
9 781484 216996

52499
ISBN 978-1-4842-1699-6

SOURCE CODE ONLINE

US $24.99

Shelve in:
Programming Languages/Java

User level:
Intermediate–Advanced

www.apress.com

Friesen
Java Threads and the Concurrency Utilities

Java Threads
and the
Concurrency
Utilities

F O R P R O F E S S I O N A L S B Y P R O F E S S I O N A L S® THE E XPER T ’S VOICE® IN JAVA

Java Threads and the Concurrency Utilities

Java’s thread APIs and concurrency utilities are among its most powerful and challenging
APIs and language features. Java beginners typically find it very difficult to use these features
to write correct multithreaded applications. Java Threads and the Concurrency Utilities helps
all Java developers master and use these capabilities effectively.

This book is divided into two parts of four chapters each. Part 1 focuses on the low-level
Thread APIs and Part 2 focuses on the high-level concurrency utilities. In Part 1, you learn
about Thread API basics, synchronization, waiting and notification, and the additional capa-
bilities of thread groups, thread local variables, and the Timer Framework. In Part 2, you learn
about concurrency utilities basics, executors, synchronizers, the Locking Framework, and the
additional capabilities of concurrent collections, atomic variables, the Fork/Join Framework,
and completion services.

Each chapter ends with select exercises designed to challenge your grasp of the chapter’s
content. An appendix provides the answers to these exercises. A second appendix explores
how threads are used by the Swing Graphical User Interface Toolkit.

• Create, configure, and start threads that execute runnables

• Synchronize shared code to avoid race conditions, data races, and more

• Avoid problems with cached variables

• Use waiting and notification to coordinate execution between multiple threads

• Discover thread groups and learn why you should avoid them

• Learn about thread-local variables

• Explore the Timer Framework

• Find out why the concurrency utilities were introduced

• Explore executors, synchronizers, and the Locking Framework

• Discover concurrent collections, atomic variables, the Fork/Join Framework, and
completion services

• Examine Swing’s use of threads and its thread-related APIs —
Jef f Friesen

Related Titles

Java Threads and
the Concurrency

Utilities

Jeff Friesen

Java Threads and the Concurrency Utilities

Copyright © 2015 by Jeff Friesen

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions
of the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-1699-6

ISBN-13 (electronic): 978-1-4842-1700-9

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Steve Anglin
Technical Reviewer: Sumit Pal
Editorial Board: Steve Anglin, Louise Corrigan, James T. DeWolf, Jonathan Gennick,

Robert Hutchinson, Michelle Lowman, James Markham, Susan McDermott,
Matthew Moodie, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing

Coordinating Editor: Mark Powers
Copy Editor: Kezia Endsley
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc. is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available
to readers at www.apress.com/9781484216996. For detailed information about how to locate your
book’s source code, go to www.apress.com/source-code/. Readers can also access source code at
SpringerLink in the Supplementary Material section for each chapter.

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781484216996
www.apress.com/source-code/

To my sister and her family.

v

Contents at a Glance

About the Author��� xi

About the Technical Reviewer��� xiii

Acknowledgments�� xv

Introduction�� xvii

■■Part I: Thread APIs��� 1

■■Chapter 1: Threads and Runnables�� 3

■■Chapter 2: Synchronization��� 21

■■Chapter 3: Waiting and Notification��� 39

■■Chapter 4: Additional Thread Capabilities������������������������������������� 51

■■Part II: Concurrency Utilities��� 67

■■Chapter 5: Concurrency Utilities and Executors���������������������������� 69

■■Chapter 6: Synchronizers�� 83

■■Chapter 7: The Locking Framework�� 107

■■Chapter 8: Additional Concurrency Utilities�������������������������������� 125

■■Part III: Appendices��� 147

■■Appendix A: Answers to Exercises�� 149

■■Appendix B: Threading in Swing��� 169

Index��� 195

vii

Contents

About the Author��� xi

About the Technical Reviewer��� xiii

Acknowledgments�� xv

Introduction�� xvii

■■Part I: Thread APIs��� 1

■■Chapter 1: Threads and Runnables�� 3

Introducing Thread and Runnable�� 3

Creating Thread and Runnable Objects��� 3

Getting and Setting Thread State��� 5

Starting a Thread��� 8

Performing More Advanced Thread Tasks�� 10

Interrupting Threads�� 10

Joining Threads��� 12

Sleeping��� 16

Summary�� 18

■■Chapter 2: Synchronization��� 21

The Problems with Threads�� 21

Race Conditions��� 21

Data Races�� 22

Cached Variables��� 23

■ Contents

viii

Synchronizing Access to Critical Sections��� 24

Using Synchronized Methods�� 25

Using Synchronized Blocks��� 26

Beware of Liveness Problems�� 27

Volatile and Final Variables�� 30

Summary�� 37

■■Chapter 3: Waiting and Notification��� 39

Wait-and-Notify API Tour�� 39

Producers and Consumers��� 42

Summary�� 49

■■Chapter 4: Additional Thread Capabilities������������������������������������� 51

Thread Groups�� 51

Thread-Local Variables��� 55

Timer Framework��� 58

Timer in Depth��� 60

TimerTask in Depth�� 64

Summary�� 66

■■Part II: Concurrency Utilities��� 67

■■Chapter 5: Concurrency Utilities and Executors���������������������������� 69

Introducing the Concurrency Utilities��� 69

Exploring Executors�� 70

Summary�� 82

■■Chapter 6: Synchronizers�� 83

Countdown Latches�� 83

Cyclic Barriers�� 86

Exchangers��� 91

■ Contents

ix

Semaphores��� 96

Phasers�� 103

Summary�� 106

■■Chapter 7: The Locking Framework�� 107

Lock�� 108

ReentrantLock�� 109

Condition�� 112

ReadWriteLock��� 117

ReentrantReadWriteLock�� 118

Summary�� 124

■■Chapter 8: Additional Concurrency Utilities�������������������������������� 125

Concurrent Collections��� 125

Using BlockingQueue and ArrayBlockingQueue�� 127

Learning More About ConcurrentHashMap�� 129

Atomic Variables��� 130

Understanding the Atomic Magic�� 132

Fork/Join Framework��� 134

Completion Services�� 142

Summary�� 146

■■Part III: Appendices��� 147

■■Appendix A: Answers to Exercises�� 149

Chapter 1: Threads and Runnables�� 149

Chapter 2: Synchronization�� 152

Chapter 3: Waiting and Notification�� 154

Chapter 4: Additional Thread Capabilities��� 156

■ Contents

x

Chapter 5: Concurrency Utilities and Executors����������������������������������� 158

Chapter 6: Synchronizers��� 161

Chapter 7: The Locking Framework�� 164

Chapter 8: Additional Concurrency Utilities�� 166

■■Appendix B: Threading in Swing��� 169

A Single-Threaded Programming Model�� 169

Threading APIs��� 173

SwingUtilities and EventQueue�� 174

SwingWorker��� 179

Timer��� 183

Timer-Based Slide Show�� 185

Index��� 195

xi

About the Author

Jeff Friesen is a freelance tutor and software developer
with an emphasis on Java. In addition to authoring
Learn Java for Android Development and co-authoring
Android Recipes, Jeff has written numerous articles on
Java and other technologies for JavaWorld
(JavaWorld.com), informIT (InformIT.com), Java.net,
and DevSource (DevSource.com). Jeff can be contacted
via his web site at TutorTutor.ca.

xiii

About the Technical
Reviewer

Sumit Pal has more than 22 years of experience
in the Software Industry in various roles spanning
companies from startups to enterprises. He is a big
data, visualization and data science consultant and a
software architect and big data enthusiast and builds
end-to-end data-driven analytic systems.

Sumit has worked for Microsoft (SQL server
development team), Oracle (OLAP development team)
and Verizon (Big Data analytics team) in a career
spanning 22 years.

Currently, he works for multiple clients advising
them on their data architectures and big data solutions
and does hands on coding with Spark, Scala, Java and

Python. He has extensive experience in building scalable systems across the stack from
middle tier, data tier to visualization for analytics applications, using Big Data, NoSQL
DB. Sumit has deep expertise in Database Internals, Data Warehouses, Dimensional
Modeling, Data Science with Java and Python and SQL.

Sumit has MS and BS in Computer Science.

xv

Acknowledgments

I have many people to thank for assisting me in the development of this book. I especially
thank Steve Anglin for asking me to write it and Mark Powers for guiding me through the
writing process.

xvii

Introduction

Threads and the concurrency utilities are not sexy subjects, but they are an important
part of non-trivial applications. This book introduces you to most of Java’s thread features
and concurrency utilities as of Java 8 update 60.

Chapter 1 introduces you to the Thread class and the Runnable interface. You learn
how to create Thread and Runnable objects, get and set thread state, start a thread,
interrupt a thread, join a thread to another thread, and cause a thread to sleep.

Chapter 2 focuses on synchronization. You learn about problems such as race
conditions that cannot be solved without synchronization. You also learn how to create
synchronized methods and blocks, and how to use a light version of synchronization that
ignores mutual exclusion.

Chapter 3 explores the important topics of waiting and notification. I first review a
small API in the Object class that supports these concepts, and then demonstrate this
API via a producer/consumer application where one thread produces items that another
thread consumes.

Chapter 4 presents three concepts that were not covered in the previous chapters.
First, you learn about thread groups, which are not as useful as you might think. Then,
you explore thread-local variables. Finally, you learn about the Timer Framework, which
simplifies threading for timer tasks.

The previous four chapters covered low-level threading. Chapter 5 switches to a
higher level by introducing the concurrency utilities, which can simplify the development
of multithreaded applications and improve performance. This chapter then explores
executors along with callables and futures.

Chapter 6 focuses on synchronizers (high-level synchronization constructs). You
learn about countdown latches (one or more threads wait at a “gate” until another
thread opens this gate, at which point these other threads can continue), cyclic barriers,
exchangers, semaphores, and phasers.

Chapter 7 explores the Locking Framework, which provides interfaces and classes
for locking and waiting for conditions in a manner that’s distinct from an object’s
intrinsic lock-based synchronization and Object’s wait/notification mechanism. It offers
improvements such as lock polling.

Finally, Chapter 8 presents additional concurrency utilities that were not covered
in Chapters 5 through 7. Specifically, it introduces you to concurrent collections, atomic
variables, the Fork/Join Framework, and completion services.

Each chapter ends with assorted exercises that are designed to help you master the
content. Along with long answers and true/false questions, you are often confronted with
programming exercises. Appendix A provides the answers and solutions.

http://dx.doi.org/10.1007/978-1-4842-1700-9_1
http://dx.doi.org/10.1007/978-1-4842-1700-9_2
http://dx.doi.org/10.1007/978-1-4842-1700-9_3
http://dx.doi.org/10.1007/978-1-4842-1700-9_4
http://dx.doi.org/10.1007/978-1-4842-1700-9_5
http://dx.doi.org/10.1007/978-1-4842-1700-9_6
http://dx.doi.org/10.1007/978-1-4842-1700-9_7
http://dx.doi.org/10.1007/978-1-4842-1700-9_8
http://dx.doi.org/10.1007/978-1-4842-1700-9_5
http://dx.doi.org/10.1007/978-1-4842-1700-9_7

■ Introduction

xviii

Appendix B provides a tutorial on threading in Swing. You learn about Swing’s
single-threaded programming model and various APIs for avoiding problems when
additional threads are used in graphical contexts. You also explore a slide show Swing
application as a fun way to end this book.

■ Note  I briefly use Java 8’s lambda expression feature in some examples, but don’t
provide a tutorial on it. You’ll need to look elsewhere for that knowledge.

Thanks for purchasing this book. I hope you find it helpful in understanding threads
and the concurrency utilities.

— Jeff Friesen (October 2015)

■ Note  You can download this book’s source code by pointing your web browser to
www.apress.com/9781484216996 and clicking the Source Code tab followed by the
Download Now link.

www.springer.com/9781484216996

Part I

Thread APIs

3

Chapter 1

Threads and Runnables

Java applications execute via threads, which are independent paths of execution through
an application’s code. When multiple threads are executing, each thread’s path can differ
from other thread paths. For example, a thread might execute one of a switch statement’s
cases, and another thread might execute another of this statement’s cases.

Each Java application has a default main thread that executes the main() method. The
application can also create threads to perform time-intensive tasks in the background so
that it remains responsive to its users. These threads execute code sequences encapsulated
in objects that are known as runnables.

The Java virtual machine (JVM) gives each thread its own JVM stack to prevent
threads from interfering with each other. Separate stacks let threads keep track of their next
instructions to execute, which can differ from thread to thread. The stack also provides a
thread with its own copy of method parameters, local variables, and return value.

Java supports threads primarily through its java.lang.Thread class and
java.lang.Runnable interface. This chapter introduces you to these types.

Introducing Thread and Runnable
The Thread class provides a consistent interface to the underlying operating system’s
threading architecture. (The operating system is typically responsible for creating and
managing threads.) A single operating system thread is associated with a Thread object.

The Runnable interface supplies the code to be executed by the thread that’s
associated with a Thread object. This code is located in Runnable’s void run()
method—a thread receives no arguments and returns no value, although it might throw
an exception, which I discuss in Chapter 4.

Creating Thread and Runnable Objects
Except for the default main thread, threads are introduced to applications by creating
the appropriate Thread and Runnable objects. Thread declares several constructors for
initializing Thread objects. Several of these constructors require a Runnable object as an
argument.

http://dx.doi.org/10.1007/978-1-4842-1700-9_4

Chapter 1 ■ Threads and Runnables

4

There are two ways to create a Runnable object. The first way is to create an
anonymous class that implements Runnable, as follows:

Runnable r = new Runnable()
{

@Override
public void run()
{

// perform some work
System.out.println("Hello from thread");

}
};

Before Java 8, this was the only way to create a runnable. Java 8 introduced the
lambda expression to more conveniently create a runnable:

Runnable r = () -> System.out.println("Hello from thread");

The lambda is definitely less verbose than the anonymous class. I’ll use both
language features throughout this and subsequent chapters.

■ Note A lambda expression (lambda) is an anonymous function that’s passed to a
constructor or method for subsequent execution. Lambdas work with functional interfaces
(interfaces that declare single abstract methods), such as Runnable.

After creating the Runnable object, you can pass it to a Thread constructor that receives
a Runnable argument. For example, Thread(Runnable runnable) initializes a new Thread
object to the specified runnable. The following code fragment demonstrates this task:

Thread t = new Thread(r);

A few constructors don’t take Runnable arguments. For example, Thread() doesn’t
initialize Thread to a Runnable argument. You must extend Thread and override its run()
method (Thread implements Runnable) to supply the code to run, which the following
code fragment accomplishes:

class MyThread extends Thread
{
 @Override
 public void run()
 {
 // perform some work
 System.out.println("Hello from thread");
 }
}
// ...
MyThread mt = new MyThread();

Chapter 1 ■ Threads and Runnables

5

Getting and Setting Thread State
A Thread object associates state with a thread. This state consists of a name, an indication
of whether the thread is alive or dead, the execution state of the thread (is it runnable?),
the thread’s priority, and an indication of whether the thread is daemon or nondaemon.

Getting and Setting a Thread’s Name
A Thread object is assigned a name, which is useful for debugging. Unless a name is
explicitly specified, a default name that starts with the Thread- prefix is chosen. You can
get this name by calling Thread’s String getName() method. To set the name, pass it to
a suitable constructor, such as Thread(Runnable r, String name), or call Thread’s void
setName(String name) method. Consider the following code fragment:

Thread t1 = new Thread(r, "thread t1");
System.out.println(t1.getName()); // Output: thread t1
Thread t2 = new Thread(r);
t2.setName("thread t2");
System.out.println(t2.getName()); // Output: thread t2

■ Note  Thread’s long getId() method returns a unique long integer-based name for a
thread. This number remains unchanged during the thread’s lifetime.

Getting a Thread’s Alive Status
You can determine if a thread is alive or dead by calling Thread’s boolean isAlive()
method. This method returns true when the thread is alive; otherwise, it returns false.
A thread’s lifespan ranges from just before it is actually started from within the start()
method (discussed later) to just after it leaves the run() method, at which point it dies.
The following code fragment outputs the alive/dead status of a newly-created thread:

Thread t = new Thread(r);
System.out.println(t.isAlive()); // Output: false

Getting a Thread’s Execution State
A thread has an execution state that is identified by one of the Thread.State enum’s
constants:

• NEW: A thread that has not yet started is in this state.

• RUNNABLE: A thread executing in the JVM is in this state.

• BLOCKED: A thread that is blocked waiting for a monitor lock is in
this state. (I’ll discuss monitor locks in Chapter 2.)

5

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html#Thread-java.lang.Runnable-java.lang.String-
https://docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html#interface%20in%20java.lang
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#class%20in%20java.lang
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#class%20in%20java.lang
http://dx.doi.org/10.1007/978-1-4842-1700-9_2

Chapter 1 ■ Threads and Runnables

6

• WAITING: A thread that is waiting indefinitely for another thread to
perform a particular action is in this state.

• TIMED_WAITING: A thread that is waiting for another thread to
perform an action for up to a specified waiting time is in this state.

• TERMINATED: A thread that has exited is in this state.

Thread lets an application determine a thread’s current state by providing the
Thread.State getState() method, which is demonstrated here:

Thread t = new Thread(r);
System.out.println(t.getState()); // Output: NEW

Getting and Setting a Thread’s Priority
When a computer has enough processors and/or processor cores, the computer’s
operating system assigns a separate thread to each processor or core so the threads
execute simultaneously. When a computer doesn’t have enough processors and/or cores,
various threads must wait their turns to use the shared processors/cores.

■ Note  You can identify the number of processors and/or processor cores that are available
to the JVM by calling the java.lang.Runtime class’s int availableProcessors() method.
The return value could change during JVM execution and is never smaller than 1.

The operating system uses a scheduler (http://en.wikipedia.org/wiki/
Scheduling_(computing)) to determine when a waiting thread executes. The following
list identifies three different schedulers:

• Linux 2.6 through 2.6.23 uses the O(1) Scheduler
(http://en.wikipedia.org/wiki/O(1)_scheduler).

• Linux 2.6.23 also uses the Completely Fair Scheduler
(http://en.wikipedia.org/wiki/Completely_Fair_Scheduler),
which is the default scheduler.

• Windows NT-based operating systems (such as NT, XP,
Vista, and 7) use a multilevel feedback queue scheduler
(http://en.wikipedia.org/wiki/Multilevel_feedback_queue).
This scheduler has been adjusted in Windows Vista and Windows 7
to optimize performance.

A multilevel feedback queue and many other thread schedulers take priority
(thread relative importance) into account. They often combine preemptive scheduling
(higher priority threads preempt—interrupt and run instead of—lower priority threads)
with round robin scheduling (equal priority threads are given equal slices of time, which
are known as time slices, and take turns executing).

http://en.wikipedia.org/wiki/Scheduling_(computing)
http://en.wikipedia.org/wiki/Scheduling_(computing)
http://en.wikipedia.org/wiki/O(1)_scheduler
http://en.wikipedia.org/wiki/Completely_Fair_Scheduler
http://en.wikipedia.org/wiki/Multilevel_feedback_queue

Chapter 1 ■ Threads and Runnables

7

■ Note T wo terms that are commonly encountered when exploring threads are
parallelism and concurrency. According to Oracle’s “Multithreading Guide”
(http://docs.oracle.com/cd/E19455-01/806-5257/6je9h032b/index.html), parallelism
is “a condition that arises when at least two threads are executing simultaneously.” In
contrast, concurrency is “a condition that exists when at least two threads are making
progress. [It is a] more generalized form of parallelism that can include time-slicing as a
form of virtual parallelism.”

Thread supports priority via its int getPriority() method, which returns the
current priority, and its void setPriority(int priority) method, which sets the
priority to priority. The value passed to priority ranges from Thread.MIN_PRIORITY
to Thread.MAX_PRIORITY—Thread.NORMAL_PRIORITY identifies the default priority.
Consider the following code fragment:

Thread t = new Thread(r);
System.out.println(t.getPriority());
t.setPriority(Thread.MIN_PRIORITY);

■ Caution U sing setPriority() can impact an application’s portability across
operating systems because different schedulers can handle a priority change in different
ways. For example, one operating system’s scheduler might delay lower priority threads
from executing until higher priority threads finish. This delaying can lead to indefinite
postponement or starvation because lower priority threads “starve” while waiting indefinitely
for their turn to execute, and this can seriously hurt the application’s performance. Another
operating system’s scheduler might not indefinitely delay lower priority threads, improving
application performance.

Getting and Setting a Thread’s Daemon Status
Java lets you classify threads as daemon threads or nondaemon threads. A daemon thread
is a thread that acts as a helper to a nondaemon thread and dies automatically when the
application’s last nondaemon thread dies so that the application can terminate.

You can determine if a thread is daemon or nondaemon by calling Thread’s boolean
isDaemon() method, which returns true for a daemon thread:

Thread t = new Thread(r);
System.out.println(t.isDaemon()); // Output: false

http://docs.oracle.com/cd/E19455-01/806-5257/6je9h032b/index.html

Chapter 1 ■ Threads and Runnables

8

By default, the threads associated with Thread objects are nondaemon threads. To
create a daemon thread, you must call Thread’s void setDaemon(boolean isDaemon)
method, passing true to isDaemon. This task is demonstrated here:

Thread t = new Thread(r);
t.setDaemon(true);

■ Note A n application will not terminate when the nondaemon default main thread
terminates until all background nondaemon threads terminate. If the background threads
are daemon threads, the application will terminate as soon as the default main thread
terminates.

Starting a Thread
After creating a Thread or Thread subclass object, you start the thread associated with
this object by calling Thread’s void start() method. This method throws
java.lang.IllegalThreadStateException when the thread was previously started and is
running or when the thread has died:

Thread t = new Thread(r);
t.start();

Calling start() results in the runtime creating the underlying thread and scheduling
it for subsequent execution in which the runnable’s run() method is invoked. (start()
doesn’t wait for these tasks to be completed before it returns.) When execution leaves
run(), the thread is destroyed and the Thread object on which start() was called is no
longer viable, which is why calling start() results in IllegalThreadStateException.

I’ve created an application that demonstrates various fundamentals from thread and
runnable creation to thread starting. Check out Listing 1-1.

Listing 1-1.  Demonstrating Thread Fundamentals

public class ThreadDemo
{
 public static void main(String[] args)
 {
 boolean isDaemon = args.length != 0;
 Runnable r = new Runnable()

{
@Override
public void run()
{

Thread thd = Thread.currentThread();
while (true)

Chapter 1 ■ Threads and Runnables

9

System.out.printf("%s is %salive and in %s " +
"state%n",
thd.getName(),
thd.isAlive() ? "" : "not ",
thd.getState());

}
};

 Thread t1 = new Thread(r, "thd1");
 if (isDaemon)

t1.setDaemon(true);
 System.out.printf("%s is %salive and in %s state%n",

t1.getName(),
t1.isAlive() ? "" : "not ",
t1.getState());

 Thread t2 = new Thread(r);
 t2.setName("thd2");
 if (isDaemon)

t2.setDaemon(true);
 System.out.printf("%s is %salive and in %s state%n",

t2.getName(),
t2.isAlive() ? "" : "not ",
t2.getState());

 t1.start();
 t2.start();
 }
}

The default main thread first initializes the isDaemon variable based on whether or
not arguments were passed to this application on the command line. When at least one
argument is passed, true is assigned to isDaemon. Otherwise, false is assigned.

Next, a runnable is created. The runnable first calls Thread’s static Thread
currentThread() method to obtain a reference to the Thread object of the currently
executing thread. This reference is subsequently used to obtain information about this
thread, which is output.

At this point, a Thread object is created that’s initialized to the runnable and thread
name thd1. If isDaemon is true, the Thread object is marked as daemon. Its name, alive/
dead status, and execution state are then output.

A second Thread object is created and initialized to the runnable along with thread
name thd2. Again, if isDaemon is true, the Thread object is marked as daemon. Its name,
alive/dead status, and execution state are also output.

Finally, both threads are started.
Compile Listing 1-1 as follows:

javac ThreadDemo.java

Run the resulting application as follows:

java ThreadDemo

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html#class%20in%20java.lang

Chapter 1 ■ Threads and Runnables

10

I observed the following prefix of the unending output during one run on the 64-bit
Windows 7 operating system:

thd1 is not alive and in NEW state
thd2 is not alive and in NEW state
thd1 is alive and in RUNNABLE state
thd2 is alive and in RUNNABLE state

You’ll probably observe a different output order on your operating system.

■ Tip T o stop an unending application, press the Ctrl and C keys simultaneously on
Windows or do the equivalent on a non-Windows operating system.

Now, run the resulting application as follows:

java ThreadDemo x

Unlike in the previous execution, where both threads run as nondaemon threads, the
presence of a command-line argument causes both threads to run as daemon threads. As
a result, these threads execute until the default main thread terminates. You should
observe much briefer output.

Performing More Advanced Thread Tasks
The previous thread tasks were related to configuring a Thread object and starting the
associated thread. However, the Thread class also supports more advanced tasks, which
include interrupting another thread, joining one thread to another thread, and causing a
thread to go to sleep.

Interrupting Threads
The Thread class provides an interruption mechanism in which one thread can interrupt
another thread. When a thread is interrupted, it throws java.lang.InterruptedException.
This mechanism consists of the following three methods:

• void interrupt(): Interrupt the thread identified by the Thread
object on which this method is called. When a thread is blocked
because of a call to one of Thread’s sleep() or join() methods
(discussed later in this chapter), the thread’s interrupted status is
cleared and InterruptedException is thrown. Otherwise, the
interrupted status is set and some other action is taken
depending on what the thread is doing. (See the JDK
documentation for the details.)

Chapter 1 ■ Threads and Runnables

11

• static boolean interrupted(): Test whether the current thread
has been interrupted, returning true in this case. The interrupted
status of the thread is cleared by this method.

• boolean isInterrupted(): Test whether this thread has been
interrupted, returning true in this case. The interrupted status of
the thread is unaffected by this method.

I’ve created an application that demonstrates thread interruption. Check out
Listing 1-2.

Listing 1-2.  Demonstrating Thread Interruption

public class ThreadDemo
{
 public static void main(String[] args)
 {
 Runnable r = new Runnable()

{
@Override
public void run()
{

String name = Thread.currentThread().getName();
int count = 0;
while (!Thread.interrupted())

System.out.println(name + ": " + count++);
}

};
 Thread thdA = new Thread(r);
 Thread thdB = new Thread(r);
 thdA.start();
 thdB.start();
 while (true)
 {

double n = Math.random();
if (n >= 0.49999999 && n <= 0.50000001)

break;
 }
 thdA.interrupt();
 thdB.interrupt();
 }
}

The default main thread first creates a runnable that obtains the name of the current
thread. The runnable then clears a counter variable and enters a while loop to repeatedly
output the thread name and counter value and increment the counter until the thread is
interrupted.

Next, the default main thread creates a pair of Thread objects whose threads execute
this runnable and starts these background threads.

Chapter 1 ■ Threads and Runnables

12

To give the background threads some time to output several messages before
interruption, the default main thread enters a while-based busy loop, which is a loop of
statements designed to waste some time. The loop repeatedly obtains a random value
until it lies within a narrow range.

■ Note A busy loop isn’t a good idea because it wastes processor cycles. I’ll reveal a
better solution later in this chapter.

After the while loop terminates, the default main thread executes interrupt() on
each background thread’s Thread object. The next time each background thread executes
Thread.interrupted(), this method will return true and the loop will terminate.

Compile Listing 1-2 (javac ThreadDemo.java) and run the resulting application
(java ThreadDemo). You should see messages that alternate between Thread-0 and
Thread-1 and that include increasing counter values, as demonstrated here:

Thread-1: 67
Thread-1: 68
Thread-0: 768
Thread-1: 69
Thread-0: 769
Thread-0: 770
Thread-1: 70
Thread-0: 771
Thread-0: 772
Thread-1: 71
Thread-0: 773
Thread-1: 72
Thread-0: 774
Thread-1: 73
Thread-0: 775
Thread-0: 776
Thread-0: 777
Thread-0: 778
Thread-1: 74
Thread-0: 779
Thread-1: 75

Joining Threads
A thread (such as the default main thread) will occasionally start another thread to
perform a lengthy calculation, download a large file, or perform some other time-
consuming activity. After finishing its other tasks, the thread that started the worker
thread is ready to process the results of the worker thread and waits for the worker thread
to finish and die.

Chapter 1 ■ Threads and Runnables

13

The Thread class provides three join() methods that allow the invoking thread to
wait for the thread on whose Thread object join() is called to die:

• void join(): Wait indefinitely for this thread to die.
InterruptedException is thrown when any thread has
interrupted the current thread. If this exception is thrown, the
interrupted status is cleared.

• void join(long millis): Wait at most millis milliseconds
for this thread to die. Pass 0 to millis to wait indefinitely—
the join() method invokes join(0). java.lang.
IllegalArgumentException is thrown when millis is negative.
InterruptedException is thrown when any thread has
interrupted the current thread. If this exception is thrown, the
interrupted status is cleared.

• void join(long millis, int nanos): Wait at most millis
milliseconds and nanos nanoseconds for this thread to die.
IllegalArgumentException is thrown when millis is
negative, nanos is negative, or nanos is greater than 999999.
InterruptedException is thrown when any thread has
interrupted the current thread. If this exception is thrown, the
interrupted status is cleared.

To demonstrate the noargument join() method, I’ve created an application that
calculates the math constant pi to 50,000 digits. It calculates pi via an algorithm developed
in the early 1700s by English mathematician John Machin (https://en.wikipedia.org/
wiki/John_Machin). This algorithm first computes pi/4 = 4*arctan(1/5)-arctan(1/239) and
then multiplies the result by 4 to achieve the value of pi. Because the arc (inverse) tangent
is computed using a power series of terms, a greater number of terms yields a more
accurate pi (in terms of digits after the decimal point). Listing 1-3 presents the source code.

Listing 1-3.  Demonstrating Thread Joining

import java.math.BigDecimal;

public class ThreadDemo
{
 // constant used in pi computation

 private static final BigDecimal FOUR = BigDecimal.valueOf(4);

 // rounding mode to use during pi computation

 private static final int roundingMode = BigDecimal.ROUND_HALF_EVEN;

 private static BigDecimal result;

https://en.wikipedia.org/wiki/John_Machin
https://en.wikipedia.org/wiki/John_Machin

Chapter 1 ■ Threads and Runnables

14

 public static void main(String[] args)
 {
 Runnable r = () ->

{
result = computePi(50000);

};
 Thread t = new Thread(r);

t.start();
try
{
 t.join();

 }
 catch (InterruptedException ie)
 {

// Should never arrive here because interrupt() is never
// called.

 }
 System.out.println(result);
 }

 /*
* Compute the value of pi to the specified number of digits after the
* decimal point. The value is computed using Machin's formula:
*

 * pi/4 = 4*arctan(1/5)-arctan(1/239)
 *
 * and a power series expansion of arctan(x) to sufficient precision.
 */

 public static BigDecimal computePi(int digits)
 {

int scale = digits + 5;
BigDecimal arctan1_5 = arctan(5, scale);
BigDecimal arctan1_239 = arctan(239, scale);
BigDecimal pi = arctan1_5.multiply(FOUR).

subtract(arctan1_239).multiply(FOUR);
return pi.setScale(digits, BigDecimal.ROUND_HALF_UP);

 }

 /*
* Compute the value, in radians, of the arctangent of the inverse of
* the supplied integer to the specified number of digits after the
* decimal point. The value is computed using the power series
* expansion for the arc tangent:
*

 * arctan(x) = x-(x^3)/3+(x^5)/5-(x^7)/7+(x^9)/9 ...
 */

Chapter 1 ■ Threads and Runnables

15

 public static BigDecimal arctan(int inverseX, int scale)
 {

BigDecimal result, numer, term;
BigDecimal invX = BigDecimal.valueOf(inverseX);
BigDecimal invX2 = BigDecimal.valueOf(inverseX * inverseX);
numer = BigDecimal.ONE.divide(invX, scale, roundingMode);
result = numer;
int i = 1;
do
{

numer = numer.divide(invX2, scale, roundingMode);
int denom = 2 * i + 1;
term = numer.divide(BigDecimal.valueOf(denom), scale,

roundingMode);
if ((i % 2) != 0)

result = result.subtract(term);
else

result = result.add(term);
i++;

}
while (term.compareTo(BigDecimal.ZERO) != 0);
return result;

 }
}

The default main thread first creates a runnable to compute pi to 50,000 digits and
assign the result to a java.math.BigDecimal object named result. It uses a lambda for
brevity of code.

This thread then creates a Thread object to execute the runnable and starts a worker
thread to perform the execution.

At this point, the default main thread calls join() on the Thread object to wait
until the worker thread dies. When this happens, the default main thread outputs the
BigDecimal object’s value.

Compile Listing 1-3 (javac ThreadDemo.java) and run the resulting application
(java ThreadDemo). I observe the following prefix of the output:

3.1415926535897932384626433832795028841971693993751058209749445923078164062
862089986280348253421170679821480865132823066470938446095505822317253594081
284811174502841027019385211055596446229489549303819644288109756659334461284
756482337867831652712019091456485669234603486104543266482133936072602491412
737245870066063155881748815209209628292540917153643678925903600113305305488
204665213841469519415116094330572703657595919530921861173819326117931051185
4807446237996274956735188575272489122793818301194912983367336244065664308
6021394946395224737190702179860943702770539217176293176752384674818467669
405132000568127

Chapter 1 ■ Threads and Runnables

16

Sleeping
The Thread class declares a pair of static methods for causing a thread to sleep
(temporarily cease execution):

• void sleep(long millis): Sleep for millis milliseconds. The
actual number of milliseconds that the thread sleeps is subject
to the precision and accuracy of system timers and schedulers.
This method throws IllegalArgumentException when millis
is negative and InterruptedException when any thread has
interrupted the current thread. The interrupted status of the
current thread is cleared when this exception is thrown.

• void sleep(long millis, int nanos): Sleep for millis
milliseconds and nanos nanoseconds. The actual number of
milliseconds and nanoseconds that the thread sleeps is subject
to the precision and accuracy of system timers and schedulers.
This method throws IllegalArgumentException when millis
is negative, nanos is negative, or nanos is greater than 999999;
and InterruptedException when any thread has interrupted
the current thread. The interrupted status of the current thread is
cleared when this exception is thrown.

The sleep() methods are preferable to using a busy loop because they don’t waste
processor cycles.

I’ve refactored Listing 1-2’s application to demonstrate thread sleep. Check out
Listing 1-4.

Listing 1-4.  Demonstrating Thread Sleep

public class ThreadDemo
{
 public static void main(String[] args)
 {
 Runnable r = new Runnable()

{
@Override
public void run()
{

String name = Thread.currentThread().getName();
int count = 0;
while (!Thread.interrupted())

System.out.println(name + ": " + count++);
}

};
 Thread thdA = new Thread(r);
 Thread thdB = new Thread(r);
 thdA.start();
 thdB.start();

Chapter 1 ■ Threads and Runnables

17

 try
 {

Thread.sleep(2000);
 }
 catch (InterruptedException ie)
 {
 }
 thdA.interrupt();
 thdB.interrupt();
 }
}

The only difference between Listings 1-2 and 1-4 is the replacement of the busy loop
with Thread.sleep(2000);, to sleep for 2 seconds.

Compile Listing 1-4 (javac ThreadDemo.java) and run the resulting application
(java ThreadDemo). Because the sleep time is approximate, you should see a variation
in the number of lines that are output between runs. However, this variation won’t be
excessive. For example, you won’t see 10 lines in one run and 10 million lines in another.

EXERCISES

The following exercises are designed to test your understanding of Chapter 1’s
content:

1. Define thread.

2. Define runnable.

3. What do the Thread class and the Runnable interface
accomplish?

4. Identify the two ways to create a Runnable object.

5. Identify the two ways to connect a runnable to a Thread object.

6. Identify the five kinds of Thread state.

7. True or false: A default thread name starts with the Thd- prefix.

8. How do you give a thread a nondefault name?

9. How do you determine if a thread is alive or dead?

10. Identify the Thread.State enum’s constants.

11. How do you obtain the current thread execution state?

12. Define priority.

13. How can setPriority() impact an application’s portability
across operating systems?

http://dx.doi.org/10.1007/978-1-4842-1700-9_1

Chapter 1 ■ Threads and Runnables

18

14. Identify the range of values that you can pass to Thread’s void
setPriority(int priority) method.

15. True or false: A daemon thread dies automatically when the
application’s last nondaemon thread dies so that the application
can terminate.

16. What does Thread’s void start() method do when called on a
Thread object whose thread is running or has died?

17. How would you stop an unending application on Windows?

18. Identify the methods that form Thread’s interruption
mechanism.

19. True or false: The boolean isInterrupted() method clears
the interrupted status of this thread.

20. What does a thread do when it’s interrupted?

21. Define a busy loop.

22. Identify Thread’s methods that let a thread wait for another
thread to die.

23. Identify Thread’s methods that let a thread sleep.

24. Write an IntSleep application that creates a background thread
to repeatedly output Hello and then sleep for 100 milliseconds.
After sleeping for 2 seconds, the default main thread should
interrupt the background thread, which should break out of the
loop after outputting interrupted.

Summary
Java applications execute via threads, which are independent paths of execution through
an application’s code. Each Java application has a default main thread that executes the
main() method. The application can also create threads to perform time-intensive tasks
in the background so that it remains responsive to its users. These threads execute code
sequences encapsulated in objects that are known as runnables.

The Thread class provides a consistent interface to the underlying operating system’s
threading architecture. (The operating system is typically responsible for creating and
managing threads.) A single operating system thread is associated with a Thread object.

The Runnable interface supplies the code to be executed by the thread that’s
associated with a Thread object. This code is located in Runnable’s void run()
method—a thread receives no arguments and returns no value although it might throw
an exception.

Chapter 1 ■ Threads and Runnables

19

Except for the default main thread, threads are introduced to applications by creating
the appropriate Thread and Runnable objects. Thread declares several constructors for
initializing Thread objects. Several of these constructors require a Runnable object as an
argument.

A Thread object associates state with a thread. This state consists of a name, an
indication of whether the thread is alive or dead, the execution state of the thread (is it
runnable?), the thread’s priority, and an indication of whether the thread is daemon or
nondaemon.

After creating a Thread or Thread subclass object, you start the thread associated
with this object by calling Thread’s void start() method. This method throws
IllegalThreadStateException when the thread was previously started and is running or
the thread has died.

Along with simple thread tasks for configuring a Thread object and starting the
associated thread, the Thread class supports more advanced tasks, which include
interrupting another thread, joining one thread to another thread, and causing a thread
to go to sleep.

Chapter 2 presents synchronization.

http://dx.doi.org/10.1007/978-1-4842-1700-9_2

21

Chapter 2

Synchronization

Developing multithreaded applications is much easier when threads don’t interact,
typically via shared variables. When interaction occurs, various problems can arise that
make an application thread-unsafe (incorrect in a multithreaded context). In this chapter,
you’ll learn about these problems and also learn how to overcome them through the
correct use of Java’s synchronization-oriented language features.

The Problems with Threads
Java’s support for threads facilitates the development of responsive and scalable
applications. However, this support comes at the price of increased complexity. Without
care, your code can become riddled with hard-to-find bugs related to race conditions,
data races, and cached variables.

Race Conditions
A race condition occurs when the correctness of a computation depends on the relative
timing or interleaving of multiple threads by the scheduler. Consider the following code
fragment, which performs a computation as long as a certain precondition holds:

if (a == 10.0)
 b = a / 2.0;

There is no problem with this code fragment in a single-threaded context, and there
is no problem in a multithreaded context when a and b are local variables. However,
assume that a and b identify instance or class (static) field variables and that two
threads simultaneously access this code.

Suppose that one thread has executed if (a == 10.0) and is about to execute
b = a / 2.0 when suspended by the scheduler, which resumes another thread that
changes a. Variable b will not equal 5.0 when the former thread resumes its execution.
(If a and b were local variables, this race condition wouldn’t occur because each thread
would have its own copy of these local variables.)

Chapter 2 ■ Synchronization

22

The code fragment is an example of a common type of race condition that’s known
as check-then-act, in which a potentially stale observation is used to decide on what to do
next. In the previous code fragment, the “check” is performed by if (a == 10.0) and the
“act” is performed by b = a / 2.0;.

Another type of race condition is read-modify-write, in which new state is derived
from previous state. The previous state is read, then modified, and finally updated to
reflect the modified result via three indivisible operations. However, the combination of
these operations isn’t indivisible.

A common example of read-modify-write involves a variable that’s incremented to
generate a unique numeric identifier. For example, in the following code fragment,
suppose that counter is an instance field of type int (initialized to 1) and that two threads
simultaneously access this code:

public int getID()
{
 return counter++;
}

Although it might look like a single operation, expression counter++ is actually three
separate operations: read counter’s value, add 1 to this value, and store the updated value
in counter. The read value becomes the value of the expression.

Suppose thread 1 calls getID() and reads counter’s value, which happens to be 1,
before it’s suspended by the scheduler. Now suppose that thread 2 runs, calls getID(),
reads counter’s value (1), adds 1 to this value, stores the result (2) in counter, and returns
1 to the caller.

At this point, assume that thread 2 resumes, adds 1 to the previously read value (1),
stores the result (2) in counter, and returns 1 to the caller. Because thread 1 undoes
thread 2, we have lost an increment and a non-unique ID has been generated. This
method is useless.

Data Races
A race condition is often confused with a data race in which two or more threads (in a
single application) access the same memory location concurrently, at least one of the
accesses is for writing, and these threads don’t coordinate their accesses to that memory.
When these conditions hold, access order is non-deterministic. Different results may be
generated from run to run, depending on that order. Consider the following example:

private static Parser parser;

public static Parser getInstance()
{
 if (parser == null)
 parser = new Parser();
 return parser;
}

Chapter 2 ■ Synchronization

23

Assume that thread 1 invokes getInstance() first. Because it observes a null value in
the parser field, thread 1 instantiates Parser and assigns its reference to parser. When
thread 2 subsequently calls getInstance(), it could observe that parser contains a non-null
reference and simply return parser’s value. Alternatively, thread 2 could observe a null value
in parser and create a new Parser object. Because there is no happens-before ordering (one
action must precede another action) between thread 1’s write of parser and thread 2’s read of
parser (because there is no coordinated access to parser), a data race has occurred.

Cached Variables
To boost performance, the compiler, the Java virtual machine (JVM), and the operating
system can collaborate to cache a variable in a register or a processor-local cache, rather
than rely on main memory. Each thread has its own copy of the variable. When one
thread writes to this variable, it’s writing to its copy; other threads are unlikely to see the
update in their copies.

Chapter 1 presented a ThreadDemo application (see Listing 1-3) that exhibits this
problem. For reference, I repeat part of the source code here:

private static BigDecimal result;

public static void main(String[] args)
{
 Runnable r = () ->

{
result = computePi(50000);

};
 Thread t = new Thread(r);

t.start();
try
{
 t.join();

 }
 catch (InterruptedException ie)
 {
 // Should never arrive here because interrupt() is never
 // called.
 }
 System.out.println(result);
}

The class field named result demonstrates the cached variable problem. This field
is accessed by a worker thread that executes result = computePi(50000); in a lambda
context, and by the default main thread when it executes System.out.println(result);.

The worker thread could store computePi()’s return value in its copy of result,
whereas the default main thread could print the value of its copy. The default main thread
might not see the result = computePi(50000); assignment and its copy would remain
at the null default. This value would output instead of result’s string representation (the
computed pi value).

http://dx.doi.org/10.1007/978-1-4842-1700-9_1
http://dx.doi.org/10.1007/978-1-4842-1700-9_1#FPar11

Chapter 2 ■ Synchronization

24

Synchronizing Access to Critical Sections
You can use synchronization to solve the previous thread problems. Synchronization is a
JVM feature that ensures that two or more concurrent threads don’t simultaneously
execute a critical section, which is a code section that must be accessed in a serial (one
thread at a time) manner.

This property of synchronization is known as mutual exclusion because each thread
is mutually excluded from executing in a critical section when another thread is inside
the critical section. For this reason, the lock that the thread acquires is often referred to as
a mutex lock.

Synchronization also exhibits the property of visibility in which it ensures that a
thread executing in a critical section always sees the most recent changes to shared
variables. It reads these variables from main memory on entry to the critical section and
writes their values to main memory on exit.

Synchronization is implemented in terms of monitors, which are concurrency
constructs for controlling access to critical sections, which must execute indivisibly. Each
Java object is associated with a monitor, which a thread can lock or unlock by acquiring
and releasing the monitor’s lock (a token).

■ Note A thread that has acquired a lock doesn’t release this lock when it calls one of
Thread’s sleep() methods.

Only one thread can hold a monitor’s lock. Any other thread trying to lock that
monitor blocks until it can obtain the lock. When a thread exits a critical section, it
unlocks the monitor by releasing the lock.

Locks are designed to be reentrant to prevent deadlock (discussed later). When a
thread attempts to acquire a lock that it’s already holding, the request succeeds.

■ Tip T he java.lang.Thread class declares a static boolean holdsLock(Object o)
method that returns true when the calling thread holds the lock on object o. You will find
this method handy in assertion statements, such as assert Thread.holdsLock(o);.

Java provides the synchronized keyword to serialize thread access to a method or a
block of statements (the critical section).

Chapter 2 ■ Synchronization

25

Using Synchronized Methods
A synchronized method includes the synchronized keyword in its header. For example,
you can use this keyword to synchronize the former getID() method and overcome its
read-modify-write race condition as follows:

public synchronized int getID()
{
 return counter++;
}

When synchronizing on an instance method, the lock is associated with the object
on which the method is called. For example, consider the following ID class:

public class ID
{
 private int counter; // initialized to 0 by default

 public synchronized int getID()
 {
 return counter++;
 }
}

Suppose you specify the following code sequence:

ID id = new ID();
System.out.println(id.getID());

The lock is associated with the ID object whose reference is stored in id. If another
thread called id.getID() while this method was executing, the other thread would have
to wait until the executing thread released the lock.

When synchronizing on a class method, the lock is associated with the java.lang.
Class object corresponding to the class whose class method is called. For example,
consider the following ID class:

public class ID
{
 private static int counter; // initialized to 0 by default

 public static synchronized int getID()
 {
 return counter++;
 }
}

Chapter 2 ■ Synchronization

26

Suppose you specify the following code sequence:

System.out.println(ID.getID());

The lock is associated with ID.class, the Class object associated with ID. If another
thread called ID.getID() while this method was executing, the other thread would have
to wait until the executing thread released the lock.

Using Synchronized Blocks
A synchronized block of statements is prefixed by a header that identifies the object whose
lock is to be acquired. It has the following syntax:

synchronized(object)
{
 /* statements */
}

According to this syntax, object is an arbitrary object reference. The lock is associated
with this object.

I previously excerpted a Chapter 1 application that suffers from the cached variable
problem. You can solve this problem with two synchronized blocks:

Runnable r = () ->
{

synchronized(FOUR)
{

result = computePi(50000);
}

};
// …

synchronized(FOUR)
{
 System.out.println(result);
}

These two blocks identify a pair of critical sections. Each block is guarded by the
same object so that only one thread can execute in one of these blocks at a time. Each
thread must acquire the lock associated with the object referenced by constant FOUR
before it can enter its critical section.

This code fragment brings up an important point about synchronized blocks and
synchronized methods. Two or more threads that access the same code sequence must
acquire the same lock or there will be no synchronization. This implies that the same
object must be accessed. In the previous example, FOUR is specified in two places so that
only one thread can be in either critical section. If I specified synchronized(FOUR) in one
place and synchronized("ABC") in another, there would be no synchronization because
two different locks would be involved.

http://dx.doi.org/10.1007/978-1-4842-1700-9_1

Chapter 2 ■ Synchronization

27

Beware of Liveness Problems
The term liveness refers to something beneficial happening eventually. A liveness failure
occurs when an application reaches a state in which it can make no further progress. In a
single-threaded application, an infinite loop would be an example. Multithreaded
applications face the additional liveness challenges of deadlock, livelock, and starvation:

• Deadlock: Thread 1 waits for a resource that thread 2 is holding
exclusively and thread 2 is waiting for a resource that thread 1 is
holding exclusively. Neither thread can make progress.

• Livelock: Thread x keeps retrying an operation that will always
fail. It cannot make progress for this reason.

• Starvation: Thread x is continually denied (by the scheduler)
access to a needed resource in order to make progress. Perhaps
the scheduler executes higher-priority threads before
lower-priority threads and there is always a higher-priority thread
available for execution. Starvation is also commonly referred to as
indefinite postponement.

Consider deadlock. This pathological problem occurs because of too much
synchronization via the synchronized keyword. If you’re not careful, you might
encounter a situation where locks are acquired by multiple threads, neither thread holds
its own lock but holds the lock needed by some other thread, and neither thread can
enter and later exit its critical section to release its held lock because another thread holds
the lock to that critical section. Listing 2-1’s atypical example demonstrates this scenario.

Listing 2-1.  A Pathological Case of Deadlock

public class DeadlockDemo
{
 private final Object lock1 = new Object();
 private final Object lock2 = new Object();

 public void instanceMethod1()
 {
 synchronized(lock1)
 {

synchronized(lock2)
{

System.out.println("first thread in instanceMethod1");
// critical section guarded first by
// lock1 and then by lock2

}
 }
 }

Chapter 2 ■ Synchronization

28

 public void instanceMethod2()
 {
 synchronized(lock2)
 {
 synchronized(lock1)
 {
 System.out.println("second thread in instanceMethod2");
 // critical section guarded first by
 // lock2 and then by lock1
 }
 }
 }
 
 public static void main(String[] args)
 {
 final DeadlockDemo dld = new DeadlockDemo();
 Runnable r1 = new Runnable()
 {
 @Override
 public void run()
 {
 while(true)
 {
 dld.instanceMethod1();
 try
 {
 Thread.sleep(50);
 }
 catch (InterruptedException ie)
 {
 }
 }
 }
 };
 Thread thdA = new Thread(r1);
 Runnable r2 = new Runnable()
 {
 @Override
 public void run()
 {
 while(true)
 {
 dld.instanceMethod2();
 try
 {
 Thread.sleep(50);
 }

Chapter 2 ■ Synchronization

29

catch (InterruptedException ie)
{
}

}
}

};
 Thread thdB = new Thread(r2);
 thdA.start();
 thdB.start();
 }
}

Listing 2-1’s thread A and thread B call instanceMethod1() and instanceMethod2(),
respectively, at different times. Consider the following execution sequence:

1.	 Thread A calls instanceMethod1(), obtains the lock assigned
to the lock1-referenced object, and enters its outer critical
section (but has not yet acquired the lock assigned to the
lock2-referenced object).

2.	 Thread B calls instanceMethod2(), obtains the lock assigned
to the lock2-referenced object, and enters its outer critical
section (but has not yet acquired the lock assigned to the
lock1-referenced object).

3.	 Thread A attempts to acquire the lock associated with lock2.
The JVM forces the thread to wait outside of the inner critical
section because thread B holds that lock.

4.	 Thread B attempts to acquire the lock associated with lock1.
The JVM forces the thread to wait outside of the inner critical
section because thread A holds that lock.

5.	 Neither thread can proceed because the other thread holds
the needed lock. You have a deadlock situation and the
program (at least in the context of the two threads) freezes up.

Compile Listing 2-1 as follows:

javac DeadlockDemo.java

Run the resulting application as follows:

java DeadlockDemo

You should observe interleaved first thread in instanceMethod1 and second
thread in instanceMethod2 messages on the standard output stream until the
application freezes up because of deadlock.

Chapter 2 ■ Synchronization

30

Although the previous example clearly identifies a deadlock state, it’s often not that
easy to detect deadlock. For example, your code might contain the following circular
relationship among various classes (in several source files):

• Class A’s synchronized method calls class B’s synchronized
method.

• Class B’s synchronized method calls class C’s synchronized
method.

• Class C’s synchronized method calls class A’s synchronized
method.

If thread A calls class A’s synchronized method and thread B calls class C’s
synchronized method, thread B will block when it attempts to call class A’s synchronized
method and thread A is still inside of that method. Thread A will continue to execute until
it calls class C’s synchronized method, and then block. Deadlock is the result.

■ Note  Neither the Java language nor the JVM provides a way to prevent deadlock, and
so the burden falls on you. The simplest way to prevent deadlock is to avoid having either a
synchronized method or a synchronized block call another synchronized method/block.
Although this advice prevents deadlock from happening, it’s impractical because one of your
synchronized methods/blocks might need to call a synchronized method in a Java API, and
the advice is overkill because the synchronized method/block being called might not call any
other synchronized method/block, so deadlock would not occur.

Volatile and Final Variables
You previously learned that synchronization exhibits two properties: mutual exclusion
and visibility. The synchronized keyword is associated with both properties. Java also
provides a weaker form of synchronization involving visibility only, and associates only
this property with the volatile keyword.

Suppose you design your own mechanism for stopping a thread (because you cannot
use Thread’s unsafe stop() methods for this task). Listing 2-2 presents the source code to
a ThreadStopping application that shows how you might accomplish this task.

Listing 2-2.  Attempting to Stop a Thread

public class ThreadStopping
{
 public static void main(String[] args)
 {
 class StoppableThread extends Thread
 {

private boolean stopped; // defaults to false

Chapter 2 ■ Synchronization

31

@Override
public void run()
{

while(!stopped)
System.out.println("running");

}

void stopThread()
{

stopped = true;
}

 }
 StoppableThread thd = new StoppableThread();
 thd.start();
 try
 {

Thread.sleep(1000); // sleep for 1 second
 }
 catch (InterruptedException ie)
 {
 }
 thd.stopThread();
 }
}

Listing 2-2’s main() method declares a local class named StoppableThread that
subclasses Thread. After instantiating StoppableThread, the default main thread starts
the thread associated with this Thread object. It then sleeps for one second and calls
StoppableThread’s stop() method before dying.

StoppableThread declares a stopped instance field variable that’s initialized to
false, a stopThread() method that sets this variable to true, and a run() method whose
while loop checks stopped on each loop iteration to see if its value has changed to true.

Compile Listing 2-2 as follows:

javac ThreadStopping.java

Run the resulting application as follows:

java ThreadStopping

You should observe a sequence of running messages.
When you run this application on a single-processor/single-core machine, you’ll

probably observe the application stopping. You might not see this stoppage on a
multiprocessor machine or a uniprocessor machine with multiple cores where each
processor or core probably has its own cache with its own copy of stopped. When one
thread modifies its copy of this field, the other thread’s copy of stopped isn’t changed.

Chapter 2 ■ Synchronization

32

You might decide to use the synchronized keyword to make sure that only the main
memory copy of stopped is accessed. After some thought, you end up synchronizing
access to a pair of critical sections in the source code that’s presented in Listing 2-3.

Listing 2-3.  Attempting to Stop a Thread via the synchronized Keyword

public class ThreadStopping
{
 public static void main(String[] args)
 {
 class StoppableThread extends Thread
 {

private boolean stopped; // defaults to false

@Override
public void run()
{

synchronized(this)
{

while(!stopped)
System.out.println("running");

}
}

synchronized void stopThread()
{

stopped = true;
}

 }
 StoppableThread thd = new StoppableThread();
 thd.start();
 try
 {

Thread.sleep(1000); // sleep for 1 second
 }
 catch (InterruptedException ie)
 {
 }
 thd.stopThread();
 }
}

Listing 2-3 is a bad idea for two reasons. First, although you only need to solve the
visibility problem, synchronized also solves the mutual exclusion problem (which isn’t
an issue in this application). More importantly, you’ve introduced a serious problem into
the application.

Chapter 2 ■ Synchronization

33

You’ve correctly synchronized access to stopped, but take a closer look at the
synchronized block in the run() method. Notice the while loop. This loop is unending
because the thread executing the loop has acquired the lock to the current StoppableThread
object (via synchronized(this)), and any attempt by the default main thread to call
stopThread() on this object will cause the default main thread to block because the default
main thread needs to acquire the same lock.

You can overcome this problem by using a local variable and assigning stopped’s
value to this variable in a synchronized block, as follows:

public void run()
{
 boolean _stopped = false;
 while (!_stopped)
 {
 synchronized(this)
 {

_stopped = stopped;
 }
 System.out.println("running");
 }
}

However, this solution is messy and wasteful because there is a performance cost
(which is not as great as it used to be) when attempting to acquire the lock, and this task is
being done for every loop iteration. Listing 2-4 reveals a more efficient and cleaner approach.

Listing 2-4.  Attempting to Stop a Thread via the volatile Keyword

public class ThreadStopping
{
 public static void main(String[] args)
 {
 class StoppableThread extends Thread
 {

private volatile boolean stopped; // defaults to false

@Override
public void run()
{

while(!stopped)
System.out.println("running");

}

void stopThread()
{

stopped = true;
}

 }

Chapter 2 ■ Synchronization

34

 StoppableThread thd = new StoppableThread();
 thd.start();
 try
 {

Thread.sleep(1000); // sleep for 1 second
 }
 catch (InterruptedException ie)
 {
 }
 thd.stopThread();
 }
}

Because stopped has been marked volatile, each thread will access the main
memory copy of this variable and not access a cached copy. The application will stop,
even on a multiprocessor-based or a multicore-based machine.

■ Caution  Use volatile only where visibility is an issue. Also, you can only use this
reserved word in the context of field declarations (you’ll receive an error if you try to make a
local variable volatile). Finally, you can declare double and long fields volatile, but
should avoid doing so on 32-bit JVMs because it takes two operations to access a double or
long variable’s value, and mutual exclusion (via synchronized) is required to access their
values safely.

When a field variable is declared volatile, it cannot also be declared final.
However, this isn’t a problem because Java also lets you safely access a final field without
the need for synchronization. To overcome the cached variable problem in DeadlockDemo,
I marked both lock1 and lock2 final, although I could have marked them volatile.

You will often use final to help ensure thread safety in the context of an immutable
(unchangeable) class. Consider Listing 2-5.

Listing 2-5.  Creating an Immutable and Thread-Safe Class with Help from final

import java.util.Set;
import java.util.TreeSet;

public final class Planets
{
 private final Set<String> planets = new TreeSet<>();

 public Planets()
 {
 planets.add("Mercury");
 planets.add("Venus");

Chapter 2 ■ Synchronization

35

 planets.add("Earth");
 planets.add("Mars");
 planets.add("Jupiter");
 planets.add("Saturn");
 planets.add("Uranus");
 planets.add("Neptune");
 }

 public boolean isPlanet(String planetName)
 {
 return planets.contains(planetName);
 }
}

Listing 2-5 presents an immutable Planets class whose objects store sets of planet
names. Although the set is mutable, the design of this class prevents the set from being
modified after the constructor exits. By declaring planets final, the reference stored
in this field cannot be modified. Furthermore, this reference will not be cached so the
cached variable problem goes away.

Java provides a special thread-safety guarantee concerning immutable objects. These
objects can be safely accessed from multiple threads, even when synchronization isn’t
used to publish (expose) their references provided that the following rules are observed:

• Immutable objects must not allow state to be modified.

• All fields must be declared final.

• Objects must be properly constructed so that “this” references
don’t escape from constructors.

The last point is probably confusing, so here is a simple example where this
explicitly escapes from the constructor:

public class ThisEscapeDemo
{
 private static ThisEscapeDemo lastCreatedInstance;

 public ThisEscapeDemo()
 {

lastCreatedInstance = this;
 }
}

Check out “Java theory and practice: Safe construction techniques” at
www.ibm.com/developerworks/library/j-jtp0618/ to learn more about this
common threading hazard.

r

http://www.ibm.com/developerworks/library/j-jtp0618/

Chapter 2 ■ Synchronization

36

EXERCISES

The following exercises are designed to test your understanding of Chapter 2’s
content:

1. Identify the three problems with threads.

2. True or false: When the correctness of a computation depends
on the relative timing or interleaving of multiple threads by the
scheduler, you have a data race.

3. Define synchronization.

4. Identify the two properties of synchronization.

5. How is synchronization implemented?

6. True or false: A thread that has acquired a lock doesn’t release
this lock when it calls one of Thread’s sleep() methods.

7. How do you specify a synchronized method?

8. How do you specify a synchronized block?

9. Define liveness.

10. Identify the three liveness challenges.

11. How does the volatile keyword differ from synchronized?

12. True or false: Java also lets you safely access a final field
without the need for synchronization.

13. Identify the thread problems with the following
CheckingAccount class:

public class CheckingAccount
{
 private int balance;
 public CheckingAccount(int initialBalance)
 {
 balance = initialBalance;
 }
 public boolean withdraw(int amount)
 {
 if (amount <= balance)
 {

try

http://dx.doi.org/10.1007/978-1-4842-1700-9_2

Chapter 2 ■ Synchronization

37

{
Thread.sleep((int) (Math.random() * 200));

}
catch (InterruptedException ie)
{
}
balance -= amount;
return true;

 }
 return false;
 }
 public static void main(String[] args)
 {
 �final CheckingAccount ca = new CheckingAccount(100);
 Runnable r = new Runnable()

{
@Override
public void run()
{

�String name = Thread.currentThread().
getName();
for (int i = 0; i < 10; i++)

�System.out.println (name + "
withdraws $10: " +

ca.withdraw(10));
}

};
 Thread thdHusband = new Thread(r);
 thdHusband.setName("Husband");
 Thread thdWife = new Thread(r);
 thdWife.setName("Wife");
 thdHusband.start();
 thdWife.start();
 }
}

14. Fix the thread problems in the previous CheckingAccount class.

Summary
Developing multithreaded applications is much easier when threads don’t interact,
typically via shared variables. When interaction occurs, race conditions, data races, and
cached variable problems can arise that make an application thread-unsafe.

You can use synchronization to solve race conditions, data races, and cached
variable problems. Synchronization is a JVM feature that ensures that two or more
concurrent threads don’t simultaneously execute a critical section that must be accessed
in a serial manner.

https://en.wikipedia.org/wiki/Thread_%28computer_science%29#Thread%20(computer%20science)

Chapter 2 ■ Synchronization

38

Liveness refers to something beneficial happening eventually. A liveness failure
occurs when an application reaches a state in which it can make no further progress.
Multithreaded applications face the liveness challenges of deadlock, livelock, and
starvation.

Synchronization exhibits two properties: mutual exclusion and visibility. The
synchronized keyword is associated with both properties. Java also provides a weaker
form of synchronization involving visibility only, and associates only this property with
the volatile keyword.

When a field variable is declared volatile, it cannot also be declared final.
However, this isn’t a problem because Java also lets you safely access a final field without
the need for synchronization. You will often use final to help ensure thread safety in the
context of an immutable class.

Chapter 3 presents waiting and notification.

http://dx.doi.org/10.1007/978-1-4842-1700-9_3

39

Chapter 3

Waiting and Notification

Java provides a small API that supports communication between threads. Using this API,
one thread waits for a condition (a prerequisite for continued execution) to exist. In the
future, another thread will create the condition and then notify the waiting thread. In this
chapter, I introduce you to this API.

Wait-and-Notify API Tour
The java.lang.Object class provides a Wait-and-Notify API that consists of three wait()
methods, one notify() method, and one notifyAll() method. The wait() methods
wait for a condition to exist; the notify() and notifyAll() methods notify waiting
threads when the condition exists:

• void wait(): Cause the current thread to wait until another
thread invokes the notify() or notifyAll() method for this
object, or for some other thread to interrupt the current thread
while waiting.

• void wait(long timeout): Cause the current thread to wait until
another thread invokes the notify() or notifyAll() method for
this object, or for the specified amount of time measured in
milliseconds (identified by timeout) to pass, or for some other
thread to interrupt the current thread while waiting. This method
throws java.lang.IllegalArgumentException when timeout is
negative.

• void wait(long timeout, int nanos): Cause the current
thread to wait until another thread invokes the notify() or
notifyAll() method for this object, or for the specified amount
of time measured in milliseconds (identified by timeout) plus
nanoseconds (identified by nanos) to pass, or for some other
thread to interrupt the current thread while waiting. This method
throws IllegalArgumentException when timeout is negative,
nanos is negative, or nanos is greater than 999999.

https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#notify--
https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#notifyAll--
https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#notify--
https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#notifyAll--
https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#notify--
https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#notifyAll--

Chapter 3 ■ Waiting and Notification

40

• void notify(): Wake up a single thread that’s waiting on this
object’s monitor. If any threads are waiting on this object, one of
them is chosen to be awakened. The choice is arbitrary and
occurs at the discretion of the implementation. The awakened
thread will not be able to proceed until the current thread
relinquishes the lock on this object. The awakened thread will
compete in the usual manner with any other threads that might
be actively competing to synchronize on this object; for example,
the awakened thread enjoys no reliable privilege or disadvantage
in being the next thread to lock this object.

• void notifyAll(): Wake up all threads that are waiting on this
object’s monitor. The awakened threads will not be able to
proceed until the current thread relinquishes the lock on this
object. The awakened threads will compete in the usual manner
with any other threads that might be actively competing to
synchronize on this object; for example, the awakened threads
enjoy no reliable privilege or disadvantage in being the next
thread to lock this object.

The three wait() methods throw java.lang.InterruptedException when any
thread interrupted the current thread before or while the current thread was waiting for
a notification. The interrupted status of the current thread is cleared when this exception
is thrown.

■ Note A thread releases ownership of the monitor associated with the object whose
wait() method is called.

This API leverages an object’s condition queue, which is a data structure that stores
threads waiting for a condition to exist. The waiting threads are known as the wait set.
Because the condition queue is tightly bound to an object’s lock, all five methods must be
called from within a synchronized context (the current thread must be the owner of the
object’s monitor); otherwise, java.lang.IllegalMonitorStateException is thrown.

The following code/pseudocode fragment demonstrates the noargument wait()
method:

synchronized(obj)
{
 while (<condition does not hold>)
 obj.wait();

 // Perform an action that's appropriate to condition.
}

Chapter 3 ■ Waiting and Notification

41

The wait() method is called from within a synchronized block that synchronizes on
the same object as the object on which wait() is called (obj). Because of the possibility
of spurious wakeups (a thread wakes up without being notified, interrupted, or timing
out), wait() is called from within a while loop that tests for the condition holding and
reexecutes wait() when the condition still doesn’t hold. After the while loop exits, the
condition exists and an action appropriate to the condition can be performed.

■ Caution N ever call a wait() method outside of a loop. The loop tests the condition
before and after the wait() call. Testing the condition before calling wait() ensures
liveness. If this test was not present, and if the condition held and notify() had been
called prior to wait() being called, it’s unlikely that the waiting thread would ever wake
up. Retesting the condition after calling wait() ensures safety. If retesting didn’t occur, and
if the condition didn’t hold after the thread had awakened from the wait() call (perhaps
another thread called notify() accidentally when the condition didn’t hold), the thread
would proceed to destroy the lock’s protected invariants.

The following code fragment demonstrates the notify() method, which notifies the
waiting thread in the previous example:

synchronized(obj)
{
 // Set the condition.

 obj.notify();
}

Notice that notify() is called from a critical section guarded by the same object
(obj) as the critical section for the wait() method. Also, notify() is called using the
same obj reference. Follow this pattern and you shouldn’t get into trouble.

■ Note T here has been much discussion about which notification method is better:
notify() or notifyAll(). For example, check out “Difference between notify() and
notifyAll()” (http://stackoverflow.com/questions/14924610/difference-between-
notify-and-notifyall). If you’re wondering which method to use, I would use notify() in
an application where there are only two threads, and where either thread occasionally waits
and needs to be notified by the other thread. Otherwise, I would use notifyAll().

http://stackoverflow.com/questions/14924610/difference-between-notify-and-notifyall
http://stackoverflow.com/questions/14924610/difference-between-notify-and-notifyall

Chapter 3 ■ Waiting and Notification

42

Producers and Consumers
A classic example of thread communication involving conditions is the relationship
between a producer thread and a consumer thread. The producer thread produces data
items to be consumed by the consumer thread. Each produced data item is stored in a
shared variable.

Imagine that the threads are running at different speeds. The producer might
produce a new data item and record it in the shared variable before the consumer
retrieves the previous data item for processing. Also, the consumer might retrieve the
contents of the shared variable before a new data item is produced.

To overcome those problems, the producer thread must wait until it’s notified that
the previously produced data item has been consumed, and the consumer thread must
wait until it’s notified that a new data item has been produced. Listing 3-1 shows you how
to accomplish this task via wait() and notify().

Listing 3-1.  The Producer-Consumer Relationship Version 1

public class PC
{
 public static void main(String[] args)
 {
 Shared s = new Shared();
 new Producer(s).start();
 new Consumer(s).start();
 }
}

class Shared
{
 private char c;
 private volatile boolean writeable = true;

 synchronized void setSharedChar(char c)
 {
 while (!writeable)

try
{

wait();
}
catch (InterruptedException ie)
{
}

 this.c = c;
 writeable = false;
 notify();
 }

Chapter 3 ■ Waiting and Notification

43

 synchronized char getSharedChar()
 {
 while (writeable)

try
{

wait();
}
catch (InterruptedException ie)
{
}

 writeable = true;
 notify();
 return c;
 }
}

class Producer extends Thread
{
 private final Shared s;

 Producer(Shared s)
 {
 this.s = s;
 }

 @Override
 public void run()
 {
 for (char ch = 'A'; ch <= 'Z'; ch++)

{
 s.setSharedChar(ch);

System.out.println(ch + " produced by producer.");
 }
 }
}
class Consumer extends Thread
{
 private final Shared s;

 Consumer(Shared s)
 {
 this.s = s;
 }

Chapter 3 ■ Waiting and Notification

44

 @Override
 public void run()
 {
 char ch;
 do
 {

ch = s.getSharedChar();
System.out.println(ch + " consumed by consumer.");

 }
 while (ch != 'Z');
 }
}

This application creates a Shared object and two threads that get a copy of the
object’s reference. The producer calls the object’s setSharedChar() method to save each
of 26 uppercase letters; the consumer calls the object’s getSharedChar() method to
acquire each letter.

The writeable instance field tracks two conditions: the producer waiting on the
consumer to consume a data item and the consumer waiting on the producer to produce
a new data item. It helps coordinate execution of the producer and consumer. The
following scenario, where the consumer executes first, illustrates this coordination:

1.	 The consumer executes s.getSharedChar() to retrieve a
letter.

2.	 Inside of that synchronized method, the consumer calls
wait() because writeable contains true. The consumer now
waits until it receives notification from the producer.

3.	 The producer eventually executes s.setSharedChar(ch);.

4.	 When the producer enters that synchronized method (which
is possible because the consumer released the lock inside of
the wait() method prior to waiting), the producer discovers
writeable’s value to be true and doesn’t call wait().

5.	 The producer saves the character, sets writeable to
false (which will cause the producer to wait on the next
setSharedChar() call when the consumer has not consumed
the character by that time), and calls notify() to awaken the
consumer (assuming the consumer is waiting).

6.	 The producer exits setSharedChar(char c).

7.	 The consumer wakes up (and reacquires the lock), sets
writeable to true (which will cause the consumer to wait
on the next getSharedChar() call when the producer has not
produced a character by that time), notifies the producer to
awaken that thread (assuming the producer is waiting), and
returns the shared character.

Chapter 3 ■ Waiting and Notification

45

Compile Listing 3-1 as follows:

javac PC.java

Run the resulting application as follows:

java PC

You should observe output such as the following excerpt during one run:

W produced by producer.
W consumed by consumer.
X produced by producer.
X consumed by consumer.
Y produced by producer.
Y consumed by consumer.
Z produced by producer.
Z consumed by consumer.

Although the synchronization works correctly, you might observe multiple
producing messages before multiple consuming messages:

A produced by producer.
B produced by producer.
A consumed by consumer.
B consumed by consumer.

Also, you might observe a consuming message before a producing message:

V consumed by consumer.
V produced by producer.

Either strange output order doesn’t mean that the producer and consumer threads
aren’t synchronized. Instead, it’s the result of the call to setSharedChar() followed by
its companion System.out.println() method call not being synchronized, and by the
call to getSharedChar() followed by its companion System.out.println() method
call not being synchronized. The output order can be corrected by wrapping each of
these method call pairs in a synchronized block that synchronizes on the Shared object
referenced by s. Listing 3-2 presents this enhancement.

Chapter 3 ■ Waiting and Notification

46

Listing 3-2.  The Producer-Consumer Relationship Version 2

public class PC
{
 public static void main(String[] args)
 {
 Shared s = new Shared();
 new Producer(s).start();
 new Consumer(s).start();
 }
}

class Shared
{
 private char c;
 private volatile boolean writeable = true;

 synchronized void setSharedChar(char c)
 {
 while (!writeable)

try
{

wait();
}
catch (InterruptedException ie)
{
}

 this.c = c;
 writeable = false;
 notify();
 }

 synchronized char getSharedChar()
 {
 while (writeable)

try
{

wait();
}
catch (InterruptedException ie)
{
}

 writeable = true;
 notify();
 return c;
 }
}

Chapter 3 ■ Waiting and Notification

47

class Producer extends Thread
{
 private final Shared s;

 Producer(Shared s)
 {
 this.s = s;
 }

 @Override
 public void run()
 {
 for (char ch = 'A'; ch <= 'Z'; ch++)
 {

synchronized(s)
{
 s.setSharedChar(ch);

System.out.println(ch + " produced by producer.");
}

 }
 }
}
class Consumer extends Thread
{
 private final Shared s;

 Consumer(Shared s)
 {
 this.s = s;
 }

 @Override
 public void run()
 {
 char ch;
 do
 {

synchronized(s)
{

ch = s.getSharedChar();
System.out.println(ch + " consumed by consumer.");

}
 }
 while (ch != 'Z');
 }
}

Chapter 3 ■ Waiting and Notification

48

Compile Listing 3-2 (javac PC.java) and run this application (java PC). Its output
should always appear in the same alternating order as shown next (only the first few lines
are shown for brevity):

A produced by producer.
A consumed by consumer.
B produced by producer.
B consumed by consumer.
C produced by producer.
C consumed by consumer.
D produced by producer.
D consumed by consumer.

EXERCISES

The following exercises are designed to test your understanding of Chapter 3’s
content:

1. Define condition.

2. Describe the API that supports conditions.

3. True or false: The wait() methods are interruptible.

4. What method would you call to wake up all threads that are
waiting on an object’s monitor?

5. True or false: A thread that has acquired a lock doesn’t release
this lock when it calls one of Object’s wait() methods.

6. Define condition queue.

7. What happens when you call any of the API’s methods outside
of a synchronized context?

8. Define spurious wakeup.

9. Why should you call a wait() method in a loop context?

10. Create an Await application that demonstrates a higher-level
concurrency construct known as a gate. This construct permits
multiple threads to arrive at a synchronization point (the gate)
and wait until the gate is unlocked by another thread so that
they can all proceed.

http://dx.doi.org/10.1007/978-1-4842-1700-9_3

Chapter 3 ■ Waiting and Notification

49

The main() method first creates a runnable for the threads that will wait at the
gate. The runnable prints a message stating that the thread is waiting, increments
a counter, sleeps for 2 seconds, and waits (make sure to account for spurious
wakeups). Upon wakeup, the thread outputs a message stating that the thread is
terminating. main() then creates three Thread objects and starts three threads to
execute the runnable. Next, main() creates another runnable that repeatedly sleeps
for 200 milliseconds until the counter equals 3, at which point it notifies all waiting
threads. Finally, main() creates a Thread object for the second runnable and starts
the thread.

Summary
Java provides an API that supports communication between threads. This API consists of
Object’s three wait() methods, one notify() method, and one notifyAll() method.
The wait() methods wait for a condition to exist; notify() and notifyAll() notify
waiting threads when the condition exists.

The wait(), notify(), and notifyAll() methods are called from within a
synchronized block that synchronizes on the same object as the object on which they are
called. Because of spurious wakeups, wait() is called from a while loop that reexecutes
wait() while the condition doesn’t hold.

A classic example of thread communication involving conditions is the relationship
between a producer thread and a consumer thread. The producer thread produces data
items to be consumed by the consumer thread. Each produced data item is stored in a
shared variable.

To overcome problems such as consuming a data item that hasn’t been produced,
the producer thread must wait until it’s notified that the previously produced data item
has been consumed, and the consumer thread must wait until it’s notified that a new data
item has been produced.

Chapter 4 presents additional thread capabilities.

http://dx.doi.org/10.1007/978-1-4842-1700-9_4

51

Chapter 4

Additional Thread
Capabilities

Chapters 1 through 3 introduced you to the java.lang.Thread class and java.lang.
Runnable interface, to synchronization, and to waiting and notification. In this chapter, I
complete my coverage of thread basics by introducing you to thread groups and thread-
local variables. Also, I present the Timer Framework, which leverages Thread behind the
scenes to simplify timer-oriented tasks.

Thread Groups
While exploring the Thread class, you’ve probably encountered references to the
java.lang.ThreadGroup class in constructors such as Thread(ThreadGroup group,
Runnable target), and in methods such as static int activeCount() and static int
enumerate(Thread[] tarray).

The JDK documentation for ThreadGroup states that a thread group “represents a set
of threads. In addition, a thread group can also include other thread groups. The thread
groups form a tree in which every thread group except the initial thread group has a
parent.”

Using a ThreadGroup object, you can perform an operation on all contained Thread
objects. For example, assuming a thread group referenced by variable tg, tg.suspend();
suspends all of the threads in the thread group. Thread groups simplify the management
of many threads.

Although ThreadGroup appears to be a very useful, you should largely avoid this class
for the following reasons:

• The most useful ThreadGroup methods are void suspend(),
void resume(), and void stop(). These methods have been
deprecated because, like their Thread counterparts (to which
these methods delegate for each thread in the thread group), they
are prone to deadlock and other problems.

http://dx.doi.org/10.1007/978-1-4842-1700-9_1
http://dx.doi.org/10.1007/978-1-4842-1700-9_3
https://docs.oracle.com/javase/8/docs/api/java/lang/ThreadGroup.html#class%20in%20java.lang
https://docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html#interface%20in%20java.lang
https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html#class%20in%20java.lang

Chapter 4 ■ Additional Thread Capabilities

52

• ThreadGroup isn’t thread-safe. For example, to obtain a count of
the active threads in a thread group, you would call ThreadGroup’s
int activeCount() method. You would then use this value to
size the array that you pass to one of ThreadGroup’s enumerate()
methods. However, there is no guarantee that the count will
remain accurate because, between the time you’ve created the
array and the time you pass it to enumerate(), this count could
change because of thread creation and termination. If the array
is too small, enumerate() silently ignores extra threads. The
same can be said of Thread’s activeCount() and enumerate()
methods, which delegate to the ThreadGroup methods for the
current thread. This problem is an example of the “time of check
to time of use” (https://en.wikipedia.org/wiki/Time_of_
check_to_time_of_use) class of software bug. (This bug also
rears its ugly head in scenarios where you need to check for file
existence before performing an operation on the file. Between the
file check and the operation, the file might be deleted or created.)

However, you should still know about ThreadGroup because of its contribution in
handling exceptions that are thrown while a thread is executing. Listing 4-1 sets the
stage for learning about exception handling by presenting a run() method that attempts
to divide an integer by 0, which results in a thrown java.lang.ArithmeticException
object.

Listing 4-1.  Throwing an Exception from the run() Method

public class ExceptionThread
{
 public static void main(String[] args)
 {
 Runnable r = new Runnable()

{
@Override
public void run()
{

int x = 1 / 0; // Line 10
}

};
 Thread thd = new Thread(r);
 thd.start();
 }
}

The default main thread creates a runnable that deliberately throws an
ArithmeticException object by attempting to divide an integer by integer 0.

Compile Listing 4-1 as follows:

javac ExceptionThread.java

https://en.wikipedia.org/wiki/Time_of_check_to_time_of_use
https://en.wikipedia.org/wiki/Time_of_check_to_time_of_use

Chapter 4 ■ Additional Thread Capabilities

53

Run the resulting application as follows:

java ExceptionThread

You’ll see an exception trace that identifies the thrown instance of the
ArithmeticException class:

Exception in thread "Thread-0" java.lang.ArithmeticException: / by zero
at ExceptionThread$1.run(ExceptionThread.java:10)
at java.lang.Thread.run(Thread.java:745)

When an exception is thrown out of the run() method, the thread terminates and the
following activities take place:

• The Java virtual machine (JVM) looks for an instance of Thread.
UncaughtExceptionHandler installed via Thread’s void setUncau
ghtExceptionHandler(Thread.UncaughtExceptionHandler eh)
method. When this handler is found, it passes execution to the
instance’s void uncaughtException(Thread t, Throwable e)
method, where t identifies the Thread object of the thread that
threw the exception, and e identifies the thrown exception or
error—perhaps a java.lang.OutOfMemoryError object was
thrown. If uncaughtException() throws an exception/error, the
exception/error is ignored by the JVM.

• Assuming that setUncaughtExceptionHandler() was not called
to install a handler, the JVM passes control to the associated
ThreadGroup object’s uncaughtException(Thread t, Throwable e)
method. Assuming that ThreadGroup was not extended and that
its uncaughtException() method was not overridden to handle
the exception, uncaughtException() passes control to the
parent ThreadGroup object’s uncaughtException() method
when a parent ThreadGroup is present. Otherwise, it checks to
see if a default uncaught exception handler has been installed
(via Thread’s static void setDefaultUncaught
ExceptionHandler(Thread.UncaughtExceptionHandler
handler) method). If a default uncaught exception handler has
been installed, its uncaughtException() method is called with
the same two arguments. Otherwise, uncaughtException()
checks its Throwable argument to determine if it’s an instance
of java.lang.ThreadDeath. If so, nothing special is done.
Otherwise, as Listing 4-1’s exception message shows, a message
containing the thread’s name, as returned from the thread’s
getName() method, and a stack backtrace, using the Throwable
argument’s printStackTrace() method, is printed to the
standard error stream.

Chapter 4 ■ Additional Thread Capabilities

54

Listing 4-2 demonstrates Thread’s setUncaughtExceptionHandler() and
setDefaultUncaughtExceptionHandler() methods.

Listing 4-2.  Demonstrating Uncaught Exception Handlers

public class ExceptionThread
{
 public static void main(String[] args)
 {
 Runnable r = new Runnable()

{
@Override
public void run()
{

int x = 1 / 0;
}

};
 Thread thd = new Thread(r);
 Thread.UncaughtExceptionHandler uceh;
 uceh = new Thread.UncaughtExceptionHandler()

{
@Override
public void uncaughtException(Thread t, Throwable e)
{

System.out.println("Caught throwable " + e +
" for thread " + t);

}
};

 thd.setUncaughtExceptionHandler(uceh);
 uceh = new Thread.UncaughtExceptionHandler()

{
@Override
public void uncaughtException(Thread t, Throwable e)
{

System.out.println("Default uncaught exception handler");
System.out.println("Caught throwable " + e +

" for thread " + t);
}

};
 thd.setDefaultUncaughtExceptionHandler(uceh);
 thd.start();
 }
}

Chapter 4 ■ Additional Thread Capabilities

55

Compile Listing 4-2 (javac ExceptionThread.java) and run the resulting
application (java ExceptionThread). You should observe this output:

Caught throwable java.lang.ArithmeticException: / by zero for thread
Thread[Thread-0,5,main]

You will not also see the default uncaught exception handler’s output because the
default handler isn’t called. To see that output, you must comment out thd.setUncaught
ExceptionHandler(uceh);. If you also comment out thd.setDefaultUncaughtException
Handler(uceh);, you will see Listing 4-1’s output.

Thread-Local Variables
You will sometimes want to associate per-thread data (such a user ID) with a thread.
Although you can accomplish this task with a local variable, you can only do so while the
local variable exists. You could use an instance field to keep this data around longer, but
then you would have to deal with synchronization. Thankfully, Java supplies the java.
lang.ThreadLocal class as a simple (and very handy) alternative.

Each ThreadLocal instance describes a thread-local variable, which is a variable that
provides a separate storage slot to each thread that accesses the variable. You can think of
a thread-local variable as a multislot variable in which each thread can store a different
value in the same variable. Each thread sees only its value and is unaware of other threads
having their own values in this variable.

ThreadLocal is generically declared as ThreadLocal<T>, where T identifies the type
of value that is stored in the variable. This class declares the following constructor and
methods:

• ThreadLocal(): Create a new thread-local variable.

• T get(): Return the value in the calling thread’s storage slot. If an
entry doesn’t exist when the thread calls this method, get() calls
initialValue().

• T initialValue(): Create the calling thread’s storage slot and
store an initial (default) value in this slot. The initial value defaults
to null. You must subclass ThreadLocal and override this
protected method to provide a more suitable initial value.

• void remove(): Remove the calling thread’s storage slot. If this
method is followed by get() with no intervening set(), get()
calls initialValue().

• void set(T value): Set the value of the calling thread’s storage
slot to value.

Chapter 4 ■ Additional Thread Capabilities

56

Listing 4-3 shows how to use ThreadLocal to associate different user IDs with two
threads.

Listing 4-3.  Different User IDs for Different Threads

public class ThreadLocalDemo
{
 private static volatile ThreadLocal<String> userID =
 new ThreadLocal<String>();

 public static void main(String[] args)
 {
 Runnable r = new Runnable()

{
@Override
public void run()
{

String name = Thread.currentThread().getName();
if (name.equals("A"))

userID.set("foxtrot");
else

userID.set("charlie");
System.out.println(name + " " + userID.get());

}
};

 Thread thdA = new Thread(r);
 thdA.setName("A");
 Thread thdB = new Thread(r);
 thdB.setName("B");
 thdA.start();
 thdB.start();
 }
}

After instantiating ThreadLocal and assigning the reference to a volatile class
field named userID (the field is volatile because it’s accessed by different threads,
which might execute on a multiprocessor/multicore machine—I could have specified
final instead), the default main thread creates two more threads that store different
java.lang.String objects in userID and output their objects.

Compile Listing 4-3 as follows:

javac ThreadLocalDemo.java

Run the resulting application as follows:

java ThreadLocalDemo

Chapter 4 ■ Additional Thread Capabilities

57

You should observe the following output (possibly not in this order):

A foxtrot
B charlie

Values stored in thread-local variables are not related. When a new thread is created,
it gets a new storage slot containing initialValue()’s value. Perhaps you would prefer to
pass a value from a parent thread, a thread that creates another thread, to a child thread,
the created thread. You accomplish this task with InheritableThreadLocal.

InheritableThreadLocal is a subclass of ThreadLocal. As well as declaring an
InheritableThreadLocal() constructor, this class declares the following protected
method:

• T childValue(T parentValue): Calculate the child’s initial value
as a function of the parent’s value at the time the child thread is
created. This method is called from the parent thread before the
child thread is started. The method returns the argument passed
to parentValue and should be overridden when another value is
desired.

Listing 4-4 shows how to use InheritableThreadLocal to pass a parent thread’s
Integer object to a child thread.

Listing 4-4.  Passing an Object from a Parent Thread to a Child Thread

public class InheritableThreadLocalDemo
{
 private static final InheritableThreadLocal<Integer> intVal =
 new InheritableThreadLocal<Integer>();

 public static void main(String[] args)
 {
 Runnable rP = () ->

{
intVal.set(new Integer(10));
Runnable rC = () ->

{
Thread thd = Thread.currentThread();
String name = thd.getName();
System.out.printf("%s %d%n", name,

intVal.get());
};

Thread thdChild = new Thread(rC);
thdChild.setName("Child");
thdChild.start();

};
 new Thread(rP).start();
 }
}

Chapter 4 ■ Additional Thread Capabilities

58

After instantiating InheritableThreadLocal and assigning it to a final class field
(I could have used volatile instead) named intVal, the default main thread creates a
parent thread, which stores a java.lang.Integer object containing 10 in intVal. The
parent thread creates a child thread, which accesses intVal and retrieves its parent
thread’s Integer object.

Compile Listing 4-4 as follows:

javac InheritableThreadLocalDemo.java

Run the resulting application as follows:

java InheritableThreadLocalDemo

You should observe the following output:

Child 10

■ Note  For more insight into ThreadLocal and how it’s implemented, check out
Patson Luk’s “A Painless Introduction to Java’s ThreadLocal Storage” blog post
(http://java.dzone.com/articles/painless-introduction-javas-threadlocal-
storage).

Timer Framework
It’s often necessary to schedule a task (a unit of work) for one-shot execution (the task
runs only once) or for repeated execution at regular intervals. For example, you might
schedule an alarm clock task to run only once (perhaps to wake you up in the morning)
or schedule a nightly backup task to run at regular intervals. With either kind of task, you
might want the task to run at a specific time in the future or after an initial delay.

You can use Thread and related types to build a framework that accomplishes task
scheduling. However, Java 1.3 introduced a more convenient and simpler alternative in
the form of the java.util.Timer and java.util.TimerTask classes.

Timer lets you schedule TimerTasks for future execution (in a sequential manner) on
a background thread, which is known as the task-execution thread. Timer tasks may be
scheduled for one-shot execution or for repeated execution at regular intervals.

Listing 4-5 presents an application that demonstrates one-shot execution of a
timer task.

http://java.dzone.com/articles/painless-introduction-javas-threadlocal-storage
http://java.dzone.com/articles/painless-introduction-javas-threadlocal-storage

Chapter 4 ■ Additional Thread Capabilities

59

Listing 4-5.  Demonstrating One-Shot Execution

import java.util.Timer;
import java.util.TimerTask;

public class TimerDemo
{
 public static void main(String[] args)
 {
 TimerTask task = new TimerTask()

{
@Override
public void run()
{

System.out.println("alarm going off");
System.exit(0);

}
};

 Timer timer = new Timer();
 timer.schedule(task, 2000); // Execute one-shot timer task after

// 2-second delay.
 }
}

Listing 4-5 describes an application whose default main thread first instantiates a
TimerTask anonymous subclass, whose overriding run() method outputs an alarm
message, and then executes System.exit(0); because the application won’t terminate
until the nondaemon task-execution thread terminates. The default main thread then
instantiates Timer and invokes its schedule() method with this task as the first
argument. The second argument schedules this task for one-shot execution after an
initial delay of 2000 milliseconds.

Compile Listing 4-5 as follows:

javac TimerDemo.java

Run the resulting application as follows:

java TimerDemo

You should observe output that’s similar to the following output:

alarm going off

Chapter 4 ■ Additional Thread Capabilities

60

Listing 4-6 presents an application that demonstrates repeated execution at regular
intervals of a timer task.

Listing 4-6.  Displaying the Current Millisecond Value at Approximately One-Second
Intervals

import java.util.Timer;
import java.util.TimerTask;

public class TimerDemo
{
 public static void main(String[] args)
 {
 TimerTask task = new TimerTask()

{
@Override
public void run()
{

System.out.println(System.currentTimeMillis());
}

};
 Timer timer = new Timer();
 timer.schedule(task, 0, 1000);
 }
}

Listing 4-6 describes an application whose default main thread first instantiates a
TimerTask anonymous subclass, whose overriding run() method outputs the current
time (in milliseconds). The default main thread then instantiates Timer and invokes its
schedule() method with this task as the first argument. The second and third arguments
schedule this task for repeated execution after no initial delay and every 1000 milliseconds.

Compile Listing 4-6 (javac TimerDemo.java) and run the resulting application (java
TimerDemo). You should observe the truncated output here:

1445655847902
1445655848902
1445655849902
1445655850902
1445655851902
1445655852902

Timer in Depth
The previous applications ran their tasks on a nondaemon task-execution thread. Also,
one task ran as a one-shot task, whereas the other task ran repeatedly. To understand how
these choices were made, you need to learn more about Timer.

Chapter 4 ■ Additional Thread Capabilities

61

■ Note  Timer scales to large numbers of concurrently scheduled timer tasks (thousands
of tasks should present no problem). Internally, this class uses a binary heap to represent its
timer task queue so that the cost to schedule a timer task is O(log n), where n is the number
of concurrently scheduled timer tasks. To learn more about the O( ) notation, check out
Wikipedia’s “Big O notation” topic (http://en.wikipedia.org/wiki/Big_O_notation).

Timer declares the following constructors:

• Timer(): Create a new timer whose task-execution thread doesn’t
run as a daemon thread.

• Timer(boolean isDaemon): Create a new timer whose task-
execution thread may be specified to run as a daemon (pass true
to isDaemon). A daemon thread is called for scenarios where the
timer will be used to schedule repeating “maintenance activities,”
which must be performed for as long as the application is
running, but shouldn’t prolong the application’s lifetime.

• Timer(String name): Create a new timer whose task-execution
thread has the specified name. The task-execution thread doesn’t
run as a daemon thread. This constructor throws java.lang.
NullPointerException when name is null.

• Timer(String name, boolean isDaemon): Create a new timer
whose task-execution thread has the specified name and which
may run as a daemon thread. This constructor throws
NullPointerException when name is null.

Timer also declares the following methods:

• void cancel(): Terminate this timer, discarding any currently
scheduled timer tasks. This method doesn’t interfere with a
currently executing timer task (when it exists). After a timer has
been terminated, its execution thread terminates gracefully and
no more timer tasks may be scheduled on it. (Calling cancel()
from within the run() method of a timer task that was invoked by
this timer absolutely guarantees that the ongoing task execution
is the last task execution that will ever be performed by this
timer.) This method may be called repeatedly; the second and
subsequent calls have no effect.

• int purge(): Remove all canceled timer tasks from this timer’s
queue and return the number of timer tasks that have been
removed. Calling purge() has no effect on the behavior of the
timer, but eliminates references to the canceled timer tasks
from the queue. When there are no external references to these
timer tasks, they become eligible for garbage collection. (Most
applications won’t need to call this method, which is designed

http://en.wikipedia.org/wiki/Big_O_notation

Chapter 4 ■ Additional Thread Capabilities

62

for use by the rare application that cancels a large number of
timer tasks. Calling purge() trades time for space: this method’s
runtime may be proportional to n + c * log n, where n is the
number of timer tasks in the queue and c is the number of
canceled timer tasks.) It’s permissible to call purge() from within
a timer task scheduled on this timer.

• void schedule(TimerTask task, Date time): Schedule task
for execution at time. When time is in the past, task is scheduled
for immediate execution. This method throws java.lang.
IllegalArgumentException when time.getTime() is negative;
java.lang.IllegalStateException when task was already
scheduled or canceled, the timer was canceled, or the task-
execution thread terminated; and NullPointerException when
task or time is null.

• void schedule(TimerTask task, Date firstTime, long
period): Schedule task for repeated fixed-delay execution,
beginning at firstTime. Subsequent executions take place at
approximately regular intervals, separated by period milliseconds.
In fixed-delay execution, each execution is scheduled relative to
the actual execution time of the previous execution. When an
execution is delayed for any reason (such as garbage collection),
subsequent executions are also delayed. In the long run, the
frequency of execution will generally be slightly lower than the
reciprocal of period (assuming the system clock underlying
Object.wait(long) is accurate). As a consequence, when the
scheduled firstTime value is in the past, task is scheduled for
immediate execution. Fixed-delay execution is appropriate for
recurring tasks that require “smoothness.” In other words, this form
of execution is appropriate for tasks where it’s more important to
keep the frequency accurate in the short run than in the long run.
This includes most animation tasks, such as blinking a cursor at
regular intervals. It also includes tasks wherein regular activity
is performed in response to human input, such as automatically
repeating a character for as long as a key is held down. This method
throws IllegalArgumentException when firstTime.getTime()
is negative or period is negative or zero; IllegalStateException
when task was already scheduled or canceled, the timer
was canceled, or the task-execution thread terminated; and
NullPointerException when task or firstTime is null.

• void schedule(TimerTask task, long delay): Schedule
task for execution after delay milliseconds. This method
throws IllegalArgumentException when delay is negative
or delay + System.currentTimeMillis() is negative;
IllegalStateException when task was already scheduled or
canceled, the timer was canceled, or the task-execution thread
terminated; and NullPointerException when task is null.

Chapter 4 ■ Additional Thread Capabilities

63

• void schedule(TimerTask task, long delay, long period):
Schedule task for repeated fixed-delay execution, beginning
after delay milliseconds. Subsequent executions take place at
approximately regular intervals separated by period milliseconds.
This method throws IllegalArgumentException when delay is
negative, delay + System.currentTimeMillis() is negative, or
period is negative or zero; IllegalStateException when task
was already scheduled or canceled, the timer was canceled, or the
task-execution thread terminated; and NullPointerException
when task is null.

• void scheduleAtFixedRate(TimerTask task, Date
firstTime, long period): Schedule task for repeated fixed-
rate execution, beginning at time. Subsequent executions take
place at approximately regular intervals, separated by period
milliseconds. In fixed-rate execution, each execution is scheduled
relative to the scheduled execution time of the initial execution.
When an execution is delayed for any reason (such as garbage
collection), two or more executions will occur in rapid succession
to “catch up.” In the long run, the frequency of execution will
be exactly the reciprocal of period (assuming the system clock
underlying Object.wait(long) is accurate). As a consequence,
when the scheduled firstTime is in the past, any “missed”
executions will be scheduled for immediate “catch up” execution.
Fixed-rate execution is appropriate for recurring activities that
are sensitive to absolute time (such as ringing a chime every
hour on the hour, or running scheduled maintenance every day
at a particular time). It’s also appropriate for recurring activities
where the total time to perform a fixed number of executions
is important, such as a countdown timer that ticks once every
second for 10 seconds. Finally, fixed-rate execution is appropriate
for scheduling multiple repeating timer tasks that must remain
synchronized with respect to one another. This method throws
IllegalArgumentException when firstTime.getTime() is
negative, or period is negative or zero; IllegalStateException
when task was already scheduled or canceled, the timer
was canceled, or the task-execution thread terminated; and
NullPointerException when task or firstTime is null.

• void scheduleAtFixedRate(TimerTask task, long delay,
long period): Schedule task for repeated fixed-rate execution,
beginning after delay milliseconds. Subsequent executions take
place at approximately regular intervals, separated by period
milliseconds. This method throws IllegalArgumentException
when delay is negative, delay + System.currentTimeMillis()
is negative, or period is negative or zero; IllegalStateException
when task was already scheduled or canceled, the timer
was canceled, or the task-execution thread terminated; and
NullPointerException when task is null.

Chapter 4 ■ Additional Thread Capabilities

64

After the last live reference to a Timer object goes away and all outstanding timer
tasks have completed execution, the timer’s task-execution thread terminates gracefully
(and becomes subject to garbage collection). However, this can take arbitrarily long to
occur. (By default, the task-execution thread doesn’t run as a daemon thread, so it’s
capable of preventing an application from terminating.) When an application wants to
terminate a timer’s task-execution thread rapidly, the application should invoke Timer’s
cancel() method.

When the timer’s task-execution thread terminates unexpectedly, for example,
because its stop() method was invoked (you should never call any of Thread’s stop()
methods because they’re inherently unsafe), any further attempt to schedule a timer task
on the timer results in IllegalStateException, as if Timer’s cancel() method had been
invoked.

TimerTask in Depth
Timer tasks are instances of classes that subclass the abstract TimerTask class, which
implements the Runnable interface. When subclassing TimerTask, you override its void
run() method to supply the timer task’s code.

■ Note  Timer tasks should complete quickly. When a timer task takes too long to
complete, it “hogs” the timer’s task-execution thread, delaying the execution of subsequent
timer tasks, which may “bunch up” and execute in rapid succession if and when the
offending timer task finally completes.

You can also call the following methods from within the overriding timer task’s run()
method:

• boolean cancel(): Cancel this timer task. When the timer task
has been scheduled for one-shot execution and hasn’t yet run or
when it hasn’t yet been scheduled, it will never run. When the
timer task has been scheduled for repeated execution, it will
never run again. (When the timer task is running when this call
occurs, the timer task will run to completion, but will never run
again.) Calling cancel() from within the run() method of a
repeating timer task absolutely guarantees that the timer task
won’t run again. This method may be called repeatedly; the
second and subsequent calls have no effect. This method returns
true when this timer task is scheduled for one-shot execution and
hasn’t yet run or when this timer task is scheduled for repeated
execution. It returns false when the timer task was scheduled for
one-shot execution and has already run, when the timer task was
never scheduled, or when the timer task was already canceled.
(Loosely speaking, this method returns true when it prevents one
or more scheduled executions from taking place.)

Chapter 4 ■ Additional Thread Capabilities

65

• long scheduledExecutionTime(): Return the scheduled
execution time of the most recent actual execution of this timer
task. (When this method is invoked while timer task execution is
in progress, the return value is the scheduled execution time of
the ongoing timer task execution.) This method is typically
invoked from within a task’s run() method to determine whether
the current execution of the timer task is sufficiently timely to
warrant performing the scheduled activity. For example, you
would specify code similar to if (System.currentTimeMillis()
-scheduledExecutionTime() >= MAX_TARDINESS) return; at
the start of the run() method to abort the current timer task
execution when it’s not timely. This method is typically not used
in conjunction with fixed-delay execution repeating timer
tasks because their scheduled execution times are allowed to
drift over time and are thus not terribly significant.
scheduledExecutionTime() returns the time at which the most
recent execution of this timer task was scheduled to occur, in the
format returned by java.util.Date.getTime(). The return value
is undefined when the timer task has yet to commence its first
execution.

EXERCISES

The following exercises are designed to test your understanding of Chapter 4’s
content:

1. Define thread group.

2. Why might you use a thread group?

3. Why should you avoid using thread groups?

4. Why should you be aware of thread groups?

5. Define thread-local variable.

6. True or false: If an entry doesn’t exist in the calling thread’s
storage slot when the thread calls get(), this method calls
initialValue().

7. How would you pass a value from a parent thread to a child
thread?

8. Identify the classes that form the Timer Framework.

9. True or false: Timer() creates a new timer whose task-
execution thread runs as a daemon thread.

10. Define fixed-delay execution.

http://dx.doi.org/10.1007/978-1-4842-1700-9_4

Chapter 4 ■ Additional Thread Capabilities

66

11. Which methods do you call to schedule a task for fixed-delay
execution?

12. Define fixed-rate execution.

13. What is the difference between Timer’s cancel() method and
TimerTask’s cancel() method?

14. Create a BackAndForth application that uses Timer and
TimerTask to repeatedly move an asterisk forward 20 steps
and then backward 20 steps. The asterisk is output via System.
out.print().

Summary
The ThreadGroup class describes a thread group, which stores a set of threads. It
simplifies thread management by applying method calls to all contained threads. You
should avoid using thread groups because the most useful methods are deprecated and
because of a race condition.

The ThreadLocal class describes a thread-local variable, which lets you associate
per-thread data (such as a user ID) with a thread. It provides a separate storage slot to
each thread that accesses the variable. Think of a thread-local variable as a multislot
variable in which each thread can store a different value in the same variable. Each
thread sees only its value and is unaware of other threads having their own values in this
variable. Values stored in thread-local variables are not related. A parent thread can use
the InheritableThreadLocal class to pass a value to a child thread.

It’s often necessary to schedule a task for one-shot execution or for repeated
execution at regular intervals. Java 1.3 introduced the Timer Framework, which consists
of Timer and TimerTask classes, to facilitate working with threads in a timer context.

Chapter 5 introduces the concurrency utilities and presents executors.

http://dx.doi.org/10.1007/978-1-4842-1700-9_5

Part II

Concurrency Utilities

69

Chapter 5

Concurrency Utilities
and Executors

The previous four chapters focused on Java’s low-level support for threads. This chapter
switches that focus to Java’s high-level thread support, which is known as the concurrency
utilities. Think of the concurrency utilities as being analogous to writing applications in a
high-level language and its low-level thread support as being analogous to writing
applications in assembly language. After briefly introducing you to these utilities, I take
you on a tour of executors. The next three chapters will cover other subsets of the various
concurrency utilities.

Introducing the Concurrency Utilities
Java’s low-level threads support lets you create multithreaded applications that offer
better performance and responsiveness over their single-threaded counterparts.
However, there are problems:

• Low-level concurrency primitives such as synchronized and
wait()/notify() are often hard to use correctly. Incorrect use of
these primitives can result in race conditions, thread starvation,
deadlock, and other hazards, which can be hard to detect and
debug.

• Too much reliance on the synchronized primitive can lead to
performance issues, which affect an application’s scalability. This
is a significant problem for highly-threaded applications such as
web servers.

• Developers often need higher-level constructs such as thread
pools and semaphores. Because these constructs aren’t included
with Java’s low-level thread support, developers have been forced
to build their own, which is a time-consuming and error-prone
activity.

Chapter 5 ■ Concurrency Utilities and Executors

70

To address these problems, Java 5 introduced the concurrency utilities, a powerful
and extensible framework of high-performance threading utilities such as thread pools
and blocking queues. This framework consists of various types in the following packages:

• java.util.concurrent: Utility types that are often used in
concurrent programming, for example, executors.

• java.util.concurrent.atomic: Utility classes that support lock-
free thread-safe programming on single variables.

• java.util.concurrent.locks: Utility types that lock and wait on
conditions (objects that let threads suspend execution [wait] until
notified by other threads that some boolean state may now be
true). Locking and waiting via these types is more performant and
flexible than doing so via Java’s monitor-based synchronization
and wait/notification mechanisms.

This framework also introduces a long nanoTime() method to the java.lang.System
class, which lets you access a nanosecond-granularity time source for making relative
time measurements.

The concurrency utilities can be classified as executors, synchronizers, a locking
framework, and more. I explore executors in the next section and these other categories
in subsequent chapters.

Exploring Executors
The Threads API lets you execute runnable tasks via expressions such as new java.
lang.Thread(new RunnableTask()).start();. These expressions tightly couple task
submission with the task’s execution mechanics (run on the current thread, a new thread,
or a thread arbitrarily chosen from a pool [group] of threads).

■ Note A task is an object whose class implements the java.lang.Runnable interface
(a runnable task) or the java.util.concurrent.Callable interface (a callable task). I’ll say
more about Callable later in this chapter.

The concurrency utilities include executors as a high-level alternative to low-level
thread expressions for executing runnable tasks. An executor is an object whose class
directly or indirectly implements the java.util.concurrent.Executor interface, which
decouples task submission from task-execution mechanics.

Chapter 5 ■ Concurrency Utilities and Executors

71

■ Note T he Executor Framework’s use of interfaces to decouple task submission from
task-execution is analogous to the Collections Framework’s use of core interfaces to
decouple lists, sets, queues, and maps from their implementations. Decoupling results in
flexible code that’s easier to maintain.

Executor declares a solitary void execute(Runnable runnable) method that
executes the runnable task named runnable at some point in the future. execute()
throws java.lang.NullPointerException when runnable is null and java.util.
concurrent.RejectedExecutionException when it cannot execute runnable.

■ Note  RejectedExecutionException can be thrown when an executor is shutting down
and doesn’t want to accept new tasks. Also, this exception can be thrown when the executor
doesn’t have enough room to store the task (perhaps the executor uses a bounded blocking
queue to store tasks and the queue is full—I discuss blocking queues in Chapter 8).

The following example presents the Executor equivalent of the aforementioned new
Thread(new RunnableTask()).start(); expression:

Executor executor = ...; // ... represents some executor creation
executor.execute(new RunnableTask());

Although Executor is easy to use, this interface is limited in various ways:

• Executor focuses exclusively on Runnable. Because Runnable’s
run() method doesn’t return a value, there’s no easy way for a
runnable task to return a value to its caller.

• Executor doesn’t provide a way to track the progress of runnable
tasks that are executing, cancel an executing runnable task, or
determine when the runnable task finishes execution.

• Executor cannot execute a collection of runnable tasks.

• Executor doesn’t provide a way for an application to shut down
an executor (much less properly shut down an executor).

These limitations are addressed by the java.util.concurrent.ExecutorService
interface, which extends Executor and whose implementation is typically a thread pool.
Table 5-1 describes ExecutorService’s methods.

http://dx.doi.org/10.1007/978-1-4842-1700-9_8

Chapter 5 ■ Concurrency Utilities and Executors

72

Table 5-1.  ExecutorService’s Methods

Method Description

boolean awaitTermination(long
timeout, TimeUnit unit)

Block (wait) until all tasks have finished after a
shutdown request, the timeout (measured in
unit time units) expires, or the current thread
is interrupted, whichever happens first. Return
true when this executor has terminated and
false when the timeout elapses before
termination. This method throws java.lang.
InterruptedException when interrupted.

<T> List<Future<T>>
invokeAll(Collection<? extends
Callable<T>> tasks)

Execute each callable task in the tasks collection
and return a java.util.List of java.util.
concurrent.Future instances (discussed later in
this chapter) that hold task statuses and results
when all tasks complete—a task completes
through normal termination or by throwing an
exception. The List of Futures is in the same
sequential order as the sequence of tasks
returned by tasks’ iterator. This method throws
InterruptedException when it’s interrupted
while waiting, in which case unfinished tasks
are canceled; NullPointerException when
tasks or any of its elements is null; and
RejectedExecutionException when any one of
tasks’ tasks cannot be scheduled for execution.

<T> List<Future<T>>
invokeAll(Collection<? extends
Callable<T>> tasks, long
timeout, TimeUnit unit)

Execute each callable task in the tasks
collection and return a List of Future
instances that hold task statuses and results
when all tasks complete—a task completes
through normal termination or by throwing
an exception—or the timeout (measured in
unit time units) expires. Tasks that are not
completed at expiry are canceled. The List of
Futures is in the same sequential order as
the sequence of tasks returned by tasks’
iterator. This method throws
InterruptedException when it’s interrupted
while waiting (unfinished tasks are canceled).
It also throws NullPointerException when
tasks, any of its elements, or unit is null; and
throws RejectedExecutionException when
any one of tasks’ tasks cannot be scheduled
for execution.

(continued)

Chapter 5 ■ Concurrency Utilities and Executors

73

Table 5-1.  (continued)

Method Description

<T> T invokeAny(Collection<?
extends Callable<T>> tasks)

Execute the given tasks, returning the result of an
arbitrary task that’s completed successfully (in
other words, without throwing an exception), if
any does. On normal or exceptional return, tasks
that haven’t completed are canceled. This
method throws InterruptedException when it’s
interrupted while waiting, NullPointerException
when tasks or any of its elements is null, java.
lang.IllegalArgumentException when tasks is
empty, java.util.concurrent.ExecutionException
when no task completes successfully, and
RejectedExecutionException when none of the
tasks can be scheduled for execution.

<T> T invokeAny(Collection<?
extends Callable<T>> tasks,
long timeout, TimeUnit unit)

Execute the given tasks, returning the result of an
arbitrary task that’s completed successfully (no
exception was thrown), if any does before the
timeout (measured in unit time units)
expires—tasks that are not completed at expiry
are canceled. On normal or exceptional return,
tasks that have not completed are canceled. This
method throws InterruptedException when it’s
interrupted while waiting; NullPointerException
when tasks, any of its elements, or unit is null;
IllegalArgumentException when tasks is empty;
java.util.concurrent.TimeoutException when
the timeout elapses before any task successfully
completes; ExecutionException when no task
completes successfully; and
RejectedExecutionException when none of the
tasks can be scheduled for execution.

boolean isShutdown() Return true when this executor has been shut
down; otherwise, return false.

boolean isTerminated() Return true when all tasks have completed
following shutdown; otherwise, return false. This
method will never return true prior to shutdown()
or shutdownNow() being called.

void shutdown() Initiate an orderly shutdown in which previously
submitted tasks are executed, but no new tasks
will be accepted. Calling this method has no effect
after the executor has shut down. This method
doesn’t wait for previously submitted tasks to
complete execution. Use awaitTermination()
when waiting is necessary.

(continued)

Chapter 5 ■ Concurrency Utilities and Executors

74

Table 5-1.  (continued)

Method Description

List<Runnable> shutdownNow() Attempt to stop all actively executing tasks, halt
the processing of waiting tasks, and return a list of
the tasks that were awaiting execution. There are
no guarantees beyond best-effort attempts to stop
processing actively executing tasks. For example,
typical implementations will cancel via Thread.
interrupt(), so any task that fails to respond to
interrupts may never terminate.

<T> Future<T>
submit(Callable<T> task)

Submit a callable task for execution and return a
Future instance representing task’s pending
results. The Future instance’s get() method
returns task’s result on successful completion.
This method throws RejectedExecutionException
when task cannot be scheduled for execution and
NullPointerException when task is null. If you
would like to immediately block while waiting for a
task to complete, you can use constructions of the
form result = exec.submit(aCallable).get();.

Future<?> submit(Runnable
task)

Submit a runnable task for execution and
return a Future instance representing task’s
pending results. The Future instance’s get()
method returns task’s result on successful
completion. This method throws
RejectedExecutionException when task
cannot be scheduled for execution and
NullPointerException when task is null.

<T> Future<T> submit(Runnable
task, T result)

Submit a runnable task for execution and return a
Future instance whose get() method returns
result’s value on successful completion. This
method throws RejectedExecutionException
when task cannot be scheduled for execution and
NullPointerException when task is null.

Table 5-1 refers to java.util.concurrent.TimeUnit, an enum that represents
time durations at given units of granularity: DAYS, HOURS, MICROSECONDS, MILLISECONDS,
MINUTES, NANOSECONDS, and SECONDS. Furthermore, TimeUnit declares methods for
converting across units (such as long toHours(long duration)), and for performing
timing and delay operations (such as void sleep(long timeout)) in these units.

Table 5-1 also refers to callable tasks. Unlike Runnable, whose void run() method
cannot return a value and throw checked exceptions, Callable<V>’s V call() method
returns a value and can throw checked exceptions because it’s declared with a throws
Exception clause.

Chapter 5 ■ Concurrency Utilities and Executors

75

Table 5-2.  Future’s Methods

Method Description

boolean cancel(boolean
mayInterruptIfRunning)

Attempt to cancel execution of this task and return true
when the task is canceled; otherwise, return false (the
task may have completed normally before cancel() was
called). Cancellation fails when the task is done, canceled,
or couldn’t be canceled for another reason. If successful
and this task hadn’t yet started, the task should never
run. If the task has started, mayInterruptIfRunning
determines whether (true) or not (false) the thread
running this task should be interrupted in an attempt to
stop the task. After returning, subsequent calls to isDone()
always return true; isCancelled() always return true
when cancel() returns true.

V get() Wait if necessary for the task to complete and then return
the result. This method throws java.util.concurrent.
CancellationException when the task was canceled prior
to this method being called, ExecutionException when
the task threw an exception, and InterruptedException
when the current thread was interrupted while waiting.

V get(long timeout,
TimeUnit unit)

Wait at most timeout units (as specified by unit) for the
task to complete and then return the result (if available).
This method throws CancellationException when the
task was canceled prior to this method being called,
ExecutionException when the task threw an exception,
InterruptedException when the current thread was
interrupted while waiting, and TimeoutException when
this method’s timeout value expires (the wait times out).

boolean isCancelled() Return true when this task was canceled before it
completed normally; otherwise, return false.

boolean isDone() Return true when this task completed; otherwise, return
false. Completion may be due to normal termination, an
exception, or cancellation—this method returns true in all
of these cases.

Finally, Table 5-1 refers to the Future interface, which represents the result of an
asynchronous computation. The result is known as a future because it typically will not
be available until some moment in the future. Future, whose generic type is Future<V>,
provides methods for canceling a task, for returning a task’s value, and for determining
whether or not the task has finished. Table 5-2 describes Future’s methods.

Chapter 5 ■ Concurrency Utilities and Executors

76

Suppose you intend to write an application whose graphical user interface lets the
user enter a word. After the user enters the word, the application presents this word
to several online dictionaries and obtains each dictionary’s entry. These entries are
subsequently displayed to the user.

Because online access can be slow, and because the user interface should remain
responsive (perhaps the user might want to end the application), you offload the “obtain
word entries” task to an executor that runs this task on a separate thread. The following
example uses ExecutorService, Callable, and Future to accomplish this objective:

ExecutorService executor = ...; // ... represents some executor creation
Future<String[]> taskFuture =
 executor.submit(new Callable<String[]>()

{
@Override
public String[] call()
{

String[] entries = ...;
// Access online dictionaries
// with search word and populate
// entries with their resulting
// entries.
return entries;

}
});

// Do stuff.
String entries = taskFuture.get();

After obtaining an executor in some manner (you will learn how shortly), the
example’s thread submits a callable task to the executor. The submit() method immediately
returns with a reference to a Future object for controlling task execution and accessing
results. The thread ultimately calls this object’s get() method to get these results.

■ Note T he java.util.concurrent.ScheduledExecutorService interface extends
ExecutorService and describes an executor that lets you schedule tasks to run once or to
execute periodically after a given delay.

Although you could create your own Executor, ExecutorService, and
ScheduledExecutorService implementations (such as class DirectExecutor implements
Executor { @Override public void execute(Runnable r) { r.run(); } }—
run executor directly on the calling thread), there’s a simpler alternative: java.util.
concurrent.Executors.

Chapter 5 ■ Concurrency Utilities and Executors

77

■ Tip I f you intend to create your own ExecutorService implementations, you will find
it helpful to work with the java.util.concurrent.AbstractExecutorService and
java.util.concurrent.FutureTask classes.

The Executors utility class declares several class methods that return instances of
various ExecutorService and ScheduledExecutorService implementations (and other
kinds of instances). This class’s static methods accomplish the following tasks:

• Create and return an ExecutorService instance that’s configured
with commonly used configuration settings.

• Create and return a ScheduledExecutorService instance that’s
configured with commonly used configuration settings.

• Create and return a “wrapped” ExecutorService or
ScheduledExecutorService instance that disables
reconfiguration of the executor service by making
implementation-specific methods inaccessible.

• Create and return a java.util.concurrent.ThreadFactory
instance (that is, an instance of a class that implements the
ThreadFactory interface) for creating new Thread objects.

• Create and return a Callable instance out of other closure-
like forms so that it can be used in execution methods that
require Callable arguments (such as ExecutorService’s
submit(Callable) method). Wikipedia’s “Closure (computer
science)” entry at http://en.wikipedia.org/wiki/Closure_
(computer_science) introduces the topic of closures.

For example, static ExecutorService newFixedThreadPool(int nThreads)
creates a thread pool that reuses a fixed number of threads operating off of a shared
unbounded queue. At most, nThreads threads are actively processing tasks. If additional
tasks are submitted when all threads are active, they wait in the queue for an available
thread.

If any thread terminates because of a failure during execution before the executor
shuts down, a new thread will take its place when needed to execute subsequent tasks.
The threads in the pool will exist until the executor is explicitly shut down. This method
throws IllegalArgumentException when you pass zero or a negative value to nThreads.

■ Note T hread pools are used to eliminate the overhead from having to create a new
thread for each submitted task. Thread creation isn’t cheap, and having to create many
threads could severely impact an application’s performance.

http://en.wikipedia.org/wiki/Closure_(computer_science)
http://en.wikipedia.org/wiki/Closure_(computer_science)

Chapter 5 ■ Concurrency Utilities and Executors

78

You would commonly use executors, runnables, callables, and futures in file and
network input/output contexts. Performing a lengthy calculation offers another scenario
where you could use these types. For example, Listing 5-1 uses an executor, a callable,
and a future in a calculation context of Euler’s number e (2.71828...).

Listing 5-1.  Calculating Euler’s Number e

import java.math.BigDecimal;
import java.math.MathContext;
import java.math.RoundingMode;

import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;

public class CalculateE
{
 final static int LASTITER = 17;

 public static void main(String[] args)
 {
 ExecutorService executor = Executors.newFixedThreadPool(1);
 Callable<BigDecimal> callable;
 callable = new Callable<BigDecimal>()

{
@Override
public BigDecimal call()
{

MathContext mc =
new MathContext(100, RoundingMode.HALF_UP);

BigDecimal result = BigDecimal.ZERO;
for (int i = 0; i <= LASTITER; i++)
{

BigDecimal factorial =
factorial(new BigDecimal(i));

BigDecimal res = BigDecimal.ONE.divide(factorial,
mc);

result = result.add(res);
}
return result;

}

Chapter 5 ■ Concurrency Utilities and Executors

79

public BigDecimal factorial(BigDecimal n)
{

if (n.equals(BigDecimal.ZERO))
return BigDecimal.ONE;

else
return n.multiply(factorial(n.

subtract(BigDecimal.ONE)));
}

};
 Future<BigDecimal> taskFuture = executor.submit(callable);
 try
 {

while (!taskFuture.isDone())
System.out.println("waiting");

System.out.println(taskFuture.get());
 }
 catch(ExecutionException ee)
 {

System.err.println("task threw an exception");
System.err.println(ee);

 }
 catch(InterruptedException ie)
 {

System.err.println("interrupted while waiting");
 }
 executor.shutdownNow();
 }
}

The default main thread that executes main() first obtains an executor by calling
Executors’ newFixedThreadPool() method. It then instantiates an anonymous class
that implements the Callable interface and submits this task to the executor, receiving a
Future instance in response.

After submitting a task, a thread typically does some other work until it requires the
task’s result. I simulate this work by having the main thread repeatedly output a waiting
message until the Future instance’s isDone() method returns true. (In a realistic
application, I would avoid this looping.) At this point, the main thread calls the instance’s
get() method to obtain the result, which is then output. The main thread then shuts
down the executor.

■ Caution I t’s important to shut down an executor after it completes; otherwise,
the application might not end. The previous executor accomplishes this task by calling
shutdownNow(). (You could also use the shutdown() method.)

Chapter 5 ■ Concurrency Utilities and Executors

80

The callable’s call() method calculates e by evaluating the mathematical power
series e = 1 / 0! + 1 / 1! + 1 / 2! + . . . . This series can be evaluated by summing 1 / n!, where
n ranges from 0 to infinity (and ! stands for factorial).

call() first instantiates java.math.MathContext to encapsulate a precision (number
of digits) and a rounding mode. I chose 100 as an upper limit on e’s precision, and I also
chose HALF_UP as the rounding mode.

■ Tip I ncrease the precision as well as the value of LASTITER to converge the series to a
lengthier and more accurate approximation of e.

call() next initializes a java.math.BigDecimal local variable named result to
BigDecimal.ZERO. It then enters a loop that calculates a factorial, divides BigDecimal.ONE
by the factorial, and adds the division result to result.

The divide() method takes the MathContext instance as its second argument to
provide rounding information. (If I specified 0 as the precision for the math context and a
nonterminating decimal expansion [the quotient result of the division cannot be represented
exactly—0.3333333..., for example] occurred, java.lang.ArithmeticException would be
thrown to alert the caller to the fact that the quotient cannot be represented exactly. The
executor would rethrow this exception as ExecutionException.)

Compile Listing 5-1 as follows:

javac CalculateE.java

Run the resulting application as follows:

java CalculateE

You should observe output that’s similar to the following (you’ll probably observe
more waiting messages):

waiting
waiting
waiting
waiting
waiting
2.71828182845904507051604779584860506117897963525103269890073500406522504250
4843314055887974344245741730039454062711

Chapter 5 ■ Concurrency Utilities and Executors

81

EXERCISES

The following exercises are designed to test your understanding of Chapter 5’s content:

1. What are the concurrency utilities?

2. Identify the packages in which the concurrency utilities types
are stored.

3. Define task.

4. Define executor.

5. Identify the Executor interface’s limitations.

6. How are Executor’s limitations overcome?

7. What differences exist between Runnable’s run( ) method and
Callable’s call( ) method?

8. True or false: You can throw checked and unchecked exceptions
from Runnable’s run( ) method but can only throw unchecked
exceptions from Callable’s call( ) method.

9. Define future.

10. Describe the Executors class’s newFixedThreadPool( ) method.

11. Refactor the following CountingThreads application to work
with Executors and ExecutorService:

public class CountingThreads
{
 public static void main(String[] args)
 {
 Runnable r = new Runnable()

{
@Override
public void run()
{
String name = �Thread.currentThread().

getName();
int count = 0;
while (true)
System.out.println(�name + ": " +

count++);
}

};

http://dx.doi.org/10.1007/978-1-4842-1700-9_5

Chapter 5 ■ Concurrency Utilities and Executors

82

 Thread thdA = new Thread(r);
 Thread thdB = new Thread(r);
 thdA.start();
 thdB.start();
 }
}

12. When you execute the previous exercise’s CountingThreads
application, you’ll observe output that identifies the threads via
names such as pool-1-thread-1. Modify CountingThreads
so that you observe names A and B. Hint: You’ll need to use
ThreadFactory.

Summary
Java’s low-level thread capabilities let you create multithreaded applications that
offer better performance and responsiveness over their single-threaded counterparts.
However, performance issues that affect an application’s scalability and other problems
resulted in Java 5’s introduction of the concurrency utilities.

The concurrency utilities organize various types into three packages: java.util.
concurrent, java.util.concurrent.atomic, and java.util.concurrent.locks.
Basic types for executors, thread pools, concurrent hashmaps, and other high-level
concurrency constructs are stored in java.util.concurrent; classes that support lock-
free, thread-safe programming on single variables are stored in java.util.concurrent.
atomic; and types for locking and waiting on conditions are stored in java.util.
concurrent.locks.

An executor decouples task submission from task-execution mechanics and
is described by the Executor, ExecutorService, and ScheduledExecutorService
interfaces. You obtain an executor by calling one of the utility methods in the Executors
class. Executors are associated with callables and futures.

Chapter 6 presents synchronizers.

http://dx.doi.org/10.1007/978-1-4842-1700-9_6

83

Chapter 6

Synchronizers

Java provides the synchronized keyword for synchronizing thread access to critical
sections. Because it can be difficult to correctly write synchronized code that’s based on
synchronized, high-level synchronizers (classes that facilitate common forms of
synchronization) are included in the concurrency utilities. In this chapter, I introduce you
to the countdown latch, cyclic barrier, exchanger, semaphore, and phaser synchronizers.

Countdown Latches
A countdown latch causes one or more threads to wait at a “gate” until another thread
opens this gate, at which point these other threads can continue. It consists of a count and
operations for “causing a thread to wait until the count reaches zero” and “decrementing
the count.”

The java.util.concurrent.CountDownLatch class implements the countdown latch
synchronizer. You initialize a CountDownLatch instance to a specific count by invoking
this class’s CountDownLatch(int count) constructor, which throws java.lang.
IllegalArgumentException when the value passed to count is negative.

CountDownLatch also offers the following methods:

• void await(): Force the calling thread to wait until the latch has
counted down to zero, unless the thread is interrupted, in which
case java.lang.InterruptedException is thrown. This method
returns immediately when the count is zero.

• boolean await(long timeout, TimeUnit unit): Force the
calling thread to wait until the latch has counted down to zero or
the specified timeout value in unit time-units has expired, or the
thread is interrupted, in which case InterruptedException is
thrown. This method returns immediately when the count is zero.
It returns true when the count reaches zero or false when the
waiting time elapses.

• void countDown(): Decrement the count, releasing all waiting
threads when the count reaches zero. Nothing happens when the
count is already zero when this method is called.

Chapter 6 ■ Synchronizers

84

• long getCount(): Return the current count. This method is
useful for testing and debugging.

• String toString(): Return a string identifying this latch as well
as its state. The state, in brackets, includes string literal "Count ="
followed by the current count.

You’ll often use a countdown latch to ensure that threads start working at approximately
the same time. For example, check out Listing 6-1.

Listing 6-1.  Using a Countdown Latch to Trigger a Coordinated Start

import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

public class CountDownLatchDemo
{
 final static int NTHREADS = 3;

 public static void main(String[] args)
 {
 final CountDownLatch startSignal = new CountDownLatch(1);
 final CountDownLatch doneSignal = new CountDownLatch(NTHREADS);
 Runnable r = new Runnable()

{
@Override
public void run()
{

try
{

report("entered run()");
startSignal.await(); // wait until told to ...
report("doing work"); // ... proceed
Thread.sleep((int) (Math.random() * 1000));
doneSignal.countDown(); // reduce count on which

// main thread is ...
} // waiting
catch (InterruptedException ie)
{

System.err.println(ie);
}

}

Chapter 6 ■ Synchronizers

85

void report(String s)
{

System.out.println(System.currentTimeMillis() +
": " + Thread.currentThread() +
": " + s);

}
};

 ExecutorService executor = Executors.newFixedThreadPool(NTHREADS);
 for (int i = 0; i < NTHREADS; i++)

executor.execute(r);
 try
 {

System.out.println("main thread doing something");
Thread.sleep(1000); // sleep for 1 second
startSignal.countDown(); // let all threads proceed
System.out.println("main thread doing something else");
doneSignal.await(); // wait for all threads to finish
executor.shutdownNow();

 }
 catch (InterruptedException ie)
 {

System.err.println(ie);
 }
 }
}

Listing 6-1’s default main thread first creates a pair of countdown latches. The
startSignal countdown latch prevents any worker thread from proceeding until the
default main thread is ready for them to proceed. The doneSignal countdown latch
causes the default main thread to wait until all worker threads have finished.

The default main thread next creates a runnable with a run() method that is
executed by subsequently created worker threads.

run() first outputs a message and then calls startSignal’s await() method to wait
for this countdown latch’s count to read zero before proceeding, at which point run()
outputs a message that indicates work being done and sleeps for a random period of time
(0 through 999 milliseconds) to simulate this work.

At this point, run() invokes doneSignal’s countDown() method to decrement this
latch’s count. Once this count reaches zero, the default main thread waiting on this signal
will continue, shutting down the executor and terminating the application.

After creating the runnable, the default main thread obtains an executor that’s based
on a thread pool of NTHREADS threads, and then calls the executor’s execute() method
NTHREADS times, passing the runnable to each of the NTHREADS pool-based threads. This
action starts the worker threads, which enter run().

Next, the default main thread outputs a message and sleeps for one second to
simulate doing additional work (giving all the worker threads a chance to have entered
run() and invoke startSignal.await()), invokes startSignal’s countDown() method
to cause the worker threads to start running, outputs a message to indicate that it’s doing

Chapter 6 ■ Synchronizers

86

something else, and invokes doneSignal’s await() method to wait for this countdown
latch’s count to reach zero before it can proceed.

Compile Listing 6-1 as follows:

javac CountDownLatchDemo.java

Run the resulting application as follows:

java CountDownLatchDemo

You should observe output that’s similar to the following (message order may differ
somewhat):

main thread doing something
1445802274931: Thread[pool-1-thread-2,5,main]: entered run()
1445802274931: Thread[pool-1-thread-3,5,main]: entered run()
1445802274931: Thread[pool-1-thread-1,5,main]: entered run()
main thread doing something else
1445802275931: Thread[pool-1-thread-2,5,main]: doing work
1445802275931: Thread[pool-1-thread-3,5,main]: doing work
1445802275933: Thread[pool-1-thread-1,5,main]: doing work

Cyclic Barriers
A cyclic barrier lets a set of threads wait for each other to reach a common barrier point.
The barrier is cyclic because it can be reused after the waiting threads are released. This
synchronizer is useful in applications involving a fixed-size party of threads that must
occasionally wait for each other.

The java.util.concurrent.CyclicBarrier class implements the cyclic barrier
synchronizer. You initialize a CyclicBarrier instance to a specific number of parties
(threads working toward a common goal) by invoking this class’s CyclicBarrier(int
parties) constructor. This constructor throws IllegalArgumentException when the
value passed to parties is less than 1.

Alternatively, you can invoke the CyclicBarrier(int parties, Runnable
barrierAction) constructor to initialize a cyclic barrier to a specific number of
parties and a barrierAction that’s executed when the barrier is tripped. In other words,
when parties - 1 threads are waiting and one more thread arrives, the arriving thread
executes barrierAction and then all threads proceed. This runnable is useful for
updating shared state before any of the threads continue. This constructor throws
IllegalArgumentException when the value passed to parties is less than 1. (The former
constructor invokes this constructor passing null to barrierAction—no runnable will be
executed when the barrier is tripped.)

Chapter 6 ■ Synchronizers

87

CyclicBarrier also offers the following methods:

• int await():Force the calling thread to wait until all parties have
invoked await() on this cyclic barrier. The calling thread will also
stop waiting when it or another waiting thread is interrupted,
another thread times out while waiting, or another thread
invokes reset() on this cyclic barrier. If the calling thread has its
interrupted status set on entry or is interrupted while waiting, this
method throws InterruptedException and the calling thread’s
interrupted status is cleared. The method throws java.util.
concurrent.BrokenBarrierException when the barrier is reset
(via reset()) while any thread is waiting, or the barrier is broken
when await() is invoked or while any thread is waiting. When
any thread is interrupted while waiting, all other waiting threads
throw BrokenBarrierException and the barrier is placed in the
broken state. If the calling thread is the last thread to arrive and
a non-null barrierAction was supplied in the constructor, the
calling thread executes this runnable before allowing the other
threads to continue. This method returns the arrival index of the
calling thread, where index getParties() - 1 indicates the first
thread to arrive and zero indicates the last thread to arrive.

• int await(long timeout, TimeUnit unit): This method is
equivalent to the previous method except that it lets you specify
how long the calling thread is willing to wait. This method throws
java.util.concurrent.TimeoutException when this timeout
expires while the thread is waiting.

• int getNumberWaiting(): Return the number of parties that
are currently waiting at the barrier. This method is useful for
debugging and in partnership with assertions.

• int getParties(): Return the number of parties that are
required to trip the barrier.

• boolean isBroken(): Return true when one or more parties broke
out of this barrier because of interruption or timeout since the
cyclic barrier was constructed or the last reset, or when a barrier
action failed because of an exception; otherwise, return false.

• void reset(): Reset the barrier to its initial state. If any parties
are currently waiting at the barrier, they will return with a
BrokenBarrierException. Note that resets after a breakage has
occurred for other reasons can be complicated to carry out;
threads need to resynchronize in some other way and choose one
thread to perform the reset. Therefore, it might be preferable to
create a new barrier for subsequent use.

Cyclic barriers are useful in parallel decomposition scenarios, where a lengthy task is
divided into subtasks whose individual results are later merged into the overall result of
the task. CyclicBarrier’s Javadoc presents example code that’s completed in Listing 6-2.

Chapter 6 ■ Synchronizers

88

Listing 6-2.  Using a Cyclic Barrier to Decompose a Task into Subtasks

import java.util.concurrent.BrokenBarrierException;
import java.util.concurrent.CyclicBarrier;

public class CyclicBarrierDemo
{
 public static void main(String[] args)
 {
 float[][] matrix = new float[3][3];
 int counter = 0;
 for (int row = 0; row < matrix.length; row++)

for (int col = 0; col < matrix[0].length; col++)
matrix[row][col] = counter++;

 dump(matrix);
 System.out.println();
 Solver solver = new Solver(matrix);
 System.out.println();
 dump(matrix);
 }

 static void dump(float[][] matrix)
 {
 for (int row = 0; row < matrix.length; row++)
 {

for (int col = 0; col < matrix[0].length; col++)
System.out.print(matrix[row][col] + " ");

System.out.println();
 }
 }
}

class Solver
{
 final int N;
 final float[][] data;
 final CyclicBarrier barrier;

 class Worker implements Runnable
 {
 int myRow;
 boolean done = false;

 Worker(int row)
 {

myRow = row;
 }

Chapter 6 ■ Synchronizers

89

 boolean done()
 {

return done;
 }

 void processRow(int myRow)
 {

System.out.println("Processing row: " + myRow);
for (int i = 0; i < N; i++)

data[myRow][i] *= 10;
done = true;

 }

 @Override
 public void run()
 {

while (!done())
{

processRow(myRow);

try
{

barrier.await();
}
catch (InterruptedException ie)
{

return;
}
catch (BrokenBarrierException bbe)
{

return;
}

}
 }
 }

 public Solver(float[][] matrix)
 {
 data = matrix;
 N = matrix.length;
 barrier = new CyclicBarrier(N,

new Runnable()
{

@Override
public void run()
{

mergeRows();
}

});

Chapter 6 ■ Synchronizers

90

 for (int i = 0; i < N; ++i)
new Thread(new Worker(i)).start();

 waitUntilDone();
 }

 void mergeRows()
 {
 System.out.println("merging");
 synchronized("abc")
 {

"abc".notify();
 }
 }

 void waitUntilDone()
 {
 synchronized("abc")
 {

try
{

System.out.println("main thread waiting");
"abc".wait();
System.out.println("main thread notified");

}
catch (InterruptedException ie)
{

System.out.println("main thread interrupted");
}

 }
 }
}

Listing 6-2’s default main thread first creates a square matrix of floating-point values
and dumps this matrix to the standard output stream. This thread then instantiates the
Solver class, which creates a separate thread for performing a calculation on each row.
The modified matrix is then dumped.

Solver presents a constructor that receives its matrix argument and saves its
reference in field data along with the number of rows in field N. The constructor then
creates a cyclic barrier with N parties and a barrier action that’s responsible for merging
all of the rows into a final matrix. Finally, the constructor creates a worker thread that
executes a separate Worker runnable that’s responsible for processing a single row in the
matrix. The constructor then waits until the workers are finished.

Worker’s run() method repeatedly invokes processRow() on its specific row until
done() returns true, which (in this example) it does after processRow() executes one
time. After processRow() returns, which indicates that the row has been processed, the
worker thread invokes await() on the cyclic barrier; it cannot proceed.

Chapter 6 ■ Synchronizers

91

At some point, all of the worker threads will have invoked await(). When the final
thread, which processes the final row in the matrix, invokes await(), it will trigger the
barrier action, which merges all processed rows into a final matrix. In this example, a
merger isn’t required, but it would be required in more complex examples.

The final task performed by mergeRows() is to notify the main thread that invoked
Solver’s constructor. This thread is waiting on the monitor associated with String object
"abc". A call to notify() suffices to wake up the waiting thread, which is the only thread
waiting on this monitor.

Compile Listing 6-2 as follows:

javac CyclicBarrierDemo.java

Run the resulting application as follows:

java CyclicBarrierDemo

You should observe output that’s similar to the following (message order may differ
somewhat):

0.0 1.0 2.0
3.0 4.0 5.0
6.0 7.0 8.0

main thread waiting
Processing row: 0
Processing row: 1
Processing row: 2
merging
main thread notified

0.0 10.0 20.0
30.0 40.0 50.0
60.0 70.0 80.0

Exchangers
An exchanger provides a synchronization point where threads can swap objects. Each
thread presents some object on entry to the exchanger’s exchange() method, matches
with a partner thread, and receives its partner’s object on return. Exchangers can be
useful in applications such as genetic algorithms (see http://en.wikipedia.org/wiki/
Genetic_algorithm) and pipeline designs.

http://en.wikipedia.org/wiki/Genetic_algorithm
http://en.wikipedia.org/wiki/Genetic_algorithm

Chapter 6 ■ Synchronizers

92

The generic java.util.concurrent.Exchanger<V> class implements the exchanger
synchronizer. You initialize an exchanger by invoking the Exchanger() constructor. You
then invoke either of the following methods to perform an exchange:

• V exchange(V x): Wait for another thread to arrive at this
exchange point (unless the calling thread is interrupted), and
then transfer the given object to it, receiving the other thread’s
object in return. If another thread is already waiting at the
exchange point, it’s resumed for thread-scheduling purposes
and receives the object passed in by the calling thread. The
current thread returns immediately, receiving the object passed
to the exchanger by the other thread. This method throws
InterruptedException when the calling thread is interrupted.

• V exchange(V x, long timeout, TimeUnit unit): This method
is equivalent to the previous method except that it lets you
specify how long the calling thread is willing to wait. It throws
TimeoutException when this timeout expires while the thread is
waiting.

Listing 6-3 expands on the repeated buffer filling and emptying Exchanger example
presented in Exchanger’s Javadoc.

Listing 6-3.  Using an Exchanger to Swap Buffers

import java.util.ArrayList;
import java.util.List;

import java.util.concurrent.Exchanger;

public class ExchangerDemo
{
 final static Exchanger<DataBuffer> exchanger =
 new Exchanger<DataBuffer>();

 final static DataBuffer initialEmptyBuffer = new DataBuffer();
 final static DataBuffer initialFullBuffer = new DataBuffer("I");

 public static void main(String[] args)
 {
 class FillingLoop implements Runnable
 {

int count = 0;

@Override
public void run()
{

DataBuffer currentBuffer = initialEmptyBuffer;
try

Chapter 6 ■ Synchronizers

93

{
while (true)
{

addToBuffer(currentBuffer);
if (currentBuffer.isFull())
{

System.out.println("filling thread wants to exchange");
currentBuffer = exchanger.exchange(currentBuffer);
System.out.println("filling thread receives exchange");

}
}

}
catch (InterruptedException ie)
{

System.out.println("filling thread interrupted");
}

}

void addToBuffer(DataBuffer buffer)
{

String item = "NI" + count++;
System.out.println("Adding: " + item);
buffer.add(item);

}
 }

 class EmptyingLoop implements Runnable
 {

@Override
public void run()
{

DataBuffer currentBuffer = initialFullBuffer;
try
{

while (true)
{

takeFromBuffer(currentBuffer);
if (currentBuffer.isEmpty())
{

System.out.println("emptying thread wants to " +
"exchange");

currentBuffer = exchanger.exchange(currentBuffer);
System.out.println("emptying thread receives " +

"exchange");
}

}
}

Chapter 6 ■ Synchronizers

94

 catch (InterruptedException ie)
 {
 System.out.println("emptying thread interrupted");
 }
 }
 void takeFromBuffer(DataBuffer buffer)
 {
 System.out.println("taking: " + buffer.remove());
 }
 }
 new Thread(new EmptyingLoop()).start();
 new Thread(new FillingLoop()).start();
 }
}
 
class DataBuffer
{
 private final static int MAXITEMS = 10;
 
 private final List<String> items = new ArrayList<>();
 
 DataBuffer()
 {
 }
 
 DataBuffer(String prefix)
 {
 for (int i = 0; i < MAXITEMS; i++)
 {
 String item = prefix + i;
 System.out.printf("Adding %s%n", item);
 items.add(item);
 }
 }
 
 synchronized void add(String s)
 {
 if (!isFull())
 items.add(s);
 }
 
 synchronized boolean isEmpty()
 {
 return items.size() == 0;
 }
 

Chapter 6 ■ Synchronizers

95

 synchronized boolean isFull()
 {
 return items.size() == MAXITEMS;
 }

 synchronized String remove()
 {
 if (!isEmpty())

return items.remove(0);
 return null;
 }
}

Listing 6-3’s default main thread creates an exchanger and a pair of buffers via static
field initializers. It then instantiates the EmptyingLoop and FillingLoop local classes and
passes these runnables to new Thread instances whose threads are then started. (I could
have used executors.) Each runnable’s run() method enters an infinite loop that
repeatedly adds to or removes from its buffer. When the buffer is full or empty, the
exchanger is used to swap these buffers and the filling or emptying continues.

Compile Listing 6-3 as follows:

javac ExchangerDemo.java

Run the resulting application as follows:

java ExchangerDemo

You should observe a prefix of the output that’s similar to the following (the message
order may differ somewhat):

Adding I0
Adding I1
Adding I2
Adding I3
Adding I4
Adding I5
Adding I6
Adding I7
Adding I8
Adding I9
taking: I0
taking: I1
taking: I2
taking: I3
taking: I4
taking: I5
taking: I6
taking: I7

Chapter 6 ■ Synchronizers

96

taking: I8
taking: I9
emptying thread wants to exchange
Adding: NI0
Adding: NI1
Adding: NI2
Adding: NI3
Adding: NI4
Adding: NI5
Adding: NI6
Adding: NI7
Adding: NI8
Adding: NI9
filling thread wants to exchange
filling thread receives exchange
emptying thread receives exchange
Adding: NI10
taking: NI0
Adding: NI11
taking: NI1
Adding: NI12

Semaphores
A semaphore maintains a set of permits for restricting the number of threads that can
access a limited resource. A thread attempting to acquire a permit when no permits are
available blocks until some other thread releases a permit.

■ Note  Semaphores whose current values can be incremented past 1 are known as
counting semaphores, whereas semaphores whose current values can be only 0 or 1
are known as binary semaphores or mutexes. In either case, the current value cannot be
negative.

The java.util.concurrent.Semaphore class implements this synchronizer and
conceptualizes a semaphore as an object maintaining a set of permits. You initialize a
semaphore by invoking the Semaphore(int permits) constructor where permits
specifies the number of available permits. The resulting semaphore’s fairness policy is set
to false (unfair). Alternatively, you can invoke the Semaphore(int permits, boolean
fair) constructor to also set the semaphore’s fairness setting to true (fair).

Chapter 6 ■ Synchronizers

97

SEMAPHORES AND FAIRNESS

When the fairness setting is false, Semaphore makes no guarantees about the order
in which threads acquire permits. In particular, barging is permitted; that is, a thread
invoking acquire() can be allocated a permit ahead of a thread that has been
waiting—logically the new thread places itself at the head of the queue of waiting
threads. When fair is set to true, the semaphore guarantees that threads invoking
any of the acquire() methods are selected to obtain permits in the order in which
their invocation of those methods was processed (first-in-first-out; FIFO). Because
FIFO ordering necessarily applies to specific internal points of execution within these
methods, it’s possible for one thread to invoke acquire() before another thread but
reach the ordering point after the other thread, and similarly upon return from the
method. Also, the untimed tryAcquire() methods don’t honor the fairness setting;
they’ll take any available permits.

Generally, semaphores used to control resource access should be initialized as fair,
to ensure that no thread is starved out from accessing a resource. When using
semaphores for other kinds of synchronization control, the throughput advantages of
unfair ordering often outweigh fairness considerations.

Semaphore also offers the following methods:

• void acquire(): Acquire a permit from this semaphore,
blocking until one is available or the calling thread is interrupted.
InterruptedException is thrown when it’s interrupted.

• void acquire(int permits): Acquire permits permits from
this semaphore, blocking until they are available or the calling
thread is interrupted. InterruptedException is thrown when
interrupted; IllegalArgumentException is thrown when permits
is less than zero.

• void acquireUninterruptibly(): Acquire a permit, blocking
until one is available.

• void acquireUninterruptibly(int permits): Acquire
permits permits, blocking until they are all available.
IllegalArgumentException is thrown when permits is less than
zero.

• int availablePermits(): Return the current number of available
permits. This method is useful for debugging and testing.

• int drainPermits(): Acquire and return a count of all permits
that are immediately available.

Chapter 6 ■ Synchronizers

98

• int getQueueLength(): Return an estimate of the number of
threads waiting to acquire permits. The returned value is only an
estimate because the number of threads may change dynamically
while this method traverses internal data structures. This method
is designed for use in monitoring the system state and not for
synchronization control.

• boolean hasQueuedThreads(): Query whether any threads are
waiting to acquire permits. Because cancellations may occur at
any time, a true return value doesn’t guarantee that another
thread will ever acquire permits. This method is designed mainly
for use in monitoring the system state. It returns true when there
may be other waiting threads.

• boolean isFair(): Return the fairness setting (true for fair and
false for unfair).

• void release(): Release a permit, returning it to the semaphore.
The number of available permits is increased by one. If any
threads are trying to acquire a permit, one thread is selected and
given the permit that was just released. That thread is reenabled
for thread scheduling purposes.

• void release(int permits): Release permits permits, returning
them to the semaphore. The number of available permits is
increased by permits. If any threads are trying to acquire permits,
one is selected and given the permits that were just released. If
the number of available permits satisfies that thread’s request, the
thread is reenabled for thread scheduling purposes; otherwise,
the thread will wait until sufficient permits are available. If there
are permits available after this thread’s request has been satisfied,
those permits are assigned to other threads trying to acquire
permits. IllegalArgumentException is thrown when permits is
less than zero.

• String toString(): Return a string identifying this semaphore
as well as its state. The state, in brackets, includes the string literal
"Permits =" followed by the number of permits.

• boolean tryAcquire(): Acquire a permit from this semaphore
but only when one is available at the time of invocation. Return
true when the permit was acquired. Otherwise, return immediately
with value false.

•	 boolean tryAcquire(int permits): Acquire permits permits
from this semaphore but only when they are available at the time of
invocation. Return true when the permits were acquired. Otherwise,
return immediately with value false. IllegalArgumentException
is thrown when permits is less than zero.

Chapter 6 ■ Synchronizers

99

• boolean tryAcquire(int permits, long timeout, TimeUnit
unit): Like the previous method but the calling thread waits
when permits permits aren’t available. The wait ends when the
permits become available, the timeout expires, or the calling
thread is interrupted, in which case InterruptedException is
thrown.

• boolean tryAcquire(long timeOut, TimeUnit unit): Like
tryAcquire(int permits) but the calling thread waits until a
permit is available. The wait ends when the permit becomes
available, the timeout expires, or the calling thread is interrupted,
in which case InterruptedException is thrown.

Listing 6-4 expands on the “controlling access to a pool of items” Semaphore example
presented in Semaphore’s Javadoc.

Listing 6-4.  Using a Counting Semaphore to Control Access to a Pool of Items

import java.util.concurrent.Executors;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Semaphore;

public class SemaphoreDemo
{
 public static void main(String[] args)
 {
 final Pool pool = new Pool();
 Runnable r = new Runnable()

{
@Override
public void run()
{

String name = Thread.currentThread().getName();
try
{

while (true)
{

String item;
System.out.println(name + " acquiring " +

(item = pool.getItem()));
Thread.sleep(200 +

(int) (Math.random() * 100));
System.out.println(name + " putting back " +

item);
pool.putItem(item);

}
}

Chapter 6 ■ Synchronizers

100

catch (InterruptedException ie)
{

System.out.println(name + "interrupted");
}

}
};

 ExecutorService[] executors =
new ExecutorService[Pool.MAX_AVAILABLE + 1];

 for (int i = 0; i < executors.length; i++)
 {

executors[i] = Executors.newSingleThreadExecutor();
executors[i].execute(r);

 }
 }
}

final class Pool
{
 public static final int MAX_AVAILABLE = 10;

 private final Semaphore available = new Semaphore(MAX_AVAILABLE, true);

 private final String[] items;

 private final boolean[] used = new boolean[MAX_AVAILABLE];

 Pool()
 {
 items = new String[MAX_AVAILABLE];
 for (int i = 0; i < items.length; i++)

items[i] = "I" + i;
 }

 String getItem() throws InterruptedException
 {
 available.acquire();
 return getNextAvailableItem();
 }

 void putItem(String item)
 {
 if (markAsUnused(item))

available.release();
 }

Chapter 6 ■ Synchronizers

101

 private synchronized String getNextAvailableItem()
 {
 for (int i = 0; i < MAX_AVAILABLE; ++i)
 {

if (!used[i])
{

used[i] = true;
return items[i];

}
 }
 return null; // not reached
 }

 private synchronized boolean markAsUnused(String item)
 {
 for (int i = 0; i < MAX_AVAILABLE; ++i)
 {

if (item == items[i])
{

if (used[i])
{

used[i] = false;
return true;

}
else

return false;
}

 }
 return false;
 }
}

Listing 6-4’s default main thread creates a resource pool, a runnable for repeatedly
acquiring and putting back resources, and an array of executors. Each executor is told to
execute the runnable.

Pool’s String getItem() and void putItem(String item) methods obtain and
return string-based resources. Before obtaining an item in getItem(), the calling thread
must acquire a permit from the semaphore, which guarantees that an item is available for
use. When the thread finishes with the item, it calls putItem(String), which returns the
item to the pool and then releases a permit to the semaphore, which lets another thread
acquire that item.

No synchronization lock is held when acquire() is called because that would prevent
an item from being returned to the pool. However, String getNextAvailableItem() and
boolean markAsUnused(String item) are synchronized to maintain pool consistency.
(The semaphore encapsulates the synchronization for restricting access to the pool
separately from the synchronization that’s required for maintaining pool consistency.)

Chapter 6 ■ Synchronizers

102

Compile Listing 6-4 as follows:

javac SemaphoreDemo.java

Run the resulting application as follows:

java SemaphoreDemo

You should observe a prefix of the output that’s similar to the following (message
order may differ somewhat):

pool-1-thread-1 acquiring I0
pool-2-thread-1 acquiring I1
pool-3-thread-1 acquiring I2
pool-5-thread-1 acquiring I3
pool-7-thread-1 acquiring I4
pool-4-thread-1 acquiring I5
pool-6-thread-1 acquiring I6
pool-9-thread-1 acquiring I7
pool-8-thread-1 acquiring I8
pool-10-thread-1 acquiring I9
pool-9-thread-1 putting back I7
pool-2-thread-1 putting back I1
pool-11-thread-1 acquiring I7
pool-9-thread-1 acquiring I1
pool-8-thread-1 putting back I8
pool-2-thread-1 acquiring I8
pool-5-thread-1 putting back I3
pool-8-thread-1 acquiring I3
pool-4-thread-1 putting back I5
pool-5-thread-1 acquiring I5
pool-6-thread-1 putting back I6
pool-4-thread-1 acquiring I6
pool-1-thread-1 putting back I0
pool-6-thread-1 acquiring I0
pool-7-thread-1 putting back I4
pool-1-thread-1 acquiring I4
pool-10-thread-1 putting back I9
pool-7-thread-1 acquiring I9
pool-3-thread-1 putting back I2
pool-10-thread-1 acquiring I2

Chapter 6 ■ Synchronizers

103

Phasers
A phaser is a more flexible cyclic barrier. Like a cyclic barrier, a phaser lets a group of
threads wait on a barrier; these threads continue after the last thread arrives. A phaser
also offers the equivalent of a barrier action. Unlike a cyclic barrier, which coordinates a
fixed number of threads, a phaser can coordinate a variable number of threads, which can
register at any time. To implement this capability, a phaser uses phases and phase numbers.

A phase is the phaser’s current state, and this state is identified by an integer-based
phase number. When the last of the registered threads arrives at the phaser barrier, a
phaser advances to the next phase and increments its phase number by 1.

The java.util.concurrent.Phaser class implements a phaser. Because this class is
thoroughly described in its Javadoc, I’ll point out only a few constructor and methods:

• The Phaser(int threads) constructor creates a phaser that
initially coordinates nthreads threads (which have yet to arrive at
the phaser barrier) and whose phase number is initially set to 0.

• The int register() method adds a new unarrived thread to this
phaser and returns the phase number to classify the arrival. This
number is known as the arrival phase number.

• The int arriveAndAwaitAdvance() method records arrival and
waits for the phaser to advance (which happens after the other
threads have arrived). It returns the phase number to which the
arrival applies.

• The int arriveAndDeregister() method arrives at this phaser
and deregisters from it without waiting for others to arrive, reducing
the number of threads required to advance in future phases.

Listing 6-5 provides a demonstration of the phaser synchronizer. It’s based on the
first example in Phaser’s Javadoc.

Listing 6-5.  Using a Phaser to Control a One-Shot Action Serving a Variable Number
of Parties

import java.util.ArrayList;
import java.util.List;

import java.util.concurrent.Executors;
import java.util.concurrent.Phaser;

public class PhaserDemo
{
 public static void main(String[] args)
 {
 List<Runnable> tasks = new ArrayList<>();
 tasks.add(() -> System.out.printf("%s running at %d%n",

Thread.currentThread().getName(),
System.currentTimeMillis()));

Chapter 6 ■ Synchronizers

104

 tasks.add(() -> System.out.printf("%s running at %d%n",
Thread.currentThread().getName(),
System.currentTimeMillis()));

 runTasks(tasks);
 }

 static void runTasks(List<Runnable> tasks)
 {
 final Phaser phaser = new Phaser(1); // "1" (register self)
 // create and start threads
 for (final Runnable task: tasks)
 {

phaser.register();
Runnable r = () ->

{
try
{

Thread.sleep(50 + (int) (Math.random() * 300));
}
catch (InterruptedException ie)
{

System.out.println("interrupted thread");
}
phaser.arriveAndAwaitAdvance(); // await the ...

// creation of ...
// all tasks

task.run();
};

Executors.newSingleThreadExecutor().execute(r);
 }
 // allow threads to start and deregister self
 phaser.arriveAndDeregister();
 }
}

Listing 6-5’s default main thread creates a pair of runnable tasks that each report the
time (in milliseconds) at which its starts to run. It then runs these tasks after creating a
Phaser instance and waiting for both tasks to arrive at the barrier.

Compile Listing 6-5 as follows:

javac PhaserDemo.java

Run the resulting application as follows:

java PhaserDemo

Chapter 6 ■ Synchronizers

105

You should observe output that’s similar to the following (and the application should
not end—press Ctrl+C or your keystroke equivalent to end the application):

pool-1-thread-1 running at 1445806012709
pool-2-thread-1 running at 1445806012712

As you would expect from countdown latch behavior, both threads start running at
(in this case) the same time even though a thread may have been delayed by as much as
349 milliseconds thanks to the presence of Thread.sleep().

Comment out phaser.arriveAndAwaitAdvance(); // await the ... and you
should now observe the threads starting at radically different times, as illustrated here:

pool-2-thread-1 running at 1445806212870
pool-1-thread-1 running at 1445806213013

EXERCISES

The following exercises are designed to test your understanding of Chapter 6’s content:

1. Define synchronizer.

2. Describe the behavior of a countdown latch.

3. What happens when CountDownLatch’s void countDown()
method is called and the count reaches zero?

4. Describe the behavior of a cyclic barrier.

5. True or false: CyclicBarrier’s int await() method returns -1
when the barrier is reset while any thread is waiting or when
the barrier is broken when await() is invoked.

6. Describe the behavior of an exchanger.

7. What does Exchanger’s V exchange(V x) method accomplish?

8. Describe the behavior of a semaphore.

9. Identify the two kinds of semaphores.

10. Describe the behavior of a phaser.

11. What does Phaser’s int register() method return?

12. Listing 3-2 (in Chapter 3) presented an enhanced PC application.
Recreate this application where the synchronization is handled
by the Semaphore class.

http://dx.doi.org/10.1007/978-1-4842-1700-9_6
http://dx.doi.org/10.1007/978-1-4842-1700-9_3#FPar5
http://dx.doi.org/10.1007/978-1-4842-1700-9_3

Chapter 6 ■ Synchronizers

106

Summary
Java provides the synchronized keyword for synchronizing thread access to critical
sections. Because it can be difficult to correctly write synchronized code that’s based on
synchronized, high-level synchronizers are included in the concurrency utilities.

A countdown latch causes one or more threads to wait at a “gate” until another
thread opens this gate, at which point these other threads can continue. It consists of a
count and operations for “causing a thread to wait until the count reaches zero” and
“decrementing the count.”

A cyclic barrier lets a set of threads wait for each other to reach a common barrier
point. The barrier is cyclic because it can be reused after the waiting threads are released.
This synchronizer is useful in applications involving a fixed-size party of threads that
must occasionally wait for each other.

An exchanger provides a synchronization point where threads can swap objects.
Each thread presents some object on entry to the exchanger’s exchange() method,
matches with a partner thread, and receives its partner’s object on return.

A semaphore maintains a set of permits for restricting the number of threads that
can access a limited resource. A thread attempting to acquire a permit when no permits
are available blocks until some other thread releases a permit.

A phaser is a more flexible cyclic barrier. Like a cyclic barrier, a phaser lets a group of
threads wait on a barrier; these threads continue after the last thread arrives. A phaser also
offers the equivalent of a barrier action. Unlike a cyclic barrier, which coordinates a fixed
number of threads, a phaser can coordinate a variable number of threads, which can register
at any time. To implement this capability, a phaser uses phases and phase numbers.

Chapter 7 presents the Locking Framework.

http://dx.doi.org/10.1007/978-1-4842-1700-9_7

107

Chapter 7

The Locking Framework

The java.util.concurrent.locks package provides a framework of interfaces and
classes for locking and waiting for conditions in a manner that’s distinct from an
object’s intrinsic lock-based synchronization and java.lang.Object’s wait/notification
mechanism. The concurrency utilities include the Locking Framework that improves on
intrinsic synchronization and wait/notification by offering lock polling, timed waits,
and more.

SYNCHRONIZED AND LOW-LEVEL LOCKING

Java supports synchronization so that threads can safely update shared variables
and ensure that a thread’s updates are visible to other threads. You leverage
synchronization in your code by marking methods or code blocks with the
synchronized keyword. These code sequences are known as critical sections.
The Java virtual machine (JVM) supports synchronization via monitors and the
monitorenter and monitorexit JVM instructions.

Every Java object is associated with a monitor, which is a mutual exclusion (letting only
one thread at a time execute in a critical section) construct that prevents multiple threads
from concurrently executing in a critical section. Before a thread can enter a critical
section, it’s required to lock the monitor. If the monitor is already locked, the thread
blocks until the monitor is unlocked (by another thread leaving the critical section).

When a thread locks a monitor in a multicore/multiprocessor environment, the
values of shared variables that are stored in main memory are read into the copies
of these variables that are stored in a thread’s working memory (also known as local
memory or cache memory). This action ensures that the thread will work with the
most recent values of these variables and not stale values, and is known as visibility.
The thread proceeds to work with its copies of these shared variables. When the
thread unlocks the monitor while leaving the critical section, the values in its copies
of shared variables are written back to main memory, which lets the next thread
that enters the critical section access the most recent values of these variables. (The
volatile keyword addresses visibility only.)

Chapter 7 ■ The Locking Framework

108

The Locking Framework includes the often-used Lock, ReentrantLock, Condition,
ReadWriteLock, and ReentrantReadWriteLock types, which I explore in this chapter. I
also briefly introduce you to the StampedLock class, which was introduced by Java 8.

Lock
The Lock interface offers more extensive locking operations than can be obtained via the
locks associated with monitors. For example, you can immediately back out of a
lock-acquisition attempt when a lock isn't available. This interface declares the following
methods:

• void lock(): Acquire the lock. When the lock isn’t available, the
calling thread is forced to wait until it becomes available.

• void lockInterruptibly(): Acquire the lock unless the calling
thread is interrupted. When the lock isn’t available, the calling
thread is forced to wait until it becomes available or the thread is
interrupted, which results in this method throwing java.lang.
InterruptedException.

• Condition newCondition(): Return a new Condition instance
that’s bound to this Lock instance. This method throws
java.lang.UnsupportedOperationException when the Lock
implementation class doesn’t support conditions.

• boolean tryLock(): Acquire the lock when it’s available at the
time this method is invoked. The method returns true when the
lock is acquired and false when the lock isn’t acquired.

• boolean tryLock(long time, TimeUnit unit): Acquire the
lock when it’s available within the specified waiting time,
measured in unit java.util.concurrent.TimeUnit units
(seconds, milliseconds, and so on), and the calling thread isn’t
interrupted. When the lock isn’t available, the calling thread is
forced to wait until it becomes available within the waiting time or
the thread is interrupted, which results in this method throwing
InterruptedException. When the lock is acquired, true is
returned; otherwise, false returns.

• void unlock(): Release the lock.

Acquired locks must be released. In the context of synchronized methods and blocks
and the implicit monitor lock associated with every object, all lock acquisition and
release occurs in a block-structured manner. When multiple locks are acquired, they’re
released in the opposite order and all locks are released in the same lexical scope in
which they were acquired.

Lock acquisition and release in the context of Lock interface implementations can
be more flexible. For example, some algorithms for traversing concurrently accessed data
structures require the use of “hand-over-hand” or “chain locking”: you acquire the lock of
node A, then node B, then release A and acquire C, then release B and acquire D, and so

Chapter 7 ■ The Locking Framework

109

on. Implementations of the Lock interface enable the use of such techniques by allowing
a lock to be acquired and released in different scopes, and by allowing multiple locks to
be acquired and released in any order.

With this increased flexibility comes additional responsibility. The absence of
block-structured locking removes the automatic release of locks that occurs with
synchronized methods and blocks. As a result, you should typically employ the following
idiom for lock acquisition and release:

Lock l = ...; // ... is a placeholder for code that obtains the lock
l.lock();
try
{
 // access the resource protected by this lock
}
catch (Exception ex)
{
 // restore invariants
}
finally
{
 l.unlock();
}

This idiom ensures that an acquired lock will always be released.

■ Note  All Lock implementations are required to enforce the same memory
synchronization semantics as provided by the built-in monitor lock.

ReentrantLock
Lock is implemented by the ReentrantLock class, which describes a reentrant mutual
exclusion lock. This lock is associated with a hold count. When a thread holds the lock
and reacquires the lock by invoking lock(), lockUninterruptibly(), or one of the
tryLock() methods, the hold count is increased by 1. When the thread invokes unlock(),
the hold count is decremented by 1. The lock is released when this count reaches 0.

ReentrantLock offers the same concurrency and memory semantics as the implicit
monitor lock that’s accessed via synchronized methods and blocks. However, it has
extended capabilities and offers better performance under high thread contention
(threads frequently asking to acquire a lock that’s already held by another thread). When
many threads attempt to access a shared resource, the JVM spends less time scheduling
these threads and more time executing them.

Chapter 7 ■ The Locking Framework

110

You initialize a ReentrantLock instance by invoking either of the following
constructors:

• ReentrantLock(): Create an instance of ReentrantLock. This
constructor is equivalent to ReentrantLock(false).

• ReentrantLock(boolean fair): Create an instance of
ReentrantLock with the specified fairness policy. Pass true to
fair when this lock should use a fair ordering policy: under
contention, the lock would favor granting access to the
longest-waiting thread.

ReentrantLock implements Lock’s methods. However, its implementation of
unlock() throws java.lang.IllegalMonitorStateException when the calling thread
doesn’t hold the lock. Also, ReentrantLock provides its own methods. For example,
boolean isFair() returns the fairness policy and boolean isHeldByCurrentThread()
returns true when the lock is held by the current thread. Listing 7-1 demonstrates
ReentrantLock.

Listing 7-1.  Achieving Synchronization in Terms of Reentrant Locks

import java.util.concurrent.Executors;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.TimeUnit;

import java.util.concurrent.locks.ReentrantLock;

public class RLDemo
{
 public static void main(String[] args)
 {
 ExecutorService executor = Executors.newFixedThreadPool(2);
 final ReentrantLock lock = new ReentrantLock();

 class Worker implements Runnable
 {

private final String name;

Worker(String name)
{

this.name = name;
}

@Override
public void run()
{
lock.lock();
try

Chapter 7 ■ The Locking Framework

111

{
if (lock.isHeldByCurrentThread())

System.out.printf("Thread %s entered critical section.%n",name);
System.out.printf("Thread %s performing work.%n", name);
try
{

Thread.sleep(2000);
}
catch (InterruptedException ie)
{

ie.printStackTrace();
}
System.out.printf("Thread %s finished working.%n", name);

}
finally
{

lock.unlock();
}

}
 }
 executor.execute(new Worker("ThdA"));
 executor.execute(new Worker("ThdB"));
 try
 {

executor.awaitTermination(5, TimeUnit.SECONDS);
 }
 catch (InterruptedException ie)
 {

ie.printStackTrace();
 }
 executor.shutdownNow();
 }
}

Listing 7-1 describes an application whose default main thread creates a pair of
worker threads that enter, simulate working in, and leave critical sections. They use
ReentrantLock’s lock() and unlock() methods to obtain and release a reentrant lock.
When a thread calls lock() and the lock is unavailable, the thread is disabled (and cannot
be scheduled) until the lock becomes available.

Compile Listing 7-1 as follows:

javac RLDemo.java

Run the resulting application as follows:

java RLDemo

Chapter 7 ■ The Locking Framework

112

You should discover output that’s similar to the following (message order may differ
somewhat):

Thread ThdA entered critical section.
Thread ThdA performing work.
Thread ThdA finished working.
Thread ThdB entered critical section.
Thread ThdB performing work.
Thread ThdB finished working.

Condition
The Condition interface factors out Object’s wait and notification methods (wait(),
notify(), and notifyAll()) into distinct condition objects to give the effect of having
multiple wait-sets per object, by combining them with the use of arbitrary Lock
implementations. Where Lock replaces synchronized methods and blocks, Condition
replaces Object’s wait/notification methods.

■ Note  A Condition instance is intrinsically bound to a lock. To obtain a Condition
instance for a certain Lock instance, use Lock’s newCondition() method.

Condition declares the following methods:

• void await(): Force the calling thread to wait until it’s signaled
or interrupted.

• boolean await(long time, TimeUnit unit): Force the calling
thread to wait until it’s signaled or interrupted, or until the
specified waiting time elapses.

• long awaitNanos(long nanosTimeout): Force the current thread
to wait until it’s signaled or interrupted, or until the specified
waiting time elapses.

• void awaitUninterruptibly(): Force the current thread to wait
until it’s signaled.

• boolean awaitUntil(Date deadline): Force the current thread
to wait until it’s signaled or interrupted, or until the specified
deadline elapses.

• void signal(): Wake up one waiting thread.

• void signalAll(): Wake up all waiting threads.

Listing 7-2 revisits Chapter 3’s producer-consumer application (in Listing 3-2)
to show you how it can be written to take advantage of conditions.

http://dx.doi.org/10.1007/978-1-4842-1700-9_3
http://dx.doi.org/10.1007/978-1-4842-1700-9_3#FPar5

Chapter 7 ■ The Locking Framework

113

Listing 7-2.  Achieving Synchronization in Terms of Locks and Conditions

import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

public class PC
{
 public static void main(String[] args)
 {
 Shared s = new Shared();
 new Producer(s).start();
 new Consumer(s).start();
 }
}

class Shared
{
 private char c;

 private volatile boolean available;

 private final Lock lock;

 private final Condition condition;

 Shared()
 {
 available = false;
 lock = new ReentrantLock();
 condition = lock.newCondition();
 }

 Lock getLock()
 {
 return lock;
 }

 char getSharedChar()
 {
 lock.lock();
 try
 {

while (!available)
try
{

condition.await();
}

Chapter 7 ■ The Locking Framework

114

catch (InterruptedException ie)
{

ie.printStackTrace();
}

available = false;
condition.signal();

 }
 finally
 {

lock.unlock();
return c;

 }
 }

 void setSharedChar(char c)
 {
 lock.lock();
 try
 {

while (available)
try
{

condition.await();
}
catch (InterruptedException ie)
{

ie.printStackTrace();
}

this.c = c;
available = true;
condition.signal();

 }
 finally
 {

lock.unlock();
 }
 }
}
class Producer extends Thread
{
 private final Lock l;

 private final Shared s;

Chapter 7 ■ The Locking Framework

115

 Producer(Shared s)
 {
 this.s = s;
 l = s.getLock();
 }

 @Override
 public void run()
 {
 for (char ch = 'A'; ch <= 'Z'; ch++)

{
 l.lock();

s.setSharedChar(ch);
System.out.println(ch + " produced by producer.");
l.unlock();

 }
 }
}

class Consumer extends Thread
{
 private final Lock l;

 private final Shared s;

 Consumer(Shared s)
 {
 this.s = s;
 l = s.getLock();
 }

 @Override
 public void run()
 {
 char ch;
 do

{
 l.lock();

ch = s.getSharedChar();
System.out.println(ch + " consumed by consumer.");
l.unlock();

 }
 while (ch != 'Z');
 }
}

Chapter 7 ■ The Locking Framework

116

Listing 7-2 is similar to Listing 3-2’s PC application. However, it replaces
synchronized and wait/notification with locks and conditions.

PC’s main() method instantiates the Shared, Producer, and Consumer classes. The
Shared instance is passed to the Producer and Consumer constructors and these threads
are then started.

The Producer and Consumer constructors are called on the default main thread.
Because the Shared instance is also accessed by the producer and consumer threads, this
instance must be visible to these threads (especially when these threads run on different
cores). In each of Producer and Consumer, I accomplish this task by declaring s to be
final. I could have declared this field to be volatile, but volatile suggests additional
writes to the field and s shouldn’t be changed after being initialized.

Check out Shared’s constructor. Notice that it creates a lock via lock = new
ReentrantLock();, and creates a condition associated with this lock via condition =
lock.newCondition();. This lock is made available to the producer and consumer
threads via the Lock getLock() method.

The producer thread invokes Shared’s void setSharedChar(char c) method to
generate a new character and then outputs a message identifying the produced character.
This method locks the previously created Lock object and enters a while loop that
repeatedly tests variable available, which is true when a produced character is available
for consumption.

While available is true, the producer invokes the condition’s await() method to
wait for available to become false. The consumer signals the condition to wake up the
producer when it has consumed the character. (I use a loop instead of an if statement
because spurious wakeups are possible and available might still be true.)

After leaving its loop, the producer thread records the new character, assigns true
to available to indicate that a new character is available for consumption, and signals
the condition to wake up a waiting consumer. Lastly, it unlocks the lock and exits
setSharedChar().

■ Note  I lock the setSharedChar()/System.out.println() block in Producer’s run()
method and the getSharedChar()/System.out.println() block in Consumer’s run()
method to prevent the application from outputting consuming messages before producing
messages, even though characters are produced before they’re consumed.

The behavior of the consumer thread and getSharedChar() method is similar to
what I’ve just described for the producer thread and setSharedChar() method.

■ Note  I didn’t use the try/finally idiom for ensuring that a lock is disposed of in
Producer’s and Consumer’s run() methods because an exception isn't thrown from this
context.

http://dx.doi.org/10.1007/978-1-4842-1700-9_3#FPar5

Chapter 7 ■ The Locking Framework

117

Compile Listing 7-2 as follows:

javac PC.java

Run the resulting application as follows:

java PC

You should observe output that’s identical to the following prefix of the output, which
indicates lockstep synchronization (the producer thread doesn’t produce an item until it’s
consumed and the consumer thread doesn’t consume an item until it’s produced):

A produced by producer.
A consumed by consumer.
B produced by producer.
B consumed by consumer.
C produced by producer.
C consumed by consumer.
D produced by producer.
D consumed by consumer.

ReadWriteLock
Situations arise where data structures are read more often than they’re modified. For
example, you might have created an online dictionary of word definitions that many
threads will read concurrently, while a single thread might occasionally add new
definitions or update existing definitions. The Locking Framework provides a read-
write locking mechanism for these situations that yields greater concurrency when
reading and the safety of exclusive access when writing. This mechanism is based on the
ReadWriteLock interface.

ReadWriteLock maintains a pair of locks: one lock for read-only operations and one
lock for write operations. The read lock may be held simultaneously by multiple reader
threads as long as there are no writers. The write lock is exclusive: only a single thread can
modify shared data. (The lock that’s associated with the synchronized keyword is also
exclusive.)

ReadWriteLock declares the following methods:

• Lock readLock(): Return the lock that’s used for reading.

• Lock writeLock(): Return the lock that’s used for writing.

Chapter 7 ■ The Locking Framework

118

ReentrantReadWriteLock
ReadWriteLock is implemented by the ReentrantReadWriteLock class, which describes a
reentrant read-write lock with similar semantics to ReentrantLock.

You initialize a ReentrantReadWriteLock instance by invoking either of the following
constructors:

• ReentrantReadWriteLock(): Create an instance of
ReentrantReadWriteLock. This constructor is equivalent to
ReentrantReadWriteLock(false).

• ReentrantReadWriteLock(boolean fair): Create an instance of
ReentrantReadWriteLock with the specified fairness policy. Pass
true to fair when this lock should use a fair ordering policy.

■ Note  For the fair ordering policy, when the currently held lock is released, either the
longest-waiting single writer thread will be assigned the write lock or, when there’s a group
of reader threads waiting longer than all waiting writer threads, that group will be assigned
the read lock.

A thread that tries to acquire a fair read lock (non-reentrantly) will block when the write lock
is held or when there’s a waiting writer thread. The thread will not acquire the read lock until
after the oldest currently waiting writer thread has acquired and released the write lock. If a
waiting writer abandons its wait, leaving one or more reader threads as the longest waiters
in the queue with the write lock free, those readers will be assigned the read lock.

A thread that tries to acquire a fair write lock (non-reentrantly) will block unless both the
read lock and write lock are free (which implies no waiting threads). (The nonblocking
tryLock() methods don’t honor this fair setting and will immediately acquire the lock if
possible, regardless of waiting threads.)

After instantiating this class, you invoke the following methods to obtain the read
and write locks:

• ReentrantReadWriteLock.ReadLock readLock(): Return the lock
used for reading.

• ReentrantReadWriteLock.WriteLock writeLock(): Return the
lock used for writing.

Chapter 7 ■ The Locking Framework

119

Each of the nested ReadLock and WriteLock classes implements the Lock interface
and declares its own methods. Furthermore, ReentrantReadWriteLock declares
additional methods such as the following pair:

• int getReadHoldCount(): Return the number of reentrant read
holds on this lock by the calling thread, which is 0 when the read
lock isn’t held by the calling thread. A reader thread has a hold on
a lock for each lock action that’s not matched by an unlock action.

• int getWriteHoldCount(): Return the number of reentrant write
holds on this lock by the calling thread, which is 0 when the write
lock isn’t held by the calling thread. A writer thread has a hold on
a lock for each lock action that’s not matched by an unlock action.

To demonstrate ReadWriteLock and ReentrantReadWriteLock, Listing 7-3 presents
an application whose writer thread populates a dictionary of word/definition entries
while a reader thread continually accesses entries at random and outputs them.

Listing 7-3.  Using ReadWriteLock to Satisfy a Dictionary Application’s Reader and
Writer Threads

import java.util.HashMap;
import java.util.Map;

import java.util.concurrent.Executors;
import java.util.concurrent.ExecutorService;

import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReadWriteLock;
import java.util.concurrent.locks.ReentrantReadWriteLock;

public class Dictionary
{
 public static void main(String[] args)
 {
 final String[] words =
 {

"hypocalcemia",
"prolixity",
"assiduous",
"indefatigable",
"castellan"

 };

 final String[] definitions =
 {

"a deficiency of calcium in the blood",
"unduly prolonged or drawn out",
"showing great care, attention, and effort",

Chapter 7 ■ The Locking Framework

120

"able to work or continue for a lengthy time without tiring",
"the govenor or warden of a castle or fort"

 };

 final Map<String, String> dictionary = new HashMap<String, String>();

 ReadWriteLock rwl = new ReentrantReadWriteLock(true);
 final Lock rlock = rwl.readLock();
 final Lock wlock = rwl.writeLock();

 Runnable writer = () ->
{

for (int i = 0; i < words.length; i++)
{

wlock.lock();
try
{

dictionary.put(words[i],
definitions[i]);

System.out.println("writer storing " +
words[i] + " entry");

}
finally
{

wlock.unlock();
}

try
{

Thread.sleep(1);
}
catch (InterruptedException ie)
{

System.err.println("writer " +
"interrupted");

}
}

};
 ExecutorService es = Executors.newFixedThreadPool(1);
 es.submit(writer);

 Runnable reader = () ->
{

while (true)
{

rlock.lock();
try

 {

Chapter 7 ■ The Locking Framework

121

int i = (int) (Math.random() *
words.length);

System.out.println("reader accessing " +
words[i] + ": " +
dictionary.get(words[i])
+ " entry");

}
finally
{

rlock.unlock();
}

}
};

 es = Executors.newFixedThreadPool(1);
 es.submit(reader);
 }
}

Listing 7-3’s default main thread first creates the words and definitions arrays of
strings, which are declared final because they will be accessed from anonymous classes.
After creating a map in which to store word/definition entries, it obtains a reentrant
read/write lock and accesses the reader and writer locks.

A runnable for the writer thread is now created. Its run() method iterates over the
words array. Each of the iterations locks the writer lock. When this method returns, the
writer thread has the exclusive writer lock and can update the map. It does so by
invoking the map’s put() method. After outputting a message to identify the added word,
the writer thread releases the lock and sleeps one millisecond to give the appearance of
performing other work. An executor based on a thread pool is obtained and used to
invoke the writer thread’s runnable.

A runnable for the reader thread is subsequently created. Its run() method
repeatedly obtains the read lock, accesses a random entry in the map, outputs this entry,
and unlocks the read lock. An executor based on a thread pool is obtained and used to
invoke the reader thread’s runnable.

Although I could have avoided the idiom for lock acquisition and release because an
exception isn’t thrown, I specified try/finally for good form.

Compile Listing 7-3 as follows:

javac Dictionary.java

Run the resulting application as follows:

java Dictionary

Chapter 7 ■ The Locking Framework

122

You should observe output that’s similar to the following prefix of the output
(the message order may differ somewhat) that I observed in one execution:

writer storing hypocalcemia entry
writer storing prolixity entry
reader accessing hypocalcemia: a deficiency of calcium in the blood entry
writer storing assiduous entry
reader accessing assiduous: showing great care, attention, and effort entry
reader accessing castellan: null entry
reader accessing hypocalcemia: a deficiency of calcium in the blood entry
reader accessing assiduous: showing great care, attention, and effort entry
reader accessing indefatigable: null entry
reader accessing hypocalcemia: a deficiency of calcium in the blood entry
reader accessing hypocalcemia: a deficiency of calcium in the blood entry
reader accessing assiduous: showing great care, attention, and effort entry
reader accessing indefatigable: null entry
reader accessing prolixity: unduly prolonged or drawn out entry
reader accessing hypocalcemia: a deficiency of calcium in the blood entry
reader accessing castellan: null entry
reader accessing assiduous: showing great care, attention, and effort entry
reader accessing hypocalcemia: a deficiency of calcium in the blood entry
reader accessing prolixity: unduly prolonged or drawn out entry
reader accessing assiduous: showing great care, attention, and effort entry
reader accessing castellan: null entry
reader accessing hypocalcemia: a deficiency of calcium in the blood entry
reader accessing indefatigable: null entry
reader accessing castellan: null entry
reader accessing prolixity: unduly prolonged or drawn out entry
reader accessing hypocalcemia: a deficiency of calcium in the blood entry
writer storing indefatigable entry
reader accessing assiduous: showing great care, attention, and effort entry
reader accessing assiduous: showing great care, attention, and effort entry

■ Note  Java 8 added StampedLock to the java.util.concurrent.locks package.
According to its JDK 8 documentation, StampedLock is a capability-based lock with
three modes for controlling read/write access. It differentiates between exclusive and
nonexclusive locks in a manner that’s similar to ReentrantReadWriteLock, but also
allows for optimistic reads, which ReentrantReadWriteLock doesn’t support. Check out
Dr. Heinz Kabutz’s Phaser and StampedLock Concurrency Synchronizers video presentation
(www.parleys.com/tutorial/5148922b0364bc17fc56ca4f/chapter0/about) to learn
about StampedLock. Also, see this presentation’s PDF file (www.jfokus.se/jfokus13/
preso/jf13_PhaserAndStampedLock.pdf).

http://parleys.com/play/5148922b0364bc17fc56ca4f/chapter0/about
http://www.parleys.com/tutorial/5148922b0364bc17fc56ca4f/chapter0/about
http://www.jfokus.se/jfokus13/preso/jf13_PhaserAndStampedLock.pdf
http://www.jfokus.se/jfokus13/preso/jf13_PhaserAndStampedLock.pdf

Chapter 7 ■ The Locking Framework

123

EXERCISES

The following exercises are designed to test your understanding of Chapter 7’s
content:

1. Define lock.

2. What is the biggest advantage that Lock objects hold over the
intrinsic locks that are obtained when threads enter critical
sections (controlled via the synchronized reserved word)?

3. True or false: ReentrantLock’s unlock() method throws
IllegalMonitorStateException when the calling thread
doesn’t hold the lock.

4. How do you obtain a Condition instance for use with a
particular Lock instance?

5. True or false: ReentrantReadWriteLock() creates an instance
of ReentrantReadWriteLock with a fair ordering policy.

6. Define StampedLock.

7. The java.util.concurrent.locks package includes a
LockSupport class. What is the purpose of LockSupport?

8. Replace the following ID class with an equivalent class that
uses ReentrantLock in place of synchronized:

public class ID
{
 private static int counter; // initialized to 0 by default

 public static synchronized int getID()
 {
 int temp = counter + 1;
 try
 {

Thread.sleep(1);
 }
 catch (InterruptedException ie)
 {
 }
 return counter = temp;
 }
}

http://dx.doi.org/10.1007/978-1-4842-1700-9_7

Chapter 7 ■ The Locking Framework

124

Summary
The java.util.concurrent.locks package provides a framework of interfaces and
classes for locking and waiting for conditions in a manner that’s distinct from an object’s
intrinsic lock-based synchronization and Object’s wait/notification mechanism. The
concurrency utilities include a locking framework that improves on intrinsic
synchronization and wait/notification by offering lock polling, timed waits, and more.

The Locking Framework includes the often-used Lock, ReentrantLock, Condition,
ReadWriteLock, and ReentrantReadWriteLock types, which I explored in this chapter.
I also briefly introduced you to the StampedLock class, which was introduced in Java 8.

Chapter 8 presents additional concurrency utilities.

http://dx.doi.org/10.1007/978-1-4842-1700-9_8

125

Chapter 8

Additional Concurrency
Utilities

Chapters 5 through 7 introduced you to the concurrency utilities, executors (and callables
and futures), synchronizers, and the Locking Framework. In this chapter, I complete my
coverage of the concurrency utilities by introducing you to concurrent collections, atomic
variables, the Fork/Join Framework, and completion services.

■ Note  Lack of time prevented my also covering completable futures. If you’re interested
in this topic, I recommend that you check out Tomasz Nurkiewicz’s excellent blog post titled
“Java 8: Definitive guide to CompletableFuture” at http://www.nurkiewicz.com/2013/05/
java-8-definitive-guide-to.html.

Concurrent Collections
Java’s Collections Framework provides interfaces and classes that are located in the
java.util package. Interfaces include List, Set, and Map; classes include ArrayList,
TreeSet, and HashMap.

ArrayList, TreeSet, HashMap, and other classes that implement these interfaces
are not thread-safe. However, you can make them thread-safe by using the synchronized
wrapper methods located in the java.util.Collections class. For example, you can
pass an ArrayList instance to Collections.synchronizedList() to obtain a thread-safe
variant of ArrayList.

http://dx.doi.org/10.1007/978-1-4842-1700-9_5
http://dx.doi.org/10.1007/978-1-4842-1700-9_7
http://www.nurkiewicz.com/2013/05/java-8-definitive-guide-to.html
http://www.nurkiewicz.com/2013/05/java-8-definitive-guide-to.html

Chapter 8 ■ Additional Concurrency Utilities

126

Although they’re often needed to simplify code in a multithreaded environment,
there are a couple of problems with thread-safe collections:

• It’s necessary to acquire a lock before iterating over a collection
that might be modified by another thread during the iteration.
If a lock isn’t acquired and the collection is modified, it’s highly
likely that java.util.ConcurrentModificationException will be
thrown. This happens because Collections Framework classes
return fail-fast iterators, which are iterators that throw
ConcurrentModificationException when collections are modified
during iteration. Fail-fast iterators are often inconvenient to
concurrent applications.

• Performance suffers when synchronized collections are accessed
frequently from multiple threads. This performance problem
ultimately impacts an application’s scalability.

The concurrency utilities address these problems by including concurrent collections,
which are concurrency performant and highly-scalable collections-oriented types that
are stored in the java.util.concurrent package. Its collections-oriented classes return
weakly-consistent iterators, which are iterators that have the following properties:

• An element that’s removed after iteration starts but hasn’t yet
been returned via the iterator’s next() method won’t be returned.

• An element that’s added after iteration starts may or may not be
returned.

• No element is returned more than once during the iteration of a
collection, regardless of changes made to the collection during
iteration.

The following list offers a short sample of concurrency-oriented collection types that
you’ll find in the java.util.concurrent package:

• BlockingQueue is a subinterface of java.util.Queue that also
supports blocking operations that wait for the queue to become
nonempty before retrieving an element and wait for space to
become available in the queue before storing an element. Each
of the ArrayBlockingQueue, DelayQueue, LinkedBlockingQueue,
PriorityBlockingQueue, and SynchronousQueue classes
implements this interface directly. The LinkedBlockingDeque
and LinkedTransferQueue classes implement this interface via
BlockingQueue subinterfaces.

• ConcurrentMap is a subinterface of java.util.Map that declares
additional indivisible putIfAbsent(), remove(), and replace()
methods. The ConcurrentHashMap class (the concurrent
equivalent of java.util.HashMap), the ConcurrentNavigableMap
class, and the ConcurrentSkipListMap class implement this
interface.

Chapter 8 ■ Additional Concurrency Utilities

127

Oracle’s Javadoc for BlockingQueue, ArrayBlockingQueue, and other concurrency-
oriented collection types identifies these types as part of the Collections Framework.

Using BlockingQueue and ArrayBlockingQueue
BlockingQueue’s Javadoc reveals the heart of a producer-consumer application that’s
vastly simpler than the equivalent application shown in Chapter 3 (see Listing 3-1)
because it doesn’t have to deal with synchronization. Listing 8-1 uses BlockingQueue
and its ArrayBlockingQueue implementation class in a high-level producer-consumer
equivalent.

Listing 8-1.  The Blocking Queue Equivalent of Chapter 3’s PC Application

import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

public class PC
{
 public static void main(String[] args)
 {
 final BlockingQueue<Character> bq;
 bq = new ArrayBlockingQueue<Character>(26);
 final ExecutorService executor = Executors.newFixedThreadPool(2);
 Runnable producer = () ->

{
for (char ch = 'A'; ch <= 'Z'; ch++)
{

try
{

bq.put(ch);
System.out.printf("%c produced by " +

"producer.%n", ch);
}
catch (InterruptedException ie)
{
}

}
};

http://dx.doi.org/10.1007/978-1-4842-1700-9_3
http://dx.doi.org/10.1007/978-1-4842-1700-9_3#FPar4
http://dx.doi.org/10.1007/978-1-4842-1700-9_3

Chapter 8 ■ Additional Concurrency Utilities

128

 executor.execute(producer);
 Runnable consumer = () ->

{
char ch = '\0';
do
{

try
{

ch = bq.take();
System.out.printf("%c consumed by " +

"consumer.%n", ch);
}
catch (InterruptedException ie)
{
}

}
while (ch != 'Z');
executor.shutdownNow();

};
 executor.execute(consumer);
 }
}

Listing 8-1 uses BlockingQueue’s put() and take() methods, respectively, to put an
object on the blocking queue and to remove an object from the blocking queue. put()
blocks when there’s no room to put an object; take() blocks when the queue is empty.

Although BlockingQueue ensures that a character is never consumed before it’s
produced, this application’s output may indicate otherwise. For example, here’s a portion
of the output from one run:

Y consumed by consumer.
Y produced by producer.
Z consumed by consumer.
Z produced by producer.

Chapter 3’s PC application in Listing 3-2 overcame this incorrect output order by
introducing an extra layer of synchronization around setSharedChar()/System.out.
println() and an extra layer of synchronization around getSharedChar()/System.out.
println(). Chapter 7’s PC application in Listing 7-2 overcame this incorrect output order
by placing these method calls between lock()/unlock() method calls.

http://dx.doi.org/10.1007/978-1-4842-1700-9_3
http://dx.doi.org/10.1007/978-1-4842-1700-9_3#FPar5
http://dx.doi.org/10.1007/978-1-4842-1700-9_7
http://dx.doi.org/10.1007/978-1-4842-1700-9_7#FPar5

Chapter 8 ■ Additional Concurrency Utilities

129

Learning More About ConcurrentHashMap
The ConcurrentHashMap class behaves like HashMap but has been designed to work in
multithreaded contexts without the need for explicit synchronization. For example, you
often need to check if a map contains a specific value and, when this value is absent, put
this value into the map:

if (!map.containsKey("some string-based key"))
 map.put("some string-based key", "some string-based value");

Although this code is simple and appears to do the job, it isn’t thread-safe. Between
the call to map.containsKey() and map.put(), another thread could insert this entry,
which would then be overwritten. To fix this race condition, you must explicitly
synchronize this code, which I demonstrate here:

synchronized(map)
{
 if (!map.containsKey("some string-based key"))
 map.put("some string-based key", "some string-based value");
}

The problem with this approach is that you’ve locked the entire map for read and
write operations while checking for key existence and adding the entry to the map when
the key doesn’t exist. This locking affects performance when many threads are trying to
access the map.

The generic ConcurrentHashMap<V> class addresses this problem by providing the
V putIfAbsent(K key, V value) method, which introduces a key/value entry into the
map when key is absent. This method is equivalent to the following code fragment but
offers better performance:

synchronized(map)
{
 if (!map.containsKey(key))
 return map.put(key, value);
 else
 return map.get(key);
}

Using putIfAbsent(), the earlier code fragment translates into the following simpler
code fragment:

map.putIfAbsent("some string-based key", "some string-based value");

Chapter 8 ■ Additional Concurrency Utilities

130

■ Note  Java 8 has improved ConcurrentHashMap by adding more than 30 new methods,
which largely support lambda expressions and the Streams API via aggregate operations.
Methods that perform aggregate operations include forEach() methods (forEach(),
forEachKey(), forEachValue(), and forEachEntry()), search methods (search(),
searchKeys(), searchValues(), and searchEntries()), and reduction methods
(reduce(), reduceToDouble(), reduceToLong(), and so on). Miscellaneous methods
(such as mappingCount() and newKeySet()) have been added as well. As a result of the
JDK 8 changes, ConcurrentHashMaps (and classes built from them) are now more useful
as caches. Cache-improvement changes include methods to compute values for keys, plus
improved support for scanning (and possibly evicting) entries, as well as better support for
maps with large numbers of elements.

Atomic Variables
The intrinsic locks that are associated with object monitors have historically suffered
from poor performance. Although performance has improved, they still present a
bottleneck when creating web servers and other applications that require high scalability
and performance in the presence of significant thread contention.

A lot of research has gone into creating nonblocking algorithms that can radically
improve performance in synchronization contexts. These algorithms offer increased
scalability because threads don’t block when multiple threads contend for the same data.
Also, threads don’t suffer from deadlock and other liveness problems.

Java 5 provided the ability to create efficient nonblocking algorithms by introducing
the java.util.concurrent.atomic package. According to this package’s JDK
documentation, java.util.concurrent.atomic provides a small toolkit of classes that
support lock-free, thread-safe operations on single variables.

The classes in the java.util.concurrent.atomic package extend the notion of
volatile values, fields, and array elements to those that also provide an atomic
conditional update so that external synchronization isn’t required. In other words, you
get mutual exclusion along with the memory semantics associated with volatile
variables without external synchronization.

■ Note  The terms atomic and indivisible are widely considered to be equivalent even
though we can split the atom.

Chapter 8 ■ Additional Concurrency Utilities

131

Some of the classes located in java.util.concurrent.atomic are described here:

• AtomicBoolean: A boolean value that may be updated atomically.

• AtomicInteger: An int value that may be updated atomically.

• AtomicIntegerArray: An int array whose elements may be
updated atomically.

• AtomicLong: A long value that may be updated atomically.

• AtomicLongArray: A long array whose elements may be updated
atomically.

• AtomicReference: An object reference that may be updated
atomically.

• AtomicReferenceArray: An object reference array whose
elements may be updated atomically.

Atomic variables are used to implement counters, sequence generators (such as
java.util.concurrent.ThreadLocalRandom), and other constructs that require mutual
exclusion without performance problems under high thread contention. For example,
consider Listing 8-2’s ID class whose getNextID() class method returns unique long
integer identifiers.

Listing 8-2.  Returning Unique Identifiers in a Thread-Safe Manner via synchronized

class ID
{
 private static volatile long nextID = 1;

 static synchronized long getNextID()
 {
 return nextID++;
 }
}

Although the code is properly synchronized (and visibility is accounted for), the
intrinsic lock associated with synchronized can hurt performance under heavy thread
contention. Furthermore, liveness problems such as deadlock can occur. Listing 8-3
shows you how to avoid these problems by replacing synchronized with an atomic
variable.

Chapter 8 ■ Additional Concurrency Utilities

132

Listing 8-3.  Returning Unique IDs in a Thread-Safe Manner via AtomicLong

import java.util.concurrent.atomic.AtomicLong;

class ID
{
 private static AtomicLong nextID = new AtomicLong(1);

 static long getNextID()
 {
 return nextID.getAndIncrement();
 }
}

In Listing 8-3, I’ve converted nextID from a long to an AtomicLong instance,
initializing this object to 1. I’ve also refactored the getNextID() method to call
AtomicLong’s getAndIncrement() method, which increments the AtomicLong instance’s
internal long integer variable by 1 and returns the previous value in one indivisible step.
There is no explicit synchronization.

■ Note  The java.util.concurrent.atomic package includes DoubleAccumulator,
DoubleAdder, LongAccumulator, and LongAdder classes that address a scalability problem in
the context of maintaining a single count, sum, or some other value with the possibility of updates
from many threads. These new classes “internally employ contention-reduction techniques that
provide huge throughput improvements as compared to atomic variables. This is made possible
by relaxing atomicity guarantees in a way that is acceptable in most applications.”

Understanding the Atomic Magic
Java’s low-level synchronization mechanism, which enforces mutual exclusion (the thread
holding the lock that guards a set of variables has exclusive access to them) and visibility
(changes to the guarded variables become visible to other threads that subsequently
acquire the lock), impacts hardware utilization and scalability in the following ways:

• Contended synchronization (multiple threads constantly
competing for a lock) is expensive and throughput suffers as a
result. This expense is caused mainly by the frequent context
switching (switching the central processing unit from one thread to
another) that occurs. Each context switch operation can take many
processor cycles to complete. In contrast, modern Java virtual
machines (JVMs) make uncontended synchronization inexpensive.

• When a thread holding a lock is delayed (because of a scheduling
delay, for example), no thread that requires that lock makes any
progress; the hardware isn’t utilized as well as it might be.

Chapter 8 ■ Additional Concurrency Utilities

133

Although you might believe that you can use volatile as a synchronization
alternative, this won’t work. Volatile variables only solve the visibility problem. They
cannot be used to safely implement the atomic read-modify-write sequences that are
necessary for implementing thread-safe counters and other entities that require mutual
exclusion. However, there is an alternative that’s responsible for the performance gains
offered by the concurrency utilities (such as the java.util.concurrent.Semaphore
class). This alternative is known as compare-and-swap.

Compare-and-swap (CAS) is the generic term for an uninterruptible microprocessor-
specific instruction that reads a memory location, compares the read value with an
expected value, and stores a new value in the memory location when the read value
matches the expected value. Otherwise, nothing is done. Modern microprocessors offer
variations of CAS. For example, Intel microprocessors provide the cmpxchg family of
instructions, whereas the older PowerPC microprocessors provide equivalent load-link
(such as lwarx) and store-conditional (such as stwcx) instructions.

CAS supports atomic read-modify-write sequences. You typically use CAS as follows:

1.	 Read value x from address A.

2.	 Perform a multistep computation on x to derive a new value
called y.

3.	 Use CAS to change the value of A from x to y. CAS succeeds
when A’s value hasn't changed while performing these steps.

To understand CAS’s benefit, consider Listing 8-2’s ID class, which returns a unique
identifier. Because this class declares its getNextID() method synchronized, high
contention for the monitor lock results in excessive context switching that can delay all of
the threads and result in an application that doesn’t scale well.

Assume the existence of a CAS class that stores an int-based value in value.
Furthermore, it offers atomic methods int getValue() for returning value and int
compareAndSwap(int expectedValue, int newValue) for implementing CAS. (Behind
the scenes, CAS relies on the Java Native Interface [JNI] to access the microprocessor-
specific CAS instruction.)

The compareAndSwap() method executes the following instruction sequence
atomically:

int readValue = value; // Obtain the stored value.
if (readValue == expectedValue) // If stored value not modified ...
 value = newValue; // ... change to new value.
return readValue; // Return value before a potential change.

Listing 8-4 presents a new version of ID that uses the CAS class to obtain a unique
identifier in a highly performant manner. (Forget about the performance ramifications of
using the JNI and assume that we had direct access to the microprocessor-specific CAS
instruction.)

Chapter 8 ■ Additional Concurrency Utilities

134

Listing 8-4.  Returning Unique IDs in a Thread-Safe Manner via CAS

class ID
{
 private static CAS value = new CAS(1);

 static long getNextID()
 {
 int curValue = value.getValue();
 while (value.compareAndSwap(curValue, curValue + 1) != curValue)

curValue = value.getValue();
 return curValue - 1;
 }
}

ID encapsulates a CAS instance initialized to int-value 1 and declares a getNextID()
method for retrieving the current identifier value and then incrementing this value with
help from this instance. After retrieving the instance’s current value, getNextID()
repeatedly invokes compareAndSwap() until curValue’s value hasn’t changed (by another
thread). This method is then free to change this value, after which it returns the previous
value. When no lock is involved, contention is avoided along with excessive context
switching. Performance improves and the code is more scalable.

As an example of how CAS improves the concurrency utilities, consider
java.util.concurrent.locks.ReentrantLock. This class offers better performance than
synchronized under high thread contention. To boost performance, ReentrantLock’s
synchronization is managed by a subclass of the abstract java.util.concurrent.locks.
AbstractQueuedSynchronizer class. In turn, this class leverages the undocumented
sun.misc.Unsafe class and its compareAndSwapInt() CAS method.

The atomic variable classes also leverage CAS. Furthermore, they provide a method
that has the following form:

boolean compareAndSet(expectedValue, updateValue)

This method (which varies in argument types across different classes) atomically sets
a variable to the updateValue when it currently holds the expectedValue, reporting true
on success.

Fork/Join Framework
There is always a need for code to execute faster. Historically, this need was met by
increasing microprocessor speeds and/or by supporting multiple processors. However,
somewhere around 2003, microprocessor speeds stopped increasing because of natural
limits. To compensate, processor manufacturers started to add multiple processing cores
to their processors, to increase speed through massive parallelism.

Chapter 8 ■ Additional Concurrency Utilities

135

■ Note  Parallelism refers to running threads simultaneously through some combination
of multiple processors and cores. In contrast, concurrency is a more generalized form of
parallelism in which threads run simultaneously or appear to run simultaneously through
context switching, also known as virtual parallelism. Some people further characterize
concurrency as a property of a program or operating system and parallelism as the runtime
behavior of executing multiple threads simultaneously.

Java supports concurrency via its low-level threading features and higher-level
concurrency utilities such as thread pools. The problem with concurrency is that it
doesn’t maximize the use of available processor/core resources. For example, suppose
you’ve created a sorting algorithm that divides an array into two halves, assigns two
threads to sort each half, and merges the results after both threads finish.

Let’s assume that each thread runs on a different processor. Because different
amounts of element reordering may occur in each half of the array, it’s possible that one
thread will finish before the other thread and must wait before the merge can happen. In
this case, a processor resource is wasted.

This problem (and the related problems of the code being verbose and harder to
read) can be solved by recursively breaking a task into subtasks and combining results.
These subtasks run in parallel and complete approximately at the same time (if not at the
same moment), where their results are merged and passed up the stack to the previous
layer of subtasks. Hardly any processor time is wasted through waiting, and the recursive
code is less verbose and (usually) easier to understand. Java provides the Fork/Join
Framework to implement this scenario.

Fork/Join consists of a special executor service and thread pool. The executor service
makes a task available to the framework, and this task is broken into smaller tasks that are
forked (executed by different threads) from the pool. A task waits until joined (its subtasks
finish).

Fork/Join uses work stealing to minimize thread contention and overhead. Each
worker thread from a pool of worker threads has its own double-ended work queue and
pushes new tasks to this queue. It reads the task from the head of the queue. If the queue
is empty, the worker thread tries to get a task from the tail of another queue. Stealing is
infrequent because worker threads put tasks into their queues in a last-in, first-out (LIFO)
order, and the size of work items gets smaller as a problem is divided into subproblems.
You start by giving the tasks to a central worker and it keeps dividing them into smaller
tasks. Eventually all of the workers have something to do with minimal synchronization.

Chapter 8 ■ Additional Concurrency Utilities

136

Fork/Join largely consists of the java.util.concurrent package’s ForkJoinPool,
ForkJoinTask, ForkJoinWorkerThread, RecursiveAction, RecursiveTask, and
CountedCompleter classes:

• ForkJoinPool is a java.util.concurrent.ExecutorService
implementation for running ForkJoinTasks. A ForkJoinPool
instance provides the entry point for submissions from
non-ForkJoinTask clients, as well as providing management
and monitoring operations.

• ForkJoinTask is the abstract base class for tasks that run in a
ForkJoinPool context. A ForkJoinTask instance is a thread-like
entity that is much lighter weight than a normal thread. Huge
numbers of tasks and subtasks may be hosted by a small number
of actual threads in a ForkJoinPool, at the price of some usage
limitations.

• ForkJoinWorkerThread describes a thread managed by a
ForkJoinPool instance, which executes ForkJoinTasks.

• RecursiveAction describes a recursive result-less ForkJoinTask.

• RecursiveTask describes a recursive result-bearing
ForkJoinTask.

• CountedCompleter describes a ForkJoinTask with a completion
action (code that completes a fork/join task) performed when
triggered and there are no remaining pending actions.

The Java documentation provides examples of RecursiveAction-based tasks (such
as sorting) and RecursiveTask-based tasks (such as computing Fibonacci numbers).
You can also use RecursiveAction to accomplish matrix multiplication (see http://
en.wikipedia.org/wiki/Matrix_multiplication). For example, suppose that you’ve created
Listing 8-5’s Matrix class to represent a matrix consisting of a specific number of rows
and columns.

Listing 8-5.  A Class for Representing a Two-Dimensional Table

public class Matrix
{
 private final int[][] matrix;

 public Matrix(int nrows, int ncols)
 {
 matrix = new int[nrows][ncols];
 }

 public int getCols()
 {
 return matrix[0].length;
 }

m

http://en.wikipedia.org/wiki/Matrix_multiplication
http://en.wikipedia.org/wiki/Matrix_multiplication

Chapter 8 ■ Additional Concurrency Utilities

137

 public int getRows()
 {
 return matrix.length;
 }

 public int getValue(int row, int col)
 {
 return matrix[row][col];
 }

 public void setValue(int row, int col, int value)
 {
 matrix[row][col] = value;
 }
}

Listing 8-6 demonstrates the single-threaded approach to multiplying two Matrix
instances.

Listing 8-6.  Multiplying Two Matrix Instances via the Standard Matrix-Multiplication
Algorithm

public class MatMult
{
 public static void main(String[] args)
 {
 Matrix a = new Matrix(1, 3);

a.setValue(0, 0, 1); // | 1 2 3 |
a.setValue(0, 1, 2);
a.setValue(0, 2, 3);
dump(a);
Matrix b = new Matrix(3, 2);
b.setValue(0, 0, 4); // | 4 7 |
b.setValue(1, 0, 5); // | 5 8 |
b.setValue(2, 0, 6); // | 6 9 |
b.setValue(0, 1, 7);
b.setValue(1, 1, 8);
b.setValue(2, 1, 9);
dump(b);
dump(multiply(a, b));

 }

Chapter 8 ■ Additional Concurrency Utilities

138

 public static void dump(Matrix m)
 {
 for (int i = 0; i < m.getRows(); i++)
 {

for (int j = 0; j < m.getCols(); j++)
System.out.printf("%d ", m.getValue(i, j));

System.out.println();
 }
 System.out.println();
 }

 public static Matrix multiply(Matrix a, Matrix b)
 {
 if (a.getCols() != b.getRows())

throw new IllegalArgumentException("rows/columns mismatch");
 Matrix result = new Matrix(a.getRows(), b.getCols());
 for (int i = 0; i < a.getRows(); i++)

for (int j = 0; j < b.getCols(); j++)
for (int k = 0; k < a.getCols(); k++)

result.setValue(i, j, result.getValue(i, j) +
a.getValue(i, k) * b.getValue(k, j));

 return result;
 }
}

Listing 8-6’s MatMult class declares a multiply() method that demonstrates
matrix multiplication. After verifying that the number of columns in the first Matrix (a)
equals the number of rows in the second Matrix (b), which is essential to the algorithm,
multiply() creates a result Matrix and enters a sequence of nested loops to perform
the multiplication.

The essence of these loops is as follows: For each row in a, multiply each of that row’s
column values by the corresponding column’s row values in b. Add the results of the
multiplications and store the overall total in result at the location specified via the row
index (i) in a and the column index (j) in b.

Compile Listing 8-6 and Listing 8-5, which must be in the same directory, as follows:

javac MultMat.java

Run the resulting application as follows:

java MatMult

Chapter 8 ■ Additional Concurrency Utilities

139

You should observe the following output, which indicates that a 1-row-by-3-column
matrix multiplied by a 3-row-by-2 column matrix results in a 1-row-by-2-column matrix:

1 2 3

4 7
5 8
6 9

32 50

Computer scientists classify this algorithm as O(n*n*n), which is read “big-oh of
n-cubed” or “approximately n-cubed.” This notation is an abstract way of classifying
the algorithm’s performance (without being bogged down in specific details such as
microprocessor speed). A O(n*n*n) classification indicates very poor performance, and
this performance worsens as the sizes of the matrixes being multiplied increase.

The performance can be improved (on multiprocessor and/or multicore platforms)
by assigning each row-by-column multiplication task to a separate thread-like entity.
Listing 8-7 shows you how to accomplish this scenario in the context of the Fork/Join
Framework.

Listing 8-7.  Multiplying Two Matrix Instances with Help from the Fork/Join Framework

import java.util.ArrayList;
import java.util.List;

import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.RecursiveAction;

public class MatMult extends RecursiveAction
{
 private final Matrix a, b, c;
 private final int row;

 public MatMult(Matrix a, Matrix b, Matrix c)
 {
 this(a, b, c, -1);
 }

 public MatMult(Matrix a, Matrix b, Matrix c, int row)
 {
 if (a.getCols() != b.getRows())

throw new IllegalArgumentException("rows/columns mismatch");
 this.a = a;
 this.b = b;
 this.c = c;
 this.row = row;
 }

Chapter 8 ■ Additional Concurrency Utilities

140

 @Override
 public void compute()
 {
 if (row == -1)
 {

List<MatMult> tasks = new ArrayList<>();
for (int row = 0; row < a.getRows(); row++)

tasks.add(new MatMult(a, b, c, row));
invokeAll(tasks);

 }
 else

multiplyRowByColumn(a, b, c, row);
 }

 public static void multiplyRowByColumn(Matrix a, Matrix b, Matrix c,
int row)

 {
 for (int j = 0; j < b.getCols(); j++)

for (int k = 0; k < a.getCols(); k++)
c.setValue(row, j, c.getValue(row, j) +

a.getValue(row, k) * b.getValue(k, j));
 }

 public static void dump(Matrix m)
 {
 for (int i = 0; i < m.getRows(); i++)
 {

for (int j = 0; j < m.getCols(); j++)
System.out.print(m.getValue(i, j) + " ");

System.out.println();
 }
 System.out.println();
 }

 public static void main(String[] args)
 {
 Matrix a = new Matrix(2, 3);

a.setValue(0, 0, 1); // | 1 2 3 |
a.setValue(0, 1, 2); // | 4 5 6 |
a.setValue(0, 2, 3);
a.setValue(1, 0, 4);
a.setValue(1, 1, 5);
a.setValue(1, 2, 6);
dump(a);
Matrix b = new Matrix(3, 2);
b.setValue(0, 0, 7); // | 7 1 |
b.setValue(1, 0, 8); // | 8 2 |

Chapter 8 ■ Additional Concurrency Utilities

141

b.setValue(2, 0, 9); // | 9 3 |
b.setValue(0, 1, 1);
b.setValue(1, 1, 2);
b.setValue(2, 1, 3);
dump(b);
Matrix c = new Matrix(2, 2);
ForkJoinPool pool = new ForkJoinPool();
pool.invoke(new MatMult(a, b, c));
dump(c);

 }
}

Listing 8-7 presents a MatMult class that extends RecursiveAction. To accomplish
meaningful work, RecursiveAction’s void compute() method is overridden.

■ Note A lthough compute() is normally used to subdivide a task into subtasks
recursively, I’ve chosen to handle the multiplication task somewhat differently (for brevity
and simplicity).

After creating Matrixes a and b, Listing 8-7’s main() method creates Matrix c and
instantiates ForkJoinPool. It then instantiates MatMult, passing these three Matrix
instances as arguments to the MatMult(Matrix a, Matrix b, Matrix c) constructor,
and calls ForkJoinPool’s T invoke(ForkJoinTask<T> task) method to start running
this initial task. This method doesn’t return until the initial task and all of its subtasks
complete.

The MatMult(Matrix a, Matrix b, Matrix c) constructor invokes the
MatMult(Matrix a, Matrix b, Matrix c, int row) constructor, specifying -1 as row’s
value. This value is used by compute(), which is invoked as a result of the aforementioned
invoke() method call, to distinguish between the initial task and subtasks.

When compute() is initially called (row equals -1), it creates a List of MatMult tasks
and passes this List to RecursiveAction’s Collection<T> invokeAll(Collection<T>
tasks) method (inherited from ForkJoinTask). This method forks all of the List
collection’s tasks, which will start to execute. It then waits until the invokeAll() method
returns (which also joins to all of these tasks), which happens when the boolean
isDone() method (also inherited from ForkJoinTask) returns true for each task.

Notice the tasks.add(new MatMult(a, b, c, row)); method call. This call assigns
a specific row value to a MatMult instance. When invokeAll() is called, each task’s
compute() method is called and detects a different value (other than -1) assigned to row.
It then executes multiplyRowByColumn(a, b, c, row); for its specific row.

Chapter 8 ■ Additional Concurrency Utilities

142

Compile Listing 8-7 (javac MatMult.java) and run the resulting application (java
MatMult). You should observe the following output:

1 2 3
4 5 6

7 1
8 2
9 3

50 14
122 32

Completion Services
A completion service is an implementation of the java.util.concurrent.
CompletionService<V> interface that decouples the production of new asynchronous
tasks (a producer) from the consumption of the results of completed tasks (a consumer).
V is the type of a task result.

A producer submits a task for execution (via a worker thread) by calling one of the
submit() methods: one method accepts a callable argument and the other method accepts a
runnable argument along with a result to return upon task completion. Each method returns
a Future<V> instance that represents the pending completion of the task. You can then call a
poll() method to poll for the task’s completion or call the blocking take() method.

A consumer takes a completed task by calling the take() method. This method
blocks until a task has completed. It then returns a Future<V> object that represents the
completed task. You would call Future<V>’s get() method to obtain this result.

Along with CompletionService<V>, Java 7 introduced the java.util.concurrent.
ExecutorCompletionService<V> class to support task execution via a provided executor.
This class ensures that, when submitted tasks are complete, they are placed on a queue
that’s accessible to take().

To demonstrate CompletionService and ExecutorCompletionService, I’m revisiting
the application for calculating Euler’s number that I first presented in Chapter 5. Listing 8-8
presents the source code to a new application that submits two callable tasks to calculate
this number to different accuracies.

Listing 8-8.  Calculating Euler’s Number via a Completion Service

import java.math.BigDecimal;
import java.math.MathContext;
import java.math.RoundingMode;

import java.util.concurrent.Callable;
import java.util.concurrent.CompletionService;
import java.util.concurrent.ExecutorCompletionService;
import java.util.concurrent.Executors;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Future;

http://dx.doi.org/10.1007/978-1-4842-1700-9_5

Chapter 8 ■ Additional Concurrency Utilities

143

public class CSDemo
{
 public static void main(String[] args) throws Exception
 {
 ExecutorService es = Executors.newFixedThreadPool(10);
 CompletionService<BigDecimal> cs =

new ExecutorCompletionService<BigDecimal>(es);
 cs.submit(new CalculateE(17));
 cs.submit(new CalculateE(170));
 Future<BigDecimal> result = cs.take();
 System.out.println(result.get());
 System.out.println();
 result = cs.take();
 System.out.println(result.get());
 es.shutdown();
 }
}

class CalculateE implements Callable<BigDecimal>
{
 final int lastIter;

 public CalculateE(int lastIter)
 {
 this.lastIter = lastIter;
 }

 @Override
 public BigDecimal call()
 {
 MathContext mc = new MathContext(100, RoundingMode.HALF_UP);
 BigDecimal result = BigDecimal.ZERO;
 for (int i = 0; i <= lastIter; i++)
 {

BigDecimal factorial = factorial(new BigDecimal(i));
BigDecimal res = BigDecimal.ONE.divide(factorial, mc);
result = result.add(res);

 }
 return result;
 }

 private BigDecimal factorial(BigDecimal n)
 {
 if (n.equals(BigDecimal.ZERO))

return BigDecimal.ONE;
 else

return n.multiply(factorial(n.subtract(BigDecimal.ONE)));
 }
}

Chapter 8 ■ Additional Concurrency Utilities

144

Listing 8-8 presents two classes: CSDemo and CalculateE. CSDemo drives the
application and CalculateE describes the Euler’s number calculation task.

CSDemo’s main() method first creates an executor service that will execute a task. It
then creates a completion service for completing the task. Two calculation tasks are
subsequently submitted to the completion service, which runs each task asynchronously.
For each task, the completion service’s take() method is called to return the task’s future,
whose get() method is called to obtain the task result, which is then output.

CalculateE contains code that’s nearly identical to what was presented in Chapter 5
(see Listing 5-1). The only difference is the change from a LASTITER constant to a
lastIter variable that records the last iteration to execute (and determines the number
of digits of precision).

Compile Listing 8-8 as follows:

javac CSDemo.java

Run the resulting application as follows:

java CSDemo

You should observe the following output:

2.71828182845904507051604779584860506117897963525103269890073500406522504250
4843314055887974344245741730039454062711

2.71828182845904523536028747135266249775724709369995957496696762772407663035
3547594571382178525166427463896116281654124813048729865380308305425562838245
9134600326751445819115604942105262868564884769196304284703491677706848122126
6648385500451288419298517722688532167535748956289403478802971332967547449493
7583500554228384631452841986384050112497204406928225548432766806207414980593
2978161481951711991448146506

■ Note  If you’re wondering about the difference between an executor service and a
completion service, consider that, with an executor service, after writing the code to submit
the tasks, you need to write code to efficiently retrieve task results. With a completion
service, this job is pretty much automated. Another way to look at these constructs is that
an executor service provides an incoming queue for tasks and provides workers threads,
whereas a completion service provides an incoming queue for tasks, worker threads, and an
output queue for storing task results.

http://dx.doi.org/10.1007/978-1-4842-1700-9_5
http://dx.doi.org/10.1007/978-1-4842-1700-9_5#FPar7

Chapter 8 ■ Additional Concurrency Utilities

145

EXERCISES

The following exercises are designed to test your understanding of Chapter 8’s
content:

1. Identify the two problems with thread-safe collections.

2. Define concurrent collection.

3. What is a weakly-consistent iterator?

4. Describe the BlockingQueue interface.

5. Describe the ConcurrentMap interface.

6. Describe the ArrayBlockingQueue and LinkedBlockingQueue
BlockingQueue-implementation classes.

7. True or false: The concurrency-oriented collection types are part
of the Collections Framework.

8. Describe the ConcurrentHashMap class.

9. Using ConcurrentHashMap, how would you check if a map
contains a specific value and, when this value is absent, put this
value into the map without relying on external synchronization?

10. Define atomic variable.

11. What does the AtomicIntegerArray class describe?

12. True or false: volatile supports atomic read-modify-write
sequences.

13. What’s responsible for the performance gains offered by the
concurrency utilities?

14. Describe the Fork/Join Framework.

15. Identify the main types that comprise the Fork/Join Framework.

16. To accomplish meaningful work via RecursiveAction, which
one of its methods would you override?

17. Define completion service.

18. How do you use a completion service?

http://dx.doi.org/10.1007/978-1-4842-1700-9_8

Chapter 8 ■ Additional Concurrency Utilities

146

19. How do you execute tasks via a completion service?

20. Convert the following expressions to their atomic variable
equivalents:

int total = ++counter;
int total = counter--;

Summary
This chapter completed my tour of the concurrency utilities by introducing concurrent
collections, atomic variables, the Fork/Join Framework, and completion services.

A concurrent collection is a concurrency performant and highly-scalable collections-
oriented type that is stored in the java.util.concurrent package. It overcomes the
ConcurrentModificationException and performance problems of thread-safe
collections.

An atomic variable is an instance of a class that encapsulates a single variable and
supports lock-free, thread-safe operations on that variable, for example, AtomicInteger.

The Fork/Join Framework consists of a special executor service and thread pool. The
executor service makes a task available to the framework, and this task is broken down
into smaller tasks that are forked (executed by different threads) from the pool. A task
waits until it’s joined (its subtasks finish).

A completion service is an implementation of the CompletionService<V> interface
that decouples the production of new asynchronous tasks (a producer) from the
consumption of the results of completed tasks (a consumer). V is the type of a task result.

Appendix A presents the answers to each chapter’s exercises.

Part III

Appendices

149

Appendix A

Answers to Exercises

Each of Chapters 1 through 8 closes with an “Exercises” section that tests your
understanding of the chapter’s material. The answers to those exercises are presented in
this appendix.

Chapter 1: Threads and Runnables
1.	 A thread is an independent path of execution through an

application’s code.

2.	 A runnable is a code sequence encapsulated into an object
whose class implements the Runnable interface.

3.	 The Thread class provides a consistent interface to the
underlying operating system’s threading architecture. The
Runnable interface supplies the code to be executed by the
thread that’s associated with a Thread object.

4.	 The two ways to create a Runnable object are to instantiate an
anonymous class that implements the Runnable interface and
to use a lambda expression.

5.	 The two ways to connect a runnable to a Thread object are to
pass the runnable to a Thread constructor that accepts a
runnable argument and to subclass Thread and override its
void run() method when the constructor doesn’t accept a
runnable argument. Thread implements the Runnable
interface, which makes Thread objects runnables as well.

6.	 The five kinds of Thread state are a name, an indication of
whether the thread is alive or dead, the execution state of
the thread (is it runnable?), the thread’s priority, and an
indication of whether the thread is daemon or nondaemon.

7.	 The answer is false: a default thread name starts with the
Thread- prefix.

http://dx.doi.org/10.1007/978-1-4842-1700-9_1
http://dx.doi.org/10.1007/978-1-4842-1700-9_1

Appendix A ■ Answers to Exercises

150

8.	 You give a thread a nondefault name by calling a Thread
constructor that accepts a thread name or by calling Thread’s
void setName(String name) method.

9.	 You determine if a thread is alive or dead by calling Thread’s
boolean isAlive() method.

10.	 The Thread.State enum’s constants are NEW (a thread that
has not yet started is in this state), RUNNABLE (a thread executing
in the Java virtual machine [JVM] is in this state), BLOCKED (a
thread that is blocked waiting for a monitor lock is in this
state), WAITING (a thread that is waiting indefinitely for
another thread to perform a particular action is in this state),
TIMED_WAITING (a thread that is waiting for another thread to
perform an action for up to a specified waiting time is in this
state), and TERMINATED (a thread that has exited is in this state).

11.	 You obtain the current thread execution state by calling
Thread’s Thread.State getState() method.

12.	 Priority is thread-relative importance.

13.	 Using setPriority() can impact an application’s portability
across operating systems because different schedulers can
handle a priority change in different ways.

14.	 The range of values that you can pass to Thread’s void
setPriority(int priority) method are Thread.MIN_
PRIORITY to Thread.MAX_PRIORITY.

15.	 The answer is true: a daemon thread dies automatically when
the application’s last nondaemon thread dies so that the
application can terminate.

16.	 Thread’s void start() method throws
IllegalThreadStateException when called on a Thread
object whose thread is running or has died.

17.	 You would stop an unending application on Windows by
pressing the Ctrl and C keys simultaneously.

18.	 The methods that form Thread’s interruption mechanism are
void interrupt(), static boolean interrupted(), and
boolean isInterrupted().

19.	 The answer is false: the boolean isInterrupted() method
doesn’t clear the interrupted status of this thread. The
interrupted status is unaffected.

20.	 A thread throws InterruptedException when it’s interrupted.

21.	 A busy loop is a loop of statements designed to waste some time.

https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#class%20in%20java.lang

Appendix A ■ Answers to Exercises

151

22.	 Thread’s methods that let a thread wait for another thread to
die are void join(), void join(long millis), and void
join(long millis, int nanos).

23.	 Thread’s methods that let a thread sleep are void sleep(long
millis) and void sleep(long millis, int nanos).

24.	 Listing A-1 presents the IntSleep application that was called
for in Chapter 1.

Listing A-1.  Interrupting a Sleeping Background Thread

public class IntSleep
{
 public static void main(String[] args)
 {
 Runnable r = new Runnable()

{
@Override
public void run()
{

while (true)
{

System.out.println("hello");
try
{

Thread.sleep(100);
}
catch (InterruptedException ie)
{

System.out.println("interrupted");
break;

}
}

}
};

 Thread t = new Thread(r);
t.start();
try
{

Thread.sleep(2000);
 }
 catch (InterruptedException ie)
 {
 }

t.interrupt();
 }
}

http://dx.doi.org/10.1007/978-1-4842-1700-9_1

Appendix A ■ Answers to Exercises

152

Chapter 2: Synchronization
1.	 The three problems with threads are race conditions, data

races, and cached variables.

2.	 The answer is false: when the correctness of a computation
depends on the relative timing or interleaving of multiple
threads by the scheduler, you have a race condition.

3.	 Synchronization is a JVM feature that ensures that two or
more concurrent threads don’t simultaneously execute a
critical section.

4.	 The two properties of synchronization are mutual exclusion
and visibility.

5.	 Synchronization is implemented in terms of monitors, which
are concurrency constructs for controlling access to critical
sections, which must execute indivisibly. Each Java object is
associated with a monitor, which a thread can lock or unlock
acquiring and releasing the monitor’s lock token.

6.	 The answer is true: a thread that has acquired a lock doesn’t
release this lock when it calls one of Thread’s sleep() methods.

7.	 You specify a synchronized method by including the keyword
synchronized in the method header.

8.	 You specify a synchronized block by specifying the syntax
synchronized(object) {}.

9.	 Liveness refers to something beneficial happening eventually.

10.	 The three liveness challenges are deadlock, livelock, and
starvation (also known as indefinite postponement).

11.	 The volatile keyword differs from synchronized in that
volatile deals with visibility only, whereas synchronized
deals with mutual exclusion and visibility.

12.	 The answer is true: Java also lets you safely access a final
field without the need for synchronization.

13.	 The thread problems with the CheckingAccount class are the
check-then-act race condition in the withdraw() method
between if (amount <= balance) and balance -= amount;
(which results in more money being withdrawn than is
available for withdrawal) and the potentially cached balance
field. The balance field can be cached on multiprocessor/
multicore systems and the cached copy used by the
withdrawal thread might not contain the initial balance set in
the constructor by the default main thread.

14.	 Listing A-2 presents the CheckingAccount application that
was called for in Chapter 2.

http://dx.doi.org/10.1007/978-1-4842-1700-9_2
https://en.wikipedia.org/wiki/Thread_%28computer_science%29#Thread%20(computer%20science)
http://dx.doi.org/10.1007/978-1-4842-1700-9_2

Appendix A ■ Answers to Exercises

153

Listing A-2.  Fixing a Problematic Checking Account

public class CheckingAccount
{
 private volatile int balance;

 public CheckingAccount(int initialBalance)
 {
 balance = initialBalance;
 }

 public synchronized boolean withdraw(int amount)
 {
 if (amount <= balance)
 {

try
{

Thread.sleep((int) (Math.random() * 200));
}
catch (InterruptedException ie)
{
}
balance -= amount;
return true;

 }
 return false;
 }

 public static void main(String[] args)
 {
 final CheckingAccount ca = new CheckingAccount(100);
 Runnable r = new Runnable()

{
@Override
public void run()
{

String name = Thread.currentThread().getName();
for (int i = 0; i < 10; i++)

System.out.println (name + " withdraws $10: " +
ca.withdraw(10));

}
};

 Thread thdHusband = new Thread(r);
 thdHusband.setName("Husband");
 Thread thdWife = new Thread(r);
 thdWife.setName("Wife");
 thdHusband.start();
 thdWife.start();
 }
}

Appendix A ■ Answers to Exercises

154

This application uses volatile to deal with potential cache problems and
synchronized to deal with the need for mutual exclusion.

Chapter 3: Waiting and Notification
	 1.	 A condition is a prerequisite for continued execution.

	 2.	 The API that supports conditions consists of Object’s three
wait() methods, one notify() method, and one notifyAll()
method. The wait() methods wait for a condition to exist; the
notify() and notifyAll() methods notify the waiting thread
when the condition exists.

	 3.	 The answer is true: the wait() methods are interruptible.

	 4.	 You would call the notifyAll() method to wake up all
threads that are waiting on an object’s monitor.

	 5.	 The answer is false: a thread that has acquired a lock releases
this lock when it calls one of Object’s wait() methods.

	 6.	 A condition queue is a data structure that stores threads
waiting for a condition to exist. The waiting threads are known
as the wait set.

	 7.	 When you call any of the API’s methods outside of a
synchronized context, IllegalMonitorStateException is
thrown.

	 8.	 A spurious wakeup is a thread waking up without being
notified, interrupted, or timing out.

	 9.	 You should call a wait() method in a loop context to ensure
liveness and safety.

	 10.	 Listing A-3 presents the Await application that was called for
in Chapter 3.

Listing A-3.  Using wait() and notifyAll() to Create a Higher-Level Concurrency
Construct

public class Await
{
 static volatile int count;
 
 public static void main(String[] args)
 {
 Runnable r = () ->
 {
 Thread curThread = Thread.currentThread();
 System.out.printf("%s has entered runnable and is " +

http://dx.doi.org/10.1007/978-1-4842-1700-9_3
http://dx.doi.org/10.1007/978-1-4842-1700-9_3

Appendix A ■ Answers to Exercises

155

"waiting%n", curThread.getName());
synchronized(Await.class)
{

count++;
try
{

Thread.sleep(2000);
while (count < 3)

Await.class.wait();
}
catch (InterruptedException ie)
{
}

}
System.out.printf("%s has woken up and is " +

"terminating%n",
curThread.getName());

};
 Thread thdA = new Thread(r, "thdA");
 Thread thdB = new Thread(r, "thdB");
 Thread thdC = new Thread(r, "thdC");
 thdA.start();
 thdB.start();
 thdC.start();
 r = new Runnable()

{
@Override
public void run()
{

try
{

while (count < 3)
Thread.sleep(100);

synchronized(Await.class)
{

Await.class.notifyAll();
}

}
catch (InterruptedException ie)
{
}

}
};

 Thread thd = new Thread(r);
 thd.start();
 }
}

Appendix A ■ Answers to Exercises

156

Chapter 4: Additional Thread Capabilities
1.	 A thread group is a set of threads. It’s represented by the

ThreadGroup class.

2.	 You might use a thread group to perform a common operation
on its threads, to simplify thread management.

3.	 You should avoid using thread groups because the most useful
ThreadGroup methods have been deprecated and because of
the “time of check to time of use” race condition between
obtaining a count of active threads and enumerating those
threads.

4.	 You should be aware of thread groups because of
ThreadGroup’s contribution in handling exceptions that are
thrown while a thread is executing.

5.	 A thread-local variable is a variable that provides a separate
storage slot to each thread that accesses the variable. It’s
represented by the ThreadLocal class.

6.	 The answer is true: if an entry doesn’t exist in the calling
thread’s storage slot when the thread calls get(), this method
calls initialValue().

7.	 You would pass a value from a parent thread to a child thread
by working with the InheritableThreadLocal class.

8.	 The classes that form the Timer Framework are Timer and
TimerTask.

9.	 The answer is false: Timer() creates a new timer whose task-
execution thread runs as a nondaemon thread.

10.	 In fixed-delay execution, each execution is scheduled relative
to the actual execution time of the previous execution. When
an execution is delayed for any reason (such as garbage
collection), subsequent executions are also delayed.

11.	 You call the schedule() methods to schedule a task for fixed-
delay execution.

12.	 In fixed-rate execution, each execution is scheduled relative
to the scheduled execution time of the initial execution.
When an execution is delayed for any reason (such as garbage
collection), two or more executions will occur in rapid
succession to “catch up.”

http://dx.doi.org/10.1007/978-1-4842-1700-9_4

Appendix A ■ Answers to Exercises

157

13.	 The difference between Timer’s cancel() method and
TimerTask’s cancel() method is as follows: Timer’s cancel()
method terminates the timer, discarding any currently
scheduled timer tasks. In contrast, TimerTask’s cancel()
method cancels the invoking timer task only.

14.	 Listing A-4 presents the BackAndForth application that was
called for in Chapter 4.

Listing A-4.  Repeatedly Moving an Asterisk Back and Forth via a Timer

import java.util.Timer;
import java.util.TimerTask;

public class BackAndForth
{
 static enum Direction { FORWARDS, BACKWARDS }

 public static void main(String[] args)
 {
 TimerTask task = new TimerTask()

{
final static int MAXSTEPS = 20;

volatile Direction direction = Direction.FORWARDS;

volatile int steps = 0;

@Override
public void run()
{

switch (direction)
{

case FORWARDS : System.out.print("\b ");
System.out.print("*");
break;

case BACKWARDS: System.out.print("\b ");
System.out.print("\b\b*");

}

http://dx.doi.org/10.1007/978-1-4842-1700-9_4

Appendix A ■ Answers to Exercises

158

if (++steps == MAXSTEPS)
{

direction =
(direction == Direction.FORWARDS)
? Direction.BACKWARDS
: Direction.FORWARDS;

steps = 0;
}

}
};

 Timer timer = new Timer();
 timer.schedule(task, 0, 100);
 }
}

Chapter 5: Concurrency Utilities and Executors
1.	 The concurrency utilities are a framework of classes and

interfaces that overcome problems with Java’s low-level thread
capabilities. Specifically, low-level concurrency primitives
such as synchronized and wait()/notify() are often hard to
use correctly, too much reliance on the synchronized primitive
can lead to performance issues, which affect an application’s
scalability, and higher-level constructs such as thread pools
and semaphores aren’t included with Java's low-level thread
capabilities.

2.	 The packages in which the concurrency utilities types are
stored are java.util.concurrent, java.util.concurrent.
atomic, and java.util.concurrent.locks.

3.	 A task is an object whose class implements the Runnable
interface (a runnable task) or the Callable interface (a
callable task).

4.	 An executor is an object whose class directly or indirectly
implements the Executor interface, which decouples task
submission from task-execution mechanics.

5.	 The Executor interface focuses exclusively on Runnable,
which means that there’s no convenient way for a runnable
task to return a value to its caller (because Runnable’s run()
method doesn’t return a value); Executor doesn’t provide a
way to track the progress of executing runnable tasks, cancel
an executing runnable task, or determine when the runnable
task finishes execution; Executor cannot execute a collection
of runnable tasks; and Executor doesn’t provide a way for an
application to shut down an executor (much less to properly
shut down an executor).

http://dx.doi.org/10.1007/978-1-4842-1700-9_5

Appendix A ■ Answers to Exercises

159

6.	 Executor’s limitations are overcome by providing the
ExecutorService interface.

7.	 The differences existing between Runnable’s run() method
and Callable’s call() method are as follows: run() cannot
return a value, whereas call() can return a value; and run()
cannot throw checked exceptions, whereas call() can throw
checked exceptions.

8.	 The answer is false: you can throw checked and unchecked
exceptions from Callable’s call() method but can only
throw unchecked exceptions from Runnable’s run() method.

9.	 A future is an object whose class implements the Future
interface. It represents an asynchronous computation and
provides methods for canceling a task, for returning a task’s
value, and for determining whether or not the task has
finished.

10.	 The Executors class’s newFixedThreadPool() method creates
a thread pool that reuses a fixed number of threads operating
off of a shared unbounded queue. At most, nThreads threads
are actively processing tasks. If additional tasks are submitted
when all threads are active, they wait in the queue for an
available thread. If any thread terminates because of a failure
during execution before the executor shuts down, a new
thread will take its place when needed to execute subsequent
tasks. The threads in the pool will exist until the executor is
explicitly shut down.

11.	 Listing A-5 presents the CountingThreads application that
was called for in Chapter 5.

Listing A-5.   Executor-Based Counting Threads

import java.util.concurrent.Executors;
import java.util.concurrent.ExecutorService;

public class CountingThreads
{
 public static void main(String[] args)
 {
 Runnable r = new Runnable()

{
@Override
public void run()
{

String name = Thread.currentThread().getName();
int count = 0;
while (true)

http://dx.doi.org/10.1007/978-1-4842-1700-9_5

Appendix A ■ Answers to Exercises

160

System.out.println(name + ": " + count++);
}

};
 ExecutorService es = Executors.newFixedThreadPool(2);
 es.submit(r);
 es.submit(r);
 }
}

12.	 Listing A-6 presents the CountingThreads application with
custom-named threads that was called for in Chapter 5.

Listing A-6.  Executor-Based Counting Threads A and B

import java.util.concurrent.Executors;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.ThreadFactory;

public class CountingThreads
{
 public static void main(String[] args)
 {
 Runnable r = new Runnable()

{
@Override
public void run()
{

String name = Thread.currentThread().getName();
int count = 0;
while (true)

System.out.println(name + ": " + count++);
}

};
 ExecutorService es =

Executors.newSingleThreadExecutor(new NamedThread("A"));
 es.submit(r);
 es = Executors.newSingleThreadExecutor(new NamedThread("B"));
 es.submit(r);
 }
}

class NamedThread implements ThreadFactory
{
 private volatile String name; // newThread() could be called by a

// different thread

http://dx.doi.org/10.1007/978-1-4842-1700-9_5

Appendix A ■ Answers to Exercises

161

 NamedThread(String name)
 {
 this.name = name;
 }

 @Override
 public Thread newThread(Runnable r)
 {
 return new Thread(r, name);
 }
}

Chapter 6: Synchronizers
1.	 A synchronizer is a class that facilitates a common form of

synchronization.

2.	 A countdown latch causes one or more threads to wait at a
“gate” until another thread opens this gate, at which point
these other threads can continue. It consists of a count and
operations for “causing a thread to wait until the count
reaches zero” and “decrementing the count”.

3.	 When CountDownLatch’s void countDown() method is called
and the count reaches zero, all waiting threads are released.

4.	 A cyclic barrier lets a set of threads wait for each other to
reach a common barrier point. The barrier is cyclic because
it can be reused after the waiting threads are released. This
synchronizer is useful in applications involving a fixed-size
party of threads that must occasionally wait for each other.

5.	 The answer is false: CyclicBarrier’s int await() method
throws BrokenBarrierException when the barrier is reset
while any thread is waiting or when the barrier is broken
when await() is invoked.

6.	 An exchanger provides a synchronization point where threads
can swap objects. Each thread presents some object on entry
to the exchanger’s exchange() method, matches with a
partner thread, and receives its partner’s object on return.

7.	 Exchanger’s V exchange(V x) method waits for another
thread to arrive at this exchange point (unless the calling
thread is interrupted), and then transfers the given object to it,
receiving the other thread’s object in return.

http://dx.doi.org/10.1007/978-1-4842-1700-9_6

Appendix A ■ Answers to Exercises

162

8.	 A semaphore maintains a set of permits for restricting the
number of threads that can access a limited resource. A thread
attempting to acquire a permit when no permits are available
blocks until some other thread releases a permit.

9.	 The two kinds of semaphores are counting semaphores (the
current values can be incremented past 1) and binary
semaphores or mutexs (the current values can be only 0 or 1).

10.	 A phaser is a more flexible cyclic barrier. Like a cyclic barrier,
a phaser lets a group of threads wait on a barrier; these
threads continue after the last thread arrives. A phaser also
offers the equivalent of a barrier action. Unlike a cyclic barrier,
which coordinates a fixed number of threads, a phaser can
coordinate a variable number of threads, which can register at
any time. To implement this capability, a phaser uses phases
(current states) and phase numbers (current state identifiers).

11.	 Phaser’s int register() method returns the phase number
to classify the arrival. If this value is negative, this phaser has
terminated, in which case registration has no effect. This
number is known as the arrival phase number.

12.	 Listing A-7 presents the PC application that was called for in
Chapter 6.

Listing A-7.  Semaphore-Based Producer and Consumer

import java.util.concurrent.Semaphore;

public class PC
{
 public static void main(String[] args)
 {
 Shared s = new Shared();
 Semaphore semCon = new Semaphore(0);
 Semaphore semPro = new Semaphore(1);
 new Producer(s, semPro, semCon).start();
 new Consumer(s, semPro, semCon).start();
 }
}

class Shared
{
 private char c;

 void setSharedChar(char c)
 {
 this.c = c;
 }

v

http://dx.doi.org/10.1007/978-1-4842-1700-9_6

Appendix A ■ Answers to Exercises

163

 char getSharedChar()
 {
 return c;
 }
}

class Producer extends Thread
{
 private final Shared s;
 private final Semaphore semPro, semCon;

 Producer(Shared s, Semaphore semPro, Semaphore semCon)
 {
 this.s = s;
 this.semPro = semPro;
 this.semCon = semCon;
 }

 @Override
 public void run()
 {
 for (char ch = 'A'; ch <= 'Z'; ch++)
 {

try
{

semPro.acquire();
}
catch (InterruptedException ie)
{
}
s.setSharedChar(ch);
System.out.println(ch + " produced by producer.");
semCon.release();

 }
 }
}
class Consumer extends Thread
{
 private final Shared s;
 private final Semaphore semPro, semCon;

 Consumer(Shared s, Semaphore semPro, Semaphore semCon)
 {
 this.s = s;
 this.semPro = semPro;
 this.semCon = semCon;
 }

Appendix A ■ Answers to Exercises

164

 @Override
 public void run()
 {
 char ch;
 do
 {

try
{

semCon.acquire();
}
catch (InterruptedException ie)
{
}
ch = s.getSharedChar();
System.out.println(ch + " consumed by consumer.");
semPro.release();

 }
 while (ch != 'Z');
 }
}

Chapter 7: The Locking Framework
1.	 A lock is an instance of a class that implements the Lock

interface, which provides more extensive locking operations
than can be achieved via the synchronized reserved word.
Lock also supports a wait/notification mechanism through
associated Condition objects.

2.	 The biggest advantage that Lock objects hold over the intrinsic
locks that are obtained when threads enter critical sections
(controlled via the synchronized reserved word) is their
ability to back out of an attempt to acquire a lock.

3.	 The answer is true: ReentrantLock’s unlock() method throws
IllegalMonitorStateException when the calling thread
doesn’t hold the lock.

4.	 You obtain a Condition instance for use with a particular
Lock instance by invoking Lock’s Condition newCondition()
method.

5.	 The answer is false: ReentrantReadWriteLock() creates an
instance of ReentrantReadWriteLock without a fair ordering
policy.

u

http://dx.doi.org/10.1007/978-1-4842-1700-9_7

Appendix A ■ Answers to Exercises

165

	 6.	 Introduced by JDK 8, StampedLock is a capability-based
lock with three modes for controlling read/write access. It
differentiates between exclusive and nonexclusive locks in a
manner that’s similar to ReentrantReadWriteLock, but also
allows for optimistic reads, which ReentrantReadWriteLock
doesn’t support.

	 7.	 The purpose of LockSupport is to provide basic thread-
blocking primitives for creating locks and other
synchronization classes.

	 8.	 Listing A-8 presents the ID class that was called for in
Chapter 7.

Listing A-8.  ReentrantLock-Based ID Generator

import java.util.concurrent.locks.ReentrantLock;
 
public class ID
{
 private static int counter; // initialized to 0 by default
 
 private final static ReentrantLock lock = new ReentrantLock();
 
 public static int getID()
 {
 lock.lock();
 try
 {
 int temp = counter + 1;
 try
 {
 Thread.sleep(1);
 }
 catch (InterruptedException ie)
 {
 }
 return counter = temp;
 }
 finally
 {
 lock.unlock();
 }
 }
}

http://dx.doi.org/10.1007/978-1-4842-1700-9_7

Appendix A ■ Answers to Exercises

166

Chapter 8: Additional Concurrency Utilities
1.	 The two problems with thread-safe collections are the

possibility of thrown ConcurrentModificationException
objects and poor performance. It’s necessary to acquire a
lock before iterating over a collection that might be modified
by another thread during the iteration. If a lock isn’t
acquired and the collection is modified, it’s highly likely that
ConcurrentModificationException will be thrown. Also,
performance suffers when synchronized collections are
accessed frequently from multiple threads.

2.	 A concurrent collection is a concurrency performant and
highly-scalable collection-oriented type that is stored in the
java.util.concurrent package.

3.	 A weakly-consistent iterator is an iterator with the following
properties:

• An element that’s removed after iteration starts but hasn’t
yet been returned via the iterator’s next() method won’t be
returned.

• An element that’s added after iteration starts may or may not
be returned.

• No element is returned more than once during the iteration
of a collection, regardless of changes made to the collection
during iteration.

4.	 BlockingQueue is a subinterface of java.util.Queue that
also supports blocking operations that wait for the queue to
become nonempty before retrieving an element and wait
for space to become available in the queue before storing an
element.

5.	 ConcurrentMap is a subinterface of java.util.Map that
declares additional indivisible putIfAbsent(), remove(), and
replace() methods.

6.	 ArrayBlockingQueue is a bounded blocking queue backed
by an array. LinkedBlockingQueue is an optionally-bounded
blocking queue based on linked nodes.

7.	 The answer is true: the concurrency-oriented collection types
are part of the Collections Framework.

8.	 ConcurrentHashMap behaves like HashMap but has been
designed to work in multithreaded contexts without the need
for explicit synchronization.

http://dx.doi.org/10.1007/978-1-4842-1700-9_8

Appendix A ■ Answers to Exercises

167

9.	 Using ConcurrentHashMap, you would call its putIfAbsent()
method to check if a map contains a specific value and, when
this value is absent, put this value into the map without relying
on external synchronization.

10.	 An atomic variable is an instance of a class that encapsulates a
single variable and supports lock-free, thread-safe operations
on that variable, for example, AtomicInteger.

11.	 The AtomicIntegerArray class describes an int array whose
elements may be updated atomically.

12.	 The answer is false: volatile doesn’t support atomic read-
modify-write sequences.

13.	 The compare-and-swap instruction is responsible for the
performance gains offered by the concurrency utilities.

14.	 The Fork/Join Framework consists of a special executor
service and thread pool. The executor service makes a task
available to the framework, and this task is broken down into
smaller tasks that are forked (executed by different threads)
from the pool. A task waits until it’s joined (its subtasks finish).

15.	 The main types that comprise the Fork/Join Framework are
the java.util.concurrent package’s ForkJoinPool,
ForkJoinTask, ForkJoinWorkerThread, RecursiveAction,
RecursiveTask, and CountedCompleter classes.

16.	 To accomplish meaningful work via RecursiveAction, you
would override its void compute() method.

17.	 A completion service is an implementation of the
CompletionService<V> interface that decouples the
production of new asynchronous tasks (a producer) from the
consumption of the results of completed tasks (a consumer).
V is the type of a task result.

18.	 You use a completion service as follows: Submit a task
for execution (via a worker thread) by calling one of
CompletionService<V>’s submit() methods. Each method
returns a Future<V> instance that represents the pending
completion of the task. You can then call a poll() method to
poll for the task’s completion or call the blocking take()
method. A consumer takes a completed task by calling the
take() method. This method blocks until a task has completed.
It then returns a Future<V> object that represents the
completed task. You would call Future<V>’s get() method to
obtain this result.

Appendix A ■ Answers to Exercises

168

19.	 You execute tasks via a completion service by working with
the ExecutorCompletionService<V> class, which implements
CompletionService<V>, and which supports task execution
via a provided executor.

20.	 The atomic variable equivalent of int total = ++counter; is
as follows:

AtomicInteger counter = new AtomicInteger(0);
int total = counter.incrementAndGet();

The atomic variable equivalent of int total = counter--; is
as follows:

AtomicInteger counter = new AtomicInteger(0);
int total = counter.getAndDecrement();

169

Appendix B

Threading in Swing

Swing is a platform-independent, Model-View-Controller-based GUI toolkit for creating
the graphical frontends of Java applications. In this appendix, I first explore Swing’s
threading architecture and then explore Swing APIs for avoiding problems when
additional threads are used in graphical contexts. Finally, I present a Swing-based slide
show application as a significant example of this appendix’s content and as a fun way to
end this book.

■ Note  I’ll assume that you have some experience with Swing APIs along with the
architecture of a Swing application.

A Single-Threaded Programming Model
Swing follows a single-threaded programming model. It’s designed to be single-threaded
instead of multithreaded because experience in the design of multithreaded graphical
toolkits has shown that they inevitably lead to deadlock and race conditions. To learn
more about these problems, check out the “Why are GUIs Single-threaded?” blog post
(http://codeidol.com/java/java-concurrency/GUI-Applications/Why-are-GUIs-
Single-threaded/).

The thread that’s used to render graphics and handle events is known as the event-
dispatch thread (EDT). The EDT processes events that originate from the underlying
Abstract Window Toolkit’s event queue and invokes GUI component (such as button)
event listeners, which handle events on this thread. Components even redraw themselves
(in response to paint() method calls that result in paintComponent(), paintBorder(),
and paintChildren() method calls) on the EDT.

Be careful about how your code interacts with the EDT to ensure that your Swing
applications work correctly. There are two rules to remember:

• Always create Swing GUIs on the EDT.

• Never delay the EDT.

https://en.wikipedia.org/wiki/Model-View-Controller#Model-View-Controller
https://en.wikipedia.org/wiki/GUI#GUI
https://en.wikipedia.org/wiki/Thread_%28computing%29#Thread%20(computing)
https://en.wikipedia.org/wiki/Thread_%28computing%29#Thread%20(computing)
http://codeidol.com/java/java-concurrency/GUI-Applications/Why-are-GUIs-Single-threaded/
http://codeidol.com/java/java-concurrency/GUI-Applications/Why-are-GUIs-Single-threaded/

Appendix B ■ Threading in Swing

170

One consequence of Swing being single-threaded is that you must create a Swing
application’s GUI on the EDT only. It’s incorrect to create this GUI on any other thread,
including the default main thread that runs a Java application’s main() method.

Most Swing objects (such as javax.swing.JFrame objects, which describe GUI
top-level “frame” windows with menu bars and borders) are not thread-safe. Accessing
these objects from multiple threads risks thread interference and/or memory
inconsistency errors:

• Thread interference: Two threads are performing two different
operations while acting on the same data. For example, one
thread reads a long integer counter variable while another thread
updates this variable. Because a long integer being read from or
written to on a 32-bit machine requires two read/write accesses,
it’s possible that the reading thread reads part of this variable’s
current value, then the writing thread updates the variable, and
then the reading thread reads the rest of the variable. The result is
that the reading thread has an incorrect value.

• Memory inconsistency errors: Two or more threads that are
running on different processors or processor cores have
inconsistent views of the same data. For example, a writing
thread on one processor or core updates a counter variable and
then a reading thread on another processor or core reads this
variable. However, because a caching mechanism is used to boost
performance, neither thread accesses a single copy of the variable
in main memory. Instead, each thread accesses its own copy of
the variable from local memory (a cache).

How might these problems occur when the GUI isn’t created on the EDT? John
Zukowski demonstrates one scenario in his JavaWorld article titled “Swing threading and
the event-dispatch thread” (www.javaworld.com/article/2077754/core-java/swing-
threading-and-the-event-dispatch-thread.html).

Zukowski presents an example that adds a container listener to a frame window
container component. Listener methods are called when a component is added to or
removed from the frame. He demonstrates the EDT running code within a listener
method before the frame window is realized on the default main thread.

■ Note  To be realized means that a component’s paint() method either has been called
or might be called. A frame window is realized by having one of setVisible(true), show(),
or pack() called on this container component. After a frame window is realized, all of the
components that it contains are also realized. Another way to realize a component is to add
it to a container that’s already realized.

http://www.javaworld.com/javaworld/jw-08-2007/jw-08-swingthreading.html
http://www.javaworld.com/javaworld/jw-08-2007/jw-08-swingthreading.html
http://www.javaworld.com/article/2077754/core-java/swing-threading-and-the-event-dispatch-thread.html
http://www.javaworld.com/article/2077754/core-java/swing-threading-and-the-event-dispatch-thread.html

Appendix B ■ Threading in Swing

171

After the EDT starts to run in a listener method, and while the default main thread
continues to initialize the GUI, components could be created by the default main thread
and accessed by the EDT. The EDT might try to access these components before they
exist; doing so could crash the application.

Even if the default main thread creates the components before the EDT accesses
them from the listener method, the EDT may have an inconsistent view (because of
caching) and be unable to access the references to the new components. An application
crash (probably a thrown java.lang.NullPointerException object) would most likely
occur.

Listing B-1 presents the source code to ViewPage, a Swing application for viewing
web page HTML. This application suffers from both problems.

Listing B-1.  A Problematic Web Page HTML Viewer Swing Application

import java.awt.BorderLayout;
import java.awt.Dimension;
import java.awt.EventQueue;

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

import java.io.InputStream;
import java.io.IOException;

import java.net.URL;

import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JScrollPane;
import javax.swing.JTextArea;
import javax.swing.JTextField;

public class ViewPage
{
 public static void main(String[] args)
 {
 final JFrame frame = new JFrame("View Page");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 JPanel panel = new JPanel();
 panel.add(new JLabel("Enter URL"));
 final JTextField txtURL = new JTextField(40);
 panel.add(txtURL);
 frame.getContentPane().add(panel, BorderLayout.NORTH);
 final JTextArea txtHTML = new JTextArea(10, 40);
 frame.getContentPane().add(new JScrollPane (txtHTML),

BorderLayout.CENTER);
 ActionListener al = (ae) ->

Appendix B ■ Threading in Swing

172

 {
InputStream is = null;
try
{

URL url = new URL(txtURL.getText());
is = url.openStream();
StringBuilder sb = new StringBuilder();
int b;
while ((b = is.read()) != -1)

sb.append((char) b);
txtHTML.setText(sb.toString());

}
catch (IOException ioe)
{

txtHTML.setText(ioe.getMessage());
}
finally
{

txtHTML.setCaretPosition(0);
if (is != null)

try
{

is.close();
}
catch (IOException ioe)
{
}

}
 };
 txtURL.addActionListener(al);
 frame.pack();
 frame.setVisible(true);
 }
}

Listing B-1’s main() method creates a GUI consisting of a text field for entering a web
page’s URL and a scrollable text area for displaying the page’s HTML. Pressing the Enter
key after entering the URL causes ViewPage to fetch and then display the HTML.

Compile Listing B-1 as follows:

javac ViewPage.java

Run the resulting application as follows:

java ViewPage

Appendix B ■ Threading in Swing

173

You should observe the GUI (populated with a sample URL and part of the resulting
web page’s HTML) shown in Figure B-1.

Figure B-1.  Entering a URL in a text field and viewing web page output in a scrollable
text area

The first problem with this application is that the GUI is created on the default main
thread instead of on the EDT. Although you probably won’t encounter a problem when
you run ViewPage, there is potential for thread interference and memory inconsistency
problems.

The second problem with this application is that the EDT, which runs the action
listener in response to pressing Enter on the text field, is delayed by the code that opens
an input stream to the URL and reads its content into a string builder. The GUI is
unresponsive during this time.

Threading APIs
Swing provides APIs that overcome the aforementioned problems with the EDT. In this
section, I introduce you to these APIs. I also introduce you to Swing’s version of a timer,
which is considerably different from the Timer Framework that I presented in Chapter 4.

http://dx.doi.org/10.1007/978-1-4842-1700-9_4

Appendix B ■ Threading in Swing

174

SwingUtilities and EventQueue
The javax.swing.SwingUtilities class provides a collection of static methods that are
useful in a Swing context. Three of these methods are especially useful for working with
the EDT and avoiding the previous problems:

• void invokeAndWait(Runnable doRun): Cause doRun.run()
to execute synchronously on the EDT. This call blocks until
all pending events have been processed and (then)
doRun.run() returns. invokeAndWait() throws java.lang.
InterruptedException when this method is interrupted while
waiting for the EDT to finish executing doRun.run(). It throws
java.lang.reflect.InvocationTargetException when an
exception is thrown from doRun.run(). invokeAndWait() should
be used when an application thread needs to update the GUI
from any thread other than the EDT. It shouldn’t be called from
the EDT.

• void invokeLater(Runnable doRun): Cause doRun.run() to be
executed asynchronously on the EDT. This happens after all
pending events have been processed. invokeLater() should be
used when an application thread needs to update the GUI. It can
be called from any thread.

• boolean isEventDispatchThread(): Return true when the
invoking thread is the EDT; otherwise, return false.

The invokeAndWait(), invokeLater(), and isEventDispatchThread() methods are
wrappers that call the equivalent methods in the java.awt.EventQueue class. Although
you can prefix these methods with SwingUtilities, I use EventQueue as the prefix (out of
habit).

You typically use invokeLater() to construct a Swing GUI according to the following
pattern:

Runnable r = ... // ... refers to the runnable's anonymous class or lambda
EventQueue.invokeLater(r);

Listing B-2 presents the source code to a second version of ViewPage that uses
invokeLater() to construct the Swing GUI on the EDT.

Listing B-2.  Constructing the HTML Viewer Swing Application GUI on the EDT

import java.awt.BorderLayout;
import java.awt.Dimension;
import java.awt.EventQueue;

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

https://docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html#interface%20in%20java.lang

Appendix B ■ Threading in Swing

175

import java.io.InputStream;
import java.io.IOException;

import java.net.URL;

import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JScrollPane;
import javax.swing.JTextArea;
import javax.swing.JTextField;

public class ViewPage
{
 public static void main(String[] args)
 {
 Runnable r = () ->
 {

final JFrame frame = new JFrame("View Page");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
JPanel panel = new JPanel();
panel.add(new JLabel("Enter URL"));
final JTextField txtURL = new JTextField(40);
panel.add(txtURL);
frame.getContentPane().add(panel, BorderLayout.NORTH);
final JTextArea txtHTML = new JTextArea(10, 40);
frame.getContentPane().add(new JScrollPane (txtHTML),

BorderLayout.CENTER);
ActionListener al = (ae) ->
{

InputStream is = null;
try
{

URL url = new URL(txtURL.getText());
is = url.openStream();
StringBuilder sb = new StringBuilder();
int b;
while ((b = is.read()) != -1)

sb.append((char) b);
txtHTML.setText(sb.toString());

}
catch (IOException ioe)
{

txtHTML.setText(ioe.getMessage());
}

Appendix B ■ Threading in Swing

176

finally
{

txtHTML.setCaretPosition(0);
if (is != null)

try
{

is.close();
}
catch (IOException ioe)
{
}

}
};
txtURL.addActionListener(al);
frame.pack();
frame.setVisible(true);

 };
 EventQueue.invokeLater(r);
 }
}

Listing B-2 solves one problem but we still have to prevent the EDT from being
delayed. We can solve this problem by creating a worker thread to read the page and use
invokeAndWait() to update the scrollable text area with the page content on the EDT.
Check out Listing B-3.

Listing B-3.  Constructing the HTML Viewer Swing Application GUI on a Non-Delayed EDT

import java.awt.BorderLayout;
import java.awt.Dimension;
import java.awt.EventQueue;

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

import java.io.InputStream;
import java.io.IOException;

import java.lang.reflect.InvocationTargetException;

import java.net.URL;

import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JScrollPane;
import javax.swing.JTextArea;
import javax.swing.JTextField;

Appendix B ■ Threading in Swing

177

public class ViewPage
{
 public static void main(String[] args)
 {
 Runnable r = () ->
 {

final JFrame frame = new JFrame("View Page");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
JPanel panel = new JPanel();
panel.add(new JLabel("Enter URL"));
final JTextField txtURL = new JTextField(40);
panel.add(txtURL);
frame.getContentPane().add(panel, BorderLayout.NORTH);
final JTextArea txtHTML = new JTextArea(10, 40);
frame.getContentPane().add(new JScrollPane (txtHTML),

BorderLayout.CENTER);
ActionListener al = (ae) ->
{

txtURL.setEnabled(false);
Runnable worker = () ->
{

InputStream is = null;
try
{

URL url = new URL(txtURL.getText());
is = url.openStream();
final StringBuilder sb = new StringBuilder();
int b;
while ((b = is.read()) != -1)

sb.append((char) b);
Runnable r1 = () ->
{

txtHTML.setText(sb.toString());
txtURL.setEnabled(true);

};
try
{

EventQueue.invokeAndWait(r1);
}
catch (InterruptedException ie)
{
}
catch (InvocationTargetException ite)
{
}

}

Appendix B ■ Threading in Swing

178

catch (final IOException ioe)
{

Runnable r1 = () ->
{

txtHTML.setText(ioe.getMessage());
txtURL.setEnabled(true);

};
try
{

EventQueue.invokeAndWait(r1);
}
catch (InterruptedException ie)
{
}
catch (InvocationTargetException ite)
{
}

}
finally
{

Runnable r1 = () ->
{

txtHTML.setCaretPosition(0);
txtURL.setEnabled(true);

};
try
{

EventQueue.invokeAndWait(r1);
}
catch (InterruptedException ie)
{
}
catch (InvocationTargetException ite)
{
}
if (is != null)

try
{

is.close();
}
catch (IOException ioe)
{
}

}
};
new Thread(worker).start();

};
txtURL.addActionListener(al);

Appendix B ■ Threading in Swing

179

frame.pack();
frame.setVisible(true);

 };
 EventQueue.invokeLater(r);
 }
}

I’ve chosen to disable the text field for further input when a page is being obtained
and enable it afterward. You can still close the GUI at any time.

Although Listing B-3 solves the unresponsive GUI problem, the solution is somewhat
verbose. Fortunately, there is an alternative solution.

SwingWorker
Swing provides the javax.swing.SwingWorker class to accommodate long-running tasks
(such as reading URL content) with reduced verbosity. You must subclass this abstract
class and override one or more methods to accomplish useful work.

SwingWorker’s generic type is SwingWorker<T, V>. Parameters T and V identify the
final and intermediate task result types, respectively.

You override the protected abstract T doInBackground() method to execute a
long-running task on a worker thread and return a result of type T (Void is the return type
when there is no result). When this method finishes, the protected void done() method
is invoked on the EDT. By default, this method does nothing. However, you can override
done() to safely update the GUI.

While the task is running, you can periodically publish results to the EDT by invoking
the protected void publish(V... chunks) method. These results are retrieved by an
overriding protected void process(List<V> chunks) method whose code runs on the
EDT. If there are no intermediate results to process, you can specify Void for V (and avoid
using the publish() and process() methods).

SwingWorker provides two more methods that you need to know about. First, void
execute() schedules the invoking SwingWorker object for execution on a worker thread.
Second, T get() waits if necessary for doInBackground() to complete and then returns
the final result.

■ Note  SwingWorker’s get() method throws an instance of the java.util.concurrent.
ExecutionException class when an exception is thrown while attempting to retrieve the
object returned from doInBackground(). It can also throw InterruptedException.

Listing B-4 presents the source code to a final ViewPage application that uses
SwingWorker instead of invokeAndWait().

https://docs.oracle.com/javase/8/docs/api/javax/swing/SwingWorker.html#type%20parameter%20in%20SwingWorker

Appendix B ■ Threading in Swing

180

Listing B-4.  Constructing the HTML Viewer Swing Application GUI on a Non-Delayed
EDT, Revisited

import java.awt.BorderLayout;
import java.awt.Dimension;
import java.awt.EventQueue;

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

import java.io.InputStream;
import java.io.IOException;

import java.net.URL;

import java.util.concurrent.ExecutionException;

import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JScrollPane;
import javax.swing.JTextArea;
import javax.swing.JTextField;
import javax.swing.SwingWorker;

public class ViewPage
{
 public static void main(String[] args)
 {
 Runnable r = () ->
 {

final JFrame frame = new JFrame("View Page");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
JPanel panel = new JPanel();
panel.add(new JLabel("Enter URL"));
final JTextField txtURL = new JTextField(40);
panel.add(txtURL);
frame.getContentPane().add(panel, BorderLayout.NORTH);
final JTextArea txtHTML = new JTextArea(10, 40);
frame.getContentPane().add(new JScrollPane (txtHTML),

BorderLayout.CENTER);
ActionListener al = (ae) ->
{

txtURL.setEnabled(false);
class GetHTML extends SwingWorker<StringBuilder, Void>

Appendix B ■ Threading in Swing

181

{
private final String url;

GetHTML(String url)
{

this.url = url;
}

@Override
public StringBuilder doInBackground()
{

StringBuilder sb = new StringBuilder();
InputStream is = null;
try
{

URL url = new URL(this.url);
is = url.openStream();
int b;
while ((b = is.read()) != -1)

sb.append((char) b);
return sb;

}
catch (IOException ioe)
{

sb.setLength(0);
sb.append(ioe.getMessage());
return sb;

}
finally
{

if (is != null)
try
{

is.close();
}
catch (IOException ioe)
{
}

}
}

Appendix B ■ Threading in Swing

182

@Override
public void done()
{

try
{

StringBuilder sb = get();
txtHTML.setText(sb.toString());
txtHTML.setCaretPosition(0);

}
catch (ExecutionException ee)
{

txtHTML.setText(ee.getMessage());
}
catch (InterruptedException ie)
{

txtHTML.setText("Interrupted");
}
txtURL.setEnabled(true);

}
}
new GetHTML(txtURL.getText()).execute();

};
txtURL.addActionListener(al);
frame.pack();
frame.setVisible(true);

 };
 EventQueue.invokeLater(r);
 }
}

This final version of ViewPage relies on GetHTML, a local SwingWorker subclass that’s
declared in the action listener lambda body, to read the web page on a worker thread
(keeping the user interface responsive), and update the user interface with the HTML on
the EDT (where Swing code must execute).

When the lambda runs (the user presses Enter after entering a URL in the text
field), it instantiates GetHTML with the text field’s text (the text field isn’t accessed from
the worker thread because Swing is single-threaded) and calls SwingWorker’s execute()
method.

execute() causes GetHTML’s overriding doInBackground() method to be called on a
worker thread, which populates a java.lang.StringBuilder object with HTML/error
text and returns this object. The EDT then calls the overriding done() method, which
accesses the StringBuilder object by calling SwingWorker’s get() method and populates
the text area with these contents.

Appendix B ■ Threading in Swing

183

Timer
Swing provides the javax.swing.Timer class (as a simplified version of the Timer
Framework—see Chapter 4) to periodically execute Swing code on the EDT. It fires an
action event to registered listeners after an initial delay and repeatedly thereafter with
events separated by between-event delays.

Call the Timer(int delay, ActionListener listener) constructor to create a
timer with initial and between-event delays (in milliseconds), and with the initial
action listener (which may be null) as the target of events that are sent every delay
milliseconds.

The delay parameter value is used as both the initial delay and the between-event
delay. You can also set these values separately by calling the void setInitialDelay(int
initialDelay) and void setDelay(int delay) methods.

■ Note  Invoke Timer’s void setRepeats(boolean flag) method with a false
argument to instruct the timer to send only a single action event.

Call void addActionListener(ActionListener listener) to add another action
listener and void removeActionListener(ActionListener listener) to remove the
previously registered action listener. Call ActionListener[] getActionListeners() to
obtain all registered listeners.

The newly created timer is in its stopped state. To start the timer, call its void
start() method. Conversely, you would call void stop() to terminate the timer. You
might also want to call boolean isRunning() to determine if the timer is running.

Listing B-5 presents the source code to a Counter application that creates a timer to
constantly display a running count via a label.

Listing B-5.  Starting and Stopping a Count

import java.awt.EventQueue;
import java.awt.FlowLayout;

import java.awt.event.ActionListener;

import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.Timer;

public class Counter extends JFrame
{
 int count;

http://dx.doi.org/10.1007/978-1-4842-1700-9_4
https://docs.oracle.com/javase/8/docs/api/javax/swing/Timer.html#Timer-int-java.awt.event.ActionListener-
https://docs.oracle.com/javase/8/docs/api/java/awt/event/ActionListener.html#interface%20in%20java.awt.event
https://docs.oracle.com/javase/8/docs/api/java/awt/event/ActionListener.html#interface%20in%20java.awt.event
https://docs.oracle.com/javase/8/docs/api/java/awt/event/ActionListener.html#interface%20in%20java.awt.event

Appendix B ■ Threading in Swing

184

 public Counter(String title)
 {
 super(title);
 setDefaultCloseOperation(EXIT_ON_CLOSE);

 JPanel pnl = new JPanel();
 ((FlowLayout) pnl.getLayout()).setHgap(20);
 final JLabel lblCount = new JLabel("");
 pnl.add(lblCount);
 final JButton btnStartStop = new JButton("Start");
 ActionListener al = (ae) ->
 {

++count;
lblCount.setText(count + " ");

 };
 final Timer timer = new Timer(30, al);
 al = (ae) ->
 {

if (btnStartStop.getText().equals("Start"))
{

btnStartStop.setText("Stop");
timer.start();

}
else
{

btnStartStop.setText("Start");
timer.stop();

}
 };
 btnStartStop.addActionListener(al);
 pnl.add(btnStartStop);
 setContentPane(pnl);

 setSize(300, 80);
 setVisible(true);
 }

 public static void main(String[] args)
 {
 EventQueue.invokeLater(() -> new Counter("Counter"));
 }
}

Appendix B ■ Threading in Swing

185

Listing B-5’s main() method creates a GUI consisting of a label and a Start/Stop
button. The label displays the count variable’s current value and the button text alternates
between Start and Stop. Clicking the button when it indicates Start causes the timer to
start; clicking the button when it indicates Stop causes the timer to stop. The timer action
listener increments the count variable and displays its value via the label. The space
character that’s appended to count converts the expression to a string and ensures that its
rightmost pixels are not cut off.

Compile Listing B-5 as follows:

javac Counter.java

Run the resulting application as follows:

java Counter

Figure B-2 shows the resulting GUI.

Figure B-2.  The panel’s components are horizontally centered

Timer-Based Slide Show
A slide show is a presentation of still images on a projection screen, typically in a
prearranged sequence. Each image is usually displayed for at least a few seconds before
being replaced by the next image.

A slide show involves a projector, a screen, and slides. The projector contains slides
to be projected, the screen displays a projected slide image, and a slide contains an image
and other attributes (such as a textual title).

I’ve created a Java application named SlideShow that lets you project arbitrary
slideshows. Listing B-6 presents its source code.

Listing B-6.  Describing a Timer-Based Slide Show

import java.awt.AlphaComposite;
import java.awt.Color;
import java.awt.Dimension;
import java.awt.EventQueue;
import java.awt.Font;
import java.awt.FontMetrics;
import java.awt.Graphics;
import java.awt.Graphics2D;
import java.awt.RenderingHints;

Appendix B ■ Threading in Swing

186

import java.awt.event.ActionListener;
import java.awt.event.WindowAdapter;
import java.awt.event.WindowEvent;

import java.awt.image.BufferedImage;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;

import java.util.ArrayList;
import java.util.List;

import javax.imageio.ImageIO;

import javax.swing.JComponent;
import javax.swing.JFrame;
import javax.swing.Timer;

class Projector
{
 private volatile List<Slide> slides;
 private Screen s;
 private Timer t;
 private volatile int slideIndexC, slideIndexN;
 private volatile float weight;

 Projector(List<Slide> slides, Screen s)
 {
 this.slides = slides;
 this.s = s;
 t = new Timer(1500, null);

t.setDelay(3000);
slideIndexC = 0;
slideIndexN = 1;

 }

 void start()
{
 s.drawImage(Slide.blend(slides.get(0), null, 1.0f));

 ActionListener al = (ae) ->
 {

weight = 1.0f;
Timer t2 = new Timer(0, null);
t2.setDelay(10);
ActionListener al2 = (ae2) ->

Appendix B ■ Threading in Swing

187

{
Slide slideC = slides.get(slideIndexC);
Slide slideN = slides.get(slideIndexN);
BufferedImage bi = Slide.blend(slideC, slideN, weight);
s.drawImage(bi);
weight -= 0.01f;
if (weight <= 0.0f)
{

t2.stop();
slideIndexC = slideIndexN;
slideIndexN = (slideIndexN + 1) % slides.size();

}
};
t2.addActionListener(al2);
t2.start();

 };
t.addActionListener(al);
t.start();

 }

 void stop()
{
 t.stop();

 }
}

class Screen extends JComponent
{
 private Dimension d;
 private BufferedImage bi;
 private String text;

 Screen(int width, int height)
 {
 d = new Dimension(width, height);
 }

 void drawImage(BufferedImage bi)
 {
 this.bi = bi;
 repaint();
 }

 @Override
 public Dimension getPreferredSize()
 {
 return d;
 }

Appendix B ■ Threading in Swing

188

 @Override
 public void paint(Graphics g)
 {
 int w = getWidth();
 int h = getHeight();

g.drawImage(bi, Slide.WIDTH <= w ? (w - Slide.WIDTH) / 2 : 0,
Slide.HEIGHT <= h ? (h - Slide.HEIGHT) / 2 : 0, null);

 }
}

class Slide
{
 static int WIDTH, HEIGHT;

 private static int TEXTBOX_WIDTH, TEXTBOX_HEIGHT, TEXTBOX_X, TEXTBOX_Y;

 private BufferedImage bi;
 private String text;
 private static Font font;

 private Slide(BufferedImage bi, String text)
 {
 this.bi = bi;
 this.text = text;
 font = new Font("Arial", Font.BOLD, 20);
 }

 static BufferedImage blend(Slide slide1, Slide slide2, float weight)
 {
 BufferedImage bi1 = slide1.getBufferedImage();
 BufferedImage bi2 = (slide2 != null)

? slide2.getBufferedImage()
: new BufferedImage(Slide.WIDTH, Slide.HEIGHT,

BufferedImage.TYPE_INT_RGB);
 BufferedImage bi3 = new BufferedImage(Slide.WIDTH, Slide.HEIGHT,

BufferedImage.TYPE_INT_RGB);
 Graphics2D g2d = bi3.createGraphics();
 g2d.setComposite(AlphaComposite.getInstance(AlphaComposite.SRC_OVER,

weight));
 g2d.drawImage(bi1, 0, 0, null);
 g2d.setComposite(AlphaComposite.getInstance(AlphaComposite.SRC_OVER,

1.0f - weight));
 g2d.drawImage(bi2, 0, 0, null);
 g2d.setColor(Color.BLACK);
 g2d.setRenderingHint(RenderingHints.KEY_ANTIALIASING,

RenderingHints.VALUE_ANTIALIAS_ON);
 g2d.setComposite(AlphaComposite.getInstance(AlphaComposite.SRC_OVER,

0.5f));

Appendix B ■ Threading in Swing

189

 g2d.fillRect(TEXTBOX_X, TEXTBOX_Y, TEXTBOX_WIDTH, TEXTBOX_HEIGHT);
 g2d.setComposite(AlphaComposite.getInstance(AlphaComposite.SRC_OVER,

weight));
 g2d.setColor(Color.WHITE);
 g2d.setFont(font);
 FontMetrics fm = g2d.getFontMetrics();
 g2d.drawString(slide1.getText(), TEXTBOX_X + (TEXTBOX_WIDTH -

fm.stringWidth(slide1.getText())) / 2,
TEXTBOX_Y + TEXTBOX_HEIGHT / 2 + fm.getHeight() / 4);

 g2d.setComposite(AlphaComposite.getInstance(AlphaComposite.SRC_OVER,
1.0f - weight));

 if (slide2 != null)
g2d.drawString(slide2.getText(), TEXTBOX_X + (TEXTBOX_WIDTH -

fm.stringWidth(slide2.getText())) / 2, TEXTBOX_Y +
TEXTBOX_HEIGHT / 2 + fm.getHeight() / 4);

 g2d.dispose();
 return bi3;
 }

 BufferedImage getBufferedImage()
 {
 return bi;
 }

 String getText()
 {
 return text;
 }

 static List<Slide> loadSlides(String imagesPath) throws IOException
 {
 File imageFilesPath = new File(imagesPath);
 if (!imageFilesPath.isDirectory())

throw new IOException(imagesPath + " identifies a file");
 List<Slide> slides = new ArrayList<>();
 try (FileReader fr = new FileReader(imagesPath + "/index");

BufferedReader br = new BufferedReader(fr))
 {

String line;
while ((line = br.readLine()) != null)
{

String[] parts = line.split(",");
File file = new File(imageFilesPath + "/" + parts[0] + ".jpg");
System.out.println(file);
BufferedImage bi = ImageIO.read(file);
if (WIDTH == 0)
{

WIDTH = bi.getWidth();

Appendix B ■ Threading in Swing

190

HEIGHT = bi.getHeight();
TEXTBOX_WIDTH = WIDTH / 2 + 10;
TEXTBOX_HEIGHT = HEIGHT / 10;
TEXTBOX_Y = HEIGHT - TEXTBOX_HEIGHT - 5;
TEXTBOX_X = (WIDTH - TEXTBOX_WIDTH) / 2;

}
slides.add(new Slide(bi, parts[1]));

}
 }
 if (slides.size() < 2)

throw new IOException("at least one image must be loaded");
 return slides;
 }
}

public class SlideShow
{
 public static void main(String[] args) throws IOException
 {
 if (args.length != 1)
 {

System.err.println("usage: java SlideShow ssdir");
return;

 }
 List<Slide> slides = Slide.loadSlides(args[0]);
 final Screen screen = new Screen(Slide.WIDTH, Slide.HEIGHT);
 final Projector p = new Projector(slides, screen);
 Runnable r = () ->
 {

final JFrame f = new JFrame("Slide Show");
WindowAdapter wa = new WindowAdapter()

{
@Override
public void windowClosing(WindowEvent we)
{
 p.stop();

f.dispose();
}

};
f.addWindowListener(wa);
f.setContentPane(screen);
f.pack();
f.setVisible(true);
p.start();

 };
 EventQueue.invokeLater(r);
 }
}

Appendix B ■ Threading in Swing

191

Listing B-6 models a slide show in terms of Projector, Screen, Slide, and SlideShow
classes. Projector declares several private fields, a Projector(List<Slide> slides,
Screen s) constructor for initializing a projector to a java.util.List of Slide objects
and a Screen object, a void start() method for starting the projector, and a void
stop() method for stopping the projector.

Screen, which subclasses javax.swing.JComponent to make a Screen instance a
special kind of Swing component, declares several private fields, a Screen(int width,
int height) constructor for instantiating this component to the extents of the screen
passed to width and height, and a void drawImage(BufferedImage bi) method for
drawing the buffered image passed to this method on the screen’s surface. This class also
overrides Dimension getPreferredSize() and void paint(Graphics g) to return the
component’s preferred size and to paint its surface.

Slide declares various constants, several private fields, a private
Slide(BufferedImage bi, String text) constructor for initializing a Slide object,
BufferedImage getBufferedImage() and String getText() getter methods for
returning the slide’s buffered image and text, a BufferedImage blend(Slide slide1,
Slide slide2, float weight) class method for blending a pair of buffered images to
show a transition between slides, and a List<Slide> loadSlides(String imagesPath)
class method to load all slide images.

The blend() method extracts the buffered images associated with its slide arguments
and blends these images together with the amount of blending determined by weight’s
value (which must lie in the range 0.0 through 1.0). The higher the value passed to
weight, the more of slide1’s image that contributes to the returned buffered image. After
blending the images, blend() blends a pair of text strings over the blended image. The
java.awt.AlphaComposite class is used to take care of blending in each case.

I’ve designed blend() to handle a special case where null is passed to slide2. This
happens at the beginning of Projector’s start() method where it executes
s.drawImage(Slide.blend(slides.get(0), null, 1.0f)); to display the first slide—
there’s no transition at this point.

The loadSlides() method looks for a text file named index in the directory
identified by this method’s string argument and creates the List of Slides in the order
identified by this text file’s contents—you can choose an order to display slides that
differs from the order of the image files stored in the directory. Each line is organized
as a file name followed by a comma, which is followed by a textual description (such as
earth, Terran System). When specifying a file name, you don’t specify a file extension;
loadSlides() is hardwired to recognize JPEG files only.

SlideShow declares a main() method that drives this application. This method
first verifies that a single command-line argument identifying the slide show directory
(a directory containing index and the JPEG files) has been specified. It then invokes
loadSlides() to load index and all slide images from this directory. loadSlides()
throws java.io.IOException when it’s unable to load an image or when the number of
images is less than 2. After all, how can you have a slide show with less than two images?

main() next creates a Screen component object for displaying slide images. It passes
the width and height of each slide (actually, the width and height of each slide image) to
Screen’s constructor, which ensures that the screen is just large enough to display these
slides. (All slide images must have the same width and height, although I don’t enforce
this requirement in loadSlides().)

Appendix B ■ Threading in Swing

192

The only remaining significant model object to create is the projector, and main()
accomplishes this task by passing the List of Slide objects returned from loadSlides()
and the previously created Screen object to Projector’s constructor.

main()’s final task is to cause the GUI to be constructed on the EDT. This thread sets
the content pane to the Screen object and invokes Projector’s void start() method to
begin the slide show. It also creates a window listener that invokes Projector’s void
stop() method when the user attempts to close the window. The window is then
disposed.

Projector uses a pair of Timer objects to manage the slide show. The main timer
object is responsible for advancing the projector to the next slide, and the subordinate
timer object (which is created each time the main timer fires an action event) is
responsible for transitioning from the currently displayed slide image to the next slide’s
image (with help from blend()).

Each timer instance runs on the EDT. It’s important that the main timer not execute
a timer task while the subordinate timer is running. If this rule isn’t followed, the slide
show will malfunction. I’ve chosen a period of 3000 milliseconds between successive
executions of the main timer task and 10 milliseconds between successive executions of
the subordinate timer task, which runs 100 times for an approximate total of 1000
milliseconds. When the subordinate timer task finishes, it stops itself.

Compile Listing B-6 as follows:

javac SlideShow.java

Assuming a Windows operating system, run the resulting application as follows:

java SlideShow ..\ss

ss identifies the example solar system slide show (included in this book’s code) and
is located in the parent directory of the current directory.

Appendix B ■ Threading in Swing

193

Figure B-3.  SlideShow horizontally centers a slide’s text near the bottom of the slide

Figure B-3 shows the resulting GUI.

195

�       � A
ArrayBlockingQueue, 127–128
Atomic variables

AtomicLong, 132
contention-reduction techniques, 132
counters and sequence generators, 131
getNextID() class, 131
intrinsic lock, 131
java.util.concurrent.atomic package, 130
lock-free, 130
nonblocking algorithms, 130
synchronization, 130
thread-safe operations, 130–131

�       � B
BlockingQueue

and ArrayBlockingQueue, 127–128
interface, 166
producer-consumer application, 127
put() and take() methods, 128
subinterfaces, 126

�       � C
Cached variables

computePi(), 23
processor-local cache, 23

Compare-and-swap (CAS)
atomic methods int getValue(), 133
atomic read-modify-write

sequences, 133
atomic variable classes, 134
getNextID() method, 133–134
Java Native Interface [JNI], 133
java.util.concurrent.locks.

ReentrantLock, 134

Completion service
CSDemo’s main() method, 144
Euler’s number, 142–143
ExecutorCompletionService, 142
Future<V>’s get() method, 142
java.util.concurrent.

CompletionService<V>
interface, 142

java.util.concurrent.Executor
CompletionService<V> class, 142

poll() method, 142
submit() methods, 142

Concurrency utilities
higher-level constructs, 69
java.util.concurrent, 70
java.util.concurrent

.atomic, 70, 82, 130
java.util.concurrent.locks, 70, 113
low-level concurrency

primitives, 69
nanoTime() method, 70
thread pools and blocking queues, 70

Concurrent collections
BlockingQueue, 126, 166
ConcurrentMap, 126
java.util.concurrent package, 126
synchronized wrapper methods, 125
thread-safe collections, 126
weakly-consistent iterators, 126

ConcurrentHashMap class, 129–130
ConcurrentMap subinterface, 166

Condition interface, 112, 164
Contended synchronization, 132
Countdown latch

boolean await(long timeout,
TimeUnit unit), 83

doneSignal’s countDown()
method, 85–86

Index

■ index

196

java.util.concurrent.CountDownLatch
class, 83

startSignal’s await() method, 85
trigger thread, 84–85
void await(), 83
void countDown(), 83

Counting semaphores, 96
Cyclic barrier

await(), 91
barrierAction, 86
boolean isBroken(), 87
constructor, 90
fixed-size party, threads, 86
IllegalArgumentException, 86
int await(long timeout, TimeUnit

unit), 87
int getNumberWaiting(), 87
int getParties(), 87
java.util.concurrent.CyclicBarrier

class, 86
parallel decomposition, 87–90
void reset(), 87

�       � D
Daemon thread, 7
Deadlock, 27

�       � E
Event-dispatch thread (EDT)

listener method, 170
rules, 169

Exchanger
buffers swap, 92–95
EmptyingLoop and FillingLoop local

classes, 95
Exchanger() constructor, 92
genetic algorithms, 91
generic java.util.concurrent.

Exchanger<V> class, 92
V exchange(V x), 92

Executors class
asynchronous computation, 75
callable’s call() method, 80
callable tasks, 74
class’s static methods, tasks, 77
Euler’s Number e

calculation, 78–79

ExecutorService
implementations, 72–74, 77

future’s methods, 75
IllegalArgumentException, 77
interfaces, 71
java.lang.ArithmeticException, 80
java.math.BigDecimal local

variable, 80
java.util.concurrent.Executor

interface, 70
java.util.concurrent.ExecutorService

interface, 71
java.util.concurrent.

ScheduledExecutorService
interface, 76

java.util.concurrent.TimeUnit, 74
newFixedThreadPool()

method, 79
new java.lang.Thread, 70
RejectedExecutionException, 71
ScheduledExecutorService

implementations, 76
submit() method, 76
task, 70
thread pool, 77

�       � F
Fork/Join framework

algorithm, 139
CountedCompleter, 136
executor service and

thread pool, 135
ForkJoinPool, 136, 141
ForkJoinTask, 136
ForkJoinWorkerThread, 136
invokeAll() method, 141
java.util.concurrent package’s

ForkJoinPool, 136
massive parallelism, 134
MatMult class, 141
MatMult constructor, 141
matrix-multiplication

algorithm, 137–138
multiply() method, 138
RecursiveAction, 136
RecursiveAction’s Collection<T>, 141
RecursiveTask-based tasks, 136
sorting algorithm, 135
subtasks, 135

Countdown latch (cont.)

■ Index

197

thread contention, 135
two-dimensional table, 136–137
two matrix instances

(multiplication), 139–141
worker thread, 135

�       � G
getInstance(), 22–23

�       � H
holdsLock(Object o) method, 24

�       � I
ID.getID(), 26
IllegalThreadStateException, 8, 19
InheritableThreadLocal, 57
instanceMethod1(), 29
instanceMethod2(), 29
Interruption mechanism

boolean isInterrupted():, 11
static boolean interrupted():, 11
void interrupt(), 10
while-based busy loop, 12

�       � J, K
java.lang.InterruptedException, 10
Java virtual machine (JVM), 3, 23, 53

�       � L, M, N
lambda expression, 4
Livelock, 27
Lock

acquisition and release, 108
block-structured, 109
chain locking, 108
condition interface

await() method, 116
boolean await(long time,

TimeUnit unit), 112
boolean awaitUntil(Date

deadline), 112
consumer signals, 116
consumer thread, 116
default main thread, 116
lock.newCondition(), 116
lockstep synchronization, 117

long awaitNanos(long
nanosTimeout), 112

newCondition() method, 112
producer and consumer

classes, 116
setSharedChar(), 116
synchronization, 113–115
void await(), 112
void awaitUninterruptibly(), 112
void signal(), 112
void signalAll(), 112

consumption and signals, 116
getLock() method, 116
hand-over-hand, 108
implementations, 109
interface, 109
methods, 108
producer thread, 116
ReentrantLock class, 109–110

�       � O
One-shot execution, 58–59, 64

�       � P
Parallelism, 134–135
Phaser

constructor, 103
int arriveAndAwaitAdvance()

method, 103
int arriveAndDeregister()

method, 103
integer-based phase number, 103
int register() method, 103
java.util.concurrent.Phaser class, 103
The Phaser(int threads)

constructor, 103
Preemptive scheduling, 6

�       � Q
Queue interface

BlockingQueue subinterface, 166
(see also BlockingQueue)

�       � R
Race condition

getID(), 22
getInstance(), 23

■ index

198

memory location, 22
multithreaded context, 21
Parser object, 23

ReadWriteLock
interface, 117
methods, 117
read-only operations, 117

ReentrantLock
concurrency and memory

semantics, 109
constructors, 110
fairness policy, 110
java.lang.Illegal

MonitorStateException, 110
lock() and unlock()

methods, 109–111
lockUninterruptibly(), 109
monitor lock, 109
synchronization, 110–111
thread contention, 109
tryLock() methods, 109
unlock(), 110

ReentrantReadWriteLock
acquisition and release, 121
constructors, 118
dictionary application’s reader and

writer threads, 119–121
executor, 121
int getReadHoldCount(), 119
int getWriteHoldCount(), 119
ReentrantReadWriteLock class, 118
ReentrantReadWriteLock.ReadLock

readLock(), 118
ReentrantReadWriteLock.WriteLock

writeLock(), 118
run() method, 121
thread pool, 121

Round robin scheduling, 6
Runnable Objects

constructors, 3
lambda expression, 4

�       � S
Semaphore

class, 162
constructor method, 96–99
control access, pool items, 99–101
description, 96
fairness policy, 96
fairness setting, 97

java.util.concurrent.Semaphore
class, 96

Pool’s String getItem(), 101
putItem(String), 101
String getNextAvailableItem(), 101
synchronizers, 44, 162
void putItem(String item), 101

setPriority(int priority) method, 7
Single-processor/single-core machine, 31
sleep() methods

Thread class, 152
s.setSharedChar(ch), 44
Starvation, 27
StoppableThread’s stop() method, 31
StoppableThread, 31
stopThread() method, 31
SwingUtilities

invokeAndWait(), 174, 176
invokeLater(), 174
isEventDispatchThread(), 174
SwingWorker class. SwingWorker
timer class

start and stop count, 183, 185
void start(), 183
void stop(), 183

SwingWorker
get(), 179
GetHTML, 182
ViewPage application

code, 179–180, 182
void execute(), 179

Synchronization
cached variable, 26, 35
class method, 25
code sequence, 25
Deadlock, 30
field variable, 34
getID() method, 25
immutable objects, 35
loop iteration, 33
mutual exclusion, 24
pathological problem, 27
shared variables, 24
sleep() methods, 24
stopThread(), 30, 33
syntax, 26

Synchronizers
countdown latch, 83, 85–86
cyclic barrier. see (Cyclic barrier)
exchanger. see (Exchanger)
phaser, 103–105
semaphore. see (Semaphore)

Race condition (cont.)

■ Index

199

�       � T, U
Task-execution thread, 58
Thread

alive/dead status, 5, 9
calling start(), 8
command line, 9
execution state, 5
feedback queue, 6
Java application, 3
name (assigning), 5
power series, 13
preemptive scheduling, 6
processors/cores, 6
Runnable interface, 3
schedulers, 6
setPriority(int priority) method, 7
sleep, 16
stacks, 3
start() method, 5
Windows 7 operating system, 10

Thread capabilities
local variables. Thread-Local variables
timer. see (Timer)
timer framework, 58–60
TimerTask

boolean cancel(), 64
long scheduledExecutionTime(), 65

Thread class
interruption mechanism, 10
semaphores, 162
sleep method, 152

Thread groups
activeCount(), 52
enumerate() methods, 52
handling exceptions, 52
int activeCount() method, 52
java.lang.ArithmeticException

object, 52
java.lang.ThreadGroup class, 51
JDK documentation, 51
JVM, 53
setDefaultUncaught
ExceptionHandler() methods, 54
setUncaught
ExceptionHandler(), 53–54
static void setDefaultUncaught
ExceptionHandler, 53
object’s uncaught
Exception() method, 53
uncaughtException(), 53

uncaught exception handlers, 54
void resume(), 51
void stop(), 51
void suspend(), 51

Thread.interrupted(), 12
Thread-Local variables

constructor and methods class, 55
final class field, 58
InheritableThreadLocal, 57
initialValue()’s value, 57
java.lang.ThreadLocal class, 55
multislot variable, 55
parent thread to child thread, 57
T childValue(T parentValue), 57
ThreadLocal<T>, 55
user IDs, threads, 56

Thread pools, 77
Thread-safe counters, 133
Thread.State getState() method, 6
Timer

constructors
Timer(), 61
Timer(boolean isDaemon), 61
Timer(String name), 61
Timer(String name, boolean

isDaemon), 61
methods

void cancel(), 61
int purge(), 61
void scheduleAtFixedRate

(TimerTask task, Date firstTime,
long period), 63

void schedule AtFixedRate
(TimerTask task, long delay,
long period), 63

void schedule(TimerTask task,
Date firstTime, long period), 62

void schedule(TimerTask task,
Date time), 62

void schedule(TimerTask task,
long delay), 62

void schedule(TimerTask task,
long delay, long period), 63

scales, 61
stop() method, 64
task-execution thread, 64

Timer-based slide show
blend() method, 191
definition, slide show, 185
description, 185–187, 189–190
loadSlides() method, 191

■ index

200

output view, 193
projector, 191–192
screen, 191
slide, 191

Timer framework
alarm clock task, 58
current millisecond value, 60
Java 1.3, 58
one-shot execution, 58–59
schedule() method, 59–60
System.exit(0), 59
task-execution thread, 58
task scheduling, 58
TimerTask anonymous

subclass, 60
Timer tasks, 64

�       � V
void join(), 13
void join(long millis, int nanos), 13
Volatile keyword, 30

�       � W, X, Y, Z
Wait-and-Notify API

void notify(), 40
void notifyAll(), 40
void wait(), 39
void wait(long timeout), 39
void wait(long timeout,

int nanos), 39
Windows NT-based operating systems, 6
worker thread, 12

Timer-based slide show (cont.)

	Java Threads and the Concurrency Utilities

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer

	Acknowledgments
	Introduction
	Part I: Thread APIs
	Chapter 1: Threads and Runnables
	 Introducing Thread and Runnable
	 Creating Thread and Runnable Objects
	 Getting and Setting Thread State
	Getting and Setting a Thread’s Name
	Getting a Thread’s Alive Status
	Getting a Thread’s Execution State
	Getting and Setting a Thread’s Priority
	Getting and Setting a Thread’s Daemon Status

	 Starting a Thread

	 Performing More Advanced Thread Tasks
	 Interrupting Threads
	 Joining Threads
	 Sleeping

	 Summary

	Chapter 2: Synchronization
	 The Problems with Threads
	 Race Conditions
	 Data Races
	 Cached Variables

	 Synchronizing Access to Critical Sections
	 Using Synchronized Methods
	 Using Synchronized Blocks

	 Beware of Liveness Problems
	 Volatile and Final Variables
	 Summary

	Chapter 3: Waiting and Notification
	 Wait-and-Notify API Tour
	 Producers and Consumers
	 Summary

	Chapter 4: Additional Thread Capabilities
	Thread Groups
	Thread-Local Variables
	Timer Framework
	Timer in Depth
	TimerTask in Depth

	Summary

	Part II: Concurrency Utilities
	Chapter 5: Concurrency Utilities and Executors
	Introducing the Concurrency Utilities
	Exploring Executors
	Summary

	Chapter 6: Synchronizers
	 Countdown Latches
	 Cyclic Barriers
	 Exchangers
	 Semaphores
	 Phasers
	 Summary

	Chapter 7: The Locking Framework
	 Lock
	 ReentrantLock
	 Condition
	 ReadWriteLock
	 ReentrantReadWriteLock
	 Summary

	Chapter 8: Additional Concurrency Utilities
	 Concurrent Collections
	 Using BlockingQueue and ArrayBlockingQueue
	 Learning More About ConcurrentHashMap

	 Atomic Variables
	 Understanding the Atomic Magic

	 Fork/Join Framework
	 Completion Services
	 Summary

	Part III: Appendices
	Appendix A: Answers to Exercises
	 Chapter 1: Threads and Runnables
	 Chapter 2: Synchronization
	 Chapter 3: Waiting and Notification
	 Chapter 4: Additional Thread Capabilities
	 Chapter 5: Concurrency Utilities and Executors
	 Chapter 6: Synchronizers
	 Chapter 7: The Locking Framework
	 Chapter 8: Additional Concurrency Utilities

	Appendix B: Threading in Swing
	 A Single- Threaded Programming Model
	 Threading APIs
	 SwingUtilities and EventQueue
	 SwingWorker
	 Timer

	 Timer-Based Slide Show

	Index

