the existing
JSON data we receive from a stream. The following code sample illustrates how to
do this:

package net.ensode.glassfishbook.jsonpstreaming;

//other imports omitted

import javax.json.Json;

import javax.json.stream.JsonGenerator;
import javax.json.stream.JsonParser;

import javax.json.stream.JsonParser.Event;
@Named
@SessionScoped

public class JsonpBean implements Serializable {

private String jsonStr;

[185]

JSON Processing with [SON-P

@Inject
private Customer customer;

public String parsedson()
StringReaderstringReader = new StringReader (jsonStr) ;
JsonParserjsonParser = Json.createParser (stringReader) ;

Map<String, String> keyValueMap = new HashMap<>() ;
String key = null;
String value = null;

while (jsonParser.hasNext()) {
JsonParser.Event event = jsonParser.next();

if (event.equals(Event.KEY NAME)) ({
key = jsonParser.getString();

} else if (event.equals(Event.VALUE STRING)) {
value = jsonParser.getString();

}

keyValueMap.put (key, value);

}

customer.setFirstName (keyValueMap.get ("firstName")) ;
customer.setLastName (keyValueMap.get ("lastName")) ;
customer.setEmail (keyValueMap.get ("email")) ;

return "display parsed json";

}

//getters and setters omitted

}

The first thing we need to do in order to read JSON data using the Streaming API
is to create an instance of JsonParser by invoking the static createdsonParser ()
method on the Json class. There are two overloaded versions of the
createJsonParser () method; one takes an instance of a class that extends java.
io.InputStream, and the other takes an instance of a class that extends java.
io.Reader. In our example, we use the latter by passing an instance of java.
io.StringReader, which is a subclass of java.io.Reader.

The next step is to loop through the JSON data to obtain the data to be parsed. We
can achieve this by invoking the hasNext () method on Jsonparser, which returns
true if there is more data to be read and returns false otherwise.

[186]

Chapter 6

We then need to read the next piece of data in our stream. The JsonParser.next ()
method returns an instance of JsonParser.Event that indicates the type of data

we just read. In our example, we check only for key names (that is, "firstName",
"lastName", and "email") and the corresponding string values. We can check for the
type of data we just read by comparing the event returned by dsonparser.next ()
against several values defined in the Event enum defined in JsonParser.

The following table summarizes all of the possible constants that can be returned by
JsonParser.next ():

JsonParser Event constants Description

Event .START_OBJECT This constant indicates the start of a JSON object.
Event .END_OBJECT This constant indicates the end of a JSON object.
Event .START_ ARRAY This constant indicates the start of an array

Event .END_ARRAY This constant indicates the end of an array.

Event .KEY_NAME This constant indicates the name of a JSON property

that was read. We can obtain the key name by invoking
getString () on JsonParser.

Event .VALUE_TRUE This constant indicates that a boolean value of true
was read.

Event .VALUE FALSE This constant indicates that a boolean value of false
was read.

Event .VALUE_NULL This constant indicates that a null value was read.

Event . VALUE_NUMBER This constant indicates that a numeric value was read.

Event.VALUE STRING This constant indicates that a string value was read.

As shown in the example, the String values can be retrieved by invoking
getString () on JsonParser. Numeric values can be retrieved in several different
formats; the following table summarizes the methods in JsonParser that can be
used to retrieve numeric values:

JsonParser methods Description

getInt () This method retrieves the numeric value as int.
getLong () This method retrieves the numeric value as long.
getBigDecimal () This method retrieves the numeric value as an instance of

java.math.BigDecimal.

JsonParser also provides a convenience isIntegralNumber () method that returns
true if the numeric value can be safely cast to an int or a long type.

[187]

JSON Processing with [SON-P

What we do with the values we obtain from the stream depends on our application
logic. In our example, we place them in Map and then use the said Map to populate
a Java class.

Summary

In this chapter, we covered the Java API for JSON Processing (JSON-P). We covered
both major JSON-P's APIs: the Model API and the Streaming APL

We illustrated how to generate JSON data via JSON-P's Model AP, specifically the
JsonBuilder class. We also covered how to parse JSON data via JSON-P's Model
API via the JsonReader class.

Additionally, we explained how to generate JSON data via JSON-P's Streaming API
by employing the JsonGenerator class.

Lastly, we covered how to parse JSON data via JSON-P's Streaming API, specifically
via the JsonParser class.

In the next chapter, we will cover the Java API for WebSocket.

[188]

WebSockets

Traditionally, web applications have been developed using the request/response
model followed by the HTTP protocol. In this model, the request is always initiated
by the client and then the server returns a response back to the client.

There has never been any way for the server to send data to the client independently
(without having to wait for a request from the browser) until now. The WebSocket
protocol allows full-duplex, two-way communication between the client (browser)
and the server.

Java EE 7 introduces the Java API for WebSocket, which allows us to develop
WebSocket endpoints in Java. The Java API for WebSocket is a brand-new
technology in the Java EE Standard.

A socket is a two-way pipe that stays alive longer than a single

request. Applied to an HTML5-compliant browser, this would
i allow for continuous communication to or from a web server

without the need to load a new page (similar to AJAX).

In this chapter, we will cover the following topics:

* Developing WebSocket server endpoints
* Developing WebSocket clients in JavaScript

* Developing WebSocket clients in Java

Developing a WebSocket server endpoint

A WebSocket server endpoint is a Java class deployed to the application server that
handles WebSocket requests.

WebSockets

There are two ways in which we can implement a WebSocket server endpoint via
the Java API for WebSocket: either by developing an endpoint programmatically,
in which case we need to extend the javax.websocket .Endpoint class, or by
decorating Plain Old Java Objects (POJOs) with WebSocket-specific annotations.
The two approaches are very similar; therefore, we will be discussing only the
annotation approach in detail and briefly explaining the second approach, that is,
developing WebSocket server endpoints programmatically, later in this section.

In this chapter, we will develop a simple web-based chat application, taking full
advantage of the Java API for WebSocket.

Developing an annotated WebSocket server
endpoint

The following Java class code illustrates how to develop a WebSocket server
endpoint by annotating a Java class:

package net.ensode.glassfishbook.websocketchat.serverendpoint;

import
import
import
import
import
import
import
import

java.io.IOException;

java.util.logging.Level;

java.util.logging.Logger;

javax.
javax.
javax.
javax.
javax.

websocket
websocket
websocket

websocket.
websocket.

.OnClose;
.OnMessage;
.OnOpen;

Session;
server.ServerEndpoint;

@ServerEndpoint ("/websocketchat")
public class WebSocketChatEndpoint

private static final Logger LOG =

Logger .getLogger (WebSocketChatEndpoint.class

@OnOpen

public void connectionOpened () {

LOG.log (Level. INFO,

@OnMessage

"connection opened") ;

public synchronized void processMessage (Session session,
message)

LOG.log (Level. INFO,

{

"received message: {0}",

message) ;

.getName ()) ;

String

[190]

Chapter 7

try {
for (Session sess : session.getOpenSessions()) {

if (sess.isOpen()) {
sess.getBasicRemote () . sendText (message) ;

}
}

} catch (IOException ioe) {
LOG.log (Level .SEVERE, ioe.getMessage());

}

@OnClose
public void connectionClosed() {
LOG.log (Level.INFO, "connection closed");

}
}

The class-level @serverEndpoint annotation indicates that the class is a WebSocket
server endpoint. The URI (Uniform Resource Identifier) of the server endpoint

is the value specified within the parentheses following the annotation (which

is "/websocketchat" in this example) — WebSocket clients will use this URI to
communicate with our endpoint.

The @onOpen annotation is used to decorate a method that needs to be executed
whenever a WebSocket connection is opened by any of the clients. In our example,
we are simply sending some output to the server log, but of course, any valid server-
side Java code can be placed here.

Any method annotated with the @onMessage annotation will be invoked whenever
our server endpoint receives a message from a client. Since we are developing

a chat application, our code simply broadcasts the message it receives to all
connected clients.

In our example, the processMessage () method is annotated with @onMessage, and
takes two parameters: an instance of a class implementing the javax.websocket.
Session interface and a String parameter containing the message that was received.
Since we are developing a chat application, our WebSocket server endpoint simply
broadcasts the received message to all connected clients.

[191]

WebSockets

The getOpenSessions () method of the Session interface returns a set of session
objects representing all open sessions. We iterate through this set to broadcast
the received message to all connected clients by invoking the getBasicRemote ()
method on each session instance and then invoking the sendText () method on
the resulting RemoteEndpoint . Basic implementation returned by calling the
previous method.

The getOpenSessions () method on the session interface returns all the open
sessions at the time it was invoked. It is possible for one or more of the sessions to
have closed after the method was invoked; therefore, it is recommended to invoke the
isoOpen () method on a session implementation before attempting to return data back
to the client. An exception may be thrown if we attempt to access a closed session.

Finally, we need to decorate a method with the @onclose annotation in case we
need to handle the event when a client disconnects from the server endpoint. In
our example, we simply log a message into the server log.

There is one additional annotation that we didn't use in our example — the @onError
annotation; it is used to decorate a method that needs to be invoked in case there's
an error while sending or receiving data to or from the client.

As we can see, developing an annotated WebSocket server endpoint is
straightforward. We simply need to add a few annotations, and the application
server will invoke our annotated methods as necessary.

If we wish to develop a WebSocket server endpoint programmatically, we need

to write a Java class that extends javax.websocket . Endpoint. This class has the
onOpen (), onClose (), and onError () methods that are called at appropriate times
during the endpoint's life cycle. There is no method equivalent to the @onMessage
annotation to handle incoming messages from clients. The addMessageHandler ()
method needs to be invoked in the session, passing an instance of a class
implementing the javax.websocket .MessageHandler interface (or one of its
subinterfaces) as its sole parameter.

. In general, it is easier and more straightforward to develop annotated
% WebSocket endpoints compared to their programmatic counterparts.
s Therefore, we recommend that you use the annotated approach
whenever possible.

[192]

Chapter 7

Developing WebSocket clients

Most WebSocket clients are implemented as HTML5 web pages, taking advantage
of the JavaScript WebSocket API. As such, they must be accessed using an HTML5-
compliant web browser (most modern web browsers are HTML5 compliant).

The Java API for WebSocket provides a client API that allows us to develop WebSocket
clients as standalone Java applications. We will cover how to do this in a later section,
Developing WebSocket clients in Java.

Developing JavaScript client-side WebSocket
code

In this section, we will cover how to develop client-side JavaScript code to interact
with the WebSocket endpoint we developed in the previous section.

The client page for our WebSocket example is implemented as a JSF page using
HTML5-friendly markup (as explained in Chapter 2, JavaServer Faces).

Our client page consists of a text area where we can see what the users of our
application are saying (it is, after all, a chat application) and an input text we can
use to send a message to the other users, as shown in the following screenshot:

WebSocket

Firefox v J WebSocket Chat ﬂ +* |
4 | @ localhost: 8020

Larry: Hi there.

Bill: Hello WebSocket

World!
Chat Window
Type Something Here [Hithere. | [send |

| Exit |

[193]

WebSockets

The markup for our client page looks like the following:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE htmls>

<html xmlns="http://www.w3.0rg/1999/xhtml"xmlns:jsf="http://xmlns.jcp.
or

g/jst">
<head>
<title>WebSocket Chat</title>
<meta name="viewport" content="width=device-width"/>
<script type="text/javascript">
var websocket;
function init() {

websocket = new WebSocket ('ws://localhost:8080/
websocketchat/websocketchat!') ;

websocket.onopen = function(event) {
websocketOpen (event)

websocket.onmessage = function(event) {
websocketMessage (event)

websocket.onerror = function(event) {
websocketError (event)

}:

function websocketOpen (event) {
console.log("webSocketOpen invoked") ;

function websocketMessage (event) {
console.log("websocketMessage invoked") ;

document.getElementById('chatwindow') .value += '\r' +
event.data;

function websocketError (event) {
console.log("websocketError invoked") ;

function sendMessage() {
var userName =
document.getElementById('userName') .value;
var msg =

[194]

Chapter 7

document.getElementById('chatinput') .value;

websocket.send (userName + ": " + msg);
}
function closeConnection () {
websocket.close() ;

window.addEventListener ("load", init);
</script>
</head>
<body>
<form jsf:prependId="false">
<input type="hidden" id="userName" value="#
{user.userName}"/>
<table border="0">
<tbody>
<tr>
<td>
<label for="chatwindow"s>
Chat Window
</label>
</td>
<td>
<textArea id="chatwindow" rows="10"/>
</td>
</tr>
<tr>
<td>
<label for="chatinput"s>
Type Something Here
</label>
</td>
<td>
<input type="text" id="chatinput"/>

<input id="sendBtn" type="button" wvalue="Send"

onclick="sendMessage()"/>
</td>
</tr>
<tr>
<td></td>
<td>

<input type="button" id="exitBtn" value="Exit"

onclick="closeConnection()"/>

[195]

WebSockets

</td>
</tr>
</tbody>
</table>
</form>
</body>
</html>

The last line of our JavaScript code (window.addEventListener ("load", init) ;)
sets our JavaScript init () function to be executed as soon as the page loads.

Within the init () method, we initialize a new JavaScript websocket object, passing
the URI of our server endpoint as a parameter. This tells our JavaScript code the
location of our server endpoint.

The JavaScript websocket object has a number of function types used to handle
different events, such as opening the connection, receiving a message, and handling
errors. We need to set these types to our own JavaScript functions so that we can
handle these events, which is what we do in our init () method right after invoking
the constructor for the JavaScript websocket object. In our example, the functions we
assigned to the websocket object simply delegate their functionality to standalone
JavaScript functions.

Our websocketOpen () function is called every time the WebSocket connection is
opened. In our example, we simply send a message to the browser's JavaScript console.

The webSocketMessage () function is invoked every time the browser receives a
WebSocket message from our WebSocket endpoint. In our example, we updated the
contents of the text area whose id is chatWindow and the contents of the message.

The websocketError () function is called every time there is a WebSocket-related
error. In our example, we simply send a message to the browser's JavaScript console.

The JavaScript sendMessage () function sends a message to the WebSocket
server endpoint, containing both the username and the contents of the text input
whose id is chatinput. This function is called when the user clicks on the button
whose id is sendBtn.

The closeConnection () JavaScript function closes the connection to our WebSocket
server endpoint. This function is called when the user clicks on the button whose id
is exitBtn.

As we can see from this example, writing client-side JavaScript code to interact with
WebSocket endpoints is fairly straightforward.

[196]

Chapter 7

Developing WebSocket clients in Java

Although developing web-based WebSocket clients is currently the most common
way of developing WebSocket clients, the Java API for WebSocket provides a client
API that we can use to develop WebSocket clients in Java.

In this section, we will be developing a simple WebSocket client using the client
API of the Java API for WebSocket. The final product looks as shown in the
following screenshot:

Enter a user name and click "Set User Name" to begin.
User Name Scott Set User Name

"

Chat Window Larry: Hi there,
Bill: Hello wWebSocket World

Scott: Java WebSocket clients arefy

1& J 'P‘

Type Something Here Java WebSocket clients are cool. Send

However, we won't be covering the GUI code in this section (developed using the
Swing framework), since it is not relevant to this discussion. The complete code for
the example, including the GUI code, can be downloaded from the Packt Publishing
website at www.packtpub. com.

Just as with WebSocket server endpoints, Java WebSocket clients can be developed
either programmatically or using annotations. Once again, we will cover only the
annotation approach: developing a programmatic client is very similar to the way
programmatic server endpoints are developed, that is, programmatic clients must
extend javax.websocket .Endpoint and override the appropriate methods.

Without further ado, the following is the code for our Java WebSocket client:

package net.ensode.websocketjavaclient;

import java.io.IOException;

import java.net.URI;

import java.net.URISyntaxException;

import javax.websocket.ClientEndpoint;
import javax.websocket.CloseReason;

import javax.websocket.ContainerProvider;
import javax.websocket.DeploymentException;
import javax.websocket.OnClose;

[197]

WebSockets

import
import
import
import
import

javax.
javax.
javax.
javax.
javax.

websocket
websocket
websocket

websocket.

websocket

@ClientEndpoint
public class WebSocketClient {

.OnError;
.OnMessage;
.OnOpen;

Session;

.WebSocketContainer;

private String userName;
private Session session;
private final WebSocketJavaClientFrame webSocketJavaClientFrame;

public WebSocketClient (WebSocketJavaClientFrame
webSocketJavaClientFrame) {
this.webSocketJavaClientFrame = webSocketJavaClientFrame;

try {
WebSocketContainer webSocketContainer =
ContainerProvider.getWebSocketContainer () ;

webSocketContainer.connectToServer (this, new URI (
"ws://localhost:8080/websocketchat/websocketchat")) ;

}

catch (DeploymentException | IOException | URISyntaxException
ex) {
ex.printStackTrace () ;

@OnOpen

public void onOpen(Session session)
System.out.println ("onOpen () invoked") ;
this.session = session;

@OnClose
public void onClose (CloseReason closeReason)

System.out.println ("Connection closed, reason: "+
closeReason.getReasonPhrase()) ;

@OnError
public void onError (Throwable throwable)
System.out.println ("onError () invoked") ;

[198]

Chapter 7

throwable.printStackTrace () ;

}

@OnMessage
public void onMessage (String message, Session session) {
System.out.println ("onMessage () invoked") ;

webSocketJavaClientFrame.getChatWindowTextArea () .
setText (webSocketJavaClientFrame.getChatWindowTextArea ()
.getText () + "\n" + message) ;

}

public void sendMessage (String message) {

try {
System.out.println ("sendMessage () invoked, message = " +
message) ;
session.getBasicRemote () .sendText (userName + ": " +

message) ;

}

catch (IOException ex) {
ex.printStackTrace () ;

}

public String getUserName () {
return userName;

}

public void setUserName (String userName)
this.userName = userName;

}

The class-level @ClientEndPoint annotation denotes that our class is a WebSocket
client —all Java WebSocket clients must be annotated with this annotation.

The code to establish a connection to the WebSocket server endpoint is

in our class constructor. First, we need to invoke ContainerProvider.
getWebSocketContainer () to obtain an instance of javax.websocket .
WebSocketContainer. We then establish a connection by invoking the
connectToServer () method on our WebSocketContainer instance; then we pass
a class annotated with @ClientEndpoint as the first parameter (we use this in our
example since the connection code is within our WebSocket Java client code); and
then we pass a URI object containing the WebSocket server endpoint URI as the
second parameter.

[199]

WebSockets

After the connection is established, we are ready to respond to WebSocket events.
Alert readers may have noticed that the exact same annotations we used to develop
our server endpoint are used again in our client code.

Any method annotated with the @onopen annotation will be invoked automatically
when the connection to the WebSocket server endpoint is established. The method
must return void and can have an optional parameter of the type javax.websocket.
Session. In our example, we send some output to the console and initialize a class
variable with the Session instance, which we received as a parameter.

Methods annotated with the @onclose annotation are invoked whenever the
WebSocket session is closed. The annotated method can have optional parameters
of the types javax.websocket.Session and CloseReason. In our example, we
chose to use only the closeReason optional parameter since its class has a handy
getReasonPhrase () method that provides a short explanation of why the session
was closed.

The eonError annotation is used to decorate any methods that are called when an
error occurs. Methods annotated with @onError must have a parameter of type
java.lang.Throwable (the parent class of java.lang.Exception), and can have an
optional parameter of type Session. In our example, we simply send the stack trace
of the Throwable parameter to stderr.

Methods annotated with @onMessage are invoked every time an incoming
WebSocket message is received. The @onMessage methods can have different
parameters depending on the type of message received and how we wish to handle
it. In our example, we used the most common case: receiving a text message. In
this particular case, we need a string parameter that will hold the contents of the
message, and an optional Session parameter.

Refer to the JavaDoc documentation for @0nMessage, available

athttp://docs.oracle.com/javaee/7/api/javax/
Ze— websocket/OnMessage.html for information on how to handle
other types of messages.

In our example, we simply update the Chat Window text area, appending the
received message to its contents.

To send a WebSocket message, we invoke the getBasicRemote () method on

our Session instance, then invoke the sendText () method on the resulting
RemoteEndpoint .Basic implementation returned by this call (if this looks familiar,
it is because we did the exact same thing in the WebSocket server endpoint code).
In our example, we do this in the sendMessage () method.

[200]

Chapter 7

Additional information about the Java
API for WebSocket

In this chapter, we covered the bulk of the functionality provided by the Java API
for WebSocket. For additional information, refer to the user guide for Tyrus, the
Java API for WebSocket reference implementation, at https://tyrus.java.net/
documentation/1.3.1/user-guide.html.

Summary

In this chapter, we covered the Java API for WebSocket, which is a new Java EE API
to develop WebSocket server endpoints and clients.

We first saw how to develop WebSocket server endpoints by taking advantage
of the Java API for WebSockets. We focused on developing annotation-based
WebSocket endpoints.

Then, we covered how to develop web-based WebSocket clients using JavaScript
and the JavaScript built-in WebSocket AP

Finally, we explained how to develop WebSocket client applications in Java via
the eclientEndpoint annotation.

In the next chapter, we will cover the Java Message Service (JMS).

[201]

The Java Message Service

The Java Message Service (JMS) API provides a mechanism for Java EE applications
to send messages to each other. Java EE 7 introduces JMS 2.0, a new version of JMS that
greatly simplifies the development of applications involving messaging functionality.

JMS applications do not communicate directly; instead, message producers send
messages to a destination, and message consumers receive that message from
the destination.

The message destination is a message queue when the Point-to-Point (PTP)
messaging domain is used, and a message topic when the Publish/Subscribe
(pub/sub) messaging domain is used.

In this chapter, we will cover the following topics:

* Setting up GlassFish for J]MS
* Working with message queues

* Working with message topics

Setting up GlassFish for JMS

Before we can start writing code to take advantage of the JMS API, we need
to configure some GlassFish resources. Specifically, we need to set up a JMS
Connection Factory, a message queue, and a message topic.

The Java Message Service

Java EE 7 requires all compliant application servers to provide a default
JMS connection factory. GlassFish, which is a fully compliant Java EE 7
application server (and the Java EE 7 reference implementation), complies
L= with this requirement; so strictly speaking, we don't really need to set up
a connection factory, however, in many cases we may need to set one up.
Therefore, in the following section we illustrate how set up can be done.

Setting up a JMS connection factory

The easiest way to set up a JMS connection factory is via GlassFish's web console.
Recall from Chapter 1, Getting Started with GlassFish, that the web console can

be accessed by starting our domain by entering the following command in the
command line:

asadmin start-domain domainl

Then, go to http://localhost:4848 and log in.

JMS Connection Factories

* [Modes 3

. Applications Java Message Service (JMS) connection factories are objects that allow an application to create other JMS objects
E programmatically. Click Mew to create a new connection factory. Click the name of a connection factory to modify its
-:. Lifecycle Modules properties.

[!' Monitoring Data
v |_§ Resources

o o o

¥ [@ Concurrent Resources (|87 (8] | [smewsss| | Detete | | Enable || Disable

» [[@) Context Services

- Ma Thread Factories 3ele:t| JNDI Name Logical JNDI Name | Enabled | Resource Type

L Managed Executor Services

L4 Managed Scheduled Executor Servic
* & Connectors
» g JDBC
v g% JMS Resources

* [[) Connection Factories

ﬂ ms/__defaultConnectionFactory
+ [Destination Resources

O jms/__defaultConnectionFactory - java:comp/Default)MSConnectionFactory v Javax.jms.ConnectionFactory|

[204]

Chapter 8

A connection factory can be added by expanding the Resources node in the tree to
the left-hand side of the web console; to do this, expand the JMS Resources node,
click on the Connection Factories node, and then click on the New... button in the
main area of the web console.

factory and a connector resourc

General Settings

New JMS Connection Factory

The creation of a new Java Message
e

JNDIName: * [jms/GlassFishBookConnectionFactory

Pool Settings

Initial and Minimum Pool Size:

Maximum Pool Size:

Pool Resize Quantity:

Idle Timeout:

Manx Wait Time:

On Any Failure:

Transaction Support:

Connection Validation:

Resource Type: | javax jms.ConnectionFactory i
Description:
Status: 3| Enabled

1 Connections

Minimum and initial number of connections maintained in the pool
250 Connections

Maximum number of connections that can be created to satisfy client requests
2 Connections

Number of connections to be removed when pool idle timeout expires
300 Seconds

Maximum time that connection can remain idle in the pool

&0000 Milliseconds
Amount of time caller waits before connection timeout is sent

[7] Close All Connections

Close all connections and reconnect on failure, otherwise reconnect anly when
used

Level of transaction support. Ovenwrite the transaction support attribute in the
Resource Adapter in a downward compatible way.
[Required

Validate connections, allow server to reconnect in case of failure

—

Service (JMS) connection factory also creates a connector connection pool for the

For our purposes, we can maintain most of the defaults; the only thing we need to
do is enter a pool name in the JNDI Name field and pick a resource type for our

connection factory.

» Itis always a good idea to use a pool name starting with "jms/" when
naming JMS resources. This way, JMS resources can be easily identified

when browsing a JNDI tree.

[205]

The Java Message Service

In the field labeled JNDI Name, enter jms/GlassFishBookConnectionFactory. Our
code examples later in this chapter will use this JNDI name to obtain a reference to
this connection factory.

The Resource Type dropdown has the following three options:

* javax.jms.TopicConnectionFactory: This option is used to create a
connection factory that creates JMS topics for JMS clients using the
pub/sub messaging domain

* javax.jms.QueueConnectionFactory: This option is used to create a
connection factory that creates JMS queues for JMS clients using the PTP
messaging domain

* javax.jms.ConnectionFactory: This option is used to create a connection
factory that creates either JMS topics or JMS queues

For our example, we will select javax.jms.ConnectionFactory; this way, we can use
the same connection factory for all of our examples, those using the PTP messaging
domain and the pub/sub messaging domain.

After entering the pool name in the JNDI Name field for our connection factory,
selecting a connection factory type, and optionally entering a description for our
connection factory, we need to click on the OK button for the changes to take effect.

We should then see our newly created connection factory (jms/
GlassFishBookConnectionFactory) listed in the main area of the GlassFish web
console, as shown in the following screenshot:

JMS Connection Factories
Java Message Service (JMS) connection factories are objects that allow an application to create other JMS objects programmatically. Click
MNew to create a new connection factory. Click the name of a connection factory to modify its properties.
Connection Factories (2)
|e¥) (g J m Delete Enable Disable
8eler:t| JNDI Name 4y | Logical JNDI Name 3 | Enabled +, | Resource Type * | Descri
O jms/__defaultConnectionFactory java:comp/Default)M SConnectionFactory | v javax.jms.ConnectionFactory
[[] | jms/GlassFishBookConnectionFactory v javax.jms.ConnectionFactory

[206]

Chapter 8

Setting up a JMS queue

A JMS queue can be added by going through the following steps:

1. Expand the Resources node in the tree at the left-hand side of the web console.

2. Enter a value in the JNDI Name field.
3. Enter a value in the Physical Destination Name field.
4. Select javax.jms.Queue in the Resource Type field.
5. Click on the OK button.
New JMS Destination Resource [[ok |

The creation of a new Java Message Service (JMS) destination resource also creates an admin object resource.

JNDI Name: " ims/GlassFishBookQueue

Physical Destination Name * | GlassFishBookQueue

Destination name in the Message Queue broker. If the destination does not exist, it will be created automatically when
needed.

Resource Type: "

Description:

Status: [£l| Enabled

Additional Properties (0)
Delete Properties

Select | Name | Value | Description
Mo items found.

In our example, the JNDI name of the message queue is jms/GlassFishBookQueue.
The resource type for message queues must be javax.jms.Queue. Additionally, a
value must be entered in the Physical Destination Name field. In our example, we
use GlassFishBookQueue as the value for this field.

After clicking on the OK button, we should see the newly created queue, as shown
in the following screenshot:

JMS Destination Resources

JMS destinations serve as the repositories for messages. Click New to create a new destination resource. Click the name of a destination resource to
modify its properties.

lev| 8) Mewwss| | Delete || Enable | | Disable

Select | JNDI Name Enabled Resource Type Description
O jms/GlassFishBookQueus 4 javax jms.Queue

[207]

The Java Message Service

Setting up a JMS topic
Setting up a JMS topic in GlassFish is very similar to setting up a message queue.
Perform the following steps:

1. Expand the JMS Resources node.
Click on the Destination node.
Click on the New... button in the main area of the web console.

Enter a name for our topic in the JNDI Name field.

ARSI

Enter a physical destination name for our topic in the Physical Destination
Name field.

Select javax.jms.Topic from the Resource Type dropdown.

e

Click on the OK button, shown in the following screenshot:

New JMS Destination Resource [[ok |

The creation of a new Java Message Service (JMS) destination resource also creates an admin object resource.

JNDI Name: ims/GlassFishBookTopic

Physical Destination Name * | GlassFishBookTopid]
Destination name in the Message Queue broker. If the destination does not exist, it will be created automatically when
needed.

Resource Type: " javax jms. Topic j

Description:

Status: |£l| Enabled

Additional Properties (0)

Delete Properties

|Seler:l | Name | Value | Description
Mo items found.

Our examples will use jms/GlassFishBookTopic in the JNDI Name field. Since this
is a message topic, Resource Type must be set to javax. jms.Topic. The Description
field is optional. The Physical Destination Name property is required; for our
example, we will use GlassFishBookTopic as the value for this property.

[208]

Chapter 8

After clicking on the OK button, we can see our newly created message topic
as follows:

JMS Destination Resources

JMS destinations serve as the repositories for messages. Click New to create a new destination resource. Click the name of a destination resource to

modify its properties.

Destination Resources (2)

AR m Delete || Enable | | Disable

Select | JNDI Name +, | Enabled + | Resource Type + | Description 4
[[] | jms/GlassFishBookQueue v javax jms Queue
[T | jms/GlassFishBookTopic v javax jms Topic

Now that we have set up a connection factory, a message queue, and a message
topic, we are ready to start writing code using the JMS APL

Working with message queues

Like we mentioned earlier, message queues are used when our JMS code uses the
Point-To-Point (PTP) messaging domain. For the PTP messaging domain, there is
usually one message producer and one message consumer. The message producer
and the message consumer don't need to be running concurrently in order to
communicate. The messages placed in the message queue by the message producer
will stay there until the message consumer executes and requests for the messages
from the queue.

Sending messages to a message queue

Sending messages to a JMS queue consists of injecting a few resources to our code
and making a few simple JMS API calls.

The following example illustrates how to add messages to a message queue:

package net.ensode.glassfishbook;

import javax.annotation.Resource;
import javax.jms.ConnectionFactory;
import javax.jms.JMSContext;

import javax.jms.JMSProducer;
import javax.jms.Queue;

public class MessageSender {

[209]

The Java Message Service

@Resource (mappedName = "jms/GlassFishBookConnectionFactory")
private static ConnectionFactory connectionFactory;

@Resource (mappedName = "jms/GlassFishBookQueue")
private static Queue queue;

public void produceMessages ()

JMSContext jmsContext = connectionFactory.createContext () ;
JMSProducer jmsProducer = jmsContext.createProducer () ;

String msgl

"Testing, 1, 2, 3. Can you hear me?";

String msg2 "Do you copy?";

String msg3 "Good bye!";

System.out.println("Sending the following message: "
+ msgl) ;

jmsProducer.send (queue, msgl);

System.out.println("Sending the following message: "
+ msg2) ;

jmsProducer.send (queue, msg2);

System.out.println("Sending the following message: "
+ msg3) ;

jmsProducer.send (queue, msg3);

public static void main(String[] args) {
new MessageSender () .produceMessages () ;

}

Before delving into the details of our code, alert readers may have noticed that

the MessageSender class is a standalone Java application, since it contains a main
method. Since this class is standalone, it is executed outside of the application server;
yet, we can see that some resources are injected into it, specifically the connection
factory object and the queue. The reason we can inject resources into this code even
though it runs outside the application server is because GlassFish includes a utility
called appclient.

This utility allows us to "wrap" an executable JAR file and allow it to have access to
the application server resources. To execute our code, assuming it is packaged in an
executable JAR file called jmsptpproducer.jar, we would type the following in the
command line:

appclient -client jmsptpproducer.jar

[210]

Chapter 8

We would then see, after some GlassFish log entries, the following output on
the console:

Sending the following message: Testing, 1, 2, 3. Can you hear me?
Sending the following message: Do you copy?

Sending the following message: Good bye!

The appclient executable script can be found under [GlassFish installation
directoryl /glassfish/bin; our example assumes that this directory is in the PATH
variable and if it isn't, the complete path to the appclient script must be typed in
the command line.

With that out of the way, we can now explain the code.

The produceMessages () method performs all the necessary steps to send messages
to a message queue.

The first thing this method does is create an instance of javax.jms.JMSContext

by invoking the createContext () method on the injected instance of javax.

jms . ConnectionFactory. Notice that the mappedName attribute of the @Resource
annotation decorating the connection factory object matches the JNDI name of the
connection factory we set up in the GlassFish web console. Behind the scenes, a JNDI
lookup is made using this name to obtain the connection factory object.

Next, we create an instance of javax.jms.JMSProducer by invoking the
createProducer () method on the dMSContext instance we just created.

After obtaining an instance of JMsProducer, the code sends a series of text messages
by invoking its send () method; this method takes the message destination as its first
parameter, and a string containing the message text as its second parameter.

There are several overloaded versions of the send () method in JMSProducer; the
one we used in our example is a convenience method that creates an instance of
javax.jms.TextMessage and sets its text to the string we provide as the second
parameter in the method invocation.

Although our example sends only text messages to the queue, we are not limited to
sending only this type of message. The JMS API provides several types of messages
that can be sent and received by JMS applications. All message types are defined as
interfaces in the javax.jms package.

[211]

The Java Message Service

The following table lists all of the available message types:

Message Type Description

BytesMessage Allows sending an array of bytes as a message. JMSProducer
has a convenience send () method that takes an array of bytes as
one of its parameters; this method creates an instance of javax.
jms.BytesMessage on the fly as the message is being sent.

MapMessage Allows sending an implementation of java.util.Map asa
message. JMSProducer has a convenience send () method
that takes a Map as one of its parameters; this method creates an
instance of javax.jms .MapMessage on the fly as the message is
being sent.

ObjectMessage Allows sending any Java object implementing java.
io.Serializable as a message. JMSProducer has a
convenience send () method that takes an instance of a class
implementing java.io.Serializable as its second parameter;
this method creates an instance of javax.jms.ObjectMessage
on the fly as the message is being sent.

StreamMessage Allows sending an array of bytes as a message. Differs from
BytesMessage in that it stores the type of each primitive type
added to the stream.

TextMessage Allows sending java.lang.String as a message. As seen in

our example, JMSProducer has a convenience send () method
that takes String type as its second parameter; this method
creates an instance of javax.jms.TextMessage on the fly as
the message is being sent.

For more information on all J]MS message types, consult their JavaDoc
documentation at http://docs.oracle.com/javaee/7/api/.

Retrieving messages from a message queue

Of course, there is no point in sending messages from a queue if nothing is going to
receive them. The following example illustrates how to retrieve messages from a JMS
message queue:

package net.ensode.glassfishbook;
import javax.annotation.Resource;

import javax.jms.ConnectionFactory;
import javax.jms.JMSConsumer;

[212]

Chapter 8

import javax.jms.JMSContext;
import javax.jms.Queue;

public class MessageReceiver {

@Resource (mappedName = "jms/GlassFishBookConnectionFactory")
private static ConnectionFactory connectionFactory;
@Resource (mappedName = "jms/GlassFishBookQueue")

private static Queue queue;

public void getMessages ()
String message;
boolean goodByeReceived = false;

JMSContext jmsContext = connectionFactory.createContext();
JMSConsumer jMSConsumer = jmsContext.createConsumer (queue) ;

System.out.println("Waiting for messages...");
while (!goodByeReceived) {
message = jMSConsumer.receiveBody (String.class);

if (message != null) {
System.out.print ("Received the following message: ") ;
System.out.println (message) ;
System.out.println() ;
if (message.equals ("Good bye!")) ({
goodByeReceived = true;

public static void main(String[] args) {
new MessageReceiver () .getMessages|() ;

}

Just like in the previous example, an instance of javax.jms.ConnectionFactory
and an instance of javax.jms.Queue are injected using the @Resource annotation.

In our code, we get an instance of javax.jms.JMSContext by invoking the
createContext () method of ConnectionFactory, just like in the previous example.

In this example, we obtain an instance of javax.jms.JMSConsumer by calling the
createConsumer () method on our JMSContext instance.

[213]

The Java Message Service

Messages are received by invoking the receiveBody () method on our instance of
JgMsConsumer. This method takes the type of the message we are expecting as its sole
parameter (String.class in our example). This method returns an object of the type
specified in its parameter (an instance of java.lang.String in our example).

In this particular example, we placed this method call in a while loop since we

are expecting a message that will let us know that no more messages are coming.
Specifically, we are looking for a message containing the text "Good bye!". Once we
receive that message, we break out of the loop and continue with further processing.
In this particular case, there is no more processing left to do, therefore, execution
ends after we break out of the loop.

Just like in the previous example, using the appclient utility allows us to inject
resources into the code and prevents us from having to add any libraries to the
CLASSPATH. After executing the code through the appclient utility, we should
see the following output in the command line:

appclient -client target/jmsptpconsumer.jar
Waiting for messages...

Received the following message: Testing, 1, 2, 3. Can you hear me?
Received the following message: Do you copy?

Received the following message: Good bye!

The previous example placed some messages on the queue. This example retrieves
the messages. If the previous example has not been executed yet, then there are no
messages to retrieve.

Asynchronously receiving messages from
a message queue

The gMSConsumer . receiveBody () method has a disadvantage: it blocks execution
until a message is received from the queue. We worked around this limitation in our
previous example by breaking out of the loop once we received a specific message
("Good bye!™).

We can prevent our JMS consumer code from blocking execution by receiving
messages asynchronously via an implementation of the javax.jms.
MessageListener interface.

[214]

Chapter 8

The javax.jms.MessageListener interface contains a single method called
onMessage, it takes an instance of a class implementing the javax.jms.Message
interface as its sole parameter. The following example illustrates a typical
implementation of this interface:

package net.ensode.glassfishbook;

import javax.jms.JMSException;
import javax.jms.Message;

import javax.jms.MessageListener;
import javax.jms.TextMessage;

public class ExampleMessagelistener implements Messagelistener

@Override
public void onMessage (Message message)
TextMessage textMessage = (TextMessage) message;

try {
System.out.print ("Received the following message: ") ;
System.out.println (textMessage.getText ()) ;
System.out.println() ;

} catch (JMSException e) ({
e.printStackTrace () ;

}

In this case, the onMessage () method simply outputs the message text to the
console. Recall that behind the scenes, the JMS API creates instances of javax.jms.
TextMessage when we invoke JMSProducer.send () with a String as its second
parameter; our MessageListener implementation casts the Message instance it
receives as a parameter to TextMessage, and then gets the String message sent by
the JMSProducer variable, invoking its getText () method.

Our main code can now delegate message retrieval to our custom MessageListener
implementation:

package net.ensode.glassfishbook;

import javax.annotation.Resource;
import javax.jms.ConnectionFactory;
import javax.jms.JMSConsumer;
import javax.jms.JMSContext;

[215]

The Java Message Service

import javax.jms.Queue;
public class AsynchMessReceiver

@Resource (mappedName = "jms/GlassFishBookConnectionFactory")
private static ConnectionFactory connectionFactory;
@Resource (mappedName = "jms/GlassFishBookQueue")

private static Queue queue;

public void getMessages ()
try {
JMSContext jmsContext = connectionFactory.createContext () ;
JMSConsumer jMSConsumer = jmsContext.createConsumer (queue) ;

jMSConsumer.setMessageListener (
new ExampleMessageListener()):;

System.out.println ("The above line will allow the "
+ "Messagelistener implementation to "
+ "receiving and processing messages"
+ " from the queue.");
Thread.sleep(1000) ;
System.out.println ("Our code does not have to block "
+ "while messages are received.");
Thread.sleep(1000) ;
System.out.println ("It can do other stuff "
+ " (hopefully something more useful than sending "
+ "silly output to the console. :)");
Thread.sleep(1000) ;

} catch (InterruptedException e) ({
e.printStackTrace () ;

public static void main(String[] args) {
new AsynchMessReceiver () .getMessages() ;

[216]

Chapter 8

The only relevant difference between this example and the one in the previous
section is that in this case, we are calling the setMessageListener () method on
the instance of javax.jms.JMSConsumer obtained from the JMS context. We pass
an instance of our custom implementation of javax.jms.MessageListener to
this method; its onMessage () method is automatically called whenever there is a
message waiting in the queue. Using this approach, the main code does not block
execution while it is waiting to receive messages.

Executing the preceding example (using, of course, GlassFish's appclient utility),
results in the following output:

appclient -client target/jmsptpasynchconsumer.jar

The above line will allow the MessagelListener implementation to receive
and process messages from the queue.

Received the following message: Testing, 1, 2, 3. Can you hear me?
Received the following message: Do you copy?

Received the following message: Good bye!

Our code does not have to block while messages are received.

It can do other stuff (hopefully something more useful than sending silly
output to the console. :)

Notice how the messages were received and processed while the main thread

was executing. We can tell that this is the case because the output of our
MessageListener class' onMessage () method can be seen between calls to System.
out.println() in the primary class.

Browsing message queues

JMS provides a way to browse message queues without actually removing the
messages from the queue. The following example illustrates how to do this:

package net.ensode.glassfishbook;
import java.util.Enumeration;

import javax.annotation.Resource;
import javax.jms.ConnectionFactory;

[217]

The Java Message Service

import javax.jms.JMSContext;
import javax.jms.JMSException;
import javax.jms.Queue;

import javax.jms.QueueBrowser;
import javax.jms.TextMessage;

public class MessageQueueBrowser

@Resource (mappedName = "jms/GlassFishBookConnectionFactory")
private static ConnectionFactory connectionFactory;
@Resource (mappedName = "jms/GlassFishBookQueue")

private static Queue queue;

public void browseMessages () {
try {
Enumeration messageEnumeration;
TextMessage textMessage;
JMSContext jmsContext = connectionFactory.createContext () ;
QueueBrowser browser = jmsContext.createBrowser (queue) ;

messageEnumeration = browser.getEnumeration() ;

if (messageEnumeration != null)
if (!messageEnumeration.hasMoreElements()) {
System.out.println("There are no messages "
+ "in the queue.");
} else {
System.out.println (
"The following messages are "
+ "in the queue");
while (messageEnumeration.hasMoreElements()) {

textMessage = (TextMessage)
messageEnumeration.nextElement () ;

System.out.println (textMessage.getText());

}

} catch (JMSException e) ({
e.printStackTrace() ;

public static void main(String[] args) {
new MessageQueueBrowser () .browseMessages () ;

[218]

Chapter 8

As we can see, the procedure to browse messages in a message queue is
straightforward. We obtain a JMS connection factory, a JMS queue, and a JMS context
in the usual way, and then invoke the createBrowser () method on the JMS context
object. This method returns an implementation of the javax. jms.QueueBrowser
interface, containing a getEnumeration () method that we can invoke to obtain an
Enumeration containing all messages in the queue. To examine the messages in the
queue, we simply traverse this enumeration and obtain the messages one by one. In
our example, we simply invoked the getText () method of each message in the queue.

Working with message topics

Message topics are used when our JMS code uses the Publish/Subscribe (pub/sub)
messaging domain. When using this messaging domain, the same message can be
sent to all subscribers of a topic.

Sending messages to a message topic

Sending messages to a JMS topic is very similar to sending messages to a queue;
simply inject the required resources and make some simple JMS API calls.

The following example illustrates how to send messages to a message topic:

package net.ensode.glassfishbook;

import javax.annotation.Resource;
import javax.jms.ConnectionFactory;
import javax.jms.JMSContext;

import javax.jms.JMSProducer;
import javax.jms.Topic;

public class MessageSender

@Resource (mappedName = "jms/GlassFishBookConnectionFactory")
private static ConnectionFactory connectionFactory;
@Resource (mappedName = "jms/GlassFishBookTopic")

private static Topic topic;

public void produceMessages ()
JMSContext jmsContext = connectionFactory.createContext () ;
JMSProducer jmsProducer = jmsContext.createProducer () ;

[219]

The Java Message Service

String msgl "Testing, 1, 2, 3. Can you hear me?";

String msg2

"Do you copy?";

String msg3 "Good bye!";

System.out.println("Sending the following message: "
+ msgl) ;

jmsProducer.send (topic, msgl);

System.out.println("Sending the following message: "
+ msg2) ;

jmsProducer.send (topic, msg2);

System.out.println("Sending the following message: "
+ msg3) ;

jmsProducer.send (topic, msg3) ;

public static void main(String[] args) {
new MessageSender () .produceMessages () ;

}

As we can see, this example is nearly identical to the MessageSender class we saw
when we discussed Point-To-Point messaging. As a matter of fact, the only lines of
code that are different are those that are highlighted. The JMS API was designed this
way so that application developers do not have to learn two different APIs for the
PTP and pub/sub domains.

Since the code is nearly identical to the corresponding example in the Working with
message queues section, we will only explain the differences between the two examples.
In this example, instead of declaring an instance of a class implementing javax.jms.
Queue, we declare an instance of a class implementing javax.jms.Topic. We will then
pass this instance of javax.jms. Topic as the first parameter of the send () method of
our JMSProducer object, along with the message we wish to send.

Receiving messages from a message topic

Just as sending messages to a message topic is nearly identical to sending messages
to a message queue, receiving messages from a message topic is nearly identical to
receiving messages from a message queue, as can be seen in the following example:

package net.ensode.glassfishbook;

import javax.annotation.Resource;
import javax.jms.ConnectionFactory;

[220]

Chapter 8

import javax.jms.JMSConsumer;
import javax.jms.JMSContext;
import javax.jms.Topic;

public class MessageReceiver {

@Resource (mappedName = "jms/GlassFishBookConnectionFactory")
private static ConnectionFactory connectionFactory;
@Resource (mappedName = "jms/GlassFishBookTopic")

private static Topic topic;

public void getMessages () {
String message;
boolean goodByeReceived = false;

JMSContext jmsContext = connectionFactory.createContext () ;
JMSConsumer jMSConsumer = jmsContext.createConsumer (topic);

System.out.println("Waiting for messages...");
while (!goodByeReceived) {
message = jMSConsumer.receiveBody (String.class);

if (message != null) {
System.out.print ("Received the following message: ") ;
System.out.println (message) ;
System.out.println() ;
if (message.equals ("Good bye!")) ({
goodByeReceived = true;

public static void main(String[] args) {
new MessageReceiver () .getMessages|() ;

}

Once again, the differences between this code and the corresponding code for PTP
messaging are simple. Instead of declaring an instance of a class implementing
javax.jms.Queue, we declare a class implementing javax.jms.Topic. We use

the @rResource annotation to inject an instance of this class into our code using the
JNDI name we used when creating it in the GlassFish web console. We then obtain
an instance of JMSContext and JMSConsumer as we did before, and then receive the
messages from the topic by invoking the receiveBody () method on JMSConsumer.

[221]

The Java Message Service

Using the pub/sub messaging domain as illustrated in this section has the advantage
that messages can be sent to several message consumers. This can be easily tested by
concurrently executing two instances of the MessageReceiver class we developed

in this section, and then executing the MessageSender class we developed in the
previous section. We should see the console output for each instance, indicating that
both instances received all messages.

Just like with message queues, messages can be retrieved asynchronously from a
message topic. The procedure to do so is so similar to the message queue version
that we will not show an example. To convert the asynchronous example shown
earlier in this chapter to use a message topic, simply replace the javax.jms.Queue
variable with an instance of javax. jms.Topic and inject the appropriate instance
using "jms/GlassFishBookTopic" as the value of the mappedName attribute of
the @Resource annotation decorating the instance of javax.jms.Topic.

Creating durable subscribers

The disadvantage of using the pub/sub messaging domain is that message
consumers must be running when the messages are sent to the topic. If the message
consumer is not running at the time, it will not receive the messages; whereas, in
PTP, messages are kept in the queue until the message consumer runs. Fortunately,
the JMS API provides a way to use the pub/sub messaging domain and keep
messages in the topic until all subscribed message consumers run and receive the
message. This can be accomplished by creating durable subscribers for a JMS topic.

In order to be able to serve durable subscribers, we need to set the clientId
property of our JMS connection factory. Each durable subscriber must have a unique
client ID; therefore, a unique connection factory must be declared for each potential
durable subscriber.

InvalidClientIdException?

M Only one JMS client can connect to a topic for a specific client ID. If more
than one JMS client attempts to obtain a JMS connection using the same
Q connection factory, a JMSException stating that the Client ID is already
in use will be thrown. The solution is to create a connection factory for each
potential client that will be receiving messages from the durable topic.

[222]

Chapter 8

Like we mentioned before, the easiest way to add a connection factory is through the
GlassFish web console, as shown in the following steps:

1. Expand the Resources node to the left-hand side of the web console.
2. Expand the JMS Resources node.

3. Click on the Connection Factories node.

4

Click on the New... button in the main area of the page.

Our next example will use the settings displayed in the following screenshot:

New JMS Connection Factory | ok |

The creation of a new Java Message Service (JMS) connection factory also creates a connector connection pool
for the factory and a connector resource.

General Settings

JNDI Name: * jms/GlassFishBookDurableConnectionFactory

Resource Type: | jgvax.jms.ConnectionFactory j

Description: Used for durable topics

Status: [£l] Enabled

Before clicking on the OK button, we need to scroll to the bottom of the page,
click on the Add Property button, and enter a new property named clientId.
Our example will use ExampleId as the value for this property, as shown in the
following screenshot:

Additional Prope Es

@J l:_J Add Property Delete Properties

Select | HName | Value Description
[T [clientid Exampleld

Now that we have set up GlassFish to be able to provide durable subscriptions, we
are ready to write some code to take advantage of them:

package net.ensode.glassfishbook;

import javax.annotation.Resource;
import javax.jms.Connection;

[223]

The Java Message Service

import javax.jms.ConnectionFactory;
import javax.jms.JMSConsumer;
import javax.jms.JMSContext;

import javax.jms.JMSException;
import javax.jms.MessageConsumer;
import javax.jms.Session;

import javax.jms.TextMessage;
import javax.jms.Topic;

public class MessageReceiver {

@Resource (mappedName

= "jms/GlassFishBookDurableConnectionFactory")
private static ConnectionFactory connectionFactory;
@Resource (mappedName = "jms/GlassFishBookTopic™")
private static Topic topic;

public void getMessages ()
String message;
boolean goodByeReceived = false;

JMSContext jmsContext = connectionFactory.createContext () ;
JMSConsumer jMSConsumer =
jmsContext.createDurableConsumer (topic, "Subscriberl");

System.out.println("Waiting for messages...");
while (!goodByeReceived) {

message = jMSConsumer.receiveBody (String.class) ;

if (message != null) {

System.out.print ("Received the following message: ") ;

System.out.println (message) ;

System.out.println() ;

if (message.equals ("Good bye!")) ({
goodByeReceived = true;

}

public static void main(String[] args) {
new MessageReceiver () .getMessages() ;

[224]

Chapter 8

As we can see, this code is not very different from the previous examples of code,
the purpose of which was to retrieve messages. There are only two differences from
previous examples: the instance of ConnectionFactory that we are injecting is the
one we set up earlier in this section to handle durable subscriptions, and instead

of calling the createConsumer () method on the JMS context object, we are calling
createDurableConsumer (). The createDurableConsumer () method takes two
arguments: a JMS topic object to retrieve messages from and a string designating
a name for this subscription. This second parameter must be unique across all
subscribers to that durable topic.

Summary

In this chapter, we covered how to set up JMS connection factories, JMS message
queues, and JMS message topics in GlassFish using the GlassFish web console.

We also covered how to send messages to a message queue via the javax.jms.
JMSProducer interface.

Additionally, we covered how to receive messages from a message queue via the
javax.jms.JIMSConsumer interface. We also covered how to asynchronously receive
messages from a message queue by implementing the javax.jms.MessageListener
interface.

We also saw how to use these interfaces to send and receive messages to and from
a JMS message topic.

We also covered how to browse messages in a message queue without removing
them from the queue via the javax.jms.QueueBrowser interface.

Finally, we saw how to set up and interact with durable subscriptions to JMS topics.

In the next chapter, we will cover how to secure Java EE applications.

[225]

Securing Java EE
Applications

In this chapter, we will cover how to secure Java EE applications by taking
advantage of GlassFish's built-in security features.

Java EE security relies on the Java Authentication and Authorization Service
(JAAS) API. As we will see, securing Java EE applications requires very little coding
for the most part. Securing an application is achieved by setting up users and
security groups to a security realm in the application server and then configuring our
applications to rely on a specific security realm for authentication and authorization.

Some of the topics we will cover in this chapter include:

* Admin realms

* File realms

* Certificate realms

* Creating self-signed security certificates
e JDBC realms

e Custom realms

Security realms

Security realms are, in essence, collections of users and related security groups. A user
can belong to one or more security groups. The groups that the user belongs to define
what actions the system will allow the user to perform. For example, an application
can have regular users that can only use basic application functionality, and it can have
administrators that, in addition to being able to use basic application functionality, can
add additional users to the system.

Securing Java EE Applications

Security realms store user information (user name, password, and security groups).
Therefore, applications don't need to implement this functionality and can simply be
configured to obtain this information from a security realm. A security realm can be
used by more than one application.

Predefined security realms

GlassFish comes preconfigured with three predefined security realms: admin-realm,
file, and certificate. The admin-realm is used to manage the user's access to the
GlassFish web console and shouldn't be used for other applications. The file realm
stores user information in a file. The certificate realm looks for a client-side certificate
to authenticate the user.

The following screenshot shows the predefined realms in the GlassFish web console:

Home

User: admin Domain: domaini Server: localhost

GlassFish™ Server Open Source Edition

Tree

. S Realms
& JVM Settings Create, modify, or delete security (authentication) realms.
Lo 5 Java Message Service

% L Settings Configuration Name: server-config

[!] Monitoring Reaims (3)
[Metwork Confi
8. ¢ 2
Lo a ORB
ngecurity 3e|e:t|Nune u|classNune
I = [admin-realm com.sun.enterprise.security.auth.realm file FileRealm
r\a admi.;\—realm [certificate com.sun.enterprise.security.auth.realm. certificate. CertificateRealm
e com.sun.enterprise.security.auth.realm file.Filel m
. [mEE nits i ity.auth.realm file.FileReal

g certificate

In addition to the predefined security realms, we can add additional realms with
very little effort. We will cover how to do this later in this chapter, but first let's
discuss GlassFish's predefined security realms.

The admin-realm

The admin-realm has a predefined user called admin, which belongs to a predefined
group called asadmin.

[228]

Chapter 9

To illustrate how to add users to a realm, let's add a new user to the admin-realm.
This will allow an additional user to log in to the GlassFish web console. In order
to add a user to admin-realm, log in to the GlassFish web console and expand the
Configurations node on the left-hand side. Then expand the server-config node,
followed by the Security node. Then expand the Realms node and click on
admin-realm. The main area of the page should look like the following screenshot:

Edit Realm

Edit an existing security {authentication) realm.

* Indicates required field

Configuration Name: server-config

Realm Mame: admin-realm

Class Name: com.sun.enterprise.security.auth.realm file. FileRealm

Properties specific to this Class

JAAS Context: * [fileRealm
Identifier for the login module to use for this realm

Key File: * ${com sun.aas.instanceRoot}/configladmin-keyfile

Full path and name of the file where the server will store all user, group, and password
information for this realm

Assign Groups:
Comma-separated list of group names

Additional Properties (0)
Delete Properties

Select | Name | Value | Description
Mo items found.

[229]

Securing Java EE Applications

To add a user to the realm, click on the button to the top-left labeled Manage Users.
The main area of the page should now look like the following screenshot:

File Users

Manage user accounts for the currently selected security realm.

Cenfiguration Name: server-config

Realm Name: admin-realm

File Users (1)
Select | User ID | Group List:
[| admin asadmin

To add a new user to the realm, simply click on the New... button to the top-left of the
screen and then enter the new user information as shown in the following screenshot:

New File Realm User

Create new user accounts for the currently selected security realm.

v | Gance |

* Indicates required field
Configuration Name: server-config

Realm Name: admin-realm

User ID: *

root

Mame can be up to 255 characters, must contain only letters, digits, underscore,
dash, or dot characters

Group List: asadmin

New Password: [TITT]

Confirm New Password:

As shown in this screenshot, we added a new user named root, added this user
to the asadmin group, and entered this user's password.

The GlassFish web console will only allow users in the asadmin
a group to log in. Failing to add our user to this security group will
"~ prevent him/her from logging in to the console.

[230]

Chapter 9

We can now see our newly created user in the list of admin-realm users, as can be

seen in the following screenshot:

File Users

Manage user accounts for the currently selected security realm.

Configuration Name: server-config

Realm Name: admin-realm

File Users (2)

m Delete

Select | User ID | Group List:
[root asadmin
[admin asadmin

We have successfully added a new user for the GlassFish web console. We can test
this new account by logging in to the console with this new user's credentials.

The file realm

The second predefined realm in GlassFish is the file realm. This realm stores user
information encrypted in a text file. Adding users to this realm is very similar to
adding users to admin-realm. We can add a user by navigating to Configurations |
server-config | Security | Realm. Under the Realm node, click on file, then on the
Manage Users button, and finally on the New... button. The main area of the page

should look like the following screenshot:

New File Realm User

Create new user accounts for the currently selected security realm.

Configuration Name: server-config

Realm Name: file
User ID: * peter

dash, or dot characters

Group List: appuser,appadmin
Separate multiple groups with colon
New Password: T

Confirm New Password: |sssss

Mame can be up to 255 characters, must contain only letters, digits, underscore,

[for || cancel

* Indicates required field

[231]

Securing Java EE Applications

Since this realm is meant to be used for our applications, we can come up with our

own groups. GI‘OUPS are us

eful to give the same permissions to several users. For

example, all users requiring administrative permissions can be added to an admin
group (the name of the group is, of course, arbitrary).

In this example, we added a user with the user ID peter to the groups appuser

and appadmin.

Clicking on the OK button should save the new user and take us to the user list for

this realm, as shown in the

following screenshot:

File Users

Manage user accounts for the

Realm Name: file

Configuration Name: server-config

currently selected security realm.

File Users (1)
Select | User ID | Group List:
appuser
™ peter PP
appadmin

Clicking on the New... button allows us to add additional users to the realm. Let's
add an additional user named joe belonging only to the appuser group, as shown

in the following screenshot:

New File Realm U

Create new user accounts for

Configuration Name: server-config

ser

the currently selected security realm.

Lo] [Ganca |

* Indicates required field

Realm Name:
User ID: *

Group List:

New Password:

Confirm New Password:

file

joe
MName can be up to 255 characters, must contain only letters, digits, underscore,
dash, or dot characters

appuser
Separate multiple groups with colon

[232]

Chapter 9

As we have seen in this section, adding users to the file realm is very simple. We will
now illustrate how to authenticate and authorize users via the file realm.

Basic authentication via the file realm

In the previous section, we covered how to add users to the file realm and how to
assign these users to groups. In this section, we will illustrate how to secure a web
application so that only properly authenticated and authorized users can access it.
This web application will use the file realm for user access control.

The application will consist of a few very simple JSF pages. All authentication logic

is taken care of by the application server; therefore, the only place we need to make
modifications in order to secure the application is in its deployment descriptors,
web.xml and glassfish-web.xml. We will first discuss web . xm1, which is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.0" xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app 3 0.xsd">
<context-param>
<param-name>javax.faces.PROJECT STAGE</param-names>
<param-value>Development</param-values>
</context-param>
<servlets>
<gservlet-name>Faces Servlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
<load-on-startup>1l</load-on-startup>
</servlets>
<servlet-mapping>
<gservlet-name>Faces Servlet</servlet-name>
<url-pattern>*.jsf</url-patterns>
</servlet-mapping>
<welcome-file-list>
<welcome-file>index.jsf</welcome-£file>
</welcome-file-list>
<security-constraint>
<web-resource-collection>
<web-resource-name>Admin Pages</web-resource-name>
<url-pattern>/admin/*</url-pattern>
</web-resource-collection>
<auth-constraint>
<role-name>admin</role-name>
</auth-constraint>
</security-constraint>

[233]

Securing Java EE Applications

<security-constraint>
<web-resource-collection>
<web-resource-name>AllPages</web-resource-name>
<url-pattern>/*</url-pattern>
</web-resource-collection>
<auth-constraint>
<role-name>user</role-name>
</auth-constraint>
</security-constraint>
<login-config>
<auth-method>BASIC</auth-method>
<realm-name>file</realm-name>
</login-config>
</web-app>

The <security-constraint> element defines who can access pages matching

a certain URL pattern. The URL pattern of the pages is defined inside the
<url-patterns> element, which, as shown in the example, must be nested inside
a <web-resource-collection> element. Roles allowed to access the pages

are defined in the <role-name> element, which must be nested inside an
<auth-constraint> element.

In our example, we define two sets of pages to be protected. The first set of pages
are those whose URLSs start with /admin. These pages can be accessed only by users
belonging to the admin group. The second set of pages are the rest of the pages,
defined by the URL pattern of /*. Only users with the role user can access these
pages. It is worth noting that the second set of pages is a superset of the first set, that
is, any page whose URL matches /admin/* also matches /*. In cases like these, the
most specific case wins. In this particular case, users with the role user (and without
the role admin) will not be able to access any page whose URL starts with /admin.

The next element we need to add to web.xml in order to protect our pages is the
<login-configs element. This element must contain an <auth-methods> element,
which defines the authorization method for the application. Valid values for this
element include BASIC, DIGEST, FORM, and CLIENT-CERT.

BASIC indicates that basic authentication will be used. This type of authentication
will result in a browser-generated pop up prompting the user for a username and
password to be displayed the first time a user tries to access a protected page. Unless
using the HTTPS protocol, when using basic authentication, the user's credentials
are Base64 encoded, not encrypted. It would be fairly easy for an attacker to decode
these credentials; therefore, using basic authentication is not recommended.

[234]

Chapter 9

The DIGEST authentication value is similar to basic authentication, except that
it uses an MD?5 digest to encrypt the user credentials instead of sending them
Base64 encoded.

The ForM authentication value uses a custom HTML or JSP page containing an
HTML form with the username and password fields. The values in the form are
then checked against the security realm for user authentication and authorization.
Unless using HTTPS, user credentials are sent in clear text when using form-based
authentication; therefore, using HTTPS is recommended since it encrypts the data.
We will cover setting up GlassFish to use HTTPS later in this chapter.

The cLIENT-CERT authentication value uses client-side certificates to authenticate
and authorize the user.

The <realm-name> element of <login-configs> indicates what security realm to use
to authenticate and authorize the user. In this particular example, we are using the
file realm.

All of the web.xml elements we have discussed in this section can be used with
any security realm; they are not tied to the file realm. The only thing that ties our
application to the file realm is the value of the <realm-name> element. Something
else to keep in mind is that not all authentication methods are supported by all
realms. The file realm supports only basic and form-based authentication.

Before we can successfully authenticate our users, we need to link the user roles
defined in web . xm1 with the groups defined in the realm. We accomplish this in
the glassfish-web.xml deployment descriptor as follows:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE glassfish-web-app PUBLIC "-//GlassFish.org//DTD
GlassFish Application Server 3.1 Servlet 3.0//EN"
"http://glassfish.org/dtds/glassfish-web-app 3 0-1.dtd">
<glassfish-web-app error-url="">
<context-root>/filerealmauth</context-root>
<security-role-mapping>
<role-name>admin</role-name>
<group-name>appadmin</group-name>
</security-role-mapping>
<security-role-mapping>
<role-name>user</role-name>
<group-name>appuser</group-name>
</security-role-mapping>
<class-loader delegate="true"/>
</glassfish-web-app>

[235]

Securing Java EE Applications

As can be seen in the preceding example, the glassfish-web.xml deployment
descriptor can have one or more <security-role-mapping> elements. One of these
elements is needed for each role defined in each <auth-constraint> tagin web.

xml. The <role-name> subelement indicates the role to map. Its value must match

the value of the corresponding <role-name> element in web.xml. The <group-name>
subelement must match the value of a security group in the realm used to authenticate
users in the application.

In this example, the first <security-role-mapping> element maps the admin role
defined in the application's web . xml deployment descriptor to the appadmin group
we created when adding users to the file realm earlier in the chapter. The second
<security-role-mapping> element maps the user role in web.xml to the appuser
group in the file realm.

As mentioned earlier, there is nothing we need to do in our code in order to
authenticate and authorize users. All we need to do is modify the application's
deployment descriptors as described in this section. Since our application is nothing
but a few simple pages, we will not show the source code for them. The structure

of our application is shown in the following screenshot:

=I& src
=@ main
+ @ java
+ @ resources
-/ & webapp
-/ & WEB-INF
=) glassfish-web.xml
[F web.xml
=@ admin
(€ index.xhtml
[index.xhtml
[# random.xhtml

Based on the way we set up our application in the deployment descriptors, users
with the role user will be able to access the two pages at the root of the application
(index.xhtml and random.xhtml). Only users with the role admin will be able to
access any pages under the admin folder, which in this particular case is a single
page named index.xhtml.

After packaging and deploying our application and pointing the browser to the URL
of any of its pages, we should see a pop up asking for a User Name and Password, as
shown in the following screenshot:

[236]

Chapter 9

Authentication Required %

i A username and password are being requested by http:j/localhost:8080. The site says:
" “file"

User Name: [joe]

Password: | EETEr

I Cancel |[oK ‘

After entering the correct username and password, we are directed to the page we
were attempting to see, as follows:

Welcome Page - Mozilla Firefox

Firefox v]{:] Welcome Page "T]
- [r'_» localhost:8080/filerealmauth/ v Ol

Congratulations! You have successfully logged into the application.

At this point, the user can navigate to any page he/she is allowed to access in
the application, either by following links or by typing in the URL in the browser,
without having to reenter his/her username and password.

Note that we logged in as the user joe; this user belongs only to the user role.
Therefore, he does not have access to any page that starts with /admin as the URL.
If joe tries to access one of these pages, he will get an HTTP error reporting HTTP
Status 403-Forbidden, as shown in the following screenshot:

GlassFish Server Open Source Edition 4.0 - Error re

Firefox v I GlassFish Server Open Source Edit... H +*]

< I;-_*, localhost:8080/filerealmauth/admin/ v 0]

HTTP Status 403 - Forbidden

[TE Status report

R Forbidden
to the specified resource has been forbidden.

GlassFish Server Open Source Edition 4.0

[237]

Securing Java EE Applications

Only users belonging to the admin role can see pages that match the URL shown
in the screenshot. When we were adding users to the file realm, we added a user
named peter that had this role. If we log in as peter, we will be able to see the
requested page. For basic authentication, the only possible way to log out of the
application is to close the browser. Therefore, to log in as peter, we need to close
and reopen the browser. Once logged in as Peter, we will see a window as shown
in the following screenshot:

Admin Page - Mozilla Firefox
Firefox v J{:}Admin Page ” &+ |

€ [@ localhost:2080ffilerealmauth/adm v O [E’v G

Mere mortals aren't allowed to see this page. Don't you feel special?

As mentioned before, one disadvantage of the basic authentication method we used
in this example is that login information is not encrypted. One way to get around
this is to use the HTTPS (HTTP over SSL) protocol. When using this protocol, all
information between the browser and the server is encrypted.

The easiest way to use HTTPS is by modifying the application's web.xm1 deployment
descriptor as follows:

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
Xs1i:schemalocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app 3 0.xsd"
version="3.0">
<security-constraints>
<web-resource-collections>
<web-resource-name>Admin Pages</web-resource-name>
<url-pattern>/admin/*</url-patterns>
</web-resource-collection>
<auth-constraint>
<role-name>admin</role-name>
</auth-constraint>
<user-data-constraint>
<transport-guarantee>CONFIDENTIAL</transport-guarantee>
</user-data-constraint>
</security-constraints>
<security-constraints>

[238]

Chapter 9

<web-resource-collection>
<web-resource-name>AllPages</web-resource-name>
<url-pattern>/*</url-pattern>
</web-resource-collections>
<auth-constraints>
<role-namesuser</role-name>
</auth-constraint>
<user-data-constraint>
<transport-guarantee>CONFIDENTIAL</transport-guarantee>
</user-data-constraint>
</security-constraint>
<login-configs>
<auth-method>BASIC</auth-method>
<realm-name>file</realm-name>
</login-config>
</web-app>

As we can see, all we need to do to have the application be accessed only through
HTTPS is to add a <user-data-constraint> element containing a nested
<transport-guarantee> element to each set of pages we want to encrypt. Sets of
pages to be protected are declared in the <security-constraint> elements in the
web . xml deployment descriptor.

Now, when we access the application through the (unsecure) HTTP port (by default,
it is 8080), the request is automatically forwarded to the (secure) HTTPS port
(by default, 8181).

In our example, we set the value of the <transport-guarantee> element to
CONFIDENTIAL. This has the effect of encrypting all the data between the browser
and the server. Also, if the request is made through the unsecured HTTP port, it is
automatically forwarded to the secured HTTPS port.

Another valid value for the <transport -guarantees> element is INTEGRAL. When
using this value, the integrity of the data between the browser and the server is
guaranteed. In other words, the data cannot be changed in transit. When using this
value, requests made over HTTP are not automatically forwarded to HTTPS. If a user
attempts to access a secure page via HTTP when this value is used, the browser will
deny the request and return a 403 (Access Denied) error.

The third and last valid value for the <transport-guarantee> element is NONE. When
using this value, no guarantees are made about the integrity or confidentiality of the
data. The NONE value is the default value used when the <transport-guarantees>
element is not present in the application's web . xm1 deployment descriptor.

[239]

Securing Java EE Applications

After making the preceding modifications to the web.xml deployment descriptor,
redeploying the application, and pointing the browser to any of the pages in

the application, we should see the following warning page when accessing our
application on Firefox:

Untrusted Connection - Mozilla Firefox - + x
Firefox v J L. Untrusted Connection I[* }
[@ https://localhost:8181ffilere vl [E' Google OJ @ » v # v

This Connection is Untrusted

You have asked Firefox to connect securely to localhost:8181, but we can't confirm that
your connection is secure

Normally, when you try to connect securely, sites will present trusted identification to
prove that you are going to the right place. However, this site’s identity can't be verified

What Should 1 Do?

If you usually connect to this site without problems, this error could mean that someone
i trying to impersonate the site, and you shouldn't continue

Get me out of here!
Technical Details

I Understand the Risks

After expanding the I Understand the Risks node and clicking on the button labeled
Add Exception..., we should see a window similar to the one shown in the following
screenshot:

Add Security Exception x

You are about to override how Firefox identifies this site.

L ! Legitimate banks, stores, and other public sites will not ask
you to do this.

Server

Location: = https://localhost:8181/filerealmauthhttps/ .get Certificate .

Certificate Status
This site attempts to identify itself with invalid information.

View...

Unknown Identity

Certificate is not trusted, because it hasn't been verified by a recegnized
authority using a secure signature.

|| Permanently store this exception

lgonﬁrm Security Exceptlon] Cancel

[240]

Chapter 9

After clicking on the button labeled Confirm Security Exception, we are prompted
for a username and password. After entering the appropriate credentials, we are
allowed access to the requested page as shown in the following screenshot:

Welcome Page - Mozilla Firefox
Firefox v J[::]Welcome Page " + |

- '.. ttps://localhost:8181/filerealmauthhttps v o I.E’v-

Congratulations! You have successfully logged into the application.

The reason we see this warning is that, in order for a server to use the HTTPS
protocol, it must have an SSL certificate. Typically, SSL certificates are issued by
Certificate Authorities (CA) such as Verisign or Thawte. These certificate authorities
digitally sign the certificate. By doing this, they certify that the server belongs to the
entity it claims it belongs to.

A digital certificate from one of these certificate authorities typically costs around
USD 400 and expires after a year. Since the cost of these certificates may be
prohibitive for development or testing purposes, GlassFish comes preconfigured
with a self-signed SSL certificate. Since this certificate has not been signed by a
certificate authority, the browser shows a warning window when we try to access
a secured page via HTTPS.

Notice the URL in the screenshot. The protocol is set to HTTPS, and the port

is 8181. The URL we pointed the browser to was http://localhost:8080/
filerealmauthhttps, because of the modifications we made to the application's
web . xml deployment descriptor, the request was automatically redirected to this
URL. Of course, users may directly type in the secure URL and it will work
without a problem.

Any data transferred over HTTPS is encrypted, including the username and
password entered in the pop-up window generated by the browser. Using HTTPS
allows us to safely use basic authentication. However, basic authentication has a
disadvantage, which is that the only way that users can log out of the application is
to close the browser. If we need to allow users to log out of the application without
closing the browser, we need to use form-based authentication.

[241]

Securing Java EE Applications

Form-based authentication

We need to make some modifications to the application's web . xml deployment
descriptor to use form-based authentication, as follows:

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.0" xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app 3 0.xsd">
<context-param>
<param-name>javax.faces.PROJECT STAGE</param-names>
<param-value>Development</param-value>
</context-param>
<servlets>
<servlet-name>Faces Servlet</servlet-names>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
<load-on-startup>1l</load-on-startup>
</servlet>
<gervlet-mapping>
<servlet-names>Faces Servlet</servlet-name>
<url-pattern>*.jsf</url-patterns
</servlet-mapping>
<welcome-file-list>
<welcome-file>index.jsf</welcome-file>
</welcome-file-list>
<security-constraints>
<web-resource-collection>
<web-resource-name>Admin Pages</web-resource-name>
<url-pattern>/admin/*</url-patterns>
</web-resource-collection>
<auth-constraints>
<role-names>admin</role-name>
</auth-constraints>
<user-data-constraints>
<transport-guarantee>CONFIDENTIAL</transport-guarantee>
</user-data-constraints>
</security-constraints>
<security-constraints>
<web-resource-collection>
<web-resource-name>AllPages</web-resource-name>
<url-pattern>/*</url-patterns>
</web-resource-collection>
<auth-constraint>
<role-names>user</role-name>
</auth-constraints>

[242]

Chapter 9

<user-data-constraints>
<description/>
<transport-guarantee>CONFIDENTIAL</transport-guarantees>
</user-data-constraint>
</security-constraint>
<login-configs>
<auth-method>FORM</auth-method>
<realm-name>file</realm-name>
<form-login-config>
<form-login-page>/login.jsf</form-login-page>
<form-error-page>/loginerror.jsf</form-error-page>
</form-login-config>
</login-config>
</web-app>

When using form-based authentication, we simply use FORM as the value of the
<auth-method> element in web . xml. When using this authentication method,
we need to provide a login page and a login error page. We indicate the URLs
for the login and login error pages as the values of the <form-login-page> and
<form-error-page> elements, respectively. As we can see in the example, these
elements must be nested inside the <form-login-configs> element.

The markup for the login page for our application is shown as follows:

<?xml versgion='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://xmlns.jcp.org/jsf/html">
<h:heads>
<title>Login</title>
</h:head>
<h:body>
<p>Please enter your username and password to access the
application
</p>
<form method="POST" action="j_ security check">
<table cellpadding="0" cellspacing="0" border="0">
<tr>
<td align="right">Username: </td>
<td>
<input type="text" name="j username"/>
</td>
</tr>

<tr>

[243]

Securing Java EE Applications

<td align="right">Password: </td>
<td>
<input type="password" name="j password"/>
</td>
</tr>
<tr>
<td></td>
<td>
<input type="submit" value="Login"/>
</td>
</tr>
</table>
</form>
</h:body>
</html>

Please note that even though our login page is a JSF page, it uses a standard <form>
tag as opposed to the JSF-specific <h: form> tag. The reason for this is that the form's
action attribute value must be j_security check and it is not possible to set this
attribute in the JSF <h: form> tag. Similarly, the input fields in the form are standard
HTML fields, as opposed to their JSF-specific counterparts.

The login page for an application using form-based authentication must contain a
form whose method is POST and whose action is j _security check. We don't need
to implement the authentication code as it is supplied by the application server.

The form in the login page must contain a text field named j_username. This text
field is meant to hold the username. Additionally, the form must contain a password
field named j_password, meant for the password. Of course, the form must contain
a submit button to submit the data to the server.

The only requirement for a login page is for it to have a form whose attributes match
those in our example, and the j_username and j_password input fields as described
in the preceding paragraph.

There are no special requirements for the error page. Of course, it should show an
error message telling the user that login was unsuccessful. However, it can contain
anything we wish. The error page for our application simply tells the user that there
was an error logging in and links back to the login page to give the user a chance to
log back in.

[244]

Chapter 9

In addition to a login page and a login error page, we added a CDI named bean to
our application. This allows us to implement the logout functionality, something that
wasn't possible when we were using basic authentication. The code to implement the
logout functionality is as follows:

package net.ensode.glassfishbook;

import javax.enterprise.context.RequestScoped;

import javax.faces.context.ExternalContext;

import javax.faces.context.FacesContext;

import javax.inject.Named;

import javax.servlet.http.HttpSession;

@Named
@RequestScoped

public class LogoutManager

}

public String logout () {

FacesContext facesContext = FacesContext.getCurrentInstance() ;

ExternalContext externalContext =
facesContext.getExternalContext () ;

HttpSession session = (HttpSession)
externalContext.getSession (true) ;

session.invalidate();

return "index?faces-redirect=true";

The first few lines of the logout method are meant to get a reference to the
HttpSession object. Once we obtain this object, all we need to do is invalidate the
session by invoking its invalidate () method. In our code, we redirect the response
to the index page. Since the session is invalid at this point, the security mechanism
automatically directs the user to the login page.

[245]

Securing Java EE Applications

We are now ready to test form-based authentication. After building our application,
deploying it, and pointing the browser to any of its pages, we should see our login
page rendered in the browser as shown in the following screenshot:

Login - Mozilla Firefox
Firefox v J Login ” + |

[ﬂ ttps://localhost:8181/filerealmformauth v [Ev Goog

Please enter your username and password to access the application

Username: | |
Password: | |
| Login |

If we submit invalid credentials, we are automatically forwarded to the login error
page, as shown in the following screenshot:

Login Error - Mozilla Firefox
Firefox v Jr1 Login Error ” + |
- [._f:' @ https://localhost:8181filerealmformauth/j_security v ol B~

There was an error logging in.
Try again

We can click on the Try again link to try again. After entering the valid credentials,
we are allowed into the application. The following screenshot shows the screen after

a successful login:

Welcome Page - Mozilla Firefox
Firefox ¥ J[::]Welcome Page H + |
- [Lfi’:' @ https://localhost:8181filerealmformauth v ol B~

Congratulations! You have successfully logged into the application.

Logout

As we can see, we added a Logout link to the page. This link directs the user to the
logout () method of our CDI named bean, which, as mentioned before, simply
invalidates the session. From the user's point of view, this link will simply log them
out and direct them to the login screen.

[246]

Chapter 9

The certificate realm

The certificate realm uses client-side certificates for authentication. Just like server-
side certificates, client-side certificates are typically obtained from a certificate
authority such as Verisign or Thawte. These certificate authorities verify that the
certificate really belongs to who it says it belongs to.

Obtaining a certificate from a certificate authority costs money and takes some time.
It might not be practical to obtain a certificate from one of the certificate authorities

when we are developing and/or testing our application. Fortunately, we can create
self-signed certificates for testing purposes.

Creating self-signed certificates

We can create self-signed certificates with little effort with the keytool utility
included with the Java Development Kit (JDK).

We will only briefly cover some of the keytool utility features, specifically
» the features that are necessary to create and import self-signed certificates
% into GlassFish and the browser. To learn more about the keytool utility,
e refer to http://docs.oracle.com/javase/7/docs/technotes/
tools/solaris/keytool.html.

You can generate a self-signed certificate by typing in the following command in the
command line:

keytool -genkey -v -alias selfsignedkey -keyalg RSA -storetype PKCS12
-keystore client keystore.pl2 -storepass wonttellyou -keypass wonttellyou

This command assumes that the keytool utility is in the system path. This tool can be
found in the bin directory under the directory where JDK is installed.

Substitute the values for the -storepass and -keypass parameters with your own
password. Both of these passwords must be the same in order to successfully use

the certificate to authenticate the client. You may choose any value for the -alias
parameter. You may also choose any value for the -keystore parameter. However, the
value must end in .p12, since this command generates a file that needs to be imported
into the web browser, and it won't be recognized unless it has the .p12 extension.

[247]

Securing Java EE Applications

After entering the above command from the command line, keytool will prompt for
some information as follows:

What is your first and last name?
[Unknown] : David Heffelfinger

What is the name of your organizational unit?
[Unknown] : Book Writing Division

What is the name of your organization?
[Unknown] : Ensode Technology, LLC

What is the name of your City or Locality?
[Unknown] : Fairfax

What is the name of your State or Province?
[Unknown] : Virginia

What is the two-letter country code for this unit?
[Unknown] : US

Is CN=David Heffelfinger, OU=Book Writing Division, O="Ensode Technology,
LLC", L=Fairfax, ST=Virginia, C=US correct?

[nol: y

After entering the data for each prompt, keytool will generate the certificate. It will
be stored in the current directory, and the name of the file will be the value we used
for the -keystore parameter (client_keystore.pl2 in the example).

To be able to use this certificate to authenticate ourselves, we need to import it into
the browser. The procedure, although similar, varies from browser to browser. In
Firefox, this can be accomplished by going to the Preferences menu, clicking on the
Advanced icon at the top of the pop-up window that appears, and then clicking on
the Certificates tab as shown in the following screenshot:

[248]

Chapter 9

Firefox Preferences

WS X W w9

General Tabs Content Applications Privacy Security Sync ‘

General Data Choices Network Update | Certificates |

When a server requests my personal certificate:
) select one automatically (© Ask me every time

View Certiﬁcatg;_] [Validation | ISecur\tg Dewces]

(Help | | (i\use |

We then need to navigate to View Certificates | Your Certificates | Import on the
window that appears. Then navigate and select our certificate from the directory

in which it was created. At this point, Firefox will ask us for the password used

to encrypt the certificate; in our example, we used wonttellyou as the password.
After entering the password, we should see a pop-up window confirming that our
certificate was successfully imported. We should then see it in the list of certificates,
as shown in the following screenshot:

Certificate Manager - + x

‘our Certificates | People | Servers Authorities | Others

You have certificates from these organizations that identify you:

Certificate Name Security Device Serial Number Expires On .,
-/Ensode Technolog...
David Heffelfinger Software Security D... 07:A3:BC:AD 01/25/2014
Backup All... | || Import...
Lo |

[249]

Securing Java EE Applications

We have now added our certificate to Firefox so that it can be used to authenticate
us. If you are using another browser, the procedure will be similar. Consult your
browser's documentation for details.

The certificate we created in the previous step needs to be exported into a format
that GlassFish can understand. We can accomplish this by running the following
command:

keytool -export -alias selfsignedkey -keystore client keystore.pl2
-storetype PKCS1l2 -storepass wonttellyou -rfc -file selfsigned.cer

The value for the -alias, -keystore, and -storepass parameters must match the
values used in the previous command. You may choose any value for the -file
parameter, but it is recommended for the value to end in the . cer extension.

Since our certificate was not issued by a certificate authority, GlassFish by default
will not recognize it as a valid certificate. GlassFish knows what certificates to trust
based on the certificate authority that created them. This is implemented through the
storing of certificates for these various authorities in a keystore named cacerts. jks.
This keystore can be found at [glassfish installation directory]/glassfish/
domains/domainl/config/cacerts.jks

In order for GlassFish to accept our certificate, we need to import it into the cacerts
keystore. This can be accomplished by issuing the following command from the
command line:

keytool -import -file selfsigned.cer -keystore [glassfish installation
directoryl /glassfish/domains/domainl/config/cacerts.jks -keypass changeit
-storepass changeit

At this point, keytool will display the following certificate information in the
command line and ask us if we want to trust it:

Owner: CN=David Heffelfinger, OU=Book Writing Division, O="Ensode
Technology, LLC", L=Fairfax, ST=Virginia, C=US

Issuer: CN=David Heffelfinger, OU=Book Writing Division, O="Ensode
Technology, LLC", L=Fairfax, ST=Virginia, C=US

Serial number: 7a3bcal

Valid from: Sun Oct 27 17:00:18 EDT 2013 until: Sat Jan 25 16:00:18 EST
2014

[250]

Chapter 9

Certificate fingerprints:
MD5: 46:EA:41:ED:12:8A:EC:CE:8C:BE:F2:49:D5:71:00:ED
SHAl: 32:C2:D4:20:87:22:95:25:5D:B0:AC:35:43:0D:60:35:94:27:44:58

SHA256: 8C:2E:56:F4:98:45:AC:46:FD:20:27:38:D2:7D:BF:D8:2D:56:D3:91:B7
:78:AA:ED:FA:93:30:27:77:7F:F9:03

Signature algorithm name: SHA256withRSA

Version: 3

Extensions:

#1: ObjectId: 2.5.29.14 Criticality=false

SubjectKeyIdentifier [

KeyIdentifier [

0000: E8 75 1D 12 2F 18 DO 4B E5 84 Cc4 79 B6 CO 98 80 .u../..K...y....

0010: 33 84 E7 CO 3...

Trust this certificate? [nol: vy

Certificate was added to keystore

Once we add the certificate to the cacerts. jks keystore, we need to restart the
domain for the change to take effect.

What we are effectively doing here is adding ourselves as a certificate authority that
GlassFish will trust. This, of course, should not be done in a production system.

[251]

Securing Java EE Applications

The value for the -file parameter must match the value we used for this same
parameter when we exported the certificate.

Note that changeit is the default password for the -keypass and
-storepass parameters for the cacerts. jks keystore. This value can
be changed by issuing the following command:

[glassfish installation directoryl /glassfish/bin/asadmin
change-master-password --savemasterpassword=true

This command will prompt for the existing as well as the new master
password. The -savemasterpassword=true parameter is optional;
it saves the master password into a file called master-password in
the root directory of the domain. If we don't use this parameter when
changing the master password, then we will need to enter the master
password every time we want to start the domain.

Now that we have created a self-signed certificate, imported it into our browser, and
established ourselves as a certificate authority that GlassFish will trust, we are ready

to develop an application that will use client-side certificates for authentication.

Configuring applications to use the certificate realm
Since we are taking advantage of Java EE security features, we don't need to

modify any code in order to use the security realm. All we need to do is modify

the application's configuration on its deployment descriptors, web.xml and
glassfish-web.xml, as follows:

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:

schemalLocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/web-app 3 0.xsd"
version="3.0">

<security-constraints>

<web-resource-collection>

<web-resource-name>AllPages</web-resource-name>
<url-pattern>/*</url-patterns

</web-resource-collection>

<auth-constraints>

<role-name>users</role-name>

</auth-constraint>

<user-data-constraint>

<transport-guarantee>CONFIDENTIAL</transport-guarantees>

</user-data-constraints>

</security-constraints>

[252]

Chapter 9

<login-config>
<auth-method>CLIENT-CERT</auth-method>
<realm-name>certificate</realm-name>
</login-config>
</web-app>

The main difference between this web.xml deployment descriptor and the one we
saw in the previous section is the contents of the <login-configs> element. In this
case, we declared CLIENT-CERT as the authorization method and certificate as the
realm to use to authenticate. This will have the effect of GlassFish asking the browser
for a client certificate before allowing a user into the application.

When using client certificate authentication, the request must always be made via
HTTPS. Therefore, it is a good idea to add the <transport-guarantees> element
with a value of CONFIDENTIAL to the web.xml deployment descriptor. Recall from
the previous section that this has the effect of forwarding any requests through the
HTTP port to the HTTPS port. If we don't add this value to the web.xml deployment
descriptor, any requests through the HTTP port will fail, since client certificate
authentication cannot be done through the HTTP protocol.

Notice that we declared that only users with the role user can access any page in
the system. We did this by adding the role user to the <role-name> element nested
inside the <auth-constraint> element of the <security-constraint> element in
the web.xml deployment descriptor. In order to allow access to authorized users, we
need to add them to this role. This is done in the glassfish-web.xml deployment
descriptor as follows:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE glassfish-web-app PUBLIC "-//GlassFish.org//DTD
GlassFish Application Server 3.1 Servlet 3.0//EN"
"http://glassfish.org/dtds/glassfish-web-app 3 0-1.dtd">
<glassfish-web-app error-url="">
<context-roots>/certificaterealm</context-roots>
<security-role-mapping>
<role-name>user</role-name>
<principal-name>CN=David Heffelfinger, OU=Book Writing
Division, O="Ensode Technology, LLC", L=Fairfax,
ST=Virginia, C=US</principal-name>
</security-role-mapping>
<class-loader delegate="true"/>
</glassfish-web-app>

[253]

Securing Java EE Applications

This assignment is done by mapping the principal user to a role in a <security-
role-mapping> element in the glassfish-web.xml deployment descriptor; its
<role-name> subelement must contain the role name, and the <principal-name>
subelement must contain the username. This username is taken from the certificate.

If you are not sure of the name to use, it can be obtained from the certificate with the
keytool utility as follows:

keytool -printcert -file selfsigned.cer
Owner: CN=David Heffelfinger, OU=Book Writing Division, O="Ensode
Technology, LLC", L=Fairfax, ST=Virginia, C=US

Issuer: CN=David Heffelfinger, OU=Book Writing Division, O="Ensode
Technology, LLC", L=Fairfax, ST=Virginia, C=US

Serial number: 7a3bcal

Valid from: Sun Oct 27 17:00:18 EDT 2013 until: Sat Jan 25 16:00:18 EST
2014

Certificate fingerprints:
MD5: 46:EA:41:ED:12:8A:EC:CE:8C:BE:F2:49:D5:71:00:ED
SHAl: 32:C2:D4:20:87:22:95:25:5D:B0:AC:35:43:0D:60:35:94:27:44:58

SHA256: 8C:2E:56:F4:98:45:AC:46:FD:20:27:38:D2:7D:BF:D8:2D:56:D3:91:B7
:78:AA:ED:FA:93:30:27:77:7F:F9:03

Signature algorithm name: SHA256withRSA

Version: 3

Extensions:

#1: ObjectId: 2.5.29.14 Criticality=false
SubjectKeyIdentifier [

KeyIdentifier [

[254]

Chapter 9

0000: E8 75 1D 12 2F 18 DO 4B E5 84 C4 79 B6 CO 98 80 .u../..K...y....

0010: 33 84 E7 CO 3...

1

The value to use as <principal-names> is the line after owner :. Please note that
the value of <principal-name> must be in the same line as its open and closing
elements (<principal-name>and </principal-names>). If there are newline or
carriage return characters before or after the value, they are interpreted as being
part of the value and validation will fail.

Since our application has a single user and a single role, we are ready to deploy it.

If we had more users, we would have to add additional <security-role-mappings
elements to our glassfish-web.xml deployment descriptor, at least one per

user. If we had users that belong to more than one role, then we would add a
<security-role-mapping> element for each role the user belongs to, using the
<principal-name> value corresponding to the user's certificate for each one of them.

We are now ready to test our application. After we deploy it and point the browser

to any page in the application, we should see a screen like the following (assuming

the browser hasn't been configured to provide a default certificate any time a server
requests one):

User Identification Request

This site has requested that you identify yourself with a certificate:
localhost:8181

Organization: "Oracle Corporation”

Issued Under: "Oracle Corporation”

Choose a certificate to present as identification:

||selfsignedkey [07:A3:BC:A0] -
Details of selected certificate:

Issued to: CN=David Heffelfinger,OU=Book Writing Division,0="Ensode
Technology, LLC",L=Fairfax,ST=Virginia,C=US

Serial Number: 07:A3:BC:AD

Valid from 10/27/2013 17:00:18 to 01/25/2014 16:00:18
Issued by: CN=David Heffelfinger,OU=Book Writing Division,0="Ensode
Technology, LLC",L=Fairfax,5ST=Virginia,C=US
Stored in: Software Security Device

|3| Remember this decision

| Cancel | OK

[255]

Securing Java EE Applications

After clicking on the OK button, we are allowed to access the application, as shown
in the following screenshot:

Welcome Page - Mozilla Firefox
Firefox ¥ J[:] Welcome Page ﬂ + |

[- 1 [
@ https://localhost:8181/certificaterealm v 9| (B Goog

Congratulations! You have successfully logged into the application.

Before allowing access to the application, GlassFish checks the certificate authority
that issued the certificate (since we self-signed the certificate, the owner of the
certificate and the certificate authority are the same), checking against the list of
trusted certificate authorities. Since we added ourselves as a trusted authority by
importing our self-signed certificate into the cacerts. jks keystore, GlassFish
recognizes the certificate authority as a valid one. It then gets the principal name from
the certificate and compares it against entries in the application's glassfish-web.
xml file. Since we added ourselves to this deployment descriptor and gave ourselves a
valid role, we are allowed into the application.

Defining additional realms

In addition to the three preconfigured security realms we discussed in the previous
section, we can create additional realms for application authentication. We can create
realms that behave exactly like the file realm or admin-realm. We can also create
realms that behave like the certificate realm. Additionally, we can create realms

that use other methods of authentication. We can authenticate users against an
LDAP database and against a relational database and, when GlassFish is installed

on a Solaris server, use Solaris authentication within GlassFish. Also, if none of the
predefined authentication mechanisms fit our needs, we can implement our own.

Defining additional file realms

In the administration console, expand the Configurations node, followed by the
server-config node, and then the Security node. Click on the Realms node and then
on the New... button on the resulting page in the main area of the web console.

[256]

Chapter 9

We should now see a screen like the following:

New Realm [[ox |

Create a new security (authentication) realm. Valid realm types are PAM, OSGi, File, Certificate, LDAP, JDBC, Digest, Oracle Solaris,
and Custom.

* Indicates required fisld

Configuration Name: server-config

Name: * newFileRealm
Class Name: () com sun.enterprise security.auth.realm file FileRealm j

~
[

Choose a realm class name from the drop-down list or specify a custom class

Properties specific to this Class

JAAS Context: * | fileRealm
Identifier for the login module to use for this realm

Key File: " /home/heffel/additional FileRealmkeyFile
Full path and name of the file where the server will store all user, group, and password information for this realm

Assign Groups:

Comma-separated list of group names

Additional Properties (0)
Delete Properties

Select | Name Value Description

Mo items found.

o] [Gancel |

All we need to do to create an additional realm is enter a unique name for it in the
Name field, pick com. sun.enterprise.security.auth.realm.file.FileRealm
for the Class Name field, and enter a value for the JAAS Context and Key File
fields; the value for the Key File field must be the absolute path to a file where user
information will be stored and, for the file realm, the value for the JAAS Context
field must always be fileRealm.

[257]

Securing Java EE Applications

After entering all of the required information, we can click on the OK button
and our new realm will be created. We can then use it just like the predefined
file realm. Applications wanting to authenticate against this new realm must use
its name as the value of the <realm-name> element in the application's web . xm1
deployment descriptor.

Alternatively, a custom file realm can be added from the command line via the
asadmin utility by executing the following command:

asadmin create-auth-realm --classname com.sun.enterprise.
security.auth.realm.file.FileRealm --property file=/home/heffel/
additionalFileRealmKeyFile:jaas-context=fileRealm newFileRealm

The create-auth-realmargument tells asadmin that we want to create a new
security realm. The value of the - -classname parameter corresponds to the security
realm class name. Notice that it matches the value we selected above in the web
console. The - -property parameter allows us to pass properties and their values;
the value of this parameter must be a colon (:) separated list of properties and

their values. The last argument of this command is the name we wish to give our
security realm.

. Although it is easier to set up security realms via the web console, doing

it through the asadmin command-line utility has the advantage that it is

— easily scriptable, allowing us to save this command in a script and easily
configure several GlassFish instances.

Defining additional certificate realms

To define an additional certificate realm, we simply need to enter its name in the
Name field and pick com. sun.enterprise.security.auth.realm.certificate.
CertificateRealm as the value of the Class Name field and then click on OK to
create our new realm, as shown in the following screenshot:

[258]

Chapter 9

New Realm [ok |

Create a new security (authentication) realm. Valid realm types are PAM, OSGi, File, Certificate, LDAP, JDBC, Digest, Oracle Solaris,
and Custom.

* Indicates required field

Configuration Name: server-config

Name: * newCertificateRealm

Class Name: @) com.sun.enterprise.security.auth realm certificate. CertificateRealm j

—

Choose a realm class name from the drop-down list or specify a custom class

Properties specific to this Class

Assign Groups:
Comma-separated list of group names

Additional Properties (0)
Delete Properties

Select | Name | Value | Description
Ma items found.

[oucs] [Goncol |

Applications wanting to use this new realm for authentication must use its name
as the value of the <realm-name> element in the web.xml deployment descriptor
and specify CLIENT-CERT as the value of its <auth-method> element. Of course,
client certificates must be present and configured as explained in the Configuring
applications to use the certificate realm section.

Alternatively, a custom certificate realm can be created on the command line via the
asadmin utility by executing the following command:

asadmin create-auth-realm --classname com.sun.enterprise.security.auth.
realm.certificate.CertificateRealm newCertificateRealm

In this case, we don't need to pass any properties as we had to when we created the
custom file realm. Therefore, all we need to do is pass the appropriate value to the
- -classname parameter and specify the new security realm name.

[259]

Securing Java EE Applications

Defining an LDAP realm

We can easily set up a realm to authenticate against an LDAP (Lightweight
Directory Access Protocol) database. In order to do this, we need to, in addition

to the obvious step of entering a name for the realm, select com. sun.enterprise.
security.auth.realm.ldap.LDAPRealm as the Class Name value for a new realm.
We then need to enter a URL for the directory server in the Directory field and the
base distinguished name to be used to search user data as the value of the Base DN
field, as shown in the following screenshot:

New Realm
Create a new security (authentication) realm. Valid realm types are PAM, OSGi, File, Certificate, LDAP, JDBC, Digest, Oracle Solaris,
and Custom.

* Indicates required field

Configuration Name: server-config

Name: * newldapRealm
Class Name: (T com.sun.enterprise.security.auth.realm.ldap LDAPRealm]
Choose a realm class name from the drop-down list or specify a custom class

Properties specific to this Class

JAAS Context: * | |dapRealm

Identifier for the login module to use for this realm

Directory: " |dap:/M27.0.0.1:10389
LDAP URL for your server

Base DN: * dc=example dc=com
LDAP base DN for the location of user data

Assign Groups:
Comma-separated list of group names

_— -

At the time of this writing, GlassFish had a bug that prevents LDAP
realms from being added successfully from the web admin console.
" In this section, we explain what should happen, not what actually
% happens. Hopefully, by the time you read this, the issue will be fixed.

Adding an LDAP realm from the command line, as explained later in
this section, works properly though.

After creating an LDAP realm, applications can use it to authenticate against
the LDAP database. The name of the realm needs to be used as the value of the
<realm-name> element in the application's web .xm1 deployment descriptor. The
value of the <auth-method> element must be either BASIC or FORM.

[260]

Chapter 9

Users and roles in the LDAP database can be mapped to groups in the application's
glassfish-web.xml deployment descriptor using the <principal-name>, <role-
name>, and <group-name> elements as discussed earlier in this chapter.

To create an LDAP realm from the command line, we need to use the following syntax:

asadmin create-auth-realm --classname com.sun.enterprise.security.auth.
realm.ldap.LDAPRealm --property "jaas-context=1ldapRealm:directory=1dap\:/
/127.0.0.1\:1389:base-dn=dc\=ensode, dc\=com" newLdapRealm

Note that, in this case, the value of the - -property parameter is between quotes.
This is necessary because we need to escape some of the characters in its value, such
as all the colons and equal signs. To escape these special characters, we simply prefix
them with a backslash (\).

Defining a Solaris realm

When GlassFish is installed on a Solaris server, it can take advantage of the
operating system authentication mechanism via a Solaris Realm. There are no special
properties for this type of realm; all we need to do to create one is pick a name for it
and select com.sun.enterprise.security.auth.realm.solaris.SolarisRealm
as the value of the Class Name field and enter solarisRealm as the value of the
JAAS Context field, as shown in the following screenshot:

New Realm [FoK] [[Ganca |
Create a new security (authentication) realm. Valid realm types are PAM, OSGi, File, Certificate, LDAP, JDBC, Digest, Oracle Solaris,
and Custom.

* Indicates required field

Configuration Name: server-config

Name: * newSolarisRealm

Class Name: (2| com sun.enterprise. security.auth.realm solaris. SolarisRealm j

Choose a realm class name from the drop-down list or specify a custom class

Properties specific to this Class

JAAS Context: * | solarisRealm
Identifier for the login module to use for this realm
Assign Groups:

Comma-separated list of group names

Additional Properties (0)

Delete Properties

|3eler:t | Name |Value | Description
Mo items. found.

[261]

Securing Java EE Applications

The JAAS Context field must be set to solarisRealm. After adding the realm,
applications can authenticate against it using basic or form-based authentication.
Operating system groups and users can be mapped to application roles defined in

the application's web . xm1 deployment descriptor via the <principal-names>, <role-
name>, and <group-name> elements in its glassfish-web.xml deployment descriptor.

A Solaris realm can be created from the command line by executing the
following command:

asadmin create-auth-realm --classname com.sun.enterprise.security.
auth.realm.solaris.SolarisRealm --property jaas-context=solarisRealm
newSolarisRealm

Defining a JDBC realm

Another type of realm we can create is a JDBC realm. This type of realm uses user
information stored in database tables for user authentication.

In order to illustrate how to authenticate against a JDBC realm, we need to create
a database to hold user information. The following entity-relationship diagram
shows an example database we could use to authenticate against a JDBC realm:

USERS
USER_ID INTEGER(10) NOT NULL (FK) (4
USERNAME VARCHAR(10) NOT NULL
FIRST _NAME VARCHAR(15) NULL
MIDDLE_NAME VARCHAR(15) NULL
LAST_NAME VARCHAR(0) NULL
PASSWORD CHAR(32) NOT NULL USER_GROUPS

—USER_ID INTEGER{10) NOT MULL (PK} (FK)
r—GROUP_ID INTEGER{10) MOT MULL (PK) (FIS)

GROUPS
GROUP_ID INTEGER(10) NOT NULL (FK) [+
GROUP_NAME VARCHAR(20) NOT NULL
GROUP_DESC VARCHAR(Z 00) NULL

Our database consists of three tables. A USERS table holding user information and
a GROUPS table holding group information are two of them. Since there is a many-
to-many relationship between USERS and GROUPS, we need to add a join table to
preserve data normalization. The name of this third table is USER_GROUPS.

Notice that the PASSWORD column of the USERS table is of type CHAR (32) . The reason
we chose this type instead of VARCHAR is that we will be hashing passwords using
the MD5 hashing algorithm, and these hashes are always 32 characters.

[262]

Chapter 9

Passwords can be easily encrypted in the expected format by using the
java.security.MessageDigest class included with the JDK. The following
example code will accept a clear-text password and create an MD5 hash out of it:

package net.ensode.glassfishbook;

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

public class EncryptPassword

public static String encryptPassword (String password)
throws NoSuchAlgorithmException {

MessageDigest messageDigest =
MessageDigest.getInstance ("MD5") ;
byte[] bs;

messageDigest.reset () ;

bs = messageDigest.digest (password.getBytes());
StringBuilder stringBuilder = new StringBuilder() ;

//hex encode the digest
for (int i = 0; i < bs.length; i++) {
String hexVal = Integer.toHexString(O0xFF & bs[i]);
if (hexVal.length() == 1) {
stringBuilder.append("0") ;
}

stringBuilder.append (hexVal) ;

}

return stringBuilder.toString() ;

}

public static void main(String[] args) {
String encryptedPassword = null;

try {

if (args.length == 0) {
System.err.println("Usage: java "+
"net.ensode.glassfishbook.EncryptPassword "+
"cleartext") ;
} else {

[263]

Securing Java EE Applications

encryptedPassword = encryptPassword(args([0]) ;
System.out.println (encryptedPassword) ;
}
} catch (NoSuchAlgorithmException e) ({
e.printStackTrace () ;

}
}
}

The main functionality of the preceding class is defined in its encryptPassword ()
method. It basically accepts a clear-text string and digests it using the MD5 algorithm
using the digest () method of an instance of java.security.MessageDigest. It then
encodes the digest as a series of hexadecimal numbers. This encoding is necessary
because GlassFish by default expects MD5-digested passwords to be hex encoded.

When using JDBC realms, application users and groups are not added to the
realm via the GlassFish console. Instead, they are added by inserting data into
the appropriate tables.

Once we have the database that will hold user credentials in place, we are ready
to create a new JDBC realm.

We can create a JDBC realm by entering its name in the Name field of the New
Realm form in the GlassFish web console and then selecting com. sun.enterprise.
security.auth.realm.jdbc.JDBCRealm as the value of the Class Name field, as
shown in the following screenshot:

New Realm [0k | [Garce |
Create a new security (authentication) realm. Valid realm types are PAM, OSGi, File, Certificate, LDAP, JDBC, Digest, Oracle Solaris,
and Custom.

* Indicates required field

Configuration Name: server-config

Name: * newJdbcRealm
Class Name: (2)| com.sun.enterprise security.ee.auth.realm.jdbc.JDBECRealm j
Choose a realm class name from the drop-down list or specify a custom class

[264]

Chapter 9

There are a number of other properties we need to set for our new JDBC realm, as
shown in the following screenshot:

Properties specific to this Class

JAAS Context: *

JNDI: *

User Table: *

User Name Column: *

Password Column: *

Group Table: -

Group Table User Name Column:
Group Name Column: *

Password Encryption Algorithm: *

Assign Groups:
Database User:
Database Password:

Digest Algorithm:

Encoding:

Charset:

jdbcRealm
Identifier for the login module to use for this realm

jdbci/userauth
JNDI name of the JDBC resource used by this realm

V_USER_ROLE
Mame of the database table that contains the list of authorized users for this realm

USERNAME
Mame of the column in the user table that contains the list of user names

PASSWORD
Mame of the column in the user table that contains the user passwords

V_USER_ROLE
Mame of the database table that contains the list of groups for this realm

USERNAME
Mame of the column in the user group table that contains the list of groups for this realm

GROUP_NAME
Mame of the column in the group table that contains the list of group names

MDS5

This denotes the algorithm for encrypting the passwords in the database. It is a security risk
to leave this field empty.

Comma-separated list of group names

Specify the database user name in the realm instead of the JDBC connection pool

Specify the database password in the realm instead of the JDBC connection pool

MD5

Digest algorithm (default is SHA-256); note that the default was MDS in GlassFish versions
prior to 3.1

Encoding (allowed values are Hex and Basef4)

Character set for the digest algorithm

The JAAS Context field must be set to jdbcRealm for JDBC realms. The value of
the JNDI property must be the JNDI name of the data source corresponding to
the database that contains the realm's user and group data. The value of the
User Table property must be the name of the table that contains username and
password information.

[265]

Securing Java EE Applications

Notice that, in the preceding screenshot, we used V_USER ROLE
as the value for the User Table property. V_USER_ROLE is a
database view that contains both user and group information. We
> didn't use the USERS table directly because GlassFish assumes
%@“ that both the user table and the group table contain a column
’ containing the username. Doing this results in having duplicate

data. To avoid this situation, we created a view that we could
use as the value of both the User Table and Group Table (to be
discussed shortly) properties.

The User Name Column property must contain the column in the User Table
property that contains the usernames. The Password Column property value must
be the name of the column in the User Table property that contains the user's
password. The value of the Group Table property must be the name of the table
containing user groups. The Group Name Column property must contain the
name of the column in the Group Table property containing user group names.

All other properties are optional and, in most cases, left blank. Of special interest
is the Digest Algorithm property. This property allows us to specify the message
digest algorithm to use to hash the user's password. Valid values for this property
include all algorithms supported by the JDK. These algorithms are MD2, MD5,
SHA-1, SHA-256, SHA-384, and SHA-512. Additionally, if we wish to store user
passwords in clear text, we can do so by using the value none for this property.

MD2, MD5, and SHA-1 are not very secure, and in most cases should
i not be used.

Once we have defined our JDBC realm, we need to configure our application via
its web.xml and glassfish-web.xml deployment descriptors. Configuring an
application to rely on a JDBC realm for authorization and authentication is

done just like when using any other type of realm.

In addition to declaring that we will rely on the JDBC realm for authentication and
authorization, just like with other types of realms, we need to map the roles defined
in the web.xml deployment descriptor to security group names. This is accomplished
in the glassfish-web.xml deployment descriptor.

[266]

Chapter 9

A JDBC realm can be created from the command line by executing the
following command:

asadmin create-auth-realm --classname com.sun.enterprise.security.
ee.auth.realm. jdbc.JDBCRealm

--property jaas-context=jdbcRealm:datasource-jndi=jdbc/
UserAuthPool:user-table=V USER ROLE:user-name-column=USERNAME:password-
column=PASSWORD:group-table=V_USER_ROLE:group-name-column=GROUP_ NAME
newJdbcRealm

Defining custom realms

Although the predefined realm types should cover the vast majority of cases, we
can create custom realm types if the provided ones don't meet our needs. Doing
so involves coding custom Realm and LoginModule classes. Let's first discuss the
custom Realm class as follows:

package net.ensode.glassfishbook;

import java.util.Enumeration;

import java.util.Vector;

import com.sun.enterprise.security.auth.realm.IASRealm;

import com.sun.enterprise.security.auth.realm.
InvalidOperationException;

import com.sun.enterprise.security.auth.realm.NoSuchUserException;
public class SimpleRealm extends IASRealm {

@Override

public Enumeration getGroupNames (String userName)
throws InvalidOperationException, NoSuchUserException {
Vector vector = new Vector () ;

vector.add ("appuser") ;
vector.add ("appadmin") ;

return vector.elements () ;

}

@Override
public String getAuthType() {

return "simple";

[267]

Securing Java EE Applications

@Override
public String getJAASContext() {
return "simpleRealm";

}

public boolean loginUser (String userName, String password) {
boolean loginSuccessful = false;

if ("glassfish".equals (userName) && "secret".equals(
password)) {

loginSuccessful = true;

}

return loginSuccessful;

}
}

Our custom Realm class must extend com.sun.enterprise.security.auth.realm.
IASRealm. This class can be found inside the security.jar file, and therefore

this JAR file must be added to the CLASSPATH before our Realm class can be
successfully compiled.

The security.jar file can be found under [glassfish
installation directory]/glassfish/modules.

- When using Maven or Ivy dependency management, this JAR file can be
% found in the following repository:
e

http://download.java.net/maven/glassfish
The group ID is org.glassfish. security and the artifact ID is

security.

Our class must override a method called getGroupNames (). This method takes a
single string as a parameter and returns an Enumeration parameter. The String
parameter is for the username of the user that is attempting to log in to the realm.
The Enumeration parameter must contain a collection of strings indicating what
groups the user belongs to. In our simple example, we simply hardcoded the groups.
In a real application, these groups would be obtained from some kind of persistent
storage (database, file, and so on).

The next method our Realm class must override is the getauthType () method. This
method must return a String containing a description of the type of authentication
used by this realm.

[268]

Chapter 9

The getGroupNames () and getAuthType () methods are declared as abstract in the
IASRealm (parent) class. Although the getJaasContext () method is not abstract,

we should nevertheless override it, since the value it returns is used to determine the
type of authentication to use from the application server's login. conf file. The return
value of this method is used to map the realm to the corresponding login module.

Finally, our Realm class must contain a method to authenticate the user. We are free
to call it anything we want. Additionally, we can use as many parameters of any type
as we wish. Our simple example has the values for a single username and password
hardcoded. Again, a real application would obtain valid credentials from some kind
of persistent storage. This method is meant to be called from the corresponding login
module class as follows:

package net.ensode.glassfishbook;
import java.util.Enumeration;
import javax.security.auth.login.LoginException;

import com.sun.appserv.security.AppservPasswordLoginModule;

import com.sun.enterprise.security.auth.realm
.InvalidOperationException;

import com.sun.enterprise.security.auth.realm.NoSuchUserException;
public class SimpleLoginModule extends AppservPasswordLoginModule {

@Override

protected void authenticateUser() throws LoginException {
Enumeration userGroupsEnum = null;
String[] userGroupsArray = null;
SimpleRealm simpleRealm;

if (!(_currentRealm instanceof SimpleRealm)) {
throw new LoginException() ;

} else {
simpleRealm = (SimpleRealm) currentRealm;

if (simpleRealm.loginUser (username, password)) {
try {
userGroupsEnum = simpleRealm.getGroupNames (_username) ;
} catch (InvalidOperationException e) {
throw new LoginException (e.getMessage()) ;
} catch (NoSuchUserException e) {

[269]

Securing Java EE Applications

throw new LoginException (e.getMessage()) ;

}

userGroupsArray = new Stringl[2];

int 1 = 0;
while (userGroupsEnum.hasMoreElements())
userGroupsArray[i++] = ((String)

userGroupsEnum.nextElement ()) ;
} else {
throw new LoginException() ;
commitUserAuthentication (userGroupsArray) ;

Our login module class must extend com. sun.appserv.security.
AppservPasswordLoginModule. This class is also inside the security.jar

file. Our login module class only needs to override a single method, namely
authenticateUser (). This method takes no parameters and must throw a
LoginException if user authentication is unsuccessful. The currentRealm variable
is defined in the parent class and is of type com.sun.enterprise.security.auth.
realm. The Realm class is the parent of all Realm classes. This variable is initialized
before the authenticateUser () method is executed. The LoginModule class must
verify that this class is of the expected type (SimpleRealmin our example). If it is
not, a LoginException must be thrown.

Two other variables that are defined in the parent class and initialized before the
authenticateUser () method is executed are username and password. These
variables contain the credentials the user entered in the login form (for form-based
authentication) or pop-up window (for basic authentication). Our example simply
passes these values to the Realm class so that it can verify the user credentials.

The authenticateUser () method must call the parent class's
commitUserAuthentication () method upon successful authentication. This
method takes an array of string objects containing the group the user belongs to. Our
example simply invokes the getGroupNames () method defined in the Realm class
and adds the elements of the Enumeration parameter it returns to an array; it then
passes that array to commitUserAuthentication().

GlassFish is unaware of the existence of our custom realm and login module classes.

We need to add these classes to GlassFish's CLASSPATH. The easiest way to do this

is to copy the JAR file containing our custom realm and login module at [glassfish
installation directoryl]/glassfish/domains/domainl/lib.

[270]

Chapter 9

The last step we need to follow before we can authenticate applications against our
custom realm is to add our new custom realm to the domain's 1ogin. conf file as
follows:

fileRealm ({
com.sun.enterprise.security.auth.login.FileLoginModule required;

bi

ldapRealm {
com.sun.enterprise.security.auth.login.LDAPLoginModule required;

bi

solarisRealm {
com.sun.enterprise.security.auth.login.SolarisLoginModule
required;

bi

jdbcRealm {
com.sun.enterprise.security.auth.login.JDBCLoginModule required;

bi

jdbcDigestRealm {
com.sun.enterprise.security.auth.login.JDBCDigestLoginModule
required;

}i
pamRealm {

com.sun.enterprise.security.ee.auth.login.PamLoginModule
required;

bi

simpleRealm {
net.ensode.glassfishbook.SimpleLoginModule required;

}:

The value before the opening brace must match the return value of the
getJAASContext () method defined in the Realm class. It is in this file that the Realm
and LoginModule classes are linked to each other. The GlassFish domain needs to be
restarted for this change to take effect.

[271]

Securing Java EE Applications

We are now ready to use our custom realm to authenticate users in our applications.
We need to add a new realm of the type we created via GlassFish's admin console as
shown in the following screenshot:

New Realm [ok |

Create a new security (authentication) realm. Valid realm types are PAM, O3Gi, File, Certificate, LDAP, JDBC, Digest, Oracle Solaris,
and Custom.

* Indicates required field

Configuration Name: server-config

Name: * newCustomRealm

Class Name: (7 com sun.enterprise.security.auth.realm.ldap.LDAPRealm =]

':Q' net.ensode.glassfishbook. SimpleRealm
Choose a realm class name from the drop-down list or specify a custom class

Additional Properties (0)

Delete Properties

| Select | Name |‘.‘alue | Description
Ma items found.

[osea | Carcel |

To create our realm, as usual, we need to give it a name. Instead of selecting a class
name from the dropdown, we need to type it into the text field. Our custom realm
didn't have any properties; therefore, we don't have to add any in this example. If it
did, they would be added by clicking on the Add Property button and entering the
property name and corresponding value. Our realm would then get the properties
by overriding the init () method from its parent class. This method has the
following signature:

protected void init (Properties arg0) throws BadRealmException,
NoSuchRealmException

The instance of java.util.Properties it takes as a parameter would be
prepopulated with the properties entered in the page shown in the screenshot
(our custom realm doesn't have any properties, but for those that do, properties
are entered the page shown in the screenshot).

[272]

Chapter 9

Once we have added the pertinent information for our new custom realm, we
can use it just like we use any of the predefined realms. Applications need to
specify its name as the value of the <realm-name> element of the application's
web . xml deployment descriptor. Nothing extraordinary needs to be done at the
application level.

Just like with standard realms, custom realms can be added via the asadmin
command-line utility, for example, for our custom realm, we would execute
the following command:

asadmin create-auth-realm --classname net.ensode.glassfishbook.
SimpleRealm newCustomRealm

Summary

In this chapter, we covered how to use GlassFish's default realms to authenticate
our web applications. We covered the file realm, which stores user information
in a flat file, and the certificate realm, which requires client-side certificates for
user authentication.

We then covered how to create additional realms that behave just like the default
realms by using the realm classes included with GlassFish.

We also covered how to use additional Realm classes included in GlassFish to create
realms that authenticate against an LDAP database, against a relational database, and
how to create realms that integrate with a Solaris server's authentication mechanism.

Finally, we covered how to create custom Realm classes for cases where the included
ones don't fit our needs.

In the next chapter, we will cover SOAP web services with JAX-WS.

[273]

10

Web Services with JAX-WS

The Java EE specification includes the JAX-WS API as one of its technologies.
JAX-WS is the standard way to develop Simple Object Access Protocol (SOAP) web
services on the Java platform. It stands for Java API for XML Web Services. JAX-WS
is a high-level API; invoking web services via JAX-WS is done via remote procedure
calls. JAX-WS is a very natural API for Java developers.

Web services are application programming interfaces that can be invoked remotely.
Web services can be invoked from clients written in any programming language.

Some of the topics we will cover include:

* Developing web services with the JAX-WS API

* Developing web service clients with the JAX-WS API
* Adding attachments to web service calls

* Exposing E]Bs as web services

* Securing web services

Developing web services with the
JAX-WS API

JAX-WS is a high-level API that simplifies development of SOAP-based web
services. Developing a web service via JAX-WS consists of writing a class with
public methods to be exposed as web services. The class needs to be decorated with
the @eWebservice annotation. All public methods in the class are automatically
exposed as web services, they can optionally be decorated with the ewebMethod
annotation. The following example illustrates this process:

package net.ensode.glassfishbook;

import javax.jws.WebMethod;

Web Services with JAX-WS

import javax.jws.WebService;

@WebService
public class Calculator {

@WebMethod
public int add(int first, int second) {
return first + second;

@WebMethod
public int subtract (int first, int second) {
return first - second;

}

The preceding class exposes its two methods as web services. The add () method
simply adds the two int primitives it receives as parameters and returns the result.
The subtract () method subtracts its two parameters and returns the result.

We indicate that the class implements a web service by decorating it with the
@WebService annotation. Any methods that we would like exposed as web services
can be decorated with the ewebMethod annotation; however, this isn't necessary, as
all public methods are automatically exposed as web services.

To deploy our web service, we need to package it in a . war file. Before Java EE 6,
all valid . war files were required to contain a web .xm1 deployment descriptor in
their WwEB- INF directory. As we have already covered in previous chapters, this
deployment descriptor is optional when working with Java EE 6 (and later) and
is not required to deploy a web service under this environment.

If we choose to add a web.xml deployment descriptor, nothing needs to be added
to the .war file's web . xml in order to successfully deploy our web service. Simply
having an empty <web-app> element in the deployment descriptor will be enough
to successfully deploy our WAR file, as shown in the following code:

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee" version="2.5"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema"

xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.
sun.com/xml/ns/javaee/web-app 2 5.xsd">

</web-app>

[276]

Chapter 10

After compiling, packaging, and deploying the code, we can verify that it was
successfully deployed by logging into the GlassFish admin web console and
expanding the Applications node on the left-hand side. We should see our newly
deployed web service listed under this node, as shown in the following screenshot:

Edit Application

Maodify an existing application or module.

Name: Simple_Web_Service
Status: || Enabled

Virtual Servers:

Associates an Intermet domain name with a physical server.
Context Root: icalculatorservice

Path relative to server's base URL.

Location: file:'homeheffel /6886_codelch10_sro/calculatorservicetarget/calculatorsenvice!

Deployment Order: | 400

A number that determines the loading order of the application at server startup. Lower
numbers are loaded first. The default is 100.

Libraries:
Description:

Modules and Components (4)

Module Name + | Engines + | Component Name + | Type + |Action
Simple_Web_Service [web, webservices] ————m— ———— Launch
Simple_Web_Service default Serviet
Simple_Web_Service isp Serviet |
Simple_Web_Service Calculator Serviet View Endpoint |

[277]

Web Services with JAX-WS

In the preceding screenshot, notice that there is a View Endpoint link at the bottom
right of the page. Clicking on that button takes us to the Web Service Endpoint
Information page shown in the following screenshot, which has some information
about our web service:

Web Service Endpoint Information
View details about a web service endpaoint.
Application Name: Simple_Web_Service
Tester: Iealculatorservice/CalculatorService?Tester
WSDL: lealculatorservice/CalculatorService?wsd|
Endpeint Name: Calculator
Service Name: CalculatorService
Port Name: CalculatorPort
Deployment Type: 109
Implementation Type: SERVLET
Implementation Class Name: net.ensode.glassfishbook.Calculator
Endpoint Address URI: lcalculatorservice/CalculatorService
Mamespace: http:/iglassfishbook ensode.net/

Notice that there is a link labeled Tester: in the preceding screenshot; clicking on
this link takes us to an automatically generated page that allows us to test our web
service. This page looks like the following screenshot:

CalculatorService Web Service Tester

This form will allow you to test your web service implementation (WSDL File)

To invoke an operation, fill the method parameter(s) input boxes and click on the
button labeled with the method name.

Methods :

public abstract int net.ensode.glassfishbook.Calculator.add(int,int)
[add | ([1)

public abstract int net.ensode.glassfishbook.Calculator.subtract(int,int)
|_subtract | (| A)}

[278]

Chapter 10

To test methods, we can simply enter some parameters in the text fields and click on
the appropriate button. For example, entering the values 2 and 3 in the text fields
corresponding to the add method and clicking on the add button would result in the
following output:

add Method invocation

Method parameter(s)

Type|Value
e
ms

Method returned

int: "3"

JAX-WS uses the SOAP protocol behind the scenes to exchange information
between web service clients and servers. By scrolling down the preceding page,
we can see the SOAP request and response generated by our test, as shown in
the following screenshot:

SOAP Request

<?xml version="1.0" encoding="UTF-8"?><S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/" xml
<S0AP-ENV:Header/>
<5:Body=>
<ns2:add xmlns:ns2="http://glassfishbook.ensode.net/">
<argl=2</argl=
<argl=3</argl>
</ns2:add=
</5:Body=>
</5:Envelope>

SOAP Response

<?xml version="1.0" encoding="UTF-8"?><5:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/" xml
<S0AP-ENV:Header/>
<5:Body>
<ns2:addResponse xmlns:ns2="http://glassfishbook.ensode.net/">
<return>5</return=
</ns2:addResponse>
</5:Body>
</5:Envelope>

[279]

Web Services with JAX-WS

As application developers, we don't need to concern ourselves too much with these
SOAP requests, since they are automatically taken care of by the JAX-WS APL

Web service clients need a Web Services Definition Language (WSDL) file in order
to generate executable code that they can use to invoke the web service. WSDL is a
standard XML-based interface definition language that defines the functionality of a

web service.

WSDL files are typically placed in a web server and accessed by the client via
its URL. When deploying web services developed using JAX-WS, a WSDL file is
automatically generated for us. We can see it, along with its URL, by clicking on the
View WSDL link on the Web Service Endpoint Information page, as shown in the
following screenshot:

Mozilla Firefox

Firefox v] http:HlocaIhost:&,,latorService?wsdlH +* |

al & @ # v

4 [@ localhost:8080/calculatorservice/CalculatorService?wsd vo [Bv Gt

This XML file does not appear to have any style information associated with it. The document tree is
shown below.

—f--
Published by JAX-WS RI at http://jax-ws.dev.java.net. RI's version is Metro/2.3 (tags/2.3-7528; 2013-04-29T19:34:16+0000) JAX

-
—er.
Generated by JAX-WS RI at http://jax-ws.dev.java.net. RI's version is Metro/2.3 (tags/2.3-7528; 2013-04-29T19:34:16+0060) JAX
- |

—<definitions targetNamespace="http://glassfishbook.ensode.net/" name="CalculatorService">
—<types>
—<xsd:schema>
<xsd:import namespace="http://glassfishbook.ensode.net/"
schemalocation="http://localhost:8080/calculatorservice/CalculatorService?xsd=1"/>
</xsd:schema>
<[types>
—<message name="add">
<part name="parameters” element="tns:add"/>
</message>
—<message name="addResponse">
<part name="parameters" element="tns:addResponse"/>
</message=>
—<message name="subtract">
<part name="parameters" element="tns:subtract"/>
</message>

— emaccame namea="cihtrartRecnnnea"~

Dv =

Notice the WSDL URL in the browser's location text field. We will need this URL
when developing a client for our web service.

[280]

Chapter 10

Developing a web service client

As mentioned earlier, executable code needs to be generated from the WSDL of a
web service. A web service client will then invoke this executable code to access the
web service.

GlassFish includes a utility to generate Java code from a WSDL. The name of the
utility is wsimport. It can be found under [glassfish installation directory]l/
glassfish/bin/. The only required argument for wsimport is the URL of the
WSDL, which corresponds to the web service, for example, wsimport http://
localhost:8080/calculatorservice/CalculatorService?wsdl.

The command in the preceding screenshot will generate the following compiled Java
classes that allow client applications to access our web service:

® Add.class

® AddResponse.class

® Calculator.class

® CalculatorService.class
® ObjectFactory.class

® package-info.class

® Subtract.class

® SubtractResponse.class

Keeping the Generated Source Code

By default, the source code for the generated class files is automatically
deleted; it can be kept by passing the -keep parameter to wsimport.

A

These classes need to be added to the client's CLASSPATH in order for them to be
accessible to the client's code.

In addition to the command-line tool, GlassFish includes a custom ANT task to
generate code from a WSDL. The following ANT build script illustrates its usage:

<project name="calculatorserviceclient" default="wsimport"
basedir=".">
<target name="wsimport">
<taskdef name="wsimport"
classname="com.sun.tools.ws.ant.WsImport">
<classpath path="/opt/glassfish-4.0/glassfish/
modules/webservices-osgi.jar"/>

<classpath path="/opt/glassfish-4.0/glassfish/modules/jaxb-

[281]

Web Services with JAX-WS

osgi.jar"/>
<classpath path="/opt/glassfish-
4.0/glassfish/1lib/javaee.jar"/>
</taskdef>
<wsimport wsdl=" HYPERLINK "http://localhost:8080/
calculatorservice/CalculatorService?wsdl
"http://localhost:8080/calculatorservice/
CalculatorService?wsdl"xendorsed="true"/>
</target>
</project>

The preceding example is a very minimal ANT build script that only illustrates how
to set up the custom <wsimport> ANT target. In reality, the ANT build script for the
project would have several other targets for compilation, building a . war file, and
SO on.

Since <wsimports> is a custom ANT target and it is not standard, we need to add a
<taskdef > element to our ANT build script. We need to set the name and classname
attributes as illustrated in the example. Additionally, we need to add the following
.jar files to the task's CLASSPATH via nested <classpaths> elements:

®* webservices-osgi.jar
®* jaxb-osgi.jar

® Jjavaee.jar

The webservices-osgi.jar and jaxb-osgi.jar files can be found under the
[glassfish installation directory]/glassfish/modules directory. The
javaee.jar file contains all the Java EE APIs and can be found under [glassfish
installation directory]/glassfish/lib.

Once we set up the custom <wsimport> task via the <taskdef > element, we are
ready to use it. We need to indicate the WSDL location via its wsd1l attribute. Once
this task executes, the Java code that is required to access the web service defined
by the WSDL is generated.

JDK 1.6 comes bundled with JAX-WS 2.1. If we are using this version of the JDK, we
need to tell ANT to use the JAX-WS 2.2 API included with GlassFish. This can be
done easily by setting the xendorsed attribute of the custom wsimport ANT task

to true.

Readers using Maven to build their projects can take advantage of Maven's AntRun
plugin to execute the wsimport ANT target when building their code. This approach
is illustrated in the following pom.xm1 file.

<?xml version="1.0" encoding="UTF-8" ?>
<project xmlns="http://maven.apache.org/POM/4.0.0"

[282]

Chapter 10

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4 0 0.xsd">
<modelVersion>4.0.0</modelVersion>
<grouplds>net.ensode.glassfishbook</groupIld>
<artifactIdscalculatorserviceclient</artifactIds>
<packaging>jar</packaging>
<name>Simple Web Service Client</name>
<version>1l.0</version>
<urlshttp://maven.apache.org</urls>
<repositoriess>
<repositorys
<id>maven2-repository.dev.java.net</id>
<name>Java.net Repository for Maven 2</name>
<urls>http://download.java.net/maven/2/</urls>
</repositorys>
</repositories>
<dependencies>
<dependencys>
<grouplds>javax</groupld>
<artifactId>javaee-api</artifactIds>
<version>6.0</version>
<scope>provided</scope>
</dependency>
</dependencies>
<builds>
<finalName>calculatorserviceclient</finalName>
<pluginss>
<plugin>
<grouplds>org.apache.maven.plugins</groupIds>
<artifactIds>maven-antrun-plugin</artifactId>
<executions>
<execution>
<phase>generate-sources</phase>
<configurations>
<tasks>

<property name="target.dir" value="target"

<delete dir="${target.dir}/classes/com/
testapp/ws/client" />

<delete dir="${target.dir}/generated-

sources/main/java/com/testapp/ws/client" />

<mkdir dir="${target.dir}/classes" />

<mkdir dir="${target.dir}/generated-
sources/main/java" />

<taskdef name="wsimport"

[283]

Web Services with JAX-WS

classname="com.sun.tools.ws.ant.WsImport">
<classpath path="/home/heffel/sges-

v3/glassfish/modules/webservices-osgi.jar" />

<classpath path="/home/heffel/sges-
v3/glassfish/modules/jaxb-osgi.jar" />
<classpath path="/home/heffel/sges-
v3/glassfish/lib/javaee.jar" />
</taskdef>
<wsimport wsdl="http://localhost:8080/
calculatorservice/CalculatorService?wsdl"
destdir="${target.dir}/classes" verbose="true"
keep="true" sourceDestDir="${target.dir}/
generated-sources/main/java" xendorsed="true"
</tasks>
<sourceRoot>${project.build.directory}/generated-
sources/main/java</sourceRoot>
</configurations>
<goals>
<goal>run</goals>
</goals>
</executions>
</executions>
</plugin>
<plugins>
<groupld>org.apache.maven.plugins</groupIld>
<artifactIds>maven-jar-plugin</artifactIds>
<configuration>
<archives>
<manifests>
<mainClass>net.ensode.glassfishbook
.CalculatorServiceClient</mainClass>
<addClasspath>true</addClasspath>
</manifest>
</archives>
</configurations>
</plugin>
<plugins>
<grouplds>org.apache.maven.plugins</groupIds>
<artifactIds>maven-compiler-plugin</artifactId>
<configurations>
<source>l.6</source>
<target>1l.6</target>
</configurations
</plugin>
</plugins>
</builds>
</project>

/>

[284]

Chapter 10

Nested in the pom. xm1 file's <configurations tag, corresponding to the AntRun
plugin, we place any ANT tasks we need to execute. Unsurprisingly, the body of this
tag in our example looks nearly identical to the ANT build file we just discussed.

Now that we know how to build our code with ANT or Maven, we can develop a
simple client to access our web service, using the following code:

package net.ensode.glassfishbook;
import javax.xml.ws.WebServiceRef;
public class CalculatorServiceClient

@WebServiceRef (wsdlLocation = "http://localhost:8080/
calculatorservice/CalculatorService?wsdl")
private static CalculatorService calculatorService;

public void calculate() {
Calculator calculator =
calculatorService.getCalculatorPort () ;

System.out.println ("1l + 2 "

+ calculator.add (1, 2));
System.out.println ("1l - 2 "

+ calculator.subtract (1, 2));

public static void main(String[] args) {
new CalculatorServiceClient () .calculate() ;

}
}

The eWebserviceRef annotation injects an instance of the web service into our
client application. Its wsd1Location attribute contains the URL of the WSDL that
corresponds to the web service we are invoking.

Notice that the web service class is an instance of a class called calculatorService.
This class was created when we invoked the wsimport utility. The wsimport utility
always generates a class whose name is the name of the class we implemented

plus the service suffix. We use this service class to obtain an instance of the

web service class we developed. In our example, we do this by invoking the
getCalculatorPort () method on the Calculatorservice instance. In general,

the method invoked to get an instance of our web service class follows the pattern
getNamePort (), where Name is the name of the class we wrote to implement the web
service. Once we get an instance of our web service class, we can simply invoke its
methods like with any regular Java object.

[285]

Web Services with JAX-WS

Strictly speaking, the getNamePort () method of the service class
returns an instance of a class that implements an interface generated by
%j%“ wsimport. This interface is given the name of our web service class and
’ declares all of the methods we declared to be web services. For all practical
purposes, the object returned is equivalent to our web service class.

Recall from our previous discussion that in order for resource injection to work in

a standalone client (that does not get deployed to GlassFish), we need to execute it
through the appclient utility. Assuming we packaged our client in a . jar file called
calculatorserviceclient.jar, the command to execute would be the following:

appclient -client calculatorserviceclient.jar

After entering the preceding command in the command line, we should see the
following output of our client on the console:

1 +2=3

1-2=-1

In this example, we passed primitive types as parameters and return values. Of
course, it is also possible to pass objects both as parameters and as return values.
Unfortunately, not all standard Java classes or primitive types can be used as method
parameters or return values when invoking web services. The reason for this is

that behind the scenes, method parameters and return types get mapped to XML
definitions, and not all types can be properly mapped.

Valid types that can be used in JAX-WS web service calls are listed as follows:

® Jjava.awt.Image

® Jjava.lang.Object

® Java.lang.String

®* Jjava.math.BigDecimal

® Jjava.math.BigInteger

® Jjava.net.URI

®* Jjava.util.Calendar

® Jjava.util.Date

® Jjava.util.UUID

® Jjavax.activation.DataHandler
® Jjavax.xml.datatype.Duration
® Jjavax.xml.datatype.XMLGregorianCalendar
® javax.xml.namespace.QName

® Jjavax.xml.transform.Source

[286]

Chapter 10

Additionally, the following primitive types can be used:

®* boolean

* Dbyte

* bytell
® double
¢ float
* int

* long

* short

We can also use our own custom classes as method parameters and/or return values
for web service methods, but member variables of our classes must be one of the
types listed in the preceding list.

Additionally, arrays can be used both as method parameters or return values,
however, when executing wsimport, these arrays get converted to Lists, generating
a mismatch between the method signature in the web service and the method

call invoked in the client. For this reason, it is preferred to use Lists as method
parameters and/or return values, since this is also valid and does not create a
mismatch between the client and the server.

JAX-WS internally uses the Java Architecture for XML Binding
(JAXB) to create SOAP messages from method calls. The types we
%@‘\ are allowed to use for method calls and return values are the ones
g that JAXB supports. You can get more information on JAXB at
https://jaxb.dev.java.net/.

Sending attachments to web services

In addition to sending and accepting the data types discussed in the previous
sections, web service methods can send and accept file attachments. The following
example illustrates how to do this:

package net.ensode.glassfishbook;

import java.io.FileOutputStream;
import java.io.IOException;

import javax.activation.DataHandler;

[287]

Web Services with JAX-WS

import javax
import javax

@WebService
public class

@WebMethod

.jws.WebMethod;
.jws.WebService;

FileAttachment {

public void attachFile(DataHandler dataHandler) {
FileOutputStream fileOutputStream;

try {

// substitute "/tmp/attachment.gif" with
// a valid path, if necessary.

fileOutputStream = new FileOutputStream (
"/tmp/attachment.gif") ;

dataHandler.writeTo(fileOutputStream) ;

fileOutputStream.flush() ;
fileOutputStream.close() ;

} catch

(IOException e)

e.printStackTrace () ;

}

In order to write a web service method that receives one or more attachments, all
we need to do is to add a parameter of type javax.activation.DataHandler
for each attachment the method will receive. In the preceding example code, the
attachFile () method takes a single parameter of this type and simply writes it

to the filesystem.

Just like with any standard web service, the preceding code needs to be packaged

in a WAR file and

deployed. Once deployed, a WSDL will automatically be

generated. We then need to execute the wsimport utility to generate the code that
our web service client can use to access the web service. As previously discussed,
the wsimport utility can be invoked directly from the command line or via a custom

ANT target.

[288]

Chapter 10

Once we have executed wsimport to generate code to access the web service, we can
write and compile our client code as follows:

package net.ensode.glassfishbook;

import
import
import
import
import

import

public

@Web

java.io.File;
java.io.FileInputStream;
java.io.IOException;
java.nio.ByteBuffer;
java.nio.channels.FileChannel;

javax.xml.ws.WebServiceRef;

class FileAttachmentServiceClient {

ServiceRef (wsdlLocation =

"http://localhost:8080/fileattachmentservice/"

+ "FileAttachmentService?wsdl")

private static FileAttachmentService fileAttachmentService;

publ
Fi

Fi

ic static void main(String[] args) {

leAttachment fileAttachment = fileAttachmentService.
getFileAttachmentPort () ;

le fileToAttach = new File("src/main/resources/logo.gif")

byte[] fileBytes = fileToByteArray(fileToAttach);

fi

leAttachment.attachFile (fileBytes) ;

System.out.println("Successfully sent attachment.");

}

stat

ic byte[] fileToByteArray (File file) ({

byte[] fileBytes = null;

tr

}

re

}

v {
FileInputStream fileInputStream;

fileInputStream = new FileInputStream(file) ;

FileChannel fileChannel = fileInputStream.getChannel () ;
fileBytes = new byte[(int) fileChannel.size()];
ByteBuffer byteBuffer = ByteBuffer.wrap(fileBytes) ;
fileChannel.read (byteBuffer) ;

catch (IOException e) {

e.printStackTrace () ;

turn fileBytes;

I

[289]

Web Services with JAX-WS

A web service client that needs to send one or more attachments to the web service
first obtains an instance of the web service as usual. It then creates an instance of
java.io.File, passing the location of the file to attach as its constructor's parameter.

Once we have an instance of java.io.File containing the file we wish to attach,
we then need to convert the file to a byte array and pass this byte array to the web
service method that expects an attachment.

Notice that the parameter type used when the client invokes a method expecting

an attachment is different from the parameter type of the method in the web server
code. The method in the web server code expects an instance of javax.activation.
DataHandler for each attachment. However, the code generated by wsimport
expects an array of bytes for each attachment. These arrays of bytes are converted

to the right type (javax.activation.DataHandler) behind the scenes by the

code generated by wsimport. We as application developers don't need to concern
ourselves with the details of why this happens. We just need to keep in mind that
when sending attachments to a web service method, the parameter types will be
different in the web service code and in the client invocation.

Exposing EJBs as web services

In addition to creating web services as described in the previous section, public
methods of stateless session beans can easily be exposed as web services. The
following example illustrates how to do this:

package net.ensode.glassfishbook;

import javax.ejb.Stateless;
import javax.jws.WebService;

@Stateless
@WebService
public class DecToHexBean

public String convertDecToHex (int 1) {
return Integer.toHexString (i) ;

}
}

As we can see, the only thing we need to do to expose a stateless session bean's
public methods is decorate its class declaration with the ewebservice annotation.
Since the class is a stateless session bean, it also needs to be decorated with the
@Stateless annotation.

[290]

Chapter 10

Just like regular stateless session beans, the ones whose methods are exposed as web
services need to be deployed in a . jar file. Once deployed, we can see the new web
service under the Applications node in the GlassFish administration web console.

Clicking on the application's node, we can see some details in the GlassFish console,
as shown in the following screenshot:

J General ‘ Descriptor ‘

Edit Application

Modify an existing application or module.

MName: ejbws
Status: [£] Enabled
Location: %{com.sun.aas.instanceRootURI}/applications/ejbws/

Deployment Order: |qop

A number that determines the loading order of the application at server startup. Lower numbers are |loaded
first. The default is 100.

Libraries:
Description:
Modules and Components (2)
Module Name +, | Engines + Component Name - | Type + | Action
ejbws [ejb, webservices, weld]
ejbws DecToHexBean StatelessSessionBean View Endpoint

Notice that the value in the Type column for our new web service is
StatelessSessionBean. This allows us to see at a glance that the web service
is implemented as an Enterprise JavaBean (EJB).

Just like standard web services, EJB web services automatically generate a WSDL to

be used by its clients upon deployment; it can be accessed the same way by clicking
on the View EndPoint link.

EJB web service clients

The following class illustrates the procedure to be followed to access EJB web service
methods from a client application:

package net.ensode.glassfishbook;

import javax.xml.ws.WebServiceRef;

[291]

Web Services with JAX-WS

public class DecToHexClient

@WebServiceRef (wsdlLocation =
"http://localhost:8080/DecToHexBeanService/DecToHexBean?wsdl")
private static DecToHexBeanService decToHexBeanService;

public void convert () {
DecToHexBean decToHexBean =
decToHexBeanService.getDecToHexBeanPort () ;

System.out.println("decimal 4013 in hex is: "
+ decToHexBean.convertDecToHex (4013)) ;

}

public static void main(String[] args) {
)

7

new DecToHexClient () .convert (

}

As we can see, nothing special needs to be done when accessing an E]JB web service
from a client. The procedure is the same as with standard web services.

Since the preceding example is a standalone application, it needs to be executed via
the appclient application as follows:

appclient -client ejbwsclient.jar

The preceding command results in the following output:

decimal 4013 in hex is: fad

Securing web services

Just like with regular web applications, web services can be secured so that only
authorized users can access them. This can be accomplished by modifying the web
service's web.xml deployment descriptor, as shown in the following code:

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee" version="2.5"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema"
xsi:schemalLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app 2 5.xsd">
<security-constraint>
<web-resource-collection>

<web-resource-name>Calculator Web Service</web-resource-
name>

[292]

Chapter 10

<url-pattern>/CalculatorService/*</url-pattern>
<http-method>POST</http-method>
</web-resource-collection>
<auth-constraint>
<role-name>user</role-name>
</auth-constraint>
</security-constraint>
<login-config>
<auth-method>BASIC</auth-method>
<realm-name>file</realm-name>
</login-config>
</web-app>

In this example, we modify our calculator service so that only authorized users

can access it. Notice that the modifications needed to secure the web service are no

different from the modifications needed to secure any regular web application. The
URL pattern to be used for the <url-pattern> element can be obtained by clicking
on the View WSDL link corresponding to our service. In our example, the URL for
the link is:

http://localhost:8080/calculatorservice/CalculatorService?wsdl

The value to be used for <url-patterns is the value right after the context root
(/calculatorService in our example) and before the question mark, followed
by a slash and an asterisk.

Notice that the preceding web . xm1 deployment descriptor only
> secures HTTP POST requests. The reason for this is that wsimport
% uses a GET request to obtain the WSDL and generate the appropriate
g code. If GET requests are secured, wsimport will fail, since it will be
denied access to the WSDL.

The following code illustrates how a standalone client can access a secured
web service:

package net.ensode.glassfishbook;

import javax.xml.ws.BindingProvider;
import javax.xml.ws.WebServiceRef;

public class CalculatorServiceClient ({

@WebServiceRef (

[293]

Web Services with JAX-WS

wsdlLocation =
"http://localhost:8080/securecalculatorservice/CalculatorService?w
sdl")

private static CalculatorService calculatorService;

public void calculate() {

//add a user named "joe" with a password of "password"

//to the file realm to successfuly execute the web service.

//"joe" must belong to the group "appuser".

Calculator calculator = calculatorService.getCalculatorPort () ;

((BindingProvider) calculator) .getRequestContext () .put (
BindingProvider.USERNAME PROPERTY, "joe");

((BindingProvider) calculator) .getRequestContext () .put (
BindingProvider.PASSWORD PROPERTY, "password");

System.out.println("l + 2 = " + calculator.add (1, 2));

System.out.println ("1l - 2 " 4+ calculator.subtract(l, 2));

public static void main(String[] args) {
new CalculatorServiceClient () .calculate() ;

}

The preceding code is a modified version of the calculator service standalone client
we saw earlier in the chapter. This version was modified to access the secure version
of the service. As can be seen in the code, all we need to do to access the secured
version of the server is put a username and a password in the request context. The
username and password must be valid for the realm used to authenticate the

web service.

We can add the username and password to the request context by casting our

web service endpoint class to javax.xml.ws.BindingProvider and calling its
getRequestContext () method. This method returns a java.util.Map instance. We
can then simply add the username and password by calling the put method of Map
and using the constants USERNAME_PROPERTY and PASSWORD _PROPERTY defined in
BindingProvider as keys, and the corresponding String objects as values.

[294]

Chapter 10

Securing EJB web services

Just like standard web services, EJBs exposed as web services can be secured so that
only authorized clients can access them. This can be accomplished by configuring
the EJB via the glassfish-ejb-jar.xml file as follows:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE glassfish-ejb-jar PUBLIC "-//GlassFish.org//DTD
GlassFish Application Server 3.1 EJB 3.1//EN"
"http://glassfish.org/dtds/glassfish-ejb-jar 3 1-1.dtd">
<glassfish-ejb-jar>
<ejb>
<ejb-name>SecureDecToHexBean</ejb-name>
<webservice-endpoint>
<port-component-name>
SecureDecToHexBean
</port-component-name>
<login-config>
<auth-method>BASIC</auth-method>
<realm>file</realm>
</login-config>
</webservice-endpoint>
</ejb>
</glassfish-ejb-jar>

As seen in the preceding deployment descriptor, security is set up differently for
EJBs exposed as web services rather than with standard E]Bs. For E]Bs exposed as
web services, the security configuration is done inside the <webservice-endpoint>
element of the glassfish-ejb-jar.xml file.

The <port -component -name> element must be set to the name of the EJB we are
exposing as a web service. This name is defined in the <ejb-name> element for
the EJB.

The <login-config> element is very similar to the corresponding element in a web
application's web . xm1 deployment descriptor. The <login-config> element must
contain an authorization method, defined by its <auth-method> subelement, and a
realm to use for authentication. The realm is defined by the <realm> subelement.

Do not use the @RolesAllowed annotation for EJBs intended to be
exposed as web services. This annotation is intended for when the E]JB
%“ methods are accessed through its remote or local interface. If an EJB
’ or one or more of its methods are decorated with this annotation, then
invoking the method will fail with a security exception.

[295]

Web Services with JAX-WS

Once we configure an EJB web service for authentication, we package itina .jar

file, and then deploy it as usual. The EJB web service is now ready to be accessed
by clients.

The following code example illustrates how an EJB web service client can access a
secure E]JB web service:

package net.ensode.glassfishbook;

import javax.xml.ws.BindingProvider;
import javax.xml.ws.WebServiceRef;

public class DecToHexClient

@WebServiceRef (
wsdlLocation =

"http://localhost:8080/SecureDecToHexBeanService/SecureDecToHexBea
n?wsdl")

private static SecureDecToHexBeanService
secureDecToHexBeanService;

public void convert () {

SecureDecToHexBean secureDecToHexBean =
secureDecToHexBeanService.

getSecureDecToHexBeanPort () ;
((BindingProvider) secureDecToHexBean) .getRequestContext () .put (
BindingProvider.USERNAME PROPERTY, "joe");
((BindingProvider) secureDecToHexBean) .getRequestContext () .put (
BindingProvider.PASSWORD PROPERTY, "password") ;

System.out.println("decimal 4013 in hex is: "
+ secureDecToHexBean.convertDecToHex (4013)) ;

public static void main(String[] args) {
new DecToHexClient () .convert () ;

}

As we can see in the previous example, the procedure for accessing an EJB exposed
as a web service is identical to accessing a standard web service. The implementation
of the web service is irrelevant to the client.

[296]

Chapter 10

Summary

In this chapter, we covered how to develop web services and web service clients via
the JAX-WS APIL. We explained how to incorporate web service code generation for
web service clients when using ANT or Maven as a build tool. We also covered the
valid types that can be used for remote method calls via JAX-WS. Additionally, we
discussed how to send attachments to a web service. We also covered how to expose
EJB methods as web services. Lastly, we covered how to secure web services so that
they are not accessible to unauthorized clients.

In the next chapter, we will cover RESTful web services with JAX-RS.

[297]

11

Developing RESTful Web
Services with JAX-RS

Representational State Transfer (REST) is an architectural style in which web
services are viewed as resources and can be identified by Uniform Resource
Identifiers (URIs).

Web services developed using REST are known as RESTful web services.

Java EE 6 added support to RESTful web services through the addition of the Java
API for RESTful Web Services (JAX-RS). JAX-RS had been available as a standalone
API for a while, it became part of Java EE in Version 6 of the specification. In this
chapter, we will cover how to develop RESTful web services through the JAX-RS.APL

The following topics will be covered in this chapter:

* Introduction to RESTful web services and JAX-RS
* Developing a simple RESTful web service

* Developing a RESTful web service client

* Path parameters

* Query parameters

Introducing RESTful web services
and JAX-RS

RESTful web services are very flexible. RESTful web services can consume several
different kinds of MIME types, although they are typically written to consume
and/or produce XML or JSON (JavaScript Object Notation).

Developing RESTful Web Services with JAX-RS

Web services must support one or more of the following four HTTP methods:

* GET: By convention, a GET request is used to retrieve an existing resource
* POST: By convention, a POST request is used to update an existing resource
* PUT: By convention, a PUT request is used to create a new resource

* DELETE: By convention, a DELETE request is used to delete an
existing resource

We develop a RESTful web service with JAX-RS by creating a class with annotated
methods that are invoked when our web service receives one of the above HTTP
request methods. Once we have developed and deployed our RESTful web service,
we need to develop a client that will send requests to our service. JAX-RS 2.0
introduces a standard client-side API that we can use to develop RESTful web
service clients.

Developing a simple RESTful web service

In this section, we will develop a simple web service to illustrate how to make
methods in our service respond to the different HTTP request methods.

Developing a RESTful web service using JAX-RS is simple and straightforward. Each
of our RESTful web services needs to be invoked via its Unique Resource Identifier
(URI). This URI is specified by the @path annotation, which we need to use to
decorate our RESTful web service resource class.

When developing RESTful web services, we need to develop methods that will be
invoked when our web service receives an HTTP request. We need to implement
methods to handle one or more of the four types of request that RESTful web
services handle: GET, POST, PUT, and/or DELETE.

The JAX-RS API provides four annotations that we can use to decorate methods in
our web service; the annotations are appropriately named @GET, @P0ST, @PUT, and
@DELETE. Decorating a method in our web service with one of these annotations
will make it respond to the corresponding HTTP method.

Additionally, each method in our service must produce and/or consume a specific
MIME type.

Multipurpose Internet Mail Extensions (MIME) is a standard for
M transferring nonASCII text over the Internet. MIME was originally
Q developed to send nontextual data over e-mail, but later, its use
was expanded to include other forms of data transfer such as
RESTful web services.

[300]

Chapter 11

The MIME type that is going to be produced needs to be specified with the
@Produces annotation; similarly, the MIME type that is going to be consumed
must be specified with the @Consumes annotation.

a1

Q

Please note that this example does not really do anything; its
purpose is to illustrate how to make different methods in our
RESTful web service resource class respond to the different

HTTP methods.

The following example illustrates the concepts we have just explained:

package com.ensode.

import
import
import
import
import
import
import

javax.
javax.
javax.
javax.
javax.
javax.
javax.

ws.
wS.
wS.
ws.
wS.
wS.
ws.

rs.

rs
rs

rs.

rs

rs.
rs.

@Path ("customer")

public class CustomerResource

@GET

jaxrsintro.service;

Consumes;

.DELETE;
.GET;

POST;

.PUT;

Path;
Produces;

@Produces ("text/xml")

public String getCustomer() {

//in a "real" RESTful service, we would retrieve data from a

database

//then return an XML representation of the data.

System.out.println("--- " + this.getClass () .getCanonicalName ()

+ ".getCustomer () invoked") ;

return "<customer>\n"
+ "<id>123</id>\n"

+ o+ o+ +

"<firstName>Joseph</firstName>\n"
"«middleNames>William</middleName>\n"
"<lastName>Graystone</lastName>\n"
"< /customers>\n";

[301]

Developing RESTful Web Services with JAX-RS

/**
* Create a new customer
* @param customer XML representation of the customer to create

*/
@PUT
@Consumes ("text/xml")
public void createCustomer (String customerXML)
//in a "real" RESTful service, we would parse the XML
//received in the customer XML parameter, then insert

//a new row into the database.

System.out.println("--- " + this.getClass () .getCanonicalName ()

+ ".createCustomer () invoked") ;

System.out.println("customerXML = " + customerXML) ;

@POST

@Consumes ("text/xml")

public void updateCustomer (String customerXML)
//in a "real" RESTful service, we would parse the XML
//received in the customer XML parameter, then update

//a row in the database.
System.out.println("--- " + this.getClass () .getCanonicalName ()
+ ".updateCustomer () invoked") ;

System.out.println("customerXML = " + customerXML) ;

@DELETE

@Consumes ("text/xml")

public void deleteCustomer (String customerXML)
//in a "real" RESTful service, we would parse the XML
//received in the customer XML parameter, then delete

//a row in the database.

System.out.println("--- " + this.getClass() .getCanonicalName ()

+ ".deleteCustomer () invoked") ;

System.out.println("customerXML = " + customerXML) ;

[302]

Chapter 11

Notice that this class is annotated with the @Path annotation; this annotation
designates the Uniform Resource Identifier (URI) for our RESTful web service. The
complete URI for our service will include the protocol, server name, port, context
root, the REST resources path (see the next subsection), and the value passed to
this annotation.

Assuming our web service was deployed to a server called example.com using the
HTTP protocol on port 8080, and has a context root called "jaxrsintro" and a REST
resources path called resources, then the complete URI for our service would be
http://example.com:8080/jaxrsintro/resources/customer.

M Since web browsers generate a GET request when pointed to a URL,
we can test the GET method of our service by simply pointing the
browser to our service's URI.

Notice that each of the methods in our class is annotated with one of the @GET, @POST,
@PUT, or @ELETE annotations. These annotations make our methods respond to their
corresponding HTTP method.

Additionally, if our method returns data to the client, we declare that the MIME
type of the data should be returned in the @Produces annotation. In our example,
only the getCustomer () method returns data to the client; we wish to return data
in an XML format, therefore, we set the value of the @Produces annotation to text/
xml. Similarly, if our method needs to consume data from the client, we need to
specify the MIME type of the data to be consumed; this is done via the @Consumes
annotation. All methods in our service except getCustomer () consume data; in all
cases, we expect the data to be in XML, therefore, we again specify text/xml as the
MIME type to be consumed.

Configuring the REST resources path for our
application

As briefly mentioned in the previous section, before successfully deploying a RESTful
web service developed using JAX-RS, we need to configure the REST resources path
for our application. We can do this by developing a class that extends javax.ws.rs.
core.Application and decorating it with the @ApplicationPath annotation.

[303]

Developing RESTful Web Services with JAX-RS

Configuring via the @ApplicationPath annotation

As mentioned in previous chapters, Java EE 6 added several new features to the
Java EE specification so that in many cases it isn't necessary to write a web . xm1
deployment descriptor. JAX-RS is no different. We can configure the REST
resources path in Java code via an annotation.

To configure our REST resources path without having to rely on a web . xml
deployment descriptor, all we need to do is write a class that extends javax.
ws .ApplicationPath and decorate it with the @applicationPath annotation;
the value passed to this annotation is the REST resources path for our services.

The following code sample illustrates this process:

package com.ensode.jaxrsintro.service.config;

import javax.ws.rs.ApplicationPath;
import javax.ws.rs.core.Application;

@ApplicationPath("resources")
public class JaxRsConfig extends Application

}

Notice that the class does not have to implement any methods. It simply needs to
extend javax.ws.rs.Application and be decorated with the @ApplicationPath
annotation. The class must be public, may have any name, and may be placed in
any package.

Testing our web service

As we mentioned earlier, web browsers send a GET request to any URLs we point
them to; therefore, the easiest way to test GET requests to our service is by simply
pointing the browser to our service's URI, as shown in the following screenshot:

Firefox v J http:/flocalhost:...sources/customer “ L] |

4 [@ localhost:8080/a»

This XML file does not appear to have any style i

—<customer=
<id>=123</id>
<firstName>Joseph</firstName>
<middleName>William</middleName>
<lastName>Graystone</lastName>
</customer>

[304]

Chapter 11

Web browsers only support GET and POST requests. To test a POST request through
the browser, we would have to write a web application containing an HTML form
that has an action attribute value of our service's URI. Although this is simple to
do for a single service, it can become cumbersome to do this for every RESTful
web service we develop.

Thankfully, there is an open source command-line utility called curl that we can
use to test our web services. The curl command is included with most Linux

distributions and can be easily downloaded for Windows, Mac OS X, and several
other platforms. The curl utility can be downloaded at http://curl.haxx.se/.

curl can send all four request method types (GET, POST, PUT and DELETE) to our
service. Our server's response will simply be displayed on the command-line
console. curl takes the -X command-line option, which allows us to specify what
request method to send; to send a GET request, we simply need to type the following
into the command line:

curl -XGET http://localhost:8080/jaxrsintro/resources/customer

This results in the following output:

<customer>

<id>123</id>
<firstName>Joseph</firstName>
<middleName>William</middleName>
<lastName>Graystone</lastName>

</customer>

This, unsurprisingly, is the same output we saw when we pointed our browser
to our service's URL

The default request method for curl is GET, therefore, the -x parameter in our
previous example is redundant; we could have achieved the same result by
invoking the following command from the command line:

curl HYPERLINK "http://localhost:8080/jaxrsintro/resources/
customer"http://localhost:8080/jaxrsintro/resources/customer

After submitting any of the two previous commands and examining the GlassFish
log, we should see the output of the System.out.println() statements we added
to the getCustomer () method.

INFO: --- com.ensode.jaxrsintro.service.CustomerResource.getCustomer ()
invoked

[305]

Developing RESTful Web Services with JAX-RS

For all other request method types, we need to send some data to our service. This
can be accomplished by the --data command-line argument to the curl command,
as shown in the following code:

curl -XPUT -HContent-type:text/xml --data "<customer><id>321</
id><firstName>Amanda</firstName><middleName>Zoe</
middleName><lastName>Adams</lastName></customer>" http://localhost:8080/
jaxrsintro/resources/customer

As shown in this example, we need to specify the MIME type via the curl's -H
command-line argument using the format shown in the example.

We can verify that the previous command worked as expected by inspecting the
GlassFish log by executing the following code:

INFO: --- com.ensode.jaxrsintro.service.CustomerResource.createCustomer ()
invoked

INFO: customerXML = <customer><id>321l</id><firstName>Amanda</
firstName><middleName>Zoe</middleName><lastName>Adams</lastName></
customer>

We can test other request method types just as easily by executing the following code:

curl -XPOST -HContent-type:text/xml --data "<customer><id>321l</
id><firstName>Amanda</firstName><middleName>Tamara</
middleName><lastName>Adams</lastName></customer>" http://localhost:8080/
jaxrsintro/resources/customer

The GlassFish log shows the corresponding output:

INFO: --- com.ensode.jaxrsintro.service.CustomerResource.updateCustomer ()
invoked

INFO: customerXML = <customer><id>321l</id><firstName>Amanda</
firstName><middleName>Tamara</middleName><lastName>Adams</lastName></
customer>

We can test the delete method by executing the following command:

curl -XDELETE -HContent-type:text/xml --data "<customer><id>321l</
id><firstName>Amanda</firstName><middleName>Tamara</
middleName><lastName>Adams</lastName></customer>" http://localhost:8080/
jaxrsintro/resources/customer

[306]

Chapter 11

Again the GlassFish log shows the corresponding output:

INFO: --- com.ensode.jaxrsintro.service.CustomerResource.deleteCustomer ()
invoked

INFO: customerXML = <customer><id>321l</id><firstName>Amanda</
firstName><middleName>Tamara</middleName><lastName>Adams</lastName></
customer>

Converting data between Java and XML with
JAXB

In our previous example, we processed raw XML data. In a real application, we
would more than likely parse the XML data received from the client and use it to
populate a Java object. Additionally, any XML data that we need to return to the
client would have to be constructed from a Java object.

Converting data from Java to XML and back is such a common use case that the
Java EE specification provides an API to do it. This APl is the Java API for XML
Binding (JAXB).

JAXB makes converting data from Java to XML transparent and simple. All we need
to do is decorate the class that we wish to convert to XML with the @xmlRootElement
annotation. The following code example illustrates how to do this:

package com.ensode.jaxrstest.entity;

import java.io.Serializable;
import javax.xml.bind.annotation.XmlRootElement;

@XmlRootElement
public class Customer implements Serializable

private Long id;

private String firstName;
private String middleName;
private String lastName;

public Customer () {

}

public Customer (Long id, String firstName,
String middleInitial, String lastName) {
this.id = id;

[307]

Developing RESTful Web Services with JAX-RS

this.firstName = firstName;
this.middleName = middleInitial;
this.lastName = lastName;

public String getFirstName ()
return firstName;

public void setFirstName (String firstName)
this.firstName = firstName;

public Long getId() {
return id;

public void setId(Long id) {
this.id = id;

public String getLastName () {
return lastName;

public void setLastName (String lastName)
this.lastName = lastName;

public String getMiddleName ()
return middleName;

public void setMiddleName (String middleName) {
this.middleName = middleName;

@Override
public String toString() {
return "id = " + getId() + "\nfirstName = " + getFirstName ()
+ "\nmiddleName = " + getMiddleName () + "\nlastName = "
+ getLastName () ;

[308]

Chapter 11

As shown in this example, other than the @xmlRootElement annotation at the class
level, there is nothing unusual about the above Java class.

Once we have a class that we have decorated with the @xmlRootElement annotation,
we need to change the parameter type of our web service from String to our custom
class, as shown in the following code:

package com.ensode.jaxbxmlconversion.service;

import
import
import
import
import
import
import
import

com.ensode. jaxbxmlconversion.entity.Customer;
javax.ws.rs.Consumes;

javax.ws.rs.DELETE;

javax.ws.rs.GET;

javax.ws.rs.POST;

javax.ws.rs.PUT;

javax.ws.rs.Path;

javax.ws.rs.Produces;

@Path ("customer")

public

class CustomerResource {

private Customer customer;

public CustomerResource () {

//"fake" the data, in a real application the data

//would come from a database.

customer = new Customer (1L, "David",

@GET

"Raymond", "Heffelfinger");

@Produces ("text/xml")

public Customer getCustomer () {

//in a "real" RESTful service, we would retrieve data from a

database
//then return an XML representation of the data.

System.out.println("--- " + this.getClass () .getCanonicalName ()
+ ".getCustomer () invoked");

return customer;

@POST
@Consumes ("text/xml")

[309]

Developing RESTful Web Services with JAX-RS

public void updateCustomer (Customer customer) {
//in a "real" RESTful service, JAXB would parse the XML
//received in the customer XML parameter, then update
//a row in the database.

System.out.println("--- " + this.getClass () .getCanonicalName ()
+ ".updateCustomer () invoked") ;
System.out.println("---- got the following customer: "

+ customer) ;

@PUT
@Consumes ("text/xml")
public void createCustomer (Customer customer) {
//in a "real" RESTful service, we would insert
//a new row into the database with the data in the

//customer parameter

System.out.println("--- " + this.getClass () .getCanonicalName ()
+ ".createCustomer () invoked") ;
System.out.println("customer = " + customer) ;
@DELETE

@Consumes ("text/xml")
public void deleteCustomer (Customer customer) {
//in a "real" RESTful service, we would delete a row
//from the database corresponding to the customer parameter

System.out.println("--- " + this.getClass () .getCanonicalName ()
+ ".deleteCustomer () invoked") ;
System.out.println("customer = " + customer) ;

}

As we can see, the difference between this version of our RESTful web service and
the previous one is that all parameter types and return values have been changed
from String to Customer. JAXB takes care of converting our parameters and return
types to and from XML as appropriate. When using JAXB, an object of our custom
class is automatically populated with data from the XML data sent from the client,
return values are similarly transparently converted to XML.

[310]

Chapter 11

Developing a RESTful web service client

Although curl allows us to quickly test our RESTful web services and is a developer
friendly tool, it is not exactly user friendly; we shouldn't expect to have our user
enter curl commands in their command line to use our web service. For this reason,
we need to develop a client for our services. JAX-RS 2.0 introduces a standard
client-side API that we can use to easily develop RESTful web service clients.

The following example illustrates how to use the JAX-RS client API:

package com.ensode.jaxrsintroclient;

import com.ensode.jaxbxmlconversion.entity.Customer;
import javax.ws.rs.client.Client;

import javax.ws.rs.client.ClientBuilder;

import javax.ws.rs.client.Entity;

public class App {
public static void main(String[] args) {

App app = new App () ;
app.insertCustomer () ;

public void insertCustomer() {
Customer customer = new Customer (234L, "Tamara", "A",
"Graystone") ;

Client client = ClientBuilder.newClient () ;
client. target (
"http://localhost:8080/jaxbxmlconversion/resources/customer").
request () .put (
Entity.entity(customer, "text/xml"),
Customer.class) ;

}

The first thing we need to do is create an instance of javax.ws.rs.client.
Client by invoking the static newClient () method on the javax.ws.rs.client.
ClientBuilder class.

We then invoke the target () method on our client instance, passing the URI of
our RESTful web service as the parameter. The target () method returns an instance
of a class implementing the javax.ws.rs.client.WebTarget interface.

[311]

Developing RESTful Web Services with JAX-RS

At this point, we invoke the request () method on our webTarget instance; this
method returns an implementation of the javax.ws.rs.client.Invocation.
Builder interface.

In this particular example, we are sending an HTTP PUT request to our RESTful web
service; therefore, at this point, we invoke the put () method of our Invocation.
Builder implementation. The first parameter of the put () method is an instance of
javax.ws.rs.client.Entity. We can create an instance of javax.ws.rs.client.
Entity on the fly by invoking the static entity () method on the Entity class. The
first parameter for this method is the object we wish to pass to our RESTful web
service and the second parameter is the String representation of the MIME type of
the data we will be passing to the RESTful web service. The second parameter of the
put () method is the type of response the client expects from the service. After we
invoke the put () method, an HTTP PUT request is sent to our RESTful web service
and the method we decorated with the @put annotation (createCustomer () in our
example) is invoked. There are similar get (), post (), and delete () methods we
can invoke to send the corresponding HTTP requests to our RESTful web service.

Working with query and path parameters

In our previous examples, we have been working with a RESTful web service to
manage a single customer object. In real life, this would obviously not be very
helpful. The common case is to develop a RESTful web service to handle a collection
of objects (customers, in our example). To determine which specific object in the
collection we are working with, we can pass parameters to our RESTful web services.
There are two types of parameters we can use: query and path.

Query parameters

We can add parameters to methods that will handle HTTP requests in our web
service. Parameters decorated with the @QueryParam annotation will be retrieved
from the request URL.

The following example illustrates how to use query parameters in our JAX-RS
RESTful web services:

package com.ensode.queryparams.service;

import com.ensode.queryparams.entity.Customer;
import javax.ws.rs.Consumes;

import javax.ws.rs.DELETE;

import javax.ws.rs.GET;

import javax.ws.rs.POST;

[312]

Chapter 11

import javax.ws.rs.PUT;

import javax.ws.rs.Path;
import javax.ws.rs.Produces;
import javax.ws.rs.QueryParam;

@Path ("customer")
public class CustomerResource

private Customer customer;

public CustomerResource()
customer = new Customer (1L, "Samuel",
"Joseph", "Willow");

@GET
@Produces ("text/xml")
public Customer getCustomer (@QueryParam("id") Long id) {
//in a "real" RESTful service, we would retrieve data from a
database
//using the supplied id.

System.out.println("--- " + this.getClass () .getCanonicalName ()
+ ".getCustomer () invoked, id = " + id);

return customer;

/**
* Create a new customer
* @param customer XML representation of the customer to create
*/
@PUT
@Consumes ("text/xml")
public void createCustomer (Customer customer) {
//in a "real" RESTful service, we would parse the XML
//received in the customer XML parameter, then insert
//a new row into the database.

System.out.println("--- " + this.getClass () .getCanonicalName ()
+ ".createCustomer () invoked") ;
System.out.println("customer = " + customer) ;

[313]

Developing RESTful Web Services with JAX-RS

}

@POST

@Consumes ("text/xml")

public void updateCustomer (Customer customer) {
//in a "real" RESTful service, we would parse the XML
//received in the customer XML parameter, then update
//a row in the database.

System.out.println("--- " + this.getClass () .getCanonicalName ()
+ ".updateCustomer () invoked") ;

System.out.println("customer = " + customer) ;
System.out.println("customer= " + customer) ;
@DELETE

@Consumes ("text/xml")

public void deleteCustomer (@QueryParam("id") Long id) {
//in a "real" RESTful service, we would invoke
//a DAO and delete the row in the database with the
//primary key passed as the "id" parameter.

System.out.println("--- " + this.getClass () .getCanonicalName ()
+ ".deleteCustomer () invoked, id = " + id);
System.out.println("customer = " + customer) ;

}

Notice that all we had to do was decorate the parameters with the @eQueryParam
annotation. This annotation allows JAX-RS to retrieve any query parameters
matching the value of the annotation and assign its value to the parameter variable.

We can add a parameter to the web service's URL just like we pass parameters to
any URL:

curl -XGET -HContent-type:text/xml http://localhost:8080/queryparams/
resources/customer?id=1

[314]

Chapter 11

Sending query parameters via the JAX-RS client
API

The JAX-RS client API provides an easy and straightforward way of sending query
parameters to RESTful web services. The following example illustrates how to
do this:

package com.ensode.queryparamsclient;

import com.ensode.queryparamsclient.entity.Customer;
import javax.ws.rs.client.Client;
import javax.ws.rs.client.ClientBuilder;

public class App {

public static void main(String[] args) {

App app = new App () ;
app.getCustomer () ;

public void getCustomer ()
Client client = ClientBuilder.newClient () ;
Customer customer = client.target (
"http://localhost:8080/queryparams/resources/customer") .
queryParam("id", 1L).
request () .get (Customer.class) ;

System.out.println (
"Received the following customer information:");

System.out.println("Id: " + customer.getId()) ;

System.out.println("First Name: " + customer.getFirstName()) ;

System.out.println("Middle Name: " +
customer.getMiddleName ()) ;

System.out.println("Last Name: " + customer.getLastName()) ;

}

As we can see, all we need to do to pass a parameter is invoke the queryParam()
method on the instance of javax.ws.rs.client.WebTarget returned by invoking

the target () method on our client instance. The first argument to this method is the
parameter name and it must match the value of the @QueryParam annotation in the
web service. The second parameter is the value that we need to pass to the web service.
If our web service accepts multiple parameters, we can chain queryparam() method
invocations, using one for each parameter that our RESTful web service expects.

[315]

Developing RESTful Web Services with JAX-RS

Path parameters

Another way we can pass parameters to our RESTful web services is via path
parameters. The following example illustrates how to develop a JAX-RS RESTful
web service that accepts path parameters:

package com.ensode.pathparams.service;

import com.ensode.pathparams.entity.Customer;
import javax.ws.rs.Consumes;

import javax.ws.rs.DELETE;

import javax.ws.rs.GET;

import javax.ws.rs.POST;

import javax.ws.rs.PUT;

import javax.ws.rs.Path;

import javax.ws.rs.PathParam;

import javax.ws.rs.Produces;

@Path("/customer/")
public class CustomerResource {

private Customer customer;

public CustomerResource() {
customer = new Customer (1L, "William",
"Daniel", "Graystone") ;

@GET
@Produces ("text/xml")
@Path (" {id}/")
public Customer getCustomer (@PathParam("id") Long id) {
//in a "real" RESTful service, we would retrieve data from a
database

//using the supplied id.

System.out.println("--- " + this.getClass() .getCanonicalName ()
+ ".getCustomer () invoked, id = " + id);

return customer;
@PUT

@Consumes ("text/xml")
public void createCustomer (Customer customer) {

[316]

Chapter 11

}

//in a "real" RESTful service, we would parse the XML
//received in the customer XML parameter, then insert
//a new row into the database.

System.out.println("--- " + this.getClass () .getCanonicalName ()
+ ".createCustomer () invoked") ;
System.out.println("customer = " + customer) ;
@POST

@Consumes ("text/xml")
public void updateCustomer (Customer customer) {

//in a "real" RESTful service, we would parse the XML
//received in the customer XML parameter, then update

//a row in the database.

System.out.println("--- " + this.getClass () .getCanonicalName ()

+ ".updateCustomer () invoked") ;

System.out.println("customer = " + customer) ;
System.out.println("customer= " + customer) ;
@DELETE

@Consumes ("text/xml")
@Path ("{id}/")
public void deleteCustomer (@PathParam("id") Long id) {

//in a "real" RESTful service, we would invoke
//a DAO and delete the row in the database with the
//primary key passed as the "id" parameter.

System.out.println("--- " + this.getClass () .getCanonicalName ()
+ ".deleteCustomer () invoked, id = " + id);
System.out.println("customer = " + customer) ;

Any method that accepts a path parameter must be decorated with the @

Path annotation. The value attribute of this annotation must be formatted as

" {paramName} /", where paramName is the parameter the method expects to
receive. Additionally, method parameters must be decorated with the @PathpParam
annotation. The value of the @PathParam annotation must match the parameter
name declared in the @Path annotation for the method.

[317]

Developing RESTful Web Services with JAX-RS

We can pass path parameters from the command line by adjusting our web
service's URI as appropriate; for example, to pass an "id" parameter of 1 to the
getCustomer () method (which handles HTTP GET requests), we could do it from
the command line as follows:

curl -XGET -HContent-type:text/xml http://localhost:8080/pathparams/
resources/customer/1

This returns the expected output of an XML representation of the Customer object
returned by the getCustomer () method, as follows:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?><custome
r><firstName>William</firstName><id>1l</id><lastName>Graystone</
lastName><middleName>Daniel</middleName></customer>

Sending path parameters via the JAX-RS Client API

Sending path parameters to a web service via the JAX-RS client API is easy and
straightforward; all we need to do is add a couple of method invocations to specify
the path parameter and its value. The following example illustrates how to do this:

package com.ensode.pathparamsclient;

import com.ensode.pathparamsclient.entity.Customer;
import javax.ws.rs.client.Client;
import javax.ws.rs.client.ClientBuilder;

public class App {

public static void main(String[] args) {

App app = new App () ;
app.getCustomer () ;

public void getCustomer () {

Client client = ClientBuilder.newClient () ;

Customer customer = client.target (
http://localhost:8080/pathparams/resources/customer") .
path("{id}").
resolveTemplate ("id", 1L).
request () .get (Customer.class) ;

[318]

Chapter 11

System.out.println("Received the following customer

information:") ;
System.out.println("Id: " + customer.getId()) ;
System.out.println("First Name: " +

customer.getFirstName ()) ;

System.out.println("Middle Name: " +
customer.getMiddleName ()) ;

System.out.println("Last Name: " +
customer.getLastName ()) ;

}

In this example, we invoke the path () method on the instance of WwebTarget
returned by client.target (). This method appends the specified path to our
WebTarget instance; the value of this method must match the value of the ePath
annotation in our RESTful web service.

After invoking the path () method on our WwebTarget instance, we need to invoke
resolveTemplate (); the first parameter for this method is the name of the
parameter (without the curly braces) and the second parameter is the value we wish
to pass as a parameter to our RESTful web service.

If we need to pass more than one parameter to one of our web services, we simply
need to use the following format for the @path parameter at the method level:

@Path ("/{paramNamel}/{paramName2}/")

Then annotate the corresponding method arguments with the @pathParam
annotation, as follows:

public String someMethod (@PathParam ("paramNamel") String paraml,
@PathParam("paramName2") String param2)

The web service can then be invoked by modifying the web service's URI to pass
the parameters in the order specified in the @Path annotation. For example, the
following URI would pass the values 1 and 2 for paramNamel and paramName2:

http://localhost:8080/contextroot/resources/customer/1/2

The previous URI will work both from the command line and through a web service
client we have developed with the JAX-RS client API.

[319]

Developing RESTful Web Services with JAX-RS

Summary

In this chapter, we discussed how to develop RESTful web services using JAX-RS,
a new addition to the Java EE specification.

We covered how to develop a RESTful web service by adding a few simple
annotations to our code. We also explained how to automatically convert data
between Java and XML by taking advantage of the Java API for XML Binding (JAXB).

We also discussed how to develop RESTful web service clients via the JAX-RS
client API

Finally, we covered how to pass parameters to our RESTful web services via the
@PathParam and @QueryParam annotations.

[320]

Symbols

@ApplicationPath annotation 304
@ApplicationScoped annotation 48,170
@Asynchronous annotation 134
@ClientEndPoint annotation 199
@Column annotation 78
@ConversationScoped annotation 48,169,
171
_currentRealm variable 270
@Dependent annotation 48,170
@EJ]B annotation 159
@FacesValidator annotation 51
<f:ajax> attribute 63
<f:ajax> tag 61, 64
@FlowScoped annotation 71
<f:validateBean> tag 44
<f:validateDoubleRange> tag 44
<f:validateLength> tag 44, 60
<f:validateLongRange> tag 45
<f:validateRegex> tag 45
<f:validateRequired> tag 45
<f:validator> tag 52
<f:validator> tags 56
<h:commandButton> tag 46
<h:form> tag 244
<h:form> tag 37
<h:messages> tag 58
<h:outputLabel> tag 40
<h:outputStylesheet> tag 37
<h:outputText> component 63
<h:outputText> tag 49
<h:panelGrid> tag 38
<h:panelGroup> tag 45
@Id annotation 78
@IdClass annotation 106

Index

@JoinColumn annotation 98
@JoinTable annotation 100
-keep parameter 281

-keystore parameter 247
<login-config> element 295
@ManyToMany annotation 100
<message-bundle> element 60
@Named annotation 46
@Named class annotation 47
@NamedQuery annotation 110
:name parameter 109
@NotNull annotation 121
@OnClose annotation 200
@OnError annotation 200
@OneToMany annotation 93
@OneToOne annotation 85
@OnMessage annotation 191
@OnMessage method 200
@OnOpen annotation 200

< operator 110

<= operator 110

= operator 110

> operator 110

>= operator 110

@Path annotation 303, 319
@PathParam annotation 317
--portbase parameter 24
<port-component-name> element 295
@PostActivate annotations 146
@PostConstruct method 149
@PreDestroy annotation 149
@PrePassivate annotations 146
--property parameter 261
@QueryParam annotation 314
<realm-name> element 273
@Remove annotations 146

@RequestScoped annotation 47, 48, 169
@RequestScoped annotations 47
@Resource annotation 221
@RolesAllowed annotation 157, 295
-savemasterpassword=true parameter 252
@Schedule annotation
dayOfMonth attribute 153
dayOfWeek attribute 153
hour attribute 154
minute attribute 154
month attribute 154
second attribute 154
timezone attribute 154
year attribute 154
@ServerEndpoint annotation 191
@SessionScoped annotation 48,169
@Stateless annotation 290
@TransactionAttribute annotation
TransactionAttributeType. MANDATORY
138
TransactionAttributeType.NEVER 138
TransactionAttributeType.NOT_SUPPORT-
ED 138
TransactionAttributeType. REQUIRED 138
TransactionAttributeType. REQUIRES_
NEW 138
TransactionAttributeType SUPPORTS 138
@TransactionManagement annotation 142
@WebMethod annotation 276
@WebService annotation 275, 290
@WebServiceRef annotation 285
@XmlRootElement annotation 309

A

actionListener attribute 64
add button 279
additional certificate realms
defining 258, 259
additional file realms
defining 262, 267
additional realms
defining 256-261
addMessageHandler() method 192
addMessage() method 38
add() method 178, 276
Add Property button 223, 272

ADDRESS_TYPES table 76
admin 228
admin group 232
admin-realm
users, adding to 229-231
Advanced icon 248
Ajax-enabling JSF applications
about 61-63
supported JavaScript events 64-66
annotated WebSocket server endpoint
developing 190-192
AntRun plugin 282
Apache Commons Validator 51
appclient utility 159, 214
application
structure 236
Applications node 277
Applications window 19
asadmin 228
asadmin command-line utility 22,23
asadmin group 230
Aspect Oriented Programming (AOP) 9
asynchronous methods
about 133-135
cancel(boolean mayInterruptlfRunning)
135
get() 135
get(long timeout, TimeUnit unit) 135
isCancelled() 135
isDone() 135
attachFile() method 288
authenticateUser() method 270
autodeploy directory 21,22

B

bean-managed transactions 140-143
Bean Validation support 119, 121
begin() method 170, 173

blur event 64

build() method 179

BytesMessage 212

Cc

Calendar-based EJB timer expressions
@Schedule annotation 153
about 152

[322]

cancel() method 150
Cascading Style Sheets. See CSS
CDI
about 34, 161
dependency injection 164, 165
Named beans 161-163
Qualifiers 165
CDI Qualifiers
about 165
named bean scopes 169-175
working with 165-168
Certificate Authorities (CA) 241
certificate realm
about 247
self-signed certificates, creating 247-251
using, by configuring application 252-256
change event 64
classname parameter 259
click event 64
CLIENT-CERT authentication 235
client-side JavaScript code
developing 193-196
closeConnection() JavaScript function 196
commitUserAuthentication() method 270
Common Development and Distribution
License (CDDL) 8
composite primary keys
about 102, 106, 107
conditions 104
connection pools
setting up 26-29
connectToServer() method 199
container-managed transactions
@TransactionAttribute annotation 138
about 137-140
Contexts and Dependency Injection. See
CDI
Converters 9
createBrowser() method 219
createConsumer() method 213, 225
createContext() method 211, 213
createCriteriaDelete() method 118
createDurableConsumer() method 225
createJsonParser() method 186
createNamedQuery() method 110
createProducer() method 211
createReader() method 182

Create, Read, Update, Delete. See CRUD
createTimer() method 150
createWriter() method 179
Criteria API
about 111
data, deleting with 117, 118
data, updating with 115-117
using 111-115
CRUD 75
CSS 57
curl command 305
CustomerDB database
about 75,76
ADDRESS_TYPES table 76
TELEPHONE_TYPES table 76
US_STATES table 76
customerinfo.xhtml 71
custom realms
defining 267-272
custom validators, JSF
about 50
creating 50-53
methods 53-56

D

data
deleting, with Criteria API 117, 118
updating, with Criteria API 115-117
Data Access Objects (DAOs) 121,128
Database Connectivity
connection pools, setting up 26-29
data sources, setting up 30
setting up 26
data sources
setting up 30
dblclick event 64
default messages, JSF
about 56
styles, customizing 57, 58
text, customizing 59-61
delete() methods 312
dependency injection, CDI Qualifiers 164,
165
Digest Algorithm property 266
digest() method 264
Does Not Exist state 146

[323]

durable subscribers
creating 222-225

E

ejbActivate() method 146
ejbRemove() method 146
E]Bs
exposing, as web services 290, 291
life cycle 143
web service clients 291, 292
EJB Security
about 155-157
client authentication 158, 159
EJB Timer Service
about 149-152
calendar-based 152-154
EJB web services
securing 295, 296
encryptPassword() method 264
end() method 170
Enterprise JavaBean. See E]JBs
Enterprise JavaBean life cycle
message-driven bean life cycle 148, 149
stateful session bean life cycle 143-146
stateless session bean life cycle 146-148
Enterprise JavaBeans
about 123
transactions 137

EntityManager.createQuery() method 109

EntityManager.find() method 107
entity() method 312
entity relationships

about 82

many-to-many relationships 95-102

one-to-many relationships 89-95

one-to-one relationships 83-88
Enumeration parameter 268
Event.END_ARRAY event 187
Event.END_OBJECT event 187
Event. KEY_NAME event 187
Event.START_ARRAY event 187
Event.START_OBJECT event 187
Event.VALUE_FALSE event 187
Event.VALUE_NULL event 187
Event. VALUE_NUMBER event 187

Event.VALUE_STRING event 187
Event.VALUE_TRUE event 187

F

facelets, first JSF application 35-41
facelets, JSF 34
faces-config.xml, JSF
about 34
standard resource locations 34, 35
Faces Flows, JSF 2.2
about 70-74
confirmation page 73
file realm
about 231-233
basic authentication 233-246
findByPrimaryKey() method 81
first JSF application
developing 35
first JSF application development
components, grouping 45
facelets 35-40
form submission 46
named beans 46-48
navigation 48, 49
project stages 41-43
validation 44, 45
focus event 64

G

getAuthType() method 268
getBasicRemote() method 192, 200
getBigDecimal() method 187
getBoolean(String name) method 182
getCalculatorPort() method 285
getCriteriaBuilder() method 113, 116
getCustomer() method 128, 303, 318

getDeclaredSingularAttribute() method 114

getEnumeration() method 219
getGroupNames() method 268, 270
getInfo() method 150

getInt() method 187

getInt(String name) method 182
get] AASContext() method 269, 271

get]sonNumber(String name) method 182

[324]

get]sonObject(String name) method 182
getJsonString(String name) method 182
getLabel() method 51
getLong() method 187
getNamePort() method 286
get(Object key) method 182
getOpenSessions() method 192
getOrders() method 95
getReasonPhrase() method 200
getRequestContext() method 294
getResultList() method 109
getSingleResult() method 110
getString() method 182
getString(String Name) method 182
getText() method 215, 219
getTimers() method 150
GlassFish

about 8

advantages 10

installing 13, 14

obtaining 11, 12

predefined security realms 228

starting, from command line 14, 15

URL 11
GlassFish domains

about 23

creating 23-25

deleting 25

stopping 25
GlassFish installation

dependencies 13
GlassFish setup, for J]MS

JMS connection factory, setting up 204-206

JMS queue, setting up 207

JMS topic, setting up 208, 209
GlassFish, starting

Java EE application, deploying 16-23

H

hasNext() method 186
HTMLS5 pass-through elements 68, 69

ICEfaces
URL 74
init() method 196, 272

invalidate() method 245
isIntegralNumber() method 187
isOpen() method 192

J

JAAS 227
JAAS Context field 265
Java
WebSocket clients, developing in 197-200
Java API
for WebSocket 201
Java API for JSON Processing. See JSON-P
1.0
Java API for RESTful Web Services 2.0. See
JAX-RS 2.0
Java API for WebSocket 1.0 10
Java API for XML Binding. See JAXB
Java API for XML Web Services. See
JAX-WS
Java Authentication and Authorization
Service. See JAAS
Java Development Kit. See JDK
Java EE
overview 7
Java EE5 34
Java EE 7 189, 204
Java EE 7 improvements
Java API for WebSocket 1.0 10
JAX-RS2.0 9
JMS2.0 9
JPA21 9
JSF22 8
JSON-P 10
Java EE application
deploying 16
deploying, through command line 20
deploying, through Web Console 16-19
undeploying, through GlassFish Admin
Console 19
Java EE application deployment, command
line
asadmin command-line utility, using 22, 23
autodeploy directory, using 21, 22
Java Enterprise Edition. See Java EE
Java Message API. See JMS
Java Message Service 2.0. See JMS 2.0

[325]

Java Messaging Service. See JMS
Java Persistence API. See JPA
Java Persistence API 2.1. See JPA 2.1
Java Persistence Query Language. See JPQL
JavaScript Object Notation. See JSON
java.security.MessageDigest class 263
JavaServer Faces. See JSF 2.2
Java Specification Request. See JSR
javax.jms.ConnectionFactory option 206
javax.jms.QueueConnectionFactory option
206
javax.jms.TopicConnectionFactory option
206
JAXB
about 287
used, for data conversion between
Java-XML 307
JAX-RS 2.0
about 9
features 9
JAX-RS client API
query parameters, sending via 315
JAX-RS Client API
query path parameters, sending via 318,
319
JAX-WS 275
JAX-WS API
used, for web service development 275-280
JAX-WS web service calls
valid types 286
JDBC realm
defining 262-266
JDK
about 13, 247
URL 13
JMS
about 136, 137, 203
GlassFish, setting up for 203
JMS 2.0 9
JMS connection factory
setting up 204-206
JMSConsumer.receiveBody() method 214
JMS queue
setting up 207
JMS topic
setting up 208, 209

JPA
about 75-82
Bean Validation support 119, 121
composite primary keys 102
Criteria API 111
entity relationships 82
JPQL 108
JPA 2.1
about 8
features 9
JPQL 108,109,110
JSF
about 33
custom validators 50
default messages 56
facelets 33, 34
faces-config.xml 34
JSF 2.0
faces-config.xml 34
standard resource locations 34
JSF2.2
Faces Flows 70
features 8
JSF 2.2 HTML5
markup 66, 67
pass-through elements 68, 69
JSF component libraries
ICEfaces 74
Primefaces 74
RichFaces 74
JSON
about 177
Model API 177
Streaming API 177
JSON data
generating, with Model API 178-180
generating, with Streaming API 183-185
parsing with Model API 181, 182
JsonGenerator class 183
JsonGenerator write() methods
write(String name, BigDecimal value) 184
write(String name, BigInteger value) 184
write(String name, boolean value) 184
write(String name, double value) 185
write(String name, int value) 185
write(String name, JsonValue value) 184

[326]

write(String name, long value) 185
write(String name, String value) 184
JSON (JavaScript Object Notation) 10
JsonObjectBuilder methods
add(String name, BigDecimal value) 180
add(String name, BigInteger value) 180
add(String name, boolean value) 180
add(String name, double value) 180
add(String name, int value) 180
add(String name, JsonArrayBuilder value)
180
add(String name, JsonObjectBuilder value)
180
add(String name, JsonValue value) 180
add(String name, long value) 180
add(String name, String value) 180
JsonObject methods
getBoolean(String name) 182
getInt(String name) 182
getJsonArray(String name) 182
getJsonObject(String name) 182
getJsonString(String name) 182
get(Object key) 182
getString(String Name) 182
JSON-P 1.0 10
JsonParser Event constants
Event. END_ARRAY 187
Event. END_OBJECT 187
Event.KEY_NAME 187
Event.START_ARRAY 187
Event.START_OBJECT 187
Event. VALUE_FALSE 187
Event. VALUE_NULL 187
Event VALUE_NUMBER 187
Event. VALUE_STRING 187
Event VALUE_TRUE 187
JsonParser methods
getBigDecimal() 187
getInt() 187
getLong() 187
JsonParser.next() method 187
JSON-P Model API 178
JSON-P Streaming API 183
JSR 177

K

keydown event 64
keypress event 64
keytool 250
keytool utility 247
keyup event 64

L

LDAP 260
LDAP realm
defining 260, 261
Lightweight Directory Access Protocol. See
LDAP
like() method 114
LoginlInfo field 87
LoginModule class 270
LoginModule classes 267
logout() method 246

managed bean scope
@ApplicationScoped 48
@ConversationScoped 48
@Dependent 48
@RequestScoped 48
@SessionScoped 48
about 48
many-to-many relationships 95-102
MapMessage 212
mappedName attribute 136, 211
message-driven bean life cycle 148
message queues
messages, retrieving from 212, 213
working with 209-219
MessageReceiver class 222
messages
receiving, asynchronously from message
queue 214-217
receiving, from message topic 220-222
retrieving, from message queue 212-214
sending, to message queue 209-212
sending, to message topic 219, 220
MessageSender class 210, 220

[327]

message topics
durable subscribers, creating 222-225
messages, receiving from 220-222
messages, sending to 219, 220
working with 219-225

Metamodel API 113

method binding expression 46

Model API
used, for JSON data generation 178-180
used, for JSON data parsing 181, 182

mousedown event 64

mousemove event 64

mouseout event 64

mouseover event 64

mouseup event 64

Multipurpose Internet Mail Extensions

(MIME) 300

N

named bean, CDI Qualifiers 161-163
named bean scopes

about 169

Application 170

Conversation 169

Dependent 170

Request 169

Session 169
newClient() method 311

O

ObjectMessage 212

Object Relational Mapping. See ORM
onClose() method 192

onError() method 192

one-to-many relationships 89-95
one-to-one relationships 83-89
onMessage() method 215, 217
OrderItemPK class 105

ORM 75

P

Passive state 144

path() method 319

Physical Destination Name property 208
Plain Old Java Objects (POJOs) 80, 190

Point-to-Point (PTP) messaging 203
predefined security realms

about 228

admin-realm 228-231

file realm 231
Primefaces

URL 74
processMessage() method 191
produceMessages() method 211
project stages, JSF 2

development 41

production 41

SystemTest 41

UnitTest 41
Publish/Subscribe (pub/sub) messaging 203
put method 294

Q

query parameters
sending, via JAX-RS client API 315
working with 312, 314

queryParam() method 315

query path parameters
sending, via JAX-RS Client API 318, 319
working with 316-318

R

readObject() method 182
Ready state 146
receiveBody() method 214, 221
Relational Database Management System
(RDBMS) 26, 75
Representational State Transfer. See REST
request() method 312
REST 9,299
RESTful web service client
developing 311, 312
RESTful web services
about 299
data conversion between Java-XML, with
JAXB 307-310
DELETE methods 300
GET methods 300
POST methods 300
PUT methods 300

[328]

REST resources path, configuring 303
testing 304-306
REST resources path
configuring, via @ApplicationPath
annotation 304
RichFaces
URL 74
rollback() method 143

S

saveCustomer() method 128, 140
saveMultipleNewCustomers() method 142,
143
saveNewCustomer() method 140
security realms
about 227
additional realms 256
predefined security realms 228
select event 64
sendMessage() function 196
sendMessage() method 200
send() method 212, 220
sendText() method 192, 200
server-config node 256
SessionBeanClient class 127
session beans
about 124
asynchronous method calls 133, 135
example 128, 130
invoking, from web applications 130, 132
simple session bean, developing 124-127
singleton session beans 132
setCustomerId() method 80
setCustomer() method 95
setltems() method 102
setMessageListener() method 217
set() method 117
setParameter() method 109
setRollBackOnly() method 140
setups
JMS connection factory 204-207
JMS topic 208, 209
message queues 209
Simple Object Access Protocol (SOAP) 275

simple RESTful web service
developing 300-303
singleton session beans 132
SOAP request 279
socket 189
Solaris realm
defining 261, 262
standard resource locations, JSF 34, 35
stateful session bean life cycle
about 143-146
default, modifying 144
Does Not Exist state 144
Passive state 144
Ready state 144
SessionBean interface, methods 143
stateless session bean life cycle
about 147
controlling 147, 148
Does Not Exist state 146
Ready state 146
Streaming API
used, for JSON data generation 183-185
used, for JSON data parsing 185-187
StreamMessage 212
StringReader class 185
styleClass attribute 57, 58
subtract() method 276

T

target() method 311
TELEPHONE_TYPES table 76
TextMessage 212
Throwable parameter 200
TimerService.createTimer() method 150
toString() method 171,179
TransactionAttributeType. MANDATORY
value 138
TransactionAttributeType.NEVER value
138
TransactionAttributeType.NOT_SUPPORT-
ED value 138
TransactionAttributeType.REQUIRED
value 138
TransactionAttributeType. REQUIRES _
NEW value 138

[329]

TransactionAttributeType.SUPPORTS
value 138
transactions, Enterprise JavaBeans
about 137
bean-managed transactions 140-142
container-managed transactions 137-140

U

Undeploy button 20
updateCustomer() method 140

URI (Uniform Resource Identifier) 191
User Name Column property 266
User Table property 265, 266

\"

validate() method 54
value-binding expression 40
valueChange event 64

w

WAR (Web ARchive) file 16
web applications
session beans, invoking from 130-132
web service client
developing 281-286
web service development, JAX-WS API
used
about 275-280
attachments, sending to web services
287-290
web service client, developing 281-287
Web Service Endpoint Information page
278
web services
E]Bs, exposing as 290-292
securing 292-294

Web Services Definition Language. See
WSDL
WebSocket
about 189
Java API 189, 201
WebSocket clients
developing 193
developing, in Java 197-200
websocketError() function 196
webSocketMessage() function 196
websocketOpen() function 196
WebSocket server endpoint
developing, by annotating Java class 190-
192
development 189, 190
writeEnd() method 185
write() method 184, 185
writeObject() method 179
writeStartObject() method 184
write(String name, BigDecimal value)
method 184
write(String name, BigInteger value)
method 184
write(String name, boolean value) method
184
write(String name, double value) method
185
write(String name, int value) method 185
write(String name, JsonValue value)
method 184
write(String name, long value) method 185
write(String name, String value) method
184
WSDL 280
wsimport utility 288

[330]

open source

community experience distilled

PUBLISHING

Thank you for buying
Java EE 7 with GlassFish 4 Application Server

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub. com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licences, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to authorepacktpub. com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

open source

community experience distilled

PUBLISHING

Java EE 6 with GlassFish 3
Application Server

Java EE 6 with GlassFish 3

Application Server
ISBN: 978-1-84951-036-3 Paperback: 488 pages

A practical guide to install and configure the
GlassFish 3 Application Server and develop Java EE 6
applications to be deployed to this server

1. Install and configure the GlassFish 3
Application Server and develop Java EE 6
applications to be deployed to this server.

2. Specialize in all major Java EE 6 APIs, including
new additions to the specification such as CDI
and JAX-RS.

3. Use GlassFish v3 application server and gain
enterprise reliability and performance with less
complexity.

Java EE 7 First Look

Java EE 7 First Look
ISBN: 978-1-84969-923-5 Paperback: 188 pages

Discover the new features of Java EE 7 and learn to
put them together to build a large-scale application

1. Explore changes brought in by the Java EE7
platform.

2. Master the new specifications that have been
added in Java EE to develop applications
without any hassle.

3. Quick guide on the new features introduced in
Java EE7.

Please check www.PacktPub.com for information on our titles

community experience distilled

[] open source

"PUBLISHING

Java EE 7 Developer
Handbook

Pater A. Pligrim

Java EE 7 Developer Handbook
ISBN: 978-1-84968-794-2 Paperback: 634 pages

Develop professional applications in Java EE 7 with
this essential reference guide

1. Learn about local and remote service endpoints,
containers, architecture, synchronous and
asynchronous invocations, and remote
communications in a concise reference.

2. Understand the architecture of the Java EE
platform and then apply the new Java EE 7
enhancements to benefit your own business-
critical applications.

3. Learn about integration test development on
Java EE with Arquillian Framework and the
Gradle build system.

Developing RESTful
Services with JAX-RS 2.0,
WebSockets, and JSON

Masoud Kalali
Bhakti Mehta

Developing RESTful Services with
JAX-RS 2.0, WebSockets, and

JSON
ISBN: 978-1-78217-812-5 Paperback: 128 pages

A complete and practical guide to building RESTful
Web Services with the latest Java EE7 API

1. Learning about different client/server
communication models including but not
limited to client polling, Server-Sent Events and
WebSockets.

2. Efficiently use WebSockets, Server-Sent Events,
and JSON in Java EE applications.

3. Learn about JAX-RS 2.0 new features and
enhancements.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with GlassFish
	An Overview of Java EE and GlassFish
	What's new in Java EE 7?
	JavaServer Faces (JSF) 2.2
	Java Persistence API (JPA) 2.1
	Java API for RESTful Web Services (JAX-RS) 2.0
	Java Message Service (JMS) 2.0
	Java API for JSON Processing (JSON-P) 1.0
	Java API for WebSocket 1.0

	GlassFish advantages

	Obtaining GlassFish
	Installing GlassFish
	GlassFish dependencies
	Performing the installation

	Starting GlassFish
	Deploying our first Java EE application
	Deploying an application through the Web Console
	Undeploying an application through the GlassFish Admin Console
	Deploying an application through the command line

	GlassFish domains
	Creating Domains
	Deleting domains
	Stopping a domain

	Setting up Database Connectivity
	Setting up connection pools
	Setting up the data sources

	Summary

	Chapter 2: JavaServer Faces
	Introduction to JSF
	Facelets
	Optional faces-config.xml
	Standard resource locations

	Developing our first JSF application
	Facelets
	Project stages
	Validation
	Grouping components
	Form submission
	Named beans
	Navigation

	Custom data validation
	Creating custom validators
	Validator methods

	Customizing JSF's default messages
	Customizing message styles
	Customizing message text

	Ajax-enabling JSF applications
	JSF 2.2 HTML5 support
	The HTML5-friendly markup
	Pass-through elements

	JSF 2.2 Faces Flows
	Additional JSF component libraries
	Summary

	Chapter 3: Object Relational Mapping with JPA
	The CustomerDB database
	Introducing the Java Persistence API
	Entity relationships
	One-to-one relationships
	One-to-many relationships
	Many-to-many relationships

	Composite primary keys
	Introducing the Java Persistence Query Language
	Introducing the Criteria API
	Updating data with the Criteria API
	Deleting data with the Criteria API

	Bean Validation support

	Final notes
	Summary

	Chapter 4: Enterprise JavaBeans
	Introduction to session beans
	Developing a simple session bean
	A more realistic example
	Invoking session beans from web applications
	Introduction to singleton session beans
	Asynchronous method calls

	Message-driven beans
	Transactions in Enterprise JavaBeans
	Container-managed transactions
	Bean-managed transactions

	Enterprise JavaBean life cycles
	The stateful session bean life cycle
	The stateless session bean life cycle
	Message-driven bean life cycle

	Introduction to the EJB Timer Service
	Calendar-based EJB timer expressions

	EJB Security
	Client authentication

	Summary

	Chapter 5: Contexts and Dependency Injection
	Named beans
	Dependency injection
	Working with CDI Qualifiers
	Named bean scopes
	Summary

	Chapter 6: JSON Processing with JSON-P
	The JSON-P Model API
	Generating JSON data with the Model API
	Parsing JSON data with the Model API

	The JSON-P Streaming API
	Generating JSON data with the Streaming API
	Parsing JSON data with the Streaming API

	Summary

	Chapter 7: WebSockets
	Developing a WebSocket server endpoint
	Developing an annotated WebSocket server endpoint

	Developing WebSocket clients
	Developing JavaScript client-side WebSocket code
	Developing WebSocket clients in Java

	Additional information about the Java API for WebSocket
	Summary

	Chapter 8: The Java Message Service
	Setting up GlassFish for JMS
	Setting up a JMS connection factory
	Setting up a JMS queue
	Setting up a JMS topic

	Working with message queues
	Sending messages to a message queue
	Retrieving messages from a message queue
	Asynchronously receiving messages from
a message queue
	Browsing message queues

	Working with message topics
	Sending messages to a message topic
	Receiving messages from a message topic
	Creating durable subscribers

	Summary

	Chapter 9: Securing Java EE Applications
	Security realms
	Predefined security realms
	The admin-realm
	The file realm
	The certificate realm

	Defining additional realms
	Defining additional file realms
	Defining additional certificate realms
	Defining an LDAP realm
	Defining a Solaris realm
	Defining a JDBC realm
	Defining custom realms

	Summary

	Chapter 10: Web Services with JAX-WS
	Developing web services with the
JAX-WS API
	Developing a web service client
	Sending attachments to web services

	Exposing EJBs as web services
	EJB web service clients

	Securing web services
	Securing EJB web services
	Summary

	Chapter 11: Developing RESTful Web Services with JAX-RS
	Introducing RESTful web services
and JAX-RS
	Developing a simple RESTful web service
	Configuring the REST resources path for our application
	Configuring via the @ApplicationPath annotation

	Testing our web service
	Converting data between Java and XML with JAXB

	Developing a RESTful web service client
	Working with query and path parameters
	Query parameters
	Sending query parameters via the JAX-RS client API

	Path parameters
	Sending path parameters via the JAX-RS Client API

	Summary

	Index

