
Java Lambdas
and Parallel
Streams
—
Michael Müller

JAVA LAMBDAS AND
PARALLEL STREAMS

Michael Müller

Java Lambdas and Parallel Streams

Michael Müller			
Brühl, Nordrhein-Westfalen, 		
Germany			

ISBN-13 (pbk): 978-1-4842-2486-1		 ISBN-13 (electronic): 978-1-4842-2487-8
DOI 10.1007/978-1-4842-2487-8

Library of Congress Control Number: 2016960327

Copyright © 2016 by Michael Müller

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physi-
cal way, and transmission or information storage and retrieval, electronic adaptation, com-
puter software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trade-
mark symbol with every occurrence of a trademarked name, logo, or image we use the
names, logos, and images only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Steve Anglin
Technical Reviewer: Kishori Sharan
Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black,

Louise Corrigan, Jonathan Gennick, Robert Hutchinson, Celestin Suresh John,
Nikhil Karkal, James Markham, Susan McDermott, Matthew Moodie,
Natalie Pao, Gwenan Spearing

Coordinating Editor: Mark Powers
Copy Editor: Deanna Hegle
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress
Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business
Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promo-
tional use. eBook versions and licenses are also available for most titles. For more information,
reference our Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text are
available to readers at www.apress.com. For detailed information about how to locate your
book’s source code, go to www.apress.com/source-code/. Readers can also access source
code at SpringerLink in the Supplementary Material section for each chapter.

Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
www.springer.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
http://www.apress.com/
http://www.apress.com/source-code/

To my wife Claudia and my kids:

Thank you for your patience during night-
writing and other long sessions.

I love you.

To the many people I conversed with at
conferences as well as attendees of my

talks:

Thank you for the informative and
interesting conversations. From that, I

recognized how important the matter of
Java Lambdas and Streams is for you and

how much information demand exists.
Without you, this book would not have

been written.

To you, my dear reader:

Thank you for your interest in this book.
I hope I wrote an understandable and

valuable book, which helps you to achieve
success.

Contents
About the Author ��� vii

About the Technical Reviewer �� ix

Foreword ��xi

Chapter 1:	 Introduction���1

Chapter 2:	 The Data���5

Chapter 3:	 First Analysis—From Naive to Flexible���������7

Chapter 4:	 Lambda Expressions�������������������������������������13

Chapter 5:	 Default Method���19

Chapter 6:	 Optional���25

Chapter 7:	 Make the Acquaintance of Streams �����������29

Chapter 8:	 stream(), Stream and Spliterator���������������35

Chapter 9:	 Parallel Stream���41

Chapter 10:	 Collector and Concurrency�������������������������47

Chapter 11:	 GroupingCollector���������������������������������������61

Appendix A:	 Program to Create the Demo Data�����������69

Index���85

About the Author
Michael Müller is an IT pro-
fessional with more than 30
years of experience including,
about 25 years in the health
care sector. During this time, he
has worked in different areas,
especially project and product
management, consulting, and
software development. During a
couple of software development
projects, he also gained intensive
international experience.

Currently, Michael is the head of
software development at the German DRG institute inek.org.
In this role, he is responsible for Web applications as well as
other Java and .NET projects. Web projects are preferably
built with Java technologies such as JSF (JavaServer Faces)
with the help of supporting languages like JavaScript.

Michael has strong experience using lambda statements the
.Net environment (LINQ with C#). Beginning with Java 8, he
can finally use similar powerful features with Java.

Michael is a JSF professional user and a member of the Java
Specification Request (JSR) 344 and JSR 372 (JSF) expert
groups. His first book, Web Development with Java and JSF con-
sequentially deals with this Java web technology.

He frequently reads books and writes reviews as well as
technical papers, which are mostly published in German print
magazines and on his web site.

About the
Technical
Reviewer

Kishori Sharan works as a
software architect at Up and
Running, Inc. He has earned
a master of science degree in
Computer Information Systems
from Troy State University, Troy,
Alabama. He is a Sun-certified
Java 2 programmer. He has over
18 years of experience in devel-
oping enterprise applications
and providing training to pro-
fessional developers in the Java
platform.

Foreword
Whenever I have spoken about Java Lambdas and Streams
at conferences and roundtable events, there has been strong
interest and lively discussions with the attendees. Typically,
the unfamiliar syntax forms a significant hurdle even (or espe-
cially?) for experienced programmers. However, once a devel-
oper masters the syntax, she or he usually doesn’t want to
revert to the pre-lambda style.

Realizing that the new syntax is an impediment for many
developers, I decided to share my experience and insights
in a format that can be used as a reference. The aim of this
concise book is to help you to overcome the learning curve
and to master the new world of Lambdas and Streams.

Following Leanpub’s motto “Publish Early, Publish Often”, I
published a previous edition in an early but complete state.
This edition published by Apress contains additional informa-
tion on how to create your own parallel collectors.

I hope that you enjoy reading it and achieve sustained success
with Java Lambdas and Parallel Streams.

—Michael Müller
Brühl, Germany

© Michael Müller 2016
M. Müller, Java Lambdas and Parallel Streams,
DOI 10.1007/978-1-4842-2487-8_1

C H A P T E R

1

Introduction
Lambdas and (Parallel) Streams
Some of the new features introduced in Java 8, such as the new
Date and Time API (application program interfaces), feel quite
familiar and can be used immediately by an experienced Java
developer. But some of the most important enhancements,
including Lambdas and Streams, require the developer to learn
some new concepts. Lambda statements in particular introduce
a syntax that is quite unusual for object-oriented programmers.
These language constructs are known only to developers who
used functional programming languages or enhancements like
Microsoft’s Linq (Language Integrated Query). This special syntax
takes some getting used to, and some developers may even be a
little frightened at first glance. However, these enhancements are
extremely powerful, and it is certainly worth taking the time to
understand how they can help you to write code that is not only
concise but also faster to write and more reusable.

Electronic supplementary material The online version of this
chapter (doi:10.1007/978-1-4842-2487-8_1) contains supplementary
material, which is available to authorized users.

http://dx.doi.org/10.1007/978-1-4842-2487-8_1

Chapter 1 | Introduction2

In this book, I start with an explanation of Lambda expres-
sions; show how they can be used with Streams; and finally,
discuss how both Lambdas and Streams can be combined to
implement effective parallel processing.

The following task will run like a golden thread through the
book:

The Challenge
•	 Analyze a bigger amount of data accord-

ing to varying criteria

•	 Parallelize this task without explicit use
of thread management, synchronization,
Excecutor, or ForkJoin

The Solution
Use parallelStream() instead of stream()!

A First Explanation
You may well ask, “what the hell are the stream() and paral-
lelStream() methods?” Here is the quick overview; a more
detailed description is given in later chapters.

You may imagine a Stream as a continuous flow of data, com-
parable to something like an InputStream. The data might be
emitted by different sources, such as a collection, a file, a gen-
erator, or some other source. However, the content of this
stream is not simply bytes or characters; instead, the stream
emits arbitrary objects(see Figure 1-1).

Java Lambdas and Parallel Streams 3

On their journey from source to target, the objects may be
filtered, changed, transformed, collected, or processed in
some other way. How and with whichever means this hap-
pens I describe later on.

A ParallelStream can be imagined as a parallel stream of
objects of the same type. The objects are split into different
streams at their source (see Figure 1-2). Later on, I will dis-
cuss the details of this splitting task.

To implement solutions to the challenge, I will use some of
Java’s new language features, including

•	 Lambda statements

•	 Functional interfaces

•	 Default methods

•	 Optionals

•	 Streams

•	 Operations on streams

Figure 1-1.  Stream (quelle is German for source)

Figure 1-2.  Parallel streams

© Michael Müller 2016
M. Müller, Java Lambdas and Parallel Streams,
DOI 10.1007/978-1-4842-2487-8_2

 C H A P T E R

2

 The Data
 Back to the challenge.

 I shall analyze data about a large number of persons who buy
and sell diverse products. The data structure for this task has
a simple design: A person has a given name, surname, age, and
gender. A buyer might also be a vendor. Sales and purchases
are stored in lists. Each element in this list represents a prod-
uct by its article number, the quantity sold, and the unit price.
The unit price may change per transaction due to various
discounts. The following diagram (Figure 2-1) visualizes the
class Person.

Chapter 2 | The Data6

 In the appendix, you’ll find a simple program to create sample
data.

 Figure 2-1. Class Person

© Michael Müller 2016
M. Müller, Java Lambdas and Parallel Streams,
DOI 10.1007/978-1-4842-2487-8_3

 C H A P T E R

3

 First
Analysis—
From Naive
to Flexible
 In this section, I will develop traditional solutions to various
filtering requirements. I avoid using Lambdas or Streams so
that the techniques illustrated here can be compared with
the solutions developed in Chapter 4 .

http://dx.doi.org/10.1007/978-1-4842-2487-8_4

Chapter 3 | First Analysis—From Naive to Flexible8

 Fix Filter
 The first task is to list all customers who are less than 20
years old. This can be done very easily; all we need is a loop
with a filter condition to select young customers and a target
list to collect them (see Listing 3-1).

 Listing 3-1. Simple Implementation to Select and Collect Persons Younger Than
20 Years

 1 private List<Person> getPersonsLessThan20Years(List
<Person> persons){

 2 List<Person> result = new ArrayList<>();
 3 for (Person person : persons) {
 4 if (person.getAge() < 20) {
 5 result.add(person);
 6 }
 7 }
 8 return result;
 9 }

 Simple Parameterization
 The next requirement is to collect the group of people
between 30 and 40 years old. Of course, we realize that in
the future, we may need to query different age groups; so
it would be better to parameterize the method rather than
hard-coding the condition (see Listing 3-2).

 Listing 3-2. Parameterized Implementation to Choose All Persons of a
Specified Age Group

 1 private List<Person> getPersonsByAgeRange(
 2 List<Person> persons,
 3 int from,
 4 int to) {
 5 List<Person> result = new ArrayList<>();
 6 for (Person person : persons) {

Java Lambdas and Parallel Streams 9

 7 if (person.getAge() >= from && person.getAge() <=
to) {

 8 result.add(person);
 9 }
 10 }
 11 return result;
 12 }

 Here, the developer has introduced some flexibility. However,
this method still does no more than select persons of a speci-
fied age group. If additional criteria are needed, such as query-
ing the gender, this method doesn’t help. A novice programmer
might try to solve the problem by adding extra parameters
for gender, vendor, status, and so forth (see Listing 3-3).

 Listing 3-3. Overloading a Method with (Too) Many Parameters

 1 private List<Person> getPersonsByDiverseCriteria(
 2 List<Person> persons,
 3 int ageFrom,
 4 int ageTo,
 5 Gender gender,
 6 boolean isCustomer,
 7 boolean isVendor) {
 8 [loop omitted]
 9 }

 Senior developers might shake their heads at such naive code;
their experience tells them that one day you won’t be able
to do your analysis because you will need at least one more
parameter.

 Behavior Parameterization
 The next evolutionary step toward a better solution is to
create the condition or filter as a stand-alone object and to
pass it to the now more general-purpose method. This allows
the method to be parameterized with different behaviors, or
different algorithms, reminding us of the strategy pattern.

Chapter 3 | First Analysis—From Naive to Flexible10

 For our task, this behavior will implement an interface that
contains a test to choose a person by a specified condition.
Let’s call this interface Condition (see Listing 3-4).

 Listing 3-4. Interface Condition

 1 public interface Condition<T> {
 2 boolean test(T t);
 3 }

 Now our method (the loop) needs only two parameters: the
list of persons and the condition (Listing 3-5).

 Listing 3-5. Flexible Filtering Due to Injectable Condition

 1 private List<Person> getPersonsByCondition(List<Person>
persons, \

 2
 3 Condition<Person> condition){
 4 List<Person> result = new ArrayList<>();
 5 for (Person person : persons) {
 6 if (condition.test(person)) {
 7 result.add(person);
 8 }
 9 }
 10 return result;
 11 }

 The condition is swapped out and will be injected by a param-
eter. Thus, there is no need to change the implementation of
the method when we need a different filter. Now let’s refac-
tor our first analysis to get everyone less than 20 years old
(see Listing 3-6).

 Listing 3-6. Implementation of the Condition According to Interface Condition

 1 class YoungerThanCondition implements
Condition<Person>{

 2 private final int _age;
 3 YoungerThanCondition(int age){
 4 _age = age;
 5 }

Java Lambdas and Parallel Streams 11

 6
 7 @Override
 8 public boolean test(Person person) {
 9 return person.getAge() < _age;
 10 }
 11 }

 Now, the code to call our loop and to inject the filter looks
more clean and concise (Listing 3-7).

 Listing 3-7. Call Loop with Filter

 1 persons = getPersonsByCondition(persons, new
YoungerThanCondition(20));

 Following the object-oriented paradigm, we pass the condi-
tion to the method as an object. Now, if we need other filter
criteria, we simply create different filter classes as implemen-
tations of the Condition interface. The loop to collect the per-
sons of interest remains unchanged.

 Anonymous Classes
 But creating a separate class for each different condition still
seems to be a heavyweight approach. The question is this: “If
we only need to use the condition in one place, can we create
the class just where we’ll need it?” This is where anonymous
classes come into play (see Listing 3-8).

 Listing 3-8. Parameterize with Anonymous Class

 1 persons = getPersonsByCondition(persons, new
Condition<Person>(){

 2 @Override
 3 public boolean test(Person person) {
 4 return person.getAge() < 20;
 5 }
 6 });

Chapter 3 | First Analysis—From Naive to Flexible12

 Because the anonymous class is just created where it is
needed, we can’t reuse it. It doesn’t make sense to pass the age
as a parameter; we simply write it directly into the condition.

 Compared with the fully fledged filter classes, anonymous
classes are much shorter. But instead of passing a short class
name as the parameter, we have to override the test method
and to write a couple of lines. Anonymous classes are shorter
than fully fledged classes but move the code into the param-
eter; this may not seem ideal. And by the way—lots of pro-
grammers dislike anonymous classes.

© Michael Müller 2016
M. Müller, Java Lambdas and Parallel Streams,
DOI 10.1007/978-1-4842-2487-8_4

 C H A P T E R

4

 Lambda
Expressions
 After all of these traditional approaches, it’s time to move on
to the lambda expressions, which have been introduced into
 Java 8 .

 Just to remind you, the method test() of the interfaces
 Condition expects a Person and checks a condition.

 Let’s call this condition a function. Do you remember math-
ematics at school? Many pupils had to learn about functions
and expressions such as x -> f(x) . This meant a value x will
be mapped to a function of x. In our current task, a Person
will be mapped to a function (Condition) of Person. And Java’s
lambda syntax reminds you exactly of this. For our concrete
analysis, this will be as in Listing 4-1 .

 Listing 4-1. Lambda Expression for Age Condition

 1 person -> person.getAge() < 20

Chapter 4 | Lambda Expressions14

 Now you can use this expression in place of the condition
interface (see Listing 4-2).

 Listing 4-2. Collect Persons with Lambda Expression

 1 persons = getPersonsByCondition(
 2 persons,
 3 person -> person.getAge() < 20);

 This is concise and clear code, easy to read and understand-
able—once you are familiar with this syntax. Even (or espe-
cially?) for senior developers, the unusual syntax is often the
biggest hurdle.

 I predict that once a programmer has chummed up with it, he
or she usually doesn’t want to miss it anymore.

 Finally it is possible to exchange the condition for our analy-
sis in an easy way. The example in Listing 4-3 shows how to
select all female persons .

 Listing 4-3. Changing the Filter by Just a Lambda Expression

 1 persons = getPersonsByCondition(
 2 persons,
 3 person -> person.getGender() == Gender.Female);

 Functional Interface
 Lambda expressions may be used where a functional inter-
face is expected. We call an interface functional interface if it
defines accurately one abstract method. The lambda expres-
sion overrides this method.

 With Java 8, a couple of predefined functional interfaces are
included (e.g., see Figure 4-1). Therefore, an extra definition
such as the one we did with Condition is not needed. In our
case, we could use the predefined interface Predicate , which is
used to check such a condition. A list of the functional inter-
faces available with Java 8 can be read at Oracle . 1

 1 https://docs.oracle.com/javase/8/docs/api/java/util/function/
package-summary.html

https://docs.oracle.com/javase/8/docs/api/java/util/function/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/package-summary.html

Java Lambdas and Parallel Streams 15

 These functional interfaces usually are annotated with
@FunctionalInterface . This is an informative annota-
tion and might be used by an IDE (integrated development
environment) or by the compiler who is able to check the
requirements of such an interface. However, for the usage
with a lambda expression, this interface is not needed.

 The functional interfaces defined with Java 8 mostly contains
other useful concrete methods. A method implementation
within an interface is a new feature of Java 8. These so called
default methods are preconditions for extensions such as the
new Stream API, and I will describe them later on.

 Figure 4-1. Predefined Functional Interfaces

Chapter 4 | Lambda Expressions16

 Lambda Notation
 Because of the interface that has to be implemented, the
compiler has the ability to determine the count and the
data types of the expected parameters. The names of the
parameters don’t matter and can be freely chosen by the
programmer—like you do for parameters of methods you’ll
write. If there are at least two parameters or you want (or
need to) declare a type, then the parameters need to be
surrounded by parentheses—like parameters of a method. If
there is only one parameter and no type declared, then the
parentheses might be omitted. Hence, these notations are
equivalent (see Listing 4-4).

 Listing 4-4. Different Notations of a Lambda Expression

 1 persons = getPersonsByCondition(persons, person ->
person.getAge() < 20);

 2 persons = getPersonsByCondition(persons, p -> p.getAge()
< 20);

 3 persons = getPersonsByCondition(persons, (Person p) ->
p.getAge() < 20);

 In detail, a lambda expression consists of a parameter list, the
lambda operator “–>” (minus + greater than character), and a
statement. As usual, this statement may be a block statement,
which is built up by a couple of substatements.

 (parameter list) -> statement

 Here are the most important rules mentioned in brief: Type +
name like method parameters in parentheses (int x, int
y) -> x * y;

 Clearly, determinable types might be omitted.

 (x, y) -> x * y;

 An empty parameter list is possible too and needs a pair of
parentheses.

 () -> getVendorCount(persons)

Java Lambdas and Parallel Streams 17

 If there is only one parameter without any type declaration,
the parentheses might be omitted.

 x -> x * x;

 As special notations, lambda expressions may be replaced by
a so-called method or object references.

• class::method

• object::method

 Let’s take a look at the class Person . This contains a boolean
method isVendor() . If this is needed in a condition, then the
lambda expression would be

 p -> p.isVendor()

 Using a method reference instead will change the code too.

 Person::isVendor

 Observe the discontinuance of the parentheses. Using a
method reference sometimes can lead to a more concise
notation. I mention it here for completeness. Later on in this
book, I use it rarely and without further explanation. Detailed
information about this matter is available, for example, in the
 Java tutorials . 2

 Lazy Evaluation
 You may treat a lambda expression as a kind of function refer-
ence. And this function is not executed at the time you assign
it to a variable but only when evaluating the variable. This
lazy evaluation might be used to realize an around-invoke.
For example, we may push the evaluation into a method that
measures the execution time .

 2 https://docs.oracle.com/javase/tutorial/java/javaOO/
methodreferences.html

https://docs.oracle.com/javase/tutorial/java/javaOO/methodreferences.html
https://docs.oracle.com/javase/tutorial/java/javaOO/methodreferences.html
https://docs.oracle.com/javase/tutorial/java/javaOO/methodreferences.html

Chapter 4 | Lambda Expressions18

 In the following snippet, getVendorCount will be executed
immediately.

 int personCount = getVendorCount(persons);

 Using a lambda expression, it is simple to pass getVendor-
Count as a function into a different method.

 int personCount = invokeMethod(() ->
getVendorCount(persons));

 The essential part is that getVendorCount will not be
executed here. It will be carried out within the measuring
method , just when method.get() is called (Listing 4-5).

 Listing 4-5. Messfunktion zum Aufruf einer Methode

 1 private static <T> T invokeMethod(Supplier<T> method) {
 2 long start = System.nanoTime();
 3 T result = method.get();
 4 long elapsedTime = System.nanoTime() - start;
 5 System.out.println("Elapsed time: " +

elapsedTime/1000000);
 6 return result;
 7 }

 Summary
 Using lambda expressions, we were successful in implement-
ing a flexible filter function for the data.

 However, we can only change the filter condition so far. If
we need to use a different kind of evaluation, for example,
amount and total price of an article, we still need to adapt the
method. Here, the stream interface comes into play, which
allows you to do without the loop and to chain other execu-
tion steps such as transformation or reduction. To understand
how Java could be enhanced by this interface, we first need
to introduce some other new Java features. One of these
enhancements is the chance to create default methods. I will
show this within Chapter 5 .

http://dx.doi.org/10.1007/978-1-4842-2487-8_5

© Michael Müller 2016
M. Müller, Java Lambdas and Parallel Streams,
DOI 10.1007/978-1-4842-2487-8_5

 C H A P T E R

5

 Default
Method
 The Problem
 An interface might be treated as a kind of contract between
a provider and a user. As such, it can’t be recalled or changed
unilaterally. If you develop software against an interface , you
must rely on the function. If the provider (e.g., developer of
a framework) changes the interface, it might be possible that
your software can’t use the new version anymore. If you are
in luck, your compiled program may still work together with
the new version. This is the case if the change keeps binary
compatibility . By the next time you need to compile your
program, the compiler usually reports an error: the com-
piler forces all methods of the interface to be implemented.
Because the changed interface is not source compatible, you
need to adopt your program.

 So how can you enhance an interface without breaking source
and binary compatibility?

Chapter 5 | Default Method20

 Solution—The Java Way
 The developers of the Java language solved this problem
by introducing default methods . These are concrete method
implementations within the interface, declared as default . If
none of the existing parts are changed, an interface that has
been enhanced by default methods can be used directly by all
classes that implement it: without the need to change these
implementing classes!

 Because a default method is a ready to use method, there is
no need to implement it, and the enhanced interface keeps
source and binary compatibility. Beginning with Java 8, your
classes may use methods from parent classes as well as from
interfaces. Thus, Java virtual has a kind of multiple inheritance
or mixin now.

 What about the (well-) known problems of multiple inheri-
tance? Or what happens if your class or a parent class of it
already possesses a method of the same name and signature?

 Java 8 has a couple of well-defined rules to prevent problems
that are described in the following. For simplification, we now
call it “homonymous” methods if we discuss methods of the
same name and signature.

• If the (abstract) method signatures of
the enhanced interface stay unchanged,
the interface will be source and binary
compatible

• The interface might be enhanced by con-
crete methods, which are available for
inheritance

• If the implementing class contains a hom-
onymous method, this has priority

• The interface provider is able to enhance
the interface

Java Lambdas and Parallel Streams 21

• Enhancements of implemented librar-
ies by the library user are not possible
(enhancements by the provider only)

• This is in contrast to extension methods
of other languages, which enhance exist-
ing classes by the user

• There are well-defined rules to choose
the right method in case of homony-
mous implementation

• Fields (“member” variables) defined in
an interface are implicit final

• Despite these restrictions, default meth-
ods have a great potential

• Best examples are the stream() and par-
allelStream() methods not only of the
Java 8 collections

 Rules to Choose a Default Method
 Java 8 defines some rules for which method will be used in
case of homonymous methods. If it can’t be decided, the com-
piler will report an error.

 As the name default method implies, this method is only used
as a default if no implementation is used in the implementing
class. If there are homonymous methods in different inter-
faces the class will implement, the compiler will choose the
method that is “closest” to the class. This is independent from
the fact of whether theses interfaces are derived from each
other or are independent.

 The following examples will demonstrate this (see Listings
 5-1 to 5-3).

Chapter 5 | Default Method22

 Listing 5-1. Interface with Default Method

 1 public interface InterfaceA {
 2 default void print (){
 3 System.out.println("InterfaceA");
 4 }
 5 }

 Listing 5-2. Implementing Class (Without Further Functionality)

 1 public class InterfaceImplementor implements
InterfaceA{}

 Listing 5-3. Invocation of the Class

 1 public class InterfaceDemo {
 2 public static void main(String[] args) {
 3 new InterfaceImplementor().print();
 4 }
 5 }

 Create a Java project using these three files to comprehend the operating

mode.

 As you may have expected , this small demo simply prints
out InterfaceA . The a next interface with a homonymous
method will be added (see Listing 5-4).

 Listing 5-4. InterfaceB with Homonymous Default Method

 1 public interface InterfaceB {
 2 default void print (){
 3 System.out.println("InterfaceB");
 4 }
 5 }

 Last but not least, the class InterfaceImplementor needs to
implement this additional interface (Listing 5-5).

Java Lambdas and Parallel Streams 23

 Listing 5-5. Implementing Class (Without Further Functionality)

 1 public class InterfaceImplementor implements InterfaceA,
InterfaceB{}

 A modern IDE will alert an error (see Figure 5-1).

 In either case, the compiler will tell you that it can’t compile
this program. What will happen if you create inheritance with
these interfaces?

 In the case of the preceding example, it is possible to inherit
from InterfaceA and/or InterfaceB . As long as you use
two different interfaces in your implementing class, which
have different homonymous default methods, the compiler
will alert an error.

 It becomes a bit different if the interfaces inherit from a com-
mon interface that has such a default method. Create two
interfaces that both inherit from InterfaceA . One of them
will override the default method. For brevity, these three files
are shown as one listing (Listing 5-6).

 Listing 5-6. Inheritance of Default Method

 1 public interface InterfaceA11 {
 2 default void print (){
 3 System.out.println("InterfaceA11");
 4 }
 5 }
 6
 7 public interface InterfaceA12 {}
 8
 9 public class InterfaceImplementor implements

InterfaceA11, InterfaceA12{}

 Figure 5-1. NetBeans alerts misusage

Chapter 5 | Default Method24

 If you run this program, it will print out InterfaceA11 . The print
method of InterfaceA11 resides on the lowest level of the
inheritance hierarchy. Thus, it is “closest” to the implementing
class. The same is valid if you implement interfaces from dif-
ferent hierarchic levels.

 public class InterfaceImplementor implements InterfaceA,
InterfaceA11{}

 This will call the print method from InterfaceA11 too.

 If you want to program and use two homonymous methods
on the same level, for example, develop a print method in
 InterfaceA12 too, the compiler can’t determine which to
choose and reports an error.

 Summary
 Default methods enable the enhancement of existing inter-
faces without breaking compatibility. In this sense, they build
the foundation for new features like stream(), which I describe
later on. Before, I have to discuss another enhancement: the
Optional class.

 Read further descriptions of default methods in the Internet,
for example, at Oracle . 1

 1 https://docs.oracle.com/javase/tutorial/java/IandI/
defaultmethods.html

https://docs.oracle.com/javase/tutorial/java/IandI/defaultmethods.html
https://docs.oracle.com/javase/tutorial/java/IandI/defaultmethods.html
https://docs.oracle.com/javase/tutorial/java/IandI/defaultmethods.html

© Michael Müller 2016
M. Müller, Java Lambdas and Parallel Streams,
DOI 10.1007/978-1-4842-2487-8_6

 C H A P T E R

6

 Optional
 First of all, we take a look at another family of classes that play
their role in using the new streams: Optional .

 As you know, if you declare but do not initialize an object in
Java, its value is null . If you try to access a method of an object
with value of null, you’ll get a null pointer exception. Sadly,
we cannot avoid a null value at any time. At least we need a
something to represent the absence of an object. To avoid null
pointer exceptions, you need to check many places within your
software diverse variables for a null value (see Listing 6-1).

 Listing 6-1. Check for Non-Null Value

 1 String name;
 2 [...]
 3 if (name != null) {...}

 Java 8 introduced the class Optional , which encapsulates
an optional object and offers methods to check the content
(Listing 6-2).

Chapter 6 | Optional26

 Listing 6-2. Check for Presence

 1 Optional<String> name;
 2 [...]
 3 if (name.isPresent()){...}

 At first glance, this looks like replacing one evil with another.
Still, there are the same amount of checks, not for null but for
presence. And an additional class is required. So where is the
excess profit

 The class Optional offers a bit more than just simple tests
for presence. First of all, you may tell this class which excep-
tion to throw in case of the absence of the encapsulated
object. Replacing the dumb null pointer exception by one of
your choice in conjunction with a detailed message is a great
plus in case of error. On the other hand, Optional offers
some methods to retrieve a value.

 To access the encapsulated object, you use the method get() .
And with orElse() you specify an alternative, which is used
in case of an absence value. This prevents you from any “no
value exception” and allows you to develop your software
with less checks.

 You’ll find more details about Optional within the API
documentation . 1

 At the beginning of this chapter, I talked about a family of
classes. Optional is a single class that is directly derived from
 Object . Besides that, there are the classes OptionalDouble ,
 OptionalInt , OptionalLong , which are directly derived
from Object too. These classes have a similar behavior to
 Optional . Thus, this class family is neither defined by inheri-
tance from a common parent nor by implementing a com-
mon interface. These classes are simply programmed in a
similar way and implement a behavior that is close together.

 1 https://docs.oracle.com/javase/8/docs/api/java/util/
Optional.html

https://docs.oracle.com/javase/8/docs/api/java/util/Optional.html
https://docs.oracle.com/javase/8/docs/api/java/util/Optional.html
https://docs.oracle.com/javase/8/docs/api/java/util/Optional.html
https://docs.oracle.com/javase/8/docs/api/java/util/Optional.html

Java Lambdas and Parallel Streams 27

 There are slightly different methods. For example, to retrieve
the value of an optional Double, the method is not get()
but getAsDouble() —and we use it when we learn about
Streams in Chapter 7.

© Michael Müller 2016
M. Müller, Java Lambdas and Parallel Streams,
DOI 10.1007/978-1-4842-2487-8_7

 C H A P T E R

7

 Make the
Acquaintance
of Streams
 Ok, back to the analysis of the data.

 Let’s assume two existing filters can’t be combined to one
complex condition but have to be applied one after the other.
Or we need separate steps to transform the data , or, or, . . .

 Generally speaking, the data will be processed in a chain. Each
operation takes some data, performs any kind of operation,
and produces an intermediate result, which is used as input
for the next task. Such a procedure is known as pipelining
(see Figure 7-1).

Chapter 7 | Make the Acquaintance of Streams 30

 Operations work differently when using a stream. All trans-
formations in the chain are performed “on the fly.” From the
developers point of view, there is a data input at the beginning
of the chain and one output at its end, but no explicit inter-
mediate result (Figure 7-2).

 The developer needs to create a data source and then appends
the processing steps till the last one. This so-called terminal
operation creates the result. The data flow only starts when
the final operation is invoked.

 The trick is an internal iterator , which emits the data. Due to
this, there is no need for the programmer to create a loop
(which is nothing else but an external iterator). The devel-
oper just needs to tell the system how to handle the data.
The former loop now looks like a serial process—which can
be parallelized in an easy way later on.

 Examples
 To get a first impression of how the Stream works, we take
a look at a couple of use cases. It doesn’t matter whether
you do not understand everything right now—later on I will
discuss the details (see Listing 7-1).

 Figure 7-1. Classical process chain

 Figure 7-2. Stream prosessing

Java Lambdas and Parallel Streams 31

 Listing 7-1. List All Female Persons with Age Below 20

 1 List<Person> youngFemales = persons.stream()
 2 .filter(p -> p.getAge() < 20)
 3 .filter(p -> p.isFemale())
 4 .collect(Collectors.toList());

 The code person.stream() emits all data as a stream using
an internal iterator. Lines 2 and 3 (Listing 7-1) act as two
chained filters; and in the last line, the resulting data is col-
lected into a list . I will discuss collect() and Collectors
later on.

 Listing 7-2. Average Age of All Females Younger Than 20

 1 double averageAge = persons.stream()
 2 .filter(p -> p.getAge() < 20 &&

p.isFemale())
 3 .mapToInt(Person:p -> p.getAge())
 4 .average()
 5 .getAsDouble();

 In Listing 7-2 , we first filter for the same persons as in Listing
 7-1 . For a little variation , the condition is realized as a com-
bined one. Because this has no noticeable affect on perfor-
mance, the first variant might be preferable, especially because
it is possible to combine the single processing steps dynami-
cally at runtime.

 In line 3 of Listing 7-2 , we have a mapping , which takes an
object of the stream (Person) and yields a different one: the
stream will continue with the person’s age. Next, we calculate
the average of it. At the end of the process chain, we’ll get the
result from type Double and assign it to the variable on the
left side (averageAge on line 1).

 Listing 7-3. Total Count of Selling

 1 long totalSelling = persons
 2 .stream()
 3 .filter(Person::isVendor)
 4 .mapToLong(p -> p.getSelling().values()
 5 .stream()

Chapter 7 | Make the Acquaintance of Streams 32

 6 .mapToLong(ArticleInfo::getQuantity)
 7 .sum())
 8 .sum();

 Just to remind you, all data is available as a list of persons.
Some of them are labeled as vendors . For each vendor, all
selling is stored in a list.

 In Listing 7-3 , the total count of selling is calculated. With a
 traditional approach , you would implement two loops: one
loop to iterate the persons and the inner one to iterate
through the selling.

 By streams, it is realized with two loops also, but these loops
are hidden to the developer. The code reads like a serial pro-
cess: take all persons, determine the vendors, and for each
calculate the amount (lines 4–7) and then the final sum. This is
clear and concise code—and maybe unfamiliar. But once you
know the lambda syntax and internal iterators, it becomes
easy to read. Could you have made it shorter without lamb-
das and streams?

 If you don’t like the duplicate call of the sum function, we can
realize the calculation in a different way. It is possible to flat-
ten the “stream of streams.” For this, Java offers flatMap , or
in this concrete solution , a flatMapToLong (Listing 7-4).

 Listing 7-4. Total Count of Selling with Flattened Stream

 1 long totalSelling = persons
 2 .stream()
 3 .filter(Person::isVendor)
 4 .flatMapToLong(p -> p.getSelling().values().

stream()
 5 .mapToLong(ArticleInfo::getQuantity))
 6 .sum();

 As the examples show, the stream interfaces comes along
with a fluent API. You may combine all methods via dot nota-
tion. Thus, the processing looks more declarative: you describe
what will happen to your data. For processing, we have to dis-
tinguish intermediate from terminal operations.

Java Lambdas and Parallel Streams 33

 An intermediate operation is one that is processed within the
stream. Examples for these are filter , map , or sorted . They
accept a stream and emit one.

 A terminal operation closes the stream. Examples for this kind
of operation are collect , reduce , and sum . Understandably,
there can be only one terminal operation.

 The process does not start until the terminal operation is
called. Thus, a stream realizes the concept of lazy evaluation.

 We can use this behavior to assign the intermediate steps to
a variable and build the chain dynamically. The following code
illustrates this concept; someCondition() and someOther-
Condition() are placeholders for any condition.

 Imagine a user interface where the user selects some combo
boxes, check boxes, and other elements that are used to build
up the processing . In real applications, you’ll meet such simple,
up to complex, builders (Listing 7-5).

 Listing 7-5. Dynamic Build of Process Chain

 1 Stream<Person> stream = persons.stream();
 2 if (someCondition()){
 3 stream = stream.filter(Person::isFemale);
 4 }
 5 if (someOtherCondition()){
 6 stream = stream.filter(p -> p.getAge() < 20);
 7 }
 8 double average = stream
 9 .mapToInt(p -> p.getAge())
 10 .average()
 11 .getAsDouble();

 Parallel Processing

 Parallelize Using the last example (or any other), replace stream()

by parallelStream() . Measure the time that is needed both for the

sequential well as for the parallel variant on a multicore machine.

Chapter 7 | Make the Acquaintance of Streams 34

 For taking the time, you can use the method invokeMethod ,
which was introduced in Chapter 4 (see Listing 7-6).

 Listing 7-6. Measure Time

 1 Supplier<Long> totalSelling = () ->
 2 persons.stream()
 3 .filter(Person::isVendor)
 4 .flatMapToLong(p -> p.getSelling().values().

stream()
 5 .mapToLong(ArticleInfo::getQuantity))
 6 .sum();
 7 System.out.println("total: " +

invokeMethod(totalSelling));

 As stated at the beginning of this book in the section The
Solution (Chapter 1), it is really possible to realize paral-
lel processing by the usage of parallelStream() in place of
 stream() . Although this looks quite simple, you have to con-
sider some ancillary conditions . I will further investigate this.

 Summary
 With the default method stream() , Java 8 offers an enhance-
ment of the collection framework as well as other interfaces
without breaking compatibility. It offers you an apparently
sequential programming of solutions that need a loop under
the hood. Above all, it is possible to parallelize by replacing
this method by parallelStream() .

 In this chapter, the streams had been preponderantly intro-
duced by concise examples. After this first overview, it’s time
to dive into some details. I will focus especially on the inter-
faces Stream and Spliterator .

http://dx.doi.org/10.1007/978-1-4842-2487-8_4
http://dx.doi.org/10.1007/978-1-4842-2487-8_1

© Michael Müller 2016
M. Müller, Java Lambdas and Parallel Streams,
DOI 10.1007/978-1-4842-2487-8_8

 C H A P T E R

8

 stream(),
Stream and
Spliterator
 By now, you have a first impression how you can use stream()
and parallelStream() . We want to look behind the scenes
and investigate these methods further.

 Investigate the implementation in Java. Find out how you can display the

Java source code within your IDE. In the case of NetBeans , 1 simply open one

of the preceding examples and place the cursor onto stream() . Using the

key combination {Ctrl+B} invokes the goto source code.

 1 http://netbeans.org

http://netbeans.org/
http://netbeans.org/

Chapter 8 | stream(), Stream and Spliterator36

 stream() and parallelStream() are default methods of
the interface Collection (see Listing 8-1).

 Listing 8-1. Excerpt of the Interface Collection

 1 default Stream<E> stream() {
 2 return StreamSupport.stream(spliterator(), false);
 3 }
 4
 5 default Stream<E> parallelStream() {
 6 return StreamSupport.stream(spliterator(), true);
 7 }

 As you can see, both methods are very similar. Both call
 StreamSupport.stream() . The only difference is the sec-
ond parameter. This boolean parameter parallel might be
 false or true . Thus, it becomes clear why you can exchange
both methods in many situations.

 Both methods return a stream, which is defined by the inter-
face Stream. And they use a so-called Spliterator, which is
called via spliterator() . I discuss both within the next
paragraphs.

 Stream
 The interface Stream defines a lot of methods that return a
stream. They do not take the whole input to produce a full
stream but element by element. As an example, let’s take a
look at the signature of filter :

 Stream<T> filter(Predicate<? super T> predicate);

Java Lambdas and Parallel Streams 37

 This produces a stream according to the filter condition. It is
great to recognize that filter takes an element from type T 2
(or from its super class), which is an element of the stream.
As shown before, Predicate is a functional interface. Hence,
a lambda expression can be used to implement the predicate.
Because the type is well known from the stream, the lambda
expression has no need to declare the type. See previously in
paragraph Rules for lambda expressions.

 As shown with filter , Stream defines the way the interme-
diate operates. The type of emitted element might differ from
the input (e.g., map). The output of a mapping operation is a
stream of objects whose type can differ from the input. For
example, we may map a person to his or her age or name.

 For some data types, there are special streams defined. For
example, there are Long or Double streams, which support
additional mathematical operations. And within Stream , some
intermediate operations are defined to convert to such a
special stream. In the previous examples, we used .mapTo-
Long(...)) , which performs such a mapping for a predefined
stream type.

 LongStream mapToLong(ToLongFunction<? super T> mapper);

 LongStream isn’t derived from Stream , but both are derived
from BaseStream .

 Besides intermediate operations, the Stream interfaces offer
terminal operations as well as the generation of a stream.

 Terminal operations are not only simple or complex “results”
such as min , max , collect (which collects data, e.g., into a list)
but the explicit call of a method for each element.

 2 If you do not know the common type notation of generics, take a look
into the Internet, for example, at Wikipedia: de.wikipedia.org/wiki/
Generische_Programmierung_in_Java or Oracle’s Java Tutorial : docs.
oracle.com/javase/tutorial/java/generics/methods.html .

https://de.wikipedia.org/wiki/Generische_Programmierung_in_Java
https://de.wikipedia.org/wiki/Generische_Programmierung_in_Java
https://docs.oracle.com/javase/tutorial/java/generics/methods.html
https://docs.oracle.com/javase/tutorial/java/generics/methods.html
https://docs.oracle.com/javase/tutorial/java/generics/methods.html

Chapter 8 | stream(), Stream and Spliterator38

 void forEach(Consumer<? super T> action);

 By forEach , the internal iterator is made available to a method
that implements the interface Consumer . This is another func-
tional interface too.

 Let’s take a look into terminal operations. The operation min ,
for example, usually yields the minimal value of a numeric
stream. What happens if the stream does not contain any
value? The result must be empty. And to avoid a null result, all
those kind of operations produce an optional of the expected
type. This result is not of type T , but of Optional<T> .

 To describe all methods that are provided by Stream would
go far beyond the scope of this concise book. The intention is
to provide a good understanding of the principles. It is recom-
mended to read the API documentation , 3 which is available
using the URL in footnote 3 (valid at the time of this writing).

 Spliterator
 The Spliterator is responsible in splitting the object stream
into smaller parts. Its name is short for “splitting iterator.”
This is the internal iterator mentioned several times. Besides
iteration, the splitting part enables you to provide parts of the
stream to different threads ,

 You can use a spliterator for sequential as well as parallel
processing. Java 8 comes with a default implementation (see
Listing 8-2).

 Listing 8-2. Default Method Spliterator

 1 @Override
 2 default Spliterator<E> spliterator() {
 3 return Spliterators.spliterator(this, 0);
 4 }

 3 https://docs.oracle.com/javase/8/docs/api/java/util/
stream/Stream.html

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html

Java Lambdas and Parallel Streams 39

 For special use cases, it is possible to create your own split-
erator. Although in most cases, the existing implementation
fits, it is very useful to understand the basic concepts.

 The interface Spliterator defines two important methods.

 boolean tryAdvance(Consumer<? super T> action);

 The preceding code tries to execute an operation for the
next element—if there is any. If it advanced successfully, this
method returns true whereas false indicates the absence
of an element (which is the end of the stream). This is a sig-
nificant difference to the common iterator concept: Using an
iterator, you first have to check whether at least one more
element exists. If this hasNext() returns true , you can get it
with next() .

 The element tryAdvance has a companion that iterates thru
the remaining elements. The second significant method is the
following.

 Spliterator<T> trySplit();

 This tries to split the data in a meaningful way. If the size of
the underlying data structure is well known, for example, if
the data is held in an array, then trySplit splits into two
halves of (nearly) the same size: trySplit returns an addi-
tional spliterator, which might divide the data again if needed.
By this, the whole dataset would be split into a multitude
of smaller datasets, which potentially could be processed in
parallel.

 If the amount of data is unknown, for example, because you
read data from a file or receive it online by some data chan-
nel, then the split is performed by other criteria. For example,
a file could be split after each 1,024 lines.

 Although tryAdvance and trySplit are the most important
methods in understanding the behavior of the spliterators,
this interface offers many more methods and fields. If needed,
you may read about that within the API documentation . 4

 4 https://docs.oracle.com/javase/8/docs/api/java/util/
Spliterator.html

https://docs.oracle.com/javase/8/docs/api/java/util/Spliterator.html
https://docs.oracle.com/javase/8/docs/api/java/util/Spliterator.html
https://docs.oracle.com/javase/8/docs/api/java/util/Spliterator.html

Chapter 8 | stream(), Stream and Spliterator40

 Summary
 The interface Stream defines a lot of methods to process
data within a stream. Intermediate operations perform an
action and yield another stream. This allows you to chain pro-
cessing steps by a dot notation (fluent API).

 The Spliterator is the internal Iterator, which is able to split
the data into smaller chunks. This enables the parallel pro-
cessing of these chunks. Sometimes you have to consider
some constraints to enable a successful parallelization. I will
discuss this in Chapter 9 .

http://dx.doi.org/10.1007/978-1-4842-2487-8_9

 C H A P T E R

9

 Parallel
Stream
 If by the usage of parallelStream the data can be processed
correctly in parallel, you need to consider some ancillary con-
ditions. In case of inobservance, either Java will prohibit paral-
lel execution or you might get unexpected results.

• Use stateless lambda expressions.

 State means you keep a value some-
where, for instance, in a variable. Now, if
a future execution of the lambda expres-
sion depends on this value, the behav-
ior of parallel execution may become
non-deterministic. The result poten-
tially becomes nonpredictable. If you’re
lucky, the compiler prevents parallelism.
Otherwise you will wonder about the
results.

© Michael Müller 2016
M. Müller, Java Lambdas and Parallel Streams,
DOI 10.1007/978-1-4842-2487-8_9

Chapter 9 | Parallel Stream 42

• Do not change the data the stream is
based on.

 For example, if you add or remove ele-
ments of a collection while iterating
through it, it may work when you pro-
cess sequential. Such code is not healthy
and often leads to an exception. With a
parallel stream, you can’t use such poor
code: you’ll always get an exception.

• Avoid side effects.

 This is the main principle of functional
programming . A function always returns
the same result when the same parame-
ters are provided. Side effects like chang-
ing a variable with broader scope should
be avoided. If you are working with
streams and like to use a variable with
broader scope, the compiler will accept
this only if these variables are used in the
same manner as final variables. A mod-
ern IDE such as NetBeans would give
you the advice that variables referenced
from a lambda expression must be final
or used effectively final.

• Processing must be independent from
order.

 Because in the case of parallel process-
ing, the order is not determined, it is
essential that the result does not depend
on the processing order. Or you need
to enforce an ordered processing. This
creates some overhead, which might
consume the time you’ve earned with
parallelism.

Java Lambdas and Parallel Streams 43

 The problem of a calculation that
depends on a special order can be inves-
tigated by the following example. The
apparently same calculation is imple-
mented in three different ways. To repro-
duce the stable or changing results, every
variant is invoked multiple times.

 Listing 9-1. Sequential, parallel and parallel ordered processing

 1 long[] result = new long[1];
 2
 3 for (int i = 0; i < 10; i++) {
 4 result [0] = 0;
 5 LongStream.range(0, 1000)
 6 .forEach(n -> result[0] = (result[0] + n) * n);
 7 System.out.println("serial: " + result[0]);
 8 }
 9
 10 for (int i = 0; i < 10; i++) {
 11 result [0] = 0;
 12 LongStream.range(0, 1000).parallel()
 13 .forEach(n -> result[0] = (result[0] + n) * n);
 14 System.out.println("parallel: " + result[0]);
 15 }
 16
 17 for (int i = 0; i < 10; i++) {
 18 result [0] = 0;
 19 LongStream.range(0, 1000).parallel()
 20 .forEachOrdered(n -> result[0] = (result[0] +

n) * n);
 21 System.out.println("parallel ordered: " + result[0]);
 22 }

 The stream is generated by range as LongStream. This deliv-
ers numbers in the desired range. There is no parallel-
Stream as in the Collection interface, but you can switch to
parallel processing by parallel() .

 The sequential variant as well as the ordered parallel one
always report the result of 3003755479748501215 , whereas
the unordered parallel version creates different results.

Chapter 9 | Parallel Stream 44

 The calculation of result[0] = (result[0] + n) * n)
depends on the order. It’s very clear that a zero in place of n
will produce as zero as the next intermediate result (and a
zero as final if processed last). Because the zero will be used
at any time, you can’t predict the result. If you further investi-
gate the math, it becomes clear that it depends on the order
for any other value too.

 For a simple demonstration , these three demos use a side
effect. All intermediate results will be stored in an external
variable. Because this has to be effectively final, we used a
dirty trick: instead of a long , we used an array.

 In a productive application, never use such dirty tricks! Here
is a clean variant.

 1 long reduce = LongStream.range(0, 1000).reduce(0, (a, c)
-> (a + c) * c);

 For those who are unfamiliar with lambdas, this looks very
strange, while the dirty solution seems to be more under-
standable. That’s why I used it for this demonstration. Never
fear the clean solution. After using lambdas for a short while,
this kind of programming is quite easy.

 Here is a short explanation of the terminal reduce operation.
The first parameter is used to initialize an accumulator. The
second operation is a binary Function that takes the accumu-
lator (a) and the current object (c) of the stream. The result
of this operation will replace the former value of the accumu-
lator and becomes available for the next object of the stream.

Java Lambdas and Parallel Streams 45

• By using Collect respect Concurrent

 1 Map <Integer, List<Person>> ageMap = persons
 2 .stream()
 3 .collect(Collectors. groupingBy (Person::getAge));
 4
 5 ConcurrentMap <Integer, List<Person>> ageMapPar = persons
 6 .parallelStream()
 7 .collect(Collectors. groupingByConcurrent (Person::get

Age));

• The collecting structure (here: Concurrent
Map) may have the characteristics
 Collector.Character and Collector.
Characteristics.UNORDERED .

 Summary
 Although parallel programming with streams is available
without explicit thread handling and often without synchro-
nization, you still have to consider some constraints to get
correct results. Next, we’ll examine the collect method with
respect to Java concurrency .

© Michael Müller 2016
M. Müller, Java Lambdas and Parallel Streams,
DOI 10.1007/978-1-4842-2487-8_10

 C H A P T E R

10

 Collector
and
Concurrency
 So far, we have used the collect() method without further
explanation. This overloaded method either takes a Collector,
as we did before (e.g., .collect(Collectors.toList() or .
collect(Collectors.groupingByConcurrent(Person::
getAge))); or you may pass three arguments for supplier,
accumulator, and combiner. Don’t get puzzled yet; I’m going
to explain these soon.

 As its name suggests, the main purpose of collect is to collect
data. This is done by modifying a mutable data structure. In
contrast to this, the reduce() method applies to immutable
data structures.

Chapter 10 | Collector and Concurrency48

 Now it’s time to write our own collector. For the sake of sim-
plicity, we create a collector to sum up a stream of numbers.
These numbers are generated by a simple number generator
(Listing 10-1).

 Listing 10-1. Number Generator

 1 public static List<Long> createNumbers() {
 2 List<Long> numbers = new ArrayList<>();
 3 Random random = new Random();
 4 int max = 1000000 + random.nextInt(1000000);
 5 for (int i = 0; i < max; i++) {
 6 numbers.add((long)random.nextInt(100));
 7 }
 8 return numbers;
 9 }

 But first of all, we take a quick look at Java concurrency .
Although parallelStreams() avoids all the manual thread
handling, a basic knowledge is useful to understand how to
write a collector that successfully performs in parallel.

 Java Concurrency
 There are two terms we have to talk about: “concurrency”
and “parallelism.” We have to define both terms before we
move on because we talk about Java concurrency, but parallel
streams .

 With concurrency, several parts of a program will be executed
in different threads, running concurrent instead of serial. This
does not necessarily imply that these threads run at the same
time. Remember the old days of one single core CPU (central
processing unit) per computer: to keep the user interface
(ui) fluent, it had been a good practice to perform the ui han-
dling in one thread and the time-consuming computation in a
different one. Both threads alternating gained small slices of
CPU time. On a modern multicore CPU, these threads may
run in parallel.

Java Lambdas and Parallel Streams 49

 On the other hand, within parallelism, a couple of parallel
running threads would perform the same computation of dif-
ferent data simultaneously. Parallel streams implement paral-
lelism. Take a look at the drawing (Figure 10-1): the parallel
streams contain different data of the same type. Each inter-
mediate operation is defined once and will be executed in
parallel as suggested by the vertical alignment.

 Figure 10-1. Parallel stream with intermediate operations

 People may consider parallelism as a special case of con-
currency or as something different. In this book, we won’t
deepen this discussion. Anyway, to get parallelism using Java,
we technically need concurrency.

 Processes and Threads Within this book we only deal with threads,

which are separate units of a program, running within the same process. Whereas

a process offers a completely separated environment with its own memory,

threads run within a shared environment and especially share their memory. This

fact becomes important if classes are used by multiple threads.

 Get a more detailed explanation by the Java Tutorial . 1

 Java had been designed for multithreading from the very
beginning. The class Thread has been part of Java since JDK
(Java Development Kit) 1.0.

 1 https://docs.oracle.com/javase/tutorial/essential/
concurrency/procthread.html

https://docs.oracle.com/javase/tutorial/essential/concurrency/procthread.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/procthread.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/procthread.html

Chapter 10 | Collector and Concurrency50

 Let’s take a look at how to define and run a second thread
(Listing 10-2).

 Listing 10-2. Simple Usage of Thread

 1 public static void main(String[] args) {
 2 Thread thread = new MyThread();
 3 thread.start();
 4 System.out.println("Message from Main");
 5 }
 6
 7 private static class MyThread extends Thread {
 8 @Override
 9 public void run() {
 10 System.out.println("Message from MyThread");
 11 }
 12 }

 We simply need to define a class that is derived from Thread
and overwrite the run() method . In the main program, we
create a new instance of out thread and call start() . Behind
the scenes, start requests a new thread from the operating
system and performs the run method within this new thread.

 But there is one problem. Usually you want to build up class
structures by deriving them from a technical class and not
from Thread. Fortunately, Java offers an alternative way to cre-
ate a thread. We need to implement the interface Runnable.
And that is exactly what the class Thread does internally
(Listing 10-3).

 Listing 10-3. Thread Using Runnable

 1 public static void main(String[] args) {
 2 Thread thread = new Thread(new MyRunnable());
 3 thread.start();
 4 System.out.println("Message from Main");
 5 }
 6
 7 private static class MyRunnable implements Runnable {
 8 @Override

Java Lambdas and Parallel Streams 51

 9 public void run() {
 10 System.out.println("Message from MyRunnable");
 11 }
 12 }

 Now, a new Thread is created by passing an object of our
class. Everything else stays unchanged.

 Armed with this knowledge, we want to use threads to per-
form the summing task. We create a class SummingUnit , which
performs the calculation (Listing 10-4).

 Listing 10-4. SummingUnit

 1 public class SummingUnit {
 2 public SummingUnit(){
 3 System.out.println("ctor SummingUnit");
 4 }
 5
 6 private long _sum = 0;
 7
 8 public long getSum() {
 9 return _sum;
 10 }
 11
 12 public void sum(long value) {
 13 _sum += value;
 14 }
 15
 16 public void combine(SummingUnit other) {
 17 _sum += other._sum;
 18 }
 19
 20 }

 This class internally uses a field to sum the values, which are
passed to sum() . A simple getter is used to read the sum. The
method combine() is initially not used; we need it later on.
Remember the combiner argument of collect ?

Chapter 10 | Collector and Concurrency52

 For demonstration, a new thread will process half of our num-
ber, whereas the other half is processed by the “main” part. To
achieve this goal, I created SumTask , which takes the appropri-
ate parameters for the first and second half. One instance of
this class is called by a new thread and the other directly. To
synchronize both threads, the main thread waits by thread.
join until the spawned thread is finished (Listing 10-5).

 Listing 10-5. Parallel Summing —with Unexpected Results

 1 public static void main(String[] args) throws
InterruptedException {

 2 List<Long> numbers = Utils.createNumbers();
 3 int size = numbers.size();
 4 SummingUnit summingUnit = new SummingUnit();
 5
 6 Thread thread = new Thread(new SumTask(numbers, 0,
 7 size / 2, summingUnit));
 8 thread.start();
 9
 10 SumTask sumTask = new SumTask(numbers, size / 2,
 11 size, summingUnit);
 12 sumTask.run();
 13 thread.join(); // wait for thread to complete
 14
 15 System.out.printlnJava concurrencyparallel

summing("Sum: " + summingUnit.getSum());
 16 }
 17
 18
 19 private static class SumTask implements Runnable {
 20
 21 private final List<Integer> _numbers;
 22 private final int _start;
 23 private final int _end;
 24 private final SummingUnit _summingUnit;
 25
 26 public SumTask(List<Integer> numbers,
 27 int start,
 28 int end,
 29 SummingUnit summingUnit) {

Java Lambdas and Parallel Streams 53

 30 _numbers = numbers;
 31 _start = start;
 32 _end = end;
 33 _summingUnit = summingUnit;
 34 }
 35
 36 @Override
 37 public void run() {
 38 for (int i = _start; i < _end; i++) {
 39 _summingUnit.sum(_numbers.get(i));
 40 }
 41 }
 42 }

 However, if you invoke this program a couple of times, you’ll
get different results, even though you wait for the second
 thread to finish. What happened?

 Watch out for the sum() method.

 sum += val;

 At first glance, this looks like a single operation. But in fact,
this is only syntactic sugar , and we can rewrite this statement.

 sum = sum + val;

 With our common hardware structure, it is not possible to
perform an addition within a variable. In fact, the computer
must load the value of sum into a register, add val , and then
push the result into the variable back. Thus, the line of code
might be rewritten using pseudo code.

 1 register.load(sum)
 2 register.add(val)
 3 register.write(sum)

 As you can see, this is a non-atomic sequence of operations.
Between two of them, the CPU might perform something
else.

 Let’s assume sum has a value of 0. And we have two threads,
adding a value each. Thread 1 might add 5, while thread 2 adds
3. The following sequence produces the expected result:

Chapter 10 | Collector and Concurrency54

 Operation Result

 Thread 1 register1.load(sum) register1 = 0

 Thread 1 register1.add(5) register1 = 5

 Thread 1 register1.write(sum) sum = 5

 Thread 2 register2.load(sum) register2 = 5

 Thread 2 register2.add(3) register2 = 8

 Thread 2 register2.write(sum) sum = 8

 But as both threads run independently, we cannot determine
the execution order . At a different run, the statements might
be executed in following order:

 Operation Result

 Thread 1 register1.load(sum) register1 = 0

 Thread 1 register1.add(5) register1 = 5

 Thread 2 register2.load(sum) register2 = 0 (sum is still 0 at this time!)

 Thread 1 register1.write(sum) sum = 5

 Thread 2 register2.add(3) register2 = 3

 Thread 2 register2.write(sum) sum = 3

 What we’ve seen is a typical race condition. The result
depends on which thread leads the race to the common vari-
able. The method sum() became a critical section within the
code. Such a section must be protected, for example, by a
lock. Or you may use Java’s qualifier synchronized .

 public synchronized void sum(long val)

 Now this method will be automatically protected. Only one
thread at one time is allowed to run this method, whereas
other threads are forced to wait. All the calls to sum()
become serial, which destroys the parallelism. This can’t be an
appropriate solution.

Java Lambdas and Parallel Streams 55

 VOLATILE

 Maybe you have heard about the volatile qualifier for variables
in a multithreaded environment and guess this would be a good
choice. Sadly, this does not help. Volatile only guarantees that any
read after a write will retrieve the last written value. Take a look
at the first thread sequence, and there especially at Thread 2
register2.load(sum) . The sum had been written in the step
just before that. The former value had been 0. What happens if the
read access would query the cache? Although just the 5 has been
pushed to the var, Java might read the former 0. Volatile avoids
this problem due to its guarantee: nothing more. Thus, volatile
won’t help (without we might have additional faults).

 For more information, read about the Java Memory Model . 2

 Probably the best solution for our problem is to avoid the
critical section. To avoid the shared variable, we simply create
a separate SummingUnit for each thread. Each thread would
solve a part of our problem—create a subtotal. At the end,
we have to combine all of them.

 The following is an example of parallel summing—with a sep-
arate SummingUnit for each thread:

 1 public static void main(String[] args) throws
InterruptedException {

 2 List<Long> numbers = Utils.createNumbers();
 3 int size = numbers.size();
 4 SummingUnit summingUnit = new SummingUnit();
 5 SummingUnit summingUnit2 = new SummingUnit();
 6
 7 Thread thread = new Thread(new SumTask(numbers, 0,
 8 size / 2, summingUnit));
 9 thread.start();
 10

 2 https://www.cs.umd.edu/~pugh/java/memoryModel/jsr-
133-faq.html

https://www.cs.umd.edu/~pugh/java/memoryModel/jsr-133-faq.html
https://www.cs.umd.edu/~pugh/java/memoryModel/jsr-133-faq.html
https://www.cs.umd.edu/~pugh/java/memoryModel/jsr-133-faq.html

Chapter 10 | Collector and Concurrency56

 11 SumTask sumTask = new SumTask(numbers, size / 2,
 12 size, summingUnit2);
 13 sumTask.run();
 14 thread.join(); // wait for thread to complete
 15
 16 summingUnit.combine(summingUnit2);
 17 System.out.println("Sum: " + summingUnit.getSum());
 18 }

 In line 5 of the preceding code, a second SummingUnit is cre-
ated, which is used in line 12. Then (line 16), the subtotals are
combined. Because every thread uses its own object, we can
avoid any synchronization .

 Collect
 After this short journey into Java concurrency, we’ll come
back to parallel streams and the collect() method. The
mentioned overload taking three parameters is defined as

 1 <R> R collect(Supplier<R> supplier,
 2 BiConsumer<R, ? super T> accumulator,
 3 BiConsumer<R, R> combiner);

 The first parameter takes a function, which supplies a new
result container of type R. We use a SummingUnit for R.

 The accumulator parameter is a function that takes a result
container R—which is a SummingUnit —and an object of the
stream from type T. In our example, this is one of the numbers.

 And the last parameter takes a function where Java passes two
result containers in. This function performs the combination.

 Putting all this together, we use SummingUnit within collect
(Listing 10-6).

Java Lambdas and Parallel Streams 57

 Listing 10-6. Using SummingUnit Within Collect

 1 System.out.println("total: " +
 2 numbers.parallelStream().collect(
 3 () -> new SummingUnit(), // supplier
 4 (summingUnit, value) ->
 5 summingUnit.sum(value), // accumulator
 6 (summingUnit, other) ->
 7 summingUnit.combine(other) // combiner
 8).getSum()
 9);

 Now, if you run the program, you may recognize that the
app prints out a couple of instances of “ ctor SummingUnit .”
Remember, we print this within SummingUnit’s constructor.
This indicates that Java invokes a couple of threads to perform
the work. In fact, Java uses the fork/join framework to sched-
ule the threads. The principle of this framework is whether
the task is small enough to run serial. If bigger, then the prob-
lem would be divided (best in two similar big parts), and both
parts would be processed in different threads. Therefore, this
algorithm is applied recursively.

 If you’re interested in more details about the fork/join frame-
work, please refer to the Java Tutorials . 3

 As explained before, you can freely choose the names for
 lambda parameters . The scope is quite narrow. Thus, usually
short names are chosen.

 1 .collect(() -> new SummingUnit(),
 2 (s, v) -> s.sum(v), (s, o) -> s.combine(o))

 Alternatively we can use method references.

 1 .collect(SummingUnit::new, SummingUnit::sum,
SummingUnit::combine)

 3 https://docs.oracle.com/javase/tutorial/essential/
concurrency/forkjoin.html

https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html

Chapter 10 | Collector and Concurrency58

 As the preceding examples show, it is quite easy to collect
data. Usually it is not worthwhile to run such a simple task in
parallel, but it should be no problem to transfer the knowl-
edge to a more sophisticated task of your technical domain .
Longer running tasks especially take profit from parallelism.

 Instead of passing a couple of functions to the collect()
method, we can write a Collector, which is passed to col-
lect() . The following is the signature of the overloaded
method:

 1 <R, A> R collect(Collector<? super T, A, R> collector);

 Collector is an interface we have to implement. We create a
class SummingCollector , which returns the sum as a final result.

 1 System.out.println("total: " +
 2 numbers.parallelStream().collect(new

SummingCollector()));

 The Collector interface forces us to override a couple of
methods that return functions. With lambdas, it’s quite easy
to define functions we can pass around as arguments. Besides
(surprise!) supplier, accumulator, and combiner, we need to
override the finisher. The finisher takes the last remaining
result container for further processing. Our collector would
return the final sum.

 To reuse most of the code we have developed so far, the
SummingCollector would internally delegate most tasks to a
 SummingUnit .

 A last method we need to override returns a set of charac-
teristics (Listing 10-7).

 Listing 10-7. SummingCollector

 1 public class SummingCollector
 2 implements Collector<Long, SummingUnit,

Long>{
 3 @Override

Java Lambdas and Parallel Streams 59

 4 public Supplier<SummingUnit> supplier() {
 5 return () -> new SummingUnit();
 6 }
 7
 8 @Override
 9 public BiConsumer<SummingUnit, Long> accumulator() {
 10 return (s, v) -> s.sum(v);
 11 }
 12
 13 @Override
 14 public BinaryOperator<SummingUnit> combiner() {
 15 return (left, right) -> {left.combine(right); return

left;};
 16 }
 17
 18 @Override
 19 public Function<SummingUnit, Long> finisher() {
 20 return s -> s.getSum();
 21 }
 22
 23 @Override
 24 public Set<Characteristics> characteristics() {
 25 return EnumSet.of(Characteristics.UNORDERED);
 26 // do not add ", Characteristics.CONCURRENT"!
 27 }

 We parameterize the interface Collector with three types <T,
A, R> as shown in the signature. Here T is Long (a number),
A is replaced by a SummingUnit, and the result type R in the
end is a Long too: the final sum.

 Because we did not return the characteristic CONCURRENT ,
the supplier function is called for every thread. You may watch
this by observing the output during object construction.

 If we provide the characteristic CONCURRENT, Java assumes
the supplier to be enabled for multithreading. It would create
only one SummingUnit, which is shared by all the threads. And
guess, the result would differ from run to run because we
have a critical section with a race condition.

Chapter 10 | Collector and Concurrency60

 Summary
 In this chapter we discussed the principles of a collector. The
example showed, how a collector might be implemented. The
parallel version of stream is very simple to use and hides
all the painful stuff of threading, locking, synchronizing. But, a
slightly knowledge of Java’s concurrency features and typical
problems like racing conditions is helpful to write a correct
collector.

 Final thoughts
 Although this example had been very useful to discuss some
aspects of parallelizm, it is not a real world example for a
couple of reasons:

 a. There is no need to implement a sum-
ming function because Java offers one
out of the box

 numbers.parallelStream().mapToLong(i -> i).sum();

 Internally Java implements the sum using
the „dirty“ trick with an array to hold a
simple value.

 b. Instead of collecting data, we may simply
reduce the data.

 numbers.parallelStream().reduce(0L, (a, c) ->
a + c);

 The reduce function creates a new object with every addi-
tion. It starts with zero. Then it takes two arguments, the
accumulator and the current object. It returns the sum of
both which is stored as a new object into the accumulator.
Because there is no shared object, we do not have shared
state, no race condition etc.

 But sometimes we really need a collector, for example if we
want to collect objects into a collection or map. This is shown
in the next chapter.

© Michael Müller 2016
M. Müller, Java Lambdas and Parallel Streams,
DOI 10.1007/978-1-4842-2487-8_11

 Grouping
Collector
 Let‘s assume we want to calculate the average spending of per-
sons, grouped by age. We want to create a collector that returns
a Map<Integer, Double> in which the Integer represents the
age group and the Double represents average spendings.

 To verify this collector, we use a simple output :

 Listing 11-1. Preparing the output

 1 [. . .]
 2
 3 [ommited: create persons as shown before]
 4
 5 printResults(persons.getPersons().parallelStream()
 6 .collect(new GroupAverageCollector()));
 7
 8 [. . .]
 9

 C H A P T E R

11

Chapter 11 | GroupingCollector 62

 10 private static void printResults(Map<Integer, Double>
results) {

 11 System.out.println("");
 12 for (int group : results.keySet()) {
 13 System.out.println("Group: " + group + "; avg: " +

results.get(group));
 14 }
 15 }

 Remember the data structure introduced at the beginning
of this book. All of the persons contain a list of buyings. The
prices are internally stored at cents to avoid floating point
operations. To keep the collector lean, we use a helping class
that sums up the cents and the person count and calculates
the average = sum(cents) / 100 / personCount.

 Listing 11-2. Helper class to calculate the average

 1 public class AverageBuilder {
 2
 3 private int _count;
 4 private long _cents;
 5
 6 public int getCount() {
 7 return _count;
 8 }
 9
 10 public long getCents() {
 11 return _cents;
 12 }
 13
 14 public void add(long cents) {
 15 _count++;
 16 _cents += cents;
 17 }
 18
 19 public void add(AverageBuilder other) {
 20 _count += other.getCount();
 21 _cents += other.getCents();
 22 }
 23

Java Lambdas and Parallel Streams 63

 24 public double getAverage() {
 25 return _cents / 100D / _count;
 26 }
 27 }

 This class contains two add methods: one to add the
spendings of one person and the second to combine two
 AverageBuilders.

 In Chapter 10 , we started with a SummingUnit, which was
reused within the collector. The collector we use in this chap-
ter is not based on such an existing class. Instead, it contains
the functions to accumulate, combine, and finish:

 Listing 11-3. GroupAverageCollector implementing accumulator, combiner,
and finisher

 1 public class GroupAverageCollector implements
 2 Collector<Person, Map<Integer, AverageBuilder>,

Map<Integer, Double>> {
 3
 4 @Override
 5 public Supplier<Map<Integer, AverageBuilder>>

supplier() {
 6 return () -> new HashMap<>();
 7 }
 8
 9 @Override
 10 public BiConsumer<Map<Integer, AverageBuilder>,

Person> accumulator() {
 11 return (m, p) -> add(m, p);
 12 }
 13
 14 @Override
 15 public BinaryOperator<Map<Integer, AverageBuilder>>

combiner() {
 16 return (left, right) -> {
 17 combine(left, right);
 18 return left;
 19 };
 20 }
 21

http://dx.doi.org/10.1007/978-1-4842-2487-8_10

Chapter 11 | GroupingCollector 64

 22 @Override
 23 public Function<Map<Integer, AverageBuilder>,

Map<Integer, Double>> finisher() {
 24 return m -> finish(m);
 25 }
 26
 27 @Override
 28 public Set<Characteristics> characteristics() {
 29 return EnumSet.of(Characteristics.UNORDERED);
 30 // no Characteristics.CONCURRENT!
 31 }
 32
 33 private static void add(Map<Integer, AverageBuilder>

map, Person person) {
 34 int group = person.getAge() / 10;
 35 if (!map.containsKey(group)) {
 36 map.put(group, new AverageBuilder());
 37 }
 38 long cents = person.getBuying().values()
 39 .stream().mapToLong(a -> a.getAmount().

getCents()).sum();
 40 map.get(group).add(cents);
 41 }
 42
 43 private static void combine(Map<Integer,

AverageBuilder> left,
 44 Map<Integer, AverageBuilder> right) {
 45 for (int group : right.keySet()) {
 46 if (!left.containsKey(group)) {
 47 left.put(group, right.get(group));
 48 } else {
 49 left.get(group).add(right.get(group));
 50 }
 51 }
 52 }
 53
 54 private static Map<Integer, Double>

finish(Map<Integer, AverageBuilder> map) {
 55 Map<Integer, Double> result = new HashMap<>();
 56 for (int group : map.keySet()) {
 57 result.put(group, map.get(group).getAverage());
 58 }

Java Lambdas and Parallel Streams 65

 59 return result;
 60 }
 61
 62 }

 Line 2. This collector takes object of type Person . It accu-
mulates the values in a Map<Integer, AverageBuilder> and
returns a Map<Integer, Double>.

 Line 6. The supplier produces a new HashMap for every thread
because there is no Characteristics.CONCURRENT.

 Line 11. Remember accumulator, combiner, and finisher do
not return values but pointers to the functions that are imple-
mented within this collector as static functions (methods).

 Line 3. In this example, the age groups are simply calculated
by an integer division.

 Line 39. All buyings are stored within a list. We use a stream
to sum up the cents.

 The combine function merges two maps into one, and the
finish function transforms the intermediate result into the
required output format. All functions shall be understandable
to you as a Java developer .

 Because we did not use Characteristics.CONCURRENT,
the stream framework creates a new map per thread.
Although processed in parallel, the functions are implemented
as in the good old days of simple sequential programming.

 What would happen if we use Characteristics . CONCURRENT?
Before you continue reading, please think about this. Hopefully
you‘ll recognize all the implications.

 (Take some time to think about it)

 As mentioned before, the framework will call the supplier
only once. It creates one map, which is used within all threads.
First of all, a HashMap is not a thread save. This can be solved
easily by replacing it with a ConcurrentHashMap . But if you
run the program, you‘ll get non-deterministic results.

Chapter 11 | GroupingCollector 66

 The add methods is a critical section. It might be interrupted
at any time. And it contains a shared state . Both might result
in false values as described in Chapter 10 . A simple solution is
to make the add synchronized:

 Listing 11-4. Critical section protected by synchronized

 1 private static synchronized void add(Map<Integer,
 2 AverageBuilder> map, Person person) {...}

 Because synchronization slows down the performance, this
usually is not a good choice.

 Summary
 In this chapter, I discussed a collector that really “collects”
data. Depending on the design and the characteristics of the
collector, special multithreaded handling might be avoided.
Thus, parallel programming without explicit synchroniza-
tion, locking, and so forth is prevalent possible. But a basic
knowledge of multithreading pitfalls is necessary to create
sequential-alike programs that fit well in a parallel processing
environment.

 Final Thoughts
 The intention of this compact book is to show you the prin-
ciples of Java lambdas and parallel streams. It does not explain
every detail such as every intermediate or final operator.
With the knowledge of its principles, it should be no problem
to understand these operations by exploring the API docu-
mentation. One good starting point is the documentation of
the package java.util.stream (https://docs.oracle.com/
javase/8/docs/api/index.html?java/util/stream/
package-summary.html).

http://dx.doi.org/10.1007/978-1-4842-2487-8_10
https://docs.oracle.com/javase/8/docs/api/index.html?java/util/stream/package-summary.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/util/stream/package-summary.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/util/stream/package-summary.html

Java Lambdas and Parallel Streams 67

 One last tip to start your journey: A great way to learn how
to use streams is to do it interactively. Java 9 comes with an
 interactive shell that is great for this purpose. As of the time
of this writing, Java 9 is available as an early access version
(https://jdk9.java.net). I irregularly blog about this shell
(http://blog.mueller-bruehl.de). The main article so
far is “Interactive Java with jshell” (http://blog.mueller-
bruehl.de/netbeans/interactive-java-with-jshell).

 Now it is time to let you explore the great world of lambdas
and streams by yourself. I hope this book was quite interest-
ing, understandable, and valuable to you. Let me know!

https://jdk9.java.net/
http://blog.mueller-bruehl.de/
http://blog.mueller-bruehl.de/netbeans/interactive-java-with-jshell
http://blog.mueller-bruehl.de/netbeans/interactive-java-with-jshell

 A P P E N D I X

A

 Program to
Create the
Demo Data
 To perform the analysis mentioned in this book, you need
some demo data. This data was created with a program that is
shown on the next pages. This software was developed with a
quick generation in mind and not for educational purposes. In
this respect, it is kept more simple than pedagogically valuable.

© Michael Müller 2016
M. Müller, Java Lambdas and Parallel Streams,
DOI 10.1007/978-1-4842-2487-8

70

 Basic Data
 The program needs some basic information to create the
data. This data is stored in four CSV comma separated values)
files (Listing A-1 through A-4).

 Listing A-1. Surnames.csv

 1 Andersson
 2 Angelopoulos
 3 Athanasiadis
 4 Bakker
 5 Bauer
 6 Beck
 7 Becker
 8 Bernard
 9 Bianchi
 10 Borg
 11 [...]Demo dataSurnames.csv

 Listing A-2. GivenNamesFemale.csv

 1 Aadhya
 2 Aisha
 3 Aline
 4 Amelia
 5 Ananya
 6 Anette
 7 Anika
 8 Anja
 9 Antje
 10 Ashraqat
 11 [...]

 Listing A-3. GivenNamesMale.csv

 1 Adam
 2 Ahmet
 3 Ali
 4 Andreas
 5 Aron
 6 Ben
 7 Bilal

Appendix A | Program to Create the Demo Data

Java Lambdas and Parallel Streams 71

 8 Bram
 9 Charlie
 10 Christoph
 11 [...]

 Listing A-4. Articles.csv

 1 CarSmall;15000;1;5
 2 CarBig;80000;1;3
 3 Bred;2.5;5;1000
 4 Water;0.3;10;1000
 5 Shirt;20;3;100
 6 Butter;3;5;250
 7 Milk;0.7;5;500
 8 Book;30;5;80
 9 Beer;1.5;10;600
 10 Potatoes;1.90;10;900
 11 [...]Demo dataArticles.csv

 Whereas the first three files only contain names, a little expla-
nation is needed for the articles. Each article consists of four
 columns :

• name

• price

• maximum amount per buying

• buying probability

 This (fictitious) data is used to simulate a kind of “realistic”
purchase behavior. For example, a car costs much more than
milk. On the other hand, people usually buy milk more often
and in bigger quantities.

 Article
 Each line of the file Articles.csv will be passed to the con-
structor of the class Article . The line will be split into the
four values and assigned to the internal attributes . Besides
that, each article is defined by an article number, which is
assigned during data creation. Unlike in productive software,
we assume all data to be correct. Thus, no checks are imple-
mented for this demo.

72 Appendix A | Program to Create the Demo Data

 For brevity, package and import directives are omitted in the following

classes (Listing A-5). Required imports will be automatically added by a

modern IDE. Using NetBeans, for example, you may perform this task by

pressing {Ctrl+Shift+I}.

 Listing A-5. Article.java

 1 public class Article {
 2
 3 private final int _articleNo;
 4 private String _name;
 5 private Money _price;
 6 private int _maxSell;
 7 private int _probability;
 8
 9 public Article(String articleData, int articleNo) {
 10 _articleNo = articleNo;
 11 try {
 12 String[] parts = articleData.split(";");
 13 _name = parts[0];
 14 _price = new Money(parts[1]);
 15 _maxSell = Integer.parseInt(parts[2]);
 16 _probability = Integer.parseInt(parts[3]);
 17 } catch (NumberFormatException e) {
 18 System.out.println(e.getMessage());
 19 throw e;
 20 }
 21 }
 22
 23 public String getName() {
 24 return _name;
 25 }
 26
 27 public void setName(String name) {
 28 _name = name;
 29 }
 30

Java Lambdas and Parallel Streams 73

 31 public Money getPrice() {
 32 return _price;
 33 }
 34
 35 public void setPrice(Money price) {
 36 _price = price;
 37 }
 38
 39 public int getMaxSells() {
 40 return _maxSell;
 41 }
 42
 43 public void setMaxSell(int maxSell) {
 44 _maxSell = maxSellArticle.java;
 45 }
 46
 47 public int getProbability() {
 48 return _probability;
 49 }
 50
 51 public void setProbability(int probability) {
 52 _probability = probability;
 53 }
 54
 55 }

 In line 5 of Listing A-5 , the variable _price is declared with
a type of Money . This class will be shown in the following.
Besides that, the class mainly consists of getters and setters.

 If articles will be bought or sold, this will be stored for the
article with amount and price. The price can’t be derived by
amount * single price because it might be altered due to a
discount.

 This information is stored in ArticleInfo (Listing A-6).

74 Appendix A | Program to Create the Demo Data

 Listing A-6. ArticleInfo.java

 1 public class ArticleInfo {
 2 private final int _articleNo;
 3 private long _quantity;
 4 private Money _amount;
 5
 6 public ArticleInfo (int articleNo){
 7 _articleNo = articleNo;
 8 _amount = new Money();
 9 }
 10 public int getArticleNo() {
 11 return _articleNo;
 12 }
 13
 14 public long getQuantity() {
 15 return _quantity;
 16 }
 17
 18 public void setQuantity(long quantity) {
 19 _quantity = quantity;
 20 }
 21
 22 public Money getAmount() {
 23 return _amount;
 24 }
 25
 26 public void setAmount(Money amount) {
 27 _amount = amountArticleInfo.java;
 28 }
 29
 30 public void addQuantity (long quantity){
 31 _quantity += quantity;
 32 }
 33 public void addPrice(long cents){
 34 _amount.add(cents);
 35 }
 36 }

Java Lambdas and Parallel Streams 75

 Persons
 Within the class Person , not only name and age, but also
buyings—and (in case of vendor) sellings—are stored (Listing
 A-7). For the latter, a ConcurrentHashMap is used (instead of
a simple HashMap). This is one of the little prerequisites for
parallelism (see the description in the text).

 Listing A-7. Person.java

 1 public class Person {
 2
 3 private String _givenName;
 4 private String _surname;
 5 private Gender _gender;
 6 private int _age;
 7 private Map<Integer, ArticleInfo> _selling = new

ConcurrentHashMap<>();
 8 private Map<Integer, ArticleInfo> _buying = new

ConcurrentHashMap<>();
 9 private int _discount;
 10
 11 public String getGivenName() {
 12 return _givenName;
 13 }
 14
 15 public void setGivenName(String givenName) {
 16 _givenName = givenName;
 17 }
 18
 19 public String getSurname() {
 20 return _surname;
 21 }
 22
 23 public void setSurname(String surname) {
 24 _surname = surname;
 25 }

76 Appendix A | Program to Create the Demo Data

 26
 27 public Gender getGender() {
 28 return _gender;
 29 }
 30
 31 public void setGender(Gender gender) {
 32 _gender = genderPerson.java;
 33 }
 34
 35 public boolean isFemale(){
 36 return _gender == Gender.Female;
 37 }
 38
 39 public int getAge() {
 40 return _age;
 41 }
 42
 43 public void setAge(int age) {
 44 _age = age;
 45 }
 46
 47 public boolean isVendor() {
 48 return _selling.size() > 0;
 49 }
 50
 51 public int getDiscount() {
 52 return _discount;
 53 }
 54
 55 public void setDiscount(int discount) {
 56 _discount = discount;
 57 }
 58
 59 public Map<Integer, ArticleInfo> getSelling() {
 60 return _sellingPerson.java;
 61 }
 62
 63 public void setSelling(Map<Integer, ArticleInfo>

selling) {
 64 _selling = selling;
 65 }
 66

Java Lambdas and Parallel Streams 77

 67 public Map<Integer, ArticleInfo> getBuying() {
 68 return _buying;
 69 }
 70
 71 public void setBuying(Map<Integer, ArticleInfo>

buying) {
 72 _buying = buying;
 73 }
 74
 75 }

 All these persons are kept in an instance of the class Persons .
This class also contains some features to create all the per-
sons (Listing A-8).

 Listing A-8. Persons.java

 1 public class Persons {
 2
 3 private final static int PersonCount = 50000;
 4 private final Random _random = new SecureRandom();
 5 private final static Persons _instance = new

Persons();
 6 private final List<Person> _persons = new

ArrayList<>();
 7
 8 public List<Person> getPersons() {
 9 return _persons;
 10 }
 11
 12 private final List<Person> _sellers = new

ArrayList<>();
 13
 14 private Persons() {
 15 for (int i = 0; i < PersonCount; i++) {
 16 Person person = createPerson();
 17 _persons.add(person);
 18 if (person.isVendor()) {
 19 _sellers.add(person)Persons.java;
 20 }
 21 }
 22 long maxSells = PersonCount * (50 + _random.

nextInt(50));

78 Appendix A | Program to Create the Demo Data

 23 for (int i = 0; i <= maxSells; i++) {
 24 trySell();
 25 }
 26 }
 27
 28 public static Persons getInstance() {
 29 return _instance;
 30 }
 31
 32 private Person createPerson() {
 33 Person person = new Person();
 34 List<String> surNames = DataProvider.getInstance().

getSurNames();
 35 person.setSurname(surNames.get(_random.

nextInt(surNames.size())));
 36 Map<String, Gender> givenNameInfos = DataProvider.

getInstance()
 37 .getGivenNames();
 38 List<String> givenNames = givenNameInfos.keySet()
 39 .stream().collect(Collectors.toList());
 40 person.setGivenName(givenNames.get(_random.

nextInt(givenNames.size())));
 41 person.setGender(givenNameInfos.get(person.

getGivenName()));
 42 person.setAge(15 + _random.nextInt(80));
 43 if (_random.nextInt(100) == 0) {
 44 makeVendor(person);
 45 }
 46 return person;
 47 }
 48
 49 private void makeVendor(Person person) {
 50 person.setDiscount(_random.nextInt(5) * 5);
 51 Map<Integer, ArticleInfo> selling = person.

getSelling()Persons.java;
 52
 53 for (int i = 0; i <= _random.nextInt(10); i++) {
 54 int articleNo = 1 + _random.nextInt(DataProvider.

getInstance()
 55 .getArticles().size());
 56 if (selling.containsKey(articleNo)) {
 57 break;

Java Lambdas and Parallel Streams 79

 58 }
 59 selling.put(articleNo, new ArticleInfo(articleNo));
 60 }
 61 }
 62
 63 private void trySell() {
 64 Person seller = _sellers.get(_random.nextInt(_

sellers.size()));
 65 assert (seller != null);
 66 Person buyer = _persons.get(_random.nextInt(_

persons.size()));
 67 assert (buyer != null);
 68 if (seller == buyer) {
 69 return;
 70 }
 71 Map<Integer, ArticleInfo> selling = seller.

getSelling();
 72 Map<Integer, ArticleInfo> buying = buyer.

getBuying();
 73 Object[] articleNumbers = selling.keySet().

toArray();
 74 int index = _random.nextInt(articleNumbers.length);
 75 int articleNo = (int) articleNumbers[index];
 76 Article article = DataProvider.getInstance()
 77 .getArticles().get(articleNo);
 78
 79 if (_random.nextInt(1000) < article.

getProbability()
 80 + seller.getDiscount() /

5)Persons.java {
 81 int quantity = 1 + _random.nextInt(article.

getMaxSells());
 82 long price = quantity * article.getPrice().

getCents()
 83 * (100 - seller.getDiscount()) / 100;
 84 ArticleInfo infoSelling = selling.get(articleNo);
 85 infoSelling.setQuantity(infoSelling.getQuantity()

+ quantity);
 86 infoSelling.getAmount().add(price);
 87 ArticleInfo infoBuying = buying.

containsKey(articleNo)
 88 ? buying.get(articleNo)

80 Appendix A | Program to Create the Demo Data

 89 : new ArticleInfo(articleNo);
 90 infoBuying.addQuantity(quantity);
 91 infoBuying.addPrice(price)Persons.java;
 92 buying.put(articleNo, infoBuying);
 93 }
 94 }
 95 }

 Other Classes

 Listing A-9. Gender.java

 1 public enum Gender {
 2 Male,
 3 Female;
 4 }

 The amount of money consists of Euro and Cent (Dollar and
Cent, . . .). Floats or Doubles have problems representing such
accurate data. are too cumbersome for our requirement. For
the demonstration of Lambdas and Streams, a simple class
 Money was created, which internally stores all the amounts
using Cents (see Listing A-10). Thus, it can calculate with
Integers (more precise long values).

 Listing A-10. Money.java

 1 public class Money {
 2
 3 private long _cents;
 4
 5 Money() {
 6 _cents = 0;
 7 }
 8
 9 Money(String value) {
 10 setValue(value);
 11 }
 12
 13 public long getCents() {
 14 return _cents;
 15 }

Java Lambdas and Parallel Streams 81

 16
 17 public void setCents(long cents) {
 18 _cents = cents;
 19 }
 20
 21 public String getValue() {
 22 return _cents / 100 + "." + _cents % 100;
 23 }
 24
 25 public void setValue(String value) {
 26 int pos = value.indexOf(".");
 27 if (pos == -1) {
 28 _cents = 100 * Long.parseLong(value);
 29 } else {
 30 _cents = 100 * Long.parseLong(value.substring(0,

pos));
 31 String decimals = value.substring(pos + 1) + "00";
 32 _cents += Long.parseLong(decimals.substring(0, 2));
 33 }
 34 }
 35
 36 public void add (long cents){
 37 _cents += centsMoney.java;
 38 }
 39 }

 The DataProvider is used to read the sample data out of the
four files (Listing A-11).

 Listing A-11. DataProvider.java

 1 public class DataProvider {
 2
 3 private static final DataProvider _instance = new

DataProvider();
 4 private List<String> _surNames = new ArrayList<>();
 5 private final Map<String, Gender> _givenNames = new

HashMap<>();
 6 private final Map<Integer, Article> _articles = new

HashMap<>();
 7
 8 public static DataProvider getInstance() {
 9 return _instance;
 10 }

82 Appendix A | Program to Create the Demo Data

 11
 12 private DataProvider() {
 13 init();
 14 }
 15
 16 public List<String> getSurNames() {
 17 return _surNames;
 18 }
 19
 20 public Map<String, Gender> getGivenNames() {
 21 return _givenNames;
 22 }
 23
 24 public Map<Integer, Article> getArticles() {
 25 return _articles;
 26 }
 27
 28 private void init() {
 29 try {
 30 _surNames = readFile("Surnames.csv");
 31 readFile("GivenNamesFemale.csv").stream()
 32 .forEach(n -> _givenNames.put(n,

Gender.Female));
 33 readFile("GivenNamesMale.csv").stream()
 34 .forEach(n -> _givenNames.put(n,

Gender.Male));
 35 int articleNo = 0;
 36 for (String line : readFile("Articles.csv")) {
 37 if (!line.trim().isEmpty()) {
 38 articleNo++;
 39 Article article = new Article(line,

articleNo);
 40 _articles.put(articleNo, article);
 41 }
 42 };
 43 } catch (IOException ex) {
 44 Logger.getLogger(DataProvider.class.getName())
 45 .log(Level.SEVERE, null, ex);
 46 }
 47 }DataProvider.java
 48
 49 private List<String> readFile(String fileName) throws

IOException {

Java Lambdas and Parallel Streams 83

 50 List<String> lines = new ArrayList<>();
 51 try (InputStream is = getClass().

getResourceAsStream(fileName);
 52 BufferedReader reader = new

BufferedReader(new InputStreamReader\
 53 (is));) {
 54 String line;
 55 while ((line = reader.readLine()) != null) {
 56 lines.add(line);
 57 }
 58 }
 59 return linesDataProvider.java;
 60 }
 61 }

 Demo Program
 The following main method shows how to call the data gen-
eration and to perform an analysis (see Listing A-12). You may
use this skeleton to execute your own experiments with
Lambdas and Streams.

 Listing A-12. StreamsDemo.java

 1 public class StreamsDemo {
 2
 3 public static void main(String[] args) {
 4 System.out.println("started");
 5 Persons persons = Persons.getInstance();
 6 System.out.println("created " + persons.

getPersons().size()
 7 + " persons.");
 8
 9 showAverage(persons.getPersons());
 10
 11 [... many other show cases ...]
 12 }
 13
 14 private static void showAverage(List<Person> persons)
{
 15 double averageAge = persons.stream()

84

 16 .filter(p -> p.getAge() < 20 &&
p.isFemale())

 17 .mapToInt(Person::getAge)
 18 .average()
 19 .getAsDouble();
 20 System.out.println("averageAge: " + averageAge);
 21 }
 22 }

 The source code for this demo is available at webdevelop-
ment-java.info . 1

 1 http://webdevelopment-java.info

Appendix A | Program to Create the Demo Data

http://webdevelopment-java.info/
http://webdevelopment-java.info/
http://webdevelopment-java.info/

 A
 Anonymous classes , 11–12

 API documentation , 26

 ArticleInfo.java , 73

 Article.java , 72

 Articles.csv , 71

 AverageBuilders , 63

 B
 Behavior parameterization , 9–10

 C
 Central processing unit (CPU) , 48

 class Money , 80

 collect() method , 31, 47

 characteristic

CONCURRENT , 59

 function , 56

 lambda parameters , 57

 overload , 56

 SummingCollector , 58–59

 SummingUnit , 58

 technical domain , 58

 types , 59

 Collector and concurrency

 Java concurrency , 48

 number generator , 48

 ConcurrentHashMap , 65

 ctor SummingUnit , 57

 D, E
 Data

 sales and purchases , 5

 structure , 5

 DataProvider.java , 81–83

 Data transformation , 29

 Default methods

 binary compatibility , 19

 “homonymous” methods , 20

 interface , 19

 Java virtual , 20–21

 rules , 21–24

 Demo data

 Articles.csv , 70–71

 columns , 71

 Index

I

© Michael Müller 2016
M. Müller, Java Lambdas and Parallel Streams,
DOI 10.1007/978-1-4842-2487-8

 CSV comma , 69–71

 GivenNamesFemale.csv , 70

 GivenNamesMale.csv , 70

 Surnames.csv , 70

 F
 Filter , 8

 Functional interface , 14–15

 G
 get() , 26–27

 getAsDouble() , 27

 GroupingCollector

 average spending , 61

 characteristics , 65

 data structure , 62

 functions , 63

 interactive shell , 67

 Java developer , 65

 output , 61

 Person , 65

 person count , 62

 shared state , 66

 stream framework , 65

 streams , 67

 synchronization , 66

 H
 HashMap , 65, 75

 hasNext() , 39

 I
 Integer , 61

 J, K
 Java concurrency , 45

 calculation , 51

 class , 50

 combine() , 51

 CPU , 53

 execution order , 54

 intermediate operations , 49

 Java’s qualifier , 54

 parallel streams , 48–49

 parallel summing , 52–53

 parameters , 52

 sequence , 53

 syntactic sugar , 53

 technical class , 50

 usage of thread , 50

 Java Development Kit (JDK) , 49

 Java lambdas , 66

 L
 Lambda expressions

 condition interface , 14

 execution time , 17

 female persons , 14

 Java 8 , 13

 measuring method , 18

 Lambdas , 67

 expressions , 41

 notation , 16–17

 Lambdas and (parallel) streams , 1–3

 Language Integrated Query , 1

 M
 .mapToLong(…)) , 37

 method get()

 Money.java , 80

 N
 Null value , 25

 O
 Optional class , 25–26

 OptionalDouble , 26

Index 86

Demo data (cont.)

 OptionalInt , 26

 OptionalLong , 26

 Optional<T> , 38

 orElse() , 26

 P, Q
 parallel() , 43

 Parallel processing , 33–34

 Parallel programming , 66

 Parallel stream , 2, 34, 36, 148

 binary Function , 44

 calculation , 43

 demonstration , 44

 elements , 42

 functional programming , 42

 lambda expressions. , 41

 processing , 42

 programming , 44

 sequential variant , 43

 Parameterization , 8–11

 Person.java , 75, 77

 person.stream() , 31

 Pipelining , 29–30

 R
 reduce() method , 47

 run() method , 50

 S
 someCondition() , 33

 someOther-Condition() , 33

 Spliterator , 34

 hasNext() , 39

 implementation , 39

 next(). , 39

 threads , 38

 tryAdvance , 39

 trySplit , 39

 start() method , 50

 stream() , 36

 Stream

 lambda expression , 37

 mapToLong(…)) , 37

 Stream prosessing

 ancillary conditions , 34

 calculation , 32

 collected into a list , 31

 concrete solution , 32

 explicit intermediate

result , 30

 intermediate operation , 33

 internal iterator , 30

 mapping , 31

 process chain , 33

 single processing steps , 31

 termediate from terminal

operations. , 32

 traditional approach , 32

 variation , 31

 vendors , 32

 StreamsDemo.java , 83–84

 StreamSupport.stream , 36

 SummingUnit , 51, 55–57

 T, U
 Target list , 8

 V, W, X, Y, Z
 variable _price , 73

87Index

	Contents
	About the Author
	About the Technical Reviewer
	Foreword
	Chapter
1: Introduction
	Lambdas and (Parallel) Streams
	The Challenge
	The Solution
	A First Explanation

	Chapter
2: The Data
	Chapter
3: First Analysis—From Naive to Flexible
	Fix Filter
	Simple Parameterization
	Behavior Parameterization
	Anonymous Classes

	Chapter
4: Lambda Expressions
	Functional Interface
	Lambda Notation
	Lazy Evaluation
	Summary

	Chapter
5: Default Method
	The Problem
	Solution—The Java Way
	Rules to Choose a Default Method
	Summary

	Chapter
6: Optional
	Chapter
7: Make the Acquaintance of Streams
	Examples
	Parallel Processing
	Summary

	Chapter
8: stream(), Stream and Spliterator
	Stream
	Spliterator
	Summary

	Chapter
9: Parallel Stream
	Summary

	Chapter
10: Collector and Concurrency
	Java Concurrency
	Collect
	Summary
	Final thoughts

	Chapter
11: Grouping Collector
	Summary
	Final Thoughts

	Appendix A: Program to Create the Demo Data
	Basic Data
	Article
	Persons
	Other Classes
	Demo Program

	Index

