Jeff Friesen

http://www.it-ebooks.info/

Java I/0, NIO
and NIO.2

Jeff Friesen

Apress’

www.it-ebooks.info

http://www.it-ebooks.info/

Java I/0, NIO and NI10O.2
Copyright © 2015 by Jeff Friesen

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part

of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of
the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always
be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-1566-1
ISBN-13 (electronic): 978-1-4842-1565-4

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr

Lead Editor: Steve Anglin

Technical Reviewers: Vinay Kumar and Wallace Jackson

Editorial Board: Steve Anglin, Louise Corrigan, James T. DeWolf, Jonathan Gennick,
Robert Hutchinson, Michelle Lowman, James Markham, Susan McDermott, Matthew
Moodie, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing,
Steve Weiss

Coordinating Editor: Mark Powers

Copy Editor: Kezia Endsley

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit waw. springeronline.com. Apress Media, LLCisa
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales-eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available
to readers at www.apress.com/9781484215661. For detailed information about how to locate your
book’s source code, go to www.apress.com/source-code/. Readers can also access source code at
SpringerLink in the Supplementary Material section for each chapter.

www.it-ebooks.info

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781484215661
www.apress.com/source-code/
http://www.it-ebooks.info/

To my parents.

www.it-ebooks.info

http://www.it-ebooks.info/

Contents at a
Glance

About the AUthorcccsmvsmmmis s ———— XV
About the Technical ReVIEWErSccusmmmssmsmsssmmsssmsssmsssssssnsassnsnss xvii
Acknowledgments.......cccuseemmmmsssnnnmmssssssnmmsssssnmssssssnsenssssnssesssssnnnenns Xix
Introduction.........cccvcemnismns s ————— XXi
Part I: Getting Started with 1/0........ccccceriiiniiiincccnnnnnnnnn 1
Chapter 1: 1/0 Basics and APIS.......cccccusssemnnmssssssnssssssssssssssssssssssssnns 3
Part 11: Classic 1/0 APIS.........cccuvsesmmsmssmsmssmsmssssmssssassnsnss 17
Chapter 2: Filecccuunmmemmmmmmmmmmmmmssssssssnnnsssssssssssssnsssssssssssssssssssnnes 19
Chapter 3: RandomACCESSFile......cccirssummnmnssssnnnssssssnnnssssssnnnssssnnns 43
Chapter 4: Streams.......ccccuseenmmnsssennnmnsssssmmsssssssssssssnssssssnnnn. 59
Chapter 5: Writers and Readersccucemmmnsssnnmmnnssssnnnssssssssnnnns 113
Part lIl: New 1/0 APIS......ccccmmmmmmrmssssssssmsnmsnsssssssssnsnnnnnss 125
Chapter 6: BUFfErsScccccemmrmmsssssssssssnnnmmsssssssssssssssssssssssssssnnnsnsnns 127
Chapter 7: Channelsccuneemmmnnssnnsmmmsssssnmsssssssssssssssssssssssssssnss 149

v

www.it-ebooks.info

http://www.it-ebooks.info/

vi Contents at a Glance
Chapter 8: Selectorsc.uccururmmmssmmmsssnsmsssnsssssnsssssnnsssssnssssnnsssas 203
Chapter 9: Regular EXPressionscccusseessmsssssssssssssssssssssssnsnsssss 215
Chapter 10: Charsets.......ccommmmnmmmmmmmssssmmmssssmmmssssssmsssssms 231
Chapter 11: Formatterccccinnnmmmmnsssnnnnmsssssnmnsssssssssssssssnnnns 243
Part IV: More New I/0 APIS........ccoseemmmmmmnnsssssssnsnnnnnnns 257
Chapter 12: Improved File System Interface..........cccussnnnennnnnnnns 259
Chapter 13: Asynchronous 1/0........ccccussemmmmmsssssnnmssssssssssssssssssssns 387
Chapter 14: Completion of Socket Channel Functionality 417
Part V: AppendiCesuuuseeeemeememmmmmmmnnmmnnnnnnmmssssssssssssss 429
Appendix A: ANSWers t0 EXErciSesccccrurrmmmmmmsssnsssssssssssssssnnnnns 431
Appendix B: Sockets and Network Interfacesccccceerrrresssssnns 481

1T L 513

www.it-ebooks.info

http://www.it-ebooks.info/

Contents

About the AULNOKcciiemeiirree e e r e mmmnas XV
About the Technical REVIEWErScceummrremmmmmmnsssssssssssssssmssssssnnsnnns XVii
Acknowledgments.......ccccemmmmismnnmmssssnsnmmssssnsnmsssssnsnnsssssssnsssssnnnnensnns Xix

INtroducCtion........cceiiireeemiirsne s e s s s e nnm e s s nnma e a s nnmm s arnnmma e nnmmmn i nns XXi

Part I: Getting Started with 1/0.........cccccsscminnieecnrnnssnennnd 1

Chapter 1: 1/0 Basics and APIS.......cccccurrinnmmsssssmmssssnnmmsssssssssssssssnnns 3

CIASSIC 1/0 ... 3
File System Access and the File Classccovrrnnennnnnenenennsesesessesesessssesesenns 3
Accessing File Content via RandomACCEeSSFilecccovvevcrrriecnrniereress e 5
Streaming Data via Stream ClaSsSesccuuverrrnnenrinnnessesn s sessssesens 5
JDK 1.1 and the Writer/Reader ClIasses...........uvmrmerenmnsssssesmnssssssessssssesssssssesenens 8

NIO . a e e a e a e r e aeeaeenennean 8
BUFTEIS ..o —————— 9
ChANNEIS......cceiiie e 10
R T=] [T] £ P 11
Regular EXPreSSiONSooucererereesereseese s s ssssesss e sessssssssesssssssseses 12
ChAISELS ...eeeee e 13
FOrMAaLLer ... ————— 13

vii

www.it-ebooks.info

http://www.it-ebooks.info/

viii Contents

NIO.2....ceeeer et r s n e e nn e nnn 13
Improved File System INTErface........ccocevvverrvererererererere e naeens 14
ASYNCAFONOUS I/0......ceeeeereererertererre e resesas e sae e saesessesessesas e saesesassassesassessssesssnenaes 14
Completion of Socket Channel Functionality............ccooevreerervererereseresesesessereesenns 14

SUMMANY ...t snesn s srssr e r s sn s n e sn e nn e sn s snennennnnnnnans 15

Part 1I: Classic 1/0 APIS.......cccoremmesremmnssssensssssnnsnssnnnsassnes 1 1

Chapter 2: Fileccccunsseemmmnssssnnmmmsssssssmsssssssssssssssssssssssssssssssnnsssssnnns 19
Constructing File INStANCES........cccceeeeerererrerere e 19
Learning About Stored Abstract Paths............ccceevvereniiennsssennsesnnsennes 22
Learning About a Path’s File or Directory........c.cccecvvrrrriernscnsenssessennaens 25
Listing File System Root DireCtoriescccceeeeereeereseesnesneses s sessennns 27
Obtaining Disk Space Information............ccoceevveenserenssesnsesessssessssennes 28
Listing DIr€CLONIEScccecerveererr st 30
Creating/Modifying Files and Directories..........cccceveeerereseseesessensensennns 33
Setting and Getting Permissions..........cccuvvvrnrvensensnses s sessensenns 37
Exploring Miscellaneous Capabilities..........c.ccoceerierrsriesnicsesenesenennes 39
1111] 11PN 42
Chapter 3: RandomACCESSFile......cccurrrsssmnnrrssssnnnsmssssnnnssssssnnnsssssnns 43
Exploring RandomACCESSFilecccvcreercrrercer s 43
Using RandOmMACCESSFIlecccoereerererrre e 49
SUMMANY ...t p e s 57
Chapter 4: Streams.....ccccccerrrrnnmmmmmsssssssnnnmssmssnsssssssneesssannsnns 59
Stream Classes OVEIVIBW.........ccoceuereresesmsessesessssssesessesesessssesssssssssssens 59
Touring the Stream CIaSSes.........ccucvverrrrernersensn s sae e e 61

OutputStream and INPUISTIEAM.........ccevevere e 61

ByteArrayOutputStream and ByteArraylnputStream..........ccoccovveiecvecnccsnicrnnenn, 64

FileOutputStream and FilelnputStream ... 67

www.it-ebooks.info

http://www.it-ebooks.info/

Contents ix

PipedQutputStream and PipedinputStream............cccovreecnnncresnnesescreseeeeens 4l
FilterQutputStream and FilternputStream ... 75
BufferedQutputStream and BufferedinputStreamccocorevinreicscnseicscnennns 84
DataOutputStream and DatalnputStream..............ccoorneicnnneicnrnesesere s 86
Object Serialization and Deserialization..............ccccoerrercrrneseserseseseses s 88
PriNtSIrEAM......cciic 104
Revisiting Standard 1/0...........ccoccvverrrrrrnrr e 107
SUMMAIY ...t n s 111

Chapter 5: Writers and Readersccoevvnmmmssssssssnsnsssssssssssssnnnees 113

Writer and Reader Classes OVEIVIEWc.coccoeverererecresenesessenesenns 114
Writer and REAdErcoceerierrnrrennire e 116
OutputStreamWriter and InputStreamBReadercccevvvevverrerienrenns 117
FileWriter and FileReaderc...ccoonninnnnicnnncsssesssesesesessennens 119
BufferedWriter and BufferedReaderc.ccovverenricnnnnncsensesnnnnnens 121
1111 1P S 124

Part IIl: New 1/0 APIS.........ccivmnsmmmmsssnsssnissnsssnnsnnnnenn 129

Chapter 6: BUFfErscccccemmrrmsssssssssssnnsmssssssssssssssssssssssssssssnnnnsnnns 127
Introducing BUFfers........c.coviinnnn s 127
Buffer and its Children ... 128
Buffers in Depth ... 133
Buffer Creation ... 133
Buffer Writing and Reading............cccovreeenerrcscnerneeseresseseseses s 136
FIIPPING BUFFEIS .. s 139
Marking BUFfErS.......ccoeeerercererseecre e 14
Buffer SUbCIass OPerations...........ocoveeceererncscserneeseresee e 142
BYte OFAEIING......cov e 143
DireCt Byte BUFTEISccocovieecrercccrir e 145
111 1] 1P S 147

www.it-ebooks.info

http://www.it-ebooks.info/

X

Contents

Chapter 7: Channelsccccuneemmmnssssnsmmssssssnnsssssssssssssssssssssssnsssnss 149
Introducing Channels ... 149
Channel and ItS Childrenoccocerenrersscressseserssesess s 149
Channels in Depth ... s 155

Scatter/Gather 1/0.........ccoeeeree s 155

File CRANNEIS ... s 158

SOCKEE CHANNEIS ..ot 179

PIPES et a e e a e e e e e e e e es 195
1T L 201
Chapter 8: Selectorsc.uccrurmrmsssmnmsssnsmssssssssssssssssnsssssnssssnnsssnas 203
Selector Fundamentalscoccovvrennicnnnninsssss e 204
Selector DemONSEration.............coveeererercreresesesesese e snenes 209
SUMMAIY ...t 214
Chapter 9: Regular EXPreSSsionscccussseesssssssssssssssssssssssssnsnnnnas 215
Pattern, PatternSyntaxException, and Matcher...........cccevrvrrcernenne. 215
Character CIASSEScccurserrmsmresmssessssssessssessessssssssssssssssssssssssnsssssens 221
Capturing GrOUPS ...coeveereerererereereessessessesassssssessesssssssassssssssasssssasssssans 223
Boundary Matchers and Zero-Length Matches..........cccoovereeecneneee. 224
QUANTITIBIS c.vvvererce e nn e 225
Practical Regular EXpressions..........ccccevvvernnnneessesseessessssssessssssesssesns 228
SUMMANY ...t sr e r e r e sn e n e sr e sr e n e r e sn e nn e nn s 230
Chapter 10: Charsets.......cccuneemmmmnnennmmmmssssnnmmmssssnmmssssnsesssssns 231
A Brief Review of the Fundamentals.............cccovvrinnnicnnscnessssesnnens 231
Working With Charsetsc.cceerrnsernnmissnsesesssesssse s sssessssens 232
Charsets and the String Class........c.ccocvvererererereresessesee s seeseesensens 239
SUMMANY ...t r e r e sr e n e sr e r e r e r e sn e nnenne s 241

www.it-ebooks.info

http://www.it-ebooks.info/

Contents xi

Chapter 11: Formattercccunnmemmmmmmmnnnmmsssssssssnmmsmssssssssssnns 243
Exploring Formatter..........ccovvrvrvncncrrr e 243
Exploring Formattable and FormattableFlagscoorvennicninnnnene 249
1111 1P SRS 255

Part IV: More New I/0 APIS........cccormmerremnssnmnssnnssssnnssnens 29 7

Chapter 12: Improved File System Interface........c..cccnrrssnnnnnrnans 259
Architecting a Better File Class.........cccoceveveeerenesssssece e 259
File Systems and File System Providers...........ccoeveeerrennsenesesessesesesessssesesessnsenes 261
Locating Files with Paths ... 263
Getting a Path and Accessing Its Name Elements........cccccocvevrvevrversrcveenereenennes 264
Relative and Absolute Paths ... 267
Normalization, Relativization, and Resolutioncccceevvvrvnninnninsnsssesseesennes 269
Additional Capabilities.........cceeerrrerrrerererererre s e rae s sre e aenanaens 271
Performing File System Tasks with Files........ccccooeerienrsriennicnecnnnens 273
AcCeSSING File STOIEScoeeeverrrerecrre s snnnens 273
Managing AttribULES ... —————— 276
Managing Files and DireCtOries..........cuerrerriernsesssesesese s ssesessesesnes 305
Managing Symbolic and Hard LinKScccoucevennnniennnnsncnsssesesesesesesessssssens 343
Walking the File TrEEcccevererrcrecre e s sn s snnnens 351
Working with Additional Capabilities.........cccevrnnernnnenerre e 370
Using Path Matchers and Watch Services..........cceevvrrierrercersnsiennennne 373
Matching Paths..........cccmrmieeeee s 374
WatChing DIir€CIOMIESoveuecererreecrerreeer e 377
111 1] 1P S 386
Chapter 13: Asynchronous 1/0........ccccussemmnmmssssnnnmsssssssnssssssssnsssns 387
Asynchronous 1/0 OVEIVIEWcccecevereereerersssssssssssssssssssssssssssssssansanns 388
Asynchronous File Channelscccoovvernnrenniennsessesnsesesesesessenns 390

www.it-ebooks.info

http://www.it-ebooks.info/

xii

Contents
Asynchronous Socket Channels..........cococevererersnnnessssee s 395
AsynchronousServerSocketChannel............coccvevvevvvereererenere s ssesessesenaens 396
AsynchronousSOCKEICNANNEIcccoeverereriereriereereree e s ras e sae e raesessesessenasaens 403
Asynchronous Channel GroUPS.........coeeeeerressessessessesssssssssssssssssssssnsnns 410
What About AsynchronousFileChannel? ... 413
SUMMAIY ...t nn s 415
Chapter 14: Completion of Socket Channel Functionality 417
Binding and Option Configurationccccuceennerensscnnssnesssesesennens 417
Channel-Based MUlticastingcccocevererrrnnnnsss e see e 422
SUMMANY ...t snesr s sn e n s sr s sn e n e nr e snnnnnnnn s 428

Part V: Appendicesosssssssssnsseennnnnnnnnnnnnnnnsnnnnnnnnnn 429

Appendix A: Answers 10 EXErciSescccusummmmmsssssnsssssssnssssssssnnnss 431
Chapter 1:1/0 Basics and APISccceceeeererrerrenre e sne e sneeas 431
Chapter 2: File ..o e sse e sae e sn e 432
Chapter 3: RaNdOMACCESSFIlE.......ccoereereerrrrrrrerre e see e e e 435
Chapter 4: Streams..........coccceeerererecere e sre e 436
Chapter 5: Writers and Readersccccocevererereereeseesessesseessssessessenens 444
Chapter 6: BUFFEIScccverererereree e e e e s e sss s s sassassnssassnes 446
Chapter 7: ChannelS ... 449
Chapter 8: SEIECIOIS......ccvverierrerrerrerree e rsee s s e e e sae e s snesnesaenns 453
Chapter 9: Regular EXPressionsccoccveenscresessessssesssessessssessesessens 453
Chapter 10: Charsets.........ccooeeererrerresesesse e sse e ssesssssesssssssnssnssssssnsnas 455
Chapter 11: FOrmatter........ccccvvvvevnie e sse e sseseesaenns 457
Chapter 12: Improved File System Interface...........cccocceverrierrserccnnnens 458
Chapter 13: Asynchronous I/0ccoeeevevenesese e see e 471
Chapter 14: Completion of Socket Channel Functionality 475

www.it-ebooks.info

http://www.it-ebooks.info/

Contents xiii

Appendix B: Sockets and Network Interfacesccecceerrrrrsssssnns 481
SOCKEES.....covierrerrrerrs e nn s 482
SOCKEE AUAIBSSESevrrerererrrrsseesessssesesesssss e ssssssssessssssssesssssssssssssssssesessssssssnsssnns 484
SOCKETL OPLIONS....cceeeercrereree et re e rae s e s e e s e ae e ae e sae e naena e e nae e es 486
Socket and SErVErSOCKELcccuvierererneerersse s ss s sesnns 488
DatagramSocket and MulticastSoCKetccovverevrerre s 495
Network INterfaces.........cccvvvvrrersersessesses s 503
Using Network Interfaces with SOCKEtScccccveeverecrcecsceeceecenea, 511
INA@X..eiiiiisnnnnnssssnnnnmssssnnnnnssssnnnnnssssnnnnsssssnnnnnssssnnnnnssssnnnnnssssnnnnssssnnns 513

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Jeff Friesen is a freelance tutor and software
developer with an emphasis on Java. In
addition to authoring Learn Java for Android
Development and co-authoring Android
Recipes, Jeff has written numerous articles
on Java and other technologies for JavaWorld
(JavaWorld.com), InformIT (InformIT.com),
Java.net and DevSource (DevSource.com).
Jeff can be contacted via his website at
TutorTutor.ca.

www.it-ebooks.info

http://JavaWorld.com
http:\\InformIT.com
http://DevSource.com
http://TutorTutor.ca
http://www.it-ebooks.info/

About the Technical
Reviewers

Vinay Kumar is a Technology Evangelist.

He has extensive experience of 8+ years

in designing and implementing large scale
projects in Enterprise Technologies in various
consulting and system Integration Companies.
His passion helped him achieve certifications in
Oracle ADF, Webcenter Portal and Java/JEE.
Experience and in-depth knowledge has
helped him evolve into a focused domain
expert and a well-known technical blogger.

He loves to spend his time in mentoring and
writing technical blogs, publishing white papers
and maintaining a dedicated education channel
at YouTube for the ADF/ Webcenter. He has experience in Java, JEE and
various open stack technologies as well. Vinay has been contributing to the
Java/Oracle ADF/Webcenter community by publishing 300+ technical articles
at his personal blog www.techartifact.com. He was awarded an Oracle

ACE in June 2014. You can follow him at @vinaykuma201 or in.linkedin.com/
in/vinaykumar2.

xvii

www.it-ebooks.info

http://www.techartifact.com
http://@vinaykuma201
http://in.linkedin.com/in/vinaykumar2
http://in.linkedin.com/in/vinaykumar2
http://www.it-ebooks.info/

xviii About the Technical Reviewers

Wallace Jackson has been writing for leading
multimedia publications about his work in new
media content development since the advent
of Multimedia Producer Magazine nearly two
decades ago. He has authored a half-dozen
Android book titles for Apress, including four
titles in the popular Pro Android series. Wallace
received his undergraduate degree in Business
Economics from the University of California at
Los Angeles (UCLA) and a graduate degree

in MIS Design and Implementation from the
University of Southern California (USC). He is
currently the CEO of Mind Taffy Design, a new
media content production and digital campaign
design and development agency.

www.it-ebooks.info

http://www.it-ebooks.info/

Acknowledgments

I have many people to thank for assisting me in the development of this
book. | especially thank Steve Anglin for asking me to write it and Mark
Powers for guiding me through the writing process.

Xix

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

Input/output (1/0) is not a sexy subject, but it’s an important part of
non-trivial applications. This book introduces you to most of Java’s I/O
capabilities as of Java 8 update 51.

Chapter 1 presents a broad overview of I/0O in terms of Java’s classic 1/0,
New I/0 (NIO), and NIO.2 categories. You learn what each category offers in
terms of its capabilities, and you also learn about concepts such as paths
and Direct Memory Access.

Chapters 2 through 5 cover classic I/0 APIs. You learn about the File and
RandomAccessFile classes along with streams (including object serialization
and externalization) and writers/readers.

Chapters 6 through 11 focus on NIO. You explore buffers, channels,
selectors, regular expressions, charsets, and formatters. (Formatters were
not introduced with the other NIO types in Java 1.4 because they depend on
the variable arguments capability that was introduced in Java 5.)

NIO is missing several features, which were subsequently provided by
NIO.2. Chapters 12 through 14 cover NIO.2’s improved file system interface,
asynchronous 1/O, and the completion of socket channel functionality.

Each chapter ends with assorted exercises that are designed to help you
master its content. Along with long answers and true/false questions, you
are often confronted with programming exercises. Appendix A provides the
answers and solutions.

Appendix B provides a tutorial on sockets and network interfaces. Although
not directly related to classic 1/0, NIO, and NIO.2, they leverage 1/0
capabilities and are mentioned elsewhere in this book.

www.it-ebooks.info

http://www.it-ebooks.info/

xxii Introduction

Note | briefly use Java 8’s lambda expression and method reference
language features and also use Java 8’s Streams APl in some examples,
but don’t provide a tutorial on them. You’ll need to look elsewhere for that
knowledge.

Thanks for purchasing this book. | hope you find it helpful in understanding
classic I/0, NIO, and NIO.2.

— Jeff Friesen (September 2015)

Note You can download this book’s source code by pointing your web
browser to www.apress.com/9781484215661 and clicking the Source
Code tab followed by the Download Now link.

www.it-ebooks.info

www.apress.com/9781484215661
http://www.it-ebooks.info/

Part I

Getting Started with 1/0

http://www.it-ebooks.info/

Chapter

I/0 Basics and APIs

Input and output (I/0) facilities are fundamental parts of operating systems
along with computer languages and their libraries. All but trivial computer
programs perform some kind of input and/or output operations.

Java has always supported I/O. Its initial suite of I/O APIs and related
architecture are known as classic 1/0. Because modern operating systems
feature newer I/0 paradigms, which classic I/O doesn’t support, new I/O
(NIO) was introduced as part of JDK 1.4 to support them. Lack of time
prevented some planned NIO features from being included in this release,
which led to these other NIO features being deferred to JDK 5 and JDK 7.

This chapter introduces you to classic I/0, NIO, and more NIO (NIO.2).
You learn about the basic I/0 features they address. Also, you receive an
overview of their APls. Subsequent chapters dig deeper into these APls.

Classic 1/0

JDK 1.0 introduced rudimentary I/O facilities for accessing the file system
(to create a directory, remove a file, or perform another task), accessing file
content randomly (as opposed to sequentially), and streaming byte-oriented
data between sources and destinations in a sequential manner.

File System Access and the File Class

A file system is an operating system component that manages data storage
and subsequent retrieval. Operating systems on which a Java virtual
machine (JVM) runs support at least one file system. For example, Unix or

www.it-ebooks.info

http://www.it-ebooks.info/

4 CHAPTER 1: 1/0 Basics and APIs

Linux combines all mounted (attached and prepared) disks into one virtual
file system. In contrast, Windows associates a separate file system with
each active disk drive.

A file system stores data in files, which are stored in directories. Its file and
directory objects are accessed by specifying paths, which are compact
maps that locate and identify file system objects. Paths are either absolute
or relative:

An absolute path is a path relative to the file system’s
root directory. It’s expressed as the root directory
symbol followed by a delimited hierarchy of directory
names that ends in the target directory or file name.

A relative path is a path relative to some other directory.
It’s expressed similarly to an absolute path but without
the initial root directory symbol. In contrast, it’s often

prefixed with one or more delimited “..” character
sequences, where each sequence refers to a parent
directory.

Paths are specified differently depending on the operating system. For
example, Unix, Linux, and Unix-like operating systems identify the root
directory and delimit path components with a forward slash (/), whereas
Windows uses a backslash (\) for these purposes. Consider two examples:

/users/username/bin
\users\username\bin

Each absolute path accesses the bin subdirectory of the username
subdirectory of the users subdirectory of the root directory. The path on
the first line accesses bin in a Unix/Linux context, whereas the path on the
second line accesses this subdirectory in a Windows context.

Windows and similar operating systems can manage multiple file systems.
Each file system is identified with a drive specifier such as “C:”. When
specifying a path without a drive specifier, the path is relative to the current
file system. Otherwise, it is relative to the specified file system:

\users\username\bin
C:\users\username\bin

The first line accesses the path relative to the current file system, whereas
the second line accesses the path relative to the C: file system.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: 1/0 Basics and APIs 5

An instance of the java.io.File class abstracts a file or directory path. This
instance provides access to the file system to perform tasks on this path
such as removing the underlying file or directory. The following example
demonstrates this class:

new File("temp").mkdir();

The example constructs a File object initialized to the file system object
temp. It then calls mkdir () on this File object to make a new directory
named temp.

Chapter 2 explores the File class.

Accessing File Content via RandomAccessFile

File content can be accessed sequentially or randomly. Random access
can speed up searching and sorting capabilities. An instance of the java.
io.RandomAccessFile class provides random access to a file. This capability
is demonstrated in the following example:

RandomAccessFile raf = new RandomAccessFile("employees.dat", "r");
int empIndex = 10;

raf.seek(empIndex * EMP_REC _LEN);

// Read contents of employee record.

In this example, file employees.dat, which is divided into fixed-length
employee records where each record is EMP_REC_LEN bytes long, is being
accessed. The employee record at index 10 (the first record is located at
index 0) is being sought. This task is accomplished by seeking (setting the
file pointer) to the byte location of this record’s first byte, which is located at
the index multiplied by the record length. The record is then accessed.

Chapter 3 explores the RandomAccessFile class.

Streaming Data via Stream Classes

Classic I/0 includes streams for performing 1/O operations. A stream is an
ordered sequence of bytes of arbitrary length. Bytes flow over an output
stream from an application to a destination and flow over an input stream
from a source to an application. Figure 1-1 illustrates these flows.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1565-4_2
http://dx.doi.org/10.1007/978-1-4842-1565-4_3
http://www.it-ebooks.info/

6 CHAPTER 1: 1/0 Basics and APIs

application B destination

output stream

read

—

source * % % application

input stream

Figure 1-1. Conceptualizing output and input streams as flows of bytes

Java provides classes in the java.io package that identify various stream
destinations for writing; for example, byte arrays and files. Java also
provides classes in this package that identify various stream sources for
reading. Examples include files and thread pipes.

For example, you would use FileInputStream to open an existing file and
connect an input stream to it. You would then invoke various read()
methods to read bytes from the file over the input stream. Lastly, you would
invoke close() to close the stream and file. Consider the following example:

FileInputStream fis = null;
try
{
fis = new FileInputStream("image.jpg");
// Read bytes from file.
int _byte;
while ((_byte = fis.read()) != -1) // -1 signifies EOF
; // Process _byte in some way.

}
catch (IOException ioe)
{
// Handle exception.
}
finally
{
if (fis != null)
try
{
fis.close();
}

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: 1/0 Basics and APIs 7

This example demonstrates the traditional way to open a file and create an
input stream for reading bytes from the file. It then goes on to read the file’s
contents. An exception handler takes care of any thrown exceptions, which
are represented by instances of the java.io.I0Exception class.

Whether or not an exception is thrown, the input stream and underlying

file must be closed. This action takes place in the try statement’s finally
block. Because of the verbosity in closing the file, you can alternatively use
JDK 7’s try-with-resources statement to automatically close it, as follows:

try (FileInputStream fis = new FileInputStream("image.jpg"))

// Read bytes from file.
int _byte;
while ((_byte = fis.read()) != -1) // -1 signifies EOF
; // Process _byte in some way.
}

catch (IOException ioe)

{
// Handle exception.

}

| demonstrate both the traditional and try-with-resources approaches to
closing files throughout subsequent chapters.

Some stream classes are used to filter other streams. For example, to
improve performance, BufferedInputStream reads a block of bytes from
another stream and returns bytes from its buffer until the buffer is empty, in
which case it reads another block. Consider the following example:

try (FileInputStream fis = new FileInputStream("image.jpg");
BufferedInputStream bis = new BufferedInputStream(fis))
{

// Read bytes from file.

int _byte;

while ((_byte = bis.read()) != -1) // -1 signifies EOF
; // Process _byte in some way.

}
catch (IOException ioe)

{
}

// Handle exception.

A file input stream that reads from the image. jpg file is created. This stream
is passed to a buffered input stream constructor. Subsequent reads are
performed on the buffered input stream, which calls file input stream read()
methods when appropriate.

Chapter 4 explores the stream classes.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1565-4_4
http://www.it-ebooks.info/

8 CHAPTER 1: 1/0 Basics and APIs

Stream Classes and Standard 1/0

Many operating systems support standard I/O, which is preconnected input
and output data streams between a computer program and its environment
when it begins execution. The preconnected streams are known as standard
input, standard output, and standard error.

Standard input defaults to reading its input from the keyboard. Also,
standard output and standard error default to writing their output to the
screen. However, these streams can be redirected to read input from a
different source and write output to a different destination (such as a file).

JDK 1.0 introduced support for standard I/O by adding the in, out, and
err objects of type InputStream and PrintStream to the java.lang.System
class. You specify method calls on these objects to access standard input,
standard output, and standard error, as follows:

int ch = System.in.read(); // Read single character from standard input.
System.out.println("Hello"); // Write string to standard output.

System.err.println("I/0 error: " +
ioe.getMessage()); // Write string to standard error.

As well as exploring InputStream and PrintStream, Chapter 4 also revisits
standard I/0 to show you how to programmatically redirect these streams.

JDK 1.1 and the Writer/Reader Classes

JDK 1.0’s I/O capabilities are suitable for streaming bytes, but cannot
properly stream characters because they don’t account for character
encodings. JDK 1.1 overcame this problem by introducing writer/reader
classes that take character encodings into account. For example, the
java.io package includes FileWriter and FileReader classes for writing
and reading character streams.

Chapter 5 explores various writer and reader classes.

NIO

Modern operating systems offer sophisticated I/O services (such as
readiness selection) for improving 1/0 performance and simplifying 1/0. Java
Specification Request (JSR) 51 (www.jcp.org/en/jsr/detail?id=51) was
created to address these capabilities.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1565-4_4
http://dx.doi.org/10.1007/978-1-4842-1565-4_5
http://www.jcp.org/en/jsr/detail?id=51
http://www.it-ebooks.info/

CHAPTER 1: 1/0 Basics and APIs 9

JSR 51’s description indicates that it provides APIs for scalable I/O, fast
buffered binary and character I/O, regular expressions, and charset
conversion. Collectively, these APIs are known as NIO. JDK 1.4 implemented
NIO in terms of the following APIs:

Buffers

Channels

Selectors

Regular expressions
Charsets

The regular expression and charset APIs were provided to simplify common
I/O-related tasks.

Buffers

Buffers are the foundation for NIO operations. Essentially, NIO is all about
moving data into and out of buffers.

A process such as the JVM performs 1/O by asking the operating system to
drain a buffer’s contents to storage via a write operation. Similarly, it asks
the operating system to fill a buffer with data read from a storage device.

Consider a read operation involving a disk drive. The operating system
issues a command to the disk controller to read a block of bytes from a
disk into an operating system buffer. Once this operation completes, the
operating system copies the buffer contents to the buffer specified by the
process when it issued a read() operation. Check out Figure 1-2.

Hardware

Disk

Controller Process

owa rea

Figure 1-2. Filling a buffer at the operating system level

In Figure 1-2, a process has issued a read() call to the operating system.
In turn, the operating system has requested to the disk controller to read
a block of bytes from the disk. The disk controller (also known as a DMA
controller) reads these bytes directly into an operating system buffer via

Direct Memory Access (DMA), a feature of computer systems that allows

www.it-ebooks.info

http://www.it-ebooks.info/

10 CHAPTER 1: 1/0 Basics and APIs

certain hardware subsystems to access main system (RAM) memory
independently of the central processing unit (CPU). The operating system
then copies these bytes to the process’s buffer.

Copying bytes from the operating system buffer to the process buffer isn’t
very efficient. It would be more performant to have the DMA controller copy
directly to the process buffer, but there are two problems with this approach:

The DMA controller typically cannot communicate
directly with the user space in which the JVM process
runs. Instead, it communicates with the operating
system’s kernel space.

Block-oriented devices such as a DMA controller work
with fixed-size data blocks. In contrast, the JVM
process might request a size of data that isn’t a multiple
of the block size or that is misaligned.

Because of these problems, the operating system acts as an intermediary,
tearing apart and recombining data as it switches between the JVM process
and the DMA controller.

The data assembly/disassembly tasks can be made more efficient by

letting the JVM process pass a list of buffer addresses to the operating
system in a single system call. The operating system then fills or drains
these buffers in sequence, scattering data to multiple buffers during a read
operation or gathering data from several buffers during a write operation.
This scatter/gather activity reduces the number of (potentially expensive)
system calls that the JVM process must make and lets the operating system
optimize data handling because it knows the total amount of buffer space.
Furthermore, when multiple processors or cores are available, the operating
system may allow buffers to be filled or drained simultaneously.

JDK 1.4’s java.nio.Buffer class abstracts the concept of a JVM process
buffer. It serves as the superclass for java.nio.ByteBuffer and other buffer
classes. Because I/O is fundamentally byte-oriented, only ByteBuffer
instances can be used with channels (which are discussed shortly). Most of
the other Buffer subclasses are conveniences for working with multibyte
data (such as characters or integers).

Chapter 6 explores the Buffer class and its children.

Channels

Forcing a CPU to perform I/O tasks and wait for /0O completions (such a
CPU is said to be I/0 bound) is wasteful of this resource. Performance
can be improved by offloading these tasks to DMA controllers so that the
processor can get on with other work.

www.it-ebooks.info

https://en.wikipedia.org/wiki/Computer_storage#Computer%20storage
https://en.wikipedia.org/wiki/Central_processing_unit#Central%20processing%20unit
http://dx.doi.org/10.1007/978-1-4842-1565-4_6
http://www.it-ebooks.info/

CHAPTER 1: 1/0 Basics and APIs 1

A channel serves as a conduit for communicating (via the operating
system) with a DMA controller to efficiently drain byte buffers to or fill byte
buffers from a disk. JDK 1.4’s java.nio.channels.Channel interface, its
subinterfaces, and various classes implement the channel architecture.

One of these classes is called java.nio.channels.FileChannel, and it
abstracts a channel for reading, writing, mapping, and manipulating a file. One
interesting feature of FileChannel is its support for file locking, upon which
sophisticated applications such as database management systems rely.

File locking lets a process prevent or limit access to a file while the process
is accessing the file. Although file locking can be applied to an entire file, it is
often narrowed to a smaller region. A lock ranges from a starting byte offset
in the file and continues for a specific number of bytes.

Another interesting FileChannel feature is memory-mapped file I/0 via the
map () method. map() returns a java.nio.MappedByteBuffer whose content is
a memory-mapped region of a file. File content is accessed via memory
accesses; buffer copies and read-write system calls are eliminated.

You can obtain a channel by calling the java.nio.channels.Channels class’s
methods or the methods in classic I/0O classes such as RandomAccessFile.

Chapter 7 explores Channel, Channels, and more.

Selectors

I/0 is classified as block-oriented or stream-oriented. Reading from or
writing to a file is an example of block-oriented I/O. In contrast, reading from
the keyboard or writing to a network connection is an example of stream-
oriented I/0O.

Stream 1/O is often slower than block I/0O. Furthermore, input tends to be
intermittent. For example, the user might pause while entering a stream of
characters or momentary slowness in a network connection causes a
playing video to proceed in a jerky fashion.

Many operating systems allow streams to be configured to operate in
nonblocking mode in which a thread continually checks for available input
without blocking when no input is available. The thread can handle incoming
data or perform other tasks until data arrives.

This “polling for available input” activity can be wasteful, especially when
the thread needs to monitor many input streams (such as in a web server
context). Modern operating systems can perform this checking efficiently,
which is known as readiness selection, and which is often built on top of
nonblocking mode. The operating system monitors a collection of streams
and returns an indication to the thread of which streams are ready to

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1565-4_7
http://www.it-ebooks.info/

12 CHAPTER 1: 1/0 Basics and APIs

perform 1/O. As a result, a single thread can multiplex many active streams
via common code and makes it possible, in a web server context, to manage
a huge number of network connections.

JDK 1.4 supports readiness selection by providing selectors, which are
instances of the java.nio.channels.Selector class that can examine one or
more channels and determine which channels are ready for reading or
writing. This way a single thread can manage multiple channels (and,
therefore, multiple network connections) efficiently. Being able to use fewer
threads is advantageous where thread creation and thread context switching
is expensive in terms of performance and/or memory use. See Figure 1-3.

thread

selector

Figure 1-3. A thread manages three channels via a selector

Chapter 8 explores Selector and its related types.

Regular Expressions

Regular expressions were introduced as part of NIO. Although you might
wonder about the rationale for doing this (what have regular expressions got to
do with 1/07?), regular expressions are commonly used to scan textual data that
is read from a file or other source. The need to perform these scans as quickly
as possible mandated their inclusion. JDK 1.4 supports regular expressions via
the java.util.regex package and its Pattern and Matcher classes.

Chapter 9 explores the Pattern and Matcher classes.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1565-4_8
http://dx.doi.org/10.1007/978-1-4842-1565-4_9
http://www.it-ebooks.info/

CHAPTER 1: 1/0 Basics and APIs 13

Charsets

| previously mentioned that JDK 1.1 introduced writer/reader classes that
take character encodings into account. Originally, classes such as
java.io.InputStreamReader worked with the java.io.ByteToCharConverter
class to perform conversions based on encodings. ByteToCharConverter
was eventually deprecated and removed from JDK 6 and successors. In its
place, the more capable java.nio.charset package along with its Charset,
CharsetEncoder, CharsetDecoder, and related types was introduced.

Chapter 10 explores the Charset class.

Formatter

JSR 51 mentions a simple printf-style formatting facility. Such a facility
offers significant value in preparing data for presentation, to which many C
programmers can attest. However, JDK 1.4 did not include this capability
because it relies on variable argument lists, a language feature that did not
debut until JDK 5. Fortunately, JDK 5 also included a java.util.Formatter
class with a wealth of formatting capabilities along with related types that
support custom formatting, and added printf() (and related format())
methods to the PrintStream class.

Chapter 11 explores Formatter and demonstrates printf().

NIO.2

JSR 51 specifies that NIO would introduce an improved file system interface
that overcomes various problems with the legacy File class. However, lack
of time prevented this feature from being included. Also, it wasn’t possible
to support asynchronous I/0 and complete socket channel functionality.
JSR 203 (www.jcp.org/en/jsr/detail ?id=203) was subsequently created to
address these omissions, which debuted in JDK 7.

Note Before the official JDK 7 release, big buffers (buffers with 64-bit
addressability) were considered for NIO.2. Classes such as BigByteBuffer
and MappedBigByteBuffer were planned for inclusion in package java.nio
or a different package. However, as explained in the “BigByteBuffer/Mapped
BigByteBuffer” OpenJDK discussion topic (http://mail.openjdk.java
.net/pipermail/nio-discuss/2009-June/000207.html), this
capability was abandoned in favor of pursuing “64-bit arrays or collections.”

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1565-4_10
http://dx.doi.org/10.1007/978-1-4842-1565-4_11
http://www.jcp.org/en/jsr/detail?id=203
http://mail.openjdk.java.net/pipermail/nio-discuss/2009-June/000207.html
http://mail.openjdk.java.net/pipermail/nio-discuss/2009-June/000207.html
http://www.it-ebooks.info/

14 CHAPTER 1: 1/0 Basics and APIs

Improved File System Interface

The legacy File class suffers from various problems. For example, the
renameTo() method doesn’t work consistently across operating systems.
Also, many of File’s methods don’t scale; requesting a large directory
listing from a server could result in a hang. The new file system interface
mentioned in JSR 203 fixes these and other problems. For example, it
supports bulk access to file attributes, provides a change notification facility,
offers the ability to escape to file system-specific APIs, and has a service
provider interface for pluggable file system implementations.

Chapter 12 explores the improved file system interface.

Asynchronous 1/0

Nonblocking mode improves performance by preventing a thread that
performs a read or write operation on a channel from blocking until input is
available or the output has been fully written. However, it doesn’t let an
application determine if it can perform an operation without actually
performing the operation. For example, when a nonblocking read operation
succeeds, the application learns that the read operation is possible but also
has read some data that must be managed. This duality prevents you from
separating code that checks for stream readiness from the data-processing
code without making your code significantly complicated.

Asynchronous I/0O overcomes this problem by letting the thread initiate the
operation and immediately proceed to other work. The thread specifies
some kind of callback function that is invoked when the operation finishes.

Chapter 13 explores asynchronous 1/O.

Completion of Socket Channel Functionality

JDK 1.4 added the DatagramChannel, ServerSocketChannel, and
SocketChannel classes to the java.nio.channels package. However, lack
of time prevented these classes from supporting binding and option
configuration. Also, channel-based multicast datagrams were not
supported. JDK 7 added binding support and option configuration to the
aforementioned classes. Also, it introduced a new java.nio.channels
.MulticastChannel interface.

Chapter 14 explores the completion of socket channel functionality.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1565-4_12
http://dx.doi.org/10.1007/978-1-4842-1565-4_13
http://dx.doi.org/10.1007/978-1-4842-1565-4_14
http://www.it-ebooks.info/

CHAPTER 1: 1/0 Basics and APIs 15

EXERCISES

The following exercises are designed to test your understanding of Chapter 1’s content:
1. Identify the API categories that comprise classic I/0.
What benefit is offered by the try-with-resources statement?
Identify the API categories that comprise NIO.

2
3
4. Which API class lets Java programs leverage readiness selection?
5. Identify the API categories that comprise NIO.2.

6

How does NIO.2 complete socket channel functionality?

Summary

I/0 is fundamental to operating systems, computer languages, and language
libraries. Java supports I/0 through its classic I/0, NIO, and NIO.2 API
categories.

Classic I/0 provides APIs to access the file system, access file content
randomly (as opposed to sequentially), stream byte-oriented data between
sources and destinations, and support character streams.

NIO provides APIs to manage buffers, communicate buffered data over
channels, leverage readiness selection via selectors, scan textual data
quickly via regular expressions, specify character encodings via charsets,
and support printf-style formatting.

NIO.2 provides APIs to improve the file system interface; support
asynchronous I/O; and complete socket channel functionality by upgrading
DatagramChannel, ServerSocketChannel, and SocketChannel, and by
introducing a new MulticastChannel interface.

Chapter 2 presents classic I/O’s File class.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1565-4_1
http://dx.doi.org/10.1007/978-1-4842-1565-4_2
http://www.it-ebooks.info/

Part II

Classic I/0 APIs

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter

File

Applications often interact with a file system, which is usually implemented
as a hierarchy of files and directories starting from a root directory.
Operating systems on which a Java virtual machine (JVM) runs typically
support at least one file system. For example, Unix/Linux combines all
mounted (attached and prepared) disks into one virtual file system. In
contrast, Windows associates a separate file system with each active disk
drive. Java offers access to the underlying operating system’s available file
system(s) via its concrete java.io.File class, which this chapter explores.

Constructing File Instances

An instance of the File class contains an abstract representation of a file
or directory path (a compact map that locates and identifies a file system
object). To create a File instance, call a constructor such as File(String
path), which creates a File instance that stores the path string:

File file1l = new File("/x/y");
File file2 = new File("C:\\temp\\x.dat");

The first line assumes a Unix/Linux operating system, starts the path with
root directory symbol /, and continues with directory name x, separator
character /, and file or directory name y. (It also works on Windows, which
assumes this path begins at the root directory on the current drive.)

Note An operating system-dependent separator character (such as the
Windows backslash [\] character) appears between a path’s consecutive names.

www.it-ebooks.info

19

http://www.it-ebooks.info/

20 CHAPTER 2: File

The second line assumes a Windows operating system, starts the path with
drive specifier C:, and continues with root directory symbol \, directory
name temp, separator character \, and file name x.dat (although x.dat might
refer to a directory). (You could also use forward slashes [/] on Windows.)

Caution Always double backslash characters that appear in a string literal,
especially when specifying a path; otherwise, you run the risk of introducing
bugs or receiving compiler error messages. For example, | doubled the
backslash characters in the second statement to denote a backslash and not a
tab (\t) and to avoid a compiler error message (\x is illegal).

Each statement’s path is absolute, which is a path that starts with the root
directory symbol; no other information is required to locate the file/directory
that it denotes. In contrast, a relative path doesn’t start with the root
directory symbol; it’s interpreted via information taken from another path.

Note The java.io package’s classes default to resolving relative paths
against the current user (also known as working) directory, which is identified
by the system property user.dir and which is typically the directory in which
the JVM was launched. (You obtain a system property value by calling the
java.lang.System class’s getProperty() method.)

File instances contain abstract representations of file and directory paths
(these files or directories may or may not exist in their file systems) by
storing abstract paths, which offer operating system-independent views of
hierarchical paths. In contrast, user interfaces and operating systems use
operating system-dependent path strings to name files and directories.

An abstract path consists of an optional operating system-dependent prefix
string, such as a disk drive specifier, “/” for the Unix/Linux root directory, or
“W\” for a Windows Universal Naming Convention (UNC) path, and a
sequence of zero or more string names. The first name in an abstract path
may be a directory name or, in the case of Windows UNC paths, a
hostname. Each subsequent name denotes a directory; the last name may
denote a directory or a file. The empty abstract path has no prefix and an
empty name sequence.

The conversion of a path string to or from an abstract path is inherently
operating system-dependent. When a path string is converted into an
abstract path, the names within this string may be separated by the default
name-separator character or by any other name-separator character that is

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: File 21

supported by the underlying operating system. When an abstract path is
converted into a path string, each name is separated from the next by a
single copy of the default name-separator character.

Note The default name-separator characteris defined by the system
property file.separator and is made available in File’'s public static
separator and separatorChar fields—the first field stores the character in
a java.lang.String instance and the second field stores it as a char value.

File offers additional constructors for instantiating this class. For example,
the following constructors merge parent and child paths into combined
paths that are stored in File objects:

File(String parent, String child) creates a new
File instance from a parent path string and a child
path string.

File(File parent, String child) creates a new File
instance from a parent path File instance and a child
path string.

Each constructor’s parent parameter is passed a parent path, a path that
consists of all path components except for the last name, which is specified
by child. The following statement demonstrates this concept via the first
constructor:

File file3 = new File("prj/books/", "io");

The constructor merges the parent path prj/books/ with the child path io
into the prj/books/io path. (If | had specified prj/books as the parent path,
the constructor would have added the separator character after books.)

Tip Because File(String path), File(String parent, String
child),and File(File parent, String child) don’t detect invalid
path arguments (apart from throwing a java.lang.NullPointerException
when path or child is null), you must be careful when specifying paths. You
should strive to only specify paths that are valid for all operating systems on
which the application will run. For example, instead of hard-coding a drive
specifier (such as C:) in a path, use a root returned from 1istRoots (), which
| discuss later. Even better, keep your paths relative to the current user/working
directory (returned from the user.dir system property).

www.it-ebooks.info

http://docs.oracle.com/javase/7/docs/api/java/io/File.html#separator
http://docs.oracle.com/javase/7/docs/api/java/io/File.html#separatorChar
http://www.it-ebooks.info/

22 CHAPTER 2: File

Learning About Stored Abstract Paths

After obtaining a File object, you can interrogate it to learn about its stored
abstract path by calling the methods described in Table 2-1.

Table 2-1. File Methods for Learning About a Stored Abstract Path

Method

Description

File getAbsoluteFile()

String getAbsolutePath()

File getCanonicalFile()

String getCanonicalPath()

Return the absolute form of this File object’s
abstract path. This method is equivalent to new
File(this.getAbsolutePath()).

Return the absolute path string of this File object’s
abstract path. When it’s already absolute, the path
string is returned as if by calling getPath(). When
it’s the empty abstract path, the path string of the
current user directory (identified via user.dir) is
returned. Otherwise, the abstract path is resolved in
an operating system-dependent manner. On Unix/
Linux operating systems, a relative path is made
absolute by resolving it against the current user
directory. On Windows operating systems, the path
is made absolute by resolving it against the current
directory of the drive named by the path, or the
current user directory when there is no drive.

Return the canonical (simplest possible, absolute
and unique) form of this File object’s abstract path.
This method throws java.io.IOException when

an I/O error occurs (creating the canonical path
may require file system queries); it equates to new
File(this.getCanonicalPath()).

Return the canonical path string of this File object’s
abstract path. This method first converts this path
to the absolute form when necessary, as if by
invoking getAbsolutePath(), and then maps it to

its unique form in an operating system-dependent
way. Doing so typically involves removing redundant
names such as “.” and “..” from the path, resolving
symbolic links (on Unix/Linux operating systems),
and converting drive letters to a standard case (on
Windows operating systems). This method throws
I0Exception when an I/O error occurs (creating the
canonical path may require file system queries).

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: File 23

Table 2-1. (continued)

Method Description

String getName() Return the file name or directory name denoted by
this File object’s abstract path. This name is the
last in a path’s name sequence. The empty string is
returned when the path’s name sequence is empty.

String getParent() Return the parent path string of this File object’s
path, or return null when this path doesn’t name a
parent directory.

File getParentFile() Return a File object storing this File object’s
abstract path’s parent abstract path; return null
when the parent path isn’t a directory.

String getPath() Convert this File object’s abstract path into a path
string where the names in the sequence are
separated by the character stored in File’s
separator field. Return the resulting path string.

boolean isAbsolute() Return true when this File object’s abstract path
is absolute; otherwise, return false when it’s
relative. The definition of absolute path is system
dependent. For Unix/Linux operating systems, a
path is absolute when its prefix is “/”. For Windows
operating systems, a path is absolute when its
prefix is a drive specifier followed by “\” or when its
prefix is “\\”.

String toString() A synonym for getPath().

Table 2-1 refers to I0Exception, which is the common exception superclass
for those exception classes that describe various kinds of I/O errors such as
java.io.FileNotFoundException.

Listing 2-1 instantiates File with its path command-line argument and calls
some of the File methods described in Table 2-1 to learn about this path.

Listing 2-1. Obtaining Abstract Path Information

import java.io.File;
import java.io.IOException;

public class PathInfo
{

public static void main(final String[] args) throws IOException

{
if (args.length != 1)

www.it-ebooks.info

http://www.it-ebooks.info/

24 CHAPTER 2: File

{

System.err.println("usage: java PathInfo path");
return;

File file = new File(args[0]);
System.out.println("Absolute path = " + file.getAbsolutePath());
System.out.println("Canonical path = " + file.getCanonicalPath());
System.out.println("Name = " + file.getName());
System.out.println("Parent = " + file.getParent());
System.out.println("Path = " + file.getPath());
System.out.println("Is absolute = " + file.isAbsolute());
}
}

Compile Listing 2-1 as follows:

javac PathInfo.java

Run the resulting application as follows:
java PathInfo .

The period represents the current directory on my Windows 7 operating
system; use your own equivalent. | observed the following output:

Absolute path = C:\prj\books\io\cho2\code\PathInfo\.
Canonical path = C:\prj\books\io\cho2\code\PathInfo

Name = .
Parent = null
Path = .

Is absolute = false

This output reveals that the canonical path doesn’t include the period. It also
shows that there is no parent path and that the path is relative.

Continuing, specify java PathInfo C:\reports\2015\..\2014\February.
You should observe the following output:

Absolute path = C:\reports\2015\..\2014\February
Canonical path = C:\reports\2014\February

Name = February

Parent = C:\reports\2015\..\2014

Path = C:\reports\2015\..\2014\February

Is absolute = true

This output reveals that the canonical path doesn’t include 2015. It also
shows that the path is absolute.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: File 25

Finally, specify java PathInfo
| observed the following output:

to obtain information for the empty path.

Absolute path = C:\prj\books\io\ch02\code\PathInfo
Canonical path = C:\prj\books\io\cho2\code\PathInfo
Name =

Parent = null

Path =

Is absolute = false

The output reveals that getName () and getPath() return the empty string ("")
because the empty path is empty. Also, C: is the default drive.

Learning About a Path’s File or Directory

You can interrogate the file system to learn about the file or directory
represented by a File object’s stored path by calling the methods that are

described in Table 2-2.

Table 2-2. File Methods for Learning About a File or Directory

Method Description

boolean exists() Return true if and only if the file or directory that’s
denoted by this File object’s abstract path exists.

boolean isDirectory() Return true when this File object’s abstract path refers
to an existing directory.

boolean isFile() Return true when this File object’s abstract path refers
to an existing normal file. A file is normal when it’s not a
directory and satisfies other operating system-dependent
criteria. It’'s not a symbolic link or a named pipe, for
example. Any nondirectory file created by a Java
application is guaranteed to be a normal file.

boolean isHidden() Return true when the file denoted by this File object’s
abstract path is hidden. The exact definition of hidden is
operating system dependent. On Unix/Linux operating
systems, a file is hidden when its name begins with a
period character. On Windows operating systems, a file is
hidden when it has been marked as such in the file system.

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

26 CHAPTER 2: File

Table 2-2. (continued)

Method

Description

long lastModified() Return the time that the file denoted by this File object’s

long length()

abstract path was last modified, or 0 when the file
doesn’t exist or an I/O error occurred during this method
call. The returned value is measured in milliseconds
since the Unix epoch (00:00:00 GMT, January 1, 1970).

Return the length of the file denoted by this File object’s
abstract path. The return value is unspecified when the path
denotes a directory and will be 0 when the file doesn’t exist.

Listing 2-2 instantiates File with its path command-line argument and calls
all of the File methods described in Table 2-2 to learn about the path’s

file/directory.

Listing 2-2. Obtaining File/Directory Information

import java.io.File;
import java.io.IOException;

import java.util.Date;

public class FileDirectoryInfo

{

public static void main(final String[] args) throws IOException

{

if (args.length != 1)

System.err.println("usage: java FileDirectoryInfo pathname");
return;

}

File file = new File(args[0]);

System.
System.
System.
System.
System.
System.

System.

}
}

out.
out.

out

out.

.println("Is directory =
out.
out.
out.

println("About " + file + ":");
println("Exists = " + file.exists());
" + file.isDirectory());
println("Is file = " + file.isFile());
println("Is hidden = " + file.isHidden());
println("Last modified = " +

new Date(file.lastModified()));
println("Length = " + file.length());

Compile Listing 2-2 as follows:

javac FileDirectoryInfo.java

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: File

Run the resulting application as follows:
java FileDirectoryInfo x.dat

Assuming the existence of a three-byte file named x.dat, you should
observe output similar to that shown here:

About x.dat:

Exists = true

Is directory = false

Is file = true

Is hidden = false

Last modified = Sat Jul 25 15:49:41 CDT 2015
Length = 3

Listing File System Root Directories

File declares the File[] listRoots() class method to return the root
directories (roots) of available file systems as an array of File objects.

Note The set of available file system roots is affected by operating
system-level operations, such as inserting or ejecting removable media, and
disconnecting or unmounting physical or virtual disk drives.

27

Listing 2-3 presents a DumpRoots application that uses 1istRoots() to obtain
an array of available file system roots and then outputs the array’s contents.

Listing 2-3. Dumping Available File System Roots to Standard Output

import java.io.File;

public class DumpRoots

{

public static void main(String[] args)

{
File[] roots = File.listRoots();
for (File root: roots)
System.out.println(root);

www.it-ebooks.info

http://www.it-ebooks.info/

28 CHAPTER 2: File

Compile Listing 2-3 as follows:

javac DumpRoots.java

Run the resulting application as follows:
java DumpRoots

When | run this application on my Windows 7 operating system, | receive the
following output, which reveals four available roots:

m m O M
—

If | ran DumpRoots on a Unix or Linux operating system, | would receive one
line of output that consists of the virtual file system root (/).

Obtaining Disk Space Information

A partition is an operating system-specific portion of storage for a file
system. Obtaining the amount of partition free space is important to
installers and other applications. Until Java 6 arrived, the only portable way
to accomplish this task was to guess by creating files of different sizes.

Java 6 added to the File class long getFreeSpace(), long getTotalSpace(),
and long getUsableSpace() methods that return space information about the
partition described by the File instance’s abstract path:

long getFreeSpace() returns the number of unallocated
bytes in the partition identified by this File object’s
abstract path; it returns zero when the abstract path
doesn’t name a partition.

long getTotalSpace() returns the size (in bytes) of the
partition identified by this File object’s abstract path; it returns
zero when the abstract path doesn’t name a partition.

long getUsableSpace() returns the number of bytes
available to the current JVM on the partition identified by

this File object’s abstract path; it returns zero when the
abstract path doesn’t name a partition.

Although getFreeSpace() and getUsableSpace() appear to be equivalent,
they differ in the following respect: unlike getFreeSpace(), getUsableSpace()
checks for write permissions and other operating system restrictions,
resulting in a more accurate estimate.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: File

Note The getFreeSpace() and getUsableSpace() methods return a hint
(not a guarantee) that a Java application can use all (or most) of the unallocated
or available bytes. These values are hints because a program running outside
the JVM can allocate partition space, resulting in actual unallocated and
available values being lower than the values returned by these methods.

29

Listing 2-4 presents an application that demonstrates these methods. After

obtaining an array of all available file system roots, this application obtains

and outputs the free, total, and usable space for each partition identified by

the array.

Listing 2-4. Outputting the Free, Usable, and Total Space on All Partitions

import java.io.File;

public class PartitionSpace

{

public static void main(String[] args)

{
File[] roots = File.listRoots();

for (File root: roots)

{

System.out.println("Partition:

+ root);

System.out.println("Free space on this partition = " +

root.getFreeSpace());
System.out.println("Usable space on this partition =

root.getUsableSpace());
System.out.println("Total space on this partition =

root.getTotalSpace());
System.out.println("***");

}

}
}

Compile Listing 2-4 as follows:
javac PartitionSpace.java
Run the resulting application as follows:

java PartitionSpace

www.it-ebooks.info

http://www.it-ebooks.info/

30 CHAPTER 2: File

When run on my Windows 7 machine with a hard drive designated as C:, a
DVD drive designated as D:, an external hard drive designated as E:, and a
flash drive designated as F:, | observed the following output (usually with
different free/usable space amounts on C:, E:, and F:):

Partition: C:\

Free space on this partition = 143271129088
Usable space on this partition = 143271129088
Total space on this partition = 499808989184
*kk

Partition: D:\

Free space on this partition = 0
Usable space on this partition =
Total space on this partition = 0
*kk

Partition: E:\

Free space on this partition = 733418569728
Usable space on this partition = 733418569728
Total space on this partition = 1000169533440
*kk

Partition: F:\

Free space on this partition = 33728192512
Usable space on this partition = 33728192512

Total space on this partition = 64021835776
*okok

0

Listing Directories

File declares five methods that return the names of files and directories
located in the directory identified by a File object’s abstract path. Table 2-3
describes these methods.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: File 31

Table 2-3. File Methods for Obtaining Directory Content

Method

Description

String[] list()

String[]
list(FilenameFilter
filter)

File[] listFiles()

File[]
listFiles(FileFilter
filter)

File[]
listFiles(FilenameFilter
filter)

Return a potentially empty array of strings naming the
files and directories in the directory denoted by this
File object’s abstract path. If the path doesn’t denote
a directory, or if an 1/O error occurs, this method
returns null. Otherwise, it returns an array of strings,
one string for each file or directory in the directory.

Names denoting the directory itself and the
directory’s parent directory are not included in the
result. Each string is a file name rather than a
complete path. Also, there is no guarantee that the
name strings in the resulting array will appear in
alphabetical or any other order.

A convenience method for calling 1ist() and
returning only those Strings that satisfy filter.

A convenience method for calling list(), converting
its array of Strings to an array of Files, and returning
the Files array.

A convenience method for calling 1ist(), converting
its array of Strings to an array of Files, but only for
those Strings that satisfy filter, and returning the
Files array.

A convenience method for calling 1ist(), converting
its array of Strings to an array of Files, but only for
those Strings that satisfy filter, and returning the
Files array.

The overloaded list() methods return arrays of Strings denoting file and
directory names. The second method lets you return only those names of
interest (such as only those names that end with the. txt extension) via a
java.io.FilenameFilter-based filter object.

The FilenameFilter interface declares a single boolean accept(File dir,
String name) method that is called for each file/directory located in the
directory identified by the File object’s path:

dir identifies the parent portion of the path (the

directory path).

name identifies the final directory name or the file name
portion of the path.

www.it-ebooks.info

http://www.it-ebooks.info/

32 CHAPTER 2: File

The accept() method uses the arguments passed to these parameters to
determine whether or not the file or directory satisfies its criteria for what is
acceptable. It returns true when the file/directory name should be included
in the returned array; otherwise, this method returns false.

Listing 2-5 presents a Dir(ectory) application that uses 1ist(FilenameFilter)
to obtain only those names that end with a specific extension.

Listing 2-5. Listing Specific Names

import java.io.File;
import java.io.FilenameFilter;

public class Dir

{
public static void main(final String[] args)
{
if (args.length != 2)
System.err.println("usage: java Dir dirpath ext");
return;
}
File file = new File(args[0]);
FilenameFilter fnf = new FilenameFilter()
{
@0verride
public boolean accept(File dir, String name)
{
return name.endsWith(args[1]);
}
};
String[] names = file.list(fnf);
for (String name: names)
System.out.println(name);
}
}

Compile Listing 2-5 as follows:
javac Dir.java
Assuming Windows, run the resulting application as follows:

java Dir C:\windows exe

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: File 33

| observe the following output, which consists of those file system objects
that have an .exe extension:

bfsvc.exe
explorer.exe
fveupdate.exe
HelpPane.exe
hh.exe
IsUninst.exe
kindlegen.exe
notepad.exe
regedit.exe
splwow64.exe
twunk_16.exe
twunk_32.exe
winhlp32.exe
write.exe

The overloaded listFiles() methods return arrays of Files. For the most
part, they’re symmetrical with their 1ist() counterparts. However,
listFiles(FileFilter) introduces an asymmetry.

The java.io.FileFilter interface declares a single boolean accept(String
path) method that is called for each file/directory located in the directory
identified by the File object’s path. The argument passed to path identifies
the complete path of the file or directory.

The accept() method uses this argument to determine whether or not the
file or directory satisfies its criteria for what is acceptable. It returns true
when the file/directory name should be included in the returned array;
otherwise, this method returns false.

Note Because each interface’s accept () method accomplishes the same
task, you might be wondering which interface to use. If you prefer a path broken
into its directory and name components, use FilenameFilter. However, if you
prefer a complete path, use FileFilter; you can always call getParent()
and getName () to get these components.

Creating/Modifying Files and Directories

File also declares several methods for creating new files and directories and
modifying existing files and directories. Table 2-4 describes these methods.

www.it-ebooks.info

http://www.it-ebooks.info/

34 CHAPTER 2: File

Table 2-4. File Methods for Creating New and Manipulating Existing Files and Directories

Method

Description

boolean createNewFile()

static File
createTempFile(String
prefix, String suffix)

static File
createTempFile(String
prefix, String suffix,
File directory)

boolean delete()

void deleteOnExit()

Atomically create a new, empty file named by this
File object’s abstract path if and only if a file with
this name doesn’t yet exist. The check for file
existence and the creation of the file when it doesn’t
exist are a single operation that’s atomic with respect
to all other file system activities that might affect the
file. This method returns true when the named file
doesn’t exist and was successfully created, and
returns false when the named file already exists. It
throws IOException when an I/O error occurs.

Create an empty file in the default temporary file
directory using the given prefix and suffix to
generate its name. This overloaded class method
calls its three-parameter variant, passing prefix,
suffix, and null to this other method, and returning
the other method’s return value.

Create an empty file in the specified directory
using the given prefix and suffix to generate its
name. The name begins with the character
sequence specified by prefix and ends with the
character sequence specified by suffix; “.tmp” is
used as the suffix when suffix is null. This method
returns the created file’s path when successful. It
throws java.lang.IllegalArgumentException when
prefix contains fewer than three characters and
I0Exception when the file can’t be created.

Delete the file or directory denoted by this File
object’s path. Return true when successful;
otherwise, return false. If the path denotes a
directory, the directory must be empty in order to be
deleted.

Request that the file or directory denoted by this
File object’s abstract path be deleted when the JVM
terminates. Reinvoking this method on the same
File object has no effect. Once deletion has been
requested, it’s not possible to cancel the request.
Therefore, this method should be used with care.

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: File

Table 2-4. (continued)

35

Method

Description

boolean mkdir()

boolean mkdirs()

boolean
renameTo(File dest)

boolean
setlLastModified(long time)

Create the directory named by this File object’s
abstract path. Return true when successful;
otherwise, return false.

Create the directory and any necessary intermediate
directories named by this File object’s abstract
path. Return true when successful; otherwise,
return false.

Rename the file denoted by this File object’s
abstract path to dest. Return true when successful;
otherwise, return false. This method throws
NullPointerException when dest is null.

Many aspects of this method’s behavior are
operating system-dependent. For example, the
rename operation might not be able to move a file
from one file system to another, the operation might
not be atomic, or it might not succeed when a file
with the destination path already exists. The return
value should always be checked to make sure that
the rename operation was successful.

Set the last-modified time of the file or directory
named by this File object’s abstract path. Return
true when successful; otherwise, return false. This
method throws I1legalArgumentException when
time is negative.

All operating systems support file-modification
times to the nearest second, but some provide more
precision. The time value will be truncated to fit the
supported precision. If the operation succeeds and
no intervening operations on the file take place, the
next call to lastModified() will return the (possibly
truncated) time value passed to this method.

Suppose you’re designing a text editor application that a user will use to
open a text file and make changes to its content. Until the user explicitly
saves these changes to the file, you want the text file to remain unchanged.

Because the user doesn’t want to lose these changes when the application
crashes or the computer loses power, you design the application to save
these changes to a temporary file every few minutes. This way, the user has

a backup of the changes.

www.it-ebooks.info

http://www.it-ebooks.info/

36 CHAPTER 2: File

You can use the overloaded createTempFile() methods to create the
temporary file. If you don’t specify a directory in which to store this file, it’s
created in the directory identified by the java.io.tmpdir system property.

You probably want to remove the temporary file after the user tells the
application to save or discard the changes. The deleteOnExit() method lets
you register a temporary file for deletion; it’s deleted when the JVM ends
without a crash/power loss.

Listing 2-6 presents a TempFileDemo application for experimenting with the
createTempFile() and deleteOnExit() methods.

Listing 2-6. Experimenting with Temporary Files

import java.io.File;
import java.io.IOException;

public class TempFileDemo

{

public static void main(String[] args) throws IOException

{
System.out.println(System.getProperty("java.io.tmpdir"));

File temp = File.createTempFile("text", ".txt");
System.out.println(temp);
temp.deleteOnExit();

}
}

After outputting the location where temporary files are stored, TempFileDemo
creates a temporary file whose name begins with text and which ends with
the .txt extension. TempFileDemo next outputs the temporary file’s name
and registers the temporary file for deletion upon the successful termination
of the application.

Compile Listing 2-6 as follows:

javac TempFileDemo.java

Run the resulting application as follows:
java TempFileDemo

| observed the following output during one run of TempFileDemo (and the file
disappeared on exit):

C:\Users\Owner\AppData\Local\Temp\
C:\Users\Owner\AppData\Local\Temp\text8621896953150462138.txt

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: File 37

Setting and Getting Permissions

Java 1.2 added a boolean setReadOnly() method to the File class to mark a
file or directory as read-only. However, a method to revert the file or directory
to the writable state wasn’t added. More importantly, until Java 6’s arrival,
File offered no way to manage an abstract path’s read, write, and execute
permissions.

Java 6 added to the File class boolean setExecutable(boolean
executable), boolean setExecutable(boolean executable, boolean
ownerOnly), boolean setReadable(boolean readable), boolean
setReadable(boolean readable, boolean ownerOnly), boolean
sethWritable(boolean writable), and boolean setWritable(boolean
writable, boolean ownerOnly) methods that let you set the owner’s or
everybody’s execute, read, and write permissions for the file identified by the
File object’s abstract path:

boolean setExecutable(boolean executable, boolean
ownerOnly) enables (pass true to executable) or
disables (pass false to executable) this abstract
path’s execute permission for its owner (pass true

to ownerOnly) or everyone (pass false to ownerOnly).
When the file system doesn’t differentiate between the
owner and everyone, this permission always applies to
everyone. It returns true when the operation succeeds.
It returns false when the user doesn’t have permission
to change this abstract path’s access permissions or
when executable is false and the file system doesn’t
implement an execute permission.

boolean setExecutable(boolean executable) is a
convenience method that invokes the previous method
to set the execute permission for the owner.

boolean setReadable(boolean readable, boolean
ownerOnly) enables (pass true to readable) or disables
(pass false to readable) this abstract path’s read
permission for its owner (pass true to ownerOnly) or
everyone (pass false to ownerOnly). When the file
system doesn’t differentiate between the owner and
everyone, this permission always applies to everyone.

It returns true when the operation succeeds. It returns
false when the user doesn’t have permission to change
this abstract path’s access permissions or when
readable is false and the file system doesn’t implement
a read permission.

www.it-ebooks.info

http://www.it-ebooks.info/

38 CHAPTER 2: File

boolean setReadable(boolean readable) is a
convenience method that invokes the previous method
to set the read permission for the owner.

boolean setWritable(boolean writable, boolean
ownerOnly) enables (pass true to writable) or disables
(pass false to writable) this abstract path’s write
permission for its owner (pass true to ownerOnly) or
everyone (pass false to ownerOnly). When the file
system doesn’t differentiate between the owner and
everyone, this permission always applies to everyone.

It returns true when the operation succeeds. It returns
false when the user doesn’t have permission to change
this abstract path’s access permissions.

boolean setWritable(boolean writable) is a
convenience method that invokes the previous method
to set the write permission for the owner.

Along with these methods, Java 6 retrofitted File’s boolean canRead() and
boolean canWrite() methods, and introduced a boolean cankExecute()
method to return an abstract path’s access permissions. These methods
return true when the file or directory object identified by the abstract path
exists and when the appropriate permission is in effect. For example,
canWrite() returns true when the abstract path exists and when the
application has permission to write to the file.

The canRead(), canWrite(), and canExecute() methods can be used to
implement a simple utility that identifies which permissions have been
assigned to an arbitrary file or directory. This utility’s source code is
presented in Listing 2-7.

Listing 2-7. Checking a File’s or Directory’s Permissions

import java.io.File;

public class Permissions

{

public static void main(String[] args)

{
if (args.length != 1)
{

System.err.println("usage: java Permissions filespec");
return;
}
File file = new File(args[0]);
System.out.println("Checking permissions for " + args[0]);
System.out.println(" Execute = " + file.canExecute());

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: File

System.out.println(" Read = " + file.canRead());
System.out.println(" Write = " + file.canWrite());

}
}

Compile Listing 2-7 as follows:
javac Permissions.java

Assuming a readable and executable (only) file named x in the current
directory, run the resulting application as follows:

java Permissions x
You should observe the following output:
Checking permissions for x

Execute = true

Read = true
Write = false

Exploring Miscellaneous Capabilities

Finally, File implements the java.lang.Comparable interface’s compareTo()

39

method and overrides equals() and hashCode(). Table 2-5 describes these

miscellaneous methods.

Table 2-5. File’s Miscellaneous Methods

Method Description

int compareTo(File path) Compare two paths lexicographically. The ordering
defined by this method depends on the underlying

operating system. For Unix/Linux operating systems,
alphabetic case is significant when comparing paths;

for Windows operating systems, alphabetic case is

insignificant. Return zero when path’s abstract path

equals this File object’s abstract path, a negative
value when this File object’s abstract path is less
than path, and a positive value otherwise. To
accurately compare two File objects, call
getCanonicalFile() on each File object and then
compare the returned File objects.

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

40 CHAPTER 2: File

Table 2-5. (continued)

Method

Description

boolean
equals(Object obj))

int hashCode()

Compare this File object with obj for equality.
Abstract path equality depends on the underlying
operating system. For Unix/Linux operating systems,
alphabetic case is significant when comparing paths;
for Windows operating systems, alphabetic case is
insignificant. Return true if and only if obj is not null
and is a File object whose abstract path denotes the
same file/directory as this File object’s abstract path.

Calculate and return a hash code for this path. This
calculation depends on the underlying operating
system. On Unix/Linux operating systems, a path’s
hash code equals the exclusive OR of its path
string’s hash code and decimal value 1234321. On
Windows operating systems, the hash code is the
exclusive OR of the lowercased path string’s hash
code and decimal value 1234321. The current locale
(geographical, political, or cultural region) is not taken
into account when lowercasing the path string.

Listing 2-8 presents an application that demonstrates compareTo() along

with getCanonicalFile().

Listing 2-8. Comparing Files

import java.io.File;

import java.io.IOException;

public class Compare

public static void main(String[] args) throws IOException

System.err.println("usage: java Compare filespecl filespec2");

new File(args[0]);
new File(args[1]);

System.out.println(filel.compareTo(file2));
System.out.println(filel.getCanonicalFile()

.compareTo(file2.getCanonicalFile()));

{
{
if (args.length != 2)
return;
}
File file1 =
File file2 =
}
}

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: File

Compile Listing 2-8 as follows:

javac Compare.java

Assuming Windows, run the resulting application as follows:

java Compare Compare.class .\Compare.class

You should observe the following output:

53
0

The 53 indicates that filel’s abstract path is lexicographically greater
than file2’s abstract path. However, when comparing their canonical
representations, these abstract paths are considered to be identical
(as indicated by the 0).

M

EXERCISE

The following exercises are designed to test your understanding of Chapter 2’s content:
1.

®

10.

11.

12.
13.

2
3
4,
5
6
7

What is the purpose of the File class?

What do instances of the File class contain?

What is a path?

What is the difference between an absolute path and a relative path?
How do you obtain the current user (also known as working) directory?
Define parent path.

File’s constructors normalize their path arguments. What does
normalize mean?

How do you obtain the default name-separator character?
What is a canonical path?

What is the difference between File’s getParent() and
getName () methods?

True or false: File'’s exists() method only determines whether or
not a file exists.

What is a normal file?
What does File’s lastModified() method return?

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1565-4_2
http://www.it-ebooks.info/

42 CHAPTER 2: File

14,
15.

16.

17.

18.

19.

20.

21.
22.

What does File’s 1istRoots() method accomplish?

True or false: File’s 1ist() method returns an array of Strings
where each entry is a file name rather than a complete path.

What is the difference between the FilenameFilter and
FileFilter interfaces?

True or false: File’s createNewFile() method doesn’t check for
file existence and create the file when it doesn’t exist in a single
operation that’s atomic with respect to all other file system activities
that might affect the file.

File’s createTempFile(String, String) method creates a
temporary file in the default temporary directory. How can you locate
this directory?

Temporary files should be removed when no longer needed after an
application exits (to avoid cluttering the file system). How do you
ensure that a temporary file is removed when the JVM ends normally
(it doesn’t crash and the power isn’t lost)?

Which one of the boolean canRead(), boolean canWrite(),and
boolean canExecute() methods was introduced by Java 6?

How would you accurately compare two File objects?

Create a Java application named Touch for setting a file’s or
directory’s timestamp to the current time. This application has the
following usage syntax: java Touch pathname.

Summary

The File class provides access to the underlying operating system’s
available file system(s). Each File instance stores the abstract path for some
file system object. Various File methods (such as void delete()) affect the
file system object represented by the abstract path.

You first learned how to construct File instances. You then explored
methods for obtaining information about stored abstract paths and their files
or directories, obtaining a list of roots and disk space, listing directories,
creating/modifying files/directories, setting/getting permissions, and more.

Chapter 3 presents classic I/O’s java.io.RandomAccessFile class.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1565-4_3
http://www.it-ebooks.info/

Chapter

RandomAccessFile

Files can be created and/or opened for random access in which a mixture of
write and read operations at various locations can occur until the file is closed.
Java supports this random access by providing a java.io.RandomAccessFile

class. | explore RandomAccessFile in this chapter.

Exploring RandomAccessFile

RandomAccessFile declares the following constructors:

RandomAccessFile(File file, String mode): Create
and open a new file when it doesn’t exist or open an
existing file. The file is identified by file’s abstract path
and is created and/or opened according to mode.

RandomAccessFile(String path, String mode): Create
and open a new file when it doesn’t exist or open an
existing file. The file is identified by path and is created
and/or opened according to mode.

Either constructor’s mode argument must be one of "r", "rw",
"rws", or "rwd"; otherwise, the constructor throws java.lang.
IllegalArgumentException. These string literals have the following

"r" informs the constructor to open an existing file for
reading only. Any attempt to write to the file results in a
thrown instance of the java.io.IOException class.

"rw" informs the constructor to create and open a new
file when it doesn’t exist for reading and writing or open
an existing file for reading and writing.

43

www.it-ebooks.info

http://www.it-ebooks.info/

44 CHAPTER 3: RandomAccessFile

"rwd" informs the constructor to create and open a new
file when it doesn’t exist for reading and writing or open
an existing file for reading and writing. Furthermore,
each update to the file’s content must be written
synchronously to the underlying storage device.

"rws" informs the constructor to create and open a new
file when it doesn’t exist for reading and writing or open
an existing file for reading and writing. Furthermore,
each update to the file’s content or metadata must be
written synchronously to the underlying storage device.

Note A file’s metadatais data about the file and not the actual file
contents. Examples of metadata include the file’s length and the time the
file was last modified.

The "rwd" and "rws" modes ensure than any writes to a file located on a
local storage device are written to the device, which guarantees that critical
data isn’t lost when the operating system crashes. No guarantee is made
when the file doesn’t reside on a local device.

Note Operations on a random access file opened in "rwd" or "rws" mode are
slower than these same operations on a random access file opened in "rw" mode.

These constructors throw java.io.FileNotFoundException when mode is "r"
and the file identified by path cannot be opened (it might not exist or it might
be a directory) or when mode is "rw" and path is read-only or a directory.

The following example demonstrates the second constructor by attempting
to open an existing file for read access via the "r" mode string:

RandomAccessFile raf = new RandomAccessFile("employee.dat", "r");

A random access file is associated with a file pointer, a cursor that identifies
the location of the next byte to write or read. When an existing file is
opened, the file pointer is set to its first byte at offset 0. The file pointer is
also set to 0 when the file is created.

Write or read operations start at the file pointer and advance it past the
number of bytes written or read. Operations that write past the current end
of the file cause the file to be extended. These operations continue until the
file is closed.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: RandomAccessFile 45

RandomAccessFile declares many methods. | present a representative
sample of these methods in Table 3-1.

Table 3-1. RandomAccessFile Methods

Method

Description

void close()

FileDescriptor getFD()

long getFilePointer()

long length()

int read()

int read(byte[] b)

char readChar()

Close the file and release any associated operating
system resources. Subsequent writes or reads result
in IOException. Also, the file cannot be reopened with
this RandomAccessFile object. This method throws
I0Exception when an I/O error occurs.

Return the file’s associated file descriptor object. This
method throws IOException when an I/O error occurs.

Return the file pointer’s current zero-based byte offset
into the file. This method throws IOException when an
I/O error occurs.

Return the length (measured in bytes) of the file. This
method throws IOException when an I/O error occurs.

Read and return (as an int in the range 0 to 255) the
next byte from the file or return -1 when the end of the
file is reached. This method blocks when no input is
available and throws IOException when an 1/O error
occurs.

Read up to b.length bytes of data from the file into byte
array b. This method blocks until at least one byte of
input is available. It returns the number of bytes read
into the array, or returns -1 when the end of the file is
reached. It throws java.lang.NullPointerException
when b is null and I0Exception when an I/O error
occurs.

Read and return a character from the file. This method
reads two bytes from the file starting at the current file
pointer. If the bytes read, in order, are b1 and b2, where
0 <= b1, b2 <= 255, the result is equal to (char) ((b1

<< 8) | b2). This method blocks until the two bytes are
read, the end of the file is detected, or an exception is
thrown. It throws java.io.EOFException (a subclass of
I0Exception) when the end of the file is reached before
reading both bytes and I0Exception when an I/O error
occurs.

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

46 CHAPTER 3: RandomAccessFile

Table 3-1. (continued)

Method

Description

int readInt()

void seek(long pos)

void setLength(long
newLength)

int skipBytes(int n)

void write(byte[] b)

Read and return a 32-bit integer from the file. This method
reads four bytes from the file starting at the current file
pointer. If the bytes read, in order, are b1, b2, b3, and b4,
where 0 <= b1, b2, b3, b4 <= 255, the result is equal to

(b1 << 24) | (b2 << 16) | (b3 << 8) | b4. This method
blocks until the four bytes are read, the end of the file is
detected, or an exception is thrown. It throws EOFException
when the end of the file is reached before reading the four
bytes and IOException when an I/O error occurs.

Set the file pointer’s current offset to pos (which is
measured in bytes from the beginning of the file). If the
offset is set beyond the end of the file, the file’s length
doesn’t change. The file length will only change by
writing after the offset has been set beyond the end of
the file. This method throws IOException when the value
in pos is negative or when an I/O error occurs.

Set the file’s length. If the present length as returned
by length() is greater than newLength, the file is
truncated. In this case, if the file offset as returned by
getFilePointer() is greater than newLength, the offset
will be equal to newLength after setLength() returns. If
the present length is smaller than newLength, the file is
extended. In this case, the contents of the extended
portion of the file are not defined. This method throws
IOException when an I/O error occurs.

Attempt to skip over n bytes. This method skips over a
smaller number of bytes (possibly zero) when the end of
file is reached before n bytes have been skipped. It
doesn’t throw EOFException in this situation. If n is
negative, no bytes are skipped. The actual number of
bytes skipped is returned. This method throws
I0Exception when an I/O error occurs.

Write b.length bytes from byte array b to the file starting
at the current file pointer position. This method throws
I0Exception when an I/O error occurs.

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: RandomAccessFile 47

Table 3-1. (continued)

Method Description

void write(int b) Write the lower eight bits of b as a 32-bit integer to the
file at the current file pointer position. This method throws
I0Exception when an I/O error occurs.

void writeChars(String s) Write string s to the file as a sequence of characters
starting at the current file pointer position. This method
throws IOException when an I/O error occurs.

void writeInt(int i) Write 32-bit integer i to the file starting at the current file
pointer position. The four bytes are written with the high
byte first. This method throws I0OException when an I/O
error occurs.

Most of Table 3-1's methods are fairly self-explanatory. However, the
getFD() method requires further enlightenment.

Note RandomAccessFile’s read-prefixed methods and skipBytes()
originate in the java.io.DataInput interface, which this class implements.
Furthermore, RandomAccessFile’s write-prefixed methods originate in the
java.io.DataOutput interface, which this class also implements.

When a file is opened, the underlying operating system creates an operating
system-dependent structure to represent the file. A handle to this structure
is stored in an instance of the java.io.FileDescriptor class, which getFD()
returns.

Note A handle is an identifier that Java passes to the underlying operating
system to identify, in this case, a specific open file when it requires that the
underlying operating system perform a file operation.

FileDescriptor is a small class that declares three FileDescriptor
constants named in, out, and err. These constants let System.in, System.
out, and System.err provide access to the standard input, standard output,
and standard error streams.

FileDescriptor also declares the following pair of methods:

www.it-ebooks.info

http://www.it-ebooks.info/

48 CHAPTER 3: RandomAccessFile

void sync() tells the underlying operating system to
flush (empty) the contents of the open file’s output
buffers to their associated local disk device. sync()
returns after all modified data and attributes have
been written to the relevant device. It throws java.
io.SyncFailedException when the buffers cannot be
flushed or because the operating system cannot
guarantee that all the buffers have been synchronized
with physical media.

boolean valid() determines whether this file descriptor
object is valid. It returns true when the file descriptor
object represents an open file or other active 1/0
connection; otherwise, it returns false.

Data that is written to an open file is stored in the underlying operating
system’s output buffers. When the buffers fill to capacity, the operating
system empties them to the disk. Buffers improve performance because
disk access is much slower than access to the computer’s internal memory.

However, when you write data to a random access file that’s been opened
via mode "rwd" or "rws", each write operation’s data is written straight to
the disk. As a result, write operations are slower than when the random
access file is opened in "rw" mode.

Suppose you have a situation that combines writing data through the
output buffers and writing data directly to the disk. The following example
addresses this hybrid scenario by opening the file in mode "rw" and
selectively calling FileDescriptor’s sync() method.

RandomAccessFile raf = new RandomAccessFile("employee.dat", "rw");
FileDescriptor fd = raf.getFD();

// Perform a critical write operation.

raf.write(...);

// Synchronize with the underlying disk by flushing the operating system
// output buffers to the disk.

fd.sync();

// Perform a non-critical write operation where synchronization isn't
// necessary.

raf.write(...);

// Do other work.

// Close the file, emptying output buffers to the disk.

raf.close();

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: RandomAccessFile 49

Using RandomAccessFile

RandomAccessFile is useful for creating a flat file database, a single file
organized into records and fields. A record stores a single entry (such as a
part in a parts database) and a field stores a single attribute of the entry
(such as a part number).

Note The term field is also used to refer to a variable declared within a class.
To avoid confusion with this overloaded terminology, think of a field variable as
being analogous to a record’s field attribute.

A flat file database typically organizes its content into a sequence of
fixed-length records. Each record is further organized into one or more
fixed-length fields. Figure 3-1 illustrates this concept in the context of a
parts database.

fields

pﬂ"h'l'lll‘l

0 1-2009-33234x Wiper Blade Micro Edge 30 2468

///" 1 1-3233-44923-7) | Parking Brake Cable 5 1439

records T g

e

Figure 3-1. A flat file database of automotive parts is divided into records and fields

3-1299-3299-%u | Air Pump Electric 91 202.00

According to Figure 3-1, each field has a name (partnum, desc, qty, and
ucost). Also, each record is assigned a number starting at 0. This example
consists of five records, of which only three are shown for brevity.

www.it-ebooks.info

http://www.it-ebooks.info/

50 CHAPTER 3: RandomAccessFile

To show you how to implement a flat file database in terms of
RandomAccessFile, I've created a simple PartsDB class to model Figure 3-1.
Check out Listing 3-1.

Listing 3-1. Implementing the Parts Flat File Database

import java.io.IOException;
import java.io.RandomAccessFile;

public class PartsDB

{
public final static int PNUMLEN = 20;
public final static int DESCLEN = 30;
public final static int QUANLEN = 4;
public final static int COSTLEN = 4;

private final static int RECLEN = 2 * PNUMLEN + 2 * DESCLEN + QUANLEN +
COSTLEN;
private RandomAccessFile raf;

public PartsDB(String path) throws IOException
{

}

raf = new RandomAccessFile(path, "rw");

public void append(String partnum, String partdesc, int qty, int ucost)
throws IOException
{

raf.seek(raf.length());
write(partnum, partdesc, qty, ucost);

}

public void close()

{
try

{
}
catch (IOException ioe)

{
}

raf.close();

System.err.println(ioe);

}

public int numRecs() throws IOException

{
}

return (int) raf.length() / RECLEN;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: RandomAccessFile 51

public Part select(int recno) throws IOException
{
if (recno < 0 || recno >= numRecs())
throw new IllegalArgumentException(recno +
raf.seek(recno * RECLEN);
return read();

}

out of range");

public void update(int recno, String partnum, String partdesc, int qty,
int ucost) throws IOException
{

if (recno < 0 || recno >= numRecs())

throw new IllegalArgumentException(recno +
raf.seek(recno * RECLEN);
write(partnum, partdesc, qty, ucost);

}

out of range");

private Part read() throws IOException
{
StringBuffer sb = new StringBuffer();
for (int i = 0; 1 < PNUMLEN; i++)
sb.append(raf.readChar());
String partnum = sb.toString().trim();
sb.setLength(0);
for (int i = 0; 1 < DESCLEN; i++)
sb.append(raf.readChar());
String partdesc = sb.toString().trim();
int qty = raf.readInt();
int ucost = raf.readInt();
return new Part(partnum, partdesc, qty, ucost);

}

private void write(String partnum, String partdesc, int qty, int ucost)
throws IOException
{
StringBuffer sb = new StringBuffer(partnum);
if (sb.length() > PNUMLEN)
sb.setLength(PNUMLEN);
else
if (sb.length() < PNUMLEN)
{

int len = PNUMLEN - sb.length();
for (int i = 0; 1 < len; i++)
sb.append(" ");

raf.writeChars(sb.toString());

sb = new StringBuffer(partdesc);

if (sb.length() > DESCLEN)
sb.setLength(DESCLEN);

www.it-ebooks.info

http://www.it-ebooks.info/

52

}

CHAPTER 3: RandomAccessFile

else
if (sb.length() < DESCLEN)

int len = DESCLEN - sb.length();
for (int i = 0; 1 < len; i++)
sb.append(" ");

raf.writeChars(sb.toString());
raf.writeInt(qty);
raf.writeInt(ucost);

}

public static class Part

{

private String partnum;
private String desc;
private int qty;
private int ucost;

public Part(String partnum, String desc, int qty, int ucost)
{

this.partnum = partnum;
this.desc = desc;
this.qty = qty;
this.ucost = ucost;

}

String getDesc()

return desc;

}

String getPartnum()
{

}

int getQty()
{

return partnum;

return qty;
}

int getUnitCost()
{

}

return ucost;

}

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: RandomAccessFile 53

PartsDB first declares constants that identify the lengths of the string and

32-bit integer fields. It then declares a constant that calculates the record
length in terms of bytes. The calculation takes into account the fact that a
character occupies two bytes in the file.

These constants are followed by a field named raf that is of type
RandomAccessFile. This field is assigned an instance of the RandomAccessFile
class in the subsequent constructor, which creates/opens a new file or
opens an existing file because of "rw".

PartsDB next declares append(), close(), numRecs(), select(), and
update(). These methods append a record to the file, close the file, return
the number of records in the file, select and return a specific record, and
update a specific record:

The append() method first calls length() and seek().
Doing so ensures that the file pointer is positioned at the
end of the file before calling the private write() method
to write a record containing this method’s arguments.

RandomAccessFile’s close() method can throw
IOException. Because this is a rare occurrence, | chose
to handle this exception in PartDB’s close() method,
which keeps that method’s signature simple. However, |
print a message when IOException occurs.

The numRecs () method returns the number of records in
the file. These records are numbered starting with 0 and
ending with numRecs() - 1. Each of the select() and
update() methods verifies that its recno argument lies
within this range.

The select() method calls the private read() method
to return the record identified by recno as an instance
of the nested Part class. Part’s constructor initializes
a Part object to a record’s field values, and its getter

methods return these values.

The update() method is equally simple. As with
select(), it first positions the file pointer to the start of
the record identified by recno. As with append(), it calls
write() to write out its arguments but replaces a record
instead of adding one.

Records are written with the private write() method. Because fields must
have exact sizes, write() pads String-based values that are shorter than a
field size with spaces on the right and truncates these values to the field size
when needed.

www.it-ebooks.info

http://www.it-ebooks.info/

54 CHAPTER 3: RandomAccessFile

Records are read via the private read() method. read() removes the
padding before saving a String-based field value in the Part object.

By itself, PartsDB is useless. You need an application that lets you
experiment with this class, and Listing 3-2 fulfills this requirement.

Listing 3-2. Experimenting with the Parts Flat File Database

import java.io.IOException;

public class UsePartsDB
{
public static void main(String[] args)
{
PartsDB pdb = null;
try
{
pdb = new PartsDB("parts.db");
if (pdb.numRecs() == 0)
{

// Populate the database with records.
pdb.append("1-9009-3323-4x", "Wiper Blade Micro Edge", 30,
2468);
pdb.append("1-3233-44923-7j", "Parking Brake Cable", 5, 1439);
pdb.append("2-3399-6693-2m", "Halogen Bulb H4 55/60W", 22, 813);
pdb.append("2-599-2029-6k", "Turbo 0il Line O-Ring ", 26, 155);
pdb.append("3-1299-3299-9u", "Air Pump Electric", 9, 20200);
}
dumpRecords (pdb);
pdb.update(1, "1-3233-44923-7j", "Parking Brake Cable", 5, 1995);
dumpRecords (pdb);
}
catch (IOException ioe)
{
System.err.println(ioe);
}
finally
{
if (pdb != null)
pdb.close();
}

}

static void dumpRecords(PartsDB pdb) throws IOException
{

for (int i = 0; i < pdb.numRecs(); i++)

{

PartsDB.Part part = pdb.select(i);
System.out.print(format(part.getPartnum(), PartsDB.PNUMLEN, true));

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: RandomAccessFile 55

System.out.print(" | ");

System.out.print(format(part.getDesc(), PartsDB.DESCLEN, true));
System.out.print(" | ");

System.out.print(format("" + part.getQty(), 10, false));
System.out.print(" | ");

String s = part.getUnitCost() / 100 + "." + part.getUnitCost() %

100;
if (s.charAt(s.length() - 2) == ".") s += "0";
System.out.println(format(s, 10, false));

}

System.out.println("Number of records = " + pdb.numRecs());

System.out.println();
}

static String format(String value, int maxWidth, boolean leftAlign)
{

StringBuffer sb = new StringBuffer();

int len = value.length();

if (len > maxWidth)

{
len = maxWidth;

value = value.substring(o, len);

}
if (leftAlign)

sb.append(value);
for (int i = 0; i < maxWidth - len; i++)
sb.append(" ");

else

{
for (int i = 0; 1 < maxWidth - len; i++)
sb.append(" ");
sb.append(value);

return sb.toString();

}
}

Listing 3-2’s main() method begins by instantiating PartsDB, with parts.db as
the name of the database file. When this file has no records, numRecs() returns
0 and several records are appended to the file via the append() method.

www.it-ebooks.info

http://www.it-ebooks.info/

56 CHAPTER 3: RandomAccessFile

main() next dumps the five records stored in parts.db to the standard
output stream, updates the unit cost in the record whose number is 1, once
again dumps these records to the standard output stream to show this
change, and closes the database.

Note | store unit cost values as integer-based penny amounts. For example, |
specify literal 1995 to represent 1995 pennies, or $19.95. If | were to use
java.math.BigDecimal objects to store currency values, | would have to
refactor PartsDB to take advantage of object serialization, and I'm not prepared
to do that right now. (I discuss object serialization in Chapter 4.)

main() relies on a dumpRecords() helper method to dump these records, and
dumpRecords() relies on a format() helper method to format field values so
that they can be presented in properly aligned columns—I could have used
java.util.Formatter (see Chapter 11) instead.

Compile Listings 3—1 and 3-2 as follows:
javac *.java

Run the resulting application as follows:
java UsePartsDB

The following output reveals the alignment achieved by format():

1-9009-3323-4x | Wiper Blade Micro Edge | 30 | 24.68
1-3233-44923-7] | Parking Brake Cable | 5 | 19.95
2-3399-6693-2m | Halogen Bulb H4 55/60W | 22 | 8.13
2-599-2029-6k | Turbo 0il Line 0-Ring | 26 | 1.55
3-1299-3299-9u | Air Pump Electric | 9 | 202.00
Number of records = §
1-9009-3323-4x | Wiper Blade Micro Edge | 30 | 24.68
1-3233-44923-7] | Parking Brake Cable | 5 | 19.95
2-3399-6693-2m | Halogen Bulb H4 55/60W | 22 | 8.13
2-599-2029-6k | Turbo 0il Line O-Ring | 26 | 1.55
3-1299-3299-9u | Air Pump Electric | 9 | 202.00
5

Number of records

And there you have it: a simple flat file database. Despite its lack of support
for advanced database features such as indexes and transaction
management, a flat file database might be all that your Java application
requires.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1565-4_11
http://dx.doi.org/10.1007/978-1-4842-1565-4_4
https://en.wikipedia.org/wiki/Flat_file_database
http://www.it-ebooks.info/

CHAPTER 3: RandomAccessFile

Note Check out Wikipedia’s “Flat file database” entry
(https://en.wikipedia.org/wiki/Flat_file_database)to learn
more about flat file databases.

57

EXERCISES

The following exercises are designed to test your understanding of Chapter 3’s content:
1.

2
3
4,
5
6

10.

What is the purpose of the RandomAccessFile class?

What is a file’s metadata?

What is the purpose of the "rwd" and "rws" mode arguments?
What is a file pointer?

What happens when you write past the end of the file?

True or false: When you call RandomAccessFile’s seek(long)
method to set the file pointer’s value, and when this value is greater
than the length of the file, the file’s length changes.

What does method void write(int b) accomplish?
What does FileDescriptor’s sync() method accomplish?
Define flat file database.

Write a small Java application named RAFDemo that opens file data in
read/write mode, uses void write(int b) to write byte value 127
followed by void writeChars(String s) to write string "Test"
(minus the quotes) to this file, resets the file pointer to the start of the
file, and read/outputs these values.

Summary

Files can be opened for random access in which a mixture of write and
read operations at various locations can occur until the file is closed.

Java supports this random access by providing the RandomAccessFile class
(in the java.io package).

You first learned about RandomAccessFile’s constructors, operation modes,

and the file pointer. You then explored a sample of this class’s methods.

Next, you learned about the FileDescriptor class and its methods. Lastly,

you learned how to use RandomAccessFile to create a flat file database.

Chapter 4 presents classic I/O’s stream classes.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1565-4_3
http://dx.doi.org/10.1007/978-1-4842-1565-4_4
http://dx.doi.org/10.1007/978-1-4842-1565-4_11
http://dx.doi.org/10.1007/978-1-4842-1565-4_4
https://en.wikipedia.org/wiki/Flat_file_database
http://www.it-ebooks.info/

Chapter

Streams

Along with java.io.File and java.io.RandomAccessFile, Java’s classic I/0O
infrastructure provides streams for performing I/O operations. A stream is an
ordered sequence of bytes of an arbitrary length. Bytes flow over an output
stream from an application to a destination and flow over an input stream
from a source to an application.

Java provides classes in the java.io package that identify various stream
destinations for writing; for example, byte arrays, files, and thread pipes.
Java also provides classes in this package that identify various stream
sources for reading. Examples include byte arrays, files, and thread pipes.
This chapter explores many of these classes.

Stream Classes Overview

The java.io package provides several output stream and input stream
classes that are descendants of its abstract OutputStream and InputStream
classes. Figure 4-1 reveals the hierarchy of output stream classes.

www.it-ebooks.info

http://www.it-ebooks.info/

60 CHAPTER 4: Streams

OutputStream (abstract) }—

4‘ ByteArrayOutputStream |

_*

FileOutputStream | BufferedOutputStream ‘

_<

FilterOutputStream DataOutputStream ‘

4‘

ObjectOutputStream | PrintStream ‘

-

PipedOutputStream |

Figure 4-1. All output stream classes except for PrintStream are denoted by their

OutputStream suffixes

Figure 4-2 reveals the hierarchy of input stream classes.

_|

—| ByteArrayInputStream ‘

—| BufferedInputStream ‘

_|

FilelnputStream ‘

_|

DatalnputStream ‘

FilterInputStream

}7

_| LineNumberInputStream ‘

InputStream (abstract) }——'

ObjectInputStream ‘

_| SequencelnputStream ‘

_| StringBufferInputStream ‘

_| PushbackInputStream ‘

PipedInputStream ‘

Figure 4-2. LineNumberInputStream and StringBufferInputStream are deprecated

LineNumberInputStream and StringBufferInputStream have been deprecated
because they don’t support different character encodings, a topic | discuss

in Chapter 5. java.io.LineNumberReader and java.io.StringReader are their
replacements. (I discuss readers along with writers in Chapter 5.)

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1565-4_5
http://dx.doi.org/10.1007/978-1-4842-1565-4_5
http://www.it-ebooks.info/

CHAPTER 4: Streams 61

Note PrintStream is another class that should be deprecated because it
doesn’t support different character encodings; java.io.PrintWriterisits
replacement. However, it’s doubtful that Oracle will deprecate this class because
PrintStream is the type of the java.lang.System class’s out and err
class fields, and too much legacy code depends on this fact.

Other Java packages provide additional output stream and input stream
classes. For example, java.util.zip provides four output stream classes
that compress uncompressed data into various formats and four matching
input stream classes that uncompress compressed data from the same
formats:

CheckedOutputStream
CheckedInputStream
DeflaterOutputStream
GZIPOutputStream
GZIPInputStream
InflaterInputStream
ZipOutputStream
ZipInputStream

Also, the java.util. jar package provides a pair of stream classes for
writing content to a JAR file and for reading content from a JAR file:

JarOutputStream

JarInputStream

Touring the Stream Classes

In the next several sections, | take you on a tour of most of java.io’s
output stream and input stream classes, beginning with OutputStream and
InputStream.

OutputStream and InputStream

Java provides the abstract OutputStream and InputStream classes to describe
classes that perform stream I/O. OutputStream is the superclass of all output
stream subclasses. Table 4-1 describes OutputStream’s methods.

www.it-ebooks.info

http://www.it-ebooks.info/

62 CHAPTER 4: Streams

Table 4-1. OutputStream Methods

Method

Description

void close()

void flush()

void write(byte[] b)

void write(byte[] b,
int off, int len)

void write(int b)

Close this output stream and release any operating system
resources associated with the stream. This method throws
java.io.IOException when an I/O error occurs.

Flush this output stream by writing any buffered output
bytes to the destination. If the intended destination of this
output stream is an abstraction provided by the underlying
operating system (for example, a file), flushing the stream
only guarantees that bytes previously written to the stream
are passed to the underlying operating system for writing;
it doesn’t guarantee that they’re actually written to a
physical device such as a disk drive. This method throws
IOException when an I/O error occurs.

Write b.length bytes from byte array b to this output
stream. In general, write(b) behaves as if you specified
write(b, 0, b.length). This method throws java.lang
.NullPointerException when b is null and IOException
when an I/O error occurs.

Write len bytes from byte array b starting at offset

off to this output stream. This method throws
NullPointerException when b is null; java.lang

. IndexOutOfBoundsException when off is negative, len
is negative, or off + len is greater than b.length; and
IOException when an I/O error occurs.

Write byte b to this output stream. Only the eight low-order
bits are written; the 24 high-order bits are ignored. This
method throws IOException when an I/O error occurs.

The flush() method is useful in a long-running application that needs to
save changes every so often, for example, a text editor application that
saves changes to a temporary file every few minutes. Remember that
flush() only flushes bytes to the operating system; doing so doesn’t
necessarily result in the operating system flushing these bytes to the disk.

Note The close() method automatically flushes the output stream. If an
application ends before close() is called, the output stream is automatically
closed and its data is flushed.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Streams 63

InputStreanm is the superclass of all input stream subclasses. Table 4-2
describes InputStream’s methods.

Table 4-2. InputStream Methods

Method

Description

int available()

void close()

void mark(int
readlimit)

boolean
markSupported()

int read()

int read(byte[] b)

Return an estimate of the number of bytes that can be
read from this input stream via the next read() method call
(or skipped over via skip()) without blocking the calling
thread. This method throws IOException when an I/O error
occeurs.

It’s never correct to use this method’s return value to
allocate a buffer for holding all of the stream’s data because
a subclass might not return the total size of the stream.

Close this input stream and release any operating system
resources associated with the stream. This method throws
I0Exception when an I/O error occurs.

Mark the current position in this input stream. A subsequent
call to reset () repositions this stream to the last marked
position so that subsequent read operations re-read the same
bytes. The readlimit argument tells this input stream to allow
that many bytes to be read before invalidating this mark (so
that the stream cannot be reset to the marked position).

Return true when this input stream supports mark() and
reset(); otherwise, return false.

Read and return (as an int in the range 0 to 255) the
next byte from this input stream, or return -1 when the
end of the stream is reached. This method blocks until
input is available, the end of the stream is detected, or an
exception is thrown. It throws I0Exception when an I/O
€error occurs.

Read some number of bytes from this input stream and
store them in byte array b. Return the number of bytes
actually read (which might be less than b’s length but is
never more than its length), or return -1 when the end

of the stream is reached (no byte is available to read).
This method blocks until input is available, the end of the
stream is detected, or an exception is thrown. It throws
NullPointerException when b is null and IOException
when an 1/O error occurs.

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

64 CHAPTER 4: Streams

Table 4-2. (continued)

Method

Description

int read(byte[] b,
int off, int len)

void reset()

long skip(long n)

Read no more than len bytes from this input stream and
store them in byte array b, starting at the offset specified by
off. Return the number of bytes actually read (which might
be less than len but is never more than len), or return -1
when the end of the stream is reached (no byte is available
to read). This method blocks until input is available, the
end of the stream is detected, or an exception is thrown.

It throws NullPointerException when b is null,;
IndexOutOfBoundsException when off is negative, len is
negative, or len is greater than b.length - off; and
IOException when an I/O error occurs.

Reposition this input stream to the position at the time
mark() was last called. This method throws I0Exception
when this input stream has not been marked or the mark
has been invalidated.

Skip over and discard n bytes of data from this input
stream. This method might skip over some smaller number
of bytes (possibly zero), for example, when the end of the
file is reached before n bytes have been skipped. The
actual number of bytes skipped is returned. When n is
negative, no bytes are skipped. This method throws
IOException when this input stream doesn’t support
skipping or when some other I/O error occurs.

InputStream subclasses such as ByteArrayInputStream support marking the
current read position in the input stream via the mark() method and later

return to that position

via the reset() method.

Caution Don’t forget to call markSupported() to find out if the subclass
supports mark () and reset().

ByteArrayOutputStream and ByteArraylnputStream

Byte arrays are often useful as stream destinations and sources. The
ByteArrayOutputStream class lets you write a stream of bytes to a byte
array; the ByteArrayInputStream class lets you read a stream of bytes from

a byte array.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Streams 65

ByteArrayOutputStream declares two constructors. Each constructor creates
a byte array output stream with an internal byte array; a copy of this array
can be returned by calling ByteArrayOutputStream’s byte[] toByteArray()
method:

ByteArrayOutputStream() creates a byte array output
stream with an internal byte array whose initial size is 32
bytes. This array grows as necessary.

ByteArrayOutputStream(int size) creates a byte array
output stream with an internal byte array whose initial
size is specified by size and grows as necessary. This
constructor throws java.lang.IllegalArgumentException
when size is less than zero.

The following example uses ByteArrayOutputStream() to create a byte array
output stream with an internal byte array set to the default size:

ByteArrayOutputStream baos = new ByteArrayOutputStream();

ByteArrayInputStream also declares a pair of constructors. Each constructor
creates a byte array input stream based on the specified byte array and keeps
track of the next byte to read from the array and the number of bytes to read:

ByteArrayInputStream(byte[] ba) creates a byte array
input stream that uses ba as its byte array (ba is used
directly; a copy isn’t created). The position is set to 0
and the number of bytes to read is set to ba.length.

ByteArrayInputStream(byte[] ba, int offset, int
count) creates a byte array input stream that uses ba as
its byte array (no copy is made). The position is set to
offset and the number of bytes to read is set to count.

The following example uses ByteArrayInputStream(byte[]) to create a byte
array input stream whose source is a copy of the previous byte array output
stream’s byte array:

ByteArrayInputStream bais = new ByteArrayInputStream(baos.toByteArray());

ByteArrayOutputStream and ByteArrayInputStream are useful when you
need to convert an image to an array of bytes, process these bytes in some
manner, and convert the bytes back to the image.

For example, suppose you’re writing an Android-based image-processing
application. You decode a file containing the image into an Android-
specific android.graphics.BitMap instance, compress this instance into
a ByteArrayOutputStream instance, obtain a copy of the byte array output
stream’s array, process this array in some manner, convert this array to a

www.it-ebooks.info

http://www.it-ebooks.info/

66 CHAPTER 4: Streams

ByteArrayInputStream instance, and use the byte array input stream to
decode these bytes into another BitMap instance, as follows:

String path = ... ; // Assume a legitimate path to an image.
Bitmap bm = BitmapFactory.decodeFile(path);
ByteArrayOutputStream baos = new ByteArrayOutputStream();
if (bm.compress(Bitmap.CompressFormat.PNG, 100, baos))

byte[] imageBytes = baos.toByteArray();
// Do something with imageBytes.
bm = BitMapFactory.decodeStream(new ByteArrayInputStream(imageBytes));

}

This example obtains an image file’s path and then calls the concrete
android.graphics.BitmapFactory class’s Bitmap decodeFile(String path)
class method. This method decodes the image file identified by path into a
bitmap and returns a Bitmap instance that represents this bitmap.

After creating a ByteArrayOutputStream object, the example uses the returned
BitMap instance to call BitMap’s boolean compress(Bitmap.CompressFormat
format, int quality, OutputStream stream) method to write a compressed
version of the bitmap to the byte array output stream:

format identifies the format of the compressed image.
I’ve chosen to use the popular Portable Network
Graphics (PNG) format.

quality hints to the compressor as to how much
compression is required. This value ranges from 0 to 100,
where 0 means maximum compression at the expense of
quality and 100 means maximum quality at the expense
of compression. Formats such as PNG ignore quality
because they employ lossless compression.

stream identifies the stream on which to write the
compressed image data.

When compress () returns true, which means that it successfully compressed
the image onto the byte array output stream in the PNG format, the
ByteArrayOutputStream object’s toByteArray() method is called to create
and return a byte array with the image’s bytes.

Next, the array is processed, a ByteArrayInputStream object is created

with the processed bytes as the source of this stream, and BitmapFactory’s
BitMap decodeStream(InputStream is) class method is called to convert the
byte array input stream’s source of bytes to a BitMap instance.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Streams 67

FileOutputStream and FilelnputStream

Files are common stream destinations and sources. The concrete
FileOutputStream class lets you write a stream of bytes to a file; the
concrete FileInputStream class lets you read a stream of bytes from a file.

FileOutputStream subclasses OutputStream and declares five constructors
for creating file output streams. For example, FileOutputStream(String name)
creates a file output stream to the existing file identified by name. This
constructor throws java.io.FileNotFoundException when the file doesn’t
exist and cannot be created, it is a directory rather than a normal file, or
there is some other reason why the file cannot be opened for output.

The following example uses FileOutputStream(String path) to create a file
output stream with employee.dat as its destination:

FileOutputStream fos = new FileOutputStream("employee.dat");

Tip FileOutputStream(String name) overwrites an existing file. To
append data instead of overwriting existing content, call a FileOutputStream
constructor that includes a boolean append parameter and pass true to this
parameter.

FileInputStream subclasses InputStream and declares three constructors
for creating file input streams. For example, FileInputStream(String name)
creates a file input stream from the existing file identified by name. This
constructor throws FileNotFoundException when the file doesn’t exist, it is a
directory rather than a normal file, or there is some other reason that the file
cannot be opened for input.

The following example uses FileInputStream(String name) to create a file
input stream with employee.dat as its source:

FileInputStream fis = new FileInputStream("employee.dat");
FileOutputStream and FileInputStream are useful in a file-copying context.

Listing 4-1 presents the source code to a Copy application that provides a
demonstration.

www.it-ebooks.info

http://www.it-ebooks.info/

68 CHAPTE|

R 4: Streams

Listing 4-1. Copying a Source File to a Destination File

import java.
import java.
import java.
import java.

public class

{
public st

{

io.FileInputStream;
io.FileNotFoundException;
io.FileOutputStream;
io.IOException;

Copy

atic void main(String[] args)

if (args.length != 2)
{

System.err.println("usage: java Copy srcfile dstfile");

ret
}
FileIn
FileOu
try
{

fis

fos

int

whi
}
catch
{

Sys
}
catch
{

Sys
}
finall
{

if

urn;

putStream fis = null;
tputStream fos = null;

= new FileInputStream(args[0]);
= new FileOutputStream(args[1]);
b; // I chose b instead of byte because byte is a reserved
// word.
le ((b = fis.read()) !'= -1)
fos.write(b);

(FileNotFoundException fnfe)

could not be opened for input, or

tem.err.println(args[0] +
] + " could not be created for output");

+ args[1

(IOException ioe)

tem.err.println("I/0 error: " + ioe.getMessage());
y
(fis != null)
try
fis.close();
iatch (I0Exception ioe)
i assert false; // shouldn't happen in this context

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Streams 69

if (fos != null)
try
{
}
catch (IOException ioe)

{
}

fos.close();

assert false; // shouldn't happen in this context

}
}
}

Listing 4-1’s main() method first verifies that two command-line arguments,
identifying the names of source and destination files, are specified. It then
proceeds to instantiate FileInputStream and FileOutputStream and enter a
while loop that repeatedly reads bytes from the file input stream and writes
them to the file output stream.

Of course, something might go wrong. Perhaps the source file doesn’t exist,
or perhaps the destination file cannot be created (a same-named read-only
file might exist, for example). In either scenario, FileNotFoundException

is thrown and must be handled. Another possibility is that an 1/0 error
occurred during the copy operation. Such an error results in I0Exception.

Regardless of an exception being thrown or not, the input and output
streams are closed via the finally block. In a simple application like this,
you could ignore the close() method calls and let the application terminate.
Although Java automatically closes open files at this point, it’s good form to
explicitly close files upon exit.

Because close() is capable of throwing an instance of the checked
IOException class, a call to this method is wrapped in a try statement

with an appropriate catch block that catches this exception. Notice the if
statement that precedes each try statement. The if statement is necessary
to avoid a thrown NullPointerException instance when either fis or fos
contain the null reference.

Java 7’s try-with-resources statement can save you a lot of coding by
automatically closing open streams. To see the savings for yourself, check
out Listing 4-2, which presents the source code to another Copy application
that uses try-with-resources.

www.it-ebooks.info

http://www.it-ebooks.info/

70 CHAPTER 4: Streams

Listing 4-2. Copying a Source File to a Destination File, Version 2

import java.
import java.
import java.
import java.

io.FileInputStream;
io.FileNotFoundException;
io.FileOutputStream;
io.IOException;

public class Copy

{

public static void main(String[] args)

{

if (args.length != 2)
{

System.err.println("usage: java Copy srcfile dstfile");
return;

}

try (FileInputStream fis = new FileInputStream(args[0]);

{

FileOutputStream fos = new FileOutputStream(args[1]))

int b; // I chose b instead of byte because byte is a reserved

// word.

while ((b = fis.read()) != -1)

}

fos.write(b);

catch (FileNotFoundException fnfe)

{

System.err.println(args[0] +

}

could not be opened for input, or

+ args[1] + " could not be created for output");

catch (IOException ioe)

{
}

System.err.println("I/0 error:

}
}

+ ioe.getMessage());

Compile Listing 4-1 or 4-2 as follows:

javac Copy.java

Run the resulting application as follows:

java Copy Copy.java Copy.bak

If all goes well, you should observe a Copy.bak file whose length and
contents are identical to that of Copy. java.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Streams n

PipedOutputStream and PipedinputStream

Threads must often communicate. One approach involves using shared
variables. Another approach involves using piped streams via the
PipedOutputStream and PipedInputStream classes. The PipedOutputStream
class lets a sending thread write a stream of bytes to an instance of the
PipedInputStream class, which a receiving thread uses to subsequently read
those bytes.

Caution Attempting to use a PipedOutputStream object and a
PipedInputStream object from a single thread is not recommended because
it might deadlock the thread.

PipedOutputStream declares a pair of constructors for creating piped output
streams:

PipedOutputStream() creates a piped output stream
that’s not yet connected to a piped input stream. It must
be connected to a piped input stream, either by the
receiver or the sender, before being used.

PipedOutputStream(PipedInputStream dest) creates
a piped output stream that’s connected to the piped
input stream dest. Bytes written to the piped output
stream can be read from dest. This constructor throws
IOException when an I/O error occurs.

PipedOutputStream declares a void connect(PipedInputStream dest)
method that connects this piped output stream to dest. This method throws
IOException when this piped output stream is already connected to another
piped input stream.

PipedInputStream declares four constructors for creating piped input streams:

Pipe