
THE E XPER T ’S VOICE® IN JAVA

Java XML
and JSON

—
Jeff Friesen

www.it-ebooks.info

http://www.it-ebooks.info/

 Java XML and JSON

 Jeff Friesen

www.it-ebooks.info

http://www.it-ebooks.info/

Java XML and JSON

Jeff Friesen
Dauphin, Manitoba, Canada

ISBN-13 (pbk): 978-1-4842-1915-7 ISBN-13 (electronic): 978-1-4842-1916-4
DOI 10.1007/978-1-4842-1916-4

Library of Congress Control Number: 2016943840

Copyright © 2016 by Jeff Friesen

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions
of the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Steve Anglin
Technical Reviewer: Wallace Jackson
Editorial Board: Steve Anglin, Pramila Balan, Louise Corrigan, James T. DeWolf,

Jonathan Gennick, Robert Hutchinson, Celestin Suresh John, James Markham,
Susan McDermott, Matthew Moodie, Ben Renow-Clarke, Gwenan Spearing

Coordinating Editor: Mark Powers
Copy Editor: Mary Behr
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com , or visit www.springeronline.com . Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales .

Any source code or other supplementary materials referenced by the author in this text is available
to readers at www.apress.com/9781484219157 . For detailed information about how to locate your
book’s source code, go to www.apress.com/source-code/ . Readers can also access source code at
SpringerLink in the Supplementary Material section for each chapter.

Printed on acid-free paper

www.it-ebooks.info

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781484219157
www.apress.com/source-code/
http://www.it-ebooks.info/

 To Dave, the late Father Lucian, Jane, and Rob.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

v

Contents at a
Glance

About the Author .. xiii

About the Technical Reviewer ..xv

Acknowledgments ..xvii

Introduction ...xix

 ■Chapter 1: Introducing XML .. 1

 ■Chapter 2: Parsing XML Documents with SAX 29

 ■Chapter 3: Parsing and Creating XML Documents with DOM 57

 ■Chapter 4: Parsing and Creating XML Documents with StAX 75

 ■Chapter 5: Selecting Nodes with XPath .. 97

 ■Chapter 6: Transforming XML Documents with XSLT 119

 ■Chapter 7: Introducing JSON .. 133

 ■Chapter 8: Parsing and Creating JSON Objects with mJson 149

 ■Chapter 9: Parsing and Creating JSON Objects with Gson 179

www.it-ebooks.info

http://www.it-ebooks.info/

 Contents at a Glancevi

 ■Chapter 10: Extracting JSON Values with JsonPath 223

 ■Appendix A: Answers to Exercises .. 241

Index .. 279

www.it-ebooks.info

http://www.it-ebooks.info/

vii

Contents

About the Author .. xiii

About the Technical Reviewer ..xv

Acknowledgments ..xvii

Introduction ...xix

 ■Chapter 1: Introducing XML .. 1

What Is XML? .. 1

Language Features Tour .. 3

XML Declaration ... 3

Elements and Attributes ... 5

Character References and CDATA Sections .. 7

Namespaces ... 8

Comments and Processing Instructions ... 13

Well-Formed Documents ... 14

Valid Documents ... 15

Document Type Defi nition ... 15

XML Schema ... 21

Summary ... 28

www.it-ebooks.info

http://www.it-ebooks.info/

 Contentsviii

 ■Chapter 2: Parsing XML Documents with SAX 29

What Is SAX? ... 29

Exploring the SAX API .. 30

Obtaining a SAX 2 Parser .. 30

Touring XMLReader Methods .. 31

Touring the Handler and Resolver Interfaces.. 35

Demonstrating the SAX API ... 40

Creating a Custom Entity Resolver .. 49

Summary ... 54

 ■Chapter 3: Parsing and Creating XML Documents with DOM 57

What Is DOM? .. 57

A Tree of Nodes ... 58

Exploring the DOM API ... 61

Obtaining a DOM Parser/Document Builder.. 61

Parsing and Creating XML Documents ... 63

Demonstrating the DOM API .. 67

Summary ... 74

 ■Chapter 4: Parsing and Creating XML Documents with StAX 75

What Is StAX? .. 75

Exploring StAX ... 76

Parsing XML Documents... 77

Creating XML Documents ... 85

Summary ... 95

 ■Chapter 5: Selecting Nodes with XPath .. 97

What Is XPath? .. 97

XPath Language Primer ... 97

Location Path Expressions .. 98

General Expressions ... 101

www.it-ebooks.info

http://www.it-ebooks.info/

 Contents ix

XPath and DOM ... 103

Advanced XPath .. 110

Namespace Contexts .. 110

Extension Functions and Function Resolvers ... 111

Variables and Variable Resolvers .. 115

Summary ... 118

 ■Chapter 6: Transforming XML Documents with XSLT 119

What Is XSLT? .. 119

Exploring the XSLT API ... 120

Demonstrating the XSLT API .. 123

Summary ... 132

 ■Chapter 7: Introducing JSON .. 133

What Is JSON? ... 133

JSON Syntax Tour .. 134

Demonstrating JSON with JavaScript ... 137

Validating JSON Objects .. 140

Summary ... 147

 ■Chapter 8: Parsing and Creating JSON Objects with mJson 149

What Is mJson? ... 149

Obtaining and Using mJson .. 150

Exploring the Json Class ... 150

Creating Json Objects ... 151

Learning About Json Objects .. 155

Navigating Json Object Hierarchies .. 163

Modifying Json Objects .. 165

Validation .. 170

Customization via Factories ... 173

Summary ... 178

www.it-ebooks.info

http://www.it-ebooks.info/

 Contentsx

 ■Chapter 9: Parsing and Creating JSON Objects with Gson 179

What Is Gson? ... 179

Obtaining and Using Gson .. 180

Exploring GSon .. 180

Introducing the Gson Class ... 181

Parsing JSON Objects Through Deserialization .. 183

Creating JSON Objects Through Serialization ... 190

Learning More About Gson ... 197

Summary ... 222

 ■Chapter 10: Extracting JSON Values with JsonPath 223

What Is JsonPath? ... 223

Learning the JsonPath Language .. 224

Obtaining and Using the JsonPath Library .. 227

Exploring the JsonPath Library ... 228

Extracting Values from JSON Objects ... 229

Using Predicates to Filter Items .. 232

Summary ... 239

 ■Appendix A: Answers to Exercises .. 241

Chapter 1: Introducing XML ... 241

Chapter 2: Parsing XML Documents with SAX..................................... 246

Chapter 3: Parsing and Creating XML Documents with DOM 251

Chapter 4: Parsing and Creating XML Documents with StAX 258

Chapter 5: Selecting Nodes with XPath ... 261

Chapter 6: Transforming XML Documents with XSLT 264

Chapter 7: Introducing JSON ... 267

www.it-ebooks.info

http://www.it-ebooks.info/

 Contents xi

Chapter 8: Parsing and Creating JSON Objects with mJson 269

Chapter 9: Parsing and Creating JSON Objects with Gson 272

Chapter 10: Extracting JSON Property Values with JsonPath 276

Index .. 279

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

xiii

 About the Author
 Jeff Friesen is a freelance teacher and
software developer with an emphasis on Java.
In addition to authoring Java I/O, NIO and NIO.2
(Apress) and Java Threads and the Concurrency
Utilities (Apress), Jeff has written numerous
articles on Java and other technologies
(such as Android) for JavaWorld (JavaWorld.com),
informIT (InformIT.com), Java.net , SitePoint
(SitePoint.com), and other web sites. Jeff can
be contacted via his web site at JavaJeff.ca .
or via his LinkedIn (LinkedIn.com) profile
(www.linkedin.com/in/javajeff).

www.it-ebooks.info

http://www.linkedin.com/in/javajeff
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

xv

 About the Technical
Reviewer

 Wallace Jackson has been writing for leading
multimedia publications about his work in new
media content development since the advent
of Multimedia Producer Magazine nearly two
decades ago. He has authored a half-dozen
Android book titles for Apress, including four
titles in the popular Pro Android series. Wallace
received his undergraduate degree in business
economics from the University of California
at Los Angeles and a graduate degree in MIS
design and implementation from the University
of Southern California. He is currently the CEO
of Mind Taffy Design, a new media content
production and digital campaign design and
development agency.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

xvii

 Acknowledgments
 Many people assisted me in the development of this book, and I thank them.
I especially thank Steve Anglin for asking me to write it and Mark Powers for
guiding me through the writing process.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

xix

 Introduction
 XML and (the more popular) JSON let you organize data in textual formats.
This book introduces you to these technologies along with Java APIs for
integrating them into your Java code. This book introduces you to XML and
JSON as of Java 8 update 60.

 Chapter 1 introduces XML, where you learn about basic language features
(such as the XML declaration, elements and attributes, and namespaces).
You also learn about well-formed XML documents and how to validate them
via the Document Type Definition and XML Schema grammar languages.

 Chapter 2 focuses on Java’s SAX API for parsing XML documents. You learn
how to obtain a SAX 2 parser; you then tour XMLReader methods along with
handler and entity resolver interfaces. Finally, you explore a demonstration
of this API and learn how to create a custom entity resolver.

 Chapter 3 addresses Java’s DOM API for parsing and creating XML
documents. After discovering the various nodes that form a DOM document
tree, you explore the DOM API, where you learn how to obtain a DOM
parser/document builder and how to parse and create XML documents.

 Chapter 4 places the spotlight on Java’s StAX API for parsing and creating
XML documents. You learn how to use StAX to parse XML documents with
stream-based and event-based readers, and how to create XML documents
with stream-based and event-based writers.

 Moving on, Chapter 5 presents Java’s XPath API for simplifying access to
a DOM tree’s nodes. You receive a primer on the XPath language, learning
about location path expressions and general expressions. You also explore
advanced features starting with namespace contexts.

 Chapter 6 completes my coverage of XML by targeting Java’s XSLT API. You
learn about transformer factories and transformers, and much more.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1916-4_1
http://dx.doi.org/10.1007/978-1-4842-1916-4_2
http://dx.doi.org/10.1007/978-1-4842-1916-4_3
http://dx.doi.org/10.1007/978-1-4842-1916-4_4
http://dx.doi.org/10.1007/978-1-4842-1916-4_5
http://dx.doi.org/10.1007/978-1-4842-1916-4_6
http://www.it-ebooks.info/

 Introductionxx

 Chapter 7 switches gears to JSON. You receive an introduction to JSON,
take a tour of its syntax, explore a demonstration of JSON in a JavaScript
context (because Java doesn’t yet officially support JSON), and learn how to
validate JSON objects in the context of JSON Schema.

 You’ll need to work with third-party libraries to parse and create JSON
documents. Chapter 8 introduces you to the mJson library. After learning
how to obtain and use mJson, you explore the Json class, which is the entry
point for working with mJSon.

 Google has released an even more powerful library for parsing and creating
JSON documents. The Gson library is the focus of Chapter 9 . In this chapter,
you learn how to parse JSON objects through deserialization, how to create
JSON objects through serialization, and much more.

 Chapter 10 completes my coverage of JSON by presenting the JsonPath
API for performing XPath-like operations on JSON documents.

 Each chapter ends with assorted exercises that are designed to help you
master the content. Along with long answers and true/false questions,
you must also perform programming exercises. Appendix A provides the
answers and solutions.

 Thanks for purchasing this book. I hope you find it helpful in understanding
XML and JSON in a Java context.

 —Jeff Friesen
 (April, 2016)

 Note You can download this book’s source code by pointing your web browser
to www.apress.com/9781484219157 and clicking the Source Code tab
followed by the Download Now link.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1916-4_7
http://dx.doi.org/10.1007/978-1-4842-1916-4_8
http://dx.doi.org/10.1007/978-1-4842-1916-4_9
http://dx.doi.org/10.1007/978-1-4842-1916-4_10
http://www.apress.com/9781484219157This link isn't active yet, FYI
http://www.it-ebooks.info/

1© Jeff Friesen 2016
J. Friesen, Java XML and JSON, DOI 10.1007/978-1-4842-1916-4_1

 Chapter 1
 Introducing XML
 Applications commonly use XML documents to store and exchange data.
XML defines rules for encoding documents in a format that is both
 human-readable and machine-readable . This chapter introduces XML, tours
the XML language features, and discusses well-formed and valid documents.

 What Is XML?
 XML (eXtensible Markup Language) is a metalanguage (a language used to
describe other languages) for defining vocabularies (custom markup languages),
which is the key to XML’s importance and popularity. XML-based vocabularies
(such as XHTML) let you describe documents in a meaningful way.

 XML vocabulary documents are like HTML (see http://en.wikipedia.org/
wiki/HTML) documents in that they are text-based and consist of markup
(encoded descriptions of a document’s logical structure) and content
(document text not interpreted as markup). Markup is evidenced via tags
(angle bracket-delimited syntactic constructs) and each tag has a name.
Furthermore, some tags have attributes (name-value pairs) .

Electronic supplementary material The online version of this chapter
(doi: 10.1007/978-1-4842-1916-4_1) contains supplementary material, which is
available to authorized users.

www.it-ebooks.info

https://en.wikipedia.org/wiki/File_format#File format
https://en.wikipedia.org/wiki/Human-readable_medium#Human-readable medium
https://en.wikipedia.org/wiki/Machine-readable_data#Machine-readable data
http://en.wikipedia.org/wiki/HTML
http://en.wikipedia.org/wiki/HTML
http://dx.doi.org/10.1007/978-1-4842-1916-4
http://www.it-ebooks.info/

CHAPTER 1: Introducing XML2

 If you haven’t previously encountered XML, you might be surprised by its
simplicity and how closely its vocabularies resemble HTML. You don’t need
to be a rocket scientist to learn how to create an XML document . To prove
this to yourself, check out Listing 1-1 .

 Listing 1-1. XML-Based Recipe for a Grilled Cheese Sandwich

 <recipe>
 <title>
 Grilled Cheese Sandwich
 </title>
 <ingredients>
 <ingredient qty="2">
 bread slice
 </ingredient>
 <ingredient>
 cheese slice
 </ingredient>
 <ingredient qty="2">
 margarine pat
 </ingredient>
 </ingredients>
 <instructions>
 Place frying pan on element and select medium heat. For each bread
slice, smear one pat of margarine on one side of bread slice. Place cheese
slice between bread slices with margarine-smeared sides away from the
cheese. Place sandwich in frying pan with one margarine-smeared side in
contact with pan. Fry for a couple of minutes and flip. Fry other side for a
minute and serve.
 </instructions>
 </recipe>

 Listing 1-1 presents an XML document that describes a recipe for making
a grilled cheese sandwich. This document is reminiscent of an HTML
document in that it consists of tags, attributes, and content. However, that’s

 Note XML and HTML are descendants of Standard Generalized Markup
Language (SGML) , which is the original metalanguage for creating vocabularies.
XML is essentially a restricted form of SGML, while HTML is an application of
SGML. The key difference between XML and HTML is that XML invites you to
create your own vocabularies with its own tags and rules, whereas HTML gives
you a single precreated vocabulary with its own fixed set of tags and rules.
XHTML and other XML-based vocabularies are XML applications . XHTML was
created to be a cleaner implementation of HTML.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Introducing XML 3

 Note Although Listing 1-1 ’s <title> and </title> tags are also found in
HTML, they differ from their HTML counterparts. Web browsers typically display
the content between these tags in their title bars. In contrast, the content
between Listing 1-1 ’s <title> and </title> tags might be displayed as a
recipe header, spoken aloud, or presented in some other way, depending on the
application that parses this document.

where the similarity ends. Instead of presenting HTML tags such as <html> ,
 <head> , , and <p> , this informal recipe language presents its own
 <recipe> , <ingredients> , and other tags.

 Language Features Tour
 XML provides several language features for use in defining custom markup
languages: XML declaration, elements and attributes, character references
and CDATA sections, namespaces, and comments and processing
instructions. You will learn about these language features in this section.

 XML Declaration
 An XML document usually begins with the XML declaration , which is special
markup telling an XML parser that the document is XML. The absence of the
XML declaration in Listing 1-1 reveals that this special markup isn’t mandatory.
When the XML declaration is present, nothing can appear before it.

 The XML declaration minimally looks like <?xml version="1.0"?> in which
the nonoptional version attribute identifies the version of the XML
specification to which the document conforms. The initial version of this
specification (1.0) was introduced in 1998 and is widely implemented.

 Note The World Wide Web Consortium (W3C) , which maintains XML, released
version 1.1 in 2004. This version mainly supports the use of line-ending
characters used on EBCDIC platforms (see http://en.wikipedia.org/
wiki/EBCDIC) and the use of scripts and characters that are absent from
Unicode 3.2 (see http://en.wikipedia.org/wiki/Unicode). Unlike
XML 1.0, XML 1.1 isn’t widely implemented and should be used only by those
needing its unique features.

www.it-ebooks.info

http://en.wikipedia.org/wiki/EBCDIC
http://en.wikipedia.org/wiki/EBCDIC
http://en.wikipedia.org/wiki/Unicode
http://www.it-ebooks.info/

CHAPTER 1: Introducing XML4

 XML supports Unicode, which means that XML documents consist entirely
of characters taken from the Unicode character set. The document’s
characters are encoded into bytes for storage or transmission, and the
encoding is specified via the XML declaration’s optional encoding attribute.
One common encoding is UTF-8 (see http://en.wikipedia.org/wiki/UTF-8),
which is a variable-length encoding of the Unicode character set. UTF-8 is a
strict superset of ASCII (see http://en.wikipedia.org/wiki/ASCII), which
means that pure ASCII text files are also UTF-8 documents.

 Note In the absence of the XML declaration or when the XML declaration’s
 encoding attribute isn’t present, an XML parser typically looks for a special
character sequence at the start of a document to determine the document’s
encoding. This character sequence is known as the byte-order-mark (BOM) and
is created by an editor program (such as Microsoft Windows Notepad) when it
saves the document according to UTF-8 or some other encoding. For example,
the hexadecimal sequence EF BB BF signifies UTF-8 as the encoding. Similarly,
 FE FF signifies UTF-16 big endian (see https://en.wikipedia.org/
wiki/UTF-16), FF FE signifies UTF-16 little endian, 00 00 FE FF signifies
UTF-32 big endian (see https://en.wikipedia.org/wiki/UTF-32), and
 FF FE 00 00 signifies UTF-32 little endian. UTF-8 is assumed when no
BOM is present.

 If you’ll never use characters apart from the ASCII character set, you can
probably forget about the encoding attribute. However, when your native
language isn’t English or when you’re called to create XML documents that
include non-ASCII characters, you need to properly specify encoding .
For example, when your document contains ASCII plus characters from
a non-English Western European language (such as ç, the cedilla used in
French, Portuguese, and other languages), you might want to choose
 ISO-8859-1 as the encoding attribute’s value—the document will probably
have a smaller size when encoded in this manner than when encoded with
UTF-8. Listing 1-2 shows you the resulting XML declaration .

 Listing 1-2. An Encoded Document Containing Non-ASCII Characters

 <?xml version="1.0" encoding="ISO-8859-1"?>
 <movie>
 <name>Le Fabuleux Destin d'Amélie Poulain</name>
 <language>français</language>
 </movie>

www.it-ebooks.info

http://en.wikipedia.org/wiki/UTF-8
http://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/UTF-16
https://en.wikipedia.org/wiki/UTF-16
https://en.wikipedia.org/wiki/UTF-32
http://www.it-ebooks.info/

CHAPTER 1: Introducing XML 5

 The final attribute that can appear in the XML declaration is standalone .
This optional attribute, which is only relevant with DTDs (discussed later),
determines if there are external markup declarations that affect the
information passed from an XML processor (a parser) to the application.
Its value defaults to no , implying that there are, or may be, such declarations.
A yes value indicates that there are no such declarations. For more
information, check out “The standalone pseudo-attribute is only relevant if a
DTD is used” article at (www.xmlplease.com/xml/xmlquotations/standalone).

 Elements and Attributes
 Following the XML declaration is a hierarchical (tree) structure of elements ,
where an element is a portion of the document delimited by a start tag
(such as <name>) and an end tag (such as </name>), or is an empty-element
tag (a standalone tag whose name ends with a forward slash (/), such as
 <break/>). Start tags and end tags surround content and possibly other
markup whereas empty-element tags don’t surround anything. Figure 1-1
reveals Listing 1-1 ’s XML document tree structure .

 Figure 1-1. Listing 1-1’s tree structure is rooted in the recipe element

 As with the HTML document structure, the structure of an XML document
is anchored in a root element (the topmost element). In HTML, the root
element is html (the <html> and </html> tag pair). Unlike in HTML, you can
choose the root element for your XML documents. Figure 1-1 shows the root
element to be recipe .

 Unlike the other elements , which have parent elements, recipe has no
parent. Also, recipe and ingredients have child elements: recipe ’s children
are title , ingredients , and instructions ; and ingredients ’ children are
three instances of ingredient . The title , instructions , and ingredient
elements don’t have child elements.

www.it-ebooks.info

https://www.w3.org/TR/2004/REC-xml-20040204/#dt-extmkpdecl#External Markup Declaration
http://www.xmlplease.com/xml/xmlquotations/standalone
http://www.it-ebooks.info/

CHAPTER 1: Introducing XML6

 Elements can contain child elements, content, or mixed content (a
combination of child elements and content). Listing 1-2 reveals that
the movie element contains name and language child elements, and also
reveals that each of these child elements contains content (language
contains français , for example). Listing 1-3 presents another example that
demonstrates mixed content along with child elements and content.

 Listing 1-3. An abstract Element Containing Mixed Content

 <?xml version="1.0"?>
 <article title="The Rebirth of JavaFX" lang="en">
 <abstract>
 JavaFX 2 marks a significant milestone in the history of JavaFX. Now
that Sun Microsystems has passed the torch to Oracle, we have seen the
demise of JavaFX Script and the emergence of Java APIs (such as <code-
inline>javafx.application.Application</code-inline>) for interacting with
this technology. This article introduces you to this new flavor of JavaFX,
where you learn about JavaFX 2 architecture and key APIs.
 </abstract>
 <body>
 </body>
 </article>

 This document’s root element is article , which contains abstract and body
child elements . The abstract element mixes content with a code-inline
element, which contains content. In contrast, the body element is empty.

 An XML element’s start tag can contain one or more attributes . For example,
Listing 1-1 ’s <ingredient> tag has a qty (quantity) attribute and Listing 1-3 ’s
 <article> tag has title and lang attributes. Attributes provide additional
details about elements. For example, qty identifies the amount of an
ingredient that can be added, title identifies an article’s title, and lang
identifies the language in which the article is written (en for English).
Attributes can be optional. For example, when qty isn’t specified, a default
value of 1 is assumed.

 Note As with Listings 1-1 and 1-2 , Listing 1-3 also contains whitespace
(invisible characters such as spaces, tabs, carriage returns, and line feeds). The
XML specification permits whitespace to be added to a document. Whitespace
appearing within content (such as spaces between words) is considered part
of the content. In contrast, the parser typically ignores whitespace appearing
between an end tag and the next start tag. Such whitespace isn’t considered
part of the content.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Introducing XML 7

 Note Element and attribute names may contain any alphanumeric character
from English or another language, and may also include the underscore (_),
hyphen (-), period (.), and colon (:) punctuation characters. The colon should
only be used with namespaces (discussed later in this chapter), and names
cannot contain whitespace .

 Character References and CDATA Sections
 Certain characters cannot appear literally in the content that appears
between a start tag and an end tag or within an attribute value. For example,
you cannot place a literal < character between a start tag and an end tag
because doing so would confuse an XML parser into thinking that it had
encountered another tag.

 One solution to this problem is to replace the literal character with a
 character reference , which is a code that represents the character. Character
references are classified as numeric character references or character entity
references:

 A numeric character reference refers to a character
via its Unicode code point and adheres to the format
 &# nnnn ; (not restricted to four positions) or &#x hhhh ;
(not restricted to four positions), where nnnn provides
a decimal representation of the code point and hhhh
provides a hexadecimal representation. For example,
 Σ and Σ represent the Greek capital
letter sigma. Although XML mandates that the x in
 &#x hhhh ; be lowercase, it’s flexible in that the leading
zero is optional in either format and in allowing you to
specify an uppercase or lowercase letter for each h .
As a result, Σ , Σ , and Σ are also valid
representations of the Greek capital letter sigma.

 A character entity reference refers to a character via
the name of an entity (aliased data) that specifies the
desired character as its replacement text. Character
entity references are predefined by XML and have the
format & name ; , in which name is the entity’s name. XML
predefines five character entity references: < (<), >
(>), & (&), ' ('), and " (").

 Consider <expression>6 < 4</expression> . You could replace the < with
numeric reference < , yielding <expression>6 < 4</expression> ,
or better yet with < , yielding <expression>6 < 4</expression> .
The second choice is clearer and easier to remember.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Introducing XML8

 Suppose you want to embed an HTML or XML document within an element.
To make the embedded document acceptable to an XML parser, you would
need to replace each literal < (start of tag) and & (start of entity) character
with its < and & predefined character entity reference, a tedious and
possibly error-prone undertaking—you might forget to replace one of these
characters. To save you from tedium and potential errors, XML provides an
alternative in the form of a CDATA (character data) section .

 A CDATA section is a section of literal HTML or XML markup and content
surrounded by the <![CDATA[prefix and the]]> suffix. You don’t need to
specify predefined character entity references within a CDATA section , as
demonstrated in Listing 1-4 .

 Listing 1-4. Embedding an XML Document in Another Document’s CDATA Section

 <?xml version="1.0"?>
 <svg-examples>
 <example>
 The following Scalable Vector Graphics document describes a blue-

filled and black-stroked rectangle.
 <![CDATA[<svg width="100%" height="100%" version="1.1"
 xmlns="http://www.w3.org/2000/svg">
 <rect width="300" height="100"
 style="fill:rgb(0,0,255);stroke-width:1; stroke:rgb(0,0,0)"/>
 </svg>]]>
 </example>
 </svg-examples>

 Listing 1-4 embeds a Scalable Vector Graphics (SVG; [see
 https://en.wikipedia.org/wiki/Scalable_Vector_Graphics) XML
document within the example element of an SVG examples document.
The SVG document is placed in a CDATA section, obviating the need to
replace all < characters with < predefined character entity references.

 Namespaces
 It’s common to create XML documents that combine features from different
XML languages. Namespaces are used to prevent name conflicts when
elements and other XML language features appear. Without namespaces, an
XML parser couldn’t distinguish between same-named elements or other
language features that mean different things, such as two same-named
 title elements from two different languages.

www.it-ebooks.info

https://en.wikipedia.org/wiki/Scalable_Vector_Graphics
http://www.it-ebooks.info/

CHAPTER 1: Introducing XML 9

 Note Namespaces aren’t part of XML 1.0. They arrived about a year after this
specification was released. To ensure backward compatibility with XML 1.0,
namespaces take advantage of colon characters, which are legal characters
in XML names. Parsers that don’t recognize namespaces return names that
include colons.

 A namespace is a Uniform Resource Identifier (URI) -based container that
helps differentiate XML vocabularies by providing a unique context for its
contained identifiers. The namespace URI is associated with a namespace
 prefix (an alias for the URI) by specifying, typically in an XML document’s
root element, either the xmlns attribute by itself (which signifies the default
namespace) or the xmlns: prefix attribute (which signifies the namespace
identified as prefix), and assigning the URI to this attribute.

 When prefix is specified, the prefix and a colon character are prepended to the
name of each element tag that belongs to that namespace (see Listing 1-5).

 Listing 1-5. Introducing a Pair of Namespaces

 <?xml version="1.0"?>
 <h:html xmlns:h="http://www.w3.org/1999/xhtml"
 xmlns:r="http://www.javajeff.ca/">
 <h:head>
 <h:title>
 Recipe
 </h:title>
 </h:head>
 <h:body>
 <r:recipe>
 <r:title>
 Grilled Cheese Sandwich
 </r:title>
 <r:ingredients>
 <h:ul>
 <h:li>

 Note A namespace’s scope starts at the element where it’s declared and
applies to all of the element’s content unless overridden by another namespace
declaration with the same prefix name.

www.it-ebooks.info

https://en.wikipedia.org/wiki/Scalable_Vector_Graphics
http://www.it-ebooks.info/

CHAPTER 1: Introducing XML10

 <r:ingredient qty="2">
 bread slice
 </r:ingredient>
 </h:li>
 <h:li>
 <r:ingredient>
 cheese slice
 </r:ingredient>
 </h:li>
 <h:li>
 <r:ingredient qty="2">
 margarine pat
 </r:ingredient>
 </h:li>
 </h:ul>
 </r:ingredients>
 <h:p>
 <r:instructions>
 Place frying pan on element and select medium heat. For each
bread slice, smear one pat of margarine on one side of bread slice. Place
cheese slice between bread slices with margarine-smeared sides away from
the cheese. Place sandwich in frying pan with one margarine-smeared side in
contact with pan. Fry for a couple of minutes and flip. Fry other side for a
minute and serve.
 </r:instructions>
 </h:p>
 </r:recipe>
 </h:body>
 </h:html>

 Listing 1-5 describes a document that combines elements from XHTML
(see http://en.wikipedia.org/wiki/XHTML) with elements from the recipe
language. All element tags that associate with XHTML are prefixed with h: and
all element tags that associate with the recipe language are prefixed with r: .

 The h: prefix associates with the www.w3.org/1999/xhtml URI and the r:
prefix associates with the www.javajeff.ca URI. XML doesn’t mandate
that URIs point to document files. It only requires that they be unique to
guarantee unique namespaces.

 This document’s separation of the recipe data from the XHTML elements
makes it possible to preserve this data’s structure while also allowing an
XHTML-compliant web browser (such as Mozilla Firefox) to present the
recipe via a web page (see Figure 1-2).

www.it-ebooks.info

http://en.wikipedia.org/wiki/XHTML
http://www.w3.org/1999/xhtml
http://www.javajeff.ca/
http://www.it-ebooks.info/

CHAPTER 1: Introducing XML 11

 Figure 1-2. Mozilla Firefox presents the recipe data via XHTML tags

 A tag’s attributes don’t need to be prefixed when those attributes belong
to the element. For example, qty isn’t prefixed in <r:ingredient qty="2"> .
However, a prefix is required for attributes belonging to other namespaces.
For example, suppose you want to add an XHTML style attribute to
the document’s <r:title> tag to provide styling for the recipe title when
displayed via an application. You can accomplish this task by inserting an
XHTML attribute into the title tag, as follows:

 <r:title h:style="font-family: sans-serif;">

 The XHTML style attribute has been prefixed with h: because this attribute
belongs to the XHTML language namespace and not to the recipe language
namespace.

 When multiple namespaces are involved, it can be convenient to specify
one of these namespaces as the default namespace to reduce the tedium in
entering namespace prefixes. Consider Listing 1-6 .

 Listing 1-6. Specifying a Default Namespace

 <?xml version="1.0"?>
 <html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:r="http://www.javajeff.ca/">
 <head>
 <title>
 Recipe
 </title>
 </head>

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Introducing XML12

 <body>
 <r:recipe>
 <r:title>
 Grilled Cheese Sandwich
 </r:title>
 <r:ingredients>

 <r:ingredient qty="2">
 bread slice
 </r:ingredient>

 <r:ingredient>
 cheese slice
 </r:ingredient>

 <r:ingredient qty="2">
 margarine pat
 </r:ingredient>

 </r:ingredients>
 <p>
 <r:instructions>
 Place frying pan on element and select medium heat. For each
bread slice, smear one pat of margarine on one side of bread slice. Place
cheese slice between bread slices with margarine-smeared sides away from
the cheese. Place sandwich in frying pan with one margarine-smeared side in
contact with pan. Fry for a couple of minutes and flip. Fry other side for a
minute and serve.
 </r:instructions>
 </p>
 </r:recipe>
 </body>
 </html>

 Listing 1-6 specifies a default namespace for the XHTML language. No XHTML
element tag needs to be prefixed with h: . However, recipe language element
tags must still be prefixed with the r: prefix.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Introducing XML 13

 Comments and Processing Instructions
 XML documents can contain comments , which are character sequences
beginning with <!-- and ending with --> . For example, you might place
 <!-- Todo --> in Listing 1-3 ’s body element to remind yourself that you need
to finish coding this element.

 Comments are used to clarify portions of a document. They can appear
anywhere after the XML declaration except within tags, cannot be nested,
cannot contain a double hyphen (--) because doing so might confuse
an XML parser that the comment has been closed, shouldn’t contain a
hyphen (-) for the same reason, and are typically ignored during processing.
Comments are not content.

 XML also permits processing instructions to be present. A processing
instruction is an instruction that’s made available to the application parsing
the document. The instruction begins with <? and ends with ?> . The <? prefix
is followed by a name known as the target . This name typically identifies
the application to which the processing instruction is intended. The rest
of the processing instruction contains text in a format appropriate to the
application. The following are two examples of processing instructions :

 <?xml-stylesheet href="modern.xsl" type="text/
xml"?> to associate an eXtensible Stylesheet
Language (XSL) style sheet with an XML document
(see http://en.wikipedia.org/wiki/XSL) .

 <?php /* PHP code */ ?> to pass a PHP code fragment to
the application (see http://en.wikipedia.org/wiki/PHP).
Although the XML declaration looks like a processing
instruction, this isn’t the case.

 Note The XML declaration isn’t a processing instruction.

www.it-ebooks.info

http://en.wikipedia.org/wiki/XSL
http://en.wikipedia.org/wiki/PHP
http://www.it-ebooks.info/

CHAPTER 1: Introducing XML14

 Well-Formed Documents
 HTML is a sloppy language in which elements can be specified out of order,
end tags can be omitted, and so on. The complexity of a web browser’s
page layout code is partly due to the need to handle these special cases. In
contrast, XML is a much stricter language. To make XML documents easier
to parse, XML mandates that XML documents follow certain rules :

 All elements must either have start and end tags or
consist of empty-element tags. For example, unlike
the HTML <p> tag that’s often specified without a </p>
counterpart, </p> must also be present from an XML
document perspective.

 Tags must be nested correctly. For example, while you’ll
probably get away with specifying <i>XML</i> in
HTML, an XML parser would report an error. In contrast,
 <i>XML</i> doesn’t result in an error, because
the nested tag pairs mirror each other.

 All attribute values must be quoted. Either single quotes
(') or double quotes (") are permissible (although double
quotes are the more commonly specified quotes). It’s an
error to omit these quotes.

 Empty elements must be properly formatted. For example,
HTML’s
 tag would have to be specified as
 in
XML. You can specify a space between the tag’s name
and the / character although the space is optional.

 Be careful with case. XML is a case-sensitive language
in which tags differing in case (such as <author> and
 <Author>) are considered different. It’s an error to mix
start and end tags of different cases, for example,
 <author> with </Author> .

 XML parsers that are aware of namespaces enforce two additional rules:

 Each element and attribute name must not include more
than one colon character.

 No entity names, processing instruction targets, or
notation names (discussed later) can contain colons.

 An XML document that conforms to these rules is well formed . The
document has a logical and clean appearance and is much easier to
process. XML parsers will only parse well-formed XML documents.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Introducing XML 15

 Valid Documents
 It’s not always enough for an XML document to be well formed; in many cases
the document must also be valid. A valid document adheres to constraints.
For example, a constraint could be placed upon Listing 1-1 ’s recipe document
to ensure that the ingredients element always precedes the instructions
element; perhaps an application must first process ingredients .

 Some XML parsers perform validation, whereas other parsers don’t because
validating parsers are harder to write. A parser that performs validation
compares an XML document to a grammar document . Any deviation from
the grammar document is reported as an error to the application—the XML
document isn’t valid. The application may choose to fix the error or reject
the XML document. Unlike well-formedness errors, validity errors aren’t
necessarily fatal and the parser can continue to parse the XML document.

 Note XML document validation is similar to a compiler analyzing source code
to make sure that the code makes sense in a machine context. For example,
each of int , count , = , 1 , and ; are valid Java character sequences but 1
count ; int = isn’t a valid Java construct (whereas int count = 1; is a
valid Java construct).

 Note Validating XML parsers often don’t validate by default because validation
can be time-consuming. They must be instructed to perform validation.

 Grammar documents are written in a special language. Two commonly used
grammar languages are Document Type Definition and XML Schema.

 Document Type Definition
 Document Type Definition (DTD) is the oldest grammar language for
specifying an XML document’s grammar . DTD grammar documents (known
as DTDs) are written in accordance to a strict syntax that states what
elements may be present and in what parts of a document, and also what
is contained within elements (child elements, content, or mixed content)
and what attributes may be specified. For example, a DTD may specify
that a recipe element must have an ingredients element followed by an
 instructions element.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Introducing XML16

 Listing 1-7 presents a DTD for the recipe language that was used to
construct Listing 1-1 ’s document .

 Listing 1-7. The Recipe Language’s DTD

 <!ELEMENT recipe (title, ingredients, instructions)>
 <!ELEMENT title (#PCDATA)>
 <!ELEMENT ingredients (ingredient+)>
 <!ELEMENT ingredient (#PCDATA)>
 <!ELEMENT instructions (#PCDATA)>
 <!ATTLIST ingredient qty CDATA "1">

 This DTD first declares the recipe language’s elements. Element
declarations take the form <!ELEMENT name content-specifier > , where name
is any legal XML name (it cannot contain whitespace, for example), and
 content-specifier identifies what can appear within the element.

 The first element declaration states that exactly one recipe element can
appear in the XML document—this declaration doesn’t imply that recipe
is the root element. Furthermore, this element must include exactly one
each of the title , ingredients , and instructions child elements, and in
that order. Child elements must be specified as a comma-separated list.
Furthermore, a list is always surrounded by parentheses.

 The second element declaration states that the title element contains parsed
character data (nonmarkup text). The third element declaration states that at
least one ingredient element must appear in ingredients . The + character is
an example of a regular expression that means one or more. Other expressions
that may be used are * (zero or more) and ? (once or not at all). The fourth and
fifth element declarations are similar to the second by stating that ingredient
and instructions elements contain parsed character data.

 Note Element declarations support three other content specifiers. You can
specify <!ELEMENT name ANY> to allow any type of element content or
 <!ELEMENT name EMPTY> to disallow any element content. To state that
an element contains mixed content, you would specify #PCDATA and a list
of element names, separated by vertical bars (|). For example, <!ELEMENT
ingredient (#PCDATA | measure | note)*> states that the
 ingredient element can contain a mix of parsed character data, zero or more
 measure elements, and zero or more note elements. It doesn’t specify the
order in which the parsed character data and these elements occur. However,
 #PCDATA must be the first item specified in the list. When a regular expression
is used in this context, it must appear to the right of the closing parenthesis.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Introducing XML 17

 Listing 1-7 ’s DTD lastly declares the recipe language’s attributes, of which
there is only one: qty . Attribute declarations take the form <!ATTLIST ename
aname type default-value > , where ename is the name of the element to
which the attribute belongs, aname is the name of the attribute, type is the
attribute’s type, and default-value is the attribute’s default value.

 The attribute declaration identifies qty as an attribute of ingredient . It also
states that qty ’s type is CDATA (any string of characters not including the
ampersand, less than or greater than signs, or double quotes may appear;
these characters may be represented via & , < , > , or " ,
respectively), and that qty is optional, assuming default value 1 when absent.

 MORE ABOUT ATTRIBUTES

 DTD lets you specify additional attribute types: ID (create a unique identifier for an attribute
that identifies an element), IDREF (an attribute’s value is an element located elsewhere
in the document), IDREFS (the value consists of multiple IDREF s), ENTITY (you can
use external binary data or unparsed entities), ENTITIES (the value consists of multiple
entities), NMTOKEN (the value is restricted to any valid XML name), NMTOKENS (the value
is composed of multiple XML names), NOTATION (the value is already specified via a DTD
notation declaration), and enumerated (a list of possible values to choose from; values are
separated with vertical bars).

 Instead of specifying a default value verbatim, you can specify #REQUIRED to mean that
the attribute must always be present with some value (<!ATTLIST ename aname type
 #REQUIRED>), #IMPLIED to mean that the attribute is optional and no default value is
provided (<!ATTLIST ename aname type #IMPLIED>), or #FIXED to mean that the
attribute is optional and must always take on the DTD-assigned default value when used
(<!ATTLIST ename aname type #FIXED "value">).

 You can specify a list of attributes in one ATTLIST declaration. For example, <!ATTLIST
 ename aname1 type1 default-value1 aname2 type2 default-value2 > declares two attributes
identified as aname1 and aname2 .

 A DTD-based validating XML parser requires that a document include a
 document type declaration identifying the DTD that specifies the document’s
grammar before it will validate the document.

 Note Document Type Definition and document type declaration are two
different things. The DTD acronym identifies a Document Type Definition and
never identifies a document type declaration.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Introducing XML18

 A document type declaration appears immediately after the XML declaration
and is specified in one of the following ways:

 <!DOCTYPE root-element-name SYSTEM uri > references
an external but private DTD via uri . The referenced DTD
isn’t available for public scrutiny. For example, I might
store my recipe language’s DTD file (recipe.dtd) in
a private dtds directory on my www.javajeff.ca web
site, and use <!DOCTYPE recipe SYSTEM " http://www.
javajeff.ca/dtds/recipe.dtd "> to identify this DTD’s
location via system identifier http://www.javajeff.ca/
dtds/recipe.dtd .

 <!DOCTYPE root-element-name PUBLIC fpi uri > references
an external but public DTD via fpi , a formal public
identifier (see http://en.wikipedia.org/wiki/Formal_
Public_Identifier), and uri . If a validating XML parser
cannot locate the DTD via public identifier fpi , it can use
system identifier uri to locate the DTD. For example,
 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0
Transitional//EN" " http://www.w3.org/TR/xhtml1/
DTD/xhtml1-transitional.dtd "> references the XHTML
1.0 DTD first via public identifier -//W3C//DTD XHTML 1.0
Transitional//EN and second via system
identifier http://www.w3.org/TR/xhtml1/DTD/
xhtml1-transitional.dtd .

 <!DOCTYPE root-element [dtd]> references an internal
DTD, one that is embedded within the XML document.
The internal DTD must appear between square
brackets.

 Listing 1-8 presents Listing 1-1 (minus the child elements between the
 <recipe> and </recipe> tags) with an internal DTD .

 Listing 1-8. The Recipe Document with an Internal DTD

 <?xml version="1.0"?>
 <!DOCTYPE recipe [
 <!ELEMENT recipe (title, ingredients, instructions)>
 <!ELEMENT title (#PCDATA)>
 <!ELEMENT ingredients (ingredient+)>
 <!ELEMENT ingredient (#PCDATA)>
 <!ELEMENT instructions (#PCDATA)>
 <!ATTLIST ingredient qty CDATA "1">
]>
 <recipe>
 <!-- Child elements removed for brevity. -->
 </recipe>

www.it-ebooks.info

http://www.javajeff.ca/
http://www.javajeff.ca/dtds/recipe.dtd
http://www.javajeff.ca/dtds/recipe.dtd
http://www.javajeff.ca/dtds/recipe.dtd
http://www.javajeff.ca/dtds/recipe.dtd
http://en.wikipedia.org/wiki/Formal_Public_Identifier
http://en.wikipedia.org/wiki/Formal_Public_Identifier
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.it-ebooks.info/

CHAPTER 1: Introducing XML 19

 You can also declare notations and general and parameter entities within
DTDs. A notation is an arbitrary piece of data that typically describes the
format of unparsed binary data, and typically has the form <!NOTATION
name SYSTEM uri > , where name identifies the notation and uri identifies
some kind of plug-in that can process the data on behalf of the application
that’s parsing the XML document. For example, <!NOTATION image SYSTEM
"psp.exe"> declares a notation named image and identifies Windows
executable psp.exe as a plug-in for processing images.

 It’s also common to use notations to specify binary data types via media
types (see https://en.wikipedia.org/wiki/Media_type). For example,
 <!NOTATION image SYSTEM "image/jpeg"> declares an image notation that
identifies the image/jpeg media type for Joint Photographic Experts Group
images.

 General entities are entities referenced from inside an XML document via
 general entity references , syntactic constructs of the form & name ;. Examples
include the predefined lt , gt , amp , apos , and quot character entities, whose
 < , > , & , ' , and " character entity references are aliases
for characters < , > , & , ' , and " , respectively.

 General entities are classified as internal or external. An internal general
entity is a general entity whose value is stored in the DTD, and has the form
 <!ENTITY name value > , where name identifies the entity and value specifies
its value. For example, <!ENTITY copyright "Copyright © 2016 Jeff
Friesen. All rights reserved."> declares an internal general entity named
 copyright . The value of this entity may include another declared entity, such
as © (the HTML entity for the copyright symbol), and can be referenced
from anywhere in an XML document by specifying ©right; .

 An external general entity is a general entity whose value is stored outside the
DTD. The value might be textual data (such as an XML document) or it might
be binary data (such as a JPEG image). External general entities are classified
as external parsed general entities and external unparsed general entities.

 Note A document can have internal and external DTDs; for example,
 <!DOCTYPE recipe SYSTEM " http://www.javajeff.ca/dtds/recipe.
dtd " [<!ELEMENT ...>]> . The internal DTD is referred to as the internal
DTD subset and the external DTD is referred to as the external DTD subset .
Neither subset can override the element declarations of the other subset.

www.it-ebooks.info

https://en.wikipedia.org/wiki/Media_type
http://www.javajeff.ca/dtds/recipe.dtd
http://www.javajeff.ca/dtds/recipe.dtd
http://www.it-ebooks.info/

CHAPTER 1: Introducing XML20

 An external parsed general entity references an external file that stores the
entity’s textual data, which is subject to being inserted into a document and
parsed by a validating parser when a general entity reference is specified in the
document, and which has the form <!ENTITY name SYSTEM uri > , where name
identifies the entity and uri identifies the external file. For example,
<!ENTITY chapter-header SYSTEM " http://www.javajeff.ca/entities/
chapheader.xml "> identifies chapheader.xml as storing the XML content to be
inserted into an XML document wherever &chapter-header; appears in the
document. The alternative <!ENTITY name PUBLIC fpi uri > form can be specified.

 An external unparsed general entity references an external file that stores the
entity’s binary data and has the form <!ENTITY name SYSTEM uri NDATA
 nname > , where name identifies the entity, uri locates the external file, and
 NDATA identifies the notation declaration named nname . The notation
typically identifies a plug-in for processing the binary data or the Internet
media type of this data. For example, <!ENTITY photo SYSTEM "photo.jpg"
NDATA image> associates name photo with external binary file photo.png and
notation image . The alternative <!ENTITY name PUBLIC fpi uri NDATA name >
form can be specified.

 Parameter entities are entities referenced from inside a DTD via parameter
entity references , syntactic constructs of the form % name ;. They’re useful for
eliminating repetitive content from element declarations. For example, you’re
creating a DTD for a large company, and this DTD contains three element
declarations: <!ELEMENT salesperson (firstname, lastname)> , <!ELEMENT
lawyer (firstname, lastname)> , and <!ELEMENT accountant (firstname,
lastname)> . Each element contains repeated child element content. If you
need to add another child element (such as middleinitial), you need
to make sure that all of the elements are updated; otherwise, you risk a
malformed DTD. Parameter entities can help you solve this problem.

 Caution Because the contents of an external file may be parsed, this content
must be well formed.

 Note XML doesn’t allow references to external general entities to appear in
attribute values. For example, you cannot specify &chapter-header; in an
attribute’s value.

www.it-ebooks.info

http://www.javajeff.ca/entities/chapheader.xml
http://www.javajeff.ca/entities/chapheader.xml
http://www.it-ebooks.info/

CHAPTER 1: Introducing XML 21

 Parameter entities are classified as internal or external. An internal
parameter entity is a parameter entity whose value is stored in the DTD and
has the form <!ENTITY % name value > , where name identifies the entity and
 value specifies its value. For example, <!ENTITY % person-name "firstname,
lastname"> declares a parameter entity named person-name with value
 firstname, lastname . Once declared, this entity can be referenced in the
three previous element declarations, as follows: <!ELEMENT salesperson
(%person-name;)> , <!ELEMENT lawyer (%person-name;)> , and <!ELEMENT
accountant (%person-name;)> . Instead of adding middleinitial to each of
 salesperson , lawyer , and accountant , as was done previously, you would
now add this child element to person-name , as in <!ENTITY % person-name
"firstname, middleinitial, lastname"> , and this change would be applied
to these element declarations.

 An external parameter entity is a parameter entity whose value is stored
outside the DTD. It has the form <!ENTITY % name SYSTEM uri> , where name
identifies the entity and uri locates the external file. For example, <!ENTITY
% person-name SYSTEM " http://www.javajeff.ca/entities/names.dtd ">
identifies names.dtd as storing the firstname, lastname text to be inserted
into a DTD wherever %person-name; appears in the DTD. The alternative
 <!ENTITY % name PUBLIC fpi uri > form can be specified.

 XML Schema
 XML Schema is a grammar language for declaring the structure, content,
and semantics (meaning) of an XML document. This language’s grammar
documents are known as schemas that are themselves XML documents.
 Schemas must conform to the XML Schema DTD (see www.w3.org/2001/
XMLSchema.dtd).

 XML Schema was introduced by the W3C to overcome limitations with DTD ,
such as DTD’s lack of support for namespaces. Also, XML Schema provides
an object-oriented approach to declaring an XML document’s grammar. This
grammar language provides a much larger set of primitive types than DTD’s
CDATA and PCDATA types. For example, integer, floating-point, various date
and time, and string types are part of XML Schema.

 Note This discussion sums up the basics of DTD. One additional topic that
wasn’t covered (for brevity) is conditional inclusion , which lets you specify
those portions of a DTD to make available to parsers and is typically used with
parameter entity references.

www.it-ebooks.info

http://www.javajeff.ca/entities/names.dtd
http://www.w3.org/2001/XMLSchema.dtd
http://www.w3.org/2001/XMLSchema.dtd
http://www.it-ebooks.info/

CHAPTER 1: Introducing XML22

 XML Schema provides restriction (reducing the set of permitted values
through constraints), list (allowing a sequence of values), and union (allowing
a choice of values from several types) derivation methods for creating new
 simple types from these primitive types. For example, XML Schema derives
13 integer types from decimal through restriction; these types are expressed
via the following identifiers: byte , int , integer , long , negativeInteger ,
 nonNegativeInteger , nonPositiveInteger , positiveInteger , short ,
 unsignedByte , unsignedInt , unsignedLong , and unsignedShort . It also
provides support for creating complex types from simple types.

 A good way to become familiar with XML Schema is to follow through
an example, such as creating a schema for Listing 1-1 ’s recipe language
document. The first step in creating this recipe language schema is to
identify all of its elements and attributes. The elements are recipe , title ,
 ingredients , instructions , and ingredient ; qty is the solitary attribute.

 The next step is to classify the elements according to XML Schema’s
 content model , which specifies the types of child elements and text nodes
(see http://en.wikipedia.org/wiki/Node_(computer_science)) that can
be included in an element. An element is considered to be empty when
the element has no child elements or text nodes, simple when only text
nodes are accepted, complex when only child elements are accepted, and
 mixed when child elements and text nodes are accepted. None of Listing
 1-1 ’s elements have empty or mixed content models. However, the title ,
 ingredient , and instructions elements have simple content models; and
the recipe and ingredients elements have complex content models.

 For elements that have a simple content model , we can distinguish between
elements having attributes and elements not having attributes. XML Schema
classifies elements having a simple content model and no attributes as simple
types. Furthermore, it classifies elements having a simple content model
and attributes, or elements from other content models as complex types.
Furthermore, XML Schema classifies attributes as simple types because they
only contain text values—attributes don’t have child elements. Listing 1-1 ’s
 title and instructions elements and its qty attribute are simple types. Its
 recipe , ingredients , and ingredient elements are complex types.

 Note XML Schema predefines 19 primitive types, which are expressed via the
following identifiers: anyURI , base64Binary , boolean , date , dateTime ,
 decimal , double , duration , float , hexBinary , gDay , gMonth ,
 gMonthDay , gYear , gYearMonth , NOTATION , QName , string , and time .

www.it-ebooks.info

http://en.wikipedia.org/wiki/Node_(computer_science
http://www.it-ebooks.info/

CHAPTER 1: Introducing XML 23

 At this point, you can begin to declare the schema. The following code
fragment presents the introductory schema element :

 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 The schema element introduces the grammar. It also assigns the commonly
used xs namespace prefix to the standard XML Schema namespace; xs: is
subsequently prepended to XML Schema element names.

 Next, you use the element element to declare the title and instructions
simple type elements, as follows:

 <xs:element name="title" type="xs:string"/>
 <xs:element name="instructions" type="xs:string"/>

 XML Schema requires that each element have a name and (unlike DTD)
be associated with a type, which identifies the kind of data stored in the
element. For example, the first element declaration identifies title as the
name via its name attribute and string as the type via its type attribute (string
or character data appears between the <title> and </title> tags). The xs:
prefix in xs:string is required because string is a predefined W3C type.

 Continuing, you now use the attribute element to declare the qty simple
type attribute , as follows:

 <xs:attribute name="qty" type="xs:unsignedInt" default="1"/>

 This attribute element declares an attribute named qty . I chose
 unsignedInt as this attribute’s type because quantities are nonnegative
values. Furthermore, I specified 1 as the default value for when qty isn’t
specified— attribute elements default to declaring optional attributes .

 Now that you’ve declared the simple types, you can start to declare the
complex types. To begin, declare recipe as follows:

 <xs:element name="recipe">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="title"/>
 <xs:element ref="ingredients"/>
 <xs:element ref="instructions"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 Note The order of element and attribute declarations isn’t significant
within a schema.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Introducing XML24

 This declaration states that recipe is a complex type (via the complexType
element) consisting of a sequence (via the sequence element) of one title
element followed by one ingredients element followed by one instructions
element. Each of these elements is declared by a different element that’s
referred to by its element ’s ref attribute.

 The next complex type to declare is ingredients . The following code
fragment provides its declaration:

 <xs:element name="ingredients">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="ingredient" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 This declaration states that ingredients is a complex type consisting of a
sequence of one or more ingredient elements. The “or more” is specified
by including element ’s maxOccurs attribute and setting this attribute’s value
to unbounded .

 The final complex type to declare is ingredient . Although ingredient can
contain only text nodes, which implies that it should be a simple type, it’s
the presence of the qty attribute that makes it complex. Check out the
following declaration:

 <xs:element name="ingredient">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute ref="qty"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>

 Note The maxOccurs attribute identifies the maximum number of times that
an element can occur. A similar minOccurs attribute identifies the minimum
number of times that an element can occur. Each attribute can be assigned 0
or a positive integer. Furthermore, you can specify unbounded for maxOccurs ,
which means that there’s no upper limit on occurrences of the element. Each
attribute defaults to a value of 1 , which means that an element can appear only
one time when neither attribute is present.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Introducing XML 25

 The element named ingredient is a complex type (because of its optional
 qty attribute). The simpleContent element indicates that ingredient can
only contain simple content (text nodes), and the extension element
indicates that ingredient is a new type that extends the predefined string
type (specified via the base attribute), implying that ingredient inherits all
of string ’s attributes and structure. Furthermore, ingredient is given an
additional qty attribute.

 Listing 1-9 combines the previous examples into a complete schema.

 Listing 1-9. The Recipe Document’s Schema

 <?xml version="1.0"?>
 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="title" type="xs:string"/>
 <xs:element name="instructions" type="xs:string"/>
 <xs:attribute name="qty" type="xs:unsignedInt" default="1"/>
 <xs:element name="recipe">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="title"/>
 <xs:element ref="ingredients"/>
 <xs:element ref="instructions"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="ingredients">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="ingredient" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="ingredient">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute ref="qty"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Introducing XML26

 After creating the schema, you can reference it from a recipe document.
Accomplish this task by specifying xmlns:xsi and xsi:schemaLocation
attributes on the document’s root element start tag (<recipe>), as follows:

 <recipe xmlns="http://www.javajeff.ca/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.javajeff.ca/schemas recipe.xsd">

 The xmlns attribute identifies http://www.javajeff.ca/ as the document’s
default namespace. Unprefixed elements and their unprefixed attributes
belong to this namespace.

 The xmlns:xsi attribute associates the conventional xsi (XML Schema
Instance) prefix with the standard http://www.w3.org/2001/XMLSchema-
instance namespace. The only item in the document that’s prefixed with
 xsi: is schemaLocation .

 The schemaLocation attribute is used to locate the schema. This attribute’s
value can be multiple pairs of space-separated values, but is specified as a
single pair of such values in this example. The first value (http://www.
javajeff.ca/schemas) identifies the target namespace for the schema, and
the second value (recipe.xsd) identifies the location of the schema within
this namespace.

 If an XML document declares a namespace (xmlns default or xmlns:prefix),
that namespace must be made available to the schema so that a validating
parser can resolve all references to elements and other schema components
for that namespace. You also need to mention which namespace the
schema describes, and you do so by including the targetNamespace attribute
on the schema element. For example, suppose your recipe document
declares a default XML namespace, as follows:

 <?xml version="1.0"?>
 <recipe xmlns="http://www.javajeff.ca/">

 At minimum, you would need to modify Listing 1-9 ’s schema element to
include targetNameSpace and the recipe document’s default namespace as
 targetNameSpace ’s value, as follows:

 <xs:schema targetNamespace="http://www.javajeff.ca/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 Note Schema files that conform to XML Schema’s grammar are commonly
assigned the .xsd file extension.

www.it-ebooks.info

http://www.javajeff.ca/
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.javajeff.ca/schemas
http://www.javajeff.ca/schemas
http://www.it-ebooks.info/

CHAPTER 1: Introducing XML 27

 The following exercises are designed to test your understanding of Chapter 1 ’s content.

 1. Define XML.

 2. True or false: XML and HTML are descendents of SGML.

 3. What language features does XML provide for use in defining custom
markup languages?

 4. What is the XML declaration?

 5. Identify the XML declaration’s three attributes. Which attribute is
nonoptional?

 6. True or false: An element always consists of a start tag followed by
content followed by an end tag.

 7. Following the XML declaration, an XML document is anchored in what
kind of element?

 8. What is mixed content?

 9. What is a character reference? Identify the two kinds of character
references.

 10. What is a CDATA section? Why would you use it?

 11. Define namespace.

 12. What is a namespace prefix?

 13. True or false: A tag’s attributes don’t need to be prefixed when those
attributes belong to the element.

 14. What is a comment? Where can it appear in an XML document?

 15. Define processing instruction.

 16. Identify the rules that an XML document must follow to be considered
well formed.

 17. What does it mean for an XML document to be valid?

 18. A parser that performs validation compares an XML document to a
grammar document. Identify the two common grammar languages.

 19. What is the general syntax for declaring an element in a DTD?

 20. Which grammar language lets you create complex types from
simple types?

EXERCISES

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1916-4_1
http://www.it-ebooks.info/

CHAPTER 1: Introducing XML28

 Summary
 Applications often use XML documents to store and exchange data.
XML defines rules for encoding documents in a format that is both
 human-readable and machine-readable . It’s a metalanguage for defining
vocabularies, which is the key to XML’s importance and popularity.

 XML provides several language features for use in defining custom markup
languages. These features include the XML declaration, elements and
attributes, character references and CDATA sections, namespaces, and
comments and processing instructions.

 HTML is a sloppy language where elements can be specified out of order,
end tags can be omitted, and so on. In contrast, XML documents are well
formed in that they conform to specific rules, which make them easier to
process. XML parsers only parse well-formed XML documents.

 In many cases, an XML document must also be valid. A valid document
adheres to constraints as described by a grammar document. Grammar
documents are written in a grammar language, such as the commonly used
Document Type Definition and XML Schema.

 Chapter 2 introduces Java’s SAX API for parsing XML documents.

 21. Create a books.xml document file with a books root element. The
 books element must contain one or more book elements, where a
 book element must contain one title element, one or more author
elements, and one publisher element (and in that order). Also,
the book element’s <book> tag must contain isbn and pubyear
attributes. Record Advanced C++ / James Coplien / Addison
Wesley / 0201548550 / 1992 in the first book element, Beginning
Groovy and Grails / Christopher M. Judd / Joseph Faisal
Nusairat / James Shingler / Apress / 9781430210450 / 2008 in the
second book element, and Effective Java / Joshua Bloch / Addison
Wesley / 0201310058 / 2001 in the third book element.

 22. Modify books.xml to include an internal DTD that satisfies the
previous exercise’s requirements.

www.it-ebooks.info

https://en.wikipedia.org/wiki/File_format#File format
https://en.wikipedia.org/wiki/Human-readable_medium#Human-readable medium
https://en.wikipedia.org/wiki/Machine-readable_data#Machine-readable data
http://dx.doi.org/10.1007/978-1-4842-1916-4_2
http://www.it-ebooks.info/

29© Jeff Friesen 2016
J. Friesen, Java XML and JSON, DOI 10.1007/978-1-4842-1916-4_2

 Chapter 2
 Parsing XML Documents
with SAX
 Java provides several APIs for parsing XML documents. The most basic of
these APIs is SAX, which is the focus of this chapter.

 What Is SAX?
 Simple API for XML (SAX) is an event-based Java API for parsing an XML
document sequentially from start to finish. When a SAX-oriented parser
encounters an item from the document’s infoset (an abstract data model
describing an XML document’s information; see http://en.wikipedia.org/
wiki/XML_Information_Set), it makes this item available to an application as
an event by calling one of the methods in one of the application’s handlers
(objects whose methods are called by the parser to make event information
available), which the application has previously registered with the parser.
The application can then consume this event by processing the infoset item
in some manner.

 A SAX parser is more memory efficient than a DOM parser (see Chapter 3)
in that it doesn’t require the entire document to fit into memory. This benefit
becomes a drawback for using XPath (see Chapter 5) and XSLT (see
Chapter 6), which require that the entire document be stored in memory.

www.it-ebooks.info

http://en.wikipedia.org/wiki/XML_Information_Set
http://en.wikipedia.org/wiki/XML_Information_Set
http://dx.doi.org/10.1007/978-1-4842-1916-4_3
http://dx.doi.org/10.1007/978-1-4842-1916-4_5
http://dx.doi.org/10.1007/978-1-4842-1916-4_6
http://www.it-ebooks.info/

CHAPTER 2: Parsing XML Documents with SAX30

 Exploring the SAX API
 SAX exists in two major versions. Java implements SAX 1 through the
 javax.xml.parsers package’s abstract SAXParser and SAXParserFactory
classes, and implements SAX 2 through the org.xml.sax package’s
 XMLReader interface and through the org.xml.sax.helpers package’s
 XMLReaderFactory class. The org.xml.sax , org.xml.sax.ext , and
 org.xml.sax.helpers packages provide various types that augment both
Java implementations.

 Obtaining a SAX 2 Parser
 Classes that implement the XMLReader interface describe SAX
2-based parsers. Instances of these classes are obtained by calling
the XMLReaderFactory class’s createXMLReader() class methods. For
example, the following code fragment invokes this class’s XMLReader
createXMLReader() class method to create and return an XMLReader object:

 XMLReader xmlr = XMLReaderFactory.createXMLReader();

 The method call returns an instance of an XMLReader -implementing class
and assigns its reference to xmlr .

 Note I explore only the SAX 2 implementation because SAX 2 makes available
additional infoset items about an XML document (such as comments and CDATA
section notifications).

 Note According to its official web site (www.saxproject.org), SAX
originated as an XML-parsing API for Java. However, SAX isn’t exclusive to Java.
Microsoft also supports SAX for its .NET framework (see http://saxdotnet.
sourceforge.net).

www.it-ebooks.info

http://www.saxproject.org/
http://saxdotnet.sourceforge.net/
http://saxdotnet.sourceforge.net/
http://www.it-ebooks.info/

CHAPTER 2: Parsing XML Documents with SAX 31

 Touring XMLReader Methods
 The returned XMLReader object makes available several methods for configuring
the parser and parsing a document’s content. These methods are as follows:

 ContentHandler getContentHandler() returns the
current content handler, which is an instance of a class
that implements the org.xml.sax.ContentHandler
interface, or null when none has been registered.

 DTDHandler getDTDHandler() returns the current DTD
handler, which is an instance of a class that implements
the org.xml.sax.DTDHandler interface, or null when
none has been registered.

 EntityResolver getEntityResolver() returns the
current entity resolver, which is an instance of a class
that implements the org.xml.sax.EntityResolver
interface, or null when none has been registered .

 ErrorHandler getErrorHandler() returns the current
error handler, which is an instance of a class that
implements the org.xml.sax.ErrorHandler interface,
or null when none has been registered.

 boolean getFeature(String name) returns the Boolean
value that corresponds to the feature identified by name ,
which must be a fully-qualified URI. This method throws
 org.xml.sax.SAXNotRecognizedException when the name
isn’t recognized as a feature, and throws org.xml.sax.
SAXNotSupportedException when the name is recognized
but the associated value cannot be determined when
 getFeature() is called. SAXNotRecognizedException
and SAXNotSupportedException are subclasses of
 SAXException .

 Note Behind the scenes, createXMLReader() attempts to create an
 XMLReader object from system defaults according to a lookup procedure that first
examines the org.xml.sax.driver system property to see if it has a value. If so,
this property’s value is used as the name of the class that implements XMLReader .
Furthermore, an attempt to instantiate this class and return the instance is
made. An instance of the org.xml.sax.SAXException class is thrown when
 createXMLReader() cannot obtain an appropriate class or instantiate the class.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Parsing XML Documents with SAX32

 Object getProperty(String name) returns the
java.lang.Object instance that corresponds
to the property identified by name , which must
be a fully-qualified URI. This method throws
 SAXNotRecognizedException when the name
isn’t recognized as a property, and throws
 SAXNotSupportedException when the name is
recognized but the associated value cannot be
determined when getProperty() is called .

 void parse (InputSource input) parses an XML
document and doesn’t return until the document has
been parsed. The input parameter stores a reference to
an org.xml.sax.InputSource object, which describes
the document’s source (such as a java.io.InputStream
object, or even a java.lang.String -based system
identifier URI). This method throws java.io.IOException
when the source cannot be read and SAXException
when parsing fails, probably due to a well-formedness
violation.

 void parse(String systemId) parses an XML document
by executing parse(new InputSource(systemId)); .

 void setContentHandler (ContentHandler handler)
registers the content handler identified by handler
with the parser. The ContentHandler interface
provides 11 callback methods that are called to report
various parsing events (such as the start and end of an
element).

 void setDTDHandler(DTDHandler handler) registers
the DTD handler identified by handler with the parser.
The DTDHandler interface provides a pair of callback
methods for reporting on notations and external
unparsed entities.

 void setEntityResolver(EntityResolver resolver)
registers the entity resolver identified by resolver with
the parser. The EntityResolver interface provides a
single callback method for resolving entities.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Parsing XML Documents with SAX 33

 void setErrorHandler(ErrorHandler handler) registers
the error handler identified by handler with the parser.
The ErrorHandler interface provides three callback
methods that report fatal errors (problems that prevent
further parsing, such as well-formedness violations),
 recoverable errors (problems that don’t prevent further
parsing, such as validation failures), and warnings
(nonerrors that need to be addressed, such as prefixing
an element name with the W3C-reserved xml prefix).

 void setFeature(String name, boolean value)
assigns value to the feature identified by name ,
which must be a fully-qualified URI. This method
throws SAXNotRecognizedException when the
name isn’t recognized as a feature, and throws
 SAXNotSupportedException when the name is
recognized but the associated value cannot be set
when setFeature() is called.

 void setProperty(String name, Object value)
assigns value to the property identified by name ,
which must be a fully-qualified URI. This method
throws SAXNotRecognizedException when the
name isn’t recognized as a property, and throws
 SAXNotSupportedException when the name is
recognized but the associated value cannot be set when
 setProperty() is called .

 When a handler isn’t installed, all events pertaining to that handler are
silently ignored. Not installing an error handler can be problematic because
normal processing might not continue and the application wouldn’t be aware
that anything had gone wrong. When an entity resolver isn’t installed, the
parser performs its own default resolution. I’ll have more to say about entity
resolution later in this chapter.

 Note You typically install a new content handler, DTD handler, entity resolver, or
error handler before a document is parsed, but you can also do so while parsing
the document. The parser starts using the handler when the next event occurs.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Parsing XML Documents with SAX34

 Setting Features and Properties
 After obtaining an XMLReader object, you can configure that object by setting its
 features and properties . A feature is a name-value pair that describes a parser
mode, such as validation. In contrast, a property is a name-value pair that
describes some other aspect of the parser interface, such as a lexical handler
that augments the content handler by providing callback methods for reporting
on comments, CDATA delimiters, and a few other syntactic constructs.

 Features and properties have names, which must be absolute URIs
beginning with the http:// prefix. A feature’s value is always a Boolean
 true / false value. In contrast, a property’s value is an arbitrary object. The
following code fragment demonstrates setting a feature and a property:

 xmlr.setFeature("http://xml.org/sax/features/validation", true);
 xmlr.setProperty("http://xml.org/sax/properties/lexical-handler",
 new LexicalHandler() { /* ... */ });

 The setFeature() call enables the validation feature so that the parser will
perform validation. Feature names are prefixed with http://xml.org/sax/
features/ .

 The setProperty() call assigns an instance of a class that implements the
 org.xml.sax.ext.LexicalHandler interface to the lexical-handler property
so that interface methods can be called to report on comments, CDATA
sections, and so on. Property names are prefixed with http://xml.org/sax/
properties/ .

 Note Parsers must support the namespaces and namespace-prefixes
features. namespaces decides whether URIs and local names are passed
to ContentHandler ’s startElement() and endElement() methods.
It defaults to true —these names are passed. The parser can pass empty
strings when false. namespace-prefixes decides whether a namespace
declaration’s xmlns and xmlns:prefix attributes are included in the org.
xml.sax.Attributes list passed to startElement() , and also decides
whether qualified names are passed as the method’s third argument—a
 qualified name is a prefix plus a local name. It defaults to false , meaning
that xmlns and xmlns:prefix aren’t included, and meaning that parsers
don’t have to pass qualified names. No properties are mandatory. The JDK
documentation’s org.xml.sax package page lists standard SAX 2 features
and properties.

www.it-ebooks.info

http://xml.org/sax/features/
http://xml.org/sax/features/
http://xml.org/sax/properties/
http://xml.org/sax/properties/
http://xml.org/sax/properties/lexical-handler
http://xml.org/sax/properties/lexical-handler
http://www.it-ebooks.info/

CHAPTER 2: Parsing XML Documents with SAX 35

 Features and properties can be read-only or read-write. (In some rare cases,
a feature or property might be write-only.) When setting or reading a feature
or property, SAXNotSupportedException or SAXNotRecognizedException might
be thrown. For example, if you try to modify a read-only feature/property,
an instance of the SAXNotSupportedException class is thrown. Also, this
exception could be thrown if you call setFeature() or setProperty() during
parsing. Trying to set the validation feature for a parser that doesn’t perform
validation is a scenario where an instance of the SAXNotRecognizedException
class is thrown.

 Touring the Handler and Resolver Interfaces
 The interface-based handlers installed by setContentHandler() ,
 setDTDHandler() , and setErrorHandler() ; the entity resolver installed by
 setEntityResolver() ; and the handler described by the lexical-handler
property provide various callback methods. You need to understand these
methods before you can codify them to respond effectively to parsing events.

 Touring ContentHandler
 ContentHandler declares the following content-oriented informational
callback methods:

 void characters(char[] ch, int start, int length)
reports an element’s character data via the ch array. The
arguments that are passed to start and length identify
the portion of the array that’s relevant to this method
call. Characters are passed via a char[] array instead
of via a String object as a performance optimization.
Parsers commonly store a large amount of the
document in an array and repeatedly pass a reference to
this array along with updated start and length values
to characters() .

 Note Unlike ContentHandler , DTDHandler , EntityResolver , and
 ErrorHandler , LexicalHandler is an extension (it’s not part of the core
SAX API), which is why XMLReader doesn’t declare a void setLexicalHa
ndler(LexicalHandler handler) method. If you want to install a lexical
handler, you must use XMLReader ’s setProperty() method to install the
handler as the value of the http://xml.org/sax/properties/lexical-
handler property.

www.it-ebooks.info

http://xml.org/sax/features/
http://xml.org/sax/features/
http://xml.org/sax/properties/
http://xml.org/sax/properties/
http://xml.org/sax/properties/lexical-handler
http://xml.org/sax/properties/lexical-handler
http://www.it-ebooks.info/

CHAPTER 2: Parsing XML Documents with SAX36

 void endDocument() reports that the end of the
document has been reached. An application might use
this method to close an output file or perform some
other cleanup.

 void endElement (String uri, String localName,
String qName) reports that the end of an element has
been reached. uri identifies the element’s namespace
URI, or is empty when there is no namespace URI or
namespace processing hasn’t been enabled. localName
identifies the element’s local name, which is the name
without a prefix (the html in html or h:html , for example).
 qName references the qualified name, for example, h:html
or html when there is no prefix. endElement() is invoked
when an end tag is detected, or immediately following
 startElement() when an empty-element tag is detected .

 void endPrefixMapping(String prefix) reports that
the end of a namespace prefix mapping (xmlns:h , for
example) has been reached, and prefix reports this
prefix (h , for example).

 void ignorableWhitespace(char[] ch, int start,
int length) reports ignorable whitespace (whitespace
located between tags where the DTD doesn’t allow
mixed content). This whitespace is often used to indent
tags. The parameters serve the same purpose as those
in the characters() method.

 void processingInstruction (String target, String
data) reports a processing instruction, in which target
identifies the application to which the instruction is
directed and data provides the instruction’s data (the
null reference when there is no data).

 void setDocumentLocator (Locator locator) reports
an org.xml.sax.Locator object (an instance of a
class implementing the Locator interface) whose int
getColumnNumber() , int getLineNumber() , String
getPublicId() , and String getSystemId() methods
can be called to obtain location information at the end
position of any document-related event, even when the
parser isn’t reporting an error. This method is called
before startDocument() and is a good place to save the
 Locator object so that it can be accessed from other
callback methods .

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Parsing XML Documents with SAX 37

 void skippedEntity(String name) reports all skipped
entities. Validating parsers resolve all general entity
references, but nonvalidating parsers have the option
of skipping them because nonvalidating parsers don’t
read DTDs where these entities are declared. If the
nonvalidating parser doesn’t read a DTD, it will not know
if an entity is properly declared. Instead of attempting to
read the DTD and report the entity’s replacement text,
the nonvalidating parser calls skippedEntity() with the
entity’s name.

 void startDocument() reports that the start of the
document has been reached. An application might use
this method to create an output file or perform some
other initialization.

 void startElement(String uri, String localName,
String qName, Attributes attributes) reports that the
start of an element has been reached. uri identifies the
element’s namespace URI or is empty when there is no
namespace URI or namespace processing hasn’t been
enabled. localName identifies the element’s local name,
 qName references its qualified name, and attributes
references a list of the element’s attributes—this list is
empty when there are no attributes. startElement() is
invoked when a start tag or an empty-element tag is
detected.

 void startPrefixMapping(String prefix, String uri)
reports that the start of a namespace prefix mapping
(xmlns:h=" http://www.w3.org/1999/xhtml " , for
example) has been reached, in which prefix reports this
prefix (such as h) and uri reports the URI to which the
prefix is mapped (http://www.w3.org/1999/xhtml , for
example).

 Each method, except for setDocumentLocator() , is declared to throw
 SAXException , which an overriding callback method might choose to throw
when it detects a problem.

www.it-ebooks.info

http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml
http://www.it-ebooks.info/

CHAPTER 2: Parsing XML Documents with SAX38

 Touring DTDHandler
 DTDHandler declares the following DTD-oriented informational callback
methods:

 void notationDecl(String name, String publicId,
String systemId) reports a notation declaration, in
which name provides this declaration’s name attribute
value, publicId provides this declaration’s public
attribute value (the null reference when this value isn’t
available), and systemId provides this declaration’s
 system attribute value.

 void unparsedEntityDecl(String name, String
publicId, String systemId, String notationName)
reports an external unparsed entity declaration, in
which name provides the value of this declaration’s
 name attribute, publicId provides the value of the
 public attribute (the null reference when this value isn’t
available), systemId provides the value of the system
attribute, and notationName provides the NDATA name.

 Each method is declared to throw SAXException , which an overriding
callback method might choose to throw when it detects a problem.

 Touring ErrorHandler
 ErrorHandler declares the following error-oriented informational callback
methods:

 void error(SAXParseException exception) reports
that a recoverable parser error (typically the document
isn’t valid) has occurred; the details are specified via the
argument passed to exception . This method is typically
overridden to report the error via a command window or
to log it to a file or a database.

 void fatalError(SAXParseException exception) reports
that an unrecoverable parser error (the document isn’t
well formed) has occurred; the details are specified
via the argument passed to exception . This method is
typically overridden so that the application can log the
error before it stops processing the document (because
the document is no longer reliable) .

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Parsing XML Documents with SAX 39

 void warning(SAXParseException e) reports that a
nonserious error (such as an element name beginning
with the reserved xml character sequence) has occurred;
the details are specified via the argument passed
to exception . This method is typically overridden to
report the warning via a console or to log it to a file or a
database.

 Each method is declared to throw SAXException , which an overriding
callback method might choose to throw when it detects a problem.

 Touring EntityResolver
 EntityResolver declares the following callback method:

 InputSource resolveEntity(String publicId, String
systemId) is called to let the application resolve an
external entity (such as an external DTD subset) by
returning a custom InputSource object that’s based
on a different URI. This method is declared to throw
 SAXException when it detects a SAX-oriented problem,
and is also declared to throw IOException when it
encounters an I/O error, possibly in response to creating
an InputStream object or a java.io.Reader object for
the InputSource being created .

 Touring LexicalHandler
 LexicalHandler declares the following additional content-oriented
informational callback methods:

 void comment(char[] ch, int start, int length)
reports a comment via the ch array. The arguments that
are passed to start and length identify that portion of
the array that’s relevant to this method call.

 void endCDATA() reports the end of a CDATA section.

 void endDTD() reports the end of a DTD.

 void endEntity(String name) reports the end of the
entity identified by name .

 void startCDATA() reports the start of a CDATA section.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Parsing XML Documents with SAX40

 void startDTD(String name, String publicId, String
systemId) reports the start of the DTD identified by
 name. publicId specifies the declared public identifier
for the external DTD subset or is the null reference when
none was declared. Similarly, systemId specifies the
declared system identifier for the external DTD subset or
is the null reference when none was declared .

 void startEntity(String name) reports the start of the
entity identified by name .

 Each method is declared to throw SAXException , which an overriding
callback method might choose to throw when it detects a problem.

 Because it can be tedious to implement all of the methods in each
interface, the SAX API conveniently provides the org.xml.sax.helpers.
DefaultHandler adapter class to relieve you of this tedium. DefaultHandler
implements ContentHandler , DTDHandler , EntityResolver , and
 ErrorHandler . SAX also provides org.xml.sax.ext.DefaultHandler2 , which
subclasses DefaultHandler , and which also implements LexicalHandler .

 Demonstrating the SAX API
 Listing 2-1 presents the source code to SAXDemo , an application that
demonstrates the SAX API. The application consists of a SAXDemo entry-point
class and a Handler subclass of DefaultHandler2 .

 Listing 2-1. SAXDemo

 import java.io.FileReader;
 import java.io.IOException;

 import org.xml.sax.InputSource;
 import org.xml.sax.SAXException;
 import org.xml.sax.XMLReader;

 import org.xml.sax.helpers.XMLReaderFactory;

 public class SAXDemo
 {
 public static void main(String[] args)
 {
 if (args.length < 1 || args.length > 2)
 {
 System.err.println("usage: java SAXDemo xmlfile [v]");
 return;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Parsing XML Documents with SAX 41

 try
 {
 XMLReader xmlr = XMLReaderFactory.createXMLReader();
 if (args.length == 2 && args[1].equals("v"))
 xmlr.setFeature("http://xml.org/sax/features/validation", true);
 xmlr.setFeature("http://xml.org/sax/features/namespace-prefixes", true);
 Handler handler = new Handler();
 xmlr.setContentHandler(handler);
 xmlr.setDTDHandler(handler);
 xmlr.setEntityResolver(handler);
 xmlr.setErrorHandler(handler);
 xmlr.setProperty("http://xml.org/sax/properties/lexical-handler",
 handler);
 xmlr.parse(new InputSource(new FileReader(args[0])));
 }
 catch (IOException ioe)
 {
 System.err.println("IOE: " + ioe);
 }
 catch (SAXException saxe)
 {
 System.err.println("SAXE: " + saxe);
 }
 }
 }

 SAXDemo ’s main() method first verifies that one or two command-line
arguments (the name of an XML document optionally followed by lowercase
letter v , which tells SAXDemo to create a validating parser) have been
specified. It then creates an XMLReader object; conditionally enables the
 validation feature and enables the namespace-prefixes feature; instantiates
the companion Handler class; installs this Handler object as the parser’s
content handler, DTD handler, entity resolver, and error handler; installs this
 Handler object as the value of the lexical-handler property; creates an
input source to read the document from a file; and parses the document .

 The Handler class’s source code is presented in Listing 2-2 .

 Listing 2-2. The Handler Class

 import org.xml.sax.Attributes;
 import org.xml.sax.InputSource;
 import org.xml.sax.Locator;
 import org.xml.sax.SAXParseException;

 import org.xml.sax.ext.DefaultHandler2;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Parsing XML Documents with SAX42

 public class Handler extends DefaultHandler2
 {
 private Locator locator;

 @Override
 public void characters(char[] ch, int start, int length)
 {
 System.out.print("characters() [");
 for (int i = start; i < start + length; i++)
 System.out.print(ch[i]);
 System.out.println("]");
 }

 @Override
 public void comment(char[] ch, int start, int length)
 {
 System.out.print("characters() [");
 for (int i = start; i < start + length; i++)
 System.out.print(ch[i]);
 System.out.println("]");
 }

 @Override
 public void endCDATA()
 {
 System.out.println("endCDATA()");
 }

 @Override
 public void endDocument()
 {
 System.out.println("endDocument()");
 }

 @Override
 public void endDTD()
 {
 System.out.println("endDTD()");
 }

 @Override
 public void endElement(String uri, String localName, String qName)
 {
 System.out.print("endElement() ");
 System.out.print("uri=[" + uri + "], ");
 System.out.print("localName=[" + localName + "], ");
 System.out.println("qName=[" + qName + "]");
 }

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Parsing XML Documents with SAX 43

 @Override
 public void endEntity(String name)
 {
 System.out.print("endEntity() ");
 System.out.println("name=[" + name + "]");
 }

 @Override
 public void endPrefixMapping(String prefix)
 {
 System.out.print("endPrefixMapping() ");
 System.out.println("prefix=[" + prefix + "]");
 }

 @Override
 public void error(SAXParseException saxpe)
 {
 System.out.println("error() " + saxpe);
 }

 @Override
 public void fatalError(SAXParseException saxpe)
 {
 System.out.println("fatalError() " + saxpe);
 }

 @Override
 public void ignorableWhitespace(char[] ch, int start, int length)
 {
 System.out.print("ignorableWhitespace() [");
 for (int i = start; i < start + length; i++)
 System.out.print(ch[i]);
 System.out.println("]");
 }

 @Override
 public void notationDecl(String name, String publicId, String systemId)
 {
 System.out.print("notationDecl() ");
 System.out.print("name=[" + name + "]");
 System.out.print("publicId=[" + publicId + "]");
 System.out.println("systemId=[" + systemId + "]");
 }

 @Override
 public void processingInstruction(String target, String data)
 {
 System.out.print("processingInstruction() [");
 System.out.println("target=[" + target + "]");
 System.out.println("data=[" + data + "]");
 }

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Parsing XML Documents with SAX44

 @Override
 public InputSource resolveEntity(String publicId, String systemId)
 {
 System.out.print("resolveEntity() ");
 System.out.print("publicId=[" + publicId + "]");
 System.out.println("systemId=[" + systemId + "]");
 // Do not perform a remapping.
 InputSource is = new InputSource();
 is.setPublicId(publicId);
 is.setSystemId(systemId);
 return is;
 }

 @Override
 public void setDocumentLocator(Locator locator)
 {
 System.out.print("setDocumentLocator() ");
 System.out.println("locator=[" + locator + "]");
 this.locator = locator;
 }

 @Override
 public void skippedEntity(String name)
 {
 System.out.print("skippedEntity() ");
 System.out.println("name=[" + name + "]");
 }

 @Override
 public void startCDATA()
 {
 System.out.println("startCDATA()");
 }

 @Override
 public void startDocument()
 {
 System.out.println("startDocument()");
 }

 @Override
 public void startDTD(String name, String publicId, String systemId)
 {
 System.out.print("startDTD() ");
 System.out.print("name=[" + name + "]");
 System.out.print("publicId=[" + publicId + "]");
 System.out.println("systemId=[" + systemId + "]");
 }

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Parsing XML Documents with SAX 45

 @Override
 public void startElement(String uri, String localName, String qName,
 Attributes attributes)
 {
 System.out.print("startElement() ");
 System.out.print("uri=[" + uri + "], ");
 System.out.print("localName=[" + localName + "], ");
 System.out.println("qName=[" + qName + "]");
 for (int i = 0; i < attributes.getLength(); i++)
 System.out.println(" Attribute: " + attributes.getLocalName(i) +
 ", " + attributes.getValue(i));
 System.out.println("Column number=[" + locator.getColumnNumber() +
 "]");
 System.out.println("Line number=[" + locator.getLineNumber() + "]");
 }

 @Override
 public void startEntity(String name)
 {
 System.out.print("startEntity() ");
 System.out.println("name=[" + name + "]");
 }

 @Override
 public void startPrefixMapping(String prefix, String uri)
 {
 System.out.print("startPrefixMapping() ");
 System.out.print("prefix=[" + prefix + "]");
 System.out.println("uri=[" + uri + "]");
 }

 @Override
 public void unparsedEntityDecl(String name, String publicId,
 String systemId, String notationName)
 {
 System.out.print("unparsedEntityDecl() ");
 System.out.print("name=[" + name + "]");
 System.out.print("publicId=[" + publicId + "]");
 System.out.print("systemId=[" + systemId + "]");
 System.out.println("notationName=[" + notationName + "]");
 }

 @Override
 public void warning(SAXParseException saxpe)
 {
 System.out.println("warning() " + saxpe);
 }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Parsing XML Documents with SAX46

 The Handler subclass is pretty straightforward; it outputs every possible
piece of information about an XML document, subject to feature and
property settings. You’ll find this class handy for exploring the order in which
events occur along with various features and properties.

 Assuming that files based on Listings 2-1 and 2-2 are located in the same
directory, compile them as follows:

 javac SAXDemo.java

 Execute the following command to parse Listing 1-4 ’s svg-examples.xml
document:

 java SAXDemo svg-examples.xml

 SAXDemo responds by presenting the following output (the hashcode may
be different):

 setDocumentLocator() locator=[com.sun.org.apache.xerces.internal.parsers.Abs
tractSAXParser$LocatorProxy@6d06d69c]
 startDocument()
 startElement() uri=[], localName=[svg-examples], qName=[svg-examples]
 Column number=[15]
 Line number=[2]
 characters() [
]
 startElement() uri=[], localName=[example], qName=[example]
 Column number=[13]
 Line number=[3]
 characters() [
 The following Scalable Vector Graphics document describes a]
 characters() [
 blue-filled and black-stroked rectangle.
]
 startCDATA()
 characters() [<svg width="100%" height="100%" version="1.1"
 xmlns="http://www.w3.org/2000/svg">
 <rect width="300" height="100"
 style="fill:rgb(0,0,255);stroke-width:1; stroke:rgb(0,0,0)"/>
 </svg>]
 endCDATA()
 characters() [
]
 endElement() uri=[], localName=[example], qName=[example]
 characters() [
]
 endElement() uri=[], localName=[svg-examples], qName=[svg-examples]
 endDocument()

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1916-4_1#Par34
http://www.it-ebooks.info/

CHAPTER 2: Parsing XML Documents with SAX 47

 The first output line proves that setDocumentLocator() is called first. It also
identifies the Locator object whose getColumnNumber() and getLineNumber()
methods are called to output the parser location when startElement() is
called—these methods return column and line numbers starting at 1 .

 Perhaps you’re curious about the three instances of the following output:

 characters() [
]

 The instance of this output that follows the endCDATA() output is reporting a
carriage return/line feed combination that wasn’t included in the preceding
 characters() method call, which was passed the contents of the CDATA
section minus these line terminator characters. In contrast, the instances of
this output that follow the startElement() call for svg-examples and follow
the endElement() call for example are somewhat curious. There’s no content
between <svg-examples> and <example> , and between </example> and
 </svg-examples> , or is there?

 You can satisfy this curiosity by modifying svg-examples.xml to include an
internal DTD. Place the following DTD (which indicates that an svg-examples
element contains one or more example elements, and that an example
element contains parsed character data) between the XML declaration and
the <svg-examples> start tag:

 <!DOCTYPE svg-examples [
 <!ELEMENT svg-examples (example+)>
 <!ELEMENT example (#PCDATA)>
]>

 Continuing, execute the following command:

 java SAXDemo svg-examples.xml

 This time, you should see the following output (although the hashcode will
probably differ):

 setDocumentLocator() locator=[com.sun.org.apache.xerces.internal.parsers.Abs
tractSAXParser$LocatorProxy@6d06d69c]
 startDocument()
 startDTD() name=[svg-examples]publicId=[null]systemId=[null]
 endDTD()
 startElement() uri=[], localName=[svg-examples], qName=[svg-examples]
 Column number=[15]
 Line number=[6]
 ignorableWhitespace() [
]

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Parsing XML Documents with SAX48

 startElement() uri=[], localName=[example], qName=[example]
 Column number=[13]
 Line number=[7]
 characters() [
 The following Scalable Vector Graphics document describes a
 blue-filled and black-stroked rectangle.]
 characters() [
]
 startCDATA()
 characters() [<svg width="100%" height="100%" version="1.1"
 xmlns="http://www.w3.org/2000/svg">
 <rect width="300" height="100"
 style="fill:rgb(0,0,255);stroke-width:1; stroke:rgb(0,0,0)"/>
 </svg>]
 endCDATA()
 characters() [
]
 endElement() uri=[], localName=[example], qName=[example]
 ignorableWhitespace() [
]
 endElement() uri=[], localName=[svg-examples], qName=[svg-examples]
 endDocument()

 This output reveals that the ignorableWhitespace() method was called after
 startElement() for svg-examples and after endElement() for example . The
former two calls to characters() that produced the strange output were
reporting ignorable whitespace.

 Recall that I previously defined ignorable whitespace as whitespace
located between tags where the DTD doesn’t allow mixed content. For
example, the DTD indicates that svg-examples shall contain only example
elements, not example elements and parsed character data. However, the
line terminator following the <svg-examples> tag and the leading whitespace
before <example> are parsed character data. The parser now reports these
characters by calling ignorableWhitespace() .

 This time, there are only two occurrences of the following output:

 characters() [
]

 The first occurrence reports the line terminator separately from the example
element’s text (before the CDATA section); it didn’t do so previously, which
proves that characters() is called with either all or part of an element’s
content. Once again, the second occurrence reports the line terminator that
follows the CDATA section.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Parsing XML Documents with SAX 49

 Let’s validate svg-examples.xml without the previously presented internal
DTD. You do so by executing the following command—don’t forget to
include the v command-line argument or the document won’t validate:

 java SAXDemo svg-examples.xml v

 Among its output are a couple of error() - prefixed lines that are similar to
those shown below:

 error() org.xml.sax.SAXParseException; lineNumber: 2; columnNumber: 14;
Document is invalid: no grammar found.
 error() org.xml.sax.SAXParseException; lineNumber: 2; columnNumber: 14;
Document root element "svg-examples", must match DOCTYPE root "null".

 These lines reveal that a DTD grammar hasn’t been found. Furthermore,
the parser reports a mismatch between svg-examples (it considers the
first encountered element to be the root element) and null (it considers
 null to be the name of the root element in the absence of a DTD). Neither
violation is considered to be fatal, which is why error() is called instead of
 fatalError() .

 Add the internal DTD to svg-examples.xml and re-execute java SAXDemo
svg-examples.xml v . This time, you should see no error() -prefixed lines in
the output .

 Creating a Custom Entity Resolver
 While exploring XML in Chapter 1 , I introduced you to the concept of
 entities , which are aliased data. I then discussed general entities and
parameter entities in terms of their internal and external variants.

 Unlike internal entities, whose values are specified in a DTD, the values of
external entities are specified outside of a DTD and are identified via public
and/or system identifiers. The system identifier is a URI whereas the public
identifier is a formal public identifier.

 Tip SAX 2 validation defaults to validating against a DTD. To validate
against an XML Schema-based schema instead, add the schemaLanguage
property with the http://www.w3.org/2001/XMLSchema value to the
 XMLReader object. Accomplish this task for SAXDemo by specifying xmlr.
setProperty(" http://java.sun.com/xml/jaxp/properties/
schemaLanguage ", " http://www.w3.org/2001/XMLSchema "); before
 xmlr.parse(new InputSource(new FileReader(args[0]))); .

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1916-4_1
http://www.w3.org/2001/XMLSchema
http://java.sun.com/xml/jaxp/properties/schemaLanguage
http://java.sun.com/xml/jaxp/properties/schemaLanguage
http://www.w3.org/2001/XMLSchema
http://www.it-ebooks.info/

CHAPTER 2: Parsing XML Documents with SAX50

 An XML parser reads an external entity (including the external DTD subset)
via an InputSource object that’s connected to the appropriate system
identifier. In many cases, you pass a system identifier or InputSource
object to the parser and let it discover where to find other entities that are
referenced from the current document entity.

 However, for performance or other reasons, you might want the parser to
read the external entity’s value from a different system identifier, such as a
local DTD copy’s system identifier. You can accomplish this task by creating
an entity resolver that uses the public identifier to choose a different system
identifier. Upon encountering an external entity, the parser calls the custom
entity resolver to obtain this identifier.

 Consider Listing 2-3 ’s formal specification of Listing 1-1 ’s grilled cheese
sandwich recipe.

 Listing 2-3. XML-Based Recipe for a Grilled Cheese Sandwich Specified in Recipe Markup Language

 <?xml version="1.0" encoding="UTF-8"?>
 <!DOCTYPE recipeml PUBLIC "-//FormatData//DTD RecipeML 0.5//EN"

 "http://www.formatdata.com/recipeml/recipeml.dtd">
 <recipeml version="0.5">
 <recipe>
 <head>
 <title>Grilled Cheese Sandwich</title>
 </head>
 <ingredients>
 <ing>
 <amt><qty>2</qty><unit>slice</unit></amt>
 <item>bread</item>
 </ing>
 <ing>
 <amt><qty>1</qty><unit>slice</unit></amt>
 <item>cheese</item>
 </ing>
 <ing>
 <amt><qty>2</qty><unit>pat</unit></amt>
 <item>margarine</item>
 </ing>
 </ingredients>
 <directions>
 <step>Place frying pan on element and select medium heat.</step>
 <step>For each bread slice, smear one pat of margarine on one side

 of bread slice.</step>
 <step>Place cheese slice between bread slices with margarine-

smeared sides away from the cheese.</step>
 <step>Place sandwich in frying pan with one margarine-smeared size

in contact with pan.</step>

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1916-4_1#Par6
http://www.it-ebooks.info/

CHAPTER 2: Parsing XML Documents with SAX 51

 <step>Fry for a couple of minutes and flip.</step>
 <step>Fry other side for a minute and serve.</step>
 </directions>
 </recipe>
 </recipeml>

 Listing 2-3 specifies the grilled cheese sandwich recipe in Recipe
Markup Language (RecipeML) , an XML-based language for marking up
recipes. (A company named FormatData released this format in 2000;
see www.formatdata.com .)

 The document type declaration reports -//FormatData//DTD RecipeML 0.5//
EN as the formal public identifier and http://www.formatdata.com/recipeml/
recipeml.dtd as the system identifier. Instead of keeping the default
mapping, let’s map this formal public identifier to recipeml.dtd , a system
identifier for a local copy of this DTD file .

 To create a custom entity resolver to perform this mapping, you declare
a class that implements the EntityResolver interface in terms of its
 InputSource resolveEntity(String publicId, String systemId) method.
You then use the passed publicId value as a key into a map that points to
the desired systemId value, and then use this value to create and return a
custom InputSource . Listing 2-4 presents the resulting class.

 Listing 2-4. LocalRecipeML

 import java.util.HashMap;
 import java.util.Map;

 import org.xml.sax.EntityResolver;
 import org.xml.sax.InputSource;
 import org.xml.sax.SAXException;

 public class LocalRecipeML implements EntityResolver
 {
 private Map<String, String> mappings = new HashMap<>();

 LocalRecipeML()
 {
 mappings.put("-//FormatData//DTD RecipeML 0.5//EN", "recipeml.dtd");
 }

 @Override
 public InputSource resolveEntity(String publicId, String systemId)
 {
 if (mappings.containsKey(publicId))
 {
 System.out.println("obtaining cached recipeml.dtd");
 systemId = mappings.get(publicId);

www.it-ebooks.info

http://www.formatdata.com/
http://www.formatdata.com/recipeml/recipeml.dtd
http://www.formatdata.com/recipeml/recipeml.dtd
http://www.it-ebooks.info/

CHAPTER 2: Parsing XML Documents with SAX52

 InputSource localSource = new InputSource(systemId);
 return localSource;
 }
 return null;
 }
 }

 Listing 2-4 declares LocalRecipeML . This class’s constructor stores the
formal public identifier for the RecipeML DTD and the system identifier for a
local copy of this DTD’s document in a map.

 The overriding resolveEntity() method uses publicId ’s argument to locate
the corresponding system identifier in the map—the systemId parameter
value is ignored because it never refers to the local copy of recipeml.dtd .
When the mapping is found, an InputSource object is created and returned.
If the mapping couldn’t be found, null would be returned .

 To install this custom entity resolver in SAXDemo , specify xmlr.
setEntityResolver(new LocalRecipeML()); before the parse() method call.
After recompiling the source code, execute the following command:

 java SAXDemo gcs.xml

 Here, gcs.xml stores Listing 2-3 ’s text. In the resulting output, you should
observe the message “ obtaining cached recipeml.dtd ” before the call to
 startEntity() .

 Note Although it’s unnecessary to use a map in this example (an if
(publicId.equals("-//FormatData//DTD RecipeML 0.5//EN"))

return new InputSource("recipeml.dtd") else return null;
statement would suffice), I’ve chosen to use a map in case I want to expand the
number of mappings in the future. In another scenario, you would probably find
a map to be very convenient. For example, it’s easier to use a map than to use
a series of if statements in a custom entity resolver that maps XHTML’s strict,
transitional, and frameset formal public identifiers, and also maps its various
entity sets to local copies of these document files.

www.it-ebooks.info

http://xml.org/sax/features/
http://www.it-ebooks.info/

CHAPTER 2: Parsing XML Documents with SAX 53

 EXERCISES

 The following exercises are designed to test your understanding of Chapter 2 ’s content.

 1. Define SAX.

 2. How do you obtain a SAX 2-based parser?

 3. What is the purpose of the XMLReader interface?

 4. How do you tell a SAX parser to perform validation?

 5. Identify the four kinds of SAX-oriented exceptions that can be thrown
when working with SAX.

 6. What interface does a handler class implement to respond to
content-oriented events?

 7. Identify the three other core interfaces that a handler class is likely to
implement.

 8. Define ignorable whitespace.

 9. True or false: void error(SAXParseException exception) is
called for all kinds of errors.

 10. What is the purpose of the DefaultHandler class?

 11. What is an entity? What is an entity resolver?

 12. Apache Tomcat is an open-source web server developed by the
Apache Software Foundation. Tomcat stores usernames, passwords,
and roles (for authentication purposes) in its tomcat-users.xml
configuration file. Create a DumpUserInfo application that uses SAX
to parse the user elements in the following tomcat-users.xml file

 Tip The SAX API includes an org.xml.sax.ext.EntityResolver2
interface that provides improved support for resolving entities. If you prefer
to implement EntityResolver2 instead of EntityResolver , replace
the setEntityResolver() call to install the entity resolver with a
 setFeature() call whose feature name is use-entity-resolver2 (don’t
forget the http://xml.org/sax/features/ prefix).

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1916-4_2
http://xml.org/sax/features/
http://www.it-ebooks.info/

CHAPTER 2: Parsing XML Documents with SAX54

and, for each user element, dump its username , password , and
 roles attribute values to standard output in a key = value format:

 <?xml version='1.0' encoding='utf-8'?>

 <tomcat-users>
 <role rolename="dbadmin"/>
 <role rolename="manager"/>
 <user username="JohnD" password="password1"
roles="dbadmin,manager"/>
 <user username="JillD" password="password2" roles="manager"/>
 </tomcat-users>

 13. Create a SAXSearch application that searches Exercise 1-21’s
 books.xml file for those book elements whose publisher child
elements contain text that equals the application’s single command-
line publisher name argument. Once there is a match, output the
 title element’s text followed by the book element’s isbn attribute
value. For example, java SAXSearch Apress should output title
= Beginning Groovy and Grails, isbn = 9781430210450 ,
whereas java SAXSearch "Addison Wesley" should output
 title = Advanced C++, isbn = 0201548550 followed by
 title = Effective Java, isbn = 0201310058 on separate
lines. Nothing should output when the command-line publisher name
argument doesn’t match a publisher element’s text.

 14. Use Listing 2-1 ’s SAXDemo application to validate Exercise 1-22’s
 books.xml content against its DTD. Execute java SAXDemo
books.xml -v to perform the validation.

 Summary
 SAX is an event-based Java API for parsing an XML document sequentially
from start to finish. When a SAX-oriented parser encounters an item from the
document’s infoset, it makes this item available to an application as an event
by calling one of the methods in one of the application’s handlers, which the
application has previously registered with the parser. The application can
then consume this event by processing the infoset item in some manner.

 SAX exists in two major versions. Java implements SAX 1 through the
 javax.xml.parsers package’s abstract SAXParser and SAXParserFactory
classes, and implements SAX 2 through the org.xml.sax package’s
 XMLReader interface and through the org.xml.sax.helpers package’s
 XMLReaderFactory class. The org.xml.sax , org.xml.sax.ext , and org.
xml.sax.helpers packages provide various types that augment both Java
implementations.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Parsing XML Documents with SAX 55

 XMLReader makes available several methods for configuring the parser
and parsing a document’s content. Some of these methods get and set
the content handler, DTD handler, entity resolver, and error handler, which
are described by the ContentHandler , DTDHandler , EntityResolver , and
 ErrorHandler interfaces. After learning about XMLReader ’s methods and
these interfaces, you learned about the nonstandard LexicalHandler
interface and how to create a custom entity resolver.

 Chapter 3 introduces Java’s DOM API for parsing/creating XML documents.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1916-4_3
http://www.it-ebooks.info/

57© Jeff Friesen 2016
J. Friesen, Java XML and JSON, DOI 10.1007/978-1-4842-1916-4_3

 Chapter 3
 Parsing and Creating XML
Documents with DOM
 SAX can parse XML documents but cannot create them. In contrast, DOM
can parse and create XML documents. This chapter introduces you to DOM.

 What Is DOM?
 Document Object Model (DOM) is a Java API for parsing an XML document
into an in-memory tree of nodes, and for creating an XML document from a
node tree. After a DOM parser creates a tree, an application uses the DOM
API to navigate over and extract infoset items from the tree’s nodes.

 DOM has two big advantages over SAX:

 DOM permits random access to a document’s infoset
items, whereas SAX only permits serial access.

 DOM also lets you create XML documents, whereas you
can only parse documents with SAX .

 However, SAX is advantageous over DOM in that it can parse documents
of arbitrary sizes, whereas the size of documents parsed or created by DOM
is limited by the amount of available memory for storing the document’s
node-based tree structure.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Parsing and Creating XML Documents with DOM58

 A Tree of Nodes
 DOM views an XML document as a tree that is composed of several kinds of
nodes. This tree has a single root node and all nodes, except for the root,
have a parent node . Also, each node has a list of child nodes . When this list
is empty, the child node is known as a leaf node .

 Each node has a node name , which is the complete name for nodes that
have names (such as an element’s or an attribute’s prefixed name), and
 # node-type for unnamed nodes, where node-type is one of cdata-section ,
 comment , document , document-fragment , or text . Nodes also have local
names (names without prefixes), prefixes, and namespace URIs (although
these attributes may be null for certain kinds of nodes, such as comments).
Finally, nodes have string values, which happen to be the content of text
nodes, comment nodes, and similar text-oriented nodes; normalized values
for attributes; and null for everything else.

 Note DOM permits nodes to exist that are not part of the tree structure. For
example, an element node’s attribute nodes are not regarded as child nodes of
the element node. Also, nodes can be created but not inserted into the tree; they
can also be removed from the tree.

 Note DOM originated as an object model for the Netscape Navigator 3 and
Microsoft Internet Explorer 3 web browsers. Collectively, these implementations
are known as DOM Level 0. Because each vendor’s DOM implementation was
only slightly compatible with the other, the W3C subsequently took charge of
DOM’s development to promote standardization and has so far released DOM
Levels 1, 2, and 3 (with Level 4 under development). Java 8 supports all three
DOM levels through its DOM API.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Parsing and Creating XML Documents with DOM 59

 DOM classifies nodes into 12 types, of which seven types can be
considered part of a DOM tree. All of these types are described below:

 Attribute node : One of an element’s attributes. It has
a name, a local name, a prefix, a namespace URI,
and a normalized string value. The value is normalized
by resolving any entity references and by converting
sequences of whitespace to a single whitespace
character. An attribute node has children, which are the
text and any entity reference nodes that form its value.
Attribute nodes are not regarded as children of their
associated element nodes.

 CDATA section node : The contents of a CDATA section .
Its name is #cdata-section and its value is the CDATA
section’s text.

 Comment node : A document comment. Its name is
 #comment and its value is the comment text . A comment
node has a parent, which is the node that contains the
comment.

 Document node : The root of a DOM tree. Its name is
 #document , it always has a single element child node,
and it also has a document type child node when
the document has a document type declaration.
Furthermore, it can have additional child nodes
describing comments or processing instructions that
appear before or after the root element’s start tag. There
can be only one document node in the tree.

 Document fragment node : An alternative root node.
Its name is #document-fragment and it contains anything
that an element node can contain (such as other element
nodes and even comment nodes). A parser never
creates this kind of a node. However, an application can
create a document fragment node when it extracts part
of a DOM tree to be moved somewhere else. Document
 fragment nodes let you work with subtrees.

 Document type node : A document type declaration .
Its name is the name specified by the document type
declaration for the root element. Also, it has a (possibly
null) public identifier, a required system identifier, an
internal DTD subset (which is possibly null), a parent
(the document node that contains the document type
node), and lists of DTD-declared notations and general
entities. Its value is always set to null.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Parsing and Creating XML Documents with DOM60

 Element node : A document’s element . It has a name,
a local name, a (possibly null) prefix, and a namespace
URI, which is null when the element doesn’t belong
to any namespace. An element node contains
children, including text nodes, and even comment and
processing instruction nodes.

 Entity node : The parsed and unparsed entities that are
declared in a document’s DTD. When a parser reads
a DTD, it attaches a map of entity nodes (indexed by
entity name) to the document type node. An entity node
has a name and a system identifier, and can also have
a public identifier if one appears in the DTD. Finally,
when the parser reads the entity, the entity node is given
a list of read-only child nodes that contain the entity’s
replacement text.

 Entity reference node : A reference to a DTD-declared
entity. Each entity reference node has a name and is
included in the tree when the parser doesn’t replace
entity references with their values. The parser never
includes entity reference nodes for character references
(such as & or Σ) because they’re replaced by
their respective characters and included in a text node.

 Notation node : A DTD-declared notation . A parser
that reads the DTD attaches a map of notation nodes
(indexed by notation name) to the document type node.
Each notation node has a name and a public identifier
or a system identifier, whichever identifier was used to
declare the notation in the DTD. Notation nodes don’t
have children.

 Processing instruction node : A processing instruction
that appears in the document. It has a name (the
instruction’s target), a string value (the instruction’s
data), and a parent (its containing node).

 Text node : Document content. Its name is #text and it
represents a portion of an element’s content when an
intervening node (such as a comment) must be created.
Characters such as < and & that are represented in the
document via character references are replaced by the
literal characters they represent. When these nodes
are written to a document, these characters must be
escaped.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Parsing and Creating XML Documents with DOM 61

 Although these node types store considerable information about an XML
document, there are limitations, such as not exposing whitespace outside of
the root element. Also, most DTD or schema information, such as element
types (<!ELEMENT...>) and attribute types (<xs:attribute...>), cannot be
accessed through the DOM.

 DOM Level 3 addresses some of the DOM’s various limitations. For
example, although DOM doesn’t provide a node type for the XML
declaration, DOM Level 3 makes it possible to access the XML declaration’s
 version , encoding , and standalone attribute values via attributes of the
document node.

 Exploring the DOM API
 Java implements DOM through the javax.xml.parsers package’s abstract
 DocumentBuilder and DocumentBuilderFactory classes and the nonabstract
 FactoryConfigurationError and ParserConfigurationException classes. The
 org.w3c.dom , org.w3c.dom.bootstrap , org.w3c.dom.events , org.w3c.dom.ls ,
and org.w3c.dom.views packages provide various types that augment this
implementation.

 Obtaining a DOM Parser/Document Builder
 A DOM parser is also known as a document builder because of its dual
role in parsing and creating XML documents. You obtain a DOM parser/
document builder by first instantiating DocumentBuilderFactory , by calling
one of its newInstance() class methods. For example, the following code
fragment invokes DocumentBuilderFactory ’s DocumentBuilderFactory
newInstance() class method:

 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();

 Behind the scenes, newInstance() follows an ordered lookup procedure
to identify the DocumentBuilderFactory implementation class to load. This
procedure first examines the javax.xml.parsers.DocumentBuilderFactory
system property and lastly chooses the Java platform’s default
 DocumentBuilderFactory implementation class when no other class is found.

 Note Nonroot nodes never exist in isolation. For example, it’s never the case
for an element node to not belong to a document or to a document fragment.
Even when such nodes are disconnected from the main tree, they remain aware
of the document or document fragment to which they belong.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Parsing and Creating XML Documents with DOM62

If an implementation class isn’t available (perhaps the class identified by
the javax.xml.parsers.DocumentBuilderFactory system property doesn’t
exist) or cannot be instantiated, newInstance() throws an instance of the
 FactoryConfigurationError class. Otherwise, it instantiates the class and
returns its instance.

 After obtaining a DocumentBuilderFactory instance, you can call various
configuration methods to configure the factory. For example, you could call
 DocumentBuilderFactory ’s void setNamespaceAware(boolean awareness)
method with a true argument to tell the factory that any returned document
builder must provide support for XML namespaces. You can also call void
setValidating(boolean validating) with true as the argument to validate
documents against their DTDs, or call void setSchema(Schema schema) to
validate documents against the javax.xml.validation.Schema instance
identified by schema .

 VALIDATION API

 Schema is a member of Java’s Validation API, which decouples document parsing
from validation, making it easier for applications to take advantage of specialized
validation libraries that support additional schema languages (such as Relax NG—see
 http://en.wikipedia.org/wiki/RELAX_NG), and making it easier to specify the
location of a schema.

 The Validation API is associated with the javax.xml.validation package, which also
includes SchemaFactory , SchemaFactoryLoader , TypeInfoProvider , Validator ,
and ValidatorHandler. Schema is the central class and represents an immutable in-
memory representation of a grammar.

 DOM supports the Validation API via DocumentBuilderFactory ’s void
setSchema(Schema schema) and Schema getSchema() methods. Similarly,
SAX 1.0 supports Validation via j avax.xml.parsers.SAXParserFactory ’s void
setSchema(Schema schema) and Schema getSchema() methods. SAX 2.0 and StAX
(see Chapter 4) don’t support the Validation API.

 The following code fragment demonstrates the Validation API in a DOM context:

 // Parse an XML document into a DOM tree.
 DocumentBuilder parser =
 DocumentBuilderFactory.newInstance().newDocumentBuilder();
 Document document = parser.parse(new File("instance.xml"));
 // Create a SchemaFactory capable of understanding W3C XML Schema (WXS).
 SchemaFactory factory =
 SchemaFactory.newInstance(XMLConstants.W3C_XML_SCHEMA_NS_URI);
 // Load a WXS schema, represented by a Schema instance.
 Source schemaFile = new StreamSource(new File("mySchema.xsd"));

www.it-ebooks.info

http://en.wikipedia.org/wiki/RELAX_NG
http://dx.doi.org/10.1007/978-1-4842-1916-4_4
http://www.it-ebooks.info/

CHAPTER 3: Parsing and Creating XML Documents with DOM 63

 Schema schema = factory.newSchema(schemaFile);
 // Create a Validator instance, which is used to validate an XML document.
 Validator validator = schema.newValidator();
 // Validate the DOM tree.
 try
 {
 validator.validate(new DOMSource(document));
 }
 catch (SAXException saxe)
 {
 // XML document is invalid!
 }

 This example refers to XSLT types such as Source . I explore XSLT in Chapter 6 .

 After the factory has been configured, call its DocumentBuilder
newDocumentBuilder() method to return a document builder that supports
the configuration, as demonstrated here:

 DocumentBuilder db = dbf.newDocumentBuilder();

 If a document builder cannot be returned (perhaps the factory cannot create
a document builder that supports XML namespaces), this method throws a
 ParserConfigurationException instance.

 Parsing and Creating XML Documents
 Assuming that you’ve successfully obtained a document builder, what happens
next depends on whether you want to parse or create an XML document.

 DocumentBuilder provides several overloaded parse() methods for parsing
an XML document into a node tree. These methods differ in how they obtain
the document. For example, Document parse(String uri) parses the
document that’s identified by its string-based URI argument.

 Note Each parse() method throws java.lang.IllegalArgumentException
when null is passed as the method’s first argument, java.io.IOException
when an input/output error occurs, and org.xml.sax.SAXException
when the document cannot be parsed. This last exception type indicates that
 DocumentBuilder ’s parse() methods rely on SAX to take care of the actual
parsing work. Because they are more involved in building the node tree, DOM parsers
are commonly referred to as document builders .

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1916-4_6
http://www.it-ebooks.info/

CHAPTER 3: Parsing and Creating XML Documents with DOM64

 DocumentBuilder also declares the abstract Document newDocument() method
for creating a document tree.

 The returned org.w3c.dom.Document object provides access to a parsed
document through methods such as DocumentType getDoctype() , which
makes the document type declaration available through the org.w3c.dom.
DocumentType interface. Conceptually, Document is the root of the document’s
node tree. It also declares various “ create ” and other methods for creating a
node tree. For example, Element createElement(String tagName) creates
an element named tagName , returning a new org.w3c.dom.Element object
with the specified name but with its local name, prefix, and namespace URI
set to null .

 Document and all other org.w3c.dom interfaces that describe different kinds
of nodes are subinterfaces of the org.w3c.dom.Node interface. As such, they
inherit Node ’s constants and methods.

 Node declares 12 constants that represent the various kinds of nodes;
 ATTRIBUTE_NODE and ELEMENT_NODE are examples. To identify the kind of node
represented by a given Node object, call Node ’s short getNodeType() method
and compare the returned value to one of these constants.

 Node declares several methods for getting and setting common node
 properties . These methods include String getNodeName() , String
getLocalName() , String getNamespaceURI() , String getPrefix() , void
setPrefix(String prefix) , String getNodeValue() , and void
setNodeValue(String nodeValue) , which let you get and (for some
properties) set a node’s name (such as #text), local name, namespace URI,
prefix, and normalized string value.

 Note Apart from DocumentBuilder , DocumentBuilderFactory , and
a few other classes, DOM is based on interfaces, of which Document and
 DocumentType are examples. Behind the scenes, DOM methods (such as the
 parse() methods) return objects whose classes implement these interfaces.

 Note The rationale for using getNodeType() and these constants, instead
of using instanceof and a class name, is that DOM (the object model, not the
Java DOM API) was designed to be language independent, and languages such
as AppleScript don’t have the equivalent of instanceof .

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Parsing and Creating XML Documents with DOM 65

 Node declares several methods for navigating the node tree. Three of its
 navigation methods are described here:

 boolean hasChildNodes() returns true when a node has
child nodes.

 Node getFirstChild() returns the node’s first child.

 Node getLastChild() returns the node’s last child.

 For nodes with multiple children, you’ll find the NodeList getChildNodes()
method to be handy. This method returns an org.w3c.dom.NodeList instance
whose int getLength() method returns the number of nodes in the list,
and whose Node item(int index) method returns the node at the index th
position in the list (or null when index ’s value isn’t valid—it’s less than zero
or greater than or equal to getLength() ’s value).

 Node declares four methods for modifying the tree by inserting, removing,
replacing, and appending child nodes :

 Node insertBefore (Node newChild, Node refChild)
inserts newChild before the existing node specified by
 refChild and returns newChild .

 Node removeChild (Node oldChild) removes the child
node identified by oldChild from the tree and returns
 oldChild .

 Node replaceChild (Node newChild, Node oldChild)
replaces oldChild with newChild and returns oldChild .

 Node appendChild (Node newChild) adds newChild to
the end of the current node’s child nodes and returns
 newChild .

 Note Various Node methods (such as setPrefix() and getNodeValue())
throw an instance of the org.w3c.dom.DOMException class when
something goes wrong. For example, setPrefix() throws this exception
when the prefix argument contains an illegal character, the node is read-
only, or the argument is malformed. Similarly, getNodeValue() throws
 DOMException when getNodeValue() would return more characters than
can fit into a DOMString (a W3C type) variable on the implementation platform.
 DOMException declares a series of constants (such as DOMSTRING_SIZE_ERR)
that classify the reason for the exception.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Parsing and Creating XML Documents with DOM66

 Finally, Node declares several utility methods, including Node
cloneNode(boolean deep) (create and return a duplicate of the current node,
recursively cloning its subtree when true is passed to deep), and void
normalize() (descend the tree from the given node and merge all adjacent
text nodes, deleting those text nodes that are empty).

 As well as inheriting Node ’s constants and methods , Document
declares its own methods. For example, you can call Document ’s
 String getXmlEncoding() , boolean getXmlStandalone() , and String
getXmlVersion() methods to return the XML declaration’s encoding ,
 standalone , and version attribute values, respectively.

 Document declares three methods for locating one or more elements :

 Element getElementById(String elementId) returns
the element that has an id attribute (as in)
matching the value specified by elementId .

 NodeList getElementsByTagName(String tagname)
returns a nodelist of a document’s elements (in
document order) matching the specified tagName .

 NodeList getElementsByTagNameNS(String
namespaceURI,String localName) is equivalent to the
second method except in adding to the nodelist only those
elements matching localName and namespaceURI values.
Pass " * " to namespaceURI to match all namespaces; pass
 " * " to localName to match all local names .

 The returned element node and each element node in the list implement
the Element interface. This interface declares methods to return nodelists of
descendent elements in the tree, attributes associated with the element, and
more. For example, String getAttribute(String name) returns the value of
the attribute identified by name , whereas Attr getAttributeNode(String name)
returns an attribute node by name. The returned node is an implementation of
the org.w3c.dom.Attr interface.

 Tip To obtain an element node’s attributes, first call Node ’s NamedNodeMap
 getAttributes() method . This method returns an org.w3c.dom.
NamedNodeMap implementation when the node represents an element;
otherwise, it returns null . As well as declaring methods for accessing
these nodes by name (such as Node getNamedItem (String name)),
 NamedNodeMap declares int getLength() and Node item(int index)
methods for returning all attribute nodes by index . You then obtain the Node ’s
name by calling a method such as getNodeName() .

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Parsing and Creating XML Documents with DOM 67

 Demonstrating the DOM API
 You now have enough information to explore applications for parsing
and creating XML documents. Listing 3-1 presents the source code to a
DOM-based parsing application .

 Listing 3-1. DOMDemo (Version 1)

 import java.io.IOException;

 import javax.xml.parsers.DocumentBuilder;
 import javax.xml.parsers.DocumentBuilderFactory;
 import javax.xml.parsers.FactoryConfigurationError;
 import javax.xml.parsers.ParserConfigurationException;

 import org.w3c.dom.Attr;
 import org.w3c.dom.Document;
 import org.w3c.dom.Element;
 import org.w3c.dom.NamedNodeMap;
 import org.w3c.dom.Node;
 import org.w3c.dom.NodeList;
 import org.xml.sax.SAXException;

 public class DOMDemo
 {
 public static void main(String[] args)
 {
 if (args.length != 1)
 {
 System.err.println("usage: java DOMDemo xmlfile");
 return;
 }
 try
 {
 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 dbf.setNamespaceAware(true);
 DocumentBuilder db = dbf.newDocumentBuilder();
 Document doc = db.parse(args[0]);
 System.out.printf("Version = %s%n", doc.getXmlVersion());
 System.out.printf("Encoding = %s%n", doc.getXmlEncoding());
 System.out.printf("Standalone = %b%n%n", doc.getXmlStandalone());
 if (doc.hasChildNodes())
 {
 NodeList nl = doc.getChildNodes();
 for (int i = 0; i < nl.getLength(); i++)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Parsing and Creating XML Documents with DOM68

 {
 Node node = nl.item(i);
 if (node. getNodeType () == Node.ELEMENT_NODE)
 dump((Element) node);
 }
 }
 }
 catch (IOException ioe)
 {
 System.err.println("IOE: " + ioe);
 }
 catch (SAXException saxe)
 {
 System.err.println("SAXE: " + saxe);
 }
 catch (FactoryConfigurationError fce)
 {
 System.err.println("FCE: " + fce);
 }
 catch (ParserConfigurationException pce)
 {
 System.err.println("PCE: " + pce);
 }
 }

 static void dump(Element e)
 {
 System.out.printf("Element: %s, %s, %s, %s%n", e.getNodeName(),
 e.getLocalName(), e.getPrefix(),
 e.getNamespaceURI());
 NamedNodeMap nnm = e.getAttributes();
 if (nnm != null)
 for (int i = 0; i < nnm.getLength(); i++)
 {
 Node node = nnm.item(i);
 Attr attr = e.getAttributeNode(node.getNodeName());
 System.out.printf(" Attribute %s = %s%n", attr.getName(),

attr.getValue());
 }
 NodeList nl = e.getChildNodes();
 for (int i = 0; i < nl.getLength(); i++)
 {
 Node node = nl.item(i);
 if (node instanceof Element)
 dump((Element) node);
 }
 }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Parsing and Creating XML Documents with DOM 69

 DOMDemo ’s main() method first verifies that one command-line argument (the
name of an XML document) has been specified. It then creates a document
builder factory, informs the factory that it wants a namespace-aware
document builder, and has the factory return this document builder.

 Continuing, main() parses the document into a node tree; outputs the XML
declaration’s version number, encoding, and standalone attribute values;
and recursively dumps all element nodes (starting with the root node) and
their attribute values.

 Notice the use of getNodeType() in one part of this listing and instanceof
in another part. The getNodeType() method call isn’t necessary (it’s only
present for demonstration) because instanceof can be used instead.
However, the cast from Node type to Element type in the dump() method calls
is necessary.

 Compile Listing 3-1 as follows:

 javac DOMDemo.java

 Run the resulting application to dump Listing 1-3 ’s article XML content,
as follows:

 java DOMDemo article.xml

 You should observe the following output:

 Version = 1.0
 Encoding = null
 Standalone = false

 Element: article, article, null, null
 Attribute lang = en
 Attribute title = The Rebirth of JavaFX
 Element: abstract, abstract, null, null
 Element: code-inline, code-inline, null, null
 Element: body, body, null, null

 Each Element -prefixed line presents the node name, followed by the local
name, followed by the namespace prefix, followed by the namespace URI.
The node and local names are identical because namespaces aren’t
being used. For the same reason, the namespace prefix and namespace URI
are null .

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1916-4_1#Par22
http://www.it-ebooks.info/

CHAPTER 3: Parsing and Creating XML Documents with DOM70

 Continuing, execute the following command to dump Listing 1-5 ’s
recipe content:

 java DOMDemo recipe.xml

 This time, you observe the following output, which includes namespace
information:

 Version = 1.0
 Encoding = null
 Standalone = false

 Element: h:html, html, h, http://www.w3.org/1999/xhtml
 Attribute xmlns:h = http://www.w3.org/1999/xhtml
 Attribute xmlns:r = http://www.javajeff.ca/
 Element: h:head, head, h, http://www.w3.org/1999/xhtml
 Element: h:title, title, h, http://www.w3.org/1999/xhtml
 Element: h:body, body, h, http://www.w3.org/1999/xhtml
 Element: r:recipe, recipe, r, http://www.javajeff.ca/
 Element: r:title, title, r, http://www.javajeff.ca/
 Element: r:ingredients, ingredients, r, http://www.javajeff.ca/
 Element: h:ul, ul, h, http://www.w3.org/1999/xhtml
 Element: h:li, li, h, http://www.w3.org/1999/xhtml
 Element: r:ingredient, ingredient, r, http://www.javajeff.ca/
 Attribute qty = 2
 Element: h:li, li, h, http://www.w3.org/1999/xhtml
 Element: r:ingredient, ingredient, r, http://www.javajeff.ca/
 Element: h:li, li, h, http://www.w3.org/1999/xhtml
 Element: r:ingredient, ingredient, r, http://www.javajeff.ca/
 Attribute qty = 2
 Element: h:p, p, h, http://www.w3.org/1999/xhtml
 Element: r:instructions, instructions, r, http://www.javajeff.ca/

 Listing 3-2 presents another version of the DOMDemo application that briefly
demonstrates the creation of a document tree.

 Listing 3-2. DOMDemo (Version 2)

 import javax.xml.parsers.DocumentBuilder;
 import javax.xml.parsers.DocumentBuilderFactory;
 import javax.xml.parsers.FactoryConfigurationError;
 import javax.xml.parsers.ParserConfigurationException;

 import org.w3c.dom.Document;
 import org.w3c.dom.Element;
 import org.w3c.dom.Node;
 import org.w3c.dom.NodeList;
 import org.w3c.dom.Text;

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1916-4_1#Par41
http://www.it-ebooks.info/

CHAPTER 3: Parsing and Creating XML Documents with DOM 71

 public class DOMDemo
 {
 public static void main(String[] args)
 {
 try
 {
 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 DocumentBuilder db = dbf.newDocumentBuilder();
 Document doc = db.newDocument();
 // Create the root element.
 Element root = doc.createElement("movie");
 doc.appendChild(root);
 // Create name child element and add it to the root.
 Element name = doc.createElement("name");
 root.appendChild(name);
 // Add a text element to the name element.
 Text text = doc.createTextNode("Le Fabuleux Destin d'Amélie " +

"Poulain"); name.appendChild(text);
 // Create language child element and add it to the root.
 Element language = doc.createElement("language");
 root.appendChild(language);
 // Add a text element to the language element.
 text = doc.createTextNode("français");
 language.appendChild(text);
 System.out.printf("Version = %s%n", doc.getXmlVersion());
 System.out.printf("Encoding = %s%n", doc.getXmlEncoding());
 System.out.printf("Standalone = %b%n%n", doc.getXmlStandalone());
 NodeList nl = doc.getChildNodes();
 for (int i = 0; i < nl.getLength(); i++)
 {
 Node node = nl.item(i);
 if (node.getNodeType() == Node.ELEMENT_NODE)
 dump((Element) node);
 }
 }
 catch (FactoryConfigurationError fce)
 {
 System.err.println("FCE: " + fce);
 }
 catch (ParserConfigurationException pce)
 {
 System.err.println("PCE: " + pce);
 }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Parsing and Creating XML Documents with DOM72

 static void dump(Element e)
 {
 System.out.printf("Element: %s, %s, %s, %s%n", e.getNodeName(),
e.getLocalName(), e.getPrefix(), e.getNamespaceURI());
 NodeList nl = e.getChildNodes();
 for (int i = 0; i < nl.getLength(); i++)
 {
 Node node = nl.item(i);
 if (node instanceof Element)
 dump((Element) node);
 else
 if (node instanceof Text)
 System.out.printf("Text: %s%n", ((Text) node).getWholeText());
 }
 }
 }

 DOMDemo creates Listing 1-2 ’s movie document. It uses Document ’s
 createElement() method to create the root movie element and movie ’s
 name and language child elements. It also uses Document ’s Text
createTextNode(String data) method to create text nodes that are
attached to the name and language nodes. Notice the calls to Node ’s
 appendChild() method, to append child nodes (such as name) to parent
nodes (such as movie) .

 After creating this tree, DOMDemo outputs the tree’s element nodes and other
information. This output is as follows:

 Version = 1.0
 Encoding = null
 Standalone = false

 Element: movie, null, null, null
 Element: name, null, null, null
 Text: Le Fabuleux Destin d'Amélie Poulain
 Element: language, null, null, null
 Text: français

 There’s one problem with the output: the XML declaration’s encoding
attribute hasn’t been set to ISO-8859-1 . You cannot accomplish this task via
the DOM API. Instead, you need to use the XSLT API. While exploring XSLT
in Chapter 6 , you’ll learn how to set the encoding attribute, and you’ll also
learn how to output this tree to an XML document file.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1916-4_1#Par16
http://dx.doi.org/10.1007/978-1-4842-1916-4_6
http://www.it-ebooks.info/

CHAPTER 3: Parsing and Creating XML Documents with DOM 73

 EXERCISES

 The following exercises are designed to test your understanding of Chapter 3 ’s content.

 1. Define DOM.

 2. True or false: Java 8 supports DOM Levels 1 and 2 only.

 3. Identify the 12 types of DOM nodes.

 4. How do you obtain a document builder?

 5. How do you use a document builder to parse an XML document?

 6. True or false: Document and all other org.w3c.dom interfaces
that describe different kinds of nodes are subinterfaces of the Node
interface.

 7. How do you use a document builder to create a new XML document?

 8. How would you determine if a node has children?

 9. True or false: When creating a new XML document, you can use the
DOM API to specify the XML declaration’s encoding attribute.

 10. Exercise 2-12 asked you to create a DumpUserInfo application that
uses SAX to parse the user elements in an example tomcat-users.
xml file and, for each user element, dump its username , password ,
and roles attribute values to standard output in a key = value format.
Recreate this application to use DOM.

 11. Create a DOMSearch application that’s the equivalent of Exercise
2-13’s SAXSearch application.

 12. Create a DOMValidate application based on Listing 3-1 ’s DOMDemo
source code (plus one new line that enables validation) to validate
Exercise 1-22’s books.xml content against its DTD. Execute java
DOMValidate books.xml to perform the validation. You should
observe no errors. However, if you attempt to validate books.xml
without the DTD, you should observe errors.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1916-4_3
http://www.it-ebooks.info/

CHAPTER 3: Parsing and Creating XML Documents with DOM74

 Summary
 Document Object Model (DOM) is a Java API for parsing an XML document
into an in-memory tree of nodes, and for creating an XML document from a
node tree. After a DOM parser creates a tree, an application uses the DOM
API to navigate over and extract infoset items from the tree’s nodes.

 DOM views an XML document as a tree that’s composed of several kinds of
nodes: attribute, CDATA section, comment, document, document fragment,
document type, element, entity, entity reference, notation, processing
instruction, and text.

 A DOM parser is also known as a document builder because of its dual role
in parsing and creating XML documents. You obtain a document builder
by first instantiating DocumentBuilderFactory . You then invoke the factory’s
 newDocumentBuilder() method to return the document builder.

 Call one of the document builder’s parse() methods to parse an XML
document into a node tree. Call the various document builder methods that
are prefixed with “ create ” (along with a few additional methods) to create an
XML document.

 Chapter 4 introduces the StAX API for parsing/creating XML documents.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1916-4_4
http://www.it-ebooks.info/

75© Jeff Friesen 2016
J. Friesen, Java XML and JSON, DOI 10.1007/978-1-4842-1916-4_4

 Chapter 4
 Parsing and Creating XML
Documents with StAX
 Java also includes the StAX API for parsing and creating XML documents.
This chapter introduces you to StAX.

 What Is StAX ?
 Streaming API for XML (StAX) is a Java API for parsing an XML document
sequentially from start to finish, and also for creating XML documents. StAX
was introduced by Java 6 as an alternative to SAX and DOM, and is located
midway between these “polar opposites.”

 STAX VS. SAX AND DOM

 Because Java already supports SAX and DOM for document parsing and DOM for document
creation, you might be wondering why another XML API is needed. The following points
justify StAX’s presence in core Java:

 StAX (like SAX) can be used to parse documents of arbitrary sizes. In
contrast, the maximum size of documents parsed by DOM is limited
by the available memory, which makes DOM unsuitable for mobile
devices with limited amounts of memory.

 StAX (like DOM) can be used to create documents. In contrast to DOM,
which can create documents whose maximum size is constrained
by available memory, StAX can create documents of arbitrary sizes.
SAX cannot be used to create documents.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Parsing and Creating XML Documents with StAX76

 StAX (like SAX) makes infoset items available to applications almost
immediately. In contrast, these items are not made available by DOM
until after it finishes building the tree of nodes.

 StAX (like DOM) adopts the pull model , in which the application tells
the parser when it’s ready to receive the next infoset item. This model
is based on the iterator design pattern (see http://sourcemaking.
com/design_patterns/iterator), which results in an application
that’s easier to write and debug. In contrast, SAX adopts the
push model , in which the parser passes infoset items via events
to the application, whether or not the application is ready to receive
them. This model is based on the observer design pattern (see
 http://sourcemaking.com/design_patterns/observer),
which results in an application that’s often harder to write and debug.

 Summing up, StAX can parse or create documents of arbitrary sizes, makes infoset items
available to applications almost immediately, and uses the pull model to put the application
in charge. Neither SAX nor DOM offers all of these advantages.

 Exploring StAX
 Java implements StAX through types stored in the javax.xml.stream ,
javax.xml.stream.events , and javax.xml.stream.util packages. This
section introduces you to various types from the first two packages while
showing you how to use StAX to parse and create XML documents.

 STREAM-BASED VS. EVENT-BASED READERS AND WRITERS

 StAX parsers are known as document readers , and StAX document creators are known as
 document writers . StAX classifies document readers and document writers as stream-based
or event-based.

 A stream-based reader extracts the next infoset item from an input stream via a cursor
(infoset item pointer). Similarly, a stream-based writer writes the next infoset item to an
output stream at the cursor position. The cursor can point to only one item at a time, and
always moves forward, typically by one infoset item.

 Stream-based readers and writers are appropriate when writing code for memory-
constrained environments such as Java ME because you can use them to create smaller
and more efficient code. They also offer better performance for low-level libraries, where
performance is important.

www.it-ebooks.info

http://sourcemaking.com/design_patterns/iterator
http://sourcemaking.com/design_patterns/iterator
http://sourcemaking.com/design_patterns/observer
http://www.it-ebooks.info/

CHAPTER 4: Parsing and Creating XML Documents with StAX 77

 An event-based reader extracts the next infoset item from an input stream by obtaining an
event. Similarly, an event-based writer writes the next infoset item to the stream by adding
an event to the output stream. In contrast to stream-based readers and writers, event-based
readers and writers have no concept of a cursor.

 Event-based readers and writers are appropriate for creating XML processing pipelines
(sequences of components that transform the previous component’s input and pass
the transformed output to the next component in the sequence), for mo difying an event
sequence, and more.

 Parsing XML Documents
 Document readers are obtained by calling the various “ create ” methods
that are declared in the javax.xml.stream.XMLInputFactory class. These
creational methods are organized into two categories: methods for creating
stream-based readers and methods for creating event-based readers.

 Before you can obtain a stream-based or an event-based reader, you need
to obtain an instance of the factory by calling one of the newFactory() class
methods, such as XMLInputFactory newFactory() :

 XMLInputFactory xmlif = XMLInputFactory.newFactory();

 The newFactory() methods follow an ordered lookup procedure to locate the
 XMLInputFactory implementation class. This procedure first examines the
 javax.xml.stream.XMLInputFactory system property, and lastly chooses the
name of the Java platform’s default XMLInputFactory implementation class.
If this procedure cannot find a classname, or if the class cannot be loaded
(or instantiated), the method throws an instance of the javax.xml.stream.
FactoryConfigurationError class.

 After creating the factory, call XMLInputFactory ’s void setProperty(String
name, Object value) method to set various features and properties
as necessary. For example, you might execute
xmlif.setProperty(XMLInputFactory.IS_VALIDATING, true); (true is
passed as a java.lang.Boolean object via autoboxing —see http://docs.
oracle.com/javase/tutorial/java/data/autoboxing.html) to request a

 Note You can also call the XMLInputFactory newInstance() class
method, but you might not want to do so because its same-named but
parameterized companion method has been deprecated to maintain API
consistency, and it’s possible that newInstance() will be deprecated as well.

www.it-ebooks.info

http://docs.oracle.com/javase/tutorial/java/data/autoboxing.html
http://docs.oracle.com/javase/tutorial/java/data/autoboxing.html
http://www.it-ebooks.info/

CHAPTER 4: Parsing and Creating XML Documents with StAX78

DTD-validating stream-based reader. However, the default StAX
factory implementation throws java.lang.IllegalArgumentException
because it doesn’t support DTD validation. Similarly, you might execute
 xmlif.setProperty(XMLInputFactory.IS_NAMESPACE_AWARE, true); to
request a namespace-aware event-based reader, which is supported.

 Parsing Documents with Stream-Based Readers
 A stream-based reader is created by calling one of XMLInputFactory ’s
 createXMLStreamReader() methods, such as XMLStreamReader
createXMLStreamReader(Reader reader) . These methods throw javax.
xml.stream.XMLStreamException when the stream-based reader cannot be
created.

 The following code fragment creates a stream-based reader whose source is
a file named recipe.xml :

 Reader reader = new FileReader("recipe.xml");
 XMLStreamReader xmlsr = xmlif.createXMLStreamReader(reader);

 The low-level javax.xml.stream.XMLStreamReader interface offers the most
efficient way to read XML data with StAX. This interface’s boolean hasNext()
method returns true when there is a next infoset item to obtain; otherwise,
it returns false . The int next() method advances the cursor by one infoset
item and returns an integer code that identifies this item’s type.

 Instead of comparing next() ’s return value with an integer value, you would
compare this value against a javax.xml.stream.XMLStreamConstants infoset
constant, such as START_ELEMENT or DTD — XMLStreamReader extends the
 XMLStreamConstants interface .

 Note You can also obtain the type of the infoset item that the cursor is pointing
to by calling XMLStreamReader ’s int getEventType() method . Specifying
“ Event ” in the name of this method is unfortunate because it confuses stream-
based readers with event-based readers.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Parsing and Creating XML Documents with StAX 79

 The following code fragment uses the hasNext() and next() methods to
codify a parsing loop that detects the start and end of each element:

 while (xmlsr.hasNext())
 {
 switch (xmlsr.next())
 {
 case XMLStreamReader.START_ELEMENT: // Do something at element start.

break;
 case XMLStreamReader.END_ELEMENT : // Do something at element end.
 }
 }

 XMLStreamReader also declares various methods for extracting infoset
information. For example, QName getName() returns the qualified name (as a
 javax.xml.namespace.QName instance) of the element at the cursor position
when next() returns XMLStreamReader.START_ELEMENT or XMLStreamReader.
END_ELEMENT .

 Listing 4-1 presents the source code to a StAXDemo application that reports
an XML document’s start and end elements via a stream-based reader.

 Listing 4-1. StAXDemo (version 1)

 import java.io.FileNotFoundException;
 import java.io.FileReader;

 import javax.xml.stream.FactoryConfigurationError;
 import javax.xml.stream.XMLInputFactory;
 import javax.xml.stream.XMLStreamException;
 import javax.xml.stream.XMLStreamReader;

 class StAXDemo
 {
 public static void main(String[] args)
 {
 if (args.length != 1)

 Note QName describes a qualified name as a combination of namespace URI,
local part, and prefix components. After instantiating this immutable class (via a
constructor such as QName(String namespaceURI, String localPart,
String prefix)), you can return these components by calling QName ’s
 String getNamespaceURI() , String getLocalPart() , and String
getPrefix() methods.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Parsing and Creating XML Documents with StAX80

 {
 System.err.println("usage: java StAXDemo xmlfile");
 return;
 }
 try
 {
 XMLInputFactory xmlif = XMLInputFactory.newFactory();
 XMLStreamReader xmlsr;
 xmlsr = xmlif.createXMLStreamReader(new FileReader(args[0]));
 while (xmlsr.hasNext())
 {
 switch (xmlsr.next())
 {
 case XMLStreamReader.START_ELEMENT:
 System.out.println("START_ELEMENT");
 System.out.println(" Qname = " + xmlsr.getName());
 break;
 case XMLStreamReader.END_ELEMENT:
 System.out.println("END_ELEMENT");
 System.out.println(" Qname = " + xmlsr.getName());
 }
 }
 }
 catch (FactoryConfigurationError fce)
 {
 System.err.println("FCE: " + fce);
 }
 catch (FileNotFoundException fnfe)
 {
 System.err.println("FNFE: " + fnfe);
 }
 catch (XMLStreamException xmlse)
 {
 System.err.println("XMLSE: " + xmlse);
 }
 }
 }

 After verifying the number of command-line arguments, Listing 4-1 ’s
 main() method creates a factory, uses the factory to create a stream-based
reader that obtains its XML data from the file identified by the solitary
command-line argument, and enters a parsing loop. Whenever next()
returns XMLStreamReader.START_ELEMENT or XMLStreamReader.END_ELEMENT ,
 XMLStreamReader ’s getName() method is called to return the element’s
qualified name.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Parsing and Creating XML Documents with StAX 81

 Compile Listing 4-1 as follows:

 javac StAXDemo. java

 Run the resulting application to dump Listing 1-2 ’s movie XML content,
as follows:

 java StAXDemo movie.xml

 You should observe the following output:

 START_ELEMENT
 Qname = movie
 START_ELEMENT
 Qname = name
 END_ELEMENT
 Qname = name
 START_ELEMENT
 Qname = language
 END_ELEMENT
 Qname = language
 END_ELEMENT
 Qname = movie

 Parsing Documents with Event-Based Readers
 An event-based reader is created by calling one of XMLInputFactory ’s
 createXMLEventReader() methods, such as XMLEventReader
createXMLEventReader(Reader reader) . These methods throw
 XMLStreamException when the event-based reader cannot be created.

 The following code fragment creates an event-based reader whose source is
a file named recipe.xml :

 Reader reader = new FileReader("recipe.xml");
 XMLEventReader xmler = xmlif.createXMLEventReader(reader);

 The high-level javax.xml.stream.XMLEventReader interface offers a
somewhat less efficient but more object-oriented way to read XML data with
StAX. This interface’s boolean hasNext() method returns true when there is

 Note XMLStreamReader declares a void close() method that you will
want to call to free any resources associated with this stream-based reader if
your application is designed to run for an extended period of time. Calling this
method doesn’t close the underlying input source.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1916-4_1#Par16
http://www.it-ebooks.info/

CHAPTER 4: Parsing and Creating XML Documents with StAX82

an event to obtain; otherwise, it returns false . The XMLEvent nextEvent()
method returns the next event as an object whose class implements a
subinterface of the javax.xml.stream.events.XMLEvent interface.

 The following code fragment uses the hasNext() and nextEvent() methods
to codify a parsing loop that detects the start and end of an element :

 while (xmler.hasNext())
 {
 switch (xmler.nextEvent().getEventType())
 {
 case XMLEvent.START_ELEMENT: // Do something at element start.
 break;
 case XMLEvent.END_ELEMENT : // Do something at element end.
 }
 }

 Listing 4-2 presents the source code to a StAXDemo application that reports
an XML document’s start and end elements via an event-based reader.

 Listing 4-2. StAXDemo (version 2)

 import java.io.FileNotFoundException;
 import java.io.FileReader;

 import javax.xml.stream.FactoryConfigurationError;
 import javax.xml.stream.XMLEventReader;
 import javax.xml.stream.XMLInputFactory;
 import javax.xml.stream.XMLStreamException;

 Note XMLEvent is the base interface for handling markup events. It
declares methods that apply to all subinterfaces; for example, Location
getLocation() (return a javax.xml.stream.Location object whose
 int getCharacterOffset() and other methods return location information
about the event) and int getEventType() (return the event type as an
 XMLStreamConstants infoset constant, such as START_ELEMENT and
 PROCESSING_INSTRUCTION — XMLEvent extends XMLStreamConstants).
 XMLEvent is subtyped by other javax.xml.stream.events interfaces that
describe different kinds of events (such as Attribute) in terms of methods
that return infoset item-specific information (such as Attribute ’s QName
getName() and String getValue() methods).

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Parsing and Creating XML Documents with StAX 83

 import javax.xml.stream.events.EndElement;
 import javax.xml.stream.events.StartElement;
 import javax.xml.stream.events.XMLEvent;

 class StAXDemo
 {
 public static void main(String[] args)
 {
 if (args.length != 1)
 {
 System.err.println("usage: java StAXDemo xmlfile");
 return;
 }
 try
 {
 XMLInputFactory xmlif = XMLInputFactory.newFactory();
 XMLEventReader xmler;
 xmler = xmlif.createXMLEventReader(new FileReader(args[0]));
 while (xmler.hasNext())
 {
 XMLEvent xmle = xmler.nextEvent();
 switch (xmle.getEventType())
 {
 case XMLEvent.START_ELEMENT:
 System.out.println("START_ELEMENT");
 System.out.println(" Qname = " +
 ((StartElement) xmle).getName());
 break;
 case XMLEvent.END_ELEMENT:
 System.out.println("END_ELEMENT");
 System.out.println(" Qname = " +
 ((EndElement) xmle).getName());
 }
 }
 }
 catch (FactoryConfigurationError fce)
 {
 System.err.println("FCE: " + fce);
 }
 catch (FileNotFoundException fnfe)
 {
 System.err.println("FNFE: " + fnfe);
 }
 catch (XMLStreamException xmlse)
 {
 System.err.println("XMLSE: " + xmlse);
 }
 }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Parsing and Creating XML Documents with StAX84

 After verifying the number of command-line arguments, Listing 4-2 ’s main()
method creates a factory, uses the factory to create an event-based reader
that obtains its XML data from the file identified by the solitary command-line
argument, and enters a parsing loop. Whenever nextEvent() returns
XMLEvent.START_ELEMENT or XMLEvent.END_ELEMENT , StartElement ’s or
 EndElement ’s getName() method is called to return the element’s qualified name.

 After compiling Listing 4-2 , run the resulting application to dump Listing 1-3 ’s
article XML content, as follows:

 java StAXDemo article.xml

 You should observe the following output:

 START_ELEMENT
 Qname = article
 START_ELEMENT
 Qname = abstract
 START_ELEMENT
 Qname = code-inline
 END_ELEMENT
 Qname = code-inline
 END_ELEMENT
 Qname = abstract
 START_ELEMENT
 Qname = body
 END_ELEMENT
 Qname = body
 END_ELEMENT
 Qname = article

 Note You can also create a filtered event-based reader to accept
or reject various events by calling one of XMLInputFactory ’s
 createFilteredReader() methods, such as XMLEventReader create
FilteredReader(XMLEventReader reader, EventFilter filter) .
The javax.xml.stream.EventFilter interface declares a boolean
accept(XMLEvent event) method that returns true when the specified
event is part of the event sequence; otherwise, it returns false .

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1916-4_1#Par22
http://www.it-ebooks.info/

CHAPTER 4: Parsing and Creating XML Documents with StAX 85

 Creating XML Documents
 Document writers are obtained by calling the various “ create ” methods
that are declared in the javax.xml.stream.XMLOutputFactory class. These
creational methods are organized into two categories: methods for creating
stream-based writers and methods for creating event-based writers.

 Before you can obtain a stream-based or an event-based writer, you need
to obtain an instance of the factory by calling one of the newFactory() class
methods, such as XMLOutputFactory newFactory() :

 XMLOutputFactory xmlof = XMLOutputFactory.newFactory();

 The newFactory() methods follow an ordered lookup procedure to
locate the XMLOutputFactory implementation class. This procedure first
examines the javax.xml.stream.XMLOutputFactory system property, and
lastly chooses the name of the Java platform’s default XMLOutputFactory
implementation class. If this procedure cannot find a classname, or if the
class cannot be loaded (or instantiated), the method throws an instance of
the FactoryConfigurationError class.

 After creating the factory, call XMLOutputFactory ’s void setProperty(String
name, Object value) method to set various features and properties
as necessary. The only property currently supported by all writers is
 XMLOutputFactory.IS_REPAIRING_NAMESPACES . When enabled (by passing
 true or a Boolean object, such as Boolean.TRUE , to value), the document
writer takes care of all namespace bindings and declarations, with minimal
help from the application. The output is always well formed with respect to
namespaces. However, enabling this property adds some overhead to the
job of writing the XML.

 Creating Documents with Stream-Based Writers
 A stream-based writer is created by calling one of XMLOutputFactory ’s
 createXMLStreamWriter() methods, such as XMLStreamWriter
createXMLStreamWriter(Writer writer) . These methods throw
 XMLStreamException when the stream-based writer cannot be created.

 Note You can also call the XMLOutputFactory newInstance() class
method, but you might not want to do so because its same-named but
parameterized companion method has been deprecated to maintain API
consistency, and it’s possible that newInstance() will be deprecated as well.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Parsing and Creating XML Documents with StAX86

 The following code fragment creates a stream-based writer whose
destination is a file named recipe.xml :

 Writer writer = new FileWriter("recipe.xml");
 XMLStreamWriter xmlsw = xmlof.createXMLStreamWriter(writer);

 The low-level XMLStreamWriter interface declares several methods for
writing infoset items to the destination. The following list describes a few of
these methods:

 void close() closes this stream-based writer and frees
any associated resources. The underlying writer is not
closed.

 void flush() writes any cached data to the underlying
writer.

 void setPrefix(String prefix, String uri)
identifies the namespace prefix to which the uri
value is bound. This prefix is used by variants of
the writeStartElement() , writeAttribute() , and
 writeEmptyElement() methods that take namespace
arguments but not prefixes. Also, it remains valid until
the writeEndElement() invocation that corresponds to
the last writeStartElement() invocation. This method
doesn’t create any output.

 void writeAttribute(String localName, String
value) writes the attribute identified by localName and
having the specified value to the underlying writer. A
namespace prefix isn’t included. This method escapes
the & , < , > , and " characters.

 void writeCharacters(String text) writes text ’s
characters to the underlying writer. This method
escapes the & , < , and > characters.

 void writeEndDocument() closes any start tags and
writes corresponding end tags to the underlying writer.

 void endElement() writes an end tag to the underlying
writer, relying on the internal state of the stream-based
writer to determine the tag’s prefix and local name.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Parsing and Creating XML Documents with StAX 87

 void writeNamespace(String prefix, String
namespaceURI) writes a namespace to the underlying
writer. This method must be called to ensure that the
namespace specified by setPrefix() and duplicated
in this method call is written; otherwise, the resulting
document will not be well formed from a namespace
perspective.

 void writeStartDocument() writes the XML declaration
to the underlying writer.

 void writeStartElement(String namespaceURI, String
localName) writes a start tag with the arguments passed
to namespaceURI and localName to the underlying writer.

 Listing 4-3 presents the source code to a StAXDemo application that
creates a recipe.xml file with many of Listing 1-5 ’s infoset items via a
 stream-based writer .

 Listing 4-3. StAXDemo (version 3)

 import java.io.FileWriter;
 import java.io.IOException;

 import javax.xml.stream.FactoryConfigurationError;
 import javax.xml.stream.XMLOutputFactory;
 import javax.xml.stream.XMLStreamException;
 import javax.xml.stream.XMLStreamWriter;

 class StAXDemo
 {
 public static void main(String[] args)
 {
 try
 {
 XMLOutputFactory xmlof = XMLOutputFactory.newFactory();
 XMLStreamWriter xmlsw;
 xmlsw = xmlof.createXMLStreamWriter(new FileWriter("recipe.xml"));
 xmlsw.writeStartDocument();
 xmlsw.setPrefix("h", "http://www.w3.org/1999/xhtml");
 xmlsw.writeStartElement("http://www.w3.org/1999/xhtml", "html");
 xmlsw.writeNamespace("h", "http://www.w3.org/1999/xhtml");
 xmlsw.writeNamespace("r", "http://www.javajeff.ca/");
 xmlsw.writeStartElement("http://www.w3.org/1999/xhtml", "head");
 xmlsw.writeStartElement("http://www.w3.org/1999/xhtml", "title");
 xmlsw.writeCharacters("Recipe");
 xmlsw.writeEndElement();
 xmlsw.writeEndElement();
 xmlsw.writeStartElement("http://www.w3.org/1999/xhtml", "body");

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1916-4_1#Par41
http://www.it-ebooks.info/

CHAPTER 4: Parsing and Creating XML Documents with StAX88

 xmlsw.setPrefix("r", "http://www.javajeff.ca/");
 xmlsw.writeStartElement("http://www.javajeff.ca/", "recipe");
 xmlsw.writeStartElement("http://www.javajeff.ca/", "title");
 xmlsw.writeCharacters("Grilled Cheese Sandwich");
 xmlsw.writeEndElement();
 xmlsw.writeStartElement("http://www.javajeff.ca/",
 "ingredients");
 xmlsw.setPrefix("h", "http://www.w3.org/1999/xhtml");
 xmlsw.writeStartElement("http://www.w3.org/1999/xhtml", "ul");
 xmlsw.writeStartElement("http://www.w3.org/1999/xhtml", "li");
 xmlsw.setPrefix("r", "http://www.javajeff.ca/");
 xmlsw.writeStartElement("http://www.javajeff.ca/", "ingredient");
 xmlsw.writeAttribute("qty", "2");
 xmlsw.writeCharacters("bread slice");
 xmlsw.writeEndElement();
 xmlsw.setPrefix("h", "http://www.w3.org/1999/xhtml");
 xmlsw.writeEndElement();
 xmlsw.writeEndElement();
 xmlsw.setPrefix("r", "http://www.javajeff.ca/");
 xmlsw.writeEndElement();
 xmlsw.writeEndDocument();
 xmlsw.flush();
 xmlsw.close();
 }
 catch (FactoryConfigurationError fce)
 {
 System.err.println("FCE: " + fce);
 }
 catch (IOException ioe)
 {
 System.err.println("IOE: " + ioe);
 }
 catch (XMLStreamException xmlse)
 {
 System.err.println("XMLSE: " + xmlse);
 }
 }
 }

 Although Listing 4-3 is fairly easy to follow, you might be somewhat
confused by the duplication of namespace URIs in the setPrefix()
and writeStartElement() method calls. For example, you might be
wondering about the duplicate URIs in xmlsw.setPrefix("h", " http://
www.w3.org/1999/xhtml "); and its xmlsw.writeStartElement(" http://
www.w3.org/1999/xhtml ", "html"); successor.

www.it-ebooks.info

http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml
http://www.it-ebooks.info/

CHAPTER 4: Parsing and Creating XML Documents with StAX 89

 The setPrefix() method call creates a mapping between a namespace
prefix (the value) and a URI (the key) without generating any output.
The writeStartElement() method call specifies the URI key, which this
method uses to access the prefix value, which it then prepends (with a
colon character) to the html start tag’s name before writing this tag to the
underlying writer .

 Compile Listing 4-3 and run the resulting application. You should discover a
 recipe.xml file in the current directory.

 Creating Documents with Event-Based Writers
 An event-based writer is created by calling one of XMLOutputFactory ’s
 createXMLEventWriter() methods, such as XMLEventWriter
createXMLEventWriter(Writer writer) . These methods throw
 XMLStreamException when the event-based writer cannot be created.

 The following code fragment creates an event-based writer whose
destination is a file named recipe.xml :

 Writer writer = new FileWriter("recipe.xml");
 XMLEventWriter xmlew = xmlof.createXMLEventWriter(writer);

 The high-level XMLEventWriter interface declares the void add(XMLEvent
event) method for adding events that describe infoset items to the output
stream implemented by the underlying writer. Each argument passed to
 event is an instance of a class that implements a subinterface of XMLEvent
(such as Attribute and StartElement).

 To save you the trouble of implementing these interfaces, StAX provides
 javax.xml.stream.EventFactory . This utility class declares various factory
methods for creating XMLEvent subinterface implementations. For example,
 Comment createComment(String text) returns an object whose class
implements the javax.xml.stream.events.Comment subinterface of XMLEvent .

 Tip XMLEventWriter also declares a void add(XMLEventReader
reader) method that you can use to chain an XMLEventReader instance to
an XMLEventWriter instance.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Parsing and Creating XML Documents with StAX90

 Because these factory methods are declared abstract , you must first obtain
an instance of the EventFactory class. You can easily accomplish this task
by invoking EventFactory ’s XMLEventFactory newFactory() class method,
as follows:

 XMLEventFactory xmlef = XMLEventFactory.newFactory();

 You can then obtain an XMLEvent subinterface implementation, as follows:

 XMLEvent comment = xmlef.createComment("ToDo");

 Listing 4-4 presents the source code to a StAXDemo application that
creates a recipe.xml file with many of Listing 1-5 ’s infoset items via an
 event-based writer .

 Listing 4-4. StAXDemo (version 4)

 import java.io.FileWriter;
 import java.io.IOException;

 import java.util.Iterator;

 import javax.xml.stream.FactoryConfigurationError;
 import javax.xml.stream.XMLEventFactory;
 import javax.xml.stream.XMLEventWriter;
 import javax.xml.stream.XMLOutputFactory;
 import javax.xml.stream.XMLStreamException;

 import javax.xml.stream.events.Attribute;
 import javax.xml.stream.events.Namespace;
 import javax.xml.stream.events.XMLEvent;

 class StAXDemo
 {
 public static void main(String[] args)
 {
 try
 {
 XMLOutputFactory xmlof = XMLOutputFactory.newFactory();
 XMLEventWriter xmlew;
 xmlew = xmlof.createXMLEventWriter(new FileWriter("recipe.xml"));
 final XMLEventFactory xmlef = XMLEventFactory.newFactory();
 XMLEvent event = xmlef.createStartDocument();
 xmlew.add(event);
 Iterator<Namespace> nsIter;
 nsIter = new Iterator<Namespace>()

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1916-4_1#Par41
http://www.it-ebooks.info/

CHAPTER 4: Parsing and Creating XML Documents with StAX 91

 {
 int index = 0;
 Namespace[] ns;
 {
 ns = new Namespace[2];
 ns[0] = xmlef.
 createNamespace("h",
 "http://www.w3.org/1999/xhtml");
 ns[1] = xmlef.
 createNamespace("r",
 "http://www.javajeff.ca/");
 }
 @Override
 public boolean hasNext()
 {
 return index != 2;
 }
 @Override
 public Namespace next()
 {
 return ns[index++];
 }
 @Override
 public void remove()
 {
 throw new UnsupportedOperationException();
 }
 };
 event = xmlef.createStartElement("h",
 "http://www.w3.org/1999/xhtml",
 "html", null, nsIter);
 xmlew.add(event);
 event = xmlef.createStartElement("h",
 "http://www.w3.org/1999/xhtml",
 "head");
 xmlew.add(event);
 event = xmlef.createStartElement("h",
 "http://www.w3.org/1999/xhtml",
 "title");
 xmlew.add(event);
 event = xmlef.createCharacters("Recipe");
 xmlew.add(event);
 event = xmlef.createEndElement("h",
 "http://www.w3.org/1999/xhtml",
 "title");
 xmlew.add(event);

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Parsing and Creating XML Documents with StAX92

 event = xmlef.createEndElement("h",
 "http://www.w3.org/1999/xhtml",
 "head");
 xmlew.add(event);
 event = xmlef.createStartElement("h",
 "http://www.w3.org/1999/xhtml",
 "body");
 xmlew.add(event);
 event = xmlef.createStartElement("r",
 "http://www.javajeff.ca/",
 "recipe");
 xmlew.add(event);
 event = xmlef.createStartElement("r",
 "http://www.javajeff.ca/",
 "title");
 xmlew.add(event);
 event = xmlef.createCharacters("Grilled Cheese Sandwich");
 xmlew.add(event);
 event = xmlef.createEndElement("r",
 "http://www.javajeff.ca/",
 "title");
 xmlew.add(event);
 event = xmlef.createStartElement("r",
 "http://www.javajeff.ca/",
 "ingredients");
 xmlew.add(event);
 event = xmlef.createStartElement("h",
 "http://www.w3.org/1999/xhtml",
 "ul");
 xmlew.add(event);
 event = xmlef.createStartElement("h",
 "http://www.w3.org/1999/xhtml",
 "li");
 xmlew.add(event);
 Iterator<Attribute> attrIter;
 attrIter = new Iterator<Attribute>()
 {
 int index = 0;
 Attribute[] attrs;
 {
 attrs = new Attribute[1];
 attrs[0] = xmlef.createAttribute("qty", "2");
 }
 @Override
 public boolean hasNext()
 {
 return index != 1;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Parsing and Creating XML Documents with StAX 93

 @Override
 public Attribute next()
 {
 return attrs[index++];
 }
 @Override
 public void remove()
 {
 throw new UnsupportedOperationException();
 }
 };
 event = xmlef.createStartElement("r",
 "http://www.javajeff.ca/",
 "ingredient", attrIter, null);
 xmlew.add(event);
 event = xmlef.createCharacters("bread slice");
 xmlew.add(event);
 event = xmlef.createEndElement("r",
 "http://www.javajeff.ca/",
 "ingredient");
 xmlew.add(event);
 event = xmlef.createEndElement("h",
 "http://www.w3.org/1999/ xhtml ",
 "li");
 xmlew.add(event);
 event = xmlef.createEndElement("h",
 "http://www.w3.org/1999/xhtml",
 "ul");
 xmlew.add(event);
 event = xmlef.createEndElement("r",
 "http://www.javajeff.ca/",
 "ingredients");
 xmlew.add(event);
 event = xmlef.createEndElement("r",
 "http://www.javajeff.ca/",
 "recipe");
 xmlew.add(event);
 event = xmlef.createEndElement("h",
 "http://www.w3.org/1999/xhtml",
 "body");
 xmlew.add(event);
 event = xmlef.createEndElement("h",
 "http://www.w3.org/1999/xhtml",
 "html");
 xmlew.add(event);
 xmlew.flush();
 xmlew.close();
 }

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Parsing and Creating XML Documents with StAX94

 catch (FactoryConfigurationError fce)
 {
 System.err.println("FCE: " + fce);
 }
 catch (IOException ioe)
 {
 System.err.println("IOE: " + ioe);
 }
 catch (XMLStreamException xmlse)
 {
 System.err.println("XMLSE: " + xmlse);
 }
 }
 }

 Listing 4-4 should be fairly easy to follow; it’s the event-based
equivalent of Listing 4-3 . Notice that this listing includes the creation of
 java.util.Iterator instances from anonymous classes that implement
this interface. These iterators are created to pass namespaces or attributes
to XMLEventFactory ’s StartElement createStartElement(String prefix,
String namespaceUri, String localName, Iterator attributes, Iterator
namespaces) method. (You can pass null to this parameter when an iterator
isn’t applicable; for example, when the start tag has no attributes.)

 Compile Listing 4-4 and run the resulting application. You should discover a
 recipe.xml file in the current directory.

 EXERCISES

 The following exercises are designed to test your understanding of Chapter 4 ’s content.

 1. Define StAX.

 2. What packages make up the StAX API?

 3. True or false: A stream-based reader extracts the next infoset item
from an input stream by obtaining an event.

 4. How do you obtain a document reader? How do you obtain a
document writer?

 5. What does a document writer do when you call XMLOutputFactory ’s
 void setProperty(String name, Object value) method
with XMLOutputFactory.IS_REPAIRING_NAMESPACES as the
property name and true as the value?

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1916-4_4
http://www.it-ebooks.info/

CHAPTER 4: Parsing and Creating XML Documents with StAX 95

 6. Create a ParseXMLDoc application that uses a StAX stream-based
reader to parse its single command-line argument, an XML document.
After creating this reader, the application should verify that a
START_DOCUMENT infoset item has been detected, and then enter a
loop that reads the next item and uses a switch statement to output
a message corresponding to the item that has been read: ATTRIBUTE ,
 CDATA , CHARACTERS , COMMENT , DTD , END_ELEMENT ,
 ENTITY_DECLARATION , ENTITY_REFERENCE , NAMESPACE ,
 NOTATION_DECLARATION , PROCESSING_INSTRUCTION , SPACE ,
or START_ELEMENT . When START_ELEMENT is detected, output
this element’s name and local name, and output the local names
and values of all attributes. The loop ends when the END_DOCUMENT
infoset item has been detected. Explicitly close the stream reader
followed by the file reader upon which it’s based. Test this application
with Exercise 1-21’s books.xml file.

 Summary
 StAX is a Java API for parsing an XML document sequentially from start
to finish, and also for creating XML documents. Java implements StAX
through types stored in the javax.xml.stream , javax.xml.stream.events ,
and javax.xml.stream.util packages.

 StAX parsers are known as document readers, and StAX document creators
are known as document writers. StAX classifies document readers and
document writers as stream-based or event-based.

 Document readers are obtained by calling the various “ create ” methods
that are declared in the XMLInputFactory class. Document writers are
obtained by calling the various “ create ” methods that are declared in the
 XMLOutputFactory class.

 Chapter 5 introduces Java’s XPath API for simplifying DOM node access.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1916-4_5
http://www.it-ebooks.info/

97© Jeff Friesen 2016
J. Friesen, Java XML and JSON, DOI 10.1007/978-1-4842-1916-4_5

 Chapter 5
 Selecting Nodes
with XPath
 Java includes an XPath API for simplifying access to a DOM tree’s nodes.
This chapter introduces you to XPath.

 What Is XPath ?
 XPath is a nonXML declarative query language (defined by the W3C) for
selecting an XML document’s infoset items as one or more nodes. For
example, you can use XPath to locate Listing 1-1 ’s third ingredient element
and return this element node .

 As well as simplifying access to a DOM tree’s nodes, XPath is commonly
used in the context of XSLT (discussed in Chapter 6) where it’s typically
employed to select (via XPath expressions) those input document elements
that are to be copied to an output document. Java 8 supports XPath 1.0,
which is assigned package javax.xml.xpath .

 XPath Language Primer
 XPath regards an XML document as a tree of nodes that starts
from a root node. This language recognizes seven kinds of nodes: element,
attribute, text, namespace, processing instruction, comment, and document.
It doesn’t recognize CDATA sections, entity references, or document type
declarations.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1916-4_1#Par6
http://dx.doi.org/10.1007/978-1-4842-1916-4_6
http://www.it-ebooks.info/

CHAPTER 5: Selecting Nodes with XPath 98

 Location Path Expressions
 XPath provides location path expressions for selecting nodes. A location
path expression locates nodes via a sequence of steps starting from the
 context node (the root node or some other document node that’s the current
node). The returned set of nodes, which is known as a nodeset , might be
empty, or it might contain one or more nodes.

 The simplest location path expression selects the document’s root node and
consists of a single forward slash character (/). The next simplest location
path expression is the name of an element, which selects all child elements
of the context node that have that name. For example, ingredient refers
to all ingredient child elements of the context node in Listing 1-1 ’s recipe
document. This XPath expression returns a set of three ingredient nodes
when the context node is ingredients . However, if recipe or instructions
happened to be the context node, ingredient wouldn’t return any nodes
(ingredient is a child of ingredients only). When an expression starts with
a forward slash (/), the expression represents an absolute path that starts
from the root node. For example, expression /movie selects all movie child
elements of the root node in Listing 1-2 ’s movie document.

 Attributes are also handled by location path expressions. To select an
element’s attribute, specify @ followed by the attribute’s name. For example,
 @qty selects the qty attribute node of the context node.

 In most cases, you’ll work with root nodes, element nodes, and attribute
nodes. However, you might also need to work with namespace nodes,
text nodes, processing-instruction nodes, and comment nodes. Unlike
namespace nodes, which are typically handled by XSLT, you’ll more likely
need to process comments, text, and processing instructions. XPath
provides comment() , text() , and processing-instruction() functions for
selecting comment, text, and processing-instruction nodes.

 The comment() and text() functions don’t require arguments because
comment and text nodes don’t have names. Each comment is a separate
comment node, and each text node specifies the longest run of text not
interrupted by a tag. The processing-instruction() function may be called

 Note A DOM tree’s root node (an org.w3c.dom.Document object) isn’t
the same as a document’s root element. The DOM tree’s root node contains
the entire document, including the root element, any comments or processing
instructions that appear before the root element’s start tag, and any comments
or processing instructions that appear after the root element’s end tag.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1916-4_1#Par6
http://dx.doi.org/10.1007/978-1-4842-1916-4_1#Par16
http://www.it-ebooks.info/

CHAPTER 5: Selecting Nodes with XPath 99

with an argument that identifies the target of the processing instruction. If
called with no argument, all of the context node’s processing-instruction
child nodes are selected.

 XPath provides three wildcards for selecting unknown nodes:

 * matches any element node regardless of the node’s
type. It doesn’t match attributes, text nodes, comments,
or processing-instruction nodes. When you place a
namespace prefix before the * , only elements belonging
to that namespace are matched.

 node() is a function that matches all nodes.

 @* matches all attribute nodes.

 XPath lets you combine steps into compound paths by using the / character
to separate them. For paths beginning with / , the first path step is relative
to the root node; otherwise, the first path step is relative to another context
node. For example, /movie/name starts with the root node, selects all movie
element children of the root node, and selects all name children of the
selected movie nodes. If you want to return all text nodes of the selected
 name elements, you specify /movie/name/text() .

 Compound paths can include // to select nodes from all descendents
of the context node (including the context node). When placed at the
start of an expression, // selects nodes from the entire tree. For example,
//ingredient selects all ingredient nodes in the tree.

 As with file systems that let you identify the current directory with a single
period (.) and its parent directory with a double period (..), you can specify
a single period to represent the current node and a double period to
represent the parent of the current node. (You would typically use a single
period in XSLT to indicate that you want to access the value of the currently
matched element.)

 It might be necessary to narrow the selection of nodes returned by an XPath
expression. For example, expression /recipe/ingredients/ingredient
returns all ingredient nodes, but perhaps you only want to return the first
 ingredient node. You can narrow the selection by including predicates in
the location path.

 Note XPath lets you perform multiple selections by using the vertical bar (|).
For example, author/*|publisher/* selects the children of author and
the children of publisher , and *|@* matches all elements and attributes, but
doesn’t match text, comment, or processing-instruction nodes.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Selecting Nodes with XPath 100

 A predicate is a square bracket-delimited Boolean expression that’s tested
against each selected node. If the expression evaluates to true , that node
is included in the set of nodes returned by the XPath expression; otherwise,
the node isn’t included in the set. For example, /recipe/ingredients/
ingredient[1] selects the first ingredient element that’s a child of the
 ingredients element.

 Predicates can include predefined functions (such as last() and
 position()), operators (such as - , < , and =), and other items. Consider the
following examples:

 /recipe/ingredients/ingredient[last()] selects the
last ingredient element that’s a child of the ingredients
element.

 /recipe/ingredients/ingredient[last() - 1] selects
the next-to-last ingredient element that’s a child of the
 ingredients element.

 /recipe/ingredients/ingredient[position() < 3]
selects the first two ingredient elements that are
children of the ingredients element.

 //ingredient[@qty] selects all ingredient elements (no
matter where they’re located) that have qty attributes.

 //ingredient[@qty='1'] or //ingredient[@qty="1"]
selects all ingredient elements (no matter where they’re
located) that have qty attributes with value 1 .

 Although predicates are supposed to be Boolean expressions , the predicate
might not evaluate to a Boolean value. For example, it could evaluate to a
number or a string—XPath supports Boolean, number (IEEE 754 double
precision floating-point values), and string expression types as well as a
location path expression’s nodeset type. If a predicate evaluates to a

 Note XPath predefines several functions for use with nodesets: last()
returns a number identifying the last node, position() returns a number
identifying a node’s position, count() returns the number of nodes in its
nodeset argument, id() selects elements by their unique IDs and returns
a nodeset of these elements, local-name() returns the local part of the
qualified name of the first node in its nodeset argument, namespace-uri()
returns the namespace part of the qualified name of the first node in its nodeset
argument, and name() returns the qualified name of the first node in its
nodeset argument.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Selecting Nodes with XPath 101

number, XPath converts that number to true when it equals the context
node’s position; otherwise, XPath converts that number to false . If a
predicate evaluates to a string, XPath converts that string to true when the
string isn’t empty; otherwise, XPath converts that string to false . Finally, if a
predicate evaluates to a nodeset, XPath converts that nodeset to true when
the nodeset is nonempty; otherwise, XPath converts that nodeset to false .

 General Expressions
 Location path expressions (which return nodesets) are one kind of XPath
expression. XPath also supports general expressions that evaluate to
Boolean (such as predicates), number, or string type; for example,
 position() = 2 , 6.8 , and "Hello" . General expressions are often used in XSLT.

 XPath Boolean values can be compared via relational operators < , <= , > ,
 >= , = , and != . Boolean expressions can be combined by using operators
 and and or . Also, XPath predefines the following functions :

 boolean() returns a Boolean value for a number, string,
or nodeset.

 not() returns true when its Boolean argument is false
and vice versa.

 true() returns true .

 false() returns false .

 lang() returns true or false depending on whether the
language of the context node (as specified by xml:lang
attributes) is the same as or is a sublanguage of the
language specified by the argument string.

 Note The previously presented location path expression examples
demonstrate XPath’s abbreviated syntax. However, XPath also supports an
unabbreviated syntax that’s more descriptive of what’s happening and is based
on an axis specifier , which indicates the navigation direction within the XML
document’s tree representation. For example, where /movie/name selects
all movie child elements of the root node followed by all name child elements
of the movie elements using the abbreviated syntax, /child::movie/
child::name accomplishes the same task with the expanded syntax.
Check out Wikipedia’s “XPath” entry (http://en.wikipedia.org/wiki/
XPath_1.0) for more information.

www.it-ebooks.info

http://en.wikipedia.org/wiki/XPath_1.0
http://en.wikipedia.org/wiki/XPath_1.0
http://www.it-ebooks.info/

CHAPTER 5: Selecting Nodes with XPath 102

 XPath numeric values can be manipulated via operators + , - , * , div , and mod
(remainder); the forward slash cannot be used for division because it’s used
to separate location steps. All five operators behave like their Java language
counterparts. XPath also predefines the following functions:

 number() converts its argument to a number.

 sum() returns the sum of the numeric values represented
by the nodes in its nodeset argument.

 floor() returns the largest (closest to positive infinity)
number that’s not greater than its number argument and
that’s an integer.

 ceiling() returns the smallest (closest to negative
infinity) number that’s not less than its number argument
and that’s an integer.

 round() returns the number that’s closest to the
argument and that’s an integer. When there are two such
numbers, the one closest to positive infinity is returned.

 XPath strings are ordered character sequences that are enclosed in single
quotes or double quotes. A string literal cannot contain the same kind of quote
that’s also used to delimit the string. For example, a string that contains a single
quote cannot be delimited with single quotes. XPath provides the = and !=
operators for comparing strings. XPath also predefines the following functions :

 string() converts its argument to a string.

 concat() returns a concatenation of its string arguments.

 starts-with() returns true when its first argument
string starts with its second argument string (and
otherwise returns false).

 contains() returns true when its first argument string
contains its second argument string (and otherwise
returns false).

 substring-before() returns the substring of its first
argument string that precedes the first occurrence of
its second argument string in its first argument string or
the empty string when its first argument string doesn’t
contain its second argument string.

 substring-after() returns the substring of its first
argument string that follows the first occurrence of its
second argument string in its first argument string or
the empty string when its first argument string doesn’t
contain its second argument string .

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Selecting Nodes with XPath 103

 substring() returns the substring of its first (string)
argument starting at the position specified in its second
(number) argument with length specified in its third
(number) argument.

 string-length() returns the number of characters in its
string argument (or the length of the context node when
converted to a string in the absence of an argument).

 normalize-space() returns the argument string with
whitespace normalized by stripping leading and trailing
whitespace and replacing sequences of whitespace
characters by a single space (or performing the same
action on the context node when converted to a string
in the absence of an argument).

 translate() returns its first argument string with
occurrences of characters in its second argument string
replaced by the character at the corresponding position
in its third argument string.

 XPath and DOM
 Suppose you need someone in your home to purchase a bag of sugar.
You would ask this person to “Please buy me some sugar.” Alternatively,
you could say the following: “Please open the front door. Walk down to the
sidewalk. Turn left. Walk up the sidewalk for three blocks. Turn right. Walk
up the sidewalk one block. Enter the store. Go to aisle 7. Walk two meters
down the aisle. Pick up a bag of sugar. Walk to a checkout counter. Pay for
the sugar. Retrace your steps home.” Most people would expect to receive
the shorter instruction, and would probably have you committed to an
institution if you made a habit out of providing the longer set of instructions.

 Traversing a DOM tree of nodes is similar to providing the longer sequence
of instructions. In contrast, XPath lets you traverse this tree via a succinct
instruction. To see this difference for yourself, consider a scenario where you
have an XML-based contacts document that lists your various professional
contacts. Listing 5-1 presents a trivial example of such a document .

 Listing 5-1. XML-Based Contacts Database

 <?xml version="1.0"?>
 <contacts>
 <contact>
 <name>John Doe</name>
 <city>Chicago</city>
 <city>Denver</city>
 </contact>

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Selecting Nodes with XPath 104

 <contact>
 <name>Jane Doe</name>
 <city>New York</city>
 </contact>
 <contact>
 <name>Sandra Smith</name>
 <city>Denver</city>
 <city>Miami</city>
 </contact>
 <contact>
 <name>Bob Jones</name>
 <city>Chicago</city>
 </contact>
 </contacts>

 Listing 5-1 reveals a simple XML grammar consisting of a contacts root
element that contains a sequence of contact elements. Each contact
element contains one name element and one or more city elements (various
contacts travel frequently and spend a lot of time in each city). To keep the
example simple, I’m not providing a DTD or a schema.

 Suppose you want to locate and output the names of all contacts that live at
least part of each year in Chicago. Listing 5-2 presents the source code to a
 DOMSearch application that accomplishes this task with the DOM API.

 Listing 5-2. Locating Chicago Contacts with the DOM API

 import java.io.IOException;

 import java.util.ArrayList;
 import java.util.List;

 import javax.xml.parsers.DocumentBuilder;
 import javax.xml.parsers.DocumentBuilderFactory;
 import javax.xml.parsers.FactoryConfigurationError;
 import javax.xml.parsers.ParserConfigurationException;

 import org.w3c.dom.Document;
 import org.w3c.dom.Element;
 import org.w3c.dom.Node;
 import org.w3c.dom.NodeList;

 import org.xml.sax.SAXException;

 public class DOMSearch
 {
 public static void main(String[] args)
 {

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Selecting Nodes with XPath 105

 try
 {
 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 DocumentBuilder db = dbf.newDocumentBuilder();
 Document doc = db.parse("contacts.xml");
 List<String> contactNames = new ArrayList<String>();
 NodeList contacts = doc.getElementsByTagName("contact");
 for (int i = 0; i < contacts.getLength(); i++)
 {
 Element contact = (Element) contacts.item(i);
 NodeList cities = contact.getElementsByTagName("city");
 boolean chicago = false;
 for (int j = 0; j < cities.getLength(); j++)
 {
 Element city = (Element) cities.item(j);
 NodeList children = city.getChildNodes();
 StringBuilder sb = new StringBuilder();
 for (int k = 0; k < children.getLength(); k++)
 {
 Node child = children.item(k);
 if (child.getNodeType() == Node.TEXT_NODE)
 sb.append(child.getNodeValue());
 }
 if (sb.toString().equals("Chicago"))
 {
 chicago = true;
 break;
 }
 }
 if (chicago)
 {
 NodeList names = contact.getElementsByTagName("name");
 contactNames.add(names.item(0).getFirstChild().
 getNodeValue());
 }
 }
 for (String contactName: contactNames)
 System.out.println(contactName);
 }
 catch (IOException ioe)
 {
 System.err.println("IOE: " + ioe);
 }
 catch (SAXException saxe)
 {
 System.err.println("SAXE: " + saxe);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Selecting Nodes with XPath 106

 catch (FactoryConfigurationError fce)
 {
 System.err.println("FCE: " + fce);
 }
 catch (ParserConfigurationException pce)
 {
 System.err.println("PCE: " + pce);
 }
 }
 }

 After parsing contacts.xml and building the DOM tree, main() uses Document ’s
 getElementsByTagName() method to return an org.w3c.dom.NodeList of
 contact element nodes. For each member of this list, main() extracts the
 contact element node, and uses this node with getElementsByTagName() to
return a NodeList of the contact element node’s city element nodes.

 For each member of the cities list, main() extracts the city element node,
and uses this node with getElementsByTagName() to return a NodeList of the
 city element node’s child nodes. There’s only a single child text node in this
example, but the presence of a comment or processing instruction would
increase the number of child nodes. For example, <city>Chicago<!--The
windy city--></city> increases the number of child nodes to 2.

 If the child’s node type indicates that it’s a text node, the child node’s value
(obtained via getNodeValue()) is stored in a string builder (Only one child
node is stored in the string builder in this example.) If the builder’s contents
indicate that Chicago has been found, the chicago flag is set to true and
execution leaves the cities loop.

 If the chicago flag is set when the cities loop exits, the current contact
element node’s getElementsByTagName() method is called to return a
 NodeList of the contact element node’s name element nodes (of which
there should only be one, and which I could enforce through a DTD or
schema). It’s now a simple matter to extract the first item from this list, call
 getFirstChild() on this item to return the text node (I assume that only text
appears between <name> and </name>), and call getNodeValue() on the text
node to obtain its value, which is then added to the contactNames list.

 Compile Listing 5-2 as follows:

 javac DOMSearch.java

 Run the resulting application as follows:

 java DOMSearch

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Selecting Nodes with XPath 107

 You should observe the following output:

 John Doe
 Bob Jones

 Traversing the DOM’s tree of nodes is a tedious exercise at best and is
error-prone at worst. Fortunately, XPath can greatly simplify this situation.

 Before writing the XPath equivalent of Listing 5-2 , it helps to
define a location path expression. For this example, that expression is
//contact[city = "Chicago"]/name/text() , which uses a predicate to
select all contact nodes that contain a Chicago city node, then select all
child name nodes from these contact nodes, and finally select all child text
nodes from these name nodes.

 Listing 5-3 presents the source code to an XPathSearch application that uses
this XPath expression and Java’s XPath API, which consists of various types
in the javax.xml.xpath package, to locate Chicago contacts.

 Listing 5-3. Locating Chicago Contacts with the XPath API

 import java.io.IOException;

 import javax.xml.parsers.DocumentBuilder;
 import javax.xml.parsers.DocumentBuilderFactory;
 import javax.xml.parsers.FactoryConfigurationError;
 import javax.xml.parsers.ParserConfigurationException;

 import javax.xml.xpath.XPath;
 import javax.xml.xpath.XPathConstants;
 import javax.xml.xpath.XPathException;
 import javax.xml.xpath.XPathExpression;
 import javax.xml.xpath.XPathFactory;

 import org.w3c.dom.Document;
 import org.w3c.dom.NodeList;

 import org.xml.sax.SAXException;

 public class XPathSearch
 {
 public static void main(String[] args)
 {
 try
 {
 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 DocumentBuilder db = dbf.newDocumentBuilder();
 Document doc = db.parse("contacts.xml");
 XPathFactory xpf = XPathFactory.newInstance();

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Selecting Nodes with XPath 108

 XPath xp = xpf.newXPath();
 XPathExpression xpe;
 xpe = xp.compile("//contact[city = 'Chicago']/name/text()");
 Object result = xpe.evaluate(doc, XPathConstants.NODESET);
 NodeList nl = (NodeList) result;
 for (int i = 0; i < nl.getLength(); i++)
 System.out.println(nl.item(i).getNodeValue());
 }
 catch (IOException ioe)
 {
 System.err.println("IOE: " + ioe);
 }
 catch (SAXException saxe)
 {
 System.err.println("SAXE: " + saxe);
 }
 catch (FactoryConfigurationError fce)
 {
 System.err.println("FCE: " + fce);
 }
 catch (ParserConfigurationException pce)
 {
 System.err.println("PCE: " + pce);
 }
 catch (XPathException xpe)
 {
 System.err.println("XPE: " + xpe);
 }
 }
 }

 After parsing contacts.xml and building the DOM tree, main() instantiates
 javax.xml.xpath.XPathFactory by calling its XPathFactory newInstance()
method. The resulting XPathFactory instance can be used to set features
(such as secure processing, to process XML documents securely) by
calling its void setFeature(String name, boolean value) method,
create a javax.xml.xpath.XPath object by calling its XPath newXPath()
method, and more.

 XPath declares an XPathExpression compile(String expression)
method for compiling the specified expression (an XPath expression)
and returning the compiled expression as an instance of a class that
implements the javax.xml.xpath.XPathExpression interface. This method
throws javax.xml.xpath.XPathExpressionException (a subclass of
 javax.xml.xpath.XPathException) when the expression cannot be compiled.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Selecting Nodes with XPath 109

 XPath also declares several overloaded evaluate() methods for immediately
evaluating an expression and returning the result. Because it can take
time to evaluate an expression, you might choose to compile a complex
expression first (to boost performance) when you plan to evaluate this
expression many times.

 After compiling the expression, main() calls XPathExpression ’s
Object evaluate(Object item, QName returnType) method to evaluate
the expression. The first argument is the context node for the expression,
which happens to be a Document instance in the example. The second
argument specifies the kind of object returned by evaluate() and is set to
 javax.xml.xpath.XPathConstants.NODESET , a qualified name for the XPath
1.0 nodeset type, which is implemented via DOM’s NodeList interface.

 After casting Object to NodeList , main() uses this interface’s getLength()
and item() methods to traverse the nodelist. For each item in this list,
 getNodeValue() is called to return the node’s value, which is subsequently
output.

 Compile Listing 5-3 as follows:

 javac XPathSearch.java

 Run the resulting application as follows:

 java XPathSearch

 You should observe the following output:

 John Doe
 Bob Jones

 Note The XPath API maps XPath’s Boolean, number, string, and nodeset types
to Java’s java.lang.Boolean , java.lang.Double , java.lang.String ,
and NodeList types, respectively. When calling an evaluate() method,
you specify XPath types via XPathConstants constants (BOOLEAN , NUMBER ,
 STRING , and NODESET), and the method takes care of returning an object of
the appropriate type. XPathConstants also declares a NODE constant, which
doesn’t map to a Java type. Instead, it’s used to tell evaluate() that you only
want the resulting nodeset to contain a single node.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Selecting Nodes with XPath 110

 Advanced XPath
 The XPath API provides three advanced features to overcome limitations with
the XPath 1.0 language. These features are namespace contexts, extension
functions and function resolvers, and variables and variable resolvers.

 Namespace Contexts
 When an XML document’s elements belong to a namespace (including the
default namespace), any XPath expression that queries the document must
account for this namespace. For nondefault namespaces, the expression
doesn’t need to use the same namespace prefix; it only needs to use the
same URI. However, when a document specifies the default namespace, the
expression must use a prefix even though the document doesn’t use a prefix .

 To appreciate this situation, suppose Listing 5-1 ’s <contacts> tag
was declared as follows to introduce a default namespace: <contacts
xmlns=" http://www.javajeff.ca/ "> . Furthermore, suppose that
Listing 5-3 included dbf.setNamespaceAware(true); after the line that
instantiates DocumentBuilderFactory . If you were to run the revised
 XPathSearch application against the revised contacts.xml file, you wouldn’t
see any output.

 You can correct this problem by implementing javax.xml.namespace.
NamespaceContext to map an arbitrary prefix to the namespace URI, and
then registering this namespace context with the XPath instance. Listing 5-4
presents a minimal implementation of the NamespaceContext interface.

 Listing 5-4. Minimally Implementing NamespaceContext

 import java.util.Iterator;

 import javax.xml.XMLConstants;

 import javax.xml.namespace.NamespaceContext;

 public class NSContext implements NamespaceContext
 {
 @Override
 public String getNamespaceURI(String prefix)
 {
 if (prefix == null)
 throw new IllegalArgumentException("prefix is null");
 else
 if (prefix.equals("tt"))
 return "http://www.javajeff.ca/";

www.it-ebooks.info

http://www.javajeff.ca/
http://www.it-ebooks.info/

CHAPTER 5: Selecting Nodes with XPath 111

 else
 return null;
 }

 @Override
 public String getPrefix(String uri)
 {
 return null;
 }

 @Override
 public Iterator getPrefixes(String uri)
 {
 return null;
 }
 }

 The getNamespaceURI() method is passed a prefix argument that
must be mapped to a URI. When this argument is null , a java.lang.
IllegalArgumentException object must be thrown (according to the
Java documentation). When the argument is the desired prefix value, the
namespace URI is returned.

 After instantiating the XPath class, you instantiate NSContext and
register this object with the XPath object by calling XPath ’s void setNamespac
eContext(NamespaceContext nsContext) method. For example, you specify
xp.setNamespaceContext(new NSContext()); after XPath xp = xpf.newXPath();
to register the NSContext object with xp .

 All that’s left to accomplish is to apply the prefix to the XPath expression,
which now becomes //tt:contact[tt:city='Chicago']/tt:name/text()
because the contact , city , and name elements are now part of the default
namespace, whose URI is mapped to arbitrary prefix tt in the NSContext
instance’s getNamespaceURI() method.

 Compile and run the revised XPathSearch application and you’ll see
John Doe followed by Bob Jones on separate lines.

 Extension Functions and Function Resolvers
 The XPath API lets you define functions (via Java methods) that extend
XPath’s predefined function repertoire by offering new features not already
provided. These Java methods cannot have side effects because XPath
functions can be evaluated multiple times and in any order. Furthermore,
they cannot override predefined functions; a Java method with the same
name as a predefined function is never executed.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Selecting Nodes with XPath 112

 Suppose you modify Listing 5-1 ’s XML document to include a birth element
that records a contact’s date of birth information in YYYY-MM-DD format.
Listing 5-5 shows the resulting XML file.

 Listing 5-5. XML-Based Contacts Database with Birth Information

 <?xml version="1.0"?>
 <contacts xmlns="http://www.javajeff.ca/">
 <contact>
 <name>John Doe</name>
 <birth>1953-01-02</birth>
 <city>Chicago</city>
 <city>Denver</city>
 </contact>
 <contact>
 <name>Jane Doe</name>
 <birth>1965-07-12</birth>
 <city>New York</city>
 </contact>
 <contact>
 <name>Sandra Smith</name>
 <birth>1976-11-22</birth>
 <city>Denver</city>
 <city>Miami</city>
 </contact>
 <contact>
 <name>Bob Jones</name>
 <birth>1958-03-14</birth>
 <city>Chicago</city>
 </contact>
 </contacts>

 Now suppose that you want to select contacts based on birth information.
For example, you only want to select contacts whose date of birth is greater
than 1960-01-01 . Because XPath doesn’t provide this function for you,
you decide to declare a date() extension function. Your first step is to
declare a Date class that implements the javax.xml.xpath.XPathFunction
interface—see Listing 5-6 .

 Listing 5-6. An Extension Function for Returning a Date as a Milliseconds Value

 import java.text.ParsePosition;
 import java.text.SimpleDateFormat;

 import java.util.List;

 import javax.xml.xpath.XPathFunction;
 import javax.xml.xpath.XPathFunctionException;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Selecting Nodes with XPath 113

 import org.w3c.dom.Node;
 import org.w3c.dom.NodeList;

 public class Date implements XPathFunction
 {
 private final static ParsePosition POS = new ParsePosition(0);

 private SimpleDateFormat sdf = new SimpleDateFormat("yyyy-mm-dd");

 @Override
 public Object evaluate(List args) throws XPathFunctionException
 {
 if (args.size() != 1)
 throw new XPathFunctionException("Invalid number of arguments");
 String value;
 Object o = args.get(0);
 if (o instanceof NodeList)
 {
 NodeList list = (NodeList) o;
 value = list.item(0).getTextContent();
 }
 else
 if (o instanceof String)
 value = (String) o;
 else
 throw new XPathFunctionException("Cannot convert argument type");
 POS.setIndex(0);
 return sdf.parse(value, POS).getTime();
 }
 }

 XPathFunction declares a single Object evaluate(List args) method that
XPath calls when it needs to execute the extension function. evaluate()
is passed a java.util.List of objects that describe the arguments that
were passed to the extension function by the XPath evaluator. Furthermore,
this method returns a value of a type appropriate to the extension function
(date() ’s long integer return type is compatible with XPath’s number type).

 The date() extension function is intended to be called with a single
argument, which is either of type nodeset or of type string. This extension
function throws javax.xml.xpath.XPathFunctionException when the
number of arguments (as indicated by the list’s size) isn’t equal to 1.

 When the argument is of type NodeList (a nodeset), the textual content
of the first node in the nodeset is obtained; this content is assumed to
be a date value in YYYY-MM-DD format (for brevity, I’m overlooking error
checking). When the argument is of type String , it’s assumed to be a
date value in this format. Any other type of argument results in a thrown
 XPathFunctionException object.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Selecting Nodes with XPath 114

 Date comparison is simplified by converting the date to a milliseconds value.
This task is accomplished with the help of the java.text.SimpleDateFormat
and java.text.ParsePosition classes. After resetting the ParsePosition
object’s index (via setIndex(0)), SimpleDateFormat ’s Date parse(String text,
ParsePosition pos) method is called to parse the string according to the
pattern established when SimpleDateFormat was instantiated, and starting from
the parse position identified by the ParsePosition index. This index is reset
before the parse() method call because parse() updates this object’s index.

 The parse() method returns a java.util.Date object whose long getTime()
method is called to return the number of milliseconds represented by the
parsed date.

 After implementing the extension function, you need to create a
 function resolver , which is an object whose class implements the javax.xml.
xpath.XPathFunctionResolver interface, and which tells the XPath evaluator about
the extension function (or functions). Listing 5-7 presents the DateResolver class.

 Listing 5-7. A Function Resolver for the date() Extension Function

 import javax.xml.namespace.QName;

 import javax.xml.xpath.XPathFunction;
 import javax.xml.xpath.XPathFunctionResolver;

 public class DateResolver implements XPathFunctionResolver
 {
 private static final QName name = new QName("http://www.javajeff.ca/",
 "date", "tt");

 @Override
 public XPathFunction resolveFunction(QName name, int arity)
 {
 if (name.equals(this.name) && arity == 1)
 return new Date();
 return null;
 }
 }

 XPathFunctionResolver declares a single XPathFunction
resolveFunction(QName functionName, int arity) method that XPath calls
to identify the name of the extension function and obtain an instance of a
Java object whose evaluate() method implements the function.

 The functionName parameter identifies the function’s qualified name
because all extension functions must live in a namespace and must be
referenced via a prefix (which doesn’t have to match the prefix in the
document). As a result, you must also bind a namespace to the prefix via

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Selecting Nodes with XPath 115

a namespace context (as demonstrated previously). The arity parameter
identifies the number of arguments that the extension function accepts
and is useful when overloading extension functions. If the functionName
and arity values are acceptable, the extension function’s Java class is
instantiated and returned; otherwise, null is returned.

 Finally, the function resolver class is instantiated and registered with the
XPath object by calling XPath ’s void setXPathFunctionResolver(XPathFunct
ionResolver resolver) method.

 The following excerpt from Version 3 of this chapter’s XPathSearch
application (in this book’s code archive) demonstrates all of these tasks in
order to use date() in XPath expression //tt:contact[tt:date(tt:birth) >
tt:date('1960-01-01')]/tt:name/text() , which returns only those
contacts whose date of birth is greater than 1960-01-01 (Jane Doe followed
by Sandra Smith):

 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 dbf.setNamespaceAware(true);
 DocumentBuilder db = dbf.newDocumentBuilder();
 Document doc = db.parse("contacts.xml");
 XPathFactory xpf = XPathFactory.newInstance();
 XPath xp = xpf.newXPath();
 xp.setNamespaceContext(new NSContext());
 xp.setXPathFunctionResolver(new DateResolver());
 XPathExpression xpe;
 String expr;
 expr = "//tt:contact[tt:date(tt:birth) > tt:date('1960-01-01')]" +
 "/tt:name/text()";
 xpe = xp.compile(expr);
 Object result = xpe.evaluate(doc, XPathConstants.NODESET);
 NodeList nl = (NodeList) result;
 for (int i = 0; i < nl.getLength(); i++)
 System.out.println(nl.item(i).getNodeValue());

 Compile and run the revised XPathSearch application and you’ll see Jane Doe
followed by Sandra Smith on separate lines.

 Variables and Variable Resolvers
 All of the previously specified XPath expressions have been based on literal
text. XPath also lets you specify variables to parameterize these expressions
in a similar manner to using variables with SQL prepared statements.

 A variable appears in an expression by prefixing its name (which may or
may not have a namespace prefix) with a $. For example, /a/b[@c = $d]/
text() is an XPath expression that selects all a elements of the root node,

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Selecting Nodes with XPath 116

and all of a ’s b elements that have c attributes containing the value identified
by variable $d , and returns the text of these b elements. This expression
corresponds to Listing 5-8 ’s XML document.

 Listing 5-8. A Simple XML Document for Demonstrating an XPath Variable

 <?xml version="1.0"?>
 <a>
 <b c="x">b1
 b2
 <b c="y">b3
 b4
 <b c="x">b5

 To specify variables whose values are obtained during expression
evaluation, you must register a variable resolver with your XPath object.
A variable resolver is an instance of a class that implements the
javax.xml.xpath.XPathVariableResolver interface in terms of its
 Object resolveVariable(QName variableName) method, and which tells the
evaluator about the variable (or variables).

 The variableName parameter contains the qualified name of a variable’s
name. (Remember that a variable name may be prefixed with a namespace
prefix.) This method verifies that the qualified name appropriately names the
variable and then returns its value.

 After creating the variable resolver, you register it with the XPath object by
calling XPath ’s void setXPathVariableResolver(XPathVariableResolver
resolver) method.

 The following excerpt from Version 4 of this chapter’s XPathSearch
application (in this book’s code archive) demonstrates all of these tasks in
order to specify $d in XPath expression /a/b[@c=$d]/text() , which returns
 b1 followed by b5 . It assumes that Listing 5-8 is stored in a file named
 example.xml :

 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 DocumentBuilder db = dbf.newDocumentBuilder();
 Document doc = db.parse("example.xml");
 XPathFactory xpf = XPathFactory.newInstance();
 XPath xp = xpf.newXPath();
 XPathVariableResolver xpvr;
 xpvr = new XPathVariableResolver()
 {
 @Override
 public Object resolveVariable(QName varname)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Selecting Nodes with XPath 117

 {
 if (varname.getLocalPart().equals("d"))
 return "x";
 else
 return null;
 }
 };
 xp.setXPathVariableResolver(xpvr);
 XPathExpression xpe;
 xpe = xp.compile("/a/b[@c = $d]/text()");
 Object result = xpe.evaluate(doc, XPathConstants.NODESET);
 NodeList nl = (NodeList) result;
 for (int i = 0; i < nl.getLength(); i++)
 System.out.println(nl.item(i).getNodeValue());

 Compile and run the revised XPathSearch application and you’ll see b1
followed by b5 on separate lines.

 EXERCISES

 The following exercises are designed to test your understanding of Chapter 5 ’s content.

 1. Define XPath.

 2. Where is XPath commonly used?

 3. Identify the seven kinds of nodes that XPath recognizes.

 4. True or false: XPath recognizes CDATA sections.

 5. Describe what XPath provides for selecting nodes.

 6. True or false: In a location path expression, you must prefix an attribute
name with the @ symbol.

 7. Identify the functions that XPath provides for selecting comment, text,
and processing-instruction nodes.

 8. What does XPath provide for selecting unknown nodes?

 9. How do you perform multiple selections?

 10. What is a predicate?

 11. Identify the functions that XPath provides for working with nodesets.

 Caution When you qualify a variable name with a namespace prefix (as in
 $ns:d), you must also register a namespace context to resolve the prefix.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1916-4_5
http://www.it-ebooks.info/

CHAPTER 5: Selecting Nodes with XPath 118

 12. Identify the three advanced features that XPath provides to overcome
limitations with the XPath 1.0 language.

 13. True or false: The XPath API maps XPath’s number type to
java.lang.Float .

 14. Modify Listing 5-1 ’s contacts document by changing <name>John
Doe</name> to <Name>John Doe</Name> . Because you no longer
see John Doe in the output when you run Listing 5-3 ’s XPathSearch
application (you only see Bob Jones), modify this application’s location
path expression so that you see John Doe followed by Bob Jones .

 Summary
 XPath is a nonXML declarative query language for selecting an XML
document’s infoset items as one or more nodes. It simplifies access to a
DOM tree’s nodes and is also useful with XSLT where it’s typically employed
to select those input document elements (via XPath expressions) that are to
be copied to an output document.

 XPath regards an XML document as a tree of nodes that starts from a root
node. This language recognizes seven kinds of nodes: element, attribute,
text, namespace, processing instruction, comment, and document. It
doesn’t recognize CDATA sections, entity references, or document type
declarations.

 XPath provides location path expressions for selecting nodes. A location
path expression locates nodes via a sequence of steps starting from the
context node (the root node or some other document node that’s the current
node). The returned set of nodes, which is known as a nodeset, might be
empty, or it might contain one or more nodes.

 Location path expressions (which return nodesets) are one kind of XPath
expression. XPath also supports general expressions that evaluate to
Boolean (such as predicates), number, or string type; for example,
position() = 2 , 6.8 , and "Hello" . General expressions are often used in XSLT.

 The XPath API provides advanced features to overcome limitations with the
XPath 1.0 language: namespace contexts (which map arbitrary namespace
prefixes to namespace URIs), extension functions and function resolvers
(for defining functions that extend XPath’s predefined function repertoire),
and variables and variable resolvers (for parameterizing XPath expressions).

 Chapter 6 introduces you to XSLT for transforming XML documents.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1916-4_6
http://www.it-ebooks.info/

119© Jeff Friesen 2016
J. Friesen, Java XML and JSON, DOI 10.1007/978-1-4842-1916-4_6

 Chapter 6
 Transforming XML
Documents with XSLT
 Along with SAX, DOM, StAX, and XPath, Java includes the XSLT API, for
transforming XML documents. This chapter introduces you to XSLT.

 What Is XSLT?
 Extensible Stylesheet Language (XSL) is a family of languages for
transforming and formatting XML documents. XSL Transformation (XSLT) is
the XSL language for transforming XML documents to other formats, such
as HTML (for presenting an XML document’s content via a web browser).

 XSLT accomplishes its work by using XSLT processors and stylesheets . An
 XSLT processor is a software component that applies an XSLT stylesheet
(an XML-based template consisting of content and transformation
instructions) to an input document (without modifying the document), and
copies the transformed result to a result tree, which can be output to a file
or output stream, or even piped into another XSLT processor for additional
transformations. Figure 6-1 illustrates the transformation process.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Transforming XML Documents with XSLT120

 The beauty of XSLT is that you don’t need to develop custom software
applications to perform the transformations. Instead, you simply create an
XSLT stylesheet and input it along with the XML document needing to be
transformed to an XSLT processor .

 Exploring the XSLT API
 Java implements XSLT through the types in the javax.xml.transform ,
 javax.xml.transform.dom , javax.xml.transform.sax , javax.xml.transform.
stax , and javax.xml.transform.stream packages. The javax.xml.
transform package defines the generic APIs for processing transformation
instructions and for performing a transformation from a source (where the
XSLT processor’s input originates) to a result (where the processor’s output
is sent). The remaining packages define the APIs for obtaining different kinds
of sources and results.

 The javax.xml.transform.TransformerFactory class is the starting point
for working with XSLT. You instantiate TransformerFactory by calling one of
its newInstance() methods . For example, the following code fragment uses
 TransformerFactory ’s TransformerFactory newInstance() class method to
create the factory:

 TransformerFactory tf = TransformerFactory.newInstance();

 Behind the scenes, newInstance() follows an ordered lookup procedure
to identify the TransformerFactory implementation class to load. This
procedure first examines the javax.xml.transform.TransformerFactory
system property, and lastly chooses the Java platform’s default
 TransformerFactory implementation class when no other class is found.
If an implementation class isn’t available (perhaps the class identified by
the javax.xml.transform.TransformerFactory system property doesn’t
exist) or cannot be instantiated, newInstance() throws an instance of the
 javax.xml.transform.TransformerFactoryConfigurationError class.
Otherwise, it instantiates the class and returns its instance.

 Figure 6-1. An XSLT processor transforms an XML input document into a result tree

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Transforming XML Documents with XSLT 121

 After obtaining a TransformerFactory object, you can call various
configuration methods to configure the factory. For example, you could
call TransformerFactory ’s void setFeature(String name, boolean value)
method to enable a feature (such as secure processing, to transform XML
documents securely).

 Following the factory’s configuration, call one of its newTransformer() methods
to create and return instances of the javax.xml.transform.Transformer
class. The following code fragment calls Transformer newTransformer()
to accomplish this task:

 Transformer t = tf.newTransformer();

 The noargument newTransformer() method copies source input to the
destination without making any changes. This kind of transformation is
known as the identity transformation .

 To change input, specify a stylesheet . Accomplish this task by calling the
factory’s Transformer newTransformer(Source source) method, where the
 javax.xml.transform.Source interface describes a source for the stylesheet.
The following code fragment accomplishes this task:

 Transformer t;
 t = tf.newTransformer(new StreamSource(new FileReader("recipe.xsl")));

 This code fragment creates a transformer that obtains a stylesheet from a
file named recipe.xsl via a javax.xml.transform.stream.StreamSource
object connected to a file reader. It’s customary to use the .xsl or .xslt
extension to identify XSLT stylesheet files .

 The newTransformer() methods throw javax.xml.transform.
TransformerConfigurationException when they cannot return a Transformer
instance that corresponds to the factory configuration.

 After obtaining a Transformer instance, you can call its void
setOutputProperty(String name, String value) method to influence a
transformation. The javax.xml.transform.OutputKeys class declares
constants for frequently used keys. For example, OutputKeys.METHOD is the
key for specifying the method for outputting the result tree (as XML, HTML,
plain text, or something else).

 Tip To set multiple properties in a single method call, create a java.util.
Properties object and pass this object as an argument to Transformer ’s
 void setOutputProperties(Properties prop) method. Properties
set by setOutputProperty() and setOutputProperties() override the
stylesheet’s xsl:output instruction settings.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Transforming XML Documents with XSLT122

 Before you can perform a transformation, you need to obtain instances
of classes that implement the Source and javax.xml.transform.
Result interfaces. You then pass these instances to Transformer ’s void
transform(Source xmlSource, Result outputTarget) method, which throws
an instance of the javax.xml.transform.TransformerException class when
a problem arises during the transformation.

 The following code fragment shows you how to obtain a source and a result,
and perform the transformation :

 Source source = new DOMSource(doc);
 Result result = new StreamResult(System.out);
 t.transform(source, result);

 The first line instantiates the javax.xml.transform.dom.DOMSource class,
which acts as a holder for a DOM tree rooted in the org.w3c.dom.Document
object specified by doc . The second line instantiates the javax.xml.
transform.stream.StreamResult class, which acts as a holder for the
standard output stream, to which the transformed data items are sent. The
third line reads data from the Source object and outputs transformed data to
the Result object.

 TRANSFORMER FACTORY FEATURE DETECTION

 Although Java’s default transformers support the various Source and Result
implementation classes that are located in the javax.xml.transform.dom , javax.xml.
transform.sax , javax.xml.transform.stax , and javax.xml.transform.stream
packages, a nondefault transformer (perhaps specified via the javax.xml.transform.
TransformerFactory system property) might be more limited. For this reason, each
 Source and Result implementation class declares a FEATURE string constant that can
be passed to TransformerFactory ’s boolean getFeature(String name) method.
This method returns true when the Source or Result implementation class is supported.
For example, tf.getFeature(StreamSource.FEATURE) returns true when stream
sources are supported.

 The javax.xml.transform.sax.SAXTransformerFactory class provides additional
SAX-specific factory methods that can be used only when the TransformerFactory object is
also an instance of this class. To help you make the determination, SAXTransformerFactory
also declares a FEATURE string constant that you can pass to getFeature() . For example,
 tf.getFeature(SAXTransformerFactory.FEATURE) returns true when the transformer
factory referenced from tf is an instance of SAXTransformerFactory .

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Transforming XML Documents with XSLT 123

 Most XML API interface objects and the factories that return them are not
thread-safe. This situation also applies to transformers. Although you can
reuse the same transformer multiple times on the same thread, you cannot
access the transformer from multiple threads.

 This problem can be solved for transformers by using instances of classes
that implement the javax.xml.transform.Templates interface. The Java
documentation for the interface has this to say: Templates must be
threadsafe for a given instance over multiple threads running concurrently,
and may be used multiple times in a given session. As well as promoting
thread safety, Templates instances can improve performance because they
represent compiled XSLT stylesheets .

 The following code fragment shows how you might perform a transformation
without a Templates object :

 TransformerFactory tf = TransformerFactory.newInstance();
 StreamSource ssStyleSheet = new StreamSource(new FileReader("recipe.xsl"));
 Transformer t = tf.newTransformer(ssStyleSheet);
 t.transform(new DOMSource(doc), new StreamResult(System.out));

 You cannot access t ’s transformer from multiple threads. In contrast, the
following code fragment shows you how to construct a transformer from a
 Templates object so that it can be accessed from multiple threads:

 TransformerFactory tf = TransformerFactory.newInstance();
 StreamSource ssStyleSheet = new StreamSource(new FileReader("recipe.xsl"));
 Templates te = tf.newTemplates(ssStylesheet);
 Transformer t = te.newTransformer();
 t.transform(new DOMSource(doc), new StreamResult(System.out));

 The differences are the call to Transformerfactory ’s Templates
newTemplates(Source source) method to create and return objects whose
classes implement the Templates interface, and the call to this interface’s
 Transformer newTransformer() method to obtain the Transformer object.

 Demonstrating the XSLT API
 Listing 3-2 presents a DOMDemo application that creates a DOM document
tree based on Listing 1-2 ’s movie XML document. Unfortunately, you cannot
use the DOM API to assign ISO-8859-1 to the XML declaration’s encoding
attribute. Also, you cannot use DOM to output this tree to a file or other
destination. However, you can overcome these problems with XSLT, as
demonstrated in Listing 6-1 .

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1916-4_1#Par16
http://www.it-ebooks.info/

CHAPTER 6: Transforming XML Documents with XSLT124

 Listing 6-1. Assigning ISO-8859-1 to the XML declaration’s encoding Attribute via XSLT

 import javax.xml.parsers.DocumentBuilder;
 import javax.xml.parsers.DocumentBuilderFactory;
 import javax.xml.parsers.FactoryConfigurationError;
 import javax.xml.parsers.ParserConfigurationException;

 import javax.xml.transform.OutputKeys;
 import javax.xml.transform.Result;
 import javax.xml.transform.Source;
 import javax.xml.transform.Transformer;
 import javax.xml.transform.TransformerConfigurationException;
 import javax.xml.transform.TransformerException;
 import javax.xml.transform.TransformerFactory;
 import javax.xml.transform.TransformerFactoryConfigurationError;

 import javax.xml.transform.dom.DOMSource;

 import javax.xml.transform.stream.StreamResult;

 import org.w3c.dom.Document;
 import org.w3c.dom.Element;
 import org.w3c.dom.Text;

 public class XSLTDemo
 {
 public static void main(String[] args)
 {
 try
 {
 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 DocumentBuilder db = dbf.newDocumentBuilder();
 Document doc = db.newDocument();
 doc.setXmlStandalone(true);
 // Create the root element.
 Element root = doc.createElement("movie");
 doc.appendChild(root);
 // Create name child element and add it to the root.
 Element name = doc.createElement("name");
 root.appendChild(name);
 // Add a text element to the name element.
 Text text =
 doc.createTextNode("Le Fabuleux Destin d'Amélie Poulain");
 name.appendChild(text);
 // Create language child element and add it to the root.
 Element language = doc.createElement("language");
 root.appendChild(language);
 // Add a text element to the language element.
 text = doc.createTextNode("français");
 language.appendChild(text);

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Transforming XML Documents with XSLT 125

 // Use a transformer to output this tree with ISO-8859-1 encoding
 // to the standard output stream.
 TransformerFactory tf = TransformerFactory.newInstance();
 Transformer t = tf.newTransformer();
 t.setOutputProperty(OutputKeys.METHOD, "xml");
 t.setOutputProperty(OutputKeys.ENCODING, "ISO-8859-1");
 t.setOutputProperty(OutputKeys.INDENT, "yes");
 t.setOutputProperty("{http://xml.apache.org/xslt}indent-amount", "3");
 Source source = new DOMSource(doc);
 Result result = new StreamResult(System.out);
 t.transform(source, result);
 }
 catch (FactoryConfigurationError fce)
 {
 System.err.println("FCE: " + fce);
 }
 catch (ParserConfigurationException pce)
 {
 System.err.println("PCE: " + pce);
 }
 catch (TransformerConfigurationException tce)
 {
 System.err.println("TCE: " + tce);
 }
 catch (TransformerException te)
 {
 System.err.println("TE: " + te);
 }
 catch (TransformerFactoryConfigurationError tfce)
 {
 System.err.println("TFCE: " + tfce);
 }
 }
 }

 Listing 6-1 first creates a DOM tree. It then creates a transformer factory
and obtains a transformer from this factory. Four properties are then set on
the transformer, and a stream source and result are obtained. Finally, the
 transform() method is called to transform source content to the result.

 The four properties set on the transformer influence the transformation.
 OutputKeys.METHOD specifies that the result tree will be written out as XML,
 OutputKeys.ENCODING specifies that ISO-8859-1 will be the value of the XML
declaration’s encoding attribute, and OutputKeys.INDENT specifies that the
transformer can output additional whitespace.

 The additional whitespace is used to output the XML across multiple lines
instead of on a single line. Because it would be nice to indicate the number
of spaces for indenting lines of XML, and because this information cannot

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Transforming XML Documents with XSLT126

be specified via an OutputKeys property, the nonstandard "{ http://xml.
apache.org/xslt}indent-amount " property (property keys begin with brace-
delimited URIs) is used to specify an appropriate value (such as 3 spaces).
It’s okay to specify this property in this application because Java’s default
XSLT implementation is based on Apache’s XSLT implementation .

 Compile Listing 6-1 as follows:

 javac XSLTDemo.java

 Run the resulting application as follows:

 java XSLTDemo

 You should observe the following output:

 <?xml version="1.0" encoding="ISO-8859-1"?><movie>
 <name>Le Fabuleux Destin d'Amélie Poulain</name>
 <language>français</language>
 </movie>

 Although this example shows you how to output a DOM tree and also how
to specify an encoding value for the XML declaration of the resulting XML
document, the example doesn’t really demonstrate the power of XSLT
because (apart from setting the encoding attribute value) it performs an
identity transformation. A more interesting example would take advantage of
a stylesheet.

 Consider a scenario where you want to convert Listing 1-1 ’s recipe
document to an HTML document for presentation via a web browser.
Listing 6-2 presents a stylesheet that a transformer can use to perform the
 conversion .

 Listing 6-2. An XSLT Stylesheet for Converting a Recipe Document to an HTML Document

 <?xml version="1.0"?>
 <xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="/recipe">
 <html>
 <head>
 <title>Recipes</title>
 </head>

 <body>
 <h2>
 <xsl:value-of select="normalize-space(title)"/>
 </h2>

www.it-ebooks.info

http://xml.apache.org/xslt}indent-amount
http://xml.apache.org/xslt}indent-amount
http://dx.doi.org/10.1007/978-1-4842-1916-4_1#Par6
http://www.it-ebooks.info/

CHAPTER 6: Transforming XML Documents with XSLT 127

 <h3>Ingredients</h3>

 <xsl:for-each select="ingredients/ingredient">

 <xsl:value-of select="normalize-space(text())"/>
 <xsl:if test="@qty"> (<xsl:value-of select="@qty"/>)</xsl:if>

 </xsl:for-each>

 <h3>Instructions</h3>

 <xsl:value-of select="normalize-space(instructions)"/>
 </body>
 </html>
 </xsl:template>
 </xsl:stylesheet>

 Listing 6-2 reveals that a stylesheet is an XML document. Its root element
is stylesheet , which identifies the standard namespace for stylesheets. It’s
conventional to specify xsl as the namespace prefix for referring to XSLT
instruction elements, although any prefix could be specified.

 A stylesheet is based on template elements that control how an element
and its content are converted. A template focuses on a single element that’s
identified via the match attribute. This attribute’s value is an XPath location
path expression, which matches all recipe child nodes of the root element
node. Regarding Listing 1-1 , only the single recipe root element will be
matched and selected .

 A template element can contain literal text and stylesheet instructions.
For example, the value-of instruction in <xsl:value-of select=
"normalize-space(title)"/> specifies that the value of the title element
(which is a child of the recipe context node) is to be retrieved and copied
to the output. Because this text is surrounded by space and newline
characters, XPath’s normalize-string() function is called to remove this
whitespace before the title is copied.

 XSLT is a powerful declarative language that includes control flow
instructions such as for-each and if . In the context of <xsl:for-each
select="ingredients/ingredient"> , for-each causes all of the ingredient
child nodes of the ingredients node to be selected and processed one at a
time. For each node, <xsl:value-of select="normalize-space(text())"/>
is executed to copy the content of the ingredient node, normalized to
remove whitespace. Also, the if instruction in <xsl:if test="@qty">
(<xsl:value-of select="@qty"/>) determines if the ingredient node has a
 qty attribute, and (if so) copies a space character followed by this attribute’s
value (surrounded by parentheses) to the output.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1916-4_1#Par6
http://www.it-ebooks.info/

CHAPTER 6: Transforming XML Documents with XSLT128

 Listing 6-3 presents the source code to an XSLTDemo application that shows
you how to write the Java code to process Listing 1-1 via Listing 6-2 ’s
 stylesheet .

 Listing 6-3. Transforming Recipe XML via a Stylesheet

 import java.io.FileReader;
 import java.io.IOException;

 import javax.xml.parsers.DocumentBuilder;
 import javax.xml.parsers.DocumentBuilderFactory;
 import javax.xml.parsers.FactoryConfigurationError;
 import javax.xml.parsers.ParserConfigurationException;

 import javax.xml.transform.OutputKeys;
 import javax.xml.transform.Result;
 import javax.xml.transform.Source;
 import javax.xml.transform.Transformer;
 import javax.xml.transform.TransformerConfigurationException;
 import javax.xml.transform.TransformerException;
 import javax.xml.transform.TransformerFactory;
 import javax.xml.transform.TransformerFactoryConfigurationError;

 import javax.xml.transform.dom.DOMSource;

 import javax.xml.transform.stream.StreamResult;
 import javax.xml.transform.stream.StreamSource;

 import org.w3c.dom.Document;

 import org.xml.sax.SAXException;

 public class XSLTDemo
 {
 public static void main(String[] args)
 {
 try
 {
 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 DocumentBuilder db = dbf.newDocumentBuilder();

 Note There’s a lot more to XSLT than can be demonstrated in this short
example. To learn more about XSLT, I recommend that you check out Beginning
XSLT 2.0 From Novice to Professional (www.apress.com/9781590593240),
an Apress book written by Jeni Tennison. XSLT 2.0 is a superset of XSLT 1.0, and
Java 8 supports XSLT 1.0.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1916-4_1#Par6
http://www.apress.com/9781590593240
http://www.it-ebooks.info/

CHAPTER 6: Transforming XML Documents with XSLT 129

 Document doc = db.parse("recipe.xml");
 TransformerFactory tf = TransformerFactory.newInstance();
 StreamSource ssStyleSheet;
 ssStyleSheet = new StreamSource(new FileReader("recipe.xsl"));
 Transformer t = tf.newTransformer(ssStyleSheet);
 t.setOutputProperty(OutputKeys.METHOD, "html");
 t.setOutputProperty(OutputKeys.INDENT, "yes");
 Source source = new DOMSource(doc);
 Result result = new StreamResult(System.out);
 t.transform(source, result);
 }
 catch (IOException ioe)
 {
 System.err.println("IOE: " + ioe);
 }
 catch (FactoryConfigurationError fce)
 {
 System.err.println("FCE: " + fce);
 }
 catch (ParserConfigurationException pce)
 {
 System.err.println("PCE: " + pce);
 }
 catch (SAXException saxe)
 {
 System.err.println("SAXE: " + saxe);
 }
 catch (TransformerConfigurationException tce)
 {
 System.err.println("TCE: " + tce);
 }
 catch (TransformerException te)
 {
 System.err.println("TE: " + te);
 }
 catch (TransformerFactoryConfigurationError tfce)
 {
 System.err.println("TFCE: " + tfce);
 }
 }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Transforming XML Documents with XSLT130

 Listing 6-3 is similar in structure to Listing 6-1 . It reveals that the output
method is set to html , and it also reveals that the resulting HTML should be
indented. However, the output is only partly indented, as shown here:

 <html>
 <head>
 <META http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title>Recipes</title>
 </head>
 <body>
 <h2>Grilled Cheese Sandwich</h2>
 <h3>Ingredients</h3>

 bread slice (2)
 cheese slice
 margarine pat (2)

 <h3>Instructions</h3>Place frying pan on element and select medium heat. For
each bread slice, smear one pat of margarine on one side of bread slice.
Place cheese slice between bread slices with margarine-smeared sides away
from the cheese. Place sandwich in frying pan with one margarine-smeared
side in contact with pan. Fry for a couple of minutes and flip. Fry other
side for a minute and serve.</body>
 </html>

 OutputKeys.INDENT and its "yes" value let you output the HTML across
multiple lines as opposed to outputting the HTML on a single line. However,
the XSLT processor performs no additional indentation, and ignores
attempts to specify the number of spaces to indent via code such as t.setO
utputProperty("{ http://xml.apache.org/xslt}indent-amount ", "3"); .

 Note An XSLT processor outputs a <META> tag when OutputKeys.METHOD
is set to "html" .

www.it-ebooks.info

http://xml.apache.org/xslt}indent-amount
http://www.it-ebooks.info/

CHAPTER 6: Transforming XML Documents with XSLT 131

 EXERCISES

 The following exercises are designed to test your understanding of Chapter 6 ’s content:

 1. Define XSLT.

 2. How does XSLT accomplish its work?

 3. True or false: Call TransformerFactory ’s void
transform(Source xmlSource, Result outputTarget)
method to transform a source to a result.

 4. Create a books.xsl stylesheet file and a MakeHTML application with
a similar structure to the application that processes Listing 6-2 ’s
 recipe.xsl stylesheet. MakeHTML uses books.xsl to convert
Exercise 1-21’s books.xml content to HTML. When viewed in a web
browser, the HTML should result in a web page that’s similar to the
page shown in Figure 6-2 .

 Figure 6-2. Exercise 1-21’s books.xml content is presented via a web page

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1916-4_6
http://www.it-ebooks.info/

CHAPTER 6: Transforming XML Documents with XSLT132

 Summary
 XSL is a family of languages for transforming and formatting XML
documents. XSLT is the XSL language for transforming XML documents to
other formats, such as HTML (for presenting an XML document’s content via
a web browser).

 XSLT accomplishes its work by using XSLT processors and stylesheets.
An XSLT processor applies an XSLT stylesheet to an input document
(without modifying the document), and copies the transformed result to a
result tree, which can be output to a file or output stream, or even piped into
another XSLT processor for additional transformations.

 Java implements XSLT through the types in the javax.xml.transform ,
 javax.xml.transform.dom , javax.xml.transform.sax , javax.xml.transform.
stax , and javax.xml.transform.stream packages. The javax.xml.
transform package defines the generic APIs for processing transformation
instructions and for performing a transformation from a source (where the
XSLT processor’s input originates) to a result (where the processor’s output
is sent). The remaining packages define the APIs for obtaining different kinds
of sources and results.

 Chapter 7 introduces you to JSON, a less-verbose alternative to XML.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1916-4_7
http://www.it-ebooks.info/

133© Jeff Friesen 2016
J. Friesen, Java XML and JSON, DOI 10.1007/978-1-4842-1916-4_7

 Chapter 7
 Introducing JSON
 Many applications communicate by exchanging JSON objects instead
of XML documents. This chapter introduces JSON, tours its syntax,
demonstrates JSON in a JavaScript context, and shows how to validate
JSON objects in the context of JSON Schema.

 What Is JSON?
 JSON (JavaScript Object Notation) is a language-independent data
format that expresses JSON objects as human-readable lists of properties
(name-value pairs). Although derived from a nonstrict subset of JavaScript,
code to parse JSON objects into equivalent language-dependent objects is
available in many programming languages .

 Note JSON allows the Unicode U+2028 line separator and U+2029 paragraph
separator to appear unescaped in quoted strings. Because JavaScript doesn’t
support this capability, JSON isn’t a proper subset of JavaScript.

 JSON is commonly used in asynchronous browser/server communication
via AJAJ (https://en.wikipedia.org/wiki/AJAJ). JSON is also used with
NoSQL database management systems such as MongoDb and CouchDb;
with apps from social media web sites such as Twitter, Facebook, LinkedIn,
and Flickr; and even with the popular Google Maps API.

www.it-ebooks.info

https://en.wikipedia.org/wiki/Human-readable#Human-readable
https://en.wikipedia.org/wiki/Attribute�value_pair#Attribute�value pair
https://en.wikipedia.org/wiki/Parse#Parse
https://en.wikipedia.org/wiki/Programming_languages#Programming languages
https://en.wikipedia.org/wiki/Unicode#Newlines#Unicode
https://en.wikipedia.org/wiki/AJAJ
http://www.it-ebooks.info/

CHAPTER 7: Introducing JSON134

 JSON Syntax Tour
 The JSON data format presents a JSON object as a brace-delimited and
comma-separated list of properties:

 {
 property1 ,
 property2 ,
 ...
 propertyN
 }

 A comma is not placed after the final property.

 For each property, the name is expressed as a string that’s typically quoted
(and by a pair of double quotes). The name string is followed by a colon
character, which is followed by a value of a specific type ("name": "JSON" ,
for example).

 JSON supports the following six types :

 Number : A signed decimal number that may contain
a fractional part and may use exponential (E) notation .
JSON doesn’t permit nonnumbers (such as NaN),
nor does it make any distinction between integer and
floating-point. Furthermore, JSON doesn’t recognize the
octal and hexadecimal formats. (Although JavaScript
uses a double precision floating-point format for all
numeric values, other languages implementing JSON
may encode numbers differently.)

 String : A sequence of zero or more Unicode characters.
Strings are delimited with double quotes and support a
backslash escaping syntax.

 Boolean : Either of the values true or false .

 Array : An ordered list of zero or more values, each of
which may be of any type. Arrays use square bracket
notation with elements being comma-separated.

 Note Many developers prefer JSON to XML because they see JSON as being
less verbose and easier to read. Check out “JSON: The Fat-Free Alternative to
XML” (www.json.org/xml.html) for more information.

www.it-ebooks.info

https://en.wikipedia.org/wiki/E_notation#E notation
https://en.wikipedia.org/wiki/NaN#NaN
https://en.wikipedia.org/wiki/Double-precision_floating-point_format#Double-precision floating-point format
https://en.wikipedia.org/wiki/String_(computer_science)#String (computer science)
https://en.wikipedia.org/wiki/Unicode#Unicode
https://en.wikipedia.org/wiki/Escape_character#Escape character
https://en.wikipedia.org/wiki/Boolean_datatype#Boolean datatype
https://en.wikipedia.org/wiki/Array_data_structure#Array data structure
https://en.wikipedia.org/wiki/List_(abstract_data_type)#List (abstract data type)
https://en.wikipedia.org/wiki/Square_bracket#Square bracket
http://www.json.org/xml.html
http://www.it-ebooks.info/

CHAPTER 7: Introducing JSON 135

 Object : An unordered collection of properties where
the names (also called keys) are strings. Because
objects are intended to represent associative arrays ,
it’s recommended, although not required, that each key
be unique within an object. Objects are delimited with
braces and use commas to separate each property.
Within each property the colon character separates the
key from its value.

 Null : An empty value, using the keyword null .

 Whitespace is allowed and is ignored around or between syntactic
elements (values and punctuation). Four specific characters are considered
whitespace for this purpose: space, horizontal tab, line feed, and carriage
return. Also, JSON doesn’t support comments.

 Using this data format , you can specify a JSON object such as the
following anonymous object (excerpted from Wikipedia’s JSON page at
 https://en.wikipedia.org/wiki/JSON) for describing a person in terms of
first name, last name, and other data items:

 {
 "firstName": "John",
 "lastName": "Smith",
 "isAlive": true,
 "age": 25,
 "address":
 {
 "streetAddress": "21 2nd Street",
 "city": "New York",
 "state": "NY",
 "postalCode": "10021-3100"
 },
 "phoneNumbers":
 [
 {
 "type": "home",
 "number": "212 555-1234"
 },

 Note JSON Schema (discussed later) recognizes a seventh type: integer. This
type doesn’t include a fraction or exponent and is a subset of number.

www.it-ebooks.info

https://en.wikipedia.org/wiki/Associative_array#Associative array
https://en.wikipedia.org/wiki/Nullable_type#Nullable type
https://en.wikipedia.org/wiki/Whitespace_character#Whitespace character
https://en.wikipedia.org/wiki/JSON
http://www.it-ebooks.info/

CHAPTER 7: Introducing JSON136

 {
 "type": "office",
 "number": "646 555-4567"
 }
],
 "children": [],
 "spouse": null
 }

 In this example, the anonymous object consists of eight properties with the
following keys:

 firstName identifies a person’s first name and is of
type string.

 lastName identifies a person’s last name and is of
type string.

 isAlive identifies a person’s alive status and is of type
Boolean.

 age identifies the age of a person and is of type number.

 address identifies a person’s location and is of type
object. Within this object are four properties (of type
string): streetAddress , city , state , and postalCode .

 phoneNumbers identifies a person’s phone numbers and is
of type array. Within the array are two objects; each object
consists of type and number properties (of type string).

 children identifies a person’s children (if any) and is of
type array.

 spouse identifies a person’s partner and is empty.

 The previous example shows that objects and arrays can be nested; for
example, objects within arrays within objects.

 Note By convention, JSON objects are stored in files with the .json file extension.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Introducing JSON 137

 Demonstrating JSON with JavaScript
 Ideally, I’d demonstrate JSON with Java’s standard JSON API. However,
Java doesn’t officially support JSON.

 I’ll demonstrate JSON via JavaScript, but in a Java context via Java’s
Scripting API. (If you’re new to Scripting, I’ll explain just enough of this API
so that you can understand the code.) To get started, Listing 7-1 presents
the source code for an application that executes JavaScript code.

 Listing 7-1. Executing JavaScript Code with Assistance from Java

 import java.io.FileReader;
 import java.io.IOException;

 import javax.script.ScriptEngine;
 import javax.script.ScriptEngineManager;
 import javax.script.ScriptException;

 public class RunScript
 {
 public static void main(String[] args)
 {
 if (args.length != 1)
 {
 System.err.println("usage: java RunScript script");
 return;
 }
 ScriptEngineManager manager = new ScriptEngineManager();
 ScriptEngine engine = manager.getEngineByName("nashorn");
 try
 {
 engine.eval(new FileReader(args[0]));
 }
 catch (ScriptException se)
 {
 System.err.println(se.getMessage());
 }

 Note Oracle previously introduced a Java Enhancement Proposal (JEP) for
adding a JSON API to Java 9. Unfortunately, JEP 198: Light-Weight JSON API
(http://openjdk.java.net/jeps/198) was dropped.

www.it-ebooks.info

http://openjdk.java.net/jeps/198
http://www.it-ebooks.info/

CHAPTER 7: Introducing JSON138

 catch (IOException ioe)
 {
 System.err.println(ioe.getMessage());
 }
 }
 }

 Listing 7-1 ’s main() method first verifies that exactly one command-line
argument, which names a script file, has been specified. It this isn’t the
case, it displays usage information and terminates the application.

 Assuming that a single command-line argument was specified, the
javax.script.ScriptEngineManager class is instantiated.
 ScriptEngineManager serves as the entry-point into the Scripting API.

 Next, the ScriptEngineManager object ’s ScriptEngine
getEngineByName(String shortName) method is called to obtain a script
engine corresponding to the desired shortName value. JavaScript supports
two script engines: rhino and nashorn . I chose to obtain the more modern
 nashorn script engine, which is returned as an object whose class
implements the javax.script.ScriptEngine interface.

 ScriptEngine declares several eval() methods for evaluating a script.
 main() invokes the Object eval(Reader reader) method to read the
script from its java.io.FileReader object argument and (assuming that
 java.io.IOException isn’t thrown) then evaluate the script. This method
returns any script return value, which I ignore. Also, this method throws
 javax.script.ScriptException when an error occurs in the script.

 Compile Listing 7-1 as follows:

 javac RunScript.java

 Before you can run this application, you need a suitable script file .
Listing 7-2 presents a script that declares and accesses a JSON object.

 Listing 7-2. Declaring and Accessing a Person Object

 var person =
 {
 "firstName": "John",
 "lastName": "Smith",
 "isAlive": true,
 "age": 25,
 "address":
 {
 "streetAddress": "21 2nd Street",
 "city": "New York",
 "state": "NY",
 "postalCode": "10021-3100"
 },

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Introducing JSON 139

 "phoneNumbers":
 [
 {
 "type": "home",
 "number": "212 555-1234"
 },
 {
 "type": "office",
 "number": "646 555-4567"
 }
],
 "children": [],
 "spouse": null
 };
 print(person.firstName);
 print(person.lastName);
 print(person.address.city);
 print(person.phoneNumbers[1].number);

 Assuming that Listing 7-2 is stored in person.js , run the application as follows:

 java RunScript person.js

 You should observe the following output:

 John
 Smith
 New York
 646 555-4567

 A JSON object exists as language-independent text. To convert the text to a
language-dependent object, you need to parse the text. JavaScript provides
a JSON object with a parse() method for this task. Pass the text to be parsed
as an argument to parse() and receive the resulting JavaScript-based
object as this method’s return value. parse() throws SyntaxError when the
text doesn’t conform to the JSON format.

 Listing 7-3 presents a script that demonstrates parse() .

 Listing 7-3. Parsing a JSON Object

 var creditCardText =
 "{ \"number\": \"1234567890123456\", \"expiry\": \"04/20\", \"type\": " +
 "\"visa\" }";
 var creditCard = JSON.parse(creditCardText);
 print(creditCard.number);
 print(creditCard.expiry);
 print(creditCard.type);

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Introducing JSON140

 var creditCardText2 = "{ 'type': 'visa' }";
 var creditCard2 = JSON.parse(creditCardText2);

 Assuming that Listing 7-3 is stored in cc.js , run the application as follows:

 java RunScript cc.js

 You should observe the following output :

 1234567890123456
 04/20
 visa
 SyntaxError: Invalid JSON: <json>:1:2 Expected , or } but found '
 { 'type': 'visa' }
 ^ in <eval> at line number 10

 The syntax error shows that you cannot delimit a name with single quotes.

 This is all I have to say about working with JSON in a JavaScript context.
Because this book is Java-focused, subsequent chapters will explore
various third-party Java APIs for parsing JSON objects into Java-dependent
objects and vice versa.

 Validating JSON Objects
 It’s often necessary for applications to validate JSON objects, to ensure
that required properties are present and that additional constraints (such
as a price never being less than one dollar) are met. Validation is typically
performed in the context of JSON Schema.

 JSON Schema is a grammar language for defining the structure, content,
and (to some extent) semantics of JSON objects. It lets you specify
 metadata (data about data) about what an object’s properties mean and
what values are valid for those properties. The result of applying the
grammar language is a schema (a blueprint) describing the set of JSON
objects that are valid according to the schema.

 Note JSON Schema expresses a schema as a JSON object.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Introducing JSON 141

 JSON Schema is maintained at the JSON Schema web site
(http://json-schema.org). This web site reveals several advantages to
JSON Schema:

 It describes your existing data format.

 If offers clear, human-readable, and machine-readable
documentation.

 It provides complete structural validation, which
is useful for automated testing and validating
client-submitted data.

 To understand JSON Schema, consider the following JSON object:

 {
 "name": "John Doe",
 "age": 35
 }

 This object describes a person in terms of a name and an age . Let’s set up
the following constraints: both properties must be present, name must be
of type string and age must be of type number, and age ’s value must range
from 18 through 64.

 The following schema (based on draft version 4 of JSON Schema) provides
the necessary constraints for this object:

 {
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "Person",
 "description": "A person",
 "type": "object",
 "properties":
 {
 "name":
 {
 "description": "A person's name",
 "type": "string"
 },

 Note The JSON Schema web site focuses on draft version 4 of the JSON
Schema specification. This specification is divided into three parts: JSON
Schema Core, JSON Schema Validation, and JSON Hyper-Schema.

www.it-ebooks.info

http://json-schema.org/
http://www.it-ebooks.info/

CHAPTER 7: Introducing JSON142

 "age":
 {
 "description": "A person's age",
 "type": "number",
 "minimum": 18,
 "maximum": 64
 }
 },
 "required": ["name", "age"]
 }

 Reading from top to bottom, you would interpret this JSON-based schema
as follows:

 The $schema keyword states that this schema is written
according to the draft version 4 specification.

 The title keyword identifies the JSON object being
validated by this schema. In this case, a Person object is
being validated.

 The description keyword provides a description of
the Person object. As with title , description adds no
constraint to the data being validated.

 The type keyword signifies that the containing object is
a JSON object (via the object value). Also, it identifies
property types (such as string and number).

 The properties keyword introduces an array of the
properties that can appear in the JSON object. These
properties are identified as name and age . Each property
is further described by an object that provides a
 description keyword to describe the property and a
 type keyword to identify the type of value that can be
assigned to the property. This is a constraint: you must
assign a string to name and a number to age . For the age
property, minimum and maximum keywords are specified to
provide additional constraints: the number assigned to
 age must range from 18 through 64 .

 The required keyword introduces an array that identifies
those properties that must be present in the JSON
object. In the example, both name and age are required
properties.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Introducing JSON 143

 The JSON Schema web site provides links to various validator
implementations for different programming languages (see http://json-
schema.org/implementations.html). You can download an implementation
and integrate it into your application, subject to license requirements.
For this chapter, I chose to use an online tool called JSON Schema Lint
(http://jsonschemalint.com/draft4/) to demonstrate validation.

 Figure 7-1 shows the previous JSON object and schema in the appropriate
windows of the JSON Schema Lint online tool .

 Figure 7-1. The schema is valid and the JSON object conforms to this schema

 Let’s make some changes to the JSON object so that it no longer
conforms to the schema, and see how the JSON Schema Lint tool
responds. First, let’s assign 65 to age , which exceeds the maximum constraint
for the age property. Figure 7-2 shows the result .

www.it-ebooks.info

http://json-schema.org/implementations.html
http://json-schema.org/implementations.html
http://jsonschemalint.com/draft4/
http://www.it-ebooks.info/

CHAPTER 7: Introducing JSON144

 Figure 7-2. JSON Schema Lint changes its header color to red to signify an error, and also
identifies the property and constraint that’s been violated

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Introducing JSON 145

 Next, let’s restore age ’s value to 35 , but surround it with double quotes ,
which changes the type from number to string. See Figure 7-3 for the result.

 Figure 7-3. JSON Schema Lint reports that the age property has the wrong type

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Introducing JSON146

 Figure 7-4. JSON Schema Lint reports that the name property is required

 Finally, let’s restore age ’s value to 35 , but eliminate the name property.
Figure 7-4 shows JSON Schema Lint’s response.

 Note Check out the “JSON Schema: core definitions and terminology ”
(http://json-schema.org/latest/json-schema-core.html) and
“JSON Schema: interactive and non interactive validation” (http://json-
schema.org/latest/json-schema-validation.html) documents to
learn more about creating schemas that are based on JSON Schema .

www.it-ebooks.info

http://json-schema.org/latest/json-schema-core.html
http://json-schema.org/latest/json-schema-validation.html
http://json-schema.org/latest/json-schema-validation.html
http://www.it-ebooks.info/

CHAPTER 7: Introducing JSON 147

 EXERCISES

 The following exercises are designed to test your understanding of Chapter 7 ’s content.

 1. Define JSON.

 2. True or false: JSON is derived from a strict subset of JavaScript.

 3. How does the JSON data format present a JSON object?

 4. Identify the six types that JSON supports.

 5. True or false: JSON doesn’t support comments.

 6. How would you parse a JSON object into an equivalent JavaScript
object?

 7. Define JSON Schema.

 8. When creating a schema, how do you identify those properties that
must be present in those JSON objects that the schema validates?

 9. Declare a JSON object for a product in terms of name and price
properties. Set the name to "hammer" and the price to 20 .

 10. Declare a schema for validating the previous JSON object. The schema
should constrain name to be a string , price to be a number , price
to be at least 1 dollar, and name and price to be present in the object.
Use JSON Schema Lint to verify the schema and JSON object.

 Summary
 JSON is a language-independent data format that expresses JSON objects
as human-readable lists of properties . Although derived from JavaScript,
code to parse JSON objects into equivalent language-dependent objects is
available in many programming languages .

 The JSON data format presents a JSON object as a brace-delimited
and comma-separated list of properties. For each property, the name is
expressed as a doubly-quoted string. The name string is followed by a colon
character, which is followed by a value of a specific JSON type.

 It’s often necessary for applications to validate JSON objects, to ensure that
required properties are present and that additional constraints (such as a
price never being less than one dollar) are met. JSON Schema is a grammar
language that lets you accomplish validation.

 Chapter 8 introduces mJson for parsing and creating JSON objects.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1916-4_7
https://en.wikipedia.org/wiki/Human-readable#Human-readable
https://en.wikipedia.org/wiki/Attribute�value_pair#Attribute�value pair
https://en.wikipedia.org/wiki/Parse#Parse
https://en.wikipedia.org/wiki/Programming_languages#Programming languages
http://dx.doi.org/10.1007/978-1-4842-1916-4_8
http://www.it-ebooks.info/

149© Jeff Friesen 2016
J. Friesen, Java XML and JSON, DOI 10.1007/978-1-4842-1916-4_8

 Chapter 8
 Parsing and Creating
JSON Objects with mJson
 Many third-party APIs are available for parsing and creating JSON objects.
This chapter explores one of the simplest of these APIs: mJson.

 What Is mJson ?
 mJson is a small Java-based JSON library for parsing JSON objects into
Java objects and vice versa. mJson offers the following features :

 Single universal type (everything is a Json object; there
is no type casting)

 Methods for creating Json objects

 Methods for learning about Json objects

 Methods for navigating Json object hierarchies

 Methods for modifying Json objects

 Full support for JSON Schema Draft 4 validation

 Pluggable factory for enhancing Json

 Method chaining for achieving more compact code

 Fast, hand-coded parsing

 Entire library contained in one Java source file

www.it-ebooks.info

http://json-schema.org/
http://www.it-ebooks.info/

CHAPTER 8: Parsing and Creating JSON Objects with mJson150

 Unlike with other JSON libraries, mJson focuses on manipulating JSON
structures in Java without mapping them to strongly-typed Java objects. As
a result, mJson reduces verbosity and lets you work with JSON in Java as
naturally as in JavaScript.

 Obtaining and Using mJson
 mJson is distributed as a single Jar file ; mjson-1.3.jar is the most recent
Jar file at the time of writing. To obtain this Jar file, point your browser to
 http://repo1.maven.org/maven2/org/sharegov/mjson/1.3/mjson-1.3.jar .

 mjson-1.3.jar contains a Json classfile and other classfiles that describe
package-private classes nested within the Json class. Furthermore, this Jar
file reveals that Json is located in the mjson package.

 It’s easy to work with mjson-1.3.jar . Simply include it in the classpath when
compiling source code or running an application, as follows:

 javac -cp mjson-1.3.jar source file
 java -cp mjson-1.3.jar;. main classfile

 Exploring the Json Class
 The Json class describes a JSON object or part of a JSON object.
It contains Schema and Factory interfaces, more than 50 methods, and other
members. This section explores most of these methods along with Schema
and Factory .

 Note mJson was created by developer Borislav Lordanov. This library is
hosted on GitHub at http://bolerio.github.io/mjson/ .

 Note mJson is licensed according to Apache License Version 2.0
(www.apache.org/licenses/).

 Note The API documentation for the Json class is located at
 http://bolerio.github.io/mjson/apidocs/index.html .

www.it-ebooks.info

http://repo1.maven.org/maven2/org/sharegov/mjson/1.3/mjson-1.3.jar
http://bolerio.github.io/mjson/
http://www.apache.org/licenses/
http://bolerio.github.io/mjson/apidocs/index.html
http://www.it-ebooks.info/

CHAPTER 8: Parsing and Creating JSON Objects with mJson 151

 Creating Json Objects
 Json declares several static methods that create and return Json objects.
Three of these methods read and parse an external JSON object:

 Json read(String s) : Reads a JSON object from the
string that was passed to s (of type java.lang.String)
and parses this object.

 Json read(URL url) : Reads a JSON object from the
Uniform Resource Locator (URL) passed to url (of type
java.net.URL) and parses this object.

 Json read(CharacterIterator ci) : Reads a JSON
object from the character iterator passed to ci (of type
 java.text.CharacterIterator) and parses this object.

 Each method returns a Json object that describes the parsed JSON object .

 Listing 8-1 presents the source code for an application that demonstrates
the read(String) method.

 Listing 8-1. Reading and Parsing a String-Based JSON Object

 import mjson.Json;

 public class mJsonDemo
 {
 public static void main(String[] args)
 {
 String jsonStr =
 "{" +
 "\"firstName\": \"John\"," +
 "\"lastName\": \"Smith\"," +
 "\"isAlive\": true," +
 "\"age\": 25," +
 "\"address\":" +
 "{" +
 "\"streetAddress\": \"21 2nd Street\"," +
 "\"city\": \"New York\"," +
 "\"state\": \"NY\"," +
 "\"postalCode\": \"10021-3100\"" +
 "}," +
 "\"phoneNumbers\":" +
 "[" +
 "{" +
 "\"type\": \"home\"," +
 "\"number\": \"212 555-1234\"" +
 "}," +
 "{" +

www.it-ebooks.info

http://bolerio.github.io/mjson/apidocs/mjson/Json.html#class in mjson
http://bolerio.github.io/mjson/apidocs/mjson/Json.html#class in mjson
http://www.it-ebooks.info/

CHAPTER 8: Parsing and Creating JSON Objects with mJson152

 "\"type\": \"office\"," +
 "\"number\": \"646 555-4567\"" +
 "}" +
 "]," +
 "\"children\": []," +
 "\"spouse\": null" +
 "}";
 Json json = Json.read(jsonStr);
 System.out.println(json);
 }
 }

 The main(String[]) method first declares a Java string-based JSON object
(you could substitute a comma (,) for the colon character (:), but the colon is
clearer); then invokes Json.read() to read and parse this object, and return
the object as a Json object; and finally outputs a string representation of the
 Json object (by ultimately calling its toString() method to convert the Json
object to a Java string).

 Compile Listing 8-1 as follows:

 javac -cp mjson-1.3.jar mJsonDemo.java

 Run the resulting application as follows:

 java -cp mjson-1.3.jar;. mJsonDemo

 You should observe the following output:

 {"firstName":"John","lastName":"Smith","isAlive":true,"address":{"streetAdd
ress":"21 2nd Street","city":"New York","postalCode":"10021-3100","state":
"NY"},"children":[],"age":25,"phoneNumbers":[{"number":"212 555-1234","type":
"home"},{"number":"646 555-4567","type":"office"}],"spouse":null}

 The read() methods can also parse smaller JSON fragments, such as an
array of different-typed values. See Listing 8-2 for a demonstration.

 Listing 8-2. Reading and Parsing a JSON Fragment

 import mjson.Json;

 public class mJsonDemo
 {
 public static void main(String[] args)
 {
 Json json = Json.read("[4, 5, {}, true, null, \"ABC\", 6]");
 System.out.println(json);
 }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Parsing and Creating JSON Objects with mJson 153

 When you run this application, you should observe the following output :

 [4,5,{},true,null,"ABC",6]

 In addition to the reading and parsing methods , Json provides static
methods for creating Json objects:

 Json array() : Returns a Json object representing an
empty JSON array.

 Json array(Object... args) : Returns a Json object
(representing a JSON array) filled with args , a variable
number of java.lang.Object s.

 Json make(Object anything) : Returns a Json object
filled with the contents of anything , which is one
of null ; a value of type Json , String , java.util.
Collection<?> , java.util.Map<?, ?> , java.lang.
Boolean , java.lang.Number ; or an array of one of
these types. Maps, collections, and arrays are
recursively copied such that each of their elements is
converted to a Json object. A map’s keys are normally
strings, but any object with a meaningful toString()
implementation will work. This method throws java.
lang.IllegalArgumentException when the concrete
type of the argument passed to anything is unknown.

 Json nil() : Returns a Json object that represents null .

 Json object() : Returns a Json object representing an
empty JSON object.

 Json object(Object... args) : Returns a Json object
(representing a JSON object) filled with args , a variable
number of Object s. These objects identify property
names and values; the number of objects must be
even, with even indexes identifying property names
and odd indexes identifying property values. The
names are normally of type String , but can be of any
other type that has an appropriate toString() method.
Each value is first converted to a Json object by calling
 make(Object) .

 Listing 8-3 presents the source code for an application that demonstrates
most of these additional static methods.

www.it-ebooks.info

http://bolerio.github.io/mjson/apidocs/mjson/Json.html#make(java.lang.Object)
http://www.it-ebooks.info/

CHAPTER 8: Parsing and Creating JSON Objects with mJson154

 Listing 8-3. Creating a Person JSON Object

 import mjson.Json;

 public class mJsonDemo
 {
 public static void main(String[] args)
 {
 Json jsonAddress =
 Json.object("streetAddress", "21 2nd Street",
 "city", "New York",
 "state", "NY",
 "postalCode", "10021-3100");
 Json jsonPhone1 =
 Json.object("type", "home",
 "number", "212 555-1234");
 Json jsonPhone2 =
 Json.object("type", "office",
 "number", "646 555-4567");
 Json jsonPerson =
 Json.object("firstName", "John",
 "lastName", "Smith",
 "isAlive", true,
 "age", 25,
 "address", jsonAddress,
 "phoneNumbers", Json.array(jsonPhone1, jsonPhone2),
 "children", Json.array(),
 "spouse", Json.nil());
 System.out.println(jsonPerson);
 }
 }

 Listing 8-3 describes an application that creates the same JSON object
that’s read and parsed in Listing 8-1 . Notice that you can pass Json objects
to array(Object...) and object(Object...) , which lets you build complete
JSON objects from smaller fragments. If you run this application, you’ll
discover the same output as generated by the application described in
Listing 8-1 .

 Listing 8-4 presents the source code for another application that uses
 make(Object) with Java collections and maps.

 Listing 8-4. Making JSON Objects from Java Collections and Maps

 import java.util.ArrayList;
 import java.util.Arrays;
 import java.util.HashMap;
 import java.util.List;
 import java.util.Map;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Parsing and Creating JSON Objects with mJson 155

 import mjson.Json;

 public class mJsonDemo
 {
 public static void main(String[] args)
 {
 List<String> weekdays = Arrays.asList("Sunday", "Monday", "Tuesday",

"Wednesday", "Thursday", "Friday", "Saturday");
 System.out.println(Json.make(weekdays));

 Map<String, Number> people = new HashMap<>();
 people.put("John", 33);
 people.put("Joan", 27);
 System.out.println(Json.make(people));

 Map<String, String[]> planets = new HashMap<>();
 planets.put("Mercury", null);
 planets.put("Earth", new String[] {"Luna"});
 planets.put("Mars", new String[] {"Phobos", "Deimos"});
 System.out.println(Json.make(planets));
 }
 }

 main(String[]) first creates a list of weekday names and then passes
this object to make(Object) , whose returned Json object is output. Next, a
map of people’s names and ages is created and subsequently passed to
 make(Object) . The resulting JSON object is output. Finally, a map of planet
names along with arrays of moon names is created. This map is converted
into a more complex JSON object, which is output.

 If you compile this source code and run the application, you’ll discover the
following output:

 ["Sunday","Monday","Tuesday","Wednesday","Thursday","Friday","Saturday"]
 {"Joan":27,"John":33}
 {"Earth":["Luna"],"Mars":["Phobos","Deimos"],"Mercury":null}

 Learning About Json Objects
 Json offers several methods for learning about the JSON entities described
by Json objects. For starters, you can call the Object getValue() method
to return the JSON value (as a Java object) of the Json object. The returned
value will be Java null or have the Java Boolean , String , Number , Map ,
java.util.List , or an array type. For objects and arrays, this method
performs a deep copy of all nested elements.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Parsing and Creating JSON Objects with mJson156

 To identify the JSON type of the JSON value, call one of the following
 methods :

 boolean isArray() : Returns true for a JSON array value.

 boolean isBoolean() : Returns true for a JSON Boolean value.

 boolean isNull() : Returns true for the JSON null value.

 boolean isNumber() : Returns true for a JSON
number value.

 boolean isObject() : Returns true for a JSON object value.

 boolean isPrimitive() : Returns true for a JSON number,
string, or Boolean value.

 boolean isString() : Returns true for a JSON string value .

 Listing 8-5 presents the source code for an application that demonstrates
 getValue() and these JSON type-identification methods .

 Listing 8-5. Obtaining a Json Object’s Value and Identifying Its JSON Type

 import mjson.Json;

 public class mJsonDemo
 {
 public static void main(String[] args)
 {
 String jsonStr =
 "{" +
 "\"firstName\": \"John\"," +
 "\"lastName\": \"Smith\"," +
 "\"isAlive\": true," +
 "\"age\": 25," +
 "\"address\":" +
 "{" +
 "\"streetAddress\": \"21 2nd Street\"," +
 "\"city\": \"New York\"," +
 "\"state\": \"NY\"," +
 "\"postalCode\": \"10021-3100\"" +
 "}," +
 "\"phoneNumbers\":" +
 "[" +
 "{" +
 "\"type\": \"home\"," +
 "\"number\": \"212 555-1234\"" +
 "}," +
 "{" +

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Parsing and Creating JSON Objects with mJson 157

 "\"type\": \"office\"," +
 "\"number\": \"646 555-4567\"" +
 "}" +
 "]," +
 "\"children\": []," +
 "\"spouse\": null" +
 "}";
 Json json = Json.read(jsonStr);
 System.out.println("Value = " + json.getValue());
 System.out.println();
 classify(json);
 }

 static void classify(Json jsonObject)
 {
 if (jsonObject.isArray())
 System.out.println("Array");
 else
 if (jsonObject.isBoolean())
 System.out.println("Boolean");
 else
 if (jsonObject.isNull())
 System.out.println("Null");
 else
 if (jsonObject.isNumber())
 System.out.println("Number");
 else
 if (jsonObject.isObject())
 System.out.println("Object");
 else
 if (jsonObject.isString())
 System.out.println("String");
 if (jsonObject.isPrimitive())
 System.out.println("Primitive");
 }
 }

 Compile this source code and run the application, and you’ll discover the
following output:

 Value = {firstName=John, lastName=Smith, isAlive=true,
address={streetAddress=21 2nd Street, city=New York, postalCode=10021-3100,
state=NY}, children=[], age=25, phoneNumbers=[{number=212 555-1234,
type=home}, {number=646 555-4567, type=office}], spouse=null}

 Object

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Parsing and Creating JSON Objects with mJson158

 After verifying that a Json object represents the expected JSON type, you
can call one of Json ’s “ as ” methods to obtain the JSON value as a Java
value of an equivalent Java type :

 boolean asBoolean() : Returns the JSON value as a
Java Boolean.

 byte asByte() : Returns the JSON value as a Java
byte integer.

 char asChar() : Returns the first character of the JSON
string value as a Java character.

 double asDouble() : Returns the JSON value as a Java
double precision floating-point value.

 float asFloat() : Returns the JSON value as a Java
floating-point value.

 int asInteger() : Returns the JSON value as a Java integer.

 List<Json> asJsonList() : Returns the underlying list
representation of a JSON array. The returned list is the
actual array representation so any modifications to it are
modifications to the Json object’s list.

 Map<String, Json> asJsonMap() : Returns the underlying
map of properties of a JSON object. The returned map
is the actual object representation so any modifications
to it are modifications to the Json object’s map.

 List<Object> asList() : Returns a list of the elements
of a Json object that describes a JSON array. The
returned list is a copy and modifications to it don’t affect
the Json object.

 long asLong() : Returns the JSON value as a Java
long integer.

 Map<String, Object> asMap() : Returns a map of the
properties of a Json object that describes a JSON
object. The returned map is a copy and modifications to
it don’t affect the Json object.

 short asShort() : Returns the JSON value as a Java
short integer.

 String asString() : Returns the JSON value as a
Java string.

 Listing 8-6 presents the source code for an application that uses asMap() to
obtain a map of the Json object properties describing a JSON object.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Parsing and Creating JSON Objects with mJson 159

 Listing 8-6. Iterating Over a Json Object’s Properties to Learn About a JSON Object

 import java.util.Map;

 import mjson.Json;

 public class mJsonDemo
 {
 public static void main(String[] args)
 {
 String jsonStr =
 "{" +
 "\"firstName\": \"John\"," +
 "\"lastName\": \"Smith\"," +
 "\"isAlive\": true," +
 "\"age\": 25," +
 "\"address\":" +
 "{" +
 "\"streetAddress\": \"21 2nd Street\"," +
 "\"city\": \"New York\"," +
 "\"state\": \"NY\"," +
 "\"postalCode\": \"10021-3100\"" +
 "}," +
 "\"phoneNumbers\":" +
 "[" +
 "{" +
 "\"type\": \"home\"," +
 "\"number\": \"212 555-1234\"" +
 "}," +
 "{" +
 "\"type\": \"office\"," +
 "\"number\": \"646 555-4567\"" +
 "}" +
 "]," +
 "\"children\": []," +
 "\"spouse\": null" +
 "}";
 Json json = Json.read(jsonStr);
 if (json.isObject())
 {
 Map<String, Object> props = json.asMap();
 for (Map.Entry<String, Object> propEntry: props.entrySet())
 System.out.println(propEntry.getKey() + ": " + propEntry.

getValue());
 }
 }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Parsing and Creating JSON Objects with mJson160

 main(String[]) declares the same JSON object as presented in Listing 8-1 .
It then reads and parses this object into a Json object. The isObject()
method is called to verify that the Json object represents a JSON object. (It’s
a good idea to verify first.) Because this should be the case, asMap() is
called to return a map of the Json object’s properties, which are then iterated
over and output.

 Caution If you replace Json json = Json.read(jsonStr); with Json
json = Json.make(jsonStr); , you won’t see any output because the Json
object returned from make() identifies the JSON string type and not the JSON
object type.

 After studying the source code, compile it and run the application. You’ll
discover the following output:

 firstName: John
 lastName: Smith
 isAlive: true
 address: {streetAddress=21 2nd Street, city=New York, postalCode=10021-3100,
state=NY}
 children: []
 age: 25
 phoneNumbers: [{number=212 555-1234, type=home}, {number=646 555-4567,
type=office}]
 spouse: null

 You can access the contents of arrays and objects by calling the following
 at() methods , which return Json objects that describe array element values
or object property values:

 Json at(int index) : Returns the value (as a Json
object) of the array element at the specified index in this
 Json object’s array. This method applies to JSON arrays
only. It throws java.lang.IndexOutOfBoundsException
when index is out of bounds for the array.

 Json at(String propName) : Returns the value (as a Json
object) of the object property whose name is identified
by propName in this Json object’s map. Returns null
when there’s no such property. This method applies to
JSON objects only.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Parsing and Creating JSON Objects with mJson 161

 Json at(String propName, Json defValue) : Returns
the value (as a Json object) of the object property whose
name is identified by propName in this Json object’s map.
When there’s no such property, it creates a new property
whose value is specified by defValue and returns
 defValue . This method applies to JSON objects only.

 Json at(String propName, Object defValue) : Returns
the value (as a Json object) of the object property whose
name is identified by propName in this Json object’s map.
When there’s no such property, it creates a new property
whose value is specified by defValue and returns
 defValue . This method applies to JSON objects only .

 Listing 8-7 presents the source code for an application that uses the first
two at() methods to access a JSON object’s property values.

 Listing 8-7. Obtaining and Outputting a JSON Object’s Property Values

 import mjson.Json;

 public class mJsonDemo
 {
 public static void main(String[] args)
 {
 String jsonStr =
 "{" +
 "\"firstName\": \"John\"," +
 "\"lastName\": \"Smith\"," +
 "\"isAlive\": true," +
 "\"age\": 25," +
 "\"address\":" +
 "{" +
 "\"streetAddress\": \"21 2nd Street\"," +
 "\"city\": \"New York\"," +
 "\"state\": \"NY\"," +
 "\"postalCode\": \"10021-3100\"" +
 "}," +
 "\"phoneNumbers\":" +
 "[" +
 "{" +
 "\"type\": \"home\"," +
 "\"number\": \"212 555-1234\"" +
 "}," +
 "{" +
 "\"type\": \"office\"," +
 "\"number\": \"646 555-4567\"" +
 "}" +
 "]," +

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Parsing and Creating JSON Objects with mJson162

 "\"children\": []," +
 "\"spouse\": null" +
 "}";
 Json json = Json.read(jsonStr);
 System.out.printf("First name = %s%n", json.at("firstName"));
 System.out.printf("Last name = %s%n", json.at("lastName"));
 System.out.printf("Is alive = %s%n", json.at("isAlive"));
 System.out.printf("Age = %d%n", json.at("age").asInteger());
 System.out.println("Address");
 Json jsonAddr = json.at("address");
 System.out.printf(" Street address = %s%n", jsonAddr.

at("streetAddress"));
 System.out.printf(" City = %s%n", jsonAddr.at("city"));
 System.out.printf(" State = %s%n", jsonAddr.at("state"));
 System.out.printf(" Postal code = %s%n", jsonAddr.at("postalCode"));
 System.out.println("Phone Numbers");
 Json jsonPhone = json.at("phoneNumbers");
 System.out.printf(" Type = %s%n", jsonPhone.at(0).at("type"));
 System.out.printf(" Number = %s%n", jsonPhone.at(0).at("number"));
 System.out.println();
 System.out.printf(" Type = %s%n", jsonPhone.at(1).at("type"));
 System.out.printf(" Number = %s%n", jsonPhone.at(1).at("number"));
 Json jsonChildren = json.at("children");
 System.out.printf("Children = %s%n", jsonChildren);
 System.out.printf("Spouse = %s%n", json.at("spouse"));
 }
 }

 Expression json.at("age") returns a Json object describing a JSON
number; asInteger() returns this value as a 32-bit Java integer.

 Compile this source code and run the application. You’ll discover the
following output:

 First name = "John"
 Last name = "Smith"
 Is alive = true
 Age = 25
 Address
 Street address = "21 2nd Street"
 City = "New York"
 State = "NY"
 Postal code = "10021-3100"
 Phone Numbers
 Type = "home"
 Number = "212 555-1234"

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Parsing and Creating JSON Objects with mJson 163

 Type = "office"
 Number = "646 555-4567"
 Children = []
 Spouse = null

 You might be wondering how to detect the empty array that’s assigned
to the children property name. You can accomplish this task by calling
 asList() to return a List implementation object, and then calling List ’s
 size() method on this object, as follows :

 System.out.printf("Array length = %d%n", jsonChildren.asList().size());

 This code fragment will report an array length of zero elements.

 Finally, Json provides three methods for verifying that property names exist,
and that property names or array elements exist with specified values:

 boolean has(String propName) : Returns true when this
 Json object describes a JSON object that has a property
identified by propName ; otherwise, returns false .

 boolean is(int index, Object value) : Returns true
when this Json object describes a JSON array that has
the specified value at the specified index ; otherwise,
returns false .

 boolean is(String propName, Object value) : Returns
 true when this Json object describes a JSON object
that has a property identified by propName and this
property has the value identified by value ; otherwise,
returns false .

 For example, consider Listing 8-7 . Expression json.has("firstName")
returns true , whereas expression json.has("middleName") returns false .

 Navigating Json Object Hierarchies
 When one of the previously discussed at() methods returns a Json object
describing a JSON object or JSON array, you can navigate into the object or
array by chaining another at() method call to the expression. For example,
I used this technique in the previous application to access a phone number:

 System.out.printf(" Number = %s%n", jsonPhone.at(0).at("number"));

 Here, jsonPhone.at(0) returns a Json object that represents the first array
entry in the phoneNumbers JSON array. Because the array entry happens to
be a JSON object, calling at("number") on this Json object causes Json to
return the value (as a Json object) of the JSON object’s number property.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Parsing and Creating JSON Objects with mJson164

 Each Json object that describes a JSON entity belonging to an array or an
object holds a reference to its enclosing array- or object-based Json object.
You can call Json ’s Json up() method to return this enclosing Json object,
which is demonstrated in Listing 8-8 .

 Listing 8-8. Accessing Enclosing Json Objects

 import mjson.Json;

 public class mJsonDemo
 {
 public static void main(String[] args)
 {
 String jsonStr =
 "{" +
 "\"propName\": \"propValue\"," +
 "\"propArray\":" +
 "[" +
 "{" +
 "\"element1\": \"value1\"" +
 "}," +
 "{" +
 "\"element2\": \"value2\"" +
 "}" +
 "]" +
 "}";
 Json json = Json.read(jsonStr);
 Json jsonElement1 = json.at("propArray").at(0);
 System.out.println(jsonElement1);
 System.out.println();
 System.out.println(jsonElement1.up());
 System.out.println();
 System.out.println(jsonElement1.up().up());
 System.out.println();
 System.out.println(jsonElement1.up().up().up());
 }
 }

 Compile this source code and run the application, and you’ll discover the
following output:

 {"element1":"value1"}

 [{"element1":"value1"},{"element2":"value2"}]

 {"propArray":[{"element1":"value1"},{"element2":"value2"}],"propName":"prop
Value"}

 null

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Parsing and Creating JSON Objects with mJson 165

 The first output line describes the first array element in the array assigned
to the propArray property. This element is an object consisting of a single
 element1 property.

 jsonElement1.up() returns a Json object describing the array that encloses
the JSON object that serves as the array’s first element. jsonElement1.up().
up() returns a Json object describing the JSON object that encloses the
array. Finally, jsonElement1.up().up().up() returns a Json object describing
the null value; the JSON object has no parent.

 Modifying Json Objects
 You’ll encounter situations where you’ll want to modify existing Json objects’
JSON values. For example, you might be creating and saving several similar
JSON objects and wanting to reuse existing Json objects.

 Json lets you modify Json objects that represent JSON arrays and objects. It
doesn’t let you modify Json objects that represent JSON Boolean, number,
or string values because they’re regarded as immutable.

 Json declares the following set() methods for modifying JSON array
elements and JSON object properties:

 Json set(int index, Object value) : Sets the value of
the JSON array element located at index to value .

 Json set(String propName, Json value) : Sets the
value of the JSON object property whose name is
specified by propName to value .

 Json set(String property, Object value) : Sets
the value of the JSON object property whose name
is specified by propName to value . This method calls
 make(Object) to convert value to a Json object
representing value and then invokes set(String,
Json) .

 Listing 8-9 presents the source code for an application that uses the first
and third set() methods to set object property and array element values.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Parsing and Creating JSON Objects with mJson166

 Listing 8-9. Setting Object Property and Array Element Values

 import mjson.Json;

 public class mJsonDemo
 {
 public static void main(String[] args)
 {
 String jsonStr =
 "{" +
 "\"name\": null," +
 "\"courses\":" +
 "[null]" +
 "}";
 Json json = Json.read(jsonStr);
 System.out.println(json);
 System.out.println();
 json.set("name", "John Doe");
 Json jsonCourses = json.at("courses");
 jsonCourses.set(0, "English");
 System.out.println(json);
 }
 }

 If you compile this source code and run the application, you’ll discover the
following output:

 {"courses":[null],"name":null}

 {"courses":["English"],"name":"John Doe"}

 If you attempt to set a value for a property that doesn’t exist, Json adds the
property. However, if you attempt to set the value for a nonexistent array
element, Json throws IndexOutOfBoundsException . For this reason, you
might prefer to call one of the following add() methods instead:

 Json add(Json element) : Appends the specified
element to the array represen ted by this Json object.

 Json add(Object anything) : Converts anything to a
 Json object by calling make(Object) and appending the
result to the array represented by this Json object.

 Listing 8-10 presents the source code for an application that uses the first
 add() method to append two strings to the empty courses array.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Parsing and Creating JSON Objects with mJson 167

 Listing 8-10. Appending Strings to an Empty JSON Array

 import mjson.Json;

 public class mJsonDemo
 {
 public static void main(String[] args)
 {
 String jsonStr =
 "{" +
 "\"name\": null," +
 "\"courses\":" +
 "[]" +
 "}";
 Json json = Json.read(jsonStr);
 System.out.println(json);
 System.out.println();
 json.set("name", "John Doe");
 Json jsonCourses = json.at("courses");
 jsonCourses.add("English");
 jsonCourses.add("French");
 System.out.println(json);
 }
 }

 Compile this source code and run the application. It generates the output
shown here:

 {"courses":[],"name":null}

 {"courses":["English","French"],"name":"John Doe"}

 Json provides a pair of array-oriented remove() methods that take the same
arguments as their add() counterparts:

 Json remove(Json element) : Removes the specified
element from the array represented by this Json object.

 Json remove(Object anything) : Converts anything to
a Json object by calling make(Object) and removing the
result from the array represented by this Json object.

 Suppose you append the following lines to Listing 8-10 ’s main(String[]) method:

 jsonCourses.remove("English");
 System.out.println(json);

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Parsing and Creating JSON Objects with mJson168

 You should then observe the following additional output:

 {"courses":["French"],"name":"John Doe"}

 You can remove an element from an array by index or remove a property
from an object by name by calling the following methods:

 Json atDel(int index) : Removes the element at the
specified index from this Json object’s JSON array and
returns the element.

 Json atDel(String propName) : Removes the property
identified by propName from this Json object’s JSON
object and returns the property value (or null when the
property doesn’t exist).

 Json delAt(int index) : Removes the element at the
specified index from this Json object’s JSON array.

 Json delAt(String propName) : Removes the property
identified by propName from this Json object’s JSON
object.

 Listing 8-11 presents the source code for an application that uses the last
two delAt() methods to delete a property and an array element.

 Listing 8-11. Removing the Last Name and One of the Courses Being Taken

 import mjson.Json;

 public class mJsonDemo
 {
 public static void main(String[] args)
 {
 String jsonStr =
 "{" +
 "\"firstName\": \"John\"," +
 "\"lastName\": \"Doe\"," +
 "\"courses\":" +
 "[\"English\", \"French\", \"Spanish\"]" +
 "}";
 Json json = Json.read(jsonStr);
 System.out.println(json);
 System.out.println();
 json.delAt("lastName");
 System.out.println(json);
 System.out.println();
 json.at("courses").delAt(1);
 System.out.println(json);
 }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Parsing and Creating JSON Objects with mJson 169

 To see the results of the delAt() methods, compile this source code and run
the application. Its output is shown here:

 {"firstName":"John","lastName":"Doe","courses":["English","French","Spanish"]}

 {"firstName":"John","courses":["English","French","Spanish"]}

 {"firstName":"John","courses":["English","Spanish"]}

 Json provides an additional method for modifying a JSON object:

 Json with(Json objectorarray) : Combines this Json
object’s JSON object or JSON array with the argument
passed to objectorarray . The JSON type of this Json
object and the JSON type of objectorarray must
match. If objectorarray identifies a JSON object, all
of its properties are appended to this Json object’s
object. If objectorarray identifies a JSON array, all of its
elements are appended to this Json object’s array.

 Listing 8-12 presents the source code for an application that uses
 with(Json) to append properties to an object and elements to an array.

 Listing 8-12. Appending Properties to an Object and Elements to an Array

 import mjson.Json;

 public class mJsonDemo
 {
 public static void main(String[] args)
 {
 String jsonStr =
 "{" +
 "\"firstName\": \"John\"," +
 "\"courses\":" +
 "[\"English\"]" +
 "}";
 Json json = Json.read(jsonStr);
 System.out.println(json);
 System.out.println();
 Json jsono = Json.read("{\"initial\": \"P\", \"lastName\": \"Doe\"}");
 Json jsona = Json.read("[\"French\", \"Spanish\"]");
 json.with(jsono);
 System.out.println(json);
 System.out.println();
 json.at("courses").with(jsona);
 System.out.println(json);
 }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Parsing and Creating JSON Objects with mJson170

 Compile Listing 8-12 and run the application. Here is the application’s output:

 {"firstName":"John","courses":["English"]}

 {"firstName":"John","courses":["English"],"lastName":"Doe","initial":"P"}

 {"firstName":"John","courses":["English","French","Spanish"],"lastName":"Doe",
"initial":"P"}

 Validation
 Json supports JSON Schema Draft 4 validation via its nested Schema
interface and the following static methods:

 Json.Schema schema(Json jsonSchema) : Returns a Json.
Schema object that validates JSON documents according
to the schema described by jsonSchema .

 Json.Schema schema(Json jsonSchema, URI uri) : Returns
a Json.Schema object that validates JSON documents
according to the schema described by jsonSchema and
also located at the Uniform Resource Identifier (URI)
passed to uri , which is of type java.net.URI .

 Json.Schema schema(URI uri) : Returns a Json.Schema
object that validates JSON documents according to the
schema located at uri .

 Validation is performed by calling Schema ’s Json validate(Json document)
method, which attempts to validate a JSON document according to this
 Schema object. Validation attempts to proceed even when validation errors
are detected. The return value is always a Json object whose JSON object
contains the Boolean property named ok . When ok is true , there are no
other properties. When it’s false , the JSON object also contains a property
named errors , which is an array of error messages for all detected schema
violations.

 I’ve created two sample applications that demonstrate validation.
Listing 8-13 is based on example code at the mJson web site.

www.it-ebooks.info

http://json-schema.org/
http://www.it-ebooks.info/

CHAPTER 8: Parsing and Creating JSON Objects with mJson 171

 Listing 8-13. Validating JSON Objects That Include the id Property

 import mjson.Json;

 public class mJsonDemo
 {
 public static void main(String[] args)
 {
 // A simple schema that accepts only JSON objects with a
 // mandatory property 'id'.
 Json.Schema schema = Json.schema(Json.object("type", "object",

"required", Json.array("id")));
 System.out.println(schema.validate(Json.object("id", 666, "name",

"Britlan")));
 System.out.println(schema.validate(Json.object("ID", 666, "name",

"Britlan")));
 }
 }

 If you compile this source code and run the application, you’ll discover the
following output:

 {"ok":true}
 {"ok":false,"errors":["Required property id missing from object {\"name\":\"
Britlan\",\"ID\":666}"]}

 In Chapter 7 , I presented the following JSON object:

 {
 "name": "John Doe",
 "age": 35
 }

 I also presented the following schema as a JSON object:

 {
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "Person",
 "description": "A person",
 "type": "object",
 "properties":
 {
 "name":
 {
 "description": "A person's name",
 "type": "string"
 },

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1916-4_7
http://www.it-ebooks.info/

CHAPTER 8: Parsing and Creating JSON Objects with mJson172

 "age":
 {
 "description": "A person's age",
 "type": "number",
 "minimum": 18,
 "maximum": 64
 }
 },
 "required": ["name", "age"]
 }

 Suppose that I copy this schema to a schema.json file and store it on my
web site at http://javajeff.ca/schema.json . Listing 8-14 presents the
source code for an application that uses Json.Schema schema(URI) to obtain
this schema for validating the previous JSON object.

 Listing 8-14. Validating JSON Objects via an External Schema

 import java.net.URI;
 import java.net.URISyntaxException;

 import mjson.Json;

 public class mJsonDemo
 {
 public static void main(String[] args) throws URISyntaxException
 {
 Json.Schema schema =
 Json.schema(new URI("http://javajeff.ca/schema.json"));
 Json json = Json.read("{\"name\": \"John Doe\", \"age\": 35}");
 System.out.println(schema.validate(json));
 json = Json.read("{\"name\": \"John Doe\", \"age\": 65}");
 System.out.println(schema.validate(json));
 json = Json.read("{\"name\": \"John Doe\", \"age\": \"35\"}");
 System.out.println(schema.validate(json));
 json = Json.read("{\"age\": 35}");
 System.out.println(schema.validate(json));
 }
 }

 Compile this source code and run the application. You’ll discover the
following output:

 {"ok":true}
 {"ok":false,"errors":["Number 65 is above allowed maximum 64.0"]}
 {"ok":false,"errors":["Type mistmatch for \"35\", allowed types: [\"number\"]"]}
 {"ok":false,"errors":["Required property name missing from object {\"age\":35}"]}

www.it-ebooks.info

http://javajeff.ca/schema.json
http://www.it-ebooks.info/

CHAPTER 8: Parsing and Creating JSON Objects with mJson 173

 Customization via Factories
 Json defers the creation of Json objects to a factory, which is an instance of
a class that implements the Json.Factory interface’s methods:

 Json array()

 Json bool(boolean value)

 Json make(Object anything)

 Json nil()

 Json number(Number value)

 Json object()

 Json string(String value)

 The Json.DefaultFactory class provides default implementations of these
methods, but you can provide custom implementations when necessary. To
avoid implementing all of these methods, you can extend DefaultFactory
and override only those methods of interest.

 After creating a custom Factory class, you instantiate it and then install the
object by calling one of the following static Json methods :

 void setGlobalFactory(Json.Factory factory)

 void attachFactory(Json.Factory factory)

 The first method installs the specified factory as a global factory, which is
used by all threads that don’t have a specific thread-local factory attached
to them. The second method attaches the specified factory to the invoking
thread only, which lets you use different thread factories in the same
classloader. You can remove a thread-local factory and revert to the global
factory for a thread by calling the void dettachFactory() method.

 One of the customizations mentioned in the mJson documentation is case-
insensitive string comparison. You compare two strings for equality by
invoking equals() on a string-based Json object with another string-based
 Json object as an argument:

 Json json1 = Json.read("\"abc\"");
 Json json2 = Json.read("\"abc\"");
 Json json3 = Json.read("\"Abc\"");
 System.out.println(json1.equals(json2)); // Output: true
 System.out.println(json1.equals(json3));

 Because equals() defaults to being case-sensitive, json1.equals(json3)
returns false .

www.it-ebooks.info

http://bolerio.github.io/mjson/apidocs/mjson/Json.DefaultFactory.html#class in mjson
http://bolerio.github.io/mjson/apidocs/mjson/Json.html#setGlobalFactory(mjson.Json.Factory)
http://www.it-ebooks.info/

CHAPTER 8: Parsing and Creating JSON Objects with mJson174

 You can make equals() case-insensitive for string-based Json objects by
first creating the following Factory class:

 class MyFactory extends Json.DefaultFactory
 {
 @Override
 public Json string(String x)
 {
 // Obtain the StringJson instance.
 final Json json = super.string(x);

 class StringIJson extends Json
 {
 private static final long serialVersionUID = 1L;

 String val;

 StringIJson(String val)
 {
 this.val = val;
 }

 @Override
 public byte asByte()
 {
 return json.asByte();
 }

 @Override
 public char asChar()
 {
 return json.asChar();
 }

 @Override
 public double asDouble()
 {
 return json.asDouble();
 }

 Note The equals() method that’s called is not located in the Json class.
Instead, it’s located in a nested package-private class, such as StringJson .

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Parsing and Creating JSON Objects with mJson 175

 @Override
 public float asFloat()
 {
 return json.asFloat();
 }

 @Override
 public int asInteger()
 {
 return json.asInteger();
 }

 @Override
 public List<Object> asList()
 {
 return json.asList();
 }

 @Override
 public long asLong()
 {
 return json.asLong();
 }

 @Override
 public short asShort()
 {
 return json.asShort();
 }

 @Override
 public String asString()
 {
 return json.asString();
 }

 @Override
 public Json dup()
 {
 return json.dup();
 }

 @Override
 public boolean equals(Object x)
 {
 return x instanceof StringIJson &&
 ((StringIJson) x).val.equalsIgnoreCase(val);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Parsing and Creating JSON Objects with mJson176

 @Override
 public Object getValue()
 {
 return json.getValue();
 }

 @Override
 public int hashCode()
 {
 return json.hashCode();
 }

 @ Override
 public boolean isString()
 {
 return json.isString();
 }

 @Override
 public String toString()
 {
 return json.toString();
 }
 }
 return new StringIJson(x);
 }
 }

 MyFactory overrides the string(String) method, which is responsible for
creating Json objects that represent JSON strings. In the Json.java source
code (which you can access from the mJson web site), string(String)
executes return new StringJson(x, null); .

 StringJson is the name of a nested package-private static class. Because
it cannot be accessed from outside of the mjson package, MyFactory ’s
overriding string(String) method declares an equivalent StringIJson class
(the I is for case-insensitive).

 Rather than copy all of the code from StringJson to StringIJson , which
is wasteful duplication and won’t work anyway because some of the code
relies on other package-private types, I chose to use the adapter/wrapper
design pattern (https://en.wikipedia.org/wiki/Adapter_pattern).

 The idea behind the adapter pattern is to have StringIJson duplicate
 StringJson methods in terms of their headers, and code the bodies
to forward almost all method calls to the StringJson equivalents. This
is possible by having MyFactory ’s string(String) method first invoke
 DefaultFactory ’s string(String) method, which returns the StringJson
object. It’s then a simple matter of forwarding calls to this object.

www.it-ebooks.info

https://en.wikipedia.org/wiki/Adapter_pattern
http://www.it-ebooks.info/

CHAPTER 8: Parsing and Creating JSON Objects with mJson 177

 The exception is the equals() method. StringIJson codifies this method to
be nearly identical to its StringJson counterpart. The main difference is the
call to String ’s equalsIgnoreCase() method instead of its equals() method.
The result is a case-insensitive equals() method.

 Before performing any equality testing, MyFactory needs to be instantiated
and registered with Json , which the following method call accomplishes:

 Json.setGlobalFactory(new MyFactory());

 This time, json1.equals(json3) returns true .

 EXERCISES

 The following exercises are designed to test your understanding of Chapter 8 ’s content.

 1. Define mJson.

 2. Describe the Json class.

 3. Identify Json ’s methods for reading and parsing external JSON objects.

 4. True or false: The read() methods can also parse smaller JSON
fragments, such as an array of different-typed values.

 5. Identify the methods that Json provides for creating JSON objects.

 6. What does Json ’s boolean isPrimitive() method accomplish?

 7. How do you return a Json object’s JSON array?

 8. True or false: Json ’s Map<String, Json> asJsonMap() method
returns a map of the properties of a Json object that describes a JSON
object. The returned map is a copy and modifications to it don’t affect
the Json object.

 9. Which Json methods let you access the contents of arrays and objects?

 10. What does Json ’s boolean is(int index, Object value)
method accomplish?

 11. What does Json do when you attempt to set the value for a
nonexistent array element?

 12. What is the difference between Json ’s atDel() and delAt()
methods?

 13. What does Json ’s Json with(Json objectorarray) method
accomplish?

 14. Identify Json ’s methods for obtaining a Json.Schema object.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1916-4_8
http://www.it-ebooks.info/

CHAPTER 8: Parsing and Creating JSON Objects with mJson178

 15. How do you validate a JSON document against a schema?

 16. What is the difference between Json ’s setGlobalFactory() and
 attachFactory() methods?

 17. Two Json methods that were not discussed in this chapter are Json
dup() and String pad(String callback) . What do they do?

 18. Write an mJsonDemo application that demonstrates dup() and pad() .

 Summary
 mJson is a small Java-based JSON library for parsing JSON objects into
Java objects and vice versa. It consists of a Json class that describes a
JSON object or part of a JSON object. Json contains Schema and Factory
interfaces, more than 50 methods, and other members.

 After obtaining the mJson library, you learned how to use this library to
create Json objects, learned about Json objects, navigated Json object
hierarchies, modified Json objects, validated JSON documents against a
schema, and customized Json by installing nondefault factories.

 Chapter 9 introduces Gson for parsing and creating JSON objects.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1916-4_9
http://www.it-ebooks.info/

179© Jeff Friesen 2016
J. Friesen, Java XML and JSON, DOI 10.1007/978-1-4842-1916-4_9

 Chapter 9
 Parsing and Creating
JSON Objects with Gson
 Gson is another API for for parsing and creating JSON objects. This chapter
explores the latest version of this open source Google product.

 What Is Gson ?
 Gson (also known as Google Gson) is a small Java-based library for parsing
and creating JSON objects. Google developed Gson for its own projects,
but later made Gson publicly available, starting with version 1.0. According
to Wikipedia, the latest version (at the time of writing) is 2.6.1.

 Gson was developed with the following goals in mind:

 Provide simple toJson() and fromJson() methods to
convert Java objects to JSON objects and vice versa.

 Allow pre-existing unmodifiable objects to be converted
to and from JSON.

 Provide extensive support for Java Generics.

 Allow custom representations of objects.

 Support arbitrarily complex objects (with deep inheritance
hierarchies and extensive use of generic types).

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Parsing and Creating JSON Objects with Gson180

 Gson parses JSON objects by deserializing JSON objects into Java objects.
Similarly, it creates JSON objects by serializing Java objects into JSON
objects. Gson relies on Java’s Reflection API to assist with serialization and
deserialization.

 Obtaining and Using Gson
 Gson is distributed as a single Jar file; gson-2.6.1.jar is the most recent Jar
file at the time of writing. To obtain this Jar file, point your browser to
 http://search.maven.org/#artifactdetails|com.google.code.
gson|gson|2.6.1|jar , select gson-2.6.1.jar from the list near the bottom of
the page, and download it. Also, you might want to download gson-2.6.1-
javadoc.jar , which contains this API’s Javadoc.

 It’s easy to work with with gson-2.6.1.jar . Simply include it in the classpath
when compiling source code or running an application, as follows:

 javac -cp gson-2.6.1.jar source file
 java -cp gson-2.6.1.jar;. main classfile

 Exploring GSon
 Gson consists of more than 30 classes and interfaces distributed among
four packages :

 com.google.gson : This package provides access to
 Gson , the main class for working with Gson.

 com.google.gson.annotations : This package provides
annotation types for use with Gson.

 com.google.gson.reflect : This package provides a utility
class for obtaining type information from a generic type.

 com.google.gson.stream : This package provides utility
classes for reading and writing JSON-encoded values.

 In this section, I first introduce you to the Gson class. Then, I focus on
 Gson deserialization (parsing JSON objects) followed by Gson serialization
(creating JSON objects). I close by briefly discussing additional Gson
features, such as annotations and type adapters.

 Note Gson is licensed according to Apache License Version 2.0
(www.apache.org/licenses/).

www.it-ebooks.info

http://search.maven.org/#artifactdetails|com.google.code.gson|gson|2.6.1|jar
http://search.maven.org/#artifactdetails|com.google.code.gson|gson|2.6.1|jar
http://www.apache.org/licenses/
http://www.it-ebooks.info/

CHAPTER 9: Parsing and Creating JSON Objects with Gson 181

 Introducing the Gson Class
 The Gson class handles the conversion between JSON and Java objects.
You can instantiate this class by using the Gson() constructor, or you can
obtain a Gson instance by working with the com.google.gson.GsonBuilder
class. The following code fragment demonstrates both approaches:

 Gson gson1 = new Gson();
 Gson gson2 = new GsonBuilder()
 .registerTypeAdapter(Id.class, new IdTypeAdapter())
 .serializeNulls()
 .setDateFormat(DateFormat.LONG)
 .setFieldNamingPolicy(FieldNamingPolicy.UPPER_CAMEL_CASE)
 .setPrettyPrinting()
 .setVersion(1.0)
 .create();

 Call Gson() when you want to work with the default configuration, and
use GsonBuilder when you want to override the default configuration.
Configuration method calls are chained together, with GsonBuilder ’s Gson
 create() method being called last to return the resulting Gson object.

 Gson supports the following default configuration (the list isn’t complete;
check the Gson and GsonBuilder documentation for more information):

 Gson provides default serialization and deserialization for
 java.lang.Enum , java.util. Map , java.net. URL , java.
net. URI , java.util. Locale , java.util. Date , java.
math. BigDecimal , and java.math. BigInteger instances.
You can change the default representation by registering
a type adapter (discussed later) via GsonBuilder.
registerTypeAdapter(Type, Object) .

 The generated JSON text omits all null fields. However,
it preserves null s in arrays because an array is an
ordered list. Also, if a field isn’t null , but its generated
JSON text is empty, the field is kept. You can configure
 Gson to serialize null values by calling GsonBuilder.
serializeNulls() .

 The default Date format is the same as java.
text. DateFormat.DEFAULT . This format ignores the
millisecond portion of the date during serialization.
You can change the default format by invoking
 GsonBuilder.setDateFormat(int) or GsonBuilder.
setDateFormat(String) .

www.it-ebooks.info

http://docs.oracle.com/javase/6/docs/api/java/util/Map.html?is-external=true#class or interface in java.util
http://docs.oracle.com/javase/6/docs/api/java/net/URL.html?is-external=true#class or interface in java.net
http://docs.oracle.com/javase/6/docs/api/java/net/URI.html?is-external=true#class or interface in java.net
http://docs.oracle.com/javase/6/docs/api/java/util/Locale.html?is-external=true#class or interface in java.util
http://docs.oracle.com/javase/6/docs/api/java/util/Date.html?is-external=true#class or interface in java.util
http://docs.oracle.com/javase/6/docs/api/java/math/BigDecimal.html?is-external=true#class or interface in java.math
http://docs.oracle.com/javase/6/docs/api/java/math/BigInteger.html?is-external=true#class or interface in java.math
http://docs.oracle.com/javase/6/docs/api/java/text/DateFormat.html?is-external=true#DEFAULT#class or interface in java.text
http://www.it-ebooks.info/

CHAPTER 9: Parsing and Creating JSON Objects with Gson182

 The default field-naming policy for the output JSON text
is the same as in Java. For example, a Java class field
named versionNumber will be output as "versionNumber"
in JSON. The same rules are applied for mapping
incoming JSON to Java classes. You can change this
policy by calling GsonBuilder.setFieldNamingPolicy
(FieldNamingPolicy) .

 The JSON text that’s generated by the toJson()
methods is represented compactly: all unneeded
whitespace is removed. You can change this behavior
by calling GsonBuilder.setPrettyPrinting() .

 By default, Gson ignores @ Since and @Until annotations.
You can enable Gson to use these annotations by calling
 GsonBuilder.setVersion(double) .

 By default, Gson ignores @ Expose annotations.
You can enable Gson to serialize/deserialize only
those fields marked with this annotation by calling
 GsonBuilder.excludeFieldsWithoutExposeAnnotation() .

 By default, Gson excludes transient or static fields
from consideration for serialization and deserialization.
You can change this behavior by calling GsonBuilder.
excludeFieldsWithModifiers(int...) .

 Once you have a Gson object, you can call various fromJson() and toJson()
methods to convert between JSON and Java objects. For example,
Listing 9-1 presents a simple application that obtains a Gson object and
demonstrates JSON-Java object conversion in terms of JSON primitives .

 Listing 9-1. Converting Between JSON and Java Primitives

 import com.google.gson.Gson;

 public class GsonDemo
 {
 public static void main(String[] args)
 {
 Gson gson = new Gson();
 String name = gson.fromJson("\"John Doe\"", String.class);
 System.out.println(name);
 gson.toJson(256, System.out);
 }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Parsing and Creating JSON Objects with Gson 183

 Listing 9-1 ’s main() method first instantiates Gson , keeping its default
configuration. It then invokes Gson ’s <T> T fromJson(String json, Class<T>
classOfT) generic method to deserialize the specified java.lang.String -
based JSON text (in json) into an object of the specified class (classOfT),
which happens to be String .

 JSON string "John Doe" (the double quotes are mandatory), which is
expressed as a Java String object, is converted (minus the double quotes)
to a Java String object. A reference to this object is assigned to name .

 After outputting the returned name, main() calls Gson ’s void toJson(Object
src, Appendable writer) method to convert autoboxed integer 256 (stored
by the compiler in a java.lang.Integer object) into a JSON integer and
output the result to the standard output stream.

 Compile Listing 9-1 as follows:

 javac -cp gson-2.6.1.jar GsonDemo.java

 Run the resulting application as follows:

 java -cp gson-2.6.1.jar;. GsonDemo

 You should observe the following output:

 John Doe
 256

 The output isn’t impressive, but it’s a start. In the next two sections you’ll
see more useful examples of deserialization and serialization.

 Parsing JSON Objects Through Deserialization
 Apart from parsing JSON primitives (such as numbers or strings) into their
Java equivalents, Gson lets you parse JSON objects into Java objects. For
example, suppose you have the following JSON object, which describes a
person:

 { "name": "John Doe", "age": 45 }

 Also, suppose you have the following Java class :

 class Person
 {
 String name;
 int age;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Parsing and Creating JSON Objects with Gson184

 You can use the previous fromJson() method to parse the JSON object into
an instance of the Person class, which is demonstrated in Listing 9-2 .

 Listing 9-2. Parsing a JSON Object into a Java Object

 import com.google.gson.Gson;

 public class GsonDemo
 {
 static class Person
 {
 String name;
 int age;

 Person(String name, int age)
 {
 this.name = name;
 this.age = age;
 }

 @Override
 public String toString()
 {
 return name + ": " + age;
 }
 }

 public static void main(String[] args)
 {
 Gson gson = new Gson();
 String json = "{ name: \"John Doe\", age: 45 }";
 Person person = gson.fromJson(json, Person.class);
 System.out.println(person);
 }
 }

 Listing 9-2 declares a GsonDemo class with a nested Person class that
describes a person in terms of a name and an age.

 GsonDemo ’s main() method first instantiates Gson , keeping its default
configuration. It then constructs a String -based JSON object representing a
person and passes this object along with Person.class to fromJson(String
json, Class<T> classOfT). fromJson() parses the name and age stored in
the string passed to json , and uses Person.class along with the Reflection
API to create a Person object and populate it with the name and age. A
reference to the Person object is returned and stored in the person variable,

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Parsing and Creating JSON Objects with Gson 185

and subsequently passed to System.out.println() . This method ultimately
invokes Person ’s toString() method to return a string representation of the
 Person object, and then writes this string to the standard output stream.

 Compile Listing 9-2 and run the resulting application. You should observe
the following output :

 John Doe: 45

 Customized JSON Object Parsing
 The previous gson.fromJson(json, Person.class) method call relies on
 Gson ’s default deserialization mechanism to parse JSON objects. You will
often encounter scenarios where you need to parse complex JSON objects
into Java objects whose classes don’t have the same structure as the
JSON objects to be parsed. You can perform this parsing with a custom
deserializer, which controls how JSON objects map to Java objects.

 The com.google.gson.JsonDeserializer<T> interface describes a custom
deserializer. The argument passed to T identifies the type for which the
deserializer is being used. For example, you might pass Person to T when
needing to parse JSON objects with a somewhat different structure.

 JsonDeserializer declares a single method for handling the deserialization
(JSON object parsing):

 T deserialize(JsonElement json,Type typeOfT,
 JsonDeserializationContext context)

 deserialize() is a callback method that Gson calls during deserialization.
This method is called with the following arguments:

 json identifies the JSON element being deserialized.

 typeOfT identifies the type of the Java object in which to
deserialize json .

 context identifies a context in which to perform the
deserialization. (I’ll have more to say about contexts later.)

 deserialize() throws com.google.gson.JsonParseException when
the JSON element passed to json isn’t compatible with the type
passed to typeOfT . Because JsonParseException extends java.lang.
RuntimeException , you don’t have to append a throws clause.

www.it-ebooks.info

http://docs.oracle.com/javase/6/docs/api/java/lang/RuntimeException.html?is-external=true#class or interface in java.lang
http://docs.oracle.com/javase/6/docs/api/java/lang/RuntimeException.html?is-external=true#class or interface in java.lang
http://www.it-ebooks.info/

CHAPTER 9: Parsing and Creating JSON Objects with Gson186

 ABOUT JSONELEMENT

 The com.google.gson.JsonElement class represents a JSON element (such as a
number, a Boolean value, or an array). It provides various methods for obtaining an element
value, such as double getAsDouble() , boolean getAsBoolean() , and JsonArray
getAsJsonArray() .

 JsonElement is an abstract class that serves as the superclass for the following JSON
element classes (in the com.google.gson package):

 JsonArray : A concrete class that represents JSON’s array type. An
array is a list of JsonElement s, each of which can be of a different
type. This is an ordered list, meaning that the order in which elements
are added is preserved.

 JsonNull : A concrete class that represents a JSON null value.

 JsonObject : A concrete class that represents JSON’s object type.
An object consists of name-value pairs, where names are strings and
values are any other type of JsonElement , which leads to a tree of
 JsonElement s. The member elements of this object are maintained
in the order they were added.

 JsonPrimitive : A concrete class that represents one of JSON’s
number, string, or Boolean types.

 Except for JsonNull , each of these subclasses provides various methods for obtaining
element values.

 After creating a JsonDeserializer object, you need to register it with Gson .
Accomplish this task by calling the following GsonBuilder method:

 GsonBuilder registerTypeAdapter(Type type, Object typeAdapter)

 The object passed to type identifies the type of the deserializer and
the object passed to typeAdapter identifies the deserializer. Because
 registerTypeAdapter(Type, Object) returns a GsonBuilder object, you can
only use this method in a GsonBuilder context.

 To demonstrate customized JSON object parsing, consider an expanded
version of the previous JSON object:

 { "first-name": "John", "last-name": "Doe", "age": 45, "address": "Box 1 " }

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Parsing and Creating JSON Objects with Gson 187

 This JSON object differs significantly from the previous JSON object, which
consisted of name and age fields:

 The name field has been refactored into first-name and
 last-name fields. Note that the hyphen (-) isn’t a legal
character for a Java identifier.

 An address field has been added.

 If you modify Listing 9-2 by replacing the object assigned to json with this
new object, you shouldn’t be surprised by the following output:

 null: 45

 The parsing is completely messed up. However, you can fix this problem by
introducing the following custom deserializer:

 class PersonDeserializer implements JsonDeserializer<Person>
 {
 @Override
 public Person deserialize(JsonElement json, Type

typeOfT, JsonDeserializationContext context)
 {
 JsonObject jsonObject = json.getAsJsonObject();
 String firstName = jsonObject.get("first-name").getAsString();
 String lastName = jsonObject.get("last-name").getAsString();
 int age = jsonObject.getAsJsonPrimitive("age").getAsInt();
 String address = jsonObject.get("address").getAsString();
 return new Person(firstName + " " + lastName, 45);
 }
 }

 When the custom deserializer is used with the previous JSON object,
 deserialize() is called only once, and with an object of type JsonObject
being passed to json . You could cast this value to a JsonObject , as in
 JsonObject jsonObject = (JsonObject) json; . Alternatively, you can
call JsonElement ’s JsonObject getAsJsonObject() method to obtain the
 JsonObject reference, which is what deserialize() first accomplishes.

 After obtaining the JsonObject reference, deserialize() calls its
 JsonElement get(String memberName) method to return a JsonElement for
the desired memberName value. The first call passes first-name to get() ;
you want to obtain the value of this JSON field. Because a JsonPrimitive
is returned in place of JsonElement , a call to JsonPrimitive ’s String
 getAsString() method is chained to the JsonPrimitive reference, and
 first-name ’s value is obtained. This pattern is followed to obtain the values
for the last-name and address fields.

www.it-ebooks.info

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html?is-external=true#class or interface in java.lang
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html?is-external=true#class or interface in java.lang
http://www.it-ebooks.info/

CHAPTER 9: Parsing and Creating JSON Objects with Gson188

 For variety, I decided to do something different with the age field. I call
 JsonObject ’s JsonPrimitive getAsJsonPrimitive(String memberName)
method to return a JsonPrimitive reference corresponding to age . Then, I
call JsonPrimitive ’s int getAsInt() method to return the integer value.

 After obtaining all field values, a Person object is created and then returned.
Because I’m reusing the Person class shown in Listing 9-2 , and because
there is no address field in this class, I throw address ’s value away. You
might want to modify Person to include this field.

 The following code fragment shows how you would instantiate
 PersonDeserializer and register it with a GsonBuilder instance, which is
also used to obtain a Gson instance in order to call fromJson() , to parse the
previous JSON object via the person deserializer:

 GsonBuilder gsonBuilder = new GsonBuilder();
 gsonBuilder.registerTypeAdapter(Person.class, new PersonDeserializer());
 Gson gson = gsonBuilder.create();

 I’ve combined these code fragments into a working application. Listing 9-3
presents the application’s source code.

 Listing 9-3. Parsing a JSON Object into a Java Object via a Custom Deserializer

 import java.lang.reflect.Type;

 import com.google.gson.Gson;
 import com.google.gson.GsonBuilder;
 import com.google.gson.JsonDeserializationContext;
 import com.google.gson.JsonDeserializer;
 import com.google.gson.JsonElement;
 import com.google.gson.JsonObject;
 import com.google.gson.JsonParseException;

 public class GsonDemo
 {
 static class Person
 {
 String name;
 int age;

 Person(String name, int age)
 {
 this.name = name;
 this.age = age;
 }

www.it-ebooks.info

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html?is-external=true#class or interface in java.lang
http://www.it-ebooks.info/

CHAPTER 9: Parsing and Creating JSON Objects with Gson 189

 @Override
 public String toString()
 {
 return name + ": " + age;
 }
 }

 public static void main(String[] args)
 {
 class PersonDeserializer implements JsonDeserializer<Person>
 {
 @Override
 public Person deserialize(JsonElement json, Type typeOfT,

JsonDeserializationContext context)
 {
 JsonObject jsonObject = json.getAsJsonObject();
 String firstName = jsonObject.get("first-name").getAsString();
 String lastName = jsonObject.get("last-name").getAsString();
 int age = jsonObject.getAsJsonPrimitive("age").getAsInt();
 String address = jsonObject.get("address").getAsString();
 return new Person(firstName + " " + lastName, 45);
 }
 }
 GsonBuilder gsonBuilder = new GsonBuilder();
 gsonBuilder.registerTypeAdapter(Person.class, new PersonDeserializer());
 Gson gson = gsonBuilder.create();
 String json = "{ first-name: \"John\", last-name: \"Doe\", " + "age:

45, address: \"Box 1\" }";
 Person person = gson.fromJson(json, Person.class);
 System.out.println(person);
 }
 }

 Compile Listing 9-3 and run the resulting application. You should observe
the following output:

 John Doe: 45

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Parsing and Creating JSON Objects with Gson190

 Creating JSON Objects Through Serialization
 Gson lets you create JSON objects from Java objects by calling one of Gson ’s
 toJson() methods. Listing 9-4 provides a simple demonstration.

 Listing 9-4. Creating a JSON Object from a Java Object

 import com.google.gson.Gson;

 public class GsonDemo
 {
 static class Person
 {
 String name;
 int age;

 Person(String name, int age)
 {
 this.name = name;
 this.age = age;
 }
 }

 public static void main(String[] args)
 {
 Person p = new Person("Jane Doe", 59);
 Gson gson = new Gson();
 String json = gson.toJson(p);
 System.out.println(json);
 }
 }

 Listing 9-4 ’s main() method first creates a Person object from the nested
 Person class. It then creates a Gson object and invokes this object’s String
 toJson(Object src) method to serialize the Person object into its equivalent
JSON string representation, which toJson(Object) returns.

 Compile Listing 9-4 and run the resulting application. You should observe
the following output:

 {"name":"Jane Doe","age":59}

 If you prefer to write the JSON object to a file, a string buffer, or some other
 java.lang.Appendable , you can call void toJson(Object src, Appendable
writer) to accomplish this task. This toJson() variant sends its output to
the specified writer , as demonstrated in Listing 9-5 .

www.it-ebooks.info

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html?is-external=true#class or interface in java.lang
http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html?is-external=true#class or interface in java.lang
http://www.it-ebooks.info/

CHAPTER 9: Parsing and Creating JSON Objects with Gson 191

 Listing 9-5. Creating a JSON Object from a Java Object and Writing the JSON Object to a File

 import java.io.FileWriter;
 import java.io.IOException;

 import com.google.gson.Gson;

 public class GsonDemo
 {
 static class Student
 {
 String name;
 int id;
 int[] grades;

 Student(String name, int id, int... grades)
 {
 this.name = name;
 this.id = id;
 this.grades = grades;
 }
 }

 public static void main(String[] args) throws IOException
 {
 Student s = new Student("John Doe", 820787, 89, 78, 97, 65);
 Gson gson = new Gson();
 FileWriter fw = new FileWriter("student.json");
 gson.toJson(s, fw);
 fw.close();
 }
 }

 Listing 9-5 ’s main() method first creates a Student object from the nested
 Student class. It then creates Gson and java.io.FileWriter objects, and
invokes the Gson object’s toJson(Object , Appendable) method to serialize
the Student object into its equivalent JSON string representation and write
the result to student.json . The file writer is then closed so that buffered
content can be written to the file (you could specify fw.flush(); instead).

 If you run this application, you won’t observe any output. However, you
should observe a student.json file with the following content:

 {"name":"John Doe","id":820787,"grades":[89,78,97,65]}

 Note void toJson(Object src, Appendable writer) throws the
unchecked com.google.gson.JsonIOException when an I/O error arises.

www.it-ebooks.info

http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html?is-external=true#class or interface in java.lang
http://www.it-ebooks.info/

CHAPTER 9: Parsing and Creating JSON Objects with Gson192

 Customized JSON Object Creation
 The previous gson.toJson(p) and gson. toJson (s, fw) method calls rely on
 Gson ’s default serialization mechanism to create JSON objects. You will often
encounter scenarios where you need to create JSON objects from Java
objects whose classes don’t have the same structure as the JSON objects
to be created. You can perform this creation with a custom serializer, which
controls how Java objects map to JSON objects.

 The com.google.gson.JsonSerializer<T> interface describes a custom
serializer. The argument passed to T identifies the type for which the
serializer is being used. For example, you might pass Person to T when
needing to create JSON objects with a somewhat different structure.

 JsonSerializer declares a single method for handling the serialization
(JSON object creation):

 JsonElement serialize(T src, Type typeOfSrc,
 JsonSerializationContext context)

 serialize() is a callback method that Gson calls during serialization. This
method is called with the following arguments:

 src identifies the Java object that needs to be serialized.

 typeOfSrc identifies the actual type of the Java object,
specified by src , to be serialized.

 context identifies a context in which to perform the
serialization. (I’ll have more to say about contexts later.)

 After creating a JsonSerializer object, you need to register it with Gson .
Accomplish this task by calling the following GsonBuilder method:

 GsonBuilder registerTypeAdapter(Type type, Object typeAdapter)

 The object passed to type identifies the type of the serializer and
the object passed to typeAdapter identifies the serializer. Because
 registerTypeAdapter(Type, Object) returns a GsonBuilder object, you can
only use this method in a GsonBuilder context.

 To demonstrate customized JSON object creation, consider the Book class
that’s presented in Listing 9-6 .

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Parsing and Creating JSON Objects with Gson 193

 Listing 9-6. Describing a Book as a Title, List of Authors, and ISBN Numbers

 public class Book
 {
 private String title;
 private String[] authors;
 private String isbn10;
 private String isbn13;

 public Book(String title, String[] authors, String isbn10, String isbn13)
 {
 this.title = title;
 this.authors = authors;
 this.isbn10 = isbn10;
 this.isbn13 = isbn13;
 }

 public String getTitle()
 {
 return title;
 }

 public String[] getAuthors()
 {
 return authors;
 }

 public String getIsbn10()
 {
 return isbn10;
 }

 public String getIsbn13()
 {
 return isbn13;
 }
 }

 Continuing, suppose that Book objects are to be serialized to JSON objects
that have the following format:

 {
 "title": title
 "lead-author": author0
 "other-authors": [author1 , author2 , ...]
 "isbn-10": isbn10
 "isbn-13": isbn13
 }

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Parsing and Creating JSON Objects with Gson194

 You cannot use default serialization because the Book class doesn’t declare
 lead-author , other-authors , isbn-10 , and isbn-13 fields. In any case,
default serialization creates JSON property names that match a Java class’s
field names (and the hyphen character is illegal for Java identifiers). To prove
that you cannot obtain the desired JSON object with default serialization,
suppose you attempt to execute the following code fragment :

 Book book = new Book("PHP and MySQL Web Development, Second Edition",
new String[] { "Luke Welling", "Laura Thomson" }, "067232525X", "075-2063325254");
 Gson gson = new Gson();
 System.out.println(gson.toJson(book));

 This code fragment generates the following output:

 {"title":"PHP and MySQL Web Development, Second Edition","authors":["Luke
Welling","Laura Thomson"],"isbn10":"067232525X","isbn13":"075-2063325254"}

 The output doesn’t match the expected JSON object. However, you can fix
this problem by introducing the following custom serializer:

 class BookSerializer implements JsonSerializer<Book>
 {
 @Override
 public JsonElement serialize(Book src, Type typeOfSrc,
 JsonSerializationContext context)
 {
 JsonObject jsonObject = new JsonObject();
 jsonObject.addProperty("title", src.getTitle());
 jsonObject.addProperty("lead-author", src.getAuthors()[0]);
 JsonArray jsonOtherAuthors = new JsonArray();
 for (int i = 1; i < src.getAuthors().length; i++)
 {
 JsonPrimitive jsonAuthor =
 new JsonPrimitive(src.getAuthors()[i]);
 jsonOtherAuthors.add(jsonAuthor);
 }
 jsonObject.add("other-authors", jsonOtherAuthors);
 jsonObject.addProperty("isbn-10", src.getIsbn10());
 jsonObject.addProperty("isbn-13", src.getIsbn13());
 return jsonObject;
 }
 }

 When the custom serializer is used with the previous Java Book object,
 serialize() is called only once with the Book object being passed to src .
Because a JSON object is desired as the result of this method, serialize()
first creates a JsonObject instance.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Parsing and Creating JSON Objects with Gson 195

 JsonObject declares several addProperty() methods for adding properties
to the JSON object that a JsonObject instance represents. serialize()
invokes the void addProperty(String property, String value) method to
add the title , lead-author , isbn-10 , and isbn-13 properties.

 The other-authors property is handled differently. First, serialize()
creates a JsonArray instance and populates it with all authors except for
the first author. Then, it invokes JsonObject ’s void add(String property,
 JsonElement value) method to add the JsonArray object to the JsonObject .

 When serialization finishes, serialize() returns the created and populated
 JsonObject .

 The following code fragment shows how you instantiate BookSerializer and
register it with a GsonBuilder instance, which is also used to obtain a Gson
instance in order to call toJson() , to create the desired JSON object via the
book serializer:

 GsonBuilder gsonBuilder = new GsonBuilder();
 gsonBuilder.registerTypeAdapter(Book.class, new BookSerializer());
 Gson gson = gsonBuilder.create();

 I’ve combined these code fragments into a working application. Listing 9-7
presents the application’s source code.

 Listing 9-7. Creating a JSON Object from a Java Object via a Custom Serializer

 import java.lang.reflect.Type;

 import com.google.gson.Gson;
 import com.google.gson.GsonBuilder;
 import com.google.gson.JsonArray;
 import com.google.gson.JsonElement;
 import com.google.gson.JsonObject;
 import com.google.gson.JsonPrimitive;
 import com.google.gson.JsonSerializationContext;
 import com.google.gson.JsonSerializer;

 public class GsonDemo
 {
 public static void main(String[] args)
 {
 class BookSerializer implements JsonSerializer<Book>
 {
 @Override
 public JsonElement serialize(Book src, Type typeOfSrc,

JsonSerializationContext context)

www.it-ebooks.info

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html?is-external=true#class or interface in java.lang
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html?is-external=true#class or interface in java.lang
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html?is-external=true#class or interface in java.lang
http://www.it-ebooks.info/

CHAPTER 9: Parsing and Creating JSON Objects with Gson196

 {
 JsonObject jsonObject = new JsonObject();
 jsonObject.addProperty("title", src.getTitle());
 jsonObject.addProperty("lead-author", src.getAuthors()[0]);
 JsonArray jsonOtherAuthors = new JsonArray();
 for (int i = 1; i < src.getAuthors().length; i++)
 {
 JsonPrimitive jsonAuthor =
 new JsonPrimitive(src.getAuthors()[i]);
 jsonOtherAuthors.add(jsonAuthor);
 }
 jsonObject.add("other-authors", jsonOtherAuthors);
 jsonObject.addProperty("isbn-10", src.getIsbn10());
 jsonObject.addProperty("isbn-13", src.getIsbn13());
 return jsonObject;
 }
 }
 GsonBuilder gsonBuilder = new GsonBuilder();
 gsonBuilder.registerTypeAdapter(Book.class, new BookSerializer());
 Gson gson = gsonBuilder. setPrettyPrinting ().create();
 Book book = new Book("PHP and MySQL Web Development, Second Edition",
new String[] { "Luke Welling", "Laura Thomson" }, "067232525X", "075-
2063325254");
 System.out.println(gson.toJson(book));
 }
 }

 Compile Listing 9-7 and run the resulting application. You should observe the
following output, which has been pretty-printed (via the setPrettyPrinting()
method call on the GsonBuilder object) to make the output clearer:

 {
 "title": "PHP and MySQL Web Development, Second Edition",
 "lead-author": "Luke Welling",
 "other-authors": [
 "Laura Thomson"
],
 "isbn-10": "067232525X",
 "isbn-13": "075-2063325254"
 }

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Parsing and Creating JSON Objects with Gson 197

 Learning More About Gson
 Now that you have a fairly good understanding of Gson library basics, you’ll
probably want to learn about other features that this library offers. In this
section, I introduce you to annotations, contexts, Gson’s support for
generics, and type adapters.

 Annotations
 Gson offers several annotation types (in the com.google.gson.annotations
package) for simplifying serialization and deserialization:

 Expose : Exposes the annotated field to or hide it from
Gson’s serialization and/or deserialization mechanisms.

 JsonAdapter : Identifies the type adapter to use with a
class or field. (I’ll discuss this annotation type later when
I focus on type adapters.)

 SerializedName : Indicates that the annotated field or
method should be serialized to JSON with the provided
name value as its name.

 Since : Identifies the starting version number for
serializing a field or type. If a Gson object is created with
a version number that is less than the value in the @
Since annotation, the annotated field/type will not be
serialized.

 Until : Identifies the ending version number for
serializing a field or type. If a Gson object is created with
a version number that equals or exceeds the value in
the @Until annotation, the annotated field/type will not
be serialized.

 Note My coverage of additional Gson features isn’t exhaustive. Check out the
“Gson User Guide” (https://github.com/google/gson/blob/master/
UserGuide.md) to learn about topics that I haven’t covered, such as instance
creators.

 Note According to the Gson documentation, Since and Until are useful for
managing the versioning of JSON classes in a web service context.

www.it-ebooks.info

https://github.com/google/gson/blob/master/UserGuide.md
https://github.com/google/gson/blob/master/UserGuide.md
http://www.it-ebooks.info/

CHAPTER 9: Parsing and Creating JSON Objects with Gson198

 Exposing and Hiding Fields
 By default, Gson will not serialize and deserialize fields that are marked
 transient (or static). You can call GsonBuilder ’s GsonBuilder exclude
FieldsWithModifiers(int... modifiers) method to change this behavior.
Also, Gson lets you selectively determine which non- transient fields to
serialize and/or deserialize by annotating these fields with instances of the
 Expose annotation type.

 Expose offers the following elements for determining whether a field can be
serialized and whether it can be deserialized:

 serialize : When true , the field marked with this
 @Expose annotation is serialized to JSON text; otherwise,
the field isn’t serialized. The default value is true .

 deserialize : When true , the field marked with this
 @Expose annotation is deserialized from JSON text;
otherwise, the field isn’t deserialized. The default value
is true .

 The following code fragment shows how to use Expose and these elements
so that a field named someField will be serialized and not deserialized:

 @Expose(serialize = true, deserialize = false)
 int someField;

 By default, Gson ignores Expose . You must configure Gson to expose/hide fields
that are annotated with @Expose by calling the following GsonBuilder method:

 GsonBuilder excludeFieldsWithoutExposeAnnotation()

 Create a GsonBuilder object and then call GsonBuilder ’s
 excludeFieldsWithoutExposeAnnotation() method followed by its Gson
create() method on this object to return a configured Gson object:

 GsonBuilder gsonb = new GsonBuilder();
 gsonb.excludeFieldsWithoutExposeAnnotation();
 Gson gson = gsonb.create();

 Listing 9-8 describes an application that demonstrates the Expose
annotation type.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Parsing and Creating JSON Objects with Gson 199

 Listing 9-8. Exposing and Hiding Fields to and from Serialization and Deserialization

 import com.google.gson.Gson;
 import com.google.gson.GsonBuilder;

 import com.google.gson.annotations.Expose;

 public class GsonDemo
 {
 static class SomeClass
 {
 transient int id;
 @Expose(serialize = true, deserialize = true)
 transient String password;
 @Expose(serialize = false, deserialize = false)
 int field1;
 @Expose(serialize = false, deserialize = true)
 int field2;
 @Expose(serialize = true, deserialize = false)
 int field3;
 @Expose(serialize = true, deserialize = true)
 int field4;
 @Expose(serialize = true, deserialize = true)
 static int field5;
 static int field6;
 }

 public static void main(String[] args)
 {
 SomeClass sc = new SomeClass();
 sc.id = 1;
 sc.password = "abc";
 sc.field1 = 2;
 sc.field2 = 3;
 sc.field3 = 4;
 sc.field4 = 5;
 sc.field5 = 6;
 sc.field6 = 7;
 GsonBuilder gsonb = new GsonBuilder();
 gsonb.excludeFieldsWithoutExposeAnnotation();
 Gson gson = gsonb.create();
 String json = gson.toJson(sc);
 System.out.println(json);
 SomeClass sc2 = gson.fromJson(json, SomeClass.class);
 System.out.printf("id = %d%n", sc2.id);
 System.out.printf("password = %s%n", sc2.password);
 System.out.printf("field1 = %d%n", sc2.field1);
 System.out.printf("field2 = %d%n", sc2.field2);
 System.out.printf("field3 = %d%n", sc2.field3);

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Parsing and Creating JSON Objects with Gson200

 System.out.printf("field4 = %d%n", sc2.field4);
 System.out.printf("field5 = %d%n", sc2.field5);
 System.out.printf("field6 = %d%n", sc2.field6);
 }
 }

 Listing 9-8 demonstrates Expose with transient instance fields along with
non- transient instance fields and static fields.

 Compile Listing 9-8 and run the resulting application. You should observe
the following output:

 {"field3":4,"field4":5}
 id = 0
 password = null
 field1 = 0
 field2 = 0
 field3 = 0
 field4 = 5
 field5 = 6
 field6 = 7

 The first output line shows that only field3 and field4 are serialized. The
other fields are not serialized.

 The second and third lines show that the transient id and password fields
receive default values. transient fields are not serialized/deserialized.

 The fourth, fifth, and sixth lines show that default 0 values are assigned to
 field1 , field2 , and field3 . For field1 and field3 , deserialize is assigned
 false so only default values can be assigned to these fields. Because
 field2 wasn’t serialized, the only value that can be assigned to it is 0 .

 The seventh line shows that 5 is assigned to field4 . This makes sense
because the serialize and deserialize elements are assigned true .

 Because static fields aren’t serialized or deserialized, they keep their initial
values, as shown in the eighth and ninth lines (for field5 and field6).

 Note Even if Gson serialized static fields, field6 wouldn’t be serialized
because it isn’t annotated with @Expose , and also because of the gsonb.
excludeFieldsWithoutExposeAnnotation() method call, which causes
 Gson to bypass fields not annotated with @ Expose .

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Parsing and Creating JSON Objects with Gson 201

 Changing Field Names
 You don’t have to use JsonSerializer<T> and JsonDeserializer<T> when
you only want to change field and/or method names during serialization
and deserialization; for example, changing isbn10 to isbn-10 and isbn13 to
 isbn-13 . You can use SerializedName instead, as shown here:

 @SerializedName("isbn-10")
 String isbn10;
 @SerializedName("isbn-13")
 String isbn13;

 The JSON object presents isbn-10 and isbn-13 property names, whereas
the Java class presents isbn10 and isbn13 field names.

 Listing 9-9 describes an application that demonstrates the SerializedName
annotation type.

 Listing 9-9. Changing Names

 import com.google.gson.Gson;

 import com.google.gson.annotations.SerializedName;

 public class GsonDemo
 {
 static class Book
 {
 String title;
 @SerializedName("isbn-10")
 String isbn10;
 @SerializedName("isbn-13")
 String isbn13;
 }

 public static void main(String[] args)
 {
 Book book = new Book();
 book.title = "PHP and MySQL Web Development, Second Edition";
 book.isbn10 = "067232525X";
 book.isbn13 = "075-2063325254";
 Gson gson = new Gson();
 String json = gson.toJson(book);
 System.out.println(json);
 Book book2 = gson.fromJson(json, Book.class);
 System.out.printf("title = %s%n", book2.title);
 System.out.printf("isbn10 = %s%n", book2.isbn10);
 System.out.printf("isbn13 = %s%n", book2.isbn13);
 }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Parsing and Creating JSON Objects with Gson202

 Compile Listing 9-9 and run the resulting application. You should observe
the following output:

 {"title":"PHP and MySQL Web Development, Second Edition","isbn-
10":"067232525X","isbn-13":"075-2063325254"}
 title = PHP and MySQL Web Development, Second Edition
 isbn10 = 067232525X
 isbn13 = 075-2063325254

 Versioning
 Since and Until are useful for versioning your classes. Using these
annotation types, you can determine which fields and/or types are serialized
to JSON objects.

 Each @Since and @Until annotation receives a double precision floating-
point value as its argument. This value specifies a version number, as
demonstrated here:

 @Since(1.0) private String userID;
 @Since(1.0) private String password;
 @Until(1.1) private String emailAddress;

 @Since(1.0) indicates that the field it annotates is to be serialized for all
versions greater than or equal to 1.0 . Similarly, @Until(1.1) indicates that
the field it annotates is to be serialized for all versions less than 1.1 .

 The version number that’s compared to the @Since or @Until version
argument is specified by the following GsonBuilder method:

 GsonBuilder setVersion(double ignoreVersionsAfter)

 As with Expose , you first create a GsonBuilder object, then call this method
with the desired version number on that object, and finally call create() on
the GsonBuilder object to return a newly-created Gson object:

 GsonBuilder gsonb = new GsonBuilder();
 gsonb.setVersion(2.0);
 Gson gson = gsonb.create();

 Listing 9-10 describes an application that demonstrates the Since and Until
annotation types.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Parsing and Creating JSON Objects with Gson 203

 Listing 9-10. Versioning a Class and Its Fields

 import com.google.gson.Gson;
 import com.google.gson.GsonBuilder;

 import com.google.gson.annotations.Since;
 import com.google.gson.annotations.Until;

 public class GsonDemo
 {
 @Since(1.0)
 @Until(2.5)
 static class SomeClass
 {
 @Since(1.1)
 @Until(1.5)
 int field;
 }

 public static void main(String[] args)
 {
 SomeClass sc = new SomeClass();
 sc.field = 1;
 GsonBuilder gsonb = new GsonBuilder();
 gsonb.setVersion(0.9);
 Gson gson = gsonb.create();
 System.out.printf("%s%n%n", gson.toJson(sc));
 gsonb.setVersion(1.0);
 gson = gsonb.create();
 System.out.printf("%s%n%n", gson.toJson(sc));
 gsonb.setVersion(1.1);
 gson = gsonb.create();
 System.out.printf("%s%n%n", gson.toJson(sc));
 gsonb.setVersion(1.5);
 gson = gsonb.create();
 System.out.printf("%s%n%n", gson.toJson(sc));
 gsonb.setVersion(2.5);
 gson = gsonb.create();
 System.out.printf("%s%n", gson.toJson(sc));
 }
 }

 Listing 9-10 presents a nested SomeClass that will be serialized as long as
the version number passed to setVersion() ranges from 1.0 to almost 2.5 .
This class presents a field named field that will be serialized as long as the
version number passed to setVersion() ranges from 1.1 to almost 1.5 .

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Parsing and Creating JSON Objects with Gson204

 Compile Listing 9-10 and run the resulting application. You should observe
the following output:

 null

 {}

 {"field":1}

 {}

 Null

 Contexts
 The serialize() and deserialize() methods that are declared by
the JsonSerializer and JsonDeserializer interfaces are called with
 com.google.gson.JsonSerializationContext and com.google.gson.
JsonDeserializationContext objects, respectively, as their final arguments.
These objects provide serialize() and deserialize() methods for
performing default serialization and default deserialization on specific Java
objects. You’ll find them handy when working with nested Java objects that
don’t require special treatment.

 Suppose you have the following Date and Employee classes :

 class Date
 {
 int year;
 int month;
 int day;

 Date(int year, int month, int day)
 {
 this.year = year;
 this.month = month;
 this.day = day;
 }
 }

 class Employee
 {
 String name;
 Date hireDate;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Parsing and Creating JSON Objects with Gson 205

 Now, suppose that you decide to create a custom serializer to add emp-name
and hire-date properties (instead of name and hireDate properties) to the
resulting JSON object. Because you’re not changing the names or the order
of Date ’s fields during serialization, you can leverage the context passed to
 JsonSerializer ’s serialize() method to handle that part of the serialization
for you.

 The following code fragment presents a serializer that serializes Employee
objects and their nested Date objects:

 class EmployeeSerializer implements JsonSerializer<Employee>
 {
 @Override
 public JsonElement serialize(Employee emp, Type typeOfSrc,
 JsonSerializationContext context)
 {
 JsonObject jo = new JsonObject();
 jo.addProperty("emp-name", emp.name);
 jo.add("hire-date", context.serialize(emp.hireDate));
 return jo;
 }
 }

 serialize() first creates a JsonObject to describe the serialized JSON
object. It then adds an emp-name property with the employee name as the
value to this JsonObject . Because default serialization can serialize the
 hireDate field, serialize() calls context.serialize(emp.hireDate) to
generate a property value. This value and the hire-date property name are
added to the JsonObject , which is returned from the method.

 Listing 9-11 presents the source code for an application that demonstrates
this serialize() method.

 Listing 9-11. Leveraging a Context to Serialize a Date

 import java.lang.reflect.Type;

 import com.google.gson.Gson;
 import com.google.gson.GsonBuilder;
 import com.google.gson.JsonElement;
 import com.google.gson.JsonObject;
 import com.google.gson.JsonSerializationContext;
 import com.google.gson.JsonSerializer;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Parsing and Creating JSON Objects with Gson206

 public class GsonDemo
 {
 static class Date
 {
 int year;
 int month;
 int day;

 Date(int year, int month, int day)
 {
 this.year = year;
 this.month = month;
 this.day = day;
 }
 }

 static class Employee
 {
 String name;
 Date hireDate;
 }

 public static void main(String[] args)
 {
 Employee e = new Employee();
 e.name = "John Doe";
 e.hireDate = new Date(1982, 10, 12);
 GsonBuilder gb = new GsonBuilder();
 class EmployeeSerializer implements JsonSerializer<Employee>
 {
 @Override
 public JsonElement serialize(Employee emp, Type typeOfSrc,

JsonSerializationContext context)
 {
 JsonObject jo = new JsonObject();
 jo.addProperty("emp-name", emp.name);
 jo.add("hire-date", context.serialize(emp.hireDate));
 return jo;
 }
 }
 gb.registerTypeAdapter(Employee.class, new EmployeeSerializer());
 Gson gson = gb.create();
 System.out.printf("%s%n%n", gson.toJson(e));
 }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Parsing and Creating JSON Objects with Gson 207

 Compile Listing 9-11 and run the resulting application. You should observe
the following output:

 {"emp-name":"John Doe","hire-date":{"year":1982,"month":10,"day":12}}

 Generics Support
 When you call String toJson(Object src) or void toJson(Object src,
Appendable writer) , Gson calls src.getClass() to get src ’s java.
lang.Class object so that it can reflectively learn about the fields to
serialize. Similarly, when you call a deserialization method such as <T>
T fromJson(String json, Class <T> classOfT) , Gson uses the Class object
passed to classOfT to help it reflectively build a result Java object. These
operations work properly for objects instantiated from nongeneric types.
However, when an object is created from a generic type, problems can
occur because the generic type information is lost due to type erasure .
Consider the following code fragment:

 List<String> weekdays = Arrays.asList("Sun", "Mon", "Tue", "Wed", "Thu",
"Fri", "Sat");
 String json = gson.toJson(weekdays);
 System.out.printf("%s%n%n", json);
 System.out.printf("%s%n%n",
 gson.fromJson(json, weekdays.getClass()));

 Variable weekdays is an object with generic type java.util.List<String> .
The toJson() method calls weekdays.getClass() and discovers, instead,
 List as the type. However, it still successfully serializes weekdays to the
following JSON object:

 ["Sun","Mon","Tue","Wed","Thu","Fri","Sat"]

 Deserialization isn’t successful. When gson.fromJson(json, weekdays.
getClass()) is called, this method throws an instance of the java.lang.
ClassCastException class. Internally, it attempts to cast java.util.
ArrayList to java.util.Arrays$ArrayList , which doesn’t work.

 The solution to this problem is to specify the correct List<String>
 parameterized type (generic type instance) instead of the raw List type
that’s returned from weekdays.getClass() . You use the com.google.gson.
reflect.TypeToken<T> class for this purpose.

 TypeToken<T> represents a generic type T and enables the retrieval of type
information at runtime, which Gson requires. You instantiate TypeToken using
an expression such as the following:

 Type listType = new TypeToken<List<String>>() {}.getType();

www.it-ebooks.info

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html?is-external=true#class or interface in java.lang
http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html?is-external=true#class or interface in java.lang
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html?is-external=true#class or interface in java.lang
http://docs.oracle.com/javase/6/docs/api/java/lang/Class.html?is-external=true#class or interface in java.lang
http://www.it-ebooks.info/

CHAPTER 9: Parsing and Creating JSON Objects with Gson208

 This idiom defines an anonymous local inner class whose inherited
 getType() method returns the fully parameterized type as a java.lang.
reflect.Type object. In this code fragment, the following type is returned:

 java.util.List<java.lang.String>

 Pass the resulting Type object to the <T> T fromJson(String json, Type
 typeOfT) method, as follows:

 gson.fromJson(json, listType)

 This method call parses and returns the JSON object as a List<String> .

 You might want to output the result using an expression such as the following:

 System.out.printf("%s%n%n", gson.fromJson(json, listType));

 However, you would receive a thrown ClassCastException stating that you
cannot cast ArrayList to java.lang.Object[] instead of observing output.
The solution to the problem is to introduce a cast to List , as follows:

 System.out.printf("%s%n%n", (List) gson.fromJson(json, listType));

 After making this change, you will observe the following output:

 [Sun, Mon, Tue, Wed, Thu, Fri, Sat]

 Listing 9-12 presents the source code for an application that demonstrates
this problem along with other generic-oriented serialization/deserialization
problems, and how to solve them.

 Listing 9-12. Serializing and Deserializing Objects Based on Generic Types

 import java.lang.reflect.Type;

 import java.util.ArrayList;
 import java.util.List;
 import java.util.Map;
 import java.util.HashMap;

 import com.google.gson.Gson;

 import com.google.gson.reflect.TypeToken;

 import java.util.Arrays;
 import java.util.List;

www.it-ebooks.info

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html?is-external=true#class or interface in java.lang
http://docs.oracle.com/javase/6/docs/api/java/lang/reflect/Type.html?is-external=true#class or interface in java.lang.reflect
http://www.it-ebooks.info/

CHAPTER 9: Parsing and Creating JSON Objects with Gson 209

 public class GsonDemo
 {
 static
 class Vehicle<T>
 {
 T vehicle;

 T get()
 {
 return vehicle;
 }
 void set(T vehicle)
 {
 this.vehicle = vehicle;
 }

 @Override
 public String toString()
 {
 System.out.printf("Class of vehicle: %s%n", vehicle.getClass());
 return "Vehicle: " + vehicle.toString();
 }
 }

 static
 class Truck
 {
 String make;
 String model;

 Truck(String make, String model)
 {
 this.make = make;
 this.model = model;
 }

 @Override
 public String toString()
 {
 return "Make: " + make + " Model: " + model;
 }
 }

 public static void main(String[] args)
 {
 Gson gson = new Gson();

 // ...

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Parsing and Creating JSON Objects with Gson210

 System.out.printf("PART 1%n");
 System.out.printf("------%n%n");

 List<String> weekdays = Arrays.asList("Sun", "Mon", "Tue", "Wed",
" Thu ", "Fri", "Sat");

 String json = gson.toJson(weekdays);
 System.out.printf("%s%n%n", json);
 try
 {
 System.out.printf("%s%n%n", gson.fromJson(json, weekdays.

getClass()));
 }
 catch (ClassCastException cce)
 {
 cce.printStackTrace();
 System.out.println();
 }
 Type listType = new TypeToken<List<String>>() {}.getType(); System.

out.printf("Type = %s%n%n", listType);
 try
 {
 System.out.printf("%s%n%n", gson.fromJson(json, listType));
 }
 catch (ClassCastException cce)
 {
 cce.printStackTrace();
 System.out.println();
 }
 System.out.printf("%s%n%n", (List) gson.fromJson(json, listType));

 // ...

 System.out.printf("PART 2%n");
 System.out.printf("------%n%n");

 Truck truck = new Truck("Ford", "F150");
 Vehicle<Truck> vehicle = new Vehicle<>();
 vehicle.set(truck);

 json = gson.toJson(vehicle);
 System.out.printf("%s%n%n", json);
 System.out.printf("%s%n%n", gson.fromJson(json, vehicle.getClass()));

 // ...

 System.out.printf("PART 3%n");
 System.out.printf("------%n%n");

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Parsing and Creating JSON Objects with Gson 211

 Map<String, String> map = new HashMap<String, String>()
 {
 {
 put("key", "value");
 }
 };
 System.out.printf("Map = %s%n%n", map);
 System.out.printf("%s%n%n", gson.toJson(map));
 System.out.printf("%s%n%n", gson.fromJson(gson.toJson(map),
 map.getClass()));

 // ...

 System.out.printf("PART 4%n");
 System.out.printf("------%n%n");

 Type vehicleType = new TypeToken<Vehicle<Truck>>() {}.getType();
 json = gson.toJson(vehicle, vehicleType);
 System.out.printf("%s%n%n", json);
 System.out.printf("%s%n%n", (Vehicle) gson.fromJson(json,

vehicleType));

 Type mapType = new TypeToken<Map<String,String>>() {}.getType();
 System.out.printf("%s%n%n", gson.toJson(map, mapType));
 System.out.printf("%s%n%n", (Map) gson.fromJson(gson.toJson(map,

mapType), mapType));
 }
 }

 Listing 9-12 ’s GsonDemo class is organized into nested Vehicle and Truck
static classes followed by the main() entry-point method. This method is
organized into four sections that demonstrate problems and solutions. Here
is the output, which I’ll refer to during my discussion of main() :

 PART 1

 ["Sun","Mon","Tue","Wed","Thu","Fri","Sat"]

 java.lang.ClassCastException: Cannot cast java.util.ArrayList to java.util.
Arrays$ArrayList
 at java.lang.Class.cast(Class.java:3369)
 at com.google.gson.Gson.fromJson(Gson.java:766)
 at GsonDemo.main(GsonDemo.java:75)

 Type = java.util.List<java.lang.String>

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Parsing and Creating JSON Objects with Gson212

 java.lang.ClassCastException: java.util.ArrayList cannot be cast to [Ljava.
lang.Object;
 at GsonDemo.main(GsonDemo.java:86)

 [Sun, Mon, Tue, Wed, Thu, Fri, Sat]

 PART 2

 {"vehicle":{"make":"Ford","model":"F150"}}

 Class of vehicle: class com.google.gson.internal.LinkedTreeMap
 Vehicle: {make=Ford, model=F150}

 PART 3

 Map = {key=value}

 null

 null

 PART 4

 {"vehicle":{"make":"Ford","model":"F150"}}

 Class of vehicle: class GsonDemo$Truck
 Vehicle: Make: Ford Model: F150

 {"key":"value"}

 {key=value}

 Part 1 focuses on the previously discussed List<String> example. The
output shows successful serialization via toJson() , followed by unsuccessful
deserialization via gson.fromJson(json, weekdays.getClass()), followed
by the type stored in the first created TypeToken instance, followed by
successful deserialization with a cast problem, followed by successful
deserialization with no cast problem.

 Part 2 focuses on the serialization and deserialization of a Vehicle<Truck>
object named vehicle . This generic object is successully serialized via a
 gson.toJson(vehicle) call. Although you can often pass generic objects
to toJson(Object src) successfully, this method occasionally fails, as I will
show. A subsequent call to gson.fromJson(json, vehicle.getClass())
attempts to deserialize the output, but there is a problem: you observe

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Parsing and Creating JSON Objects with Gson 213

 Vehicle: {make=Ford, model=F150} instead of Vehicle: Make: Ford Model:
F150 . Because Vehicle is specified instead of the full Vehicle<Truck>
generic type, the vehicle field in the Vehicle class is assigned com.google.
gson.internal.LinkedTreeMap instead of Truck as its type.

 Part 3 attempts to serialize and deserialize a map based on an anonymous
subclass of java.util.HashMap . The first null value shows that toJson()
wasn’t successful: toJson() ’s internal map.getClass() call returns a
 GsonDemo$2 reference, which offers no insight into the object to be serialized.
The second null value results from passing null to json in fromJson(String
 json, Class <T> classOfT) .

 Part 4 shows how to fix the problems in Parts 2 and 3. This section creates
 TypeToken<Vehicle<Truck>> and TypeToken<Map<String,String>> objects to
store the Vehicle<Truck> and Map<String, String> parameterized types.
These objects are then passed to the type parameter of the String
toJson(Object src, Type typeOfSrc) and <T> T fromJson(String json,
 Type typeOfT) methods. (Although gson.toJson(vehicle, vehicleType) isn’t
necessary because serialization works with gson.toJson(vehicle) , you
should get into the habit of passing a Type object based on a TypeToken
instance as a second argument, just to be safe.)

 Type Adapters
 Previously in this chapter, I showed you how to use JsonSerializer and
 JsonDeserializer to (respectively) serialize Java objects to JSON strings
and vice versa. These interfaces simplify the translation between Java
objects and JSON strings, but add an intermediate layer of processing.

 The intermediate layer consists of code that converts Java objects and
JSON strings to JsonElement s. This conversion mitigates the risk of parsing
or creating invalid JSON strings, but it does take time to perform, which can
impact performance. You can avoid the intermediate layer and create more
efficient code by working with the com.google.gson.TypeAdapter<T> class,
where T identifies the Java class serialization source and deserialization target.

 Note Each of toJson(Object src) , <T> T fromJson(String json,
 Class <T> classOfT) , and similar methods work properly when any of the
fields of the specified object (src and objects derived from classOfT) are
based on generic types. The only stipulation is that the specified object not be
generic.

www.it-ebooks.info

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html?is-external=true#class or interface in java.lang
http://docs.oracle.com/javase/6/docs/api/java/lang/Class.html?is-external=true#class or interface in java.lang
http://docs.oracle.com/javase/6/docs/api/java/lang/reflect/Type.html?is-external=true#class or interface in java.lang.reflect
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html?is-external=true#class or interface in java.lang
http://docs.oracle.com/javase/6/docs/api/java/lang/reflect/Type.html?is-external=true#class or interface in java.lang.reflect
http://docs.oracle.com/javase/6/docs/api/java/lang/Class.html?is-external=true#class or interface in java.lang
http://www.it-ebooks.info/

CHAPTER 9: Parsing and Creating JSON Objects with Gson214

 TypeAdapter is an abstract class that declares several concrete methods
along with the following pair of abstract methods :

 T read(JsonReader in) : Read a JSON value (array,
object, string, number, Boolean, or null) and convert
it to a Java object, which is returned. The return value
may be null .

 void write(JsonWriter out, T value) : Write a JSON
value (array, object, string, number, Boolean, or null),
which is passed to value .

 Each method throws java.io.IOException when an I/O problem occurs.

 The read() and write() methods read a sequence of JSON tokens and
write a sequence of JSON tokens, respectively. For read() , the source
of these tokens is an instance of the concrete com.google.gson.stream.
JsonReader class. For write() , the destination of these tokens is the
concrete com.google.gson.stream.JsonWriter class. Tokens are described
by the com.google.gson.stream.JsonToken enum (such as BEGIN_ARRAY for
open square bracket). They are read and written by calling JsonReader and
 JsonWriter methods , such as the following:

 void beginObject() : This JsonReader method consumes
the next token from the JSON stream and asserts that
it’s the beginning of a new object. A companion void
endObject() method consumes the next token from the
JSON stream and asserts that it’s the end of the current
object. Either method throws IOException when an I/O
problem occurs.

 JsonWriter name(String name) : This JsonWriter
method encodes the property name, which cannot
be null. IOException is thrown when an I/O problem
occurs.

 After creating a TypeAdapter subclass, you instantiate it and register the
instance with Gson by calling the GsonBuilder registerTypeAdapter(Type
type, Object typeAdapter) method, which I previously presented. The
object that’s passed to type represents the class whose objects are

 Note You should prefer the more efficient TypeAdapter to the less efficient
 JsonSerializer and JsonDeserializer . In fact, Gson uses an internal
 TypeAdapter implementation to handle conversions between Java objects and
JSON strings.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Parsing and Creating JSON Objects with Gson 215

serialized or deserialized. The object that’s passed to typeAdapter is the
type adapter instance.

 Listing 9-13 presents the source code for an application that demonstrates a
type adapter.

 Listing 9-13. Serializing and Deserializing a Country Object via a Type Adapter

 import java.io.IOException;

 import java.util.ArrayList;
 import java.util.List;

 import com.google.gson.Gson;
 import com.google.gson.GsonBuilder;
 import com.google.gson.TypeAdapter;

 import com.google.gson.stream.JsonReader;
 import com.google.gson.stream.JsonWriter;

 public class GsonDemo
 {
 static
 class Country
 {
 String name;
 int population;
 String[] cities;

 Country() {}

 Country(String name, int population, String... cities)
 {
 this.name = name;
 this.population = population;
 this.cities = cities;
 }
 }

 public static void main(String[] args)
 {
 class CountryAdapter extends TypeAdapter<Country>
 {
 @Override
 public Country read(JsonReader in) throws IOException
 {
 Country c = new Country();
 List<String> cities = new ArrayList<>();
 in.beginObject();

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Parsing and Creating JSON Objects with Gson216

 while (in.hasNext())
 switch (in.nextName())
 {
 case "name":
 c.name = in.nextString();
 break;

 case "population":
 c.population = in.nextInt();
 break;

 case "cities":
 in.beginArray();
 while (in.hasNext())
 cities.add(in.nextString());
 in.endArray();
 c.cities = cities.toArray(new String[0]);
 }
 in.endObject();
 return c;
 }

 @Override
 public void write(JsonWriter out, Country c) throws IOException
 {
 out.beginObject();
 out.name("name").value(c.name);
 out.name("population").value(c.population);
 out.name("cities");
 out.beginArray();
 for (int i = 0; i < c.cities.length; i++)
 out.value(c.cities[i]);
 out.endArray();
 out.endObject();
 }
 }
 Gson gson = new GsonBuilder().
 registerTypeAdapter(Country.class,
 new CountryAdapter()).
 create();

 Country c = new Country("England", 53012456 /* 2011 census */,
"London", "Birmingham", "Cambridge");

 String json = gson.toJson(c);
 System.out.println(json);
 c = gson.fromJson(json, c.getClass());
 System.out.printf("Name = %s%n", c.name);

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Parsing and Creating JSON Objects with Gson 217

 System.out.printf("Population = %d%n", c.population);
 System.out.print("Cities = ");
 for (String city: c.cities)
 System.out.print(city + " ");
 System.out.println();
 }
 }

 Listing 9-13 ’s GsonDemo class nests a Country class (which describes a
country as a name, a population count, and an array of city names) and also
presents a main() entry-point method.

 The main() method first declares a local CountryAdapter class that extends
 TypeAdapter<Country>. CountryAdapter overrides the read() and write()
methods to handle the serialization and deserialization tasks.

 The read() method first creates a new Country object, which will store the
values being read from the JSON object being deserialized (and accessed
from the JsonReader argument).

 After creating a list to store the array of city names that it will be reading,
 read() calls beginObject() to assert that the next token read from the token
stream is the beginning of a JSON object.

 At this point, read() enters a while loop. This loop continues while
 JsonReader ’s boolean hasNext() method returns true : there is another
object element.

 Each while loop iteration executes a switch statement that calls
 JsonReader ’s String nextName() method to return the next token, which is a
property name in the JSON object. It then compares the token to the three
possibilities (name , population , or cities) and executes the associated code
to retrieve the property value and assign the value to the appropriate field in
the previously created Country object.

 If the property is name , JsonReader ’s String nextString() method is called
to return the string value of the next token. If the property is population,
 JsonReader ’s int nextInt() method is called to return the token’s int value.

 Processing the cities property is more involved because its value is an array :

 1. JsonReader ’s void beginArray() method is called
to signify that a new array has been detected and to
consume the open square bracket token.

 2. A while loop is entered to repeatedly obtain the next
array string value and add it to the previously created
 cities list.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Parsing and Creating JSON Objects with Gson218

 3. JsonReader ’s void endArray() method is called to
signify the end of the current array and to consume
the close square bracket token.

 4. The cities list is converted to a Java array, which is
assigned to the Country object’s cities member.

 After the outer while loop ends, read() calls endObject() to assert that
the next token read from the token stream is the end of the current JSON
object, and then returns the Country object.

 The write() method is somewhat similar to read() . It calls JsonWriter ’s
 JsonWriter name(String name) method to encode the property name
specified by name to a JSON property name. Also, it calls JsonWriter ’s
 JsonWriter value(long value) and JsonWriter value(String value)
methods to encode value as a JSON number or a JSON string.

 The main() method proceeds to create a Gson object from a GsonBuilder
object, which executes registerTypeAdapter(Country.class, new
CountryAdapter()) to instantiate and register CountryAdapter with the Gson
object that will be returned. Country.class indicates that Country objects
will be serialized and deserialized.

 Finally, a Country object is created, serialized to a string, and deserialized to
a new Country object.

 Compile Listing 9-13 and run the resulting application. You should observe
the following output :

 {"name":"England","population":53012456,"cities":["London","Birmingham","Ca
mbridge"]}
 Name = England
 Population = 53012456
 Cities = London Birmingham Cambridge

 Conveniently Associating Type Adapters with Classes and Fields
 The JsonAdapter annotation type is used with a TypeAdapter Class object
argument to associate the TypeAdapter instance to use with a class or field.
After doing so, you don’t need to register the TypeAdapter with Gson , which
makes for a bit less coding.

 Listing 9-14 refactors Listing 9-13 to demonstrate JsonAdapter .

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Parsing and Creating JSON Objects with Gson 219

 Listing 9-14. Serializing and Deserializing a Country Object Annotated with a Type Adapter

 import java.io.IOException;

 import java.util.ArrayList;
 import java.util.List;

 import com.google.gson.Gson;
 import com.google.gson.TypeAdapter;

 import com.google.gson.annotations.JsonAdapter;

 import com.google.gson.stream.JsonReader;
 import com.google.gson.stream.JsonWriter;

 public class GsonDemo
 {
 @JsonAdapter(CountryAdapter.class)
 static
 class Country
 {
 String name;
 int population;
 String[] cities;
 Country() {}

 Country(String name, int population, String... cities)
 {
 this.name = name;
 this.population = population;
 this.cities = cities;
 }
 }

 static
 class CountryAdapter extends TypeAdapter<Country>
 {
 @Override
 public Country read(JsonReader in) throws IOException
 {
 System.out.println("read() called");
 Country c = new Country();
 List<String> cities = new ArrayList<>();
 in.beginObject();
 while (in.hasNext())
 switch (in.nextName())
 {
 case "name":
 c.name = in.nextString();
 break;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Parsing and Creating JSON Objects with Gson220

 case "population":
 c.population = in.nextInt();
 break;

 case "cities":
 in.beginArray();
 while (in.hasNext())
 cities.add(in.nextString());
 in.endArray();
 c.cities = cities.toArray(new String[0]);
 }
 in.endObject();
 return c;
 }

 @Override
 public void write(JsonWriter out, Country c) throws IOException
 {
 System.out.println("write() called");
 out.beginObject();
 out.name("name").value(c.name);
 out.name("population").value(c.population);
 out.name("cities");
 out.beginArray();
 for (int i = 0; i < c.cities.length; i++)
 out.value(c.cities[i]);
 out.endArray();
 out.endObject();
 }
 }

 public static void main(String[] args)
 {
 Gson gson = new Gson();
 Country c = new Country("England", 53012456 /* 2011 census */,

"London", "Birmingham", "Cambridge");
 String json = gson.toJson(c);
 System.out.println(json);
 c = gson.fromJson(json, c.getClass());
 System.out.printf("Name = %s%n", c.name);
 System.out.printf("Population = %d%n", c.population);
 System.out.print("Cities = ");
 for (String city: c.cities)
 System.out.print(city + " ");
 System.out.println();
 }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Parsing and Creating JSON Objects with Gson 221

 In Listing 9-14 , I’ve bolded the two essential differences from Listing 9-13 :
the Country type adapter class is annotated @JsonAdapter(CountryAdapter.
class) , and Gson gson = new Gson(); is specified instead of using a
 GsonBuilder object and its create() method.

 Compile Listing 9-14 and run the resulting application. You should observe
the following output:

 write() called
 {"name":"England","population":53012456,"cities":["London","Birmingham","Ca
mbridge"]}
 read() ca lled
 Name = England
 Population = 53012456
 Cities = London Birmingham Cambridge

 The read() called and write called() output lines prove that Gson uses
the custom type adapter instead of its internal type adapter.

 EXERCISES

 The following exercises are designed to test your understanding of Chapter 9 ’s content.

 1. Define Gson.

 2. Identify and describe Gson’s packages.

 3. What are the two ways to obtain a Gson object?

 4. Identify the types for which Gson provides default serialization and
deserialization.

 5. How would you enable pretty-printing?

 6. True or false: By default, Gson excludes transient or static fields
from consideration for serialization and deserialization.

 7. Once you have a Gson object, what methods can you call to convert
between JSON and Java objects?

 8. How do you use Gson to customize JSON object parsing?

 9. Describe the JsonElement class.

 10. Identify the JsonElement subclasses.

 11. What GsonBuilder method do you call to register a serializer or
deserializer with a Gson object?

 12. What method does JsonSerializer provide to serialize a Java
object to a JSON object?

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1916-4_9
http://www.it-ebooks.info/

CHAPTER 9: Parsing and Creating JSON Objects with Gson222

 13. What annotation types does Gson provide to simplify serialization and
deserialization?

 14. True or false: To use Expose , it’s enough to annotate a field, as in @
Expose(serialize = true, deserialize = false) .

 15. What do JsonSerializationContext and
 JsonDeserializationContext provide?

 16. True or false: You can call <T> T fromJson(String json,
 Class <T> classOfT) to deserialize any kind of object.

 17. Why should you prefer TypeAdapter to JsonSerializer and
 JsonDeserializer ?

 18. Modify Listing 9-8 so that the static field named field5 is also
serialized and deserialized.

 Summary
 Gson is a small Java-based library for parsing and creating JSON objects.
Google developed Gson for its own projects, but later made Gson publicly
available, starting with version 1.0.

 Gson parses JSON objects by deserializing JSON objects into Java objects.
Similarly, it creates JSON objects by serializing Java objects into JSON
objects. Gson relies on Java’s Reflection API to assist with these tasks.

 Gson consists of more than 30 classes and interfaces distributed among
four packages: com.google.gson (provides access to Gson , the main class),
 com.google.gson.annotations (provides annotation types for use with
Gson), com.google.gson.reflect (provides a utility class for obtaining type
information from a generic type), and com.google.gson.stream (provides
utility classes for reading and writing JSON-encoded values).

 The Gson class handles the conversion between JSON and Java objects.
You can instantiate this class by using the Gson() constructor, or you can
obtain a Gson instance by working with the GsonBuilder class.

 Once you have a Gson object, you can call various fromJson() and toJson()
methods to convert between JSON and Java objects. Because these
methods rely on Gson’s default deserialization and serialization mechanisms,
respectively, you can customize deserialization and serialization by working
with the JsonDeserializer<T> and JsonSerializer<T> interfaces.

 Gson offers additional useful features, including annotations for simplying
serialization and deserialization, contexts for automating the serialization of
nested objects and arrays, support for generics, and type adapters.

 Chapter 10 introduces JsonPath for extracting JSON values.

www.it-ebooks.info

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html?is-external=true#class or interface in java.lang
http://docs.oracle.com/javase/6/docs/api/java/lang/Class.html?is-external=true#class or interface in java.lang
http://dx.doi.org/10.1007/978-1-4842-1916-4_10
http://www.it-ebooks.info/

223© Jeff Friesen 2016
J. Friesen, Java XML and JSON, DOI 10.1007/978-1-4842-1916-4_10

 Chapter 10
 Extracting JSON Values
with JsonPath
 XPath is used to extract values from XML documents. JsonPath performs
this task for JSON documents. This chapter introduces you to JsonPath.

 What Is JsonPath ?
 JsonPath is a declarative query language (also known as a path expression
syntax) for selecting and extracting a JSON document’s property values. For
example, you can use JsonPath to locate "John" in {"firstName": "John"}
and return this value. JsonPath is based on XPath 1.0.

 JsonPath was created by Stefan Goessner (http://goessner.net).
Goessner also created JavaScript-based and PHP-based implementations
of JsonPath. For complete documentation, check out Goessner’s web site
(http://goessner.net/articles/JsonPath/index.html).

 Swedish software company Jayway (www.jayway.com) subsequently adapted
JsonPath to Java. Their Java version of JsonPath is the focus of this
chapter. You will find complete documentation on Jayway’s implementation
of JsonPath at https://github.com/jayway/JsonPath .

 Note If you’re unfamiliar with XPath, I recommend that you read Chapter 5
before reading this chapter. JsonPath was derived from XPath.

www.it-ebooks.info

http://goessner.net/
http://goessner.net/articles/JsonPath/index.html
http://www.jayway.com/
https://github.com/jayway/JsonPath
http://dx.doi.org/10.1007/978-1-4842-1916-4_5
http://www.it-ebooks.info/

CHAPTER 10: Extracting JSON Values with JsonPath224

 Learning the JsonPath Language
 JsonPath is a simple language with various features that are similar to their
XPath counterparts. This language is used to construct path expressions .

 A JsonPath expression begins with the dollar sign ($) character, which refers
to the root element of a query. The dollar sign is followed by a sequence
of child elements, which are separated via dot (.) notation or via square
bracket ([]) notation. For example, consider the following JSON object :

 {
 "firstName": "John",
 "lastName": "Smith",
 "age": 25,
 "address":
 {
 "streetAddress": "21 2nd Street",
 "city": "New York",
 "state": "NY",
 "postalCode": "10021-3100"
 },
 "phoneNumbers":
 [
 {
 "type": "home",
 "number": "212 555-1234"
 },
 {
 "type": "office",
 "number": "646 555-4567"
 }
]
 }

 The following dot notation-based JsonPath expression extracts, from
the previous anonymous JSON object, the phone number (212 555-1234)
that’s assigned to the number field in the anonymous JSON object, which is
assigned to the first element in the phoneNumbers array:

 $.phoneNumbers[0].number

 The $ character represents the anonymous root JSON object. The leftmost
dot character separates the object root from the phoneNumbers property
name because the value assigned to phoneNumbers is an array. The [0]
syntax identifies the first element in the array assigned to phoneNumbers .

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Extracting JSON Values with JsonPath 225

 The first array element stores an anonymous object consisting of "type":
"home" and "number": "212 555-1234" properties. The rightmost dot
character accesses this object’s number child property name, which is
assigned the value 212 555-1234 . This value is returned from the expression.

 Alternatively, I could specify the following square bracket notation to extract
the same phone number:

 $['phoneNumbers'][0]['number']

 The Jayway documentation identifies $ as an operator and also identifies
several other basic operators. Table 10-1 describes these operators .

 Table 10-1. JsonPath Basic Operators

 Operator Description

 $ The root element to query. This operator starts all path
expressions. It’s equivalent to XPath’s / symbol.

 @ The current node being processed by a filter predicate.
It’s equivalent to XPath’s . symbol.

 * Wildcard. Available anywhere a name or numeric value is
required.

 .. Deep scan (also known as recursive descent).
Available anywhere a name is required. It’s equivalent to
XPath’s // symbol.

 . name Dot-notated child. The dot is equivalent to XPath’s / symbol.

 [' name ' (, ' name ')] Bracket-notated child or children.

 [number (, number)] Array index or indexes.

 [start : end] Array slice operator.

 [?(expression)] Filter operator. The expression must evaluate to a
Boolean value. In other words, it’s a predicate .

 The Jayway documentation also identifies several functions that can be
invoked at the tail end of a path—the input to a function is the output of
the path expression; the function output is dictated by the function itself.
Table 10-2 describes these functions .

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Extracting JSON Values with JsonPath226

 Finally, the Jayway documentation identifies various operators for filters ,
which use predicates (Boolean expressions) to restrict returned lists of
items. Predicates can use the filter operators in Table 10-3 to determine
equality, match regular expressions, and test for inclusion.

 Table 10-3. JsonPath Filter Operators

 Operator Description

 == Returns true when the left operand equals the right operand. Note that 1
is not equal to '1' (that is, number 1 and string 1 are two different things).

 != Returns true when the left operand doesn’t equal the right operand.

 < Returns true when the left operand is less than the right operand.

 <= Returns true when the left operand is less than or equal to the
right operand.

 > Returns true when the left operand is greater than the right operand.

 >= Returns true when the left operand is greater than or equal to the
right operand.

 =~ Returns true when the left operand matches the regular expression
specified by the right operand; for example, [?(@.name =~ /foo.*?/i)] .

 In Returns true when the left operand exists in the right operand; for
example, [?(@.grade in ['A', 'B'])] .

 Nin Returns true when the left operand doesn’t exist in the right operand .

 Table 10-2. JsonPath Functions

 Function Description

 min() Returns the minimum value (as a double) in an array of numbers.

 max() Returns the maximum value (as a double) in an array of numbers.

 avg() Returns the average value (as a double) of an array of numbers.

 stddev() Returns the standard deviation value (as a double) of an array of numbers .

 length() Returns the length (as an int) of an array.

 This table reveals @.name =~ /foo.*?/i and @.grade in ['A', 'B'] as
simple predicates. You can create more complex predicates by using the
logical AND operator (&&) and the logical OR operator (||). Also, within a
predicate, you must enclose any string literals with single or double quotes.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Extracting JSON Values with JsonPath 227

 Obtaining and Using the JsonPath Library
 As with Chapter 8 ’s mJson and Chapter 9 ’s Gson, you can obtain JsonPath
from the Central Maven Repository (http://search.maven.org/).

 If you’re familiar with Maven, add the following XML fragment to the Project
Object Model (POM) files for your Maven project(s) that will be dependent
on JsonPath, and you will be good to go! (To learn about POM, check out
 https://maven.apache.org/pom.html#What_is_the_POM .)

 <dependency>
 <groupId>com.jayway.jsonpath</groupId>
 <artifactId>json-path</artifactId>
 <version>2.2.0</version>
 </dependency>

 This XML fragment reveals 2.2.0 as the version of Jayway JsonPath that I’m
using in this chapter.

 Note If you’re unfamiliar with Maven, think of it as a build tool for Java projects,
although Maven developers think of Maven as more than just a build tool—see
 http://maven.apache.org/background/philosophy-of-maven.html .

 Note It’s common for Maven projects to be dependent on other projects. For
example, the mJson project that I discussed in Chapter 8 is dependent on TestNG
(https://en.wikipedia.org/wiki/TestNG). I didn’t mention or discuss
downloading TestNG in that chapter because this library isn’t required for normal
use. Also, the Gson project that I discussed in Chapter 9 is dependent on JUnit
(https://en.wikipedia.org/wiki/JUnit). I didn’t mention or discuss
downloading JUnit in that chapter because this library isn’t required for normal use.

 Because I’m not currently using Maven, I downloaded the JsonPath Jar file and
all of the Jar files on which JsonPath depends, and then added all of these Jar
files to my classpath. The easiest way for me to accomplish the download task
was to point my browser to https://github.com/jayway/JsonPath/releases
 and download json-path-2.2.0-SNAPSHOT-with-dependencies.zip .

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1916-4_8
http://dx.doi.org/10.1007/978-1-4842-1916-4_9
http://search.maven.org/
https://maven.apache.org/pom.html#What_is_the_POM
http://maven.apache.org/background/philosophy-of-maven.html
http://dx.doi.org/10.1007/978-1-4842-1916-4_8
https://en.wikipedia.org/wiki/TestNG
http://dx.doi.org/10.1007/978-1-4842-1916-4_9
https://en.wikipedia.org/wiki/JUnit
https://github.com/jayway/JsonPath/releases
http://www.it-ebooks.info/

CHAPTER 10: Extracting JSON Values with JsonPath228

 After unarchiving the Zip file, I discovered the following subdirectories of the
 json-path-2.2.0-SNAPSHOT-with-dependencies home directory:

 api : Contains JsonPath’s Javadoc-based API
documentation.

 lib : Contains Jar files to add to the classpath in order
to work with JsonPath—not all Jar files are needed in
every situation, but it’s best to include all of them in the
classpath.

 lib-optional : Optional Jar files for configuring JsonPath.

 source : A Jar file containing the Java source code for
the JsonPath API.

 For compiling Java source code that accesses JsonPath, I found that only
 json-path-2.2.0-SNAPSHOT.jar needs to be included in the classpath:

 javac -cp json-path-2.2.0-SNAPSHOT.jar source file

 For running applications that access JsonPath, I use the following
command line :

 java -cp accessors-smart-1.1.jar;asm-5.0.3.jar;json-path-2.2.0-SNAPSHOT.jar;
json-smart-2.2.1.jar;slf4j-api-1.7.16.jar;tapestry-json-5.4.0.jar;. main classfile

 Exploring the JsonPath Library
 The JsonPath library is organized into several packages. You will typically
interact with the com.jayway.jsonpath package and its types. In this section,
I focus exclusively on this package while showing you how to extract values
from JSON objects and use predicates to filter items.

 Note Jayway JsonPath is licensed according to Apache License Version 2.0
(www.apache.org/licenses/).

 Tip To facilitate working with these command lines, place them in a pair of
batch files on Windows platforms or their counterparts on other platforms.

www.it-ebooks.info

http://www.apache.org/licenses/
http://www.it-ebooks.info/

CHAPTER 10: Extracting JSON Values with JsonPath 229

 Extracting Values from JSON Objects
 The com.jayway. jsonpath package provides the JsonPath class as the entry
point into using the JsonPath library. Listing 10-1 introduces this class.

 Listing 10-1. A First Taste of JsonPath

 import java.util.HashMap;
 import java.util.List;

 import com.jayway.jsonpath.JsonPath;

 public class JsonPathDemo
 {
 public static void main(String[] args)
 {
 String json =
 "{" +
 " \"store\":" +
 " {" +
 " \"book\":" +
 " [" +
 " {" +
 " \"category\": \"reference\"," +
 " \"author\": \"Nigel Rees\"," +
 " \"title\": \"Sayings of the Century\"," +
 " \"price\": 8.95" +
 " }," +
 " {" +
 " \"category\": \"fiction\"," +
 " \"author\": \"Evelyn Waugh\"," +
 " \"title\": \"Sword of Honour\"," +
 " \"price\": 12.99" +
 " }" +
 "]," +
 " \"bicycle\":" +
 " {" +
 " \"color\": \"red\"," +
 " \"price\": 19.95" +
 " }" +
 " }" +
 "}";

 JsonPath path = JsonPath.compile("$.store.book[1]");
 HashMap books = path.read(json);
 System.out.println(books);

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Extracting JSON Values with JsonPath230

 List<Object> authors = JsonPath.read(json, "$.store.book[*].author");
 System.out.println(authors);
 String author = JsonPath.read(json, "$.store.book[1].author");
 System.out.println(author);
 }
 }

 Listing 10-1 provides a JsonPathDemo class whose main() method uses the
 JsonPath class to extract values from JSON objects. main() first declares
a string-based JSON object and assigns its reference to variable json . It
then invokes the following static JsonPath method to compile a JsonPath
expression (to improve performance) and return the compiled result as a
 JsonPath object:

 JsonPath compile(String jsonPath, Predicate... filters)

 The Predicate varargs list lets you specify an array of filter predicates to
respond to filter predicate placeholders (identified as ? characters) in the
 jsonPath string. I’ll demonstrate Predicate and related types later in this
chapter.

 After compiling the $.store.book[1] JsonPath expression, which identifies
the anonymous object in the second element of the array assigned to the
 book property of the anonymous object assigned to the store property,
 main() passes this expression to the following JsonPath method:

 <T> T read(String json)

 This generic method is called on the previously compiled JsonPath instance.
It receives the string-based JSON object (assigned to json) as its argument
and applies the JsonPath expression in the compiled JsonPath instance to
this argument. The result is the JSON object identified by $.store.book[1] .

 The read() method is generic because it can return one of several types. In
this example, it returns an instance of the java.util.LinkedHashMap class (a
subclass of java.util.Hashmap) for storing JSON object property names and
their values.

 When you intend to reuse JsonPath expressions, it’s good to compile them,
which improves performance. Because I don’t reuse $.store.book[1] , I
could have used one of JsonPath ’s static read() methods instead. For
example, main() next demonstrates the following read() method:

 <T> T read(String json, String jsonPath, Predicate... filters)

 This method creates a new JsonPath object for the jsonPath argument and
applies it to the json string. I ignore filters in the example.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Extracting JSON Values with JsonPath 231

 The JsonPath expression passed to jsonPath is $.store.book[*].author .
This expression includes the * wildcard to match all elements in the book
array. It returns the value of the author property for each element in this array.

 read() returns this value as an instance of the net.minidev.json.JSONArray
class, which is stored in the json-smart-2.2.1.jar file that you must include
in the classpath. Because JSONArray extends java.util.ArrayList<Object> ,
it’s legal to cast the returned object to List<Object> .

 To further demonstrate read() , main() lastly invokes this method with
JsonPath expression $.store.book[1].author , which returns the value of
the author property in the anonymous object stored in the second element
of the book array. This time, read() returns a java.lang.String object .

 Compile Listing 10-1 as follows:

 javac -cp json-path-2.2.0-SNAPSHOT.jar JsonPathDemo.java

 Run the resulting application as follows:

 java -cp accessors-smart-1.1.jar;asm-5.0.3.jar;json-path-2.2.0-SNAPSHOT.
jar;json-smart-2.2.1.jar;slf4j-api-1.7.16.jar;tapestry-json-5.4.0.jar;.
JsonPathDemo

 You should observe the following output:

 {category=fiction, author=Evelyn Waugh, title=Sword of Honour, price=12.99}
 ["Nigel Rees","Evelyn Waugh"]
 Evelyn Waugh

 You’ll probably also observe some messages about SLF4J (Simple Logging
Façade for Java) not being able to load the StaticLoggerBinder class and
defaulting to a no-operation logger implementation. You can safely ignore
these messages.

 Note Regarding the generic read() methods, JsonPath automatically
attempts to cast the result to the type that the method’s invoker expects, such
as a hashmap for a JSON object, a list of objects for a JSON array, and a string
for a JSON string.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Extracting JSON Values with JsonPath232

 Using Predicates to Filter Items
 JsonPath supports filters for restricting the nodes that are extracted from
a JSON document to those that match the criteria specified by predicates
(Boolean expressions). You can work with inline predicates, filter predicates,
or custom predicates.

 Inline Predicates
 An inline predicate is a string-based predicate. Listing 10-2 presents the
source code to an application that demonstrates several inline predicates.

 Listing 10-2. Demonstrating Inline Predicates

 import java.util.List;

 import com.jayway.jsonpath.JsonPath;

 public class JsonPathDemo
 {
 public static void main(String[] args)
 {
 String json =
 "{" +
 " \"store\":" +
 " {" +
 " \"book\":" +
 " [" +
 " {" +
 " \"category\": \"reference\"," +
 " \"author\": \"Nigel Rees\"," +
 " \"title\": \"Sayings of the Century\"," +
 " \"price\": 8.95" +
 " }," +
 " {" +
 " \"category\": \"fiction\"," +
 " \"author\": \"Evelyn Waugh\"," +
 " \"title\": \"Sword of Honour\"," +
 " \"price\": 12.99" +
 " }," +
 " {" +
 " \"category\": \"fiction\"," +
 " \"author\": \"J. R. R. Tolkien\"," +
 " \"title\": \"The Lord of the Rings\"," +
 " \"isbn\": \"0-395-19395-8\"," +
 " \"price\": 22.99" +
 " }" +

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Extracting JSON Values with JsonPath 233

 "]," +
 " \"bicycle\":" +
 " {" +
 " \"color\": \"red\"," +
 " \"price\": 19.95" +
 " }" +
 " }" +
 "}";

 String expr = "$.store.book[?(@.isbn)].title";
 List<Object> titles = JsonPath.read(json, expr);
 System.out.println(titles);
 expr = "$.store.book[?(@.category == 'fiction')].title";
 titles = JsonPath.read(json, expr);
 System.out.println(titles);
 expr = "$..book[?(@.author =~ /.*REES/i)].title";
 titles = JsonPath.read(json, expr);
 System.out.println(titles);
 expr = "$..book[?(@.price > 10 && @.price < 20)].title";
 titles = JsonPath.read(json, expr);
 System.out.println(titles);
 expr = "$..book[?(@.author in ['Nigel Rees'])].title";
 titles = JsonPath.read(json, expr);
 System.out.println(titles);
 expr = "$..book[?(@.author nin ['Nigel Rees'])].title";
 titles = JsonPath.read(json, expr);
 System.out.println(titles);
 }
 }

 Listing 10-2 ’s main() method uses the following JsonPath expressions to
narrow the list of returned book title strings:

 $.store.book[?(@.isbn)].title returns the title
values for all book elements that contain an isbn
property.

 $.store.book[?(@.category == 'fiction')].title
returns the title values for all book elements whose
 category property is assigned the string value fiction.

 $..book[?(@.author =~ /.*REES/i)].title returns
the title values for all book elements whose author
property value ends with rees (case is insignificant).

 $..book[?(@.price >= 10 && @.price <= 20)].title
returns the title values for all book elements whose
 price property value lies between 10 and 20.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Extracting JSON Values with JsonPath234

 $..book[?(@.author in ['Nigel Rees'])].title
returns the title values for all book elements whose
 author property value matches Nigel Rees.

 $..book[?(@.author nin ['Nigel Rees'])].title
returns the title values for all book elements whose
 author property value doesn’t match Nigel Rees.

 Compile Listing 10-2 and run the resulting application. You should discover
the following output:

 ["The Lord of the Rings"]
 ["Sword of Honour","The Lord of the Rings"]
 ["Sayings of the Century"]
 ["Sword of Honour"]
 ["Sayings of the Century"]
 ["Sword of Honour","The Lord of the Rings"]

 Filter Predicates
 A filter predicate is a predicate expressed as an instance of the abstract
 Filter class, which implements the Predicate interface.

 To create a filter predicate, you typically chain together invocations of
various fluent methods (https://en.wikipedia.org/wiki/Fluent_interface)
located in the Criteria class, which also implements Predicate , and pass
the result to Filter ’s Filter filter(Predicate predicate) method.

 Filter filter = Filter.filter(Criteria.where("price").lt(20.00));

 Criteria ’s Criteria where(String key) static method returns a Criteria
object that stores the provided key , which is price in this example. Its
 Criteria lt(Object o) static method returns a Criteria object for the <
operator that identifies the value that’s compared to the value of the key .

 To use the filter predicate, first insert a ? placeholder for the filter predicate
into the path:

 String expr = "$['store']['book'][?].title";

 Note When multiple filter predicates are provided, they are applied in left-to-
right order of the placeholders where the number of placeholders must match
the number of provided filter predicates. You can specify multiple predicate
placeholders in one filter operation [?, ?] ; both predicates must match.

www.it-ebooks.info

https://en.wikipedia.org/wiki/Fluent_interface
http://www.it-ebooks.info/

CHAPTER 10: Extracting JSON Values with JsonPath 235

 Next, because Filter implements Predicate , you pass the filter predicate to
a read() method that takes a Predicate argument:

 List<Object> titles = JsonPath.read(json, expr, filter);

 For each book element, the read() method executes the filter predicate
when it detects the ? placeholder in the JsonPath expression.

 Listing 10-3 presents the source code for an application that demonstrates
the previous filter predicate code fragments.

 Listing 10-3. Demonstrating Filter Predicates

 import java.util.List;

 import com.jayway.jsonpath.Criteria;
 import com.jayway.jsonpath.Filter;
 import com.jayway.jsonpath.JsonPath;

 public class JsonPathDemo
 {
 public static void main(String[] args)
 {
 String json =
 "{" +
 " \"store\":" +
 " {" +
 " \"book\":" +
 " [" +
 " {" +
 " \"category\": \"reference\"," +
 " \"author\": \"Nigel Rees\"," +
 " \"title\": \"Sayings of the Century\"," +
 " \"price\": 8.95" +
 " }," +
 " {" +
 " \"category\": \"fiction\"," +
 " \"author\": \"Evelyn Waugh\"," +
 " \"title\": \"Sword of Honour\"," +
 " \"price\": 12.99" +
 " }," +
 " {" +
 " \"category\": \"fiction\"," +
 " \"author\": \"J. R. R. Tolkien\"," +
 " \"title\": \"The Lord of the Rings\"," +
 " \"isbn\": \"0-395-19395-8\"," +
 " \"price\": 22.99" +
 " }" +
 "]," +

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Extracting JSON Values with JsonPath236

 " \"bicycle\":" +
 " {" +
 " \"color\": \"red\"," +
 " \"price\": 19.95" +
 " }" +
 " }" +
 "}";

 Filter filter = Filter.filter(Criteria.where("price").lt(20.00));
 String expr = "$['store']['book'][?].title";
 List<Object> titles = JsonPath.read(json, expr, filter);
 System.out.println(titles);
 }
 }

 Compile Listing 10-3 and run the resulting application. You should discover
the following output (both books have prices less than 20 dollars):

 ["Sayings of the Century","Sword of Honour"]

 Custom Predicates
 A custom predicate is a predicate created from a class that implements the
 Predicate interface .

 To create a custom predicate, instantiate a class that implements Predicate
and overrides the following method:

 boolean apply(Predicate.PredicateContext ctx)

 PredicateContext is a nested interface whose methods provide information
about the context in which apply() is called. For example, Object root()
returns a reference to the entire JSON document, and Object item() returns
the current item being evaluated by this predicate.

 apply() returns the predicate value: true (item is accepted) or false
(item is rejected).

 The following code fragment creates a custom predicate for returning Book
elements containing a price property whose value exceeds 20 dollars:

 Predicate expensiveBooks =
 new Predicate()
 {
 @Override
 public boolean apply(PredicateContext ctx)
 {
 String value = ctx.item(Map.class).get("price").toString();

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Extracting JSON Values with JsonPath 237

 return Float.valueOf(value) > 20.00;
 }
 };

 PredicateContext ’s <T> T item(java.lang.Class<T> class) generic
method maps the JSON object in the Book element to a java.util.Map .

 To use the custom predicate, first insert a ? placeholder for the custom
predicate into the path:

 String expr = "$.store.book[?]";

 Next, pass the custom predicate to a read() method that takes a
Predicate argument:

 List<Map<String, Object>> titles = JsonPath.read(json, expr,
 expensiveBooks);

 For each book element, read() executes the custom predicate associated
with the ? and returns a list of maps (one map per accepted item).

 Listing 10-4 presents the source code for an application that demonstrates
the previous custom predicate code fragments.

 Listing 10-4. Demonstrating Custom Predicates

 import java.util.List;
 import java.util.Map;

 import com.jayway.jsonpath.JsonPath;
 import com.jayway.jsonpath.Predicate;

 public class JsonPathDemo
 {
 public static void main(String[] args)
 {
 String json =
 "{" +
 " \"store\":" +
 " {" +
 " \"book\":" +
 " [" +
 " {" +
 " \"category\": \"reference\"," +
 " \"author\": \"Nigel Rees\"," +
 " \"title\": \"Sayings of the Century\"," +
 " \"price\": 8.95" +
 " }," +
 " {" +

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Extracting JSON Values with JsonPath238

 " \"category\": \"fiction\"," +
 " \"author\": \"Evelyn Waugh\"," +
 " \"title\": \"Sword of Honour\"," +
 " \"price\": 12.99" +
 " }," +
 " {" +
 " \"category\": \"fiction\"," +
 " \"author\": \"J. R. R. Tolkien\"," +
 " \"title\": \"The Lord of the Rings\"," +
 " \"isbn\": \"0-395-19395-8\"," +
 " \"price\": 22.99" +
 " }" +
 "]," +
 " \"bicycle\":" +
 " {" +
 " \"color\": \"red\"," +
 " \"price\": 19.95" +
 " }" +
 " }" +
 "}";

 Predicate expensiveBooks =
 new Predicate()
 {
 @Override
 public boolean apply(PredicateContext ctx)
 {
 String value = ctx.item(Map.class).get("price").toString();
 return Float.valueOf(value) > 20.00;
 }
 };
 String expr = "$.store.book[?]";
 List<Map<String, Object>> titles = JsonPath.read(json, expr,
 expensiveBooks);
 System.out.println(titles);
 }
 }

 Compile Listing 10-4 and run the resulting application. You should discover
the following output (one book has a price greater than 20 dollars):

 [{"category":"fiction","author":"J. R. R. Tolkien","title":"The Lord of the
Rings","isbn":"0-395-19395-8","price":22.99}]

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Extracting JSON Values with JsonPath 239

 EXERCISES

 The following exercises are designed to test your understanding of Chapter 10 ’s content.

 1. Define JsonPath.

 2. True or false: JsonPath is based on XPath 2.0.

 3. Identify the operator that represents the root JSON object.

 4. In what notations can you specify JsonPath expressions?

 5. What operator represents the current node being processed by a filter
predicate?

 6. True or false: JsonPath’s deep scan operator (..) is equivalent to
XPath’s / symbol.

 7. What does JsonPath ’s JsonPath compile(String jsonPath,
Predicate... filters) static method accomplish?

 8. What is the return type of the <T> T read(String json) generic
method that returns JSON object property names and their values?

 9. Identify the three predicate categories.

 10. Given JSON object { "number": [10, 20, 25, 30] } , write a
 JsonPathDemo application that extracts and outputs the maximum
(30), minimum (10), and average (21.25) values.

 Summary
 JsonPath is a declarative query language (also known as a path expression
syntax) for selecting and extracting a JSON document’s property values.

 JsonPath is a simple language with various features that are similar to their
XPath counterparts. This language is used to construct path expressions.
Each expression begins with the $ operator, which identifies the root element
of the query, and which corresponds to the XPath / symbol.

 As with Chapter 8 ’s mJson and Chapter 9 ’s Gson, you can obtain JsonPath
from the Central Maven Repository. Alternatively, if you’re not using Maven,
you can download the JsonPath Jar file and all of the Jar files on which
JsonPath depends, and then add all of these Jar files to your classpath.

 The JsonPath library is organized into several packages. You will typically
interact with the com.jayway.jsonpath package and its types. In this chapter,
you focused exclusively on this package while learning how to extract
values from JSON objects and use predicates to filter items.

 Appendix A presents the answers to each chapter’s exercises.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1916-4_10
http://dx.doi.org/10.1007/978-1-4842-1916-4_8
http://dx.doi.org/10.1007/978-1-4842-1916-4_9
http://www.it-ebooks.info/

241© Jeff Friesen 2016
J. Friesen, Java XML and JSON, DOI 10.1007/978-1-4842-1916-4

 Appendix A
 Answers to Exercises
 Chapters 1 through 10 close with an “Exercises” section that tests your
understanding of the chapter’s material. The answers to those exercises are
presented in this appendix.

 Chapter 1 : Introducing XML
 1. XML (eXtensible Markup Language) is a

metalanguage for defining vocabularies (custom
markup languages), which is the key to XML’s
importance and popularity.

 2. The answer is true: XML and HTML are descendants
of SGML.

 3. XML provides the XML declaration, elements and
attributes, character references and CDATA sections,
namespaces, and comments and processing
instructions language features for use in defining
custom markup languages.

 4. The XML declaration is special markup that informs
an XML parser that the document is XML.

 5. The XML declaration’s three attributes are version ,
 encoding , and standalone . The version attribute is
nonoptional.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1916-4_1
http://dx.doi.org/10.1007/978-1-4842-1916-4_1
http://www.it-ebooks.info/

APPENDIX A: Answers to Exercises242

 6. The answer is false: an element can consist of the
empty-element tag, which is a standalone tag whose
name ends with a forward slash (/), such as <break/> .

 7. Following the XML declaration, an XML document is
anchored in a root element.

 8. Mixed content is a combination of child elements
and content .

 9. A character reference is a code that represents a
character. The two kinds of character references are
numeric character references (such as Σ) and
character entity references (such as <).

 10. A CDATA section is a section of literal HTML or XML
markup and content surrounded by the <![CDATA[
prefix and the]]> suffix. You use a CDATA section
when you have a large amount of HTML/XML text
and don’t want to replace each literal < (start of tag)
and & (start of entity) character with its < and
 & predefined character entity reference, which
is a tedious and possibly error-prone undertaking
because you might forget to replace one of these
characters.

 11. A namespace is a Uniform Resource Identifier-based
container that helps differentiate XML vocabularies
by providing a unique context for its contained
identifiers.

 12. A namespace prefix is an alias for a URI.

 13. The answer is true: a tag’s attributes don’t need to be
prefixed when those attributes belong to the element.

 14. A comment is a character sequence beginning with
 <!-- and ending with --> . It can appear anywhere
in an XML document except before the XML
declaration, except within tags, and except within
another comment.

 15. A processing instruction is an instruction that’s made
available to the application parsing the document.
The instruction begins with <? and ends with ?> .

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A: Answers to Exercises 243

 16. The rules that an XML document must follow to be
considered well-formed are as follows: all elements
must either have start and end tags or consist of
empty-element tags, tags must be nested correctly,
all attribute values must be quoted, empty elements
must be properly formatted, and you must be
careful with case. Furthermore, XML parsers that are
aware of namespaces enforce two additional rules:
all element and attribute names must not include
more than one colon character; and entity names,
processing instruction targets, and notation names
can't contain colons .

 17. For an XML document to be valid, the document
must adhere to certain constraints. For example,
one constraint might be that a specific element must
always follow another specific element.

 18. The two common grammar languages are Document
Type Definition and XML Schema.

 19. The general syntax for declaring an element in a DTD
is <!ELEMENT name content-specifier > .

 20. XML Schema lets you create complex types from
simple types.

 21. Listing A-1 presents the books.xml document file that
was called for in Chapter 1 .

 Listing A-1. A Document of Books

 <?xml version="1.0"?>
 <books>
 <book isbn="0201548550" pubyear="1992">
 <title>
 Advanced C++
 </title>
 394211_1_En
 James O. Coplien
 </author>
 <publisher>
 Addison Wesley
 </publisher>
 </book>

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1916-4_1
http://www.it-ebooks.info/

APPENDIX A: Answers to Exercises244

 <book isbn="9781430210450" pubyear="2008">
 <title>
 Beginning Groovy and Grails
 </title>
 394211_1_En
 Christopher M. Judd
 </author>
 394211_1_En
 Joseph Faisal Nusairat
 </author>
 394211_1_En
 James Shingler
 </author>
 <publisher>
 Apress
 </publisher>
 </book>
 <book isbn="0201310058" pubyear="2001">
 <title>
 Effective Java
 </title>
 394211_1_En
 Joshua Bloch
 </author>
 <publisher>
 Addison Wesley
 </publisher>
 </book>
 </books>

 22. Listing A-2 presents the books.xml document file
with an internal DTD that was called for in Chapter 1 .

 Listing A-2. A DTD-Enabled Document of Books

 <?xml version="1.0"?>
 <!DOCTYPE books [
 <!ELEMENT books (book+)>
 <!ELEMENT book (title, author+, publisher)>
 <!ELEMENT title (#PCDATA)>
 <!ELEMENT author (#PCDATA)>
 <!ELEMENT publisher (#PCDATA)>
 <!ATTLIST book isbn CDATA #REQUIRED>
 <!ATTLIST book pubyear CDATA #REQUIRED>
]>

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1916-4_1
http://www.it-ebooks.info/

APPENDIX A: Answers to Exercises 245

 <books>
 <book isbn="0201548550" pubyear="1992">
 <title>
 Advanced C++
 </title>
 394211_1_En
 James O. Coplien
 </author>
 <publisher>
 Addison Wesley
 </publisher>
 </book>
 <book isbn="9781430210450" pubyear="2008">
 <title>
 Beginning Groovy and Grails
 </title>
 394211_1_En
 Christopher M. Judd
 </author>
 394211_1_En
 Joseph Faisal Nusairat
 </author>
 394211_1_En
 James Shingler
 </author>
 <publisher>
 Apress
 </publisher>
 </book>
 <book isbn="0201310058" pubyear="2001">
 <title>
 Effective Java
 </title>
 394211_1_En
 Joshua Bloch
 </author>
 <publisher>
 Addison Wesley
 </publisher>
 </book>
 </books>

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A: Answers to Exercises246

 Chapter 2 : Parsing XML Documents with SAX
 1. SAX is an event-based Java API for parsing an XML

document sequentially from start to finish. When a
SAX-oriented parser encounters an item from the
document’s infoset, it makes this item available
to an application as an event by calling one of the
methods in one of the application’s handlers, which
the application has previously registered with the
parser. The application can then consume this event
by processing the infoset item in some manner .

 2. You obtain a SAX 2-based parser by calling one of
the XMLReaderFactory class’s createXMLReader()
methods, which returns an XMLReader object.

 3. The purpose of the XMLReader interface is to describe
a SAX parser. This interface makes available several
methods for configuring the SAX parser and parsing
an XML document’s content.

 4. You tell a SAX parser to perform validation by invoking
 XMLReader ’s setFeature(String name, boolean
value) method, passing " http://xml.org/sax/
features/validation " to name and true to value .

 5. The four kinds of SAX-oriented exceptions
that can be thrown when working with SAX are
 SAXException , SAXNotRecognizedException ,
 SAXNotSupportedException , and SAXParseException .

 6. The interface that a handler class implements
to respond to content-oriented events is
 ContentHandler .

 7. The three other core interfaces that a handler class is
likely to implement are DTDHandler , EntityResolver ,
and ErrorHandler .

 8. Ignorable whitespace is whitespace located between
tags where the DTD doesn’t allow mixed content.

 9. The answer is false: void error(SAXParseException
exception) is called only for recoverable errors .

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1916-4_2
http://xml.org/sax/features/validation
http://xml.org/sax/features/validation
http://www.it-ebooks.info/

APPENDIX A: Answers to Exercises 247

 10. The purpose of the DefaultHandler class is to serve
as a convenience base class for SAX 2 applications.
It provides default implementations for all of the
callbacks in the four core SAX 2 handler interfaces:
 ContentHandler , DTDHandler , EntityResolver , and
 ErrorHandler .

 11. An entity is aliased data. An entity resolver is an
object that uses the public identifier to choose a
different system identifier. Upon encountering an
external entity, the parser calls the custom entity
resolver to obtain this identifier.

 12. Listing A-3 presents the DumpUserInfo application
that was called for in Chapter 2 .

 Listing A-3. Using SAX to Dump the Apache tomcat-users.xml File’s User Information

 import java.io.FileReader;
 import java.io.IOException;

 import org.xml.sax.Attributes;
 import org.xml.sax.InputSource;
 import org.xml.sax.SAXException;
 import org.xml.sax.XMLReader;

 import org.xml.sax.helpers.DefaultHandler;
 import org.xml.sax.helpers.XMLReaderFactory;

 public class DumpUserInfo
 {
 public static void main(String[] args)
 {
 try
 {
 XMLReader xmlr = XMLReaderFactory.createXMLReader();
 Handler handler = new Handler();
 xmlr.setContentHandler(handler);
 xmlr.parse(new InputSource(new FileReader("tomcat-users.xml")));
 }
 catch (IOException ioe)
 {
 System.err.println("IOE: " + ioe);
 }

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1916-4_2
http://www.it-ebooks.info/

APPENDIX A: Answers to Exercises248

 catch (SAXException saxe)
 {
 System.err.println("SAXE: " + saxe);
 }
 }
 }

 class Handler extends DefaultHandler
 {
 @Override
 public void startElement(String uri, String localName, String qName,
 Attributes attributes)
 {
 if (localName.equals("user"))
 {
 for (int i = 0; i < attributes.getLength(); i++)
 System.out.printf("%s = %s%n", attributes.getLocalName(i),
 attributes.getValue(i));
 System.out.println();
 }
 }
 }

 13. Listing A-4 and Listing A-5 present the SAXSearch and
 Handler classes that were called for in Chapter 2 .

 Listing A-4. A SAX Driver Class for Searching books.xml for a Specific Publisher’s Books

 import java.io.FileReader;
 import java.io.IOException;

 import org.xml.sax.InputSource;
 import org.xml.sax.SAXException;
 import org.xml.sax.XMLReader;

 import org.xml.sax.helpers.XMLReaderFactory;

 public class SAXSearch
 {
 public static void main(String[] args)
 {
 if (args.length != 1)
 {
 System.err.println("usage: java SAXSearch publisher");
 return;
 }

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1916-4_2
http://www.it-ebooks.info/

APPENDIX A: Answers to Exercises 249

 try
 {
 XMLReader xmlr = XMLReaderFactory.createXMLReader();
 Handler handler = new Handler(args[0]);
 xmlr.setContentHandler(handler);
 xmlr.setErrorHandler(handler);
 xmlr.setProperty("http://xml.org/sax/properties/lexical-handler",
 handler);
 xmlr.parse(new InputSource(new FileReader("books.xml")));
 }
 catch (IOException ioe)
 {
 System.err.println("IOE: " + ioe);
 }
 catch (SAXException saxe)
 {
 System.err.println("SAXE: " + saxe);
 }
 }
 }

 Listing A-5. A SAX Callback Class Whose Methods are Called by the SAX Parser

 import org.xml.sax.Attributes;
 import org.xml.sax.SAXParseException;

 import org.xml.sax.ext.DefaultHandler2;

 public class Handler extends DefaultHandler2
 {
 private boolean isPublisher, isTitle;

 private String isbn, publisher, pubYear, title, srchText;

 public Handler(String srchText)
 {
 this.srchText = srchText;
 }

 @Override
 public void characters(char[] ch, int start, int length)
 {
 if (isTitle)
 {
 title = new String(ch, start, length).trim();
 isTitle = false;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A: Answers to Exercises250

 else
 if (isPublisher)
 {
 publisher = new String(ch, start, length).trim();
 isPublisher = false;
 }
 }

 @Override
 public void endElement(String uri, String localName, String qName)
 {
 if (!localName.equals("book"))
 return;
 if (!srchText.equals(publisher))
 return;
 System.out.println("title = " + title + ", isbn = " + isbn);
 }

 @Override
 public void error(SAXParseException saxpe)
 {
 System.out.println("error() " + saxpe);
 }

 @Override
 public void fatalError(SAXParseException saxpe)
 {
 System.out.println("fatalError() " + saxpe);
 }

 @Override
 public void startElement(String uri, String localName, String qName,
 Attributes attributes)
 {
 if (localName.equals("title"))
 {
 isTitle = true;
 return;
 }
 else
 if (localName.equals("publisher"))
 {
 isPublisher = true;
 return;
 }
 if (!localName.equals("book"))
 return;

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A: Answers to Exercises 251

 for (int i = 0; i < attributes.getLength(); i++)
 if (attributes.getLocalName(i).equals("isbn"))
 isbn = attributes.getValue(i);
 else
 if (attributes.getLocalName(i).equals("pubyear"))
 pubYear = attributes.getValue(i);
 }

 @Override
 public void warning(SAXParseException saxpe)
 {
 System.out.println("warning() " + saxpe);
 }
 }

 14. When you use Listing 2-1 ’s SAXDemo application to
validate Exercise 1-22’s books.xml content against
its DTD, you should observe no validation errors.

 Chapter 3 : Parsing and Creating XML
Documents with DOM

 1. DOM is a Java API for parsing an XML document
into an in-memory tree of nodes and for creating an
XML document from a tree of nodes. After a DOM
parser has created a document tree, an application
uses the DOM API to navigate over and extract
infoset items from the tree’s nodes.

 2. The answer is false: Java 8 supports DOM Levels 1,
2, and 3.

 3. The 12 types of DOM nodes are attribute node,
CDATA section node, comment node, document
node, document fragment node, document type
node, element node, entity node, entity reference
node, notation node, processing instruction node,
and text node.

 4. You obtain a document builder by first instantiating
 DocumentBuilderFactory via one of its newInstance()
methods and then invoking newDocumentBuilder()
on the returned DocumentBuilderFactory object to
obtain a DocumentBuilder object .

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1916-4_2#Par72
http://dx.doi.org/10.1007/978-1-4842-1916-4_3
http://www.it-ebooks.info/

APPENDIX A: Answers to Exercises252

 5. You use a document builder to parse an XML
document by invoking one of DocumentBuilder ’s
 parse() methods.

 6. The answer is true: Document and all other org.w3c.dom
interfaces that describe different kinds of nodes are
subinterfaces of the Node interface.

 7. You use a document builder to create a new XML
document by invoking DocumentBuilder ’s Document
newDocument() method and by invoking Document ’s
various “ create ” methods.

 8. You determine if a node has children by calling Node ’s
 boolean hasChildNodes() method, which returns
 true when a node has child nodes.

 9. The answer is false: when creating a new XML
document, you cannot use the DOM API to specify
the XML declaration’s encoding attribute.

 10. Listing A-6 presents the DumpUserInfo application
that was called for in Chapter 3 .

 Listing A-6. Using DOM to Dump the Apache tomcat-users.xml File’s User Information

 import java.io.IOException;

 import javax.xml.parsers.DocumentBuilder;
 import javax.xml.parsers.DocumentBuilderFactory;
 import javax.xml.parsers.FactoryConfigurationError;
 import javax.xml.parsers.ParserConfigurationException;

 import org.w3c.dom.Attr;
 import org.w3c.dom.Document;
 import org.w3c.dom.Element;
 import org.w3c.dom.NamedNodeMap;
 import org.w3c.dom.Node;
 import org.w3c.dom.NodeList;

 import org.xml.sax.SAXException;

 public class DumpUserInfo
 {
 public static void main(String[] args)
 {

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1916-4_3
http://www.it-ebooks.info/

APPENDIX A: Answers to Exercises 253

 try
 {
 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 DocumentBuilder db = dbf.newDocumentBuilder();
 Document doc = db.parse("tomcat-users.xml");
 NodeList nl = doc.getChildNodes();
 for (int i = 0; i < nl.getLength(); i++)
 {
 Node node = nl.item(i);
 if (node.getNodeType() == Node.ELEMENT_NODE)
 dump((Element) node);
 }
 }
 catch (IOException ioe)
 {
 System.err.println("IOE: " + ioe);
 }
 catch (SAXException saxe)
 {
 System.err.println("SAXE: " + saxe);
 }
 catch (FactoryConfigurationError fce)
 {
 System.err.println("FCE: " + fce);
 }
 catch (ParserConfigurationException pce)
 {
 System.err.println("PCE: " + pce);
 }
 }

 static void dump(Element e)
 {
 if (e.getNodeName().equals("user"))
 {
 NamedNodeMap nnm = e.getAttributes();
 if (nnm != null)
 for (int i = 0; i < nnm.getLength(); i++)
 {
 Node node = nnm.item(i);
 Attr attr = e.getAttributeNode(node.getNodeName());
 System.out.printf("%s = %s%n", attr.getName(),
 attr.getValue());
 }
 System.out.println();
 }

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A: Answers to Exercises254

 NodeList nl = e.getChildNodes();
 for (int i = 0; i < nl.getLength(); i++)
 {
 Node node = nl.item(i);
 if (node instanceof Element)
 dump((Element) node);
 }
 }
 }

 11. Listing A-7 presents the DOMSearch application that
was called for in Chapter 3 .

 Listing A-7. Using DOM to Search books.xml for a Specific Publisher’s Books

 import java.io.IOException;

 import java.util.ArrayList;
 import java.util.List;

 import javax.xml.parsers.DocumentBuilder;
 import javax.xml.parsers.DocumentBuilderFactory;
 import javax.xml.parsers.FactoryConfigurationError;
 import javax.xml.parsers.ParserConfigurationException;

 import org.w3c.dom.Document;
 import org.w3c.dom.Element;
 import org.w3c.dom.NamedNodeMap;
 import org.w3c.dom.Node;
 import org.w3c.dom.NodeList;

 import org.xml.sax.SAXException;

 public class DOMSearch
 {
 public static void main(String[] args)
 {
 if (args.length != 1)
 {
 System.err.println("usage: java DOMSearch publisher");
 return;
 }

 try
 {
 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 DocumentBuilder db = dbf.newDocumentBuilder();
 Document doc = db.parse("books.xml");

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1916-4_3
http://www.it-ebooks.info/

APPENDIX A: Answers to Exercises 255

 class BookItem
 {
 String title;
 String isbn;
 }
 List<BookItem> bookItems = new ArrayList<BookItem>();
 NodeList books = doc.getElementsByTagName("book");
 for (int i = 0; i < books.getLength(); i++)
 {
 Element book = (Element) books.item(i);
 NodeList children = book.getChildNodes();
 String title = "";
 for (int j = 0; j < children.getLength(); j++)
 {
 Node child = children.item(j);
 if (child.getNodeType() == Node.ELEMENT_NODE)
 {
 if (child.getNodeName().equals("title"))
 title = child.getFirstChild().getNodeValue().trim();
 else
 if (child.getNodeName().equals("publisher"))
 {
 // Compare publisher name argument (args[0]) with text
 // of publisher's child text node. The trim() method
 // call removes whitespace that would interfere with
 // the comparison.
 if (args[0].equals(child.getFirstChild().
 getNodeValue().trim()))
 {
 BookItem bookItem = new BookItem();
 bookItem.title = title;
 NamedNodeMap nnm = book.getAttributes();
 Node isbn = nnm.getNamedItem("isbn");
 bookItem.isbn = isbn.getNodeValue();
 bookItems.add(bookItem);
 break;
 }
 }
 }
 }
 }
 for (BookItem bookItem: bookItems)
 System.out.println("title = " + bookItem.title + ", isbn = " +

bookItem.isbn);
 }
 catch (IOException ioe)
 {
 System.err.println("IOE: " + ioe);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A: Answers to Exercises256

 catch (SAXException saxe)
 {
 System.err.println("SAXE: " + saxe);
 }
 catch (FactoryConfigurationError fce)
 {
 System.err.println("FCE: " + fce);
 }
 catch (ParserConfigurationException pce)
 {
 System.err.println("PCE: " + pce);
 }
 }
 }

 12. Listing A-8 presents the DOMValidate application that
was called for in Chapter 3 .

 Listing A-8. Using DOM to Validate XML Content

 import java.io.IOException;

 import javax.xml.parsers.DocumentBuilder;
 import javax.xml.parsers.DocumentBuilderFactory;
 import javax.xml.parsers.FactoryConfigurationError;
 import javax.xml.parsers.ParserConfigurationException;

 import org.w3c.dom.Attr;
 import org.w3c.dom.Document;
 import org.w3c.dom.Element;
 import org.w3c.dom.NamedNodeMap;
 import org.w3c.dom.Node;
 import org.w3c.dom.NodeList;

 import org.xml.sax.SAXException;

 public class DOMValidate
 {
 public static void main(String[] args)
 {
 if (args.length != 1)
 {
 System.err.println("usage: java DOMValidate xmlfile");
 return;
 }

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1916-4_3
http://www.it-ebooks.info/

APPENDIX A: Answers to Exercises 257

 try
 {
 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 dbf.setNamespaceAware(true);
 dbf.setValidating(true);
 DocumentBuilder db = dbf.newDocumentBuilder();
 Document doc = db.parse(args[0]);
 System.out.printf("Version = %s%n", doc.getXmlVersion());
 System.out.printf("Encoding = %s%n", doc.getXmlEncoding());
 System.out.printf("Standalone = %b%n%n", doc.getXmlStandalone());
 if (doc.hasChildNodes())
 {
 NodeList nl = doc.getChildNodes();
 for (int i = 0; i < nl.getLength(); i++)
 {
 Node node = nl.item(i);
 if (node.getNodeType() == Node.ELEMENT_NODE)
 dump((Element) node);
 }
 }
 }
 catch (IOException ioe)
 {
 System.err.println("IOE: " + ioe);
 }
 catch (SAXException saxe)
 {
 System.err.println("SAXE: " + saxe);
 }
 catch (FactoryConfigurationError fce)
 {
 System.err.println("FCE: " + fce);
 }
 catch (ParserConfigurationException pce)
 {
 System.err.println("PCE: " + pce);
 }
 }

 static void dump(Element e)
 {
 System.out.printf("Element: %s, %s, %s, %s%n", e.getNodeName(),

e.getLocalName(), e.getPrefix(), e.getNamespaceURI());
 NamedNodeMap nnm = e.getAttributes();
 if (nnm != null)
 for (int i = 0; i < nnm.getLength(); i++)
 {
 Node node = nnm.item(i);
 Attr attr = e.getAttributeNode(node.getNodeName());

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A: Answers to Exercises258

 System.out.printf(" Attribute %s = %s%n", attr.getName() , attr.
getValue());

 }
 NodeList nl = e.getChildNodes();
 for (int i = 0; i < nl.getLength(); i++)
 {
 Node node = nl.item(i);
 if (node instanceof Element)
 dump((Element) node);
 }
 }
 }

 Chapter 4 : Parsing and Creating XML
Documents with StAX

 1. StAX is a Java API for parsing an XML document
sequentially from start to finish, and also for creating
XML documents.

 2. The javax.xml.stream , javax.xml.stream.events , and
 javax.xml.stream.util packages make up the StAX API.

 3. The answer is false: an event-based reader extracts
the next infoset item from an input stream by
obtaining an event.

 4. You obtain a document reader by calling one of the
various “ create ” methods that are declared in the
 XMLInputFactory class. You obtain a document writer
by calling one of the various “ create ” methods that
are declared in the XMLOutputFactory class.

 5. When you call XMLOutputFactory ’s void
setProperty(String name, Object value) method
with XMLOutputFactory.IS_REPAIRING_NAMESPACES
as the property name and true as the value, the
document writer takes care of all namespace
bindings and declarations, with minimal help from
the application. The output is always well formed
with respect to namespaces.

 6. Listing A-9 presents the ParseXMLDoc application that
was called for in Chapter 4 .

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1916-4_4
http://dx.doi.org/10.1007/978-1-4842-1916-4_4
http://www.it-ebooks.info/

APPENDIX A: Answers to Exercises 259

 Listing A-9. A StAX Stream-Based Parser for Parsing an XML Document

 import java.io.FileReader;
 import java.io.IOException;

 import javax.xml.stream.XMLEventReader;
 import javax.xml.stream.XMLInputFactory;
 import javax.xml.stream.XMLStreamException;
 import javax.xml.stream.XMLStreamReader;

 public class ParseXMLDoc
 {
 public static void main(String[] args)
 {
 if (args.length != 1)
 {
 System.err.println("usage: java ParseXMLDoc pathname");
 return;
 }
 XMLInputFactory xmlif = XMLInputFactory.newFactory();
 XMLStreamReader xmlsr = null;
 try (FileReader fr = new FileReader(args[0]))
 {
 xmlsr = xmlif.createXMLStreamReader(fr);
 int item = xmlsr.getEventType();
 if (item != XMLStreamReader.START_DOCUMENT)
 {
 System.err.println("START_DOCUMENT expected");
 return;
 }
 while ((item = xmlsr.next()) != XMLStreamReader.END_DOCUMENT)
 switch (item)
 {
 case XMLStreamReader.ATTRIBUTE:
 System.out.println("ATTRIBUTE");
 break;
 case XMLStreamReader.CDATA:
 System.out.println("CDATA");
 break;
 case XMLStreamReader.CHARACTERS:
 System.out.println("CHARACTERS");
 break;
 case XMLStreamReader.COMMENT:
 System.out.println("COMMENT");
 break;
 case XMLStreamReader.DTD:
 System.out.println("DTD");
 break;

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A: Answers to Exercises260

 case XMLStreamReader.END_ELEMENT:
 System.out.println("END_ELEMENT");
 break;
 case XMLStreamReader.ENTITY_DECLARATION:
 System.out.println("ENTITY_DECLARATION");
 break;
 case XMLStreamReader.ENTITY_REFERENCE:
 System.out.println("ENTITY_REFERENCE");
 break;
 case XMLStreamReader.NAMESPACE:
 System.out.println("NAMESPACE");
 break;
 case XMLStreamReader.NOTATION_DECLARATION:
 System.out.println("NOTATION_DECLARATION");
 break;
 case XMLStreamReader.PROCESSING_INSTRUCTION:
 System.out.println("PROCESSING_INSTRUCTION");
 break;
 case XMLStreamReader.SPACE:
 System.out.println("SPACE");
 break;
 case XMLStreamReader.START_ELEMENT:
 System.out.println("START_ELEMENT");
 System.out.println("Name = " + xmlsr.getName());
 System.out.println("Local name = " +
 xmlsr.getLocalName());
 int nAttrs = xmlsr.getAttributeCount();
 for (int i = 0; i < nAttrs; i++)
 System.out.println("Attribute [" +
 xmlsr.getAttributeLocalName(i) +
 ", " +
 xmlsr.getAttributeValue(i) + "]");
 }
 }
 catch (IOException ioe)
 {
 ioe.printStackTrace();
 }
 catch (XMLStreamException xmlse)
 {
 xmlse.printStackTrace();
 }
 finally
 {
 if (xmlsr != null)
 try
 {
 xmlsr.close();
 }

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A: Answers to Exercises 261

 catch (XMLStreamException xmlse)
 {
 }
 }
 }
 }

 Chapter 5 : Selecting Nodes with XPath
 1. XPath is a nonXML declarative query language

(defined by the W3C) for selecting an XML
document’s infoset items as one or more nodes.

 2. XPath is commonly used to simplify access to a
DOM tree’s nodes and in the context of XSLT to
select those input document elements (via XPath
expressions) that are to be copied to an output
document.

 3. The seven kinds of nodes that XPath recognizes
are element, attribute, text, namespace, processing
instruction, comment, and document.

 4. The answer is false: XPath doesn’t recognize CDATA
sections.

 5. XPath provides location path expressions for
selecting nodes. A location path expression locates
nodes via a sequence of steps starting from the
context node, which is the root node or some
other document node that is the current node. The
returned set of nodes might be empty, or it might
contain one or more nodes.

 6. The answer is true: in a location path expression, you
must prefix an attribute name with the @ symbol.

 7. The functions that XPath provides for selecting
comment, text, and processing-instruction nodes are
 comment() , text() , and processing-instruction() ,
respectively.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1916-4_5
http://www.it-ebooks.info/

APPENDIX A: Answers to Exercises262

 8. XPath provides wildcards for selecting unknown
nodes. The * wildcard matches any element node
regardless of the node’s type. It doesn’t match
attributes, text nodes, comments, or processing-
instruction nodes. When you place a namespace
prefix before the * , only elements belonging to that
namespace are matched. The node() wildcard is
a function that matches all nodes. Finally, the @*
wildcard matches all attribute nodes.

 9. You perform multiple selections by using the vertical
bar (|). For example, author/*|publisher/* selects
the children of author and the children of publisher .

 10. A predicate is a square bracket-delimited Boolean
expression that’s tested against each selected node. If
the expression evaluates to true , that node is included
in the set of nodes returned by the XPath expression;
otherwise, the node isn’t included in the set.

 11. The functions that XPath provides for working with
nodesets are last() , position() , id() , local-
name() , namespace-uri() , and name() .

 12. The three advanced features that XPath provides to
overcome limitations with the XPath 1.0 language are
namespace contexts, extension functions and function
resolvers, and variables and variable resolvers.

 13. The answer is false: the XPath API maps XPath’s
number type to java.lang.Double .

 14. Listing A-10 and Listing A-11 present the contacts.
xml document file and XPathSearch application that
were called for in Chapter 5 .

 Listing A-10. A Contacts Document with a Titlecased Name Element

 <?xml version="1.0"?>
 <contacts>
 <contact>
 <Name>John Doe</Name>
 <city>Chicago</city>
 <city>Denver</city>
 </contact>
 <contact>

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1916-4_5
http://www.it-ebooks.info/

APPENDIX A: Answers to Exercises 263

 <name>Jane Doe</name>
 <city>New York</city>
 </contact>
 <contact>
 <name>Sandra Smith</name>
 <city>Denver</city>
 <city>Miami</city>
 </contact>
 <contact>
 <name>Bob Jones</name>
 <city>Chicago</city>
 </contact>
 </contacts>

 Listing A-11. Searching for name or Name Elements via a Multiple Selection

 import java.io.IOException;

 import javax.xml.parsers.DocumentBuilder;
 import javax.xml.parsers.DocumentBuilderFactory;
 import javax.xml.parsers.FactoryConfigurationError;
 import javax.xml.parsers.ParserConfigurationException;

 import javax.xml.xpath.XPath;
 import javax.xml.xpath.XPathConstants;
 import javax.xml.xpath.XPathException;
 import javax.xml.xpath.XPathExpression;
 import javax.xml.xpath.XPathFactory;

 import org.w3c.dom.Document;
 import org.w3c.dom.NodeList;

 import org.xml.sax.SAXException;

 public class XPathSearch
 {
 public static void main(String[] args)
 {
 try
 {
 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 DocumentBuilder db = dbf.newDocumentBuilder();
 Document doc = db.parse("contacts.xml");
 XPathFactory xpf = XPathFactory.newInstance();
 XPath xp = xpf.newXPath();
 XPathExpression xpe;
 xpe = xp.compile("//contact[city = 'Chicago']/name/text()|" +
 "//contact[city = 'Chicago']/Name/text()");

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A: Answers to Exercises264

 Object result = xpe.evaluate(doc, XPathConstants.NODESET);
 NodeList nl = (NodeList) result;
 for (int i = 0; i < nl.getLength(); i++)
 System.out.println(nl.item(i).getNodeValue());
 }
 catch (IOException ioe)
 {
 System.err.println("IOE: " + ioe);
 }
 catch (SAXException saxe)
 {
 System.err.println("SAXE: " + saxe);
 }
 catch (FactoryConfigurationError fce)
 {
 System.err.println("FCE: " + fce);
 }
 catch (ParserConfigurationException pce)
 {
 System.err.println("PCE: " + pce);
 }
 catch (XPathException xpe)
 {
 System.err.println("XPE: " + xpe);
 }
 }
 }

 Chapter 6 : Transforming XML Documents
with XSLT

 1. XSLT is a family of languages for transforming and
formatting XML documents .

 2. XSLT accomplishes its work by using XSLT
processors and stylesheets. An XSLT processor
is a software component that applies an XSLT
stylesheet (an XML-based template consisting of
content and transformation instructions) to an input
document (without modifying the document), and
copies the transformed result to a result tree, which
can be output to a file or output stream, or even
piped into another XSLT processor for additional
transformations.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1916-4_6
http://www.it-ebooks.info/

APPENDIX A: Answers to Exercises 265

 3. The answer is false: call Transformer ’s
 void transform(Source xmlSource, Result
outputTarget) method to transform a source to a
result.

 4. Listing A-12 and Listing A-13 present the books.xsl
document stylesheet file and MakeHTML application
that were called for in Chapter 6 .

 Listing A-12. A Stylesheet for Converting books.xml Content to HTML

 <?xml version="1.0"?>
 <xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="/books">
 <html>
 <head>
 <title>Books</title>
 </head>
 <body>
 <xsl:for-each select="book">
 <h2>
 <xsl:value-of select="normalize-space(title/text())"/>
 </h2>
 ISBN: <xsl:value-of select="@isbn"/>

 Publication Year: <xsl:value-of select="@pubyear"/>

<xsl:text>
 </xsl:text>
 <xsl:for-each select="author">
 <xsl:value-of select="normalize-space(text())"/>
<xsl:text>
 </xsl:text>
 </xsl:for-each>
 </xsl:for-each>
 </body>
 </html>
 </xsl:template>
 </xsl:stylesheet>

 Listing A-13. Converting Books XML to HTML via a Stylesheet

 import java.io.FileReader;
 import java.io.IOException;

 import javax.xml.parsers.DocumentBuilder;
 import javax.xml.parsers.DocumentBuilderFactory;
 import javax.xml.parsers.FactoryConfigurationError;
 import javax.xml.parsers.ParserConfigurationException;

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1916-4_6
http://www.it-ebooks.info/

APPENDIX A: Answers to Exercises266

 import javax.xml.transform.OutputKeys;
 import javax.xml.transform.Result;
 import javax.xml.transform.Source;
 import javax.xml.transform.Transformer;
 import javax.xml.transform.TransformerConfigurationException;
 import javax.xml.transform.TransformerException;
 import javax.xml.transform.TransformerFactory;
 import javax.xml.transform.TransformerFactoryConfigurationError;

 import javax.xml.transform.dom.DOMSource;

 import javax.xml.transform.stream.StreamResult;
 import javax.xml.transform.stream.StreamSource;

 import org.w3c.dom.Document;

 import org.xml.sax.SAXException;

 public class MakeHTML
 {
 public static void main(String[] args)
 {
 try
 {
 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 DocumentBuilder db = dbf.newDocumentBuilder();
 Document doc = db.parse("books.xml");
 TransformerFactory tf = TransformerFactory.newInstance();
 StreamSource ssStyleSheet;
 ssStyleSheet = new StreamSource(new FileReader("books.xsl"));
 Transformer t = tf.newTransformer(ssStyleSheet);
 t.setOutputProperty(OutputKeys.METHOD, "html");
 t.setOutputProperty(OutputKeys.INDENT, "yes");
 Source source = new DOMSource(doc);
 Result result = new StreamResult(System.out);
 t.transform(source, result);
 }
 catch (IOException ioe)
 {
 System.err.println("IOE: " + ioe);
 }
 catch (FactoryConfigurationError fce)
 {
 System.err.println("FCE: " + fce);
 }
 catch (ParserConfigurationException pce)
 {
 System.err.println("PCE: " + pce);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A: Answers to Exercises 267

 catch (SAXException saxe)
 {
 System.err.println("SAXE: " + saxe);
 }
 catch (TransformerConfigurationException tce)
 {
 System.err.println("TCE: " + tce);
 }
 catch (TransformerException te)
 {
 System.err.println("TE: " + te);
 }
 catch (TransformerFactoryConfigurationError tfce)
 {
 System.err.println("TFCE: " + tfce);
 }
 }
 }

 Chapter 7 : Introducing JSON
 1. JSON (JavaScript Object Notation) is a language-

independent data format that expresses JSON
objects as human-readable lists of properties .

 2. The answer is false: JSON is derived from a nonstrict
subset of JavaScript.

 3. The JSON data format presents a JSON object as
a brace-delimited and comma-separated list of
properties.

 4. The six types that JSON supports are number, string,
Boolean, array, object, and null.

 5. The answer is true: JSON doesn’t support comments.

 6. You would parse a JSON object into an equivalent
JavaScript object by calling the JSON object’s
 parse() method with the text to be parsed as this
method’s argument .

 7. JSON Schema is a grammar language for defining
the structure, content, and (to some extent)
semantics of JSON objects.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1916-4_7
https://en.wikipedia.org/wiki/Human-readable#Human-readable
http://www.it-ebooks.info/

APPENDIX A: Answers to Exercises268

 8. When creating a schema, you identify those
properties that must be present in those JSON
objects that the schema validates by placing their
names in the array that’s assigned to the schema’s
 required property name.

 9. Listing A-14 presents the JSON object that was
called for in Chapter 7 .

 Listing A-14. A Product in Terms of Name and Price

 {
 "name": "hammer",
 "price": 20
 }

 10. Listing A-15 presents the schema that was called for
in Chapter 7 .

 Listing A-15. A Schema for Validating Product Objects

 {
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "Product",
 "description": "A product",
 "type": "object",
 "properties":
 {
 "name":
 {
 "description": "A product name",
 "type": "string"
 },
 "price":
 {
 "description": "A product price",
 "type": "number",
 "minimum": 1
 }
 },
 "required": ["name", "price"]
 }

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1916-4_7
http://dx.doi.org/10.1007/978-1-4842-1916-4_7
http://www.it-ebooks.info/

APPENDIX A: Answers to Exercises 269

 Chapter 8 : Parsing and Creating JSON
Objects with mJson

 1. mJson is a small Java-based JSON library for parsing
JSON objects into Java objects and vice versa .

 2. The Json class describes a JSON object or part
of a JSON object. It contains Schema and Factory
interfaces, more than 50 methods, and other
members.

 3. Json ’s methods for reading and parsing external JSON
objects are Json read(String s) , Json read(URL url) ,
and Json read(CharacterIterator ci) .

 4. The answer is true: the read() methods can also
parse smaller JSON fragments, such as an array of
different-typed values.

 5. The methods that Json provides for creating JSON
objects are Json array() , Json array(Object...
args) , Json make(Object anything) , Json nil() ,
 Json object() , and Json object(Object... args) .

 6. Json ’s boolean isPrimitive() method returns true
when the invoking Json object describes a JSON
number, string, or Boolean value.

 7. You return a Json object’s JSON array by calling
 List<Json> asJsonList() to return a list of Json
objects (one per array element) or by calling
 List<Object> asList() to return a list of Java
objects (each object describes one of the elements).

 8. The answer is false: Json ’s Map<String, Object>
asMap() method returns a map of the properties of
a Json object that describes a JSON object. The
returned map is a copy and modifications to it don’t
affect the Json object .

 9. Json ’s Json at(int index) , Json at(String
propName) , Json at(String propName, Json
defValue) , and Json at(String propName, Object
defValue) methods let you access the contents of
arrays and objects.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1916-4_8
http://bolerio.github.io/mjson/apidocs/mjson/Json.html#class in mjson
http://bolerio.github.io/mjson/apidocs/mjson/Json.html#class in mjson
http://www.it-ebooks.info/

APPENDIX A: Answers to Exercises270

 10. Json ’s boolean is(int index, Object value)
method returns true when this Json object describes
a JSON array that has the specified value at the
specified index ; otherwise, it returns false .

 11. When you attempt to set the value for a
nonexistent array element, Json throws
 IndexOutOfBoundsException .

 12. The difference between Json ’s atDel() and delAt()
methods is as follows: the atDel() methods return
the removed array element or object property,
whereas the delAt() methods do not return the
removed array element or object property.

 13. Json ’s Json with(Json objectorarray) method
combines this Json object’s JSON object or JSON
array with the argument passed to objectorarray .
The JSON type of this Json object and the JSON
type of objectorarray must match. If objectorarray
identifies a JSON object, all of its properties
are appended to this Json object’s object. If
 objectorarray identifies a JSON array, all of its
elements are appended to this Json object’s array.

 14. Json ’s methods for obtaining a Json.Schema object
are Json.Schema schema(Json jsonSchema) , Json.
Schema schema(Json jsonSchema, URI uri) , and
 Json.Schema schema(URI uri) .

 15. You validate a JSON document against a schema by
calling Json.Schema ’s Json validate(Json document)
method with the JSON document passed as a Json
argument to this method.

 16. The difference between Json ’s setGlobalFactory()
and attachFactory() methods is that
 setGlobalFactory() installs the specified factory as
a global factory, which is used by all threads that
don’t have a specific thread-local factory attached
to them, whereas attachFactory() attaches the
specified factory to the invoking thread only.

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A: Answers to Exercises 271

 17. The Json dup() method returns a clone (a duplicate)
of this Json entity. The String pad(String callback)
method wraps a function named callback around
the JSON object described by the current Json
object. This is done for the reason explained in
Wikipedia’s “JSONP” entry (https://en.wikipedia.
org/wiki/JSONP).

 18. Listing A-16 presents the mJsonDemo application that
was called for in Chapter 8 .

 Listing A-16. Demonstrating Json ’s dup() and pad() Methods

 import mjson.Json;

 public class mJsonDemo
 {
 public static void main(String[] args)
 {
 Json json1 = Json.read("{\"name\": \"John Doe\"}");
 Json json2 = json1.dup();
 System.out.println(json1);
 System.out.println();
 System.out.println(json2);
 System.out.println();
 System.out.printf("json1 == json2: %b%n", json1 == json2);
 System.out.printf("json1.equals(json2): %b%n", json1.equals(json2));
 System.out.println();
 System.out.println(json1.pad("func"));

 /*
 The following output is generated:

 {"name":"John Doe"}

 {"name":"John Doe"}

 json1 == json2: false
 json1.equals(json2): true

 func({"name":"John Doe"});
 */
 }
 }

www.it-ebooks.info

https://en.wikipedia.org/wiki/JSONP
https://en.wikipedia.org/wiki/JSONP
http://dx.doi.org/10.1007/978-1-4842-1916-4_8
http://www.it-ebooks.info/

APPENDIX A: Answers to Exercises272

 Chapter 9 : Parsing and Creating JSON
Objects with Gson

 1. Gson is a small Java-based library for parsing and
creating JSON objects. Google developed Gson
for its own projects, but later made Gson publicly
available, starting with version 1.0.

 2. Gson’s packages are com.google.gson (provides
access to Gson , the main class for working with
Gson), com.google.gson.annotations (provides
annotation types for use with Gson), com.google.
gson.reflect (provides a utility class for obtaining
type information from a generic type), and
com.google.gson.stream (provides utility classes for
reading and writing JSON-encoded values).

 3. The two ways to obtain a Gson object are to call the
 Gson() constructor or to invoke the create() method
on a GsonBuilder object.

 4. The types for which Gson provides default serialization
and deserialization are java.lang.Enum , java.util. Map ,
 java.net. URL , java.net. URI , java.util. Locale ,
java.util. Date , java.math. BigDecimal , and
 java.math. BigInteger .

 5. You enable pretty-printing by calling GsonBuilder ’s
 setPrettyPrinting() method .

 6. The answer is true: by default, Gson excludes
 transient or static fields from consideration for
serialization and deserialization.

 7. Once you have a Gson object, you can call various
 fromJson() and toJson() methods to convert
between JSON and Java objects.

 8. You use Gson to customize JSON object parsing by
implementing the JsonDeserializer<T> interface,
instantiating an object from the implementation, and
registering with Gson the deserializer object along
with the class object of the Java class whose objects
are to be serialized/deserialized.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1916-4_9
http://docs.oracle.com/javase/6/docs/api/java/util/Map.html?is-external=true#class or interface in java.util
http://docs.oracle.com/javase/6/docs/api/java/net/URL.html?is-external=true#class or interface in java.net
http://docs.oracle.com/javase/6/docs/api/java/net/URI.html?is-external=true#class or interface in java.net
http://docs.oracle.com/javase/6/docs/api/java/util/Locale.html?is-external=true#class or interface in java.util
http://docs.oracle.com/javase/6/docs/api/java/util/Date.html?is-external=true#class or interface in java.util
http://docs.oracle.com/javase/6/docs/api/java/math/BigDecimal.html?is-external=true#class or interface in java.math
http://docs.oracle.com/javase/6/docs/api/java/math/BigInteger.html?is-external=true#class or interface in java.math
http://www.it-ebooks.info/

APPENDIX A: Answers to Exercises 273

 9. The JsonElement class represents a JSON element
(such as a number, a Boolean value, or an array). It
provides various methods for obtaining an element
value, such as double getAsDouble() , boolean
getAsBoolean() , and JsonArray getAsJsonArray() .

 10. The JsonElement subclasses are JsonArray ,
 JsonNull , JsonObject , and JsonPrimitive .

 11. You call GsonBuilder ’s GsonBuilder
registerTypeAdapter(Type type, Object
typeAdapter) method to register a serializer or
deserializer with a Gson object.

 12. JsonSerializer provides the JsonElement
serialize(T src, Type typeOfSrc,
JsonSerializationContext context) method to
serialize a Java object to a JSON object.

 13. Gson provides the Expose , JsonAdapter ,
 SerializedName , Since , and Until annotation types
to simplify serialization and deserialization.

 14. The answer is false: to use Expose , it’s not enough to
annotate a field, as in @Expose(serialize =
true, deserialize = false) . You also
have to call GsonBuilder ’s GsonBuilder
 excludeFieldsWithoutExposeAnnotation() method .

 15. JsonSerializationContext and
 JsonDeserializationContext provide access to
methods for performing default serialization and
default deserialization, which is handy when dealing
with nested arrays and objects that don’t require
special treatment.

 16. The answer is false: you can call <T> T
fromJson(String json, Class <T> classOfT) to
deserialize nongeneric objects (that is, objects
created from nongeneric classes) only.

www.it-ebooks.info

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html?is-external=true#class or interface in java.lang
http://docs.oracle.com/javase/6/docs/api/java/lang/Class.html?is-external=true#class or interface in java.lang
http://www.it-ebooks.info/

APPENDIX A: Answers to Exercises274

 17. You should prefer TypeAdapter to JsonSerializer
and JsonDeserializer because TypeAdapter
is more efficient. Unlike JsonSerializer and
 JsonDeserializer , which are associated with an
intermediate layer of code that converts Java and
JSON objects to JsonElement s, TypeAdapter doesn’t
perform this conversion.

 18. Listing A-17 presents the GsonDemo application that
was called for in Chapter 9 .

 Listing A-17. Serializing and Deserializing Properly Exposed static Fields

 import java.lang.reflect.Modifier;

 import com.google.gson.Gson;
 import com.google.gson.GsonBuilder;

 import com.google.gson.annotations.Expose;

 public class GsonDemo
 {
 static class SomeClass
 {
 transient int id;
 @Expose(serialize = true, deserialize = true)
 transient String password;
 @Expose(serialize = false, deserialize = false)
 int field1;
 @Expose(serialize = false, deserialize = true)
 int field2;
 @Expose(serialize = true, deserialize = false)
 int field3;
 @Expose(serialize = true, deserialize = true)
 int field4;
 @Expose(serialize = true, deserialize = true)
 static int field5;
 static int field6;
 }
 public static void main(String[] args)
 {
 SomeClass sc = new SomeClass();
 sc.id = 1;
 sc.password = "abc";
 sc.field1 = 2;
 sc.field2 = 3;
 sc.field3 = 4;

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1916-4_9
http://www.it-ebooks.info/

APPENDIX A: Answers to Exercises 275

 sc.field4 = 5;
 sc.field5 = 6;
 sc.field6 = 7;
 GsonBuilder gsonb = new GsonBuilder();
 gsonb.excludeFieldsWithoutExposeAnnotation();
 gsonb.excludeFieldsWithModifiers(Modifier.TRANSIENT);
 Gson gson = gsonb.create();
 String json = gson.toJson(sc);
 System.out.println(json);
 SomeClass sc2 = gson.fromJson(json, SomeClass.class);
 System.out.printf("id = %d%n", sc2.id);
 System.out.printf("password = %s%n", sc2.password);
 System.out.printf("field1 = %d%n", sc2.field1);
 System.out.printf("field2 = %d%n", sc2.field2);
 System.out.printf("field3 = %d%n", sc2.field3);
 System.out.printf("field4 = %d%n", sc2.field4);
 System.out.printf("field5 = %d%n", sc2.field5);
 System.out.printf("field6 = %d%n", sc2.field6);
 }
 }

 The gsonb.excludeFieldsWithModifiers(Modifier.TRANSIENT); expression
prevents only transient fields from being serialized and deserialized: static
fields will be serialized and deserialized by default. Of course, static fields
that are not annotated with @Expose have no chance to be serialized and
deserialized because of gsonb.excludeFieldsWithoutExposeAnnotation(); .

 When you run this application, you should discover the following output:

 {"field3":4,"field4":5,"field5":6}
 id = 0
 password = null
 field1 = 0
 field2 = 0
 field3 = 0
 field4 = 5
 field5 = 6
 field6 = 7

 The first line shows that the static field named field5 was serialized.

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A: Answers to Exercises276

 Chapter 10 : Extracting JSON Property Values
with JsonPath

 1. JsonPath is a declarative query language (also
known as a path expression syntax) for selecting and
extracting a JSON document’s property values.

 2. The answer is false: JsonPath is based on XPath 1.0.

 3. The operator that represents the root JSON object is $.

 4. You can specify JsonPath expressions in dot
notation and square bracket notation.

 5. The @ operator represents the current node being
processed by a filter predicate.

 6. The answer is false: JsonPath’s deep scan operator
(..) is equivalent to XPath’s // symbol.

 7. JsonPath ’s JsonPath compile(String jsonPath,
Predicate... filters) static method compiles
the JsonPath expression stored in the jsonPath -
referenced string to a JsonPath object (to improve
performance when JsonPath expressions are
reused). The array of predicates is applied to ?
placeholders appearing in the string.

 8. The return type of the <T> T read(String json)
generic method that returns JSON object property
names and their values is LinkedHashMap .

 9. The three predicate categories are inline predicates,
filter predicates, and custom predicates.

 10. Listing A-18 presents the JsonPathDemo application
that was called for in Chapter 10 .

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1916-4_10
http://dx.doi.org/10.1007/978-1-4842-1916-4_10
http://www.it-ebooks.info/

APPENDIX A: Answers to Exercises 277

 Listing A-18. Extracting and Outputting Maximum, Minimum, and Average Numeric Values

 import com.jayway.jsonpath.JsonPath;

 public class JsonPathDemo
 {
 public static void main(String[] args)
 {
 String json =
 "{" +
 " \"numbers\": [10, 20, 25, 30]" +
 "}";

 String expr = "$.numbers.max()";
 double d = JsonPath.read(json, expr);
 System.out.printf("Max value = %f%n", d);
 expr = "$.numbers.min()";
 d = JsonPath.read(json, expr);
 System.out.printf("Min value = %f%n", d);
 expr = "$.numbers.avg()";
 d = JsonPath.read(json, expr);
 System.out.printf("Average value = %f%n", d);
 }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

279© Jeff Friesen 2016
J. FRIESEN, Java XML and JSON, DOI 10.1007/978-1-4842-1916-4

 ■ A, B
 Byte-order-mark (BOM) , 4

 ■ C
 Character data (CDATA)

section , 7–8
 ContentHandler method , 35–37

 ■ D
 Document Object Model (DOM)

 advantages , 57
 answer-exercises , 251–252,

254–258
 API

 DOMDemo source code ,
67–68, 70–72

 execution , 70
 getNodeType() method , 69
 output results , 72
 parsing application , 67

 defi nition , 57
 DocumentBuilder

 child nodes , 65
 elements method , 66
 getAttributes() method , 66
 getChildNodes() method , 65
 getDoctype() method , 64
 getLength() method , 65
 getNodeName() method , 66
 getNodeType() method , 64
 navigation methods , 65
 newDocument() method , 64
 node methods , 64, 66

 Node’s constants , 66
 parse() methods , 63
 properties , 64

 DOMSearch application , 254–255
 DOMValidate

application , 256–258
 parser/document builder , 61–63
 tree of nodes

 attribute , 59
 CDATA section , 59
 classifi cation , 59
 comment text , 59
 document type , 59
 element , 60
 entities , 60
 fragment nodes , 59
 leaf node , 58
 nonroot nodes , 61
 notation , 60
 processing instruction , 60
 reference , 60
 text node , 60
 type declaration , 59

 validation API , 62
 XPath , 103–109

 Document Type Defi nition (DTD)
 attribute declaration , 17
 binary data types , 19
 child elements , 18
 defi nition , 15
 document type declaration , 18
 element declaration , 16
 entity references , 19
 external general entity , 19
 external parameter entity , 21

 Index

www.it-ebooks.info

http://www.it-ebooks.info/

Index280

 internal general entity , 19
 internal parameter entity , 21
 nonmarkup text , 16
 notation , 19
 parameter entities , 20
 parsed character data , 16

 DOM . See Document Object Model
(DOM)

 DTDHandler method , 38
 DTD . See Document Type Defi nition

(DTD)

 ■ E
 endDocument() method , 36
 endElement() method , 36, 47–48, 86
 endPrefi xMapping() method , 36
 EntityResolver method , 39, 51
 ErrorHandler method , 38–39
 Event-based readers and

writers , 76–77
 eXtensible Markup Language

(XML) , 1
 answer-exercises , 241–245
 attributes , 6
 CDATA section , 8
 character entity reference , 7
 comments , 13
 declaration , 3–5
 defi nition , 1
 document creation , 2
 elements , 5–6
 namespaces , 8

 default namespace , 11–12
 prefi x , 9
 URI , 9
 XHTML tags , 10–11

 numeric character reference , 7
 parsers , 14
 processing instructions , 13
 processor , 5
 rules of , 14
 schemas

 attributes , 23, 26

 complex types , 22
 content model , 22
 declaration states , 24
 default namespace , 26
 document creation , 25
 DTD , 21
 elements , 23
 meaning , 21
 restriction, list and

union , 22
 tree structure , 5
 validation , 15

 DTD , 15
 grammar document , 15
 schemas , 21
 source code , 15

 Extensible Stylesheet Language
(XSL) , 119, 132

 ■ F
 fatalError() method , 38

 ■ G, H
 getContentHandler() method , 31
 getDTDHandler() method , 31
 getEntityResolver() method , 31
 getErrorHandler() method , 31
 getFeature(String name)

method , 31
 getNamespaceURI() method , 111
 getProperty() method , 32
 Gson (Google Gson) , 179

 annotation types
 expose and fi elds , 198–200
 fi eld method names

changing , 201
 serialization and

deserialization , 197
 version , 202–203

 answer-exercises , 272–275
 class handles

 constructor , 181
 create() method , 181
 default confi guration , 181–182

Document Type Defi nition (DTD) (cont.)

www.it-ebooks.info

http://www.it-ebooks.info/

Index 281

 fromJson() and toJson()
methods , 182–183

 contexts , 204
 class declaration , 204
 nested objects , 205
 serialize() and deserialize()

methods , 204
 source code , 205–206

 deserialization , 183
 class method , 183
 customization , 185–189
 fromJson() method , 184
 GsonDemo class , 184–185

 generics
 getType() method , 208
 parameterized type , 207
 source code , 208–213
 type erasure , 207

 goals , 179
 Json element classes , 186
 packages , 180
 serialization

 callback method , 192
 code fragment , 194
 customization , 192–196
 toJson() methods , 190
 writer fi le , 190–191

 setPrettyPrinting() method , 196
 type adapters , 213

 abstract methods , 214
 array , 217
 classes and fi elds , 218–221
 intermediate layer , 213
 I/O problem , 214
 JsonReader and JsonWriter

methods , 214
 output , 218
 read() and write()

methods , 214
 source code , 215–217

 use of , 180

 ■ I
 ignorableWhitespace() method , 36, 48

 ■ J, K
 JavaScript Object Notation

(JSON) , 133
 anonymous object , 136
 answer-exercises , 267–268
 data format , 135
 demonstration

 eval() methods , 138
 getEngineByName()

method , 138
 JavaScript code , 137
 main() method , 138
 output , 140
 parse() method , 139
 script fi le

application , 138–139
 schema validation , 135, 142

 advantages , 141
 constraints , 141–142
 core defi nitions and

terminology , 146
 error identifi cation , 145
 grammar language , 140
 Lint online tool , 143
 reports , 146
 result window , 143–144
 web site , 143

 syntax , 134
 types , 134
 whitespace , 135

 JsonPath , 223
 answer-exercises , 276–277
 language

 fi lter operators , 226
 functions , 225–226
 JSON object source

code , 224
 operators , 225
 path expressions , 224

 library , 227
 command line , 228
 custom predicates , 236–238
 fi lter predicates , 234–236
 inline predicates , 232–233

www.it-ebooks.info

http://www.it-ebooks.info/

Index282

 Maven projects , 227
 POM fi les , 227
 read() method , 230
 subdirectories , 228
 value extraction , 229–231
 XML fragment , 227

 ■ L
 LexicalHandler method , 39–40

 ■ M
 Metalanguage , 1, 2, 241
 mJson , 149

 answer-exercises , 269–271
 customization via factories

 equals() method , 173–177
 Json.Factory interface’s

methods , 173
 static Json methods , 173

 dup() and pad() methods , 271
 features , 149
 Jar fi le , 150
 Json

 asInteger() methods , 162
 asMap() method , 158–160
 at() methods , 160–161
 at() methods , 162
 class declaration , 150
 getValue() method , 155
 hierarchies , 163–165
 Json’s “as” methods , 158
 main(String[]) method , 152
 methods , 156, 163
 modifi cation , 165–169
 object creation , 151
 output , 153, 155
 read() methods , 152
 reading and parsing

methods , 153
 size() methods , 163
 source code , 151–157
 static methods , 151
 toString() method , 152

 type-identifi cation
methods , 156

 validation
 source code , 170–172
 static methods , 170

 ■ N, O
 notationDecl() method , 38

 ■ P, Q, R
 parse() methods , 63–64,

114, 139, 252
 Path expression syntax . See

 JsonPath
 processingInstruction() method , 36
 Project Object Model (POM)

fi les , 227

 ■ S, T
 SAX . See Simple API for XML (SAX)
 Selection nodes . See XPath
 setContentHandler() method , 32
 setDocumentLocator()

method , 36, 47
 setDTDHandler() method , 32
 setEntityResolver() method , 32
 setErrorHandler() method , 33
 setFeature() method , 33–34
 setProperty() method , 33–34
 Simple API for XML (SAX)

 answer-exercises , 246–247,
249–251

 custom entity resolver
 document type declaration , 51
 entities , 49
 parser , 50
 resolveEntity() method , 52
 source code , 50–51
 startEntity() method , 52

 defi nition , 29
 DOM parser , 29
 Handler class source

code , 41–45

JsonPath (cont.)

www.it-ebooks.info

http://www.it-ebooks.info/

Index 283

 interface-based handlers , 35
 ContentHandler , 35–37
 DTDHandler , 38
 EntityResolver , 39
 ErrorHandler , 38
 LexicalHandler , 39–40

 parser , 30
 SAX 2 implementation , 30
 SAXDemo

 declaration , 47
 error() method , 49
 ignorableWhitespace()

method , 48
 output , 46–47
 setDocumentLocator() , 47
 source code , 40
 whitespace , 48

 SAXDemo source code , 41
 XMLReader methods , 31–33

 boolean , 31
 ContentHandler , 31
 DTDHandler , 31
 DTDHandler handler , 32
 EntityResolver , 31
 EntityResolver resolver , 32
 ErrorHandler , 31
 ErrorHandler handler , 33
 features and properties ,

34–35
 namespaces , 34
 object , 32
 setContentHandler() , 32
 setDTDHandler() , 32
 setFeature() , 33
 setProperty() , 33
 void parse , 32

 skippedEntity() method , 37
 Standard Generalized Markup

Language (SGML) , 2
 startDocument() method , 36–37
 startElement() method , 34, 37, 47–48
 startPrefi xMapping() method , 37
 Stream-based readers and

writers , 76–77

 Streaming API for XML (StAX) , 75
 answer-exercises , 258, 260
 document readers , 77–78

 event-based
readers , 81–84

 getEventType() method , 78
 hasNext() and next()

methods , 79
 StAXDemo

application , 79–81
 stream-based reader , 78–81

 stream- vs . Even-based readers
and writers , 76–77

 vs . SAX and DOM , 75
 XML document writers , 85

 event-based writer , 89–94
 newFactory() methods , 77, 85
 stream-based writer , 85–89

 ■ U, V
 Uniform Resource Identifi er (URI) , 9,

178, 242
 unparsedEntityDecl() method , 38

 ■ W
 World Wide Web Consortium (W3C) ,

3, 21, 23, 58

 ■ X, Y, Z
 XML . See eXtensible Markup

Language (XML)
 XMLReader methods , 31–33
 XPath , 97

 answer-exercises , 261–263
 date() extension function , 113
 date comparison , 114
 DOM , 103–109
 expressions , 101

 boolean values , 101
 functions , 101–102
 numeric values , 102
 strings , 102

www.it-ebooks.info

http://www.it-ebooks.info/

Index284

 extension function and function
resolvers , 111–115

 language primer
 boolean expressions , 100
 compound paths , 99
 DOM tree’s root node , 98
 functions , 100
 location path

expression , 98, 101
 nodes , 97
 predicates , 100
 wildcards , 99

 namespace contexts , 110–111
 parse() method , 114
 variables , 115–117

 XSL Transformation (XSLT)
 answer-exercises , 264–266
 API , 120

 default transformers , 122
 newInstance() methods , 120
 newTransformer()

methods , 121
 stylesheet fi les , 121, 123
 Templates object , 123
 transformation , 122

 defi nition , 119
 DOMDemo application , 123–126
 output method , 130
 processors transforms , 119–120
 stylesheets , 119, 126–127

 XSLTDemo application , 129

XPath (cont.)

www.it-ebooks.info

http://www.it-ebooks.info/

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introducing XML
	What Is XML?
	Language Features Tour
	XML Declaration
	Elements and Attributes
	Character References and CDATA Sections
	Namespaces
	Comments and Processing Instructions

	Well-Formed Documents
	Valid Documents
	Document Type Definition
	XML Schema

	Summary

	Chapter 2: Parsing XML Documents with SAX
	What Is SAX?
	Exploring the SAX API
	Obtaining a SAX 2 Parser
	Touring XMLReader Methods
	Setting Features and Properties

	Touring the Handler and Resolver Interfaces
	Touring ContentHandler
	Touring DTDHandler
	Touring ErrorHandler
	Touring EntityResolver
	Touring LexicalHandler

	Demonstrating the SAX API
	Creating a Custom Entity Resolver
	Summary

	Chapter 3: Parsing and Creating XML Documents with DOM
	What Is DOM?
	A Tree of Nodes
	Exploring the DOM API
	Obtaining a DOM Parser/Document Builder
	Parsing and Creating XML Documents

	Demonstrating the DOM API
	Summary

	Chapter 4: Parsing and Creating XML Documents with StAX
	What Is StAX?
	Exploring StAX
	Parsing XML Documents
	Parsing Documents with Stream-Based Readers
	Parsing Documents with Event-Based Readers

	Creating XML Documents
	Creating Documents with Stream-Based Writers
	Creating Documents with Event-Based Writers

	Summary

	Chapter 5: Selecting Nodes with XPath
	What Is XPath?
	XPath Language Primer
	Location Path Expressions
	General Expressions

	XPath and DOM
	Advanced XPath
	Namespace Contexts
	Extension Functions and Function Resolvers
	Variables and Variable Resolvers

	Summary

	Chapter 6: Transforming XML Documents with XSLT
	What Is XSLT?
	Exploring the XSLT API
	Demonstrating the XSLT API
	Summary

	Chapter 7: Introducing JSON
	What Is JSON?
	JSON Syntax Tour
	Demonstrating JSON with JavaScript
	Validating JSON Objects
	Summary

	Chapter 8: Parsing and Creating JSON Objects with mJson
	What Is mJson?
	Obtaining and Using mJson

	Exploring the Json Class
	Creating Json Objects
	Learning About Json Objects
	Navigating Json Object Hierarchies
	Modifying Json Objects
	Validation
	Customization via Factories

	Summary

	Chapter 9: Parsing and Creating JSON Objects with Gson
	What Is Gson?
	Obtaining and Using Gson

	Exploring GSon
	Introducing the Gson Class
	Parsing JSON Objects Through Deserialization
	Customized JSON Object Parsing

	Creating JSON Objects Through Serialization
	Customized JSON Object Creation

	Learning More About Gson
	Annotations
	Exposing and Hiding Fields
	Changing Field Names
	Versioning

	Contexts
	Generics Support
	Type Adapters
	Conveniently Associating Type Adapters with Classes and Fields

	Summary

	Chapter 10: Extracting JSON Values with JsonPath
	What Is JsonPath?
	Learning the JsonPath Language
	Obtaining and Using the JsonPath Library
	Exploring the JsonPath Library
	Extracting Values from JSON Objects
	Using Predicates to Filter Items
	Inline Predicates
	Filter Predicates
	Custom Predicates

	Summary

	Appendix A: Answers to Exercises
	Chapter 1: Introducing XML
	Chapter 2: Parsing XML Documents with SAX
	Chapter 3: Parsing and Creating XML Documents with DOM
	Chapter 4: Parsing and Creating XML Documents with StAX
	Chapter 5: Selecting Nodes with XPath
	Chapter 6: Transforming XML Documents with XSLT
	Chapter 7: Introducing JSON
	Chapter 8: Parsing and Creating JSON Objects with mJson
	Chapter 9: Parsing and Creating JSON Objects with Gson
	Chapter 10: Extracting JSON Property Values with JsonPath

	Index

