
®

БИБЛИОТЕКА ПРОФЕССИОНАЛА

Том 2. Расширенные средства
программирования

ОДИННАДЦАТОЕ ИЗДАНИЕ

Java®
Библиотека профессионала

Том 2. Расширенные средства программирования

Ещё больше книг по Java в нашем телеграм
канале: https://t.me/javalib

Core Java®
Volume 11 - Advanced Features

Eleventh Edition

Сау S. Horstmann

е
Pearson

Boston • Columbus • lndianapolis • New York • San Francisco • Amsterdam •

Саре Town Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi •

Mexico City Sao Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Библиотека профессионала

Том 2. Расширенные средства
программирования

Одиннадцатое издание

Кей Хорстманн

Москва • Санкт-Петербург
2020

ББК 32.973.26-018.2.75
Х82

у дк 004.432.2
ООО "Диалектика"

Зав. редакцией С.Н. Tpillljб

Перевод с английского и редакция И.В. Берштеl1нп

По общим вонросам обра1цайтесь в издательство "Диалектика" 110 адресу:

info@dialektika.com, http://www.dialektika.com

Хорстманн, Кей С.

Х82 Java. Библиотека профессионала, том 2. Расширенные средства

11ро1раммирования, 11-е изд.: Пер. с англ. - СПб.: ООО "Диалектика", 2020.
864 с.: ил. - Парал. тит. англ.

SBN 978-5-907144-38-5 (рус., том 2)
ISBN 978-5-907144-30-9 (рус., многотом)

ББК 32.973.26-018.2.75
Все названия про1раммных продуктов нвляются зарегистрированными торговыми марками

соответствующих фирм.

Никакан часгь настонщего изланин ни в каких целях не может бьпь воспрт11ведена в какой
бы то ни было форме и какими бы то ни было срелсгвами, будь то электронные или механиче­
ские, вклю•1ая фотокопирование и зашкь на мапштный носитель, если на это нет письменного
разре111ею1я 11злател1,ства l'reпtice Hall, lпс.

Copyright © 2020 Ьу Dialektika Computer PuЬlisl1iпg Ltd.

Authorized J~ussiaп traпslatioп of the Eпglish editioп of Core fащ, Volume II: AdPm1ced Features,
11 th Editioп (ISBN 978-0-13-516631-4) © 2019 Pearsoп Educatioп !пс.

Portioпs copyright © 1996-2013 Oracle aпd/or its affiliates. All Rigl1ts Reserved.

This traпslatioп is puЬlished апd sold Ьу permissioп of Pearsoп Educatioп !пс" which owпs or
coпtrols all rights to puЫish апd sell the same.

All rights reserved. No part of this book may Ье reproduced or transmitted iп any form or Ьу any
meaпs, electroпic or mechanical, iпcludiпg photocopyiпg, recordiпg, or Ьу any information storage
or retrieval system, witlюut the prior written permission of the copyright owner and the PuЬlisher.

Научно-11011у.\ярное l13дан ие
Кей С. Хорстманн

J ava. Библиотека профессионала, том 2
Расширенные средства программирования

11-е издание

Под1111са1ю в печать 27.11.2019. Формат 70х100/16.
Гаршпура Тimes.

Усл. печ. л. 69,66. Уч.-изд. л. 45,4.
Тираж 300 экз. :~аказ № 10558.

Опю•1атано в АО "Первая Обра:щовая типография"
Филиал "Чеховск11i1 Печатный Двор"

142300, Московская облас1ъ, 1. Чехов, ул. Полшрафисгов, л. 1
Сайт: www.chpd.ru, E-mail: sales@chpd.ru, тел. 8 (499) 270-73-59

ООО "Диалектика", 195027, Санкт-Петербург, Магнитогорская ул., д. 30, лит. А, пом. 848
ISBN 978-5-907144-38-5 (рус" том 2) © ОСЮ "Диалектика", 2020,
ISBN 978-5-907144-30-9 (рус., многотом) перевод, оформление, макетирование

ISBN 978-0-13-516631-4 (ашл.) © Pearson Education Inc" 2019

Оглавление

Предисловие 13

Глава 1. Потоки данных 19

Глава 2. Ввод и вывод 71

Глава 3. XML 163

Глава 4. Работа в сети 235

Глава 5. Работа с базами данных 287

Глава 6. Прикладной интерфейс API даты и времени 353

Глава 7. Интернационализация 377

Глава 8. Написание сценариев, компиляция и обработка аннотаций 435

Глава 9. Модульная система на платформе Java 493

Глава 1 О. Безопасность 521

Глава 11. Расширенные средства Swing и графика 601

Глава 12. Платформенно-ориентированные методы 787

Предметный указатель 849

Содержание

Предисловие 13
К читателю 13
Краткий обзор книги 13
Условные обозначения 16
Примеры исходного кода 16
Благодарности 16
От издательства 18

Глава 1. Потоки данных 19
1.1. От итерации к потоковым операциям 20
1.2. Создание потока данных 22
1.3. Методы filter (), map () и flatMap () 28
1.4. Извлечение подпотоков и объединение потоков данных 30
1.5. Другие операции преобразования потоков данных 31
1.6. Простые методы сведения 32
1.7. Тип Optional 34

1.7.1. Получение необязательных значений 34
1.7.2. Употребление необюательных значений 35
1.7.3. Конвейеризация необязательных значений 36
1.7.4. Как не следует обрабатывать необязательные значения 37
1.7.5. Формирование необязательных значений 38
1.7.6. Сочетание функций необязательных значений с методом flatMap () 38
1.7.7. Преобра:ювание типа Optional в поток данных 39

1.8. Накопление результатов 42
1.9. Накопление результатов в отображениях 47
1.10. Группирование и разделение 51
1.11. Нисходящие коллекторы 52
1.12. Операции сведения 57
1.13. Потоки данных примитивных типов 60
1.14. Параллельные потоки данных 65

Глава 2. Ввод и вывод 71
2.1. Потоки ввода-вывода 71

2.1.1. Чтение и запись байтов 72
2.1.2. Полный комплект потоков ввода-вывода 75
2.1.3. Сочетание фильтров потоков ввода-вывода 79
2.1.4. Ввод-вывод текста 82
2.1.5. Вывод текста 83
2.1.6. Ввод текста 85

Содержание

2.1.7. Сохранение объектов в текстовом формате 86
2.1.8. Кодировки символов 90

2.2. Чтение и запись двоичных данных 92
2.2.1. Интерфейсы Datalnput и DataOutput 92
2.2.2. Файлы с произвол1,ным доступом 95
2.2.3. ZIР-архивы 99

2.3. Потоки ввода-вывода и сериализация объектов 102
2.3.1. Сохранение и загрузка сериализируемых объектов 102
2.3.2. Представление о формате файлов для сериализации объектов 107
2.3.3. Видоизменение исходного механизма сериализации 113
2.3.4. Сериализация одноэлементных множеств

и типизированных перечислений 115
2.3.5. Контроль версий 116
2.3.6. Применение сериализации для клонирования 119

2.4. Манипулирование файлами 121
2.4.1. Пути к файлам 121
2.4.2. Чтение и запись данных в файлы 124
2.4.3. Создание файлов и каталогов 125
2.4.4. Копирование, перемещение и удаление файлов 126
2.4.5. Получение сведений о файлах 128
2.4.6. Обход элементов каталога 130
2.4.7. Применение потоков каталогов 132
2.4.8. Системы ZIР-файлов 135

2.5. Файлы, отображаемые в памяти 136
2.5.1. Эффективность файлов, отображаемых в памяти 136
2.5.2. Структура буфера данных 144
2.6.3. Блокирование файлов 146

2.6. Pery лярные выражения 148
2.7.2. Совпадение со строкой 153
2.7.3. Обнаружение многих совпадений 157
2.7.4. Разбиение строк по разделителям 159
2.7.5. Замена совпадений 159

Глава З. XML 163
3.1. Введение в ХМL 164
3.2. Струкrура ХМL-документа 166
3.3. Синтаксический анализ ХМL-документов 169
3.4. Проверка достоверности ХМL-документов 178

3.4.1. Определения типов докумеtпов 180
3.4.2. Схема ХМL-документов 187
3.4.3. Практический пример применения ХМL-документов 190

3.5. Поиск информации средствами XPath 196
3.6. Использование пространств имен 201
3.7. Потоковые синтаксические анализаторы 204

3.7.1. Применение SАХ-анализатора 204
3.7.2. Применение StАХ-анализатора 209

3.8. Формирование ХМL-документов 213
3.8.1. ХМL-документы без пространств имен 214
3.8.2. ХМL-документы с пространствами имен 214

Содержание

3.8.3. Запись ХМL-документов 215
3.8.4. Запись ХМL-документов средствами StAX 217
3.8.5. Пример формирования файла 11 формате SVG 222

3.9. Преобразование ХМL-документов языковыми средствами XSLT 224

Глава 4. Работа в сети 235
4.1. Подключение к серверу 235

4.1.1. Применение утилиты telnet 235
4.1.2. Подключение к серверу из программы на Java 238
4.1.3. Время ожидания для сокетов 240
4.1.4. Межсетевые адреса 241

4.2. Реализация серверов 243
4.2.1. Сокеты сервера 243
4.2.2. Обслуживание многих клиентов 247
4.2.3. Полузакрьпие 250
4.2.4. Прерываемые сокеты 251

4.3. Получение данных из Интернета 258
4.3.1. URL и URI 258
4.3.2. Извлечение данных средствами класса URLConnection 260
4.3.3. Отправка данных формы 267

4.4. НТТР-клиент 276
4.5. Отправка электронной почты 283

Глава 5. Работа с базами данных 287
5.1. Структура JDBC 288

5.1.1. Типы драйверов JDBC 288
5.1.2. Типичные примеры применения JDBC 290

5.2. Язык SQL 291
5.3. Конфигурирование JDBC 296

5.3.1. URL баз данных 296
5.3.2. Архинные JАR-файлы драйверов 297
5.3.3. Запуск ба:ш данных 297
5.3.4. Регистрация класса драйвера 298
5.3.5. Подключение к базе данных 299

5.4. Работа с операторами JDBC 302
5.4.1. Выполнение операторов SQL 302
5.4.2. Управление подключениями, операторами

и результирующими наборами 305
5.4.3. Анализ исключе11ий SQL 306
5.4.4. Запол11ение базы да11ных 309

5.5. Выполнение запросов 312
5.5.1. Подготовленные операторы для запросов 313
5.5.2. Чте11ие и запись больших объектов 320
5.5.3. Синтаксис переходов в SQL 321
5.5.4. Множественные результаты 323
5.5.5. Извлечение автоматически генерируемых ключей 324

5.6. Прокручиваемые и обновляемые результирующие наборы 324
5.6.1. Прокручиваемые результирующие наборы 325
5.6.2. Обновляемые результирующие наборы 327

Содержание

5.7. Наборы строк 331
5.7.1. Построение наборов строк 331
5.7.2. Кешируемые наборы строк 332

5.8. Метаданные 335
5.9. Транзакции 345

5.9.1. Программирование транзакций средствами JDBC 345
5.9.2. Точки сохранения 346
5.9.3. Групповые обновления 346
5.9.4. Расширенные типы данных SQL 349

5.10. Управление подключением к базам данных в неб-приложениях
и корпоративных приложениях 350

Глава 6. Прикладной интерфейс API даты и времени 353
6.1. Временная шкала 354
6.2. Местные даты 358
6.3. Корректоры дат 363
6.4. Месrное время 364
6.5. Поясное время 366
6.6. Форматирование и синтаксический анализ даты и времени 370
6.7. Взаимодействие с унаследованным кодом 375

Глава 7. Интернационализация 377
7.1. Региональные насrройки 378

7.1.1. Назначение региональных настроек 378
7.1.2. Указание региональных настроек 379
7.1.3. Региональные настройки по умолчанию 381
7.1.4. Огображаемые имена 382

7.2. Форматирование чисел 384
7.2.1. Форматирование числовых значений 384
7.2.2. Форматирование денежных сумм в разных валютах 390

7.3. Форматирование даты и времени 392
7.4. Сортировка и нормализация 400
7.5. Форматирование сообщений 407

7.5.1. Форматирование чисел и дат 407
7.5.2. Форматы выбора 409

7.6. Ввод-вывод тексrа 411
7.6.1. Текстовые файлы 411
7.6.2. Окончания строк 411
7.6.3. Консольный ввод-вывод 412
7.6.4. Протокольные файлы 413
7.6.5. Огметка порядка следования байтов в кодировке UTF-8 413
7.6.6. Кодирование символов в исходных файлах 414

7.7. Комплекты ресурсов 414
7.7.1. Обнаружение комплектов ресурсов 415
7.7.2. Файлы свойств 416
7.7.3. Классы комплектов ресурсов 417

7.8. Пример интернационализации прикладной программы 419

Содержание

Глава 8. Написание сценариев, компиляция и обработка аннотаций
8.1. Написание сценариев для платформы Java

8.1.1. Получение интерпретатора сценариев
8.1.2. Выполнение сценарие11 и привязки
8.1.3. Переадресация 111юда-11ывода
8.1.4. Вы:юв функций и методов из сценариев
8.1.5. Компиляция сце11арие11
8.1.6. Пример со:ца11ия сце11'1рия для обработки событий

в пользовател1,ском интерфейсе

8.2. Прикладной интерфейс API для компилятора
8.2.1. Вызов компилятора
8.2.2. Запуск заданий 11а компиляцию
8.2.3. Фиксация диагностики
8.2.4. Чтение исходных файлов из оперативной памяти
8.2.5. Запись байт-кодов в оперативную память
8.2.6. Пример динамического генерирования кода Java

8.3. Применение аннотаций
8.3.1. Введение в аннотации
8.3.2. Пример аннотирования обработчиков событий

8.4. Синтаксис аннотаций
8.4.1. Интерфейсы а1111отаций
8.4.2. Объявление аннотаций
8.4.3. Аннотирование объявлений
8.4.4. Аннотирование в местах употребления типов данных
8.4.5. Аннотирование по ссылке this

8.5. Стандартные аннотации
8.5.1. Аннотации для компиляции
8.5.2. Аннотации для управления ресурсами
8.5.3. Мета-аннотации

8.6. Обработка аннотаций на уровне исходного кода
8.6.1. Процессоры аннотаций
8.6.2. Прикладной интерфейс АР\ модели языка
8.6.3. Генерирование исходного кода с помощью аннотаций

8.7. Конструирование байт-кодов
8.7.1. Модификация файлов классов
8.7.2. Модификация байт-кодов во время загрузки

Глава 9. Модульная система на платформе Java
9.1. Понятие модуля
9.2. Име11011ание модулей
9.3. Пример модульной программы "Hello, Modular World!"
9.4. Требования модулей
9.5. Экспорт пакетов
9.6. Модульные архивные JАR-файлы
9.7. Модули и рефлексивный доступ
9.8. Автоматические модули
9.9. Безымянные модули

435
436
436
437
439
440
442

443
448
448
449
450
450
451
453
459
460
461
466
466
468
470
471
472
473
474
475
476
478
479
479
480
483
483
489

493
494
495
496
498
500
503
505
508
510

Содержание

9.10. Параметры командной сrроки для переноса прикладного кода 511
9.11. Переходные и сrатические требования 512
9.12. Уточненный экспорт и открытие модулей 514
9.13. Загрузка служб 514
9.14. Инсrрументальные средсrва для работы с модулями 517

Глава 1 О. Безопасность 521
10.1. Загрузчики классов 522

10.1.1. Процесс загрузки классов 522
10.1.2. Иерархия загрузчиков классов 523
10.1.3. Применение загрузчиков классов в качестве пространств имен 526
10.1.4. Создание собственного загрузчика классов 526
10.1.5. Верификация байт-кода 532

10.2. Диспетчеры защиты и полномочия 536
10.2.1. Проверка полномочий 536
10.2.2. Организация защиты на платформе Java 538
10.2.3. Файлы правил защиты 542
10.2.4. Специальные полномочия 548
10.2.5. Реализация класса полномочий 549

10.3. Аутентификация пользователей 555
10.3.1. Каркас JAAS 555
10.3.2. Модули регистрации JAAS 561

10.4. Цифровые подписи 570
10.4.1. Свертки сообщений 571
10.4.2. Подписание сообщений 574
10.4.3. Верификация подписи 577
10.4.4. Проблема аутентификации 580
10.4.5. Подписание сертификатов 582
10.4.6. Запросы сертификатов 584
10.4.7. Подписание кода 585

10.5. Шифрование 587
10.5.1. Симметричные шифры 588
10.5.2. Генерирование ключей шифрования 589
10.5.3. Потоки шифрования 595
10.5.4. Шифрование открытым ключом 596

Глава 11. Расширенные средства Swing и графика 601
11.1. Таблицы 601

11.1.1. Проста я таблица 602
11.1.2. Модели таблиц 606
11.1.3. Манипулирование строками и столбцами таблицы 610
11.1.4. Воспроиз11едение и редактиро11ание ячеек 626

11.2. Деревья 639
11.2.1. Простые деревья 640
11.2.2. Перечисление узлов дерева 657
11.2.3. Воспроизведение узлов дерева 659
11.2.4. Обработка событий в деревьях 662
11.2.5. Специальные модели деревье11 669

Содержание

11.3. Расширенные средства AWT
11.3.1. Конвейер визуализации
11.3.2. Фигуры

11.3.3. Участки
11.3.4. Обводка
11.3.5. Раскраска
11.3.6. Преобразование координат
11.3.7. Отсечение
11.3.8. Прозрачность и композиция

11.4. Растровые изображения
11.4.1. Чтение и запись изображений
11.4.2. Манипулирование изображениями

11.5. Вывод изображений на печать
11.5.1. Вывод графики на печать
11.5.2. Многостраничная печать
11.5.3. Службы печати
11.5.4. Потоковые службы печати
11.5.5. Атрибуты печати

Глава 12. Платформенно-ориентированные методы
12.1. Вызов функции на С из программы на Java
12.2. Числовые параметры и возвращаемые значения
12.3. Строковые параметры
12.4. Доступ к полям

12.4.1. Доступ к полям экземпляра
12.4.2. Доступ к статическим полям

12.5. Кодирование сигнатур
12.6. Вызов методов на Java

12.6.1. Методы экземпляра
12.6.2. Статические методы
12.6.3. Конструкторы
12.6.4. Альтернативные вызовы методов

12.7. Доступ к элементам массивов
12.8. Обработка ошибок
12.9. Применение прикладного интерфейса API для вызовов
12.10. Практический пример обращения к реестру Windows

12.10.1. Общее представление о реестре Windows
12.10.2. Интерфейс для доступа к реестру на платформе Java
12.10.3. Реализация функций доступа к реестру

в виде платформенно-ориентированных методов

Предметный указатель

678
678
681
697
699
707
709
714
717
726
726
737
753
753
763
773
776
779

787
788
794
796
803
803
807
808
810
810
811
812
812
816
820
825
831
831
832

833

8,9

Предисловие

К читателю

Книга, которую вы держите в руках, является вторым томом одиннадцатого

издания, полностью обновленного по версии Java 11. В первом томе рассматри­
вались основные языковые средства Java, а в этом томе речь пойдет о расширен­
ных функциональных возможностях, которые могут понадобиться программисту

для разработки программного обеспечения на высоком профессиональном уров­

не. Поэтому этот том, как, впрочем, и первый том настоящего и предыдущих

изданий данной книги, нацелен на тех программистов, которые собираются при­

менять технологию Java в работе над реальными проектами.

Краткий обзор книги

В целом главы этого тома составлены независимо друг от друга. Это дает чи­

тателю возможность начинать изучение материала с той темы, которая интере­

сует его больше всего, и вообще читать главы второго тома в любом удобном ему

порядке.

В главе 1 рассматривается библиотека потоков данных в Java, придающая
современные черты обработке данных благодаря тому, что программисту доста­

точно указать, что именно ему требуется, не вдаваясь в подробности, как полу­

чить желаемый результат. Такой подход позволяет уделить в библиотеке потоков

данных основное внимание оптимальной эволюционной стратегии, которая дает

особые преимущества при оптимизации параллельных вычислений.

Глава 2 посвящена организации ввода-вывода. В языке Java весь ввод-вывод
осуществляется через так называемые потоки ввода-вывоiJа (не путать с потоками

данных, рассматриваемыми в главе 1). Такие потоки позволяют единообразно об­
мениваться данными между различными источниками, включая файлы, сетевые

соединения и блоки памяти. В начале этой главы приводится подробное опи­

сание классов чтения и записи в потоки ввода-вывода, упрощающие обработку

данных в Юникоде. Далее в ней рассматривается внутренний механизм сериа­

лизации объектов, который делает простым и удобным сохранение и загрузку

объектов. И в завершение главы обсуждаются регулярные выражения, а также

особенности манипулирования файлами и путями к ним. На протяжении всей

Предисловие

этой главы будут представлены долгожданные усовершенствования системы в1ю­

да-вывода в последних версиях Java.
Основной темой главы 3 является XML. В ней показывается, каким образом

осуществляется синтаксический анализ ХМL-файлов, формируется ХМL-размет­

ка и выполняются ХSL-преобразования. В качестве примера демонстрируется

разметка компоновки Swing-фopмы в формате XML. В этой главе рассматрива­
ется также прикладной интерфейс API XPath, значител1,но упрощающий поиск
мелких подробностей в больших объемах данных формата XML.

В главе 4 рассматривается прикладной интерфейс API для работы в сети.
В языке Java чрезвычайно просто решаются сложные задачи сетевого програм­
мирования. В этой главе показывается, как устанавливаются сетевые соединения

с серверами, реализуются собственные серверы и организуется связь по сетевому

протоколу НТГР. Здесь также описывается новый НТГР-клиент.

Глава 5 посвящена программированию баз данных. Основное внимание в ней
уделяется JDBC - прикладному интерфейсу для организации доступа к базам дан­

ных из приложений на Java, который позволяет прикладным программам на Java
устанавливать связь с реляционными базами данных. В этой главе также показы­

вается, как писать полезные программы для выполнения рутинных операций с на­

стоящими базами данных, применяя только самые основные средства югrерфейса

JDBC. (Для рассмотрения всех средств интерфейса JDBC потребовалась бы отдель­
ная книга почти такого же объема, как и эта.) И в завершение главы приводятся

краткие сведения об интерфейсе JNDI (Java Naming and Directory Interface - ин­

терфейс именования и каталогов Java) и протоколе LDAP (Lightweight Directory
Access Protocol - упрощенный протокол доступа к каталогам).

Ранее в библиотеках Java были предприняты две безуспешные попытки орга­
низовать обработку даты и времени. Третья попытка была успешно предпринята

в версии Java 8. Поэтому в главе 6 поясняется, как преодолевать трудности организа­
ции календарей и оперирования часовыми поясами, используя новую библиотеку

даты и времени.

В главе 7 обсуждаются вопросы юпернационализации, важность которой,
на наш взгляд, будет со временем только возрастать. Java относится к тем немно­
гочисленным языкам программирования, где с самого начала предусматривалась

возможность обработки данных в Юникоде, но поддержка интернационализации

в Java этим не ограничивается. В частности, интернационализация прикладных про­
грамм на Java позволяет сделать их независимыми не только от платформы, но и от
страны применения. В качестве примера в этой главе демонстрируется, как написать

прикладную программу для расчета времени выхода на пенсию с выбором англий­

ского, немецкого или китайского языка.

В главе 8 описываются три разные методики обработки исходного кода. Так,
прикладные интерфейсы API для сценариев и компилятора дают возможность
вызывать в программе на Java код, написанный на каком-нибудь языке сценариев,
например JavaScript или Groovy, и компилироват1, его в код Java. Аннотации по­
зволяют вводить в программу на Java произволшую информацию (иногда еще на­
зываемую метаданными). В этой главе показывается, каким образом обработчики

аннотаций собирают аннотации на уровне источника и на уровне файлов классов

и как с помощью аннотаций оказывается воздействие на поведение классов во время

Предисловие

выполнения. Аннотации выгодно использовать тол1,ко вместе с подходящими ин­

струментальными средствами, и мы надеемся, что материал этой главы поможет

читателю научиться выбирать именно те средства обработки аннотаций, которые

в наибольшей степени отвечают его потребностям.

В rлаве 9 описывается модульная система на платформе java, внедренная в вер­
сии Java 9 для того, чтобы способствовать нормальной эволюции самой платфор­
мы и базовых библиотек Java. Эrа модульная система обеспечивает инкапсуляцию
пакетов и предоставляет механизм для описания требований к модулям. В этой

главе рассматриваются свойства модулей, на основ<шии которых вы можете ре­

шить, стоит ли применять модули в ваших приложениях. Но даже если вы реши­

те не применять их, вы все равно должны знать новые правила модуляризации,

чтобы взаимодействовать с платформой Java и другими библиотеками, имеющи­
ми модульную организацию.

В rлаве 10 представлена модель бе:юпасности Java. Платформа Java с самого на­
чала разрабатывалась с учетом безопасности, и в этой главе объясняется, что имен­

но позволяет ей обеспечивать безопасность. Сначала в ней демонстрируется, как

со:1давать свои собственные загрузчики классов и диспетчеры :ыщиты для специ­

альных приложений. Затем рассматривается прикладной интерфейс API для без­
опасности, который позволяет оснащать приложения важными средствами вроде

механизма цифровых подписей сообщений и кода, а также авторизации, ауте1пи­

фикации и шифрования. И завершается глава демонстрацией примеров, в кото­

рых применяются такие алгоритмы шифрования, как AES и RSA.
В rлаве 11 представлен весь материал по библиотеке Swing, который не вошел

в первый том данной книги, в том числе описание важных и сложных компонен­

тов деревьев и таблиц. Здесь также рассматривается прикладной интерфейс Java
20 API, которым можно пользоваться для воспрои:1ведения реалистичных графи­
ческих изображений и спецэффектов. Безусловно, разрабатывать поль:юватель­

ские интерфейсы на основе библиотеки Swing приходится немногим программи­
стам, и поэтому в этой главе особое внимание уделяется тем функциональным

средствам, с помощью которых можно формироват1, и:юбражения на сервере.

Глава 12 посвящена платформешю-ориентирова1111ым методам, которые по­
:шоляют вы:1ывать функции, специально написанные для конкретной платфор­

мы, например Microsoft Windows. Очевидно, что данное я:1ыковое средство явля­
ется спорным, ведь применение платформешю-ориентированных методов сводит

на нет все межплатформенные преимущества java. Тем не менее всякий, серьез­
но занимающийся разработкой на Java приложений для конкретных платформ,
должен знать и уметь поль:юваться платформенно-ориентированными средства­

ми. Ведь иногда возникают ситуации, когда требуется обращаться к прикладно­

му интерфейсу API операционной системы целевой платформы для юаимодей­
ствия с устройствами или службами, которые не померживаются на платформе

Java. В этой главе показано, как это сделать, на примере орга~1изации доступа из
программы на Java к прикладному интерфейсу АР\ системного реестра Windows.

Как обычно, все главы второго тома были полностью обновлены по самой по­

следней версии Java. Весь устаревший материал был и:~ъят, а новые прикладные
интерфейсы АР!, появившиеся в версиях Java 9-11, подробно рассматриваются
в соответствующих местах.

Предмс11овме

Условные обозначения

Как это принято во многих компьютерных книгах, моноширинный шрифт ис­

пользуется для представления исходного кода.

Этой пиктограммой выделяются примечания.

Этой пиктограммой выделяются советы.

ф Этой пиктограммой выделяются предупреждения о потенциальной опасности .

•
В этой книге имеется немало примечаний к синтаксису С++, где разъясняются отличия
между языками Java и С++. Можете пропустить их, если вас не интересует программирова­
ние на С++.

Язык Java сопровождается огромной библиотекой в виде прикладного интер­
фейса (API). При упоминании вызова какого-нибудь метода из прикладного ин­
терфейса API в первый раз в конце соответствующего раздела приводится его
краткое описание. Эти описания не слишком информативны, но, как мы наде­

емся, более содержательны, чем те, которые представлены в официальной опе­

ративно доступной документации на прикладной интерфейс API. Имена интер­
фейсов выделены 110.лужирным, как это делается в официальной документации.

А число после имени класса, интерфейса или метода обозначает версию JDK,
в которой данное средство было внедрено, как показано ниже.

Название прикладного интерфейса 1 . 2

Программы с доступным исходным кодом организованы в виде примероn, как

показано ниже.

Листинг 1.1. Исходный код из файла Scri.ptTest. java

Примеры исходного кода

Все примеры исходного кода, приnеденные в этом томе в частности и в дан­

ной книге вообще, доступны в архивированном виде на посвященном ей веб-сай­

те по адресу h t tp: / /ho r s tmann. com/ c or ejava.

Благодарности

Написание книги всегда требует значительных усилий, а ее переписывание

не намного легче, особенно если учесть постоянные изменения в технологии

Java. Чтобы сделать книгу полезной, необходимы совместные усилия многих

Предисловие

преданных людей, и автор с удовольствием выражает признательность всем, кто

внес свой посил1,ный вклад в общее дело.

Большое число сотрудников издательства Pearson оказали неоценимую по­
мощь, хотя и остались в тени. Я хотел бы выразить им свою признательность за

их усилия. Как всегда, самой горячей благодарности заслуживает мой редактор

Грег Доенч - за сопровождение книги на протяжении всего процесса ее напи­

сания и издания, а также за то, что он позволил мне пребывать в блаженном

неведении относительно многих скрытых деталей этого процесса. Я благодарен

Джули Нахил за оказанную помощь в подготовке книги к изданию, а также Дми­

трию и Алине Кирсановым - за литературное редактирование и набор рукопи­

си книги.

Выражаю большую признательность многим читателям прежних изданий,

которые сообщали о найденных ошибках и внесли массу ценных предложений

по улучшению книги. Я особенно благодарен блестящему коллективу рецензен­

тов, которые тщательно просмотрели рукопись книги, устранив в ней немало до­

садных ошибок.

Среди рецензентов этого и предыдущих изданий хотелось бы отметить Чака

Аллисона (выпускающего редактора издания С/С++ Users fournal), Ланса Андер­
сона из компании Oracle, Алека Битона из PointBase, lnc., Клиффа Берга, Джо­
шуа Блоха, Дэвида Брауна, Корки Картрайта, Френка Коена из PushToTest, Криса
Крейна из devXsolution, доктора Николаса Дж. Де Лилло из Манхеттенского кол­
леджа, Ракеша Дхупара из компании Oracle, Роберта Эванса, ведущего специали­
ста из лаборатории прикладной физики университета имени Джонса Хопкинса,

Дэвида Джири из Sabreware, Джима Гиша из Oracle, Брайана Гоетца из Oracle,
Анджелу Гордон, Дэна Гордона, Роба Гордона, Джона Грэя из Хартфордского

университета, Камерона Грегори (olabs. com), Стива Хейнеса, Марти Холла из
лаборатории прикладной физики в университете имени Джона Хопкинса, Вин­

се1rrа Харди из Adobe Systems, Дэна Харки из университета штата Калифорния
в Сан-Хосе, Вильяма Хиггинса из IВМ, Владимира Ивановича из PointBase, Джер­
ри Джексона из СА Technologies, Тима Киммета из Preview Systems, Криса Лаф­
фра, Чарли Лаи, Анжелику Ланrер, Дуга Лэнгстона, Ханг Лау из университета

имени Макги11ла, Марка Лоуренса, Дуга Ли из SUNY Oswego, Грегори Лонrшора,
Боба Линча из Lynch Associates, Филиппа Милна, консультанта, Марка Моррисси
из научно-исследовательского института штата Орегон, Махеша Нилаканта из

Атлантического университета штата Флорида, Хао Фам, Пола Филиона, Блейка

Рагсдейла, Ильбера Рамадани из университета имени Райерсона, Стюарта Редже­

са из университета штата Аризона, Саймона Риттера, Рича Розена из Interactive
Data Corporation, Питера Сандерса из университета ЭССИ (ESSI), r. Ницца, Фран­
ция, доктора Пола Санrеру из университета штата Калифорния в Сан-Хосе и кол­

леджа имени Брукса, Поля Севинка из Teamup AG, Деванr Ша, Йокиси Сабата,
Ричарда Сливчака из Исследовательского центра имени Гленна, НАСА, Бред11и

А. Смита, Стивена Стелтинrа, Кристофера Тэйлора, Люка Тэйлора из Valtech,
Джорджа Тхируватукала, Кима Топли, автора книги Core f FC, Second Edition, Джа­
нет Трауб, Пола Тайма, консультанта, Кристиана У лленбоома, Питера Ван Дер

Люмена, Берта Уолша, Джо Уанrа из Oracle и Дана Ксю из Oracle.

Keu Хорстманн, Сан-Франциско, декабрь 2018 г.

Предисловие

От издательства

Вы, читатель этой книги, и есть главный ее критик и комментатор. Мы це­

ним ваше мнение и хотим знать, что было сделано нами правильно, что можно

было сделать лучше и что еще вы хотели бы увидеть изданным нами. Нам инте­

ресно услышать и любые другие замечания, которые вам хотелось бы высказать

в наш адрес.

Мы ждем ваших комментариев и надеемся на них. Вы можете прислать нам

электронное письмо, либо просто посетить наш веб-сайт и оставить свои замеча­

ния там. Одним словом, любым удобным для вас способом дайте нам знать, нра­

вится или нет вам эта книга, а также выскажите свое мнение о том, как сделать

наши книги более интересными для вас.

Посылая письмо или сообщение, не забудьте указать название книги и ее

авторов, а также ваш обратный адрес. Мы внимательно ознакомимся с вашим

мнением и обязательно учтем его при отборе и подготовке к изданию последу­

ющих книг.

Наши электронные адреса:

E-mail: info@dialektika. сот

WWW: http://www. dialektika. сот

ГЛАВА

Потоки данных

В этой главе ...
~ От итерации к потоковым операциям

~ Создание потока данных

~ Методы filter(), map() и flatMap()

~ Извлечение подпотоков и объединение потоков данных

~ Другие операции преобразования потоков данных

~ Простые методы сведения

~ Тип Optional

~ Накопление результатов

~ Накопление результатов в отображениях

~ Группирование и разделение

~ Нисходящие коллекторы

~ Операции сведения

~ Потоки данных примитивных типов

~ Параллельные потоки данных

В сравнении с коллекциями потоки данных обеспечивают представление дан­

ных, позволяющее указать вычисления на более высоком концептуальном уровне,

чем коллекции. С помощью потока данных можно указать, что и как именно тре­

буется сделать с данными, а планирование операций предоставить конкретной

реализации. Допустим, требуется вычислить среднее некоторого свойства. С этой

целью указывается источник данных и свойство, а средствами библиотеки пото­

ков данных можно оптимизировать вычисление, используя, например, несколько

потоков исполнения для расчета сумм, подсчета и объединения результатов.

Глава 1 • Потоки данных

В этой главе поясняется, как пользоваться библиотекой потоков данных, кото­

рая была внедрена в версии java 8, для обработки коллекций по принципу "что,
а не как делать".

1.1. От итерации к потоковым операциям
Для обработки коллекции обычно требуется перебрать ее элементы и выпол­

нить над ними некоторую операцию. Допустим, требуется подсчитать все длин­

ные слова в книге. Сначала организуем их вывод списком следующим образом:

var contents = new String(Files.readAllBytes(
Paths.get("alice.txt")), StandardCharsets.UTF 8);

11 прочитать текст из файла в символьную строку
List<String> words = Arrays.asList(contents.split("\\PL+"));

11 разбить полученную символьную строку на слова;
11 небуквенные символы считаются разделителями

А теперь можно перебрать слова таким образом:

int count = О;

for (String w : words)
if (w.length() > 12) count++;

Ниже показано, как аналогичная операция осуществляется с помощью пото­

ков данных.

long count = words.stream()
.filter(w -> w.length() > 12)
.count();

В последнем случае не нужно искать в цикле наглядного подтверждения опе­

раций фильтрации и подсчета слов. Сами имена методов свидетельствуют о том,

что именно предполагается сделать в коде. Более того, если в цикле во всех под­

робностях предписывается порядок выполнения операций, то в потоке данных

операции можно планировать как угодно, при условии, что будет достигнут пра­

вилы1ый результат.

Достаточно заменить метод stream () на метод parallelStream (),чтобы ор­
ганизовать средствами библиотеки потоков данных параллельное выполнение

операций фильтрации и подсчета слов, как показано ниже.

long count = words.parallelStream()
.filter(w -> w.length() > 12)
. count ();

Потоки данных действуют по принципу "что, а не как делать". В рассматрива­

емом здес1, примере кода мы описываем, что нужно сделать: получить длинные

слова и подсчитап, их. При этом мы не указываем, в каком порядке или потоке

исполнения это должно произойти. Напротив, в упомянутом выше цикле точ­

но указывается порядок организации вычислений, а следовательно, исключается

всякая возможност1, для оптимизации.

На первый взгляд поток данных похож на коллекцию, поскольку он позволяет

преобразовывап, и извлекать данные. Но у потока данных имеются следующие

существенные отличия.

1.1. От итерации к потоковым операциям

1. Поток данных не сохраняет свои элементы. Они могуг храниться в основной
коллекции или формироваться по требованию.

2. Потоковые операции не изменяют их источник. Например, метод fil ter ()
не удаляет элементы из нового потока данных, но выдает новый поток, в ко­

тором они отсутствуют.

3. Потоковые операции выполняются по требованию, когда это возможно. Это
означает, что они не выполняются до тех пор, пока не потребуется их ре­

зультат. Так, если требуется подсчитать только пять дли1шых слов вместо

всех слов, метод fil ter () прекратит фильтрацию после пятого совпаде­

ния. Следовательно, потоки данных могуг быть бесконечными!

Вернемся к предыдущему примеру, чтобы рассмотреть его подробнее. Мето­

ды stream () и parallelStream () выдают поток данных для списка слов words.
А метод fil ter () возвращает другой поток данных, содержащий только тесло­
ва, длина которых больше 12 букв. И, наконец, метод count () сводит этот поток
данных в конечный результат.

Такая последовательность операций весьма характерна для манипулирования

потоками данных. Конвейер операций организуется в следующие три стадии.

1. Создание потока данных.

2. Указание про.межуточных операций для преобра:ювавия исходного потока
данных в другие потоки - возможно, в несколько этапов.

3. Выполнение оконечной операции для получения результата. Эта операция
принуждает к выполнению по требованию тех операций, которые ей пред­

шествуют. А впоследствии поток данных может больше не понадобиться.

В примере кода из листинга 1.1 поток данных создается методом stream()
или parallelStream ().Метод fil ter () преобразует его, а метод count () вы­

полняет оконечную операцию.

Листинг 1.1. Исходный код из файла streams/CountLongWords. java

1 package streams;
2
3 /**
4 * @version 1.01 2018-05-01
5 * @author Сау Horstmann
6 * /
7
8 import java.io.*;
9 import java.nio.charset.*;
10 import java.nio.file.*;
11 import java.util.*;
12
13 puЫic class CountLongWords
14 {
15 puЫic static void main(String[] args)
16 throws IOException
17
18 var contents = new String(Files.readAllBytes(

Глава 1 • Потоки данных

19 Paths.get(" .. /gutenberg/al1ce30.txt")),
20 StandardCharsets.UTF 81;
21 List<String> words = List.of(contents.split("\\PL+"));
22
23 long count = О;

24 for (String w : words)
25 {
26 if (w.leпgth() > 12) count++;
27
28 Systern.out.println(count);
29
30 count = words.strearn()
31 .filter(w -> w.length() > 12) .count();
32 Systern.out.priпtlп(couпt);

33
34 count = words.parallelStrearn()
35 .filter(w -> w.length() > 12) .count();
36 Systern.out.println(couпt);

37
38

В следующем разделе будет показано, как создается поток данных. В трех по­

следующих разделах рассматриваются потоковые операции преобразования, а в

пяти следующих за ними разделах - оконечные операции.

java.util.stream.Stream<T> 8

• Stream<T> filter(Predicate<? super Т> р)

Возвращает поток данных, содержащий все его элементы, совпадающие с указанным пре­

дикатом р.

• long count ()

Возвращает количество элементов в исходном потоке данных. Это оконечная операция.

java.util.Collection<E> 1.2

• default Stream<E> stream()

• default Stream<E> parallelStream()

Возвращают последовательный или параллельный поток данных. состоящий из элементов

исходной коллекции.

1.2. Создание потока данных
Как было пока:ыно выше, любую коллекцию можно преобразовать в поток

данных методом stream () из интерфейса Collection. Если же вместо коллек­
ции имеется массив, то для этой цели служит метод Stream. of ():

Strearn<String> words = Strearn.of(contents.split("\\PL+"));
//Метод split() возвращает массив типа Striпg[]

1.2. Соэдание потока данных

У метода о f () имеются аргументы переменной длины, и поэтому по­

ток данных можно построить из любого количества аргументов, как показано

ниже. А для созда11ия потока данных из части массива служит метод Arrays.
stream(array, from, to).

Stream<String> song = Stream. of 1 "gently", "down",
"the 11 , "stream");

Чтобы создап, поток данных без элементов, достаточно вызвать статический

метод Stream. empty () следующим образом:

Stream<String> s1lence = Stream.empty();
11 Обобщенный тип <String> выводится автоматически;
11 с1то равнозначно вызову Stream.<String>empty()

Для создания бесконечных потоков данных в интерфейсе Stream имеются два
статических метода. В частности, метод generate () принимает функцию без аргу­
ментов (а формально - объект функционального интерфейса Supplier<T>). Вся­
кий раз, когда требуется потоковое :шачение, эта функция вызывается для получе­

ния данного значения. Например, поток постоянных значений можно получить

следующим образом:

Stream<String> echos = Stream.generate(() -> "Echo");

а поток случайных чисел таким обра:юм:

Stream<DouЫe> randoms = Stream.generate(Math: :random);

Для получения бесконечных последовательностей вроде О 1 2 3 ... служит
метод iterate 1). Этот метод принимает началыюе значение и функцию (а фор­
мально - объект функционал1,ного интерфейса UnaryOpera t.or<T>) и повтор­
но применяет функцию к предыдущему результату, как пока:ыно в следующем

примере кода:

Stream<Biglnteger> integers = Stream.iterate(
Biglnteger.ZERO, n -> n.add(Biglnteger.ONEI);

Первым элементом такой последовательности является начальное значе­

ние Biginteger. ZERO; вторым ее элементом - :шачение, получаемое в резуль­

тате вы:юва функции f (seed), или 1 (как крупное целочисленное значение);
следующим элементом - значение, получаемое в результате вызова функции
f (f (seed)) , или 2 и т.д., где seed - начальное значение.

А для того чтобы создать конечный поток данных, достаточно ввести преди­

кат, в котором указывается момент, когда должна быть завершена итерация, как

выделено ниже полужирным. Поток данных завершится, как только предикат от­

клонит итеративно формируемое :шачение.

var limit = new Biglnteger("lOOOOOOO");
Stream<Biglnteger> integers = Stream.iterate(

Biglnteger.ZERO,
n -> n.compareTo(limit) < О,

n -> n.add(Biglnteger.ONEI);

И, наконец, метод Stream. ofNullaЫe () создает очень короткий поток дан­
ных из объекта. Такой поток имеет нулевую длину, если исходный объект ока­

зывается пустым (null), а иначе - единичную длину, т.е. 011 содержит лиш1,

Глава 1 • Потоки данных

данный объект. Этим методом удобнее всего пользоваться вместе с методом

flatMap (),как демонстрируется в примере, приведенном далее в разделе 1.7.7.

•

НА ЗАМЕТКУ! В прикладном интерфейсе Java API имеется целый ряд методов, возвраща­
ющих потоки данных. Так, в классе Pattern имеется метод splitAsStream(), разде­
ляющий последовательность символов типа CharSequence по регулярному выражению.
Например, для разделения символьной строки на отдельные слова можно воспользоваться
следующим оператором:

Stream<String> words = Pattern.compile("\\PL+")
.splitAsStream(contents);

А статический метод Files. lines () возвращает поток данных типа Stream, содержащий
все строки из файла, как показано ниже.

try (Stream<String> lines = Files.lines(path))
Обработать строки

НА ЗАМЕТКУ! Если имеется итерируемый объект, не являющийся коллекцией, его можно пре­

образовать в поток данных, сделав следующий вызов:

StreamSupport.stream(iteraЫe.spliterator(), false);

А если имеется итератор и результаты его применения требуется направить в поток данных,

в таком случае можно сделать приведенный ниже вызов.

StreamSupport.stream(Spliterators.spliteratorUnknownSize(
iterator, Spliterator.ORDERED), false);

ВНИМАНИЕ! Во время выполнения операции над потоком данных очень важно не модифи­

цировать коллекцию, поддерживающую этот поток. При этом следует помнить, что потоки не
накапливают свои данные, которые всегда хранятся в отдельной коллекции. Если же моди­

фицировать коллекцию при выполнении операций над потоком данных, то их результаты ока­

жутся неопределенными. В документации на комплект JDK такое требование к коллекциям
называется невмешательством.

Точнее говоря, коллекцию можно модифицировать до того момента, когда начнется выпол­

нение конечной операции, поскольку промежуточные операции над потоками данных вы­

полняются по требованию. Например, приведенный ниже фрагмент кода окажется вполне

работоспособным, хотя поступать подобным образом все же не рекомендуется.

List<String> wordList = .•• ;

Stream<String> words = wordList.stream();
wordList.add("END");
long n = words.distinct() .count();

А следующий фрагмент кода ошибочен:

Stream<String> words = wordList.stream();
words.forEach(s -> if (s.length() < 12) wordList.remove(s));

11 ОШИБКА из-за вмешательства!

В примере кода из листинга 1.2 демонстрируются различные способы созда­
ния потока данных.

1.2. Создание потока данных

Листинг 1.2. Исходный код из файла streams/CreatingStreams. java

1 package streams;
2
3 /**
4 * @version 1.01 2018-05-01
5 * @author Сау Horstmann
6 */
7
8 import java.io.IOException;
9 import java.math.Biginteger;
10 import java.nio.charset.StandardCharsets;
11 import java.nio.file.*;
12 import java.util.*;
13 import Java.util.regex.Pattern;
14 import java.util.stream.*;
15
16 puЫic class CreatingStreams
17 {
18 puЬlic static <Т> void show(String title,
19 Stream<T> stream)
20
21 final int SIZE = 10;
22 List<T> firstElements = stream
23 .limit(SIZE + 1)
24 .collect(Collectors.toList());
25 System.out.print(title + ": ");
26 for (int i =О; i < firstElements.size(); i++)
27 {
28 if (i > 0) System.out.print(", ");
29 if (i < SIZE)
30 System.out.print(firstElements.get(i));
31 else System.out.print(" ... ");
32
33 System.out.println();
34
35
36 puЫic static void main(String[] args)
37 throws IOException
38
39 Path path = Paths.get(" .. /gutenberg/alice30.txt");
40 var contents = new String(Files.readAllBytes(path),
41 StandardCharsets.UTF 8);
42
43 Stream<String> words =
44 Stream.of(contents.split("\\PL+"));
4 5 show ("words", words) ;
46 Stream<String> song Stream.of("gently", "down",
47 "the", "stream"J;
48 show("song", song);
49 Stream<String> silence Stream.empty();
50 show("silence", silence);
51

Глава 1 • Потоки данных

52 Stream<String> echos
53 Stream.generate(() -> "Echo");
54 show("echos", E~chos);

55
56 Stream<DouЫe> randoms
57 Stream.generate(Math: :random);
58 show("randoms", randoms);
59
60 Stream<Biginteger> integers = Stream.iterate(
61 Biglnteger.ONE,
62 n -> n.add(Biginteger.ONE));
63 show ("integers", integers);
64
65 Stream<String> wordsAnotherWay
66 Pattern. compile ("\ \PL+" 1 .splitAsStream(contents);
67
68 show("wordsAnotherWay", wordsAnotherWay);
69
70 try (Stream<String> lines =
71 Files.lines(path, StandardCharsets.UTF 8))
72
73 show("lines", lines);
74
75
76 IteraЫe<Path> iteraЫe =
77 FileSystems. getDefaul t () . getRootDirectories ();
78 Stream<Path> rootDirectories = StreamSupport.stream(
79 iteraЫe.spliterator(), false);
80 show("rootDirectories", rootDirectories);
81
82 Iterator<Path> iterator
83 Paths.get ("/usr/share/dict/words") .iterator();
84 Stream<Path> pathComponents = StreamSupport.stream(
85 Spliterators.spliteratorUnknownSize(iterator,
86 Spliterator.ORDERED), false);
87 show("pathComponents", pathComponents);
88
89

java.util.stream.Strвam 8

• static <Т> Streaш<T> of (Т. . . values)

Возвращает поток данных, элементами которого являются заданные значения.

• static <Т> Streaш<T> ешрtу ()

Возвращает поток данных без элементов.

• static <Т> Streaш<T> qenerate (Supplier<T> s)

Возвращает бесконечнь1й поток данных, элементы которого составляются путем повторного

вызова функции s ().

1.2. Соэдание потока данных

java. util. stream. Stream 8 {окончание}

• static <Т> Stream<T> iterate (Т seed, UnaryOperator<T> f)

• static <Т> Stream<T> iterate (Т seed, Predicate<? super Т> hasNext,
UnaryOperator<T> f)

Возвращают бесконечный поток данных, элементы которого содержат начальные значения

seed Заданная функция .f() сначала вызывается с начальным значением seed, а затем
со значением предыдущего элемента и т.д. Первый из этих методов возвращает бесконечный

поток данных. А поток данных, возвращаемый вторым методом, завершается, как только пер­

вому элементу не удастся выполнить предикат hasNext.

• static <Т> Stream<T> ofNullaЫe (Т t) 9

Возвращает пустой поток данных, если объект, задаваемый в качестве параметра t, оказы­
вается пустым lnull), а иначе - поток данных, содержащий заданный объект t.

java.util.Spliterators 8

• static <Т> Spliterator<T> spliteratorUnknownSize(Iterator<? extends
Т> itвrator, int charactвristics)

Преобразует обычный итератор в разделяемый итератор неизвестного размера с характери­

стиками !параметр characteristics), задаваемыми в виде комбинации битов, содержа­
щей такие константы, как Spliterator.ORDERED.

java.util.Arrays 1.2

• static <Т> Stream<T> stream(T[] array, int startinclusivв, int
вndExclusive) В

Возвращает поток данных, элементы которого сформированы из заданного диапазона в ука­

занном массиве.

java.util.regex.Pattern 1.4

• Stream<String> splitAsStream(CharSequence input) В

Возвращает поток данных, элементы которого являются частями входной последовательно­

сти символов !параметр inputl, разделяемых по данному шаблону.

java.nio.file.Files 7

• static Stream<String> lines(Path path) В

• static Stream<String> lines(Path path, Charset cs) В

Возвращают поток данных, элементы которого составляют строки из указанного файла в ко­
дировке UTF-8 или в заданном наборе символов.

Глава 1 • Потоки данных

java.util.stream.StreamSupport 8

static <Т> Stream<T> stream(Spliterator<T> splitвrator, Ьoolean

parallвl)

Возвращает поток данных, содержащий значения, производимые заданным разделяемым

итератором.

java.lang.IteraЫe 5

• Spliterator<T> spliterator() 8

Возвращает разделяемый итератор для данного итерируемого объекта. В реализации данно­
го метода по умолчанию итератор не разделяется и его размер не возвращается.

java.util.Scanner 5

• puЫic Stream<Strinq> tokens() 9

Возвращает поток символьных строк, вызывая метод next () из данного потока сканирования.

java.util.function.Supplier<T> 8

• т qet()

Возвращает получаемое значение.

1.3. Методы fil ter (), map () и flatмap ()
В результате преобразования потока данных получается другой поток данных,

элементы которого являются производными от элементов исходного потока. Ра­

нее демонстрировалось преобразование методом fil ter (),в результате которо­
го получается новый поток данных с элементами, удовлетворяющими опреде­

ленному условию. В приведенном ниже примере кода поток символьных строк

преобразуется в другой поток, содержащий только длинные слова. В качестве ар­

гумента метода fil ter () указывается объект типа Predica te<T>, т.е. функция,
преобразующая тип Тв логический тип boolean.
List<String> words = ... ;
Stream<String> longWords =

words.stream().filter(w -> w.length() > 12);

Нередко значения в потоке данных требуется каким-то образом преобразо­

вать. Для этой цели можно воспользоваться методом map (), передав ему функ­

цию, которая и выполняет нужное преобразование. Например, буквы во всех

словах можно сделать строчными следующим образом:

Stream<String> lowercaseWords =
words.stream() .map(String: :toLowerCase);

1.З. Методы filter(). map() и flatMap()

В данном примере методу map () была передана ссылка на метод. Но вместо
нее нередко передается лямбда-выражение, как показано ниже. Получающийся

в итоге поток данных содержит первую букву каждого слова.

Stream<String> f irstLetters =
words.stream() .map(s -> s.substring(O, 1));

При вызове метода map () передаваемая ему функция применяется к каждо­
му элементу потока данных, в результате чего образуется новый поток данных

с полученными результатами. А теперь допустим, что имеется метод, возвраща­

ющий не одно значение, а поток значений. В качестве примера ниже приведен

метод, преобразующий символьную строку в поток символьных строк, а точ­

нее - отдельных кодовых точек.

puЫic static Stream<String> codePoints(String s)
{

var result = new ArrayList<String>();
int i = О;

while (i < s.length())

int j = s.offsetByCodePoints(i, 1);
result.add(s.substring(i, j));
i = j;

return result.stream();

Данный метод правильно обрабатывает символы в Юникоде, требующие

двух значений типа char, поскольку именно так это и следует делать. Хотя вни­
кап в такие подробности совсем не обязательно. Например, в результате вызова

codePoints("boat") образуетсяпотокданных ["Ь", "о", "а", "t"J.
А теперь допустим, что метод codePoints () передается методу map () для пре­

образования потока символьных сrрок следующим образом:

Stream<Stream<String>> result =
words.stream() .map(w -> codePoints(w));

В итоге получится поток потоков вроде[... ["у", "о", "u", "r"], ["Ь",

"о", "а", "t"], ...].Чтобысвесrиегокпотокубукв [... "у", "о", "u", "r",
"Ь", "о", "а", "t", ...] , вместо метода map () следует вызвать метод flatMap ()
таким образом:

Stream<String> flatResult =
words.stream() .flatMap(w -> codePoints(w))

11 Вызывает метод codePoints() для каждого слова
11 и сводит результаты

НА ЗАМЕТКУ! Аналогичный метод flatмap () можно обнаружить и в других классах, а не толь­
ко в тех, которые представляют потоки данных. Это общий принцип вычислительной техники. До­

пустим, имеется обобщенный тип G !например, Streaml и функции f () и g (), преобразующие

некоторый тип т в тип G<U>, а тип U - в тип G<V> соответственно. В таком случае эти функции

можно составить вместе, используя метод flatмap (), т.е. применить сначала функцию f (),а за­
тем функцию g (). В этом состоит главная идея теории монад. Впрочем, метод flatмap () можно
применять, и не зная ничего о монадах.

Глава 1 • Потоки данных

java.util.stream.Stream 8

• Stream<T> filter(Predicate<? super Т> predicate)

Возвращает поток данных, элементы которого совпадают с указанным предикатом.

<R> Stream<R> map (Function<? super Т,? extends R> mapper)

Возвращает поток данных, содержащий результаты применения функции mapper() к эле­

ментам исходного потока данных.

• <R> Stream<R> flatмap (Function<? super Т,? extends Stream<?
extends R>> mapper)

Возвращает поток данных, получаемый сцеплением результатов применения функции map­
per() к элементам исходного потока данных. [Следует, однако, иметь в виду, что каждый
результат представляет собой отдельный поток данных.!

1.4. Извлечение подпотоков и объединение потоков данных
В результате вызова поток. limi t (n) возвращается поток данных, оканчиваю­

щийся после n элементов или по завершении исходного потока данных, если тот
оказывается более коротким. Метод limi t () особенно удобен для ограничения
бесконечных потоков данных до определенной длины. Так, в следующей строке

кода получается поток данных, состоящий из 100 произволыfых чисел:

Stream<DouЫe> randoms =
Stream.generate(Math::random) .limit(l00);

В результате вызова поток. skip (n) происходит совершенно противополож­
ное: отбрасываются первые n элементов. Если вернуться к рассмотренному ранее
примеру чтения текста книги, то в силу особенностей работы метода spl i t ()
первым элементом потока данных оказывается нежелательная пустая строка. От

нее можно избавиться, вызвав метод skip () следующим образом:

Stream<String> words =
Stream.of (contents. split ("\ \PL+")). skip (1);

При вызове поток. takeWhile (предикат) из потока данных извлекаются все
элеме1ггы до тех пор, пока параметр предикат принимает логическое значение

true, после чего данный процесс останавливается.
Допустим, что метод codePoints (),упоминавшийся в предыдущем разделе,

применяется для разбиения символьной строки на отдельные символы и при

этом требуется собрать все первоначальные числа из натурального ряда. Этой

цели можно добиться с помощью метода takeWhile () следующим образом:

Stream<String> initialDigits = codePoints(str) .takeWhile(
s -> "0123456789".contains(s));

Метод dropWhile () делает совершенно противоположное, пропуская элемен­
ты в потоке до тех пор, пока заданное условие остается истинным, формируя

поток элементов до тех пор, пока это условие не станет ложным. Например:

Stream<String> withoutinitialWhiteSpace =
codePoints(str) .dropWhile(s -> s.trim() .length() == 0);

1.5. Другие операции преобразования потоков данных

Два потока данных можно соединить вместе с помощью статического метода

concat () из интерфейса Stream, как показано ниже. Ра:\умеется, первый из этих
потоков не должен быть бесконечным, иначе второй поток вообще не сможет

соединиться с ним.

Stream<String> combined = Stream.concat(
codePoints("Hello"), codePoints("World"));

11 В итоге получается следующий поток данных:

/ / [" Н" , "е " , " 1 " , " l '' , "о" , "W" , "о" , "r '' , " 1 " , "d"]

java.util.stream.Stream 8

Stream<T> limi t (long maxSize)

Возвращает поток данных, состоящий из элементов исходного потока данных вплоть до за­

данной длины maxSize.

• Stream<T> skip (long n)

Возвращает поток данных, все элементы которого, кроме начальных п элементов, взяты из
исходного потока данных.

• Stream<T> takeWhile(Predicate<? super Т> predicate) 9

Возвращает поток данных, состоящий из тех элементов данного потока, которые удовлетво­
ряют заданному предикату.

Stream<T> dropWhile(Predicate<? super Т> predicate) 9

Возвращает поток данных, состоящий из тех элементов данного потока, которые не удовлет­

воряют заданному предикату.

• static <Т> Stream<T> concat(Stream<? extends Т> а,

Stream<? extends Т> Ь)

Возвращает поток данных, элементы которого последовательно составлены из элементов по­
тока а и элементов потока Ь.

1.5. Другие операции преобразования потоков данных
Метод distinct () возвращает поток данных, получающий свои элементы из

исходного потока данных в том же самом порядке, за исключением того, что ду­

бликаты в нем подавляются и совсем не обязателыю должны быть смежными.

Stream<String> uniqueWords =
Stream.of ("merrily", "merrily", "merrily", "gently")

.distinct();
// В итоге возвращается только одна строка "merrily"

Для сортировки потоков данных имеется несколько вариантов метода

sorted () . Один из них служит для обработки потоков данных, состоящих из эле­
ментов типа ComparaЫe, а другой принимает в качестве параметра компаратор

типа Comparator. В следующем примере кода символьные строки сортируются
таким образом, чтобы первой в потоке данных следовала самая длинная строка:

Stream<String> longestFirst = words. stream () . sorted (
Comparator.comparing(String: :length) .reversed());

Глава 1 • Потоки данных

Как и во всех остальных операциях преобразования потоков данных, метод

sorted () выдает новый поток данных, элементы которого беругся из исходного
потока и располагаются в отсортированном порядке. Разумеется, коллекцию мож­

но отсортировать, не прибегая к потокам данных. Метод sorted () удобно приме­
нять в том случае, если процесс сортировки является частью поточного конвейера.

Наконец, метод peek () выдает другой поток данных с теми же самыми эле­
ментами, что и у исходного потока, но передаваемая ему функция вызывается

всякий раз, когда извлекается элемент. Это удобно для целей отладки, как пока­

зано ниже.

Object[] powers = Stream.iterate(l.O, р -> р * 2)
.peek(e -> System.out.println("Fetching " + е))
. limit (20). toArray ();

Сообщение выводится в тот момент, когда элемент доступен в потоке данных.

Подобным образом можно проверить, что бесконечный поток данных, возвраща­

емый методом i terate (),обрабатывается по требованию.

СОВЕТ. Если отладчик применяется для отладки кода, вычисляющего поток данных, то в теле

метода, вызываемого в одной из операций преобразования, можно установить точку преры­

вания. В большинстве интегрированных сред разработки точки прерывания могут быть уста­

новлены и в лямбда-выражениях. Если же требуется лишь выяснить, что именно происходит

в конкретной точке поточного конвейера, для этого достаточно ввести приведенный ниже

фрагмент кода, установив точку прерывания во второй его строке .

. peek(x -> {
return;))

java.util.stream.Stream 8

• Stream<T> distinct()

Возвращает поток данных, состоящий из неповторяющихся элементов исходного потока.

• Stream<T> sorted ()

• Stream<T> sorted(Comparator<? super Т> comparator)

Возвращают поток данных, состоящий из отсортированных элементов исходного потока. Пер­

вый метод требует, чтобы элементы были экземплярами класса, реализующего интерфейс

ComparaЫe.

• Stream<T> peek(Consumer<? super Т> action)

Возвращает поток данных, состоящий из тех же элементов, что и у исходного потока, пере­

давая каждый элемент указанной функции action () по мере употребления этого элемента.

1.6. Простые методы сведения
Теперь, когда было показано, каким образом осуществляется создание и пре­

образование потоков данных, мы наконец-то добрались до самого главного - по­

лучения ответов на запросы данных из потоков. В этом разделе рассматриваются

так называемые методы сведения. Они выполняют оконечные операции, сводя по­

ток данных к непотоковому значению, которое может быть далее использовано

1.6. Простые методы сведения

в программе. Ранее уже демонстрировался простой метод сведения coun t () , воз­
вращающий количество элементов в потоке данных.

К числу других простых методов сведения относятся методы max () и min (),
возвращающие наибольшее и наименьшее значения соответственно. Но не все

так просто, поскольку эти методы на самом деле возвращают значение типа

Optional<T>, которое заключает в себе ответ на запрос данных из потока или
обозначает, что запрашиваемые данные отсутствуют, поскольку поток оказал­

ся пустым. Раньше в подобных случаях возвращалось пустое значение null. Но
это могло привести к исключениям в связи с пустыми указателями в не пол­

ностью протестированной программе. Пользоваться типом Optional удобнее
для обозначения отсутствующего возвращаемого значения. Более подробно тип

Optional рассматривается в следующем разделе, а ниже показано, как получить
максимальное значение из потока данных.

Optional<String> largest =
words.max(String: :compareToignoreCase);

System.out.println("largest: "+ largest.getOrElse(""));

Метод findFirst () возвращает первое значение из непустой коллекции. За­
частую он применяется вместе с методом filter ().Так, в следующем примере
кода обнаруживается первое слово, начинающееся с буквы Q:

Optional<String> startsWithQ =
words. f ilter (s -> s. startsWith ("Q")) . f indFirst ();

Если же требуется любое совпадение, а не только первое, то следует восполь­

зоваться методом findAny (),как показано ниже. Это оказывается эффективным
при распараллеливании потока данных, поскольку поток может известить о лю­

бом обнаруженном в нем совпадении, вместо того чтобы ограничиваться только

первым совпадением.

Optional<String> startsWithQ = words.parallel() .filter(
s -> s.startsWith("Q")) .findAny();

Если же требуется лишь выяснить, имеется ли вообще совпадение, то следует

воспользоваться методом anyMatch (), как показано ниже. Этот метод принима­
ет предикатный аргумент, поэтому ему не требуется метод filter ().

boolean aWordStartsWithQ =

words.parallel () .anyMatch(s -> s.startsWith("Q"));

Имеются также методы allMatch () и noneMatch (),возвращающие логиче­
ское значение true, если с предикатом совпадают все элементы в потоке данных
или не совпадает ни один из его элементов соответственно. Эти методы также

выгодно выполнять в параллельном режиме.

java.util.stream.Stream 8

• Optional<T> max(Comparator<? super Т> comparator)

• Optional<T> min(Comparator<? super Т> comparator)

Возвращают максимальный или минимальных элемент из исходного потока данных, исполь­

зуя порядок расположения, который определяет заданный comparator, или же пустое зна­
чение типа Optional, если исходный поток данных пуст. Это оконечные операции.

Глава 1 • Потоки данных

java. util. stream. Stream 8 (окончание}

• Optional<T> findFirst()

• Optional<T> findAny ()

Возвращают первый или любой элемент из исходного потока данных или же значение типа
Optional, если исходный поток данных пуст. Это оконечные операции.

• boolean anyМatch(Predicate<? super Т> predicate)

• Ьoolean all.Мatch (Predicate<? super Т> predicate)

• boolean noneМatch(Predicate<? super Т> predicate)

Возвращают логическое значение true, если с заданным предикатом совпадают любые или
все элементы исходного потока данных или же не совпадает ни один из его элементов.

1.7. Тип Optional
Объект типа Optional<T> служит оболочкой для объекта обобщенного типа

Т или же ни для одного из объектов. В первом случае считается, что значение

1Zрисутствует. Тип Optional<T> служит в качестве более надежной альтернати­
вы ссылке на обобщенный тип т, которая делается на объект или оказывается

пустой. Но этот тип надежнее, если правильно им пользоваться. В следующем

разделе поясняется, как это делается.

1. 7 .1. Получение необязательных значений
Для эффективного применения типа Optional самое главное - выбрал, ме­

тод, который возвращает а.льтернативньzu вариант, если значение отсутствует,

или употреб,\Яеm Jначение, если только оно присутствует. Рассмотрим первую ме­

тодику обращения с необязательными значениями. Нередко имеется значение,

возможно, пустая строка 1111 , которое требуется использовал, по умолчанию в от­

сутствие совпадения:

String result = optionalString.orElse(""I;
11 Заключенная в оболочку строка,

11 а в ее отсутствие - пустая строка ""

Кроме того, можно вызвать функцию для вычисления значения по умолча­

нию следующим образом:

String result = optionalString.orElseGet(() ->
System.getProperty("user.dir"I);

11 Функция вызывается только по мере надобности

С другой стороны, в отсутствие значения можно сгенерировал, исключение

таким образом:

11 предоставить метод, возвращающий объект исключения:

Striпg result = optionalStriпg.orElseThrow(

IllegalStateException::new);

1.7. Тип Optional

java.util.Optional 8

• т orElse (Т other)

Возвращает имеющееся значение типа Optional или другое значение other, если присут­
ствующее значение типа Optional оказывается пустым.

• Т orElseGet (Supplier<? extends Т> other)

Возвращает присутствующее значение типа Optional или результат вызова функции
other(), если присутствующее значение типа Optional оказывается пустым.

• <Х extends ThrowaЬle> Т orElseThrow(Supplier<? extends Х> exceptionSupplier)

Возвращает имеющееся значение типа Optional, или выдает результат вызова exception
Supplier если Optional пуст.

1. 7 .2. Употребление необязательных значений
Как было показано в предыдущем разделе, если значение отсутствует, мож­

но получить его альтернативный вариант. Другая методика обработки необяза­

тельных значений состоит в том, чтобы употребить значение только в том случае,

если оно присутствует.

Метод if Present () принимает функцию в качестве аргумента, как показано
ниже. Если необязательное значение существует, оно передается данной функ­

ции. В противном случае ничего не происходит.

optionalValue.ifPresent(v ->Обработать v);

Так, если требуется ввести значение во множество, при условии, что оно суще­

ствует, достаточно сделап, следующий вызов:

optionalValue.ifPresent(v -> results.add(v));

или просто

optionalValue.ifPresent(results: :add);

Если требуется предпринять одно действие, когда необязательное значение

присутствует, и другое действие, когда оно отсутствует, в таком случае можно

вы:шать метод if PresentOrElse ():

optionalValue.ifPresentOrElse(
v -> System.out.println("Found" + v),
() -> logger.warning("No match"));

java.util.Optional 8

• void ifPresent(Consumer<? super Т> consumer)

Передает присутствующее значение типа Optional функции consumer(), если это значе­
ние оказывается непустым.

• <U> Optional<U> шар (Function<? super Т,? extends U> mapper)

Возвращает результат передачи присутствующего значения типа Optional функции
mapper(), если это значение оказывается непустым и результат не равен null, а иначе -
пустое значение типа Optional.

Глава 1 • Потоки данных

1. 7 .З. Конвейеризация необязательных значений
В предыдущих разделах было показано, как получить необязательное значение

из объекта типа Optional. Еще одна полезная методика состоит в том, чтобы вооб­
ще не затрагивать объект типа Optional. Необязательное значение можно преоб­
разовать в объекте типа Optional, используя метод map (), как показано ниже. Так,
если объект optionalString пустой, то пустым окажется и объект transformed.
Optional<String> transformed =

optionalString.map(String: :toUpperCase);

В еще одном примере результат вводится в список, если он присутствует. А

если объект optionalValue пуст, то ничего не происходит.

optionalValue.map(results::add);

НА ЗАМЕТКУ! В данном случае метод map () действует аналогично методу map () из интерфей­
са Stream, упоминавшемуся ранее в разделе 1.3. Если представить необязательное значение как
поток данных нулевого или единичного размера, то в результате преобразования будет также полу­

чен поток данных нулевого или единичного размера, и в последнем случае применяется функция

преобразования.

Аналогично с помощыо метода fil ter () можно отобрать до или после пре­
образования только те необязательные значения, которые удовлетворяют опре­

деленному критерию. И если критерий не удовлетворяется, то на выходе из кон­

вейера получается пустой результат.

Optional<String> transformed = optionalString
.filter(s -> s.length(I >= 81
.map(String: :toUpperCase);

Вместо пустого необязательного значения можно подставить альтернативное

необязател1,ное значение, используя метод or (). При этом альтернативное зна­
чение вычисляется по требованию.

Optional<String> result = optionalString.
or(() -> 11 предоставить необязательное значение

al ternati ves. stream () . findFirst ()) ;

Если у объекта optionalString имеется значение, то переменной resul t при­
сваивается ссылка на этот объект. В противном случае вычисляется лямбда-выра­

жение, и его результат присваивается переменной resul t.

java.util.Optional 8

• <U> Optional<U> map (Function<? super Т,? extends U> mapper)
Возвращает объект типа Optional, значение которого получается в результате применения
функции mapper() к имеющемуся значению данного объекта типа Optional, а иначе -
пустой объект типа Optional.

• Optional<T> filter (Predicate<? super Т> pred.icate)
Возвращает объект типа Optional со значением из данного объекта типа Optional, если
оно удовлетворяет заданному предикату !параметр pred.icatel, а иначе - пустой объект
типа Optional.

1.7. Тип Optional

j ava. и til . Optional 8 {окончание}

• Optional<T> or (Supplier<? extends Optional<? extends Т>> supplier) 9

Возвращает объект типа Optional, если он не пустой, а иначе - объект типа Optional,
получаемый поставщиком.

1.7 .4. Как не следует обрабатывать необязательные значения
Если необязател1,ные значения типа Optional не применяются правильно,

то они не дают никаких преимуществ по сравнению с прежним подходом, пре­

доставлявшим выбор между чем-то существующим или несуществующим, т.е.

null. Метод get () получает заключенный в оболочку элемент значения типа
Optional, если это значение существует, а иначе - генерирует исключение типа

NoSuchElementException. Таким образом, следующий фрагмент кода:

Optional<T> optionalValue = ... ;
optionalValue.get() .someMethod()

не надежнее, чем такой код:

Tvalue=.";
value.someMethod();

Метод i s Р r е s е n t () извещает, содержит ли значение объект типа

Optional<T>. Но следующее выражение:

if (optionalValue.isPresent()) optionalValue
.get() .someMethod();

не проще, чем такое:

if (value != null) value.someMethod();

НА ЗАМЕТКУ! В версии Java 1 О был внедрен менее привлекательный аналог метода get ().
Чтобы добиться явного генерирования исключения типа NoSuchElementException, если
объект типа optionalValue окажется пустым, достаточно сделать вызов optionalValue.
orElseThrow (). Такой метод был внедрен в надежде, что программисты будут вызывать его
лишь в том случае, если они совершенно уверены, что объект Optional вообще не пустой.

Ниже приведен ряд дополнителыtых рекомендаций относительно надлежа­

щего пользования типом данных Optional.

• Переменная типа Optional вообще не должна быть пустой (null).

• Не пользуйтесь полями типа Optional, поскольку для этого потребуется
дополнительный объект. А для обозначения отсутствующего в классе поля

лучше воспользоваться пустым значением null.

• Не размещайте объекты типа Optional в множестве и не пользуйтесь ими
в качестве ключей к отображению. Вместо этого храните :шачения в ото­

бражении.

Глава 1 • Потоки данных

java.util.Optional 8

• т get()

• Т orElseThrow() 10

Возвращают значение данного объекта типа Optional, а если он пустой - генерируют ис­

ключение типа NoSuchElementException.

• boolean isPresent ()

Возвращает логическое значение true, если данный объект типа Optional не пустой.

1.7.5. Формирование необязательных значений
До сих пор обсуждалось, как употребляп, объект типа Optional, создан­

ный кем-то другим. Если же требуется написать метод, создающий объект типа

Optional, то для этой цели имеется несколько статических методов. В приве­
денном ниже примере кода демонстрируется применение двух таких методов:

Optional. of (resul t) и Optional. empty ().

puЫic static Optional<DouЫe> inverse(DouЫe х) {
return х ==О? Optional.empty() : Optional.of(l / х);

Метод ofNullaЫe () служит в качестве моста между возможными пусты­
ми (null) и необязательными (Optional) значениями. Так, при вызове метода
Optional. ofNullaЫe (obj) возвращается результат вызова метода Optional.
of (obj), если объект obj не является пустым (null), а иначе - результат вызова

метода Opt ional. empt у () .

java.util.Optional 8

• static <Т> Optional<T> of (Т value)

• static <Т> Optional<T> ofNullaЫe (Т value)

Возвращают объект типа Optional с заданным значением. Если заданное значение value
равно null, то первый метод генерирует исключение типа NullPointerException, а вто­
рой метод возвращает пустой объект типа Optional.

• static <Т> Optional<T> empty()

Возвращает пустой объект типа Optional.

1.7 .6. Сочетание функций необязательных значений с методом fla tмар ()
Допустим, имеется метод f (),возвращающий объект типа Optional<T>, а у

целевого типа Т - метод g (),возвращающий объект типа Optional<U>. Если бы
это были обычные методы, их можно было бы составить в вызов s . f () . g () . Но
такое сочетание не годится, поскольку результат вызова s. f () относится к типу

Optional<T>, а не к типу Т. Вместо этого придется сделать следующий вызов:

Optional<U> result = s.f() .flatMap(T: :g);

1.7. Тип Optional

Если объект, получаемый в результате вызова s. f (), присутствует, то к нему

применяется метод g () . В противном случае возвращается пустой объект типа
Optional<U>.

Очевидно, что данный процесс можно повторить, если имеются другие ме­

тоды или лямбда-выражения, возвращающие необязательные значения типа

Optional. В таком случае из них можно составить конвейер, связав их вызовы
в цепочку с методом flatMap (),который будет успешно завершен, если завер­
шатся все остальные части конвейера.

В качестве примера рассмотрим надежный метод inverse () из предыдущего
раздела. Допустим, имеется также следующий надежный метод для извлечения

квадратного корня:

puЫic static Optional<DouЫe> squareRoot(DouЫe х) {
return х < О ? Optional.empty()

: Optional.of(Math.sqrt(x));

В таком случае извлечь квадратный корень из значения, во:шращаемого мето­

дом inverse (),можно следующим образом:

Optional<DouЫe> result =
inverse(x) .flatMap(MyMath: :squareRoot);

или таким способом, если он предпочтительнее:

Optional<DouЫe> result = Optional.of (-4.0)
.flatMap(Demo: :inverse) .flatMap(Demo: :squareRoot);

Если метод inverse () или squareRoot () возвратит результат вызова метода
Optional. empty (),то конечный результат окажется пустым.

НА ЗАМЕТКУ! Как было показано в разделе 1.3, метод flatмap () из интерфейса Stream служит
для составления двух других методов, получающих потоки данных, сводя их в результирующий по­

ток потоков. Аналогичным образом действует и метод Optional. flatмap (), если необязатель­
ное значение интерпретируется как не имеющее ни одного элемента или же один элемент.

java.util.Optional 8

• <U> Optional<U> flatмap(Function<? super Т,? extends Optional<?
extends U>> mapper)

Возвращает результат применения функции mapper() к значению, присутствующему в дан­

ном объекте типа Optional, а иначе - пустой объект типа Optional.

1. 7. 7. Преобразование типа Optional в поток данных
Метод stream () преобразует объект типа Optional<T> в поток данных типа

Stream<T> вообще без элементов или же с единственным элементом. И хотя это
вполне возможно, то зачем вообще нужно? Такое преобразование приносит поль­

зу в тех случаях, если методы возвращают результат типа Optional. Допустим,
имеется поток иде1ттификаторов пользователей и следующий метод их поиска:

Optional<User> lookup(String id)

Глава 1 • Потоки данных

Как сформировать поток идентификаторов пользователей, опустив недосто­

верные идентификаторы? Конечно, для этого можно было бы сначала отсеять

недостоверные идентификаторы, а затем применить метод get () к оставшимся

идентификаторам, как показано ниже.

Stream<String> ids
Stream<User> users = ids.map(Users: :lookup)

.filter(Optional: :isPresent)

.map(Optional::get);

Но в данном случае применяются методы isPresent () и get (), относитель­
но которых ранее были высказаны определенные предостережения. Ниже приве­

ден более изящный способ достичь той же самой цели.

Stream<User> users = ids.map(Users: :lookup)
.flatMap(Optional::stream);

Всякий раз, когда метод stream () вызывается, он возвращает поток данных

вообще без элементов или же с единственным элементом, а метод flatMap () все

это объединяет в конечный результат. Эго означает, что несуществующие поль­

зователи просто опускаются.

НА ЗАМЕТКУ! В этом разделе рассматриваетсs~ удачный исход, когда метод возвращает зна­

чение типа Optional. Но ведь многие методы ныне возвращают пустое значение null
в отсутствие достоверного результата. Допустим, метод Users. classicLookup (id) воз­
вращает объект типа User или пустое значение null, а не объект типа Optional<User>.
В таком случае пустые значения null можно, конечно, отсеs~ть, как показано ниже.

Stream<User> users = ids.map(Users: :classicLookup)
.filter(Objects: :nonNulli;

Но вместо этого можно воспользоваться методом flatмap () следующим образом:

Stream<User> users = ids.flatMap(id ->
Stream.ofNullaЬle(Users.classicLookup(id)I);

или же таким образом:

Stream<User> users = ids.map(Users::classicLookup)
.flatMap(Stream::ofNullaЬle);

В результате вызова Stream. ofNullaЫe (obj) возвращается пустой поток данных, если
объект obj оказывается пустым, а иначе - поток, содержащий лишь этот объект.

В примере кода из листинга 1.3 демонстрируется прикладной интерфейс API
для необязательного типа Optional.

Листинг 1.3. Исходный код из файла optional/OptionalTest. java

1 package optional;
2
3 /**
4 * @version 1.01 2018-05-01
5 * @author Сау Horstmann
6 * /
7
8 import java.io.*;

9 import java.nio.charset.*;
10 import java.nio.file.*;
11 import java.util.*;
12
13 puЫic class OptionalTest
14 {
15 puЫic static void main(String[] args)
16 throws IOException
17
18 var contents = new String(Files.readAllBytes(
19 Paths.get(" .. /gutenberg/alice30.txt")),
20 StandardCharsets.UTF 8);
21 List<String> wordList =

22 List.of(contents.split("\\PL+"));
23

1.7. Тип Optional

24 Optional<String> optionalValue = wordList.stream()
25 .filter(s -> s.contains("fred"))
26 .findFirst();
27 System.out.println(optionalValue.orElse("No word")
28 + "contains fred");
29
30 Optional<String> optionalString = Optional.empty();
31 String result = optionalString.orElse("N/A");
32 System.out.println("result: "+ result);
33 result = optionalString.orElseGet(() ->
34 Locale. getDefaul t () . getDisplayName ());
35 System.out.println("result: "+ result);
36 try
37 {
38 result = optionalString.orElseThrow(
39 IllegalStateException: :new);
40 System.out.println("result: " + result);
41
42 catch (ThrowaЬle t)
4 3 {
44 t.printStackTrace();
45
46
47
48
49

optionalValue wordList. stream ()
.filter(s -> s.contains("red"))
.findFirst();

50 optionalValue.ifPresent(s ->
51 System.out.println(s +" contains red"));
52
53 var results = new HashSet<String>();
54 optionalValue.ifPresent(results: :add);
55 Optional<Boolean> added =

56 optionalValue.map(results: :add);
57 System.out.println(added);
58
59 System.out.println(inverse(4.0)
60 .flatMap(OptionalTest: :squareRoot));
61 System.out.println(inverse(-1.0)
62 .flatMap(OptionalTest::squareRoot));

Глава 1 • Потоки данных

63 System.out.prшtln(iriverse(0.0)

64 .flatMap(OptionalTest: :squareRoot));
65 Optional<DouЫe> result2 = Optional.of(-4.0)
66 .flatMap(OptionalTest: :inverse)
67 .flatMap(OptionalTest: :squareRoot);
68 System.out.println(result2);
69
70
71 рuЫ1с static Optional<DouЫe> inverse(DouЫe х)

72 {
73 return х ==О ? Optional.empty()
74 Optional.of (1 ! х);

75
76
77 puЫic static Optional<DouЫe> squareRoot(DouЫe х)

78 {
79 return х < О ? Optional.empty()
80 Optional.of(Math.sqrt(x) 1;
81
82

java.util.Optional 8

• <U> Optional<U> flatмap(Function<? super T,Optional<U>> mapper) 9

Возвращает результат применения функции mapper() к значению, присутствующему в дан­

ном объекте типа Optional, или же пустой объект типа Optional, если данный объект
типа Optional оказывается пустым.

1.8. Накопление результатов
По завершении обработки потока данных нередко требуется просмотреть по­

луче1111ые ре:~ультаты. С ·:пой целью можно вы:~вать метод iterate (), предостав­
ляющий устаревший итератор, которым можно восполь:юваться для обхода эле­

ментов. С другой стороны, можно вызвать метод forEach (),чтобы применить
функцию к каждому элеме11ту следующим обра:юм:

stream.forEach(System.out: :println);

В параллельном потоке да1111ых метод forEach () выполняет обход элементов
в произвол1,ном порядке. Если же их требуется обработать в потоковом поряд­

ке, то следует вызвап, метод forEachOrdered (). Разумеется, в этом случае могут
быть утрачены некоторые и11и даже все преимущества параллелизма.

Но чаще всего резулнаты требуется накапливать в структуре данных. С этой

целью можно нызвап, метод t.oArray () и получит~. э11ементы из потока данных.
Создатr, обобщенный массив во время выполнения невозможно, и поэтому

11 резулнате вызова stream. toArray () возвращается массив типа Object [].
Если же требуется массив нужного типа, этому методу следует передать кон­

структор такого массива:

1.8. Накопление результатов

String[] result = stream.toArray(String[]: :new);
11 В результате вызова метода stream.toArray()
11 получается массив типа Object[]

Для накопления элементов потока данных с другой целью имеется удобный

метод collect (), принимающий экземпляр класса, реализующего интерфейс
Collector. Коллектар - это объект, накапливающий элементы и производящий

результат. В частности, класс Collectors предоставляет немало фабричных ме­
тодов для наиболее употребительных коллекторов. Так, для накопления потока

данных в списке или множестве можно воспользоваться коллектором, получае­

мым в результате вызова Collectors. toList (),как пока:ыно ниже.

List<String> result = stream.collect(Collectors.toList());

Аналогично ниже показано, как накопить во множестве элементы из потока

данных.

Set<String> result = stream.collect(Collectors.toSet());

Если же требуется конкретная разновидность получаемого множества, то не­

обходимо сделать следующий вызов:

TreeSet<String> result = stream.collect(
Collectors.toCollection(TreeSet::new));

Допустим, требуется накапливать все символьные строки, сцепляя их. С этой

целью можно сделап, следующий вызов:

String result = stream.collect(Collectors.joining());

А если требуется разделитель элементов, то его можно передать методу

j oining () следующим образом:

String result = stream.collect(Collectors.joining(", "));

И если поток данных содержит объекты, отличающиеся от символьных строк,

их нужно сначала преобразовать в символьные строки:

String result stream.map(Object: :toString)
. collect (Col lectors. j oining (", ")) ;

Если резул1,таты обработки потока данных требуется свести к сум­

ме, среднему, максимуму или минимуму, воспользуйтесь методами типа

summarizing(IntlLonglDouЬle). Эти методы принимают функцию, пре­

образующую потоковые объекты в число и возвращающую результат типа

(Iпt 1Long1 DouЫe) SummaryStatistics, одновременно вычисляя сумму, сред­
нее, максимум и минимум, как показано ниже.

IпtSummaryStatistics summary = stream.collect(
Collectors.summarizingiпt(String::length));

douЫe averageWordLength = summary.getAverage();
douЫe maxWordLength = summary.getMax();

В примере кода из листинга 1.4 демонстрируется порядок накопления эле­
ментов из потока данных.

Глава 1 • Потоки данных

Листинг 1.4. Исходный код из файла collecting/CollectingResul ts. java

1 package collecting;
2
3 /**
4 * @version 1.01 2018-05-01
5 * @author Сау Horstmann
6 * /
7
8 import
9 import
10 import
11 import
12 import
13

' ' * Java.io. ;
java.nio.charset.*;
java.nio.file.*;
java.util.*;
java.util.stream.*;

14 puЫic class CollectingResults
15 {
16 puЬlic static Stream<String> noVowels()
17 throws IOException
18
19 var contents = new String(Files.readAllBytes(
20 Paths.get(" .. /gutenberg/alice30.txt")),
21 StandardCharsets.UTF_8);
22 List<String> wordList =
23 List.of(contents.split("\\PL+"));
24 Stream<String> words = wordList.stream();
25 return words.map(s ->
26 s. replaceAll (" [aeiouAEIOU] ", ""));
27
28
29 puЬlic static <Т> void show(String label, Set<T> set)
30 {
31 System.out.print(label + ": "
32 + set. getClass () . getName ()) ;
33 System.out.println("[" + set.stream().limit(lO)
34 .map(Object: :toString)
35 .collect(Collectors.joining(", ")) + "]");
36
37
38 puЫic static void main(String[] args)
39 throws IOException
40
41 Iterator<Integer> iter = Stream.iterate(
42 О, n -> n + l).limit(lO).iterator();
43 while (iter.hasNext())
44 System.out.println(iter.next());
45
46
47
48
49
50
51
52
53

Object[] numЬers = Stream.iterate(
О, n -> n + 1) .limit (10) .toArray();

System. out. pr int ln ("Obj ect array:" + numЬers) ;
//Обратите внимание, что это массив типа Object[]

try
{

var numЬer (Integer) numbers[O]; //Верно!

1.8. Накопление результатов

54 System.out.println("numЬer: " + numЬer);
55 System.out.println("The following statement"
56 + " throws an exception:");
57 // генерируется исключение:
58 var numЬers2 = (Integer[]) numЬers;

59
60 catch (ClassCastException ех)
61 {
62 System.out.println(ex);
63
64
65
66

Integer[] numЬers3 Stream.iterate(O, n -> n + 1)
.limit(lO)

67 . toArray (Integer [] : : new);
68 System. out. print ln ("Integer array: " + numЬers3) ;
69 //Обратите внимание, что это массив типа Integer[]
70
71 Set<String> noVowelSet
72 noVowels () . collect (Collectors. toSet ());
73 show("noVowelSet", noVowelSet);
74
75 TreeSet<String> noVowelTreeSet = noVowels() .collect(
76 Collectors.toCollection(TreeSet: :new));
77 show("noVowelTreeSet", noVowelTreeSet);
78
79 String result = noVowels (). limit (10) .collect (
80 Collectors.joining());
81 System. out. println ("Joining: " + resul t) ;
82 result = noVowels() .limit(lO) .collect(
83 Collectors. joining (", "));
8 4 System. out. pr int ln ("Joining wi th commas: " + resul t) ;
85
86 IntSummaryStatistics summary = noVowels () .collect (
87 Collectors.summarizingint(String: :length));
88 douЫe averageWordLength = summary.getAverage();
89 douЫe maxWordLength = summary.getMax();
90 System.out.println("Average word length: "
91 + averageWordLength);
92 System.out.println("Max word length: "
93 + maxWordLength) ;
94 System.out.println("forEach:");
95 noVowels () . limi t (10) . forEach (System. out: : println) ;
96
97

java.util.stream.BaseStream 8

• Iterator<T> iterator()

Возвращает итератор для получения элементов исходного потока данных. Это оконечная опе­

рация.

Глава 1 • Потоки данных

java.util.stream.Stream 8

• void forEach(ConsWDer<? super Т> action)

Вызывает функцию action () для каждого элемента исходного потока данных. Это оконеч­
ная операция.

• Object [] toArray ()

<А> А[] toArray(IntFunction<A[] > generator)

Возвращают массив объектов или объект типа А, если им передается ссылка на конструктор
А[] : : new. Это оконечные операции.

<R,A> R collect (Collector<? super Т, А, R> col.1.ector)

Накапливает элемент в исходном потоке данных, используя заданный коллектор. Для многих
коллекторов в классе Collectors имеются фабричные методы.

java.util.stream.Collectors 8

static <Т> Collector<T, ? , List<T>> toList ()
• static <Т> Collector<T,?,List<T>> toUnmodifiaЬleList() 10

• static <Т> Collector<T, ?, Set<T>> toSet()

• static <Т> Collector<T,?,Set<T>> toUnmodifiaЫeSet() 10

Возвращают коллекторы, накапливающие элементы в списке или множестве.

static <Т,С extends Collection<T>> Collector<T, ?, С>

toCollection (Supplier<C> col.1.ectionFactory)

Возвращает коллектор, накапливающий элементы в произвольной коллекции. Получает
ссылку на конструктор объектов коллекции, например TreeSet: : new.

static Collector<CharSequence, ?, String> joining()
• static Collector<CharSequence, ?, String> joining(CharSequence

del.imi ter)
• static Collector<CharSequence, ?, String> joining(CharSequence

del.imiter, CharSequence prefix, CharSequence suffix)

Возвращают коллектор, соединяющий символьные строки. Заданный разделитель разме­
щается между строками, а префикс и суффикс - перед первой строкой и после последней
строки соответственно. Если разделитель, префикс и суффикс не указаны, их места остаются

пустыми.

static <Т> Collector<T, ?, IntSummaryStatistics>
summarizingint(TointFunction<? super Т> mapper)

• static<T> Collector<T, ?, LongSU111111AryStatistics> summarizingLong(To
LongFunction<? superT> mapper)
static <Т> Collector<T, ?, DouЬleSummaryStatistics> summarizingDouЬ

le(ToDouЬleFunction<? Super Т> mapper)

Возвращают коллекторы, производящие объект типа (Int 1Long1 DouЬle)
SUIDlllaryStatistics, из которого получается подсчет, сумма, среднее, максимум и мини­
мум результатов применения функции mapper() к каждому элементу потока данных.

IntSununaryStatistics 8
LongSummaryStatistics 8
DouЬleSununaryStatistics 8

long getCount ()

1. 9. Накопление результатов в отображениях

Возвращает подсчет суммированных элементов.

• (intllongldouЫe) getSwn()

• douЫe getAverage ()

Возвращают сумму или среднее суммированных элементов или же нуль, если элементы от­

сутствуют.

• (intllongldouЫe) getмax()

• (intllongldouЬle) getмin()

Возвращают максимум или минимум суммированных элементов или же значение Integer 1
Long 1 DouЬle) . (МАХ 1 MIN) _ VALUE, если элементы отсутствуют.

1. 9. Накопление результатов в отображениях
Допустим, имеется поток данных типа Stream<Person> и его элементы требу­

ется накапливать в отображении, чтобы в дальнейшем искать людей по их иден­

тификационному номеру. Для этой цели служит метод Collectors. toMap (),
принимающий в качестве двух своих аргументов функции, чтобы получить клю­

чи и значения из отображения, как показано в следующем примере кода:

Map<Integer, String> idToName = people.collect(
Collectors.toMap(Person: :getid, Person: :getName));

В общем случае, когда значения должны быть конкретными элементами, в ка­

честве второго аргумента данному методу предоставляется функция Function.
identi ty () следующим образом:

Map<Integer, Person> idToPerson = people.collect(
Collectors.toMap(Person: :getid, Function.identity()));

Если же одному и тому же ключу соответствует бол1>ше одного эле­

мента, то возникает конфликт и коллектор генерирует исключение типа

IllegalStateException. Такое поведение можно изменит~,, предоставив дан­
ному методу в качестве третьего аргумента функцию, разрешающую подобный

конфликт и определяющую значение по заданному ключу, исходя из существую­

щего или нового значения. Такая функция может во:шратип. существующее зна­

чение, новое значение или и то и другое.

В приведенном ниже примере создается отображение, содержащее регио­

нальные настройки для каждого языка в виде ключа, обозначающего название

языка в региональных настройках по умолчанию (например, "German "), и значе­
ния, обозначающего его локализованное название (например, "Deutsch"). В дан­
ном примере не учитывается, что один и тот же я:1ык может истретиться дважды

(например, немецкий в Германии и Швейцарии), и поэтому в отображении со­

храняется лишь первая запись.

Глава 1 • Потоки данных

Stream<Locale> locales =
Stream.of(Locale.getAvailaЫeLocales());

Map<String, String> languageNames = locales.collect(
Collectors.toMap(

Locale: :getDisplayLanguage,
loc -> loc.getDisplayLanguage(loc),
(existingValue, newValue) -> existingValue));

НА ЗАМЕТКУ! В этой главе в качестве структуры данных для хранения региональных настроек

употребляется класс Locale. Подробнее о региональных настройках речь пойдет в главе 7.

А теперь допустим, что требуется выяснить все языки данной страны. Для

этой цели понадобится отображение типа Map<String, Set<String>>. Напри­
мер, значением по ключу "Swi tzerland" является множество [French, German,
Italian]. Сначала для каждого языка сохраняется одноэлементное множество.
А всякий раз, когда обнаруживается новый язык заданной страны, образуется

объединение из существующего и нового множеств, как показано ниже.

Map<String, Set<String>> countryLanguageSets
locales.collect(Collectors.toMap(

Locale: :getDisplayCountry,
1 -> Collections.singleton(l.getDisplayLanguage()),
(а, Ь) -> { // объединить множества а и Ь

var union = new HashSet<String>(a);
union.addAll(b);
return union; })) ;

Более простой способ получения этого отображения будет представлен в сле­

дующем разделе. Если же потребуется древовидное отображение типа TreeMap,
то в качестве четвертого аргумента методу toMap () следует предоставип, кон­

структор данного класса. Необходимо также предоставить функцию объедине­

ния. Ниже приведен один из примеров из начала этого раздела, переделанный

с целью получить отображение типа TreeMap.

Map<Integer, Person> idToPerson = people.collect(
Collectors.toMap(

Person: :getld,
Function.identity(),
(existingValue, newValue) ->

{ throw new IllegalStateException(); },
TreeMap: :new));

НА ЗАМЕТКУ! Каждому из вариантов метода toMap () соответствует эквивалентный метод

toConcurrentмap (), получающий параллельное отображение. Единое параллельное отображе­
ние применяется в процессе параллельного накопления. Если же общее отображение применяется

вместе с параллельным потоком данных, то такой способ оказывается более эффективным, чем

объединение множеств. Но в таком случае элементы не накапливаются в потоковом порядке, хотя

это обычно не имеет особого значения.

В примере кода из листинга 1.5 демонстрируется накопление потоковых ре­
зультатов в отображениях.

1. 9. Накопление результатов в отображениях

Листинг 1.5. Исходный код из файла collecting/CollectingintoMaps. java

1 package collecting;
2
3 /**
4 * @version 1.00 2016-05-10
5 * @author Сау Horstmann
6 * /
7
В import java.io.*;
9 import java.util.*;
10 import java.util.function.*;
11 import java.util.stream.*;
12
13 puЫic class CollectingintoMaps
14 {
15
16

puЬlic static class Person
{

17 private int id;
18 private String name;
19
20 puЫic Person(int id, String name)
21 {
22 this.id = id;
23 this.name = name;
24
25
2 6 puЫic int getid ()
27 {
28 return id;
29
30
31 puЫic String getName()
32 {
33 return name;
34
35
36 puЫic String toString()
37 {
38 return getClass() .getName() + "[id=" + id
39 + ", name=" + name + "]";
40
41
42
43 puЫic static Stream<Person> people()
4 4 {
45 return Stream.of(new Person(lOOl, "Peter"),
46 new Person(1002, "Paul"),
47 new Person(1003, "Mary"));
48
49
50 puЫic static void main(String[] args)
51 throws IOException {
52 Map<Integer, String> idToName = people () . collect 1

53 Collectors.toMap(Person::getid, Person: :getName));
54 System.out.println("idToName: " + idToName);

Глава 1 • Потоки данных

55
56 Map<Integer, Person> idToPerson = people() .collect(
57 Collectors.toMap(Person: :getid,
58 Function.identity()));
59 System.out.println("idToPerson: "
60 + idToPerson.getClass() .getName() + idToPerson);
61
62 idToPerson = people() .collect(Collectors.toMap(
63 Person: :getid, Function.identity(),
64 (existingValue, newValue) ->
65 {throw new IllegalStateException(J;),
66 TreeMap: :new));
67 System. out. pr int ln ("idToPerson: "
68 + idToPerson. getClass () . getName ()
69 + idToPerson);
70
71 Stream<Locale> locales =
72 Stream.of(Locale.getAvailaЬleLocales());
73 Map<String, String> languageNames = locales.collect(
74 Collectors.toMap(
75 Locale: :getDisplayLanguage,
76 1 -> l.getDisplayLanguage(l),
77 (existingValue, newValue) -> existingValue));
78 System.out.println("languageNames: "
79 + languageNames);
80 locales = Stream.of(Locale.getAvailaЬleLocales());
81 Map<String, Set<String>> countryLanguageSets
82 locales.collect(Collectors.toMap(
83 Locale: :getDisplayCountry,
84 1 -> Set.of(l.getDisplayLanguage()),
85 (а, Ы ->
86 { //объединить множества а и Ь

87 Set<String> union = new HashSet<>(a);
88 union.addAll(Ь);

89 return union;
90))) ;
91 System.out.println("countryLanguageSets: "
92 + countryLanguageSets);
93
94

java.util.stream.Collectors 8

• static<T,K,U> Collector<T, ?, мар<К, U>> toмap(Function<?

superT, ? extendsК> keyМapper, Function<? super Т, ? extends U>
valueМapper)

• static<T, к, U> Collector<T, ?, мар<к, U>> toмap(Function<?

superT, ? extendsК> kвуМарреr, Function<? super Т, ? extends U>
valueМapper, BinaryOperator<U> mergвFunction)
static <Т, К, U, М extends мар<к, U>> Collector<T, ?, М>

toмap(Function<? super Т, ? extends К> kвуМарреr, Function<?
super Т, ? extends U> va.lueМapper, BinaryOperator<U>
mergeFunction, Supplier<М> mapSupplier)

1.1 О. Группирование и разделение

java. util. stream.Collectors 8 {окончание/

• static <T,K,U> Collector<T,?,мap<К,U>> toUnmodifiaЬleмap(Function<?
super Т, ? extends К> keyМapper, Function<? super Т, ? extends U>
valueМapper) 10

• static <T,K,U> Collector<T,?,мap<K,U>> toUnm.odifiaЬleМap(Function<?
super Т, ? extends К> keyМapper, Function<? super Т, ? extends U>
valueМapper, BinaryOperator<U> mergeFunction) 10

• static <Т, К, U> Collector<T,?,Concurrentмap<К, U>>
toConcurrentмap(Function<? super Т, ? Extends К> keyМapper,
Function<? super Т, ? extends U> valueМapper)

• static <Т, К, U> Collector<T, ?, Concurrentмap<K, U>>
toConcurrentмap(Function<? super Т, ? Extends К> keyМapper,
Function<? super Т, ? extends U> valueМapper, BinaryOperator<U>
mergeFunction)

• static <Т, К, U, М extends Concurrentмap<K,U>> Collector<T, ?,
М> toConcurrentмap (Function<? super Т, ? extends К> keyМapper,
Function<? super Т, ? extends U> valueМapper, BinaryOpera tor<U>
mergeFunction, Supplier<М> mapSupplier)

Возвращают коллектор, производящий обычное, неизменяемое или параллельное отображе­
ние. Функции keyМapper() и valueМapper() применяются к каждому накапливаемому

элементу, возвращая запись в виде пары "ключ-значение" из результирующего отображе­

ния. По умолчанию генерируется исключение типа IllegalStateException, когда два
элемента порождают одинаковый ключ. Вместо этого можно применить функцию merge­
Function (),объединяющую значения по одному и тому же ключу. По умолчанию получает­
ся результирующее отображение типа HashМap или ConcurrentнashМap. Но вместо этого

можно предоставить функцию mapSupplier(), возвращающую требующийся экземпляр
отображения.

1.1 О. Группирование и разделение
В предыдущем разделе было показано, как накапливаются все языки заданной

страны. Но этот процесс оказался несколько трудоемким, поскольку для каждо­

го значения из отображения пришлое~, сначала сформировать одноэлементное

множество, а затем указать порядок объединения существующего и нового значе­

ний. Нередко из значений с одинаковыми характеристиками образуются группы,

и этот процесс непосредственно поддерживается методом groupingBy ().
Рассмотрим задачу группирования региональных настроек по странам. Снача­

ла образуется следующее отображение:

Map<String, List<Locale>> countryToLocales
locales.collect(Collectors.groupingBy(

Locale: :getCountry));

Функция Locale:: getCountry () исполняет роль классификатора группиро­
вания. Затем все региональные настройки можно отыскать по заданному коду

страны, как показано в следующем примере кода:

List<Locale> swissLocales = countryToLocales.get("CH");
11 получить региональные настройки [it_CH, de_CH, fr СН]

Глава 1 • Потоки данных

НА ЗАМЕТКУ! Как известно, все региональные настройки состоят из кода языка (например, код en
обозначает английский язык! и кода страницы (например, код us обозначает Соединенные Штаты!.
Так, региональные настройки en_us описывают английский язык в Соединенных Штатах, а регио­
нальные настройки en _ IE - английский язык в Ирландии. Некоторым странам требуется несколько

региональных настроек. Например, региональные настройки ga _ IE, описывающие гэльский язык
в Ирландии в дополнение к упомянутым выше региональным настройкам en_IE. А для Швейцарии
требуются три региональные настройки, как было показано в предыдущем разделе.

Когда функция классификатора оказывается предикатной (т.е. функцией, воз­

вращающей логическое значение типа boolean), элементы потока данных раз­
деляются на основной список с элементами, для которых функция возвращает

логическое значение true, и дополнительный список. В данном случае эффек­
тивнее воспользоваться методом parti tioningBy (),чем методом groupingBy ().
Так, в следующем примере кода все региональные настройки разделяются на те,

которые описывают английский язык, и все остальные:

Map<Boolean, List<Locale>> englishAndOtherLocales =

locales.collect(Collectors.partitioningBy(
l -> 1. getLanguage () . equals ("en")));

List<Locale>> englishLocales =
englishAndOtherLocales.get(true);

НА ЗАМЕТКУ! Если вызвать метод groupingВyConcurrent (),то в конечном итоге будет получе­
но отображение, которое заполняется параллельно, если оно применяется вместе с параллельным

потоком данных. В этом отношении данный метод очень похож на метод toConcurrentмap () .

java.util.stream.Collectors 8

• static<T,К> Collector<T, ?, мар<К, List<T>>> groupingBy(Function<?
superT, ? extendsK> classi:fier)

• static <Т,К> Collector<T, ?, Concurrentмap<К, List<T>>>
groupingByConcurrent (Function<? super Т, ? extends К> classi:fier)

Возвращают коллектор, производящий обычное или параллельное отображение, где ключи

являются результатом применения функции classi:fier() ко всем накапливаемым эле­
ментам, а значения - списками элементов с одинаковым ключом.

• static <Т> Collector<T,?,мap<Boolean,List<T>>>
partitioningBy(Predicate<? super Т> pred.icate)

Возвращает коллектор, производящий отображение, где ключи принимают логическое зна­

чение true/false, а значения являются списками элементов, совпадающих или не совпа­
дающих с заданным предикатом.

1.11. Нисходящие коллекторы
Метод groupingBy () формирует множество, :шачениями которого являются

списки. Если требуется обработать эти списки каким-то образом, то следует пре­

доставить нисходящий коллектор. Так, если вместо списков требуются множества,

можно воспользовап,ся коллектором Collectors. toSet () следующим образом:

Map<String, Set<Locale>> countryToLocaleSet =
locales.collect(groupingBy(

1.11. Нисходящие коллекторы

Locale: :getCountry, toSet()));

НА ЗАМЕТКУ! В данном и последующих примерах из этого раздела предполагается статический

импорт java. util. stream. Collectors. *, чтобы упростить выражения и сделать их более
удобочитаемыми.

Для сведения сгруппированных элементов к числам предоставляется ряд сле­

дующих коллекторов:

• counting () - производит подсчет накопленных элементов. Так, в следу­

ющем примере кода подсчитывается количество региональных настроек

для каждой страны:

Map<String, Long> countryToLocaleCounts = locales.collect(
groupingBy(Locale: :getCountry, counting()));

• summing (Int 1Long1 DouЬle) - принимает в качестве аргумента функцию,

применяет ее к элементам нисходящего потока данных и получает их сум­

му. Так, в следующем примере кода вычисляется суммарное население

каждого штата из потока городов:

Map<String, Integer> stateToCityPopulation =
cities.collect(groupingBy(City: :getState,

summingint(City: :getPopulation)));

• mахВу () и minBy () - принимают в качестве аргумента компаратор и по­

лучают максимальный и минимальный элементы из нисходящего потока

данных. Так, в следующем примере кода получается самый крупный город

в каждом штате:

Map<String, City> stateToLargestCity = cities.collect(
groupingBy(City: :getState,

maxВy(Comparator.comparing(City::getPopulation))));

• collectingAndThen () - вводит завершающую стадию накопления. Так,

если требуется выяснить, сколько имеется отдельных резул1,татов, их мож­

но накопить сначала в множестве, а затем вычислить его размер, как пока­

зано ниже.

Map<Character, Integer> stringCountsByStartingLetter =
strings.collect(groupingBy(s -> s.charAt(O),

collectingAndThen(toSet(), Set: :size)));

Совсем иначе действует коллектор, реализуемый методом mapping (). Он
применяет функцию к каждому накапливаемому элементу и передает получен­

ные результаты нисходящему коллектору, как демонстрируется в приведенном

ниже примере кода.

Map<Character, Set<Integer>> stringLengthsByStartingLetter
= strings.collect(groupingBy(s -> s.charAt(O),

mapping(String: :length, toSet())));

В данном примере строки группируются по их первому символу. Для каждой

группы определяется ее длина, которая накапливается в множестве.

Глава 1 • Потоки данных

Метод mapping () позволяет также решить изящнее задачу из предыдущего

раздела - собрать все языки, употребляемые в стране. В предыдущем разделе

вместо метода groupingBy () применялся метод toMap ().А в приведенном ниже
решении отпадает необходимость объединять отдельные множества.

Map<String, Set<String>> countryToLanguages =
locales.collect(groupingBy(Locale::getDisplayCountry,

mapping(Locale: :getDisplayLanguage, toSet())));

Для применения вместе с функциями, возвращающими потоки данных, име­

ется также коллектор, реализуемый методом f la tMapping () .
Если функция группирования или отображения возвращает значение типа

int, long или douЬle, элементы можно накопить в объекте суммарной стати­
стики, как пояснялось в разделе 1.8. Ниже показано, как это делается. А затем
из объектов суммарной статистики каждой группы можно получить суммарное,

подсчитанное, среднее, минимальное и максимальное значения функции.

Map<String, IntSummaryStatistics>
stateToCityPopulationSummary = cities.collect(

groupingBy(City: :getState,
summarizinglnt(City: :getPopulation)));

Коллектор, реализуемый методом f i l ter ing (), применяет фильтр к каждой
группе, как демонстрируется в следующем примере кода:

Map<String, Set<City>> largeCitiesByState = cities.collect(
groupingBy(City: :getState,

filtering(c -> c.getPopulation() > 500000,
toSet()))); 11 штаты без крупных

11 городов, но с пустыми множествами

НА ЗАМЕТКУ! Имеются три варианта метода reducing (), выnолняющие общие оnерации сведе­
ния, оnисываемые далее в разделе 1.12.

Коллекторы можно эффективно сочетать вместе, но в итоге получаются весь­

ма запутанные выражения. Поэтому их лучше всего использовать вместе с ме­

тодом groupingBy () или parti tioningBy () для обработки значений, преоб­
разуемых из нисходящего потока данных. В противном случае непосредственно

в потоках данных применяются такие методы, как map (), reduce () , coun t (} ,
max () или min (}.

Применение нисходящих коллекторов демонстрируется в примере кода и:~

листинга 1.6.

Листинг 1.6. Исходный код из файла collecting/DownstreamCollectors. java

1 package collecting;
2
3 /**
4 * @version 1.00 2016-05-10
5 * @author Сау Horstmann
6 * /
7
8 import static java.util.stream.Collectors.*;

9
10 import java.io.*;
11 import java.nio.file.*;
12 import java.util.*;
13 import java.util.stream.*;
14
15 puЫic class DownstreamCollectors
16 {
17
18 puЫic static class City
19 {
20 private String name;
21 private String state;
22 private int population;
23

1.11. Нисходящие коллекторы

24 puЫic City(String name, String state,
25 int population)
26
27 this.name = name;
28 this.state = state;
29 this.population = population;
30
31
32 puЫic String getName()
33 {
34 return name;
35
36
37 puЫic String getState()
38 {
39 return state;
40
41
42 puЫic int getPopulation()
43 {
44 return population;
45
46
47
48 puЫic static Stream<City> readCities(String filename)
49 throws IOException
50
51 return Files.lines(Paths.get(filename))
52 .map(l -> l.split(", "))
53 .map(a -> new City(a[O], a[l],
54 Integer.parseint(a[2])));
55
56
57 puЬlic static void main(String[] args)
58 throws IOException
59
60 Stream<Locale> locales =
61 Stream.of(Locale.getAvailaЬleLocales());
62 locales = Stream.of(Locale.getAvailaЫeLocales());
63 Map<String, Set<Locale>> countryToLocaleSet =
64 locales.collect(groupingBy(
65 Locale: :getCountry, toSet()));

Глава 1 • Потоки данных

66 System.out.println("countryToLocaleSet: "
67 + countryToLocaleSet);
68
69 locales = Stream.of(Locale.getAvailaЬleLocales());
70 Map<String, Long> countryToLocaleCounts =
71 locales.collect(groupingBy(
72 Locale: :getCountry, counting()));
73 System.out.println("countryToLocaleCounts: "
74 + countryToLocaleCounts);
75
76 Stream<City> cities = readCities("cities.txt");
77 Map<String, Integer> stateToCityPopulation =

78 cities.collect(groupingBy(City: :getState,
79 summingint(City: :getPopulation)));
80 System.out.println("stateToCityPopulation: "
81 + stateToCityPopulation);
82
83 cities = readCities("cities.txt");
84 Map<String, Optional<String>>
85 stateToLongestCityName = cities.collect(
86 groupingBy(City: :getState,
87 mapping(City: :getName,
88 maxBy(Comparator.comparing(String::length)))));
89 System.out.println("stateToLongestCityName: "
90 + stateToLongestCityName);
91
92 locales = Stream.of(Locale.getAvailaЫeLocales());
93 Map<String, Set<String>> countryToLanguages
94 locales.collect(groupingBy(
95 Locale: :getDisplayCountry,
96 mapping(Locale: :getDisplayLanguage, toSet()))) ;
97 System.out.println("countryToLanguages: "
98 + countryToLanguages);
99
100 cities = readCities("cities.txt");
101 Map<String, IntSummaryStatistics>
102 stateToCityPopulationSummary =
103 cities.collect(groupingBy(City: :getState,
104 summarizingint(City: :getPopulation))) ;
105 System.out.println(
106 stateToCityPopulationSummary.get ("NY"));
107
108 cities = readCities("cities.txt");
109 Map<String, String> stateToCityNames
110 cities.collect(groupingBy(City: :getState,
111 reducing("", City: :getName, (s, t) ->
112 s.length() ==О? t: s + ", "+ t)));
113
114 cities = readCities("cities.txt");
115 stateToCityNames = cities.collect(groupingBy(
116 City:: getState,
117 mapping(City: :getName, joining(", "))));
118 System.out.println("stateToCityNames: "
119 + stateToCityNames);
120
121

1.12. Операции сведения

java.util.stream.Collectors 8

• puЬlic static <T,K,A,D> Collector<T,?,Мap<К,D>>
groupingBy (Function<? super Т,? extends К> classi:Eier, Collector<?
super Т ,A,D> downstream)

Возвращает коллектор, производящий отображение. Ключи получаются в результате примене­

ния функции classi:Eier () ко всем накапливаемым элементам, а значения - в результате

накапливания элементов по одному и тому же ключу с помощью нисходящего коллектора.

• static <Т> Collector<T,?, Long> counting()

Возвращает коллектор, подсчитывающий накапливаемые элементы.

• static <Т> Collector<T, ?, Integer> summingint(TointFunction<?
super Т> mapper)

• static <Т> Collector<T, ?, Long> summingLong(ToLongFunction<? super
Т> mapper)

• static <Т> Collector<T, ?, DouЬle> summingDouЬle(ToDouЬleFunction<?

super Т> mapper)

Возвращают коллектор, вычисляющий сумму значений, получаемых в результате применения

функции mapper() к накапливаемым элементам.

• static <Т> Collector<T, ?, Optional<T>> maxВy(Comparator<? super Т>
compara tor)

• static <Т> Collector<T, ?, Optional<T>> m.inBy(Comparator<? super Т>
compara tor)

Возвращают коллектор, вычисляющий максимальный или минимальный из накапливаемых

элементов, используя порядок расположения, который задает comparator.
• static <Т, А, R, RR> Collector<T, А, RR>

collectingAndThen(Collector<T, А, RR> downstream, Function<R, RR>
:Einisher)

Возвращает коллектор, сначала направмющий элементы в коллектор, а затем применяющий

функцию :Einisher () к полученному результату.
• static <Т, U, А, R> Collector<T, ?, R> mapping(Function<? super Т,

? extends U> mapper, Collector<? super U, А, R> downstream)

Возвращает коллектор, вызывающий функцию mapper () для каждого элемента и передаю­
щий полученные результаты нисходящему коллектору.

• static <T,U,A,R> Collector<T,?,R> flatМapping(Function<? super Т,?
extends Stream<? extends U>> mapper, Collector<? super U,A,R>
downs tream)

Возвращает коллектор, вызывающий функцию mapper (J для каждого элемента и передаю­
щий полученные результаты нисходящему коллектору.

• static <T,A,R> Collector<T,?,R> filtering(Predicate<? super Т>
predicate, Collector<? super Т ,A,R> downstream)

Возвращает коллектор, передающий нисходящему коллектору элементы, получаемые в ре­

зультате применения функции predicate ().

1.12. Операции сведения
Метод reduce () реализует общий механизм для вычисления значения

из потока данных. В простейшей форме он принимает двоичную функцию

Глава 1 • Потоки данных

и применяет ее, начю~ая с пер11ых двух элементов потока данных. Этот механизм

проще всего пояснип, на следующем примере функции суммирования:

List<Integer> values = .•• ;
Optional<Integer> sum = values.stream()

.reduce(lx, у) -> х + у);

В данном примере метод reduce () вычисляет сумму 11" + v1 + v~ + ... ,где,,,
элементы потока данных. Эгот метод во:шращает объект типа Optional, посколь­
ку достоверный ре:iультат недостижим, если поток данных пуст.

1!:'1 НА ЗАМЕТКУ! В данном примере можно сделать вызов reduce (Integer: : sum) вместо вызова
~ reduce((х, у) ->х+у).

В более общем смысле любую операцию, объединяющую частичный резуль­

тат х со следующим :шачением у, можно использовал, для получения нового

частичного результата. Операции сведения можно рассматривать и под иным

углом зрения. Так, если имеется операция сведения ар, то она дает резулнат vc
ар v1 ар v2 ор ... , где v, ор v.1.1 обо:шачает вызов функции op(v;, V;+1). Практическую

полЬ3у могут принести многие операции сведения, в том числе сложение, умно­

жение, сцепление символьных строк, получение максимума и минимума, объе­

динение и пересечение множеств.

Если операцию сведения требуется выполнить над параллельными потоками

данных, такая операция должна быть ассациативнаu. Это о:шачает, что порядок

объединения элементов в такой операции не имеет никакого значения. В матема­

тическом обо:шачении операция (х ар у) ар z должна быть равнозначна операции
х ар (1/ ар z). Примером операции, которая не является ассоциативной, служит
вычитание. Так, (6 - 3) - 2 -::/:. 6 - (3 - 2) .

Нередко имеется тож,)ест11енныu -~-\емент е вроде е ар х = х, и он может быть

исполь:юван в качестве отпрап1юй точки для вычисления. Например, О является

тождественным элементом операции сложения. Ниже приведена вторая форма

вы:юва метода reduce (). Тождественный элемент возвращается в том случае,
если поток данных пуст и больше не нужно обращаться к классу Optional.

List<Integer> values = •.• ;
Integer sum = values.stream() .reduce(O, (х, у) -> х + у)

/ ! Вычисляет результат О + v1, + v1 + v~ + ...

А тепер1, допустим, что имеется поток объектов и требуется получить сумму

некоторых свойств, например, длину всех символьных строк в потоке. Для этой

цели не годится простая форма метода reduce (), поскол1,ку в ней требуется
функция (Т, Т) -> Т с одинаковыми типами аргументов и возвращаемого ре­
зультата. Но в данном случае имеются два разных типа: String - для элементов

потока данных и int - для накапливаемого результата. На этот случай имеется

отдельная форма вызова метода reduce ().
Прежде всего нужно предоставить функцию накопления (total, word) ->

total + word. length (), которая вызывается повторно, образуя сумму нарастаю­
щим итогом. Но если вычисление этой суммы распараллелено, то оно разделя­

ется на нескол1,ко параллел1,ных вычислений, резул1,таты которых должны быть

1.12. Операции сведения

объединены. Для этой цели предоставляется вторая функция. Ниже приведена

полная форма вызова метода reduce () в данном случае.

int result = words.reduce(O,
(total, word) -> total + word.length(),
(totall, total2) -> totall + total2);

НА ЗАМЕТКУ! На практике методом reduce () приходится пользоваться нечасто. Ведь намного

проще преобразовать исходный поток символьных строк в поток чисел и воспользоваться одним из

методов для вычисления суммы. максимума или минимума. !Подробнее потоки чисел рассматри­

ваются далее в разделе 1.13.) В данном конкретном случае можно было бы сделать вызов words.
mapToint (String: : length) . swn (). Это было бы проще и эффективнее, поскольку не потре­
бовало бы упаковки.

НА ЗАМЕТКУ! Иногда метод reduce () оказывается недостаточно обобщенным. Допустим,
требуется накопить результаты во множестве типа Bi tset. Если распараллелить эту кол­
лекцию, то разместить ее элементы в одном множестве типа Bi tSet не удастся, поскольку
объект типа BitSet не является потокобезопасным. Именно поэтому нельзя воспользовать­
ся методом reduce (). Каждый сегмент исходной коллекции должен начинаться со своего
пустого множества, а методу reduce () можно предоставить только одно тождественное
значение. В таком случае следует воспользоваться методом collect (), который принимает
следующие аргументы.

Поставщик для получения новых экземпляров целевого объекта. Например, конструктор

для построения хеш-множества.

Накопитель, вводящий элемент в целевой объект. Например, метод add ().

Объединитель, соединяющий два объекта в один. Например, метод addAll ().

Ниже показано, каким образом метод collect () вызывается для множества битов.

BitSet result = stream.collect(BitSet: :new, BitSet::set,
BitSet: :or);

java.util.Stream 8

• Optional<T> reduce(BinaryOperator<T> accumulator)

• Т reduce (Т identi ty, BinaryOperator<T> accumulator)

• <U> U reduce(U identity, BiFunction<U, ? super Т, U> accumulator,
BinaryOpera tor<U> comЬiner)

Формируют накапливаемый итог элементов потока данных с помощью заданной функции

accumulator(). Если же предоставляется аргумент identity, то он становится первым
накапливаемым значением. А если в качестве аргумента предоставляется функция comЬin­
er (), она может быть использована для объединения итогов по сегментам потока данных,
которые накапливаются отдельно.

• <R> Rcollect(Supplier<R> supplier, BiConsumer<R, ? superT>
accumulator, BiConsumer<R, R> comЬiner)

Накапливает элементы в результат типа R. Для каждого сегмента потока данных вызывается

функция supplier(), предоставляющая первоначальный результат. Функция accumu­
lator() вызывается для добавления к нему элементов изменчивым способом, а функция
comЬiner() - для объединения обоих результатов.

Глава 1 • Потоки данных

1.1 З. Потоки данных примитивных типов
До сих пор целочисленные значения накапливались в потоке данных типа

Stream<Integer>, несмотря на то, что заключать каждое целочисленное значе­
ние в объект-оболочку совершенно неэффективно. Эго же относится и к другим

примитивным типам данных douЫe, float, long, short, char, byte и boolean.
В библиотеке потоков данных имеются специализированные классы IntStream,
LongStream и DouЬleStream, позволяющие сохранять значения примитивных ти­
пов непосредственно, не прибегая к помощи оболочек. Так, если требуется сохра­

нить значения типа short, char, byte и boolean, достаточно воспользоваться клас­
сом IntStream, а для хранения значений типа float - классом DouЫeStream.

Чтобы создать поток данных типа IntStream, достаточно вызвать методы
IntStream. of () и Arrays. stream () следующим образом:

IntStream stream = IntStream.of(l, 1, 2, 3, 5);
stream = Arrays.stream(values, from, to);

11 массив values относится к типу iпt(]

К потокам данных примитивных типов, как и к потокам объектов, мож­

но применять статические методы generate () и iterate (). Кроме того,
в классах IntStream и LongStream имеются статические методы range ()
и rangeClosed (),генерирующие диапазоны целочисленных значений с единич­
ным шагом, как показано ниже.

IntStream zeroToNinetyNine = IntStream.range(O, 100);
11 Верхний предел исключительно

IntStream zeroToHundred = IntStream.rangeClosed(O, 100);
11 Верхний предел включительно

В интерфейсе CharSequence имеются методы codePoints () и chars (),полу­
чающие поток типа IntStream кодов символов в Юникоде или кодовых единиц
в кодировке UTF-16. (Подробнее о кодировках символов - в главе 2.) Ниже при­
веден пример применения метода codePoints ().

String sentence = "\uD835\uDD46 is the set of octonions.";
11 \uD835\uDD46 - это кодировка UTF-16 знака@,
11 обозначающего октонионы в Юникоде (U+lD546)

IntStream codes = sentence.codePoints();
11 Поток шестнадцатеричных значений
11 10546 20 69 73 20 ...

Поток объектов можно преобразовать в поток данных примитивных типов

с помощью методов mapToint (), mapToLong () или mapToDouЫe ().Так, если
имеется поток символьных строк и их длины требуется обработать как целочис­

ленные значения, это можно сделать и средствами класса IntStream следующим
образом:

Stream<String> words = ... ;
IntStream lengths = words.mapToint(String: :length);

Чтобы преобразовать поток данных примитивного типа в поток объектов, до­

статочно воспользоваться методом boxed () следующим образом:

Stream<Integer> integers = IntStream.range(O, 100) .boxed();

1.1 Э. Потоки данных примитивных типов

Как правило, методы для потоков данных примитивных типов аналогичны

методам для потоков объектов. Ниже перечислены наиболее существенные их

отличия.

• Методы типа toArray возвращают массивы примитивных типов.

• Методы, возвращающие результат необязательного типа, возвращают зна­

чение типа Optionalint, OptionalLong или OptionalDouЬle. Классы этих
типов аналогичны классу Optional, но у них имеются методы getAsint (),
getAsLong () и getAsDouЫe () вместо метода get ().

• Имеются методы sum (), average (), max () и min (),возвращающие сумму,
среднее, максимум и минимум соответственно. Эти методы не определены

для потоков объектов.

• Метод summaryStatistics () возвращает объект типа IntSummary
Sta tistics, LongSummaryStatis tics или DouЫeSummarySta tis tics,
способный одновременно сообщать о сумме, среднем, максимуме и мини­

муме в потоке данных.

НА ЗАМЕТКУ! В классе Random имеются методы ints (), longs () и douЫes (), возвращаю­
щие потоки данных примитивных типов, состоящие из случайных чисел. Если же случайные чис­

ла потребуются в параллельных потоках данных, в таком случае следует воспользоваться классом

SplittaЫeRandom.

В примере кода из листинга 1.7 демонстрируется применение элементов при­
кладного программного интерфейса API для потоков данных примитивных типов.

Листинг 1.7. Исходный код из файла streams/PrimitiveTypeStreams. java

1 package streams;
2
3 /**
4 * @version 1.01 2018-05-01
5 * @author Сау Horstmann
6 * /
7
8 import java.io.IOException;
9 import java.nio.charset.StandardCharsets;
10 import java.nio.file.Files;
11 import java.nio.file.Path;
12 import java.nio.file.Paths;
13 import java.util.stream.Collectors;
14 import java.util.stream.IntStream;
15 import java.util.stream.Stream;
16
17 puЫic class PrimitiveTypeStreams
18 {
19 puЫic static void show(String title, IntStream stream)
20 {
21 final int SIZE = 10;
22 int[] firstElements =

23 stream.limit(SIZE + 1) .toArray();
24 System.out.print(title + ": ");

Глава 1 • Потоки дакных

25 for (int i = О; i < firstElements.length; i++)
2 6 {
27 if (i > 0) System.out.print(", ");
28 if (i < SIZE) System.out.print(firstElements[i));
29 else System.out.print(" ... ");
30
31 System.out.println();
32
33
34 puЫic static void main(String[] args)
35 throws IOException
36
37 IntStream isl = IntStream.generate(() ->
38 (int) (Math.random() * 100));
39 show("isl", isl);
40 IntStream is2 = IntStream.range(5, 10);
41 show("is2", is2);
42 IntStream is3 = IntStream.rangeClosed(5, 10);
43 show("is3", is3);
44
45 Path path = Paths.get(" .. /gutenberg/alice30.txt"I;
46 var contents = new String(Files.readAllBytes(path),
47 StandardCharsets.UTF_B);
48
49 Stream<String> words =
50 Stream.of (contents.split ("\ \PL+"));
51 IntStream is4 = words.mapToint(String::length);
52 show("is4", is4);
53 var sentence = "\uD835\uDD46 is the set "
54 + "of octonions.";
55 System.out.println(sentence);
56 IntStream codes = sentence.codePoints();
57 System.out.println(codes.mapToObj (с ->
58 String.format("%X ", c)).collect(
59 Collectors. joining ()));
60
61 Stream<Integer> integers =
62 IntStream.range(O, 100) .boxed();
63 IntStream is5 =
64 integers.mapToint(Integer: :intValue);
65 show("is5", is5);
66
67

java.utii.stream.IntStream 8

• static IntStream range(int startinclusive, int endExclusive)

• static IntStream rangeClosed(int startinclusive, int endinclusive)

Возвращают поток данных типа IntStream с целочисленными элементами в заданном ди­
апазоне.

• static IntStream of (int. . . values)

Возвращает поток данных типа IntStream с заданными элементами.

1.13. Потоки данных примитивных типов

java. util. stream. IntStream 8 /окончание/

• int [] toArray ()

Возвращает массив, состоящий из элементов исходного потока данных.

• int sum()

• OptionalDouЫe average()

• Optionalint max ()

Optionalint min ()

• IntSummaryStatistics summaryStatistics()

Возвращают сумму, среднее, максимум, минимуму элементов исходного потока данных или

объект, из которого могут быть получены эти четыре результата.

• Stream<Integer> Ьохеd()

Возвращает поток объектов-оболочек для элементов исходного потока данных.

java.util.stream.LongStream 8

• static LongStream range (long startinclusive, long endE.xclusive)

static LongStream rangeClosed(long startinclusive,
long endinclusive)

Возвращают поток данных типа LongStream с целочисленными элементами в заданном ди­
апазоне.

• static LongStream of(long ... values)

Возвращает поток данных типа LongStream с заданными элементами.

long [] toArray ()

Возвращает массив, состоящий из элементов исходного потока данных.

• long sum()

• OptionalDouЬle average()

• OptionalLong max ()

OptionalLong min ()

• LongSummaryStatistics summaryStatistics()

Возвращают сумму, среднее, максимум, минимуму элементов исходного потока данных или

объект, из которого могут быть получены эти четыре результата.

• S tream<Long> Ьохеd ()

Возвращает поток объектов-оболочек для элементов исходного потока данных.

java.util.stream.DouЬleStream 8

• static DouЬleStream of(douЬle ... values)

Возвращает поток данных типа DouЬleStream с заданными элементами.

Глава 1 • Потоки данных

java. util. stream. DouЬleStream 8 (окончание}

• douЫe [] toArray ()

Возвращает массив, состоящий из элементов исходного потока данных.

• douЫe sum ()

• OptionalDouЫe average()

• OptionalDouЫe шах ()

• OptionalDouЫe min ()

• DouЫeSwпmaryStatistics swпmaryStatistics()

Возвращают сумму, среднее, максимум, минимуму элементов исходного потока данных или

объект, из которого могут быть получены эти четыре результата.

• Stream<DouЫe> Ьохеd ()

Возвращает поток объектов-оболочек для элементов исходного потока данных.

java. lang. CharSequence 1. О

• IntStream codePoints () 8

Возвращает поток всех кодовых точек исходной символьной строки в Юникоде.

java. util. Random 1. О

• IntStream ints ()

• IntStream ints (int randomNumЬerOrigin, int randomNшпЬerBound) В

• IntStream ints (long strвamSize) 8

• IntStream ints(long strвamSize, int randomNшпЬвrOrigin, int
randomNumЬerBound) 8

• LongStream longs () 8

• LongStream longs(long randomNшпЬerOrigin, long randomNшпЬerBound) 8

• LongStream longs (long strвamSizв) 8

• LongStream longs (long streamSize, long randomNumЬerOrigin, long
randomNumЬerBound) 8

• DouЬleStream douЫes () 8

• DouЬleStream douЫes(douЫe randomNumЬerOrigin, douЫe

randomNшпЬerBound) 8

• DouЬleStream douЫes (long streamSize) 8

• DouЬleStream douЫes(long streamSize, douЫe randomNшпЬerOrigin,
douЫe randomNшпЬerBound) 8

Возвращают потоки произвольных чисел. Если указан аргумент strвamSize, возвращает­
ся конечный поток с заданным количеством элементов. Если же предоставлены границы, то

возвращается поток с элементами в пределах от randomNumЬerOrigin !включительно)
до randomNшпЬerВound !исключительно).

1.14. Параллельные потоки данных

java.util.Optional(IntlLonglDouЫe) В

static Optional(IntlLonglDouЬle) of((intllongldouЬle) vaiue)

Возвращает необязательный объект с предоставленным значением указанного примитивного

типа.

• (intllongldouЬle) getAs(IntlLonglDouЬle) ()

Возвращает значение данного необязательного объекта или генерирует исключение типа

NoSuchElementException, если этот объект оказывается пустым.

(intllongldouЬle) orElse((intllongldouЬle) other)

• (intllongldouЬle) orElseGet((IntlLonglDouЬle)Supplier other)

Возвращают значение данного необязательного объекта или альтернативное значение, если

этот объект оказывается пустым.

• void ifPresent((IntlLonglDouЬle)Consumer consumer)

Передает значение данного необязательного объекта функции consшner(), если этот объ­

ект оказывается непустым.

java.util. (IntlLonglDouЬle)SummaryStatistics В

long getCount ()

• (intllongldouЬle) getSum()

• douЬle getAverage ()

• (intllongldouЬle) getмax()

• (intllongldouЬle) getмin()

Возвращают подсчет, сумму, среднее, максимум и минимум накапливаемых элементов исход­

ного потока данных.

1.14. Параллельные потоки данных
Потоки данных упрощают распараллеливание групповых операций. Этот

процесс происходит в основном автоматически, но требует соблюдения немногих

правил. Прежде всего, нужно иметь в своем распоряжении параллельный поток

данных. Получить параллельный поток данных можно из любой коллекции с по­

мощью метода Collection. parallelStream () следующим образом:

Stream<String> parallelWords = words.parallelStream();

Более того, метод parallel () преобразует любой последовательный поток
данных в параллельный поток, как показано ниже. При выполнении оконечного

метода поток данных действует в параллельном режиме, и поэтому промежуточ­

ные операции в этом потоке распараллеливаются.

Stream<String> parallelWords =
Stream.of(wordArray) .parallel();

Когда потоковые операции выполняются параллельно, цель состоит в том,

чтобы получитъ в итоге такой же результат, как и в том случае, если бы они

Глава 1 • Потоки данных

выполнялись последовательно. Очень важно, чтобы эти операции можно было

выполнять в произвольном порядке.

Допустим, требуется подсчитал, все короткие слова в потоке символы1ых

строк. В приведенном ниже примере демонстрируется, как не следует решап, эту

задачу.

int[] shortWords = new int[12];
words. paral lelStream () . forEach (s ->

{ if (s.length() < 121 shortWords[s.length()]++; });
11 ОШИБКА: состояние гонок!

System.out.println(Arrays.toString(shortWords));

Приведенный выше код написан очею, скверно. Функция, передаваемая ме­

тоду forEach (), выполняется параллельно в нескольких потоках исполнения,
в каждом и:~ которых обновляется разделяемый ими общий массив. Как будет

показано в главе 12, это классическое состояние гонок. Если выполнить данный
код многократно, то в результате каждого его выполнения, вероятнее всего, будет

получена совсем другая последовательность подсчитанных коротких слон, при­

чем каждый раз неверная.

В обязанности программиста входит обеспечение надежного выполнения

в параллельном режиме функций, передаваемых для распараллеливания опера­

ций в потоке данных. Для этого лучше всего избегать изменяемого состояния. В

следующем примере кода наглядно показано, что вычисления можно надежно

распараллелить, если сгруппировать символьные строки по длине и подсчитать

их:

Map<Integer, Long> shortWordCounts
words .parallelStream ()

.filter(s -> s.length() < 101

.collect(groupingBy(String: :length, counting(I));

По умолчанию потоки данных, получаемые из упорядоченных коллекций

(массивов и списков), диапазонов, генераторов, итераторов или в результате вы­

зова метода Stream. sorted (),упорядочиваются. Резул1,таты накапливаются в по­
рядке следования исходных элементов и полностью предсказуемы. Если выпол­

нить одни и те же операции дважды, то будут получены совершенно одинаковые

результаты.

Упорядочение не исключает эффективное распараллеливание. Например,

при вызове stream.map (fun) поток данных может быть разбит на 11 сегментов,

каждый из которых обрабатывается параллелыю. А полученные резул1,таты сно­

ва собираются по порядку.

Некоторые операции могут быть распараллелены более эффективно, если

требование упорядочения опускается. Вызывая метод Stream. unordered (),
можно указать, что упорядочение не имеет значения. Это, в частности, выгод­

но при выполнении операции методом Stream. distinct ().В упорядоченном
потоке метод distinct () сохраняет первый из всех равных элементов. Этим

ускоряется распараллеливание, поскольку в потоке исполнения, обрабатываю­

щем отдельный сегмент, неизвестно, какие именно элементы следует отбросить,

до тех пор, пока сегмент не будет обработан. Если же допускается сохранить

1.14. Параллельные потоки данных

.любой однозначный элемент, то все сегменты моrут быть обработаны параллель­

но (с помощью общего множества для отслеживания дубликатов).

Если же опустить упорядочение, то можно ускорить выполнение метода

l imi t () . А если требуется обработать любые п элементов из потока данных
и при этом неважно, какие из них будут получены, то с этой целью можно сде­

лать следующий вызов:

Stream<String> sample = words.parallelStream()
.unordered() .limit (n);

Как обсуждалось в разделе 1.9, объединять отображения невыгодно из-за не­
малых затрат. Именно поэтому в методе Collectors. groupingByConcurrent ()
используется общее параллельное отображение. Чтобы извлечь выгоду из парал­

лелизма, порядок следования значений в отображении должен быть иным, чем

в потоке данных:

Map<Integer, List<String>> result =

words.parallelStream() .collect(
Collectors.groupingByConcurrent(String::length));
11 Значения не накапливаются в потоковом порядке

Разумеется, это не имеет особого значения, если применяется нисходящий

коллектор, не зависящий от упорядочения, как демонстрируется в следующем

примере кода:

Map<Integer, Long> wordCounts =

words.parallelStream()
.collect(groupingByConcurrent(

String: :length, counting()));

Не пытайтесь сделать все потоки данных параллельными, надеясь тем самым

ускорить выполнение операций над ними. Вместо этого принимайте во внима­

ние следующее.

• Распараллеливание требует немалых :~атрат, которые окупаются лишь при

обработке очень крупных массивов данных.

• Распараллеливание потока данных дает преимущества лишь в том случае,

если источник исходных данных удается эффективно разделить на несколь­

ко частей.

• Пул потоков исполнения, применяемый в параллельных потоках данных,

может зависнуть при выполнении таких блокирующих операций, как

ввод-вывод или доступ к сети.

Параллельные потоки данных лучше всего подходят для обработки крупных

массивов данных в оперативной памяти с интенсивными вычислениями.

СОВЕТ. До версии Java 9 распараллеливать поток данных, возвращавшийся методом Files.
lines (), не имело никакого смысла. Данные в таком потоке не подлежали разделению на ча­
сти, поэтому приходилось читать сначала первую половину файла, а затем вторую. Теперь данный
метод может оперировать отображаемым в памяти файлом, эффективно разделяя его содержимое

на части. Так, если обрабатываются строки из крупного файла, то, распараллеливая поток данных,

можно существенно повысить производительность.

Глава 1 • Потоки данных

НА ЗАМЕТКУ! По умолчанию в параллельных потоках данных применяется глобальный пул

вилочного соединения, возвращаемый методом ForkJoinPool. commonPool (). И этого
оказывается достаточно, если выполняемые операции не блокируются, а пул не требуется

раэдетпь как общий вместе с другими задачами. В противном случае придется употребить

специальный прием, подставив другой пул. Для этого достаточно разместить выполняемые

операции в теле метода suЬmit() из специального пула следующим образом:

ForkJoinPool customPool = ... ;
result = customPool.submit(() ->

stream. parallel () . map (...) . col lect 1 ... 1) . get 11 ;

или же сделать то же самое, но асинхронно:

CompletaЬleFuture.supplyAsync(() ->
stream.parallel () .map 1 ••• 1. collect 1 •••),

customPool) . thenAccept (result -> ... 1 ;

НА ЗАМЕТКУ! Если требуется распараллелить операции над потоками данных на основании

случайных чисел, этот процесс не следует начинать с потоков данных, возвращаемых методами

Random. ints (), Random. longs () и Random. douЬles (). поскольку такие потоки не разделя­
ются на части. Вместо этого лучше воспользоваться методами ints () . longs () и douЬles () из
класса Spli ttaЬleRandom.

В примере кода из листинга 1.8 демонстрируется, как следует оперировать па­
раллельными потоками данных.

Листинг 1.8. Исходный код из файла parallel/ParallelStreams. java

1 package parallel;
2
3 /**
4 * @version 1.01 2018-05-01
5 * @author Сау Horstmann
6 */
7
8
9

import static java.util.stream.Collectors.*;

10 import java.io.*;
java.nio.charset.*;
java.nio.file.*;
Java.util.*;
java.util.stream.*;

11 import
12 import
13 import
14 import
15
16
17
18
19
20
21
22
23
24
25
26

puЫic class ParallelStreams
(

puЫic static void main(String[] args)
throws IOException

var contents = new String(Files.readAllBytes(
Paths.get(" .. /gutenberg/alice30.txt")),

StandardCharsets.UTF 81;
List<String> wordList = List.of(contents.split("\\PL+"));

11 ниже приведен очень скверньм код:

1.14. Параллельные потоки данных

27 var shortWords = new int[lO];
28 wordList.parallelStream() .forEach(s ->
29 (
30 if (s.length() < 10) shortWords[s.length()]++;
31 f);
32 System.out.println(Arrays.toString(shortWords));
33
34 //попробовать снова, хотя результат вряд ли

35 //окажется иным, т.е. неверным

36 Arrays.fill(shortWords, 0);
37 wordList.parallelStream(I .forEach(s ->
38 (
39 if (s.length() < 10) shortWords[s.length()]++;
4 о)) ;
41 System.out.println(Arrays.toString(shortWords));
42
43 //выход: сгруппировать и подсчитать результаты

44 Map<Integer, Long> shortWordCounts wordList
45 .parallelStream()
46 .filter(s -> s.length() < 10)
4 7 . col lect (groupingBy (St r ing: : length, count ing (1)) ;

48
49 System.out.println(shortWordCounts);
50
51 //нисходящий порядок не детерминирован:

52 Map<Integer, List<String>> result =
53 wordList.parallelStream() .collect(
54 Collectors.groupingByConcurrent(
55 String::length));
56
57 System.out.println(result.get(14));
58
59 result = wordList.parallelStream() .collect(
60 Collectors.groupingByConcurrent(String: :length));
61
62 System.out.println(result.get(14));
63
64 Map<Integer, Long> wordCounts =
65 wordList .parallelStream (). collect (
66 groupingByConcurrent(
67 String: : length, counting () 1) ;

68
69 System.out.println(wordCounts);
70
71

java.util.stream.BaseStream<T, S extends BaseStream<T, S>> 8

• S parallel ()

Возвращает параллельный поток данных с такими же элементами, как и у исходного потока.

• S unordered ()

Возвращает неупорядоченный поток данных с такими же элементами, как и у исходного

потока.

Глава 1 • Потоки данных

java. util. Collection<E> 1. 2

• Stream<E> parallelStream () 8

Возвращает параллельный поток данных с элементами из исходной коллекции.

В этой главе было пока:ыно, как применять на практике библиотеку потоков

данных, внедренную в версии Java 8. В следующей главе рассматривается не ме­
нее важная тема организации ввода-вывода.

ГЛАВА

Ввод и вывод

В этой главе ...
~ Потоки ввода-вывода

~ Чтение и запись двоичных данных

~ Потоки ввода-вывода и сериализация объектов

~ Манипулирование файлами

~ Файлы, отображаемые в памяти

~ Регулярные выражения

В этой главе речь пойдет о прикладных интерфейсах (API), досrупных в Java
для организации ввода-вывода данных. Из нее вы, в частности, узнаете, как полу­

чать досrуп к файлам и каталогам, как читать и записывать данные в двоичном

и текстовом формате. В главе рассматривается также механизм сериализации,

позволяющий сохранять объекты так же просто, как и текстовые или числовые

данные. Далее речь пойдет о манипулировании файлами и каталогами. И в за­

вершение обсуждаются регулярные выражения, хотя они и не имеют непосред­

ственного отношения к потокам ввода-вывода и файлам. Тем не менее трудно

найти более подходящее место для обсуждения этой темы, как его, очевидно, не

удалось найти и разработчикам Java, присоединившим спецификацию приклад­
ного интерфейса API для регулярных выражений к запросу на уточнение новых
средств ввода-вывода.

2.1. Потоки ввода-вывода
В прикладном интерфейсе Java API объект, из которого можно читать после­

довательность байтов, называется потоком ввода, а объект, в который можно запи­

сывать последовательносп, байтов, - потоком вывода. В роли таких источников

Глава 2 • Ввод и вывод

и приемников последовательностей байтов чаще всего выступают файлы, но

могут также служить сетевые соединения и даже блоки памяти. Абстрактные

классы InputStream и OutputStream служат основанием для иерархии классов
ввода-вывода.

НА ЗАМЕТКУ! Рассматриваемые здесь потоки ввода-вывода никак не связаны с потоками

данных, представленными в предыдущей главе. Ради ясности они называются в тексте пото­

ками ввода и вывода всякий раз, когда речь идет о вводе-выводе.

Байтовые потоки ввода-вывода неудобны для обработки информации, храня­

щейся в Юникоде (напомним, что в Юникоде на каждый символ приходится не­

сколько байтов). Поэтому для обработки символов в Юникоде предусмотрена от­

дельная иерархия классов, наследующих от абстрактных классов Reader и Wri ter.
Эти классы позволяют выполнять операции чтения и записи на основании двух­

байтовых значений типа char (т.е. кодовых единиц в кодировке UTF-16), а не одно­
байтовых значений типа byte.

2.1.1. Чтение и запись байтов
В классе InputStream имеется следующий абстрактный метод:

abstract int read()

Этот метод читает один байт и возвращает считанный байт или значение -1,
если обнаруживается конец источника ввода. Разработчик конкретного класса

потока ввода может переопределить этот метод таким образом, чтобы он пре­

доставлял какую-нибудь полезную функциональную возможность. Например,

в классе FileinputStream этот метод выполняет чтение одного байта из файла.
А поток ввода System. in представляет собой предопределенный объект под­
класса InputStream, который позволяет читать данные из "стандартного ввода",
т.е. консоли или переадресовываемого файла.

У класса InputStream имеются также неабстрактные методы для чтения мас­
сива байтов или пропуска определенного ряда байтов. В версии Java 9 в этом
классе появился приведенный ниже очень удобный метод для чтения байтов из

потока данных. Имеются также методы для чтения заданного количества байтов

(см. примечания к прикладному интерфейсу API в конце этого раздела). В этих
методах вызывается абстрактный метод read () , благодаря чему в подклассах до­
статочно переопределить только один метод.

byte[] bytes = in.readAllBytes();

Аналогично в классе OutputStream определяется следующий абстрактный
метод, записывающий один байт в указанное место для вывода данных:

abstract void write(int Ь)

Если же имеется массив байтов, их можно записать все вместе, как показано

ниже.

byte[] values = ... ;
out.write(values);

2.1. Потоки ввода-вывода

Метод transferTo () направляет все байты из потока ввода в поток вывода
следующим образом:

in.transferTo(out);

Как методы read (), так и методы wr i te () блокируют доступ до тех пор, пока
байты не будут фактически считаны или записаны. Это означает, что если к по­

току ввода-вывода не удается получить доступ немедленно (что обычно случается

из-за занятости сетевого соединения), происходит блокирование текущего пото­

ка исполнения. А это дает другим потокам исполнения возможность выполнять

какую-нибудь полезную задачу, в то время как метод ожидает, когда поток вво­

да-вывода снова станет доступным.

Метод а v а i l аЫ е () позволяет проверить количество байтов, доступное
для считывания в текущий момент. Это означает, что фрагмент кода, аналогич­

ный представленному ниже, вряд ли приведет к блокировке.

int bytesAvailaЫe in.availaЬle();

if (bytesAvailaЫe > 0)
{

var data = new byte[bytesAvailaЬle];
in.read(data);

По завершении чтения или записи данных в поток ввода-вывода следует за­

крыть его, вызвав метод close () . Такой вызов приводит к освобождению систем­
ных ресурсов, доступных в ограниченном количестве. Если же в прикладной про­

грамме открывается слишком много потоков ввода-вывода без последующего их

закрытия, ресурсы системы могут исчерпаться. Кроме того, закрытие потока вы­

вода приводит к очистке использовавшегося для него буфера: все байты, которые

временно размещались в этом буфере с целью их последующей доставки в виде

более крупного пакета, рассылаются по местам своего назначения. Так, если не за­

крыть файл, последний пакет байтов может так никогда и не быть доставлен. Очи­

стить буфер от выводимых данных можно и вручную с помощью метода fl ush () .
Даже если в классе потока ввода-вывода предоставляются конкретные методы

для работы с базовыми функциями чтения и записи, разработчики прикладных

программ редко пользуются ими. Для них больший интерес представляют дан­
ные, содержащие числа, символьные строки и объекты, а не исходные байты. По­

этому в Java предоставляется немало классов потоков ввода-вывода, наследуемых
от базовых классов InputStream и OutputStream и позволяющих обрабатывать
данные в нужной форме, а не просто в виде исходных байтов.

java.io.InputStream 1.0

• aЬstract int read()

Считывает байт данных и возвращает его. По достижении конца потока возвращает значение -1.

• int read(byte[] Ь)

Считывает данные в байтовый массив и возвращает фактическое количество считанных бай­
тов или значение -1, если достигнут конец потока ввода. Этот метод позволяет считать мак­
симум b.1.engtь байтов.

Глава 2 • Ввод и вывод

java. io. InputStream 1. О /окончание}

int read(byte[] Ь, int off, int len)

• int readNВytes (byte[J Ь, int off, int len) 9

Считывают количество байтов вплоть до len, не блокируясь !метод read ()) или же блоки­
руясь !метод readNВytes ())до тех пор, пока не будут прочитаны все значения. Считанные
значения размещаются в массиве ь. начиная с позиции off. Возвращают фактическое коли­
чество прочитанных байтов или значение -1, если достигнут конец потока ввода.

• byte [] readAllBytes () 9

Возвращает массив всех байтов, которые могут быть прочитаны из данного потока ввода.

lonq transferTo(OutputStream out) 9

Направляет все байты из данного потока ввода в заданный поток вывода, возвращая количе­

ство направленных байтов. Ни тот, ни другой поток при этом не закрывается.

lonq skip (lonq n)

Пропускает п байтов в потоке ввода. Возвращает фактическое количество пропущенных бай­

тов !которое может оказаться меньше n, если достигнут конец потока ввода).

• int availaЫe()

Возвращает количество байтов, доступных без блокирования. !Напомним, что блокирование
означает потерю текущим потоком исполнения своей очереди на выполнение.)

• void close ()

Закрывает поток ввода.

• void mark(int readlimit)

Устанавливает маркер на текущей позиции в потоке ввода. !Не все потоки поддерживают та­
кую функциональную возможность.) Если из потока ввода считано байтов больше заданного
предела readlimi t, в потоке ввода можно пренебречь устанавливаемым маркером.

• void reset ()

Возвращается к последнему маркеру. Последующие вызовы метода read () приводят к по­
вторному считыванию байтов. В отсутствие текущего маркера поток ввода не устанавливает­
ся в исходное положение.

• boolean markSupported ()

Возвращает логическое значение true, если в потоке ввода поддерживается возможность
устанавливать маркеры.

java.io.OutputStream 1.0

aЬstract void wri te (int n)

Записывает байт данных.

void write (byte [] Ь)

• void write (byte[] Ь, int off, int len)

Записывают все байты или определенный ряд байтов из массива Ь.

• void close ()

Очищает и закрывает поток вывода.

• void flush ()

Очищает поток вывода, отправляя любые находящиеся в буфере данные по месту их назна­

чения.

2.1. Потоки ввода-вывода

2.1.2. Полный комплект потоков ввода-вывода
В отличие от я3ыка С, где для ввода-вывода достаточно и еди11стве1111ого типа

FI LE *, в java имеется целый комплект И3 более чем 60 (!) ра:ыичных типов пото­
ков ввода-вывода (рис. 2.1 и 2.2). Ра:~делим эти типы по областям их применения.

Так, для классов, обрабатывающих байты и символы, существуют отдельные ие­

рархии.

... "" """'51<eom

ВуtеАпау

Ou!pulStmam

lnputStre8m

... ,
i\putSlream

___________ , . .

' '
' .
'
'

'

' ' :-----------------·
.~-'-~--.

Рис. 2.1. Иерархия классов для потоков ввода-вывода

OЬjoct

lnpu1St1681n

Глава 2 • Ввод и вывод

Buffered
Reader

UneNumЬer

Reader

Buffered
Writer

CharArray
Reader

CharArray
Writer

Reader

FilterReader

PushЬock

Reader

Writer

lnputStream
Reader

Рис. 2.2. Иерархия классов Reader и Wri ter

Как упоминалось выше, классы I nputStream и OutputStream позволяют вы­
полнять чтение и запись отдельных байтов и массивов байтов. Эти классы обра­

:1уют основу иерархии, приведенной на рис. 2.1. Для чтения и записи символы1ых
строк и чисел требуются подклассы, обладающие немалыми функционалы1ыми

во:1мож1юстями. Например, классы DatainputStream и DataOutput St ream по­
зволяют выполнять чтение и запись всех простых типов данных Java в двоичном
формате. И, наконец, имеются классы для выполнения отдельных полезных опе­

раций ввода-вывода, например, классы ZiplnputSt ream и ZipOu t p1JtSt ream, по­
зволяющие читать и записывать данные в файлы с уплотнением в таком и :111ест-

11ом формате, как ZIP.
С другой стороны, для ввода-вывода текста в Юникоде необходимо обращать­

ся к подклассам таких абстрактных классов, как Reader и Wri t er (см. рис. 2.2).
Базовые методы из классов Reader и Wr iter похожи на базовые методы из клас­
со11 InputSt r eam и OutputStre am, как пока:~ано ниже.

a bstract int read()
abstract v o i d wr ite (int с)

2. 1. Потоки ввода-вывода

Метод r ead () возвращает кодовую единицу в Юникоде (в виде целого числа
от О до 65535) или значение -1, если достигнут конец файла. А метод write () вы­
зывается с заданной кодовой единицей в Юникоде. Подробнее о кодовых единицах

в частности и Юникоде вообще см. в главе 3 первого тома настоящего издания.
Имеются также четыре дополнительных интерфейса: CloseaЫe, FlushaЫe,

ReadaЫe и AppendaЫe (рис. 2.3). Первые два очень просты: в них определяется
единственный метод void c l ose () t h rows IOExcept i on и vo id fl ush () соот­
ветственно. Классы InputStream, Out putStream, Reader и Wri t er реализуют ин­
терфейс CloseaЫe, а классы OutputStream и Write r - интерфейс FlushaЫe.

lnput
Stream

Output
Stream

<интерфейс>

FlushaЫe

' '
«интерфейс» .q. _ _ __________ г::;-~ __________ _

Closeaыe L...::_J

«интерфейс»

ReadaЫe

String
Builder

Рис. 2.3. Интерфейсы CloseaЫe, FlushaЬle, ReadaЫe и AppendaЬle

НА ЗАМЕТКУ! Интерфейс java. io. CloseaЫe расши ряет интерфей с java. lang .
AutoCloseaЫe. Следовательно, в любой реализации интерфейса СlозеаЫе можно употре­

блять оператор try с ресурсами. А зачем вообще нужны два интерфейса? В методе close ()
из интерфейса CloseaЫe генерируется только исключение типа IOException, тогда как
в методе AutoCloseaЫe. close () исключение может быть вообще не сгенери ровано.

В интерфейсе ReadaЫe имеется единственный метод int r e ad (Cha rBuffer сЬ) ,

а в классе CharBuf f e r - методы для чтения и записи с последовательным и произ­

вольным доступом. Этот класс представляет буфер в оперативной памяти или ото­

бражаемый в памяти файл. (Подробнее об этом речь пойдет далее, в разделе 2.5.2.)
В интерфейсе AppendaЫe имеются два приведенных ниже метода, позволя­

ющие присоединять как отдельные символы, так и целые последовательности

символов.

AppendaЫe append(char с)
AppendaЬle append(CharSequence s)

Глава 2 • Ввод м вывод

Интерфейс CharSequence описывает основные свойства последовательно­
сти :шачений типа char. Его реализуют такие классы, как String, CharBuffer,
StringBuilder и StringBuffer. Из всех классов, представляющих потоки иво­
да-иывода, только класс Writer реализует интерфейс AppendaЫe.

java.io.CloseaЫe 5.0

• void close ()

Закрывает данный поток ввода-вывода типа CloseaЬle. Этот метод может генерировать

исключение типа IOException.

java. io. FlushaЫe 5 . О

• void flush ()

Очищает данный поток ввода-вывода типа FlushaЫe.

java.lang.ReadaЬle 5.0

int read(CharBuffer сЬ)

Пытается считать столько значений типа char в буфер сЬ, сколько в нем может их уместить­
ся. Возвращает количество считанных значений типа char или значение -1, если из данно­
го потока ввода типа ReadaЫe больше не доступно никаких значений.

java. lang.AppendaЬle 5. О

AppendaЬle append (char с)

AppendaЫe append (CharSequence cs)

Присоединяют указанную кодовую единицу или все кодовые единицы из заданной последо­

вательности к данному потоку ввода-вывода типа AppendaЬle. Возвращают ссылку this.

java.lang.CharSequence 1.4

• char charAt (int index)

Возвращает кодовую единицу по заданному индексу.

int length ()

Возвращает сведения об общем количестве кодовых единиц в данной последовательности.

• CharSequence suЬSequence(int startindex, int endindex)

Возвращает последовательность типа CharSequence, состоящую только из тех кодовых
единиц, которые хранятся в пределах от startindex до endindex - 1.

String toString ()

Возвращает символьную строку, состоящую только из тех кодовых единиц, которые входят

в данную последовательность.

2.1. Потоки ввода-вывода

2.1.З. Сочетание фильтров потоков ввода-вывода

Классы FileinputStream и FileOutputStream позволяют создавать потоки
ввода-вывода и присоединять их к конкретному файлу на диске. Имя требуемо­

го файла и полный путь к нему указываются в конструкторе соот11етстнующего

класса. Например, в приведенной ниже строке кода поиск файла employee. dat
будет производиться в каталоге пользователя.

FileinputStream fin = new FileinputStream("employee.dat");

•
СОВЕТ. Во всех классах из пакета java. io относительные пути к файлам воспринимают­

ся как команда начинать поиск с рабочего каталога пользователя, поэтому может возник­

нуть потребность выяснить содержимое этого каталога. Для этого достаточно вызвать метод

System. getProperty ("user. dir") .

ВНИМАНИЕ! Знак обратной косой черты является экранирующим в символьных строках
Java, поэтому указывайте в путях к файлам по два таких знака подряд, как, например, с:\\
Windows\\win.ini. В Windows допускается указывать в путях к файлам одиночные знаки
прямой [или просто) косой черты, как, например, с: /Windows/win. ini, поскольку в боль­
шинстве вызовов из файловой системы Windows знаки косой черты будут интерпретироваться
как разделители файлов. Но делать это все же не рекомендуется, поскольку в режиме работы

файловой системы Windows возможны изменения. Вместо этого ради переносимости программ
в качестве разделителя файлов лучше употреблять именно тот знак, который принят на данной

платформе. Такой знак доступен в виде строковой константы java. io. File. separator.

Как и в абстрактных классах InputStream и OutputStream, в классах

FileinputStream и FileOutputStream поддерживаются чтение и запись только
на уровне байтов. Так, из объекта fin в приведенной ниже строке кода можно
только считать отдельные байты и массивы байтов.

byte Ь = (byte) fin.read();

Как поясняется в следующем разделе, имея в своем распоряжении только

класс Оа tainputStream, можно было бы читать данные числовых типов следу­
ющим образом:

DatainputStream din = ... ;
douЫe s = din.readDouЬle();

Но, как и в классе FileinputStream отсутствуют методы для чтения данных
числовых типов, так и в классе DatainputStream отсутствуют методы для и:iвле­
чения данных из файла.

В языке Java применяется искусный механи:~м для ра:iделения двух видов
обязанностей. Одни потоки ввода-вывода (типа FileinputStream и поток вво­
да, возвращаемый методом openStream () из класса URL) могут извлекать бай­
ты из файлов и других экзотических мест, а другие потоки ввода-вывода (типа

DatainputStream) - составлять эти байты в более поле:шые типы данных. Про­

граммирующему на Java остается только употреблять их в нужном сочетании.
Например, чтобы получить возможность читать числа и:i файла, достаточно со­

здать сначала объект потока ввода типа FileinputStream, а :iатем передать его
конструктору класса DatainputStream, как показ<шо ниже.

Глава 2 • Ввод и вывод

var fin = new FileinputStream("employee.dat");
var din = new DatainputStream(fin);
douЫe х = din.readDouЬle();

Если снова обратиться к рис. 2.1, то в иерархии классов для потоков ввода-вы­
вода можно обнаружить классы FilterinputStream и FilterOutputStream.
Подклассы этих классов служат для расширения функциональных возможностей

потоков ввода-вывода, обрабатывающих байты.

Благодаря вложению фильтров функциональные возможности потоков вво­

да-вывода удается расширить в еще большей степени. Например, по умолчанию

потоки ввода не буферизуются. Это означает, что каждый вызов метода read ()
приводит к запрашиванию у операционной системы выдачи очередного байта.

Но намного эффективнее запрашивать сразу целые блоки данных и размещать

их в буфере. Потребность использовать буферизацию и методы ввода данных

в файл диктует применение следующей довольно громоздкой последовательно­

сти конструкторов:

var din = new DatainputStream(
new BufferedinputStream(

new FileinputStream("employee.dat")));

Обратите внимание на то, что конструктор класса DatainputStream указы­
вается последним в цепочке конструкторов. Ведь в данном случае предполагается

использовать методы из класса DatainputStream, а в них - буферизуемый ме­

тод read ().
Иногда возникает потребность отслеживать промежуточные потоки ввода-вы­

вода, когда они соединяются в цепочку. Например, при чтении входных данных

нередко требуется считывать следующий байт с упреждением, чтобы выяснить,

содержится ли в нем предполагаемое значение. Для этой цели в Java предостав­
ляется класс PushbacklnputStream, как показано ниже.

var pbin new PushbackinputStream(
new BufferedinputStream(

new FileinputStream ("employee. dat"))) ;

Теперь можно прочитап, сначала следующий байт с упреждением:

int Ь = pbin.read();

а затем возвратить его обратно, если он не содержит именно то, что нужно:

if (Ь != '<') pbin.unread(b);

Но методы чтения read () и непрочтения unread () являются единственньu,tu,
которые можно применять в потоке ввода типа PushbackinputStream. Так, если
нужно считывать числовые данные с упреждением, то для этого потребуется

ссылка не только на поток ввода типа PushBackinputStream, но и на поток ввода
типа DatainputStream, как выделено ниже полужирным.

var din new DatainputStream(
pbin = new PushbackinputStream(

new BufferedinputStream(
new FileinputStream("employee.dat"))));

Безусловно, в библиотеках потоков ввода-вывода на других языках програм­

мирования такие полезные функции, как буферизация и чтение с упреждением,

2.1. Потоки ввода-вывода

обеспечиваются автоматически, и поэтому в Java необходимосп, сочетать для их
реали:ыции потоковые фильтры доставляет лишние хлопоты. Но в то же время

1юзмож1юст1, сочетал, и подбирап, классы фильтров для создания действитель­

но поле:шых последовательностей потоков ввода-вывода дает немалую свободу

действий. Например, испол1,зуя приведенную ниже последователыюсл, пото­

ков ввода, можно организовать чтение чисел иэ архивного файла, уплотненного

в формате ZIP (рис. 2.4). (Более подробно о том, как манипулировап, в Java фай­
лами, уплотненными в формате ZIP, речь пойдет в разделе 2.2.3.)
var z in

va r din

new Zi pinputStream (
new t"i l ei nputStream ("empl oyee. zip")) ;
new Da ta l nputStream(z i n) ;

чтение

~
lnputStream

чтение

ZIР-архив
lnputStream

чтение

~
lnputStream

' ' ' ' ' ' ' '

о
' ' ' ' ' ' ' ' ' '

Рис. 2.4. Последовательность фильтруемых потоков

java.io.FileinputStream 1.0

• FileinputStream (String name)

• FileinputStream(File file)

Создают новый поток ввода из файла , путь к которому указывается в сим вол ьной строке
name или в объекте file. !Более подробно класс File описывается в кон це этой главы.)
Если указываемый путь не является абсолютным, он определяется относительно рабочего ка­

талога, который был установлен при запуске виртуальной машины.

java.io . FileOutputStream 1. 0

FileOutputStream(String name)

FileOutputStream(String name, boolean append)

Глава 2 • Ввод и вывод

java. io. FileOutputStream 1. О /окончание}

• FileOutputStream(File file)

• FileOutputStream(File file, boolean append)
Создают новый поток вывода в файл, который указывается в символьной строке пате или

в объекте file. !Более подробно класс File описывается в конце этой главы.1 Если пара­
метр append принимает логическое значение true, существующий файл с таким же име­
нем не удаляется, а данные добавляются в конце файла. В противном случае удаляется лю­

бой уже существующий файл с таким же именем.

java.io.BufferedinputStream 1.0

• BufferedinputStream(InputStream in)
Создает буферизированный поток ввода. Такой поток способен накапливать вводимые байты

без постоянного обращения к устройству ввода. Когда буфер пуст, в него считывается новый

блок данных из потока.

java.io.BufferedOutputStream 1.0

• BufferedOutputStream(OutputStream out)
Создает буферизированный поток вывода. Такой поток способен накапливать выводимые

байты без постоянного обращения к устройству вывода. Когда буфер заполнен или поток

очищен, данные записываются.

java.io.PushЬackinputStream 1.0

• PushЬackinputStream(InputStream in)
PushЬackinputStream(InputStream in, int size)

Создают поток ввода или вывода с однобайтовым буфером для чтения с упреждением или

буфером указанного размера для возврата данных обратно в поток.

• void unread(int Ь)
Возвращает байт обратно в поток, чтобы он мог быть извлечен снова при последующем вы­

зове для чтения.

2.1.4. Ввод-вывод текста
При сохранении данных приходится выбирать между двоичным и текстовым

форматом. Так, если целое число 1234 сохраняется в двоичном формате, оно за­
писывается в виде следующей последовательности байтов: 00 00 04 02 (в шест­
надцатеричном представлении), а в текстовом формате - в виде символьной

строки "12 3 4 ". Хотя ввод-вывод данных в двоичном формате осуществляется бы­
стрее и эффективнее, тем не менее, они неудобочитаемы. Поэтому мы обсудим

сначала ввод-вывод текстовых данных, а затем двоичных (в разделе 2.2).
При сохранении текстовых строк приходится учитывать конкретную кодиров­

ку символов. Так, если используется кодировка UTF-16, символьная строка "Jose"

2.1. Потоки ввода-вывода

кодируется последовательностью байтов 00 4А 00 6F 00 73 00 Е9 (в шестнадцате­
ричном представлении). Но во многих прикладных программах предполагается

другая кодировка содержимого текстовых файлов. Так, в кодировке UTF-8, чаще
всего употребляемой в Интернете, упомянутая выше символьная строка будет за­

писана в виде последовательности байтов 4А 6F 7 3 сз А9, где первые три буквы
представлены без нулевых байтов, а последняя буква е - двумя байтами.

Класс OutputStreamWriter превращает поток вывода кодовых единиц Юни­
кода в поток записи байтов, применяя выбранную кодировку символов, а класс

InputStreamReader, наоборот, - превращает поток ввода байтов, представля­

ющих символы в какой-нибудь кодировке, в поток чтения, выдающий символы

в виде кодовых единиц Юникода.

В качестве примера ниже показано, как создать поток чтения вводимых дан­

ных, способный считывать с консоли набираемые на клавиатуре символы и пре­

образовывать их в Юникод.

InputStreamReader in = new InputStreamReader(System.in);

В этом потоке чтения вводимых данных предполагается, что в системе исполь­

зуется стандартная кодировка символов. В настольных операционных системах

может применяться устаревшая кодировка вроде Windows 1252 или MacRoman.
Но ничто не мешает выбрать любую другую кодировку, указав ее в конструкторе

класса InputStreamReader, например, так, как показано ниже. Подробнее коди­
ровки символов будут обсуждаться далее, в разделе 2.1.8.
var in = new InputStreamReader(new FileinputStream(

"data.txt"), StandardCharsets.UTF 8);

2.1.5. Вывод текста
Для вывода текста лучше всего подходит класс PrintWriter. В этом классе

имеются методы для вывода символьных строк и чисел в текстовом формате.

Чтобы вывести текст в файл, достаточно создать объект типа PrintWri ter, указав
имя этого файла, а также конкретную кодировку, как показано ниже.

var out = new PrintWriter("employee.txt",
StandardCharsets.UTF 8);

Для вывода текста в поток записи типа Pr·intWri ter применяются те же ме­
тоды print (), println () и printf (), что и для вывода в стандартный поток
System. out. Эrи методы можно использовать для вывода числовых данных (типа
int, short, long, float, douЫe), символов, логических значений типа boo1ean,
символьных строк и объектов.

Рассмотрим в качестве примера следующий фрагмент кода:

String name = "Harry Hacker";
douЫe salary = 75000;
out.print(name);
out. print (' ');
out.println(salary);

В этом фрагме~пе кода текстовая строка "Harry Hacker 75000. О" выводит­
ся в поток out, а затем преобразуется в байты и в конечном итоге записывается
в файл employee. txt ..

Глава 2 • Ввод и вывод

Метод println () добавляет к ней символ конца строки, подходящий для це­

левой платформы (" \ r \n" - для Windows, "\n" - для Unix). А получается
этот символ конца строки в результате вызова System. getProperty ("line.

separa tor").
Если поток :ыписи выводимых данных устанавливается в режим авто,-wатиче­

скоu очистки, то при каждом вызове метода println () все символы, хранящиеся

в буфере, отправляются по месту их назначения. (Потоки записи выводимых дан­

ных всегда снабжаются буфером.) По умолчанию режим автоматической очист­

ки не включается. Его можно включать и выключать с помощью конструктора

PrintWriter (Writer out, boolean autoFlush) следующим образом:

var out = new PrintWriter(
new OutputStreamWriter(

new FileOutputStream ("employee. txt"),
StandardCharsets.UTF 8), true); 11 автоочистка

Методы типа print не генерируют исключений. Чтобы проверить наличие

ошибок в потоке вывода, следует вьвывать метод checkError ().

НА ЗАМЕТКУ! У программирующих на Java со стажем может возникнуть следующий вопрос:
что же случилось с классом PrintStream и стандартным потоком вывода System.out? В вер­
сии Java 1.0 класс PrintStream просто усекал все символы Юникода до символов в коде ASCll,
отбрасывая старший байт lв то время в Юникоде еще применялась 16-разрядная кодировка!.
Очевидно, что такой подход не обеспечивал точность и переносимость результатов, из-за чего

он был усовершенствован внедрением в версии Java 1.1 потоков чтения и записи данных. Для
обеспечения совместимости с существующим кодом System.in, System.out и System.err
по-прежнему являются потоками ввода-вывода, но не для чтения и записи данных.

Класс PrintStream теперь способен преобразовывать внутренним образом символы Юни­
кода в стандартную кодировку хоста точно так же, как и класс PrintWriter. Объекты типа
PrintStream действуют таким же образом, как и объекты типа PrintWriter, когда вы­
зываются методы print () и println (), но, в отличие от объектов типа PrintWriter,
они позволяют также выводить исходные байты с помощью методов write (int)
и write (byte []).

java.io.PrintWriter 1.1

• PrintWriter(Writer out)

• PrintWriter(Writer writer)

Создают новый объект типа PrintWriter, выводящий данные в указанный поток записи.

• PrintWriter (String :Eilвnamв, String вncoding)

PrintWriter (File :Eile, String encoding)

Создают новый объект типа PrintWriter, выводящий данные в заданный файл, используя
указанную кодировку.

• void print (Object оЬj)

Выводит объект в виде символьной строки, получаемой из метода toString ().

• void print (String s)

Выводит символьную строку в виде кодовых единиц Юникода.

2.1. Потоки ввода-вывода

java. io. PrintWri ter 1 .1 {окончание/

• void println (String s)
Выводит символьную строку вместе с символом окончания строки. Очищает поток вывода,

если он действует в режиме автоматической очистки.

void print(char[] s)
Выводит все символы из указанного массива в виде кодовых единиц Юникода.

void print (char с)

Выводит символ в виде кодовой единицы Юн и кода.

• void print (int i)

• void print(long i)

• void print (float f)

• void print (douЫe d)
• void print(boolean Ь)

Выводят заданное значение в текстовом формате.

• void printf(String :format, Object ... args)
Выводит заданные значения так, как указано в форматирующей строке. О том, как задается

форматирующая строка, см. в главе 3 первого тома настоящего издания.

boolean checkError ()
Возвращает логическое значение true, если возникла ошибка при форматировании или вы­
воде данных. При возникновении ошибки поток вывода считается испорченным, а в резуль­

тате всех вызовов метода checkError () возвращается логическое значение true.

2.1.6. Ввод текста
Для обработки произвольно вводимого текста проще всего восполь:юваться

классом Scanner, как неоднократно демонстрировалось в примерах кода из пер­
вого тома настоящего издания. Поток сканирования типа Scanner можно по­
строить из любого потока ввода.

С другой стороны, прочитать короткий текст из файла в символьную строку

можно следующим образом:

String content =
new String(Files.readAllBytes(path), charset);

Но если требуется прочитать содержимое файла в виде последовательности

строк, необходимо сделать следующий вызов:

List<String> lines = Files.readAllLines(path, charset);

Если же файл крупный, строки можно обрабатывать по требованию в виде

потока типа Stream<String>, как показано ниже.

try (Stream<String> lines = Files.lines(path, charset))
{

Поток сканирования можно также исполь:ювать для чтения .лексем - символь­

ных строк с разделителями. По умолчанию в качестве разделителей выбираются

Глава 2 • Ввод и вывод

пробелы, но их можно заменить любым регулярным выражением, как демон­

стрируется в следующем примере кода:

Scanner in = ••• ;

in.useDelimiter("\\PL+");

В данном случае в качестве разделителей лексем могут служить любые сим­

волы, кроме тех, которые входят в набор символов в Юникоде. Таким образом,

поток сканирования будет принимать лексемы, состоящие только из символов

в Юникоде.

В результате вызова метода next () возвращается следующая лексема:
while (in.hasNext())
{

String word = in.next();

С другой стороны, поток всех лексем можно получить следующим образом:

Stream<String> words = in.tokens();

В ранних версиях Java единственным возможным вариантом для обработки
вводимых текстовых данных был класс BufferedReader. В этом классе имеется
метод readLine (), возвращающий текстовую строку или пустое значение null,
если больше нечего вводить. Следовательно, типичный цикл ввода текстовых

данных выглядит следующим образом:

InputStream inputStream = ... ;

try (var in = new BufferedReader(
new InputStreamReader(inputStrearn, charset)))

String line;
while ((line = in.readLine()) 1 = null)
{

сделать что-нибудь с содержимым переменной line

Ныне в классе BufferedReader появился также метод lines (), возвраща­
ющий поток типа Stream<String>. Но, в отличие от класса Scanner, в классе
BufferedReader отсутствуют методы для чтения числовых данных.

2.1. 7. Сохранение объектов в текстовом формате
В этом разделе рассматривается пример программы, сохраняющей массив за­

писей типа Employee в текстовом файле. Каждая запись сохраняется в отдельной
строке, поля отделяются один от другого разделителем. В качестве этого раздели­

теля в данном примере используется вертикальная черта (1). (Другим распростра­
ненным разделителем является двоеточие (:). Jlюбопыnю, что каждый разработ­
чик обычно пользуется своим разделителем.) Мы пока что не будем касаться того,
что может произойти, если символ 1 встретится непосредственно в одной из со­
храняемых символьных строк. Ниже приведен образец сохраняемых записей.

Harry Hackerl3550011989-10-l
Carl Crackerl7500011987-12-15
Tony Testerl3800011990-03-15

2.1. Потоки ввода-вывода

Процесс записи происходит очень просто. Для этой цели применяется класс

PrintWri ter, поскольку запись выполняется в текстовый файл. Все поля записы­
ваются в файл, :~авершаясь символом 1, а если это последнее поле, то комбина­
цией символов \n. Весь процесс записи совершается в теле приведенного ниже
метода wri teData (), который вводится в класс Employee.
puЬlic static void writeEmployee(PrintWriter out, Employee е)

{

out.println(e.getName() + "1" + e.getSalary()
+ "1" + e.getHireDay());

Что касается чтения :ыписей, то оно выполняется построчно с разделением

полей. Для чтения каждой строки служит поток сканирования (типа Scanner),
а аатем полученная строка разбивается на лексемы с помощью метода String.
spli t (),как пока:~ано ниже.
puЫic static Employee readEmployee(Scanner in)
{

String line = in.nextLine();
String[] tokens = line.split("\\I");
String name = tokens[O];
douЫe salary = DouЫe.parseDouЬle(tokens[l]);
LocalDate hireDate = Loca1Date.parse(tokens[2]);
int year = hireDate.getYear();
int month = hireDate.getMonthValue();
int day = hireDate.getDayOfMonth();
return new Employee(name, salary, year, month, day);

В качестве параметра метода spli t () служит регулярное выражение, описы­
вающее разделитель. Более подробно регулярные выражения рассматриваются

в конце этой главы. Оказывается, что знак вертикальной черты (1) имеет в ре­
гулярных выражениях специальное значение, поэтому он должен обязательно

экранироваться знаком \, а тот, в свою очередь, еще одним :шаком \, в результа­
те чего получается следующее регулярное выражение: "\ \ 1 ".

Весь исходный код данного примера программы представлен в листинге 2.1.
А в приведенном ниже статическом методе сначала записывается длина массива,

а затем - каждая запись.

void writeData(Employee[] е, PrintWriter out)

В следующем статическом методе сначала считывается длина массива, а затем

каждая запись:

Employee[] readData(BufferedReader in)

Оказывается, что сделать это не так-то просто, как следует из приведенного

ниже фрагмента кода.

int n = in.nextint();
iп.пextLiпe(); //перевести на новую строку

var employees = new Employee[n];
for (iпt i = О; i < п; i++)
{

employees[i] = пеw Employee();
employees[i] .readData(iп);

Глава 2 • Ввод и вывод

Вызов метода nextint () приводит к считыванию длины массива, но не завер­
шающего символа новой строки. Этот символ должен обязательно употреблять­

ся, чтобы в методе readDa ta () можно было перейти к следующей строке вводи­
мых данных при вызове метода nextLine ().

Листинг 2.1. Исходный код из файла textFile/TextFileTest. java

1 package textFile;
2
3 import java.io.*;
4 import java.nio.charset.*;
5 import java.time.*;
6 import java.util.*;
7
8 /**
9 * @version 1.15 2018-03-17
10 * @author Сау Horstmann
11 */
12 puЫic class TextFileTest
13 {
14 puЫic static void main(String[) args)
15 throws IOException
16
17 var staff = new Employee[3);
18

staff[O] new Employee("Carl Cracker",
75000, 1987, 12,

staff[l] new Employee("Harry Hacker",
50000, 1989, 10,

15) ;

1) ;

19
20
21
22
23
24
25

staff[2) new Employee("Tony Tester", 40000,
1990, 3, 15) ;

26 //сохранить все записи о работниках

27 //в файле employee.dat
28 try (var out = new PrintWriter("employee.dat",
29 StandardCharsets.UTF 8))
30
31 writeData(staff, out);
32
33
34 //извлечь все записи в новь~ массив
35 try (var in = new Scanner(new FileinputStream(
36 "employee.dat"), "UTF-8"))
37
38 Employee[) newStaff = readData(in);
39
40 // вывести вновь прочитанные записи о работниках
41 for (Employee е : newStaff)
42 System.out.println(e);
43
44
45
4 6 /* *
47 * Записывает данные обо всех работниках из
48 * массива в поток записи выводимых данных

2.1. Потоки ввода-вывода

49 * @param employees Массив записей о работниках
50 * @param out Поток записи выводимых данных
51 */
52 private static void writeData(Employee[] employees,
53 PrintWriter out) throws IOException
54
55 // записать количество работников
56 out.println(employees.length);
57
58 for (Employee е : employees)
59 writeEmployee(out, е);

60
61
62 /**
63 * Читает записи о работниках из потока

64 * сканирования в массив
65 * @param in Поток сканирования вводимых даннь~
66 * @return Массив записей о работниках
67 */
68 private static Employee[] readData(Scanner in)
69 {
70 //извлечь размер массива

71 int n = in.nextint();
72 in.nextLine(); //перевести на новую строку
73
74 var employees = new Employee[n];
75 for (int i = О; i < n; i++)
76 {
77 employees[i] = readEmployee(in);
78
79 return employees;
во

81
82 /**
83 * Направляет данные о работниках в поток

84 * записи выводимых данных
85 * @param out Поток записи выводимь~ данных
8 6 * /
87 puЫic static void writeEmployee(
88 PrintWriter out, Employee е)

89
90 out.println(e.getName() + "1" + e.getSalary()
91 + "1" + e.getHireDay());
92
93
94 /**
95 * Считывает данные о работниках из буферизованного
96 * потока чтения вводимых даннь~
97 * @param in Поток сканирования вводимых даннь~
98 * /
99 puЫic static Employee readEmployee(Scanner in)
100 {
101 String line = in.nextLine();
102 String[) tokens = line.split("\\I");
103 String name = tokens[O);
104 douЫe salary = DouЫe.parseDouЬle(tokens[l));

105 LocalDate hireDate = LocalDate.parse(tokens[2]);

Глава 2 • Ввод м вывод

106 int year = hireDate.getYear();
107 int month = hireDate.getMonthValue();
108 int day = hireDate.getDayOfMonthll;
109 return new Employee(name, salary, year, month, day);
110
111

2.1.В. Кодировки символов

Потоки ввода-вывода представляют собой последовательности байтов, но за­

частую приходится обрабатывать текст, т.е. последовательности символов. В та­

ком случае имеет значение, каким образом символы кодируются в байты.

Для кодирования сим1юло11 в java применяется стандарт, называемый Юни­
кодо.м (Unicode). Каждый символ, или так называемая кодовая точка, представлен
в Юникоде 21-разрядным целым числом. Имеются разные кодировки си.мволо11 -
способы упаковки 21-разрядных целых чисел в байты.

Чаще всего применяето1 кодировка UTF-8, 11 которой каждая кодовая точ­

ка в Юникоде кодируется последовательностью от одного до четырех байтов

(табл. 2.1). Преимущество кодировки UTF-8 состоит в том, что символы из тради­
ционного набора в коде ASCII, куда входят все буквы латинского и английского
алфавитов, занимают тол1,ко один байт.

Таблица 2.1. Кодировка UTF-в

Диапазон символов Кодировка

О ... 7F 0&6&o;&4&:i•2•1•0
80 .•• 7FF 110а 111&ч&на7а6 1Оа,а4а3а2а 1 а0
800 ... FFFF 1110a1,a14a 1:ia 12 10а 11 а 10а9а8а7а6 10a'ia4a3a2a 1a0

10000 ..• lOFFFF 11110ао11а 19а 1 н 10а17а 16а15а14а 13ар 10а11 а10а9а8а7а6 10а5а4а1а,а 1 а0

Еще одной распространенной является кодировка UTF-16, в которой каждая
кодовая точка в Юникоде кодируется одним или двумя 16-разрядными значени­

ями (табл. 2.2). Такая кодировка применяется в символьных строках Java. На са­
мом деле имеются две формы кодировки UTF-16: с обратным и прямым поряд­
ком следования байтов. Рассмотрим в качестве примера 16-разрядное значение

Ох2122. В формате с обратным порядком байтов первым следует старший байт

Ох21, а за ним - младший байт Ох22. В формате с прямым порядком байтов

все происходит наоборот: сначала следует младший байт Ох22, а затем старший

байт Ох21. Для обозначеню1 исполиуемого порядка следования байтов файл мо­

жет начи11ап.ся с соответствующей метки в виде 16-разрядного значения OxFEFF.

С помощ1.ю этой метки пол1.:юватель может определить порядок следования

байтов и отбросит~, его.

Таблица 2.2. Кодировка UTF-16

Диапазон символов Кодировка

О· · · FFFF •1o;&14•1:i•12•11•ю•чasazaьa5a4a3a2a1au
10000 .•. lOFFFF 110110Ь 1 чЬ 1 нЬ 1 ,Ь 16а1 ,а 14а13а12а11 а 10 110111a9a 8a7a6a0a4a3a2a 1a1J!

1·ле Ь1чЬ1нЬ1zЬ" • а?0а19а1ва17а1 6 - 1

•
2.1. Потоки ввода-вывода

ВНИМАНИЕ! В некоторых прикладных программах, в том числе в текстовом редакторе
Microsoft Notepad, метка порядка следования байтов вводится в начале файлов, содержимое
которых представлено в кодировке UTF-8. Очевидно, что это излишне, поскольку в кодиров­
ке UTF-8 вопросы, связанные с порядком следования байтов, не возникают. Тем не менее
стандарт на Юникод допускает наличие такой метки и даже считает это целесообразным,
поскольку она разрешает всякие сомнения по поводу кодировки. При чтении содержимого

файла в кодировке UTF-8 такая метка должна удаляться. К сожалению, в Java этого не дела­
ется, а в отчетах об устраненных программных ошибках напротив данной ошибки стоит метка

'"не устранится". Поэтому любой начальный код \uFEFF, обнаруживаемый при вводе данных,
придется удащпь вручную.

Помимо упомянутых выше кодировок UTF, имеются частичные кодировки,
охватывающие диапазон символов, пригодный для конкретного круга пользова­

телей. Например, кодировка по стандарту ISO 8859-1 определяет однобайтовый
код, включающий в себя символы с ударениями, применяемые в западноевро­

пейских языках, а кодировка Shift-JIS - код переменной длины для японских

символов. Немалое число подобных кодировок по-прежнему широко распро­

странено.

Надежного способа автоматически выявить кодировку символов в потоке вво­

да байтов не существует. В некоторых методах из прикладного интерфейса API
допускается применение "набора символов по умолчанию" - кодировки сим­

волов, которая считается наиболее предпочтительной в операционной системе

компьютера. Но применяется ли та же самая кодировка и в источнике байтов?

Ведь эти байты вполне могут поступать из разных частей света. Следовательно,

кодировка символов должна всегда указываться явно. Так, при чтении веб-стра­

ницы следует проверять заголовок Con ten t-Type.

•
НА ЗАМЕТКУ! Кодировка, принятая на конкретной платформе, возвращается стати­

ческим методом Charset. defaul tCharset () . А статический метод Charset.
availaЫeCharsets () возвращает все имеющиеся экземпляры класса Charset, преоб­
разованные из канонических имен в объекты типа Charset .

ВНИМАНИЕ! В реализации библиотеки Java от компании Огасlе имеется системное свойство
file. encoding для переопределения кодировки символов, принятой на конкретной плат­
форме по умолчанию. Но это свойство не поддерживается официально и не последовательно

согласуется со всеми частями реализации библиотеки Java от компании Огасlе. Поэтому уста­
навливать его не следует.

В классе StandardCharsets имеются следующие статические переменные
типа Charset для тех кодировок, которые должны поддерживаться на каждой
виртуальной машине Java:
StandardCharsets.UTF 8
StandardCharsets.UTF 16
StandardCharsets.UTF lбВЕ
StandardCharsets.UTF lбLE
StandardCharsets.ISO 8859 1
StandardCharsets.US ASCII

Глава 2 • Ввод и вывод

Чтобы получить объект типа Charset для другой кодировки, достаточно вы­

звать статический метод forName () следующим образом:

Charset shiftJIS = Charset.forName("Shift-JIS");

Для ввода-вывода текста следует пользоваться объектом типа Charset. В сле­

дующем примере кода показано, как превратить массив байтов в символьную

строку:

var str = new String(bytes, StandardCharsets.UTF_B);

•
СОВЕТ. Начиная с версии Java 10, все методы из пакета java.io позволяют указывать кон­
кретную кодировку символов с помощью объекта типа Charset или символьной строки. Сле­
дует также выбрать константы из класса StandardCharsets, чтобы перехватывать любые
орфографические ошибки во время компиляции .

ВНИМАНИЕ! В одних методах и конструкторах, например, в конструкторе String (byte []),
используется кодировка, принятая на платформе по умолчанию, если не указано иное. А

в других методах и конструкторах, например, в конструкторе Files. readAllLines (), при­
меняется кодировка UTF-8.

2.2. Чтение и запись двоичных данных
Текстовый формат удобен для тестирования и отладки прикладного кода, по­

скольку он удобочитаем. Но он не столь эффективен для передачи данных, как

двоичный формат. Поэтому в последующих разделах поясняется, каким образом

организует ввод и вывод двоичных данных.

2.2.1. Интерфейсы Datainput и DataOutput

В интерфейсе DataOutput определяются следующие методы для записи чи­

сел, символов, логических значений типа boolean или символьных строк в дво­

ичном формате:

writeChars ()
wri teByte ()
writelnt ()
wri teShort ()
wri teLong ()

writeFloat ()
writeDouЫe ()
writeChar ()
writeBoolean ()
wri teUTF ()

Например, метод wri teint () всегда записывает целочисленное значение

в виде 4-байтовой двоичной величины независимо от количества цифр, а метод

writeDouЬle () - числовое значение с плавающей точкой типа douЫe в виде

8-байтовой двоичной величины. Выводимый в итоге результат неудобочитаем, но

в то же время объем требующегося пространства будет одинаковым для каждого

значения заданного типа, а обратное считывание таких значений будет осущест­

вляться намного быстрее, чем синтаксический анализ текста.

НА ЗАМЕТКУ! Для сохранения целочисленных значений и числовых значений с плаваю­

щей точкой имеются два разных способа, зависящих от используемой платформы. Допустим,

имеется некоторое 4-байтовое значение типа int, скажем, десятичное число 1234, или 4D2

2.2. Чтение и запись двоичных данных

в шестнадцатеричном представлении [1234 = 4 х 256 + 13 х 16 + 21. С одной стороны, оно
может быть сохранено таким образом, чтобы чтые первых байта в памяти занимал его самый

старший байт: 00 00 04 D2. Такой способ называется сохранением в формате с обратным по­
рядком следования байтов от старшего к младшему. А с другой стороны, оно может быть со­

хранено таким образом, чтобы первым следовал самый младший байт: D2 04 00 00. Такой
способ называется сохранением в формате с прямым порядком следования байтов от младшего

к старшему. На платформах SPARC, например, применяется формат с обратным порядком сле­
дования байтов, а на платформах Pentium - формат с прямым порядком следования байтов.

Это может стать причиной серьезных осложнений. Например, данные сохраняются в исход­

ном файле программы на С или С++ именно так, как это делает процессор. Вследствие этого

перемещение даже простейших файлов данных с одной платформы на другую превращает­

ся в совсем не простую задачу. А в Java все значения записываются в формате с обратным
порядком следования байтов от старшего к младшему независимо от типа процессора, что,

соответственно, делает файлы данных в Java независящими от используемой платформы.

Метод wri teUTF () записывает строковые данные, используя "модифициро­

ванную" версию 8-разрядного формата преобразования Юникода. Вместо стан­

дартной кодировки UTF-8 символьные строки сначала представляются в кодиров­
ке UTF-16, а полученный результат кодируется по правилам UTF-8. Для символов
с кодом больше OxFFFF модифицированная кодировка выглядит по-другому.
Она применяется для обеспечения обратной совместимости с виртуальными ма­

шинами, которые были созданы в те времена, когда Юникод еще не мог выхо­

дить за рамки 16 битов.
Но такой "модифицированной" версией UТF-8 уже никто не пользуется, и по­

этому для записи символьных строк, предназначенных для виртуальной маши­

ны Java, например, при создании программы, генерирующей байт-коды, следу­
ет использовать только метод wri teUTF (),а для всех остальных целей - метод

writeChars ().
Для обратного чтения данных можно воспользоваться следующими метода­

ми, определенными в интерфейсе Datainput:

readlnt (1 readDouЫe ()
readShort (1 readChar (1
readLong (1
readFloat (1

readBoolean ()
readUTF ()

Интерфейс Datainput () реализуется в классе DatainputStream. Чи­
тать двоичные данные из файла можно простым сочетанием потока вво­

да типа DatainputStream с нужным источником байтов, например, типа
FileinputStream, как показано ниже.

var in = new
DatainputStream(new FilelnputStream("employee.dat"));

Аналогично можно записывать двоичные данные с помощью класса Da ta
OutputStream, реализующего интерфейс DataOutput, следующим образом:

var out = new
DataOutputStream(new FileOutputStream("employee.dat"));

Глава 2 • Ввод и вывод

java.io.Datainput 1.0

•

•
•
•
•
•
•

•

Ьoolean readВoolean ()

byte readВyte ()

char readChar ()

douЫe readDouЫe ()

float readFloat ()

int readint ()

long readLong ()

short reac\Short ()

Считывают значение заданного типа.

void readFully(byte[] Ь)

Считывает байты в массив Ь, устанавливая блокировку до тех пор, пока не будут считаны все
байты.

• void readFully(byte[] Ь, int off, int len)

Считывает байты в массив Ь, устанавливая блокировку до тех пор, пока не будут считаны все
байты.

String readUТF ()

Считывает символьную строку в ··модифицированном·· формате UTF-8.

• int skipBytes (int n)

Пропускает n байтов, устанавливая блокировку до тех пор, пока не будут пропущены все не­
обходимые байты.

java.io.DataOutput 1.0

• void writeБoolean(boolean Ь)

• void writeвyte (int Ь)

• void writeChar(int с)

void writeDouЫe(douЬle d)

void writeFloat(float f)

• void writeint(int i)

• void writeLong(long 1)

• void writeShort(int s)

Записывают значение заданного типа.

void writeChars (String s)

Записывает все символы из строки.

• void writeUTF(String s)

Записывает символьную строку в "модифицированном" формате UTF-8

2.2. Чтение и запись двоичных данных

2.2.2. Файлы с произвольным доступом
Класс RandomAccessFile позволяет отыскивап, или записывать данные где

угодно в файле. Для файлов на дисках всегда имеется возможност1, произволыю­

го доступа, тог да как для потоков ввода-вывода данных через сетевой сокет такая

возможность отсутствует. Файл с пртнвольным доступом может открываться

только для чтения или же как для чтения, так и для записи. Требуемый режим

доступа задается указанием во втором параметре конструктора символьной стро­

ки "r" (режим только для чтения) или символьной строки "rw" (режим для чте­
ния и записи) соответственно, как показано ниже. Если существующий файл от­

крывается как объект типа RandomAccessFile, 011 не удаляется.

var in = new RandomAccessFile("employee.dat", "r");
var inO\Jt = new RandomAccessFile("employee.dat", "rw");

У любого файла с прои:1Вольным доступом имеется так 11а:1ываемый ука.~ателп

фаu,\а, обо:шачающий позицию следующего байта, который будет считываться

или записываться. Метод seek () устанавливает этот ука:1атель 11а прои:1Вольную
байтовую по3ицию в файле. Этому методу в качестве аргумента может быть пе­

редано целочисленное 3Начение типа long в пределах от нуля до числового зна­
чения, обо:шачающего длину файла в байтах. А метод getFilePointer () возвра­
щает текущую позицию указателя файла.

Класс RandomAccessFile реали3ует как интерфейс Datainput, так и интер­
фейс DataOutput. Для чтения данных и :1аписи данных в файл с прои:\Воль­
ным доступом применяются методы readint () и wri teint (),а также методы
readChar () и writeChar (),обсуждавшиеся в предыдущем ра:целе.

Рассмотрим в качестве примера программу, сохраняющую :1аписи о работ­

никах в файле с произвольным доступом. Все записи будут иметь одинаковые

размеры. Это упрощает процесс чтения произволыюй :1аписи. Допустим, указа­

тель файла требуется поместить на третью запис1,, Для этого достаточно устано­

вить ука3атель файла на соответствующей байтовой по:шции и :1атем приступить

к чтению нужной записи, как показано ниже.

long n = 3;
in.seek((n - 1) * RECORD SIZE);
var е = new Employee();
е. readData (in) ;

Если же требуется сначала внести изменения в запис1,, а затем сохранить ее

в том же самом месте, в таком случае нужно снова уста1ювит1, указател1, файла

на начало записи следующим образом:

in.seek((n - 1) * RECORD SIZE);
e.writeData(out);

Для определения общего количества байтов в файле служит метод length ().
Общее количество записей определяется путем деления длины файла на размер

каждой записи:

long nbytes = in.length(); //длина файла в байтах

int nrecords = (int) (nbytes / RECORD_SIZE);

Целочисленные значения и числовые значения с плавающей точкой имеют

фиксированный размер в двоичном формате, тогда как с символьными строками

Глава 2 • Ввод и вывод

дело обстоит немного сложнее. Для записи и чтения символьных строк фиксиро­

ванного размера придется ввести два вспомогательных метода. В частности, при­

веденный ниже метод wri teFixedString () записывает указанное количество ко­
довых единиц, отсчитывая от начала символьной строки. (Если кодовых единиц

слишком мало, символьная строка дополняется нулевыми значениями.)

puЫic static void writeFixedString(String s, int size,
DataOutput out) throws IOException

for (int i = О; i < size; i++)
{

char ch = О;

if (i < s.length()} ch
out.writeChar(ch);

s.charAt(i};

Приведенный ниже метод readFixedString () считывает символы из потока
ввода (типа InputStream) до тех пор, пока не прочитает указанное в качестве па­
раметра size количество кодовых единиц или пока не встретится символ с нуле­
вым значением. В последнем случае все остальные нулевые значения в поле ввода

пропускаются. Для повышения эффективности чтения символьных строк в этом

методе испол~.зуется класс StringBuilder.

puЫic static String readFixedString(int size,
Datalnput in) throws IOException

var Ь = new StringBuilder(size);
int i = О;

var done = false;
while (1done && i < size}
{

char ch = in.readChar();
i++;
if (ch == 0) done = true;
else b.append(ch);

in.skipBytes(2 * (size - i});
return b.toString();

Методы wri teFixedString () и readFixedString () введены во вспомога­
тельный класс DataIO. Для сохранения записи фиксированного размера все поля
записываются в двоичном формате следующим образом:

DataIO.writeFixedString(e.getName(), Employee.NAМE SIZE, out);
out.writeDouЬle(e.getSalary(});

LocalDate hireDay = e.getHireDay();
out.writeint(hireDay.getYear());
out.writeint(hireDay.getMonthValue() 1;
out.writeint(hireDay.getDayOfMonth());

Обратное чтение данных выполняется так же просто:

String name = DataIO.readFixedString(
Employee.NAМE SIZE, in);

douЫe salary = in.readDouЬle();

2.2. Чтение н запись двоичных данных

int у

int m
int d

in.readint();
in.readint();
in.readint();

Подсчитаем размер каждой записи. Для строк с Ф.И.О. выделим по 40 симво-
лов. Следовательно, каждая запись будет содержать по 100 байтов:

• по 40 символов, т.е. по 80 байтов, на каждые Ф.И.О.;

• по 1 числовому значению типа douЫe, т.е. по 8 байтов, на размер зарплаты;

• по 3 числовых значения типа int, т.е. по 12 байтов, на дату зачисления
на работу.

Программа из листинга 2.2 делает три записи в файле данных, а затем читает
их оттуда в обратном порядке. Для эффективного выполнения данного процесса

требуется произвольный доступ к файлу, а в данном случае - доступ сначала

к последней записи.

Листинг 2.2. Исходный код из файла randomAccess/RandomAccessTest. java

1 package randomAccess;
2
3 import java.io.*;
4 import java.time.*;
5
6 /**
7 * @version 1.14 2018-05-01
8 * @author Сау Horstmann
9 */
10 puЫic class RandomAccessTest
11 {
12
13
14

puЫic static void main(String[] args)
throws IOException

15 var staff = new Employee[3];
16

staff[OJ new Employee("Carl Cracker",
1987, 12' 15) ;

17
18
19
20
21
22
23

staff[l] new Employee ("Harry Hacker",
1989' 10, 1) ;

staff[2] new Employee("Tony Tester",
1990, 3, 151 ;

24 try (var out = new DataOutputStream(

75000,

50000,

40000,

25 new FileOutputStream("employee.dat")))
26
27 //сохранить все записи о работниках

28 // в файле employee.dat
29 for (Employee е : staff)
30 writeData(out, е);

31
32
33 try (var in = new RandomAccessFile(
34 "employee.dat", "r"))

Глава 2 • Ввод и вывод

35
36 //извлечь все записи в новьм массив

37
38 // определить размер массива
39 int n = (int) (in.length() / Employee.RECORD SIZE);
40 var newStaff = new Employee[n];
41
42 //прочитать записи о работниках

43 // в обратном порядке

44 for (int i = n - 1; i >= О; i--)
4 5 {
46 newStaff[i] = new Employee();
47 in.seek(i * Employee.RECORD_SIZE);
48 newStaff[i] = readData(in);
49
50
51 // вывести вновь прочитанные записи о работниках

52 for (Employee е : newStaff)
53 System.out.println(e);
54
55
56
57 /**
58 * Записывает сведения о работниках

59 * в поток вывода данных

60 * @param out Поток вывода данных
61 * @param е Работник

62 * /
63 puЫic static void writeData(DataOutput out,
64 Employee е) throws IOException
65
66 DataIO.writefixedString(e.getName(),
61 Employee.NAМE SIZE, out);
68 out.writeDouЫe(e.getSalary());

69
70 LocalDate hireDay = e.getHireDay(I;
71 out.writeint(hireDay.getYear() 1;
72 out.writeint(hireDay.getMonthValue());
73 out.writeint(hireDay.getDayOfMonth());
74
75
7 6 /**
77 * Читает сведения о работниках
78 * из потока ввода данных
79 * @param in Поток ввода данных
80 * @return Возвращает работника
81 */
82 puЫic static Employee readData(Datainput in)
83 throws IOException
84
85 String name DataIO.readfixedString(
86 Employee.NAМE_SIZE, in);
87 douЫe salary = in.readDouЫe();
88 int у= in.readint();

2.2. Чтение и запись двоичных данных

89 int m = in.readlnt();
90 int d = in.readlnt();
91 return new Employee(name, salary, у, m - 1, d);
92
93

java.io.RandomAccessFile 1.0

• RandomAccessFile(String fil.e, String mode)

• RandomAccessFile(File fil.e, String mode)

Открывают заданный файл для произвольного доступа. Строковое значение "r" параметра
mode обозначает режим только для чтения, строковое значение "rw" - режим для чте­
ния и записи, строковое значение "rws" - режим для чтения и синхронной записи дан­

ных на диск вместе с метаданными при каждом обновлении файла, а строковое значение

"rwd" - режим чтения и синхронной записи на диск только данных.

• long getFilePointer ()

Возвращает сведения о текущем местоположении указателя файла.

• void seek(long pos)

Устанавливает указатель файла на позицию pos от начала файла.

• long length ()

Возвращает длину файла в байтах.

2.2.Э. ZIР-архивы

В ZIР-архивах можно хранить один или несколько файлов (как правило)

в уплотненном формате. У каждого ZIР-архива имеется заголовок, содержащий

сведения вроде имени файла или применявшегося для него алгоритма сжа­

тия. В языке Java для чтения ZIР-архивов служит класс ZipinputStream. В ка­
ждом таком архиве всегда требуется просматривать отдельные записи. Метод

getNextEntry () возвращает описывающий запись объект типа ZipEntry. Чтобы
получить поток ввода для чтения записи из архива, эту запись следует передать

методу getinputStream ().Далее вызывается метод closeEntry () для перехода
к чтению следующей записи. Ниже приведен типичный фрагмент кода для чте­

ния содержимого архивного ZIР-файла.

var zin = new
ZipinputStream(new FileinputStream(zipname));

ZipEntry entry;
while ((entry = zin.getNextEntry()) '= null)
{

InputStream in = zin.getinputStream(entry);
прочитать содержимое потока ввода in
zin.closeEntry();

zin.close();

Для записи в ZIР-архив служит класс ZipOutputStream. В этом случае для ка­
ждой записи, которую требуется ввести в ZIР-архив, создается объект типа

ZipEntry. Требуемое имя файла передается конструктору класса ZipEntry, где

Глава 2 • Ввод и вывод

устанавливаются остальные параметры вроде даты создания файла и алгоритма

распаковки. По желанию эти параметры могут быть переопределены. Далее вы­

зывается метод putNextEntry () из класса ZipOutputStream, чтобы начать про­
цесс записи нового файла. С этой целью данные из самого файла направляются

в поток вывода в ZIР-архив, а по завершении вызывается метод closeEntry ().
Затем описанные здесь действия выполняются повторно для всех остальных фай­

лов, которые требуется сохранить в ZIР-архиве. Ниже приведена общая структу­

ра кода, требующегося для этой цели.

var fout = new FileOutputStream("test.zip");
var zout = new ZipOutputStream(fout);
для всех файлов

{
var ze = new ZiрЕntrу(имя_файла);
zout.putNextEntry(ze);
направить данные в поток вывода zout
zout.closeEntry();

zout.close();

НА ЗАМЕТКУ! Архивные JАR-файлы !см. главу 4 первого тома настоящего издания) представ­
ляют собой те же самые ZIР-файлы, но только они содержат записи несколько иного вида, на­

зываемые манифестами. Для чтения и записи манифестов служат классы JarinputStream
и JarOutputStream.

Потоки ввода из ZIР-архивов служат отличным примером, раскрывающим

истинный потенциал потоковой абстракции. При чтении данных, хранящихся

в уплотненном виде, не нужно особенно беспокоиться о том, будут ли они раз­

уплотняться по мере запрашивания. Более того, источником байтов в потоках

ввода из ZIР-архивов совсем не обязательно должен быть именно файл: данные,

уплотненные в формате ZIP, могут поступать и через сетевое соединение.

НА ЗАМЕТКУ! В разделе 2.4.8 поясняется, как осуществить доступ к ZIР-архиву без специ­
ального прикладного интерфейса API, используя класс FileSystem, внедренный в версии
Java 7.

java.util.zip.ZipinputStream 1.1

• ZipinputStream(InputStream in)

Создает объект типа ZipinputStream, позволяющий распаковывать данные из указанного
объекта типа InputStream.

• ZipEntry qetNextEntry()

Возвращает объект типа ZipEntry для следующей записи или пустое значение null, если
записей больше нет.

• void closeEntry()

Закрывает текущую открытую запись в ZIР-архиве. Далее может быть прочитана следующая

запись с помощью метода qetNextEntry ().

2.2. Чтение и запись двоичных данных

java.util.zip.ZipOutputStream 1.1

• ZipOutputStream(OutputStream out)

Создает объект типа ZipOutputstream, позволяющий записывать уплотненные данные
в указанный поток вывода типа OutputStream.

• void putNextEntry (ZipEntry ze)

Записывает данные из указанной записи типа ZipEntry в поток вывода и устанавливает
его в положение для вывода следующей порции данных. После этого данные могут быть на­

правлены в этот поток вывода с помощью метода write ().

• void closeEntry ()

Закрывает текущую открытую запись в ZIР-архиве. Для перехода к следующей записи ис­

пользуется метод putNextEntry ().

• void setLevel(int level)

Устанавливает степень сжатия для последующих записей. По умолчанию устанавливается

значение степени сжатия Deflater. DEFAULT _ COMPRESSION. Генерирует исключение
типа IllegalArgumentException, если заданная степень сжатия недействительна.

void setмethod (int method)

Устанавливает алгоритм сжатия по умолчанию для любых записей, направляемых в поток

вывода типа ZipOutputStream, без указания конкретного алгоритма сжатия данных. В ка­
честве параметра method можно указать значение DEFLATED или STORED, обозначающее
конкретный алгоритм сжатия.

java.util.zip.ZipEntry 1.1

• ZipEntry (String паше)

Создает запись в Ziр-архиве с заданным именем.

• long getCrc ()

Возвращает значение контрольной суммы CRC32 для данной записи типа ZipEntry.

• String getName ()

Возвращает имя данной записи.

• long getSize ()

Возвращает размер данной записи без сжатия или значение -1, если размер записи без
уплотнения неизвестен.

• boolean isDirectory ()

Возвращает логическое значение true, если данная запись является каталогом.

• void setмethod(int method)

Задает алгоритм сжатия записей.

• void setSize (long sizв)

Устанавливает размер данной записи. Требуется только в том случае, если задан алгоритм

сжатия данных STORED.

• void setCrc (long crc)

Устанавливает контрольную сумму CRC32 для данной записи. Для вычисления этой суммы
должен использоваться класс CRC32. Требуется только в том случае, если задан алгоритм
сжатия данных STORED.

Глава 2 • Ввод и вывод

java.util.zip.ZipFile 1.1

• ZipFile (String name)

• ZipFile (File file)

Создают объект типа ZipFile для чтения из заданной символьной строки или объекта типа
File.

• Enumeration entries ()

Возвращает объект типа Enumeration, перечисляющий объекты типа ZipEntry, описыва­
ющие записи из архива типа ZipFile.

• ZipEntry getEntry(String name)

Возвращает запись, соответствующую указанному имени, или пустое значение null, если
такой записи не существует.

• InputStream getinputStream(ZipEntry ze)

Возвращает поток ввода типа InputStream для указанной записи.

• String getName ()

Возвращает путь к данному ZIР-архиву.

2.З. Потоки ввода-вывода и сериализация объектов
Пользоваться форматом записей фиксированной длины, безусловно, удобно,

если сохранять объекты одинакового типа. Но ведь объекты, создаваемые в объ­

екпю-ориентированных программах, редко бывают одного и того же типа. На­

пример, может существовать массив staff, номинально представляющий собой
массив записей типа Employee, но фактически содержащий объекты, которые,
по существу, являются экземплярами какого-нибудь подкласса вроде Manager.

Конечно, можно было бы подобрать такой формат данных, который позво­

лял бы сохранять подобные полиморфные коллекции, но, к счастью, в этом нет

никакой необходимости. В языке Java поддерживается универсальный механизм,
на:шваемый cepua.лUJaцueu объектов и предоставляющий возможность записать

любой объект в поток ввода-вывода, а в дальнейшем прочитать его снова. (Про­

исхождение термина серuа.лUJация подробно объясняется далее в этой главе.)

2.3.1. Сохранение и загрузка сериализируемых объектов
Для сохранения данных объектов необходимо прежде всего открыть поток вы-

1юда объектов типа ObjectOut.put.St.ream следующим обра:юм:

var out = new ObjectOutputStream(
new FileOutputStream("employee.dat"J);

Далее для сохранения объекта остается лишь вызвать метод wri teObj ect () из
класса ObjectOutputStrearп, как показано в приведенном ниже фрагменте кода.

var harry = new Employee("Harry Hacker", 50000,
1989, 10, 1);

var boss = new Manager("Carl Cracker", 80000,
1987, 12, 15);

2.3. Потоки ввода-вывода и сериализация объектов

out.writeObject(harry);
out.writeObject(boss);

А для того чтобы прочитать данные объектов обратно, необходимо получить

сначала объект типа ObjectinputStream, т.е. поток ввода объектов, следующим
обра:юм:

var in new ObjectinputStream(
пеw F1leinputStream("employee.dat"));

И затем извлечь объекты в том порядке, в каком они записывались, вызвав

метод readObj ect (),как показано ниже.

var el = (Employee) in.readObject();
var е2 = (Employee) in.readObject();

Имеется, однако, одно изменение, которое нужно внести в любой класс, объ­

екты которого требуется сохранить и восстановить в потоке ввода-вывода объек­

тов, а именно: каждый такой класс должен обязательно реализовать интерфейс

Ser ializaЫe следующим образом:

class Employee implements SerializaЫe { . . . }

У интерфейса SerializaЫe отсутствуют методы, поэтому изменять каким-то

образом свои собственные классы не нужно. В этом отношении интерфейс

SerializaЫe подобен интерфейсу CloneaЫe, рассматривавшемуся в главе

6 первого тома настоящего издания. Но для того чтобы сделать класс пригод­
ным для клонирования, все равно требовалось переопределить метод clone ()
из класса Obj ect. А для того чтобы сделать класс пригодным для сериализации,
ничего больше делать не нужно.

НА ЗАМЕТКУ! Записывать и читать только объекты можно и с помощью методов

wri teObject () и readObject (). Что же касается значений простых типов, то для их
ввода-вывода следует применять такие методы, как wri teint () и readlnt () или

writeDouЫe () и readDouЫe (). (Классы потоков ввода-вывода объектов реализуют ин­
терфейсы Datalnput и DataOutput.)

Класс ObjectOutputStream просматривает подспудно все поля объектов и со­
храняет их содержимое. Так, при записи объекта типа Employee в поток вывода
записывается содержимое полей Ф.И.О., даты зачисления на работу и зарплаты

работника.

Необходимо, однако, рассмотрет~, очень важный вопрос: что произойдет, если

один объект совместно исполь:1уется рядом других объектов? Чтобы проиллю­

стрировать важност1, данного вопроса, внесем одно небольшое изменение в класс

Manager. В частности, допустим, что у каждого руководителя имеется свой секре­
тарь, как показано в приведенном ниже фрагменте кода.

class Manager extends Employee
{

private Employee secretary;

Глава 2 • Ввод и вывод

Тепер1, каждый объект типа Manager будет содержать ссылку 11а об1,ект типа

Emp l oyee, описывающий секретаря. Безуслов1ю, два руководителя вполне могут
полt,:ювап,ся услугами одного и того же секретаря, как показано на рис. 2.5 и в
следующем фрагменте кода:

var harry = r1ew Employee ("Harry Hacker", . .) ;
var carl = new Manager ("Ca rl Crac ke r", . .) ;
ca r l.setSe c retary(harry);
var tony = new Manager ("Tony Test e r", . . .) ;
tony.setSecretary(harry);

name = l·нarry Hacker1

name = l "Carl Cracker·I

name = 1 "Тоnу Tester" 1

secretary=

Рис. 2.5. Дна руководителя мо1у1· совместно 11ользоваться услун1ми олно1·0

и того же работника в качестве секретаря

Сохра11е11ие такой разветвленной сети объектов оказывается непростой зада­

чей. Разумеется, сохранять и восстанавливать адреса ячеек памяти для объектов

секретарей нел1.:~я. При повторной загрузке каждый такой объект, скорее всего,

будет занимап, уже совершенно друrую ячейку памяти, а не ту, которую он :~а­

нимал первоначально.

Поэтому каждый такой объект сохраняется под сериuньии но.~1сро.м, откуда,

собственно говоря, и происходит название механизма сср11а.\и.>П1iИИ обпсю11Оt1 .

Ниже описывается порядок дейсший при сериализации объектои.

1. Серийный (т.е. порядковый) номер свюывается с каждой встречающейся
ссылкой на объект, как показано на рис. 2.6.

2. Если ссылка на объект всrречается впервые, данные из этого объекта сохра­
няются в потоке ввода-вывода объектов.

2.3. Потоки ввода-вывода и сермалмзация объектов

3. Если же данные были ранее сохранены, просто добавляется метка "same as
previously saved object wi th serial numЬer х" (совпадает с объек­

том, сохра11е1111ым ранее под серийным номером х).

Память Файл

serial numЬer = 1 ,,
type = Employee
name = "Наnу Нacker'

name =
serial numЬer = 2
type = Manager
name = •carl Cracker"
secretary = object 1

serial numЬer = 3
type = Manager
name =·топу Tester" :
se<retary = oЬje<t 1 name = 1 "Carl Cracker"

/:'•

secretary =

name = 1 'TonyTeste('

secretary =

Рис. 2.6. Пример сериалиJации объектов

При чтении объектов обратно из потока их ввода-вывода порядок действий

меняется на обратный.

1. Если объект впервые указывается в потоке ввода-вывода объектов, 011 созда­
ется и инициализируется данными из потока, а связь серийного номера со

ссылкой на объект запоминается.

2. Если встречается метка " same a s previously saved object wi th ser i al
numЬer х ",то и3влекается ссылка на объект по данному серийному номеру.

НА ЗАМЕТКУ! В этой главе демонстрируется, каким образом механизм сериализации можно

применять для сохранения объектов в файле на диске и извлечения их в точном соответствии

с тем, как они сохранялись. Другой очень важной областью применения данного механизма

является передача коллекции объектов по сетевому соединению на другой компьютер. Ис­

ходные адреса ячеек памяти не имеют никакого значения при взаимодействии с другим про­

цессором. как и при обращении к файлу. Заменяя адреса ячеек памяти серийными номерами,

механизм сериализации делает вполне возможным перенос коллекций объектов с одной ма­

шины на другую .

Глава 2 • Ввод и вывод

В листинге 2.3 приведен исходный код примера программы, способной со­
хранять и перезагружап, сен объектов типа Employee и Manager (некоторые из
руководителей полr,зуются услугами общего работника в качестве секретаря).

Обратите внимание на то, •по объект секретаря остается однозначным после

повторной перезагрузки, т.е. когда работник, представленный объектом, храня­

щимо1 в элементе массива newStaff [1], получает повышение, это отражается
в полях secretary объектов типа Manager.

Листинг 2.3. Исходный код из файла objectStream/ObjectStreamTest. java

1 package objectStream;
2
3 import java.io.*;
4
5 /**
6 * @version 1.11 2018-05-01
7 * @author Сау Horstmann
8 */
9 class ObjectStreamTest
10 {
11 puЫic static void main(String[] args)
12 throws IOException, ClassNotFoundException
13
14 var harry = new Employee 1 "Harry Hacker", 50000,
15 1989, 10, 1);
16 var carl = new Manager("Carl Cracker", 80000,
17 1987, 12, 15);
18 carl.setSecretary(harry);
19 var tony = new Manager("Tony Tester", 40000,
20 1990, 3, 15);
21 tony.setSecretary(harry);
22
23 var staff = new Employee[3];
24
25
26
27
28

staff[O]
staff[l]
staff[2]

carl;
harry;
tony;

29 // сохранить записи обо всех работниках
30 // в файле employee.dat
31 try (var out = new ObjectOutputStream(
32 new FileOutputStream("employee.dat")))
33
34 out.writeObject(staff);
35
36
37 try (var in = new ObjectinputStream(
38 new FileinputStream("employee.dat")) 1

39
40 //извлечь все записи в новьм массив

41
42 var newStaff = (Employee[J) in.readObject();

2.3. Потоки ввода-вывода и сериалмзацмя объектов

43
44 //поднять зарплату секретарю

45 newStaff[l] .raiseSalary(lO);
46
47 // вывести вновь прочитанные записи работниках
48 for (Employee е : newStaff)
49 System.out.println(e);
50
51
52

java.io.ObjectOutputStream 1.1

• ObjectOutputStream(OutputStream out)

Создает поток вывода объектов типа ObjectOutputStream, чтобы объекты можно было
записывать в указанный поток вывода типа OutputStream.

• void writeObject(Object obj)

Записывает указанный объект в поток вывода объектов типа ObjectOutputStream. Сохра­
няет класс объекта, его сигнатуру и значения из любого нестатического и непереходного поля

данного класса и его суперклассов.

java.io.ObjectinputStream 1.1

• ObjectinputStream(InputStream in)

Создает поток ввода объектов типа ObjectinputStream для обратного чтения данных
об объектах из указанного потока ввода типа InputStream.

• Object readObject ()

Читает объект из потока ввода объектов типа ObjectinputStream. В частности, читает об­
ратно класс объекта, его сигнатуры, а также значения всех непереходных и нестатических

полей этого класса и всех его суперклассов. Осуществляет десериализацию для восстанов­

ления многих ссылок на объекты.

2.3.2. Представление о формате файлов для сериализации объектов
При сериализации объектов их данные сохраняются в файле определенного

формата. Безусловно, методами wri teObj ect () и readObj ect () можно было бы
воспользоваться, даже не зная, каким образом выглядит последовательность бай­

тов, представляющая объекты в файле. Тем не менее изучение формата данных

очень полезно для получения ясного представления о процессе потоковой обра­

ботки объектов. Рассматриваемый здесь материал носит до некоторой степени

технический характер, поэтому, если вас не интересуют подробности реализа­

ции, можете пропустить этот раздел.

Каждый файл начинается с состоящего из двух байтов "магического числа" АС

ED, сопровождаемого номером версии формата сериализации объектов, который

в настоящее время имеет вид 00 05. (Здесь и далее в этом разделе байты представ­
лены шестнадцатеричными числами.) Далее в файле находится последовательность

Глава 2 • Ввод и вывод

объектов, которые следуют друг за другом именно в том порядке, в каком они со­

хранялись. Строковые объекты сохраняются в следующем виде:

74 Двухбайтовое число, обозначающее длину файла Симrюлы

Например, символьная строка "Harry" сохраняется в файле следующим об­
разом:

74 00 05 Harry

Символы Юникода из строковых объектов сохраняются в "модифицирован­

ном" формате UTF-8. Вместе с объектом должен непременно сохраняться и его
класс. Описание класса включает в себя следующее.

• Имя класса.

• Одно.значньzu идентификатор порядкового но.мера версии, представляющий со-

бой отпечаток типов полей данных и сигнатур методов.

• Набор флагов, описывающих метод сериализации.

• Описание полей данных.

Для получения отпечатка сначала каноническим способом упорядочиваются

описания класса, суперкласса, интерфейсов, типов полей и сигнатур методов,

а затем к этим данным применяется алгоритм так называемого безопасного хе­

ширования (Secure Hash Algorithm - SHA).
Алгоритм SHA позволяет быстро получить "отпечаток" с большого блока дан­

ных. Этот "отпечаток" всегда представляет собой 20-байтовый пакет данных, ка­

ким бы ни был размер исходных данных. Он создается в результате выполнения

над данными некоторой искусно составленной последовательности поразрядных

операций, что дает практически полную уверенность, что при любом изменении

данных изменится и сам "отпечаток". (Подробнее с алгоритмом SHA можно оз­
накомиться в книге Cryptography and Netшork Secиrity: Principles and Practice, Seventh
Edition Уильяма Столингса (William Stallings; И3дательство Prentice Hall, 2016 г.)

Но в механизме сериализации для "отпечатка" класса используются только пер­

вые 8 байтов кода SHA. И тем не менее это гарантирует, что при изменении по­
лей данных или методов изменится и "отпечаток" класса.

При чтении объекта его "отпечаток" сравнивается с текущим "отпечатком"

класса. Если они не совпадают, это означает, что после записи объекта определе­

ние класса изменилось, а следовательно, генерируется исключение. На практике

классы постепенно усовершенствуются, и поэтому от прикладной программы,

возможно, потребуется способность читать прежние версии объектов. Более под­

робно данный вопрос обсуждается в разделе 2.3.5.
Идентификатор класса сохраняется в следующей последовательности .

• 72

• Двухбайтовое число, обозначающее длину имени класса

• Имя класса

• 8-байтовый "отпечаток"

• Однобайтовый флаг

• Двухбайтовое число, обозначающее количество дескрипторов полей данных

2.3. Потоки ввода-вывода и сериализация объектов

• Дескрипторы полей данных

• 78 (конечный маркер)

• Тип суперкласса (если таковой отсутствует, то 70)

Байт флага состоит из трех битовых масок, определяемых в классе j а v а.
io. Obj ectStreamConstants следующим образом:

static final byte SC_WRITE_METHOD = 1;
11 в данном классе имеется метод writeObject(),
11 записывающий дополнительные данные

static final byte SC_SERIALIZABLE = 2;
11 в данном классе классе реализуется

11 интерфейс SerializaЫe
static final byte SC_EXTERNALIZABLE = 4;

11 в данном классе реализуется

11 интерфейс ExternalizaЫe

Более подробно интерфейс ExternalizaЫe обсуждается далее в этой гла­

ве, а до тех пор достаточно сказать, что в классах, реализующих интерфейс

ExternalizaЫe, предоставляются специальные методы чтения и записи, кото­

рые принимают данные, выводимые из полей экземпляров этих классов. Рассма­

триваемые здесь классы реализуют интерфейс SerializaЫe и имеют значение

флага 02. Класс java. util. Date также реализует интерфейс SerializaЫe,
но помимо этого он определяет свои методы readObj ect () и wri teObj ect ()
и имеет значение флага 03.

Каждый дескриптор поля данных имеет следующий формат.

• Однобайтовый код типа

• Двухбайтовое число, обозначающее длину имени поля

• Имя поля

• Имя класса (если поле является объектом)

Код типа может принимать одно из следующих значений.

в byte
С char
D douЫe

F float
I int
J long
L объект

S short
z boolean

массив

Если код типа принимает значение L, после имени поля следует тип поля.
Символьные строки имен классов и полей не начинаются со строкового кода 7 4,
тогда как символьные строки типов полей начинаются именно с него. Для имен

типов полей используется несколько иная кодировка, а именно: формат, приме­

няемый в платформенно-ориентированных методах. Например, поле зарплаты

из класса Employee кодируется следующим образом:

D 00 06 salary

Глава 2 • Ввод и вывод

В качестве примера ниже полностью показан дескриптор класса Employee.

72 00 08 Employee
Е6 D2 86 7D АЕ АС 18 lB 02 Отнечаток и флаги

00 03 Количесrво полей экземпляра

D 00 06 salary Тип и имя поля эк:~емпляра

L 00 07 hireDay Тип и имя поля экземпляра

74 00 10 Ljava/util/Date; Имя класса для поля эк:~емпляра: Date
L 00 04 name Тип и имя поля эк:1емпляра

74 00 12 Ljava/lang/String; Имя класса для поля экземпляра: String
78 Конечный маркер

70 Суперкласс отсутс1вует

Эти дескрипторы получаются довольно длинными. Поэтому если дескриптор

одного и того же класса снова потребуется в файле, то для этой цели использует-

01 следующая сокращенная форма:

71 4-байтовый порядковый номер

Порядковый (иначе называемый серийным) номер обозначает упоминавший­

ся выше явный дескриптор класса. А порядок нумерации рассматривается далее.

Объект сохраняется в следующем формате:

73 Дескринтор класса Данные объекта

В качестве примера ниже показано, каким образом объект типа Employee со­
храняется в файле.

40 Е8 6А 00 00 00 00 00
73

Значение поля salary: douЫe
Значение поля hireDay: новый объект

71 00 7Е 00 08 Существующий класс java.util.Date
77 08 00 00 00 91 lB 4Е Bl 80 78 Внешнее хранилище (рассматривается ниже)

74 00 ОС Barry Backer Значение поля name: String

Как видите, в файле данных сохраняется достаточно сведений для восстанов­

ления объекта типа Employee. А массивы сохраняются в следующем формате.

75 Дескриптор класса 4-байтовое число, обозначающее общее Записи
количесrво за11исей

Имя класса массива в дескрипторе класса указывается в том же формате, что

и в платформенно-ориентированных методах (т.е. немного иначе, чем в формате,

используемом для имен классов в других дескрипторах классов). В этом формате

имена классов начинаются с буквы 1, а завершаются точкой с запятой. Например,

массив из трех объектов типа Ernployee будет начинаться следующим образом.

75
72 00

00
78
70
00

ов [LEmployee;
00

00 00 03

Массив

Новый класс, длина строки, имя класса Employee []
Количество нолей экземпляра

Конечный маркер

Суперкласс отсутсrвует

Количество записей в массиве

Обратите внимание на то, что отпечаток массива объектов типа Ernployee от­
личается от отпечатка самого класса Ernployee. При сохранении в выходном фай­
ле всем объектам (массивам и символьным строкам включительно), а также всем

дескрипторам классов присваиваются порядковые номера. Эти номера начина­

ются с кодовой последовательности 00 7Е 00 00.

2.3. Потоки ввода-вывода и сериалиэацин объектов

Как упоминалось ранее, дескриптор любого ко11крепюго класса ука:~ывается

полностью в файле только один раз, а все последующие дескрипторы ссылаются

на него. Так, в предыдущем примере повторяющаяся ссылка на класс Da te коди­
ровалась следующим образом: 71 00 7Е 00 08.

Тот же самый механизм применяется и для объектов. Так, если :3аписывается

ссылка на сохраненный ранее объект, она сохраняется точ110 так же, т.е. в виде

маркера 71, после которого следует порядковый номер. Ука:1ывает ли ссылка
на объект или же на дескриптор класса, всегда можно выяснить из контекста.

И, наконец, пустая ссылка сохраняется следующим обра:юм: 70.
Ниже приведен снабженный комментариями ре:3улнат вывода из програм­

мы Obj ectStreamTest, представленной в листи11ге 2.3. По желанию вы може­
те запустить эту программу на выполнение, посмотреть ре:3ультат вывода дан­

ных в шестнадцатеричном виде из памяти в файл employee. da t и сравнить его
с приведенным ниже результатом. Наиболее важные строки находятся ближе

к концу и демонстрируют ссылку на сохраненный ранее объект.

АС ED 00 05
75

Заголовок файла

Массив staff (rюрнлковый номер #1)
72

73

72

00

FC
00
78

70

00

00

36

00
L

74

78

ОБ [LEmployee;

BF 36 11 С5 91 11 С7 02

00

00 00 03

07

06

01

00
00

мanager

АЕ 13 63 8F 59 В7 02

09 secretary

ОА LEmployee;

Новый класс, длина сrроки, имя класса
Employee[J (110рялковый номер #0)

"Отпечаток" и фла1'И

Количество полей эк:iемпляра

Конечный маркер

Суперкласс отсутствует

Количество :1а11исей 11 массиве
staff [О] - новый объект (порядковый номер
#7)
Новый класс, мина сrроки, имя класса
(порялковый номер #2)
Отпечаток и флаги

Количество нолей ланных

Тип и имя поля ·~юl.!мпляра

Имя класса мя 1юля экземПЛ}lра - String
(порядковый номер #3)

Конечный маркер

72 00 08 Employee Суперкласс - новый класс, длина сrроки, имя
класса (порнлковый номер #4)

Е6 D2 86 7D АЕ АС 18 lB 02 Отпечаток и флаги

00 03 Количество 11олей ·~кземнляра

D 00 06 salary Тип и имя 1юля '!>КJl.!Мпляра

L 00 07 hireDay Тип и имя 110ля эк:1емнляра

74 00 10 Ljava/util/Date; Имя классi1 мя поля ЭК31.!мпляра - String
(порядковый 11омер #5)

L 00 04 name Тип и имя поля ·~юl.!мпляра

74 00 12 Ljava/lang/String; Имя класса для поля Эк:il.!мпляра - String
(порядковый 11омер #6)

78 Конеч11ый мi1рк<!р

70 Суперкласс отсутсl'l!ует

40 F3 88 00 00 00 00 00 Значение поля salary: douЬle

Глава 2 • Ввод и вывод
73 Значение поля secretary: новый объект

(порядковый номер #9)
72 00 ОЕ java.util.Date Новый класс, длина с1·роки, имя класса

(порядковый номер #8)
68 6А 81 01 4В 59 74 19 03 О!'печаток и флаги

00 00 Переменные экземпляра отсутствуют

78 Конечный маркер

77 08 Внешнее хранилище, количество байтов

00 00 00 83 Е9 39 ЕО 00 Дата

78 Конечный маркер

74 00 ос Carl Cracker Значение поля name: String (порядковый
номер #10)

73 Значение поля secretary: новый объект
(порядковый номер #11)

71 00 7Е 00 04 Существующий класс (использовать
порядковый номер #4)

40 ЕВ 6А 00 00 00 00 00 Значение поля salary: douЫe
73 Значение поля hireDay: новый объект

(порядковый номер #12)
71 00 7Е 00 08 Существующий класс (ис11ользовать

порядковый номер #В)

77 08 Внешнее хранилище, количество байтов

00 00 00 91 lB 4Е Bl 80 Дата

78 Конечный маркер

74 00 ос вarry Бacker Значение поля name: String (порядковый
номер #13)

71 00 7Е 00 ов staff [1] : сущес111ующий объект
(использовать порядковый номер #11)

73 staff [2]: новый объект (порядковый
номер #14)

71 00 7Е 00 02 Существующий класс (ишользовать
порядковый номер #2)

40 Е3 88 00 00 00 00 00 Значение поля salary: douЫe
73 Значение поля hireDay: новый объект

(порядковый номер #15)
71 00 7Е 00 08 Существующий класс (использовать

порядковый номер #8)
77 08 Внешнее хранилище, количество байтов

00 00 00 94 6D 3Е ЕС 00 00 Дата

78 Конечный маркер

74 00 ов Tony Tester Значение поля name: String (порядковый
номер #16)

71 00 7Е 00 ов Значение поля secretary: существующий
объект (использовать порядковый номер #11)

Разумеется, изучение этих кодов вряд ли увлекательнее чтения телефонно­

го справочника. И хотя знать точный формат файла совсем не обязательно (если

только изменение данных не преследует какую-нибудь злонамеренную цель), вам

не помешает ясно представлять себе, что поток ввода-вывода содержит подробное

описание всех направляемых в него объектов наряду с достаточными сведениями

для восстановления как отдельных объектов, так и массивов объектов.

Самое главное - запомнить следующее.

2.3. Потоки ввода-вывода и сериализация объектов

• Поток ввода-вывода объектов содержит сведения о типах и полях данных

всех входящих в него объектов.

• Для каждого объекта назначается порядковый (т.е. серийный) номер.

• Повторные вхождения того же самого объекта сохраняются в виде ссылок

на его порядковый номер.

2.3.З. Видоизменение исходного механизма сериализации

Некоторые поля данных не должны вообще подвергаться сериализации, как,

например, поля с целочисленными значениями, в которых хранятся дескрипто­

ры файлов или дескрипторы окон, имеющие значение только для платформен­

но-ориентированных методов. Такие сведения, без сомнения, становятся беспо­

лезными при последующей повторной загрузке объекта или при его переносе

на другую машину. На самом деле неверные значения в таких полях могут даже

привести к аварийному завершению платформенно-ориентированных методов.

Поэтому в Java предусмотрен простой механизм, позволяющий предотвращать
сериализацию подобных полей. Все, что для этого требуется, - объявить их как

переходные с ключевым словом transient. Объявлять их подобным образом
требуется и в том случае, если они не относятся к сериализируемым классам.

А при сериализации объектов переходные поля всегда пропускаются.

Механизм сериализации предусматривает для отдельных классов возмож­

ность дополнять стандартный режим чтения и записи процедурами проверки

правильности данных или любыми другими требующимися действиями. В се­

риализируемом классе могут быть определены методы с приведенными ниже

сигнатурами. В таком случае поля данных больше не станут автоматически под­

вергаться сериализации, а вместо нее будут вызываться эти методы.

private void readObject(ObjectinputStream in)
throws IOException, ClassNotFoundException;

private void writeObject(ObjectOutputStream out)
throws IOException;

Рассмотрим типичный пример. В пакете j ava. awt. geom некоторые классы
вроде Point2D. DouЫe не являются сериализируемыми. Допустим, требуется се­
риализовать класс LabeledPoint, содержащий поля String и Point2D. ОоuЫе.
Для этого поле Poin t2 О. DouЫe, прежде всего, объявляется как переходное
(transient), чтобы не возникло исключение типа NotSerializaЫeException,
как показано ниже.

puЫic class LabeledPoint implements SerializaЫe
{

private String label;
private transient Point2D.DouЫe point;

Далее в методе writeObject () сначала записывается дескриптор объ­

екта и поле label типа String. Для этого служит специальный метод
defaul tWri teObj ect () из класса Obj ectOutputStream, который может вы­
зываться только из метода wri teObj ect () сериализируемого класса. Затем

Глава 2 • Ввод и вывод

координаты точки записываются в поток вывода данных с помощью стандартных

методов, вызываемых из класса DataOutput следующим образом:

private void writeObject(ObjectOutputStream out)
throws IOException

out.defaultWriteObject();
out.writeDouЫe(point.getX());

out.writeDouЬle(point.getY());

В методе readObj ect () выполняется обратный процесс:

private void readObject(ObjectinputStream in)
throws IOException

in.defaultReadObject();
douЫe х = in.readDouЬle();
douЫe у= in.readDouЬle();

point = new Point2D.DouЬle(x, у);

Еще одним примером может служип, класс j а v а. u t i 1. Da te, предоставляю­
щий свои собственные методы readObj ect () и wri teObj ect ().Эти методы за­
писывают дату в виде количества миллисекунд от начального момента отсчета

времени (т.е. от полуночи по Гринвичу 1января1970 г.). Класс Date имеет слож­
ное внутреннее представление, в котором хранится как объект типа Calendar,
так и счетчик миллисекунд для оптимизации операций поиска. Состояние объ­

екта типа Calendar избыточно и поэтому не требует обязательного сохранения.
Методы readObject() и writeObject() должны сохранять и загружать поля
данных только своего класса, не обращая особого внимания на данные из суперк­

ласса или каких-нибудь других классов.

Вместо того чтобы сохраняп, и восстанавливать данные в объектах с помощыо

стандартного механизма сериализации, в классе можно определить свой механизм.

Для этого класс должен реализовать интерфейс ExternalizaЫe. Это, в свою оче­

редь, требует, чтобы в нем были также определены два следующих метода:

puЫic void readExternal(ObjectinputStream in)
throws IOException, ClassNotFoundException;

puЫic void writeExternal(ObjectOutputStream out)
throws IOException;

В отличие от методов readObj ect () и wri teObj ect (), которые обсуждались
в предыдущем разделе, эти методы сами полностью отвечают за сохранение

и восстановление всего объекта вместе с данными суперкласса. Механи3м сери­

ализации просто фиксирует класс объекта в потоке ввода-вывода. При чтении

объекта типа ExternalizaЫe поток ввода СО3дает этот объект с помощ1,ю кон­

структора бе3 аргументов и затем вызывает метод readExternal (). Ниже пока-
3ано, как эти методы можно реализовать в классе Employee.

puЫic void readExternal(Objectinput s)
throws IOException

name s.readUTF();
salary = s.readDouЬle();

2.З. Потоки ввода-вывода и сериализация объектов

hireDay new Date(s.readLong());

puЫic void writeExternal(ObjectOutput s)
throws IOException

s.writeUTF(name);
s.writeDouЬle(salary);

s.writeLong(hireDay.getTime());

• ВНИМАНИЕ! В отличие от методов readObject () и wri teObject () , которые являются
закрытыми и могут вызываться только механизмом сериализации, методы readExternal ()
и writeExternal О являются открытыми. В частности, метод readExternal () допускает
возможное изменение состояния существующего объекта.

2.3.4. Сериапизация одноэпементных множеств и типизированных перечислений
Особого внимания требует сериализация и десериализация объектов, кото­

рые считаются единственными в своем роде. Обычно такое внимание требуется

при реали:~ации одноэлементных множеств (так называемых одиночек) и типи­

зированных перечислений.

Так, если при написании программ на Java используется языковая конструк­
ция enum, особенно беспокоиться по поводу сериализации не стоит, поскольку
она будет произведена должным образом. Но что, если имеется некоторый унас­

ледованный код, содержащий перечислимый тип вроде приведенного ниже.

puЫic class Orientation
{

puЫic static final Orientation HORIZONTAL
new Orientation(l);

puЫic static f inal Orientation VERTICAL =
new Orientation(2);

private int value;

private Orientation(int v) { value = v; }

Подобный подход очень широко применялся до того, как в Java были вне­
дрены перечисления. Обратите внимание на закрытый характер конструктора.

Это означает, что создать какие-нибудь другие объекты, помимо Orientation.
HORIZONTAL и Orientation. VERTICAL, нельзя. А для выполнения проверки
на равенство объектов можно исполь:ювать операцию ==, как показано ниже.

if (orientation == Orientation.HORIZONTAL) ...

Но имеется одна важная особенность, о которой не следует забывать, когда

типизированное перечисление реализует интерфейс SerializaЫe. Применяе­

мый по умолчанию механизм сериализации для этого не подходит. Попробуем,

например, записать значение типа Orientation и затем прочитать его обратно
следующим образом:

Глава 2 • Ввод и вывод

Orientation original = Orientation.HORIZONTAL;
ObjectOutputStream out ... ,
out.write(original);
out.close();
ObjectinputStream in
var saved = (Orientation) in.read();

Если затем произвести приведенную ниже проверку, она не пройдет. На

самом деле переменная saved содержит совершенно новый объект типа
Orientation, не равный ни одной из предопределенных констант. И несмотря
на то что конструктор класса Orientation является закрытым, механизм сериа­
лизации все равно позволяет создавать новые объекты!

if (saved == Orientation.HORIZONTAL) ...

В качестве выхода из этого затруднительного положения придется опреде­

лить еще один специальный метод сериализации под названием readResol ve ().
В этом случае метод readResol ve () вызывается после десериализации объекта.

Он должен возвращать объект, превращаемый далее в значение, возвращаемое из

метода readObj ect (). В рассматриваемом здесь примере метод readResol ve ()
обследует поле value и возвратит соответствующую перечислимую константу, как
показано ниже. Не следует, однако, забывать, что метод readResol ve () нужно вве­
сти во все типизированные перечисления в унаследованном коде, а также во все

классы, где применяется проектный шаблон одиночки.

protected Object readResolve() throws ObjectStreamException
{

if (value == 1) return Orientation.HORIZONTAL;
if (value == 2) return Orientation.VERTICAL;
return null; //этого не должно произойти!

2.3.5. Контроль версий
Если вы применяете механизм сериализации для сохранения объектов, вам

придется заранее продумать все, что может произойти при последующем усо­

вершенствовании вашей прикладной программы. В частности, сможет ли версия

1.1 вашей программы читать старые файлы и смогут ли пользователи, по-преж­
нему работающие с версией 1.0, читать файлы, которые производит новая вер­
сия? Конечно, было бы совсем неплохо, если бы файлы объектов могли успешно

справляться с неизбежной эволюцией классов.

На первый взгляд, подобное кажется невозможным. Ведь если определение

класса изменяется хоть каким-то образом, сразу же изменяется и его "отпечаток"

SHA, а, как вам должно быть уже известно, потоки ввода объектов откажутся чи­
тать объекты с отличающимися "отпечатками". Но в то же время класс может

уведомить, что он совместим со своей более ранней версией. А для этого следует

прежде всего получить "отпечаток" более ранней версии класса. Это можно сде­

лать с помощыо входящей в состав JDK автономной утилиты serial ver. Напри­
мер, выполнение команды

serialver Employee

2.3. Потоки ввода-вывода и сериалиэация объектов

даст такой результат:

Employee: static final long serialVersionUID =
-1814239825517340645L;

Во всех 11ос.ледующих версиях класса константа ser ial Ver s ionU I О должна
определяться точно с таким же "отпечатком", как и в исходной версии:

class Employee implements SerializaЫe // версия 1.1

puЫic static final long serialVersionUID
-1814239825517340645L;

При наличии в классе статического члена данных serial VersionUID он не
станет вычислять "отпечаток" вручную, а просто воспользуется значением, содер­

жащимся в этом члене. А после размещения такого статического члена в классе

система сериализации будет сразу же готова к чтению разных версий объектов

данного класса.

Если изменяются только методы класса, то никаких осложнений при чтении

данных о новых объектах не возникнет. А если изменения произойдут в полях

данных, некоторые осложнения все же могут возникнут~,. Например, старый

файловый объект может содержать бол1,ше или меныпе полей данных, чем тот,

который применяется в программе в данный момент, да и типы полей данных

могут отличаться. В таком случае поток ввода объектов попытается привести по­

токовый объект к текущей версии класса.

Поток ввода объектов сравнит поля данных из текущей версии класса с поля­

ми данных из той версии класса, которая указана в потоке. Конечно, принимать

во внимание он будет только непереходные и нестатические поля данных. При

совпадении имен, но несовпадении типов полей поток ввода объектов, естествен­

но, не будет пытаться преобразовывать один тип данных в другой, а следова­

телыю, такие объекты будут считаться несовместимыми. При наличии у объекта

в потоке ввода таких полей данных, которых нет в текущей версии, поток ввода

объектов будет игнорировать их. А при наличии в текущей версии таких полей,

которых нет в потоковом объекте, для всех дополнительных полей будет устанав­

ливаться соответствующее им значение по умолчанию (для объектов это пустое

значение null, для чисел - О, для логических значений - false).
Обратимся к конкретному примеру. Допустим, ряд записей о сотрудни­

ках был сохранен на диске с помощью исходной версии класса Employee (вер­
сии 1.0), а затем она была заменена версией 2.0 данного класса, в которой вве­
дено дополнительное поле данных department. На рис. 2.7 показано, что при
чтении объекта версии 1.0 в программе, где используются объекты версии 2.0,
произойдет следующее: в поле department будет установлено пустое значение
null. А на рис. 2.8 показана обратная ситуация, возникающая при чтении объ­
екта версии 2.0 в программе, где используются объекты версии 1.0. В этом случае
дополнительное поле department будет проигнорировано.

Глава 2 • Ввод и вывод

сериали­

зированная

версия 1.0

Файл

serial numЬer = .
type = Employee
name = "' Напу Нacker"
salary = 35000.О

hireDay = 1989-01-15

Память сериал и­

, зированная

_./' ... в..,е_р_си"я_2".о---,,"!!' "
~~~~~~~~~~~ 

name = 1 ·наrтv Нacker 1 

salary = 35000.о 

hireDay = 1 1989-01-15 

depar1ment = nuN 

Рис. 2.7. Чтение объекта с меньшим количеством нолей ла~111ых 

сериали­

зированная 

версия 2.0 

Файл 

serial numЬer = 
1уре = Employee 
name -== "Нarry Hacker" 
salary = 35000.0 
hifeDay = 1989-01-15 
department = "Finance" 

Память 

.f 
name = 1 ·нагrу нacker· 1 

salary= 35000.О 

hireDay = 1 1989-{)1-15 

сериали­

зированная 

версия 1.0 

Рис. 2.8. Чте1111е объекта с большим количеством полей даю1ых 

Насколько безопасным окажется данный процесс? Все зависит от обстоя­

тельств. Игнорирование поля данных кажется безвредным. Ведь у получателя нее 

равно остаются те же данные, с которыми 011 :тает, как обращап.ся. В то же вре­

мя установка в поле данных пустого значения null может и не бып. безопасной. 
Во многих классах делается немало для инициализации всех полей данных во 

всех конструкторах :111ачениями, отличающимися от null, чтобы не предусма­
тривать заранее в метолах обработку пустых дJнных. Следовательно, раJработчик 

классов должен сам решить, что лучше: реJЛИJовать дополнительный код в ме­

тоде readObj ect () для устранения препятстиий на пути к совместимости версий 
или же обеспечип, достаточную надежносп, методои для успешной обработки 

пустых данных. РаJработчик класса должен реализовал. дополнительный код 

в методе readObj ect () для устранения несовместимости версий или обеспече­
ния достаточной надежности методов при обработке д<11111ых типа null. 

СОВЕТ. Прежде чем вводить nоле serialVersionUID в класс, необходимо выяснить. зачем 
вообще этот класс сделан сериализируемым. Так. если сериализация служит только для крат­
ковременного хранения данных (например, распределенных вызовов методов на сервере 
приложений}, то никакого контроля версий и поля serialVersionUID вообще не требуется . 



2.З. Потоки ввода-вывода и сериапиэация объектов 

Как, впрочем, и в том случае, если сериализируемый класс расширяется, но сохранение его 

экземпляров не предполагается. Если же интегрированная среда разработки выдает досад­

ные предупреждения относительно сериализации, их можно подавить или же ввести в исход­

ный код аннотацию @SuppressWarnings ( "serial"). Это намного надежнее, чем вводить 
поле serialVersionUID, об изменении содержимого которого можно впоследствии просто 
забыть. 

2.3.6. Применение сериализации для клонирования 
Механизм сериализации находит еще одно интересное применение: он по­

зволяет легко клонировап, объект, при условии, что класс последнего является 

сериализируемым. Для этого достаточно сериализовап, объект в поток вывода, 

а :1атем прочитать его обратно. В результате получится новый объект, представ­

ляющий собой точную (полную) копию уже существующего. Записывать этот 

объект в файл совсем не обязательно. Вместо этого можно воспользоваться пото­

ком вывода типа ByteArrayOutputStream, сохранив данные в байтовом массиве. 

Как демонстрируется в примере программы из листинга 2.4, чтобы получить 
клон объекта, достаточно расширить класс SerialCloneaЫe. Следует, однако, 

имеп, в виду, что, несмотря на всю изощре11ност1, такого способа, он, как правило, 

оказывается менее быстродействующим, чем способ клонирования, явным обра­

:юм создающий новый объект и копирующий или клонирующий поля данных. 

Листинг 2.4. Исходный код из файла serialClone/SerialCloneTest. java 

package serialClone; 
2 
3 /** 
4 * @version 1.22 2018-05-01 
5 * @author Сау Horstmann 
6 * / 
7 
8 import java.io.*; 
9 import java.time.*; 
10 
ll puЫic class SerialCloneTest 
12 ( 
13 puЫic static void main(String[] args) 
14 throws CloneNotSupportedException 
15 
16 var harry = new Employee("Harry Hacker", 
17 35000, 1989, 10, 11; 
18 // клонировать объект harry 
19 var harry2 = (Employee) harry.clone(); 
20 
21 //модифицировать объект harry 
22 harry.raiseSalary(lO); 
23 
24 // теперь оригинал и клон объекта harry отличаются 
25 System.out.println(harryJ; 
26 System.out.println(harry2); 
27 
28 



Глава 2 • Ввод и вывод 

29 
30 /** 
31 * Класс, в методе клонирования которого 

32 * применяется сериализация 
33 */ 
34 class SerialCloneaЫe implements CloneaЫe, SerializaЫe 
35 { 
36 puЫic Object clone() 
37 throws CloneNotSupportedException 
38 
39 try 
40 // сохранить объект в массиве байтов 

41 var bout = new ByteArrayOutputStream(); 
42 try (var out = new ObjectOutputStream(bout)) 
4 3 { 
44 out.writeObject(this); 
45 
46 
47 
48 
49 
50 

// ввести клон объекта из массива байтов 
try (var bin = new ByteArrayinputStream( 

bout.toByteArray() 11 

51 var in = new ObjectinputStream(bin); 
52 return in.readObject(); 
53 
54 
55 catch (IOException 1 ClassNotFoundException е) 

56 { 
57 var е2 = new CloneNotSupportedException(); 
58 e2.initCause(e); 
59 throw е2; 
60 
61 
62 
63 
64 /* * 
65 * Класс Employee class, переопределяемый для 

66 * расширения класса SerialCloneaЫe 
67 * / 

68 class Employee extends SerialCloneaЫe 
69 { 
70 private String name; 
71 private douЫe salary; 
72 private LocalDate hireDay; 
73 
74 puЫic Employee(String n, douЫe s, int year, 
75 int month, int day) 
76 
77 name = n; 
78 salary = s; 
79 hireDay = LocalDate.of(year, month, day); 
во 

81 
82 puЬlic String getName() 
83 { 
84 return name; 



85 
86 
87 puЫic douЫe getSalary() 
88 { 
89 return salary; 
90 
91 
92 puЬlic LocalDate getHireDay() 
93 { 
94 return hireDay; 
95 
96 
97 /* * 

2.4. Манипулирование файлами 

98 * Поднимает зарплату данному работнику 
99 * @byPercent Процент повышения зарплаты 
100 */ 
101 puЫic void raiseSalary(douЫe byPercent) 
102 { 
103 douЫe raise = salary * byPercent / 100; 
104 salary += raise; 
105 
106 
107 puЫic String toString() 
108 { 
109 ret urn getClass () . getName () 
110 + "[name=" + name 
111 + ",salary=" + salary 
112 + ",hireDay=" + hireDay 
113 + "] "; 
114 
115 

2.4. Манипулирование файлами 
Ранее в этой главе уже пояснялось, как читать и записывать данные в файл. 

Но управление файлами не ограничивается только чтением и записью. Классы 

Path и Files инкапсулируют все функциональные возможности, которые могут 
потребоваться для работы с файловой системой на машине пользователя. Так, 

с помощью класса Files можно выяснить время последнего изменения, уда­
лить или переименовать файлы. Иными словами, классы потоков ввода-вывода 

служат для манипулирования содержимым файлов, а классы, рассматриваемые 

в этом разделе, - для хранения файлов на диске. 

Классы Path и Files были внедрены в версии Java 7. Они намного удобнее 
класса File, внедренного еще в версии JDK 1.0. Есть все основания полагать, что 
они найдут широкое признание у программирующих на Java. Именно поэтому 
они и рассматриваются в этом разделе. 

2.4.1. Пути к файлам 
Путь представляет собой последовательность имен каталогов, после которой 

следует (хотя и не обязательно) имя файла. Первой составляющей пути может 



Глава 2 • Ввод и вывод 

быть корневой каталог, 1ыпример / или с:\. В :ывисимости от конкретной опе­
рационной системы в пути допускаются разные составляющие. Если путь начи­

нается с корневого каталога, 011 считается абсолютны.\1, а иначе - относите.\1,ны.\1. 

В качестве примера н при11еде111юм ниже фрагменте кода составляется абсолют­

ный и относител1,ный пуп,. При составлении абсолютного пути предполагается 

наличие UNIХ-подобной файловой системы. 

Path absolute Paths.get ("/rюme", "сау"); 

Path relative = Paths.get("myprog", "conf", 
"user.properties"); 

Статический метод Ра ths. get () получает в качестве своих параметров одну 
или несколько символы1ых строк, соединяя их через разделитель пути, ис­

полиуемый по умолчшшю 11 данной файловой системе (:шак / - в UNIХ-по­

добной файловой системе или :шак \ - в Windows). Затем в этом методе 

осуществляется синтаксический анали:1 результата, и если путь оказывается не­

достоверным для данной файловой системы, то генерируется исключение типа 

InvalidPathException, в противном случае получается объект типа Path. 
В качестве параметра методу get () можно передать единственную символь­

ную строку, содержащую несколько составляющих пути. Например, путь можно 

прочитать из ко11фигурацио1111ого файла следующим обра:юм: 

String baseDir = props.getProperty("base.dir") 
// Содержимое переменной baseDir может быть 
11 представлено следующей символьной строкой: 
11 "opt/myprog" или "c:\Program Files\myprog" 

Path basePath = Paths.get(baseDir); //в переменной baseDir 
11 допускаются разделители пути 

НА ЗАМЕТКУ! Путь совсем не обязательно должен приводить к уже существующему файлу. 
Ведь он представляет собой не более чем абстрактную последовательность имен. Как пояс­
няется в следующем разделе, при создании файла сначала составляется путь к нему, а затем 

вызывается метод для создания соответствующего файла. 

Зачастую пути объединяются, или разрещаются. Так, в результате вызова 

р. resol ve (q) воз11ращаето1 путь по следующим правилам. 

• Если q - абсолютный путь, то результат равен q. 

• В противном случае ре:1ультат равен "р затем q" по правилам, принятым 
в данной файловой системе. 

Допустим, 11 прикладной программе требуется найти рабочий каталог отно­
сительно заданного базового каталога, читаемого из конфигурационного файла, 

как было показано 11 предыдущем примере кода. Для этой цели служит приве­
денный ниже фрагмент кода. 

Path workRelative = Paths.get ("work"); 
Path workPath = basePath.resolve(workRelative); 

Имеется сокращенный вариант метода resol ve (), принимающий в качестве 
своего параметра сим11ол1,ную строку вместо пути, как показано ниже. 

Path workPath = basePath.resolve("work"); 



Н. Манипулирование файлами 

Кроме того, имеется удобный метод resol veSiЫ ing (), разрешающий путь 
относительно его родителя, порождая родственный путь. Так, если /opt/myapp/ 
work - путь к рабочему каталогу, то в результате следующего вызова образуется 

путь /opt/myapp/temp: 
Path ternpPat.h = workPath. resol veSiЬling ( "temp") 

Противоположную методу r е s о 1 ve ( ) функцию выполняет метод 

relati vize (). В результате вызова р. relati vize ( r) порождается путь q, ко­
торый, в свою очередь, порождает путь r при своем разрешении по исходному 
пути р. Например, в результате релятивизации пути 11 /home/harry" относител1,­
но пути 11 /home/fred/input. txt 11 порождается относительный путь " .. /fred/ 
inpu t. txt 11 • В данном случае две точки ( .. ) обозначают родительский каталог 
в файловой системе. 

Метод normalize () удаляет любые избыточные знаки . и .. или иные со­
ставляющие пути, которые считаются лишними в файловой системе. Например, 

в результате нормализации пути /home/harry / .. /fred/. / input. txt получа­
ется путь /home/fred/input. txt. А метод toAbsolutePath () порождает абсо­
лютный путь из заданного пути, начиная с коренной составляющей, например 

/home/fr·ed/input. txt или с: \Users\fred\input. txt. 
В интерфейсе Path имеется немало полезных методов для разделения путей 

к файлам на составляющие. В приведенном ниже фрагме~пе кода демонстриру­

ется применение наиболее полезных методов из этого интерфейса. 

Path р = Paths.get("/horne", "fred", "myprog.properties"); 
Path parent = p.getParent(); //путь /horne/fred 
Path file = p.getFileName(); //путь rnyprog.properties 
Path root = p.getRoot(); //путь/ 

Как пояснялось в первом томе настоящего издания, из объекта типа Ра th 
можно построить объект типа Scanner следующим образом: 

var in = new Scanner(Paths.get("/horne/fred/input.txt")); 

НА ЗАМЕТКУ! Время от времени вам, возможно, придется иметь дело с унаследованными 

прикладными интерфейсами API, где вместо интерфейса Path применяется класс File. Так, 
в интерфейсе Path имеется метод toFile (),тогда как в классе File - метод toPath (). 

java.nio.file.Paths 7 

• static Path qet(Strinq first, Strinq ... more) 

Составляет путь, соединяя заданные символьные строки. 

java.nio.file.Path 7 

• Path resolve (Path other) 

• Path resolve (Strinq other) 

Если параметр other содержит абсолютный путь, то возвращается путь other, а иначе -
путь, получаемый в результате объединения путей this и other. 



Глава 2 • Ввод и вывод 

java.nio. file.Patb 7 (окончание/ 

Path resolveSiЬling (Path other) 

• Path resolveSiЬling (String other) 

Если параметр other содержит абсолютный путь, то возвращается путь other, а иначе -
путь, получаемый в результате объединения родителя пути this и заданного пути other. 

• Path relativize (Path other) 

Возвращает относительный путь, порождающий путь other при разрешении пути this. 

• Path normalize () 

Удаляет из пути избыточные составляющие, например знаки . и .•. 

• Path toAЬsolutePath () 

Возвращает абсолютный путь, равнозначный данному пути. 

• Path getParent () 

Возвращает родительский путь или пустое значение null, если у данного пути отсутствует 
родительский путь. 

• Path getFileName () 

Возвращает последнюю составляющую данного пути или пустое значение null, если у дан­
ного пути отсутствуют составляющие. 

• Path getRoot () 

Возвращает корневую составляющую данного пути или пустое значение null, если у данно­
го пути отсутствует корневая составляющая. 

• toFile () 

Составляет объект типа File из данного пути. 

j ava. io. File 1 . О 

• Path toPath () 7 

Составляет объект типа Path из данного пути. 

2.4.2. Чтение и запись данных в файлы 
Класс Files упрощает и ускоряет выполнение типичных операций над фай­

лами. Например, содержимое всего файла нетрудно прочитать следующим об­

разом: 

byte[] bytes = Files.readAllBytes(path); 

Если же требуется прочитать содержимое файла в виде символьной строки, 

сначала необходимо вызвать метод readAllBytes (),как показано выше, а затем 
следующий конструктор: 

var content = new String(bytes, charset); 

Но если требуется получить содержимое файла в виде последовательности 

строк, то достаточно сделать следующий вызов: 

List<String> lines = Files.readAllLines(path, charset); 



2.4. Манипулирование файлами 

С другой стороны, если требуется записать в файл символьную строку, доста­

точно сделать вызов 

Files.write(path, content.getBytes(charset)); 

А для присоединения строки к файлу можно сделать такой вызов: 

Files.write(path, content.getBytes(charset), 
StandardOpenOption.APPEND); 

Кроме того, в файл можно записать целый ряд строк следующим образом: 

Files.write(path, lines); 

Приведенные выше простые методы предназначены для манипулирования 

текстовыми файлами умеренной длины. Если же файл крупный или двоичный, 

то для манипулирования им можно воспользоваться упоминавшимися ранее по­

токами ввода-вывода или чтения и записи данных, как показано ниже. Имеющи­

еся у них удобные методы избавляют от необходимости обращаться непосред­

ственно к классам FileinputStream, FileOutputStream, BufferedReader или 

BufferedWri ter. 

InputStream in = Files.newinputStream(path); 
OutputStream out = Files.newOutputStream(path); 
Reader in = Files.newBufferedReader(path, charset); 
Writer out = Files.newBufferedWriter(path, charset); 

java.nio.file.Files 7 

• static byte [] readAllBytes (Path path) 

• static List<String> readAllLines (Path path, Charset charset) 

Читают содержимое файла. 

• static Path write (Path path, byte[] contents, OpenOption ... 
options) 

• static Path write(Path path, IteraЫe<? extends CharSequence> 
contents, OpenOption options) 

Записывают заданное содержимое в файл и возвращают path как путь к нему. 

• static InputStream newinputStream(Path path, OpenOption ... 
options) 

• static OutputStream newOutputStream(Path path, OpenOption ... 
options) 

• static BufferedReader newBufferedReader(Path path, Charset 
charset) 

• static BufferedWriter newBufferedWriter(Path path, Charset 
charset, OpenOption ... options) 

Открывают файл для чтения или записи. 

2.4.З. Соэдание файлов и каталогов 

Чтобы создать новый каталог, достаточно сделать следующий вызов: 

Files.createDirectory(path); 



Глава 2 • Ввод и вывод 

Все составляющие пути к каталогу, кроме последней, должны уже сущеспю­

вать. А для создания промежуточных каталогов достаточно сделать такой вызов: 

Files.createDirectories(path); 

Чтобы создать пустой файл, следует сделать приведенный ниже вызов. 

F1les.createFile(path); 

Если файл уже существует, то в ре:iультате данного вызова генерируется ис-· 

ключение. Поэтому, выполняя операцию создания файла, следует проверять ее 

атомарность и факт существования файла. Если файл не существует, он создает­

ся, прежде чем у кого-нибудь другого появится возможность сделать то же самое. 

Для создания временного файла или каталога в ука3ашюм месте файловой 

системы имеются удобные методы. Примеры их применения демонстрируются 

в приведенном ниже фрагме1rге кода, где dir - это объект типа Path, а prefix/ 
suffix - символьные строки, которые могут быть нулевыми (null). Например, 
в результате вызова Files. createTempFile (null, ". txt") может быть возвра­
щен путь /tmp/1234405522364837194. txt. 

Path newPath 
Path newPath 

Files.createTempFile(dir, prefix, suffix); 
Files.createTempFile(prefix, suffix); 

Path newPath Files.createTempDirectory(dir, prefix); 
Path newPath Files.createTempDirectory(prefix); 

При создании файла или каталога можно также ука:1ать его атрибуты, в том 

числе владел1,цев или права доступа. Но конкретные подробности зависят 

от применяемой файловой системы, и поэтому :1дес1, они не рассматриваются. 

java.nio.file.Files 7 

static Path createFile(Path path, FileAttriЬute<?> ... attrs) 

• static Path createDirectory(Path path, FileAttriЬute<?> ... attrs) 

• static Path createDirectories(Path path, FileAttriЬute<?> ... attrs) 

Создают файл или каталог. В частности, метод createDirectories () создает также лю­
бые промежуточные каталоги. 

• static Path createTempFile (String pre:fi.x, String su:f:fi.x, 
FileAttriЬute<?> ... attrs) 

static Path createTempFile(Path parвntDir, String prв:fix, 
String su:f:fi.x, FileAttriЬute<?>. . . а ttrs) 

• static Path createTempDirectory(String pre:fix, 
FileAttriЬute<?> ... attrs) 

• static Path createTempDirectory(Path parentDir, String prв:fi.x, 
FileAttriЬute<?>. . . а ttrs) 

Создают временный файл или каталог в месте, пригодном для хранения временных файлов, 

или же в заданном родительском каталоге. Возвращают путь к созданному файлу или каталогу. 

2.4.4. Копирование. перемещение и удаление файлов 
Чтобы скопировать файл и:1 одного места в другое, достаточно сделать следу­

ющий ВЫ3ОВ: 

Files.copy(fromPath, toPath); 



2.4. Манипулирование файлами 

А для того чтобы переместить файл, т.е. сделать его копию и удалить ориги­

нал, следует сделать вызов 

Files.move(fromPath, toPath); 

Исход операции копирования или перемещения файлов окажется неудач­

ным, если целевой файл существует. Если же требуется перезаписать целевой 

файл, при вызове соответствующего метода следует ука:1ать дополнительный па­

раметр REPLACE _ EXISTING, а если требуется скопировап, все атрибуты файла -
дополнительный параметр COPY _ ATTRIBUTES. Кроме того, можно указать оба 

дополнительных параметра следующим образом: 

Files.copy(fromPath, toPath, 
StandardCopyOption.REPLACE_EXISTING, 
StandardCopyOption.COPY_ATTRIBUTES); 

Имеется также возможность сделать операцию перемещения атомарной. 

Этим гарантируется, что операция перемещения завершится успешно или что 

источник данных продолжает существовать. В приведенной ниже строке кода по­

казано, каким образом для этой цели используется дополнител1.ный параметр 

ATOMIC MOVE. 

Files.move(fromPath, toPath, 
StandardCopyOption.ATOMIC_MOVE); 

В файл, находящийся по пути, указанному в объекте типа Path, можно так­
же скопировать поток ввода. Это, по существу, о:шачает сохранение потока в1ю­

да на диске. Аналогично содержимое файла, находящегося по пути, указанно­

му в объекте типа Path, можно направить в поток вывода. В приведенном ниже 
фрагменте кода показано, каким образом выполш1ются обе эти операции. Как 

и 11 других вызовах метода сору (), можно предоставить по мере надобности до­

полнительные параметры. 

Files.copy(inputStream, toPath); 
Files.copy(fromPath, outputStream); 

Наконец, для удаления файла достаточно вызвать следующий метод: 

Files.delete(path); 

Этот метод генерирует исключение, если файл не существует. Поэтому вместо 

него, возможно, придется вызвать приведенный ниже метод. Оба метода можно 

также использовать для удаления пустого каталога. 

boolean deleted = Files.deleteifExists(path); 

В табл. 2.3 сведены дополнительные параметры, доступные при выполнении 
операций с файлами. 

Таблица 2.3. Стандартные параметры для операций с файлами 

Параметр Описание 

StandardOpenOption; применяется в потоках ввода-вывола нша newBufferedWriter, 
newinputStream, newOutputStream для операции записи 
READ 

WRIТE 

Оrкрыть файл для чтения 

Огкрыть файл мя записи 



Глава 2 • Ввод и вывод 

Окончание табл. 2.3 

Параметр Описание 

APPEND Если файл открыт для записи, присоединить данные в конце этого 
файла 

ТRОNСАТЕ EXISTING Если файл открыт для записи, удалить его текущее содержимое 

СRЕАТЕ NEW 

СRЕАТЕ 

DELEТE ON CLOSE 

SPARSE 

DSYNCISYNC 

Создать новый файл, указать на неудачный исход операции, если 

файл уже существует 

Создать файл атомарно, если файл не существует 

Удалить файл наилучшим образом после его закрытия 

Указать файловой сисrеме, •по этот файл окажется разреженным 

Потребовать, чтобы при каждом обновлении файла данные 

и метаданные синхронно записывались на запоминающем устройстве 

StandardCopyOption; применяется в операциях копирования и перемещения 

АТQПС МJVE Переместить файл атомарно 

СОРУ AТТRIBUТES Скопировать атрибуты файла 

REPIACE EXISTING Заменить целевой файл, если он существует 

LinkOption; применяется во всех упомянутых выше методах, а также в методах exists (), 
isDirectory (), isRegularFile () 

NOFOLLOW LINКS Не следовать по символическим ссылкам 

FileVisi tOption; применяется в методах find (), walk (), walkFileTree () 

FOLLOW LINКS Следовать по символическим ссылкам 

java.nio.file.Files 7 

• static Path copy(Path :fram, Path to, CopyOption ... options) 

• staticPath move(Path :fram, Path to, CopyOption ... options) 

Копируют или перемещают файл из исходного места :from в заданное целевое место to, 
возвращая последнее. 

• static long copy(InputStream :fram, Path to, CopyOption ... options) 

• static long copy(Path :fram, OutputStream to, 
CopyOption. . . options) 

Копируют данные в файл из потока ввода или из файла в поток вывода, возвращая количе­

ство скопированных байтов. 

• static void delete (Path раtЬ) 

• static boolean deleteifExists (Path раtЬ) 

Удаляют заданный файл или пустой каталог. Первый метод генерирует исключение, если за­

данный файл или каталог не существует. Второй метод возвращает в этом случае логическое 
значение false. 

2.4.5. Получение сведений о файлах 
Ниже перечислены методы, возвращающие логическое значение для провер­

ки свойства пути. 

• exists () 

• isHidden () 



2.4. Манипулирование файлами 

• isReadaЫe (), isWritaЫe (), isExecutaЫe () 

• isRegularFile (), isDirectory (), isSymbolicLink () 

Метод size () возвращает количество байтов в файле, как показано в при­

веденной ниже строке кода. А метод getOwner () возвращает владельца файла 

в виде экземпляра класса j ava. nio. f ile. at tribute. UserPrincipal. 

long fileSize = Files.size(path); 

Все файловые системы уведомляют об основных атрибутах, инкапсулирован­

ных в интерфейсе BasicFileAttributes. Они частично перекрывают прочие 

сведения о файлах. Ниже перечислены основные атрибуты файлов. 

• Моменты времени, когда файл был создан, последний раз открывался 

и видоизменялся, в виде экземпляров класса j ava. nio. file. attribute. 
FileTime. 

• Является ли файл обычным, каталогом, символической ссылкой или ничем 

из перечисленного. 

• Размер файла. 

• Файловый ключ - объект некоторого класса, характерный для применяе­

мой файловой системы и способный (или не способный) однозначно опре­

делять файл. 

Для получения перечисленных выше атрибутов файлов достаточно сделать 

следующий вызов: 

BasicFileAttributes attributes = files.readAttributes( 
path, BasicFileAttributes.class); 

Если заранее известно, что пользовательская файловая система соответ­

ствует стандарту POSIX, в таком случае можно получить экземпляр класса 

PosixFileAttributes следующим образом: 

PosixFileAttributes attributes = files.readAttributes( 
path, PosixFileAttributes.class); 

Далее можно определить группового или индивидуального владельца фай­

ла, а также права на групповой или глобальный доступ к нему. Мы не будем 

здесь вдаваться в подробности этого процесса, поскольку большая часть сведений 

о файлах не переносится из одной операционной системы в другую. 

java.nio.file.Files 7 

• static boolean exists(Path path) 

• static boolean isHidden (Path path) 

• static boolean isReadaЫe (Path path) 

• static boolean isWritaЫe (Path path) 

• static boolean isExecutaЫe (Path path) 

• static boolean isRegularFile(Path path) 



Глава 2 • Ввод и вывод 

java.nio.file.Files 7 {окончание/ 

• static boolean isDirectory(Path path) 

• static Ьoolean isSymЬolicLink(Path path) 
Проверяют заданное свойство файла по указанному пути. 

• static long size (Path path) 

Получает размер файла в байтах. 

• А readAttriЬutes (Path path, Class<A> type, LinkOption ... options) 
Читает атрибуты файла, относящиеся к типу А. 

java.nio.file.attriЬute.BasicFileAttriЬutes 7 

• FileTime creationTime () 

• FileTime lastAccessTime () 

• FileTime lastмodifiedTime() 

• boolean isReqularFile() 

• boolean isDirectory () 

• boolean isSymЬolicLink() 

• long size () 

• Object fileКey () 

Получают запрашиваемый атрибут файла. 

2.4.6. Обход элементов каталога 
Статический метод Files. list () возвращает поток данных типа Strearn<Pa th>, 

откуда читаются элементы каталога. Содержимое каталога читается по требованию, 

и благодаря этому становится возможной эффективная обработка каталогов с бол1,­

шим количеством элементов. 

Для чтения содержимого каталога требуется закрыл, системные ресурсы, по­

этому данную операцию необходимо заключить в блок оператора try следую­
щим образом: 

try (Stream<Path> entries = Files.list(pathToDirectory)) 
{ 

Метод list () не входит в подкаталоги. Чтобы обработать все порожденные 

элементы каталога, следует воспользоваться методом Files. walk (): 
try (Stream<Path> entries = Files.walk(pathToRoot)) 
( 

// Содержит все порожденные элементы, 
//обойденные в глубину 

Ниже приведен пример обхода дерева каталогов из ра:ырхивированного фай­

ла src. zip. Как видите, всякий раз, когда в результате обхода получается каталог, 
происходит вход в него, прежде чем продолжать обход родственных ему каталогов. 



2.4. Манипулирование файлами 

java 
java/nio 
java/nio/DirectCharBufferU.java 
java/nio/ByteBufferAsShortBufferRL.java 
java/nio/MappedByteBuffer.java 

java/nio/ByteBufferAsDouЬleBufferB.java 

java/nio/charset 
java/nio/charset/CoderMalfunctionError.java 
java/nio/charset/CharsetDecoder.java 
java/nio/charset/UnsupportedCharsetException.java 
java/nio/charset/spi 
java/nio/charset/spi/CharsetProvider.java 
java/nio/charset/StandardCharsets.java 
java/nio/charset/Charset.java 

java/nio/charset/CoderResult.java 
java/nio/HeapFloatBufferR.java 

Глубину дерева каталогов, которое требуется обойти, можно ограничить, 

вызвав метод Files.walk(pathToRoot, depth). В обоих рассматриваемых 

здесь вызовах метода wa l k () имеются аргументы переменной длины типа 

FileVisi tOption ... , но для перехода по символическим ссылкам можно пре­

доставить только параметр FOLLOW _LINKS. 

НА ЗАМЕТКУ! Чтобы отфильтровать пути, возвращаемые методом walk () по критерию, 

включающему в себя атрибуты файлов, хранящиеся в каталоге, в том числе размер, время 

создания или тип [файла, каталога, символической ссылки!, вместо метода walk () лучше 
воспользоваться методом find (). Этот метод следует вызывать с предикатной функцией, 

принимающей в качестве параметров путь и объект типа BasicFileAttributes. Един­
ственное преимущество такого подхода состоит в его эффективности. Ведь чтение каталога 

происходит в любом случае, и поэтому атрибуты сразу же становятся доступными. 

В следующем фрагменте кода метод Files. walk () применяется для копиро­

вания одного каталога в другой: 

Files.walk(source) .forEach(p -> 
{ 

try { 

} 
} ) ; 

Path q = target.resolve(source.relativize(p) ); 
if (Files.isDirectory(p)) 

Files.createDirectory(q); 
else 

Files.copy(p, q); 
catch (IOException ех) 
throw new UncheckedIOException(ex); 

К сожалению, методом Files.walk() не так-то просто воспользоваться 

для удаления дерева каталогов, поскольку для этого нужно обойти все порожден­

ные элементы, прежде чем удалить родительский элемент. В следующем разделе 

поясняется, как преодолеть подобное затруднение. 



Глава 2 • Ввод и вывод 

2.4. 7. Применение потоков каталогов 
Как пояснялось в предыдущем разделе, метод Files. walk () возвращает по­

ток данных типа Stream<Path> для обхода порожденных элеме~ттов каталога. Но 
иногда требуется более точный контроль над процессом обхода элементов ка­

талога. И в таком случае следует восполь:юваться потоком данных типа Fi les. 
newDirectoryStream, который прои:1водит поток данных типа DirectoryStreain. 
Однако он не относится к интерфейсу, подчиненному интерфейсу j а va. u t i 1. 
stream. Stream, преднюначенному для обхода элеме~ттов каталога. Напротив, он 
относится к интерфейсу, подчиненному интерфейсу I teraЫe, что дает во:Jмож­
ность использовап, поток каталогов в расширенном цикле for, как демонстриру­
ется в следующем примере кода: 

try (DirectoryStream<Path> entries = 
Files.newDirectoryStream(dir)) 

for (Path entry : entries) 
обработать entries 

Блок оператора t ry с ресурсами обеспечивает надлежащее закрытие пото­
ка ввода из каталога. Определенного порядка обхода элементов каталога не су­

ществует. Файлы можно отфильтровать по глобальному шаблону, как показано 

ниже. Все глобальные шаблоны перечислены в табл. 2.4. 
try (DirectoryStream<Path> entries 

Files.newDirectoryStream(dir, "*.java")) 

Таблица 2.4. Глобальные шаблоны 

Шаблон Описание Пример применения 

* 

** 

? 

[ ... ] 

{".} 

\ 

• 

Совпадает со всеми нулями 

и дополнительными символами 

в составляющей пути 

Совпадает со всеми нулями 

и доrюлнительными символами, 

пересекая грани11ы каталогов 

Совнадает с одним си!'.!волом 

Совпадает с рядом символов, 

указываемых чере:1 дефис или со 
знаком отрицания: [0-9) или 
[ ! 0-9] соответственно 
Соннадает с алыернати11ными 

символами, ра:111еле11ными 

:ынятыми 

Экранирует любые ш~речислеш1ые 
выпщ шаблоны 

Шаблон *. java совпадает со всеми 
файлами исходного кода на Java в текущем 
каталоге 

Шаблон **. java совпадает со всеми 
файлами исходного кода на Java в любом 
rюдкаталоге 

Шаблон????. java совпадает со всеми 
файлами исходного кода на Java, имена 
которых состоят и:1 четырех символов, не 

считая расширения 

Шаблон Test [ 0-9A-F] . java совпадает 
с файлом Testx. java, где х - одна 

шестнадцатеричная цифра 

Шаблон *. { java, class} совпадает со 
всеми файлами исходного кола и классов 

на Java 
Шаблон *\ ** со1шадает со всеми файлами, 
в именах которых содержится знак * 

ВНИМАНИЕ! Используя синтаксис глобальных шаблонов в Windows, экранируйте символы об­
ратной косой черты дважды: один раз - в синтаксисе глобального шаблона, а другой раз -
в синтаксисе символьной строки: Files. newDirectoryStream (dir, "С:\\\\"). 



2.4. Манипулирование файлами 

Если требуется обойти порожденные элементы каталога, следует вызвать ме­

тод walkFileTree () с объектом типа FileVisi tor в качестве параметра. Этот 
объект уведомляется в следующих случаях. 

• Когда встречается файл или каталог: FileVisi tResul t visi tFile (Т path, 
BasicFileAttributes attrs). 

• До обработки каталога: Fi leVi si tResul t preVisi tDirectory ( Т dir, 
IOException ех). 

• После обработки каталога: FileVisi tResult postVisi tDirectory (Т dir, 
IOException ех). 

• Когда возникает ошибка в связи с попыткой обратиться к файлу или 

каталогу, например, открып, каталог без надлежащих прав доступа: 

FileVisi tResul t visi tFileFailed (Т path, IOException ех). 

В каждом случае можно указать следующее. 

• Продолжить обращение к следующему файлу: FileVisitResult. 
CONTINUE. 

• Продолжить обход, не обращаясь к элементам каталога: FileVisi tResul t. 
SКIP SUBTREE. 

• Продолжить обход, не обращаясь к элементам каталога, родственным дан­

ному файлу: FileVisitResult. SКIP SIBLINGS. 

• Завершить обход: FileVisi tResul t. TERMINATE. 

Если любой из методов генерирует исключение, обход каталогов завершается 

и данное исключение генерируется далее в методе walkFileTree (). 

НА ЗАМЕТКУ! Несмотря на то что интерфейс FileVisi tor относится к обобщенному 

типу, вам вряд ли придется пользоваться какой-нибудь другой его разновидностью, кроме 

FileVisi tor<Path>. Метод walkFileTree () охотно принимает в качестве своего пара­
метра объект обобщенного типа FileVisi tor<? super Path>, но у типа Path не так уж 
и много супертипов. 

Удобный класс SimpleFileVisi tor реализует интерфейс FileVisi tor. Все 
его методы, кроме visitFileFailed (),ничего особенного не делают, лишь про­
должая выполнение. А метод visitFileFailed () генерирует исключение, воз­

никающее в результате сбоя и, следовательно, прекращающее обход каталога. 

В качестве примера в приведенном ниже фрагменте кода демонстрируется, ка­

ким образом выводятся все подкаталоги из заданного каталога. 

Files.walkFileTree(Paths.get("/"i, 
new SimpleFileVisitor<Path>() 

puЫic FileVisitResult preVisitDirectory(Path path, 
BasicFileAttributes attrs) throws IOException 

System.out.println(path); 
return FileVisitResult.CONTINUE; 

puЫic F1leVisitResult postVisitDirectory(Path dir, 



Глава 2 • Ввод и вывод 

IOException ехс) 

return FileVisitResult.CONTINUE; 

puЫic FileVisitResult visitFileFailed(Path path, 
IOException ехс) throws IOException 

return FileVisitResult.SKIP SUBTREE; 
} 

} ) ; 

Следует, однако, имеп, в виду, что методы postVisi tDirectory () и visi t 
F i l е F а i l е d ( ) придется переопределить, иначе обращение к файлам сра­
зу же завершится аварийно, как только встретится каталог, который не ра3ре­

шается открывать. И кроме того, атрибуты пути передаются методам post 
Visi tDirectory () и visi tFile () в качестве параметра. При обходе каталога 

уже пришлось обратип,ся к операционной системе для получения атрибутов, 

поскольку нужно каким-то образом отличать файлы от каталогов. Благодаря это­

му исключается необходимость делать еще один вы3ов. 

Остальные методы и:i интерфейса FileVisitor оказываются поле:шыми 
в том случае, если требуется выполнить служебные операции для входа и выхода 

из каталога. Например, при удалении дерева каталогов после всех файлов необ­

ходимо удалить и каталог, в котором они находились. Ниже приведен полный 

пример кода для удаления дерева каталогов. 

11 удалить дерево каталогов, начиная с корневого каталога 

Files.walkFileTree(root, new SimpleFileVisitor<Path>() 
{ 

puЬlic FileVisitResult visitFile(Path file, 
BasicFileAttributes attrs) throws IOException 

Files.delete(filei; 
return FileVisitResult.CONTINUE; 

puЬlic FileVisitResult postVisitDirectory(Path dir, 
IOException е) throws IOException 

if (е 1= null) throw е; 
Files.delete(dir); 
return FileVisitResult.CONTINUE; 

} 

} ) ; 

java.nio.file.Files 7 

• static DirectoryStream<Path> newDirectoryStream(Path path) 

• static DirectoryStream<Path> newDirectoryStream(Path path, 
String glob) 

Получают итератор для обхода всех файлов и каталогов в данном каталоге. Второй метод 

принимает только те элементы файловой системы. которые совпадают с заданным глобаль­

ным шаблоном. 



2.4. Манипулирование файлами 

java. nio. file. Files 7 (окончание} 

• static Path walkFileTree(Path start, FileVisitor<? super Path> 
visitor) 

Обходит все порожденные составляющие заданного пути, применяя к ним указанный порядок 

обращения. 

java.nio.file.SimpleFileVisitor<T> 7 

• static FileVisitResult visitFile(T path, BasicFileAttriЬutes attrs) 

Вызывается при обращении к файлу или каталогу. Возвращает одно из значений констант 

CONTINUE, SKIP SUВTREE, SKIP SIBLINGS или TERМINATE. в стандартной реализации 
по умолчанию ниЧёго особенного не делает и только продолжает выполнение. 

• static FileVisitResult preVisitDirectory(T dir, BasicFileAttributes 
attrs) 

• static FileVisitResult postVisitDirectory(T dir, 
BasicFileAttriЬutes attrs) 

Вызываются до и после обращения к каталогу. В исходной реализации по умолчанию ничего 
особенного не делают и только продолжают выполнение. 

• static FileVisitResult visitFileFailed(T path, IOException ехс) 

Вызывается, если генерируется исключение в связи с попыткой получить сведения о задан­

ном файле. В стандартной реализации по умолчанию повторно генерирует исключение, пре­

кращающее обращение к файлу с данным исключением. Этот метод следует переопределить, 

чтобы продолжить выполнение. 

2.4.8. Системы ZIР·файлов 
В классе Paths осуществляется поиск по путям в исходной файловой системе, 

т.е. там, где файлы хранятся на локальном диске пользовательского компьютера. 

Но ведь могут быть и другие файловые системы. К числу наиболее употреби­

тельных относится система ZIР-фаuлов. Если zipname - это имя ZIР-файла, то 

в результате следующего вызова устанавливается файловая система, содержащая 

все файлы в ZIР-архиве: 

FileSystem fs = FileSystems.newFileSystem( 
Paths.get(zipname), null); 

Если известно имя файла, его нетрудно скопировать из такого архива следую­

щим образом: 

Files.copy(fs.getPath(sourceName), targetPath); 

Здесь метод fs. getPath () выполняет функции, аналогичные методу Paths. 
ge t ( ) , для произвольной файловой системы. Чтобы перечислить все файлы 
в ZIР-архиве, следует обойти дерево файлов, как показано в приведенном ниже 

фрагменте кода. Это намного удобнее, чем пользоваться прикладным интерфей­

сом API, описанным в разделе 2.2.3, где требовался новый ряд классов только 
для обращения с ZIР-архивами. 



Глава 2 • Ввод и вывод 

FileSystem fs FileSystems.newFileSystem( 
Paths.get(zipname), null); 

Files.walkFileTree(fs.getPath("/"), 
new SimpleFileVisitor<Path>() 

puЫic FileVisitResult visitFile(Path file, 
BasicFileAttributes attrs) throws IOException 

} 

} ) ; 

System.out.println(file); 
return FileVis1tResult.CONTINUE; 

java.nio.file.FileSystems 7 

• static FileSystem newFileSystem(Path path, ClassLoader loader) 

Обходит все установленные поставщики файловых систем, а также файловые системы, кото­

рые способен загрузить указанный загрузчик классов, если не указано пустое значение null 
параметра loader. По умолчанию предоставляется поставщик для систем ZIР-файлов, при­
нимающий файлы с расширением . zip или . jar. 

java.nio.file.FileSystem 7 

• static Path getPath (String :Eirst, String ... more) 

Составляет путь, объединяя заданные символьные строки. 

2.5. Файлы, отображаемые в памяти 
В большинстве операционных систем можно выгодно пользоваться реали­

зациями виртуальной памяти для отображения файла или только определен­

ной его части в оперативной памяти. В этом случае доступ к файлу можно 

получить так, как будто он хранится в виде массива в оперативной памяти, 

что намного быстрее, чем при выполнении традиционных операций над фай­

лами. 

2.5.1. Эффективность файлов. отображаемых в памяти 
В конце этого раздела приведен пример программы, вычисляющей кон­

трольную сумму CRC32 для файла с использованием операции ввода данных 
из традиционного и отображаемого в памяти файла. В табл. 2.5 перечисле­
ны временные характеристики, полученные на одном компьютере при вычис­

лении с помощью этой программы контрольной суммы для файла rt. j ar 
объемом 37 Мбайт, входящего в состав комплекта JDK и расположенного в ка­
талоге j re / l ib. 



2.5. Файлы. отображаемые в памяти 

Таблица 2.5. Временные характеристики некоторых операций над файлами 

Средство выполнения операции 

Простой поток ввода 

Буферизованный ноток ввода 

Файл с произвольным досrупом 

Файл, отображаемый в памяти 

Время lв секундах! 
110 
9.9 
162 
7.2 

Как следует из табл. 2.5, на отдельно взятой машине при отображении файла 
в памяти потребовалось немного меньше времени, чем при последовательном 

вводе данных из файла с буферизацией, и значительно меньше времени, чем при 

произвольном доступе к файлу средствами класса RandomAccessFile. Разумеет­
ся, на других машинах эти показатели будут выглядеть несколько иначе, но не 

вызывает никаких сомнений, что выигрыш в производительности может оказать­

ся значительным при отображении файла в памяти по сравнению с произволь­

ным доступом к нему. В то же время для последовательного ввода из файлов 

среднего размера прибегать к отображению в памяти нецелесообразно. 

Пакет j ava. nio делает отображение файлов в памяти довольно простым про­
цессом. С этой целью для файла сначала получается кана.л, как показано ниже. 

Под каналом подразумевается предназначенная для дисковых файлов абстрак­

ция, которая позволяет получать доступ к таким функциональным возможно­

стям операционной системы, как отображение в памяти, блокировка файлов 

и быстрая передача данных между файлами. 

FileChannel channel = FileChannel.open(path, options); 

Затем из канала получается объект типа ByteBuffer в результате вызова ме­
тода rnap () из класса FileChannel. При этом указываются отображаемая в памя­
ти часть файла и режим отображения. В целом поддерживаются три следующих 

режима отображения. 

• FileChannel.MapMode.READ_ONLY. Получаемый в итоге буфер служит 
только для чтения. Любые попытки записать данные в этот буфер приве­

дут к исключению типа ReadOnlyBufferException. 

• FileChannel. MapMode. READ _WRITE. Получаемый в итоге буфер служит 
как для чтения, так и для записи, благодаря чему все вносимые измене­

ния будут в определенный момент времени записываться обратно в файл. 

Однако другие программы, отобразившие в памяти тот же самый файл, 

возможно, и не сразу обнаружат эти изменения. Конкретное поведение 

при одновременном отображении файла в памяти многими программами 

зависит от используемой операционной системы. 

• FileChannel. MapMode. PRIVATE. Получаемый в итоге буфер служит как 
для чтения, так и для записи, но любые вносимые изменения относятся 

только к этому буферу, а следовательно, они не будут распространяться 

на файл. 

Получив требуемый буфер, можно перейти непосредственно к чтению 

и записи данных с помощью методов из класса ByteBuffer и его суперклас­
са Buffer. Буферы поддерживают как последовательный, так и произвольный 



Глава 2 • Ввод и вывод 

доступ к данным. В любом буфере имеется 1103uция, продвигаемая методами 

get () и put ().В качест11е примера ниже приведен код, требующийся для после­
довательного обхода всех байтов в буфере. 

while (buffer.hasRemain1ng()) 
{ 

byte Ь = buffer.get(); 

Код, требующийся для произволыюго доступа, выглядит следующим обра­

:юм: 

for (int i =О; i < buffer.limit(); i++) 
{ 

byte Ь buffer.get(i); 

Кроме того, читать и :\аписывать массивы байтов можно с помощью следую­

щих методов: 

get(byte[] bytes) 
get (byte [ J, int offset, int length) 

Наконец, с помощыо перечисленных ниже методов можно читать значения 

примитивных типов, хранящиеся в файле в двоичном формате. 

getint() getChar() 
getLong () get Floa t () 
getShort 1) getDouЫe () 

Как упоминалось ранее, в Java для хранения данных в двоичном формате 
применяется обратный порядок следования байтов от старшего к младшему. 

Но если требуется обработап. файл, содержащий данные н двоичном формате 

с прямым порядком следования байтов от младшего к старшему, то достаточно 

сделать следующий вы:юв: 

buffer.order(ByteOrder.LITTLE_ENDIAN); 

Для выяснения текущею порядка следовани}1 байтов достаточно сделать 11ызов 

ByteOrder Ь = buffer.order() 

• ВНИМАНИЕ! В двух последних методах условные обозначения имен get/set не соблюдаются. 

Для записи числовых данных в буфер можно воспользоваться одним из пере­

численных ниже методов. В какой-то момент и, конечно, тогда, когда закрывается 

канал, внесенные изменения :\аписываются обратно в файл. 

Putint () putChar () 
putLong() putFloat() 
putShort() putDouЬle() 

В листинге 2.5 при11еде11 пример программы, вычисляющей для файла кон­
трольную сумму в 32-разрядном циклическом коде с избыточностью (CRC32). 
Такая контрол1.ная сумма часто применяется для того, чтобы выяснить, не был 



2.5. Файлы. отображаемые в памяти 

ли поврежден файл. Повреждение файла практически неизбежно ведет к изме­

нению этой контрольной суммы. В состав пакета java.util.zip входит класс 

CRC32, позволяющий вычислять такую контрольную сумму для последователь-
1юсти байтов в следующем цикле: 

var crc = new CRC32(); 
while (есть ли дополнительные байты?) 

сrс.uрdаtе(следующий байт) 

long checksum = crc.getValue(); 

Подробности вычисления контрольной суммы CRC32 не так важны. Но здесь 
оно демонстрируется лишь в качестве наглядного примера полезной операции 

над файлами. Запустить рассматриваемую здесь программу можно, введя следу­

ющую команду: 

java memoryMap.MemoryMapTest имя_файла 

Листинг 2.5. Исходный код из файла memoryМap/MemoryМapTest. java 

1 package memoryMap; 
2 
3 import java.io.*; 
4 import java.nio.*; 
5 import java.nio.channels.*; 
6 import java.nio.file.*; 
7 import java.util.zip.*; 
8 
9 /** 
10 * В этой программе контрольная сумма CRC32 
11 * вычисляется для файла четырьмя способами 
12 * Использование: java memoryМap.MemoryМapTest имя_файла 
13 * @versioп 1.02 2018-05-01 
14 * @author Сау Horstmanп 
15 */ 
16 puЫic class MemoryMapTest 
17 { 
18 puЫic static loпg checksuminputStream(Path filename) 
19 throws IOExceptioп 
20 
21 try (InputStream iп = 
22 Files.newiпputStream(filename)) 

23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

var crc = new CRC32(); 

int с; 

while ((с = in.read()) 1= -1) 
crc.update(c); 

returп crc.getValue(); 

33 puЫic static long 
34 checksumBufferediпputStream(Path filename) 



Глава 2 • Ввод и вывод 

35 throws IOException 
36 
37 try (var in = new BufferedlnputStream( 
38 Files.newlnputStream(filename))) 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 

var crc = new CRC32(); 

int с; 

while 1 (с= in.read()) 1 = -1) 
crc.update(c); 

return crc.getValue(); 

49 puЫic static long 
50 checksumRandomAccessFile(Path filename) 
51 throws IOException 
52 
53 try (var file = 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 

new RandomAccessFile(filename.toFile(), "r")) 

long length = file.length(); 
var crc = new CRC32(); 

for (long р = О; р < length; р++) 

file.seek(p); 
int с= file.readByte(); 
crc.update(c); 

return crc.getValue(); 

69 puЫic static long 
70 checksumМappedFile(Path filename) 
71 throws IOException 
72 
73 try (FileChannel channel 
74 FileChannel.open(filename)) 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 

var crc = new CRC32(); 
int length = (int) channel.size(); 
MappedByteBuffer buffer = channel.map( 

FileChannel.MapMode.READ_ONLY, О, length); 

for (int р = О; р < length; р++) 

int с= buffer.get(p); 
crc.update(c); 

return crc.getValue(); 



88 
89 

2.5. Файлы. отображаемые в памяти 

90 puЫic static void main(String[] args) 
91 throws IOException 
92 
93 System.out.println("Input Stream:"); 
94 long start = System.currentTimeMillis(); 
95 Path filename = Paths.get(args[OJ ); 
96 long crcValue = checksuminputStream(filename); 
97 long end = System.currentTimeMillis(); 
98 System.out.println(Long.toHexString(crcValue)); 
99 System.out.println( (end - start) 
100 + "milliseconds"); 
101 System.out.println("Buffered Input Stream:"); 
102 start = System.currentTimeMillis(); 
103 crcValue = checksumBufferedinputStream(filename); 
104 end = System.currentTimeMillis(); 
105 System.out.println(Long.toHexString(crcValue) ); 
106 System.out.println( (end - start) 
107 + "milliseconds"); 
108 System.out.println("Random Access File:"); 
109 start = System.currentTimeMillis(); 
110 crcValue = checksumRandomAccessFile(filename); 
111 end = System.currentTimeMillis(); 
112 System.out.println(Long.toHexString(crcValue) ); 
113 System.out.println( (end - start) 
114 + "milliseconds"); 
115 System.out.println("Mapped File:"); 
116 start = System.currentTimeMillis(); 
117 crcValue = checksumМappedFile(filename); 

118 end = System.currentTimeMillis(); 
119 System.out.println(Long.toHexString(crcValue) ); 
120 System.out.println( (end - start) 
121 + " milliseconds"); 
122 
123 

java.io.FileinputStream 1.0 

• FileChannel getChannel () 1 . 4 

Возвращает канал для получения доступа к данному потоку ввода. 

java.io.FileOutputStream 1.0 

• FileChannel getChannel () 1 . 4 

Возвращает канал для получения доступа к данному потоку вывода. 



Глава 2 • Ввод и вывод 

java.io.RandomAccessFile 1.0 

FileChannel getChannel () 1 . 4 

Возвращает канал для получения доступа к данному файлу. 

java.nio.channels.FileChannel 1.4 

static FileChannel open (Path path, OpenOption. . . options) 7 

Открывает канал доступа к файлу по заданному пути. По умолчанию канал открывается 

для чтения. Параметр options принимает одну из следующих констант, определяемых в пе· 
речислении StandardOpenOption: WRIТE, APPEND, ТRUNCAТE_EXISTING, СRЕАТЕ. 

мappedВyteBuffer map(FileChannel.мapМode mode, long position, 
lonq size) 

Отображает часть файла в памяти. Параметр mode принимает одну из следующих констант, 
определяемых в классе FileChannel .МарМоdе: READ _ ONLY, READ _ WRIТE или PRIVAТE. 

java.nio.Buffer 1.4 

• boolean hasRemaining () 

Возвращает логическое значение true, если текущее положение в буфере еще не достигло 
предельной позиции. 

• int limit () 

Возвращает предельную позицию в буфере, т.е. первую позицию, где больше нет никаких 

значений. 

java.nio.ByteBuffer 1.4 

• byte get () 

Получает байт из текущей позиции и продвигает текущую позицию к следующему байту. 

• byte get (int index) 

Получает байт по указанному индексу. 

• ByteВuffer put(byte Ь) 

Размещает байт на текущей позиции и продвигает ее к следующему байту. Возвращает ссыл· 

ку на данный буфер. 

ByteВuffer put(int index, byte Ь) 

Размещает байт по указанному индексу. Возвращает ссылку на данный буфер. 



2.5. Файлы, отображаемые в памяти 

j ava. nio. ByteBuffer 1 . 4 (окончание} 

• ByteBuffer get (byte [] destina tion) 

• ByteBuffer get(byte[] destination, int o~~set, int length) 

Заполняют байтовый массив или только какую-то его часть байтами из буфера и продвигают 

текущую позицию на количество считанных байтов. Если в буфере недостаточно байтов, то 

ничего не считывают и генерируют исключение типа BufferUnderflowException. Воз­
вращают ссылку на данный буфер. 

• ByteBuffer put (byte [] source) 

• ByteBuffer put(byte[]source, int offset, int length) 

Размещают в буфере все байты из байтового массива или только какую-то их часть и продви­

гают текущую позицию на количество записанных байтов. Если в буфере слишком много бай­

тов, то ничего не записывают и генерируют исключение типа BufferOverflowException. 
Возвращают ссылку на данный буфер. 

• Ххх getXxx() 

• Ххх getXxx(int index) 

• ByteBuffer putXxx(Xxx value) 

• ByteBuffer putXxx(int index, Ххх value) 

Получают или размещают в буфере двоичное число. Вместо обозначения Ххх может быть 

указан один из следующих примитивных типов данных: Int, Lonq, Short, Char, Float или 
DouЬle. 

• ByteBuffer order(ByteOrder order) 

• ByteOrder order () 

Устанавливают или получают порядок следования байтов. Параметр order может принимать 
значение одной из следующих констант из класса ByteOrder: BIG_ENDIAN или LITTLE_ 
ENDIAN. 

• static ByteBuffer allocate (int capaci ty) 

Конструирует буфер заданной емкости. 

static ByteBuffer wrap (byte [] values) 

Конструирует буфер, опирающийся на заданный массив. 

• CharBuffer asCharBuffer() 

Конструирует символьный буфер, опирающийся на данный буфер. Изменения в символьном 
буфере отражаются в данном буфере, но у символьного буфера имеется своя позиция, предел 

и отметка. 

java.nio.CharBuffer 1.4 

• char get () 

CharBuffer get (char [] destination) 

• CharBuffer get(char[] destination, int orrset, int length) 

Получают значение типа char или ряд подобных значений, начиная с указанной позиции 
в буфере и продвигая ее на количество считанных символов. Два последних метода возвра­

щают ссылку this на данный буфер. 



Глава 2 • Ввод и вывод 

j ava. nio. CharBuffer 1 . 4 {окончание/ 

• CharBuf f er put(char с) 

• CharBuffer put(char[] source) 

• CharBuf f er put(char[] source, int offset, int length) 

• CharBuffer put(String source) 

• CharBuffer put (CharBuffer source) 

Размещают в буфере одно значение типа char или ряд подобных значений, начиная с ука­
занной позиции в буфере и продвигая ее на количество записанных символов. При чтении из 
исходного буфера типа CharBuffer считываются все оставшиеся в нем символы. Возвра­
щают ссылку this на данный буфер. 

2.5.2. Структура буфера данных 
При использовании механизма отображения файлов в памяти создается един­

ственный буфер, охватывающий файл полностью или только интересующую его 

часть. Но буфера могут применяться для чтения или записи и более скромных 

фрагментов данных. 

В этом разделе дается краткое описание основных операций, которые могут 

выполняться над объектами типа Buffer. Буфе-ром называется массив значений 
одинакового типа. Класс Buffer является абстрактным с такими производными 
от него конкретными подклассами, как ByteBuffer, CharBuffer, DouЬleBuffer, 
FloatBuffer, IntBuffer, LongBuffer и ShortBuffer. 

1!:'1 НА ЗАМЕТКУ! Класс StringBuffer не имеет никакого отношения к этим подклассам, реа­
~ лизующим буфера данных. 

На практике чаще всего применяются классы ByteBuffer и CharBuffer. Как 
показано на рис. 2.9, каждый буфер обладает следующим свойствами: 

• Емкость, которая вообще не изменяется. 

• По.тция, начиная с которой считывается или записывается следующее зна-

чение. 

• Предел, вне которого чтение или запись не имеет смысла. 

• Необязательная отметка для повторения операции чтения или записи. 

Все эти свойства удовлетворяют следующему условию: 

О = отметка = п03иция = предел = емкость 

Буфер работает главным образом по циклу "сначала запись, затем чтение". Ис­

ходная позиция в буфере соответствует нулю (О), а предел - его емкости. Для ввода 
значений в буфер следует вызвать метод put ().Исчерпав вводимые в буфер данные 
или заполнив всю его емкость, можно переходить к чтению данных из буфера. 

Чтобы установить предел на текущей позиции, а позицию - на нуле, следует 

вызвать метод flip ().Далее можно вызывать метод get () до тех пор, пока метод 
remaining () будет возвращать положительные значения разности предела и по­
зиции. Прочитав все значения из буфера, следует вызвать метод clear (), чтобы 



2.5. Файлы. отображаемые в памяти 

подготовить буфер к следующему циклу записи. Метод c lear ( ) устанавливает по­
зицию в исходное нулевое положение, а предел - равным емкости буфера. 

уже прочитано/записано еще не прочитано/не записано за пределами 

t 
о отметка позиция предел емкость 

'-~--------~~ , _______ ,,,,,,,, 
остаток 

Рис. 2.9. Буфер 

Если требуется выполнить повторное чтение данных из буфера, то для этого 

следует воспользоваться такими методами, как rewi nd ( ) или ma rk () и rese t () . 
Более подробно эти и другие методы обращения с буфером данных поясняются 

в приведенном далее описании прикладного интерфейса API. 
Для получения самого буфера нужно вызвать статический метод ByteBi1 ffer . 

a llo ca te () или By teBuffer. wra p ( ) . После этого можно заполнить буфер из 
открытого канала или вывести его содержимое в канал. В приведенном ниже 

примере кода показано, как это делается. Такой способ может стать поле:шой 

альтернативой произвольному доступу к файлу. 

Byt eBuffe r buffer = Byt eBuffe r. a l loca t e(RECORD_SIZE ) ; 
channe l . read( buffer ) ; 
channel . position (newpos); 
buffer. flip ( ) ; 
channel.write( buffer) ; 

java.nio.Buffer 1.4 

Buffer clear () 

Подготавливает данный буфер к записи данных, устанавливая позицию в нулевое положение, 

а предел - равным емкости буфера . Возвращает ссылку this на данный буфер . 

• Buffer flip () 

Подготавливает данный буфер к чтению после записи, устанавливая предел на текущей по­

з иции. а саму позицию - в нулевое положение . Возвращает ссылку this на дан ный буфер. 

• Buffer rewind () 

Подготавливает данный буфер к повторному чтению тех же самых значений , уста на вл ивая 

позицию в нулевое положение и оставляя предел неизменным . Возвращает ссылку this 
на данный буфер. 

• Buffer mark () 

Устанавливает отметку данного буфера на текущей позици и . Возвращает ссыл ку this 
на данный буфер. 



Глава 2 • Ввод и вывод 

java. nio. Buffer 1. 4 (окончание/ 

• Buffer reset () 

Устанавливает текущую позицию данного буфера на отметке. позволяя тем самым снова чи­

тать и записывать данные в буфер с отмеченной позиции. Возвращает ссылку this на дан­
ный буфер. 

• in t remaining () 

Возвращает оставшееся количество значений, доступных для чтения или записи в буфере, 
т.е. разность предела и позиции. 

• int position () 

• void position(int newValue) 

Получают или устанавливают текущую позицию в данном буфере. 

in t capaci ty () 

Возвращает емкость данного буфера. 

2.6.З. Блокирование файлов 

Когда нескольким одновременно выполняющимся программам требуется ви­

доизменить один и тот же файл, они должны каким-то образом взаимодейство­

нать друг с другом, иначе они могут легко испортить файл. В качестве выхода из 

этого 3атруднительного положения могут послужить блокировки файлов. В част­

ности, блокировка файла управляет доступом ко всему файлу или же к опреде­

ленному ряду байтов в нем. 

Допустим, пользовательские глобальные параметры настройки прикладной 

программы сохраняются в конфигурационном файле. Если поль3ователь ВЫ3Ы­

вает два экземпляра этой программы, то вполне во3можно, что в обоих ее экзем­

плярах потребуется выполнить 3апись в конфигурационный файл в один и тот 

же момент времени. В таком случае файл должен быть заблокирован в первом 

экземпляре прикладной программы. Когда же во втором ее экземпляре обнару­

жится, что файл заблокирован, в нем может быть принято решение подождать 

до тех пор, пока файл не разблокируется, или вообще отка:~аться от записи. 

Для блокирования файла можно вызывап, метод lock () или tryLock () из 

класса FileChannel следующим образом: 
FileChannel = FileChannel.open(path); 
FileLock lock = channel.lock(); 

или 

FileLock lock = channel.tryLock(); 

Когда вызывается метод lock (), он блокируется до тех пор, пока блокировка 
не будет доступна. А когда вызывается метод tryLock (),сразу же возвращается 
разрешение на блокировку или пустое значение null, если блокировка недоступ­
на для установки. Файл остается заблокированным до тех пор, пока не закроется 

канал или не будет вызван снимающий блокировку метод release (). 
Для блокиронания только какой-нибудь определенной части файла можно 

сделап, вызов 

FileLock lock(long start, long size, boolean exclusive) 



2.5. Файлы. отображаемые в памяти 

или 

FileLock tryLock(long start, long size, boolean exclusive) 

Если указать логическое значение false флага shared, файл будет заблоки­
рован как для записи, так и для чтения. Если же указать логическое значение 

true этого флага, то станет доступной ра3де.ляемая блокировка, позволяющая не­
скольким процессам читать из файла, но не допускающая ни для одного из них 

приобретение права на исключительную блокировку. Разделяемые блокировки 

поддерживаются не во всех операционных системах. Поэтому вполне возможно 

получить право на исключительную блокировку, запрашивая только разделя­

емую блокировку. Чтобы выяснить, какой из этих видов блокировки доступен, 

следует вызывать метод isShared () из класса FileLock. 

НА ЗАМЕТКУ! Если сначала блокируетс>1 концева>1 часть файла, а затем содержимое файла 

разрастаетс>1 за пределы заблокированной части, то дополнительна>! часть файла не блоки­

руете>!. Дл>1 блокировани>1 всех байтов в файле нужно указать значение Long. МАХ_ VALUE 
его размера. 

По завершении операций над файлом следует снять с него блокировку. И как 

всегда, это лучше всего сделать с помощью оператора try с ресурсами, как пока­
зано ниже. 

try (FileLock lock = channel.lock()) 
{ 

получить доступ к заблокированному файлу или его части 

Не следует, однако, забывать, что блокирование файлов зависит от используе­

мой системы. Ниже перечислены некоторые особенности блокирования файлов, 

на которые следует обращать внимание. 

• В некоторых системах блокирование файлов является лишь желательным, 

но не обязател1,ным. Если прикладной программе не удастся получить раз­

решение на блокировку, она все равно может начать запись данных файл, 

несмотря на то, что доступ к этому файлу в данный момент заблокирован 

другой прикладной программой. 

• В некоторых системах нельзя одновременно блокировать файл и отобра­

жать его в памяти. 

• Блокировки файлов удерживаются всей виртуальной машиной Java. Если 
с помощью одной и той же виртуальной машины запускаются сразу две 

программы (например, аплет или программа запуска приложений), эти 

программы не смогут по отдельности получать разрешение на блокиров­

ку одного и того же файла. А если виртуальная машина уже удержива­

ет другую перекрывающую блокировку для того же самого файла, то ме­

тоды lock () и tryLock () будут просто генерировать исключение типа 
OverlappingFileLockException. 



Глава 2 • Ввод и вывод 

• В некоторых системах закрытие канала приводит к снятию с базового фай­

ла всех блокировок, которые удерживаются виртуальной машиной Java. 
Поэтому лучше не открывать много каналов для одного и того же забло­

кировашюго файла. 

• Блокирование файлов в сетевой файловой системе очень сильно зависит 

от используемой системы, и поэтому в таких системах лучше всего избе­

гать этого механизма. 

java.nio.channels.FileChannel 1.4 

• FileLock lock () 

Получает разрешение на исключительную блокировку всего файла. Этот метод блокируется 

до тех пор, пока не получит разрешение на блокировку. 

• FileLock tryLock () 

Получает разрешение на исключительную блокировку всего файла или возвращает пустое 

значение null, если блокировка не может быть получена. 

• FileLock lock (lonq position, lonq size, Ьoolean shared) 

• FileLock tryLock (lonq position, lonq size, boolean shared) 

Получают разрешение на блокировку доступа к определенной части файла. Первый метод 
блокируется до тех пор, пока такое разрешение не будет получено, а второй возвращает пу­

стое значение null, если не удается получить разрешение на блокировку. 

java.nio.channels.FileLock 1.4 

• void close () 1 . 7 

Снимаетблокировк~ 

2.6. Регулярные выражения 
Регулярные выражения применяются для указания шаблонов строк. С их 

помощью можно отыскать символьные строки, совпадающие с конкретным ша­

блоном. Например, в одном из рассматриваемых далее примеров программ осу­

ществляется поиск по шаблону <а href=" ... ">для обнаружения всех гиперс­
сылок в НТМL-файле. 

Безусловно, для определения шаблона обозначение ... является не доста­
точно точным. Необходимо как можно конкретнее указывать, какая именно по­

следователыюсть символов допускается для совпадения. Поэтому для описания 

каждого шаблона требуется специальный синтаксис регулярных выражений. В 

качестве примера рассмотрим простое регулярное выражение [ Jj] а va. +, обе­
спечивающее совпадение с любой символьной строкой, отвечающей следующим 

критериям поиска: 



2.6. Регулярные выражения 

• начинается с буквы J или j; 

• содержит ava на месте трех последующих букв; 

• в остальной части содержит один или больше прои:шольных символов. 

Например, строка "javanese" совпадает с данным реrулярным выражением, 
а строка "Core Java" не совпадает. 

Как видите, чтобы понять смысл реrулярного выражения, нужно хотя бы не­

много разбираться в его синтаксисе. Правда, для большинства целей вполне хва­

тает небольшого набора довольно простых синтаксических конструкций, рассма­

триваемых ниже. 

• Класс символов - это набор альтернативных символов, заключенных в ква­

дратные скобки, например: [Jj], [0-9], [A-Za-z] или ["0-9]. Здесь зна­
ком - обозначается диапазон символов (т.е. все символы, значения кото­

рых в Юникоде находятся в указанных пределах), а знаком " - дополнение 

(т.е. все символы, кроме указанных). 

• Чтобы включить знак - в класс символов, его необходимо сделать первым 

или последним элементом данного класса. А для того чтобы включить 

знак [, его следует сделать первым элементом. И для того чтобы включить 
знак ", его достаточно разместить где угодно, только не в начале класса 
символов. Экранировать необходимо только знаки [ и \. 

• Имеется немало предопределенных классов символов вроде \d (для цифр) 
или \р { Sc) (для знака денежной единицы в Юникоде), как показано 

в табл. 2.6 и 2.7. 

• Большинство символов указываются для совпадения непосредственно в ша­

блоне, как, например, буквы ava в рассмотренном выше шаблоне. 

• Знак . обозначает совпадение с любым символом, кроме символов оконча­
ния строки (в зависимости от установленных флагов). 

• Знак \ служит для экранирования символов, например, выражение \ . обо­
значает совпадение с точкой, а выражение \ \ - совпадение с обратной ко­

сой чертой. 

• Знаки " и $ обо:шачают совпадение я начале и в конце строки соотяет­
ственно. 

• Если Х и У являются реrулярными выражениями, то выражение ХУ обол~а­

чает "любое совпадение с Х, после которого следует совпадение с У", а вы­

ражение Х 1 У - "любое совпадение с Х или У". 

• В выражении х можно применять кванторъz вроде Х+ (1 или больше), 
Х* (О или больше) и Х? (О или 1). 

• По умолчанию квантор обозначает совпадение с наибольшим количеством 

возможных повторений, определяющих удачный исход всего сопоставле­

ния с шаблоном в целом. Этот режим можно изменять с помощью суф­

фикса ? (обозначающего минимальное, или нестрогое, совпадение при 
наименьшем количестве повторений) и суффикса + (обо:шачающего мак­
симальное, строгое или полное совпадение при наибольшем количестве 



Глава 2 • Ввод и вывод 

повторений, даже если это чревато неудачным исходом всего сопоставле­

ния с шаблоном в целом). 

• Например, символьная строка "саЬ" совпадает с шаблоном [a-z] *аЬ, 

но не с шаблоном [a-z] *+аЬ. В первом случае с выражением [a-z] *со­

впадает только символ с, поэтому символы аЬ совпадают с остальной ча­

стью шаблона. А во втором, более строгом случае символы саЬ совпадают 

с выражением [а -z] * +, тогда как остальная част~, шаблона остается не 
совпавшей. 

• Для определения подвыражений можно испол1,зо11ать гру1111ы. Все группы 

следует :ыключать в круглые скобки, например ( [ +-]?) ( [ 0-9] +). После 

этого можно обратиться к сопоста11ителю с шаблоном, чтобы воз11ратип, 

совпадение с каждой группой или обратную ссылку на отдельную группу 

с помощью выражения с \n, где n - номер группы, начиная с \ 1. 

Таблица 2.6. Синтаксис регулярных выражений 

Сиктаксис 

Символы 

с, любой символ, 

кроме знаков ., *, +, ?, 

{, 1, {, ) ' [, \, "' $ 

\х{р} 

\uhhhh, \xhh, \Оо, 
\Ооо, \Оооо 

\а, \е, \f, \n, \r, \ t 

Описание 

Символ с 

Любой символ, кроме знаков 

окончания строки, или любой 

символ, если усrановлен флаг 

DOTALL 

Кодовая точка Юникода, 

предсrавленная 

в шестнадцатеричном коде р 

Кодовая точка Юникода, 

предсrавленная 

в шестнадцатеричном или 

восьмеричном коде 

Предупреждение (\х{7}), 

11ереключение кола (\х { lB} ), 
новая строка (\х{А} ), возврат 
каретки (\x{D} ), табуляция 
(\х{9}) 

\се, гле с - буква У11равляющий символ, 

в прелелах [A-Z] или соответствующий обозначению с 

один и:1 знаков @, [, \, 

], AI_!? 

\с, гле с - любой 

сим1юл, кроме буквы 

или 1111фры в пределах 
[A-Za-z0-9] 
\Q . . \Е 

Символ с 

Все, что ука:~ано от начала и до 

кон11а цитаты 

Пример 

\x{1D546} 

\uFEFF 

\n 

\сВ - возврат на олну 

позицию (\х{ 8}) 

\\ 

Шаблон \Q ( ... ) \Е совпадает 
с символьной строкой ( ... ) 



2.6. Регулярные выражения 

Синтаксис 

Классы символов 

[с, С2 ..• J , где с 1 -

символы в пределах 

c-d или классы 
символов 

[Л • "] 

[... && 

\р{ 

\Р{ 

\d, \D 

\w, \W 

\s, \S 

... ] 
} ' 

. } 

\h, \v, \Н, \V 

Описание 

/lюбой символ из 

последовательности С 1 , С2 ... 

Дополнение класса символов 

Пересечение классов символов 

Предопределенный класс 

СИМJЮЛОВ (см. 1абл. 2.7); ею 
11.01юлнение 

Цифры (по шаблону[О-9] или 

\р{Цифра}, если установлен флаг 

UNICODE _ CНARACTER _ CLASS); их 
дополнение 

Словесные символы (по шаблону 

[a-zA-Z0-9 ] или словесные 
символы в IОникоде, если 
установлен флаг UNICODE _ 
CНARACTER _ CLASS); их дополнение 

Пробелы (по шаблону [ \n\r\t\ 
f\x{B}] или \p{IsWhite Space}, 
если установлен флаг UNICODE _ 
CНARACTER _ CLASS); их дополнение 

Горизонтальный и вертикальный 

пробелы, а также их дополнения 

Последовательности и альтернативы 

ХУ /lюбая строка из выражения Х, 

после которой следует любая 

строка И3 выражения У 

XI У /lюбая строка И3 выражения Х 
или у 

Группирование 

(Х) 

\п 

(?<имя>Х) 

\k<имя> 

Фиксация совпаде1шя 

с выражением Х 

n-я группа 

Фиксация совпадения 

с выражением Х под заданным 

именем 

Группа с заданным именем 

Продолжение тавбл. 2.6 

Пример 

[0-9+-] 

[Л\d\S] 

[\p{L}&&[ЛA-Za-z] 

Шаблон \p{L совпадает 
с буквой в Юникоде, как, 

впрочем, и шаблон \pL, 
а следовательно, фигурную 
скобку можно опустить 

Шаблон \d+ обозначает 
последовательность цифр 

Шаблон \s*, \s* обозначает 
запятую, отделяемую с обеих 

сторон дополнительными 

пробелами 

Шаблон [1-9] [0-9]* 
обозначает rюложительное 

число бе3 начального нуля 

httpl ftp 

Шаблон ' ( [ л ' J *) ' 

фиксирует текст в кавычках 

Шаблон ( [' "J) . *\1 
совпадает со строкой 'Fred' 
или "Fred", но не со строкой 
"Fred' 

Шаблон ' (?<id>[A­
Za-z0-9] +) ' фиксирует 

совпадение с выражением 

под именем id 

Шаблон \k<id> совпадает 
с 1рушюй под именем id 



Глава 2 • Ввод и вывод 

Синтаксис 

(? :Х) 

:Х), 

-:fk 
:Х), где f; 

находится в 11ределах 

[dimsuUx] 
Прочее (? . 

Кванторы 

Х? 

Х*,Х+ 

. ) 

X{n} X{n,} X{n,m} 

Q?, где Q -

кванторное 

выражение 

Q+, где Q -

квангорное 

выражение 

Обнаружение границ 

\А, \Z, \z 

\Ь, \В 

\R 
\G 

Окончание тад,1. 2.6 

Описание Пример 

У11отребление круглых скобок без В шаблоне (? :http 1 ftp) : / / 
фиксации выражения Х (. *) происходит совпадение 

с группой \1 11осле 

Совпадение, но без фиксации 

с выражением Х при 

установленных или сброшенных 

флагах (после знака-) 

См. ниже пояснения к классу 

Pattern в описании прикладного 
интерфейса АР! 

Необязательное наличие 

выражения Х 

Повторение О, 1 или больше раз 
выражения Х 

Повторение n ра3, как минимум n 
раз, от n до m ра3 выражения Х 

Принудительный квантор, 

пытающийся найти самое 

короткое совпадение, прежде чем 

искать более длинное сов11адение 

Положительный квантор, 

принимающий самое длинное 

сов11адение бе3 отката 

знаков : / / 
Шаблон (?i: jpe?g) 
обозначает совпадение без 

учета регистра 

Шаблон\+? обозначает 

присутствие необязательною 
знака "плюс" 

Шаблон (1-9] (0-9]+ 
обозначает целое число, 

большее или равное 10 
Шаблон (0-7] {1,3} 
обозначает от ол1 юй до трех 

восьмеричных цифр 

Шаблон . * (<. +?>) . * 
фиксирует самую короткую 
последователы юсть, 

заключенную в угловые 

скобки 

Шаблон ' [" ' ] *+' совпадает 
со строками, заключенными 

в одиночные кавычки, но 

сразу же не совпадает со 

строками без закрывающей 

кавычки 

Начало и конец ввода (или начало Шаблон "Java$ обозначает 
и конец строки в многос1рочном совпадение с введенными 

режиме) данными или сrрокой Java 
НаL1ало ввода, конец ввода, 

абсолютный конец ввода (не 

изменяется в многострочном 

режиме) 

Словесная граница, несловесная 

граница 

Разрыв строки 11 Юникоде 

Конец предыдущего совпадения 

Шаблон \bJava \Ь обозна•1ает 
совпадение со словом Java 



2.6. Регулярные выражении 

Таблица 2.7. Имена предопределенных классов символов, применяемых с префиксом \р 

Ими класса символов 

posixClass 

IsScrip~ sc=Scrip~ script=Script 

InБlock, Ыk=Block, Ыock=Block 

Са tegory, InCa tegory, qc=Ca tegory, 
general_category=Category 
IsProperty 

javaмethod 

Описание 

posixClass - один из классов Lower, 
Upper, Alpha, Digi t, Alnum, Punct, Graph, 
Print, Cntrl, XDigit, Space, Blank, ASCII, 
интерпретируемых как класс по стандарту 

POSIX или Unicode в зависимости 
от состояния флага UNICODE - CНARACTER -
CLASS 

Сценарий, принимаемый методом 

Character.UnicodeScript.forName() 

Блок, принимаемый методом Character. 
UnicodeScript.forName() 

Одно- или двухбуквенное наименование 

общей категории символов в Юникоде 

Property - одно из имен свойств 

Alphabetic, Ideographic, Letter, 
Lowercase, Uppercase, Ti tlecase, 
Punctuation, Control, White_Space, Digit, 
Нех _Digi t, Noncharacter _ Code _Point, 
Assigned 

Вызов метода Character. isMethod (), 
который не должен считаться не 

рекомендованным к применению 

В качестве примера ниже приведено непростое, но потенциально полезное 

ре~улярное выражение (в нем описываются десятичные или шестнадцатеричные 

целые числа). 

[+-]?[0-9]+10[Хх] [0-9A-Fa-f]+ 

К сожалению, синтаксис ре~улярных выражений не полностью стандартизи­

рован и может выглядеть по-разному в различных программах и библиотеках, 

где они применяются. И хотя существует общее согласие по базовым конструк­

циям, тем не менее, имеется масса досадных отличий в деталях. Так, в классах, 

реализующих ре~улярные выражения в Java, применяется синтаксис ре~улярных 
выражений, подобный, но все-таки не полностью совпадающий с тем, что при­

меняется в языке Perl. В табл. 2.6 перечислены все конструкции этого синтаксиса, 
внедренного в Java. Более подробные сведения о синтаксисе ре~улярных выра­
жения можно найти в документации на прикладной интерфейс API для клас­
са Pattern или в книге Mastering Regular Expression, Зd Edition Джефри Фридла 
(Jeffrey Е. F. Friedl; издательство O'Reilly and Associates, 2006 г. 1 ). 

2.7 .2. Совпадение со строкой 
Самым простым примером применения ре~улярного выражения является 

проверка конкретной символьной строки на совпадение с ним. Ниже приведен 

1 В русском переводе книга вышла под названием Реzулярнь1е выражения, 3-е издание, в изда­

тельстве "Символ-Плюс", М., 2008 г. 



Глава 2 • Ввод и вывод 

пример кода, выполш110щий такую проверку в Java. Сначала в этом коде и:~ 
символьной строки, содержащей реrулярное выражение, создается объект типа 

Pattern. Затем из этого объекта получается объект типа Matcher и вызывается 
его метод matches (). 

Pattern pattern = Pattern.compile(patternString); 
Matcher matcher = pattern.matcher(input); 
if (matcher.matches() 1 ... 

В качестве входных данных для сопоставителя с шаблоном может служип, 

объект любого класса, который реализует интерфейс CharSequence, например 
String, StringBuilder или CharBuffer. При компиляции шаблона можно 
устанавливать один или бол1,ше флагов, как пока:ыно в приведенном ниже при­

мере кода. 

Pattern pattern = Pattern.compile(patternString, 
Pattern.CASE INSENSITIVE + Pattern.UNICODE CASE); 

С другой стороны, флаги можно указать в самом шаблоне следующим образом: 

String regex = "(?iU:выра.жение)"; 

Флаги, применяемые в регулярных выражениях, перечислены ниже. 

• Pattern.CASE INSENSITIVE или i. Обозначает сопоставление символов 
с шаблоном без учета регистра. По умолчанию этот флаг принимает но 

внимание только символы в коде US ASCil. 

• Pattern.UNICODE_CASE или u. В сочетании с флагом CASE_INSENSITIVE 
обо:шачает сопоставление символов с шаблоном, учитывая регистр букв 

в Юникоде. 

• Pattern.UNICODE_CHARACTER_CLASS или U. Обозначает выбор классов 
символов по стандарту Unicode, а не POSIX. Подразумевает установку фла­
га UNICODE CASE. 

• Pattern. MULTILINE или m. Обозначает применение знаков л и $для указа­
ния на сопоставление символов с шаблоном 11 начале и в конце строки, а не 

во всех входных данных. 

• Pattern. UNIX_LINES или d. Обозначает распознавание тол1.ко '\n' в ка­

честве символа конца строки при сопоставлении символов с шаблонами л 

и $ в многострочном режиме. 

• Ра t tern. DOTALL или s. Обозначает совпадение со знаком . всех символов, 
включая и символы конца строки. 

• Pattern.COMMENТS или х. Обозначает, что пробелы или комментарии (от 

:шака # и до конца строки) игнорируются. 

• Ра t tern. LITERAL. Обо:шачает, что шаблон воспринимается буквально 
и совпадение с ним должно быть точным, за исключением, возможно, ре­

гистра букв. 

• Ра t tern. CANON _ EQ. Обо:шачает 11еобходимост1, учитывап, каноническую 
эквивалентность символов юникода. Например, символ u, после которого 
следует знак (диакритический знак над гласной), будет соответствовап, 

символу u. 



2.6. Регулярные выражения 

Два последних флага нельзя указывать в самом регулярном выражении. Если 

требуется найти совпадение с элементам коллекции или потока данных, соответ­

ствующий шаблон придется превратить в предикат, как показано в приведенном 

ниже фрагменте кода, где переменная resul t содержит все символьные строки, 
совпадающие с регулярным выражением. 

Stream<String> strings = ... ; 

Stream<String> result = 
strings.filter(pattern.asPredicate() ); 

Если регулярное выражение содержит группы, то объект типа Matcher может 

обнаруживать их границы. Приведенные ниже методы выдают начальный и ко­

нечный индексы конкретной группы. 

int start(int groupindex) 
int end(int groupindex) 

Чтобы извлечь совпавшую символьную строку, достаточно сделать следую­

щий вызов: 

String group(int groupindex) 

Под нулевой группой подразумеваются все входные данные, а индекс пер­

вой фактической группы равен 1. Для получения сведений об общем количестве 
групп следует вызвать метод groupCount (),а для именованных групп служат пе­

речисленные ниже методы. 

int start(String groupName) 
int end(String groupName) 
String group(String groupName) 

Вложенные группы упорядочиваются с помощью круглых скобок. Так, если 

используется шаблон ( (1? [0-9]): ( [0-5] [0-9])) [ap]m и входные данные 

11: 5 9am, то сопоставитель с шаблоном сообщит о перечисленных ниже группах. 

Индекс группы Начальная позиция Конечная позиция Строка 

о о 7 11:59am 

1 о 5 11:59 

2 о 2 11 
з з 5 59 

В листинге 2.6 приведен исходный код примера программы, где сначала 
предлагается указать шаблон, а затем сопоставляемые с ним символьные стро­

ки, после чего сообщается, совпадают ли введенные строки с шаблоном. Если же 

в совпавших введенных строках и шаблоне присуrствуют группы, то выводятся 

границы групп в круглых скобках, как показано в следующем примере: 

( ( 11) : ( 5 9) ) am 

Листинг 2.6. Исходный код из файла regex/RegexTest. java 

1 package regex; 
2 
3 import. java. util. *; 
4 import java.util.regex.*; 



Глава 2 • Ввод и вывод 

5 
6 /** 
7 * В этой программе производится проверка на совпадение 

8 * с регулярным вь~ажением. Для этого следует ввести 
9 * шаблон и сопоставляемые с ним символьные строки, а 

10 * для выхода из программы - нажать клавишу пробела. 

11 * Если шаблон содержит группы, их границы отображаются 

12 * при совпадении 
13 * @version 1.03 2018-05-01 
14 * @author Сау Horstmann 
15 */ 
16 puЫic class RegexTest 
17 { 
18 
19 
20 
21 
22 
23 
24 

puЫic static void main(String[J args) 
throws PatternSyntaxException 

var in = new Scanner(System.in); 
System.out.println("Enter pattern: "); 
String patternString = in.nextLine(); 

25 Pattern pattern = Pattern.compile(patternString); 
26 
27 while (true) 
28 { 
29 System.out.println("Enter string to match: "); 
30 String input = in.nextLine(); 
31 if (input == null 11 input.equals("")) return; 
32 Matcher matcher = pattern.matcher(input); 
33 if (matcher.matches()) 
34 { 
35 System.out.println("Match"); 
36 int g matcher.groupCount(); 
37 if (g > 0) 
38 { 
39 for (int i =О; i < input.length(); i++) 
4 о { 

//вывести любые пустые группы 

for (int j = 1; j <= g; j++) 
if (i == matcher.start(j) 

&& i == matcher.end(j)) 
System.out.print(" ()"); 

//вывести знак ( в начале непустых групп 
for (int j = 1; j <= g; j++) 

if (i == matcher.start(j) 
&& i t= matcher.end(j)) 

System. out .print (' ('); 
System.out.print(input.charAt(i) ); 
//вывести знак ) в конце непустых групп 

for (int j = 1; j <= g; j++) 
if (i + 1 1= matcher.start(j) 

&& i + 1 == matcher.end(j)) 
System.out.print(') '); 

41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

System.out.println(); 



2.6. Регулярные выражения 

61 else 
62 System.out.println("No match"); 
63 
64 
65 

2. 7 .З. Обнаружение многих совпадений 
Обычно с регулярным выражением требуется сопоставлять не все входные 

данные, а только отыскивать в них одну или больше совпадающих символь­

ных строк. Для поиска следующего совпадения служит метод find () из класса 
Matcher. Если он возвращает логическое значение true, то для выяснения про­
тяженности совпадения можно далее вызвать методы s tart ( ) и end (), а для 
получения совпавшей символьной строки - метод group () без аргументов, 

как показано ниже. Подобным способом можно обработать каждое совпадение 

по очереди, получив совпавшую строку и ее положение в исходной строке. 

while (matcher.find()) 

int start = matcher.start(); 
int end = matcher.end(); 
String match = input.group(); 

Более изящный способ состоит в том, чтобы вызвать метод resul ts () и полу­
чить в итоге поток результатов совпадения типа Stream<MatchResul t>. Винтер­
фейсе MatchResul t определены такие же методы group (), start () и end (),как 
и в классе Matcher. (На самом деле класс Matcher реализует этот интерфейс.). 
Ниже показано, как получить список всех совпадений. 

List<String> matches = pattern.matcher(input) 
. resul ts () 
.map(Matcher: :group) 
.collect(Collectors.toList()); 

Чтобы обнаружить совпадения в файле, можно вызвать метод Scanner. 
findAll () и получить в итоге поток результатов совпадения типа 

Stream<MatchResult>, не читая предварительно содержимое файла в символь­
ную строку. Этому методу можно передать объект типа Pattern или шаблонную 
строку, как показано ниже. 

var in = new Scanner(path, StandardCharsets.UTF_8); 
Stream<String> words = in.finc!All("\\pL+") 

.map(MatchResult: :group); 

В листинге 2.7 приведен пример программы, где этот механизм приводится 
в действие. В ней отыскиваются и выводятся на экран все гипертекстовые ссылки, 

присутствующие на неб-странице. Чтобы запустить эту программу на выполне­

ние, в командной строке необходимо указать какой-нибудь неб-адрес, например, 

следующим образом: 

java HrefMatch http://www.horstmann.com 



Глава 2 • Ввод и вывод 

Листинг 2.7. Исходный код из файла match/HrefМatch. java 

1 package match; 
2 
3 import java.io.*; 
4 import java.net.*; 
5 import java.nio.charset.*; 
6 import java.util.regex.*; 
7 
8 /** 
9 * В этой программе отображаются все веб-адреса на 

10 * веб-странице путем сопоставления с регулярным 
11 *выражением, описывающим дескриптор <а href= ... > 
12 * разметки в коде HTML. 
13 * Для запуска программы следует ввести: 
14 * java шatch.HrefМatch URL 
15 * @version 1.03 2018-03-19 
16 * @author Сау Horstmann 
1 7 * / 
18 puЫic class HrefMatch 
19 ( 
20 
21 

puЫic static void main(String[] args) 
( 

22 try 
23 ( 
24 // извлечь символьную строку с веб-адресом (URL) 
25 //из командной строки или использовать выбираемый 

26 // по умолчанию URL 
27 String urlString; 
28 if (args.length > 0) urlString = args[O]; 
29 else urlString = "http://openjdk.java.net/"; 
30 
31 // прочитать содержимое URL 
32 InputStream in = new URL(urlString) .openStream(); 
33 var input = new String(in.readAllBytes(), 
34 StandardCharsets. UTF 8) ; 
35 
36 // найти все совпадения с шаблоном 
37 var patternString = 
38 "<а\ \s+href\ \s*=\ \s* (\" [л\"] *\" 1 [л\ \s>] *) \ \s*>"; 
39 Pattern pattern = Pattern.compile(patternString, 
40 Pattern.CASE INSENSITIVE); 
41 pattern.matcher(input) 
42 . results () 
43 .map(MatchResult::group) 
44 .forEach(System.out: :println); 
45 
46 catch (IOException 1 PatternSyntaxException е) 
4 7 ( 
48 e.printStackTrace(); 
49 
50 
51 



2.6. Регулярные выражения 

2.7.4. Разбиение строк по разделителям 
Иногда требуется разбить исходные строки по совпадающим разделителям, 

чтобы извлечь их остальное содержимое. Такую задачу автоматически выполняет 

метод Pattern. split ().В итоге получается массив сим11ол1,ных строк с удален­
ными разделителями: 

String iпput = ... ; 
Pattern conunas = Pattern.compile("\\s*,\\s*"); 
String[] tokens = conunas.split(input); 

11 исходная строка "1, 2, 3" превращается в 

11 массив строк ["1", "2", "3"] 

Если же имеется много лексем, их можно извлеч1, по требованию следующим 

образом: 

Stream<String> tokens = conunas.splitAsStream(input); 

Если предварительная компиляция шаблона или извлечение по требова­

нию особого значения не имеет, в таком случае достаточно вызвап, лиш1, метод 

String. spli t (),как показано ниже. 

String[] tokens = input.split("\\s*,\\s*"); 

Наконец, если исходные строки находятся в файле, в таком случае можно вос­

пользоваться потоком сканирования, как демонстрируется 11 следующем приме­

ре кода: 

var in = new Scanner(path, StandardCharsets.UTF 8); 
in.useDelimiter("\\s*,\\s*"); -
Stream<String> tokens = in.tokens(); 

2.7.5. Замена совпадений 
Метод replaceAll () из класса Ма tcher заменяет 11се совпадения симво­

лов с регулярным выражением символами из замещающей строки. Например, 

в приведенном ниже фрагменте кода все последователыюсти цифр заменяются 

знаком #. 

Pattern pattern = Pattern.compile("[0-9]+"); 
Matcher matcher = pattern.matcher(input); 
String output = matcher.replaceAll("#"); 

В :ымещающей строке могут содержаться ссылки на группы, присутствующие 

в шаблоне. Например, ссылка $n заменяется п-й группой, а ссылка ${имя} -
группой с заданным именем. Чтобы включить в текст :~амены :шак $,его придет­

ся экранировать с помощью последовательности символов\$. Если же имеется 

символьная строка, содержащая :шаки $ и \, которые 11е требуется интерпрети­
ровать как замену групп, следует вызвать метод ma tcher. replaceAll (Ма tcher. 
quoteReplacement (str)). Метод replaceFirst () :~аменяет только первое со­

впадение с шаблоном. 

Для выполнения более сложных операций, чем соединение групповых совпа­

дений, можно предоставить замещающую функцию вместо :ымещающей стро­

ки. Такая функция обычно принимает объект типа Ма tchResul t и возвращает 



Глава 2 • Ввод и вывод 

символьную сrроку. В качесrве примера ниже демонсrрируется замена всех слов, 

сосrоящих хотя бы из четырех букв, их вариантом написания прописными буквами. 

String result = Pattern.compile("\\p1{4,)") 
.matcher("Mary had а little lamЬ") 
.replaceAll(m -> m.group() .toUpperCase()); 

11 возвращается строка "МАRУ had а LITTLE LАМВ" 

java.util.regex.Pattern 1.4 

• static Pattern compile (String вxpression) 

• static Pattern compile (String вxpression, int :flags) 

Компилируют символьную строку с регулярным выражением в объект шаблона для быстрой 

обработки совпадений. Параметр :flags принимает одну из следующих констант: CASE _ 

INSENSITIVE, UNICODE _ CASE, МULTILINE, UNIX _ LINES, DOTALL И CANON _ EQ. 

• Мatcher matcher (CharSequence input) 

Возвращает объект типа Мatcher, который можно использовать для обнаружения совпаде­

ний с шаблоном во входных данных. 

• String[] split(CharSequence input) 

• String[] split(CharSequence input, int limit) 

• Stream<String> splitAsStream(CharSequence input) 8 

Разбивают исходную строку на лексемы, причем форму разделителей определяет шаблон. 

Возвращают массив или поток лексем. Разделители не являются частью лексем. Во второй 

форме параметр limit обозначает максимальное количество получаемых символьных строк. 
Так, если обнаружено limi t - 1 совпавших разделителей, последний элемент возвраща­
емого массива содержит оставшуюся не разбитой часть исходной строки. Если же limi t t. 
О, то разбивается вся исходная строка, А если limi t = О, то конечные пустые строки не 

вводятся в возвращаемый массив. 

java.util.regex.Мatcher 1.4 

• boolean matches () 

Возвращает логическое значение true, если исходная строка совпадает с шаблоном. 

• Ьoolean lookingAt () 

Возвращает логическое значение true, если с шаблоном совпадает начало исходной строки. 

• Ьoolean find () 

• Ьoolean find (int start) 

Пытаются отыскать следующее совпадение, и если это удается, то возвращают логическое 

значение true. 

• int start () 

• int end() 

Возвращают начальную или следующую после конечной позицию текущего совпадения. 

• String group () 

Возвращает текущее совпадение. 



2.6. Регулярные выражения 

java. util. regex.Мatcher 1. 4 {окончание/ 

int groupCount () 

Возвращает сведения о количестве групп во входном шаблоне. 

• int start (int groupindвx) 

• int start (String name) 8 

int end (int groupindвx) 

• int end (String name) 8 

Возвращают начальную или конечную позицию данной группы в текущем совпадении. Группа 

обозначается индексом, начиная с 1, О - для указания на полное совпадение или символь­

ной строкой - для указания именованной группы. 

• String group (int groupindex) 

• String group ( (String name) 7 

Возвращают символьную строку, совпадающую с заданной группой, которая обозначается 
индексом, начиная с 1, О - для указания на полное совпадение или символьной строкой -
для именования группы. 

String replaceAll (String rep.lacement) 

S tring replaceFirs t ( S tring replacemen t) 

Возвращают символьную строку, получаемую из исходной строки в сопоставителе с шабло­
ном путем замены всех или только первого совпадения символами из замещающей стро­

ки. Замещающая строка может содержать ссылки $n на группы в шаблоне. Чтобы включить 
в нее знак $, следует воспользоваться последовательностью символов \$. 

• static String quoteReplacement (String str) 5. О 

Заключает в кавычки все знаки \ и $ в символьной строке str. 
• String replaceAll (Function<МatchResult, String> replacer) 9 

Заменяет каждое совпадение результатом применения функции replacer () к объекту типа 
мatchResult, содержащему результаты совпадений. 

• Stream<МatchResult> results () 9 

Возвращает поток всех результатов совпадений. 

java.util.regex.МatchResult 5 

• String group () 

• String group(int group) 

Возвращают совпавшую строку или же строку, совпавшую с заданной группой. 

• int start () 

• int end() 

• int start (int group) 

• int end(int group) 

Возвращают начальное и конечное смещение в совпавшей строке или же в строке, совпав­

шей в заданной группой. 



Глава 2 • Ввод и вывод 

java.util.Scanner 5.0 

Stream<МatchResult> findAll (Pattern шаблон) 9 

Возвращает поток всех результатов совпадений с заданным шаблоном в исходной строке, 

полученной из потока сканирования. 

Из этой главы вы у:шали, как выполняются операции ввода-вывода в Java, 
а также вкратце ознакомились со средствами поддержки регулярных выражений 

при вводе-выводе. В следующей главе речь пойдет о том, как обрабатываются 

данные в формате XML. 



ГЛАВА 

XML 

В этой главе ... 

• Введение в XML 

• Структура ХМL-документа 

• Синтаксический анализ ХМL-документов 

• Проверка достоверности ХМL-документов 

• Поиск информации средствами XPath 

• Использование пространств имен 

• Потоковые синтаксические анализаторы 

• Формирование ХМL-документов 

• Преобразование ХМL-документов языковыми средствами XSLT 

В предисловии к книге Essential XML Дона Бокса и др. (Don Вох et а!.; издатель­
ство Addison-Wesley Professional, 2000 г.) говорится, что "".расширяемый язык 

разметки (XML) пришел на смену языку Java, шаблонам проектирования и объ­
ектно-ориентированной технологии"". Это, конечно, шутка, но в каждой шутке 

есть доля правды. В самом деле, язык XML очень удобен для описания и пред­
ставления структурированных данных, но он не является универсальным сред­

ством на все случаи жизни, и для его эффективного использования потребуются 

также специализированные по предметным областям стандарты и библиотеки. 

Более того, XML совсем не заменяет, а всего лиш1, дополняет Java. В конце 1990-х 
годов IВМ, Apache и многие другие компании приступили к созданию на Java 
библиотек для обработки данных в формате XML. Наиболее важные из этих би­
блиотек вошли в состав платформы Java. 

В этой главе описаны основы языка XML, а также инструментальные сред­
ства для обработки данных в формате XML, входящие в состав библиотеки Java. 
Как и прежде, здесь рассматриваются случаи, когда применение XML считается 



Глава З • XML 

совершенно обоснованным, а также ситуации, в которых можно вполне обойтись 

и без этого я:~ыка, испол1,:~уя другие проверенные временем методики проекти­

рования и программирования. 

3.1. Введение в XML 
В главе 13 первого тома настоящего издания уже приводились примеры ис­

поль:ювания файлов свойств, описывающих конфигурацию программы. Файл 

свойств содержит конфигурационные параметры и виде пар, состоящих из име­

ни и :шачения, как показано ниже. 

fontname=Times Roman 
fontsize=l2 
windowsize=400 200 
color=O 50 100 

Для чтения такого файла единственным методом можно восполиоваться 

классом Properties. Но это отличное в целом средство не всегда подходит, по­
скольку во многих случаях формат файла свойств непригоден для описания дан­

ных, имеющих сложную структуру. Рассмотрим записи fontname и fontsize из 
приведенного выше примера. Их :шачения было бы удобнее объединить в одном 

приведенном ниже параметре, так как это в большей степени соответствовало бы 

объектно-ориентированному подходу. 

font=Times Roman 12 

Но для синтаксического анализа такого описания шрифта потребуется до­

вольно громоздкий код, поскольку необходимо определить, где оканчивается на­

звание шрифта и начинается его размер. Дело в том, что файлы свойств имеют 

единую плоскую иерархию. Иногда программисты предпринимают попытки 

обойти данное ограничение с помощью составных имен ключей следующим об­

разом: 

title.fontname=Helvetica 
title.fontsize=Зб 

body.fontname=Times Roman 
body.fontsize=l2 

Еще один недостаток формата файлов свойств состоит в том, что имена пара­

метров должны быть однозначными. Для хранения последователыюсти значений 

придется употребить имена, аналогичные приведенным ниже. 

menu.item.l=Times Roman 
menu.item.2=Helvetica 
menu.item.З=Goudy Old Style 

Подобные недостатки позволяет устранить формат XML. Он служит для пред­
ставления иерархических структур данных и более гибок по сравнению с пло­

ской табличной струк1урой файлов свойств. Например, ХМL-файл с параметра­

ми настройки программы может выглядеть следующим образом: 

<config> 
<entry id="title"> 

<font> 



<name>Helvetica</name> 
<size>36</size> 

</font> 
</entry> 
<entry id="body"> 

<font> 
<name>Times Roman</name> 
<size>12</size> 

</font> 
</entry> 
<entry id="background"> 

<color> 
<red>O</red> 
<green>50</green> 
<Ыue>lOO</Ыue> 

</color> 
</entry> 

</config> 

3.1. Введение в XML 

Формат XML позволяет без особых затруднений выражать любую иерархиче­
скую структуру данных с повторяющимися элементами. ХМL-файл имеет очень 

простую и ясную структуру, напоминающую структуру НТМL-файла. Дело 

в том, что оба языка, XML и HTML, созданы на основе стандартного обобщенного 
языка разметки SGML (Standard Generilized Markup Language). 

Язык SGML в 1970-х годах использовался для описания структуры сложных до­
кументов в некоторых отраслях промышленности с высокими требованиями к до­

кументации, например, в авиастроении. Но из-за присущей ему сложности SGML 
так и не получил широкого распространения. Основные трудности в употребле­

нии этого языка возникали из-за наличия двух противоречивых целей. С одной 

стороны, документы должны оформляться в строгом соответствии с правилами, 

а с другой - необходимо обеспечить простоту и высокую скорость ввода данных 

с помощью клавиатурных сокращений. Я:шк XML разработан в виде упрощенной 
версии SGML для Интернета. И как часто бывает в жизни, чем проще, тем лучше. 
Поэтому язык XML сразу же был с большим энтузиазмом воспринят теми специ­
алистами, которые многие годы старались не употреблять SGML. 

r=J НА ЗАМЕТКУ! Очень удачно составленное описание стандарта XML можно найти по адресу 
Е;,1 www. xml. com/ axm.l/ axm.l. h tml. 

Несмотря на общие корни, у языков XML и HTML имеется ряд существенных 
различий. 

• В отличие от HTML, в XML учитывается регистр символов, поэтому дес­
крипторы <Hl> и <hl> в XML считаются разными. 

• В HTML некоторые закрывающие дескрипторы могут отсутствовать. На­
пример, составитель НТМL-документа может пропустить дескриптор < / 
р> или </ li>, если из контекста ясно, где заканчивается абзац или пункт 
списка. А в XML это не разрешается. 

• Для элементов разметки без тела в XML предусмотрена сокращенная за­
пись открывающего дескриптора, совмещенного с закрывающим. В этом 



Глава З • XML 

случае открывающий дескриптор заканчивается знаком /, например <img 
src="coffeecup. png" />. Это означает, что наличие закрывающего дес­
криптора < / img> подразумевается по умолчанию. 

• В XML значения атрибутов должны быть :ыключены в кавычки, а в НТМL ка­
вычки моrут отсутствовать. Например, дескриптор <applet code="MyApplet. 
class" width=ЗOO height=ЗOO> можно использовать в HTML, но нельзя 
в XML, где значения атрибутов width и height должны быть обя:ытелыю :ы­
ключены в кавычки следующим обра:юм: width="ЗOO" и height="ЗOO". 

• В HTML допускается указывап, имена атрибутов без их значений, напри­
мер <input. type="radio" name="language" value="Java" checked>. 
В XML все атрибуты должны быть указаны со своими значениями, напри­
мер checked="true" или checked="checked". 

• Для версий 4 и 5 языка HTML в XML имеются соответствующие определе­
ния под названием XHTML. 

3.2. Структура ХМL-документа 
ХМL-документ должен начинаться с одного из следующих заголовков: 

<?xml version="l.O"?> 

или 

<?xml vers1on="l.O" encoding="UTF-8"?> 

НА ЗАМЕТКУ! Язык SGML предназначался для обработки документов, поэтому ХМL-файлы 
принято называть документами, хотя многие ХМL-файлы описывают такие наборы данных, 

для которых этот термин не совсем подходит. 

Строго говоря, указывать заголовок совсем не обязательно, но нее же настоя­

тельно рекомендуется включать его в состав документа. После заголовка обычно 

следует тzределение типа доку.мента (ОТО), как пока:ыно ниже. 

<!DOCTYPE web-app PUBLIC 
"-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN" 
"http://java.sun.com/j2ee/dtds/web-app 2 2.dtd"> 

И хотя определение ОТО служит важным механизмом, обеспечивающим пра­

вильность документа, оно все же не является обязательным элементом ХМL-до­

кумента. Более подробно определение Offi рассматривается далее в этой главе. 
Наконец, тело ХМL-документа содержит корневой .~ле.мент, который может со­

стоять из других элементов: 

<?xml version="l.O"?> 
< 1 DOCTYPE config ... > 
<config> 

<entry id="title"> 
<f ont> 

<name>Helvetica</name> 
<size>Зб</size> 

</font> 



З.2. Структура ХМL-документа 

</entry> 

</config> 

Каждый элемент разметки может содержать дочерние эле.менты, текст или 

и то и другое. В приведенном выше примере элемент разметки font состоит 
из двух дочерних элементов, name и size, причем элемент name содержит текст 
"Helvetica". 

СОВЕТ. ХМL-документы рекомендуется составлять таким образом, чтобы элементы разметки 

содержали одно из двух: дочерние элементы или текст. Иначе говоря, следует избегать раз­

метки, аналогичной приведенной ниже. 

<f ont> 
Helvetica 
<size>36</size> 

</font> 

В спецификации XML такая разметка называется смешанным содержимым. Как станет ясно 
в дальнейшем, синтаксический анализ ХМL-документа намного упрощается, если избегать 

в нем смешанного содержимого. 

Элементы разметки ХМL-документов могут содержать атрибуты, как показа­

но ниже. 

<size unit="pt">36</size> 

Среди разработчиков XML нет единого мнения, когда следует употреблять 
элементы, а когда - атрибуты. Например, описать шрифт, по-видимому, проще 

следующим образом: 

<font name="Helvetica" size="36"/> 

чем так, как показано ниже. 

<font> 
<name>Helvetica</name> 
<size>36</size> 

</font> 

Но в то же время атрибуты намного менее удобны. Допустим, в определение 

размера шрифта требуется добавить единицу измерения. Если воспользоваться 

для этой цели атрибутами, то единицы измерения придется указать рядом со 

значением атрибута следующим образом: 

<font name="Helvetica" size="36 pt"/> 

Но тогда придется написать дополнительный код для синтаксического анали­

за символьной строки "3 6 pt ", а именно этого стремились избежать создатели 
XML. Поэтому более простым решением было бы применение атрибута в эле­
менте size, как показано ниже. 

<font> 
<name>Helvetica</name> 
<size unit="pt">36</size> 

</font> 



Глава З • XML 

Широко распространенное эмпирич:еское правило гласит: атрибуты следует 

использовать не для указания знач:ений, а только при изменении их интерпре­

тации. Если же непонятно, обознач:ает ли какой-нибудь атрибут изменение ин­

терпретации знач:ения или нет, то луч:ше отказаться от атрибута и употребить 

элемент разметки. Во многих удобно составленных ХМL-документах атрибуты 

вообще не употребляются. 

НА ЗАМЕТКУ! В языке HTML существует очень простое правило употребления атрибутов: 
если данные не отображаются на веб-странице, значит, это атрибут. Рассмотрим следующую 

гипертекстовую ссылку: 

<а href="http://java.sun.com">Java Technology</a> 

Строка "Java Technology" отображается на веб-странице, но URL этой гипертекстовой 
ссылки не выводится. Впрочем, это правило не совсем подходит для ХМL-файлов, поскольку 

данные в ХМL-файле не всегда предназначены непосредственно для просмотра в удобочи­

таемом виде. 

Элементы разметки и текст являются основными составляющими ХМL-доку­

ментов, но в них можно также встретить и ряд других инструкций разметки. 

• Ссылки на символы в виде &#десятичное_значение; или &#хшестнадца­

теричное_значение;. Например, ссылка &#233; или &#xD9; обознач:ает 

СИМВОЛ е. 

• Ссылки на сущности в виде &имя;. Так, ссылки на сущности &lt;, &gt;, 
&amp;, &quot;, &apos; имеют предопределенные знач:ения и соответству­
ют знакам <, >, &, 11 и '. В определении ОТО можно также указать другие 
ссылки на сущности. 

• Разделы CDATA, разгранич:иваемые последовательностями символов 

< ! [CDATA [ и ] ] >.Они предназнач:ены для включ:ения строк со знаками<, 
> или &, которые не следует интерпретировать как символы разметки, на­
пример: 

<! [CDATA[< & >мои излюбленные разделители))> 

В разделах СОАТА не допускается наличие символы1ых строк вроде 11 J J >11 , 

поэтому пользоваться ими следует очень внимательно! Зачастую они вы­

полняют функции своего рода "ла:~ейки" для внедрения в ХМL-документ 

данных в устаревшем формате. 

• Инструкции обработки - это инструкции для прикладных программ, об­

рабатывающих ХМL-документы. Такие инструкции разграничиваются зна­

ками<? и ?>,как в приведенном ниже примере. 

<?xml-stylesheet href="mystyle.css" type="text/css"?> 

Каждый ХМL-документ начинается со следующей инструкции обработки: 

<?xml version="l.O"?> 

• Ко.м.ментарии разграничиваются знаками < ! -- и -->следующим образом: 

< 1-- Это комментарий. --> 



Э.Э. Синтаксический анализ ХМL-документов 

В комментариях не допускаются символьные строки вроде "--". Коммен­
тарии предназначены для пользователей, поэтому в них не следует вводить 

скрытые команды. Для выполнения команд предназначены инструкции об­

работки. 

З.З. Синтаксический анализ ХМL-документов 

Для обработки ХМL-документа необходимо выполнить его синтаксический 

ана.лиз. Синтаксическим ана.лизатором называется такая программа, которая счи­

тывает файл, подтверждает правильность его формата, разбивает данные на со­

ставные элементы и предоставляет программисту доступ к ним. Ниже приведе­

ны две основные разновидности ХМL-анализаторов. 

• Древовидные анализаторы, которые считывают ХМL-документ и представ­

ляют его в виде древовидной структуры (например, анализатор объектной 

модели документа, сокращенно называемый DОМ-анализатором). 

• Потоковые анализаторы, которые генерируют события по мере чтения 

ХМL-документа (например, простые анализаторы прикладного интерфей­

са API для XML, сокращенно называемые SАХ-анализаторами). 

DОМ-анализатор проще в употреблении, поэтому сначала рассматривается 

именно он. Потоковый анализатор обычно применяется для обработки длинных 

документов, когда для древовидного представления ХМL-данных требуется боль­

шой объем памяти. Кроме того, его можно употреблять для извлечения отдельных 

элементов ХМL-документа без учета контекста. Подробнее об этом - в разделе 3.7. 
Интерфейс DОМ-анализатора стандартизован консорциумом WЗС. Так, пакет 

org. wЗс. dom содержит определения типов интерфейсов, в том числе Document 
и Element. Различные поставщики, среди которых компании IВМ и Apache, раз­
работали собственные варианты DОМ-анализаторов, реализующие эти интер­

фейсы. В прикладном интерфейсе АР! для обработки ХМL-документов на Java, 
сокращенно называемом библиотекой JAXP, предусмотрена возможность под­
ключения таких анализаторов. Кроме того, в состав комплекта JDK входит соб­
ственный DОМ-анализатор. Именно он и рассматривается далее в этой главе. 

Для чтения ХМL-документа сначала потребуется объект типа 

DocumentBuilder, который можно получить из класса DocumentBuilderFactory 
следующим образом: 

DocumentBuilderFactory factory = 

DocumentBuilderFactory.newlnstance(); 
DocumentBuilder builder = factory.newDocumentBuilder(); 

Затем можно приступать к чтению данных из файла, как показано ниже. 

File f = . . . 
Document doc = builder.parse(f); 

С другой стороны, ХМL-документ можно прочитать и по указанному URL, как 
демонстрируется в следующем примере кода: 

URL u = ..• 

Document doc = builder.parse(u); 



Глава 3 • XML 

Для чтN1ю1 ХМL-докуме111<1 можно даже ука:1ать прои:шолы1ый поток 1111ода 

следующим обра:юм: 

InputStream in 
Document doc = builder.parse ( i ni; 

НА ЗАМЕТКУ! Если в качестве источника данных служит произвольный поток ввода, синтак­
сический анализатор не сможет найти те файлы. расположение которых указано относительно 

данного документа, например, ОТО-файл, находящийся в том же каталоге . Для преодоления 

этого препятствия достаточно установить так называемы й "определитель сущностей". Под­
робнее об этом можно узнать по адресу www.xml.com/puЬ/ а/2004/03/03/ catalogs. 
html илиwww.ibm.com/developerworks/xml/library/x-mxd3. html. 

Объект типа Documen t: является внутренним представлением древовидной 
структуры ХМL-докуме1па. Он состоит и:~ ·.:.>юемпляров классов, реам1:1ующих 

интерфейс Node и ра:ыичные интерфейсы, прои:шодные от него. На рис. 3.1 по­
ка:~ана иерархия наследования интерфейса Node. 

Раздел 

CDATA 

Узел 

Ссылка 
насущность 

Рис. 3.1. Иерарх11я 11аслелова1111я 11111ерфейса Node 

Инструкция 

обработки 

А1ыли:s содержимого документа начинается с вызова метода getDo cume r:t 

Element (), который во:\вращает корневой элемент, как пока:1а1ю ниже. 

Element root = doc .getDocumentElement (); 

Так, если обрабатывается при11еде1111ый н11же ХМL-документ, то в ре:~улыате 

вы:юва метода getDocumeпt.Element ( ) будет по,1учен элемент ра:~меткн font. 

<?xml vers1on="l.O"?> 
<font> 

</font> 



3.3. Синтаксический анализ ХМL-документов 

Метод getTagName () возвращает имя дескриптора элемента разметки. Так, 
если обратиться к приведенному выше примеру, то в результате вызова root. 
getTagName () возвращается символьная строка "font". 

Для извлечения элементов, дочерних по отношению к данному (ими могут 

быть подчиненные элементы, текст, комментарии или другие узлы), служит ме­

тод getChildNodes (),возвращающий набор данных типа NodeList. Этот тип 
данных существовал еще до создания стандартной библиотеки коллекций в Java, 
и поэтому для него имеется другой протокол доступа. Метод i tem () возвращает 
элемент набора данных по указанному индексу, а метод getLength () - общее 

количество элементов. Таким образом, для перечисления всех дочерних элемен­

тов можно воспользоваться следующим кодом: 

NodeList children root.getChildNodes(); 
for (int i =О; i < children.getLength(); i++) 
{ 

Node child = children.item(i); 

Анализ дочерних элементов следует выполнять очень внимательно. На пер­

вый взгляд, приведенный ниже ХМL-документ содержит два элемента, дочерних 

по отношению к элементу разметки font. 

<font> 
<name>Helvetica</name> 
<size>36</size> 

</font> 

Но синтаксический анализатор сообщит, что в разметке данного ХМL-доку-

мента имеется пять дочерних элементов. 

• Разделитель в виде пробела между дескрипторами <font> и <name>. 

• Элемент name. 

• Ра3делитель в виде пробела между дескрипторами </name> и <size>. 

• Элемент size. 

• Ра3делитель в виде пробела между дескрипторами </size> и </font>. 

На рис. 3.2 схематически представлено дерево DOM - объектной модели упо­

мянутого выше документа. 

Если требуется обработать только подчиненные элементы, в таком случае 

можно пренебречь всеми разделителями в виде пробелов. Это можно сделать 

с помощью приведенного ниже кода. В итоге будут выявлены только элементы 

с именами дескрипторов name и size. 

for (int i =О; i < children.getLength(); i++) 
{ 

Node child = children.item(i); 
if (child instanceof Element) 
{ 

Element childElement = (Element) child; 



Глава З • XML 

Текст: 

разделитель 

Элемент 

<пате> 

Текст : 

Helvetica 

Документ 

Элемент 

<font> 

Текст: 

разделитель 

Элемент 

<size> 

Текст: 

36 

Рис. 3.2. Простое 11ерево DOM 

Текст: 

разделитель 

Как будет показано в следующем разделе, данную задачу можно решить еще 

лучше, если воспользоваться определением DTD. В таком случае синтаксическо­
му анализатору будет известно, у каких именно элементов отсутствуют текстовые 

узлы в качестве дочерних элементов. Благодаря этому он может подавить разде­

лители автоматически. 

При анализе элементов name и s i ze придется извлеч1, содержащиеся в них 
текстовые строки, которые находятся в дочерних узлах типа Text . А поскольку 
заранее известно, что другие дочерние у:1лы отсутствуют, то можно вы:1вать ме­

тод getFirstChild () без перебора содержимого очередной коллекции типа 

NodeLi st. После этого с помощью метода getDa ta ( ) можно и:н~лечь текстовую 

строку и:1 узла типа Text, как пока:;ано в приведешюм ниже фрагменте кода. 

for ( i n t l = 0; i < c hildre n.ge tLength(); i ++ ) 
{ 

Node child = children.item(i ) ; 
if (child instanc eof Element ) 
{ 

var childElement = (Elemen t ) ch ild; 
va r t e xtNod e = (Text) c h i ldE lement. get rirstChildil; 
String t e xt = text Node . getDat a ( J. trim( ) ; 
if (childEle me nt. ge tTagName( ) . e qua l s( " name " J 1 

name = text; 
else if (childElement.getTagName() .equals ( "s i ze") 1 

size = Integer.parselnt (text ) ; 



3.3. Синтаксический анализ ХМL-документов 

СОВЕТ. По значению, возвращаемому в результате выполнения метода qetData (), реко­
мендуется вызвать метод trim(). Допустим, составитель ХМL-документа разместил откры­
вающие и закрывающие дескрипторы в отдельных строках, как показано ниже. 

<size> 
36 

</size> 

В таком случае синтаксический анализатор включит все пробелы и символы перевода строк 

в данные из текстового узла, а метод trim () удалит их и оставит лишь конкретные данные. 

Кроме того, для извлечения последнего дочернего узла можно воспользовать­

ся методом getLastChild (),а для получения следующего родственного узла -
методом getNextSiЬling (). С помощью этих методов можно обойти дочерние 
узлы другим способом, как показано ниже. 

for (Node childNode = element.getFirstChild(); 
childNode != null; 
childNode = childNode.getNextSiЬling()) 

Для перечисления атрибутов узла следует вызвать метод getAt tributes (), 
возвращающий объект типа NamedNodeMap, который содержит объекты типа 
Node, описывающие атрибуты. Обход узлов в именованном отображении типа 
NamedNodeMap можно выполнить таким же образом, как и обход узлов в списке 
типа NodeList. В таком случае для извлечения имен атрибутов и их значений 
следует воспользоваться методами getNodeName () и getNodeValue (),как пока­
зано в приведенном ниже фрагменте кода. 

NamedNodeMap attributes = element.getAttributes(); 
for (int i =О; i < attributes.getLength(); i++) 
{ 

Node attribute = attributes.item(i); 
String name = attribute.getNodeName(); 
String value = attribute.getNodeValue(); 

С другой стороны, если известно имя атрибута, его значение можно извлечь 

непосредственно следующим образом: 

String unit = element.getAttribute("unit"); 

Описанный выше способ анализа дерева ООМ демонстрируется в примере 

программы из листинга 3.1, где ХМL-документ преобразуется в формат JSON. В 
данной древовидной структуре представлены дочерние узлы, окруженные раз­

делителями в виде пробелов и комментариями. Для большей наглядности про­

грамма отображает все символы перевода строки и возврата каретки в виде по­

следовательности \n. 
Чтобы понять, каким образом в данной программе осуществляется анализ де­

рева ООМ, совсем не обязательно знать особенности формата JSON. Достаточно 
обратить внимание на следующее. 



Глава 3 • XML 

• Для чтения объекта типа Document из файла применяется объект типа 
DocumentBuilder. 

• Для каждого элемента разметки выводится имя дескриптора, атрибуты 

и подчиненные элементы. 

• Для символьных данных получается строка с данными. Если данные посту­

пают из комментария, то добавляется префикс "Comment: " 

Листинг 3.1. Исходный код из файла dom/TreeViewer. java 

1 package dom; 
2 
3 import java.io.*; 
4 import java.util.*; 
5 
6 import javax.xml.parsers.*; 
7 

8 import org.w3c.dom.*; 
9 import org.w3c.dom.CharacterData; 
10 import org.xml.sax.*; 
11 
12 /** 
13 * В этой программе ХМL-документ отображается 
14 * как дерево в формате JSON 
15 * @version 1.2 2018-04-02 
16 * @author Сау Horstmann 
17 * / 
18 puЬlic class JSONConverter 
19 { 
20 puЫic static void main(String[] args) 
21 throws SAXException, IOException, 
22 ParserConfigurationException 
23 
24 
25 
26 
п 

28 
29 
30 
31 
32 

String filename; 
if (args.length 0) 
{ 

try (var in = new Scanner(System.in)) 
( 

System.out.print ("Input file: "); 
filename = in.nextLine(); 

33 else 
34 filename = args[O]; 
35 DocumentBuilderFactory factory = 
36 DocumentBuilderFactory.newinstance(); 
37 DocumentBuilder builder = 
38 factory.newDocumentBuilder(); 
39 
40 Document doc = builder.parse(filename); 
41 Element root = doc.getDocumentElement(); 
42 System.out.println(convert(root, 0) ); 
43 



3.3. Синтаксический анализ ХМL-документов 

44 
45 puЫic static StringBuilder convert( 
46 Node node, int level) 
47 
48 if (node instanceof Element) 
4 9 { 
50 return elementObject( (Element) node, level); 
51 
52 else if (node instanceof CharacterData) 
53 { 
54 return characterString( 
55 (CharacterData) node, level); 
56 
57 else 
58 
59 return pad(new StringBuilder(), level) 
60 .append(jsonEscape(node.getClass() 
61 .getName())); 
62 
63 
64 
65 private static Map<Character, String> replacements = 

66 Map.of('\b', "\\Ь", '\f', "\\f", '\n', 
67 
68 
69 

"\\n", '\r', "\\r", '\t', "\\t", 
'"', "\\\"", '\\', "\\\\"); 

70 private static StringBuilder JSonEscape(String str) 
71 { 
72 
73 
74 

var result 
for (int i 

new StringBuilder("\""); 
О; i < str.length(); i++) 

75 char ch = str.charAt(i); 
76 String replacement = replacements.get(ch); 
77 if (replacement == null) result.append(ch); 
78 else result.append(replacement); 
79 
80 result.append("\""); 
81 return result; 
82 
83 
84 private static StringBuilder 
85 characterString(CharacterData node, int level) 
86 
87 var result = new StringBuilder(); 
88 StringBuilder data = jsonEscape(node.getData()); 
89 if (node instanceof Comment) 
90 data.insert (1, "Comment: "); 
91 pad(result, level) .append(data); 
92 return result; 
93 
94 
95 private static StringBuilder 
96 elementObject(Element elem, int level) 
97 



Глава Э • XML 

98 var result = new StringBuilder(); 
99 pad(result, level) .append("(\n"); 
100 pad(result, level + l).append("\"name\": "); 
101 result.append(jsonEscape(elem.getTagName()) ); 
102 NamedNodeMap attrs = elem.getAttributes(); 
103 if (attrs.getLength() > 0) 
104 ( 
105 pad(result.append(",\n"), level + 1) 
106 .append("\"attributes\": "); 
107 result.append(attributeObject(attrs) ); 
108 
109 NodeList children = elem.getChildNodes(); 
110 if (children.getLength() > 0) 
111 ( 
112 pad(result.append(", \n"), level + 1) 
113 .append("\"children\": [\n"); 
114 for (int i =О; i < children.getLength(); i++) 
115 ( 
116 if (i > 0) result.append(",\n"); 
117 result.append(convert(children.item(i), 
118 level+2)); 
119 
120 result.append("\n"); 
121 pad(result, level + 1) .append("]\n"); 
122 
123 pad(result, level).append("f"); 
124 return result; 
125 
126 
127 private static StringBuilder 
128 pad(StringBuilder builder, int level) 
129 
130 for (int i = О; i < level; i++) 
131 builder.append(" "); 
132 return builder; 
133 
134 
135 private static StringBuilder 
136 attributeObject(NamedNodeMap attrs) 
137 
138 
139 
140 

var result 
for (int i 

new StringBuilder("{"); 
О; i < attrs.getLength(); i++) 

141 if (i > 0) result.append(", "); 
142 result.append(jsonEscape(attrs.item(i) 
143 .getNodeName()) ); 
144 result.append(": "); 
145 result.append(jsonEscape(attrs.item(i) 
146 .getNodeValue ())); 
147 
148 result.append(")"); 
149 return result; 
150 
151 



3.3. Синтаксический анализ ХМL-документов 

javax.xml.parsers.DocumentвuilderFactory 1.4 

• static DocumentBuilderFactory newinstance{) 

Возвращает экземпляр класса DocumentвuilderFactory. 

• Documentвuilder newDocumentвuilder{) 

Возвращает экземпляр класса Documentвuilder. 

javax.xml.parsers.Documentвuilder 1.4 

• Document parse {File f) 

• Document parse (String url) 

Document parse{InputStream in) 
Выполняют синтаксический анализ ХМL-документа, полученного из заданного файла, по ука­

занному URL или из заданного потока ввода. Возвращают результат синтаксического анализа. 

org.wЗc.dom.Document 1.4 

• Element getDocumentElement {) 

Возвращает корневой элемент разметки документа. 

org.wЗc.dom.Element 1.4 

• String getTagName () 

Возвращает имя элемента разметки. 

• String getAttribute (String name) 

Возвращает значение атрибута с заданным именем или пустую символьную строку, если та­

кой атрибут отсутствует. 

org. wЗс. dom. Node 1 . 4 

NodeList getChildNodes{) 

Возвращает список, содержащий все дочерние узлы данного узла. 

• Node getFirstChild {) 

• Node getLastChild () 

Возвращают первый или последний дочерний узел данного узла. Если у данного узла отсут­

ствуют дочерние узлы, возвращается пустое значение null. 

• Node getNextSiЬling () 

Node getPreviousSiЫing () 

Возвращают предыдущий родственный узел. Если у данного узла отсутствуют родственные 

узлы, возвращается пустое значение null. 



Глава З • XML 

org. wЗс. dom. Node 1. 4 (окончание} 

• Node getParentNode () 

Возвращает родительский узел данного узла или пустое значение null, если данный узел 
является узлом документа. 

• NamedNodeМap getAttriЬutes () 

Возвращает отображение узлов, содержащее узлы типа Attr с описаниями всех атрибутов 
данного узла. 

String getNodeName() 

Возвращает имя данного узла. Если узел относится к типу Attr, то возвращается имя атрибута. 

String getNodeValue () 

Возвращает значение данного узла. Если узел относится к типу Attr, то возвращается зна­
чение атрибута. 

org.wЗc.dom.CharacterData 1.4 

• String getData () 

Возвращает текст, хранящийся в данном узле. 

org.wЗc.dom.NodeList 1.4 

• int getLength () 

Возвращает количество узлов в данном списке. 

• Node i tem ( in t index) 

Возвращает узел с заданным индексом. Значение индекса может быть от О до getLength () - 1. 

org.wЗc.dom.NamedNodeМap 1.4 

int getLength () 

Возвращает количество узлов в данном отображении. 

• Node item(int index) 

Возвращает узел с заданным индексом. Значение индекса может быть от О до getLength () - 1. 

Э.4. Проверка достоверности ХМL-документов 

В предыдущем разделе был описан способ обхода древовидной структуры 

DОМ-документа. Но если следовать этому способу непосредственно, то потре­

буется приложить немало усилий для проверки ошибок программным пу­

тем. В этом случае придется не только организовать поиск и удаление лиш­

них разделителей между элементами, но и проверить, содержит ли документ 



3.4. Проверка достоверности ХМL-документов 

предполагаемые узлы. Рассмотрим в качестве примера следующий элемент раз­

метки: 

<font> 
<name>Helvetica</name> 
<size>Зб</size> 

</font> 

При чтении первого же дочернего узла неожиданно обнаруживается, что это 

текстовый узел, содержащий разделитель "\n ". Пропуская текстовые узлы, не­
трудно дойти до узла первого элемента, где необходимо проверить, имеет ли 

его дескриптор имя name. Затем требуется выяснить, имеет ли он дочерний узел 

типа Text. После этого можно переместиться к следующему дочернему узлу без 
разделителя в виде пробела и выполнить такую же проверку. Но что делать, если 

составитель ХМL-докуме1па изменит порядок расположения дочерних узлов или 

добавит еще один дочерний элемент? С одной стороны, для проверки всех воз­

можных ошибок придется написать очень громоздкий код, а с другой - исклю­

чить такую проверку было бы слишком опрометчиво. 

Правда, к числу главных преимуществ ХМL-анализатора относится его спо­

собность автоматически проверять корректность структуры документа. В таком 

случае анализ ХМL-документа значительно упрощается. Так, если известно, что 

элемент разметки font успешно прошел проверку, то несложно получить два 
дочерних узла, привести их к типу Text, а затем извлечь текстовые данные без 
дополнительной проверки. 

Для указания структуры документа можно предоставить определение om 
или XML Schema. Определение DTD или XML Schema содержит правила, ре­
гламентирующие структуру документа. Оно задает допустимые дочерние узлы 

элемеmов и атрибутов каждого элемента. Например, определение DTD может 
содержать следующее правило: 

<!ELEMENT font (name,size)> 

Это правило выражает следующее ограничение: у элемента разметки font 
всегда должны бын два дочерних узла: name и size. На языке XML Schema то же 
самое ограничение записывается следующим образом: 

<xsd:element name="font"> 
<xsd:sequence> 

<xsd:element name="name" type="xsd:string"/> 
<xsd:element name="size" type="xsd:int"/> 

</xsd:sequence> 
</xsd:element> 

Я:шк XML Schema позволяет формулировать более изощренные условия про­
верки достоверности, чем определения DTD. Например, элемент разметки s i ze 
должен содержать целочисленное значение. В отличие от определения DTD, 
в XML Schema используется сиmаксис XML, что упрощает обработку файлов со 
схемами ХМL-документов. 

В следующем разделе подробно обсуждаются определения DTD, а затем 

вкратце рассматриваются основные средства поддержки XML Schema. После это­
го будет представлен пример, наглядно демонстрирующий, насколько проверка 

достоверности ХМL-документов упрощает их обработку. 



Глава Э • XML 

Э.4.1. Определения типов документов 

Существует нескол1,ко способов предоставить определение типа докумен­

та(DТD). В частности, определение DTD можно ввести в начале ХМL-документа: 
<?xml version="l.0"?> 
<!DOCTYPE config [ 

<!ELEMENT config .> 
другие правила 

) > 
<config> 

</config> 

Как видите, эти правила заключаются в квадратные скобки объявления 

DOCTYPE. Тип документа должен соответствовать имени корневого элемента (в 
данном примере - config). Размещать определения DTD в самом докумеmе не­
удобно, поскол1,ку они могут быть очень длинными. Следовательно, определения 

DTD имеет смысл хранить в отдельном файле. А для связывания определений 
DTD с ХМL-документами можно восполь:юваться приведенными ниже объявле­
ниями SYSTEM, где указываются URL для доступа к внешним файлам конфигура­
ции с определениями DTD. 
< 1DOCTYPE config SYSTEM "config.dtd"> 

или 

<!DOCTYPE config SYSTEM 
"http://myserver.com/config.dtd"> 

• ВНИМАНИЕ! Если для указания внешнего файла конфигурации с определением ОТО служит относительный URL !например, "confiq. dtd" 1, то вместо потока ввода типа InputStream 
синтаксическому анализатору следует предоставить объект типа File или URL. Если же тре­
буется синтаксический анализ данных из потока ввода, то синтаксическому анализатору сле­

дует предоставить определитель сущностей, как поясняется в следующем далее примечании. 

Механизм обозначения хорошо известных определений DTD унаследован из 
языка SGML и демонстрируется в приведенном ниже примере. Если ХМL-про­
цессору известен способ обнаружения DTD с помощью идентификатора PUBLIC, 
то обращаться по указанному URL совсем не обязательно. 
<!DOCTYPE web-app 

PUBLIC "-//Sun Microsystems, 
Inc.//DTD Web Application 2.2//EN" 

"http://java.sun.com/j2ee/dtds/web-app 2 2.dtd"> 

НА ЗАМЕТКУ! Системный идентификатор URL определения ОТО может фактически оказаться 
неработоспособным или намеренно действующим замедленно. Примером последнего служит 

системный идентификатор строгого определения ОТО в версии XHTML 1.0 lhttps://www.wЗ.oгg/ 
TR/xhtml 1/OTO/xhtml1-strict.dtdl. Если произвести синтаксический анализ ХНТМL-файла, то 
на обслуживание определения ОТО может уйти одна или две минуты. 

В качестве выхода из данного положения можно воспользоваться определителем сущно­

стей, отображающим открытые идентификаторы на локальные файлы. До версии Java 9 



Э.4. Проверка достоверности ХМL-документов 

с этой целью приходилось предоставлять объект класса, реализующего интерфейс Entity 
Resolver и метод resolveEntity(). 

В настоящее время для организации подобного отображения можно воспользоваться ката­
логами XML. Сначала предоставляется один или несколько файлов каталогов в следующей 
форме: 

<?xml version="l.O"?> 
<IDOCTYPE catalog PUBLIC 

"-//OASIS//DTD XML Catalogs Vl.0//EN" 
"http://www.oasis-open.org/committees/ 

entity/release/1.0/catalog.dtd"> 
<catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog" 

prefer="puЫic"> 

<puЫic puЫicid=". " ur i=". . . "/> 

</catalog> 

Затем конструируется и устанавливается определитель сущностей, как показано ниже. Пол­

ный пример приведен в листинге 3.6. 

builder.setEntityResolver(CatalogManager.catalogResolver( 
CatalogFeatures.defaults(), 
Paths.get ( "catalog .xml" 1. toAЬsolutePath (). toUri ()) 1; 

Вместо того чтобы задавать местоположение файлов каталогов в прикладной программе, их 

можно указать в командной строке с помощью системного свойства javax. xml. catalog. 
files, введя абсолютные URL в формате file через точку с запятой. 

Рассмотрим теперь различные правила, которые могут задаваться в определе­

нии DTD. Правило ELEMENT задает дочерние узлы данного элемента в виде регу­

лярного выражения, составляющие которого перечислены в табл. 3.1. 

Таблица 3.1. Правила для содержимого документа 

Правило 

Е* 

Е+ 

Е? 

E1 IE2 1 ... IE11 

El' Е2, ••• Е" 

#PCDATA 

Назначение 

О или больше вхождений элемента Е 

1 или больше вхождений элемента Е 
О или 1 вхождение элемента Е 

Один из элементов Е1, Е2 , ••• Еп 

Элемент Е1, после которого следуют элементы Е2, ••• Е" 

Текст 

(#PCDATAI Е1 1 E 2 I .•. 1 Е) * О или больше вхождений текста и последовательность 

элементов Е1 , Е;, ..• Е11 в любом порядке (смешанное 
содержимое) 

ANY Любой дочерний узел 

ЕМРТУ Дочерние узлы отсутствуют 

Рассмотрим несколько простых примеров. Следующее правило указывает 

на то, что элемент разметки menu может содержать О или больше элементов i tem: 

<!ELEMENT menu (item)*> 



Глава 3 • XML 

По приведенным ниже правилам шрифт описывается именем, после которо­

го следует размер шрифта. Имя и размер шрифта являются текстовыми элемен­

тами. 

<IELEMENT font (name,size)> 
<IELEMENT name (#PCDATA)> 
<!ELEMENT size (#PCDATA)> 

Сокращение PCDATA обо:шачает проанализированные символ1,ные данные. 

Данные называются проаналюированны:tш, поскольку синтаксический анализатор 

обрабатывает текстовую строку и ищет знак <, обозначающий начало нового де­
скриптора, или же лык &, обозначающий начало сущности. Спецификация эле­

мента может содержать регулярные выражения, в том числе вложенные и слож­

ные. В качестве примера ниже приведено правило, описывающее структуру 

главы в книге. Каждая глава (chapter) начинается с введения (intro), после ко­
торого следует один или несколько разделов, состоящих из заголовка (heading), 
одного или нескольких абзацев (para), рисунков (image), таблиц (tаЫе) или 
примечаний (note). 

<!ELEMENT chapter (intro, (heading, 
(paralimageltaЫelnote)+)+) 

Но правила далеко не всегда обеспечивают достаточную гибкость. Очень часто 

элементы содержат текст, и тогда допускаются только два варианта. Во-первых, 

в составе элемента допускается наличие только текста: 

<!ELEMENT name (#PCDATA)> 

Во-вторых, элемент может содержать .любое сочетание текста и дескри11торов, 

располагаемых в произвольном порядке: 

< 1 ELEMENT para (#PCDATAlemlstronglcode)*> 

Другие правила типа #PCDATA не допускаются. Например, приведенное ниже 

выражение неверно. Такие правила следует переписап, заново, введя еще один 

',)Лемент разметки caption, содержащий надпись, или допустив любое сочетание 
элементов разметки image и текста. 

< 1 ELEMENT captionedimage (image,#PCDATA)> 

Подобное ограничение упрощает работу ХМL-анализатора при синтаксиче­

ском анализе с.ме1Uанноzо содt71жи.моzо (текста и дескрипторов). Но в этом случае 

содержимое становится неконтролируемым, поэтому рекомендуется составляп, 

такие определения ОТО, которые содержат только элементы разметки или же 

ничего, кроме текста. 

НА ЗАМЕТКУ! Не совсем верно считать, что в правилах DTD можно указывать произвольные 
регулярные выражения. ХМ L-анализатор может отклонить сложные наборы правил, которые 

до определенного момента не дают однозначного результата. Примером тому служит регуляр­

ное выражение ( (х, у) 1 (х, z)). Обнаружив в нем элемент х, анализатор не сможет сразу 
выяснить, какой из двух альтернативных вариантов выбрать. Это выражение следует перепи­

сать в следующем виде: (х, (yl z)). Но некоторые определения нельзя изменить, например 
( (х,у) *х?). Синтаксический анализатор из библиотеки Java XML не выдает никаких преду­
преждений при обнаружении подобных определений DTD. Он просто выбирает первый совпа­
дающий вариант, что может привести к неверной интерпретации правильных входных данных. 



З.4. Проверка достоверности ХМL-документов 

Для описания допустимых атрибутов элементов разметки используется при­

веденный ниже синтаксис. В табл. 3.2 перечислены допустимые типы атрибутов, 
а в табл. 3.3 - синтаксис поведения атрибутов по умолчанию. 

< 1ATTLIST элемент атрибут тип поведение_по_умолчанию> 

Таблица 3.2. Типы атрибутов 

Тип Назначение 

CDATA Произвольная символьная строка 

(A1IACI IA,,) Один из строковых атрибутов А11 А,, . . . Ап 

NМТОКЕN,NМТОКЕNS 

ID 

IDREF, IDREFS 
ENТITY,ENТITIES 

Одна или несколько лексем, соответствующих имени 

Однозначный идентификатор 

Одна или несколько ссылок на однозначный идентификатор 

Одна или несколько непроанализированных сущностей 

Таблица 3.3. Поведение атрибутов по умолчанию 

Поведение по умолчанию Назначение 

#REQUIRED Атрибут является обязательным 

#IMPLIED Атрибут не является обязательным 

А Атрибут не является обязательным; анализатор возвращает 

значение А, если атрибут не указан 

#FIXED А Атрибут не должен быть указан или должен быть равен А; 
но в любом слу•~ае анализатор возвращает значение А 

Ниже представлены два типичных примера обозначения атрибутов. 

< 1ATTLIST font style (plainlboldlitaliclbold-italic)"plain"> 
< 1ATTLIST size unit CDATA #IMPLIED> 

В первом примере для элемента разметки font указан атрибут style, кото­
рый может иметь четыре допустимых значения. По умолчанию используется 

значение plain. Во втором примере для элемента разметки size указан атрибут 
uni t, который может содержать любую последовательность символов. 

НА ЗАМЕТКУ! Для описания данных рекомендуется применять элементы разметки, а не атри­
буты. В соответствии с этой рекомендацией стиль шрифта должен содержаться в отдельном 
элементе разметки, например, в следующем виде: <font><style>plain</ style> ... 
</font>. Но атрибуты обладают несомненным преимуществом при использовании перечис­
лений, потому что анализатор может проверять допустимость тех или иных переменных. Так, 
если стиль шрифта является атрибутом, то анализатор проверяет наличие найденного стиля 
среди четырех указанных допустимых значений и выбирает значение по умолчанию, если ни­

чего не указано. 

Обработка атрибута типа CDATA несколько отличается от обработки атрибу­

та типа #PCDATA и практически никак не связана с разделами<! [CDATA [ .•• ]] >. 
Значение атрибута сначала нор.ма.лUJуется, т.е. синтаксический анализатор обра­

батывает ссылки на символы и сущности (как, например, &#233; или &lt;) и за­
меняет разделители пробелами. 



Глава 3 • XML 

Тип атрибута NMTOKEN (т.е. лексема имени) аналогичен типу CDATA, но в нем 
не допускается использование большинства символов, отличающихся от букв 

и цифр, а также разделителей в виде внутренних пробелов. Синтаксический ана­

лизатор удаляет все начальные и конечные пробелы как разделители. Тип атри­

бута NMTOKENS представляет собой список лексем имен, разделяемых пробелами. 
Тип атрибута I D означает лексему имени, однозначную для данного документа. 

Однозначность лексемы имени проверяется синтаксическим анализатором. Приме­

нение данного типа атрибута демонстрируется в рассматриваемом далее примере 

программы. Тип атрибута IDREF означает ссылку на идентификатор, уже существу­
ющий в данном документе, наличие которого также проверяется синтаксическим 

анализатором. Тип атрибута IDREFS обозначает список ссылок на идентификаторы. 
Атрибут типа ENTITY указывает на "непроанализированную внешнюю сущ­

ность". Эгот тип унаследован от SGML и редко применяется на практике. В спец­
ификации языка XML, доступной по адресу www. xml. сот/ axml / axml. h tml, при­
водится пример применения подобного типа атрибута. 

Определение ОТО может также содержать определения сущностей, или со­

кращений, которые заменяются в процессе синтаксического анализа. Характер­

ный пример применения сущностей можно найти в описании пользовательского 

интерфейса веб-браузера Firefox. Данное описание отформатировано в соответ­
ствии с требованиями XML и содержит определения сущностей, подобные при­
веденному ниже. 

<!ENTITY back.label "Back"> 

Далее в тексте документа могут встретиться ссылки на эти сущности, как по­

казано в следующем примере: 

<menuitem label="&back.label;"/> 

В таком случае синтаксический анализатор заменяет ссылку на сущность заме­

щающей строкой. Для интернационализации прикладной программы потребуется 

лишь изменить определение самой сущности. Друтие примеры применения сущно­

стей более сложны и менее распространены. Дополнительные сведения по данному 

вопросу можно найти в спецификации языка XML по указанному выше адресу. 
На этом краткое введение в определения ОТО завершается. Рассмотрим далее 

способы настройки сингаксического анализатора, чтобы воспользоваться всеми пре­

имуществами ОТО. Для этого необходимо сначала сообщить фабрике построителей 

документов о необходимости активизировать проверку следующим образом: 

factory.setValidating(true); 

Все построители документов, производимые этой фабрикой, проверяют со­

ответствие входных данных определению ОТО. Наиболее полезным результатом 

такой проверки является игнорирование всех разделителей в элементе разметки. 

Рассмотрим в качестве примера следующий фрагмент ХМL-разметки: 

<font> 
<name>Helvetica</name> 
<size>Зб</size> 

</font> 

Синтаксический анализатор, не выполняющий проверку, возвращает все 

разделители между элементами разметки font, name и size. Он поступает так 



3.4. Проверка достоверности ХМL-документов 

потому, что ему неизвестно, какое из следующих правил описывает дочерние 

узлы элемента разметки font: 

(narne,size) 
(#PCDATA,narne,size)* 

или 

ANY 

Если же в определении DTD указано правило (name, size), то синтаксиче­
скому анализатору должно быть известно, что разделитель этих элементов не от­

носится к тексту. Построитель документа не будет учитывать разделители в узлах 

текста, если вызвать следующий метод: 

factory.setignoringElernentContentWhitespace(true); 

Теперь нет никаких сомнений, что узел font имеет два дочерних узла. Следо­
вательно, нет никаких оснований организовывать приведенный ниже громоздкий 

цикл. 

for (int i =О; i < children.getLength(); i++) 
{ 

Node child = children.itern(i); 
if (child instanceof Elernent) 
{ 

var childElernent = (Elernent) child; 
if (childElernent.getTagNarne() .equals("narne")) 
else if (childElernent.getTagNarne() .equals("size")) . 

Вместо этого для доступа к первому и второму дочерним узлам можно напи­

сать следующий фрагмент кода: 

Elernent narneElernent = (Elernent) children.itern(O); 
Elernent sizeElernent = (Elernent) children.itern(l); 

Именно в ЭТИХ случаях особенно полезны определения om. Как видите, ис­
пользуя определения DTD, можно не включать больше в программу сложные 
фрагменты кода, выполняющие проверку, потому что синтаксический анализа­

тор проделает эту работу при получении документа. 

Если синтаксический анализатор сообщит об ошибке, прикладная програм­

ма должна каким-то образом отреагировать на это: зарегистрировать ошибку, 

сообщить о ней пользователю или сгенерировать исключение, чтобы прекратить 

синтаксический анализ. Поэтому, пользуясь всякий раз средствами проверки со­

держимого ХМL-документа, следует также установить обработчик исключений, 

создав объект, класс которого реализует интерфейс ErrorHandler. В этом интер­
фейсе объявлены следующие методы: 

void warning(SAXParseException exception) 
void error(SAXParseException exception) 
void fatalError(SAXParseException exception) 

Для установки обработчика исключений служит следующий метод 

setErrorHandler () из класса DocumentBuilder: 

builder.setErrorHandler(handler); 



Глава Э • XML 

javax.xml.parsers.Documentвuilder 1.4 

• void setEntityResolver(EntityResolver rвsolvвr) 

Устанавливает определитель сущностей, упоминаемых в анализируемых ХМL-документах. 

• void setErrorHandler(ErrorHandler handler) 

Устанавливает обработчик исключений для выдачи предупреждений и сообщений об ошиб· 

ках, возникающих при синтаксическом анализе ХМL-документов. 

org.xml.sax.EntityResolver 1.4 

• puЬlic InputSource resolveEntity(String puЫicID, String systemID) 

Возвращает источник вводимых данных, содержащий данные, определяемые заданными 

идентификаторами, или пустое значение null, указывающее на то, что определителю сущ­
ностей неизвестно, как обработать данное конкретное имя. Параметр puЫicID может при­

нимать пустое значение null, если открытые идентификаторы не предоставляются. 

org.xml.sax.InputSource 1.4 

• InputSource(InputStream in) 

• InputSource (Reader in) 

• Inputsource (Strinq syst:emID) 

Создают источник вводимых данных на основании указанного потока ввода, потока чтения 

или системного идентификатора [обычно это относительный или абсолютный URL). 

org. xml . sax. ErrorHandler 1 . 4 

• void fatalError(SAXParseException exception) 

• void error (SAXParseException exception) 

• void warninq(SAXParseException exception) 

Эти методы следует переопределить для создания собственного обработчика неустранимых 

ошибок, устранимых ошибок или предупреждений. 

org.xml.sax.SAXParseException 1.4 

• int getLineNuшЬer () 

• int getColumnNuшЬer() 

Возвращают номер строки или столбца в конце вводимых данных, при обработке которых 

возникло исключение. 



3.4. Проверка достоверности ХМL-документов 

javax.xml.catalog.CatalogМanager 9 

• static CatalogResolver catalogResolver(CatalogFeatures features, 
URI ... uris) 

Создает определитель сущностей, использующий файлы каталогов, доступные по указанным 
URL. Этот класс реализует интерфейс EntityResolver, а также классы определителей 
сущностей, применяемые в схеме StAX проверки ХМL-документов и ХSLТ-преобразованиях. 

javax.xml.catalog.CatalogFeatures 9 

• static CatalogFeatures defaults() 

Возвращает экземпляр с установками по умолчанию. 

javax.xml.parsers.DocumentвuilderFactory 1.4 

• Ьoolean isValidating () 

• void setValidating(Ьoolean va.lue) 

Возвращают или устанавливают свойство validating для фабрики. Если это свойство при­
нимает логическое значение true, то созданные фабрикой синтаксические анализаторы бу­
дут выполнять проверку входных данных. 

• Ьoolean isignoringElementContentWhitespace() 

• void setignoringElementContentWhitespace(Ьoolean va.lue) 

Получают или устанавливают значение, определяющее, следует ли игнорировать разделите­

ли между элементами разметки. Логическое значение true указывает на то, что созданные 
фабрикой синтаксические анализаторы будут игнорировать разделители в том случае, если 

для элемента разметки не задано смешанное содержимое lт.е. сочетание элементов разметки 
с атрибутами типа #PCDATAI. 

З.4.2. Схема ХМL-документов 

Синтаксис языка XML Schema сложнее, чем у определений ОТО, поэтому рас­
смотрим лишь самые основные его элементы. Дополнительные сведения о нем 

можно найти в учебном пособии, доступном по адресу http://www.wЗ.org/ 

TR/xrnlschema-0. Чтобы включить в документ ссылку на файл схемы типа XML 
Schema, в корневом элементе следует указать соответствующие атрибуты, как де­
монстрируется в приведенном ниже примере. 

<?xml version="l.O"?> 
<config xmlns:xsi="http://www.wЗ.org/2001/XMLSchema-instance" 

xsi:noNamespaceSchemaLocation="config.xsd"> 

</config> 

В данном примере объявления указывается, что при проверке докумен­

та должен исполыоваться файл схемы config. xsd. Если же в ХМL-документе 



Глава Э • XML 

применяются пространства имен, то синтаксис немного усложняется. Подробнее 

об этом можно узнать из учебного пособия по указанному выше адресу. (Пре­

фикс xs i обозначает 11севдони.м 11ространства и.мен, как поясняется далее, в раз­
деле 3.6.) 

Схема определяет тип каждого элемента и атрибута. Простой тин может 

быть представлен символьной строкой с дополнительными ограничениями, на­

кладываемыми на ее содержимое, а все остальное относится к сложному типу. 

У элемента разметки простого типа могут вообще отсутствовать атрибуты и до­

черние элементы, а иначе это элемент разметки сложного типа. Но в то же вре­

мя атрибуты всегда имеют простой тип. Примеры простых типов, встроенных 

в XML Schema, приведены ниже. 

xsd:string 
xsd:int 
xsd:boolean 

1!:'1 НА ЗАМЕТКУ! Здесь и далее используется префикс xsd:, обо_значающий пространство имен 
~ XML Schema Def1n1t1on. Некоторые авторы применяют для этои же цели префикс xs:. 

По желанию можно определить собственные простые типы. Ниже приведен 

пример определения перечислимого типа. 

<xsd:simpleType name="StyleType"> 
<xsd:restriction base="xsd:string"> 

<xsd:enumeration value="PLAIN" /> 
<xsd:enumeration value="BOLD" /> 
<xsd:enumeration value="ITALIC" /> 
<xsd:enumeration value="BOLD ITALIC" /> 

</xsd:restriction> 
</xsd:simpleType> 

Определяя элемент разметки, следует указать его тип следующим образом: 

<xsd:element name="name" type="xsd:string"/> 
<xsd:element name="size" type="xsd:int"/> 
<xsd:element name="style" type="StyleType"/> 

Тип ограничивает возможные варианты содержимого элемента. Например, 

проверка следующих элементов разметки даст положительный результат: 

<size>lO</size> 
<style>PLAIN</style> 

Приведенные ниже элементы разметки будут отвергнуты синтаксическим ана­

лизатором. 

<size>default</size> 
<style>SLANTED</style> 

Простые типы можно объединять в сложные: 

<xsd:complexType name="FontType"> 
<xsd:sequence> 

<xsd:element ref="name"/> 
<xsd:element ref="size"/> 
<xsd:element ref="style"/> 



</xsd:sequence> 
</xsd:complexType> 

3.4. Проверка достоверности ХМL-документов 

где FontType - последовательность элементов разметки name, size и style. В 
данном определении использован атрибут ref, для которого ссылки на опреде­
ления находятся в схеме. Допускаются также вложенные определения, как в при­

веденном ниже примере. 

<xsd:complexType name="FontType"> 
<xsd:sequence> 

<xsd:element name="name" type="xsd:string"/> 
<xsd:element name="size" type="xsd:int"/> 
<xsd:element name="style" type="StyleType"> 

<xsd:simpleType> 
<xsd:restriction base="xsd:string"> 

<xsd:enumeration value="PLAIN" /> 
<xsd:enumeration value="BOLD" /> 
<xsd:enumeration value="ITALIC" /> 
<xsd:enumeration value="BOLD ITALIC" /> 

</xsd:restriction> 
</xsd:simpleType> 

</xsd:element> 
</xsd:sequence> 

</xsd:complexType> 

Обратите внимание на то, что для элемента style использовано анонимное 
определение типа. Языковая конструкция xsd: sequence является аналогом опера­
ции сцепления определений ОТО, а конструкция xsd: choice равнозначна логи­
ческой операции 1. Так, приведенная ниже схема разметки заменяет тип email 
1 phone в определении ОТО. 

<xsd:complexType name="contactinfo"> 
<xsd:choice> 

<xsd:element ref="email"/> 
<xsd:element ref="phone"/> 

</xsd:choice> 
</xsd:complexType> 

Для повторяющихся элементов можно использовать атрибуты minoccurs 
и maxoccurs. Например, аналогом типа i tem* в определении ОТО является сле­
дующая схема разметки: 

<xsd:element name="item" type=" ... " minoccurs="O" 
maxoccurs="unbounded"> 

Для определения атрибутов в разметку определений complexType следует 
ввести элементы xsd:attribute, как показано ниже. 

<xsd:element name="size"> 
<xsd:complexType> 

<xsd:attribute name="unit" type="xsd:string" 
use="optional" default="cm"/> 

</xsd:complexType> 
</xsd:element> 



Глава 3 • XML 

Приведенной выше схеме разметки равнозначен следующий оператор в опре­

делении DTD: 
<!ATTLIST size unit CDATA #IMPLIED "cm"> 

Определения элемента и типа схемы разметки размещаются в элементе 

xsd: schema следующим образом: 

<xsd:schema xmlns:xsd="http://www.wЗ.org/2001/XMLSchema"> 

</xsd:schema> 

Синтаксический анализ ХМL-документа, разметка которого определяется 

по заданной схеме, выполняется практически так же, как и синтаксический ана­

лиз ХМL-документа, для разметки которого служит определение DTD, за исклю­
чением нескольких перечисленных ниже отличий. 

1. Следует активизировать средства поддержки пространств имен в ХМL-фай­
лах, даже если они не используются в ХМL-документах. 

factory.setNamespaceAware(true); 

2. Необходимо подготовить фабрику для обработки схем разметки. Сделать 
это позволяют приведенные ниже выражения. 

final String JAXP SСНЕМА LANGUAGE = 
"http://java.su~.com/x~l/jaxp/properties/schemaLanguage"; 

final String WЗС ХМL SСНЕМА = 
"http://www.wЗ~org/2001/XMLSchema"; 

factory.setAttribute(JAXP SCHEМA_LANGUAGE, WЗС XML SСНЕМА); 

3.4.З. Практический пример применения ХМL-документов 

В этом разделе рассматривается пример применения ХМL-документа на прак­

тике. Допустим, для конфигурирования прикладной программы требуются дан­

ные, в которых задаются произвольные объекты, а не только текстовые строки. 

Для получения экземпляра объекта предоставляются два механизма: конструк­

тор и фабричный метод. В частности, ниже показано, как создать объект типа 

Color, используя конструктор. 
<construct class="java.awt.Color"> 

<int>SS</int> 
<int>200</int> 
<int>lOO</int> 

</construct> 

Ниже показано, как добиться той же самой цели с помощью фабричного ме­

тода. Если имя фабричного метода опускается, то по умолчанию выбирается ме­

тод getlnstance (). 

<factory class="java.util.logging.Logger" 
method="getLogger"> 

<string>com.horstmann.corejava</string> 
</factory> 

Как видите, в данном примере разметки имеются элементы, описывающие 

символьные строки и целые числа. Аналогичным образом можно органи:ювать 



3.4. Проверка достоверности ХМL·документов 

поддержку логического типа boolean и других примитивных типов данных. 
Ради большей наглядности данного примера ниже демонстрируется еще один 

механизм для поддержки примитивных типов. 

<value type="int">30</value> 

Таким образом, конфигурация прикладной программы состоит из последо­

вателыюсти записей, причем у каждой имеется свой идентификатор и объект. 

Однозначность идентификаторов проверяется сюггаксическим анализатором. 

<config> 
<entry id="background"> 

<construct class="java.awt.Color"> 
<value type="int">55</value> 
<value type="int">200</value> 
<value type="int">lOO</value> 

</construct> 
</entry> 

</config> 

Определение DTD, приведенное в листинге 3.4, ока:~ывается очень простым, 
а равнозначная схема ХМL-документа представлена в листинге 3.5. В этой схеме 
можно организовать дополнительную проверку на наличие только целого :шаче­

ния в элементе типа int или логического значения в ':>лементе типа boolean. Об­
ратите внимание на применение в этой схеме конструкции xsd: group для опре­
деления тех частей сложных типов, которые исполы1уются повторно. 

В программе из листинга 3.2 демонстрируется порядок синтаксического ана­
лиза файла конфигурации, а в листинге 3.3 приведен пример такого файла. 
В данной программе применяется схема ХМL-документа вместо его определения 

DTD, если выбрать файл, содержащий символьную строку "-schema". 
Данный пример наглядно демонстрирует типичное применение формата 

XML, который оказывается достаточно надежным для выражения отношений. 
Синтаксический анализатор ХМL-разметки придает формату XML еще большую 
ценность, беря на себя все хлопоты по проверке достоверности и снабжению 

стандартными значениями настроек по умолчанию. 

Листинг 3.2. Исходный код из файла read/XМLReadTest. java 

1 package read; 
2 
3 import java.io.*; 
4 import java.lang.reflect.*; 
5 import java.util.*; 
6 
7 import javax.xml.parsers.*; 
8 
9 import org.w3c.dom.*; 
10 import org.xml.sax.*; 
11 
12 /** 
13 * В этой программе демонстрирует применение 

14 * ХМL-файла для описания объектов Java 
15 * @version 1.0 2018-04-03 



16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 

Глава З • XML 

* @author Сау Horstmann 
*/ 
puЫic class XMLReadTest 
{ 
puЫic static void main(String[] args) 

throws ParserConfigurationException, SAXException, 
IOException, ReflectiveOperationException 

String f ilename; 
if (args.length 0) 
{ 

try (var in = new Scanner(System.in)) 
{ 

System.out .print ( "Input file: "); 
filename = in.nextLine(); 

else 
filename = args[O]; 

DocumentBuilderFactory factory = 
DocumentBuilderFactory.newinstance(); 

factory.setValidating(true); 

if (filename.contains("-schema")) 
{ 

factory.setNamespaceAware(true); 
final String JAXP SСНЕМА LANGUAGE 

"http://java.sun.com/xml/jaxp/" 
+ "properties/schemaLanguage"; 

final String W3C XML SСНЕМА = 
"http://www.w3-:-org/2001/XMLSchema"; 

factory.setAttribute(JAXP_SCHEМA_LANGUAGE, 

W3C XML SСНЕМА) ; 

factory.setignoringElementContentWhitespace(true); 

DocumentBuilder builder = 
factory.newDocumentBuilder(); 

builder.setErrorHandler(new ErrorHandler() 
{ 

puЫic void warning(SAXParseException е) 

throws SAXException 

System.err.println("Warning: "+ e.getMessage()); 

puЫic void error(SAXParseException е) 

throws SAXException 

System.err.println("Error: " + e.getMessage()); 
System.exit(O); 

puЫic void fatalError(SAXParseException е) 



Э.4. Проверка достоверности ХМL-документов 

73 throws SAXException. 
74 
75 System.err.println("Fatal error: " 
76 + e.getMessage()); 
77 System.exit(O); 
78 } 
79 } ) ; 
80 
81 Document doc = builder.parse(filename); 
82 Map<String, Object> config = 

83 parseConfig(doc.getDocumentElement()); 
84 System.out.println(config); 
85 
87 
88 private static Map<String, 
89 Object> parseConfig(Element е) 

90 throws ReflectiveOperationException 
91 
92 var result = new HashMap<String, Object>(); 
93 NodeList children e.getChildNodes(); 
94 for (int i =О; i < children.getLength(); i++) 
95 { 
96 var child = (Element) children.item(i); 
97 String name = child.getAttribute("id"); 
98 Object value = parseObject((Element) 
99 child.getFirstChild()); 
100 result.put(name, value); 
101 
102 return result; 
103 
104 
105 private static Object parseObject(Element е) 

106 throws ReflectiveOperationException 
107 
108 String tagName = e.getTagName(); 
109 if (tagName.equals("factory")) 
110 return parseFactory(e); 
111 else if (tagName.equals("construct")) 
112 return parseConstruct(e); 
113 else 
114 { 
115 String childData = ((CharacterData) 
116 e.getFirstChild()) .getData(); 
117 if (tagName.equals("int")) 
118 return Integer.valueOf(childData); 
119 else if (tagName.equals("boolean")) 
120 return Boolean.valueOf (childData); 
121 else 
122 return childData; 
123 
124 
125 
126 private static Object parseFactory(Element е) 

127 throws ReflectiveOperationException 
128 
129 String className = e.getAttribute("class"); 
130 String methodName = e.getAttribute("method"); 



Глава З • XML 

131 Object[] args = parseArgs(e.getChildNodes() 1; 
132 Class<?>[] parameterTypes = 
133 getParameterTypes(args); 
134 Method method = Class.forName(className) 
135 .getMethod(methodName, parameterTypes); 
136 return method.invoke(null, args); 
137 
138 
139 private static Object parseConstruct(Element е) 

140 throws ReflectiveOperationException 
141 
142 String className = e.getAttribute("class"); 
143 Object[] args = parseArgs(e.getChildNodes() ); 
144 Class<?>[] parameterTypes = 
145 getParameterTypes(args); 
146 Constructor<?> constructor = 

147 Class.forName(className) 
148 .getConstructor(parameterTypes); 
149 return constructor.newinstance(args); 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
17 3 
174 
175 
176 
177 
178 

private static Object[] parseArgs(NodeList elements) 
throws ReflectiveOperationException 

var result = new Object[elements.getLength() ]; 
for (int i = О; i < result.length; i++) 

result[i] = parseObject( (Element) 
elements.item(i)); 

return result; 

private static Map<Class<?>, Class<?>> toPrimitive = 
Map.of(Integer.class, int.class, 

Boolean.class, boolean.class); 

private static Class<?>[] 
getParameterTypes(Object[] args) 

var result 
for (int i 
{ 

new Class<?>[args.length]; 
О; i < result.length; i++) 

Class<?> cl = args[i] .getClass(); 
result[i] = toPrimitive.get(cl); 
if (result [i] == null) result [i] = cl; 

return result; 

Листинг 3.3. Исходный код из файла read/ config. xml 

1 <?xml version="l.0"?> 
2 <!DOCTYPE config SYSTEM "config.dtd"> 
3 <config> 
4 <entry id="background"> 
5 <construct class="java.awt.Color"> 



3.4. Проверка достоверности ХМL-документов 

6 <int>55</int> 
7 <int>200</int> 
В <int>lOO</int> 
9 </construct> 
10 </entry> 
11 <entry id="currency"> 
12 <factory class="java.util.Currency"> 
13 <string>USD</string> 
14 </factory> 
15 </entry> 
16 </config> 

Листинг 3.4. Исходный код из файла read/config. dtd 

1 <!ELEMENT config (entry)*> 
2 
3 <!ELEMENT entry (stringlintlbooleanlconstructlfactory)> 
4 <!ATTLIST entry id ID #IMPLIED> 
5 
6 
7 
в 

9 

<!ELEMENT construct 
(stringlintlbooleanlconstructlfactory)*> 

< 1ATTLIST construct class CDATA #IMPLIED> 

10 <!ELEMENT 
11 
12 <!ATTLIST 
13 <!ATTLIST 
14 

factory 
(stringlintlbooleanlconstructlfactory)*> 
factory class CDATA #IMPLIED> 
factory method CDATA "getinstance"> 

15 <!ELEMENT string (#PCDATA)> 
16 < 1ELEMENT int (#PCDATA)> 
17 < 1 ELEMENT boolean (#PCDATA)> 

Листинг 3.5. Исходный код из файла read/ config. xsd 

1 <xsd:schema xmlns:xsd= 
2 "http://www.w3.org/2001/XMLSchema"> 
3 <xsd:element name="config"> 
4 <xsd:complexType> 
5 <xsd:sequence> 
6 <xsd:element name="entry" minOccurs="O" 
7 maxOccurs="unbounded"> 
В <xsd:complexType> 
9 <xsd:group ref="Object"/> 
10 <xsd:attribute name="id" type="xsd:ID"/> 
11 </xsd:complexType> 
12 </xsd:element> 
13 </xsd:sequence> 
14 </xsd:complexType> 
15 </xsd:element> 
16 
17 <xsd:element name="construct"> 
18 <xsd:complexType> 
19 <xsd:group ref="Arguments"/> 
20 <xsd:attribute name="class" 



Глава Э • XML 

21 type="xsd:string"/> 
22 </xsd:complexType> 
23 </xsd:element> 
24 
25 <xsd:element name="factory"> 
26 <xsd:complexType> 
27 <xsd:group ref="Arguments"/> 
28 <xsd:attribute name="class" 
29 type="xsd:string"/> 
30 <xsd:attribute name="method" 
31 type="xsd:string" 
32 default="getlnstance"/> 
33 </xsd:complexType> 
34 </xsd:element> 
35 
36 <xsd:group name="Object"> 
37 <xsd:choice> 
38 <xsd:element ref="construct"/> 
39 <xsd:element ref="factory"/> 
40 <xsd:element name="string" type="xsd:string"/> 
41 <xsd:element name="int" type="xsd:int"/> 
42 <xsd:element name="boolean" type="xsd:boolean"/> 
43 </xsd:choice> 
44 </xsd:group> 
45 
46 <xsd:group name="Arguments"> 
47 <xsd:sequence> 
48 <xsd:group ref="Object" minOccurs="O" 
49 maxOccurs="unbounded"/> 
50 </xsd:sequence> 
51 </xsd:group> 
52 </xsd:schema> 

Э.5. Поиск информации средствами XPath 
Если требуется найти информацию в ХМL-документе, придется органи:ювать 

обход дерева DOM. Язык XPath упрощает доступ к узлам дерева. Допустим, име­
ется следующий ХМL-документ: 

<html> 
<head> 

<title>. .</title> 

</database> 

</html> 

Чтобы получить из него имя пользователя базы данных, достаточно вычис­

лить следующее выражение XPath: 

/html/head/title/text() 

Сделать Dто намного проще, чем органи:ювывап, непосредственный обход де­

рева DOM, выполнив перечисленные ниже действия. 



3.5. Поиск информации средствами XPath 

1. Получить узел документа. 

2. Получить первый дочерний элемент и привести его к типу Element. 

3. Обнаружить элемент разметки ti tle среди дочерних элементов. 

4. Получить первый его дочерний элемент и привести его к типу у:}ла 
CharacterDa ta. 

5. Получить из него данные. 

Язык XPath позволяет описывать ряд у3.лов в ХМL-документе. Например, в сле­
дующем выражении описывается ряд элементов form, которые являются дочер­
ними для элемента разметки body: 

/html/body/forrn 

Для выбора конкретного элемента служит операция []. Так, в следующем вы­
ражении определяется первый дочерний элемент разметки (отчет индексов на­

чинается с единицы): 

/htrnl/body/forrn[l] 

Для получения значений атрибутов служит операция @.Например, в следую­

щем выражении XPath описывается атрибут action первой таблицы: 

/htrnl/body/forrn[l]/@action 

Наконец, в приведенном ниже выражении XPath описываются все узлы 
с атрибутами action всех элементов разметки form, которые являются дочерни­
ми для элемента разметки body. 

/htrnl/body/forrn/@action 

В языке XPath имеется ряд функций, упрощающих работу с документом. На­
пример, в следующем выражении определяется количество элементов form, до­
черних для элемента разметки body: 

count(/htrnl/body/forrn) 

Примеры выражений XPath, в том числе и довольно сложных, можно най­
ти в спецификации этого языка, доступной по адресу http://www. wЗс. org/TR/ 
хра th. Имеется также очень удачно составленное руководство по XPath, доступ­
ное по адресу http://www.zvon.org/xxl/XPathTutorial/General_rus/examples.html. 

Чтобы вычислить выражение XPath, необходимо со3дать сначала объект типа 
XPath средствами класса XPathFactory, как показано ниже. 

XPathFactory xpfactory = XPathFactory.newinstance(); 
path = xpfactory.newXPath(); 

Затем вьвывается приведенный ниже метод evaluate () для вычисления вы­
ражения XPath. Исполь3уя один объект типа XPath, можно обработать несколько 
выражений. 

String usernarne = path.evaluate( 
"/htrnl/head/title/text(I", doc); 

В данной форме метод evaluate () возвращает ре3ультат в виде сим­

вольной строки. Это удобно для получения текста, например, И3 у3ла ti tle 



Глава 3 • XML 

в приведенном выше примере. Если из выражения XPath получается ряд узлов, 
то для их обработки можно сделать следующий вызов: 

XPathNodes result = path.evaluateExpression( 
"/html/body/form", doc, XPathNodes.class); 

Класс XPathNodes подобен классу NodeList, но он расширяет интерфейс 
I teraЬle, давая возможность орга11изова1ъ расширенный цикл for. Такая воз­
можность была внедрена в версии Java 9, а в прежних версиях пришлось бы сде­
лать следующий вызов: 

NodeList nodes = (NodeList) path.evaluate( 
"/html/body/form", doc, XPathConstants.NODESET); 

Если же в итоге получается один узел, в таком случае можно сделать один из 

следующих вызовов: 

Node node = path.evaluateExpression( 
"/html/body/form[l]", doc, Node.class); 

node = (Node) path.evaluate("/html/body/form[l)", doc, 
XPathConstants.NODE); 

Если в итоге получается количество узлов, тогда можно воспол1,:юваться сле­

дующим фрагментом кода: 

int count = path.evaluateExpression( 
"count(/html/body/form)", doc, Integer.class); 

count = ( (Number) path.evaluate ( "count (/html/body/foпn) ", 
doc, XPathConstants.Nut'1BER)) .intValue(); 

Поиск совсем не обязательно начинать с корневого у:ыа документа. В качестве 

исходной точки можно выбрать любой узел и даже перечень узлов. Например, 

получив узел в ре:~ультате вычисления приведенного выше выражения, можно 

сделать следующий вы:юв: 

result = path.evaluate(expression, node); 

В примере программы, исходный код которой приведен в листинге 3.6, де­
монстрируется порядок вычисления выражений XPath. Загрузите сначала ХМL­
файл и введите выражение. Результат вычисления введенного выражения поя­

вится в нижней части окна. 

Листинг 3.6. Исходный код из файла xpath/XPathTester. java 

1 package xpath; 
2 
3 import java.io. *; 
4 import java.nio.file.*; 
5 import java.util.*; 
6 
7 import javax.xml.catalog.*; 
в import javax.xml.parsers. *; 
9 import javax.xml.xpath. *; 
10 
11 import org.wЗc.dom.*; 
12 import org.xml.sax. *; 
13 



3.5. Поиск информации средствами XPath 

14 /** 
15 * В этой программе вычисляются выражения XPath 
16 * @version 1.1 2018-04-06 
17 * @author Сау Horstmann 
18 */ 
19 puЫic class XPathTest 
20 { 
21 puЫic static void main(String[] args) 
22 throws Exception 
23 
24 DocumentBuilderFactory factory = 
25 DocumentBuilderFactory.newinstance{); 
26 DocumentBuilder builder = 
27 factory.newDocumentBuilder(); 
28 
29 //избежать задержек при синтаксическом 

30 //анализе ХНТМL-файла; см. первое 

31 //примечание, приведенное в разделе 3.3.1 
32 builder.setEntityResolver( 
33 CatalogManager.catalogResolver( 
34 CatalogFeatures.defaults(), 
35 Paths.get("xpath/catalog.xml") 
36 . toAbsolutePath () . toUri ())); 
37 
38 XPathFactory xpfactory = XPathFactory.newinstance(); 
39 XPath path = xpfactory.newXPath(); 
40 try (var in = new Scanner(System.in)) 
41 { 
42 String filename; 
43 if (args.length == 0) 
4 4 { 
45 System.out.print("Input file: "); 
46 filename = in.nextLine(); 
47 
48 else 
49 
50 

filename args[O]; 

51 Document doc = builder.parse{filename); 
52 var done = false; 
53 while (ldone) 
54 { 
55 System.out.print( 
56 "XPath expression (empty line to exit): " ) ; 
57 String expression = in.nextLine(); 
58 if (expression.trim() .isEmpty()) 
59 done = true; 
60 else 
61 
62 
63 
64 
65 
66 
67 

try 
{ 

XPathEvaluationResult<?> result = 

path.evaluateExpression(expression, doc); 
if (result.type() == XPathEvaluationResult 

.XPathResultType.NODESET) 



68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 

Глава З • XML 

for (Node n : (XPathNodes) result.value()) 
System.out.println(description(n) ); 

else if (result.type() == 
XPathEvaluationResult 

.XPathResultType.NODESET) 
System.out.println( (Node) result.value() ); 

else 
System.out.println(result.value() ); 

catch (XPathExpressionException е) 

{ 

System.out.println(e.getMessage()); 

88 puЫic static String description(Node n) 
89 { 
90 if (n instanceof Element) 
91 return "Element " + n.getNodeName(); 
92 else if (n instanceof Attr) 
93 return "Attribute " + n; 
94 else 
95 return n.toString(); 
96 
97 

javax.xml.xpath.XPathFactory 5.0 

• static XPathFactory newinstance () 

Возвращает экземпляр класса XPathFactory, используемый для создания объектов типа 
XPath. 

ХРа th newXpa th () 

Создает объект типа XPath, который можно использовать для обработки выражений XPath. 

javax . .юnl.xpath.XPath 5.0 

• String evaluate (String expression, Object startingPoint) 

Вычисляет выражение, начиная поиск с заданной исходной точки. В качестве исходной точки 

может быть указан узел или перечень узлов. Если в результате вычисления данного выраже­

ния получается узел или ряд узлов, то возвращаемая символьная строка содержит данные из 

всех дочерних текстовых узлов. 



3.6. Использование пространств имен 

javax.xml.xpath.XPath 5. О {окончание} 

• Object evaluate(String expression, Object startingPoint, QName 
resul. tТуре) 

Вычисляет выражение. начиная поиск с заданной исходной точки. В качестве исходной точки 

может быть указан узел или перечень узлов. В качестве параметра resul. tType задает­
ся одна из следующих констант, определяемых в классе XPathConstants: SТRING, NODE, 
NODESET, NUМВER или ВOOLEAN. Возвращаемое значение относится к типу String, Node, 
NodeList, NumЬer или Boolean. 

• <Т> Т evaluateExpression(String expression, Object itвm, 
Class<T> type) 9 

Вычисляет заданное выражение и возвращает результат в виде значения указанного типа. 

• XPathEvaluationResult<?> evaluateExpression(String expression, 
InputSource source) 9 

Вычисляет заданное выражение. 

javax.xml.xpath.XPathEvaluationResult<T> 9 

• XPathEvaluationResult.XPathResultТype type() 

Возвращает одну из следующих перечислимых констант: SТRING, NODESET, NODE, NUМВER, 
BOOLEAN. 

• Т value () 

Возвращает результирующее значение. 

3.6. Использование пространств имен 
Во избежание конфликтов при использовании одинаковых имен в языке Java 

предусмотрены пакеты. Разные классы моrут иметь одинаковые имена, если 

они находятся в разных пакетах. В XML для различения одинаково именуемых 
элементов и атрибутов используется механизм пространств имен. Пространство 

имен обозначается с помощью универсального идентификатора ресурсов (URI), 
как демонстрируется в приведенном ниже примере. 

http://www.wЗ.org/2001/XMLSchema 

uuid:lc759aed-b748-475c-ab68-10679700c4f2 
urn:com:books-r-us 

Чаще всего для этой цели используется формат URL по сетевому протоколу 
НТТР. Следует, однако, иметь в виду, ч:то URL в данном случае выполняет лишь 
роль идентификатора. Приведенные ниже URL обозначают ра..тые пространства 
имен, хотя веб-сервер интерпретировал бы их как указатели на один и тот же 

документ. 

http://www.horstmann.com/corejava 
http://www.horstmann.com/corejava/index.html 



Глава 3 • XML 

Более того, URL, определяющий пространство имен, может не указывать на 
конкретный документ. ХМL-анализатор и не пытается найти что-нибудь по этому 

адресу. Тем не менее по URL, обозначающему пространство имен, принято распо­
лагать документ с описанием назначения этого пространства. Например, по адре­

су http: //www.wЗc.org/2001/XMLSchema находится документ с описанием стан­
дарта XML Schema. 

А зачем для обозначения пространства имен применяются URL? Очевидно, что 
в таком случае легче гарантировать их однозначность. В самом деле, для подлинно­

го URL однозначность имени узла сети гарантируется структурой системы домен­
ных имен, а однозначност1, остальной части URL должна обеспечить надлежащая 
организация файловой системы. Именно из этих соображений для многих пакетов 

выбраны доменные имена с обратным порядком следования доменов. 

Безусловно, обеспечит~, однозначность для длинных имен проще, но испол1,­

:ювать их в программе 11е совсем удобно. В языке Java для этой цели предусмо­
трен механизм импорта пакетов, в результате чего в исходном тексте программы 

присутствуют в основном имена классов. Аналогичный механизм предусмотрен 

и в XML, как показано ниже. В итоге элемент и все его дочерние узлы становятся 
часп,ю заданного пространства имен. 

<элемент xmlns=" ИRI_пространства имен"> 
дочерные узлы 

</элемент>-

При необходимости дочерний узел может обеспечить себе отдельное про­

странство имен, как пока:1ано в приведенном ниже примере. В данном случае 

первый дочерний узел и внучатые узлы младшего уровня принадлежат второму 

пространству имев. 

<элемент xmlns=" ИRI_ пространства_ имен_ 1 "> 
<дочерний_узел xmlns=" ИRI_ пространства_ имен_ 2"> 

внучатые _узлы 

</дочерний_узел> 

другие дочерние_узлы 

</элемент> 

Этот простой механизм подходит только в том случае, если требуется одно 

пространство имен или же если пространства имен вложены друг в друга есте­

ственным образом. В иных случаях более предпочтительным оказывается аль­

тернативный механизм, аналог которого отсутствует в Java. Для пространства 
имен можно использовап, префикс, т.е. короткий идентификатор, выбираемый 

для конкретного документа. Ниже приведен типичный пример применения пре­

фикса xsd в файле схемы типа XML Schema. 
<xsd:schema xmlns:xsd="http://www.wЗ.org/2001/XMLSchema"> 

<xsd:element name="config"/> 

</xsd:schema> 

Атрибут xmlns: префикс=" URI _пространства_ имен" определяет простран­

ство имен и префикс. В данном примере префиксом является символьная стро­

ка "xsd". Таким обра:юм, атрибут xsd: schema фактически о:шачает следую­
щее: указанная схема (schema) находится в пространстве имен h t tp: / /www. 
wЗ.org/2001/XMLSchema. 



3.6. Использование пространств имен 

НА ЗАМЕТКУ! Пространство имен родительского элемента наследуется только дочерними 

элементами. Атрибуты без явного указания префикса не считаются частью пространства 

имен. Рассмотрим следующий вымышленный пример: 

<config xmlns="l1ttp: / /www. horstmann. сот/ corejava" 
xmlns:si="http://www.bipm.fr/enus/3 SI/si.html"> 
<size value="210" si:unit="mm"/> 

</config> 

В данном примере элементы разметки config и size являются частью пространства имен, 
определяемого по следующему URI: http://www. horstmann. com/corejava. Атрибут 
si:unit является частью пространства имен по следующему URI: http://www.Ьipm.fr/ 
enus/3 _ SI/ si. html. Но атрибут value не принадлежит ни одному из этих пространств имен. 

Манипулирование пространствами имен в синтаксическом анализаторе подда­

ется контролю. По умолчанию пространства имен не принимаются во внимание 

в DОМ-анализаторе. Чтобы включить режим обработки пространств имен, доста­

точно вызвать метод setNamespaceAware () из класса DocumentBuilderFactory 

следующим образом: 

factory.setNamespaceAware(true); 

После этого все созданные данной фабрикой конструкторы будут поддержи­

вать пространства имен. У каждого узла имеются следующие три свойства. 

• Уточненное и.мя с префиксом, возвращаемое методами getNodeName (), 

getTagName () и т.д. 

• URI пространства имен, возвращаемый методом getNamespaceURI (). 

• Локальное и.мя без префикса, возвращаемое методом getLocalName (). 

Обратимся к конкретному примеру. Допустим, синтаксический анализатор 

обнаруживает следующий элемент разметки: 

<xsd:schema xmlns:xsd="http://www.wЗ.org/2001/XMLSchema"> 

В таком случае он сообщает о наличии следующих свойств узла. 

• Уточненное имя: xsd: schema. 

• URI пространства имен: http://www. wЗ. org/2 001/XMLSchema. 

• Локальное имя: schema. 

НА ЗАМЕТКУ! Если режим учета и обработки пространств имен отключен, методы 

getNamespaceURI {) и getLocalName () возвращают пустое значение null. 

org.wЗc.dom.Node 1.4 

• String getLocalName() 

Возвращает локальное имя (без префиксаl или пустое значение null, если режим обработки 
пространств имен отключен. 



Глава Э • XML 

org. wЗс. dom. Node 1 . 4 /окончание/ 

• String getNamespaceURI () 

Возвращает URI пространства имен или пустое значение null, если узел не является частью 
пространства имен или режим обработки пространств имен отключен. 

javax.xml.parsers.DocumentBuilderFactory 1.4 

• boolean isNamespaceAware() 

• void setNamespaceAware (boolean value) 

Получают или устанавливают значение свойства, определяющего режим обработки пространств 

имен. Если установлено логическое значение true параметра value, то в генерируемых фа­
брикой синтаксических анализаторах будет включен режим обработки пространств имен. 

Э. 7. Потоковые синтаксические анализаторы 
ООМ-анализатор считывает ХМL-документ и представляет его в виде древо­

видной структуры данных. Для большинства приложений оказывается достаточ­

но и модели ООМ. Но она неэффективна, если документ крупный, а алгоритм 

его обработки слишком прост, чтобы оперативно анализировать узлы, не про­

сматривая все дерево в целом. В подобных случаях следует применять потоковые 

синтаксические анализаторы. 

В последующих разделах будут рассмотрены потоковые анализаторы, до­

ступные в библиотеке Java: "почтенный" SАХ-анализатор и более современный 
StАХ-анализатор, который появился в версии Java 6. SАХ-анализатор использует 
обратные вызовы событий, а StАХ-анализатор предоставляет итератор событий 

синтаксического анализа. Последний оказывается более удобным в употреблении. 

З. 7 .1. Применение SАХ-анализатора 
SАХ-анализатор уведомляет о событиях, наступающих в ходе синтаксического 

анализа компонентов данных, вводимых из ХМL-документа. Но сам документ не 

хранится в памяти, а создание структуры из вводимых данных возлагается на об­

работчики событий. На самом деле в основу работы DОМ-анализатора поло­

жен тот же принцип, что и для SАХ-анализатора: дерево модели ООМ строится 

по мере приема событий, наступающих при синтаксическом анализе. 

Чтобы воспользоваться SАХ-анализатором, необходимо создать обработчик 

событий, определяющий действия для обработки различных событий, наступаю­

щих при синтаксическом анализе. В интерфейсе ContentHandler определен ряд 
перечисленных ниже методов обратного вызова, к которым обращается анализа­

тор в ходе синтаксического анализа ХМL-документа. 

• Методы startElement () и endElement () вызываются всякий раз, когда 
получается открывающий и закрывающий дескриптор. 



З.7. Потоковые синтаксические анализаторы 

• Метод characters () вызывается при получении символьных данных. 

• Методы startDocument () и endDocument () вызываются в начале и в кон­
це документа. 

Например, при синтаксическом анализе следующего фрагмента разметки: 

<font> 
<name>Helvetica</name> 
<size units="pt">36</size> 

</font> 

SАХ-анализатор генерирует обратные вызовы перечисленных ниже методов. 

1. Метод startElement (),имя элемента разметки: font. 

2. Метод startElement (),имя элемента разметки: name. 

3. Метод characters (),содержимое: Hel vetica. 

4. Метод endElement (), имя элемента разметки: name. 

5.Метод startElement(), имя элемента разметки: size, атрибуты: 
units="pt". 

6. Метод characters (),содержимое: 36. 

7. Метод endElement (),имя элемента разметки: size. 

8. Метод endElement (),имя элемента разметки: font. 

Для выполнения требуемых действий при синтаксическом анализе содер­

жимого вводимого файла необходимо переопределить эти методы. В примере 

программы, исходный код которой приведен в конце этого раздела, выводятся 

сведения обо всех гипертекстовых ссылках типа <а href=" ... ">, найденных 
в НТМL-файле. В ней переопределяется метод startElement () обработчика со­
бьпий и реализуется проверка всех гипертекстовых ссылок с именем а и атрибу­

том href. Подобный код применяется в поисковых роботах, которые автоматиче­
ски выявляют новые веб-страницы для индексации, переходя по ссылкам. 

НА ЗАМЕТКУ! К сожалению, многие НТМL-страницы совершенно не соответствуют формату 
XML, и поэтому рассматриваемая здесь программа не способна произвести их синтаксический 
анализ. Тем не менее большинство веб-страниц, созданных консорциумом WЗС, составлены 

на XHTML (диалекте HTML, соответствующем формату XML). Поэтому этими веб-страницами 
можно воспользоваться для тестирования данной программы. Например, для составления 

списка всех гипертекстовых ссылок по соответствующим URL на веб-странице, доступной 
по адресу http://www. wЗс. org/МarkUp, необходимо ввести следующую команду: 

java SAXTest http://www.wЗc.org/МarkUp 

Рассматриваемая здесь программа служит характерным примером употре­

бления SАХ-анализатора. В ней полностью игнорируется контекст, в котором 

находится элемент разметки а, а также не сохраняется древовидная структура 

документа. Для получения SАХ-анализатора используется приведенный ниже 

фрагмент кода. 

SAXParserFactory factory = SAXParserFactory.newinstance(); 
SAXParser parser = factory.newSAXParser(); 



Глава 3 • XML 

После этого документ можно обработать следующим образом: 

parser.parse(source, handler) 

где source - источник входных данных, который может быть файлом, символ1,­

ной строкой с URL или потоком ввода, а handler относится к подклассу, произ­
водному от класса DefaultHandler. В классе DefaultHandler определены мето­
ды, объявленные в следующих интерфейсах: 

ContentHandler 
DTDHandler 
EntityResolver 
ErrorHandler 

Эти методы не выполняют никаких действий. В рассматриваемой здесь про­

грамме определен обработчик событий, в котором для поиска элементов с име­

нем а и атрибутом href переопределяется метод startElement () из интерфей­
са ContentHahdler: 

var handler = new DefaultHandler() 

1 ; 

puЫic void startElement(String namespaceURI, 
String lname, String qname, Attributes attrs) 

if (lname.equalsignoreCase("a") && attrs 1 = null) 
{ 

for (int i =О; i < attrs.getLength(); i++) 
{ 

String aname = attrs.getLocalName(i); 
if (aname.equalsignoreCase("href")) 

System.out.println(attrs.getValue(i) 1; 

Методу startElement () передаются три параметра, описывающие имя эле­
мента. В частности, параметр qname сообщает уточненное имя в форме пре­
фикс: локальное_ имя. Если включен режим обработки пространств имен, то 

параметры namespaceURI и lname описывают пространство имен и локальное 
(неуточненное) имя. 

Как и при использовании ООМ-анализатора, режим обработки про­

странств имен исходно отключен. Для его включения достаточно вызвать метод 

setNamespaceAware () из фабричного класса SAXParserFactory следующим об­
ра:юм: 

SAXParserFactory factory = SAXParserFactory.newinstance(); 
factory.setNamespaceAware(true); 
SAXParser saxParser = factory.newSAXParser(); 

В рассматриваемой здесь программе преодолевается еще одно распростра­

ненное препятствие. В начале ХНТМL-файла обычно находится дескриптор, 

содержащий ссылку на описание ОТО, которое требуется загрузить синтаксиче­

скому анали3атору. Очевидно, что консорциуму WЗС явно не улыбалась перспек­

тива обслуживать миллиарды копий файлов вроде www. wЗ. org/TR/xhtmll/DTD/ 



З. 7. Потоковые синтаксические анализаторы 

xhtmll-strict.dtd. Поэтому они вообще отка:1алис1, от такого обслуживания, 
но на момент написания этой книги описание ОТО все же обслуживалось, хотя 

и очень медленно. Если же вам не требуется проверка достоверности документа, 

просто сделайте следующий вы:юв: 

f actory. set Fea t ure ( "http: / / apache. org /xml / f eat LJres/" 
+ "nonvalidating/load-external-dtd", false); 

Итак, в листинге 3.7 приведен исходный код простейшего поискового робота. 
Далее в этой главе рассматривается еще один интересный пример применения 

SАХ-анализатора. Чтобы превратить источник данных, несовместимый с форма­

том XML, в ХМL-документ, проще всего уведомит~, о SАХ-событиях, о которых 
будет затем сообщать сам ХМL-анализатор. Более подробно эти вопросы рассма­

триваются в разделе 3.9. 

Листинг 3.7. Исходный код из файла sax/SAXTest. java 

1 package sax; 
2 
3 import java.io.*; 
4 import java.net.*; 
5 import javax.xml.parsers.*; 
6 import org.xml.sax.*; 
7 import org.xml.sax.helpers.*; 
в 

9 /** 
10 * В этой программе демонстрируется применение 

11 * SАХ-анализатора. Программа выводит все гиперссылки 
12 * из веб-страницы формата XHTML. 
13 * Использование: java SAXTest url 
14 * @version 1.01 2018-05-01 
15 * @author Сау Horstmann 
16 */ 
17 puЫic class SAXTest 
18 ( 
19 puЫic static void main(String[] args) throws Exception 
20 ( 
21 String url; 
22 if (args.length == 0) 
23 ( 
24 url = "http://www.w3c.org"; 
25 System.out.println("Using" + url); 
26 
27 else url = args[OJ; 
28 
29 var handler = new DefaultHandler() 
30 
31 puЫic void startElement(String namespaceURI, 
32 String lname, String qname, Attributes attrs) 
33 
34 if (lname.equals("a") && attrs != rшll) 
35 ( 
36 for (int i = О; i < attrs.getLength(); i++) 
37 ( 



38 
39 
40 
41 
42 

Глава З • XML 

String aname = attrs.getLocalName(i); 
if (aname.equals("href")) 

System.out.println(attrs.getValue(i)); 

4 3 } 
4 4 ) ; 
45 
46 SAXParserFactory factory = 
47 SAXParserFactory.newinstance(); 
48 factory.setNamespaceAware(true); 
49 factory.setFeature("http://apache.org/xml/features/" 
50 + "nonvalidating/load-external-dtd", 
51 false); 
52 SAXParser saxParser = factory.newSAXParser(); 
53 InputStream in = new URL(url) .openStream(); 
54 saxParser.parse(in, handler); 
55 
56 

javax.юnl.parsers.SAXParserFactory 1.4 

• static SAXParserFactory newlnstance() 

Возвращает экземпляр класса SAXParserFactory. 

• SAXParser newSAXParser() 

Возвращает экземпляр класса SAXParser. 

• Ьoolean isNamespaceAware () 

• void setNamespaceAware (boolean value) 

Получают или устанавливают значение свойства namespaceAware, определяющего режим 
учета и обработки пространств имен в фабрике. Если в этом свойстве установлено логиче­

ское значение true, то режим учета и обработки пространств имен активизирован для син­
таксических анализаторов, генерируемых фабрикой. 

• boolean isValidating() 

• void setValidating(boolean value) 

Получают или устанавливают значение свойства validating, определяющего режим про­
верки достоверности вводимых данных в фабрике. Если в этом свойстве установлено логи­

ческое значение true, то режим проверки достоверности вводимых данных активизирован 
для синтаксических анализаторов, генерируемых фабрикой. 

javax.юnl.parsers.SAXParser 1.4 

• void parse (File :Е, Defaultвandler handler) 

• void parse(String url, DefaultHandler handler) 

• void parse(InputStream in, Defaultвandler handler) 

Выполняют синтаксический анализ ХМL-документа, полученного из файла по указанному 

URL или из потока ввода, а также оповещают заданный обработчик о событиях, наступающих 
в ходе синтаксического анализа. 



org. xml . sax. Соп ten tHandler 1 . 4 

• void startDocument() 

void endDocumen t () 

3. 7. Потоковые синтаксические анализаторы 

Вызываются в начале и в конце ХМL-документа соответственно. 

• void startElement(String uri, String 1.name, String qname, 
AttriЬutes attr) 

• void endElement (String uri, String 1.name, String qname) 

Вызываются в начале и в конце элемента разметки соответственно. Если в анализаторе учи­

тываются пространства имен, он сообщает URI пространства имен, локальное имя без пре­
фикса и полностью уточненное имя с префиксом. 

• void characters (char[] data, int start, int 1.ength) 

Вызывается, когда анализатор сообщает символьные данные. 

org.xml.sax.Attributes 1.4 

• int getLength () 

Возвращает количество атрибутов, хранящихся в коллекции атрибутов. 

• String getLocalName (int index) 

Возвращает локальное имя [без префикса) атрибута по указанному индексу или пустую сим­
вольную строку, если для синтаксического анализатора не включен режим обработки про­

странств имен. 

String getURI (int index) 

Возвращает URI пространства имен для атрибута по указанному индексу или пустую символь­
ную строку, если узел не является частью пространства имен или же если для синтаксическо­

го анализатора не включен режим обработки пространств имен. 

String getQName (int index) 

Возвращает уточненное имя [с префиксом) атрибута по указанному индексу или пустую сим­
вольную строку, если уточненное имя не сообщено синтаксическим анализатором. 

• String getValue (int index) 

String getValue (String qname) 

• String getValue (String uri, String 1.name) 

Возвращают значение атрибута по указанному индексу, уточненное имя или URI пространства 
имен вместе с локальным именем. Если такое значение отсутствует, то возвращается пустое 
значение null. 

3. 7.2. Применение StАХ-анализатора 
StАХ-анализатор является "извлекающим" синтаксическим анализатором. 

Вместо того чтобы устанавливать обработчик событий, достаточно произвести 

перебор событий в следующем цикле: 

InputStream in = url.openStream(); 
XMLinputfactory factory = XMLinputfactory.newinstance(); 
XMLStreamReader parser = factory.createXMLStreamReader(in); 
while (parser.hasNext()) 



Глава З • XML 

int event = parser.next(); 
вызвать методы синтаксического анализатора parser, 
чтобы получить подробные сведения о событии 

Например, в ходе синтаксического анализа следующего фрагмента разметки: 

<f ont> 
<name>Helvetica</name> 
<size units="pt">Зб</size> 

</font> 

синтаксический анализатор выдает перечисленные ниже события. 

1. START ELEMENT, имя элемента: font. 

2. CHARACTERS, содержимое: пробел. 

3. START _ ELEMENT, имя элемента разметки: narne. 

4. CHARACTERS, содержимое: Hel vetica. 

5. END _ ELEMENT, имя элемента разметки: narne. 

6. CHARACTERS, содержимое: пробел. 

7. START_ELEMENT, имя элемента разметки: size. 

8. CHARACTERS, содержимое: 3 6. 

9. END_ELEMENT, имя элемента разметки: size. 

10. CHARACTERS, содержимое: пробел. 

11. END _ ELEMENT, имя элемента разметки: font. 

Чтобы проанализировать значения атрибутов, следует вызвать соответствую­

щие методы из класса XMLStrearnReader. Например, при вызове следующего ме­

тода получается атрибут uni ts текущего элемента: 

String units = parser.getAttributeValue(null, "units"); 

По умолчанию режим обработки пространств имен включен. Огключить его 

можно, видоизменив фабрику следующим образом: 

XMLinputFactory factory = XMLinputFactory.newinstance(); 
factory.setProperty(XMLinputFactory.IS_NAМESPACE_AWARE, false); 

В листинге 3.8 приведен исходный код программы поискового робота, реали:ю­
ванной вместе со StАХ-анализатором. Нетрудно :ыметить, что исходный код этой 

программы намного проще, чем код аналогичной программы со SАХ-анализато­

ром, поскольку в данном случае не требуется органи:ювывать обработку событий. 

Листинг 3.8. Исходный код из файла stax/StAXTest. java 

1 package stax; 
2 
3 import java.io.*; 
4 import java.net.*; 
5 import javax.xml.stream.*; 



3.7. Потоковые синтаксические анализаторы 

6 
7 /** 
8 * В этой программе демонстрируется применение 
9 * StАХ-анализатора. Программа выводит все гиперссылки 
10 * из веб-страницы формата XHTML. 
11 * Использование: java StAXТest url 
12 * @author Сау Horstmann 
13 * @version 1.1 2018-05-01 
14 */ 
15 puЫic class StAXTest 
16 { 
17 puЫic static void main(String[] args) throws Exception 
18 { 
19 String urlString; 
20 if (args.length == 0) 
21 { 
22 urlString = "http://www.w3c.org"; 
23 System.out.println("Using" + urlString); 
24 
25 else urlString = args[O]; 
26 var url = new URL(urlString); 
27 InputStream in = url.openStream(); 
28 XMLinputFactory factory = 

29 XMLinputFactory.newlnstance(); 
30 XMLStreamReader parser = 

31 factory.createXMLStreamReader(in); 
32 while (parser.hasNext()) 
33 { 
34 int event = parser.next(); 
35 if (event == XMLStreamConstants.START ELEMENT) 
36 { 
37 
38 
39 
40 
41 
42 
43 
44 
42 
43 
44 

if (parser. getLocalName () . equals ("а") ) 
{ 

String href = 
parser.getAttributeValue(null, "href"); 

if (href != null) 
System.out.println(href); 

javax.xml.stream.XМLinputFactory б 

• static XМLinputFactory newinstance() 

Возвращает экземпляр класса XМLinputFactory. 

• void setProperty(String пате, Object value) 

Задает свойство для данной фабрики или генерирует исключение типа IllegalArgument 
Exception, если свойство не поддерживается или не допускает установку заданного значе­
ния. В реализации JOK поддерживаются следующие свойства, допускающие установку логи­
ческих значений: 



Глава 3 • XML 

javax. xml. stream. XМLinputFactory 6 (продолжение/ 

"javax.xml.stream.isValidating" 

"javёlX.юnl.stream.isNamespaceAware" 

"javёlX.юnl.stream.isCoalescing" 

"javёlX.юnl.stream.isReplacingEntityReferences" 

При логическом значении 

false [по умолчанию) 

документ не проверяется. 

В спецификации это свойство 

не требуется 

При логическом значении 

true [по умолчанию) 

обрабатываются 

пространства имен. 

В спецификации это свойство 

не требуется 

При логическом значении 

false [по умолчанию) 

соседние символы не 

объединяются 

При логическом значении 

true [по умолчанию) ссылки 

на сущности заменяются и 

сообщаются в виде 

символьных данных 

"javёlX. юn1. stream. isSupportingExternalEntities" При логическом значении 

true [по умолчанию) 

"javёlX.юnl.stream.supportDТD" 

разрешаются внешние 

сущности. В спецификации не 

определяется никаких 

значений этого свойства по 

умолчанию 

При логическом значении 

true [по умолчанию) об 

описаниях DTD сообщается 

как о событиях 

• XМLStreamReader createXМLStreamReader(InputStream in) 

• XМLStreamReader createXМLStreamReader(InputStream in, String 
charactвrEncoding) 

• XМLStreamReader createXМLStreamReader(Reader in) 

• XМLStreamReader createXМLStreamReader(Source in) 

Создают синтаксический анализатор, читающий данные из заданного потока ввода, потока 
чтения или источника JAXP. 



Э.В. Формирование ХМL-документов 

javax.xml..stream.XМLStreamReader 6 

boolean hasNext () 

Возвращает логическое значение true, если существует другое событие синтаксического 

анализа. 

• int next () 

Задает состояние синтаксического анализатора для последующего события синтаксическо­

го анализа и возвращает одну из следующих констант: START ELEМENT, END ELEМENT, 

CНARACTERS, START DOCUМENТ, END DOCUМENТ, CDATA, СомМ°ЕNТ, SPACE (игНОрируемый 
пробел), PROCESSING_ INSTRUCTION:ENТITY _ REFERENCE, DТD. 

• boolean isStartElement () 

• boolean isEndElement() 

• boolean isCharacters () 

• boolean isWhiteSpace() 

Возвращают логическое значение true, если текущее событие связано с начальным эле­
ментом, конечным элементом, символьными данными или разделителем в виде пробела. 

• QName getName () 

• String getLocalName () 

Получают имя элемента в событии START ЕLЕМЕNТ или END ЕLЕМЕNТ. 

• String getтext () 

Возвращают символы события CНARACTERS, СОММЕNТ или CDATA, замещающее значение 

для константы ENТITY _ REFERENCE или внутреннее подмножество ОТО. 

• int getAttriЬuteCount () 

• QName getAttributeName (int index) 

String getAttriЬuteLocalName(int indвx) 

• String getAttriЬuteValue (int index) 

Получают подсчет количества атрибутов, а также имена и значения атрибутов, при условии, 

что текущим оказывается событие START_ELEМENТ. 

• String getAttriЬuteValue (String namвspacвURI, String name) 

Получает значение атрибута по данному имени, при условии, что текущим оказывается со­

бытие START_ELEМENТ. Если параметр namвspacвURI принимает пустое значение null, 

пространство имен не проверяется. 

3.8. Формирование ХМL-документов 
Итак, рассмотрев способы написания программ на Java, предназначенных 

для чтения ХМL-документов, перейдем к способам написания программ, вы­

полняющих обратное действие, т.е. формирующих данные для вывода в фор­

мате XML. Разумеется, ХМL-документ можно сформирован, введя в программу 
последовательность вызовов метода print () и выводя с их помощью элементы 

разметки, атрибуты и текст. Но для создания такого громоздкого кода потребу­

ется много времени и труда. Кроме того, подобный код, как правило, изобилует 

ошибками. Очень легко, например, ошибиться при употреблении специальных 

знаков " или < в значениях атрибутов и в текстовом содержимом. 



Глава З • XML 

Намного удобнее создаП> дерево модели DOM, представляющей документ, 
а затем вывести его содержимое по месту назначения. Подроб11ости такого под­

хода к формированию ХМL-документов обсуждаются в последующих разделах. 

З.8.1. ХМL-документы без пространств имен 

Чтобы построиП> древовидную структуру DOM, необходимо сформиро-
11ать сначала пустой документ с помощью метода newDocument () из класса 

DocumentBuilder следующим образом: 

Document doc = builder.newDocurnent(); 

Затем следует вызвать метод createElement () и;1 класса Document, чтобы по­
строить элементы документа, как пока:1а1ю ниже. 

Element rootElement = doc.createElement(rootName); 
Element childElement = doc.createElement(childName); 

Далее создаются текстовые у:1лы с помощью метода create'Гext.Node (): 

Text textNode = doc.createTextNode(textContents); 

З.8.2. ХМL-документы с пространствами имен 

Если используются пространства имен, то процедура формирования ХМL-до­

кумента ока:швается несколько иной. Сначала фабрика построителей докумен­

тов устанавливается в режим управления пространствами имен, а затем создает-

01 построитель документов, как показано ниже. 

DocumentBuilderFactory factory = 
DocurnentBuilderFactory.newinstance(); 

factory.setNamespaceAware(true); 
builder = factory.newDocumentBuilder(); 

Далее для со:1дания любых узлов вместо метода createElement () вызывается 
метод createElementNS (): 

String namespace = "http://www.wЗ.org/2000/svg"; 
Element rootElement = doc.createElementNS(namespace, "svg"); 

Если узел имеет уточненное имя с префиксом пространства имен, то любые 

требующиеся атрибуты с префиксом xmlns создаются автоматически. Так, если 
требуется ввести данные формата SVG в ХНТМL-документ, для этой цели можно 
построить соответствующий элемент аналогично приведенному ниже. 

Element svgElement = doc.createElement(namespace, "svg:svg") 

Когда этот элемент записывается, он превращается в следующий элемент раз­

метки: 

<svg:svg xmlns:svg="http://www.wЗ.org/2000/svg"> 

Если же требуется установить атрибуты элемента разметки, имена которых 

находятся в отдельном пространстве имен, вызывается метод setAttributeNS () 
И3 класса Element: 

rootElement.setAttributeNS(namespace, qualifiedName, value); 



3.8. Формирование ХМL-документов 

З.8.З. Запись ХМL-документов 

Как ни странно, записать дерево модели DOM в поток вывода не так-то просто. 
Для этой цели проще всего воспользоваться прикладным интерфейсом API языка 
XSLT (ExtensiЬ\e Stylesheet Language Transformations - расширяемый язык преобра­

зования ХМL-документов). Более подробно язык XSLT рассматривается в последнем 
разделе этой главы, а до тех пор допустим, что приведенный ниже код каким-то 

волшебным образом позволяет получить даш1ые, выводимые в формате XML. 
Над документом выполняется холостое преобразование, а результат записы­

вается в поток вывода. Чтобы включить узел DOCTYPE в выводимые данные, сле­

дует также указать идентификаторы SYSTEM и PUBLIC в качестве свойств вывода. 

11 построить объект холостого преобразования: 
Traпsformer t = TraпsformerFactory.пewiпstaпce() 

.пewTraпsformer(); 

11 установить свойства вывода, чтобы получить узел DOCTYPE: 
t.setOutputProperty(OutputKeys.DOCTYPE SYSTEM, 

systemidentif ier) ; 
t.setOutputProperty(OutputKeys.DOCTYPE_PUBLIC, 

puЫicideпtifier); 

!/ установить отступ: 
t.setOutputProperty(OutputKeys.INDENT, "yes"); 
t.setOutputProperty(OutputKeys.METHOD, "xml"); 
t.setOutputProperty( 

"{http: / /xml. apache. org/xsl t) indent-amount", "2") ; 
11 выполнить холостое преобразование и вывести 

11 результат в файл: 

t.transform(new DOMSource(doc), 
пеw StreamResult(new FileOutputStream(file) )); 

Еще один способ :ыписи ХМL-документов состоит в применении юттерфей­

са LSSerializer. Для получения экземпляра класса, реализующего этот интер­

фейс, служит следующий фрагмент кода: 

DOMimplementation impl = doc.getlmplemeпtation(); 
DOMimplemeпtationLS implLS = (DOMimplementationLS) 

impl.getFeature("LS", "3.0"); 
LSSerializer ser = implLS.createLSSerializer(); 

Если требуется ввести пробелы и разрывы строк в документ, достаточно уста­

новить следующий флаг: 

ser. getDomConf ig () . set Parameter ( "f ormat-pretty-pr int", 
true); 

И тогда преобразован документ в символьную строку не составит особого 

труда: 

String str = ser.writeToString(doc); 

Если же требуется вывести документ непосредственно в файл, нужно создать 

объект типа LSOutput следующим образом: 

LSOutput out = implLS.createLSOutput(); 
out.setEncoding("UTF-8"); 



Глава Э • XML 

out.setByteStream(Files.newOutputStream(path) ); 
ser.write(doc, out); 

javax.xml.parsers.Documentвuilder 1.4 

• Document newDocument() 

Возвращает пустой документ. 

org.wЗc.dom.Document 1.4 

Element createElement (String namв) 

Element createElementNS (String uri, String qname) 

Создают элемент с заданным именем. 

• Text createTextNode (String data) 

Создает текстовый узел с указанными данными. 

org.wЗc.dom.Node 1.4 

• Node appendChild (Node child) 

Присоединяет узел к списку его дочерних узлов. Возвращает присоединенный узел. 

org.wЗc.dom.Element 1.4 

• void setAttriЬute (String namв, String value) 

• void setAttriЬuteNS (String uri, String qnamв, String value) 

Устанавливают заданное значение в атрибуте с указанным именем. Если в полностью уточ­

ненном имени имеется альтернативный префикс, то параметр uri должен принимать пустое 
значение null. 

javax.xml.transform.TransformerFactory 1.4 

• static TransformerFactory newlnstance() 

Возвращает экземпляр класса TransformerFactory. 

• Transformer newTransformer() 

Возвращает экземпляр класса Transformer, выполняющий тождественное [холостое! пре­
образование, не предполагающее никаких действий. 



3.8. Формирование ХМL-документов 

javax.xml.transform.Transformer 1.4 

• void setOutputProperty(String name, String value) 

Задает свойство вывода. Перечень этих свойств можно найти по адресу https: / /www. 
wЗс. org/TR/xslt#output. Ниже перечислены наиболее употребительные свойства вы­
вода. 

doctype-puЬlic 

doctype-system 

indent 

Идентификатор PUВLIC, используемый в объявлении DOCTYPE 

Идентификатор SYSTEМ, используемый в объявлении DOCTYPE 

Принимает значение "yes" или "no" 

method Принимает значение "xml", "html", "text" 
или специальное строковое значение 

• void transform(Source from, Result to) 

Выполняет преобразование ХМL-документа. 

javax.xml.transform.dom.DOMSource 1.4 

• DOМSource (Node n) 

Создает источник данных из заданного узла. Обычно параметр n обозначает узел документа. 

javax.xml.transform.stream.StreamResult 1.4 

• StreamResult(File f) 

• StreamResult(OutputStream out) 

• StreamResult (Writer out) 

• StreamResult(String systemID) 

Создают поток вывода результатов преобразования на основе указанного файла, потока вы­

вода, потока записи или системного идентификатора [как правило, это относительный или 
абсолютный URL]. 

3.8.4. Запись ХМL-документов средствами StAX 
В предыдущем разделе было показано, как ХМL-документ формируется пу­

тем записи дерева модели DOM. Но если дерево модели DOM нигде больше не 
используется, то такой способ оказывается не особенно эффективным. Приклад­

ной интерфейс StAX API позволяет записывать дерево формируемого документа 
непосредственно в формате XML. Для этого следует создать поток записи типа 
XMLStreamWri ter из потока вывода типа OutputStream, как показано ниже. 

XMLOutputFactory factory = XMLOutputFactory.newinstance(); 
XMLStreamWriter writer = factory.createXMLStreamWriter(out); 

Для того чтобы создать и вывести заголовок ХМL-документа, необходимо вы­

звать сначала следующий метод: 

writer.writeStartDocument() 



Глава Э • XML 

а затем метод 

writer.writeStartElement(name); 

Далее, для вывода атрибуто11 следует вызвать приведенный ниже метод. 

writer.writeAttribute(name, value); 

Теперь можно вывести дочерние элементы разметки, снова вызвав метод 

wri teStartElement (),или записать символы, вызвав следующий метод: 

writer.writeCharacters(text); 

После записи всех дочерних узлов следует вызвать приведенный ниже метод, 

который закроет текущий элемент разметки. 

writer.writeEndElementll; 

Чтобы :~аписать элемент ра:1метки без дочерних элементов (например, эле­

мент <img "./>),следует вы:1в<1ть следующий метод: 

writer.writeEmptyElement(name); 

Наконец, для :1аверше11ия :1аnиси в конце документа вызывается приведенный 

ниже метод. Этот метод :~акрывает все открытые элементы разметки. 

writer.writeEndDocument(); 

Поток :~аписи типа XMLStreamWri ter придется все же :~акрьпь вручную. Вед1, 
интерфейс XMLStreamWri ter не расширяет интерфейс AutoCloseaЫe. 

Как и при подходе, предпол<1гающем применение модели DOM и языка XSLT, 
в данном случае можно не особенно беспокоиться о пропуске символов в значе­

ниях атрибутов и символы1ых данных. Но в этом случае существует верояпюсп, 

того, что ХМL-докуме1п будет сформирован не совсем удачно, например, со м1ю­

гими корневыми у:иами. Кроме того, в текущей версии прикладного интерфейса 

StAX API не поддерживается вывод ХМL-документов с отступами. 
В примере программы и:1 листинга 3.9 демонстрируется применение каждого 

из рассмотренных выше способов записи ХМL-документов. 

Листинг 3.9. Исходный код из файла wri te/XМLWri teTest. java 

1 package write; 
2 
3 import java.io.*; 
4 import java.nio.file.*; 
5 import java.util.*; 
6 
7 import javax.xml.parser·s.•; 
8 import javax.xml.st.ream.*; 
9 import javax.xml.transform.*; 
10 import Javax.xml.transform.dom.*; 
11 import javax.xml.transform.stream.*; 
12 
13 import org.wЗc.dom.*; 
14 
15 /** 
16 * этой программе демонстрируется запись ХМL-документа 
1 7 * в файл. Сохраняемый Ф<1йл описывает модернистский 



18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 

3.8. Формирование ХМL-документов 

* рисунок в формате SVG 
* @version 1.12 2016-04-27 
* @author Сау Horstmann 
*/ 
puЫic class XMLWriteTest 
{ 

puЬlic static void main(String[] args) 
throws Exception 

Document doc = newDrawing(600, 400); 
writeDocument (doc, "drawingl.svg"); 
writeNewDrawing(600, 400, "drawing2.svg"); 

private static Random generator new Random ( ) ; 

/* * 
* Создает новый произвольный рисунок 
* @return Дерево DOM формируемого SVG-документа 
*/ 
puЫic static Document newDrawing( 

int drawingWidth, int drawingHeight) 
throws ParserConfigurationException 

DocumentBuilderFactory factory = 
DocumentBuilderFactory.newinstance(); 

factory.setNamespaceAware(true); 
DocнmentBuilder builder = 

46 factory.newDocumentBuilder(); 
47 var namespace = "http://www.w3.org/2000/svg"; 
48 Document doc = builder.newDocument(); 
49 Element svgElement = 
50 doc.createElementNS(namespace, "svg"); 
51 doc.appendChild(svgElement); 
52 svgElement.setAttribute("width", 
53 "" + drawingWidth); 
54 svgElement.setAttribute("height", 
55 "" + drawingHeight); 
56 int n = 10 + generator.nextlnt(20); 
57 for (int i = 1; i <= n; i++) 
58 { 
59 int х = generator.nextlnt(drawingWidth); 
60 int у= generator.nextlnt(drawingHeight); 
61 int width = generator.nextint(drawingWidth - х); 

62 int height = generator.nextlnt( 
63 drawingHeight - у) ; 
64 int r = generator.nextlnt(256); 
65 int g generator.nextlnt(256); 
66 int Ь generator.nextlnt(256); 
67 
68 
69 
70 
71 
72 
73 
74 

Element rectElement = 
doc.createElementNS(namespace, "rect"); 

rectElement.setAttribute("x", "" + х); 
rectElement. setAttribute ("у", "" + у); 
rectElement. setAttribute ( "width", "" + width); 
rectElement. setAttribute ( "height", "" + height) ; 
rectElement.setAttribute("fill", 



Глава Э • XML 

75 String.format("#%02x%02x%02x", r, g, Ь)); 

76 svgElement.appendChild(rectElement); 
77 
78 return doc; 
79 
80 
81 /** 
82 * Сохраняет документ средствами DOM/XSLT 
83 * / 
84 puЫic static void writeDocument( 
85 Document doc, String filename) 
86 throws TransformerException, IOException 
87 
88 Transformer t = TransformerFactory 
89 .newinstance() .newTransformer(); 
90 t.setOutputProperty(OutputKeys.DOCTYPE SYSTEM, 
91 "http://www.w3.org/TR/2000/CR-svG=20000802/" 
92 + "DTD/svg-20000802.dtd"); 
93 t.setOutputProperty(OutputKeys.DOCTYPE PUBLIC, 
94 "-//W3C//DTD SVG 20500802//EN"); 
95 t.setOutputProperty(OutputKeys.INDENT, "yes"); 
96 t.setOutputProperty(OutputKeys.METHOD, "xml"); 
97 t.setOutputProperty("(http://xml.apache.org/xslt}" 
98 + "indent-amount", "2"); 
99 t.transform(new DOMSource(doc), new StreamResult( 
100 Files.newOutputStream(Paths.get(filename) 111; 
101 
102 
103 /** 
104 * Записывает SVG-документ с текущим рисунком 
105 * @param writer Место назначения документа 
106 * @throws IOException 
107 */ 
108 puЫic static void writeNewDrawing(int drawingWidth, 
109 int drawingHeight, String filename) 
110 throws XMLStreamException, IOException 
111 
112 XMLOutputFactory factory = 
113 XMLOutputFactory.newinstance(); 
114 XMLStreamWriter writer = 
115 factory.createXMLStreamWriter( 
116 Files.newOutputStream(Paths.get(filename) 11; 
117 writer.writeStartDocument(); 
118 writer.writeDTD("<!DOCTYPE svg PUBLIC" 
119 + " \"-//W3C//DTD SVG 20000802//EN\" " 
120 + "\"http://www.w3.org/TR/2000/" 
121 + "CR-SVG-20000802/DTD/svg-20000802.dtd\">"); 
122 writer.writeStartElement("svg"); 
123 writer.writeDefaultNamespace( 
124 "http://www.w3.org/2000/svg"); 
125 writer.writeAttribute("width", "" + drawingWidth); 
126 writer.writeAttribute("height", "" + drawingHeight); 
127 int n = 10 + generator.nextlnt(20); 
128 for (int i = 1; i <= n; i++) 
129 ( 
130 int х = generator.nextint(drawingWidth); 
131 int у generator.nextlnt(drawingHeight); 



З.8. Формирование ХМL-документов 

132 int width = generator.nextint(drawingWidth - х); 

133 int height = generator.nextint(drawingHeight - у); 

134 int r generator.nextint(256); 
135 int g = generator.nextint(256); 
136 int Ь = generator.nextint(256); 
137 writer.writeEmptyElement("rect"); 
138 writer.writeAttribute("x", "" + х); 
139 writer.writeAttribute("y", ""+у); 
140 writer.writeAttribute ("width", "" + width); 
141 writer.writeAttribute("height", "" + height); 
142 writer.writeAttribute("fill", 
143 String.format("#%02x%02x%02x", r, g, Ь)); 

144 
145 writer.writeEndDocument(); 11 closes svg element 
14 6 
147 

javax.xml.stream.XМLOutputFactory 6 

• static XМLOutputFactory newinstance () 

Возвращает экземпляр класса XМLOutputFactory. 

• XМLStreamWriter createXМLStreamWriter(OutputStream in) 

• XМLStreamWriter createXМLStreamWriter(OutputStream in, String 
characterEncoding) 

• XМLStreamWriter createXМLStreamWriter(Writer in) 

• XМLStreamWriter createXМLStreamWriter(Result in) 

Создают поток, записывающий данные в указанный поток вывода, поток записи или резуль­
таттипа JAXP. 

javax.xml..stream.XМLStreamWriter 6 

• void wri teS tartDocumen t () 

• void wri teStartDocument (String .xm.l Version) 

• void writeStartDocument(String encoding, String .xm.l.Version) 

Записывают инструкцию обработки вначале ХМL-документа. Следует, однако, иметь в виду, 
что параметр encoding указывается только для записи атрибута. Он не задает кодировку 
символов в выводимых данных. 

• void setDefaultNamespace(String namespaceURI) 

• void setPrefix(String prefix, String namespaceURI) 

Задают пространство имен по умолчанию или пространство имен, связанное с префиксом. 
Объявление действительно для текущего элемента или же для корня документа, если ни один 

элемент не был записан. 

• void writeStartElement(String localName) 

• void writeStartElement(String namespaceURI, String localName) 

Записывают первоначальный дескриптор, заменяя параметр namespaceURI соответству­
ющим префиксом. 



Глава 3 • XML 

javax.xml. stream.XМLStreamWriter 6 {окончание/ 

• void writeEndElement() 

Закрывает текущий элемент разметки. 

• void writeEndDocument() 

Закрывает все открытые элементы разметки. 

• void writeEшptyElement(String 1oca1Name) 

void writeEшptyElement(String namespaceURI, String 1oca1Name) 

Записывают самозакрывающийся дескриптор, заменяя параметр namespaceURI соответ­
ствующим префиксом. 

void writeAttriЬute (String localName, String value) 

void writeAttriЬute(String namespaceURI, String localName, 
String value) 

Записывают атрибут для текущего элемента разметки, заменяя параметр namespaceURI 
соответствующим префиксом. 

• void writeCharacters (String text) 

Записывает символьные данные. 

• void writeCData (String text) 

Записывает раздел CDATA 

• void writeDТD (String dtd) 

Записывает символьную строку dtd, которая должна содержать объявление DOCTYPE. 

• void writeComment(String comment) 

Записывает комментарий. 

• void close () 

Закрывает поток записи. 

3.8.5. Пример формирования файла в формате SVG 
В листинге 3.9 представлен исходный код примера программы для вывода 

ХМL-документа. Эта программа рисует картину в модернистском стиле из про­

извольного набора прямоугольников разного цвета (рис. 3.3). Для сохранения 
результатов используется формат SVG (ScalaЫe Vector Graphics - масштабиру­

емая векторная графика). По существу, формат SVG является разновидностью 
формата XML и служит для описания сложной графики в машинно-независи­
мой форме. Дополнительные сведения об этом формате можно найти по адресу 

https://www.wЗc.org/Graphics/SVG. Для просмотра файлов в формате SVC 
достаточно воспользоваться любым современным браузером. 

В рассматриваемом здесь примере программы демонстрируются два способа 

формирования ХМL-документа: построение и сохранение дерева DOM, а также 
непосредственная запись ХМL-документа средствами прикладного интерфейса 

StAX API. Мы не будем вдаваться в подробности формата SVG, отсылая инте­
ресующихся за дополнительными сведениями по указанному выше адресу. Для 

целей рассматриваемого здесь примера достаточно знать, каким образом набор 



3.8. Формирование ХМL-документов 

цветных прямоугольников размечается в формате SVG. Ниже приведен пример 
такой разметки. 

<?xml version="l. O" encoding="UTF- 8"?> 
< 1 DOCTYPE svg PUBLIC "-//WЗC//DTD SVG 20000802 //EN " 

"http: //www. wЗ .org/TR/2000/CR-SVG-20000802 /[)Т D 

/svg-2 0000802.dtd"> 
<svg xmlns= " http: //www.wЗ . org/2 000 / svg" 

width="ЗOO " he ight ="l 50"> 
<r·ect х="231" у="бl" width="9" he ight="l2" 

fill="#6e4al 3" /> 
<rect х="107" у="106" width="5 6" height="S" 

fill="#c406be" / > 

</ svg> 

С) Mozilla Firefox - х 

_, ;) file:///data/cay/books/cjll/codetv2chOЗ/dr wlngl .svg •• " С » ;: 

Рис. 3.3. Изображение в модернистском стиле, 
сохраняемое в формате SVC 

Как видите, каждый прямоугольник описывается и 11иде узла rect, атрибу­
ты которого задают координаты, ширину, высоту и ц11ет nрямоугол1,ника. Цвет 

заливки прямоугол1,ников обозначается в виде :111а•~б1Ий основных цветов RGB 
в шестнадцатеричной форме. 

НА ЗАМЕТКУ! В формате SVG широко применяются атрибуты. На самом деле некоторые из 

них имеют очень сложную структуру. В качестве примера ниже приведен элемент разметки 

контура. 

<path d"""M 100 100 L 300 100 L 200 300 z"> 

где м обозначает команду moveto (перейти), L - команду lineto (нарисовать линию), z -
команду closepath (замкнуть контур) . Вероятно, создател и формата SVG не особенно дове­
ряли формату XML. Очевидно, что вместо таких сложных атрибутов следовало бы использо­
вать элементы разметки в коде XML. 



Глава Э • XML 

З. 9. Преобразование ХМL-документов языковыми средствами XSLТ 
Язык преобразования ХМL-документов (XSLT) позволяет определять прави­

ла преобразования подобных документов в другие форматы, включая простой 

текст, XHTML или любую другую разновидность формата XML. Язык XSLT обыч­
но применяется для перевода из одной машиночитаемой разновидности форма­

та XML в другую машиночитаемую или удобочитаемую (для человека) разновид­
ность этого формата. 

Для этой цели следует создать таблицу стилей XSLT, описывающую преобра:ю­
вание ХМL-документов в какой-нибудь другой формат. Процессор XSLT сначала чи­
тает ХМL-документ и таблицу стилей, а затем выдает желаемый результат (рис. 3.4). 

Процессор 
XSLT 

Преобразованный 
документ 

(HTML, текст ... ) 

Рис. З.4. Преобразование ХМL-документа языковыми средствами XMLT 

Спецификация языка XSLT довольно сложна, и ее описанию посвящены це­
лые книги. Здесь недостаточно места для описания всех языковых средств XSLT, 
поэтому рассмотрим лишь наглядный пример их применения. Подробнее озна­

комиться с особенностями языка XSLT можно, обратившись к книге Essential XML 
Дона Бокса и др., упоминавшейся в начале этой главы, а спецификация языка 

XSL Т доступна по адресу https://www.wЗ.org/ТR/xslt/all/. 
Допустим, ХМL-документ с записями о сотрудниках требуется преобразовать 

в НТМL-документ. Ниже приведена разметка исходного ХМL-документа. 

<staff> 
<employee> 

<name>Carl Cracker</name> 
<salary>75000</ salary> 
<hiredate yea r ="l 987" month="12 " day="15" /> 

</employee> 
<employee> 

<name>Harry Hac ker</name> 
<salary>SOOOO< / salary> 
<hiredate year="l989" month=" lO " day="l" /> 

</employee> 
<employee> 

<name>Tony Tes t er</name> 
<sa l ary> 40000</salary> 



3.9. Преобразование ХМL-документов языковыми средствами XSLT 

<hiredate year="l990" month="З" day="l5"/> 
</employee> 

</staff> 

Из этой ра:шетки желательно получить следующую НТМL-таблицу: 

<tаЫе border="l"> 
<tr> 
<td>Carl Cracker</td><td>$75000.0</td><td>l987-12-15</td> 
</tr> 
<tr> 
<td>Harry Hacker</td><td>$50000.0</td><td>1989-10-1</td> 
</tr> 
<tr> 
<td>Tony Tester</td><td>$40000.0</td><td>1990-3-15</td> 
</tr> 
</tаЫе> 

А вот как выглядит таблица стилей с шаблонами преобразования: 

<?xml version="l.0" encoding="IS0-8859-1"?> 
<xsl:stylesheet 

xmlns:xsl="http://www.w3.org/1999/XSL/Transform" 
version="l.0"> 
<xsl:output method="html"/> 
шаблон 1 
шаблон, 

</xsl:stylesheet> 

В данном примере элемент разметки xsl: output содержит атрибут method 
со значением "html" для преобразования в формат HTML. Для данного атрибута 
можно также задать значения xml и text. Типичный шаблон имеет следующий 
вид: 

<xsl:template match="/staff/employee"> 
<tr><xsl:apply-templates/></tr> 

</xsl:template> 

Значением атрибута ma tch является выражение XPath. Данный шаблон оз­
начает, что при обнаружении узла во множестве /staff/employee, указанном 
в выражении XPath, необходимо выполнить следующие действия: 

1. Сформировать символьную строку с открывающим дескриптором <tr>. 

2. Применить шаблоны при обработке дочерних узлов данного узла. 

3. После обработки всех дочерних узлов сформировать символьную стро­
ку с закрывающим дескриптором </tr>. 

Иными словами, этот шаблон заключает каждую запись о сотрудниках в дес­

крипторы строк НТМL-таблицы. 

Процессор XSLT начинает обработку ХМL-документа с проверки корневого 
элемента разметки. Если узел совпадает с одним из шаблонов, соответствующий 

шаблон сразу же применяется. (При совпадении с несколькими шаблонами ис­

пользуется шаблон с наибол1,шей степенью соответствия. Дополнительные све­

дения по данному вопросу приведены в спецификации языка XSLT по адресу 



Глава З • XML 

https://www.w3.org/TR/xslt/all/.) Если совпадение с шаблоном не обнаружено, 
процессор XSLT выполняет действие, задаваемое по умолчанию. Так, содержи­
мое текстовых узлов по умолчанию включается в выводимый результат, а для 

элементов разметки выводимый резулнат не формируется, но продолжается об­

работка дочерних элементов. 

В качестве примера ниже приведен шаблон преобра:ювания узлов name из 
ХМL-документа с данными о сотрудниках. 

<xsl:ternplate rnatch="/staff/employee/name"> 
<td><xsl:apply-ternplates/></td> 

</xsl:ternplate> 

Как видите, шаблон формирует дескрипторы <td> ... </td> и предписывает 
процессору XSLT рекурсивно обойти дочерние у3лы элемента разметки name. У 
этого элемента имеется только один дочерний текстовый узел. Когда процессор 

обходит узел, он во:шращает его текстовое содержимое, если, конечно, отсутству­

ют другие совпавшие шаблоны. 

Для копирования значений атрибутов в выводимый результат придется за­

дать более сложный шаблон: 

<xsl:ternplate rnatch="/staff/employee/hiredate"> 
<td><xsl:value-of select="@year"/>-<xsl:value-of 
select="@rnonth"/>-<xsl:value-of select="@day"/></td> 

</xsl:ternplate> 

При обработке у:ыа hiredate по этому шаблону будут сформированы пере­
численные ниже элеме1тты разметки таблицы. 

1. Дескриптор <td>. 

2. Значение атрибута year. 

3. Дефис. 

4. Значение атрибута month. 

5. Дефис. 

6. Значение атрибута day. 

7. Дескриптор </td>. 

Оператор xsl: value-of вычисляет строковое значение множества узлов, ука­
зьшаемоrо с помощью значения XPath атрибута select. В этом случае путь опре­
деляется относительно текущего у:ыа. Множество узлов преобразуется в сим­

вол1,ную строку путем сцепления строковых значений из всех узлов. Строковым 

значением атрибута является его значение, строковым значением текстового 

узла - его содержимое, а строковым значением элемента разметки - сцепление 

строковых значений его дочерних узлов (но не атрибутов). 

В листинге 3.10 приведена таблица стилей для преобра:ювания ХМL-докумен­
та с записями о сотрудниках в НТМL-таблицу. 



3.9. Преобразование ХМL-документов языковыми средствами XSLТ 

ЛистингЗ.10. Исходный код из файла transform/makehtml. xsl 

1 <?xml version="l.0" encoding="IS0-8859-1"?> 
2 
3 <xsl:stylesheet 
4 xmlns:xsl="http://www.w3.org/l999/XSL/Transform" 
5 version="l.0"> 
6 
7 <xsl:output method="html"/> 
8 
9 <xsl:template match="/staff"> 
10 <tаЫе border="l"><xsl:apply-templates/></taЫe> 
11 </xs1:template> 
12 
13 <xsl:template match="/staff/employee"> 
14 <tr><xsl:apply-templates/></tr> 
15 </xsl:template> 
16 
17 <xsl:template match="/staff/employee/name"> 
18 <td><xsl:apply-templates/></td> 
19 </xsl:template> 
20 
21 <xsl:template match="/staff/eшployee/salary"> 
22 <t.d>$<xsl: apply-templates/></td> 
23 </xsl:teшplate> 

24 
25 
26 
27 
28 
29 

<xsl:template match="/staff/employee/hiredate"> 
<td><xsl:value-of select="@year"/>-<xsl:value-of 
select="@month"/>-<xsl:value-of select="@day"/></td> 

</xsl:template> 

30 </xsl:stylesheet> 

В листинге 3.11 приведены шаблоны для различных преобразований того же 
самого ХМL-документа в обычный текст в знакомом уже формате файла свойств: 

employee.l.naшe=Carl Cracker 
employee.1.salary=75000.0 
eшployee.l.hiredate=l987-12-15 

eшployee.2.naшe=Harry Hacker 
employee.2.salary=50000.0 
employee.2.hiredate=l989-10-l 
employee.3.name=Tony Tester 
employee.3.salary=40000.0 
employee.3.hiredate=1990-3-15 

ЛистингЗ.11. Исходный код из файла transform/makeprop.xsl 

1 <?xml version="l.0"?> 
2 
3 <xsl:stylesheet 
4 xmlns:xsl="http://www.w3.org/1999/XSL/Transforш" 

5 version="l.O"> 
6 
7 <xsl:output method="text" oшit-xml-declaration="yes"/> 
8 



Глава З • XML 

9 <xsl:template match="/staff/employee"> 
10 employee.<xsl:value-of select="position()" 
11 />.name=<xsl:value-of select="name/text()"/> 
12 employee.<xsl:value-of select="position()" 
13 />.salary=<xsl:value-of select="salary/text() "/> 
14 employee.<xsl:value-of select="position()" 
15 />.hiredate=<xsl:value-of select="hiredate/@year" 
16 />-<xsl:value-of select="hiredate/@month" 
17 />-<xsl:value-of select="hiredate/@day"/> 
18 </xsl:template> 
19 
20 </xsl:stylesheet> 

В данном примере используется функция posi tion (), которая выдает рас­
положение текущего у:иа относительно родительского. Чтобы получить выводи­

мый результат в совершенно другом виде, достаточно внести соответствующие 

изменения в таблицу стилей. Таким образом, ХМL-документ можно благополуч­

но применять для представления данных, не особенно заботясь, в каком именно 

формате они требуются в прикладной программе. Для формирования данных 

11 нужном формате достаточно восполиоваться средствами XSLT. 
Преобра:ювания средствами XSLT совсем не трудно организовать на платфор­

ме Java. С этой целью следует создать сначала отдельную фабрику преобразова­
телей для каждой таблицы стилей, а затем получип, объект типа Transformer 
и передать ему преобразуемые данные, как показано ниже. 

var styleSheet = new File(filename); 
var styleSource = new StreamSource(styleSheet); 
Transformer t = TransformerFactory.newinstance() 

.newTransformer(styleSource); 
t.transform(source, result); 

Параметры, передаваемые методу transform (), представляют собой эк:1ем­
пляры классов, реализующих интерфейсы Source и Resul t. Так, у интерфейса 
Source имеются реализации источника данных в следующих классах: 

DOMSource 
SAXSource 
StAXSource 
StreamSource 

Потоковый источник данных типа StreamSource можно со:}дать из файла, 
потока ввода, потока чтения или URL, а источник данных типа DOMSource - из 

у:иа дерева DOM. Так, в примере программы из листинга 3.9 в предыдущем раз­
деле выполнялос1, следующее тождественное преобразование: 

t.transform(new DOMSource(doc), result); 

В рассматриваемом здесь примере программы применяется другой, более ин­

тересный подход. Вместо уже существующего ХМL-файла создается поток, чи­

тающий данные в формате XML, имитируя их SАХ-анализ с инициированием 
соответствующих SАХ-событий. По существу, поток чтения данных формата XML 
выполняет чтение из однородного входного файла со следующим содержимым: 

Carl Crackerl75000.0i1987i12i15 
Harry Hackeri50000.0i1989i10il 
Топу Testeri40000.0il99013i15 



3.9. Преобразование ХМL-документов языковыми средствами XSLT 

По мере обработки вводимых данных формата XML в потоке чтения ини­
циируются SАХ-события. Ниже представлен фрагмент исходного кода метода 

parse () из класса EmployeeReader, реализующего интерфейс XMLReader. 

var attributes = new Attributesimpl(); 
handler.startDocument(); 
handler. startElement ( "", "staff", "staff", attributes); 
while ( (line = in.readLine()) != null) 
{ 

handler. startElement 1"", "employee", "employee", 
attributes); 

var tokenizer = new StringTokenizer (line, "1 "); 
handler.startElement("", "name", "name", attributes); 
String s = tokenizer.nextToken(); 
handler.characters(s.toCharArray(), О, s.length()); 
handler.endElement ("", "name", "name"); 

handler. endElement ( "", "employee", "employee"); 

handler.endElement("", rootElement, rootElement); 
handler.endDocument(); 

Источник типа SAXSource для преобра:ювания данных создается из потока 
чтения ХМL-данных следующим образом: 

t.transform(new SAXSource(new EmployeeReader(), 
new InputSource(new FileinputStream(filename))), result); 

Такой искусный прием как нельзя лучше подходит для преобразования унас­

ледованных данных в формат XML. Безусловно, для большинства приложений 
XSLT вводимые данные уже находятся в формате XML, что позволяет просто вы­
звать метод transform () для объекта типа SAXSource: 

t.transform(new StreamSource(file), result); 

Результатом такого преобразования ока:3ывается объект одного из следующих 

трех классов, реализующих интерфейс Resul t в библиотеке Java: 
DOMResult 
SAXResult 
StreamResult 

Для сохранения результата в виде древовидной структуры DOM используется 
объект типа DocumentBuilder. С его помощью генерируется новый узел доку­
мента, заключаемый в оболочку типа DOMRe sul t, как показано ниже. 

Document doc = builder.newDocument(); 
t.transform(source, new DOMResult(doc)); 

Наконец, для вывода полученного результата в файл исполиуется объект 

типа StreamResul t: 

t.transform(source, new StreamResult(file)); 

В листинге 3.12 приведен весь исходный код рассмотренного здес1, примера 
программы. 



Глава З • XML 

Листинг З.12. Исходный код из файла transform/TransformTest. java 

1 package transform; 
2 
3 import java.io.*; 
4 import java.nio.file.*; 
5 import java.util.*; 
6 import javax.xml.transform.*; 
7 import javax.xml.transform.sax.*; 
8 import javax.xml.transform.stream.*; 
9 import org.xml.sax.*; 
10 import org.xml.sax.helpers.*; 
11 
12 /** 
13 * В этой программе демонстрируются преобразования 

14 * языковыми средствами XSLT. Преобразования 

15 * выполняются над записями о сотрудниках из файла 
16 * employee.dat в формат ХМL. Для этого следует 

17 * указать таблицу стилей в командной строке, 

18 * например, следующим образом: 

19 * java TransformTest transform/шakeprop.xsl 
20 * @version 1.04 2018-04-10 
21 * @author Сау Horstmann 
22 */ 
23 puЫic class TransformTest 
24 { 
25 puЫic static void main(String[) args) 
26 throws Exception 
27 
28 Path path; 
29 if (args.length > 0) path = Paths.get(args[OJ); 
30 else path = Paths. get ( "transform", "makel1tml. xsl"); 
31 try (InputStream styleln = 
32 Files.newinputStream(path)) 
33 
34 var styleSource = new StreamSource(stylein); 
35 
36 Transformer t = TransformerFactory.newinstance() 
37 .newTransformer(styleSource); 
38 t.setOutputProperty(OutputKeys.INDENT, "yes"); 
39 t.setOutputProperty(OutputKeys.METHOD, "xml"); 
40 t.setOutputProperty("{http://xml.apache.org/xslt)" 
41 + "indent-amount", "2"); 
42 
43 try (InputStream docln = Files.newinputStream( 
44 Paths.get("transform", "employee.dat"))) 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 /** 

t.transform(new SAXSource(new EmployeeReader(), 
new InputSource(docin) ), 
new StreamResult(System.out)); 



Э. 9. Преобразование ХМL-документов языковыми средствами XSLT 

55 * Этот класс читает однородньм файл employee.dat и 
56 * уведомляет о событиях в SАХ-анализаторе, как будто 

57 * он сам выполнил синтаксический анализ ХМL-документа 

58 */ 
59 class EmployeeReader implemeпts XMLReader 
60 
61 private CoпtentHandler handler; 
62 
63 puЫic void parse(InputSource source) 
64 throws IOException, SAXException 
65 
66 InputStream stream = source.getByteStream(); 
67 var in = new BufferedReader( 
68 new InputStreamReader(stream)); 
69 String rootElement = "staff"; 
70 var atts = new Attributeslmpl(); 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 

if (handler null) 
throw new SAXException 1 "No content handler"); 

handler.startDocument(); 
handler.startElement("", rootElement, 

rootElement, atts); 
String line; 
while ( ( line 
{ 

in.readLine()) != null) 

handler. startElement ( "", "employee", 
"employee", atts 1; 

var t = new StringTokenizer(line, "1"); 

handler.startElement("", "name", "name", atts); 
String s = t.nextToken(); 
handler.characters(s.toCharArray(), О, 

s. length 1) ) ; 
handler. endElement ("", "name", "name"); 

handler. startElement {"", "salary", "salary", 
atts); 

93 s = t.nextToken(); 
94 handler.characters(s.toCharArray(), О, 

95 s.length()); 
96 handler. endElement (" ", "salary", "salary"); 
97 
98 atts.addAttribute("", "year", "year", "CDATA", 
99 t.nextToken()); 
100 atts.addAttribute("", "month", "month", "CDATA", 
101 t.nextToken()); 
102 atts.addAttribute("", "day", "day", "CDATA", 
103 t.nextToken() 1; 
104 handler.startElement("", "hiredate", "hiredate", 
105 atts); 
106 handler.endElement("", "hiredate", "hiredate"); 
107 atts.clear(); 
108 
109 handler.eпdElement("", "employee", "employee"); 
110 



Глава 3 • XML 

111 
112 handler. endElement ( "", rootElement, rootElement) ; 
113 handler.endDocument(); 
114 
115 
116 puЫic void setContentHandler(ContentHandler newValue) 
117 { 
118 handler = newValue; 
119 
120 
121 puЫic ContentHandler getContentHandler() 
122 { 
123 return handler; 
124 
125 
126 // следующие методы являются всего лишь 
127 //холостыми реализациями 

128 puЫic void parse(String systemid) 
129 throws IOException, SAXException {) 
130 puЫic void setErrorHandler (ErrorHandler handler) {) 
131 puЫic ErrorHandler getErrorHandler () { return null; 
132 puЫic void setDTDHandler (DTDHandler handler) {) 
133 puЫic DTDHandler getDTDHandler () { return null; ) 
134 puЫic void setEntityResolver( 
135 EntityResolver resolver) {) 
136 puЬlic EntityResolver getEntityResolver() 
137 { return null; ) 
138 puЫic void setProperty (String name, Object value) {) 
139 puЬlic Object getProperty(String name) 
140 { return null; ) 
141 puЫic void setFeature (String name, boolean value) {) 
142 puЫic boolean getFeature(String name) 
143 { return false; ) 
144 

javax.xml.transform.TransformerFactory 1.4 

• Transformer newTransformer ( Source stylвShввt) 

Возвращает экземпляр класса Transformer, считывающий таблицу стилей из указанного 
источника. 

javax.xml.transform.stream.StreamSource 1.4 

Stream.Source (File f) 

• Stream.Source(InputStream in) 

• Stream.Source (Reader in) 

• Stream.Source (String systemID) 

Создают потоковый источник данных из указанного файла, потока ввода, потока чтения или 

системного идентификатора !обычно это относительный или абсолютный URLJ. 



З. 9. Преобразование ХМL-документов языковыми средствами XSLT 

javax.xml.transform.sax.SAXSource 1.4 

• SAXSource (XМLReader reader, InputSource source) 

Создает SАХ-источник, получающий вводимые данные из указанного источника, используя 

заданный поток чтения для синтаксического анализа данных. 

org. xml. sax. XМLReader 1 . 4 

• void setContentнandler(ContentHandler handler) 

Устанавливает обработчик, который уведомляется о событиях, наступающих при синтаксиче­

ском анализе вводимых данных. 

• void parse (InputSource source) 

Анализирует данные, вводимые из указанного источника, и передает обработчику содержи­

мого события, наступающие при синтаксическом анализе этих данных. 

javax.xml.transform.dom.DOМResult 1.4 

• DOМResul t (Node n) 

Создает источник данных из заданного узла. Обычно в качестве параметра n указывается 
узел документа. 

org.xml.sax.helpers.Attributesimpl 1.4 

• void addAttribute(String uri, String lname, String qname, String 
type, String value) 

Вводит атрибут в коллекцию атрибутов. В качестве параметра lname указывается локальное 
имя без префикса, а в качестве параметра qname - уточненное имя с префиксом. Пара­

метр type принимает одно из следующих строковых значений: "CDATA", "ID", "IDREF", 
"IDREFS", "NМТОКЕN", "NМТОКЕNS", "ENTITY", "ENТITIES" ИЛИ "NOTATION". 

• void clear () 

Удаляет все атрибуты из данной коллекции. 

Этим примером завершается обсуждение особенностей поддержки XML в би­
блиотеке Java. Теперь у вас должно сложиться ясное представление о возможно­
стях XML, включая автоматизированный синтаксический анализ и проверку до­
стоверности, а также эффективный механизм преобразования ХМL-документов. 

Естественно, что всю эту технологию вам удастся поставить себе на службу лишь 

в том случае, если вы тщательно разработаете свои форматы XML. Для этого 
ваши форматы XML должны удовлетворять всем насущным производственным 



Глава 3 • XML 

потребностям, сохранят~, устойчиность с течением времени, а наши деловые 

партнеры быть готовыми принимать от вас ХМL-документы. Решение всех этих 

вопросов может оказат1,ся гораздо сложнее, чем умелое обращение с синтакси­

ческими анализаторами, определениями ОТО или преобра:юваниями, ныполня­

емыми средствами XSLT. 
В следующей главе будут обсуждаться вопросы сетевого программирования 

на платформе Java. Сначала мы рассмотрим основные положения о сетевых со­
кетах, а затем перейдем к высокоуровневым протоколам для организации элек­

тронной почты и Всемирной паутины. 



Работа в сети 

В этой главе ... 
~ Подключение к серверу 

~ Реализация серверов 

~ Получение данных из Интернета 

~ НТТР-клиент 

~ Отправка электронной почты 

ГЛАВА 

Эта глава начинается с описания основных понятий для работы в сети, а за­

тем в ней рассматриваются примеры написания программ на Java, позволяющих 
устанавливать соединения с серверами. Из нее вы узнаете, как осуществляется 

реализация сетевых клиентов и серверов. А завершается глава рассмотрением 

вопросов передачи почтовых сообщений из программы на Java и сбора данных 
с веб-сервера. 

4.1. Подключение к серверу 
В последующих разделах сначала рассматривается подключение к серверу 

вручную с помощью утилиты telnet, а затем автоматическое подключение из 
программы на Java. 

4.1.1. Применение утилиты telnet 
Утилита telnet служит отличным инструментальным средством для отлад­

ки сетевых программ. Она должна запускаться из командной строки по команде 

telnet. 



Глава 4 • Работа в сети 

НА ЗАМЕТКУ! В Windows утилиту telnet необходимо активизировать. С этой целью открой­
те панель управления, перейдите в раздел Программы , щелкните на ссылке Добавление 

или удаление компонентов Windows и установите флажок Клиент Telnet. Следует так­
же иметь в виду, что брандмауэр Windows блокирует некоторые сетевые порты , которые будут 

использоваться в примерах программ из этой главы . Чтобы разблокировать эти порты, вы 

должны обладать полномочиями администратора. 

Утилитой te l ne t можно пользоваться не только для соединения с удаленным 
компьютером. С ее помощью можно также юаимодействовать с ра :ыичными се­

тевыми службами. Ниже приводится один из примеров необычного исполь:юва­

ния этой утилиты. Для этого пведите в командной строке следующую команду: 

telnet time-a.nist.gov 13 

На рис. 4.1 приведен пример ответной реакции сервера, которая в режиме ко­
мандной строки будет иметь следующий вид: 

54276 07-06-25 21: 37: 31 50 О О 659. О UTC (NIST ) * 

-$ telnet time-a .nist .gov 13 
Trying 129 .6.15 .28 . . . 
Connected to time-a.nist .gov. 
Escape character is •Л ]'. 

57488 16-04-10 04 :23:00 50 0 0 610 .5 UTC(NIST) * 
Connection closed Ьу foreign host. 
- $ I 

Рис. 4.1. Результат, 11олучаемый из службы учета времени дня 

Что же в действительности произошло? Утилита te lnet подключилас1, к сер­

веру службы учета времени дня, который работает на большинстве компьюте­

ров под управлением операционной системы UNIX. Указанный в этом приме­
ре сервер находится в Национальном институте стандартов и технологий США 

(National lnstitute of Standards and Technology). Его системное время синхрони­

зировано с цезиевыми атомными часами. (Безусловно, полученное значение те­

кущего времени будет не совсем точным из-за задержек, связанных с передачей 

данных по сети.) По принятым правилам сервер службы времени всегда связан 

с портом 13. 



4.1. Подключение к серверу 

НА ЗАМЕТКУ! В сетевой терминологии порт - это не какое-то конкретное физическое устрой­

ство, а абстрактное понятие, упрощающее представление о соединении сервера с клиентом 
[рис. 4 2). 

Сетевой 

пакет 

/ 
13 data 1111 [ 132.163.4.103 -_____.,__,.,___ 

Клиент 

Рис. 4.2. Схема соединения клиента с сервером через конкретный порт 

Программное обеспечение сервера постоянно работает на удаленном компью­

тере и ожидает поступления сетевого трафика через порт 13. При получении 
операционной системой на удаленном компьютере сетевого пакета с запросом 

на подключение к порту 13 на сервере активизируется соответствующий процесс 
и устанавливается соединение. Такое соединение может быть прервано одним из 

его участников. 

Когда сеанс связи с сервером через порт 13 начинается по команде t e lne t 
с параметром t ime - a . ni st . gov, сетевое программное обеспечение преобразует 
строку "time-a. n ist. gov" в IР-адрес 129 . 6 .15. 28 . Затем оно посылает по это­
му адресу запрос на соединение с удаленным компьютером через порт 13. После 
установления соединения программа на удаленном компьютере передает обрат­

но строку с данными, а затем разрывает соединение. Разумеется, клиенты и сер­

веры могут вести и более сложные диалоги до разрыва соединения . 

Проведем еще один, более интересный эксперимент. С этой целью выполните 

следующие действия. 

1. Введите в режиме командной строки команду 

telnet horstmann.com 80 

2. Затем аккуратно и точно введите следующие строки, дважды нажав клавишу 
<Enter> в конце: 

GET / НТТР/1.1 
Host: horstmann.com 
пустая строка 

На рис. 4.3 показана ответная реакция сервера в окне утилиты te l net . Она 
имеет уже знакомый вам вид страницы текста в формате HTML, а именно на­
чальной страницы веб-сайта Кея Хорстманна. Именно так обычный веб-браузер 



Глава 4 • Работа в сети 

получает искомые неб-страницы. Для запроса веб-страниц на сервере 011 приме­

няет сетевой протокол НТТР. Разумеется, браузер отображает данные и 11ам1юго 

более удобном для чтения ниде, 'lем формат HTML. 

~$ tetnet horstmann.com 80 
~rying 67 . 218 . 118 . 65 .. . 
Connected to horstmann.com. 
Escape character is •Л J •. 
GЕТ / НТТР/1.1 
Host : hoгstmann.com 

НТТР/1 . 1 200 ОК 
Date: Sun, 16 Apr 2616 64:36 :27 GМТ 

[ 

Server: Apache/2.2.24 (Unix) mod sst/2.2.24 Open55L/0.9.8e-fips-rhets mod auth р 
assthrough/2.1 mod_bwtimited/1 .4-mod_fcgid/2.3.б Sun-ONE-ASP/4.0.3 - -
Last-Мodified: Тhu, 17 маг 2016 18:32:18 GМТ 
ЕТаg: "2590elc-lc47-52e42d9a8fe8e• 
~ccept-Ranges: bytes 
Content-Length: 7239 
Content-Type: text/htmt 

<?xmt version="l.0" encoding="UТF -8"?> 
<!DОСТУРЕ htmt PUBLIC "-//W3C//DТD ХНТМL 1.0 Strict//EN" "http://WWY/ . W3.org/ТR/X 
htmtl/DTD/xhtmtl-strict.dtd"> 
<htmt xmtns="http: / /WWvl .wз .org/1999/xhtmt"><head> 

<titte>Cay Horstmann's Ноте Page</titte> 
<tink href="stvtes. css" re t="stvtesheet• tvDe=" text/css • /> 

Рис. 4.3. Досrуп к НТТР- 11орту с 1юмощыо уп1литы telnet 

НА ЗАМЕТКУ! Пару ··ключ-значение " Host: horstmann. com требуется указывать для под­

ключения к веб-серверу, на котором под одним и тем же IР-адресом размещаются разные 

домены. Ее можно не указывать, если на веб-сервере размещается единственный домен . 

4.1 .2. Подключение к серверу из программы на Java 
В перном примере сетеной программы, исходный код которой приведен 

в листинге 4.1, выполняются те же действия, 'ITO и при испол1,:юнании утилиты 

t el net. Она устаt~анливает соединение с сервером чере:1 порт и 11ы1юд11т получа­

емые 11 ответ данные. 

Листинг4.1. Исходный код из файла socket/SocketTest . java 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

package socket ; 

impo r t 
i mport 
import 
import 

/* * 

. . * Java.io. ; 
java . net.* ; 
java. n io . c harset. *; 
java.uti l. *; 

* В этой программе устанавливается сокетное соединение 

* с атомными часами в г. Боулдере , шт. Колорадо и 

* выводится время, передаваемое из сервера 

* @ve r s i on 1 .22 2018-03- 17 
* @aut hor Сау Horstmann 
*/ 



15 puЫic class SocketTest 
16 { 
17 puЫic static void main(String[] args) 
18 throws IOException 
19 

4.1. Подключение к серверу 

20 try (var s = new Socket("time-a.nist.gov", 13); 
21 var in = new Scanner(s.getinputStream(), 
22 StandardCharsets.UTF 8)) 
23 
24 while (in.hasNextLine()) 
25 { 
26 String line = in.nextLine(); 
27 System.out.println(line); 
28 
29 
30 
31 

В данной программе наибольший интерес представляют следующие две стро­

ки кода: 

Socket s = new Socket("time-a.nist.gov", 13); 
Scanner in = new Scanner(s.getinputStream(), "UTF-8")) 

В первой строке кода открывается сокет. Сокст - это абстрактное пою1-

тие, обозначающее возможность для программ устанавливать соединения 

для обмена данными по сети. Конструктору объекта сокета передается адрес 

удаленного сервера и номер порта. Если установит~, соединение не удает­

ся, генерируется исключение типа UnknownHost.Exception, а при 1юзникно­
вении каких-нибудь других затруднений - исключе11ие типа IOException. 
Класс UnknownHostException является подклассом, производным от класса 
IOException, поэтому в данном простом примере обрабатывается только ис­
ключение из суперкласса. 

После открытия сокета метод getinputStream () из класса j ava. net. Socket 
возвращает объект типа InputStream, который можно испол1,зовап, как любой 
другой поток ввода. Получив поток ввода, рассматри11аемая здесь программа 

приступает к выводу каждой введенной символьной строки в стандартный поток 

вывода. Этот процесс продолжается до тех пор, пока не завершится поток ввода 

или не разорвется соединение с сервером. 

Данная программа может юаимодействовать тол1,ко с очень простыми серве­

рами, например со службой учета текущего времени. В более сложных случаях 

клиент посылает серверу запрос на получение данных, а сервер может поддер­

живать установленное соединение в течение некоторого времени после отправки 

ответа на запрос. Примеры реализации подобного поведения представлены да­

лее в этой главе. 

Класс Socket очень удобен для работы в сети, поскол1,ку он скрывает все 
сложности и подробности установления сетевого соединения и передачи данных 

по сети, реализуемые средствами библиотеки Java. Пакет j ava. net, по существу, 
предоставляет тот же самый программный интерфейс, который используется 

для работы с файлами. 



Глава 4 • Работа в сети 

НА ЗАМЕТКУ! Здесь рассматривается только сетевой протокол ТСР ITгaпsmiss1on Сопtгоl 
Pгotocol - протокол управления передачей). На платформе Java поддерживается также про­
токол UDP IUseг Datagгam Pгotocol - протокол пользовательских дейтаграмм), который мо­
жет служить для отправки пакетов !называемых иначе дейтаграммами) с гораздо меньшими 
издержками, чем по протоколу ТСР. Недостаток такого способа обмена данными по сети за­
ключается в том, что пакеты необязательно доставлять получателю в последовательном по­
рядке, и они вообще могут быть потеряны. Получатель сам должен позаботиться о том, чтобы 
пакеты были организованы в определенном порядке, а кроме того, он должен сам запраши­

вать повторно передачу отсутствующих пакетов. Протокол UDP хорошо подходит для тех при­
ложений, которые могут обходиться без отсутствующих пакетов, например, для организации 
аудио- и видеопотоков или продолжительных измерений. 

java.net.Socket 1.0 

• Socket(String bost, int port) 

Создает сокет для соединения с указанным хостом или портом. 

• InputStream getinputStream() 

• OutputStream getOutputStream() 

Получают поток ввода для чтения данных из сокета или поток вывода для записи данных 

в сокет. 

4.1.З. Время ожидания дпя сонетов 

Чтение данных из сокета продолжается до тех пор, пока данные доступны. Если 

хост (т.е. сетевой узел) недоступен, прикладная программа будет ожидать очень 

долго, и все будет зависеть от того, когда операционная система, под управлением 

которой работает компьютер, определит момент завершения времени ожидания. 

Для конкретной прикладной программы можно самостоятельно определить 

наиболее подходящую величину времени ожидания для сокета, а затем вызвал, 

метод setSoTimeout (),чтобы установить эту величину в миллисекундах. В при­
веденном ниже фрагменте кода показано, как это делается. 

var s = new Socket( ... ); 
11 истечение времени ожидания через 10 секунд: 
s.setSoTimeout(lOOOO); 

Если величина времени ожидания была задана для сокета, то при выполне­

нии всех последующих операций чтения и записи данных будет генерироваться 

исключение типа SocketTimeoutException по истечении времени ожидания 
до фактического завершения текущей операции. Но это исключение можно пе­

рехватить, чтобы отреагировать на данное событие надлежащим образом, как 

показано ниже. 

try 
{ 

InputStream in = s.getinputStream(); 
11 читать данные из потока ввода in 



catch (InterruptedIOException exception) 
{ 

отреагировать на истечение времени ожидания 

4.1. Подключение к серверу 

Что касается времени ожидания для сокетов, то остается еще одно затрудне­

ние, которое придется каким-то образом разрешить. Так, приведенный ниже 

конструктор может установить блокировку в течение неопределенного перио­

да времени до тех пор, пока не будет установлено первоначальное соединение 

с хостом. 

Socket{String host, int port) 

Это затруднение можно преодолеть, если сначала создать несоединяемый со­

кет, а затем установить соединение с ним, задав время ожидания: 

Socket s = new Socket(); 
s.connect(new InetSocketAddress(host, port), timeout); 

Если же пользователям требуется предоставить возможность прерывать сое­

динение с сокетом в любой момент, то далее, в разделе 4.2.4 поясняется, как этого 
добиться. 

java.net.Socket 1.0 

• Socket () 1 . 1 

Создает сокет, который еще не соединен в данный момент времени. 

• void connect (SocketAddress address) 1. 4 

Соединяет данный сокет по указанному адресу. 

• void connect (SocketAddress address, int timeoutinМil.l.iseconds) 1. 4 

Соединяет данный сокет по указанному адресу или осуществляет возврат, если заданный 

промежуток времени истек. 

• void setSoTimeout (int timвoutinМil.l.iseconds) 1.1 

Задает время ожидания для чтения запросов в данном сокете. По истечении времени ожида­

ния возникает исключение типа InterruptedIOException. 

boolean isConnected () 1 . 4 

Возвращает логическое значение true, если установлено соединение с сокетом. 

• boolean isClosed () 1 . 4 

Возвращает логическое значение true, если разорвано соединение с сокетом. 

4.1.4. Межсетевые адреса 
Как правило, нет особой нужды беспокоиться о межсетевых адресах в Интер­

нете - числовых адресах хостов, состоящих из четырех байтов (или из шестнад­

цати байтов - по протоколу IPvб), как, например, 12 9. 6. 15. 2 8. Но если требу­
ется выполнить взаимное преобразование имен хостов и межсетевых адресов, то 

для этой цели можно воспользоваться классом InetAddress. 
В пакете j ava. net поддерживаются межсетевые адреса по протоколу IPvб, 

при условии, что их поддержка обеспечивается и со стороны операционной 



Глава 4 • Работа в сети 

системы хоста. В частности, статический метод getByName () но:шращает объект 

типа InetAddress для хоста. Например, н следующей строке кода возвращает­
ся объект типа InetAddress, инкапсулирующий последовательность из четырех 
байтов 129.6.15.28: 

InetAddress address = InetAddress.getByName("time-a.nist.gov"); 

Чтобы получить байты межсетевого адреса, достаточно вызвать метод 

getAddress () следующим образом: 

byte[] addressBytes = address.getAddress(); 

Имена некоторых хостов с большим объемом трафика соответствуют нескол1>­

ким межсетевым адресам, что объясняется попыткой сбалансировать нагрузку. 

Так, на момент написания данной книги имя хоста google. сот соответствовало 
двенадцати различным сетевым адресам. Один из них выбирается случайным об­

разом во время доступа к хосту. Получить межсетевые адреса всех хостов можно, 

вызвав метод getAllByName (): 

InetAddress[] addresses = InetAddress.getAllByName(host); 

Наконец, иногда требуется адрес локального хоста. Если вы просто запро­

сите адрес локального хоста, указав 1оса1 ho s t, то неизмешю получите в ответ 
локальный петлевой адрес 127. О. О. 1, которым другие не смогут воспользо­
ваться для подключения к вашему компьютеру. Вместо этого вы:ювите метод 

getLocalHost (),чтобы получить адрес вашего локального хоста, как показано 

ниже. 

InetAddress address = InetAddress.getLocalHost(); 

В листинге 4.2 приведен пример простой программы, выводящей межсетевой 
адрес локального хоста, если не указать дополнительные параметры в командной 

строке, или же все межсетевые адреса другого хоста, если указать имя хоста в ко­

мандной строке, как в следующем примере: 

java inetAddress/InetAddressTest www.horstmann.com 

Листинг 4.2. Исходный код из файла inetAddress/InetAddressTest. java 

1 package inetAddress; 
2 
3 import Java.io.*; 
4 import java.net.*; 
5 /** 
6 * В этой программе демонстрируется применение 

7 * класса InetAddress. В качестве аргумента в командной 

8 * строке следует указать имя хоста или запустить 
9 * программу без аргументов, чтобы получить в ответ 

10 * адрес локального хоста 
11 * @version 1.02 2012-06-05 
12 * @author Сау Horstmann 
13 */ 
14 puЫic class InetAddressTest 
15 { 



4.2. Реализация серверов 

16 puЫic static void main(String[] args) 
17 throws IOException 
18 
19 if (args.length > 0) 
20 
21 String host = args[O]; 
22 InetAddress[] addresses 
23 InetAddress.getAllByName(host); 
24 for (InetAddress а : addresses) 
25 System.out.println(a); 
26 
27 else 
28 
29 InetAddress localHostAddress = 
30 InetAddress.getLocalHost(); 
31 System.out.println(localHostAddress); 
32 
33 
34 

java.net.InetAddress 1.0 

• static InetAddress getвyName (String host) 

• static InetAddress [] getAl.lByName (String host) 

Конструируют объект типа InetAddress или массив всех межсетевых адресов для задан­

ного имени хоста. 

• static InetAddress getLocalHost() 

Конструирует объект типа InetAddress для локального хоста. 

• Ьуtе [] getAddress () 

Возвращает массив байтов, содержащий числовой адрес. 

• String getнostAddress () 

Возвращает адрес хоста в виде символьной строки с десятичными числами, разделенными 

точками, например "132 .163. 4 .102". 

• String getнostName () 

Возвращает имя хоста. 

4.2. Реализация серверов 
В предыдущем разделе были рассмотрены особенности реализации элемен­

тарного сетевого клиента, способного получать данные из сети вообще и Интер­

нета в частности. Теперь перейдем к обсуждению реализации простого сервера, 

способного посылать данные клиентам. 

4.2.1. Сокеты сервера 
После запуска серверная программа переходит в режим ожидания от клиен­

тов подключения к портам сервера. Для рассматриваемого здесь примера выбран 



Глава 4 • Работа в сети 

номер порта 818 9, который не используется ни одним из стандартных устройств. 
В следующей строке кода создается сервер с контролируемым портом 818 9: 
var s = new ServerSocket(8189); 

В приведенной ниже строке кода серверной программе предписывается ожи­

дать подключения клиентов к заданному порту. 

Socket incorning = s.accept(); 

Как только какой-нибудь клиент подключится к данному порту, отпра­

вив по сети запрос на сервер, метод accept () возвратит объект типа Socket, 
представляющий установленное соединение. Этот объект можно использовать 

для чтения и записи данных в потоки ввода-вывода, как показано в приведенном 

ниже фрагменте кода. 

InputStrearn inStrearn = incorning.getinputStrearn(); 
OutputStrearn outStrearn = incorning.getOutputStrearn(); 

Все данные, направляемые в поток вывода серверной программы, поступают 

в поток ввода клиентской программы. А все данные, направляемые в поток выво­

да из клиентской программы, поступают в поток ввода серверной программы. Во 

всех примерах, приведенных в этой главе, обмен текстовыми данными осущест­

вляется через сокеты. Поэтому соответствующие потоки ввода-вывода через сокет 

преобразуются в потоки сканирования (типа Scanner) и записи (типа Wri ter) 
следующим образом: 

var in = new Scanner(inStrearn, "UTF-8"); 
var out = new PrintWriter(new OutputStrearnWriter( 

outStrearn, "UTF-8"), 
true /*автоматическая очистка*/); 

Допустим, клиентская программа посылает следующее приветствие: 

out.println("Hello! Enter ВУЕ to exit."); 

Если для подключения к серверной программе через порт 818 9 используется 
утилита telnet, это приветствие отображается на экране терминала. 

В рассматриваемой здес1, простой серверной программе вводимые данные, 

отправленные клиентской программой, считываются построчно и посылаются 

обратно клиентской программе в режиме эхопередачи, как показано в приведен­

ном ниже фрагменте кода. Этим наглядно демонстрируется получение данных 

от клиентской программы. Настоящая серверная программа должна обработать 

полученные данные и выдать соответствующий ответ. 

String line = in.nextLine(); 
out.println("Echo: " + line); 
if (line.trirn() .equals("BYE")) done = true; 

По завершении сеанса связи открытый сокет закрывается следующим образом: 

incorning.close(); 

Вот, собственно, и все, что делает данная программа. Любая серверная про­

грамма, например, веб-сервер, работающий по протоколу НТГР, выполняет ана­

логичный цикл следующих действий. 



4.2. Реализация серверов 

1. Получение из потока ввода входящих данных запроса на конкретную ин-
формацию от клие1пской программы. 

2. Расшифровка клиентского запроса. 

3. Сбор информации, запрашиваемой клиентом. 

4. Передача обнаруженной информации клиентской программе через поток 
вывода исходящих данных. 

В листинге 4.3 приведен весь исходный код описанного выше примера сервер­
ной программы. 

Листинг 4.3. Исходный код из файла server /EchoServer. j ava 

1 package server; 
2 
3 import java.io.*; 
4 import java.net.*; 
5 import java.nio.charset.*; 
6 import java.util.*; 
7 
8 /** 
9 * В этой программе реализуется простой сервер, 

10 * прослушивающий порт 8189 и посьmающий обратно 
11 * клиенту все полученные от него данные 
12 * client input. 
13 * @version 1.22 2018-03-17 
14 * @author Сау Horstmann 
15 */ 
16 puЫic class EchoServer 
17 { 
18 
19 
20 
21 
22 
23 

puЫic static void main(String[] args) 
throws IOException 

//установить сокет на стороне сервера 

try (var s = new ServerSocket(8189)) 
{ 

24 11 ожидать подключения клиента 

25 try (Socket incoming = s.accept()) 
2 6 { 
27 InputStream inStream 
28 incoming.getinputStream(); 
29 OutputStream outStream = 
30 incoming.getOutputStream(); 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 

try (var in new Scanner(inStream, 
StandardCharsets.UTF 8)) 

var out new PrintWriter( 
new OutputStreamWriter( 

outStream, StandardCharsets.UTF_8), 
true /* автоматическая очистка */); 

out.println("Hello! Enter ВУЕ to exit."); 



42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 

Глава 4 • Работа в сети 

11 переда т ь обра тно данные , 

11 получе нные от клие нта 

var do ne = f a l se ; 
whi l e ( !done && i n.has Next Line()) 
{ 

String line = in. nextLi ne() ; 
out. pr in t l n( "Echo : " + l i ne ) ; 
if (line . tr im () .equa l s ("BY E" )) dопе true ; 

Для проверки работоспособности данной серверной программы ее нужно 

скомпилировал, и запустить . Затем необходимо подключиться с помощью ути­

литы telnet к локальному серверу localhost (или по IР-адресу 127 . О . О . 1) че­
рез порт 818 9. Если ваш компьютер непосредстве11110 подключен к Интернету, 

любой пол1, :юватель может получить доступ к данной серверной программе, 

если ему известен IР-адрес и номер порта . При подключении через этот порт 

будет получено следующее сообщение (рис. 4.4): 
Hello 1 Enter ВУЕ to exit. 1 

~1. fd• 111ow :i>rmmai "'Ь• 1:1о 1р 

-$ te1net 1oca1host 8189 
Trying 127.0 .0 .1 . . . 
Connected to 1oca1host . 
Escape character is • л ] ' . 
Не11о! Enter ВУЕ to exit . 
НеНо SaHor! 
Echo : Не11о Sai1or ! 
ВУЕ 

Echo : ВУЕ 
Connection c1osed Ьу foreign host . 
-$ I 

Рис. 4.1.. Сеанс свя зи с сервером, 11ередающим обратно данные, нолученные 

от клиента 

Введите любую фразу и понаблюдайте за тем, как она будет получена обрат-

1ю в том же самом виде . Для отключения от сервера введите ВУЕ (все символы 

в верхнем регистре) . В итоге :sавершится и серверная программа . 

1 При вет 1 Введи те ВУЕ ( П о ка) , чтобы выйти из программы. 



4.2. Реализация серверов 

java.net.ServerSocket 1.0 

• ServerSocket (int port) 

Создает сокет на стороне сервера, контролирующего указанный порт. 

• Socket accept () 

Ожидает соединения. Этот метод блокирует lт.е. переводит в режим ожидания) текущий поток 
до тех пор, пока не будет установлено соединение. Возвращает объект типа Socket, через 
который программа может взаимодействовать с подключаемым клиентом. 

void close () 

Закрывает сокет на стороне сервера. 

4.2.2. Обслуживание многих клиентов 
В предыдущем простом примере серверной программы не предусмотрена 

возмож1юсть одновременного подключения сра:~у нескольких клиентских про­

грамм. Обычно серверная программа работает на компьютере сервера, а кли­

ентские программы могут одновременно подключаться к ней через Интернет из 

любой точки мира. Если на сервере не предусмотрена обработка одновременных 

запросов от многих клиентов, один из клиентов может монополизировать доступ 

к серверной программе в течение длительного времени. Во избежание подобных 

ситуаций следует прибегнуть к помощи потоков исполнения. 

Всякий раз, когда серверная программа устанавливает новое сокетное соеди­

нение, т.е. в результате вызова метода accept () возвращается сокет, запускается 
новый поток исполнения для подключения данного клиента к серверу. После это­

го происходит возврат в основную программу, которая переходит в режим ожи­

дания следующего соединения. Для того чтобы все это произошло, в серверной 

программе следует организовать приведенный ниже основной цикл. 

while (true) 
{ 

Socket incoming = s.accept(); 
var r = new ThreadedEchoHandler(incoming); 

var t new Thread(r); 
t.start(); 

Класс ThreadedEchoHandler реализует интерфейс RunnaЬle и в своем методе 
run () поддерживает юаимодействие с клиентской программой: 

class ThreadedEchoHandler implements RunnaЫe 
{ 

puЫic void run() 
( 

try (InputStream inStream 
OutputStream outStream 

incoming.getinputStream(); 
incoming.getOutputStream() 1 

обработать полученный запрос и отправить ответ 



Глава 4 • Работа в сети 

ca t ch( I OE xception е ) 

{ 

обработа ть исключение 

Когда 11011ый поток испол11е11ия запускается при каждом соединении, 11еско;11,­

ко клиентских программ могут одновременно подключаться к серверу. Это 11е­

трудно проверить, выполнив следующие деi1ст1н~я. 

1. Скомпилируйте и запустите на выполнение серверную программу, исход­
ный код которой приведен в листи11ге 4.4. 

2. Откройте несколько окон утилиты t elnet (рис. 4.5). 

3. Переходя из одного окна в другое, введите команды. В итоге каждое отдель­
ное окно утилиты te lne t будет юаимодействовать с серверной програм­
мой не:~ависимо от других окон. 

4. Чтобы ра:юрвать соединение и :~акрыть окно утилиты te l ne t , нажмите 
комбинацию клавиш <Ctrl+C>. 

!81T• r•ninal _ о х 

fllt fdit ~tw i-rm1n.i Т.Ьs l::::ttlp 

-/books/ с j 8/code/v2ch03/ThreadedEchoSe rve r$ java ThreadedEchoSe rver г 
Spawning 1 

1 
Spawning 2 

!•IТe1111l11'1I _ох 

f:ilt Edit ~.w F.trmtn.t ТаЬ.s tjelp 

1 

-$ tetnet tocathoot 8189 
Try. • т.;.~;;,"г ,.. - '1 1Х 
Con fil• fdn: ~•w Jtrminal т.ь.s 1::::telp 
Esc; 

1 
Н t - $ tet net tocathoot 8189 f 
н:t Trying 127 .0.0 .1" . 
Echc Connected to tocathost . 

. Escape character is 1 "' ] ' . 

~1~ Не Но! Enter 8УЕ to exit. 
8~~с Не Но Saitor ! 
Echc Echo: Не Но Saitor ! 
Con How а re you 1 
-$ 1 Echo : How are you7 

1 ВУЕ 
Echo: ВУЕ 
Connection ctosed Ьу foreign host . 
-$ о 

1 

' о:= 

1 

= 

Рис. L..5. Сеанс олновремеююй с11ю11 нес кольких клиентов с сервером 

НА ЗАМЕТКУ! В рассматриваемой здесь программе для каждого соединения порождается от­

дельный поток исполнения . Такой прием не вполне подходит для высокопроизводительного 

сервера. Более эффективной работы сервера можно добиться, используя средства из паке­

та java. nio. Дополнительные сведения по данному вопросу можно получить, обратившись 
по адресу https : //www _ ibm. com/developerworks/java/liЬrary/j-javaio/. 



4.2. Реализация серверов 

Листинг t..t.. Исходный код из файла threaded/ThreadedEchoServer. java 

1 package threaded; 
2 
3 import java.io.*; 
4 import java.net.*; 
5 import java.nio.charset.*; 
6 import java.util.*; 
7 
8 /** 
9 * В этой программе реализуется многопоточньm сервер, 
10 * прослушивающий порт 8189 и передающий обратно все данные, 
11 * полученные от всех клиентов 
12 * @author Сау Horstmann 
13 * @version 1.23 2018-03-17 
14 */ 
15 puЫic class ThreadedEchoServer 
16 { 
17 puЫic static void main(String(] args ) 
18 { 
19 try (var s = new ServerSocket(8189)) 
20 { 
21 int i = 1; 
22 
23 while (true) 
24 
25 Socket incoming = s.accept(); 
26 System.out.println("Spawning " + i); 
27 RunnaЫe r = new ThreadedEchoHandler(incoming); 
28 var t = new Thread(r); 
29 t.start(); 
30 i ++; 

31 
32 
33 catch (IOException е) 

34 
35 e.printStackTrace(); 
36 
37 
38 
39 
40 /** 
41 * Этот класс обрабатывает данные, получаемые сервером 

42 * от клиента через одно сокетное соединение 

43 */ 
44 class ThreadedEchoHandler implements RunnaЫe 
45 
46 private Socket incoming; 
47 
48 /** 
49 Конструирует обработчик 

50 @param incomingSocket Входящий сокет 
51 */ 
52 puЫic ThreadedEchoHandler(Socket incomingSocket) 
53 ( 



Глава 4 • Работа в сети 

54 incoming = incom1ngSocket; 
55 
56 
57 puЫic void run() 
58 { 
59 try (InputStream inStream = 
60 incoming.getinputStream(); 
61 OutputStream outStream = 
62 incoming.getOutputStream(); 
63 var in = new Scanner(inStream, 
64 StandardCharsets. UTF 8); 
65 var out = new PrintWriter( 
66 пеw OutputStreamWriter(outStream, 
67 StandardCharsets.UTF 8), 
68 true /* autoFlush */)) 
69 
70 out.println("Hello! Enter БУЕ to exit."); 
71 
72 // передать обратно данные, полученные от клиента 

73 var done = false; 
74 while (!done && in.hasNextLine()) 
75 { 
76 String line = in.nextLine(); 
77 out.printlп("Echo: " + liпe); 
78 if (line.trim() .eq1ыls("BYE")) 
79 done = true; 
80 
81 
82 catch (IOException е) 

83 { 
84 e.priпtStackTracel); 

85 
86 
87 

4.2.З. Полузакрытие 

По.лу.~акрытuе обеспечинает 1юзможность прервать передачу данных на одной 

стороне сокетноrо соединения, продолжая в то же время прием данных от дру­

гой стороны. Рассмотрим типичную ситуацию. Допустим, данные направляются 

на сервер, но заранее неи:шестно, какой именно объем данных требуется пере­

дать. Если речь идет о фс:~йле, то ero закрытие, по существу, о:шачает завершение 
передачи данных. Если же :1акрьпь сокет, то соединение с сервером будет немед­

лешю ра:юрвано. 

Для преодоления подобного затруднения служит полузакрытие. Если закрыть 

поток вывода через сокет, то для сервера это будет означать завершение переда­

чи данных запроса. При ::пом поток ввода остается открытым, позволяя получить 

ответ от сервера. Код, реали:1ующий механизм полузакрытия на стороне клиен­

та, приведен ниже. 

try (var socket = new Socket(host, port)) 
{ 

var in = new Scanner(socket.getinputStream(), "UTF-8"); 



4.2. Реализация серверов 

var writer = new PrintWriter(socket.getOutputStream() ); 
11 передать данные заnроса 

writer.print ( ... 1; 
writer. flush (); 
socket.shutdownOutput(); 
11 теперь сокет полузакрыт 

11 принять данные ответа 

while (in.hasNextLine() != null) 
{ 

String line = in.nextLine(); 

Серверная программа просто читает данные из потока ввода до тех пор, пока 

не закроется поток вывода на другом конце соединения. Очевидно, что такой 

подход применим только для служб однократного действия по сетевым протоко­

лам, подобным НТТР, где клиент устанавливает соединение с сервером, передает 

запрос, получает ответ, после чего соединение ра::1рывается. 

java.net.Socket 1.0 

• void shutdownOutput () 1. З 

Устанавливает поток вывода в состояние завершения. 

• void shutdownlnput () 1 . З 

Устанавливает поток ввода в состояние завершения. 

• Ьoolean isOutputShutdown () 1. 4 

Возвращает логическое значение true, если вывод данных был остановлен. 

• Ьoolean islnputShutdown () 1. 4 

Возвращает логическое значение true, если ввод данных был остановлен. 

4.2.4. Прерываемые сокеты 
При подключении через сокет текущий поток исполнения блокируется до тех 

пор, пока соединение не будет установлено, или же до истечения времени ожи­

дания. Аналогично, если пытаться принять данные через сокет, текущий поток 

приостановит свое исполнение до успешного завершения операции или до ис­

течения времени ожидания. (Для передачи данных время ожидания не устанав­

ливается.) 

В прикладных программах, работающих в диалоговом режиме, пользовате­

лям желательно предоставить возможность прервать слишком затянувшийся 

процесс установления соединения через сокет. Но если поток исполнения бло­

кирован для нереагирующего сокета, то разблокировать его не удастся, вызвав 

метод interrupt (). 
Для прерывания сокетных операций служит класс SocketChannel, предостав­

ляемый в пакете j ava. nio. Объект типа SocketChannel создается следующим 
образом: 



Глава 4 • Работа в сети 

Soc ketChannel channe l = SocketChanne l. open( 
new Inet SocketAdd r ess (host, por t) ) ; 

У канала отсутстuуют связа1111ые с ним потоки ввода-вы11ода. Вместо это­

го в канале предоставляются методы read ( ) и wr i t e (), испол ьзующие объ­

екты типа Buf f e r. (Подробнее о буферах и:1 системы ввода-вывода NIO см . 

в главе 2.) Эти методы объявм1ются в интерфейсах ReadaЬleBy t e C h a nnel 

и Wr i taЬle Byt eChanne l. Если же 11ет желания иметь дело с буферами, мя чте­

ния из канала типа Socket Chan n e l можно воспользовал,01 объектом типа 
Scanner. Для этой цели в К11ассе Sca nne r предусмотрен следующий конструктор 
с параметром типа ReadaЫeByt eCha nnel: 

var i n = new Scanne r( channel , St andardCha r sets . UTF 8); 

Чтобы превратить канал в поток вывода, применяется статический метод 

Channe l s .ne wOu t pu tSt rearn() : 

Out putStream outStream = Channe l s.newOutput St r eam(channe l ) ; 

Вот, собствешю, и все, что нужно сделать мя прерывания сокет~юй операции. 

Если же поток исполнения будет прерван в процессе установления соединения, 

чте11ия или записи, соответствующая операция завершится генерированием ис­

ключе11ия. 

В примере программы, исходный код которой приведен в листише 4.5, демон­
стрируется применение прерываемых и блокирующих сокето11. Сервер передает 

числовые данные, имитируя прерывание их передачи после десятого числа. Если 

щелкнуть на любой кнопке, запустится поток исполнения, устанавливающий 

соединение с сервером и выводящий на экран передаваемые данные. В первом 

потоке исполнения используется прерываемый сокет, а во втором - блокирую­

щий . Если щелкнуть на кнопке Cancel (Отмена) во время вывода первых десяти 

чисел, то прервется исполнение любого из двух потоков. 

Если щелкнуть на кнопке Cancel после передачи первых десяти чисел, то пре­
рвется испол11ение только первого потока. Блокировка второго потока исполне­

ния будет продолжаться до тех пор, пока сервер не разорвет окончательно сое­

ди~1ение (рис. 4.6). 

.• 11li e1ruptiБTesock~-- ...:. сНх "8 lnterп1ptiblesocketтest - - ---_ п 'х 

1 lnt;;ruptiыel 1 1 [ 11 ." "ti~[ 
, 

Blocking Сш •1 j "1 1tn11 :L:___;_• J 
lnterruptlЫe. Slocklng: 
Read1ng 1 Reading 1 
Read1ng 2 Reading 2 
Reading 3 Read1ng З 
Reading 4 Read1ng 4 
Readlng s Read1ng S 
Readlng б Readlng б 
Readlng 7 Read1ng 7 
Readlng 8 Reading 8 
Reading 9 Read1ng 9 
Reading 10 Read1ng 10 
Reading Channel closed Read1ng 

- -

Рис. 1+.6. Прерывание сокета 



4.2. Реализация серверов 

Листинг 4.5. Исходный код из файла interruptiЫe/InterruptiЫeSocketTest. java 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

package interruptiЬle; 

import 
import 
import 
import 
import 
import 
import 
import 

/** 

java.awt.*; 
java.awt.event.*; 
java.util.*; 
java.net.*; 
java.io.*; 
java.nio.charset.*; 
java.nio.channels.*; 
javax.swing.*; 

* В этой программе демонстрируется прерывание 

* сокета через канал 
* @author Сау Horstmann 
* @version 1.05 2018-03-17 
*/ 

puЬlic class InterruptiЫeSocketTest 
{ 

puЫic static void main(String[] args) 
{ 

EventQueue.invokeLater( () -> 
{ 

var frame = new InterruptiЬleSocketFrame(); 
frame.setTitle("InterruptiЫeSocketTest"); 

frame.setDefaultCloseOperation( 
JFrame.EXIT ON_CLOSE); 

frame.setVisiЬle(true); 

) ) ; 

class InterruptiЫeSocketFrame extends JFrame 

35 private Scanner in; 
36 private JButton interruptiЬleButton; 
37 private JButton ЫockingButton; 
38 private JButton cancelButton; 
39 private JTextArea messages; 
40 private TestServer server; 
41 private Thread connectThread; 
42 
43 puЬlic InterruptiЫeSocketFrame() 

44 { 
45 var northPanel = new JPanel(); 
46 add(northPanel, BorderLayout.NORTH); 
47 
48 final int ТЕХТ ROWS = 20; 
49 final int ТЕХТ COLUMNS = 60; 
50 messages = new JTextArea(TEXT ROWS, ТЕХТ COLUMNS); 
51 add(new JScrollPane(messages)); 
52 
53 interruptiЫeButton = new JButton("InterruptiЫe"); 
54 ЫockingButton = new JButton("Blocking"); 



Глава 4 • Работа в сети 

55 
56 northPanel.add(interruptiЫeButton); 

57 northPanel.add(ЬlockingButton); 

58 
59 interruptiЫeButton.addActionListener(event -> 
60 { 
61 interruptiЬleButton.setEnaЬled{false); 

62 ЫockingButton.setEnaЬled(false); 

63 cancelButton.setEnaЫed(true); 

64 connectThread = new Thread( () -> 
65 
66 try 
67 { 
68 connectinterruptiЬly(); 

69 
70 catch (IOException е) 

71 { 
72 messages.append( 
73 "\ninterruptiЫeSocketTest." 

74 + "connectlnterruptiЫy: " + е); 
75 ) 
76 ) ) ; 
77 connectThread.start(); 
78 ) ) ; 
79 
80 ЫockingButton.addActionListener(event -> 
81 ( 
82 interruptiЬleButton.setEnaЬled(false); 

83 ЫockingButton.setEnaЫed(false); 

84 cancelButton.setEnaЫed(true); 

85 connectThread = new Thread( () -> 
86 
87 try 
88 { 
89 connectBlocking(); 
90 
91 catch (IOException е) 

92 { 
93 messages.append( 
94 "\ninterruptiЫeSocketTest." 

95 + "connectBlocking: " + е); 
96 ) 
97 ) ) ; 
98 connectThread.start(); 
99 ) ) ; 
100 
101 cancelButton = new JButton("Cancel"); 
102 cancelButton.setEnaЫed(false); 

103 northPanel.add(cancelButton); 
104 cancelButton.addActionListener(event -> 
105 ( 
106 connectThread.interrupt(); 
107 cancelButton.setEnaЫed(false); 

108 ) ) ; 
109 server = new TestServer(); 
110 new Thread(server).start(); 



4.2. Реализация серверов 

111 pack(); 
112 
113 
114 /** 
115 * Соединяет с проверяемым сервером, 

116 * используя прерываемый ввод-вывод 
117 */ 
118 puЫic void coпnectinterruptiЬly() throws IOException 
119 { 
120 messages.append("InterruptiЫe:\n"); 

121 try (SocketChannel channel = SocketChannel 
122 .open(new InetSocketAddress("localhost", 81891)) 
123 
124 in = new Scanner(channel, StandardCharsets.UTF_B); 
125 while ( 1 Thread.currentThread() .isint.errupted()) 
12 6 { 
127 
128 
129 
130 
131 
132 
133 
134 
135 

messages.append("Reading "); 
if (in.hasNextLine()) 
{ 

String line = in.nextLine(); 
messages.append(line); 
messages.append("\n"); 

136 finally 
137 { 
138 EventQueue.invokeLater( () -> 
139 { 
140 messages.append("Channel closed\n"); 
141 interruptiЬleButton.setEnaЫed(true); 

142 ЫockingButton.setEnaЬled(true); 

143 } ) ; 
144 
145 
146 
147 /** 
148 * Соединяет с проверяемым сервером, 

149 * используя блокирующий ввод-вывод 
150 */ 
151 puЫic void connectBlock1ng() throws IOException 
152 { 
153 messages.append("Blocking:\n"); 
154 try (var sock = new Socket("localhost", 8189)) 
155 { 
156 in = new Scanner(sock.getinputStream(), 
157 StandardCharsets.UTF 8); 
158 while ( 1 Thread.currentThread() .isinU~rr\Jpte,i() 1 

159 { 
160 messages.append("Reading "); 
161 if (in.hasNextLine()) 
162 { 
163 String line = in.nextLine(); 
164 messages.append(line); 
165 messages.append("\n"I; 
166 



167 
168 

Глава 4 • Работа в сети 

169 finally 
170 { 
171 EventQueue.invokeLater(() -> 
172 { 
173 messages.append("Socket closed\n"); 
174 interruptiЫeButton.setEnaЫed(true); 

175 ЫockingButton.setEnaЫed(true); 

176 } ) ; 
177 
178 
179 
180 /** 
181 * Многопоточный сервер, прослушивающий порт 8189 и 
182 * посьmающий клиентам числа, имитируя зависание 

183 * после передачи 10 чисел 
184 * 
185 */ 
186 class TestServer implements RunnaЫe 
187 
188 puЫic void run() 
189 { 
190 try (var s = new ServerSocket(8189)) 
191 { 
192 while (true) 
193 { 
194 Socket incoming = s.accept(); 
195 RunnaЫe r = new TestServerHandler(incoming); 
196 new Thread(r) .start(); 
197 
198 
199 catch (IOException е) 
200 { 
201 messages.append("\nTestServer.run: "+ е); 
202 
203 
204 
205 
206 /** 
207 * Этот класс обрабатывает данные, получаемые 

208 * сервером от клиента через одно сокетное соединение 
209 */ 
210 class TestServerHandler implements RunnaЫe 
211 { 
212 private Socket incoming; 
213 private int counter; 
214 
215 /** 
216 * Конструирует обработчик 
217 * @param i Входящий сокет 

218 */ 
219 puЫic TestServerHandler(Socket i) 
220 { 
221 incoming = i; 
222 



4.2. Реализация серверов 

223 
224 puЫic void run() 
225 { 
226 try 
227 ( 
228 try 
229 { 
230 OutputStream outStream = 
231 incoming.getOutputStream(); 
232 var out = new PrintWriter( 
233 new OutputStreamWriter(outStream, 
234 StandardCharsets.UTF 8), 
235 true /* автоматическая очистка */); 
236 while (counter < 1001 
237 { 
238 counter++; 
239 if (counter <= 10) out.println(counter); 
240 Thread.sleep(100); 
241 
242 
243 
244 
245 
246 
247 
248 

finally 
( 

incoming.close(); 
messages.append("Closing server\n"); 

249 catch (Exception е) 

250 { 
251 messages.append("\nTestServerHandler.run: " + е); 
252 
253 
254 
255 

java.net.InetSocketAddress 1.4 

• InetSocketAddress (String hostname, int port) 

Создает объект адреса с указанными именем хоста lт.е. сетевого узла) и номером порта, 
преобразуя имя узла в адрес при установлении соединения. Если преобразовать имя хоста 

в адрес не удается, устанавливается логическое значение true свойства unresolved. 

• boolean isUnresolved() 

Возвращает логическое значение true, если для данного объекта не удается преобразовать 
имя хоста в адрес. 

java.nio.channels.SocketChannel 1.4 

static SocketChannel open(SocketAddress address) 

Открывает канал для сокета и связывает его с удаленным хостом по указанному адресу. 



Глава 4 • Работа в сети 

java.nio.channels.Channels 1.4 

• static InputStream newinputStream(ReadaЬleByteChannel channel) 

Создает поток ввода для чтения данных из указанного канала. 

• static OutputStream newOutputStream(WritaЬleByteChannel channel) 

Создает поток вывода для записи данных в указанный канал. 

4.3. Получение данных из Интернета 
Чтобы получип, доступ к неб-серверам из программы на Java, требуется бо­

лее высокий уровень сетевого взаимодействия, чем установление соединения че­

рез сокет и выдача НТТР-запросов. В последующих разделах будут рассмотрены 

классы, предоставляемые для этой цели в библиотеке Java. 

4.Э.1. URL и URI 
Классы URL и URLConnection инкапсулируют большую часгь внутреннего ме­

ханизма извлечения данных с удаленного веб-сайта. Объект типа URL создается 
следующим образом: 

URL url = new URL(символьная строка с URL); 

Если требуется только извлечь содержимое и:~ указашюго ресурса, достаточно 

вы:шать метод openStream () из класса URL. Этот метод возвращает объект типа 
InputStream. Поток ввода данного типа можно исполь:ювать обычным образом, 
например, создать объект типа Scanner: 

InputStream inStream = url.openStream(); 
var in = new Scanner(inStream, StandardCharsets.UTF 8); 

В пакете j а va. ne t отчетливо ра:ыичаются унифицированные yr-;a.>ame,\l/ ре­
сурсов (URL) и унифицированные uдентuфur-;аторы ресурсов (URI). В частности, 
URI - это лишь синтаксическая конструкция, содержащая ра:ыичные части 

символьной строки, обозначающей веб-ресурс. URL - это особая ра:шовидносп, 

идентификатора URI с исчерпывающими данными о местоположении ресурса. 
Имеются и такие URI, как, например, mail to: cay@hortsmann. сот, которые 11е 
являются указателями ресурсов, потому что по ним нелия обнаружить какие-ни­

будь данные. Такой URI называется унифицированным имене.м ресурса (URN). 
В классе URI из библиотеки Java отсутствуют методы доступа к ресурсу по ука­

занному идентификатору, поскольку этот класс предна:шачен только для синтак­

сического анализа символьной строки, обо:шачающей ресурс. В отличие от него, 

класс URL позволяет открыть поток ввода-вывода для данного ресурса. Поэто­
му в классе URL допускается взаимодействие только по тем протоколам и схе­
мам, которые поддерживаются в библиотеке Java, в том числе http:, https: 
и ftp: - для Интернета, fi le: - для локальной файловой системы, а также 

j ar: - для обращения к архивным JАR-файлам. 



4.3. Получение данных иэ Интернета 

Синтаксический анализ URI - непростая задача, поскольку идентификаторы 

ресурсов могут иметь сложную структуру. В качестве примера ниже приведены 

URI с замысловатой структурой. 
http:/google.com?q=Beach+Chalet 
ftp://username:password@ftp.yourserver.com/puЬ/file.txt 

В обозначении идентификаторов URI задаются правила их построения. Струк­
тура URI выглядит следующим образом: 
[схема:]специальная_часть_схемы[#фрагмент] 

где квадратные скобки обозначают необязательную часть, а двоеточие и знак # 
служат в качестве разделителей. Если схема: присутствует как составная часть 

в идентификаторе URI, то он называется абсолютным, а иначе - относительным. 

Абсолютный URI называется непро3рачным, если специальная_ часть_ схемы не 
начинается с косой черты (/), как, например, показано ниже. 
mailto:cay@horstmann.com 

Все абсолютные, непрозрачные URI и все относительные URL имеют иерархи­
ческую структуру. Например: 

http://horstmann.com/index.html 
.. / .. /java/net/Socket.html#Socket() 

Составляющая специальная_ часть_ схемы иерархического URI имеет следу­
ющую структуру: 

[//полномочия] [путь] [?запрос] 

И здесь квадратные скобки обозначают необязательную часть. Составляющая 

полномочия в URI серверов имеет приведенную ниже форму, где элемент порт 
должен иметь целочисленное значение. 

[ сведения_о_пользователе@] хост[: порт] 

В документе RFC 2396, стандартизирующем идентификаторы URI, допускает­
ся также механизм указания составляющей полномочия в другом формате на ос­

нове данных из реестра. Но он не получил широкого распространения. 

Одно из назначений класса URI состоит в синтаксическом анализе отдельных 
составляющих идентификатора. Они извлекаются с помощью перечисленных 

ниже методов. 

GetScheme 1) 
getSchemeSpecificPart() 
getAuthori ty () 
getUserinfo() 
getHost 1) 
getPort 1) 
getPath 1) 
getQuery 11 
getFragmeпt () 

Другое назначение класса URI состоит в обработке абсолютных и относитель­
ных идентификаторов. Так, если имеются абсолютный и относительный иденти­

фикаторы URI: 
http://docs.mycompaпy.com/api/java/пet/ServerSocket.html 



Глава 4 • Работа в сети 

и 

.. / .. /java/net/Socket.html#Socket() 

их можно объединить в абсолютный URI следующим образом: 
http://docs.mycompany.com/api/java/net/Socket.html#Socket() 

Такой процесс называется 11реобра.юванием адресов относительного URI. Обрат­
ный процесс называется 11реобра.юванием абсолютньzх адресов в относительные. На­

пример, имея ба3овыu URI: 
http://docs.mycompany.com/api 

можно преобразоваТI> следующий абсолютный URI: 
http://docs.company.com/api/java/lang/String.html 

в приведенный ниже относительный URI. 
java/lang/String.html 

Для выполнения обоих видов преобразования в классе URI предусмотрены 
два соответствующих метода: 

relative base.relativize(combined); 
comЬined = base.resolve(relative); 

4.3.2. Извлечение данных средствами класса URLConnection 

Для получения дополнителы1ых сведений о веб-ресурсе следует воспол~,­

зоваться классом URLConnection, предоставляющим намного больше средств 
управления доступом к неб-ресурсам, чем более простой класс URL. Для работы 
с объектом типа URLConnection необходимо тщательно спланировать и выпол­
нить следующие действия. 

1. Вызвать метод openConnection () из класса URL для получения объекта 
типа URLConnection следующим образом: 

URLConnection connection = url.openConnection(); 

2. Задать свойства запроса с помощью перечисленных ниже методов. 

SetDoinput () 
setDoOutput ( 1 
setifModifiedSince() 
setUseCaches () 
setAllowUserinteraction() 
setRequestProperty() 
setConnectTimeout() 
setReadTimeout () 

3. Эти методы будут подробно рассматриваться далее. 

4. Установить соединение с удаленным ресурсом с помощью метода 

connect (): 

connection.connect(); 

5. Помимо создания сокета, для установления соединения с веб-сервером этот 
метод запрашивает также у сервера данные заголовка. 



4.3. Получение данных из Интернета 

6. После подключения к веб-серверу становятся доступными поля за­

головка. Обращаться к ним можно с помощью универсальных методов 

getHeaderFieldKey () и getHeaderField (). Кроме того, для удобства раз­
работки предусмотрены перечисленные ниже методы обработки стандарт­

ных полей запроса. 

getContentType () 
getContentLength() 
getContentEncoding() 
getDate () 
getExpiration () 
getLastModified() 

7. Наконец, для доступа к данным указанного ресурса следует вызвать метод 
get Inpu tStream (), предоставляющий поток ввода для чтения данных. (Это 
тот же поток ввода, который возвращается методом openStream () из клас­
са URL.) Существует также метод getContent (),но он не такой удобный. 
Для обработки содержимого стандартных типов, например текста (text/ 
plain) или изображений (image/gif), придется воспользоваться классами 
из пакета сот. sun. Кроме того, можно зарегистрировать собственные обра­
ботчики содержимого, но они в данной книге не рассматриваются . 

• НА ЗАМЕТКУ! Некоторые разработчики, пользующиеся классом URLConnection, ошибочно 
считают, что методы getinputStream() и getOutpuStream() аналогичны одноименным 
методам из класса Socket. Это не совсем так. Класс URLConnection способен выполнять 
много других функций, в том числе обрабатывать заголовки запросов и ответов. Поэтому ре­

комендуется строго придерживаться указанной выше последовательности действий. 

Рассмотрим методы из класса URLConnection более подробно. В нем имеется 
ряд методов, задающих свойства соединения еще до подключения к веб-серверу. 

Наиболее важными среди них являются методы setDoinput () и setDoOutput (). 
По умолчанию при соединении предоставляется поток ввода для приема данных 

с веб-сервера, но не поток вывода для передачи данных. Чтобы получить поток 

вывода (например, с целью разместить данные на неб-сервере), необходимо сде­

лать следующий вызов: 

connection.setDoOutput(true); 

Далее можно установить ряд заголовков запроса и послать их веб-серверу 

в составе единого запроса. Ниже приведен пример заголовков запроса. 

GET www.server.com/index.html НТТР/1.0 
Referer: http://www.somewhere.com/links.html 
Proxy-Connection: Keep-Alive 
User-Agent: Mozilla/5.0 (Xll; U; Linux i686; en-US; rv:l.8.1.4) 
Host: www.server.com 
Accept: text/html, image/gif, image/jpeg, image/png, */* 
Accept-Language: en 
Accept-Charset: iso-8859-1,*,utf-8 
Cookie: orangemilano=l92218887821987 

Метод setifModifiedSince () служит для уведомления о том, что требуется 
получить только те данные, которые были изменены после определенной даты. 



Глава 4 • Работа в сети 

Наконец, с помощью метода setRequestProperty () можно установит~. пару 
"имя-значение", имеющую определенный смысл для конкретного протокола. 

Формат заголовка запроса по сетевому протоколу НТГР описан в документе RFC 
2616. Некоторые его параметры не очень хорошо документированы, поэтому 
за дополнительными разъяснениями зачастую приходится обращаться к опыту 

других программистов. Так, для доступа к защищешюй паролем веб-странице 

необходимо выполнит~. следующие действия. 

1. Составить символьную строку из имени пол1,:ювателя, двоеточия и пароля: 

String input = username + ":" + password; 

2. Перекодировать полученную в итоге символ~.ную строку по алгоритму ко­
дирования Base64, как пока:ыно ниже. (Эгот алгоритм преобразует после­
довател~.ность байтов в последовательносл, символов в коде АSСП.) 

Base64.Encoder encoder = Base64.getEncoder(); 
String encoding = encoder.encodeToString( 

input.getBytes(StandardCharsets.UTF_8) ); 

3. Вы:шать метод setRequestProperty () с именем свойства "Authorization" 
и значением "Basic " + encoding, как показа1ю ниже. 

connection.setRequestProperty("Authorization", 
"Basic" + encoding); 

СОВЕТ. Здесь рассматривается способ обращения к защищенной паролем веб-странице. Для 

доступа к защищенному паролем ПР-файлу применяется совершенно другой подход. В этом 
случае достаточно сформировать URL следующего вида: 

ftp://ИНЯ"_noльзosaтeля:napoль@ftp.вaш_cepsep.com/puЬ/file.txt 

После вызова метода connect () можно запросить данные заголовка из отве­
та. Рассмотрим сначала способ перечисления всех полей :ыголовка. Создатели 

рассматриваемого здесь класса посчитали нужным создать собственный способ 

перебора полей. Так, в результате вызова приведенного ниже метода получается 

11-й ключ заголовка, причем нумерация начинается с единицы! В итоге во:~вра­

щается пустое значение null, если /1 равно нулю или больше общего количества 

полей заголовка. 

String key = connection.getHeaderFieldKey(n); 

Но для определения количества полей не предусмотрено никако­

го другого метода. Чтобы перебрап, все поля, приходится вызывать метод 

getHeaderFieldKey () до тех пор, пока не будет получено пустое значение null. 
Аналогично при вызове следующего метода во:шращается значение из 11-го поля: 

String value = connection.getHeaderField(n); 

Метод getHeaderFields () возвращает объект типа Мар с полями :~аголовка: 

Map<String,List<String>> headerFields = 
connection.getHeaderFields(); 

В качестве примера ниже приведен ряд полей :ыголовка из типичного ответа 

на запрос по сетевому протоколу НТГР. 



4.3. Получение данных из Интернета 

Date: Wed, 27 Aug 2008 00:15:48 GMT 
Server: Apache/2.2.2 (Unix) 
Last-Modified: Sun, 22 Jun 2008 20:53:38 GMT 
Accept-Ranges: bytes 
Content-Length: 4813 
Connection: close 
Content-Type: text/html 

• 
НА ЗАМЕТКУ! Получить в ответ строку состояния [например, "НТТР/1.1 200 ОК"] можно, 
сдел а в вызов connection. getHeaderField (О) ил и headerFields . get (null) . 

Для удобства разработки предусмотрены шесть методов, получающих значе­

ния из наиболее употребительных полей заголовка и приводящие эти значения 

к соответствующим числовым типам по мере необходимости. Все эти удобные 

методы перечислены в табл. 4.1. В методах, возвращающих л~ачения типа long, 
отсчет количества возвращаемых секунд начинается с полуночи 1 января 1970 г. 

Таблица 4.1. Удобные методы, получающие значения полей заголовка из ответа на запрос 

Имя поля (ключа) Имя метода Возвращаемое значение 

Date getDate long 
Expires getExpiration long 
Last-Modified getLastмodif ied long 
Content-Length getContentLength int 
Content-Тype getContentТype String 
Content-Encoding getContentEncoding String 

В примере программы из листинга 4.6 предоставляется возможность поэкспе­
риментироват1, с соединениями по URL. Запустив программу, вы можете указать 
в командной строке конкретный URL, имя пользователя и пароль: 

java urlConnection.URLConnectionTest http://www.вaш_cepвep.com 
польэова~ель пароль 

В итоге программа выведет на экран следующее. 

• Все ключи и значения из полей заголовка. 

• Значения, во:шращаемые шестью служебными методами доступа к наибо­

лее употребительным полям заголовка (см. табл. 4.1). 

• Первые 1 О символьных строк из :ыпрашиваемого ресурса. 

Листинг4.6. Исходный код из файла urlConnection/URLConnectionTest. java 

1 package urlConnection; 
2 
3 import java.io.*; 
4 import java.net.*; 
5 import java.nio.charset.*; 
6 import java.util.*; 
7 
8 /** 
9 * В этой программе устанавливается соединение по 



Глава 4 • Работа в сети 

10 * заданному URL и отображаются данные заголовка из 

11 * получаемого ответа, а также первые 10 строк 

12 * запрашиваемых данных. Для этого в командной строке 

13 * следует указать конкретный URL, дополнительно имя 

14 * пользователя и пароль (для элементарной аутентификации 

15 * по сетевому протоколу HTTPI 
16 * @version 1.12 2018-03-17 
17 
18 

* @author Сау Horstmann 
*/ 

19 puЫic class URLConnectionTest 
20 { 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

puЬlic static void main(String[] args) 
{ 

try 
{ 

String urlName; 
if (args.length > 0) urlName = args[O]; 
else urlName = "http://horstmann.com"; 

var url = new URL(urlName); 
URLConnection connection = url.openConnection(); 

32 //установить имя пользователя и пароль, если они 

33 // указаны в командной строке 

34 
35 if largs.length > 21 
36 { 
37 Striпg userпame = args[l]; 
38 Striпg password = args[2]; 
39 Striпg iпput = username + ":" + password; 
40 Base64.Eпcoder encoder = Base64.getEпcoder(); 
41 Striпg encodiпg = eпcoder.eпcodeToString( 
42 input.getBytes(StandardCharsets.UTF_8) 1; 
43 coппection. setRequestProperty ( "Authorization", 
44 "Basic" + eпcoding); 
45 
46 
47 connectioп.connect(); 

48 
49 // вывести поля заголовка 
50 
51 Map<Striпg, List<String>> headers = 
52 connectioп.getHeaderFields{); 

53 for (Map.Entry<Striпg, List<String>> entry 
54 headers.entrySet()) 
55 
56 Striпg key = eпtry.getKey(); 
57 for (Striпg value : entry.getValue() 1 
58 System.out.println{key + ": "+ value); 
59 
60 
61 // вывести значения полей заголовка, 
62 //используя удобные методы 

63 
64 System.out.println("----------"); 
65 System.out.printlп("getCoпtentType: " 
66 + connectioп.getContentType()); 



4.3. Получение данных из Интернета 

67 System.out.println("getContentLength: " 
68 + connection.getContentLength() ); 
69 System.out.println("getContentEncoding: " 
70 + connection.getContentEncoding() ); 
71 System.out.println("getDate: " 
72 + connection.getDate() ); 
73 System.out.println("getExpiration: " 
74 + connection.getExpiration() ); 
75 System.out.println("getLastModifed: " 
76 + connection.getLastModified() ); 
77 System.out.println("----------"); 
78 
79 String encoding = connection.getContentEncoding(); 
80 if (encoding == null) encoding = "UTF-8"; 
81 try (var in = new Scanner( 
82 connection.getinputStream(), encoding)) 
83 
84 // вывести первые десять строк 
85 // запрашиваемого содержимого 
86 
87 for (int п = 1; in.hasNextLine() && п <= 10; n++) 
88 System.out.println(in.nextLine() ); 
89 if (in.hasNextLine()) System.out.println(" ... "); 
90 
91 
92 catch (IOException е) 

93 { 
94 e.printStackTrace(); 
95 
96 
97 

java.net.URL 1.0 

• InputStream openStream() 

Открывает поток ввода для чтения данных из ресурса. 

• URLConnection openConnection() 

Возвращает объект типа URLConnection, управляющий соединением с ресурсом. 

java.net.URLConnection 1.0 

• void setDolnput (boolean doinput) 

boolean getDolnput () 

Если задано логическое значение true параметра doinput, пользователь может прини­
мать вводимые данные из текущего объекта типа URLConnection. 

• void setDoOutput (boolean doOutput) 

• boolean getDoOutput () 

Если задано логическое значение true параметра doOutput, пользователь может переда­
вать выводимые данные в текущий объект типа URLConnection. 



Глава 4 • Работа в сети 

java. net. URLConnection l . О /продолжение/ 

• void setifМodifiedSince (long time) 

• lonq qetifМodifiedSince () 

Свойство ifМodifiedSince настраивает данный объект типа URLConnection на извле­
чение только тех данных, которые были изменены после указанного момента времени. Время 

задается в секундах, начиная с полуночи 1 января 1970 г. по Гринвичу. 

• void setConnectTillllilout (int ti.meout) 5. О 

• int getConnectTillllilout () 5. О 

Устанавливают или возвращают величину времени ожидания (в миллисекундах! для соеди­
нения. Если время ожидания истечет до установления соединения, метод connect () из 

соответствующего потока ввода сгенерирует исключение типа SocketTimeoutException. 

• void setReadTimeout (int ti.meout) 5. О 

• int qetReadTimeout () 5. О 

Устанавливают или возвращают величину времени ожидания (в миллисекундах] для чтения 
данных. Если время ожидания истечет до успешного завершения операции чтения, метод 

read () сгенерирует исключение типа SocketTimeoutException. 

• void setRequestProperty(String key, String value) 

Устанавливает значение в поле заголовка. 

• Мap<String, List<Strinq>> getRequestProperties () 1. 4 

Возвращает отображение со свойствами запроса. Все свойства по одному и тому же ключу 

вносятся в список. 

• void connect () 

Устанавливает соединение с удаленным ресурсом и получает данные заголовка из ответа. 

• Мap<String, List<Strinq>> getHeaderFields () 1. 4 

Возвращает отображение с полями заголовка из ответа. Все свойства одного и того же ключа 

вносятся в список. 

• String getнeaderFieldКey (int n) 

Возвращает ключ n-го поля заголовка из ответа или пустое значение null, если п меньше 
или равно нулю или превышает количество полей. 

• String qetHeaderField(int n) 

Возвращает значение n-го поля заголовка из ответа или пустое значение null, если n мень­
ше или равно нулю или превышает количество полей. 

• int getContentLength () 

Возвращает длину доступного содержимого или -1, если длина неизвестна. 

• Strinq qetContentТype () 

Возвращает тип содержимого, например, text/plain или image/gif. 

• Strinq qetContentEncoding () 

Возвращает кодировку содержимого, например gzip. Применяется редко, потому что ис­
пользуемая по умолчанию кодировка не всегда указывается в поле identi ty заголовка 
Content-Encoding. 

• long getDate () 

• long getExpiration() 

• long getLastмodifed () 

Возвращают время создания, последней модификации ресурса или время, когда истекает срок 

действия ресурса. Время указывается в секундах, начиная с 1 января 1970 г. по Гринвичу. 



4.З. Получение данных из Интернета 

j ava. net. URLConnection 1 . О {окончание/ 

• InputStream getinputStream() 

• OutputStream getOutputStream() 

Возвращают поток ввода для чтения данных из ресурса или вывода для записи данных в ресурс. 

• Object getContent () 

Выбирает подходящий обработчик содержимого для чтения данных из ресурса. Этот метод 

вряд ли полезен для чтения данных стандартного типа. например, text/plain или image/ 
gif, кроме тех случаев, когда требуется создать собственный обработчик этих типов данных. 

4.З.З. Отправка данных формы 

В предыдущем разделе описывался способ приема данных с веб-сервера, 

в этом разделе рассматривается способ передачи данных из клиентской програм­

мы на веб-сервер, а также другим программам, которые может вызывать веб-сер­

вер. Для передачи данных из брау:~ера на веб-сервер нужно заполнить форму, 

а1ылоrичную приведенной на рис. 4.7. 

+- usps com 

i':JUSPS.coм· *·ФВ"* ........ 

Look Up а ZIP Code"' 

ZIP Code "' Ьу Address 

~--

~USPS.COМ 

Рис. 1..7. НТМL-форма 

~-­--

'"'" 

v 1 

Когда пол1.зо11ател1, щелкает на кнопке Submit (Отправить), данные, введенные 

в текстовых полях, а также сведения о состоянии флажков и кнопок-переклю­

чателей передаются на неб-сервер. Получив данные, введенные пол1,зователем 

в форме, веб-сер1~ер вызывает программу для их последующей обработки. 



Глава 4 • Работа в сети 

Существует целый ряд технологий, по:~воляющих неб-серверу вы :швать про­

граммы для обработки данных. Наиболее часто для этой цели используют­

ся сервлеты на Java, платформы JavaServer Faces и Microsoft ASP (Active Server 
Pages - активные серверные страницы), а также сценарии CGI (Comnюn Gateway 
Interface - общий шлюзовой интерфейс). 

Программа, выполняющаяся на стороне сервера, обрабатывает данные, вве­

денные пользователем в форме, и формирует новую НТМL-страницу, которую 

веб-сервер передает обратно браузеру. Последовательность действий по обработ­

ке данных из формы схематически пока3ана на рис. 4.8. Ответная страница, сфор­
мированная сервером, может содержать новые данные (например, результаты 

поиска) или только подтверждение о получении введенных данных. Здесь и да­

лее не рассматриваются вопросы реали3ации серверных программ, а оснонное 

внимание уделяется написанию клиентских программ, предназначенных для нза­

имодействия с готовыми сценариями. 

Страница 

с формой 

ватель 

щелкает 

на кнопке 

Отправить 

Данные 

формы 

.-----"----. 6 Клиентnосылае 
Клиентский 

веб-браузер 

данные формы 

Ф Клиент ...._ ____ _, 0 Сереер 
отображает ответ возвращает ответ 

О Сценарий 
выдает 

----.ответ 

С) Сервер 

запускает ----~-' 
сценарий 

НТТР-сервер 

Сервер 

Рис. 1..8. Порядок обработки данных в серверной программе 

При передаче данных на веб-сернер не имеет никакого 3начения, будет ли ис­

пользонан для их интерпретации сценарий CGI, сервлет или программа другого 
типа. Клиент посылает данные на веб-сернер в стандартном формате, а неб-сер­

вер должен сам найти ту программу, которая выдаст нужный ответ. 

Передача данных на неб-сервер может осущестнляться по командам GET 

и POST. При выдаче команды GET параметры запроса указываются в конце URL 
в следующем формате: 

httр://хост/путь?запрос 

Каждый параметр имеет вид имя=значение. Параметры разделяются зна­

ками &. Значения параметров кодируются по схеме кодирования URL, которая 
подчиняется следующим правилам. 



4.3. Получение данных из Интернета 

• Символы от А до Z, от а до z, от О до 9, а также знаки . , - , - и остаются 

без изменения. 

• Все пробелы заменяются знаками +. 

• Все остальные символы кодируются в кодировке UTF-8, а каждый байт пре­
образуется в вид %UV, где UV - двухзначное шестнадцатеричное число. 

Например, название города и штата San Francisco, СА передается в закодиро­
ванном виде как San+Francisco%2c+CA. Здесь шестнадцатеричное число 2с (или 
десятичное 44) обозначает запятую в кодировке UTF-8. Благодаря такому способу 
кодирования промежуточные программы не будут путаться в пробелах и смогут 

правильно интерпретировать другие символы. 

На момент написания данной книги веб-сайт Google Maps (www.google.com/ 
maps) принимал параметры запроса с именами q и hl, значения которых опре­
деляют местоположение и естественный язык в ответе. Чтобы получить карту 
местности по адресу Маркет-стрит, 1, г. Сан-Франциско на немецком языке, не­

обходимо указать следующий URL: 
http://www.google.com/maps?q=l+Market+Street+San+Francisco&hl=de 

Очень длинные строки запроса могут выглядеть непривлекательно в большин­

стве браузеров, а в старых браузерах и промежуточных серверах накладывает­

ся ограничение на количество символов, включаемых в запрос по команде GET. 
Именно поэтому запрос по команде POST чаще всего употребляется для форм, 
содержащих немало данных. Параметры запроса по команде POST не следует 
включать в состав URL. Вместо этого следует получить поток вывода из объекта 
типа URLConnection и записать в него пары "имя-значение". Кроме того, значе­
ния, включаемые в URL, необходимо закодировать, разделив их знаком &. 

Рассмотрим этот процесс более подробно. Для передачи данных серверной 

программе сначала создается объект типа URLConnection: 

var url = new URL("http://xocт/пyть"); 
URLConnection connection = url.openConnection(); 

Затем вызывается метод setDoOutput (),чтобы установить соединение для пе­
редачи данных: 

connection.setDoOutput(true); 

Далее вызывается метод getOutputStream (),чтобы получить поток вывода. 
Для передачи текстовых данных поток вывода удобно инкапсулировать в объект 

типа PrintWriter следующим образом: 

var out = new PrintWriter(connection.getOutputStream(), 
StandardCharsets.UTF 8); 

Теперь можно передать данные на сервер, как показано ниже. 

out.print(namel + "=" + URLEncoder.encode(valuel, "UTF-8") + "&"); 
out.print(name2 + "=" + URLEncoder.encode(value2, "UTF-8")); 

После передачи данных поток вывода закрывается следующим образом: 

out.close(); 

Наконец, вызывается метод getinputStream (),чтобы прочитать ответ с сервера. 



Глава 4 • Работа в сети 

Рассмотрим конкретный практический пример. Веб-сайт, доступный по адре­

су !1 t tps: / /too ls. usps. сот/ z i p-code-lookup . htrn?byaddress, содержит стра­
ницу с формой для поиска почтового индекса по введенному адресу улицы (см. 

рис. 4.7). Чтобы воспользоваться 'ПОЙ формой в программе на Java, следует знал, 
URL и параметры запроса по команде POST. 

Эту информацию можно было бы получил., просмотрев код НТМL-разметки 

формы, но ее, как правило, проще "выудип,'' И3 запроса с помощью сетевого 

монитора, входящего в набор инструменталы1ых средств веб-разработки, пре­

доставляемый в большинстве браузеров. В качестве примера на рис. 4.9 при11е­
ден моментальный снимок, сделанный сетевым монитором брау:1ера Firefox при 
передаче на обработку данных выбранному для данного примера веб-сайrу . На 

этом моментальном снимке можно выявить URL, параметры и значения, ука:ы11-
11ые при передаче данных на обработку. 

Q Developer Tools • ZIP Code '" Lookup j U ... sps.com/zip-code-lookup.htm?byaddress - - х 

[i:1 О lnspector [L] Console D Debugger @; Performance .- Network » бJ .•• 
11 IJ Pl!rslst L09s Г О1sаЫе cache No throttllng : Н .. : 

дll HTML CSS JS XHR Fonts lmages Medl• WS Other 

Status Mel:hod ~ Headers Cookies Params Response limings Stack Тгасе Security 

@; Опе request 2• 

f 1lte1- t::qнe~t р.н ametE 1· 

Form data 
comp,nyName: 

addressl. 1 +Maln+Street 
add1ess2 

city: Sdn+Fra1юsco 

state: СА 

Zlp: 

Рис. '4.9. Текущий ко11троль передачи НТМL-формы на обработку 

При передаче данных формы на обработку в НТТР-заголо1юк включается тип 

содержимого и его длина: 

Content-Type: appl i cation/x-www-form-urlencoded 

Данные можно передать и в других форматах . Так, если данные посылаются 

в формате JSON (JavaScript Object Notation - представление объектов JavaScript), 
в НТТР-заголовке запроса по команде POST должен быть ука:1а11 тип содержимо­

го a pp licat i on /json, а также его длина, как пока:1ано в следующем примере: 

Cont e nt - Le ngth: 124 

В листинге 4.7 приведен исходный код примера программы, посылающей 
данные на сервер по команде POST. В файл свойств с расшире11ием . propert.i e s 
шюдятся следующие данные: 

u r l =h t t ps : // t ool s . usp s.com/too l s / app/z i p l oo kup / z i pByAddress 
Use r - Age nt=HTT Pi e / 0 . 9 . 2 



addressl=l Market Street 
address2= 
city=San Francisco 
state=CA 
companyName= 

4.3. Получение данных из Интернета 

Программа удаляет элементы url и User-Agent, а 11се остальные элементы 

направляет методу doPost (). В методе doPost () сначала устананливается сое­
динение, а затем пользовательский посредник. (Служба определения почтовых 

индексов не обрабатывает устанавливаемый по умолчанию параметр запроса 

User-Agent, содержащий строку "Java", вероятно, потому, что почтовая служба 
не намерена обслуживат~, программные запросы.) 

Далее вызьшается метод setDoOutput ( true), открывается поток вывода и пе­
речисляются все ключи и значения. Для каждой пары "ключ-значение" по оче­

реди передаются ключ, знак =, значение и разделител1,ный знак &: 

out .print (key); 
out .print ( '='); 
out.print(URLEncoder.encode(value, StandardCharsets.UTF_8)); 
if (дополнительные пары "ключ-значение") out .print ( ' & '); 

Взаимодействие с сервером фактически происходит при переходе от запи­

си к чтению любой части ответа. В заголовке Con ten t-Length задается длина 
выводимых данных, а в заголовке Content-Type - тип application/x-www­
form-urlencoded, если только не был указан другой тип содержимого. Заголов-· 
ки и данные запроса посылаются серверу. Затем читаются заголовки и данные 

ответа сервера, которые могут быть запрошены. В данном примере программы 

такой переход от записи к чтению происходит при вызове метода connection. 
getContentEncoding(). 

Следует, однако, иметь в виду, что если при выполнении серnерной програм­

мы возникнет ошибка, то вызов метода connection. get. InputStream () приведет 
к исключению типа FileNotFoundException. Тем не менее сервер продолжит 
передачу данных, отправив НТМL-страницу с сообщением об ошибке. Обычно 

это сообщение "Error 404-page not found", уведомл~1ющее о том, что данная 
страница не найдена. Для фиксации страницы с этим сообщением об ошибке 

следует вызвать метод getErrorStream (): 

InputStream err = connection.getErrorStream(); 

НА ЗАМЕТКУ! Метод getErrorStream (). а также ряд других методов, применяемых в рас­
сматриваемом здесь примере программы, относятся к классу HttpURLConnection, про­
изводному от класса URLConnection. Если сделать запрос по URL, начинающемуся с пре­
фикса http: / / или https: //,то полученный в итоге объект соединения можно привести 
к типу HttpURLConnection. 

При передаче данных по команде POST на сервер серверная программа может 
переадресовать его по другому URL для получения искомой информации. Сервер 
может сделать это потому, что искомая информация 11аходится в каком-нибудь 

другом месте. С другой стороны, он может предоставип, отмеченный :щкладкой 

URL. Как правило, класс HttpURLConnection может осуществить переадресацию. 



Глава 4 • Работа в сети 

НА ЗАМЕТКУ! Если при переадресации требуетсR переслать сооkiе-файлы из одного сайта 
на другой, с этой целью можно настроить глобальный обработчик сооkiе-файлов следующим 

образом: 

CookieHandler.setDefault(new CookieManager(null, 
CookiePolicy.ACCEPT_ALL) ); 

В этом случае сооkiе-файлы будут надлежащим образом включены в переадресацию. 

Несмотря на то что переадресация, как правило, осуществляется автоматиче­

ски, иногда это приходится делать вручную. Автоматическая переадресация меж­

ду сетевыми протоколами НТТР и HTTPS не поддерживается из соображений 
безопасности. Она может не состояться и по менее ясным причинам. Например, 

в прежней версии службы определения почтовых индексов обычно применялась 

переадресация. Напомним, что параметр запроса User-Agent был установлен ра­
нее таким образом, чтобы почтовая служба не посчитала, что запрос был сделан 

через прикладной интерфейс Java АР!. И хотя в первоначальном запросе можно 
задать друrую строку для пользовательского посредника, такая настройка не ис­

пользуется при автоматической переадресации, при которой всегда посылается 

типичная строка пользовательского посредника, содержащая строку 11 J а va 11 • 

В подобных случаях переадресацию можно осуществить вручную. Прежде 

чем подключиться к серверу, необходимо выключить режим автоматической пе­

реадресации следующим образом: 

connection.setinstanceFollowRedirects(false); 

Сделав запрос, следует получить код ответа: 

int responseCode = connection.getResponseCode(); 

и проверить, относится ли он к одному из перечисленных ниже кодов. 

HttpURLConnection.HTTP_MOVED_PERМ 

HttpURLConnection.HTTP_MOVED_TEMP 
HttpURLConnection.HTTP_SEE_OTHER 

В таком случае следует сначала получить заголовок ответа Loca t i on, а за­
тем URL для переадресации. Далее необходимо разорвать текущее соединение 
и установить другое соединение по новому URL, как показано ниже. 
String location = connection.getHeaderFieldl"Location"); 
if (location != null) 
( 

URL base = connection.getURL(); 
connection.disconnect(); 
connection (HttpURLConnection) 

new URL(base, location) .openConnection(); 

Приемы, демонстрируемые в рассматриваемой здесь программе, могут ока­

зап,ся полезными всякий раз, когда требуется запросить информацию из суще­
ствующего веб-сайта. Для этого достаточно выяснить сначала параметры, кото­

рые требуется послать в запросе, а затем удалить дескрипторы НТМL-разметки 

и прочую ненужную информацию из полученного ответа. 



4.3. Получение данных из Интернета 

Листинг4.7. Исходный код из файла post/PostTest. java 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 

package post; 

import java.io.*; 
import java.net.*; 
import java.nio.charset.*; 
import java.nio.file.*; 
import java.util.*; 

/** 
* В этой программе демонстрируется применение 

* класса URLConnection для формирования запроса 
* по команде POST 
* @version 1.42 2018-03-17 
* @author Сау Horstmann 
*/ 

puЬlic class PostTest 
{ 

puЫic static void main(String[] args) 
throws IOException 

String propsFilename = args.length > О ? args[O] 
: "post/post.properties"; 

var props = new Properties(); 
try (InputStream in = Files.newinputStream( 

Paths.get(propsFilename))) 

props. load ( in) ; 

String urlString props.remove("url") .toString(); 
Object userAgent props.remove("User-Agent"); 
Object redirects props.remove("redirects"); 
CookieHandler.setDefault(new CookieManager(null, 

CookiePolicy.ACCEPT_ALL)); 
String result = doPost(new URL(urlString), props, 
userAgent null? null : userAgent.toString(), 
redirects == null ? -1 : Integer.parseint( 

redirects.toString()) ); 
System.out.println(result); 

/** 
* Сделать НТТР-запрос по команде POST 
* @param url Конкретный URL для отправки запроса 
* @param nameValuePairs Параметры запроса 
* @param userAgent Пользовательский посредник или 
* пустое значение null, если это 

* 
* @param redirects 
* 
* 

посредник по умолчанию 

Количество последующих 

переадресаций вручную или 

значение -1, если переадресация 

* производится автоматически 

* @return Данные, возвращаемые из сервера 

*/ 
puЫic static String doPost(URL url, 



Глава 4 • Работа в сети 

55 Map<Object, Object> nameValuePairs, 
56 String userAgent, int redirects) 
57 throws IOException 
58 
59 var connection = (HttpURLConnection) 
60 url.openConnection(); 
61 if (userAgent 1= null) 
62 connection.setRequestProperty( 
63 "User-Agent", userAgent); 
64 if (redirects >= 0) 
65 connection.setinstanceFollowRedirects(false); 
66 
67 connection.setDoOutput(true); 
68 
69 try (var out = new PrintWriter( 
70 connection.g~tOutputStream() )) 
71 
72 var first = true; 
73 for (Map.Entry<Object, Object> pair 
74 nameValuePairs.entrySet()) 
75 
76 if (first) first = false; 
77 else out.print('&'); 
78 String name = pair.getKey() .toString(); 
79 String value = pair.getValue().toString(); 
80 out.print(name); 
81 out.print('='); 
82 out.print(URLEncoder.encode(value, 
83 StandardCharsets.UTF 8) ); 
84 
85 
86 String encoding = connection.getContentEncoding(); 
87 if (encoding == null) encoding = "UTF-8"; 
88 
89 if (redirects > 0) 
90 { 
91 int responseCode = connection.getResponseCode(); 
92 if (responseCode == HttpURLConnection 
93 .НТТР MOVED PERM 
94 1 1 responseCode == HttpURLConnection 
95 . НТТР MOVED ТЕМР 
96 1 1 responseCode == HttpURLConnection 
97 .НТТР SEE OTHER) 
98 
99 String location connection 
100 .getHeaderField("Location"); 
101 if (location != null) 
102 { 
103 URL base = connection.getURL(); 
104 connection.disconnect(); 
105 return doPost(new URL(base, location), 
106 nameValuePairs, userAgent, 
107 redirects - 1); 
108 
109 
110 
111 else if (redirects 0) 



4.3. Получение данных из Интернета 

112 
113 throw new IOException("Too many redirects"); 
114 
115 
116 var response = new StringBuilder(); 
117 try (var in = new Scanner( 
118 connection.getinputStream(), encoding)) 
119 
120 while (in.hasNextLine()) 
121 { 
122 response.append(in.nextLine() ); 
123 response.append("\n"); 
124 
125 
126 catch (IOException е) 

127 { 
128 InputStream err = connection.getErrorStream(); 
129 if (err == null) throw е; 

130 try (var in = new Scanner(err)) 
131 { 
132 response.append(in.nextLine() ); 
133 response.append("\n"); 
134 
135 
136 
137 return response.toString(); 
138 
139 

java. net. HttpURLConnection 1. О 

• InputStream getErrorStream() 

Возвращает поток ввода, из которого читаются сообщения сервера об ошибках. 

java.net.URLEncoder 1.0 

• static String encode (String s, String encoding) 1. 4 

Возвращает строку s, закодированную в формате URL с помощью заданной кодировки сим­
волов. !Рекомендуется указывать кодировку "UTF-8 11 .I При кодировании в формате URL 
символы 'A'-'Z', 'a'-'z', '0'-'9'. '-',' ','.'и,_, оставляются без изменения. 

Пробелы заменяются знаками '+',а все остальНЬ1е символы - последовательностями коди­
рованных байтов в форме "%ХУ'', где ОхХУ- шестнадцатеричное значение байта. 

java.net.URLDecoder 1.2 

• static string decode (String s, String encoding) 1 . 4 

Возвращает форму строки s, закодированной в формате URL и декодированной с помощью 
заданной кодировки символов. 



Глава 4 • Работа в сети 

4.4. НТТР-клиент 
Класс URLConnection был разработан еще до того, как сете1юй протокол НТТР 

стал универсальным для Интернета. В этом классе поддерживается целый ряд се­

тевых протоколов, хотя поддержка протокола НТТР в нем реализована не очень 

удобно. Когда было принято решение о поддержке сетевого протокола НТТР/2, 

то стало ясно, что лучше предоставить современный клиентский интерфейс вме­

сто того, чтобы переделывать уже существующий прикладной интерфейс API. 
Так, в классе HttpClient предоставляется более удобный прикладной интерфейс 
АР! для поддержки сетевого протокола НТТР/2. Начиная с версии Java 11 класс 
Ht tpClient входит в состав пакета j ava. net. ht tp. 

НА ЗАМЕТКУ! В версиях Java 9 и 1 О прикладные программы следует запускать на выполне­
ние из командной строки со следующим параметром: 

--add-modules jdk.incuЬator.httpclient 

В прикладном интерфейсе АР! для НТТР-клие1rrа предоставляется более про­

стой механизм подключения к веб-серверу, чем в классе URLConnection, где этот 
процесс дотошно выполняется в течение целого ряда стадий. НТТР-клиент, реали­

зуемый средствами класса HttpClient, может выдавать запросы и получать ответы 
от неб-сервера. Чтобы получить такой клиент, достаточно сделать следующий вызов: 

HttpClient client = HttpClient.newHttpClient() 

Если требуется сконфигурировать клиент, то можно восполь:юваться при­

кладным интерфейсом API его построителя, как показано ниже. 

HttpClient client = HttpClient.newBuilder() 
.followRedirects(HttpClient.Redirect.ALWAYS) 
.build(); 

Подобным образом получается построитель, вызываются методы для специ­

алыюй настройки создаваемого клиента, а затем вызывается метод build () с це­

лью завершить весь процесс построения. Это типичный шаблон для построения 

неизменяемых объектов. 

По такому же шаблону построения составляются запросы. В качестве приме­

ра ниже демонстрируется составление НТТР-запроса по команде GET. 

HttpRequest request = HttpRequest.newBuilder() 
.uri(new URI("http://horstmann.com")) 
.GET () 
.build (); 

Универсальный идентификатор ресурса (URI) в сетевом протоколе Н1ТР рав­
нозначен URL. Но в Java предоставляется класс URL с методами, фактически уста­
навливающими соединение с веб-ресурсом по заданному URL, тогда как класс 
URI обеспечивает лишь необходимый синтаксис (схему, хост, порт, путь, запрос, 
фрагмент и т.д.). 

Для составления НТТР-запроса по команде POST требуется "издатель тела за­

проса", где запрашиваемые данные преобразуются в пересылаемые данные. Име­

ются издатели тела :1апроса для символьных строк, массивов байтов и файлов. 



4.4. НТТР-клиент 

Так, если запрос составляется в формате JSON, издателю его тела достаточно пре­
доставить символьную строку в формате JSON, как показано ниже. 
HttpRequest request = HttpRequest.newBuilder() 

.uri(new URI(url)) 

. header ( "Content-Type", "application/j son") 

.POST(HttpRequest.BodyPuЬlishers 

.ofString(jsonString)) 

.build(); 

К сожалению, в рассматриваемом здесь прикладном интерфейсе АР! не под­

держивается требующееся форматирование общеупотребительных типов со­

держимого запросов. В приведенном далее примере программы из листинга 

4.8 демонстрируется применение издателей тела запроса для обработки данных 
формы и выгрузки файлов. 

Отправляя запрос на веб-сервер, приходится указывать клиенту порядок об­

работки получаемого ответа. Если же требуется отравить лишь тело запроса 

в виде символьной строки, это можно сделать с помощью метода HttpResponse. 
BodyHandlers. ofString () следующим образом: 

HttpResponse<String> response = client.send(request, 
HttpResponse.BodyHandlers.ofString() ); 

Класс Ht tpResponse является обобщенным, а параметр его типа обозначает 
тип тела запроса. Получить тело запроса в виде символ1,ной строки можно сле­

дующим образом: 

String bodyString = response.body(); 

Имеются и другие обработчики тела ответа, получающие ответ в виде массива 

байтов или потока ввода. В частности, метод BodyHandlers. ofFile ( filePa th) 
возвращает обработчик, сохраняющий отнет н заданном файле, а метод 
BodyHandlers. ofFileDownload (directoryPath) сохраняет ответ в заданном 
каталоге, используя имя файла из заголовка Content-Disposi tion. Наконец, 
обработчик, возвращаемый из метода BodyHandlers. discarding (),просто от­
вергает полученный ответ. 

Обработка содержимого ответа не обеспечивается как составная част~, рассма­

триваемого здесь прикладного интерфейса API. Так, если ответ получается в фор­
мате JSON, для синтаксического анализа его содержимого потребуется отдельная 
библиотека, поддерживающая обработку данных формата JSON. 

В объекте типа HttpResponse предоставляется также код состояния и заголов­
ки ответов: 

int status = response.statusCode(); 
HttpHeaders responseHeaders = response.headers(); 

Объекты типа HttpHeaders можно преобразовать в отображение, как демон­
стрируется в приведенной ниже строке кода. В качестве значений в таком отобра­

жении служат списки, поскольку в сетевом протоколе НТТР для каждого ключа 

допускается несколько значений. 

Map<String, List<String>> headerMap = responseHeaders.map(); 

Если же требуется значение для конкретного ключа и заранее известно, что 

у него не может быть несколько :шачений, следует вызвать метод firstValue (), 



Глава 4 • Работа в сети 

как показано ниже. В ответ получается конкретное значение, а если оно не пре­

доставлено - пустое необязательное значение. 

Optional<String> lastModified = 

headerMap.firstValue("Last-Modified"); 

Огветы можно обрабатывать и асинхронно. Для этого при построении клиен­

та предоставляется исполнитель: 

ExecutorService executor = Executors.newCachedThreadPool(); 
HttpClient client = HttpClient.newBuilder() 

.executor(executor) .build(); 

Сначала составляется запрос, а затем для клиента вызывается метод 

sendAsync (}, как показано ниже. В итоге получается завершаемое будущее дей­
ствие типа CompletaЫeFuture<HttpResponse<T>>, где Т - тип обработчика 

тела ответа. О том, как применять прикладной интерфейс API для завершаемых 
будущих действий, см. в главе 12 первого тома настоящего издания. 
HttpRequest request = HttpRequest.newBuilder() .uri(uri) 

.GET() .build(); 
client.sendAsync(request, 

HttpResponse.BodyHandlers.ofString()) 
thenAccept(response -> ... ); 

СОВЕТ. Чтобы активизировать режим протоколирования для НТТР-клиента типа HttpClient. 
достаточно ввести следующую строку кода в файл net.properties свойств комплекта JDK: 

jdk.httpclient.HttpClient.log=all 

Вместо параметра all можно указать разделяемый запятыми список параметров headers, 
requests, content, errors, ssl, trace и frames, а после них дополнительно - пара­

метры :control, :data, :window или :all, но без пробелов. 

После этого можно установить уровень протоколирования INFO для регистратора jdk. 
httpclient. HttpClient, введя, например, следующую строку кода в файл logging. 
properties свойств комплекта JDK: 

jdk.httpclient.HttpClient.level=INFO 

Листинг 4.8. Исходный код из файла client/HttpClientTest. java 

1 package client; 
2 
3 import java.io.*; 
4 import java.math.*; 
5 import java.net.*; 
6 import java.nio.charset.*; 
7 import java.nio.file.*; 
8 import java.util.*; 
9 
10 import java.net.http.*; 
11 import java.net.http.HttpRequest.*; 
12 
13 class MoreBodyPuЬlishers 
14 { 
15 puЫic static BodyPuЬlisher ofFormData( 



4.4. НПР-клиент 

16 Map<Object, Object> data) 
17 
18 var first = true; 
19 var builder = new StringBuilder(); 
20 for (Map.Entry<Object, Object> entry 
21 data.entrySet()) 
22 
23 lf (first) first = false; 
24 else builder.append("&"); 
25 builder.append(URLEncoder.encode( 
26 entry.getKey() .toString(), 
27 StandardCharsets.UTF 8)); 
28 builder.append("="); 
29 builder.append(URLEncoder.encode( 
30 entry.getValue() .toString(), 
31 StandardCharsets.UTF 8) ); 
32 
33 return BodyPuЫishers.ofString(builder.toString()); 
34 
35 
36 private static byte[] bytes(String s) 
37 { return s.getBytes(StandardCharsets.UTF 8); ) 
38 
39 puЫic static BodyPuЬlisher ofMimeMultipartData( 
40 Map<Object, Object> data, String boundary) 
41 throws IOException 
42 
43 var byteArrays = new ArrayList<byte[]>(); 
44 byte[] separator = bytes("--" + boundary 
45 + "\nContent-Disposition: form-data; name="); 
46 for (Map.Entry<Object, Object> entry : 
47 data.entrySet()) 
48 
49 byteArrays.add(separator); 
50 
51 if (entry.getValue() instanceof Path) 
52 { 
53 var path = (Path) entry.getValue(); 
54 String mimeType = Files.probeContentType(path); 
55 byteArrays.add(bytes("\"" + entry.getKey() 
56 + "\"; filename=\"" + path.getFileName() 
57 + "\"\nContent-Type: " 
58 + mimeType + "\n\n") ); 
59 byteArrays.add(Files.reac!AllBytes(path)); 
60 
61 else 
62 byteArrays.add(bytes("\"" + entry.getKey() 
63 + "\"\n\n" + entry.getValue() + "\n")); 
64 
65 byteArrays.add(bytes("--" + boundary + "--")); 
66 return BodyPuЬlishers.ofByteArrays(byteArrays); 
67 
68 
69 puЫic static BodyPuЬlisher ofSimpleJSON( 
70 Map<Object, Object> data) 
71 
72 var builder = new StringBuilder(); 



Глава 4 • Работа в сети 

73 builder.append("{"); 
74 var first = true; 
75 for (Map.Entry<Object, Object> entry 
76 data.entrySet()) 
77 
78 
79 
80 
81 
82 
83 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
126 
127 

if (first) first = false; 
else 

builder.append(","); 
builder.append(jsonEscape(entry.getKey() 

.toString())) 
. append ( " : ") 
.append(jsonEscape(entry.getValue() 

. toString ())); 

builder.append("}"); 
return BodyPuЬlishers.ofString(builder.toString()); 

private static Map<Character, String> replacements = 
Map.of('\b', "\\Ь", '\f', "\\f", \n', "'\\n", 

'\r', "\\r", '\t', "\\t", '"', "\\\"", 
'\\', "\\\\"); 

private static StringBuilder jsonEscape(String str) 
( 

var result 
for (int i 
{ 

new StringBuilder("\""); 
О; i < str.length(); i++) 

char ch = str.charAt(i); 
String replacement = replacements.get(ch); 
if (replacement == null) result.append(ch); 
else result.append(replacement); 

result.append("\""); 
return result; 

puЬlic class HttpClientTest 
( 
puЫic static void main(String[] args) 

throws IOException, URISyntaxException, 
InterruptedException 

System.setProperty("jdk.httpclient.HttpClient.log", 
"headers,errors"); 

String propsFilename = args.length >О ? args[O] 
"client/post.properties"; 

Path propsPath = Paths.get(propsFilename); 
var props = new Properties(); 
try (InputStream in = 

Files.newinputStream(propsPath)) 

props. load (in); 

128 String urlString = "" + props.remove("url"); 
129 String contentType 



4.4. НТТР-клмент 

130 + props.remove("Content-Type"); 
131 if (contentType. equals ( "multipart/ form-data")) 
132 { 
133 var generator = new Random(); 
134 String boundary = new Biginteger(256, generator) 
135 . toString (); 
136 contentType += ";boundary=" + boundary; 
137 props.replaceAll( (k, v) -> 
138 v.toString() .startsWith("file://") 
139 ? propsPath.getParent() 
140 .resolve(Paths.get(v.toString() 
141 .substring(7))) 
142 v); 
143 
144 String result = doPost(urlString, 
145 contentType, props); 
146 System.out.println(result); 
147 
148 
149 puЫic static String doPost(String url, 
150 String contentType, Map<Object, Object> data) 
151 throws IOException, URISyntaxException, 
152 InterruptedException 
153 
154 HttpClient client = HttpClient.newBuilder() 
155 .followRedirects(HttpClient.Redirect.ALWAYS) 
156 .build(); 
157 
158 BodyPuЫisher puЫisher = null; 
159 if (contentType.startsWith("multipart/form-data")) 
160 { 
161 String boundary = contentType.substring( 
162 contentType. last IndexOf ( "=") + 1) ; 
163 puЫisher = MoreBodyPuЬlishers 
164 .ofMimeMultipartData(data, boundary); 
165 
166 else if (contentType.equals( 
167 "application/x-www-form-urlencoded")) 
168 puЫisher = MoreBodyPuЬlishers.ofFormData(data); 
169 else 
170 { 
171 contentType = "application/json"; 
172 puЫisher = MoreBodyPuЬlishers.ofSimpleJSON(data); 
173 
174 
175 HttpRequest request = HttpRequest.newBuilder() 
176 .uri(new URI(url)) 
177 .header("Content-Type", contentType) 
178 .POST(puЬlisher) 

179 .build(); 
180 HttpResponse<String> response = client.send( 
181 request, HttpResponse.BodyHandlers.ofString() ); 
182 return response.body(); 
183 
184 



Глава 4 • Работа в сети 

java.net.http.HttpClient 11 

• static HttpClient newHttpClient () 

Возвращает объект типа HttpClient с конфигурацией НТТР-клиента по умолчанию. 

• static HttpClient.Builder newBuilder() 

Возвращает построитель НТТР-клиентов, представленных объектами типа HttpClient. 
• <Т> HttpResponse<T> send(HttpRequest request, HttpResponse. 

BodyHandler<T> responseBodyHandl.er) 

• <Т> CompletaЬleFuture<HttpResponse<T>> sendAsync(HttpRequest 
rвquest, HttpResponse .BodyHandler<T> responseBodyHandl.er) 

Составляют синхронный и асинхронный запрос и обрабатывают тело получаемого ответа 
с помощью заданного обработчика. 

java.net.http.HttpClient.Builder 11 

• HttpClient build () 

Возвращает объект типа HttpClient со свойствами, сконфигурированными данным по­
строителем НТТР-клиентов. 

• HttpClient.Builder followRedirects(HttpClient.Redirect policy) 

Устанавливает правило переадресации, определяемое одной из следующих констант из пере­
числения HttpClient. Redirect: ALWAYS, NEVER или NORМAL !отклонять переадресацию 
только из сетевого протокола НТТРS в протокол НТТР]. 

• HttpClient.Builder executor(Executor executor) 

Устанавливает исполнитель асинхронных запросов. 

java.net.http.HttpRequest 11 

• HttpRequest.Builder newBuilder() 

Возвращает построитель НТТР-запросов, представленных объектами типа HttpRequest. 

java.net.http.HttpRequest.Builder 11 

• HttpRequest build() 
Возвращает объект типа HttpRequest со свойствами, сконфигурированными данным по­
строителем НТТР-запросов. 

• HttpRequest.Builder uri(URI uri) 
Устанавливает URI для данного запроса. 

• HttpRequest.Builder header(String name, String value) 

Устанавливает заголовок для данного запроса. 



4.5. Отправка электронной почты 

j ava . net. h t tp . Ht tpReques t. Builder 11 {окончание} 

• HttpRequest. Builder GET () 
• BttpRequest.Builder DELETE() 
• HttpRequest.Builder POST(HttpRequest.BodyPuЬlisher bodyPuЬlisher) 
• HttpRequest.Builder PUТ(HttpRequest.BodyPuЬlisher bodyPuЬlisher) 

Устанавливают метод доступа и тело для данного запроса. 

java.net.http.HttpResponse<T> 11 

• т body() 
Возвращает тело данного ответа. 

• int statusCode () 
Возвращает код состояния для данного ответа. 

• HttpHeaders headers () 
Возвращает заголовки ответа. 

java.net.http.HttpHeaders 11 

• мap<Strinq, List<Strinq>> шар() 
Возвращает отображение типа мар данных заголовков. 

• Optional<Strinq> firstValue(Strinq name) 
Возвращает первое значение по имени, указанному в данных заголовках, если таковое 
имеется. 

4.5. Отправка электронной почты 
В прошлом для отправки электронной почты досrаточно было написать про­

грамму, усrановливавшую соединение с сетевым сокетом через порт 25, который 
обычно используется для работы сетевого протокола SMTP (Simple Mail Transport 
Protocol - просrой протокол передачи почты), описывающего формат электрон­

ных сообщений. После подключения к серверу в данной программе нужно было 

послать заголовок сообщения, который досrаточно просrо было создать в формате 

SMTP, а затем и тексr сообщения, выполнив перечисленные ниже дейсrвия. 

1. Открыть сокет на своем компьютере, подключенном к Интернету, как по­
ка:ыно ниже. 

var s = new Socket("mail.yourserver.com", 25); 
11 номер порта 25 соответствует протоколу SMTP 

var out = new PrintWriter(s.getOutputStream(),"UTF-8"); 

2. Направит~, в поток вывода следующие данные: 
HELO хост отправителя 
МAIL FROM: адрес отправителя 



Глава 4 • Работа в сети 

RCPT ТО: адрес получателя 

DATA 
Subject: тема 

(пустая строка) 

почтовое сообщение 

(любое количество строк) 

QUIT 

В спецификации сетевого протокола SMTP (документ RFC 821) требуется, что­
бы строки завершались последовательностями символов /r и /n. Первоначально 
SМТР-серверы исправно направляли электронную почту от любого адресата. Но 

когда навязчивые сообщения наводнили Интернет, большинство этих серверов 

было оснащено встроенными проверками и принимали запросы только по тем 

IР-адресам, которым они доверяют. Аутентификация обычно происходит через 

безопасные сокетные соединения. 

Реализовать алгоритмы подобной аутентификации вручную - дело непро­

стое. Поэтому в этом разделе будет показано, как пользоваться прикладным 

интерфейсом JavaMail API для отправки сообщений электронной почты из про­
граммы на Java. С этой целью загрузите данный прикладной интерфейс по адре­
су https://javaee.github.io/javamail/ и разархивируйте его на жесткий 
диск своего компьютера. 

Чтобы воспользоваться прикладным интерфейсом JavaMail АР!, необходимо 
установить некоторые свойства, зависящие от конкретного почтового сервера. 

В качестве примера ниже приведены свойства, устанавливаемые для почтового 

сервера GMail. Они считываются из файла свойств в рассматриваемом здесь при­
мере программы из листинга 4.9. 

mail.transport.protocol=smtps 
mail.smtps.auth=true 
mail.smtps.host=smtp.gmail.com 
mail.smtps.user=cayhorstmann@gmail.com 

Из соображений безопасности пароль не вводится в файл свойств и предла­

гается для ввода вручную. После чтения из файла свойств сеанс почтовой связи 

устанавливается следующим образом: 

Session mailSession = Session.getDefaultinstance(props); 

Затем составляется почтовое сообщение с указанием требуемого отправителя, 

получателя, темы и текста самого сообщения: 

MimeMessage message = new MimeMessage(mailSession); 
message.setFrom(new InternetAddress(from) ); 
message.addRecipient(RecipientType.TO, 

new InternetAddress(to) 1; 
message.setSubject(subject); 
message.setText(builder.toStr1ng()); 

Далее почтовое сообщение отправляется следующим образом: 

Transport tr = mailSession.getTransport(); 
tr.connect(null, password); 
tr.sendMessage(message, message.getAllRecipients()); 
tr.close(); 



4.5. Отправка электронной почты 

Рассматриваемая здесь программа читает почтовое сообщение из текстового 

файла в приведенном ниже формате. 

Отправитель 

Получатель 

Тема 

Текст сообщения (любое количество строк) 

Кроме упомянутого выше прикладного интерфейса JavaMail API, для выпол­
нения данной программы потребуется архивный JАR-файл каркаса JavaBeans 
Activation Framework, который можно загрузить по адресу https: / /www. oracle. 
com/technetwork/ j ava/j avase/downloads/ index-13504 6. html#download или из 
центрального хранилища Maven Central по адресу https: / /mvnreposi tory. сот/ 
arti f act/ j avax. acti va tion/ acti va tion. Затем выполните следующую команду: 

java -classpath .:javax.mail.jar:activation-1.1.1.jar 
path/to/message.txt 

На момент написания данной книги почтовый сервер GMail не проверял до­
стоверность получаемой информации, а следовательно, в почтовом сообщении 

можно было указать любого отправителя. (Это обстоятельство следует иметь 

в виду при получении от отправителя по адресу president@whi tehouse. gov 
очередного приглашения на официальный прием, организуемый на лужайке пе­

ред Белым домом.) 

СОВЕТ. Если вам не удастся выяснить причину, по которой соединение с почтовым сервером 

не действует, сделайте следующий вызов и проверьте почтовые сообщения: 

mailSession.setDebug(true); 

Кроме того, обратитесь за полезными советами на веб-страницу JavaMail API FAQ !Часто за­
даваемые вопросы по прикладному программному интерфейсу JavaMail API FAQ), доступную 
по адресу ht tps: / / j avaee. g i thub. io/ j avamail /FAQ. 

Листинг 4.9. Исходный код из файла mail/MailTest. java 

1 package mai l; 
2 
3 import java.io.*; 
4 import java.nio.charset.*; 
5 import java.nio.file.*; 
6 import java.util.*; 
7 import javax.mail.*; 
8 import javax.mail.internet.*; 
9 import javax.mail.internet.MimeMessage.RecipientType; 
10 
11 /** 
12 * В этой программе демонстрируется применение 

13 * прикладного интерфейса JavaMail API для отправки 
14 * сообщений по электронной почте 
15 * @author Сау Horstmann 
16 * @version 1.01 2018-03-17 
17 */ 
18 puЫic class MailTest 
19 ! 



Глава 4 • Работа в сети 

20 puЫic static void main(String[] args) 
21 throws MessagingException, IOException 
22 
23 var props = new Properties(); 
24 try (InputStream in = Files.newinputStream( 
25 Paths.get ("mail", "mail.properties"J)) 
26 
77 props.load(in); 
28 
29 List<String> lines = Files.readAllLines( 
30 Paths.get(args[O]), StandardCharsets.UTF 8); 
31 
32 String from = lines.get(O); 
33 String to = lines.get(l); 
34 String subject = lines.get(2); 
35 
36 var builder = new StringBuilder(); 
37 for (int i = 3; i < lines.size(); i++) 
38 
39 builder.append(lines.get(i)); 
40 builder.append("\n"); 
41 
42 
43 Console console = System.console(); 
44 var password = 
45 new String(console.readPassword("Password: ") ); 
46 
47 Session mailSession = 
48 Session.getDefaultinstance(props); 
49 // mailSession.setDebug(true); 
50 var message = new MimeMessage(mailSession); 
51 message.setFrom(new InternetAddress(from)); 
52 message.addRecipient(RecipientType.TO, 
53 new InternetAddress(to)); 
54 message.setSubject(subject); 
55 message.setText(builder.toString() ); 
56 Transport tr = mailSession.getTransport(); 
57 try 
58 { 
59 tr.connect(null, password); 
60 tr.sendMessage(message, 
61 message.getAllRecipients() ); 
62 
63 f inally 
64 { 
65 tr.close(); 
66 
67 
68 } 

В этой главе было показано, как на Java пишется исходный код программ 
для сетевых клиентов и серверов и как организуется сбор данных с неб-серверов. 

В следующей главе речь пойдет о взаимодействии с базами данных. Из нее вы 

узнаете, как работать с реляционными базами данных в программах на Java, ис­
пользуя прикладной интерфейс JDBC АР!. 



ГЛАВА 

Работа с базами данных 

В этой главе ... 
~ Структура JDBC 

~ Язык SQL 

~ Конфигурирование JDBC 

~ Работа с операторами JDBC 

~ Выполнение запросов 

~ Прокручиваемые и обновляемые результирующие наборы 

~ Наборы строк 

~ Метаданные 

~ Транзакции 

~ Расширенные типы данных SQL 

~ Управление подключением к базам данных в веб- и корпоративных 

приложениях 

В 1996 году компания Sun Microsystems выпустила первую версию приклад­
ного интерфейса API для организации доступа из программ на Java к базам дан­
ных (JDBC). Этот прикладной интерфейс позволяет соедишm,ся с базой данных, 
запрашивать и обновлять данные с помощью языка структурированных запросов 

(Structured Query Language - SQL). Язык SQL фактически стал стандартным сред­
ством взаимодействия с реляционными базами данных. С тех пор JDBC стал одним 
из наиболее употребительных прикладных интерфейсов APJ 11 библиотеке Java. 

Прикладной интерфейс JDBC неоднократно обновлялся. На момент написа­
ния данной книги самой последней считалась версия JDBC 4.3, включенная в со­
став версии Java 9. 

В этой главе рассматриваются принципы, положенные 11 основу прикладного 

интерфейса JDBC. Из нее вы узнаете (а возможно, лиш1, вспомните) о языке SQL, 



Глава 5 • Работа с базами данных 

который является стандартным средством доступа к реляционным базам данных. 

В ней будут также рассмотрены примеры применения интерфейса JDBC, демон­
стрирующие наиболее распространенные приемы обращения с базами данных 

в прикладных программах. 

НА ЗАМЕТКУ! Как заявляют в компании Огасlе, JDBC - это торговая марка, а не сокраще­

ние Java Database Connectivity. Она была придумана по аналогии с обозначением ODBC стан­
дартного прикладного интерфейса для работы с базами данных, который был первоначально 

предложен корпорацией Microsoft и затем внедрен в стандарт SQL. 

5.1. Структура JDBC 
Создатели Java с самого начала осознавали потенциальные преимущества дан­

ного языка для работы с базами данных. С 1995 года они начали работать над рас­
ширением стандартной библиотеки Java для организации доступа к базам данных 
средствами SQL. Сначала они попробовали создать такие расширения Java, которые 
позволили бы осуществлять доступ к произвольной базе данных то.лько средства­

ми Java, но очень скоро убедились в бесперспективности такого подхода, посколь­
ку для доступа к базам данных применялись самые разные протоколы. Кроме того, 

поставщики программного обеспечения баз данных были весьма заинтересованы 

в разработке на Java стандартного сетевого протокола для доступа к базам данных, 
но при условии, что за основу будет принят их собственный сетевой протокол. 

В конечном счете поставщики баз данных и инструментальных средств для до­

ступа к ним сошлись на том, что лучше предоставить прикладной интерфейс АР! 

только на Java для доступа к базам данных средствами SQL, а также диспетчер 
драйверов, который позволил бы подключать к базам драйверы независимых про­

изводителей. Такой подход позволял поставщикам баз данных создавать собствен­

ные драйверы, которые подключались бы с помощью данного диспетчера. Пред­

полагалось, что это будет простой механизм регистрации сторонних драйверов. 

Подобная организация прикладного интерфейса JDBC основана на вес1,ма 
удачной модели интерфейса ODBC, разработанного в корпорации Microsoft. 
В основу интерфейсов JDBC и ODBC положен общий принцип: программы, на­
писанные в соответствии с требованиями прикладного интерфейса АР!, способ­

ны взаимодействовать с диспетчером драйверов JDBC, который, в свою очередь, 
использует подключаемые драйверы для обращения к базе данных. Это означает, 

что для работы с базами данных в прикладных программах достаточно пользо­

ваться средствами JDBC API. 

5.1.1. Типы драйверов JDBC 
Каждый драйвер JDBC относится к одному из перечисленных ниже типов. 

• Драйвер типа 1. Преобразует интерфейс JDBC в ODBC и для взаимодей­
ствия с базой данных использует драйвер ODBC. Один такой драйвер был 
включен в первые версии Java под названием мост f DBC/ODBC. Но для его 
применения требуется установить и настроить соответствующим образом 

драйвер ODBC. В первом выпуске JDBC этот мост предполагалось исполь:ю­
вать тол1,ко для тестирования, а не для применения в рабочих программах. 



5.1. Структура JDBC 

В настоящее время уже имеется достаточное количество более удачных 

драйверов, поэтому пользоваться мостом JDBC/ODBC не рекомендуется. 

• Драйвер типа 2. Написан частично на Java и отчасти использует платфор­
менно-ориентированный код для взаимодействия с клиентским приклад­

ным интерфейсом API базы данных. Для применения такого драйвера, 
помимо библиотеки Java, на стороне клиента необходимо установить код, 
специфический для конкретной платформы. 

• 

• 

Драйвер типа 3. Разрабатывается только на основе клиентской библиоте­
ки Java, в которой используется независимый от базы данных протокол пе­
редачи запросов базы данных на сервер. Эrот протокол приводит запросы 

базы данных в соответствие с характерным для нее протоколом. Разверты­

вание прикладных программ значительно упрощается благодаря тому, что 

код, зависящий от конкретной платформы, находится только на сервере. 

Драйвер типа 4. Представляет собой библиотеку, написанную только 
на Java, для приведения запросов JDBC в соответствие с протоколом кон­
кретной базы данных. 

НА ЗАМЕТКУ! Спецификация прикладного интерфейса JDBC доступна для загрузки по адресу 
https://jcp.org/en/jsr/detail?id=221. 

Большинство поставщиков баз данных предоставляют драйверы типа 3 или 4. 
Кроме того, целый ряд сторонних производителей специализируется на созда­

нии драйверов, которые позволяют добиться более полного соответствия приня­

тым стандартам, поддерживают большее количество платформ, обладают более 

высокой производительностью или надежностью, чем драйверы, предлагаемые 

поставщиками баз данных. 

Основные цели прикладного интерфейса JDBC можно сформулировать следу­
ющим образом. 

• 

• 

Разработчики пишут программы на Java, пользуясь для доступа к базам 
данных стандартными средствами языка SQL (или его специализированны­
ми расширениями), но следуя только соглашениям, принятым в Java. 

Поставщики баз данных и инструментальных средств к ним предоставляют 

драйверы только низкого уровня. Эrо дает им возможность оптимизиро­

вать драйверы под свою конкретную продукцию. 

НА ЗАМЕТКУ! На конференции JavaOne в мае 1996 года представители компании Sun 
Micгosystems указали на ряд следующих причин отказа от модели ODBC. 

• Трудна в освоении. 

• Имеет всего лишь несколько команд с большим количеством параметров, тогда как 
стиль программирования на Java основан на применении большого количества простых 
и интуитивно понятных методов. 

• Основана на использовании указателей типа void* и других элементов языка С, 
отсутствующих в Java. 

• Менее безопасна и более сложна для развертывания. чем решение, получаемое только 
на Java. 



Глава 5 • Работа с базами данных 

5.1.2. Типичные примеры применения JDBC 
Соглас1ю традиционной модели "клиент-сервер" граф11ческ11i1 поль:ювате11ь­

ский шперфеiiс (ГПИ) реализуется на стороне клнента, а ба:1а да1111ы х распола­

гается на стороне сервера (рис. 5.1 ). В лом случае драйвер JDBC ра :шертыв<~ется 

на стороне клиент<~. 

Клиент 

Протокол базы данных 

Сервер 

базы 
данных 

Рис. 5.1. Традищюнная пpyi.:1yp<i пр11ложе1111й "клиент-сервер" 

Но в настоящее 11ремя существует тшая тенденция к переходу от архитектуры 

"клиент-сервер" к трехуровневой модели или даже более совершенной 11-уро11-

невой модели. В трехуровневой модели клиент не формирует обращения к fiюe 

данных. Вместо этого 011 обращается к средствам промежуточного уровня на сер­
вере, который, в свою очередь, выполняет запросы к базе данны х . Трехуров11е11м1 

модел1, обладает двумя преимуществами: отделяет 1ш3.l/IL\nнoc 11рс1)с111а11.\снщ' (на 

клиентском компьютере) от бюнсс-.юm1'и (на промежуточном уровне) 11 11 схщ)ных 

данных (хранящихся в базе данных) . Таким образом, становится возможным до­

ступ к тем же самым данным по одинаковым би:шес-правилам со стороны ра :1-

1ютипных клиентов, в том числе прикладных программ на java, 11еб-брау:~еров 
и приложений для мобильных устройств. 

Взаимодействие между клиентом и промежуточным уро1111ем может бып, ре­

ализовано по сетевому протоколу НТТР. А прикладной интерфейс JDBC служит 
для управления юаимодействием между промежуточным уровнем и серверной 

базой данных . На рис. 5.2 схематически пока:1ана основная а рхитектура трехуров­

невой модели. 

Клиент 

(визуальное 

представление) 

НТТР, RMI и т.д. 

Промежуточный 

уровень 

(бизнес-логика) 

JDBC 

Протокол базы данных 

.,._...1.-.i Database 
Server 

Рис. 5.2. Струк1ура пр11ложе1111i1 на основе трехуров11епоi1 мо,\ели 



5.2. Язык SOL 

5.2. Язык SOL 
Прикладной интерфейс JDBC позволяет взаимодействовать с базами дан­

ных посредством языка SQL, который, в свою очередь, образует интерфейс 

для большинства современных реляционных баз данных. Настольные базы дан­

ных предоставляют графический интерфейс, который дает пользователям воз­

можность непосредственно манипулировать данными, но доступ к серверным 

базам данных возможен только средствами языка SQL. 
Пакет JDBC можно рассматривать лишь как прикладной интерфейс API 

для взаимодействия с операторами языка SQL с целью получить доступ к ба­
зам данных. В этом разделе приводится краткое описание языка SQL. Если 
вам не приходилось раньше иметь дело с SQL, то сведений, представленных 
в этом разделе, может оказаться недостаточно. Для более досконального изуче­

ния основ SQL можно порекомендовать книгу Learning SQL Алана Болью (Alan 
Beaulieu; издательство O'Reilly, 2009 г.) или Learn SQL The Hard Way Зеда А. Шоу 
(Zed А. Shaw), оперативно доступную в электронном виде для заказа по адресу 
http://sql.learncodethehardway.org/. 

База данных представляет собой набор именованных таблиц со строками 

и столбцами. Каждый столбец имеет свое имя, а данные хранятся в строках. 

В качестве примера базы данных здесь и далее рассматривается ряд таблиц 

с описаниями библиотеки классических книг по вычислительной технике 

(табл. 5.1-5.4). 

Таблица 5.1. Таблица Authors 

Author ID 

ALEX 

ВRОО 

Таблица 5.2. Таблица Books 

Title 

Name 

Alexander 

Brooks 

А Guide to the SQL Standard 

А Pattern Language: Towns, 
Buildings, Construction 

Таблица 5.3. Таблица BooksAuthors 

ISBN 

0-201-96426-0 

0-201-96426-0 

0-19-501919-9 

Author ID 

DATE 

DARW 

ALEX 

Fname 

Christopher 

Frederick Р. 

ISBN PuЬlisher ID Price 

0-201-96426-0 0201 47.95 

0-19-501919-9 019 65.00 

Seq_No 

1 

2 

1 



Глава 5 • Работа с базами данных 

Таблица 5.4. Таблица PuЬlishers 

PuЬlisher ID 
0201 
0407 

Name 

Addison-Wesley 
John Wiley & Sons 

URL 

www.aw-bc.com 
www.wiley.com 

На рис. 5.3 представлена таблица Boo ks, а на рис. 5.4 - результат соединения 

таблиц Books и PuЬl ishers. Обе таблицы содержат идентификатор издателя. 
При соединении таблиц по этому идентификатору получается ре3ультат 3anpoca 
в виде таблицы, содержащей данные из обеих исходных таблиц. В каждой строке 

этой таблицы содержатся сведения о книге, название и адрес веб-сайта издатель­

ства. Обратите внимание на то, что данные с названием книги и адресом веб-сай­

та неоднократно дублируются, поскольку в результирующей таблице оказывает­

ся несколько строк, относящихся к одному и тому же издательству. 

Преимущество соединения таблиц заключается в том, что при этом удает­

ся избежать нежелателыюго дублирования данных. Например, в простейшей 

структуре ба:щ данных таблица Boo ks может содержать столбцы с названием 
и адресом веб-сайта и:iдательства. Но в таком случае данные будут дублироваться 

уже не только в резулнате запроса, но и в самой базе данных. 

При изменении адреса веб-сайта придется также изменить эти данные во всех 

записях в базе данных. Очевидно, что при выполнении столь трудоемкой зада­

чи могут легко во:шикнуп, ошибки. В реляционной модели данные распределя­

ются среди нескольких таблиц таким образом, чтобы они не дублировались без 

особой надобности. Например, адрес веб-сайта каждого издательства хранится 

13 единственном экземпляре в таблице с данными об издательствах. При необхо­

димости данные из ра :шых таблиц нетрудно соединип, 13 результат запроса. 

Eile i;dit ~iew rools ~ndow J::ielp 

" ц-~ 

The С Programming Language 
А Pattern Language: Towns. Buildings. Construction 
lntroduction to Automata Theory, Languages, and Computation 
Design Pattems 
The С++ Programming Language 
Тhе Mythical Man·Month 
Computer Graphics: Principles and Practice 
Тhе Ar1 of Computer P1·ogramming vol. 1 
Тhе Ar1 of Computer Programming vol. 2 
The Ar1 of Con1puter Programming vol. 3 
А Guide to the SQL Standard 
lntroduction to Algorithn1s 
Applied Cryptography 
avaScript : Tl1e DefiPrtiv• Guide 
Тhе Cathedral and the Bazaar 
Тhе Soul of а №w Machine 
Тhе Codebreakers 
Cuckoo's Egg 
The UNIX Hater"s Handbook 

20 

ISBN 
0-13-020601-6 
0-13-110362-8 
0-19·501919·9 
0-201-44124·1 
0-201-63361·2 
0-201-70073-5 
0-201-83595-9 
0-201-84840-б 

0·201 ·89683-4 
0·201-89684-2 
0-201-89685·0 
0-201-96426·0 
0-262-03293·7 
0-471-11709-9 
0-596-00048·0 
0-596-00108-8 
0-679-60261·5 
0·684-83130-9 
0-7434-1146-3 
1-56884-203· l 

PuЬlisher _ID 
013 
013 
019 
0201 
0201 
0201 
0201 
0201 
0201 
0201 
0201 
0201 
0262 
0471 
0596 
0596 
0679 
07434 
07434 
0471 

Рис. 5.3. Образец табли11ы с данными о книгах 

Prlce 
68.00 
42.00 
55.00 
105.00 
54.99 
64.99 
29.95 
79.99 
59.99 
59 .99 
59.99 
47.95 
ВО.00 

60.00 
44.95 
16.95 
18.95 
70.00 
13.95 
lб .95 



5.2. Язык SOL 

<)tн·ryJ _ l"'i 

file fdit \li•w Jnsert Iools \\'indow t1elp 

PuЫs er _ID Prlc е 
t•m А m1n1strat1on Han оо 013 

l-'-i:=Тhro"":c="P~ro~g~ra~m~m""i~n9--:L=a~ng~u~ag~e=-=~-------~OIЗ 

А Pattem Lan9uage: Towns. Bu1ldin9s. Construct1on O lS~ 
lntroduction to Automata Тheory, Languages, and Computat1on 0201 
Desi9n Pattems 0201 
Тhе С++ Programm1n9 Laщ1uaqe 0201 
Тhе Mythicol Man-Month 0201 
Computer Graphics: Princ1ples and Prattice 0201 
The Art of Computer Programming vol. 1 0201 
Тhе Art of Computer Pro9rammin9 vol. 2 0201 
Тhе Art of Computer Programming vol. Э 0201 

("" Books 

T~le 
9 ISBN 

PuЬlisher 10 
Pnce -

1 ~ 

.... Publshers 

f PuЬl1Sher ld 
Name -
URL 

PuЬlisher_ID Price 

Books Book1 

Name 

PuЫ1sher1 

es.oo 
42.00 
б5.ОО 

105.00 
54.РР 

64.Р9 
2g,95 
79.99 
5g,99 
59.99 
SP.99 

URL 

[PuЬlisners 

Name ORL 
Prentice Н i.wt'W.p F 
Prentice Н www.phi:; 
o xford Uni www.oщ:: 
дddis.on-W 'ww.н.&W· 
Addi50П·W 'W#'N.iW· 

Add1s.on-W •www.aw· 
Addison-W •www.aw· 
Addison-W 'www.aw· 
Addison-w 1www.&w· 
Add1son-W 'Wt№N .iw· 
Addison·W •www.aw· 

LJ 

Рис. 5.,. Ре:~ультат соеди11е11ия д/Jух таблиц 

[] 

На рис. 5.3 и 5.4 показано графическое инструментальное средстно, предна:ша­

ченное для просмотра и связывания таблиц. Многие поставщики программного 

обеспечения предлагают разнообра:шые диалоговые инструме1п<1лы1ые средства 

для создания запросов путем манипулирования столбцами и ввода данных в го­

товые формы. Они называются инструментальными средствами составления .1а-

11росов 110 обра.щу (QBE). А при испол1,:ювании SQL 3апрос соцается в текстоном 
виде 11 строгом соответствии с си1паксисом этого языка, к<1к пока:sано ниже. 

SELECT Boo ks.Title, Books.PuЫisher_Id, Books.Price, 
PuЫishers.Name, PuЬlishers.URL 

FROM Books, PuЬlishers 

WHERE Books.PuЬlisher Id = PuЫ i shers.PuЫisher Id 

В оставшейся части этого раздела описываются основные способы со:1да11ия 

подобных запросов базы данных. Читатели, :шакомые с SQL, могут пропустить 
этот материал . Ключевые слова SQL принято вводить прописными буквами, хотя 
это правило не является обязательным. 

Оператор SELECT может применяться в самых ра:шых целях, например, 

для выбора всех элементов из таблицы Books по следующему :1апросу: 

SELECT * FROM Books 

Предложение FROM обязателыю ука :н,шается в каждом операторе S ELECT . 

В этом предложении базе данных сообщается о тех таблицах, в которых 



Глава 5 • Работа с базами данных 

требуется выполнить поиск данных. В операторе SELECT можно указать любые 

требующиеся столбцы следующим образом: 

SELECT ISBN, Price, Title 
FROM Books 

Выбор строк можно ограничить с помощ1,ю условия, указываемого в предло­

жении WHERE: 

SELECT ISBN, Price, Title 
FROM Books 
WHERE Price <= 29.95 

Особо следует подчеркнуть, что для сравнения в SQL используются операции 
= и <>, а не== или ! =, как при программировании на Java. 

НА ЗАМЕТКУ! Некоторые поставщики баз данных используют операцию ! =для обозначения 
сравнения, но учтите, что такое обозначение не соответствует стандарту SQL, поэтому пользо­
ваться им не рекомендуется. 

В предложении WHERE может присутствовать операция LIKE для сопостав­

ления с заданным шаблоном. Но вместо обычных символов подстановки * и ? 

в данной операции употребляется знак%, обозначающий любое количество сим­

волов, а знак_ - один символ. Ниже приведен пример запроса на выборку книг, 

в названиях которых отсутствует такое слово, как UNIX или Linux. 

SELECT ISBN, Price, Title 
FROM Books 
WHERE Title NOT LIKE '%n х%' 

Обратите внимание на то, что в запросах базы данных символьные строки 

заключаются в одиночные, а не в двойные кавычки. Одиночная кавычка в сим­

вольной строке обозначается парой одиночных кавычек, как в приведенном 

ниже примере запроса на поиск всех книг, в названиях которых содержится 

одиночная кавычка. 

SELECT Title 
FROM Books 
WHERE Title LIKE '%' '%' 

Чтобы выбрать данные из нескольких таблиц, их нужно перечислить в следу­

ющем порядке: 

SELECT * FROM Books, PuЬlishers 

Но без предложения WHERE такой запрос не представляет большого интере­

са, поскольку по нему получаются все сочетания строк из обеих таблиц. В дан­

ном случае таблица Books содержит 20 строк, а таблица PuЬlishers - 8 строк. 
Поэтому результат выполнения такого запроса будет содержать 2 О· 8 строк 
с большим количеством дублирующихся данных. Допустим, требуется найти 

только те книги, которые выпущены издательствами, перечисленными в табли­

це PuЫishers. Для обнаружения такого соответствия книг издательствам мож­

но составить приведенный ниже запрос. Ре3ультат выполнения этого запроса 



5.2. Язык SQL 

содержит 2 О строк, т.е. по одной строке на каждую книгу, поскольку на каждую 
книгу в таблице PuЫishers приходится лишь одно издательство. 

SELECT * FROM Books, PuЫishers 

WHERE Books.PuЫisher Id = PuЬlishers.PuЫisher Id 

Если в запросе указано несколько таблиц, то в двух разных местах может упо­

минаться одно и то же имя столбца, как в показанном выше примере (столбец 

PuЬlisher_Id из таблицы Books и аналогичный столбец PuЫisher Id из та­
блицы PuЬlishers). Во избежание неоднозначной интерпретации имен столб­

цов их следует предварять префиксом с именем таблицы, например Books. 
PuЬlisher Id. 

Языковыми средствами SQL можно пользоваться и для изменения информа­
ции в базе данных. Допустим, требуется снизить на 5 долларов текущую цену 
всех книг, в названиях которых содержится подстрока "С++". С этой целью мож­

но составить следующий запрос: 

UPDATE Books 
SET Price = Price - 5.00 
WHERE Title LIKE '%С++%' 

Аналогично для удаления всех книг по С++ понадобится оператор DELETE, как 

пока:~ано в приведенном ниже примере запроса. В языке SQL предусмотрены 
также встроенные функции для вычисления средних значений, поиска макси­

мальных и минимальных значений в столбце и выполнения многих других дей­

ствий, которые здесь не рассматриваются. 

DELETE FROM Books 
WHERE Title LIKE '%С++%' 

Для ввода новых данных в таблицу обычно исполиуется оператор INSERT : 

INSERT INTO Books 
VALUES ('А Guide to the SQL Standard', '0-201-96426-0', 

'0201', 47.95) 

Для ввода каждой строки в таблицу приходится выполнять отдельный опе­

ратор INSERT. Но прежде чем составлять запросы, изменять и вводить данные, 

необходимо предоставить место для их хранения, т.е. создать таблицу. Для соз­

дания новой таблицы служит оператор CREATE TABLE, в котором указывается 

имя и тип данных каждого столбца, как показано в приведенном ниже примере. 

CREATE TABLE Books 
1 

Title CHAR(60), 
ISBN CHAR(l3), 
PuЫisher_Id CHAR(6), 
Price DECIМAL(l0,2) 

В табл. 5.5 перечислены наиболее распространенные типы данных в SQL. До­
полнительные предложения и операции, задающие ключи и ограничения, упо­

требляемые в операторе CREATE TABLE, здесь не рассматриваются. 



Глава 5 • Работа с базами данных 

Таблица 5.5. Типы данных SQL 

Тип данных 

INTEGER или INT 
SМALLINT 

NUМERIC(m, n),DECIМAL(m, n) 
или DEC (m, n) 

FLOAT (n) 

REAL 

DOUВLE 

CНARACTER (n) или СНАR (n) 
VARCНAR(n) 

BOOLEAN 
DATE 

ТIМЕ 

ТIМЕSТАМР 

BLOB 
CLOB 

5.3. Конфигурирование JDBC 

Описание 

Обычно 32-разрядное целое значение 

Обычно 16-разряднос целое значение 

Десятичное числовое :шачение с фиксированной 

точкой, солержащее m цифр, в том числе n знакоu 
после точки 

Числовое значение с плаваю111ей точкой 

и точностью до n знаков 
Обычно 32-разрядное числовое значение 

с плавающей точкой 

Обычно 64-разрядное числовое значение 

с 11лавающей точкой 

Строка фиксированной длины n симuолов 
Строка неременной мины 'vlaкcимy'vl n символов 
Логическое значение 

Календарная дата (зависит от реали:~ации) 

Время (зависит от реализации) 

Дата и время (зависят от реал1вации) 

Большой двоичный объект 

Большой символьный объект 

Разумеется, для работы с базой данных потребуется система управления ба­

:юй данных (СУБД), для которой в прикладном интерфейсе JDBC имеется подхо­
дящий драйвер. Среди имеющихся СУБД можно выбрать следующие: IВМ 082, 
Microsoft SQL Server, MySQL, Oracle или PostgreSQL. 

Далее необходимо создать экспериментальную базу данных, например, 

под названием COREJAVA. Создайте новую базу данных сами или попросите сде­

лать это администратора баз данных, а также наделить вас правами для созда­

ния, обновления и удаления таблиц. 

Если вам не приходилось раньше устанавливать базу данных с архитектурой 

"клиент-сервер", то процесс ее установки, конечно, покажется вам очень слож­

ным, а обнаружить причину возможной неудачи будет совсем не просто. Поэто­

му в таких случаях рекомендуется обратиться к услугам опытных специалистов. 

Если у вас отсутствует опыт работы с базами данных, рекомендуется уста­

новить сначала базу данных Apache Derby, доступную для загрузки по адресу 
ht tp: / /db. apache. org/derby. Прежде чем вы сможете написать свою первую 
программу для работы с базой данных, вам придется изучить ряд других вопро­

сов, рассматриваемых в последующих разделах. 

5.3.1. URL баз данных 
Для подключения к базе данных необходимо указать ряд характерных для нее 

параметров. К их числу могут относиться имена хостов, номера портов, а также 



5.3. Конфигурирование JDBC 

имена баз данных. В прикладном интерфейсе JDBC используется синтаксис опи­
сания источника данных, подобный обычным URL. Ниже приведены некоторые 
примеры такого синтаксиса. 

jdbc:derby://localhost:l527/COREJAVA;create=true 
jdbc:postgresql:COREJAVA 

Эти URL определяют в JDBC базы данных Derby и PostgreSQL по имени 
COREJAVA. Ниже приведена общая синтаксическая форма записи URL в JDBC, где 
подчиненный_ протокол обозначает специальный драйвер для соединения с ба­

зой данных, а другие_ сведения имеют формат, который зависит от применяе­

мого подчиненного протокола. По поводу выбора конкретного формата следует 

обращаться к документации на применяемую базу данных. 

jdЬс:подчиненный_протокол:другие_сведения 

5.3.2. Архивные JАR-файлы драйверов 
Вам нужно будет также получить архивный JАR-файл, в котором находится 

драйвер для выбранной вами базы данных. Так, если вы пользуетесь базой дан­

ных Derby, вам понадобится файл derbyclient. jar. Если же это другая база 
данных, придется найти для нее подходящий драйвер. В частности, драйверы 

для базы данных PostgreSQL доступны для загрузки по адресу ht tps: / /j dbc. 
postgresql. org. 

При запуске программы, обращающейся к базе данных, в командной строке 

следует указать архивный JАR-файл драйвера после параметра -classpath. (Для 
компиляции самой программы архивный JАR-файл драйвера не требуется.) Для 

запуска подобных программ из командной строки можно воспользоваться при­

веденной ниже командой. В Windows текущий каталог, обозначаемый знаком . , 
отделяется от местонахождения архивного JАR-файла драйвера точкой с запятой. 

java -classpath nу!l'ь_.а:_файлу_драй.ввра:. имя_програнмы 

5.3.3. Запуск базы данных 
Прежде чем подключиться к серверу базы данных, его нужно запустить. Под­

робности этого процесса зависят от конкретной базы данных. В частности, для за­

пуска базы данных Derby выполните следующие действия. 

1. Откройте командную оболочку и перейдите в каталог, в котором будут на­
ходиться файлы базы данных. 

2. Найдите архивный файл derbyrun. jar. В одних версиях JDK он может на­
ходиться в каталоге jdk/dЬ/lib, а в других - в отдельном установочном 

каталоге JavaDB. Каталог, содержащий архивный файл liЬ/derbyrun. j ar, 
обозначается здесь и далее как derby. 

3. Выполните следующую команду: 

java -jar derby/liЬ/derbyrun.jar server start 

4. Еще раз проверьте, работает ли база данных должным образом. Создайте 
файл ij. properties, введя в него следующие строки: 



Глава 5 • Работа с баэами данных 

ij. dri ver=org. apacl1e. de.rby. jdbc. ClientDri ver 
ij.protocol=jdbc:derby://localhost:l527/ 
ij.database=COREJAVA;create=true 

5. Запустите в другой копии командной оболочки диалоговое инструменталь­
ное средство для шшисания сценариев базы данных Derby (оно называется 
i j ), выполнив следующую команду: 

java -jar derby/lib/derbyrun.jar ij -р ij.properties 

6. Теперь вы можете выдать команды SQL, например, следующие: 

CREATE TABLE Greetings (Message CHAR(20)); 
INSERT INTO Greetings VALUES ('Hello, World! '); 
SELECT * fROM Greetings; 
DROP TABLE Greetings; 

7. Обратите внимание на то, что каждая команда должна завершаться точ­
кой с запятой. Чтобы выйти из режима ввода команд SQL, введите команду 
EXIT;. 

8. Завершив работу с базой данных, остановите ее сервер, выполнив следую­
щую команду: 

java -jar derby/liЬ/derbyrun.jar server shutdown 

Если вы полыуетес1, другой базой данных, вам нужно найти в документации 

на нее сведения о запуске и остановке сервера базы данных, а также о том, как 

подключат~.ся к нему и выполтпь команды SQL. 

5.3.4. Регистрация класса драйвера 
Многие архивные JАR-файлы прикладного интерфейса JDBC (например, 

драйвер базы данных Apache Derby) автоматически регистрируют класс драйве­
ра. В этом случае вы можете пропустить этап ручной регистрации, рассматри­

ваемый в этом рацеле. Архивный JАR-файл может автоматически зарегистри­

ровать класс драйвера, если он содержит файл META-INF / services/j ava. sql. 
Dri ver. Чтобы убедип,ся в этом, достаточно распаковать архивный JАR-файл 
драйвера. 

Если же архивный JАR-файл драйвера не поддерживает автоматическую реги­

страцию, вам придется выяснить имена классов драйверов JDBC, используемых 
поставщиком вашей ба:ш да1111ых. Типичными именами классов драйверов явля­

ются следующие: 

org.apache.derby.jdbc.ClientDriver 
org.postgresql.Driver 

Зарегистрирован драйвер с помощью класса Dr i verManage r можно двумя 
способами. Первый состоит в том, чтобы загрузить класс драйвера в программу 

на Java, как показано в приведенной ниже строке кода, где выполняется ста­
тический инициализатор, который и осуществляет регистрацию загружаемого 

драйвера. 

Class.forName("org.postgresql.Driver"); 
// принудительно загрузить класс драйвера 



5.3. Конфигурирование JOBC 

Другой способ состоит в том, чтобы задать свойство jdbc.drivers, которое 
можно указать в качестве аргумента непосредственно в командной строке: 

java -DjdЬc.drivers=org.postgresql.Driver имя_програнны 

С другой стороны, вы можете установить системное свойство в своей приклад­

ной программе, сделав следующий вызов: 

System.setProperty("jdbc.drivers", "org.postgresql.Driver"); 

При необходимости можно также указать несколько разных драйверов, разде­

лив их двоеточием: 

org.postgresql.Driver:org.apache.derby.jdbc.ClientDriver 

5.3.5. Подключение к базе данных 
Установить соединение с базой данных в прикладной программе на Java мож­

но следующим образом: 

String url = "jdbc:postgresql:COREJAVA"; 
String username 
String password 
Connection conn 

"dbuser"; 
"secret"; 
DriverManager.getConnection(url, 
username, password); 

Диспетчер перебирает все зарегистрированные драйверы, пытаясь найти тот, 

который соответствует подчиненному протоколу, указанному в URL базы дан­
ных. Метод getConnection () возвращает объект типа Connection, который ис­
пользуется для выполнения операторов SQL. Чтобы соединиться с базой данных, 
необходимо знать имя пользователя базы данных и пароль. 

НА ЗАМЕТКУ! По умолчанию база данных Derby допускает соединение под любым именем 
пользователя, не проверяя пароль. Для каждого пользователя в этой базе данных формирует­

ся отдельный ряд таблиц. По умолчанию используется имя пользователя арр. 

Все сказанное выше о работе с базами данных демонстрируется на примере те­

сто1юй программы, исходный код которой приведен в листинге 5.1. Эга програм­
ма загружает из файла свойств database.properties параметры подключения 
к базе данных и затем осуществляет его. Файл свойств database. properties, пре­
доставляемый вместе с примером кода, содержит сведения о подключении к базе 

данных Derby. Если вы пользуетесь другой базой данных, введите этот в файл соот­
ветствующие сведения о подключении к конкретной базе данных. Ниже в качестве 

примера приведены параметры подключения к базе данных PostgreSQL. 

jdbc.drivers=org.postgresql.Driver 
jdbc.url=jdbc:postgresql:COREJAVA 
jdbc.username=dbuser 
jdbc.password=secret 

После подключения к базе данных рассматриваемая здесь тестовая программа 

выполняет следующие операторы SQL: 

CREATE TABLE Greetings (Message CHAR(20)) 
INSERT INTO Greetings VALUES ('Hello, World' ') 
SELECT * FROM Greetings 



Глава 5 • Работа с базами данных 

В результате выполнения оператора SELECT выводится приведенная ниже 
символьная строка. 

Hello, World 1 

После этого таблица, созданная в базе данных, удаляется из нее в следующем 

операторе SQL: 
DROP TABLE Greetings 

Чтобы выполнить данную тестовую программу, запустите сначала базу дан­

ных, как описано выше, а затем саму программу, введя приведенную ниже ко­

манду. (Как всегда, пользователям Windows следует ввести точку с запятой (;) 
вместо двоеточия (:) для разделения составляющих пути к файлам.) 

java -classpath . :driverJAR test.TestDB 

СОВЕТ! Для устранения неполадок в прикладном интерфейсе JDBC можно активизировать 
трассировку JDBC. С этой целью следует вызвать метод DriverМanager. setLogWriter (), 
чтобы направить сообщения трассировки в записывающий поток типа PrintWriter. Вы­
вод трассировки содержит подробный перечень действий JDBC. В большинстве реализа­
ций драйвера JDBC предоставляются дополнительные механизмы трассировки. Например, 
для базы данных DегЬу следует добавить параметр traceFile в URL прикладного интер­
фейса JDBC следующим образом: 

jdЬc:derby://localhost:l527/COREJAVA;create=true;traceFile=trace.out 

Листинг 5.1. Исходный код из файла test/TestDB. java 

1 package test; 
2 
3 import java.nio.file.*; 
4 import java.sql.*; 
5 import java.io.*; 
6 import java.util.*; 
7 
8 /** 
9 * В этой программе проверяется правильность 

10 * конфигурирования базы данных и драйвера JDBC 
11 * @version 1.03 2018-05-01 
12 * @author Сау Horstmann 
13 */ 
14 puЫic class TestDB 
15 { 
16 puЫic static void main(String args[)) 
17 throws IOException 
18 
19 try 
20 { 
21 runTest(); 
22 
23 catch (SQLException ех) 
24 
25 for (ThrowaЫe t : ех) 

26 t.printStackTrace(); 



27 
28 
29 
30 /** 

5.3. Конфигурирование JDBC 

31 * Выполняет тест, создавая таблицу, вводя в 

32 * нее значение, отображая содержимое таблицы 

33 * и, наконец, удаляя ее 

34 */ 
35 puЫic static void runTest() 
36 throws SQLException, IOException 
37 
38 try (Connection conn = getConnection(); 
39 Statement stat = conn.createStatement()) 
40 
41 stat.executeUpdate("CREATE TABLE Greetings " 
42 + "(Message CHAR(20) )"); 
43 stat.executeUpdate("INSERT INTO Greetings " 
44 + "VALUES ('Hello, World!')"); 
45 
46 try (ResultSet result = 
47 stat.executeQuery("SELECT * FROM Greetings")) 
48 
49 if (result.next()) 
50 System.out.println(result.getString(l)); 
51 
52 stat.executeUpdate("DROP TABLE Greetings"); 
53 
54 
55 
56 /** 
57 * Получает сведения о подключении к базе данных 
58 * из свойств, задаваемых в файле database.properties, 
59 * и на их основании подключается к базе данных 
60 * @return Подключение к базе данных 

61 * / 
62 puЫic static Connection getConnection() 
63 throws SQLException, IOException 
64 
65 var props = new Properties(); 
66 try (InputStream in = Files.newlnputStream( 
67 Paths.get("database.properties"))) 
68 
69 props. load ( in); 
70 
71 String drivers = props.getProperty("jdbc.drivers"); 
72 if (drivers != null) 
73 System.setProperty("jdbc.drivers", drivers); 
74 String url = props.getProperty("jdbc.url"); 
75 String username props.getProperty("jdbc.username"); 
76 String password = props.getProperty("jdbc.password"); 
77 
78 return DriverManager.getConnection(url, username,password); 
79 
80 



Глава 5 • Работа с базами данных 

java.sql.DriverМanager 1.1 

• static Connection getConnection(String url, String user, String 
password) 

Устанавливает соединение с указанной базой данных и возвращает объект типа Connection. 

5.4. Работа с операторами JDBC 
В последующих разделах сначала будет показано, как поль:ювап,ся классом 

Statement из прикладного интерфейса JDBC для выполнения операторов SQL, 
получения результатов и обработки ошибок. Затем будет представлен пример 

простой программы для заполнения базы данных. 

5.4.1. Выполнение операторов SQL 
Для выполнения оператора SQL сначала создается объект типа Sta temen t .. 

Для этой цели используется объект типа Connection, который можно получил,, 
вызвав метод Dri verManager. getConnection () следующим образом: 

Staternent stat = conn.createStaternent(); 

Затем формируется символьная строка с требующимся оператором SQL, как 
показано в приведенном ниже примере кода. 

String cornrnand = "UPDATE Books" 
+ " SET Price = Price - 5.00" 
+ "WHERE Title NOT LIKE '%Introduction%'"; 

Далее вызывается метод executeUpdate () из класса Statement: 

stat.executeUpdate(cornrnand); 

Метод execu te Upda te () возвращает количество строк, полученных из та­

блицы базы данных в результате выполнения оператора SQL, или же нуль строк 
для тех операторов, которые не возвращают количество строк из таблицы. Так, 

в результате приведенного выше вызова метода executeUpdate () возвращается 
количество книг, цена которых снижена на 5 долларов. 

Вызывая метод executeUpdate (),можно выполнять операторы INSERT, UPDATE 
и DELETE, а также операторы определения данных, в том числе CREATE TABLE 
и DROP TABLE. Но для выполнения оператора SELECT необходимо вызват1, другой 
метод - executeQuery ().Имеется также универсалышй метод execute (),с по­
мощью которого можно выполнять произвольные операторы SQL, но он применя­
ется в основном для составления :1апросов в диалоговом режиме. 

Если вы составляете запрос базы данных, вас, конечно, интересует результат его 

обработки. Метод executeQuery () возвращает объект типа ResultSet, который 
можно использовать для построчного просмотра результатов выполнения запроса: 

ResultSet rs = stat.executeQuery("SELECT * FROM Books") 

Для анализа результирующего набора организуется приведенный ниже про­

стой цикл. 



5.4. Работа с операторами JDBC 

while (rs.next()) 
{ 

проанализировать строку из результирующего набора 

• ВНИМАНИЕ! Порядок последовательной обработки строк в интерфейсе Resul tSet ор­
ганизован несколько иначе, чем в интерфейсе java. util. Iterator. В интерфейсе 
ResultSet итератор устанавливается на позиции перед первой строкой из результирующего 
набора. Поэтому для его перемещения к первой строке нужно вызвать метод next () . Кроме 
того, в данном интерфейсе отсутствует метод hasNext (), а следовательно, метод next () 
придется вызывать до тех пор, пока не будет возвращено логическое значение false. 

Строки располагаются в результирующем наборе в совершено произвоJ11,ном 

порядке. Если порядок их следования важен, его 11еобходимо установить с помо­

щыо предложения ORDER ВУ. При обработке каждой строки таблицы обычно 

требуется получить содержимое отдельных полей (или столбцов). Для этой цели 

имеется целый ряд методов доступа к полям (или столбцам). Ниже приведены 

некоторые примеры вызова подобных методов доступа. 

String isbn = rs.getString(l); 
douЫe price = rs.getDouЬle("Price"); 

Для каждого типа данных Java предусмотрен отделы1ый метод доступа, на­
пример getString () или getDouЫe (). И каждый из них реализован в двух 
формах: одной - с числовым параметром, а друrой - со строковым. Если ме­

тод доступа вызывается с числовым параметром, данные и:шлекаются из столбца 

с указанным номером. Например, в результате вы:юва метода rs. getString ( 1) 
возвращается значение из первого столбца текущей строки таблицы. 

• ВНИМАНИЕ! В отличие от массивов, нумерация столбцов таблиц в базе данных начинается с 1. 

Если же метод доступа вызывается со строковым параметром, данные извле­

каются из столбца с указанным именем. Например, в результате вызова мето­

да rs. getDouЫe ( "Price") возвращается значение из столбца с именем Price. 
Первая форма методов доступа с числовым параметром более эффективна, но 

строковые параметры улучшают восприятие и упрощают сопровождение кода. 

Если указанный тип не соответствует фактическому типу, метод доступа ав­

томатически выполняет необходимое преобразо11а11ие данных. Например, при 

вызове метода rs. getString ( "Pr ice") числовое значение с плавающей точкой, 
извлекаемое из столбца Price, преобразуется в символы1ую строку. 

java. sql. Connection 1 . 1 

• Statement createStatement() 

Создает объект типа Statement, который может использоваться для выполнения операто­
ров SQL без параметров. 

• void close () 

Немедленно разрывает текущее соединение с базой данных и освобождает созданные 

для него ресурсы JDBC. 



Глава 5 • Работа с базами данных 

java.sql.Statement 1.1 

• ResultSet executeQuery (String sqlQuexy) 

Выполняет оператор SQL из указанной символьной строки и возвращает объект типа 
ResultSet с результатами выполнения этого оператора. 

• int executeUpdate (String sqlStatemвnt) 

• long executeLargeUpdate (String sqlStatement) 8 

Выполняют операторы SQL типа INSERT, UPDATE и DELETE из указанной символьной стро­
ки, а также операторы языка определения данных IDDLI вроде СRЕАТЕ ТАВLЕ. Возвращают 
количество строк, обработанных при выполнении данного оператора, или нулевое значение, 
если для данного оператора не установлен подсчет обновлений. 

• boolean execute (String sqlStatemвnt) 

Выполняет оператор SQL из указанной символьной строки и возвращает логическое значе­
ние true, если этот оператор предоставляет результирующий набор, а иначе - логическое 

значение false. Может сформировать множество результирующих наборов и подсчетов об­
новлений. Для доступа к данным, полученным в результате выполнения данного оператора 

SQL, следует вызвать метод getResultSet () или getUpdateCount (). Подробнее об об­
работке множественных результатов см. далее в разделе 5.5.4. 

• Resul tSet getResul tSet () 

Возвращает объект типа ResultSet с результатами выполнения предыдущего оператора SQL 
или пустое значение null, если выполнение предыдущего оператора не дало никаких резуль­
татов. Этот метод следует вызывать только один раз для каждого выполняемого оператора SQL. 

• int getUpdateCount() 

• long getLargeUpdateCount () 8 

Возвращают количество строк, обработанных при выполнении предыдущего оператора обнов­

ления, или значение -1, если для данного оператора SQL не установлен подсчет обновлений. 
Эти методы следует вызывать только один раз для каждого выполняемого оператора SQL. 

• void close () 

Закрывает данный оператор SQL и связанные с ним результирующие наборы. 

• Ьoolean isClosed () 6 

Возвращает логическое значение true, если данный оператор SQL закрыт. 

• void closeOnCompletion () 7 

Закрывает данный оператор SQL, как только будут закрыты все связанные с ним результиру­
ющие наборы. 

java.sql.ResultSet 1.1 

• boolean next () 

Перемещает указатель текущей строки в результирующем наборе на одну позицию вперед. 
После прохождения последней строки возвращает логическое значение false. Следует, од­
нако, иметь в виду, что данный метод должен быть вызван для перемещения указателя к пер­

вой строке в результирующем наборе. 



5.4. Работа с операторами JDBC 

j ava. sql. Resul tSet 1 . 1 (окончание} 

• Ххх getXxx(int columnNumЬer) 

• Ххх getXxx(String columnLaЬel) 

• (Ххх обозначает тип данных, например int, douЫe, String, Date и т.д.1 

• <Т> Т getObject(int columnNumЬer, Class<T> type) 7 

• <Т> Т getObject (String columnLaЬel, Class<T> type) 7 

Возвращает значение столбца, задаваемого номером или меткой, с преобразованием в ука­

занный тип данных. Однако допускаются не все варианты преобразования типов. Метка 

столбца - это метка, указываемая в предложении AS оператора SQL, или имя столбца, если 
предложение AS не используется. 

int findColumn (String columnName) 

Возвращает номер столбца с указанным именем. 

void close () 

Немедленно закрывает текущий результирующий набор. 

• boolean isClosed () 6 

Возвращает логическое значение true при закрытии данного оператора. 

5.4.2. Управление подключениями, операторами и результирующими наборами 
Каждый объект типа Connection может создать один или несколько объек­

тов типа Statement. Один и тот же объект типа Statement можно использовать 
для выполнения нескольких не связанных между собой операторов SQL и запро­
сов. Но для такоrо объекта допускается наличие не более ouнozo открытого резуль­

тирующего набора. Если же требуется выполнить несколько запросов и одно­

временно проанализировать их результаты, то для этого понадобится несколько 

объектов типа Statement. 
Не следует, однако, забывать об ограничении, накладываемом на количество 

операторов SQL, приходящихся на одно подключение к базе данных. Количество 
открытых объектов типа Statement, одновременно поддерживаемых драйве­
ром JDBC, можно выяснить, вызвав метод getMaxStatements () из интерфейса 

DatabaseMetaData. 
На практике вряд ли стоит одновременно обрабатывать несколько резуль­

тирующих наборов. Если же результирующие наборы взаимосвязаны, следует 

выдать составной запрос и проанализировать единый результат. Ведь намного 

эффективнее объединять запросы в самой базе данных, чем выполнять обход не­

скольких результирующих наборов в программе на Java. 
Обработку любого результирующего набора следует завершить, прежде чем 

выдавать новый запрос или обновлять объект типа Statement. Ведь результиру­
ющие наборы из предыдущих запросов автоматически закрываются. 

Покончив дело с объектом типа ResultSet, Statement или Connection, 
следует как можно скорее вызвать метод close (). Ведь эти объекты использу­
ют крупные структуры данных и истощаемые ресурсы на сервере базы данных. 

Метод close () из класса Sta tement автоматически закрывает результирующий 
набор, связанный с объектом данного класса, если, конечно, этот набор открыт 



Глава 5 • Работа с базами данных 

при выполнении соответствующей команды. Аналогично метод close () из клас­
са Connection закрывает все объекты данного класса, открытые для соединения 
с базой данных. 

С другой стороны, можно вызвать метод closeOnCompletion () из класса 

Statement, чтобы автоматически закрыть объект данного класса, как только бу­
дут закрыты все связанные с ним результирующие наборы. Если подключение 

к базе данных кратковременно, то можно и не беспокоип,ся о закрытии объектов 

типа Statement и связанных с ними результирующих наборов. Дм1 абсолютной 
гарантии, что объект подключения к базе данных не останется открытым, можно 

воспользоваться оператором try с ресурсами следующим образом: 

try (Connection conn = ... ) 
{ 

Statement stat = conn.createStatement(); 
ResultSet result = stat.executeQuery(queryString); 
обработать результат запроса 

5.4.Э. Анализ исключений SDL 
У каждого исключения SQL имеется цепочка объектов типа SQLException, 

которые извлекаются методом getNextException (). Эта цепочка исключений 
является дополнением "причинной" цепочки объектов типа ThrowaЫe, имею­

щихся в каждом исключении. (Подробнее об исключениях в Java см. в главе 7 
первого тома данной книги.) Чтобы полностью перечислить все исключения, 

пришлось бы организовать два вложенных цикла. К счастью, класс SQLException 
был усовершенствован для реализации интерфейса IteraЫe<ThrowaЬle>. 

В частности, метод iterator () производит объект типа Iterator<ThrowaЫe>, 
который осуществляет перебор в обеих цепочках исключений, сначала проходя 

по "причинной" цепочке первого объекта типа SQLException, а затем переходя 
к следующему объекту типа SQLException и т.д. Для этой цели можно орrани­
:ювать усовершенствованный цикл for следующим образом: 

for (ThrowaЫe t : sqlException) 
{ 

сделать что-нибудь с объектом t 

Чтобы продолжить анализ объекта типа SQLException, для него можно вы­
звать методы getSQLState () и getErrorCode ().Первый метод выдает символь­
ную строку по стандарту X/Open или SQL:2003. (Чтобы выяснить, какому имен­
но стандарту соответствует применяемый драйвер, достаточ1ю вы3вать метод 

getSQLStateType () из интерфейса DatabaseMetadata.) Что же касается кода 
ошибки, то у различных поставщиков баз данных он разный. 

Исключения SQL организованы в виде древовидной структуры наследования, 
приведенной на рис. 5.5. Благодаря этому имеется 1юзмож1юсть перехватывап, 
отдельные типы ошибок независимо от предпочтений поставщиков баз данных. 



BatchUpdate 
Exception 

Serial 
Exception 

SQLТimeout 

Exception 

SQLTransient 
Exception 

RolllJack 
Exception 

5.4. Работа с операторами JDBC 

SQLRecoveraЫe 

Exception 
SQLNonTransient 

Exception 
SyncFactory 
Exception 

SQLaientlnfo 
Exception 

SQLTransient 
Connection 
Except!on 

SQLData 
Exception 

SOLWarning 
RowSet 
warning 

SyncProvider 
Exception 

SQLFeature 
NotSupported 

Exception 

SQLSyntaxError 
Exception 

SOLNonTransient 
Connection 
Exception 

SOLlntegrity 
Constrain\Violation 

Exceptlon 

SQUnvalid 
Auttюrization 

SpecException 

Рис. 5.5. Типы исключе11ий SQL 

Кроме того, драйвер базы да1111ых может сообщать о некритичных ситуациях 

в виде предупреждений. Подобные предупреждения можно получап, от подклю­

чений к базе данных, операторов и ре:sулнирующих наборов. Класс SQLWarning 
является подклассом, производным от класса SQLExcept i o n, несмотря на то, 

что объект типа SQLWarning не генерируется в виде исключения. Вызвав методы 
getSQLState () и getErrorCode () , можно получить дополнительные сведения 
о предупреждениях. Подобно исключениям SQL, предупреждения органи:sуются 
в цепочку. И чтобы получить все предупреждения, нужно орга~1и:ювать следую­

щий цикл: 

SQLWa rning w = s ta t .getWa rning () ; 
while (w 1 = null) 
{ 

сделать что-нибудь с объектом w 
w = w.ne xtWarning( ); 

Подкласс DataTr uncation, прои :июдный от класса SQLWarni ng, исполь:sуется 

в тех случаях, когда данные считываются и:s базы данных и в этот момент проис­

ходит их неожиданное усечение. Если усечение данных произошло при выпол­

нении команды обновления, то объект типа Dat aTruncation генерируется в виде 
исключения. 



Глава 5 • Работа с базами данных 

java.sql.SQLException 1.1 

• SQLException getNextException() 

Получает исключение SQL, следующее за данным исключением по цепочке, или пустое зна­
чение null, если достигнут конец цепочки. 

• Iterator<ThrowaЫe> iterator () 6 

Получает итератор, перебирающий по цепочке исключения SQL и их причины. 

• String getSQLState () 

Получает стандартный код ошибки, обозначающий состояние SQL. 

• int getErrorCode () 

Получает код ошибки, характерный для поставщика используемой базы данных. 

java. sql. SQLWarning 1. 1 

• SQLWarning getNextWarning() 

Получает предупреждение, следующее за данным исключением по цепочке, или пустое зна­

чение null, если достигнут конец цепочки. 

java. sql. Connection 1 . 1 
java.sql.Statement 1.1 
java.sql.ResultSet 1.1 

SQLWarning getWarnings () 

Возвращает первое ожидающее предупреждение или пустое значение null, если ожидаю­
щие предупреждения отсутствуют. 

java.sql.DataTruncation 1.1 

• boolean getParameter () 

Возвращает логическое значение true, если усечение данных применяется к параметру, или 
логическое значение false, если оно применяется к столбцу. 

• int getindex () 

Возвращает индекс усеченного параметра или столбца. 

• int getDataSize () 

Возвращает количество байтов, которые необходимо передать, или значение -1, если извле­
каемое значение неизвестно. 

• int getTransferSize () 

Возвращает количество байтов, которые были фактически переданы, или значение -1, если 
извлекаемое значение неизвестно. 



5.4. Работа с операторами JDBC 

5.4.4. Заполнение базы данных 
Попробуем теперь написать первую реальную программу, используя при­

кладной интерфейс JDBC. Конечно, было бы неплохо, если бы в этой программе 
можно было выполнить некоторые из рассмотренных ныше запросов. Но, к со­

жалению, это невозможно, потому что база данных пуста. Сначала ее нужно за­

полнить данными, хотя сделать это нетрудно с помощью ряда инструкций SQL 
для создания таблиц и ввода в них данных. Бол1>шинство СУБД способны обраба­

тывать инструкции SQL из текстового файла, но в этом случае проявляются до­
садные отличия в завершающих символах операторов и другие синтаксические 

особенности реализации SQL на разных платформах. 
В силу этих причин воспользуемся прикладным интерфейсом JDBC, чтобы 

написать простую программу для построчного чтения инструкций SQL из файла 
и последующего их выполнения. В частности, рассматриваемая здесь программа 

должна читать данные из текстового файла в следующем формате: 

CREATE TABLE PuЬlishers (PuЬlisher_Id СНАR(б), 

Name CHAR(30), URL CHAR(80) ); 
INSERT INTO PuЬlishers VAI.UES ( '0201', 'Addison-Wesley', 

'www.aw-bc.com'); 
INSERT INTO PuЫishers VALUES ('0471', 'John Wiley & Sons', 

'www.wiley.com'); 

В листинге 5.2 приведен исходный код программы ExecSQL, сначала читаю­

щей операторы SQL из текстового файла, а затем выполняющей их. Для приме­
нения этой программы совсем не обязательно разбираться в ее исходном коде. 

Самое главное, что она позволяет заполнить базу данных и выполнить примеры 

программ, приведенные в остальной части этой главы. 

Прежде всего приведите сервер базы данных в рабочее состояние и запустите 

программу ExecSQL на выполнение, введя следующие команды: 

java -classpath путь_к_драйввру:. exec.ExecSQL Books.sql 
java -classpath путь_к_драйверу:. exec.ExecSQL Authors.sql 
java -classpath nу!l'ь_к_драйверу:. exec.ExecSQL PuЬlishers.sql 
java -classpath nу!l'ь_к_драйверу:. exec.ExecSQL BooksAuthors.sql 

Перед запуском данной программы проверьте содержимое файла свойств 

da tabase. properties на соответствие вашей исполняющей среде (см. раз­
дел 5.3.5 ранее в этой главе). 

НА ЗАМЕТКУ! В состав вашей базы данных может входить утилита для непосредственного 

чтения файлов SQL. Например, в базе данных DегЬу можно выполнить приведенную ниже 
команду для чтения файла свойств ij. properties, описанного ранее в разделе 5.3.3. 

java -jar derby/liЬ/derbyrun.jar ij -р ij.properties Books.sql 

В формате данных для программы ExecSQL допускается вставка точки с запятой в конце 
каждой строки, поскольку такой формат предполагается в большинстве утилит баз данных. 

Ниже вкратце описываются основные этапы выполнения программы ExecSQL. 

1. Устанавливается соединение с базой данных. Метод getConnection () счи­

тывает содержимое файла свойств database .properties и вводит свойство 



Глава 5 • Работа с базами данных 

jdbc.drivers в список системных свойств. Диспетчер драйверов исполь­
зует свойство j dbc. dr i ve r s для загружи соответствующего драйвера базы 
данных. Для подключения к базе данных в методе getConnection () приме­
няются свойства jdbc.url, jdbc.username и jdbc.password. 

2. Открывается текстовый файл с операторами SQL. Если такой файл отсут­
ствует, пользователю предлагается ввести операторы вручную с консоли. 

3. Все заданные операторы SQL выполняются с помощью универсально­
го метода execute ().При получении результирующего набора этот метод 
возвращает логическое значение true. В конце всех четырех текстовых фай­
лов с операторами SQL содержится оператор SELECT *. Это дает возмож­
ность убедиться, что информация успешно введена в базу данных. 

4. При наличии результирующего набора полученные результаты выво­
дятся на экран. А поскольку это обобщенный результирующий набор, то 

для определения количества столбцов в нем потребуются метаданные. Бо­

лее подробно метаданные рассматриваются далее, в разделе 5.8. 

5. Если при выполнении операторов SQL возникает какое-нибудь исклю­
чение, то выводятся сведения о нем, а также обо всех остальных исключени­

ях, которые могут следовать по цепочке. 

6. По завершении всех заданных операторов SQL соединение с базой дан­
ных разрывается. 

Весь исходный код данной программы приведен в листинге 5.2. 

Листинг 5.2. Исходный код из файла exec/ExecSQL. java 

1 package ехес; 
2 
3 irnport java.io.*; 
4 import java.nio.charset.*; 
5 irnport java.nio.file.*; 
6 import java.util.*; 
7 import java.sql.*; 
8 
9 /** 
10 * Эта программа выполняет все команды SQL из 
11 * текстового файла. Она вызывается следующим образом: 

12 * java -classpath п;уть к драйверу: . ExecSQL 
13 * файл с операторШ SQL 
14 * @version 1-:-33 2018-05-01 -
15 * @author Сау Horstrnann 
16 */ 
17 class ExecSQL 
18 { 
19 puЬlic static void rnain(String args[]) 
20 throws IOException 
21 
22 try (Scanner in = args.length == О 

23 ? new Scanner(System.in) 
24 : new Scanner(Paths.get(args[O]), 
25 StandardCharsets.UTF 8)) 



26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 

5.4. Работа с операторами JDBC 

try (Connection conn = getConnection(); 
Statement stat = conn.createStatement()) 

while (true) 
{ 

if (args.length == 0) 
System.out.println("Enter command or " 

+ "EXIT to exit:"); 
if ( !in.hasNextLine()) return; 

String line = in. nextLine () . trim (); 
if (line.equalsignoreCase("EXIT")) return; 
if (line.endsWith(";")) 

11 удалить точку с запятой в конце строки: 
line = line.substring(O, line.length() - 1); 

try 
{ 

boolean isResult 
if (isResult) 

stat.execute(line); 

{ 

try (ResultSet rs = stat.getResultSet()) 
{ 

showResultSet(rs); 

else 
{ 

int updateCount = stat.getUpdateCount(); 
System.out.println(updateCount 

+ " rows updated") ; 

59 catch (SQLException е) 

60 { 
61 for (ThrowaЫe t : е) 

62 t.printStackTrace(); 
63 
64 
65 
66 
67 catch (SQLException е) 

68 { 
69 for (ThrowaЫe t : е) 

70 t.printStackTrace(); 
71 
72 
73 
74 /** 
75 * Получает сведения о подключении к базе даннь~ из 
76 * свойств, задаваемых в файле database.properties, 
77 * и на их основании подключается к базе данных 

78 * @return Подключение к базе данных 
7 9 * / 
80 puЫic static Connection getConnection() 
81 throws SQLException, IOException 
82 



Глава 5 • Работа с базами данных 

83 var props = new Properties(); 
84 try (InputStream in = files.newinputStream( 
85 Paths.get("database.properties"))) 
86 
87 props.load(in); 
88 
89 String drivers = props.getProperty("jdbc.drivers"); 
90 if (drivers != null) 
91 System.setProperty("jdbc.drivers", drivers); 
92 
93 String url = props.getProperty("jdbc.url"); 
94 String username = 

95 props. getProperty ( "j dbc. username") ; 
96 String password = 

97 props.getProperty("jdbc.password"); 
98 
99 return DriverManager.getConnection(url, 
100 username, password); 
101 
102 
103 /** 
104 * Выводит результирующий набор 
105 * @param result Выводимый результирующий набор 
106 */ 
107 puЫic static void showResultSet(ResultSet result) 
108 throws SQLException 
109 
110 ResultSetMetaData metaData = result.getMetaData(); 
111 int co1umnCount metaData.getColumnCount(); 
112 
113 for (int i = 1; i <= columnCount; i++) 
114 { 
115 if (i > 1) System.out.print(", "); 
116 System.out.print(metaData.getColumnLabel(i) ); 
117 
118 System.out.println(); 
119 
120 while (result.next()) 
121 { 
122 for (int i = 1; i <= columnCount; i++) 
123 { 
124 if (i > 1) System.out.print(", "); 
125 System.out.print(result.getString(i)); 
126 
127 System.out.println(); 
128 
129 
130 

5.5. Выполнение запросов 
В этом разделе рассматривается пример программы, способной выполнять 

запросы к базе данных COREJAVA. Для нормальной работы этой программы не­

обходимо создать и заполнить таблицы в базе данных COREJAVA, как пояснялось 

в предыдущем разделе. При составлении запроса базы данных можно выбрать 



5.5. Выполнение запросов 

автора книги и издательство или же оставить критерий отбора книги независимо 

от автора или и:iдательства. 

Рассматриваемая здесь программа позволяет также вносить изменения в со­

держимое базы данных. Для этого достаточно выбрать издательство и ввести 

сумму. Все цены на книги данного издательства автоматически откорректиру­

ются по введенной сумме, а программа отобразит количество измененных строк 

в таблице. После подобной коррекции цен на книги можно выполнить запрос, 

чтобы проверить новые цены. 

5.5.1. Подготовленные операторы дпя запросов 
В рассматриваемой здесь программе используется новое средство: подготов­

ленные операторы. Рассмотрим следующий запрос SQL на выборку всех книг от­
дельного издательства независимо от их авторов: 

SELECT Books.Price, Books.Title 
FROM Books, PuЬlishers 

WHERE Books.PuЫisher Id = PuЬlishers.PuЬlisher Id 
AND PuЬlishers.Name = название издательства, 

выбираемое из списка 

Вместо того чтобы создавать отдельный оператор SQL для каждого пользо­
вательского запроса, можно заранее подготовить запрос с главной переменной 

и многократно использовать его, меняя только значение этой переменной. Такая 

возможность существенно повышает эффективность работы программы. Перед 

обработкой каждого запроса база данных вырабатывает план его эффективного 

исполнения. Подготавливая запрос для последующего многократного примене­

ния, можно исключить повторное планирование его выполнения. 

Каждая главная переменная в запросе обозначается знаком вопроса(?). Если в за­

просе используется несколько главных переменных, необходимо внимательно сле­

дить за их расстановкой с помощью знаков вопроса, чтобы правильно устанавливать 

их конкретные значения. Ниже показано, как выглядит в исходном коде предвари­

тельно подготовленный запрос к рассматриваемой здесь базе данных COREJAVA. 

String puЬlisherQuery = 

"SELECT Books.Price, Books.Title " 
+ "FROM Books, PuЬlishers " 
+ "WHERE Books.PuЬlisher Id = PuЬlishers.PuЬlisher Id " 
+ "AND PuЫishers. Name = ?"; 

PreparedStatement stat = 
conn.prepareStatement(puЬlisherQuery); 

Перед выполнением подготовленного оператора необходимо связать главные 

переменные с их конкретными значениями, вызвав метод set (). Подобно раз­
ным формам метода get () из интерфейса Resul tSet, для разных типов данных 
предусмотрены отдельные формы метода set ().В качестве примера ниже пока­
зано, каким образом задается строковое значение с названием издательства. 

stat.setString(l, puЫisher); 

Первый аргумент этого метода задает номер позиции главной переменной, 

обозначаемой знаком вопроса в подготовленном операторе, а второй аргумент -
ее конкретное значение. Так, аргумент 1 задает первый знак ? . 



Глава 5 • Работа с базами данных 

При повторном исполюовании подготовленного запроса с несколькими глав-

11ыми переменными все их привя:iки к конкретным значениям остаются в силе, 

если тол1,ко они не изменены с помощью метода set () или clearParameters (). 
Это означает, что метод setXxx (), где Ххх - тип данных, следует вьвывать толь­

ко для тех главных переменных, которые изменяются в последующих запросах. 

После привязки всех переменных к их конкретным значениям мож110 присту­

пить к выполнению подготовленного оператора следующим образом: 

ResultSet rs = stat.executeQuery(); 

СОВЕТ. Составление запроса вручную путем сцепления символьных строк - довольно трудо­

емкое, чреватое ошибками и небезопасное занятие. Ведь в этом случае нужно позаботиться 

об обозначении специальных символов [например, кавычек]. А если при составлении запроса 
предполагается ввод пользователем данных, необходимо принять меры защиты от умышлен­

ного внесения запросов SQL при совершении атак на сервер базы данных. В этом отношении 
подготовленные операторы оказываются намного более удобными, и поэтому их рекоменду­

ется применять всякий раз, когда в запрос включаются переменные. 

Обновление цены осуществляется в операторе UPDATE. Обратите в11има11ие 
на то, что для этого вьвывается метод executeUpdate (),а не executeQuery (). 
Дело в том, что оператор UPDATE не возвращает результирующий набор, кото­
рый в данном случае 11е требуется. Метод execu teUpda te () во:шращает лишь 
подсчет количества и:iмене1111ых строк в таблице, как показано ниже. 

int r = stat.executeUpdate(); 
System.out.println(r +" rows updated"); 

НА ЗАМЕТКУ! Объект типа PreparedStatement становится недействительным после того, 
как связанный с ним объект типа Connection закрывается. Но многие драйверы баз дан­
ных автоматически кешируют подготовленные операторы. Если один и тот же запрос подго­

тавливается дважды, то в базе данных еще раз используется план его выполнения. Поэто­

му, вызывая метод prepareStatement (), можно не особенно беспокоиться об издержках 
на выполнение подготовленных операторов. 

Ниже вкратце описывается порядок действий, выполняемых в рассматривае­

мом здес1, примере программы. 

• Списочные массивы :1аполняются именами авторов и 11азваниями изда­

тельств по двум :1<1прос.1м, из которых во:шращаются все имена авторов 

и на:1вания и:1дател~.ств, сохраняемые в базе данных. 

• Запросы по имени автора имеют более сложную структуру. Ведь у одной 

книги может быт1, несколько авторов, и поэтому в таблице BooksAuthors 
сохраняется соответствие авторов и книг. Допустим, у книги с ISBN 0-201-
96426-0 два автора с идентификаторами DATE и DARW. Для отражения этого 
факта таблица BooksAut.hors должна содержать следующие строки: 

0-201-96426-0, DATE, 1 
0-201-96426-0, DARW, 2 

• В третьем столбце ука:1а11ы порядковые номера авторов. (Для этой цели 

нелия исполь:ювать сведения о расположении строк в таблице, поскольку 



• 

5.5. Выполнение запросов 

в реляционной базе данных порядок следования записей не фиксирован.) 

Таким образом, в составляемом запросе следует сначала соединить табли­

цы Books, BooksAuthors и Authors, а затем сравнить в них имя автора 
с тем, что указано пользователем: 

SELECT Books.Price, Books.Title FROM Books, BooksAuthors, 
Authors, PuЬlishers 

WHERE Authors.Author Id = BooksAuthors.Author Id 
AND BooksAuthors.ISBN = Books.ISBN 
AND Books.PuЬlisher Id = PuЬlishers.PuЬlisher Id 
AND Authors.Name = ? 
AND PuЬlishers.Name = ? 

НА ЗАМЕТКУ! Некоторые программирующие на Java стараются избегать составления столь 
сложных запросов SQL. Как ни странно, они выбирают обходной, но неэффективный путь, пред­
полагающий написание немалого объема кода на Java для последовательной обработки не­
скольких результирующих наборов. Следует, однако, иметь в виду, что база данных выполняет 

запросы намного эффективнее, чем программа на Java, поскольку база данных именно для это­
го и предназначена. В этой связи рекомендуется взять на вооружение следующее эмпириче­

ское правило: то, что можно сделать средствами SQL, нецелесообразно делать средствами Java. 

Метод changePrices () выполняет оператор UPDATE. В предложении 

WHERE этой команды требуется указать код издательства, а известно лишь 

его на..звание. Это затруднение разрешается с помощью вложенного запроса, 

как выделено ниже полужирным. 

UPDATE Books 
SET Price = Price + ? 
WHERE Books.PuЬlisher Id = 

(SELECT PuЬlisher_Id FRC»f PuЬlishers WНERE Name = ?) 

Весь исходный код данной программы приведен в листинге 5.3. 

Листинг 5.3. Исходный код из файла query/QueryTest. java 

1 package query; 
2 
3 
4 
5 
6 
7 

import 
import 
import 
import 

8 /** 

. . * Java.io. ; 
java.nio.file.*; 
java.sql.*; 
java.util.*; 

9 * В этой nрограмме демонстрируется ряд сложньи 

10 * запросов базы данных 
11 * @version 1.31 2018-05-01 
12 * @author Сау Horstmann 
13 */ 
14 puЫic class QueryTest 
15 { 
16 private static final String allQuery = 
17 "SELECT Books.Price, Books.Title FROM Books"; 
18 
19 private static final String authorPuЫisherQuery 
20 "SELECT Books.Price, Books.Title " 



21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 

Глава 5 • Работа с базами данных 

+ "FROM Books, BooksAuthors, Authors, PuЬlishers " 
+ "WHERE Authors.Author Id = " 
+ "BooksAuthors.Author Id " 
+ "AND BooksAuthors.ISBN = Books.ISBN " 
+ "AND Books. PuЬlisher Id = " 
+ "PuЬlishers. PuЬlisher Id AND Authors. Name ? " 
+ "AND PuЬlishers.Name = ?"; 

private static final String authorQuery 
"SELECT Books.Price, Books.Title FROM Books, " 

+ "BooksAuthors, Authors " 
+ "WHERE Authors.Author Id = 
+ "BooksAuthors.Author Id " 
+ "AND BooksAuthors.ISBN = Books.ISBN " 
+ " AND Authors. Name = ? "; 

private static final String puЫisherQuery 
"SELECT Books.Price, Books.Title FROM Books, " 

+ "PuЬlishers " 
+ "WHERE Books. PuЬlisher Id = " 

+ "PuЬlishers.PuЬlisher id " 
+ "AND PuЫishers.Name = ?"; 

private static final String priceUpdate 
"UPDATE Books SET Price = Price + ? " 

+ " WHERE Books.PuЬlisher Id = " 
+ "(SELECT PuЬlisher_Id" 
+ "FROM PuЬlishers WHERE Name = ?)"; 

private static Scanner in; 
private static ArrayList<String> authors = 

new ArrayList<>(); 
private static ArrayList<String> puЫishers 

new ArrayList<>(); 

puЫic static void main(String[) args) 
throws IOException 

try (Connection conn = getConnection()) 
{ 

in = new Scanner(System.in); 
authors. add ( "Any"); 
puЫishers.add("Any"); 

try (Statement stat = conn.createStatement()) 
{ 

11 заполнить списочньШ массив именами 
11 авторов книг 
var query = "SELECT Name FROM Authors"; 
try (ResultSet rs = stat.executeQuery(query)) 
{ 

while (rs.next()) 
authors.add(rs.getString(l)); 

11 заполнить списочньШ массив 
11 названиями издательств 
query = "SELECT Name FROM PuЬlishers"; 



5.5. Выполнение запросов 

78 try (ResultSet rs = stat.executeQuery(query)) 
79 { 
80 while (rs.next()) 
81 puЫishers.add(rs.getString(l)); 

82 
83 
84 var done = false; 
85 while ( 'done) 
8 6 { 
87 System.out.print( 
88 "Q)uery C)hange prices E)xit: "); 
89 String input = in.next() .toUpperCase(); 
90 if (input.equals("Q")) 
91 executeQuery(conn); 
92 else if (input.equals("C")) 
93 changePrices(conn); 
94 else 
95 done = true; 
96 
97 
98 catch (SQLException е) 

99 { 
100 for (ThrowaЫe t : е) 

101 System.out.println(t.getMessage()); 
102 
103 
104 
105 /** 
106 * Выполняет выбранный запрос 
107 * @param conn Подключение к базе данных 
108 */ 
109 private static void executeQuery(Connection conn) 
110 throws SQLException 
111 
112 String author = select("Authors:", authors); 
113 String puЫisher = 
114 select("PuЬlishers:", puЫishers); 

115 PreparedStatement stat; 
116 if (!author.equals("Any") 
117 && !puЬlisher.equals("Any")) 

118 
119 stat = conn.prepareStatement( 
120 authorPuЬlisherQuery) ; 
121 stat.setString(l, author); 
122 stat.setString(2, puЫisher); 
123 
124 else if (!author.equals("Any") 
125 && puЬlisher.equals("Any")) 
126 
127 stat = conn.prepareStatement(authorQuery); 
128 stat.setString(l, author); 
129 
130 else if (author. equals ( "Any") 
131 && !puЫisher.equals("Any")) 

132 
133 stat = conn.prepareStatement(puЫisherQuery); 
134 stat.setString(l, puЬlisher); 



135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 

Глава 5 • Работа с базами данных 

else 
stat = conn.prepareStaternent(allQuery); 

try (ResultSet rs = stat.executeQuery()) 
{ 

while (rs.next()) 
Systern.out.println(rs.getStriпg(l) 

+ ", "+ rs.getString(2)); 

/** 
* Выполняет команду обновления с целью 

* изменить цены на книги 
* @pararn conn Подключение к базе данных 
*/ 
puЫic static void changePrices(Connection conn) 

throws SQLException 

String puЫisher = select("PuЫishers:", 

puЬlishers.subList(l, puЫishers.size()) ); 
Systern.out.print("Change prices Ьу: "); 
douЫe priceChange = in.nextDouЬle(); 

PreparedStaternent stat = 

conn.prepareStaternent(priceUpdate); 
stat.setDouЬle(l, priceChange); 
stat.setString(2, puЫisher); 
int r = stat.executeUpdate(); 
Systern.out.println(r +" records updated."); 

/** 
* Предлагает пользователю выбрать символьную строку 
* @pararn prornpt Отображаемое приглашение 
* @pararn options Варианты выбора, 
* предлагаемые пользователю 

* @return Выбранный пользователем вариант 
*/ 
puЫic static String select(String prornpt, 

List<String> options) 

176 while (true) 
177 { 
178 Systern.out.println(prornpt); 
179 for (int i =О; i < options.size(); i++) 
180 Systern.out.printf("%2d) %s%n", i + 1, 
181 options.get(i)); 
182 int sel = in.nextint(); 
183 if (sel >О && sel <= options.size()) 
184 return options.get(sel - 1); 
185 
18 6 
187 
188 /** 
189 * Получает сведения о подключении к базе данных из 
190 * свойств, задаваемых в файле database.properties, 



5.5. Выполнение запросов 

191 * и на их основании подключается к базе данных 
192 * @return Подключение к базе данных 
193 * / 
194 puЫic static Connection getConnection() 
195 throws SQLException, IOException 
196 
197 var props = new Properties(); 
198 try (InputStream in = Files.newinputStream( 
199 Paths. get ( "database. propert ies") ) ) 
200 
201 props.load(in); 
202 
203 
204 String drivers = props.getProperty("jdbc.drivers"); 
205 if (drivers != null) 
206 System.setProperty("jdbc.drivers", drivers); 
207 
208 String url = props.getProperty("jdbc.url"); 
209 String username = 
210 props.getProperty("jdbc.username"); 
211 String password = 
212 props.getProperty("jdbc.passwor<J"); 
213 
214 return DriverManager.getConnection(url, 
215 username, password); 
216 
217 

java.sql.Connection 1.1 

• PreparedStatement prepareStatement(Strinq sql) 

Возвращает объект типа PreparedStatement, содержащий подготовленный оператор. 
Заданная строка sql содержит оператор SQL с одной или несколькими заполнителями глав­
ных переменных, обозначенными вопросительными знаками. 

java.sql.PreparedStatement 1.1 

• void setXxx(int n, Ххх х) 

• IXxx обозначает тип данных, например int, douЬle, Strinq, Date и т.д.1 

Задает значение х для n-го параметра. 

• void clearParameters () 

Очищает все текущие параметры в подготовленном операторе. 

• ResultSet executeQuery() 

Выполняет подготовленный запрос SQL и возвращает объект типа ResultSet. 

• int executeUpdate() 

Выполняет операторы INSERT, UPDATE или DELETE, представленные в объекте типа 

PreparedStatement как подготовленные операторы SQL. Возвращает количество обрабо­
танных строк или нулевое значение для таких операторов языка DDL, как CREATE ТАВLЕ. 



Глава 5 • Работа с базами данных 

5.5.2. Чтение и запись больших объектов 
Помимо чисел, символьных строк и дат, во многих базах данных можно сохра­

нять большие объекты (LOB), к числу которых относятся и:юбражения и другие 
данные. В языке SQL понятие больших объектов разделяется на категории боль­
ших двоичных объектов (BLOB) и больших символьных объектов (CLOB). 

Чтобы прочитать большой объект, необходимо сначала выполнить команду 

SELECT, а затем вызвать метод getBlob () или getClob () из интерфейса Resul tSet. 
В результате будет получен объект типа Blob или Clob. А для того чтобы получить 
двоичные данные из объекта типа Blob, следует вызвать метод getBytes () или 
getinputStream ().Так, если имеется таблица с изображениями на книжных об­
ложках, то такое изображение можно получить следующим образом: 

PreparedStatement stat = conn.prepareStatement( 
"SELECT Cover FROM BookCovers WHERE ISBN=?"); 

stat.set(l, isbn); 
ResultSet result = stat.executeQuery(); 
if (result.next()) 
{ 

Blob coverBlob = result.getBlob(l); 
Image coverlmage ImageIO.read( 

coverBlob.getBinaryStream()); 

Аналогично, если извлечь объект типа Clob, то из него можно получить сим­
вольные данные, вызвав метод String () или getCharacterStream (). 

Чтобы разместить большой объект в базе данных, следует вызвать метод 

createLOB () или createClob () для объекта типа Connection, получить поток 
вывода или поток записи для большого объекта, записать данные и сохранить 

этот объект в базе данных. В качестве примера ниже показано, как сохранить и:ю­

бражение в базе данных. 

Blob coverBlob = connection.createBlob(); 
int offset = О; 

OutputStream out = coverBlob.setBinaryStream(offset); 
ImageIO.write(coverimage, "PNG", out); 
PreparedStatement stat = conn.prepareStatement( 

"INSERT INTO Cover VALUES (?, ?)"); 
stat.set(l, isbn); 
stat.set(2, coverBlob); 
stat.executeUpdate(); 

java.sql.ResultSet 1.1 

• Blob getвloЬ(int columnindex) 1. 2 

• Blob getвlob (String columnLaЬel) 1. 2 

• Clob getCloЬ (int columnindex) 1. 2 

• Clob getClob (String columnLaЬel) 1. 2 

Получают большой двоичный объект IBLOB) или большой символьный объект ICLOB) из за­
данного столбца таблицы. 



5.5. Выполнение запросов 

java. sql.Blob 1. 2 

• lonq lenqth () 

Получает длину данного большого двоичного объекта. 

• byte[] qetвytes (lonq startPosition, lonq length) 

Получает данные в указанных пределах из текущего большого двоичного объекта. 

• InputStrea.m qetвinaryStrea.m () 

• InputStrea.m qetBinaryStrea.m(lonq startFosition, lonq length) 

Возвращают поток ввода для чтения данных из текущего большого двоичного объекта полно­

стью или в указанных пределах. 

• OutputStrea.m setвinaryStrea.m(lonq startFosition) 1. 4 

Возвращает поток вывода для записи данных в текущий большой двоичный объект, начиная 

с указанной позиции. 

java. sql. Clob 1. 4 

• lonq lenqth () 

Получает количество символов в текущем большом символьном объекте. 

• Strinq getSuЬStrinq(long startFosition, lonq length) 

Получает символы из текущего большого двоичного объекта в указанных пределах. 

• Reader qetCharacterStrea.m () 

• Reader qetCharacterStream(lonq startFosition, lonq length) 

Возвращают поток чтения la не поток ввода] символов из текущего большого символьного 
объекта в указанных пределах. 

Writer setCharacterStream(lonq startFosition) 1. 4 

Возвращает поток записи la не поток вывода] символов в текущий большой символьный 
объект, начиная с указанной позиции. 

j ava. sql. Cormection 1 . 1 

Blob crea teBlob () 6 

• Clob createClob () 6 

Создают пустой большой двоичный объект IBLOBI или большой символьный объект ICLOBI. 

5.5.З. Синтаксис переходов в SQL 
Синтаксис переходов предоставляет средства, которые обычно поддержива­

ются базами данных, но в разных вариантах в зависимости от конкретного син­

таксиса базы данных. В задачу драйвера JDBC входит преобразование синтаксиса 
переходов в синтаксис конкретной базы данных. 

Переходы предусмотрены для следующих средств. 



Глава 5 • Работа с базами данных 

• Литералы времени и даты. 

• Вызовы скалярных функций. 

• Вызовы хранимых процедур. 

• Внешние соединения. 

• Символы перехода в операциях LIKE. 

Литералы даты и времени силыю отличаются в ра:шых базах данных. Чтобы 

вставить литерал даты или времени, следует определить его :шачение в форма­

те ISO 8601 (ht tps: / /www. cl. cam. ас. uk/-mgk2 5/ iso-t ime. html). После этого 
драйвер преобразует литерал в собственный формат базы данных. Для значений 

типа DATE, TIME или TIMESTAMP использукпся литералы d, t и ts следующим 
обра:юм: 

{d '2008-01-24'} 
{t '23:59:59'} 
{ts '2008-01-24 23:59:59.999'} 

Скалярной называется такая функция, которая во:шращает одно :шачение. В ба­

зах данных применяется немало скалярных функций, 110 под ра:шыми имена­

ми. В спецификации JDBC указаны стандартные имена, преобразуемые в имена, 
специфические для конкретных баз данных. Чтобы вызваТI> скалярную функцию, 

следует вставить ее стандартное имя и аргументы, как показано ниже. Полныi1 

список поддерживаемых имен скалярных функций можно найти в специфика­

ции JDBC. 
{fn left(?, 20)) 
( fn user ( 1 } 

Хранимой называется такая процедура, которая выполняется в базе да1111ых 

и написана на специальном языке для конкретной базы данных. Для вызова хра­

нимой процедуры служит переход cal1. Если у процедуры отсутствуют пара­
метры, то указывать скобки не нужно. Для фиксации возвращаемого значения 

служит :шак равенства. Ниже показано, каким обра:юм вызываются хранимые 

процедуры. 

{call PROCl (?, ?) } 
{ call PROC2} 
{call ? = РRОСЗ(?)} 

Внешнее соединение двух таблиц не требует, чтобы строки из каждой таблицы 

совпадали по условию соединения. Например, в приведенном ниже запросе ука­

заны книги, для которых столбец PuЬlisher_Id не имеет совпадений в таблице 

PuЬlishers, причем пустые значения NULL обо:шачают отсутствие совпадений. 

SELECT * FROM {oj Books LEFT OUTER JOIN PuЬlishers 
ON Books.PuЬlisher Id = PuЫisher.PuЬlisher Id} 

- -

Чтобы включить в запрос и:~дательства бе:~ совпадающих книг, может потре­

боваться предложение RIGHT OUTER JOIN, а чтобы возвратить по запросу и то 
и другое - предложение FULL OUTER JOIN. Синтаксис переходов требуется 
именно потому, что не во всех базах данных используется стандартное обозначе­

ние внешних соединений. 



5.5. Выполнение запросов 

Наконец, знаки и % имеют специальное назначение в операции LIKE, обо­

значая совпадение с одним символом или последовательностью символов. Стан­

дартного способа их буквального употребления не существует. Так, для сопо­

ставления всех символьных строк, содержащих знак _, можно воспользоваться 
приведенной ниже конструкцией, где знак ! определен как символ перехода, 
а последовательность символов ! _ буквально обозначает знак подчеркивания . 

... WHERE? LIKE %1 % {escape '' '} 

5.5.4. Множественные результаты 
По запросу могут быть возвращены множественные результаты. Это может 

произойти при выполнении хранимой процедуры или в базах данных, которые 

допускают также выполнение многих операторов SELECT в одном запросе. Полу­

чить все результирующие наборы можно следующим образом. 

1. Вызвать метод execute () для выполнения оператора SQL. 

2. Получить первый результат или подсчет обновлений. 

3. Повторить вызов метода getMoreResul ts (), чтобы перейти к следую­
щему ре:~ультирующему набору. 

4. Завершить процедуру, если больше не остается результирующих набо­
ров или подсчетов обновлений. 

Методы execute () и getMoreResul ts () возвращают логическое значение 
true, если следующим звеном в цепочке оказывается результирующий набор. 
Метод get.UpdateCount () возвращает значение -1, если следующим звеном в це­
почке не оказывается подсчет обновлений. В следующем цикле осуществляется 

последовательный обход всех полученных результатов: 

boolean isResult = stat.execute(command); 
boolean done = false; 
while (!done) 
{ 

if (isResult) 
{ 

ResultSet result = stat.getResultSet(); 
сделать что-нибудь с полученным результатом 

в переменной result 

else 

int updateCount = stat.getUpdateCount(); 
if (updateCount >= 0) 

сделать что-нибудь с подсчетом обновлений 

в переменной updateCount 
else 

done = true; 

if (!done) isResult stat.getMoreResults(); 



Глава 5 • Работа с базами данных 

java.sql.Statement 1.1 

• boolean qetмoreResults () 

boolean qetмoreResults (int current) 6 

Получают следующий результат выполнения данного оператора SQL. Параметр current при­
нимает значение одной из следующих констант: CLOSE CURRENТ RESULT lпо умолчанию!, 
I<EEP CURRENТ RESULT или CLOSE ALL RESULTS. Во3вращает логическое значение true, 
если Следующий-результат существует и представляет собой результирующий набор. 

5.5.5. Извлечение автоматически генерируемых ключей 
В бол1,шинсrве баз да1111ых поддерживается механизм автоматической нумера­

ции строк в таблице. К сожалению, у раз11ых посrавщиков баз данных эти меха­

низмы заметно отличаются. Автоматически присваиваемые номера часrо исполь-

3уются н качесrве первичных ключей. Несмотря 11а то что в JDBC не предлагается 
независимое от особенностей ра3ных баз данных решение для генерирования по­

добных ключей, в этом прикладном интерфейсе предоставляется эффективный 

способ их извлечения. Если при вводе новой строки в таблицу автоматически 

генерируется ключ, его можно получить с помощью следующего кода: 

stmt.executeUpdate(insertStatement, 
Statement.RETURN GENERATED KEYS); 

- -
ResultSet rs = stmt.getGeneratedKeys(); 
if (rs.next()) 
{ 

int key = rs.getint(l); 

java.sql.Statement 1.1 

• boolean execute (Strinq statвmвnt, int autogenerated) 1. 4 

• int executeUpdate (Strinq statemвnt, int autogenerated) 1. 4 

Выполняют указанный оператор SQL, как пояснялось выше. Если параметр autogвne­
ratвd принимает значение Statement.RETURN GENERATED КЕУS и указан оператор 
INSERT, то первый столбец таблицы содержит автоМiJтически сгеНёрированный ключ. 

5.6. Прокручиваемые и обновляемые результирующие наборы 
Как пояснялось ранее, метод next () из интерфейса Resul tSet позволяет 

последовател1,но перебирать строки в ре3ультирующем наборе, получаемом 

по запросу ба3ы данных. Его очень удобно исполь:ювать для анали3а полученных 

данных. Но нередко пол1,:ювателю требуется предосrавить во3можность для про­

смотра результатов выполнения запроса с переходом к предыдущей и следу­

ющей строке, как было, например, показано на рис. 5.4. В 11рокручивае.мо.м ре­
зультирующем наборе можно свободно перемещаться не только к предыдущим 

и последующим 3аписям, 110 и на произвольную позицию. 



5.6. Прокручиваемые и обновляемые результирующие наборы 

Кроме того, при просмотре результатов выполнения запроса у пользователей 

часто возникает потребность исправит~, какие-нибудь данные. В обновляемом ре­

зультирующем наборе можно видоизменять записи программно, чтобы автома­

тически обновить их в базе данных. Все эти возможности обработки результиру­

ющих наборов обсуждаются в последующих разделах. 

5.6.1. Прокручиваемые результирующие наборы 
По умолчанию результирующие наборы не являются прокручиваемыми или 

обновляемыми. Для организации прокрутки результатов выполнения запроса 

необходимо получить объект типа Statement следующим образом: 

Statement stat = conn.createStatement(type, concurrency); 

Для подготовленного оператора потребуется следующий вы:юв: 

PreparedStatement stat = conn.prepareStatement( 
corшnand, type, concurrency); 

Допустимые значения параметров type и concurrency перечислены в табл. 5.6 
и 5.7. Выбирая эти значения, придется найти ответы на следующие вопросы. 

• Требуется ли сделать результирующий набор прокручиваемым? Если это­

го не требуется, следует выбрать значение Resul tSet. TYPE _FORWARD _ ONLY. 

• Если все же требуется сделать результирующий набор прокручиваемым, то 

должен ли он отражать те данные, которые были изменены в базе данных 

после выполнения запроса? (Здесь и далее предполагается, что установлен 

параметр ResultSet. TYPE _ SCROLL _ INSENSITIVE, т.е. результирующий 
набор не реагирует на те изменения, которые прои:юшли в базе данных 

после выполнения запроса.) 

• Требуется ли отредактировать результирующий набор и обновить ба:~у дан­

ных? (Более подробно этот вопрос рассматривается в следующем рацеле.) 

Таблица 5.6. Значения параметра type, представленные константами 
из интерфейса Resul tSet 

Значение Описание 

ТУРЕ FORWARD ONLY Без прокрутки (по умолчанию) 

ТУРЕ_ SCROLL _ INSENSITIVE С прокруткой, но без учета изменений в базе данных 

ТУРЕ SCROLL SENSITIVE С прокруткой и с учетом изменений в базе данных 

Таблица 5.7. Значения параметра concurrency, представленные константами из 
интерфейса Resul tSet 

Значение 

CONCUR READ ONLY 

CONCUR UPDATAВLE 

Описание 

Без редактирования и обновления базы данных 

(по умолчанию) 

С редактированием и обновлением ба3ы данных 

Так, если требуется только прокрутка результирующего набора, но не редак­

тирование его данных, это можно организовать следующим обра:юм: 



Глава 5 • Работа с базами данных 

Statement stat = conn.createStatement( 
ResultSet.TYPE_SCROLL_INSENSITIVE, 
ResultSet.CONCUR READ ONLY); 

Теперь можно прокручивать все результирующие наборы, возвращаемые при 

вы:ювах приведенного ниже метода. Получаемый в итоге результирующий набор 

содержит курсор, устанавливаемый на текущей позиции. 

ResultSet rs = stat.executeQuery(query) 

НА ЗАМЕТКУ! Не все драйверы баз данных поддерживают прокручиваемые или обновляемые 
результирующие наборы. !Методы supportsResultSetТype () и supportsResultSetC 
oncurrency () из интерфейса DataЬaseМetaData сообщают о типах и режимах парал­

лельной обработки, которые поддерживаются в конкретной базе данных с помощью опреде­

ленного драйвера.! Но даже если в базе данных поддерживаются результирующие наборы во 
всех описанных режимах, то в некоторых запросах нельзя получить результирующий набор 

со всеми запрашиваемыми свойствами. !Например, результат выполнения сложного запроса 
может оказаться необновляемым.1 

В этом случае метод executeQuery () возвращает результирующий набор типа ResultSet 
с меньшими возможностями, вводя предупреждение типа SQLWarning в объект соединения. 
!Способ извлечения предупреждений представлен ранее, в разделе 5.4.З.1 С другой стороны, 
для выявления конкретного режима работы результирующего набора можно вызвать мето­

ды getТype () и getConcurrency () из интерфейса Resul tSet. Если не выяснить кон­
кретный режим работы результирующего набора и попытаться выполнить неподдерживаемую 

в нем операцию, например, вызвать метод previous () для непрокручиваемого результиру­
ющего набора, это неизбежно приведет к исключению типа SQLException. 

Прокрутка организуется очень просто. Например, для перехода к предыду­

щим записям в результирующем наборе служит приведенная ниже конструк­

ция. Метод previous () возвращает логическое :шачение true, если курсор нахо­
дится на конкретной строке в результирующем наборе, или логическое :шачение 

false, если курсор находится перед первой строкой. 

if (rs .previous ()) ... 

Для перемещения курсора на п строк вперед или назад вызывается следую­

щий метод: 

rs.relative(n); 

При положительных значениях параметра п курсор перемещается вперед, 

а при отрицателы{ЫХ - назад (нулевое значение параметра п не приводит ни 

к каким перемещениям). Если попытаться переместить курсор за пределы те­

кущего ряда строк, он расположится за последней строкой или же перед пер­

вой строкой в зависимости от знака в :шачении параметра n. После этого ме­
тод relati ve () возвращает логическое значение false, а перемещение курсора 
прекращается. Данный метод возвращает логическое значение true только в том 
случае, если курсор устанавливается на конкретной строке. 

С другой стороны, курсор можно установить на конкретной строке под номе­

ром п, вызвав следующий метод: 

s.absolute(n); 

Получить текущий номер строки п можно следующим обра:юм: 

int currentRow = rs.getRow(); 



5.6. Прокручиваемые и обновляемые результирующие наборы 

Первая строка в ре3ультирующем наборе имеет номер 1. Если возвращаемое 
значение равно нулю, то курсор находится не на конкретной строке, а за послед­

ней или перед первой строкой. Для установки курсора на первой или последней 

строке, перед первой или за последней строкой ре3ультирующего набора пред­

усмотрены удобные методы first (), last (), beforeFirst () и afterLast () со­

ответственно, а для проверки расположения курсора на одной из этих позиций -
удобные методы isFirst (), isLast (), isBeforeFirst () и isAfterLast (). 

Как видите, обрабатывать прокручиваемые результирующие наборы совсем 

не трудно. Все рутинные операции, связанные с кешированием данных, получае­

мых по запросу, выполняются драйвером базы данных. 

5.6.2. Обновляемые результирующие наборы 
Если требуется отредактировать данные, полученные по запросу в результиру­

ющем наборе, а также автоматически обновить базу данных, такой набор следует 

сделать обновляемым. Обновляемые результирующие наборы совсем не обязатель­

но должны быть прокручиваемыми. Но если требуется предоставить пользовате­

лю возможность редактировать данные, то они должны допускать и прокрутку. 

Для получения обновляемого результирующего набора служит приведен­

ный ниже код, где для этой цели в качестве параметра указана константа, вы­

деленная полужирным. Результирующие наборы, возвращаемые методом 

executeQuery (),становятся в итоге обновляемыми. 

Statement stat = conn.createStatement( 
ResultSet.TYPE_SCROLL_INSENSITIVE, 
ResultSet.CONCUR_UPDATAВLE); 

НА ЗАМЕТКУ! Обновляемый результирующий набор возвращается не по всем запросам. Так, 

если в запросе предполагается соединение нескольких таблиц, его результат не всегда может 

быть обновляемым. Но если в запросе предполагается обращение к одной таблице или соеди­

нение нескольких таблиц по их первичным ключам, то следует ожидать, что получаемый в итоге 

результирующий набор окажется обновляемым. Чтобы выяснить, является ли результирующий 

набор обновляемым, следует вызвать метод getConcurrency () из интерфейса ResultSet. 

Допустим, требуется повысить цену на некоторые книги, но отсутствует 

единый критерий, который можно было бы использовать для этого в команде 

UPDATE. В таком случае придется перебрать в цикле все книги и И3менить цены 
по прои:шольным условиям, как пока3ано ниже. 

String query = "SELECT * FROM Books"; 
ResultSet rs = stat.executeQuery(query); 
while (rs.next()) 
{ 

if (. . . ) 
{ 

douЫe increase 
douЫe price = rs.getDouЬle("Price"); 
rs.updateDouЬle("Price", price + increase); 
rs.updateRow(); 11 непременно вызвать метод updateRow() 

!/после обновления полей в таблице 



Глава 5 • Работа с базами данных 

Для всех типов данных SQL предусмотрены соответствующие формы метода 
updateXxx (),например updateDouЫe (), updateString () и т.д. Как и при вы­
зове раыичных форм метода getXxx (), в качестве параметров данного метода 
могут быть указаны номер или имя столбца, а затем новое значение поля. 

НА ЗАМЕТКУ! Применяя различные формы метода upda.teXxx(), следует иметь в виду, что 
первый его параметр обозначает номер столбца в результирующем наборе, где он может от­

личаться от номера столбца в базе данных. 

В методе updateXxx () изменяется только значения полей в текущей строке 
результирующего набора, а не в самой базе данных. Для обновления всех полей 

отредактированной строки в базе данных следует вызвать метод upda teRow () . 
Если же переместить курсор к следующей строке, не вызывая метод upda teRow (), 
все обновления предыдущей строки в результирующем наборе будут отменены, 

поскольку они не были переданы базе данных. Для отмены обновлений текущей 

строки в базе данных следует вызвать метод cancelRowUpdates (). 
В предыдущем примере был продемонстрирован порядок внесения изме­

нений в существующей строке. Для создания новой строки в базе данных нуж­

но сначала вызвать метод moveToinsertRow (), переместив тем самым курсор 
на специальную позицию, называемую строкой вставки. Затем новая строка соз­

дается на данной позиции с помощью метода updateXxx ().А для передачи но­
вой вставляемой строки в базу данных вызывается метод insertRow (). По окон­
чании вставки вызывается метод moveToC11rrentRow (),чтобы переместить курсор 
назад на ту позицию, которую он занимал до вызова метода moveToinsertRow (). 
В приведенном ниже примере показано, каким образом весь этот процесс реали­

зуется непосредственно в коде. 

rs.moveToinsertRow(); 
rs.updateString("Title", title); 
rs.updateString("ISBN", isbn); 
rs. updateString ( "PuЬlisher _Id", pubid); 
rs.updateDouЬle("Price", price); 
rs. insertRow (); 
rs.moveToCurrentRow(); 

Однако конкретное расположение новых данных в результирующем наборе или 

базе данных не поддается непосредственному управлению из прикладного кода. 

Если не указать конкретное значение для столбца в строке вставки, на этом месте 

окажется пустое значение NULL. Но если на столбец наложено ограничение NOT 
NULL, то сгенерируется исключение и строка не будет вставлена. 

Наконец, для удаления той строки, на которой установлен курсор, вызывается 

следующий метод, который немедленно удаляет строку как из результирующего 

набора, так из базы данных: 

rs. deleteRow (); 

Таким образом, методы updateRow (), insertRow () и deleteRow () из интер­
фейса Resul tSet предоставляют те же возмож1юсти, что и операторы UPDATE, 
INSERT и DELETE языка SQL. Для программирующих на Java вызов методов бо­
лее привычен, поэтому они предпочитают данный подход составлению запросов 

из операторов SQL. 



• 
5.6. Прокручиваемые и обновляемые результирующие наборы 

ВНИМАНИЕ! При неаккуратной обработке обновляемых результирующих наборов можно 

получить совершенно неэффективный код. Нередко выполнение оператора UPDATE оказы­

вается намного более эффективным, чем составление запроса и просмотр результирующе­
го набора. Обработку обновляемых результирующих наборов имеет смысл организовывать 

в диалоговых прикладных программах, где пользователь может вносить произвольные изме­

нения. Для внесения заранее программируемых изменений более подходящим оказывается 

оператор UPDAТE. 

НА ЗАМЕТКУ! В версии JDBC 2 были внедрены дополнительные усовершенствования в ре­
зультирующие наборы, в том числе возможность обновлять результирующие наборы самыми 
последними данными, если они были изменены при другом, параллельном соединении с базой 

данных. В версии JDBC 3 было внедрено еще одно усовершенствование, определяющее режим 
работы результирующих наборов при фиксации транзакции. Но эти дополнительные возможно­

сти здесь не рассматриваются, поскольку они выходят за рамки введения в базы данных. За до­
полнительными сведениями о них отсылаем читателей к книге JОВСТМ АР/ Tutorial and Reference, 
Third Edition Мэйдена Фишера, Джона Эллиса и Джонатана Брюса (Мауdепе Fisheг, Jоп Ellis, 
Joпathaп Вгuсе; издательство Addisoп-Wesley, 2003 г.), а также к документации, описывающей 
спецификацию прикладного интерфейса JDBC и доступной для загрузки по адресу https: / / 

download.oracle.com/otndocs/jcp/jdЬc-4_2-mrel2-spec/. 

java. sql. Connection 1 . 1 

• Statement createStatement (int type, int concurrency) 1. 2 

• PreparedStatement prepareStatement(String cOПШJand, int type, 

in t concurrency) 1 . 2 

Создают обычный или подготовленный оператор SQL и возвращают результирующий набор 
по заданному типу и способу параллельного обращения к нему. Параметр type принимает 

одну из констант ТУРЕ_ FORWARD - ONLY, ТУРЕ - SCROLL _ INSENSITIVE или TYPE _ SCROLL _ 
SENSITIVE, а параметр concurrency - константу CONCUR READ ONLY или CONCUR 

UPDATAВLE. Все перечисленные константы определяются в интерфейёе ResultSet. -

java.sql.ResultSet 1.1 

• int getТype () 1. 2 

Возвращает одну из констант (ТУРЕ FORWARD ONLY, CONCUR UPDATAВLE или ТУРЕ 
SCROLL _ SENSITIVE), обозначающихтип результирующего набора. 

• in t getConcurrency () 1 . 2 

Возвращает константу (CONCUR READ ONLY или CONCUR UPDATAВLE), обозначающую спо­
соб параллельного обращения крезультирующему набору !Только для чтения или обновления). 

• boolean previous ( ) 1 . 2 

Перемещает курсор к предыдущей строке. Возвращает логическое значение true, если кур­

сор устанавливается на строке, или логическое значение false, если он устанавливается 

перед первой строкой. 



Глава 5 • Работа с базами данных 

java. sql.ResultSet 1.1 /окончание/ 

• int qetRow () 1. 2 

Получает номер текущей строки. Нумерация строк начинается с 1. 

• boolean aЬsolute (int r) 1. 2 

Перемещает курсор к строке с номером r. Возвращает логическое значение true, если кур­
сор устанавливается на строке. 

• boolean relative (int d) 1. 2 

Перемещает курсор на количество строк, определяемое параметром d. Если значение па­
раметра d меньше нуля, то перемещение происходит в обратном направлении. Возвращает 
логическое значение true, если курсор устанавливается на строке. 

• boolean first () 1. 2 

• boolean last () 1 . 2 

Перемещают курсор к первой или к последней строке. Возвращают логическое значение 

true, если курсор устанавливается на строке. 

• void beforeFirst () 1 . 2 

• void afterLast () 1 . 2 

Устанавливают курсор перед первой или за последней строкой. 

• boolean isFirst () 1 . 2 

• boolean isLast () 1. 2 

Проверяют, находится ли курсор на первой или на последней строке. 

• boolean isВeforeFirst () 1 . 2 

• boolean isAfterLast () 1 . 2 

Проверяют, находится ли курсор перед первой или за последней строкой. 

• void 111.oveToinsertRow () 1 . 2 

Перемещает курсор на строку вставки. Строка вставки - зто специальная строка, которая 

служит для вставки новых данных с помощью методов updateXxx () и innsertRow (). 

• void 111.oveToCurrentRow () 1 . 2 

Перемещает курсор из строки вставки на строку, где он находился до вызова метода 
111.oveToinsertRow () . 

• void insertRow () 1 . 2 

Вводит содержимое строки вставки в базу данных и результирующий набор. 

• void deleteRow () J. . 2 

Удаляет текущую строку из базы данных и результирующего набора. 

• void updateXxx(int column, Ххх data) 1. 2 

• void upclateXxx(Strinq columnName, Ххх data) 1. 2 

IXxx обозначает тип данных, например int, douЬle, String, Date и т.д.1 

Обновляют содержимое указанного столбца из текущей строки в результирующем наборе. 

• void updateRow () 1. 2 

Передает обновления текущей строки в базу данных. 

• void cancelRowUpdates () 1 . 2 

Отменяет обновления текущей строки. 



5.7. Наборы строк 

java.sql.DataЬaseМetaData 1.1 

• Ьoolean supportsReвultSetТype (int type) 1. 2 

Возвращает логическое значение true, если база данных способна поддерживать заданный 

тип результирующего набора. Параметр type принимает одну из констант TYPE _ FORWARD _ 

ONLY, ТУРЕ SCROLL INSENSITIVE или ТУРЕ SCROLL SENSITIVE, определяемых в ин-
терфейсе Re-;ultSet-:- - -

• Ьoolean supportsResul tSetConcurrency (in t type, in t concurrency) 1 . 2 

Возвращает логическое значение true, если база данных способна поддерживать задан­

ный способ прокрутки и параллельного обращения к результирующему набору. Параметр 
type принимает одну из констант ТУРЕ_ FORWARD _ ONLY, TYPE _ SCROLL _ INSENSITIVE 

или ТУРЕ SCROLL SENSITIVE, а параметр concurrency - константу CONCUR READ 

ONLY или CONCUR ~UPDATAВLE. Все перечисленные константы определяются в интерфейсе 
ResultSet. 

5. 7. Наборы строк 
Прокручиваемые результирующие наборы предлагают богатые возможно­

сти, но они не свободны от недостатков. В течение всего периода взаимодействия 

с пользователем должно быть установлено соединение с базой данных. Но ведь 

пользователь может отлучиться на длительное время, а между тем установленное 

соединение будет напрасно потреблять сетевые ресурсы. В подобной ситуации 

целесообразно исполь:ювать набор строк. Интерфейс RowSet расширяет интер­
фейс Resul tSet, но набор строк не должен быть привязан к соединению с базой 
данных. 

Наборы строк применяются и в том случае, если требуется перенести резуль­

таты выполнения запроса на другой уровень сложного приложения или на дру­

гое устройство, например на мобильный телефон. Перенести результирующий 

набор нельзя, поскольку он связан с подключением к базе данных, а кроме того, 

структура данных может иметь довольно крупные размеры. 

5. 7 .1. Построение наборов строк 
Ниже перечислены интерфейсы, входящие в пакет j avax. sql. rowset и рас­

ширяющие интерфейс RowSet. 

• Интерфейс CachedRowSet позволяет выполнять некоторые операции при 
отсутствии соединения. Кешируемые наборы строк рассматриваются в сле­

дующем разделе. 

• Интерфейс WebRowSet представляет кешируемый набор строк, который 
может быть сохранен в ХМL-файле. Сам ХМL-файл может быть передан 

другому компоненту приложения и открыт с помощью другого объекта 

типа WebRowSet. 

• Интерфейсы Fil teredRowSet и JoinRowSet поддерживают легковес­
ные операции с наборами строк, равнозначные таким командам SQL, 
как SELECT и JOIN. Эти операции выполняются только над данными, 



Глава 5 • Работа с базами данных 

содержащимися в наборе строк, для чего не требуется устанавливать сое­

динение с базой данных. 

• Интерфейс JdbcRowSet является тонкой оболочкой для интерфейса 

Resul tSet, вводя удобные методы из интерфейса RowSet. 

В версии java 7 появился стандартный способ получения набора строк с помо­
щью приведенных ниже методов. Аналогичные методы имеются для получения 

наборов строк других типов. 

RowSetFactory factory = RowSetProvider.newFactory(); 
CachedRowSet crs = factory.createCachedRowSet(); 

5.7.2. Кешируемые наборы строк 
Кешируемый набор строк содержит данные из результирующего набора. 

Интерфейс CachedRowSet расширяет интерфейс Resul tSet, а следовательно, 

кешируемым набором строк можно поль:юваться точно так же, как и результи­

рующим. Но наборы строк имеют существенное преимущество, позволяющее 

отключиться от базы данных и продолжать работать с набором строк. Как демон­

стрируется в примере программы, исходный код которой представлен в листин­

ге 5.4, такая возможность существенно упрощает создание диалоговых прило­
жений. При получении команды от пользователя осуществляется подключение 

к базе данных, выполняется запрос, результаты размещаются в наборе строк, по­

сле чего производится отключение от базы данных. 

Кешируемый набор строк позволяет даже видоизменить содержащиеся в нем 

данные. Разумеется, результаты подобных изменений не отражаются в базе дан­

ных немедленно. Чтобы принять накопленные изменения, необходимо выпол­

нить явный запрос. В этом случае кешируемый набор строк типа CachedRowSet 

повторно подключается к базе данных и выполняет операторы SQL для записи 
изменений в базу данных. Кешируемый набор строк типа CachedRowSet запол­

няется данными из результирующего набора следующим обра:юм: 

ResultSet result = ... ; 

RowSetFactory factory = RowSetProvider.newFactory(); 
CachedRowSet crs = factory.createCachedRowSet(); 
crs.populate(result); 
conn.close(); //теперь можно отключиться от базы данных 

С другой стороны, кешируемому набору строк типа CachedRowSet можно 

предоставить возможность автоматически подключиться к базе данных. Для это­

го сначала задаются следующие параметры базы данных: 

crs.setURL("jdbc:derby://localhost:1527/COREJAVA"); 
crs.setUsernarne("dbuser"); 
crs.setPassword("secret"); 

Затем составляется оператор запроса с любыми параметрами, как покаJано 

ниже. 

crs.setCornrnand("SELECT * FROM Books WHERE PUBLISHER = ?"); 
crs.setString(l, puЬlisherNarne); 



5.7. Наборы строк 

Наконец, набор строк заполняется результатами запроса. В результате приве­

денного ниже вызова осуществляется подключение к базе данных, выполняется 

запрос, заполняется набор строк и производится отключение от базы данных. 

crs.execute(); 

Если полученный результат запроса имеет слишком большой объем, его мож­

но и не полностью вводить в набор строк. В конце концов, пользователи при­

кладной программы, скорее всего, просмотрят лишь некоторые строки. В таком 

случае придется определить размеры страницы следующим образом: 

CachedRowSet crs = ..• ; 

crs.setCoпunand(coпunand); 

crs.setPageSize(20); 

crs.execute(); 

В итоге будет доступно только 20 строк. Для того чтобы получить следующую 
порцию строк, достаточно вызвать метод 

crs.nextPage(); 

Для просмотра и видоизменения набора строк служат те же методы, что 

и для обращения с результирующим набором. Так, если изменить содержимое 

набора строк, для записи изменений в базу данных необходимо сделать один из 

следующих вызовов: 

crs.acceptChanges(conn); 

или 

crs.acceptChanges(); 

Второй вариант вызова метода acceptChanges () действует только в том слу­
чае, если предоставить для набора строк все сведения, необходимые для подклю­

чения к базе данных (URL, имя пользователя и пароль). 
Как упоминалось в разделе 5.6.2, не все результирующие наборы являются 

обновляемыми. Аналогично наборы строк, содержащие результаты сложных за­

просов, не позволяют записывать изменения в базу данных. Если же набор строк 

содержит данные только из одной таблицы, то никаких затруднений при их за­

писи в базу данных не возникает . 

• ВНИМАНИЕ! Если заполнить набор строк данными из результирующего набора, то набору строк не будет известно имя обновляемой таблицы. В таком случае придется специально ука­

зать имя таблицы, вызвав метод setTaЬleName (). 

Если данные в базе изменились с того момента, как набор строк был заполнен 

ими, то возникают дополнительные затруднения, связанные с несоответствием 

данных. В базовой реализации проверяется, совпадают ли исходные значения 

из набора строк (т.е. значения перед редактированием) с текущими значения­

ми в базе данных. Если проверка дает положительный результат, то содержимое 

базы данных заменяется видоизмененными данными. В противном случае гене­

рируется исключение типа SyncProviderException и внесенные изменения не 
записываются. В других реализациях могут применяться иные способы синхро­

низации данных. 



Глава 5 • Работа с базами данных 

javax.sql.RowSet 1.4 

• Strinq qetURL () 

void setURL (Strinq url) 

Получают или устанавливают URL базы данных. 
Strinq qetUsername () 

• void setUsername (Strinq username) 

Получают или устанавливают имя пользователя для подключения к базе данных. 

• Strinq qetPassword () 

void setPassword(Strinq password) 

Получают или устанавливают пароль для подключения к базе данных. 

Strinq qetCommand () 

• void setCommand(Strinq command) 

Получают или устанавливают команду, при выполнении которой набор строк заполняется 
данными. 

void execute () 

Заполняет данный набор строк по команде, установленной с помощью метода setCommand () . 
Для того чтобы диспетчер драйверов мог подключиться к базе данных, должны быть заданы 
URL, имя пользователя и пароль. 

javax.sql.rowset.CachedRowSet 5.0 

• void execute (Connection conn) 

Заполняет набор строк по команде, установленной с помощью метода setComm.and () . 
Использует указанное подключение к базе данных, а затем отключается от нее. 

void populate(ResultSet result) 

Заполняет кешируемый набор строк данными из указанного результирующего набора. 

• Strinq getTaЬleName () 

• void setTaЬleName(Strinq taЬleNamв) 

Получают или устанавливают имя таблицы, данными из которой заполняется кешируемый 

набор строк. 

int getPageSize() 

void setPaqeSize (int size) 

Получают или устанавливают размер страницы. 

• Ьoolean nextPaqe() 

• boolean previousPaqe() 

Загружают следующую или предыдущую страницу строк. Возвращают логическое значение 
true, если существует следующая или предыдущая страница. 

void acceptChanqes () 

void acceptChanqes (Connection conn) 

Повторно подключаются к базе данных и записывают в нее изменения, внесенные в на­
бор строк. Если с момента заполнения набора содержимое базы данных изменилось, дан­
ные не могут быть записаны в нее обратно. В этом случае генерируется исключение типа 
SyncProviderException. 



javax.sql.rowset.RowSetProvider 7 

• static RowSetFactory newFactory() 

Создает фабрику наборов строк. 

javax.sql.rowset.RowSetFactoxy 7 

• CachedRowSet createCachedRowSet() 

• FilteredRowSet createFilteredRowSet() 

• Jc:IЬcRowSet createJc:IЬcRowSet () 

• JoinRowSet createJoinRowSet () 

• WeЬRowSet createWeЬRowSet() 

Создают набор строк заданного типа. 

5.8. Метаданные 

5.8. Метаданные 

В предыдущих разделах рассматринались способы нвода и обновления со­

держимого таблиц базы данных и составления запросон. Помимо этого, в JDBC 
предусмотрены дополнительные возможности для получения сведений о струк­

туре таблиц и самой базы данных. В частности, можно получить список всех та­

блиц базы данных или имена всех столбцов с типами данных в 1шх. Эти сведения 
вряд ли будут полезны при разработке прикладной программы, предназначен­

ной для работы с конкретной базой данных, потому что 11 таких случаях ее струк­

тура точно известна. Но они пригодятся тем ра:Jработчикам, которые создают 

свои программные продукты для работы с любыми базами данных. 

В языке SQL сведения о структуре базы данных и ее компонентов называют­
ся метаданными. Такое название выбрано лишь для того, чтобы как-то отличать 

сведения о базе данных от ее основного содержимого. Существуют метаданные 

трех типов, описывающие структуру базы данных, структуру результирующих 

наборов и параметры подготовленных операторов. 

Для получения более подробных сведений о структуре базы данных требуется 
объект типа DatabaseMetaData, который можно получит~, из установленного со­
единения с базой данных следующим образом: 

DatabaseMetaData meta = conn.getMetaData(); 

Далее можно приступать непосредственно к получению метаданных. Так, 

если вызвать приведенный ниже метод, в итоге будет получен результирующий: 

набор, содержащий: сведения обо всех таблицах базы данных. (Параметры этого 
метода рассматриваются далее при описании соответствующего прикладного ин­

терфейса API.) 
ResultSet mrs = meta.getTaЫes(null, null, null, 

new String [] { "TABLE" ) ) ; 



Глава 5 • Работа с базами данных 

Каждая строка из получаемого в итоге результирующего набора содержит 

сведения об отдельной таблице, а третий столбец в ней - имя таблицы, как 

поясняется далее в описании соответствующего прикладного интерфейса API. 
В приведенном ниже фрагменте кода организуется цикл для сбора сведений 

об именах всех таблиц в базе данных. 

while (mrs.next()) 
taЫeNames.additem(mrs.getString(Зi ); 

Метаданные базы данных находят еще одно полезное применение. Базы дан­

ных могут иметь очень сложную структуру, а стандарт SQL предоставляет немало 
места для отклонений от нормы. Поэтому в интерфейсе DatabaseMetaData пред­

усмотрено более сотни ра:шых методов, которые можно исполиовать для полу­

чения сведений о структуре базы данных. Ниже приведены примеры вызова та­

ких методов с довольно необычными именами. Судя по названиям этих методов, 

они предназначены главным образом для очень опытных разработчиков, в том 

числе и тех, кто занимается написанием переносимого кода, способного работать 

с разнотипными базами данных. 

meta.supportsCatalogsinPrivilegeDefinitions() 

и 

meta.nullPlusNonNullisNull() 

Интерфейс Da tabaseMetaData предоставляет сведения о самой базе данных, 

а сведения о результирующем наборе - интерфейс ResultSetMetaData. Полу­

чив результирующий набор по запросу, можно определить количество столбцов, 

имена столбцов, типы данных в них и ширину полей. Ниже приведен типичный 

цикл, в котором все эти сведения извлекаются с помощью соответствующих ме­

тодов, выделенных полужирным. 

ResultSet mrs = stat. executeQuery ( "SELECT * E'ROM " + taЬleName); 
ResultSetMetaData meta = mrs.getмetaData(); 
for (int i = l; i <= meta.getColumnCount(); i++) 
{ 

String columnName = meta.getColumnLaЬel(i); 
int columnWidth meta.getColumnDisplaySize(i); 

В этом разделе поясняется, как создать простое инструментальное средство, 

предназначенное для просмотра и анализа структуры базы данных. Исходный код 

примера программы, реализующей это средство, приведен в листинге 5.4. В этой 
программе демонстрируется также применение кешированного набора строк. 

В верхней части рабочего окна рассматриваемой здесь программы находит­

ся комбинированный список с именами всех таблиц базы данных. Как показа­

но на рис. 5.6, после выбора какой-нибудь одной таблицы в центральной части 
фрейма будут представлены имена столбцов из этой таблицы, а также значения 

из первой строки. Для просмотра строк в таблице следует щелкнуть на кнопках 

Next (Следующая) и Previous (Предыдущая). Строки можно удалять, а также ре­
дактировать :шачения в них. Чтобы сохранить изменения в базе данных, следует 

щелкнуть на кнопке Save (Сохранить). 



TITL А Guide to the SQL Standard 

ISB 0-201-96426-0 

47.95 __J ·----

Prtvious 1 ["F"~ 1 Dtltte 11 Sa е 

Рис. 5.6. Приклалная 11р01·рамма ViewDB 

5.8. Метаданные 

НА ЗАМЕТКУ! В состав баз данных обычно включа ются и нструментальные средства для про­
смотра и редактирования таблиц, обладающие намного большими возможностями. Если 

для вашей базы такое инструментальное средство отсутствует, попробуйте воспользоваться 

iSQL-Vieweг lhttp: / /isql. sourceforge. net) или SQuirreL lhttp: //squirrel-sql . 
sourceforge . net). Эти инструментальные средства позволяют просматривать таблицы 
любой базы данных, совместимой с п ри кладным интерфейсом JOBC. Рассматриваемая здесь 
программа отнюдь не претендует на то. чтобы соперничать с этими инструментал ьными сред­

ствами. и лишь демонстрирует общие принципы создания про гра мм для работы с произ воль­
ными таблицами базы данных. 

Листинг 5.4. Исходный код из файла view/ViewDB. java 

1 pa ckage view; 
2 
3 i mport java . awt . *; 
4 import java.awt.event.*; 
5 import java.io . * ; 
6 i mport j a va .nio .file.*; 
7 import j ava . s q l .*; 
8 i mport java. uti l . *; 
9 
10 i mport javax . s q l . *; 
11 i mpo r t javax. sql . r owset .* ; 
12 import j avax.swing . *; 
13 
14 
15 
16 
17 
18 
19 
20 

/ ** 
* В этой программе демонстрируется применение 

* метаданных для отображения прои звольно выбираемых 

* таблиц в базе данных 
* @vers i on 1 . 34 2018-05- 01 
* @author Сау Horstmann 
* / 

21 puЫic class ViewDB 
22 ( 
23 
24 
25 
2 6 

puЬli c sta ti c vo id mai n (St ring [] a rgs ) 
( 

Event Queue . invo ke La ter( () - > 
( 



Глава 5 • Работа с базами данных 

27 var frame = new ViewDBFrame(); 
28 frame.setTitle("ViewDB"); 
29 frame.setDefaultCloseOperation( 
30 JFrame.EXIT ON CLOSE); 
31 frame.setVisiЬle(true); 

32 } ) ; 
33 
34 
35 
36 /** 
37 * Фрейм, содержащий панель с кнопками для 

38 * перемещения по данным 

39 */ 
40 class ViewDBFrame extends JFrame 
41 
42 private JButton previousButton; 
43 private JButton nextButton; 
44 private JButton deleteButton; 
45 private JButton saveButton; 
46 private DataPanel dataPanel; 
47 private Component scrollPane; 
48 private JComЬoBox<String> taЫeNames; 
49 private Properties props; 
50 private CachedRowSet crs; 
51 private Connection conn; 
52 
53 puЫic ViewDBFrame() 
54 ( 
55 taЬleNames = new JComЬoBox<String>(); 
56 
57 try 
58 ( 
59 readDatabaseProperties(); 
60 conn = getConnection(}; 
61 DatabaseMetaData meta = conn.getMetaData(); 
62 try (ResultSet mrs = meta.getTaЫes(null, null, 
63 null, newString[) ( "TABLE" })) 
64 
65 while (mrs.next () 1 
66 taЫeNames.additem(mrs.getString(3)); 

67 
68 
69 catch (SQLException ех) 
70 ( 
71 for (ThrowaЫe t : ех) 

72 t.printStackTrace(); 
73 
74 catch (IOException ех) 
75 { 
76 ex.printStackTrace(); 
77 
78 
79 taЬleNames.addActionListener( 

80 event -> showTaЬle( (String) 
81 taЫeNames.getSelecteditem(), conn) ); 
82 add(taЫeNames, BorderLayout.NORTH); 



5.8. Метаданные 

83 addWindowListener(new WindowAdapter() 
84 { 
85 puЫic void windowClosing(WindowEvent event) 
8 6 { 
87 try 
88 { 
89 if (conn 1= null) conn.close(); 
90 
91 catch (SQLException ех) 
92 { 
93 for (ThrowaЫe t : ех) 

94 t.printStackTrace(); 
95 
96 } 
97 } ) ; 
98 
99 var buttonPanel = new JPanel(); 
100 add(buttonPanel, BorderLayout.SOUTH); 
101 
102 previousButton = new JButton("Previous"); 
103 previousButton.addActionListener( 
104 event -> showPreviousRow()); 
105 buttonPanel.add(previousButton); 
106 
107 nextButton = new JButton("Next"); 
108 nextButton.addActionListener( 
109 event -> showNextRow()); 
110 buttonPanel.add(nextButton); 
111 
112 deleteButton = new JButton("Delete"); 
113 deleteButton.addActionListener( 
114 event -> deleteRow()); 
115 buttonPanel.add(deleteButton); 
116 
117 saveButton = new JButton("Save"); 
118 saveButton.addActionListener( 
119 event -> saveChanges() ); 
120 buttonPanel.add(saveButton); 
121 if (taЬleNames.getitemCotшt() > 0) 
122 showTaЬle(taЬleNames.getitemAt(O), conn); 
123 
124 
125 /** 
126 * Подготавливает текстовые поля для показа новой 
127 * таблицы и отображает первую ее строку 
128 * @param taЬleName Имя отображаемой таблицы 
129 * @param conn Подключение к базе даннь~ 
130 */ 
131 puЬlic void showTaЬle(String taЬleName, 
132 Connection conn) 
133 
134 try (Statement stat conn.createStatement(); 
135 ResultSet result stat.executeQuery( 
136 "SELECT * FROM " + taЬleName)) 
137 
138 // получить результирующий набор и 



Глава 5 • Работа с базами данных 

139 // скопировать его в кешируемьШ 

140 //результирующий набор 

141 RowSetFactory factory = 
142 RowSetProvider.пewFactory(); 

143 crs = factory.createCachedRowSet(); 
144 crs.setTaЬleName(taЫeName); 

145 crs.populate(result); 
146 
147 if (scrollPaпe != пull) remove(scrollPaпe); 

148 dataPaпel = пеw DataPaпel(crs); 
149 scrollPaпe = пеw JScrollPaпe(dataPaпel); 
150 add(scrollPane, BorderLayout.CENTER); 
151 pack(); 
152 showNextRow(); 
153 
154 catch (SQLExceptioп ех) 

155 ( 
156 for (ThrowaЫe t : ех) 

157 t.priпtStackTrace(); 

158 
159 
160 
161 /** 
162 * Осуществляет переход к предыдущей строке таблицы 
163 */ 
164 puЫic void showPreviousRow() 
165 ( 
166 try 
167 ( 
168 if (crs == пull 1 1 crs. isFirst ()) return; 
169 crs.previous(); 
170 dataPanel.showRow(crs); 
171 
172 catch (SQLException ех) 

173 
174 for (ThrowaЫe t : ех) 

175 t.priпtStackTrace(); 

176 
177 
178 
179 /** 
180 * Осуществляет переход к следующей строке таблицы 
181 */ 
182 puЫic void showNextRow() 
183 ( 
184 try 
185 ( 
186 if (crs==пull 11 crs.isLast()) returп; 

187 crs.пext(); 

188 dataPaпel.showRow(crs); 

189 
190 catch (SQLExceptioп ех) 

191 ( 
192 for (ThrowaЫe t : ех) 

193 t.priпtStackTrace(); 

194 



195 
196 
197 /** 
198 * Удаляет строку из текущей таблицы 
199 * / 
200 puЫic void deleteRow() 
201 { 
202 if (crs == null) return; 
203 new SwingWorker<Void, Void>() 
204 { 

5.8. Метаданные 

205 puЫic Void doinBackground() throws SQLException 
20 6 { 
207 crs.deleteRow(); 
208 crs.acceptChanges(conn); 
209 if (crs.isAfterLast()) 
210 if (!crs.last()) crs = null; 
211 return null; 
212 
213 puЫic void done() 
214 { 
215 dataPanel.showRow(crs); 
216 
217 }.execute(); 
218 
219 /** 
220 * Сохраняет все внесенные изменения 
221 */ 
222 puЫic void saveChanges() 
223 { 
224 if (crs == null) return; 
225 new SwingWorker<Void, Void>() 
226 { 
227 puЫic Void doinBackground() throws SQLException 
228 { 
229 dataPanel.setRow(crs); 
230 crs.acceptChanges(conn); 
231 return null; 
232 
233 }.execute(); 
234 
235 
236 private void readDatabaseProperties() 
237 throws IOException 
238 
239 props = new Properties(); 
240 try (InputStream in = Files.newinputStream( 
241 Paths.get("database.properties") 1) 
242 
243 props.load(in); 
244 
245 String drivers = props.getProperty( 
246 "jdbc.drivers"); 
247 if (drivers != null) 
248 System.setProperty("jdbc.drivers", drivers); 
249 
250 



251 
252 
253 
254 
255 
256 
257 
258 
259 
260 
261 
262 
263 
2 64 
265 

Глава 5 • Работа с базами данных 

/** 
* Получает сведения о подключении к базе данных из 

* свойств, задаваемых в файле database.properties, 
* и на их основании подключается к базе данных 
* @return Подключение к базе данных 

*/ 
private Connection getConnection() 

throws SQLException 

String url = props.getProperty("jdbc.url"); 
String username props.getProperty( 

String password 
"jdbc.username"); 

props.getProperty( 
"jdbc.password"); 

266 return DriverManager.getConnection(url, 
267 username, password); 
268 
269 
270 
271 /** 
272 * Панель для отображения содержимого 
273 * результирующего набора 
274 * / 
275 class DataPanel extends JPanel 
276 ( 
277 private java.util.List<JTextfield> fields; 
276 
277 /** 
278 * Конструирует панель для отображения данных 
279 * @param rs Результирующий набор, содержимое 

280 которого отображается на данной панели 

281 */ 
282 puЫic DataPanel(RowSet rs) throws SQLException 
283 { 
284 fields = new ArrayList<>(); 
285 setLayout(new GridBagLayout()); 
286 var gbc = new GridBagConstraints(); 
287 gbc.gridwidth = 1; 
288 gbc.gridheight = 1; 
289 
290 ResultSetMetaData rsmd = rs.getMetaData(); 
291 for (int i = 1; i <= rsmd.getColumnCount(); i++) 
292 { 
293 gbc.gridy = i - 1; 
294 
295 String columnName = rsmd.getColumnLabel(i); 
296 gbc.gridx = О; 

297 gbc.anchor = GridBagConstraints.EAST; 
298 add(new JLabel(columnName), gbc); 
299 
300 int columnWidth = rsmd.getColumnDisplaySize(i); 
301 var tb = new JTextField(columnWidth); 
302 if (lrsmd.getColumnClassName(i) 
303 .equals("java.lang.String"I) 
304 tb.setEditaЬle(false); 



5.8. Метаданные 

305 
306 fields.add(tЬ); 

307 
308 gbc.gridx = 1; 
309 gbc.anchor = GridBagConstraints.WEST; 
310 add (tb, gbc); 
311 
312 
313 
314 /** 
315 * Отображает строку из таблицы базы данных, 
316 * заполняя все текстовые поля значениями из столбцов 
317 */ 
318 puЫic void showRow(ResultSet rs) 
319 ( 
320 try 
321 ( 
322 if (rs == null) return; 
323 for (int i = 1; i <= fields.size(); i++) 
324 { 
325 String field = rs == 
326 null ? "" : rs.getString(i); 
327 JTextField tb = fields.get(i - 1); 
328 tb.setText(field); 
329 
330 
331 catch (SQLException ех) 

332 { 
333 for (ThrowaЫe t : ех) 

334 t.printStackTrace(); 
335 
336 
337 
338 /** 
339 * Обновляет измененными данными текущую 
340 * строку из результирующего набора 
341 */ 
342 puЫic void setRow(RowSet rs) throws SQLException 
343 ( 
344 for (int i = l; i <= fields.size(I; i++) 
345 { 
346 String field = rs.getString(i); 
347 JTextField tb = fields.get(i - 1); 
348 if ('field.equals(tb.getText())) 
349 rs.updateString(i, tb.getText()); 
350 
351 rs.updateRow(); 
352 
353 

java. sql. Cormection 1 . 1 

• DataЬaseМetaData getмetaData() 

Возвращает метаданные в виде объекта типа DataЬaseМetaData для подключения к базе 

данных. 



Глава 5 • Работа с базами данных 

java.sql.DataЬaseМetaData 1.1 

• ResultSet getTaЬles(String catalog, String schemaPattern, String 
taЫeNamePattern, String types[]) 

Возвращает из указанного каталога описание всех таблиц, совпадающих с шаблонами схемы 
и имен таблиц, а также с заданными критериями типов. (Схема описывает группу связанных 
вместе таблиц и полномочия доступа к ним, а каталог - группу связанных вместе схем. Эти 

понятия важны для структурирования крупных баз данных.! 

В качестве параметров catalog и schemaPattern могут быть указаны пустые символь­
ные строки 111 "1. чтобы извлечь таблицы без каталога и схемы, или же пустые значения 
null, если требуется возвратить таблицы независимо от каталога или схемы. 

• Массив types содержит следующие имена типов таблиц: ТАВLЕ, VIEW, SYSTEМ ТАВLЕ, 
GLOВAL TEМPORARY, LOCAL TEМPORARY, ALIAS и SYNONYМ. Если вместо массива 
types указано пустое значение null, возвращаются таблицы всех типов. 

Результирующий набор состоит из пяти столбцов типа String, как показано ниже. 

Столбец Имя Описание 

1 ТАВLЕ САТ Каталог таблиц (может иметь пустое значение nulll 

2 ТАВLЕ SСНЕМ Схема (может иметь пустое значение nulll 

3 ТАВLЕ NАМЕ Имя таблицы 

4 ТАВLЕ ТУРЕ Имя таблицы 

5 REМARКS Комментарии к таблице 

• int getJDBCМajorVersion () 1. 4 

• int getJDBCМinorVersion() 1.4 

Возвращают основной и дополнительный номера версии драйвера JDBC, устанавливающего 
соединение с базой данных. Например, драйвер JDBC 3.0 имеет основной номер версии З 
и дополнительный номер версии О. 

• int getмaxConnections() 

Возвращает максимальное количество подключений к базе данных. которые допускается 

производить одновременно. 

• int getмaxStatements () 

Возвращает максимальное количество операторов SQL, которое допускается при каждом под­
ключении к базе данных. Если это количество неограничено или неизвестно, то возвращает­

ся нулевое значение. 

java.sql.ResultSet 1.1 

• Resul tSetмetaDa ta getмetaDa ta () 

Возвращает метаданные, связанные со столбцами текущего результирующего набора типа 

ResultSet. 



5.9. Транзакции 

java.sql.ResultSetмetaData 1.1 

• int getColumnCount() 

Возвращает количество столбцов для текущего результирующего набора типа ResultSet. 

• int getColumnDisplaySize (int column) 

Возвращает максимальную ширину столбца по указанному целочисленному индексу. 

• String getColumnLaЬel (int соlшпn) 

Возвращает предполагаемый заголовок для указанного столбца. 

• String getColumnName (int column) 

Возвращает имя столбца по указанному целочисленному индексу. 

5. 9. Транзакции 
Группа команд может быть оформлена в виде транзакции, которая может 

быть .зафиксирована после успешного выполнения всех операторов SQL или отка­
чена, если при выполнении хотя бы одного из операторов произойдет какая-ни­

бу дь ошибка. Основной причиной для группирования операторов в транзакции 

служит сохранение целостности базы uанных. 

Допустим, требуется перевести денежные средства с одного банковского счета 

на другой. Для этого следует одновременно снять нужную сумму денег с одного 

счета и пополнить ею другой счет. Если после снятия суммы денег с одного сче­

та, но перед пополнением другого произойдет системная ошибка, то операция 

с первым счетом должна быть отменена. 

Операторы обновления базы данных могут быть сгруппированы в одну тран­

закцию. Если транзакция завершается полностью, то возможна ее фиксация. Если 

она не завершается полностью из-за каких-нибудь ошибок, то производится ее 

откат, т.е. отменяются все изменения в базе данных, которые выполнялись после 

предыдущей зафиксированной транзакции. 

5.9.1. Программирование транзакций средствами JOBC 
По умолчанию соединение с базой данных находится в режиме автоматиче­

ской фиксации, т.е. результат выполнения каждого оператора SQL фиксируется 
в базе данных после успешного завершения этой команды. Как только оператор 

будет зафиксирован, откатить его уже нельзя. Для отключения режима автома­

тической фиксации можно вызвать следующий метод: 

conn.setAutoCommit(false); 

Отключив автоматическую фиксацию, можно приступать к созданию объекта 

типа Statement обычным образом: 

Statement stat = conn.createStatement(); 

Затем метод executeUpdate () вызывается нужное количество раз, как пока­
зано ниже. 



Глава 5 • Работа с базами данных 

stat.executeVpdate(oпepaтop1); 

stat. executeVpdate (оператор_,) ; 
stat.executeVpdate(oпepaтop1); 

Если все эти операторы завершатся успешно, то результаты их выполнения 

фиксируются. Для этого вызывается метод commi t () следующим образом: 

conn.commit(); 

Если при выполнении любого из этих операторов прои:юйдет ошибка, то 

производится откат всей тра11закции. И для этого вызывается метод rollback () 
следующим обра:юм: 

conn.rollback(); 

При этом автоматически отменяются все операторы, выполнявшиеся после 

фиксации последней тран:\акции. Откат обычно производится в том случае, если 

при выполнении тран:1акции генерируется исключение типа SQLException. 

5.9.2. Точки сохранения 
Некоторые драйверы по:нюляют повысить уровень контроля над процессом 

отката с помощью точек сохранения. При создании точки сохранения отмеча­

ется точка, в которую можно 11последствии вернуться, не отменяя транзакцию 

11 целом. В приведенном ниже фрагменте кода показано, как это осуществляется 
на практике. 

11 начать транзакцию; переход в данную точку происходит 

11 при вызове метода rollback(): 
Statement stat = conn.createStatemeпt(); 
stat.executeVpdate(oпepaтop1); 

11 установить точку сохранения; переход в эту точку 

11 происходит при вызове метода rollback(svpt): 
Savepoint svpt = conn.setSavepoint(); 

stat. executeVpdate (оператор") ; 
if (. . . 1 

11 отменить результат выполнения оператора.': 
conn.rollback(svpt); 

conn.commit(); 

Если точка сохранения бол1,ше не нужна, ее следует освободить: 

conп.releaseSavepoint(svpt); 

5.9.З. Групповые обновления 

Допустим, в прикладной программе требуется выполнить много операторов 

INSERT для заполнения таблицы базы данных. Повысить производительность та­
кой программы можно с помощью групповою обнов,\енuя. При групповом обнов­

лении операторы SQL собираются вместе и передаются на выполнение группой, 
а не по отдельности. 

1!:'1 НА ЗАМЕТКУ! Чтобы выяснить, поддерживается ли в базе данных групповое обновление, до­
~ статочно вызвать метод supportsBatchUpdates () из интерфейса DataЬaseМetaData. 



5. 9. Транзакции 

Помимо операторов управления данными INSERT, UPDATE и DELETE, для груп­

пового обновления можно также использовать операторы определения данных, 

в том числе CREATE TABLE и DROP TABLE. Но для этой цели не подходит опера­

тор SELECT, поскольку его выполнение в группе с другими операторами приво­

дит к исключению. (В принципе оператор SELECT не имеет смысла выполнять 

в групповом режиме, поскольку он возвращает результирующий набор, не об­

новляя базу данных.) 

Для группового обновления сначала создается объект типа Statement: 
Statement stat = conn.createStatement(); 

Затем вместо метода executeUpdate () вызывается метод addBatch (): 
String command = "CREATE TABLE ... " 
st.at .. addВatch(oпepaтop); 

while 1. . . ) 
{ 

command = "INSERT INTO . . . VALUES (" + . . . + ") "; 
stat.addВatch(oпepaтop); 

Наконец, все операторы SQL передаются вместе для группового обновления базы 
данных, как показано ниже. Метод executeBatch () возвращает массив подсчетов 
строк, обработанных при выполнении каждого оператора из данной группы. 

int[J counts = stat.executeВatch{); 

Для правильной обработки ошибок в групповом режиме групповое обнов­

ление следует рассматривать как единую транзакцию. Если в ходе группового 

обновления прои:юйдет сбой или возникнет ошибка, следует произвести откат 

в исходное состояние. 

Прежде всего следует отключить режим автоматической фиксации, собрать 

операторы SQL в группу, выполнить их и зафиксировать результаты, а затем вос­
становить режим автоматической фиксации, как выделено полужирным в приве­

денном ниже фрагменте кода. 

boolean autoComm.it = conn.getAutoComm.it(); 
conn.setAutoComm.it(false); 
Statement stat = conn.getStatement(); 

11 продолжать вызовы метода stat.addBatch( ... ) ; 

stat.executeBatch(); 
conn . comm.i t () ; 
conn . setAu toComm.i t { au toComm.i t) ; 

j ava. sql. Connection 1 . 1 

• Ьoolean getAutoComm.it () 

• void setAutoComm.it {boolean Ь) 

Получают или устанавливают режим автоматической фиксации для данного подключения 

к базе данных. Если параметр Ь принимает логическое значение true, результаты выполне­
ния всех операторов SQL автоматически фиксируются после их завершения. 



Глава 5 • Работа с базами данных 

java. sql. Connection 1. 1 (окончание/ 

• void commi t () 

Фиксирует все операторы SQL, которые были выполнены с момента последней фиксации. 

• void rollback () 

Производит откат, отменяя все изменения, которые были внесены с момента последней 

фиксации. 

• Savepoin t setSavepoin t () 1 . 4 

• Savepoint setSavepoint (String паше) 1. 4 

Устанавливают безымянную или именованную точку сохранения. 

• void rollback (Savepoint svpt) 1. 4 

Производит откат всех операторов SQL до указанной точки сохранения. 

• void releaseSavepoint (Savepoint svpt) 1. 4 

Освобождает указанную точку сохранения. 

java.sql.Savepoint 1.4 

• in t getSavepointid () 

Возвращает идентификатор данной безымянной точки сохранения. Если данная точка оказы­

вается именованной, генерируется исключение типа SQLException. 

• String getSavepointName() 

Возвращает имя точки сохранения. Если данная точка оказывается безымянной, генерирует­

ся исключение типа SQLException. 

java.sql.Statement 1.1 

• void addВatch (String command) 1. 2 

Включает указанный оператор SQL как выполняемую команду в текущую группу для группо­
вого обновления. 

• int[] executeBatch() 1.2 

• long[] executeLargeBatch() 8 

Выполняют все операторы SQL из текущей группы. Каждое значение в возвращаемом масси­
ве соответствует одному из операторов, входящих в данную группу. Если зто положительное 
значение, то оно обозначает подсчет обновленных строк. Если же это значение SUCCESS 
NO INFO, то оно обозначает, что оператор удалось выполнить, но подсчет обновленных строк 
неДоступен. Если это значение EXECUТE _FAILED, то оно обозначает, что выполнить опера­
тор не удалось. 

java.sql.DataЬaseМetaData 1.1 

• boolean supportsBa tchUpda tes () 1 . 2 

Возвращает логическое значение true, если драйвер поддерживает групповое обновление. 



5.9. Транзакции 

5.9.4. Расширенные типы данных SQL 
В табл. 5.8 перечислены все типы данных SQL, поддерживаемых в JDBC, а так­

же их эквиваленты в Java. 

Таблица 5.8. Типы данных SQL и соответствующие им типы в Java 

Тип данных SQL 

INTEGER или INT 

SМALLINT 

NUМERIC (m, n), DECIМAL (m, n) или DEC (m, n) 

FLOAT (n) 

REAL 

DOUВLE 

CНARACTER (n) или СНАR (n) 

VARCНAR(n),LONG VARCНAR 

BOOLEAN 

DATE 

ТIМЕ 

ТIМЕSТАМР 

BLOB 

CLOB 

ARRAY 

ROWID 

NCНAR(n),NVARCНAR(n),LONG NVARCНAR 

NCLOB 

SQLXМL 

Тип данных Java 

int 

short 

java.math.BigDecimal 

douЬle 

float 

douЫe 

String 

String 

boolean 

java.sql.Date 

java.sql.Time 

java.sql.Timestamp 

java.sql.Blob 

java.sql.Clob 

java.sql.Array 

java.sql.Rowid 

String 

java.sql.NClob 

java.sql.SQLXМL 

Тип ARRA У представляет в SQL последовательность значений. Например, 
таблица Student может иметь столбец с оценками Scores типа ARRAY OF 
INTEGER, т.е. с массивом целочисленных значений. Метод getArray () возвраща­
ет объект интерфейса типа java.sql.Array. В этом интерфейсе предусмотрены 
также методы извлечения значений из массива. 

При получении большого объекта (LOB) или массива из базы данных конкрет­
ное содержимое извлекается из нее только после запроса отдельных значений. 

Это сделано для повышения эффективности работы с базой данных, поскольку 

большой объект может оказаться довольно объемистым. 

В некоторых базах данных поддерживаются значения типа ROWID, описыва­
ющие местонахождение строки, что позволяет очень быстро извлечь ее из та­

блицы. В версии JDBC 4 внедрен интерфейс java. sql. Rowid, предоставляющий 
методы для ввода идентификатора строки в запросы и извлечения его из получа­

емых результатов. 



Глава 5 • Работа с базами данных 

Строка национа.льных символов (типа NCHAR и его вариантов) служит для хра­
нения символьных строк в локальной кодировке, а также для их сортировки 

по заданным условиям локальной сортировки. В версии JDBC 4 предостаВЛ}JЮтся 
методы для взаимного преобразования объектов Java типа String и строк наци­
ональных символов в запросах и получаемых результатах. 

В некоторых базах данных допускается хранение данных, типы которых опре­

деляются пользователем. В версии JDBC 3 поддерживается механизм автомати­
ческого преобразования структурированных типов данных SQL в объекты Java. 
Кроме того, в некоторых базах данных предоставляется собственный механизм 

хранения данных в формате XML. В версии JDBC 4 внедрен интерфейс SQLXML, 
который может служить связующим звеном между внутренним представлением 

данных в формате XML и интерфейсами Source/Resul t модели DOM, а также 
двоичными потоками ввода-вывода. Дополнительные сведения об интерфейсе 

SQLXML можно найти в документации на соответствующий прикладной интер­
фейс API. 

На этом рассмотрение расширенных типов данных SQL в этой главе завер­
шается. Дополнительные сведения по этому вопросу можно найти в упоминав­

шейся ранее книге JDBC™ АР/ Tutorial and Refere11ce, Third Editio11 и спецификации 
интерфейса JDBC 4. 

5.1 О. Управление подключением к базам данных 
в веб-приложениях и корпоративных приложениях 

Описанный ранее способ соединения с базой данных с помощ1.ю параметров 

из файла свойств database. properties подходит только для очень простых те­
стовых программ и совершенно не годится для крупномасштабных приложений. 

При установке приложения JDBC в корпоративной среде соединения с базами 
данных поддерживаются через JNDI (Java Naming and Directory lnterface - ин­

терфейс для служб каталогов и именования н Java). Свойства источников данных 
в пределах всего предприятия хранятся в отдельном каталоге. Благодаря этому 

обеспечивается централи:ювашюе управление именами пол1,зователей, пароля­

ми и URL в JDBC. В такой среде для подключения к базе данных рекомендуется 
использовать код, подобный следующему: 

var jndiContext = new InitialContext(); 
var source = (DataSource) jndiContext.lookup( 

"java:comp/env/jdbc/corejava"); 
Connection conn = source.getConnection(); 

Обратите внимание на то, что в этом коде уже не исполь~~уется диспет­

чер драйверов типа DriverManager. Вместо него для поиска исто•tнuка данных 
применяется служба JNDI. В качестве источника данных служит интерфейс 
Da taSource, позволяющий устанавливать простые соединения типа JDBC, а так­
же выполнять ряд более сложных функций, например, распределенные тран­

закции с несколькими базами данных. Интерфейс Da taSource входит в пакет 
j avax. sql, расширяющий стандартную библиотеку Java. 



5.1 О. Управление подключением к базам данных в веб-приложениях м корпоративных приложениях 

НА ЗАМЕТКУ! В контейнере Java ЕЕ не нужно даже программировать поиск в службе JNDI. 
Достаточно сделать следующую аннотацию @Resourae к полю типа DataSource, чтобы во 
время загрузки приложения был автоматически задан эталонный источник данных: 

@Resource(name="jdbc/corejava") 
private DataSource source; 

Очевидно, что источник данных нуждается в настройке. Так, если приклад­

ная программа для работы с ба:юй данных должна выполняться в контейнере 

сервлетов (например, Apache Tomcat) или на сервере приложений (например, 
GlassFish), то сведения о настройке базы данных (в том числе имя службы JNDI, 
URL в JDBC, имя пользователя и пароль) целесообра:шо разместить в конфигура­
циошюм файле или задать в графическом поль:ювательском интерфейсе адми­

нистратора. 

Управление именами пользователей и регистрационными данными - это 

лишь один из вопросов, требующих особого внимания. Второй вопрос связан 

со стоимостью подключения к ба:ым данных. В примерах программ, представ­

ленных в :лай главе, применяются две методики для получения требующегося 

соединения с ба:юй данных. Так, в самом начале программы QueryDB из ли­

стинга 5.3 устанавливается единственное соединение с ба:юй данных, которое 
разрывается по завершении программы. В программе ViewDB из листинга 5.4 
новое соединение устанавливается всякий раз, когда в нем во:шикает потреб-

1юсть. 

Но ни одну из этих методик нельзя считать удовлетворительной. Ведь сое­

динения с базами данных - это конечный ресурс. И если полиователь прио­

становит работу с приложением на некоторое время, то соединение не следует 

оставляп, установленным. С другой стороны, получение соединения для каждого 

запроса и последующий его разрыв обходится очеш, дорого. 

В качестве выхода из этого положения целесообра:шо органи:ювать пу.л соеди­

нений. Это означает, что соединения с базами данных не ра:\рываются физиче­

ски, а сохраняются в очереди и повторно используются для других запросов. Ор­

ганизация пулов соединений является важной служебной функцией, и поэтому 

в спецификации JDBC предоставляются вспомогателы1ые средства для ее реали­
зации. Однако в различных базах данных пул соединений может быть реализо­

ван по-разному. Причем он не всегда входит в состав драйвера JDBC. Некоторые 
поставщики неб-контейнеров и серверов приложений предлагают реализации 

пулов соединений в составе своих приложений. 

Использование пула соединений полностью про:1рачно для программиста. 

Чтобы извлечь соединение из пула, достаточно получить соответствующий 

источник данных и вызвать метод getConnect ion (). По окончании работы 
с ба:юй данных через это соединение следует вы:шап, метод close (). При этом 
соединение ф~13ически не разрывается, но в пул соединений поступает сооб­

щение, что соединение больше не требуется. Как пра11ило, в пуле соединений 

принимаются необходимые меры, чтобы сохранип, 11 нем и подготовленные 
операторы. 



Гпава 5 • Работа с базами данных 

Итак, вы ознакомились с самыми основами JDBC, которые требуются для раз­
работки простых прикладных программ, взаимодействующих с базами данных. 

Но, как отмечалось в начале этой главы, базы данных моrут имеп, очень сложную 

структуру, а более сложные вопросы работы с ними выходят за рамки рассмо­

трения данной книги. Поэтому интересующихся подобными вопросами еще раз 

отсылаем к упоминавшейся ранее книге /ОВсгм API Tutorial a11d Refere11ce, Third 
Edition и спецификации JDBC. 

Из этой главы вы узнали о том, как организуется взаимодействие с реляцион­

ными базами данных в Java. Следующая глава посвящена библиотеке даты и вре­
мени, внедренной в версии Java 8. 



ГЛАВА 

Прикладной интерфейс 
API даты и времени 

В этой главе ... 
~ Временная шкала 

~ Местные даты 

~ Корректоры дат 

~ Местное время 

~ Поясное время 

~ Форматирование и синтаксический анализ даты и времени 

~ Взаимодействие с унаследованным кодом 

Время летит как стрела, и мы можем легко установить начальный момент, что­

бы отсчитывать время вперед и назад. Так почему же так трудно обращаться со 

временем? Все дело в самих людях. Не проще ли было, если бы мы обращались 

друг к другу следующим образом: "Встретимся в 1371409200, только не опазды­
вай!" Но ведь нам нужно соотносить время с конкретным временем суток и года. 

Именно здесь и возникают трудности. В версии Java 1.0 имелся класс Date, реали­
зация которого теперь кажется наивной, а большинство его методов стали нере­

комендованными к употреблению в версии Java 1.1, в которой был внедрен класс 
Calendar. Безусловно, его прикладной интерфейс API не был совершенным, его 
экземпляры были изменяемыми, и в нем не учитывались потерянные секунды. 

Более совершенным оказался прикладной интерфейс API даты и времени из па­
кета j ava. time, внедренный в версии Java 8. В нем были устранены недостат­
ки прошлых реализаций, и можно надеяться, что он послужит нам еще немало 

времени. В этой главе будет показано, что именно делает расчеты времени столь 



Глава 6 • Прикладной интерфейс API даты и времени 

неприятными и как подобные трудности разрешаются в прикладном интерфей­

се API даты и времени. 

6.1. Временная шкала 
По традиции основополагающей единицей отсчет<1 времени является секунда, 

производная от вращения Земли вокруг своей оси. Полный оборот Земля совер­

шает за 24 часа, или 24 х 60 х 60 = 86400 секунд, и поэтому точное определение 
секунды кажется делом астрономических измерений. К сож<1лению, Земля испы­

тыв<1ет незначительные колебания при вращении, что потребовало более точного 

определения секунды. И такое определение было сформулировано в 1967 году. 
Оно вполне согласуется с исторически сложившимся определением и в то же 

время основывается на внутреннем свойстве атомов Це:шя-133. С тех пор офици­

альное время хранится в разветвленной сети атомных часов. 

Нередко официальные часы-хранители времени синхронизируют абсолютное 

время с вращением Земли. Прежде официальные секунды подвергались не:шачи­

тел1,ной коррекции, но с 1972 года стали периодически вводит1,ся так называемые 
"потерянные" секунды. (Теоретически секунду можно было бы время от времени 

удалять, но этого так и не произошло.) В настоящее время снова ведутся дискус­

сии об изменении системы отсчета времени. Очевидно, что причиной тому слу­

жат потерянные секунды, и поэтому во многих вычислителы1ых системах приме­

няется так называемое "сглаживание" там, где время искусственно замедляется 

или ускоряется перед потерянной секундой, чтобы сохранип, ровно 86400 секунд 
в сутках. Такой способ вполне работоспособен, поскол1,ку местное время на ком­

пьютере отсчитывается не совсем точно, а компьютеры обычно синхрони:н1руют­

ся с внешней службой времени. 

В соответствии со спецификацией на прикладной интерфейс API даты и вре-
мени в Java требуется временная шкала, которая 

• имеет 86400 секунд в сутках; 

• точно соответствует официал1,ному времени в полдеш, каждого дня; 

• близко соответствует ему в другое время суток строго определенным спо­

собом. 

Благодаря этому я:1ык Java может гибко подстраиванся к будущим измене­
ниям в отсчете официального времени. В языке Java кл<1сс Instant представляет 
точку на временной шкале. Исходная точка отчета времени, называемая эпохой, 

прои:11юльно задана в полночь 1 января 1970 года на нулевом меридиане, прохо­
дящем через Гринвичскую королевскую обсерваторию в Лондоне. Аналогичное 

соглашение принято и для отсчета времени по стандарту POSIX в системе Unix. 
Начиная с исходной точки отчета, время и:1меряется в секундах, как вперед, так 

и назад, с точностью до наносекунд, а каждые сутки составляют 86400 секунд. При 
отсчете времени на:1ад :1начения типа Inst.ant достигают миллиарда лет (т.е. ми­
нималыюй точки Instant .MIN на временной шкале). И хотя этого недостаточно, 
чтобы выразить возраст вселенной (около 13,5 млрд лет), тем не менее, должно 
быть достаточно для практических целей. Ведь миллиард лет назад Земля была 



6.1. Временная шкала 

покрыта льдом и населялась микроскопическими предшественниками современ­

ных растений и животных. А максимальная точка на временной шкале (Instant. 
МАХ) соответствует 31декабря1000000000 года. 

В результате вызова статического метода Instant .now () получается текущий 
момент времени. Два момента времени можно сравнить с помощью методов 

equals () и compareTo () обычным образом, чтобы использовать моменты вре­
мени как его отметки. 

Для определения разности двух моментов времени служит статический метод 

Duration.between ().В качестве примера ниже показано, как измерить текущее 
время выполнения алгоритма. 

Instant start = Instant.now(); 
runAlgor i thrn () ; 
Instant end = Instant.now(); 
Duration timeElapsed = Duration.between(start, end); 
long millis = timeElapsed.toMillis(); 

Объект типа Duration определяет промежуток между двумя моментами вре­
мени. Длительность промежутка типа Duration в обычных единицах измерения 
времени можно получить, вызвав метод toNanos (), toMillis (), toSeconds (), 
toMinutes (), toHours () или toDays (). 

Стремясь рассчитать время с точностью до наносекунд, не следует забывать 

о возможном переполнении. Так, значение типа long может содержат количе­
ство наносекунд порядка 300 лет. Если короткие промежутки времени можно 
просто преобразовать в наносекунды, то для длительных промежутков времени 

лучше воспользоваться объектом типа Duration, храня количество секунд в поле 
типа long, а количество наносекунд - в поле типа int. Для выполнения ариф­
метических операций над промежутками времени в классе Duration предостав­
ляется целый ряд методов, представленных в конце этого раздела. 

Так, если требуется проверить, выполняется ли один алгоритм, по крайней 

мере в десять раз быстрее, чем другой, достаточно выполнить следующие расчеты: 

Duration timeElapsed2 = Duration.between(start2, end2); 
boolean overTenTimesFaster = timeElapsed.multipliedBy(lOJ 

.minus(timeElapsed2) .isNegative(); 

Данный пример демонстрирует лишь синтаксис для расчетов времени. Но 

поскольку алгоритмы не могут длиться сотни лет, приведенные выше расчеты 

времени их выполнения можно упростить следующим образом: 

boolean overTenTimesFaster 
timeElapsed.toNanos() * 10 < timeElapsed2.toNanos(); 

НА ЗАМЕТКУ! Классы Instant и Duration неизменяемы, поэтому все методы вроде 
multipliedВy () или minus () возвращают новые экземпляры этих классов. 

В примере программы из листинга 6.1 демонстрируется применение классов 
Instant и Duration для расчета времени выполнения двух алгоритмов. 



Глава 6 • Прикладной интерфейс API даты и времени 

Листинг 6.1. Исходный код из файла tirneline/TirneLine. java 

1 package tirneline; 
2 
3 /** 
4 * @version 1.0 2016-05-10 
5 * @author Сау Horstrnann 
6 * / 
7 irnport java.tirne.*; 
8 irnport java.util.*; 
9 irnport java.util.strearn.*; 
10 
11 puЫic class Tirneline 
12 { 
13 puЬlic static void rnain(String[] args) 
14 { 
15 Instant start = Instant.now(); 
16 runAlgorithrn(); 
17 Instant end = Instant.now(); 
18 Duration tirneElapsed = Duration.between(start, end); 
19 long rnillis = tirneElapsed.toMillis(); 
20 Systern.out.printf("%d rnilliseconds\n", rnillis); 
21 
22 Instant start2 = Instant.now(); 
23 runAlgorithrn2(); 
24 Instant end2 = Instant.now(); 
25 Duration timeElapsed2 = 

26 Duration.between(start2, end2); 
27 Systern.out.printf("%d rnilliseconds\n", 
28 tirneElapsed2.toMillis() ); 
29 boolean overTenTirnesFaster = 
30 timeElapsed.rnultipliedBy(lO) 
31 .rninus(tirneElapsed2) .isNegative(); 
32 Systern.out.printf("The first algorithrn is " 
33 + "%srnore than ten tirnes faster", 
34 overTenTirnesFaster ? "" : "not "); 
35 
36 
37 puЫic static void runAlgorithrn() 
38 { 
39 int size = 10; 
40 List<Integer> list = new Randorn() .ints() 
41 .rnap (i -> i % 100). lirnit (size) 
4 2 . boxed 1) • col lect 1 Collectors. toList 11 1 ; 
43 Collections.sort(list); 
44 Systern.out.println(list); 
45 
46 
47 puЫic static void runAlgorithm2() 
48 { 
49 int size = 10; 
50 List<Integer> list = new Randorn ( 1 • ints 11 
51 . rnap 1 i -> i % 100) . 1 irni t ( s i ze) 
52 .boxed 1) . collect (Collectors. toList () 1; 
53 while (!IntStrearn.range(l, list.size() 1 
54 .allMatch(i -> list.get(i - 1) 
55 .compareTo(list.get(i)) <= 0)) 



6.1. Временная шкала 

56 Collections.shuffle(list); 
57 System.out.println(list); 
58 
59 

java.time.Instant 8 

• sta tic Instant now () 

Получает текущий момент времени из наилучших среди имеющихся системных часов. 

• Instant plus (Temporal.Amount amountToAdd) 

• Instant minus (Temporal.Amount amountToSuЬtract) 

Возвращают момент времени, отстоящий на указанную величину от данного момента вре­

мени, представленного объектом типа Instant. Интерфейс TemporalAmount реализуется 
в классах Duration и Period lсм. далее раздел 6.2). 

• Instant (pluslminus) (NanoslМillislSeconds) (lonq numЬer) 

Возвращает момент времени, отстоящий на указанное количество наносекунд, миллисекунд 

или секунд от данного момента времени. 

java.time.Duration 8 

• static Duration of(NanoslМillislSecondslМinuteslHourslDays) (lonq 
numЬer) 

Возвращает промежуток времени в количестве указанных единиц измерения. 

• static Duration Ьetween(Temporal startinciusive, Temporal 
endExci usi ve) 

• 
• 
• 
• 
• 
• 
• 
• 

Возвращает промежуток времени между его указанными моментами. Интерфейс Temporal 
реализуется в классе Instant, а также в классах LocalDate/LocalDateTime/ 
LocalTime lсм. далее раздел 6.4) и ZonedDateTime lсм. далее раздел 6.5). 

lonq toNanos () 

lonq toМillis () 

lonq toSeconds () 9 

lonq toМinutes () 

lonq toHours () 

lonq toSeconds () 

lonq toSeconds () 

lonq toDays () 

Получают промежуток времени, представленный объектом типа Duration, в количестве 
единиц измерения, обозначаемых в имени соответствующего метода. 

• int to (Nanos IМillis 1 Seconds IМinutes 1 Hours) Part () 9 

• lonq to (Days 1 Hours IМinutes 1 Seconds IМillis INanos) Part () 9 

Возвращают часть промежутка времени, представленного объектом типа Duration, в ука­
занных единицах измерения. Например, промежуток времени 100 секунд состоит из 1 минуты 
и 40 секунд. 



Глава 6 • Прикладной интерфейс API даты и времени 

java. time .Duration 8 (окончание/ 

• Instant plus (TemporalAmount amountToAdd) 

• Instant minus (TemporalAmount amountToSuЬtract) 

Возвращают момент времени, отстоящий от данного промежутка времени, представленного 
объектом типа Instant, на указанную величину. Интерфейс TemporalAmount реализует~я 
в классах Duration и Period (см. далее раздел 6.21. 

• Duration multipliedВy(long multiplicand) 

Duration dividedВy(long divisor) 

• Duration negated() 

Возвращают промежуток времени, получаемый умножением или делением данного про­
межутка времени, представленного объектом типа Duration, на указанную величину или 
на -1. 

• boolean isZero () 

• boolean isNegative () 

Возвращают логическое значение true, если данный промежуток времени, представленный 
объектом типа Duration, оказывается нулевым или отрицательным. 

• Duration (pluslminus) (NanoslМillislSecondslМinuteslHourslDays) (long 
numЬer) 

Возвращает промежуток времени, получаемый в виде объекта типа Duration сложением 
или вычитанием заданного количества в указанных единицах измерения времени. 

6.2. Местные даты 
Теперь перейдем от абсолютного к обычному в обиходе времени. Такое вре­

мя в прикладном интерфейсе Java АР/ представлено двумя категориями местною 
времени и даты и поясного времени. Местное время и дата обозначают время суток 

или дату, но не свя:ыны с часовым поясом. Примером местной даты служит 14 
июня 1903 года (в этот деш, родился Алонсо Черч, и:юбретатель лямбда-вычисле­
ний). Эта дата не содержит ни время суток, ни часовой пояс и поэтому не соот­

ветствует точному моменту времени. С другой стороны, дата 16 июля 1969 года, 
09:32:00 по восточному поясному времени (момент :ыпуска космического корабля 
"Аполлон-11"), представляет точный момент времени на временной шкале с уче­

том часового пояса. 

Во многих расчетах времени учитывать часовые пояса не требуется, а иногда 

они могут даже мешать. Допустим, требуется :Jапланировать еженедельные сове­

щания в 10:00. Если добавить 7 дней (т.е. 7 х 24 х 60 х 60 секунд) к последнему часо­
вому поясу, то невольно можно пересечь границу, обо:шачающую переход на лет­

нее или :1имнее время, и тогда совещание состоится на час раньше или позже! 

Именно по этой причине разработчики прикладного интерфейса API даты 
и времени рекомендуют не пользоваться поясным временем, кроме тех случаев, 

когда требуется представить экземпляры абсолютного времени. Дни рождения, 

праздники, сроки исполнения и прочие моменты времени лучше нсего предста­

нить н виде местного времени и даты. 



6.2. Местные даты 

Объект типа LocalDate определяет местную дату с указанием года, месяца 
и дня месяца. Для посrроения этого объекта можно воспользоваться сrатическим 

методом now ( ) или о f ( ) , как показано ниже. 

LocalDate today = LocalDate.now(); //Текущая дата 
LocalDate alonzosBirthday = LocalDate.of(l903, 6, 14); 
alonzosBirthday = LocalDate.of(l903, Month.JUNE, 14); 

11 Применяется перечисление Month 

В отличие от нестандартных соглашений, принятых в системе Unix и классе 
java. util. Date, где отсчет месяцев начинается с нуля, а отсчет лет - с 1900 года, 
месяц года можно обозначить обычными числами. С другой стороны, для этой 

цели можно воспользоваться перечислением Month. Наиболее употребительные 
методы для манипулирования объектами типа LocalDate, представляющими 
месrвое время, предсrавлены в конце этого раздела. 

Например, День программисrа приходится на 256-й день года. Ниже показа­

но, насколько просrо рассчитывается этот день. 

11 13 сентября, но в високосньШ год - 12 сентября: 
LocalDate prograпunersDay = LocalDate.of(2014, 1, 11 

.plusDays(255); 

Напомним, что разность двух моментов времени составляет промежуток, 

представленный объектом типа Duration. Для местных дат ему соответствует 
период времени, который представлен объектом типа Period и выражает коли­
чество прошедших лет, месяцев или дней. И хотя для получения местной даты 

дня своего рождения в следующем году достаточно сделать вызов birthday. 
plus (Period.ofYears (1) ), в високосный год вряд ли получится правильный 
результат в результате вызова Ьirthday. plus ( Duration. ofDays ( 365) ) . 

Метод until () возвращает разность двух местных дат. Например, в результа­
те следующего вызова: 

independenceDay.until(christmas) 

получается период времени 5 месяцев и 21 день, что не очень удобно, поскольку 
количество дней в месяце варьируется. Поэтому для выявления количества дней 

лучше сделать следующий вызов: 

independenceDay. until (christmas, ChronoUnit .DAYS) // 174 дня 

• ВНИМАНИЕ! Вызов некоторых методов из класса LocalDate мог бы привести к получению 
несуществующих дат. Так, если добавить один месяц к дате 31 января, то в конечном итоге 
не должна получиться дата 31 февраля. Вместо генерирования исключения эти методы воз­
вращают последний достоверный день месяца. Например, в результате одного из следующих 

вызовов: 

LocalDate.of(2016, 1, 31) .plusMonths(l) 

или 

LocalDate.of(2016, 3, 31) .minusMonths (1) 

получается дата 29 февраля 2016. 

Метод ge t Da у О fWe е k ( ) возвращает день недели в виде соответствующего 
значения из перечисления DayOfWeek. В частности, понедельнику соответствует 



Глава 6 • Прикладной интерфейс API даты и времени 

значение DayOfWeek. MONDAY, равное 1, а воскресенью - значение DayOfWeek. 

SUNDAY, равное 7. Например, в результате следующего вызова: 
LocalDate.of(l900, 1, 1) .getDayOfWeek() .getValue() 

возвращается значение 1. У перечисления DayOfWeek имеются удобные методы 
plus () и minus () для расчета дней недели по модулю 7. Так, в результате вызова 
DayOfWeek. SATURDAY. plus ( 3) возвращается значение DayOfWeek. TUESDAY. 

r=J НА ЗАМЕТКУ! Выходные дни фактически приходятся на конец недели. В то же время в классе 
~ java. util. Calendar воскресенью соответствует значение 1, а субботе - значение 7. 

В версии Java 9 внедрены два удобных метода datesUntil (),возвращающих 

потоки объектов типа LocalDate: 

LocalDate start = Loca1Date.of(2000, 1, 1); 
LocalDate endExclusive = LocalDate.now(); 
Stream<LocalDate> allDays = start.datesUntil(endExclusive); 
Stream<LocalDate> firstDaysinMonth = 

start.datesUntil(endExclusive, Period.ofMonths(l) ); 

Помимо класса LocalDate, имеются классы MonthDay, YearMonth и Year 

для описания частичных дат. Например, дата 25 декабря (с указанным годом) мо­
жет быть представлена объектом класса MonthDay. Применение класса LocalDate 

демонстрируется в примере программы из листинга 6.2. 

Listing 6.2. Исходный код из файла localdates/LocalDates. java 

1 package localdates; 
2 
3 /** 
4 * @version 1.0 2016-05-10 
5 * @author Сау Horstmann 
6 */ 
7 import java.time.*; 
8 import java.time.temporal.*; 
9 import java.util.stream.*; 
10 
11 puЫic class LocalDates 
12 ( 
13 
14 

рuЫ1с static void main(String[J args) 
( 

15 LocalDate today = LocalDate.now(); // Текущая дата 
16 System.out.println("today: " + today); 
17 
18 LocalDate alonzosBirthday = 
19 LocalDate.of (1903, 6, 14); 
20 alonzosBirthday = LocalDate.of(1903, Month.JUNE, 14); 
21 // Применяется перечисление Month 
22 System.out .println ( "alonzosBirthday: " 
23 + alonzosBirthday); 
24 
25 LocalDate programmersDay = LocalDate.of (2018, 1, l) 
26 .plusDays(255); 



6.2. Местные даты 

27 // 13 сентября, но в високосный год 12 сентября 
28 System. out .println ( "programmersDay: " 
29 + programmersDay); 
30 
31 LocalDate independenceDay = 

32 LocalDate.of(2018, Month.JULY, 4); 
33 LocalDate christmas = 

34 LocalDate.of(2018, Month.DECEMBER, 25); 
35 
36 System.out.println("Until christmas: " 
37 + independenceDay.until(christmas) ); 
38 System.out.println("Until christmas: " 
39 + independenceDay.until( 
40 christmas, ChronoUnit.DAYS) ); 
41 
42 System.out.println(Loca1Date.of(2016, 1, 31) 
43 .plusMonths(l)); 
44 System.out.println(Loca1Date.of(2016, 3, 31) 
45 .minusMonths(l) ); 
46 
47 DayOfWeek startOfLastMillennium 
48 LocalDate.of(1900, 1, 1) .getDayOfWeek(); 
4 9 System. out. pr int ln ( "startOfLastMillennium: " 
50 + startOfLastMillennium); 
51 System.out.println(startOfLastMillennium.getValue() ); 
52 System.out.println(DayOfWeek.SATURDAY.plus(3)); 
53 
54 LocalDate start = Loca1Date.of(2000, 1, 1); 
55 LocalDate endExclusive = LocalDate.now(); 
56 Stream<LocalDate> firstDaysinMonth = 
57 start.datesUntil(endExclusive, 
58 Period.ofMonths(l)); 
59 System.out.println("firstDaysinMonth: " 
60 + firstDaysinMonth.collect(Collectors.toList()) ); 
61 
62 

java.time.LocalDate 8 

• static LocalDate now () 

Получает объект типа LocalDate, представляющий текущую местную дату. 

• static LocalDate of(int year, int month, int dayO:fМonth) 

• static LocalDate of(int уваr, Month month, int dayO:fМonth) 

Возвращают местную дату по указанному году, месяцу [в виде целого числа в пределах от 1 
до 12 или значения из перечисления Month) и дню месяца [в виде целого числа в пределах 
ОТ 1 ДО 31). 

LocalDate (pluslm.inus) (DayslWeekslMonthslYears) (lonq nuшЬer) 

Возвращает местную дату в виде объекта типа LocalDate, получаемую сложением или вы­
читанием заданного количества в указанных единицах измерения времени. 



Глава 6 • Прикладной интерфейс API даты и времени 

j ava. time. LocalDa te 8 (окончание/ 

• LocalDate plus (Temporal.Amount amountToAdd) 

• LocalDate lllinus (Te111poral.Amount amountToSuЬtract) 

Возвращают момент времени, отстоящий на указанную величину от данного момента време­

ни. Интерфейс Temporal.Amount реализуется в классах Duration и Period. 

LocalDate wi thDayOfМonth (int dayO.fМonth) 

• LocalDate withDayOfYear (int dayOfYear) 

• LocalDate withМonth (int month) 

LocalDate withYear(int year) 

Возвращают новую местную дату в виде объекта типа LocalDate по указанному дню меся­
ца, дню года, месяцу или году. 

• int qetDayOfМonth () 

Возвращает день месяца lв виде целого числа в пределах от 1 до 31). 

• int qetDayOfYear () 

Возвращает день года lв виде целого числа в пределах от 1 до 366). 

• DayOfWeek qetDayOfWeek () 

Возвращает день недели в виде значения из перечисления DayOfWeek. 

• Month qetмonth () 

• int qetмonthValue () 

Возвращают день месяца в виде значения из перечисления Month или целого числа в пре­
делах от 1 до 12. 

• int qetYear () 

Возвращает год в виде целого числа в пределах от -999999999 до 999999999. 

• Period until (ChronoLocalDate endDateExclusive) 

Возвращает период вплоть до указанной конечной даты. Интерфейс ChronoLocalDate ре­
ализуется в классе LocalDate, а также в классах дат для календарей, отличающихся от гри­
горианского. 

• boolean isBefore (ChronoLocalDate other) 

boolean isAfter (ChronoLocalDate other) 

Возвращают логическое значение true, если текущая дата предшествует указанной дате 
или следует после нее. 

• boolean isLeapYear() 

Возвращает логическое значение true, если год оказывается високосным, т.е. если он де­
лится на 4, но не на 100 или 400. Этот алгоритм применяется ко всем предыдущим годам, 
хотя он исторически неточный. !Високосные годы были введены в 46 году до н.э., а правила 
деления на 100 или 400 - при реформе григорианского календаря в 1582 году. На повсе­
местное распространение этой реформы понадобилось более 300 лет.) 

• Stream<LocalDate> datesUntil (LocalDate endExclusive) 9 

• Stream<LocalDate> date11Until (LocalDate endExclusive, Period step) 9 

Возвращают поток дат от текущей местной даты вплоть до указанной конечной даты с шагом 

1 или заданным периодом. 



6.3. Корректоры дат 

java.time.Period 8 

• static Period of(int years, int months, int days) 

• Period of(DayslWeekslMonthslYears) (int numЬer) 

Возвращают период в виде объекта типа Period по заданному количеству в указанных еди­
ницах измерения времени. 

• int get (Days 1Months1 Years) () 

Возвращает количество дней, месяцев или лет, составляющих данный период времени. 

• Period (plus 1 minus) (Days 1Months1 Years) (long numЬer) 

Возвращает местную дату, получаемую сложением или вычитанием заданного количества 

в указанных единицах измерения времени. 

• Period plus (Temporal.Amount amountToAdd) 

• Period minus (Temporal.Amount amountToSuЬtract) 

Возвращают момент времени, отстоящий на заданную величину от текущего момента време­

ни. Интерфейс Temporal.Amount реализуется в классах Duration и Period. 

• Period with (Days IMonths 1 Years) (int numЬer) 

Возвращает новый период в виде объекта типа Period по указанному количеству дней, ме­
сяцев или лет. 

6.З. Корректоры дат 

Для целей планирования нередко требуется рассчитать такие даты, как пер­

вый вторник каждого месяца. В классе TemporalAdj usters предоставляется 
целый ряд статических методов для общих видов коррекции дат. Результат вы­

полнения метода коррекции дат передается методу wi th (). Например, первый 
вторник месяца может быть рассчитан следующим образом: 

LocalDate firstTuesday = LocalDate.of(year, month, 1) 
.with(TemporalAdjusters.nextOrSame(DayOfWeek.TUESDAYJ ); 

Как всегда, метод wi th () возвращает новый объект типа LocalDa te, не изме­
няя оригинал. Доступные корректоры дат перечислены в конце этого раздела. 

Имеется также возможность создать свой корректор дат, реализовав интер­

фейс TemporalAdjuster. В качестве примера ниже приведен корректор дат, 
предназначенный для расчета следующего дня недели. 

TeшporalAdjuster NEXT_WORKDAY = w -> { 

} ; 

var result = (LocalDateJ w; 
do { 

result = result.plusDays(l); 
} while (result.getDayOfWeek() .getValue() >= 6); 
return result; 

LocalDate backToWork = today.with(NEXT WORKDAY); 

Обратите внимание на то, что параметр лямбда-выражения относится к типу 

Temporal и поэтому должен быть приведен к типу LocalDate. Избежать этого 



Глава 6 • Прикладной интерфейс API даты и времени 

приведения типов можно с помощью метода ofDateAdjuster (),ожидающего 
в качестве параметра лямбда-выражение типа UnaryOperator<LocalDate>, как 
показано ниже. 

TemporalAdjuster NEXT WORKDAY = TemporalAdjusters.ofDateAdjuster(w -> { 
LocalDate result = ~; 11 Без приведения типов 
do { 

result = result.plusDays(ll; 
) wh1 le ( result. getDayOfWeek () . getValue () >= 6) ; 
return result; 

) ) ; 

java.time.LocalDate 9 

• LocalDate with (TemporalAdjuster adjuster) 

Возвращает результат коррекции текущей данных с помощью заданного корректора. 

java.time.temporal.TemporalAdjusters 9 

• static TemporalAdjuster next (DayOfWeek dayOEWeek) 

• static TemporalAdjuster nextOrSa.me (DayOfWeek dayOEWввk) 

• static TemporalAdjuster previous(DayOfWeek dayO.fWeek) 

• static TemporalAdjuster previousOrSa.me(DayOfWeek dayO.fWeek) 

Возвращают корректор даты по указанному дню недели. 

• static TemporalAdjuster dayOfWeekinМonth(int n, DayOfWeek 
dayO.fWeek) 

• static TemporalAdjuster lastinМonth(DayOfWeek dayO.fWeek) 

Возвращают корректор даты по указанному п-му или последнему дню недели в месяце. 

• static TemporalAdjuster firstDayOfМonth() 

• static TemporalAdjuster firstDayOfNextмonth() 

• static TemporalAdjuster firstDayOfYear() 

• static TemporalAdjuster firstDayOfNextYear() 

• static TemporalAdjuster lastDayOfМonth() 

• static TemporalAdjuster lastDayOfYear() 

Возвращают корректор даты по указанному дню месяца или года. 

6.4. Местное время 
Класс Loca l Т ime представляет местное время суток, например 15:30:00. Эк­

земпляр класса Local Т ime можно получить с помощью метода now () или of () 
следующим образом: 

LocalTime r1ghtNow = LocalTime.now(); 
LocalTime bedtime = Loca1Time.of(22, 30); 

11 или LocalTime.of (22, 30, 0) 



6.4. Местное время 

В конце этого раздела перечислены методы, выполняющие общие операции 

с местным временем. В частности, методы plus () и minus () заключают в себе 
операции с местным временем в течение всех суток, как показано в следующей 

строке кода: 

11 Подъем в 6:30:001 
LocalTirne wakeup = bedtirne.plusHours(B); 

НА ЗАМЕТКУ! В самом классе LocalTime местное время до и после полудня не разграничи­
вается, поскольку эта обязанность возлагается на средство форматирования, как поясняется 

далее, в разделе 6.6. 

Имеется также класс LocalDateTime, представляющий дату и время. Этот 
класс пригоден для хранения моментов времени в фиксированном часовом поясе, 

например, для планирования занятий или событий. Но если требуется произве­

сти расчеты с учетом перехода на летнее время или поддерживать пользователей 

из разных часовых поясов, то следует воспользоваться классом ZonedDateTime, 
рассматриваемым в следующем разделе. 

java.time.LocalTime 8 

• static LocalTime now () 

Возвращает текущее местное время в виде объекта типа LocalTime. 

• static LocalTime of(int hour, int minute) 

• static LocalTime of(int hour, int minute, int second) 

• static LocalTime of(int hour, int minute, int second, int 
nanoOfSecond) 

Возвращают местное время по заданным часам lв пределах от О до 23), минутам и секундам 
lв пределах от О до 59], а также наносекундам lв пределах от О до 999999999). 

• LocalTime (pluslminus) (HourslМinuteslSecondslNanos) (long numЬer) 

Возвращает местное время в виде объекта типа LocalTime, получаемое сложением или вы­
читанием заданного количества в указанных единицах измерения времени. 

• LocalTime plus (TemporalAmount amountToAdd) 

• LocalTime minus(TemporalAmount amountToSuЬtract) 

Возвращают момент времени, отстоящий на заданную величину от текущего момента времени. 

• LocalTime with(HourlМinutelSecondlNano) (int value) 
Возвращает новое местное время в виде объекта типа LocalTime по указанному количеству 
часов, минут, секунд или наносекунд. 

• int getHour () 
Возвращает количество часов lв пределах от О до 23]. 

• int getМinute () 

• int getSecond () 

Возвращает количество минут и секунд lв пределах от О до 59]. 

• int getNano () 

Возвращает количество наносекунд lв пределах от О до 999999999]. 



Глава 6 • Прикладной интерфейс API даты и времени 

java. time. LocalTime 8 /окончание} 

int toSecondOfDay () 

• long toNanoOfDay () 

Возвращают количество секунд или наносекунд после полуночи. 

• boolean isBefore (LocalTime other) 

• Ьoolean isAfter (LocalTime other) 

Возвращают логическое значение true, если текущая дата предшествует указанной дате 
или следует после нее. 

6.5. Поясное время 
Еще большую путаницу, чем неравномерность вращения Земли, в расчеты 

времени вносят часовые пояса, вероятно, потому, что они являются полностью 

изобретением человечества. Люди во всем мире ведут отсчет от времени по Грин­

вичу, поэтому одни обедают в 2:00, а другие в 22:00, исходя из потребностей сво­
его желудка, а не времени суток. Так, в Китае обедают в разное время, поскольку 

на эту страну приходятся четыре условных часовых пояса. Эги пояса считаются 

условными, поскольку их границы неточны и смещаются, а переход на летнее 

и зимнее время еще больше усугубляет положение. 

Как бы часовые пояса ни досаждали просвещенным, они являются непрелож­

ным фактом нашей жизни. Разрабатывая календарное приложение, следует учи­

тывать интересы людей, перемещающихся из одной страны в другую. Так, если 

требуется вовремя прибыть к 10:00 на конференцию в Нью-Йорке из Берлина, 
необходимо правильно учесть местное время, определяя время отье:~да. 

В организации IANA (Internet Assigned Numbers Authority - Комитет по циф­

ровым адресам в Интернете) ведется база данных всех известных в мире часовых 

поясов (ht tps: / /www. iana. org /time-zones), обновляемая несколько раз в год. 
Большая часть обновлений относится к изменению правил перехода на летнее 

и зимнее время. База данных IANA применяется и в Java. 
Каждому часовому поясу присваивается свой идентификатор, например 

America/New _ York или Europe/Berlin. Чтобы выяснить все имеющиеся часовые 
пояса, достаточно вызвать метод Zoneid. getAvailaЫeids (). На момент напи­
сания данной книги насчитывалось почти 600 идентификаторов часовых поясов. 

Получая в качестве параметра идентификатор часового пояса, статический 

метод Zoneld.of (id) возвращает объект типа Zoneid. Эгот объект можно ис­
пользовать для преобра:ювания объекта типа Local Da teT ime в объект типа 

ZonedDateTime, вызвав метод local.atZone (zoneid), или для построения объ­
екта типа ZonedDa teT ime, вызвав статический метод ZonedDa teT ime. of ( year, 
month, day, hour, minute, secoпd, паnо, zоnеid),какпоказановследу­

ющем примере кода: 

11 1969-07-16T09:32-04:00[America/New_York]: 
ZonedDateTime apollolllaunch = ZonedDateTime.of 11969, 7, 

16, 9, 32, О, О, Zoneld.of("America/New_York")); 



6.5. Поясное время 

Это конкретный момент времени. Чтобы получить объект типа Instant, 
достаточно сделать вызов apollol 1 launch. toiristant (). С другой стороны, 
если имеется конкретный момент времени, достаточно сделать вы:юв instant. 
atZone ( Zoneid. of ( "UTC") ) , чтобы получить объект типа ZonedDateTime, опре­
деляющий поясное время и дату по Гринвичу, или восполь:юваться другим объ­

ектом типа Zoneid, чтобы получить дату и время н любом другом месте планеты. 

НА ЗАМЕТКУ! Сокращение UTC обозначает Всеобщее скоординированное время. Это со­
кращение выбрано в качестве компромисса между английским ICooгdiпated Univeгsal Time) 
и французским ITemps Univeгsel Cooгdine) обозначениями Всеобщего скоординированного 
времени, хотя оно неверно на обоих языках. Понятие UTC определяет время по Гринвичу без 
учета перехода на летнее или зимнее время. 

Многие методы из класса ZonedDa tет ime похожи на методы из класса 
LocalDateTime (см. их краткое описание в конце ::>того ра:iдела). Большинство из 
них довольно просты, но переход на летнее и зимнее время несколько усложняет 

расчет поясного времени. 

При переходе на летнее время стрелки часов переводятся на один час вперед. 

Что же произойдет, если рассчитать время, приходящееся на пропущенный час? 

Например, в 2013 году переход на летнее время 11 Центральной Европе произо­

шел 31 марта в 2:00. Если попытаться рассчитап, 1Jремя в несуществующий мо­
мент 2:30 31 марта 2013 года, то на самом деле будет получено время 3:30. 
ZonedDateTime skipped = ZonedDateTime.of( 

Loca1Date.of(2013, 3, 31), 
Loca1Time.of(2, 30), 
Zone Id. of ( "Europe/Ber lin") ) ; 

11 Получается время 3:30 31 марта 

С другой стороны, при переходе на зимнее время стрелки часов переводятся 

на один час на:ыд, и в одно и то же местное время во:шикают два момента! При 

расчете времени в этом промежутке получается более ранний и:i ::>тих двух мо­

ментов времени, как показано ниже. 

ZonedDateTime amЬiguous = ZonedDateTime.of ( 
Loca1Date.of(2013, 10, 27), // Переход на зимнее время 
Loca1Time.of(2, 30), 
Zoneid.of ( "Europe/Berlin")); 

11 2013-10-27T02:30+02:00[Europe/Berlin] 
ZoпedDateTime aпHourLater = amЬiguous .plusHours (1.); 

// 2013-10-27T02:30+01:00[Europe/Berliп] 

Час спустя время будет показывать те же самые часы и минуты, но часовой 

пояс уже будет смещен. Следует также уделить внимание коррекции даты при 

пересечении границ перехода на летнее и зимнее время. Так, если требуется 

назначить совещание на следующей неделе, то не следует вводить промежуток 

в семь дней, как демонстрируется в приведенном ниже примере кода. 

// Внимание 1 Этот код действует неверно при 

11 переходе на летнее время: 

ZoпedDateTime пextMeetiпg = 
meetiпg.plus(Duratioп.ofDays(7)); 



Глава 6 • Прикладной интерфейс API даты и времени 

Вместо этого лучше воспользовап,ся классом Period следующим образом: 

ZonedDateTirne nextMeeting = 

meeting.plus(Period.ofDays(7)); //Верно~ 

• ВНИМАНИЕ! Имеется также класс OffsetDateTime, представляющий время со смещени­
ем относительно времени UTC, но без учета правил смены часовых поясов. Этот класс пред­
назначен для специального применения, требующего, в частности, отсутствия этих правил, 

в том числе и некоторых сетевых протоколов. Для получения поясного времени в удобочитае­

мом формате лучше пользоваться классом ZonedDateTime. 

Применение класса ZonedDateTime демонстрируется в примере программы 
из листинга 6.3. 

Листинг 6.3. Исходный код из файла zonedtimes/ZonedTimes. java 

1 package zonedtirnes; 
2 
3 /** 
4 * @version 1.0 2016-05-10 
5 * @author Сау Horstmann 
6 * / 
7 import java.time.*; 
8 
9 puЫic class ZonedTirnes 
10 { 
11 puЫic static void rnain(String[] args) 
12 { 
13 ZonedDateTirne apollolllaunch = ZonedDateTirne.of( 
14 1969, 7, 16, 9, 32, О, О, 

15 Zoneid.of("Arnerica/New York") ); 
16 // 1969-07-16T09:32-04:00[Arnerica/New_York] 
17 Systern.out.println("apollolllaunch: " 
18 + apollolllaunch); 
19 
20 Instant instant = apollolllaunch.toinstant(); 
21 System.out.println("instant: "+ instant); 
22 
23 ZonedDateTime zonedDateTirne = 

24 instant.atZone(Zoneid.of("UTC") 1; 
25 Systern.out.println("zonedDateTirne: " 
26 + zonedDateTime); 
27 
28 ZonedDateTime skipped = ZonedDateTime.of( 
29 Loca1Date.of(2013, 3, 31), 
30 Loca1Tirne.of(2, 30), 
31 Zoneid.of("Europe/Berlin")); 
32 //Формирование даты 31 марта 3:30 
34 Systern.out.println("skipped: "+ skipped); 
35 
36 ZonedDateTime amЬiguous = ZonedDateTirne.of( 
37 Loca1Date.of(2013, 10, 27), 
38 //Переход на зимнее время 

39 Loca1Time.of(2, 30), 
40 Zoneid.of("Europe/Berlin")); 



6.5. Поясное время 

41 // 2013-10-27T02:30+02:00[Europe/Berlin] 
42 ZonedDateTime anHourLater = amЬiguous.plusHours(l); 
43 // 2013-10-27T02:30+01:00[Europe/Berlin] 
44 System.out.println("amЬiguous: "+ amЬiguous); 
45 System.out.println("anHourLater: " + anHourLater); 
46 
47 ZonedDateTime meeting = ZonedDateTime.of( 
48 LocalDate.of (2013, 10, 31), 
49 LocalTime.of(14, 30), 
50 Zoneid.of("America/Los_Angeles") ); 
51 System.out.println("meeting: " + meeting); 
52 //Внимание! Не годится, так как не учитывает 
53 //переход с летнего времени на зимнее: 

54 ZonedDateTime nextMeeting = 
55 meeting.plus(Duration.ofDays(7) ); 
56 System.out.println("nextMeeting: " + nextMeeting); 
57 nextMeeting = 
58 meeting.plus(Period.ofDays(7)); /!Верно! 

59 System.out.println("nextMeeting: " + nextMeeting); 
60 
61 

java.time.ZonedDateTime 8 

static ZonedDateTime now() 

Возвращает поясное время и дату в виде объекта типа ZonedDateTime. 

• static ZonedDateTime of(int year, int moпth, int dayO:fМonth, int 
hour, int miпute, int second, int nanoOfSecond, Zone!d zопе) 

• static ZonedDateTime of (LocalDate date, LocalTime ti.me, Zone!d 
zопе) 

• static ZonedDateTime of (LocalDateTime localDateTime, Zone!d zопе) 

static ZonedDateTime of!nstant(Instant instant, Zone!d zопе) 

Возвращают поясное время и дату в виде объекта типа ZonedDateTime по заданным пара­
метрам и часовому поясу. 

• ZonedDateTime (pluslminus) (DayslWeekslМonthslYearslHourslМinuteslSec 
onds 1 Nanos) ( long пumЬer) 

Возвращает поясное время и дату в виде объекта типа ZonedDateTime, получаемые сло­
жением или вычитанием заданного количества в указанных единицах измерения времени. 

• ZonedDateTime plus (TemporalAmount amouпtToAdd) 

• ZonedDateTime minus (TemporalAmount amouпtToSuЬtract) 

Возвращают момент времени, отстоящий на заданную величину от текущего момента времени. 

ZonedDateTime with(DayOfМonthlDayOfYearlMonthlYearlHourlМinutelSecon 
dlNano) (int value) 

Возвращает новое поясное время и дату в виде объекта типа ZonedDateTime по заданной 
величине в указанных единицах измерения времени. 

• ZonedDateTime withZoneSameinstant(Zoneid zопе) 

• ZonedDateTime withZoneSameLocal(Zoneid zопе) 

Возвращают новое поясное время и дату в виде объекта типа ZonedDateTime в указанном 
часовом поясе, представляя тот же самый момент времени или местное время. 



Глава 6 • Прикладной интерфейс API даты и времени 

java. time. ZonedDateTime 8 (окончание/ 

• int getDayOfМonth () 

Возвращает день месяца lв пределах от 1 до 31). 

• int getDayOfYear () 

Возвращает день года lв пределах от 1 до 366). 

• DayOfWeek getDayOfWeek () 

Возвращает день недели в виде значения из перечисления DayOfWeek. 

• Month getмonth () 

• int getмonthValue () 

Возвращают месяц в виде значения из перечисления Month или числа в пределах от 1 
ДО 12. 

• int getYear () 

Возвращает год lв пределах от -999999999 до 999999999). 

• int getHour () 

Возвращает количество часов lв пределах от О до 23). 

• int getмinute () 

• int getSecond () 

Возвращают количество минут и секунд lв пределах от О до 591. 

• int getNano () 

• Возвращает количество наносекунд lв пределах от О до 9999999991. 

• puЫic ZoneOffset getOffset() 

Возвращает смещение относительно времени UTC. Смещение может изменяться в пределах 
от -12: 00 до +14: 00. У некоторых часовых поясов может быть дробное смещение. При пе­
реходе на летнее или зимнее время смещение изменяется. 

• LocalDa te toLocalDa te () 

• LocalTime toLocalTime () 

• LocalDateTime toLocalDateTime () 

• Instant toinstant () 

Возвращают местную дату, время, дату и время или соответствующий момент времени. 

• boolean isBefore(ChronoZonedDateTime other) 

• boolean isAfter (ChronoZonedDateTime other) 

Возвращают логическое значение true, если текущее поясное время и дата предшествует 
указанному поясному времени и дате или следует после них. 

6.6. Форматирование и синтаксический анализ даты и времени 
В классе DateTimeFormatter предоставляются перечисленные ниже средства 

форматирования для вывода значений даты и времени. 

• Предопределенные стандартные средства форматирования, перечисленные 

в табл. 6.1. 



6.6. Форматирование и синтаксический анализ даты и времени 

• Средства форматирования с учетом региональных настроек. 

• Средства форматирования по специальным шаблонам. 

Чтобы воспользоваться одним из стандартных средств форматирования даты 

и времени, достаточно вызвать его метод format () следующим образом: 

String formatted = DateTimeFormatter.ISO DATE TIME 
.format(apollolllaunch); 

11 1969-07-16T09:32:00-05:00[America/New_York] 

Таблица 6.1. Предопределенные средства форматирования 

Средство форматирования Описание Пример 

ВASIC ISO DАТЕ Год, месяц, день, смещение 

часового пояса бс3 

ра3делителей 

19690716-0500 

ISO_LOCAL_DAТE, Ра3делители -, :, Т 1969-07-16, 09: 32: 00, 
1969-07-16ТО9:32:00 ISO_LOCAL_TIМE, ISO_ 

LOCAL DАТЕ ТIМЕ 

ISO _ OFFSET _DATE, 
ISO _ OFFSET _ ТIМЕ, 
ISO OFFSET DATE 
ТIМЕ 

Аналогично ISO LOCAL _ XXX, но 1969-07-16-05: 00, 
со смещением часового пояса 09: 32: 00-05: 00, 

1969-07-16Т09:32:00-05:00 

ISO ZONED DАТЕ ТIМЕ Со смещением часового пояса 1969-07-16Т09: 32: 00-05: 00 

ISO INSTANТ 

ISO _DAТE, ISO _ TIМE, 
ISO DАТЕ ТIМЕ 

ISO ORDINAL DАТЕ 

ISO WЕЕК DАТЕ 

RFC 1123 DАТЕ ТIМЕ 

и щ1,ентификатором часовою [America/New _ York] 
пояса 

Время в формате UTC, где Z 
обо3начает идентификатор 

часово10 пояса 

1969-07-16T14:32:00Z 

Аналогично ISO _ OFFSET _DAТE, 1969-07-16-05: 00, 09: 32: 
ISO OFFSET ТIМЕ и ISO 00-05: 00, 
ZONED _DAТE _TIМE, но сведения 1969-07-16Т09: 32: 
о часовом поясе ука:~ываются 

дополнительно, хотя и не 

обя за тел ьно 

Год и день года для местной 

даты типа LocalDate 

ГоЛ, неделя и день недели 

для местной даты типа 

LocalDate 

Стандарт для отметок 

времени в электронной почте, 

кодируемых по стандарту RFC 
822 и обновляемых четырьмя 
цифрами для обо3начения года 

по стандар~у RFC 1123 

00-05:00[America/New_York] 

1969-197 

1969-W29-3 

Wed, 16 Jul 1969 
09: 32: 00 -0500 

Стандартные средства предназначены в основном для форматирования ма­

шишю-читаемых отметок времени. Для представления дат и времени в удобо­

читаемом виде служат средства форматирования с учетом региональных настро­

ек. Они поддерживают четыре стиля форматирования даты и времени: SHORT, 

MEDIUM, LONG и FULL (табл. 6.2). 



Глава 6 • Прикладной интерфейс API даты и времени 

Таблица 6.2. Стили форматирования с учетом региональных настроек 

Стиль Дата Время 

SHORT 7/16/69 9:32 АМ 
МEDIUМ Jul 16, 1969 9:32:00 АМ 
LONG July 16, 1969 9:32:00 АМ EDT 
FULL Wednesday, July 16, 1969 9:32:00 АМ EDT 

Для создания средства форматирования с учетом региональных настро­

ек служат статические методы ofLocalizedDate (), ofLocalizedTime () 
и ofLocalizedDateTime ().Ниже приведен характерный тому пример. 

DateTimeFormatter formatter = DateTimeFormatter 
.ofLocalizedDateTime(FormatStyle.LONG); 

String formatted = formatter.format(apollolllaunch); 
// July 16, 1969 9:32:00 АМ EDT 

В этих методах применяются региональные настройки, выбираемые по умол­

чанию. Чтобы выбрать другие региональные настройки, достаточно вызвать ме­

тод wi thLocale () следующим образом: 

formatted = formatter.withLocale(Locale.FRENCH) 
.format(apollolllaunch); 

// 16 juillet 1969 09:32:00 EDT 

У перечислений DayOfWeek и Month имеются методы getDisplayName () 
для получения наименований дней недели и месяца в разных форматах и регио­

нальных настройках, как пока:~ано ниже. Подробнее о региональных настройках 

речь пойдет в главе 7. 
for (DayOfWeek w : DayOfWeek.values()) 

// вывести дни недели Mon Tue Wed Thu Fri Sat Sun 
11 на английском языке: 
System.out.print(w.getDisplayName(TextStyle.SHORT, 

Locale.ENGLISH) + " "); 

НА ЗАМЕТКУ Класс java. time. format.DateTimeFormatter служит для замены класса 
java. util. DateFormat. Если же требуется получить экземпляр последнего ради обратной 
совместимости, следует вызвать метод formatter. toFormat (). 

Наконец, можно создать свой формат даты, указав шаблон. Так, в следующей 

строке кода: 

formatter = DateTimeFormatter. ofPattern ( "Е уууу-ММ-dd НН :mm"); 

дата форматируется в виде Wed 1969-07-16 09:32. Каждая буква в шаблоне 
обозначает отдельное поле даты и времени, а количество повторений букв - кон­

кретный формат, выбираемый по правилам, которые не совсем ясны и, по-види­

мому, органично nыработалис1, со временем. Наиболее употребительные элемен­

ты шаблонов для форматирования даты и времени перечислены в табл. 6.3. 



6.6. Форматирование и синтаксический анализ даты и времени 

Таблица 6.3. Наиболее употребительные знаки в шаблонах для форматирования даты 
и времени 

Константа перечислимого типа Перевод 
ChronoField или назначение 
ERA Эра 

YEAR OF ERA Год эры 

МОNТН OF YEAR Месяц го,11,а 

DAY OF МОNТН День месяца 

DAY OF WEEK День недели 

HOUR OF DAY Час дня 

CLOCK HOUR OF АМ РМ Полный час дня по часам 

до или 1юсле полу,11,ня 

АМРМ OF DAY Время суток ,11,0 или после 
полудня 

МINUТE OF HOUR 
SECOND OF МINUТE 
NANO OF SECOND 

Идентификатор часового 

пояса 

Наименование часового 

пояса 

Смещение часового пояса 

Локализованное смещение 

часового пояса 

Модифицированный день 

,11,0 юлианскому календарю 

Минута часа 

Секунда минуты 

Наносекунда секунды 

Примеры 

G: АО, GGGG: Anno Domini, 
GGGGG: А 

уу: 69,уууу: 1969 
М: 7, ММ: 07, МММ: Jul, 
ММММ: July, МММММ: J 

d: 6, dd: Об 

е: 3, Е: Wed, ЕЕЕЕ: 
Wednesday,EEEEE: W 
Н: 9, НН: 09 

К: 9, КК: 09 

а: АМ 

mm: 02 

ss: 00 

nnnnnn: 000000 

VV: America/New_York 

z: EDT, zzzz: Eastern 
Dayliqht Time 
х: -04, хх: -0400, ххх: 
-04: 00, ХХХ: то же самое, но 
Z обозначает нуль 
О: GМТ-4,0000: GМТ-04:00 

q: 58243 

Для синтаксического анализа :шачения даты и времени из символьной строки 

служит статический метод parse (), как показано ниже. В первом вызове этого 
метода исполиуется стандартное средство форматирования I so _ LOCAL _ DATE, 
а во втором вызове - специальное средство форматирования. 

LocalDate churchsBirthday = Loca1Date.parse("1903-06-14"); 
ZonedDateTime apollolllaunch = 

ZonedDateTime.parse("1969-07-16 03:32:00-0400", 
DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ssxx")); 

Порядок форматирования дат и времени демонстрируется в примере про­

граммы из листинга 6.4. 

Листинг 6.4. Исходный код из файла formatting/Formatting. java 

1 package formatting; 
2 
3 /** 



Глава 6 • Прикладной интерфейс API даты и времени 

4 * @version 1.0 2016-05-10 
5 * @author Сау Horstmann 
6 * / 
7 import java.time.*; 
8 import java.time.format.*; 
9 import java.util.*; 
10 
11 puЫic class Formatting 
12 ( 
13 
14 

puЬlic static void main(String[] args) 
( 

15 ZonedDateTime apollolllaunch = ZonedDateTime.of( 
16 1969, 7, 16, 9, 32, о, о, 

17 Zoneld.of("America/New York")); 
18 
19 String formatted = DateTimeFormatter 
20 .ISO_OFFSET_DATE_TIME.format(apollolllaunch); 
21 // 1969-07-16Т09:32:00-04:00 
22 System.out.println(formatted); 
23 
24 DateTimeFormatter formatter = DateTimeFormat.ter 
25 .ofLocalizedDateTime(FormatStyle.LONG); 
26 formatted = formatter.format(apollolllaunch); 
27 // July 16, 1969 9:32:00 АМ EDT 
28 System.out.println(formatted); 
29 formatted = formatter.withLocale(Locale.FRENCH) 
30 .format(apollolllaunch); 
31 // 16 juillet 1969 09:32:00 EDT 
32 System.out.println(formatted); 
33 
34 formatter DateTimeFormatter 
35 .ofPattern("E yyyy-MM-dd HH:mm"); 
36 formatted formatter.format(apollolllaunch); 
37 System.out.println(formatted); 
38 
39 LocalDate churchsBirthday = 
40 Loca1Date.parse("l903-06-14"); 
41 System.out.println("churchsBirthday: " 
42 + churchsBirthday); 
43 apollolllaunch = ZonedDateTime.parse( 
44 "1969-07-16 03:32:00-0400", 
45 DateTimeFormatter 
46 .ofPattern("yyyy-ММ-dd HH:mm:ssxx")); 
47 System.out.println("apollolllaunch: " 
48 + apollolllaunch); 
49 
50 for (DayOfWeek w DayOfWeek.values()) 
51 System.out.print(w.getDisplayName(TextStyle.SHORT, 
52 Locale.ENGLISH) +" "); 
53 
54 



6.7. Взаимодействие с унаследованным кодом 

java.time.format.DateTimeFormatter 8 

• String format (TemporalAccessor temporal) 

Форматирует заданное значение. Интерфейс TemporalAccessor реализуется в классах 
Instant, LocalDate, LocalTime, LocalDateTime и Zonec:IDateTime, а также во мно­
гих других классах. 

• static DateTimeFormatter ofLocalizec:IDate(FormatStyle dateStyle) 

• static DateTimeFormatter ofLocalizedTime(FormatStyle timвStyle) 

• static DateTimeFormatter ofLocalizec:IDateTime(FormatStyle 
da teTimeStyle) 

• static DateTimeFormatter ofLocalizec:IDateTime(FormatStyle dateStyle, 
FormatStyle timeStyle) 

Возвращают средство форматирования по указанным стилям, которые определяются в виде 

значений SHORT, МEDIUМ, LONG и FULL в перечислении FormatStyle. 

• DateTimeFormatter withLocale(Locale locale) 

Возвращает средство форматирования, равнозначное данному средству форматирования, ис­

пользуя указанные региональные настройки. 

static DateTimeFormatter ofPattern(String pattern) 

• static DateTimeFormatter ofPattern(String pattern, Locale locale) 

Возвращают средство форматирования, используя указанный шаблон и региональные на­

стройки. Синтаксис шаблонов для форматирования даты и времени см. в табл. 6.3. 

java.time.LocalDate 8 

• static LocalDate parse (CharSequence text) 

• static LocalDate parse(CharSequence text, DateTimeFormatter 
formatter) 

Возвращают местную дату в виде объекта типа LocalDate, используя выбираемое по умол­
чанию или заданное средство форматирования. 

java.time.ZonedDateTime 8 

• static Zonec:IDateTime parse (CharSequence text) 

• static Zonec:IDateTime parse(CharSequence text, DateTimeFormatter 
formatter) 

Возвращают поясное время и дату в виде объекта типа Zonec:IDateTime, используя выбира­
емое по умолчанию или заданное средство форматирования. 

6. 7. Взаимодействие с унаследованным кодом 
Новый прикладной интерфейс Java API даты и времени должен обе­

спечивать нормальное взаимодействие с уже имеющимися классами. К их 



Глава 6 • Прикладной интерфейс API даты и времени 

числу относятся широко распространенные классы j ava. util. Date, j ava. util. 
GregorianCalendar и java. sql. Date/Time/Timestamp. 

Класс Instant очень похож на класс java.util.Date. В версии Java 8 этот 
класс был дополнен двумя методами. В частности, метод toinstant () служит 
для преобразования типа Date в тип Instant, а статический метод from () -
для обратного преобразования этих типов даты и времени. 

Аналогично класс ZonedDateTime очень похож на класс java.util. 
GregorianCalendar и дополнен соответствующими методами преобразования 
в версии Java 8. В частности, метод toZonedDa teTime () служит для преобразо­
вания типа GregorianCalendar в тип ZonedDateTime, а метод from () - для об­

ратного преобразования этих типов даты и времени. 

Еще один ряд преобразований предусмотрен для классов даты и вре­

мени И3 пакета j а va. sql. Кроме того, средство форматирования типа 

DateTimeFormatter можно передать унаследованному коду, где применяется 
класс j ava. text. Format. Все эти методы преобразования сведены в табл. 6.4. 

Таблица 6.4. Методы взаимного преобразования классов из пакета j ava. time 
и унаследованного кода 

Классы 

Instant ~ java. util. 
GregorianCalendar 
ZonedDateTime ~ java. 
util.GregorianCalendar 
Instant ~ java. sql. 
Timestamp 
LocalDateTime ~ java. 
sql.Timestamp 
LocalDa te ~ j ava. sql. 
Date 
LocalTime ~ java. sql. 
Time 
DateTimeFormatter ~ 
java.text.DateFormat 
java. util. TimeZone ~ 
Zoneid 
java.nio.file. 
attribute. FileTime ~ 
Instant 

Метод преобразования 
в унаследованный код 

Date. from (instant) 

GregorianCalendar. 
from(zonвdDateTimв) 

TimeStamp. from (instant) 

Timestamp. 
valueOf(localDateTimв) 

Date.valueOf(localDate) 

Time.valueOf(localTimв) 

formatter.toFormat() 

Метод преобразования 
из унаследованного кода 

date. toinstant () 

cal.toZonedDateTime() 

timestamp.toinstant() 

timeStamp. 
toLocalDateTime() 
date.toLocalDate() 

time.toLocalTime() 

Оrсутсrвует 

Timezone.getTimeZone(id) timeZone.toZoneid() 

FileTime.from(instant) fileTime.toinstant() 

И:1 этой главы вы узнали, как пользоваться библиотекой даты и времени, вне­

дрешюй в версии Java 8, чтобы оперировать значениями даты и времени повсю­
ду в мире. В следующей главе речь пойдет об интернационализации прикладных 

программ на Java. В ней будет показано, как форматировать сообщения, выво­
димые программой, числа и денежные суммы в привычном для пользователей 

виде, где бы они ни находились. 



ГЛАВА 

Интернационализация 

В этой главе ... 
~ Региональные настройки 

~ Форматирование чисел 

~ Форматирование даты и времени 

~ Сортировка и нормализация 

~ Форматирование сообщений 

~ Ввод-вывод текста 

~ Комплекты ресурсов 

~ Пример интернационализации прикладной программы 

Создавая приложение, разработчики надеются, что их программным про­

дуктом заинтересуются многие пользователи. К тому же благодаря Интернету 

преодолеваются границы между разными странами. С другой стороны, если раз­

работчики не принимают во внимание международных пользователей, то сами 

создают искусственные препятствия для широкого распространения своих про­

граммных продуктов по всему миру. 

Java стал первым языком программирования, в котором изначально были 
предусмотрены средства интернационализации. Строки в Java формируются из 
символов в Юникоде (Unicode). Поддержка этого стандарта кодирования симво­
лов позволяет разрабатывать программы на Java, способные обрабатывать тексты 
на любом из языков, существующих в мире. 

Многие программисты считают, что для интернационализации своих прило­

жений им достаточно воспользоваться Юникодом и перевести на нужный язык 

все сообщения пользовательского интерфейса. Но этого явно недостаточно, по­

тому что интернационализация программы означает нечто большее, чем под­

держка кодировки символов в Юникоде. Дата, время, денежные суммы и даже 



Глава 7 • Интернационализация 

числа могут по-разному предстанляться на различных языках. Необходимо также 

найти простой способ настройки команд меню, надписей на кнопках, сообщений 

и комбинаций клавиш 11а выбранный язык и региональный стандарт. 

В этой главе рассматриваются способы интернационализации прикладных 

программ на Java, а также особенности представления времени, даты, чисел, 
текста и элементов графического пользовательского интерфейса с учетом реги­

ональных стандартов. Кроме того, в ней обсуждаются некоторые инструменталь­

ные средства, предназ1щче1111ые для интернационализации программ. В конце 

гланы в качестве примера будет рассмотрена программа калькуляции пенси­

онных сбережений с пол1,зовател1,ским интерфейсом на английском, немецком 

и китайском языках. 

7 .1. Региональные настройки 
Приложение, которое адаптировано для международного рынка, легко опре­

делить по возможности выбора я:1ыка, используемого для работы с ним. Но про­

фессионально адаптиро11аш1ые приложения могут иметь разные регионалы1ые 

настройки даже для тех стран, в которых используется одинаковый язык. Эту си­

туацию очень точно подметил некогда Оскар Уайл1,д: "Тепер1. у нас, действител1,­

но, все, как в Америке, естественно, кроме языка". 

7 .1.1. Назначение региональных настроек 
Если предоставляются международные нерсии прикладной программы, нее ее 

сообщения должны быт~, переведены на местный язык. Но одного лишь перевода 

текста пользовательского интерфейса явно недостаточно. Существует еще много 

других, более тонких ра:1личий. Например, в Англии и Германии для представ­

ления десятичных чисел применяются разные форматы. Число, понятное англи­

чанам в формате 123, 456. 78, должно быть отображено в формате 123. 456, 78 
для полюователей из Германии. Иными словами, точка и запятая в качестве раз­

делителя дробной части и ра:1делителя групп 110-ра3но.му используются в этих 

странах! 

Похожие различия можно :шметить и в способах представления даты. В США 

привыкли отображап. даты в формате месяц/дею,/год, в Германии используют 

более практичный порядок - день/месяц/год, а в Китае все наоборот - год/ме­

сяц/деш,. Таким обра:юм, дата 3/22/61 должна быть представлена в формате 
22. 03. 1961 для немецкого поль:ювателя. Если на:шания месяцев написаны пол­
ност1,ю, то разница 11 способах представления дат становится еще более очевид­

ной. Например, дата March 22, 1961, понятная для американского пользовате­
ля, должна быт1, представлена как 22. Marz 1961 для немецкого поль:ювателя. 

Такие местные предпочтения пользователей фиксируются в реzиона,\ьнь1х на­

стройках. Всякий раз, когда требуется представить числа, даты, денежные суммы 

и прочие элементы, формирование которых отличается по я:1ыкам и странам 

мира, следует пол1,зоват1,ся прикладными интерфейсами АР\, в которых учиты­

ваются региональные настройки. 



7.1. Региональные настройки 

7.1.2. Указание региональных настроек 
Региональные настройки содержат следующие составляющие. 

1. Язык, обозначаемый двумя или тремя строчными буквами, например en 

(английский), de (немецкий) или zh (китайский). Наиболее употребитель­
ные коды языков перечислены в табл. 7.1. 

2. Дополнительно письмо, обозначаемое четырьмя буквами, первая из кото­
рых является прописной, например Latn (латынь), Cyrl (кириллица) или 
Hant (традиционные китайские иероглифы). Эrо удобно, поскольку в ряде 
языков (например, в сербском) употребляется как латынь, так и кириллица, 

а некоторые китайские пользователи предпочитают традиционные иерог­

лифы упрощенным. 

3. Дополнительно страна или регион, обозначаемые двумя прописными буква­
ми или тремя цифрами, например US (Соединенные Штаты) или СН (Швей­
цария). Наиболее употребительные коды стран перечислены в табл. 7.2. 

4. Дополнительно вариант, обозначающий различные свойства языка, в том 
числе диалекты или правила произношения. В настоящее время варианты 

употребляются редко. Раньше употреблялся "новонорвежский" вариант 

норвежского языка, но теперь он выражается отдельным кодом языка nn. 
Прежние варианты японского императорского календаря и тайских цифр 

теперь выражаются как расширения, поясняемые ниже. 

5. Дополнительно расширение. Расширения описывают локальные установ­
ки для календарей (например, японского), чисел (тайских цифр вместо 

арабских) и т.д. Некоторые из этих расширений определены в стандарте 

на Юникод. Расширения начинаются с обозначения u- и продолжаются 

двухбуквенным кодом, указывающим назначение расширения: са - для ка­

лендаря, nu - для чисел и т.д. Например, расширение u-nu-thai обозна­

чает употребление тайских цифр. Другие расширения совершенно произ­

вольны и начинаются с обозначениях-, например x-java. 

Правила для региональных настроек сформулированы в памятной записке 

ВСР 47 "Best Current Practices" (Передовые современные методики) Рабочей груп­
пы инженерной помержки Интернета (Internet Engineering Task Force; http: / / 

tools. ietf. org/html/bcp4 7). Более доступное краткое изложение этих правил 
можно найти по адресу www. wЗ. org/International/articles/language-tags. 

Таблица 7.1. Наиболее употребительные коды языков по стандарту 150 639-1 

Яэык Код Яэык Код 

Китайский zh Японский ja 

Датский da Корейский ko 

Голландский du Норвежский no 

Английский en Пор·~уrальский pt 

Французский fr Ис11анский es 

Финский fi Шведский sv 

Итальянский it Турецкий tr 



Глава 7 • Интернационализация 

Таблица 7.2. Наиболее употребительные коды стран по стандарту ISO 3166-1 

Страна Код Страна Код 

Австрия АТ Япония JP 
Бельгия ВЕ Корея КR 

Канала СА Нидерланды NL 
Китай CN Норвеп1я NO 
Дания DK Порrугалия РТ 

Финляндия FI Испания ES 
Германия DE Шве11ия SE 
Великобритания GB Швейцария сн 

Греция GR Тайвань тw 

Ирландия IE Турция TR 
Италия IT Соединенные Штаты us 

Коды языков и стран кажутся на первый взгляд выбранными несколько про­

изволыю, поскольку некоторые из них происходят от местных я3ыков. Так, 

Deutsch по-немецки означает "немецкий", а zhongwen по-китайски (в латинской 
транскрипции) - "китайский", отсюда и коды этих Я3ыков de и zh соответствен­
но. Швейцария обозначается кодом СН, происходящим от латинского термина 

C011foederatio Helvetica, о:шачающего "Швейцарская конфедерация". 
Региональные настройки описываются дескрипторами в виде символьных 

строк, где элементы региональных настроек указываются через дефис, например 

en-US для США или de-DE для Германии. В Швейцарии приняты четыре офи­
циальных языка (немецкий, французский, итальянский и ретороманский), поэ­

тому для немецкоязычного пользователя из Швейцарии потребуются региональ­

ные настройки de-CH, соблюдающие правила немецкого языка, но выражающие 
денежные суммы в швейцарских франках, а не в евро. Если же указать только 

язык (de), то такие региональные настройки нель3я использовать для выражения 
характерных для конкретной страны особенностей вроде представления денеж­

ных сумм в местной валюте. 

Создать объект типа Locale из символьной строки дескриптора можно сле­
дующим образом: 

Locale usEnglish = Locale.forLanguageTag("en-US"); 

Метод toLanguageTag () возвращает дескриптор языка из заданных регио­
нальных настроек. Так, в результате вызова Locale. US. toLanguageTag () во:шра­
щается символьная строка "en-US". 

Ради удобства для различных стран заранее определены следующие объекты 

региональных настроек: 

Locale.CANADA 
Locale.CANADA FRENCH 
Locale.CHINA 
Locale.FRANCE 
Locale.GERMANY 
Locale.ITALY 
Locale.JAPAN 
Locale.KOREA 
Locale.PRC 



Locale.TAIWAN 
Locale.UK 
Locale.US 

7 .1. Региональные настройки 

Ряд заранее определенных региональных настроек обозначают только язык, 

но не страну или регион, как показано ниже. Наконец, статический метод 

getAvailaЫeLocales () возвращает массив всех региональных настроек, извест­
ных виртуальной машине. 

Locale.CHINESE 
Locale.ENGLISH 
Locale.FRENCH 
Locale.GERМAN 

Locale.ITALIAN 
Locale.JAPANESE 
Locale.KOREAN 
Locale.SIMPLIFIED CHINESE 
Locale.TRADITIONAL CHINESE 

1!:'1 НА ЗАМЕТКУ! Все коды языков можно получить, сделав вызов Locale. getISOLanguages О, 
~ а все коды стран, - сделав вызов Locale. getISOCountries (). 

7.1.З. Региональные настройки по умолчанию 

Статический метод getDefaul t () из класса Locale позволяет определить ре­
гиональные настройки, которые выбираются в операционной системе по умолча­

нию. Изменить эти настройки по умолчанию можно, вызвав метод setDefaul t (), 
но не следует забывать, что действие этого метода распространяется только на при­

кладную программу на Java, а не на всю операционную систему. 
В некоторых операционных системах допускается указывать разные регио­

нальные настройки для форматирования и отображения сообщений. Напри­

мер, для франкоязычного пользователя прикладной программы, проживающего 

в Соединенных Штатах, может быть предоставлено меню на французском языке, 

но денежные суммы указаны в долларах США. Чтобы получить предпочтитель­

ные для пользователя региональные настройки форматирования и отображения 

сообщений, достаточно сделать следующие вызовы: 

Locale displayLocale = 
Locale.getDefault(Locale.Category.DISPLAY); 

Locale formatLocale = 
Locale.getDefault(Locale.Category.FORМAT); 

НА ЗАМЕТКУ! В UNIX можно указать отдельные региональные настройки для форматирова­
ния чисел, денежных сумм и дат, установив соответствующим образом переменные окруже­

ния LC _ NUМERIC, LC _ МONETARY и LC _ TIМE. Хотя в Java они во внимание не принимаются. 

СОВЕТ. Для проверки интернационализации своей программы попробуйте сменить регио­

нальные настройки по умолчанию. С этой целью укажите язык и страну при запуске програм­

мы на выполнение из командной строки. Например, в приведенной ниже команде запуска 

программы задается немецкий язык для Швейцарии. 

java -Duser.language=de -Duser.region=CH МояПрограмма 



Глава 7 • Интернационализация 

7 .1.4. Отображаемые имена 
Что же можно сделать с полученными региональными настройками? Оказы­

вается, не так уж и много. Единственную пользу можно извлечь из тех методов 

в классе Locale, которые определяют коды языка и страны. Наиболее важным из 
них является метод getDisplayName (), который возвращает отображаемое имя 
в виде символьной строки, описывающей региональные настройки. Она содер­

жит не какие-то загадочные двухбуквенные коды, а вполне удобочитаемое описа­

ние, как демонстрируется в приведенном ниже примере. 

German (Switzerland) 

Но дело в том, что это отображаемое имя ны1юдится на я:~ыке региональных 

настроек по умолчанию, что далеко не всегда удобно. Так, если полЬ3онател1, уже 

выбрал немецкий язык интерфейса, отображаемое имя регионал1.ной настройки 

следует представить на немецком языке, передан н качестве параметра соответ­

ствующие региональные настройки: 

var loc = new Locale("de", "СН"); 

System.out.println(loc.getDisplayName(Locale.GERМAN)); 

В результате выполнения этого фрагме1па кода отображаемое имя региональ­

ных настроек будет выведено на указашюм в них языке: 

Deutsch (Schweiz) 

Из данного примера становится ясно, зачем нужны объекты типа Locale. Пе­
редавая их методам, способным реагировать на региональные настройки, можно 

отображать текст на языке, понятном пользователю. Примеры применения та­

ких объектов рассматриваются далее в этой главе . 

• ВНИМАНИЕ! Даже такие обыденные операции, как приведение символьной строки к нижнему или верхнему регистру букв, могут быть выполнены с учетом региональных настроек. Например, 

строчная буква i в турецком правописании обозначается без точки как i. В связи с этим при­

кладные программы, в которых предпринимались попытки нормализовать символьные строки 

путем их сохранения в нижнем регистре, таинственным образом давали сбои у турецких пользо­

вателей. Поэтому в подобных случаях целесообразно пользоваться методами toUpperCase () 
и toLowerCase (), принимающими в качестве аргумента объект типа Locale, представляющий 
региональные настройки, как демонстрируется в следующем примере кода: 

String cmd = 
"QUIT".toLowerCase(Locale.forLanguageTag("tr") ); 

11 слово "quit" (выйти) с буквой i без точки 

Разумеется, если в результате вызова метода Locale. getDefaul t () в прикладной про­

грамме, локализованной для турецких пользователей, получить используемые по умолча­

нию региональные настройки, то вызов "QUIT". toLowerCase 1) не приведет в итоге 

к слову "quit". 

Чтобы привести строки на конкретном языке к нижнему регистру, методу toLowerCase () 
следует передать соответствующую региональную настройку в качестве параметра. 



7 .1. Региональные настройки 

НА ЗАМЕТКУ! Для выполнения операций ввода-вывода можно задать региональные настрой­
ки явным образом, как поясняется ниже. 

• При чтении чисел из объекта типа Scanner региональные настройки можно задать с по­
мощью метода useLocale () . 

• Методы String. format () и PrintWri ter .printf () дополнительно принимают в ка­
честве аргумента объект типа Locale, представляющий региональные настройки. 

java.util.Locale 1.1 

• Locale (String language) 

• Locale (String language, String countzy) 

Locale (String language, String countzy, Strinq variant) 

Создают объект типа Locale региональных настроек с учетом указанного языка, страны 
и варианта языка. Вместо вариантов языка в новом коде рекомендуется использовать языко­
вые дескрипторы по стандарту IETF ВСР 47. 

static Locale forLanguageTag (String languageTag) 7 

Создает объект типа Locale региональных настроек по заданному языковому дескриптору. 

• static Locale getDefault () 

Возвращает региональные настройки, используемые по умолчанию. 

• static void setDefault (Locale loc) 

Задает региональные настройки, используемые по умолчанию. 

• String getDisplayName () 

Возвращает отображаемое имя текущих региональных настроек на том языке, который ука­

зан в текущих региональных настройках. 

• String getDisplayName (Locale loc) 

Возвращает отображаемое имя заданных региональных настроек на том языке, который ука­

зан в заданных региональных настройках. 

String getLanguage() 

Возвращает код языка !две строчные буквы! по стандарту 150 639-1. 
• String getDisplayLanguage() 

Возвращает название языка в формате текущих региональных настроек. 

• String getDisplayLanguage (Locale loc) 

Возвращает название языка в формате заданных региональных настроек. 

• String getCountry() 

Возвращает код страны !две прописные буквы! по стандарту 150 3166-1. 
• static String [] getISOCountries () 

• static Set<String> getISOCountries (Locale. IsoCountryCode type) 9 

Возвращают двух-, трех- или четырехбуквенные коды всех стран. В качестве параметра 

tурв указывается одна из следующих перечислимых констант: PART1 _ ALPНA2, PARTl _ 
АLРНАЗ или РАRТЗ. 

String getDisplayCountry () 

Возвращает название страны в формате текущих региональных настроек. 



Глава 7 • Интернационализация 

java. util. Locale 1. l {окончание/ 

• String getDisplayCountry(Locale loc) 

Возвращает название страны в формате заданных региональных настроек. 

• String toLanguageTag () 7 

Возвращает языковой дескриптор по стандарту IETF ВСР 47 для текущих региональных на­
строек, например "de-CH" !немецкий язык, Швейцария). 

• String toString () 

Возвращает описание региональных настроек в виде кодов языка и страны, разделенных 

знаком подчеркивания !например, "de-CH", т.е. немецкий язык, Швейцария). Этим методом 
рекомендуется пользоваться только для целей отладки. 

7 .2. Форматирование чисел 
Как упоминалось выше, в разных странах и регионах применяются различные 

способы представления чисел и денежных сумм. В пакете j ava. text содержатся 
классы, позволяющие форматировать числа и выполнять синтаксический анализ 

их строкового представления. 

7 .2.1. Форматирование числовых значений 
Чтобы отформатировать число в соответствии с конкретными региональными 

настройками, необходимо выполнить следующие действия. 

1. Получить объект региональных настроек, как пояснялось в предыдущем раз­
деле. 

2. Вызвать фабричный метод для получения форматирующего объекта. 

3. Применить форматирующий объект для форматирования числа или син­
таксического анализа его строкового представления. 

В качестве фабричных служат статические методы getNumberinstance (), 
getCurrencyinstance () и getPercentinstance () из класса NumberFormat. 
Они получают в качестве параметра объект типа Locale и возвращают объекты, 
предназначенные для форматирования чисел, денежных сумм и числовых вели­

чин в процентах. Например, для выражения денежной суммы в формате, приня­

том в Германии, служит приведенный ниже фрагмент кода. 

Locale loc = new Locale("de", "DE"); 
NumЬerFormat currFmt = 

NumЬerFormat.getCurrencyinstance(loc); 

douЫe amt = 123456.78; 
String result = currFmt.format(amt); 

В результате выполнения этого фрагмента кода получается следующая сим­

вольная строка: 

123.456,78 € 



7.2. Форматирование чисел 

Для обозначения европейской валюты в данном случае используется знак €, 

который располагается в конце строки. Обратите также внимание на местополо­

жение знаков, обозначающих дробную часть числа и разделяющих десятичные 

разряды в его целой части. Порядок их следования обратный принятому в англо­

язычных странах. 

Рассмотрим обратную задачу преобразования в число символьной строки, 

составленной в соответствии с конкретными региональными настройками. Для 

этого предусмотрен метод parse (), выполняющий синтаксический анализ сим­
вольной строки, автоматически используя региональные настройки, заданные 

по умолчанию. В приведенном ниже примере кода демонстрируется преобра­

зование в число символьной строки, введенной пользователем в текстовом поле. 

Метод parse () способен преобразовывать символьные строки в числа, где в ка­
честве разделителей используются точки и запятые в соответствии с принятыми 

региональными стандартами. 

TextField inputField; 

11 получить средство форматирования чисел для используемь~ 
11 по умолчанию региональных настроек: 

NumЬerFormat fmt = NumЬerFormat. getNurnberlnstance () ; 
NumЬer input = fmt.parse(inputField.getText() .trim()); 
douЫe х = input.douЬleValue(); 

Метод parse () возвращает результат абстрактного типа NumЬer. На самом деле 
возвращаемый объект является экземпляром класса Long или DouЫe в зависимо­
сти от того, представляет ли исходная символьная строка целое число или число 

с плавающей точкой. Если это не так важно, то для получения упакованного чис­

лового значения достаточно вызвать метод douЫeValue () из класса NumЬer . 

• ВНИМАНИЕ! Для объектов типа NumЬer не поддерживается автоматическая распаковка, по­этому их нельзя присвоить непосредственно переменным примитивных типов. Вместо этого 

придется вызвать метод douЬleValue () или intValue (). 

Если число представлено в неверном формате, генерируется исключение типа 

ParseException. Например, не допускается наличие пробелов в начале сим­
вольной строки, преобразуемой в число. (Для их удаления следует вызвать метод 

tr im ().)Но любые символы, следующие в строке после числа, просто игнориру­
ются, и поэтому исключение в этом случае не возникает. 

Следует, однако, иметь в виду, что классы, возвращаемые фабричными мето­

дами типа getXxxinstance (), являются экземплярами не абстрактного класса 
NumЬerFormat., а одного из его подклассов. Фабричным методам известно только, 

как найти объект, относящийся к конкретным региональным настройкам. 

Для получения списка поддерживаемых региональных настроек можно вы­

звать статический метод getAvailaЬleLocales (),возвращающий массив регио­

нальных настроек, для которых могут быть получены форматирующие объекты. 

В примере программы, рассматриваемой в этом разделе, предоставляется воз­

можность поэкспериментировать с разными способами форматирования чисел 

(рис. 7.1). В верхней части рабочего окна этой программы находится список всех 



Глава 7 • Интернационализация 

доступ11ых репю11алы1ых настроек со средствами форматирования чисел. Ниже 

:>того сш1ска расположена группа к1юпок-перек11ючателей, в котороi1 можно 

ныбрап, способ форматирования чисел, денежных сумм или числовых вел11ч1111 

н процентах. После выбора ноной регионалыюй настройки или способа форма­

тирования чисел число в текстовом поле автоматически переформатируето1. 

Просмотрев л11w1, несколько вариантов формат11рованш1 ч11сел 11 денежных 
сумм в зависимости от выбранных репю11алы1ых настроек, пол1.:ювате111,, несо­

мнешю, составит ясное представление о разнообразии сущесп1ующих форма­

тов чисел. В тексто1юм поле можно ввести любое число и щелкнул, на кнопке 

Parse, в резул1.тате чего будет вызва11 метод parse () , выполш1ющий синтаксиче­

ский анализ введенной символыюй строки. При уд<1ч1юм исходе с11нтако1чрского 

анализа ре:1у л~.тат передается методу f о rma t ( ) , а :1атем отображается на ·:>кра­

не. В пропtв1юм случае в текстовом поле появляется сообщение " Par.se erro r" 

(Ошибка синтаксического анализа). 

О Number (!, Curren(\1 U Percent 

[ Рше ]\Ш_._4-=_5-6~-,_7-=_s-=_€-:_-:_-:_=_-::::_~~--------~r 

Рис. 7.1. Рабочее ок110 нро1раммы NumЬerFormatTest 

Как следует из листиша 7.1, исходный код рассматриваемой :iдecr. программы 
имеет доволыю простую структуру. Сначала в конструкторе вы:.1ывается метод 

N11mberF'orma t . g etAva ilaЫ eLoca le s (). Затем для каждого в1ца поддержи­
ваемых региональных настроек вы:~ывается метод getDisplayName () ,а во:тра­

щаемые ·:>тим методом ре:~ультаты вводятся в список. (Симво11ы1ые строкн 11е 

сортируются; подробнее об этом реч1, пойдет в разделе 7.4.) Во1к11i1 раз, когда 

по111,зовател1, выбирает другие регионалы1ые настройки или способ форматиро­

вания чисел, со:1дается новый форматирующий объект и 061ю1ияется содерж11-

мое текстового поля. Если по111,зовате111, щелкнет 11а кнопке Parse, то вызывается 
метод p arse (),преобразующий в число 01м1юлы1ую строку в соответствии с вы­

бранными регио11алы1ыми настройками. 

НА ЗАМЕТКУ! Длs~ чтениs~ локализованных целых чисел, а та кже чисел с плавающей точкой 

можно воспользоватьсs~ классом Scanner, вызвав метод useLocale () из этого класса 

длs~ установки региональных настроек. 

Листинг 7.1. Исходный код из файла numЬerFormat/NumЬerFormatTest. java 

1 package numЬer Format; 
2 
3 import java.awt .*; 
4 import j a va.awt . eve nt.*; 
S import j ava .te xt.*; 
6 import java .util. * ; 



7 
8 import javax.swing.*; 
9 
10 /** 

7.2. Форматирование чисел 

11 * В этой программе демонстрируется форматирование чисел 

12 * при разных региональных настройках 
13 * @version 1.15 2018-05-01 
14 * @author Сау Horstmann 
15 * / 
16 puЫic class NumЬerFormatTest 
17 { 
18 puЫic static void main(String[] args) 
19 { 
20 EventQueue.invokeLater(() -> 
21 { 
22 var frame = new NumЬerFormatFrame(); 
2 3 frame. setTi tle ( "NumЬerFormatTest"); 
24 frame.setDefaultCloseOperation( 
25 JFrame.EXIT ON CLOSE); 
26 frame.setVisiЬle(true); 

27 ) ) ; 
28 ) 
29 ) 
30 
31 /** 
32 * Этот фрейм содержит кнопки-переключатели для 
33 * выбора способа форматирования чисел, комбинированный 

34 * список для выбора региональных настроек, текстовое 

35 * поле для отображения отформатированного числа, 
36 * а также кнопку для активизации синтаксического 

37 * анализа содержимого текстового поля 
38 */ 
39 class NumЬerFormatFrame extends JFrame 
40 
41 private Locale[] locales; 
42 private douЫe currentNumЬer; 
43 private JComЬoBox<Striпg> localeComЬo 
44 new JComЬoBox<>(); 
45 private JButton parseButton = 

46 new JButton("Parse"); 
47 private JTextField numЬerText 
48 new JTextField(30); 
49 private JRadioButton numЬerRadioButton 
50 new JRadioButton("Number"); 
51 private JRadioButton currencyRadioButton 
52 new JRadioButton("Currency"); 
53 private JRadioButton percentRadioButton = 

54 new JRadioButton("Percent"); 
55 private ButtonGroup rbGroup = new ButtonGroup(); 
56 private NumЬerFormat currentNumЬerFormat; 
57 
58 puЫic NumberFormatFrame() 
59 { 
60 setLayout(new GridBagLayout()); 
61 
62 ActionListener listener = event -> updateDisplay(); 
63 



64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 

Глава 7 • Интернационализация 

var р = new JPanel(); 
addRadioButton(p, numЬerRadioButton, 

rbGroup, l1stener); 
addRadioButton(p, currencyRadioButton, 

rbGroup, listener); 
addRadioButton(p, percentRadioButton, 

rbGroup, listener); 

add(new JLabel("Locale:"I, 
new GBC(O, 0) .setAnchor(GBC.EAST) ); 

add(p, new GBC(l, 11); 
add(parseButton, new GBC(O, 2) .setinsets(2) 1; 
add(localeComЬo, new GBC(l, 0) .setAnchor(GBC.WEST)); 
add(numЬerText, 

new GBC(l, 2) .setFill (GBC.HORIZONTAL)); 
locales = (Locale[J 1 

NumberFormat.getAvailaЫeLocales() .clone(); 
Arrays.sort(locales, 

Comparator.comparing(Locale: :getDisplayName) ); 
for (Locale loc : locales) 

localeComЬo.additem(loc.getDisplayName()); 

localeCombo.setSelecteditem( 
Locale. getDefaul t ( 1 . getDisplayName ( 1); 

currentNumЬer = 123456.78; 
updateDisplay(); 

localeCombo.addActionListener(listener); 

parseButton.addActionListener(event -> 
{ 

String s = m1mЬerText. getтext 1). trim (); 
try 
{ 

Number n = currentNumЬerFormat.parse(s); 
currentNumЬer = n.douЫeValue(); 
updateDisplay(); 

catch (ParseException е) 

{ 

numberText.setText(e.getMessage()); 
) 

) 1; 
pack ( 1; 

/** 
* Вводит кнопки-переключатели в контейнер 

* @param р Контейнер для размещения 
* кнопок-переключателей 

* @param Ь Кнопка-переключатель 
* @param g Группа кнопок-переключателей 
* @param listener Приемник событий от 
* кнопок-переключателей 

*/ 
puЫic void addRadioButton(Container р, 

JRadioButton Ь, ButtonGroup g, 
ActionListener listener) 



7.2. Форматирование чисел 

121 
122 
12 3 
12 4 
125 
12 6 
127 

b.setSelected(g.getButtonCount() 
b.addActionListener(listener); 
g.add(Ь); 

p.add(Ь); 

128 /** 

0); 

129 * Обновляет отображаемое число и форматирует его 
130 * в соответствии с пользовательскими установками 

131 */ 
132 puЬlic void updateDisplay() 
133 ( 
134 Locale currentLocale = 
135 locales[localeComЬo.getSelectedindex()]; 

136 currentNumЬerForrnat = null; 
137 if (numЬerRadioButton.isSelected()) 

138 currentNumЬerForrnat = NumЬerFormat 

139 .getNumЬerinstance(currentLocale); 

140 else if (currencyRadioButton.isSelected()) 
141 currentNumЬerFormat = NumberFormat 
142 .getCurrencyinstance(currentLocale); 
143 else if (percentRadioButton.isSelected()) 
144 currentNumЬerForrnat = NumberFormat 
145 .getPercentinstance(currentLocale); 
146 String forrnatted = currentNumЬerFormat 
147 .format(currentNumЬer); 

148 numЬerText.setText(formatted); 

14 9 
150 

java.text.NumЬerFormat 1.1 

• static Locale [] qetAvailaЬleLocales () 

Возвращает массив объектов типа Locale, для которых доступны форматирующие объекты 
типа NumЬerFormat. 

• static NumЬerFormat qetNumЬerinstance() 

• static NumЬerFormat qetNumЬerinstance(Locale 1) 

• static NumЬerFormat qetCurrencyinstance() 

• static NumЬerFormat qetCurrencyinstance(Locale 1) 

• static NumЬerFormat qetPercentinstance() 

• static NumЬerFormat qetPercentinstance(Locale 1) 

Возвращают объект, форматирующий числа, денежные суммы или числовые величины в про­
центах в соответствии с текущими или заданными региональными настройками. 

• Strinq format (douЫe х) 

• Strinq format (lonq х) 

Возвращают символьную строку, получаемую в результате форматирования заданного числа 

с плавающей точкой или целого числа. 



Глава 7 • Интернационализация 

j ava. text. NumЬerForma t 1 . 1 /окончание/ 

• NwnЬer parse (String s) 

Возвращает число, получаемое в результате синтаксического анализа символьной строки. 

Это число может иметь тип Long или DouЫe, а символьная строка не должна начинаться 
с пробелов. Любые символы, следующие в строке после анализируемого числа, игнорируют­

ся. При неудачном исходе синтаксического анализа символьной строки генерируется исклю­

чение типа ParseException. 

• void setParseintegerOnly(boolean Ь) 

• boolean isParseintegerOnly () 

Устанавливают или получают признак, указывающий на то, что данный форматирующий объ­

ект предназначен для синтаксического анализа только целочисленных значений. 

• void setGroupingUsed(boolean Ь) 

boolean isGroupingUsed () 

• 
• 
• 
• 
• 
• 
• 
• 

Устанавливают или получают признак, указывающий на то, что данный форматирующий объ­

ект предназначен для распознавания и разделения групп десятичных разрядов !например, 
100, ООО) в анализируемых числах. 

void set:МinimumintegerDigits(int n) 

int get:МinimumintegerDigits() 

void setмaximumintegerDigits(int n) 

int getмaximumintegerDigits() 

void set:МinimwnFractionDigits(int n) 

int get:МinimumFractionDigi ts () 

void setмaximumFractionDigits(int n) 

int getмaximumFractionDigits() 

Устанавливают или получают максимальное или минимальное количество цифр в целой или 

дробной части числа. 

7.2.2. Форматирование денежных сумм в разных валютах 
Для форматирования денежных сумм служит метод Numbe r Fo rma t. 

getCurrencyinstance (), но он не очень удобен, поскольку возвращает формати­
рующий объект только для одной валюты. Допустим, для американского :ыказ­

чика выписывается счет-фактура, где одни суммы представлены в долларах США, 

а другие в евро. Для решения этой задачи нельзя просто воспользоваться двумя 

форматирующими объектами, как показа1ю ниже. Счет, в котором фигурируют 

такие суммы, как $100, ООО и 100. ОООС, будет выглядеть не совсем обычно. Ведь 
при представлении сумм в евро для разделения групп разрядов используется 

точка, а сумм в долларах США - :ыпятая. 

NumberFormat dollarFormatter = 

NumЬerFormat.getCurrencylnstance(Locale.US); 

NumberFormat euroFormatter = 

NumЬerFormat.getCurrencyinstance(Locale.GERMANY); 

Для управления форматированием денежных сумм в ра:шых валютах лучше 

воспользоваться классом Currency. Сначала получается объект типа Currency, 



7 .2. Форматирование чисел 

мя чего статическому методу Currency. getinstance () передается идентифи­

катор валюты. Затем вызывается метод setCurrency () мя каждого форматиру­
ющего объекта. В приведенном ниже фрагменте кода показано, как подстроить 

под американского :шказчика объект, форматирующий денежные суммы в евро. 

Nl1mЬerFormat euroFormatter = 
NumЬerFormat.getCurrencyinstance(Locale.US); 

euroFormatter.setCurrency(Currency.getinstance("EUR") ); 

Идентификаторы налют определяются по стандарту ISO 4217 (https: / /www. iso. 
org/iso-4217-currency-codes .html). Некоторые из них принедены в табл. 7.3. 

Таблица 7.3. Идентификаторы валют 

Валюта Идентификатор 

Доллар США USD 

Евро EUR 

Ашлийский фунт GBP 

Яrюнская иена JPY 

Китайский юань CNY 

Индийская рупия INR 

Российский рубль RUВ 

java. util. Currency 1. 4 

static Currency getinstance (String currencyCode) 

• static Currency getinstance (Locale locale) 

Возвращают экземпляр класса Currency, соответствующий заданному коду валюты по стан­
дарту 150 4217 или стране, указанной в текущих региональных настройках. 

• String toString () 

• String getCurrencyCode () 

• String getNumericCode () 7 

• getNumericCodeAsString () 9 

Получают код текущей валюты по стандарту 150 4217. 

String getSymЬol () 

String getSymЬol (Locale locale) 

Получают форматирующий знак текущей валюты в соответствии с текущими или заданными 

региональными настройками. Например, доллар США [USDI может обозначаться как $ или 
US$ в зависимости от используемых региональных настроек. 

• int getDefaultFractionDigits() 

Получает принятое по умолчанию количество цифр в дробной части денежной суммы, указан­

ной в текущей валюте. 

• static Set<Currency> getAvailaЫeCurrencies () 7 

Получает все имеющиеся валюты. 



Глава 7 • Интернационализация 

7.3. Форматирование даты и времени 
При форматировании даты и времени в соответствии с региональными на­

стройками необходимо иметь в виду четыре особенности. 

• Названия месяцев и дней недели должны быть представлены на местном 

языке. 

• Порядок указания года, месяца и числа отличается в разных странах и ре­

гионах. 

• Для отображения дат может использоваться календарь, отличный от гри­

горианского. 

• Следует учитывать часовые пояса. 

Для форматирования даты и времени применяется класс DateTimeFormatter. 
Затем выбирается один из четырех стилей форматирования, перечисленных 

в табл. 7.4. Далее получается средство форматирования следующим образом: 
11 Один из стилей форматирования FormatStyle.SHORT, 
11 FormatStyle.MEDIUM, ... 
FormatStyle style = ... ; 
DateTimeFormatter dateFormatter 

DateTimeFormatter.ofLocalizedDate(style); 
DateTimeFormatter timeFormatter = 

DateTimeFormatter.ofLocalizedTime(style); 
DateTimeFormatter dateTimeFormatter = 

DateTimeFormatter.ofLocalizedDateTime(style); 
11 или DateTimeFormatter 
11 .ofLocalizedDateTime(stylel, style2) 

Таблица 7.4. Стили форматирования даты и времени с учетом региональных настроек 

Стиль Дата 

SHORT 7/16/69 
МEDIUМ Jul 16, 1969 

LONG July 16, 1969 

FULL Wednesday, 
July 16, 1969 

Время 

9:32 АМ 

9:32: 00 АМ 

9: 32: 00 АМ EDT с учетом региональных настроек en-US, 
9: 32: 00 МSZ с учетом региональных настроек de-DE (только 
для класса ZonedDateTime) 

9: 32: 00 АМ EDT с учетом региональных настроек en-US, 
9: 32 Uhr мsz с учетом региональных настроек de-DE 
(только для класса ZonedDateTime) 

В этих средствах форматирования используются текущие региональные на­

стройки форматов даты и времени. Чтобы выбрать другие региональные на­

стройки, достаточно вызвать метод wi thLocale () следующим образом: 

DateTimeFormatter dateFormatter = DateTimeFormatter 
.ofLocalizedDate(style) .withLocale(locale); 

Теперь можно отформатировать местную дату (объект типа LocalDate), 
местное время и дату (объект типа LocalDateTime), местное время (объект типа 
LocalTime) или поясное время и дату (объект типа ZonedDateTime), как показа­
но ниже. 



7.3. Форматирование даты и времени 

ZonedDateTime appointment = ... , 
String formatted = formatter.format(appointment); 

НА ЗАМЕТКУ! В данном случае применяется класс DateTimeFormatter из пакета java. 
time. Имеется также устаревший класс java. text. DateFormatter, внедренный еще 
в версии Java 1.1 для манипулирования объектами типа Date и Calendar. 

Для синтаксического анализа символьной строки, содержащей дату и вре­

мя, служит один из статических методов parse () в классах LocalDate, 
LocalDateTime, LocalTime или ZonedDateTime: 

LocalTime time = Loca1Time.parse("9:32 АМ", formatter); 

Но методы parse () из упомянутых выше классов непригодны для синтакси­
ческого анализа данных, вводимых пользователем, по крайней мере, для их пред­

варительной обработки. Например, средство форматирования даты и времени 

в кратком стиле для Соединенных Штатов способно проанализировать символь­

ную строку "9: 32 АМ", но не строку "9: 32АМ" или "9: 32 am". 

• 
ВНИМАНИЕ! Средства форматирования дат подвергают синтаксическому анализу несуще­
ствующие даты вроде 31 ноября, корректируя их по последней дате в данном месяце. 

Иногда в календарном приложении требуется отображать, например, толь­

ко наименования дней недели и месяцы. С этой целью можно вызвать метод 

getDisplayName () из перечислений DayOfWeek и Month, как показано ниже. 

for (Month m : Month.values()) 
System.out.println(m.getDisplayName(textStyle, locale) +" "); 

Стили форматирования текста перечислены в табл. 7.5. Стили типа 
STANDALONE служат для отображения за пределами форматируемой даты. На­
пример, январь по-фински обозначается как "tammikuuta" в самой дате, но как 
"tammikuu" за ее пределами или отдельно. 

Таблица 7.5. Стили форматирования текста, представленные константами из перечисления 
java.time.format.TextStyle 

Стиль Пример 

FULL / FULL _ STANDALONE 

SHORT / SHORT_STANDALONE 

NARROW / NARROW STANDALONE 

January 
Jan 
J 

НА ЗАМЕТКУ! Первым днем недели может быть суббота, воскресенье или понедельник в за­
висимости от конкретных региональных настроек. Выяснить первый день недели с учетом 

региональных настроек можно следующим образом: 

DayOfWeek first = WeekFields.of (locale) .getFirstDayOfWeek(); 



Глава 7 • Интернационализация 

В примере программы, исходный код которой приведен в листинге 7.2, де­
монстрируется применение класса DateFormat 11а практике. Эта программа по­
:~воляет выбирап. ра:ыичные региональные настройки и наблюдать за тем, как 

в разных странах форматируются дата и время. На рис. 7.2 показано рабочее 

окно данной программы после установки китайских шрифтов на компьютере. 

Как видите, даты вы1юдято1 11а экран в правильном формате для китайских реги­

ональных настроек. 

••-.::; • ::а . 

Localo Chlnes• (ChlnвJ \ • 1 

Oate Lon1_ j~201~5яб8 ~ -- ~ - -- - - Parse 

Tlme Short 1 • 1•.f4 :Зб - --'-P-ar-se_, 

Date and time Full Т~20lб!!'5Яб8 lila!E 1"f0411<JЗбЯ20~ PD_T __ - Parse 

Рис. 7.2. Отоfiраже1111е ;\аты на ю1л1йском юыке 
в рабочем окне программы DateFoпnatTest 

Листинг 7.2. Исходный код из файла dateFormat/DateFoпnatTest. java 

1 package dateFormat; 
2 
3 import java.awt.*; 
4 import java.awt.event.*; 
5 import java.time.*; 
6 import java.time.format.*; 
7 import java. uti l.*; 
8 
9 import javax.swing.•; 
10 
1 1 /** 
12 * В этой программе демонстрируется форматирование да т 

13 * при выборе разных региональных настроек 

14 * @version 1.01 2018-05-01 
15 * @author Сау Horstmann 
16 */ 
17 puЬlic c lass DateTimeformatter Test 
18 { 
19 puЬlic static void main(Str ing[J args) 
20 { 
21 EventQueue .invokeLater (( ) -> 
22 { 
23 var frame = new DateTime f ormatt erFrame ( ) ; 
24 frame.setTitle(" DateFormatTest " ) ; 
25 frame.setDefaultCl oseOperation( 
26 J frame .EXIT_ON_CLOSE); 
27 frame.setVis iЬl e(true ) ; 

28 ) ) ; 
29 
30 
31 
32 /* * 
33 * Этот фрейм содержит комбинированные списки для 



7.З. Форматирование даты и времени 

34 * выбора региональных настроек и форматов даты и 
35 * времени, текстовые поля для отображения 

36 * отформатированных даты и времени, а также кнопки 

37 * синтаксического анализа содержимого текстовых 
38 * полей и флажок для установки режима нестрогой 
39 * интерпретации вводимых дат и времени 
40 * / 
41 class DateTimeFormatterFrame extends JFrame 
42 
43 private Locale[] locales; 
44 private LocalDate currentDate; 
45 private LocalTime currentTime; 
46 private ZonedDateTime currentDateTime; 
47 private DateTimeFormatter currentDateFormat; 
48 private DateTimeFormatter currentTimeFormat; 
49 private DateTimeFormatter currentDateTimeFormat; 
50 private JComЬoBox<String> localeComЬo 
51 new JComЬoBox<>(); 
52 private JButton dateParseButton 
53 new JButton("Parse"); 
54 private JButton timeParseButton 
55 new JButton("Parse"); 
56 private JButton dateTimeParseButton 
57 new JButton("Parse"); 
58 private JTextField dateText = new JTextField(30); 
59 private JTextField timeText = new JTextField(30); 
60 private JTextField dateTimeText = new JTextField(30); 
61 private EnumComЬo<FormatStyle> dateStyleComЬo = 
62 new EnumComЬo<> ( FormatStyle. class, "Short", 
63 "Medium", "Long", "Full"); 
64 private EnumComЬo<FormatStyle> timeStyleComЬo 
65 new EnumComЬo<>(FormatStyle.class, 
66 "Short", "Medium"); 
67 private EnumComЬo<FormatStyle> dateTimeStyleComЬo 
68 new EnumComЬo<>(FormatStyle.class, "Short", 
69 "Medium", "Long", "Full"); 
70 
71 puЬlic DateTimeFormatterFrame() 
72 { 
73 setLayout(new GridBagLayout()); 
74 add(new JLabel("Locale"), 
75 new GBC(O, 0) .setAnchor(GBC.EAST) ); 
76 add(localeComЬo, new GBC(l, О, 2, 1) 
77 .setAnchor(GBC.WEST) ); 
78 
79 add(new JLabel("Date"), 
80 new GBC(O, 1) .setAnchor(GBC.EAST)); 
81 add(dateStyleComЬo, 

82 new GBC(l, 1) .setAnchor(GBC.WEST)); 
83 add(dateText, 
84 new GBC(2, 1, 2, 1) .setFill(GBC.HORIZONTAL)); 
85 add(dateParseButton, 
86 new GBC(4, 1) .setAnchor(GBC.WEST) ); 
87 
88 add(new JLabel("Time"J, 
89 new GBC(O, 2) .setAnchor(GBC.EAST) ); 



Глава 7 • Интернационализация 

90 add(timeStyleComЬo, 

91 new GBC(l, 2) .setAnchor(GBC.WEST)); 
92 add(timeText, 
93 new GBC(2, 2, 2, 1) .setFill(GBC.HORIZONTAL) ); 
94 add(timeParseButton, 
95 new GBC(4, 2) .setAnchor(GBC.WEST) ); 
96 
97 add(new JLabel("Date and time"), 
98 new GBC(O, 3) .setAnchor(GBC.EAST)); 
99 add(dateTimeStyleComЬo, 

100 new GBC(l, 3) .setAnchor(GBC.WEST)); 
101 add(dateTimeText, 
102 new GBC(2, 3, 2, 1) .setFill(GBC.HORIZONTAL) ); 
103 add(dateTimeParseButton, 
104 new GBC(4, 3) .setAnchor(GBC.WEST)); 
105 
106 locales = (Locale[]) 
107 Locale. getAvailaЬleLocales () . clone (); 
108 Arrays.sort(locales, Comparator.comparing( 
109 Locale: :getDisplayName) ); 
110 for (Locale loc : locales) 
111 localeComЬo.additem(loc.getDisplayName()); 

112 localeCombo.setSelecteditem( 
113 Locale. getDefaul t () . getDisplayName () ) ; 
114 currentDate = LocalDate.now(); 
115 currentTime = LocalTime.now(); 
116 currentDateTime = ZonedDateTime.now(); 
117 updateDisplay(); 
118 
119 ActionListener listener = event -> updateDisplay(); 
120 localeCombo.addActionListener(listener); 
121 dateStyleComЬo.addActionListener(listener); 

122 timeStyleCombo.addActionListener(listener); 
123 dateTimeStyleComЬo.addActionListener(listener); 

124 
125 addAction (dateParseButton, () -> 
12 6 { 
127 currentDate = LocalDate.parse( 
128 dateText.getText () .trim(), 
129 currentDateFormat); 
130 ) ) ; 
131 addAction (timeParseButton, () -> 
132 ( 
133 currentTime = LocalTime.parse( 
134 timeText.getText () .trim(), 
135 currentTimeFormat); 
136 ) ) ; 
137 addAction (dateTimeParseButton, () -> 
138 ( 
139 currentDateTime = ZonedDateTime.parse( 
140 dateTimeText.getText () .trim(), 
142 currentDateTimeFormat); 
143 }); 
144 
145 pack(); 
146 



7.3. Форматирование даты и времени 

/** 
147 
148 
14 9 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 

* Добавляет заданное действие к экранной кнопке, а 

* по завершении обновляет отображение 

* @param button Экранная кнопка, к которой 

* добавляется действие 

* @param action Действие, выполняемое при щелчке 

* на экранной кнопке 

*/ 
puЫic void addAction(JButton button, RunnaЫe action) 
{ 

button.addActionListener(event -> 
{ 

try 
{ 

action.run(); 
updateDisplay(); 

catch (Exception е) 

{ 

167 JOptionPane.showMessageDialog( 
168 null, e.getMessage() ); 
169 ) 
170 )) ; 
171 
172 
173 /** 
174 * Обновляет отображаемые дату и время и форматирует 
175 * их в соответствии с пользовательскими установками 
17 6 * / 
177 puЫic void updateDisplay() 
178 { 
179 Locale currentLocale = 

180 locales[localeComЬo.getSelectedindex() ]; 
181 FormatStyle dateStyle = dateStyleComЬo.getValue(); 
182 currentDateFormat = 
183 DateTimeFormatter.ofLocalizedDate(dateStyle) 
184 .withLocale(currentLocale); 
185 dateText.setText(currentDateFormat 
186 .format (currentDate)); 
187 FormatStyle timeStyle = timeStyleComЬo.getValue(); 
188 currentTimeFormat = 
189 DateTimeFormatter.ofLocalizedTime(timeStyle) 
190 .withLocale(currentLocale); 
191 timeText.setText( 
192 currentTimeFormat.format(currentTime) ); 
193 FormatStyle dateTimeStyle = 
194 dateTimeStyleComЬo.getValue(); 

195 currentDateTimeFormat = 
196 DateTimeFormatter.ofLocalizedDateTime( 
197 dateTimeStyle) .withLocale(currentLocale); 
198 dateTimeText.setText(currentDateTimeFormat 
199 .format(currentDateTime) ); 
200 
201 



Глава 7 • Интернационализация 

Для проверки правил1,ности синтаксического анализа и преобразования сим­

вольной строки в даrу достаточно ввести даrу, время или и то и другое, а затем 

щелкнуть на кнопке Parse (Произвести синтаксический анализ). В рассматривае­
мом здесь примере программы используется вспомогателы1ый класс EnumComЬo, 

исходный код которого приведен в листинге 7.3. Он служит для заполнения ком­
бинированного списка значениями типа Short, Medium и Long, а также для ав­
томатического преобразования выбранного пользователем иарианта в значение 

FormatStyle. SHORT, FormatStyle .MEDIUM или FormatStyle. LONG. Чтобы не пи­
сать повторяющийся код, в данном случае применяется рефлексия. Выбранный 
пользователем вариант преобразуется в верхний регистр, пробелы заменяются 

символами подчеркивания, после чего определяется значение в статическом 

поле с полученным в итоге именем. (Более подробно рефлексия рассматривается 

в главе 5 первого тома настоящего издания.) 

Листинг 7.3. Исходный код из файла dateFormat/EnumComЬo. java 

1 package dateFormat; 
2 
3 import java.util.*; 
4 import javax.swing.*; 
5 
6 /** 
7 * Комбинированный список для выбора среди значений 
8 * статических полей, имена которых задаются в 

9 * конструкторе вспомогательного класса 
10 * @version 1.15 2016-05-06 
11 * @author Сау Horstmann 
12 */ 
13 puЫic class EnumComЬo<T> extends JComЬoBox<String> 
14 { 
15 private Map<String, Т> tаЫе = new TreeMap<>(); 
16 
17 /** 
18 * Конструирует объект вспомогательного 
19 * класса EnumComЬo, производящий значения типа Т 

20 * @param cl Класс 
21 * @param labels Массив символьных строк, описывающих 

22 * имена статических полей из класса cl, 
23 * ОТНОСЯЩИХСЯ К ТИПУ Т 

24 */ 
25 puЫic EnumComЬo(Class<?> cl, String ... labels) 
2 6 { 
27 for (String label : labels) 
28 { 
29 String name = label.toUpperCase() 
30 . replace ( ' ' ' ' ) ; 
31 try 
32 { 
33 java.lang.reflect.Field f = cl.getField(name); 
34 @SuppressWarnings ( "unchecked") 
35 Tvalue= (Т) f.get(cl); 
36 taЫe.put(label, value); 
37 



7.3. Форматирование даты и времени 

38 catch (Exception е) 

39 ( 
40 label = "(" + label + ")"; 
41 taЫe.put(label, null); 
42 
43 additem(label); 
44 
45 setSelecteditem(labels[OJ ); 
46 
47 
48 /** 
49 * Возвращает значение поля, выбранного пользователем 

50 * @return Значение статического поля 
51 */ 
52 puЫic т getValue() 
53 ( 
54 return taЫe.get(getSelecteditem()); 
55 
56 

java.time.foпnat.DateTimeFormatter В 

• static DateTimeFormatter ofLocalizedDate(FormatStyle dateStyle) 

• static DateTimeFormatter ofLocalizedTime (l!'ormatStyle dateStyle) 

• static DateTimeFormatter ofLocalizedDateTime(FormatStyle 
da teTimeStyle) 

• static DateTimeFormatter ofLocalizedDate(FormatStyle dateStylв, 
FormatStyle timeStyle) 

Возвращают экземпляры типа DateTimeFormatter для форматирования дат, времени или 
того и другого с учетом заданных стилей. 

• DateTimeFormatter withLocale(Locale locale) 

Возвращает копию данного средства форматирования вместе с заданными региональными 
настройками. 

• String format (TemporalAccessor temporal) 

Возвращает символьную строку, получающуюся в результате форматирования заданных даты 
и времени. 

java.time.LocalDate В 

java.time.LocalTime 8 
java.time.LocalDateTime В 

java.time.ZonedDateTime В 

• static Ххх parse (CharSequence text, DateTimeFormatter .f"ormatter) 

Производит синтаксический анализ заданной символьной строки и возвращает описанную 
в ней местную дату или время в виде объекта типа LocalDate, LocalTime, LocalDateTime 
или ZonedDateTime. Генерирует исключение типа DateTimeParseException при неу­
дачном исходе синтаксического анализа. 



Гпава 7 • Интернацнонапизация 

7 .4. Сортировка и нормализация 
Как известно, для сравнения символьных строк служит метод cornpareTo () из 

класса String. К сожалению, этот метод не совсем годится для взаимодействия 
с пользователями. В методе cornpareTo () применяются строковые значения в ко­
дировке UTF-16, что приводит к абсурдным результатам, даже на английском 
языке. Например, следующие пять символьных строк упорядочиваются по ре­

зультатам сортировки методом cornpareTo () таким образом: 

Athens 
Zulu 
аЫе 

zebra 
Engstrom 

При упорядочении словаря приходится учитывать регистр букв, но совсем не­

обязательно ударение. Для англоязычного пользователя приведенный выше пе­

речень слов должен быть упорядочен следующим образом: 

аЫе 

Engstrom 
Athens 
zebra 
Zulu 

Но такой порядок следования слов неприемлем для шведскоязычного поль­

зователя. Ведь в шведском языке буква А отличается от буквы А и поэтому сорти­

руется после буквы Z! Это означает, что для шведскоязычного пользователя упо­
мянутый выше перечень слов должен быть отсортирован следующим образом: 

аЫе 

Athens 
zebra 
Zulu 
Angstrom 

Чтобы получить компаратор с учетом региональных настроек, следует вызвать 

метод Collator. getinstance (),как показано ниже. Класс Collator реализует 
интерфейс Cornparator, поэтому объект типа Collator можно передать методу 
List. sort ( Cornpara tor), чтобы отсортировап, символьные строки. 

11 Класс Collator реализует интерфейс Comparator<Object>: 
Collator coll = Collator.getinstance(locale); 
words.sort(coll); 

Для средств сортировки предусмотрены четыре уровня избирательности: пер­

востепенный, второстененный, третьесте11еннь1й и идентичный. Например, в ан­

глийском языке отличие букв А и Z считается первостепенным, букв А и А - вто­
ростепенным, а букв А и а - третьестепенным. 

Для того чтобы при сортировке внимание обращалось только на первосте­

пенные отличия, следует задать уровень ее избирательности Collator. PRIМARY. 
Если задать уровень избирательности Colla tor. SECONDARY, то будут учтены 
и второстепенные отличия. Таким образом, вероятность найти отличия в двух 

символьных строках будет больше при установке более высокого уровня избира­

тельности, как показано в табл. 7.6. 



7.4. Сортировка и нормализация 

Таблица 7.6. Сортировка с разными уровнями избирательности [английские региональные 
настройки) 

Первостепенный уровень 

Angstrom = Angstrom 

АЫе = аЫе 

Второстепенный уровень 

Angstrom * Angstrom 
АЫе = аЫе 

Третьестепенный уровень 

Angstrom * Angstrom 

АЫе * аЫе 
Если же установлен уровень избирательности Collator. IDENTICAL, то отли­

чия не допускаются. Этот уровень избирательности используется главным об­

разом вместе с режимом раJ.ложения на составляющие, который устанавливается 

для сортировки и рассматривается ниже. 

Иногда символ или последовательность символов могут быть описаны не 

только в Юникоде. Например, символу А в Юникоде соответствует код U+OOC5. 
С другой стороны, его можно представить в виде последовательности символов А 

(код U+0065) и 0 (кружок сверху; код U+ОЗОА). Еще удивительнее, что последова­

тельность букв "ffi" может быть описана одним символом "латинская малая ли­
гатура ffi" с кодом U+FBOЗ. (Можно, конечно, спорить, что это вопрос представ­
ления символов, решение которого не должно приводить к появлению разных 

символов в Юникоде, но правила установлены не нами.) 

В стандарте на Юникод определяются четыре формы норма.лUJации символь­

ных строк (О, КО, С и КС; подробнее об этом см. по адресу http://www.unicode. 
org/reports/trl5/tr15-23.html). Две из этих форм используются для сортировки. 
В форме нормализации О символы с ударением раскладываются на составляю­

щие их буквы и ударения. Например, символ А раскладывается на составляющие 
символы А и 0 • А в формах нормализации КС и КО на составляющие расклады­

ваются такие символы, как лигатура ffi или знак торговой марки ти. 
Для сортировки можно выбрать определенную степень нормализации. Так, 

если установить значение константы Collator.NO_DECOMPOSITION, то символь­

ные строки вообще не будут нормализованы при сортировке. В этом режиме со­

ртировка выполняется быстрее, но он может быть непригодным для сортировки 

текста, где символы выражаются во многих формах. По умолчанию устанавли­

вается значение константы Collator. CANONICAL _DECOMPOSITION, определяющее 
режим, в котором используется форма нормализации О. Это самая полезная 

форма для сортировки текста, содержащего символы с ударениями, но не ли­

гатуры. Наконец, в режиме полного разложения на составляющие используется 

форма нормализации КО. Характерные примеры сортировки в режимах разло­

жения на составляющие приведены в табл. 7.7. 

Таблица 7.7. Сортировка в разных режимах разложения на составляющие 

Беэ разложения 
на составляющие 

Каноническое разложение 
на составляющие 

Полное разложение 
на составляющие 

А А 

""= тм 



Глава 7 • Интернационализация 

Если одна символьная строка сравнивается многократно с другими строками, 

то во избежание ее повторного разложения на составляющие и ради повыше­

ния эффективности результат разложения на составляющие следует сохранить 

в объекте ключа сортировки. Например, в приведенном ниже фрагменте кода ме­

тод getCollationKey () возвращает объект типа CollationKey, используемый 
для ускорения всех последующих операций сравнения. 

String а = ... ; 
CollationKey аКеу = coll.getCollationKey(a); 
11 быстрое сравнение: 
if(aKey.compareTo(coll.getCollationKey(b)) == 0) 

Наконец, символьные строки иногда требуется преобразовать в их нормали:ю­

ванные формы, не прибегая к сортировке. Такая потребность возникает, напри­

мер, при сохранении символы1ых строк в базе данных или при юаимодействии 

с другой программой. Для этой цели служит класс java. text. Normalizer, вы­
полняющий процесс нормализации, как показано ниже. Нормализо11анная стро­

ка содержит десяп, символов. Символы А и Ь заменяются последовательностями 
символов "А 0 " и "Ь". 

String name = "Angstrom"; 
11 использовать форму нормализации D: 
String normalized = Normalizer.normalize( 

name, Normalizer.Form.NFD); 

Тем не менее это обычно не самая лучшая форма для хранения и передачи 

символьных строк. В форме нормализации С сначала 11ыполняется разложение 

на составляющие, а затем в установленном порядке присоединяются ударения. 

В соответсrвии с рекомендациями консорциума WЗС такой режим является наи­

более предпочтительным для передачи данных через Интернет. 

Программа, исходный код которой приведен в листинге 7.4, по:шоляет экспе­
риментировать с разными видами сортировки. Досrаточно ввести слово в тексто­

вом поле и щелкнуть на кнопке Add, чтобы добавить введенное слово в список. 
Список сортируется заново после добавления в него каждого слова, изменения 

региональных настроек (в раскрывающемся списке Locale), уровня избиратель­
ности сортировки (в раскрывающемся списке Strength) или режима разложения 
на составляющие (в раскрывающемся списке Decomposition). Знак равенства (=) 
обозначает, что слона считаются одинаковыми (рис. 7.3). 

Наименования регионалыiых настроек в раскрывающемся списке Locale ото­
бражаются в порядке, отсортированном в соответствии с устанавливаемыми 

по умолчанию региональными настройками. Так, если запустип, рассматривае­

мую здесь программу при стандартных региональных настройках US English, то 
региональные настройки Norwegian (Norway, Nynorsk) окажутся выше в дан­
ном списке, чем региональные настройки Norwegian (Norway), несмотря на то, 
что значение знака запятой в Юникоде больше, чем значение :шака закрываю­

щей скобки. 



7.4. Сортировка и нормализация 

tcompos1t1on.Full Dtcomposition -в 
__ Iдdd [_ - - =---~~ 
аые 

= АЬlе 

Рис. 7.3. Ра60•1ее окно 1!ро1раммы CollationTest 

Листинг 7.4. Исходный код из файла collation/CollationTest. java 

1 package coll a ti on; 
2 
3 import java . a wt.*; 
4 import java.awt.event.*; 
5 import java. tex t.*; 
6 import java.t1t il.*; 
7 import java .ut il.List; 
8 
9 i mport JЗvax .sw i ng.*; 

10 
11 / * * 
1 2 * В этой программе демонстрируе1'ся сортировка 
13 * симsольных строк при выборе разных ре гиональных 
14 * настроек 
15 * @ve rsion 1.1 6 2018-05-01 
16 * @a uthor Сау Horstmann 
17 */ 
18 puЫic c la ss Co llationTes t 
1 9 ( 
20 puЫic s tati c vo id main (String [] args) 
2 1 { 
22 EventQue ue .invokeLater (( ) - > 
2Э ( 
24 var frame = ne w Coll at 1onFrame(J; 
25 fr ame . setTit l e ("Colla t i onTes t" ) ; 
26 fr ame . setDefault Cl oseOpera t ion( 



Глава 7 • Интернационализация 

27 JFrame.EXIT ON CLOSE); 
28 frame.setVisiЬle(true); 

29 } ) ; 
30 
31 
32 
33 /** 
34 * Этот фрейм содержит комбинированные списки для 
35 * выбора региональных настроек, уровня избирательности 

36 * сортировки и режимов разложения на составляющие, 
37 * текстовое поле и кнопку для ввода новых символьных 
38 * строк, а также текстовую область для перечисления 

39 * отсортированных символьных строк 
40 */ 
41 class CollationFrame extends JFrame 
42 { 
43 private Collator collator = Collator.getinstance( 
44 Locale.getDefault()); 
45 private List<String> strings = new ArrayList<>(); 
46 private Collator currentCollator; 
47 private Locale[] locales; 
48 private JComЬoBox<String> localeComЬo 
49 new JComЬoBox<>(); 
50 private JTextField newWord = new JTextField(20); 
51 private JTextArea sortedWords = new JTextArea(20, 20); 
52 private JButton addButton = new JButton("Add"); 
53 private EnumComЬo<Integer> strengthComЬo = 
54 new EnumComЬo<> (Collator. class, "Primary", 
55 "Secondary", "Tertiary", 
56 "Identical"); 
57 private EnumComЬo<Integer> decompositionComЬo = 
58 new EnumCombo<>(Collator.class, 
59 "Canonical Decomposition", 
60 "Full Decomposition", 
61 "No Decomposition"); 
62 
63 puЫic CollationFrame() 
64 { 
65 setLayout(new GridBagLayout() ); 
66 add(new JLabel("Locale"), 
67 new GBC(O, 0) .setAnchor(GBC.EAST) ); 
68 add(new JLabel("Strength"), 
69 new GBC(O, 1) .setAnchor(GBC.EAST) ); 
70 add(new JLabel("Decomposition"), 
71 new GBC (О, 2) . setAnchor ( GBC. EAST) ) ; 
72 add(addButton, new GBC(O, 3) .setAnchor(GBC.EAST)); 
73 add(localeComЬo, 

74 new GBC(l, 0) .setAnchor(GBC.WEST)); 
75 add(strengthCombo, 
76 new GBC(l, 1) .setAnchor(GBC.WEST)); 
77 add(decompositionCombo, 
78 new GBC(l, 2) .setAnchor(GBC.WEST)); 
79 add (newWord, new GBC (1, 3). setFill (GBC.HORIZONTAL)); 
80 add(new JScrollPane(sortedWords), 
81 new GBC(O, 4, 2, l).setFill(GBC.BOTH)); 
82 



7.4. Сортировка и нормализация 

83 locales = (Locale[)) Collator.getAvailaЫeLocales() 

84 .clone 1); 
85 Arrays.sort(locales, (11, 12) -> 
86 collator.compare(ll.getDisplayName(), 
87 12.getDisplayName())); 
88 for (Locale loc : locales) 
89 localeComЬo.additem(loc.getDisplayName() 1; 
90 localeComЬo.setSelecteditem( 

91 Locale. get Def aul t 11 . get DisplayName 11 1 ; 
92 
93 strings.addl"America"); 
94 strings.add("aЫe"); 

95 strings.add("Zulu"); 
96 strings.add("zebra"); 
97 strings. add (" \uOOC5ngstr\uOOF6m" 1; 
98 strings.add("A\u030angstro\u0308m"); 
99 strings.add("Angstrom"I; 
100 strings.add("AЫe"); 

101 strings.add("office"); 
102 strings.add("o\uFB03ce"); 
103 strings.add("Java\u2122"1; 
104 strings.add("JavaTM"); 
105 updateDisplay(); 
106 
107 addButton.addActionListener(event -> 
108 { 
109 strings.add(newWord.getText() 1; 
110 updateDisplay(); 
111 } ) ; 
112 
113 ActionListener listener = event -> updateDisplay(); 
114 
115 localeComЬo.addActionListener(listener); 

116 strengthComЬo.addActionListener(listener); 

117 decompositionCombo.addAct1onListener(listener); 
118 pack(); 
119 
120 
121 /** 
122 * Обновляет отображаемые строки и сортирует их 
123 * в соответствии с пользовательскими установками 

124 */ 
125 puЬlic void updateDisplayll 
12 6 { 
127 Locale currentLocale = 
128 locales[localeComЬo.getSelectedlndex() ); 
129 localeComЬo.setLocale(currentLocale); 

130 
131 currentCollator = 

132 Collator.getinstance(currentLocale); 
133 currentCollator.setStrength( 
134 strengthComЬo.getValue()); 

135 currentCollator.setDecomposition( 
136 decompositionCombo.getValue() ); 
137 
138 strings.sort(currentCollator); 



Глава 7 • Интернационализация 

139 
140 sortedWords.setText(""); 
141 for (int i О; i < strings.size(); i++) 
142 { 
143 String s strings.get(i); 
144 if (i >О && currentCollator.compare(s, 
145 strings.get(i - 1)) == 0) 
146 sortedWords.append("= "); 
147 sortedWords.append(s + "\n"); 
148 
149 pack(); 
150 
151 

java.text.Collator 1.1 

• s ta tic Locale [] qetAvailaЬleLocales () 

Возвращает массив объектов типа Locale, для которых существуют сортирующие объекты 
типа Collator. 

• static Collator qetinstance() 

• static Collator qetinstance (Locale 1) 

Возвращают объект типа Collator для текущих или заданных региональных настроек. 

• int compare (Strinq а, Strinq Ы 

Возвращает отрицательное значение, если строка а предшествует строке Ь; нулевое значе­

ние, если строки считаются одинаковыми; или положительное значение, если строка Ь пред­

шествует строке а. 

• boolean equals (Strinq а, Strinq Ь) 

Возвращает логическое значение true, если строки а и Ь считаются одинаковыми. а ина­
че - логическое значение false. 

• void setStrenqth (int strength) 

• int qetStrenqth() 

Устанавливают или получают уровень избирательности сортировки. Чем выше уровень из­

бирательности, тем больше вероятность того, что сортируемые слова будут признаны разны­

ми. Поддерживаются следующие уровни избирательности сортировки: Collator. PRIМARY, 
Collator. SECONDARY И Collator. ТERTIARY. 

• void setDecomposition (int decomp) 

• int qetDecompositon () 

Устанавливают или получают режим разложения на составляющие при сортировке символь­

ных строк. Чем выше степень разложения на составляющие, тем строже выполняется сравне­

ние сортируемых символьных строк. Поддерживаются следующие режимы разложения на со­

ставляющие: Collator .NO _DECOМPOSITION, Collator. CANONICAL _DECOМPOSITION 
И Collator. FULL DECOМPOSITION. 

• CollationКey qetCollationКey(Strinq а) 

Возвращает ключ сортировки с разложенными на составляющие символами, чтобы быстро 

сравнить их по другому ключу сортировки. 



7.5. Форматирование сообщений 

java.text.CollationKey 1.1 

• int compareTo(CollationKey Ь) 

Возвращает отрицательное значение, если данный ключ сортировки предшествует ключу Ь; 
нулевое значение, если ключи одинаковы; или положительное значение, если данный ключ 
следует за ключом Ь. 

java.text.Normalizer 6 

static String normalize (CharSequence str, Normalizer. Form form) 

Возвращает нормализованную форму символьной строки str. Параметр form может прини­
мать одно из следующих значений: ND, NКD, NC или NКС. 

7.5. Форматирование сообщений 
В состав библиотеки Java входит класс MessageFormat для форматирования 

текста, содержащего фрагменты с переменными. Этот механизм подобен форма­
тированию с помощью метода printf (),но он действует с учетом региональных 
настроек, а также форматов чисел и дат. В последующих разделах этот механизм 

рассматривается более подробно. 

7.5.1. Форматирование чисел и дат 
Ниже приведен пример типичной строки форматирования сообщений, где 

номера в фигурных скобках служат в качестве заполнителей для подлинных 

имен и :шачений. 

"Оп {2), а {0) destroyed {1) houses апd 
caused {3} of damage." 

Подставить значения переменных можно с помощью статического метода 

MessageFormat. format () с переменным числом параметров, где подстановка 

значений переменных может быть произведена следующим образом: 

Striпg msg = Messagerormat.format( 
"Оп {2), а (0) destroyed {1) houses апd 

caused {3} of damage.", "hurricaпe", 99, 
пеw GregoriaпCaleпdar(l999, О, 1) .getTime(), 10.ОЕВ); 

В данном примере заполнитель {О} замещается строковым значением 

"hнrricane", запол11ител1, { 1} - числовым значением 99 и т.д. А в результате 
подстановки получается следующая текстовая строка: 

Оп 1/1/99 12:00 АМ, а hurricaпe destroyed 99 houses and 
caused 100,000,000 of damage. 

Результат для начала неплохой, но вряд ли может устроить полностью. В част­

ности, время 12: 00 АМ отображать не следует, а сумму ущерба от урагана нужно 
представить в денежных единицах. Это можно сделать, указав формат для неко­
торых переменных, как выделено ниже полужирным. 



Глава 7 • Интернационализация 

"Оп {2,date,long}, а {О} destroyed {1} houses апd 
caused {3,numЬer,currency} of damage." 

В результате очередной подстановки получается следующая строка: 

Оп January 1, 1999, а hurricaпe destroyed 99 houses апd 
caused $100,000,000 of damage. 

Обычно после заполнителя допускается задавать тип и стиль, разделяя их за­

пятыми. Ниже перечислены допустимые типы. 

пumber 

time 
date 
choice 

Если указан тип numЬer, то допускаются следующие стили: 

iпteger 

curreпcy 

perceпt 

В качестве стиля может быть также ука3ан шаблон числового формата, напри­

мер $,##О. (Подробнее об этом см. в документации на класс Decimal Forma t.) 
Для типа time или date может быть указан один из следующих стилей: 

short 
medium 
loпg 

full 

Аналогично числам, в качестве стиля может быть указан шаблон даты, напри­

мер ггг-мм-дд. (Допустимые форматы подробно рассматриваются в документа­

ции на класс SimpleDateFormat.) 

• ВНИМАНИЕ! Статический метод format () форматирует значения с учетом текущих регио­
нальных настроек. Форматировать сообщения средствами класса MessageFormat с учетом 
произвольных региональных настроек немного сложнее, поскольку в этом классе отсутствует 

метод с переменным числом аргументов. Поэтому форматируемые значения придется разме­

стить в массиве Object [], как показано ниже. 

var mf = пеw MessageFormat(patterп, loc); 
Striпg msg = mf.format(пew Object[] { значения}); 

java.text.MessageFormat 1.1 

• Locale getLocale {) 

Устанавливают или получают региональные настройки для заполнителей в сообщении. 

Региональные настройки пригодны только для последующих шаблонов, задаваемых с помо­

щью метода applyPattern (). 

• static String format(String pattern, Object ... args) 

Форматирует символьную строку по шаблону ра ttern, подставляя вместо заполнителей 
{i} объекты из массива args [i]. 



7.5. Форматирование сообщений 

java. text.MessageFormat 1. 1 {окончание} 

• StringBuffer format(Object args, StringBuffer result, 
FieldPosition pos) 

Форматирует шаблон данного объекта типа MessageFormat. Параметр args принима­
ет массив объектов. Форматируемая строка добавляется к значению параметра resul t, 
которое затем возвращается. Если параметр pos принимает ссылку на новый объект new 
FieldPosi tion (MessageForma t. Field. ARGUМENT) , его свойства beginindex 
и endindex устанавливаются в соответствии с расположением текста, который подставля­
ется вместо заполнителя { 1}. Если же сведения о расположении подстановочного текста не 

важны, в качестве параметра pos следует задать пустое значение null. 

java.text.Format 1.1 

• String format (Object obj) 

Форматирует заданный объект по правилам, определяемым текущим форматирующим объек­

том. С этой целью делается следующий вызов: format (obj, new StringBuffer () , 
new Field Posi tion ( 1) ) . toString () . 

7.5.2. Форматы выбора 
Вернемся к шаблону из предыдущего раздела, чтобы рассмотреть его подробнее: 

"On {2}, а {0} destroyed {1} houses and caused {3} of damage." 

Если вместо заполнителя {О } , обозначающего вид стихийного бедствия, под­
ставить строковое значение "earthquake" (землетрясение), то получится следу­
ющее предложение, нарушающее правила английской грамматики в отношении 

используемых артиклей: 

On January 1, 1999, а earthquake destroyed ... 

Для устранения этой грамматической ошибки артикль а придется ввести в за­

полнитель {О} следующим образом: 

"On {2}, {0} destroyed (1} houses and caused {3} of damage." 

Теперь вместо заполнителя {О} будет подставлен текст "а hurricane" или 
"an earthquake ". Такой способ особенно удобен для перевода сообщений 
на языки, в которых в каждом роде употребляется отдельный артикль. Напри­

мер, на немецком языке этот шаблон должен выглядеть так: 

"{0} zerstbrte am {2} {1} H!user und richtete einen Schaden 
von {3} an." 

В этом случае заполнитель будет заменяться грамматически правильными со­

четаниями артикля и имени существительного, например "Ein Wirbelsturrн" 

и "Eine Naturkatastrophe". 
Теперь рассмотрим заполнитель { 1}. Если стихийное бедствие оказалось не 

очень разрушительным, то вместо этого заполнителя можно подставить значе­

ние 1. Но и в этом случае получится предложение с нарушением правил англий­
ской грамматики: 

On January 1, 1999, а mudslide destroyed 1 houses and ... 



Глава 7 • Интернационализация 

Желательно, чтобы текст сообщения грамотно изменялся в соответствии с од­

ним из следующих подставляемых значений: 

no houses 
one house 
2 houses 

Именно для этой цели и был внедрен формат выбора типа choice. В соответ­
ствии с этим форматом задаето1 последователыюст1, пар значений, каждая и:1 ко­

торых содержит нижний предел и фор.чатирующую строку. Нижний предел и фор­

матирующая строка разделяются знаком #, а для разделения пар значений служит 
знак 1. Ниже приведен пример заполнителя { 1}, в котором формат выбора выде­
лен полужирным. Резул1,таты форматирования текста сообщения в зависимости 

от :шачения, подставляемого вместо заполнителя { 1}, представлены в табл. 7.8. 

{1, choice, O#no housesll#one housel2#{1} houses} 

Таблица 7.8. Текст сообщения, отформатированный по выбору 

{1} Результат 

о "no houses" 
1 "one house" 
3 113 houses" 
-1 "no houses" 

А зачем в форматирующей строке дважды ука:1ьшается заполнитель { 1}? Ког­
да к этому заполнителю применяется формат выбора и значение оказывается 

равным 2, возвращаето1 символьная строка" { 1} houses". Эта строка формати­
руется еще раз и включается 11 результирующую строку сообщения. 

НА ЗАМЕТКУ! Приведенный выше пример показывает, что разработчики формата выбора 

приняли не самое лучшее решение. Так, если имеются три форматирующие строки, то для их 

разделения требуются два предела. Как правило, количество пределов должно быть на едини­
цу меньше, чем количество форматирующих строк. И как следует из табл. 7.8, первый предел 
в классе МessaqeForшat вообще игнорируется. Синтаксис форматирования сообщений мог 

бы быть более понятным, если бы пределы указывались между выбираемыми вариантами, 

например, следующим образом: 

no houses 111 one house 1 2 1 { 1} houses 
11 более понятньм, но не действующий формат 

С помощью :шака < можно указать, что предлагаемый вариант должен быть вы­
бран, если нижний предел ока:1ывается строго меньше подставляемого :шачения. 

Вместо :ша ка # можно также ука:швать знак :::; (\ u2 2 6 4 в Юникоде). По желанию 
можно даже ука:1ать для пер но го значения нижний предел равным -оо (- \ u2 21 Е 
в Юникоде), как пока:1а110 ниже. 

-oo<no housesiO<one housel2S{l} houses 

Непосредственно в Юникоде это же выражение будет выглядеть следующим 

образом: 

-\u221E<no houseslO<one housel2\u2264{1} houses 



7.6. Ввод-вывод текста 

В завершение примера форматирования текстового сообщения о последстви­

ях стихийного бедствия разместим строку с условиями выбора в исходной строке 

сообщения. В результате получится следующий шаблон форматирования на ан­

глийском языке: 

String pattern = "On {2,date,long}, {О} destroyed 
{l,choice,O#no housesll#one housei2#{1} houses}" 

+ "and caused {3,numЬer,currency} of darnage."; 

Для форматирования на немецком языке этот шаблон будет выглядеть следу­

ющим образом: 

String pattern = "{0) zerstбrte arn {2,date,long} 
{l,choice,O#kein Hausil#ein Hausi2#{1) Hauser)" 

+ "und richtete einen Schaden von 
{ 3, nurnber, ct1rrency} an. "; 

Примечательно, что порядок слов в шаблонах форматирования на англий­

ском и немецком я~шках разный, но методу format () передается тот же самый 
массив объектов. Под требуемый порядок слов в форматирующей строке под­

страивается только последовательность заполнителей. 

7.6. Ввод-вывод текста 
Как вам должно быть уже известно, кодирование символов в Java основыва­

ется на Юникоде. Но в операционных системах Windows и Мае OS Х до сих пор 
применяются устаревшие кодировки символов, часто несовместимые с другими, 

например, Windows-1252 и Мае Roman в странах Западной Европы или ВIGS 
на Тайване. Поэтому организовать взаимодействие с пользователями через текст 

оказывается не так просто, как может показаться на первый взгляд. Трудности, 

возникающие на этом пути, рассматриваются в последующих разделах. 

7.6.1. Текстовые файлы 
В настоящее время для сохранения или загрузки текстовых файлов лучше 

всего пользоваться кодировкой UTF-8, хотя может возникнуть потребность в об­
работке текстовых файлов с устаревшей кодировкой. Если кодировка символов 

известна заранее, ее можно указать при записи или чтении текстовых файлов, 

как пока3ано ниже. 

var out = new PrintWriter(filename, "Windows-1252"); 

Чтобы выяснить наиболее подходящую кодировку, можно получить "плат­

форменную" кодировку, сделав следующий вызов: 

Charset platformEncoding = Charset.defaultCharset(); 

7.6.2. Окончания строк 
Правильная интерпретация окончаний строк - дело не региональных настро­

ек, а платформ. Так, в Windows предполагается обнаружить последовательность 
символов \r\n в конце каждой строки текстового файла, тогда как в UNIХ-по­
добных системах в конце строки достаточно указать последовательность симво­

лов \n. Впрочем, большинство современных прикладных программ для Windows 



Глава 7 • Интернационализация 

способно правильно интерпретировать и последовательность символов \n. 
Примечательным исключением из этого правила служит текстовый редактор 

Notepad, и если текстовых файл, выбираемый двойным щелчком мышью на его 
имени, требуется автоматически загрузить в текстовый редактор Notepad, следу­
ет обеспечить правильное окончание строк в нем. 

Любая строка, выводимая с помощью метода println (),получает надлежащее 
окончание. Единственное затруднение возникает при выводе символьных строк, 

оканчивающихся последовательностью символов \n, поскольку они не преобразу­
ются автоматически в окончания строк, принятые на конкретной платформе. 

Вместо употребления последовательности символов \n для окончаний строк 
можно вызвать метод printf (),указав спецификатор формата %n для получе­
ния платформенно-ориентированных окончаний строк. Например, в результате 

следующего вызова: 

out.printf ("Hello%nWorld%n"); 

в Windows получается такая строка: 

Hello\r\nWorld\r\n 

а в других операционных системах - приведенная ниже строка. 

Hello \nWor ld\n 

7.6.З. Консольный ввод-вывод 

При написании прикладных программ, взаимодействующих с пользователя­

ми через стандартный ввод-вывод (объекты System. in/System. out) или консоль 
(метод System. console () ), приходится принимать во внимание, что на консо­
ли может использоваться иная, чем платформенная кодировка, о которой сооб­

щает метод Charset. defaul tCharset ().Эта особенность оказывается заметной 
при переходе к командной оболочке cmd в Windows. В версии этой оболочки 
для США применяется архаичная кодировка IВМ437, внедренная на ПК IВМ еще 

в 1982 году. Для обнаружения подобной информации отсутствует официально 
утвержденный прикладной программный интерфейс API. Например, знак де­
нежной единицы евро (€) имеет свое представление в кодировке Windows-1252, 
тогда как в кодировке IВМ437 такое представление отсутствует. Поэтому в резуль­

тате вызова 

System.out.println("lOO €"); 

на консоль выводится такой результат: 

100 ? 

Пользователям прикладной программы можно порекомендовать сменить ко­

дировку символов на консоли. В Windows для этого можно воспользоваться ко­
мандой chcp. Например, по следующей команде: 

chcp 1252 

консоль перейдет к кодовой странице Windows-1252. 
В идеальном случае пользователи должны перевести консоль на кодировку 

UTF-8. С этой целью в Windows можно выполнить следующую команду: 
chcp 65001 



7 .6. Ввод-вывод текста 

Но, к сожалению, этого оказывается недостаточно, чтобы на консоли в Java 
применялась кодировка UTF-8. Ее необходимо также установить неофициально 
в системном свойстве file. encoding по следующей команде: 

java -Dfile.encoding=UТF-8 МояПрогранма 

7.6.4. Протокольные файлы 
Когда протокольные сообщения направляются из библиотеки java.util. 

logging на консоль, они выводятся в кодировке, принятой на консоли. О том, 
как управлять этим процессом, упоминалось в предыдущем разделе. Но для вы­

вода протокольных сообщений в файл служит класс FileHandler, где по умол­
чанию применяется платформенная кодировка. 

Чтобы перейти к кодировке UTF-8, необходимо внести изменения в настрой­
ки диспетчера протоколирования. С этой целью в файле конфигурации прото­

колирования делается следующая установка: 

java.util.logging.FileHandler.encoding=UTF-8 

7.6.5. Отметка порядка следования байтов в кодировке UТF-8 
Как упоминалось ранее, для обработки текстовых файлов рекомендуется 

применять кодировку UTF-8 при всякой возможности. Так, при чтении в при­
кладной программе текстовых файлов, созданных в других программах, может 

возникнуть еще одно затруднение в связи с тем, то в файл вполне допускается 

вводить символ, обозначающий отметку порядка следования байтов (U+ FEFF}. 
В кодировке UTF-16, где каждая кодовая единица представлена двумя байтами, 
такая отметка сообщает читающей файл программе, что в нем применяется по­

рядок следования байтов от старшего к младшему или же от младшего к стар­

шему. В кодировке UTF-8 каждая кодовая единица представлена одним байтом, 
поэтому указывать порядок следования байтов в этом случае не требуется. Но 

если файл начинается с байтов OxEF ОхВВ OxBF, что соответствует коду символа 
U+FEFF в кодировке UTF-8, то это явно свидетельствует о применении кодировки 
UTF-8. Именно такая практика и рекомендуется в стандарте Unicode, когда лю­
бая читающая файл программа отбрасывает первоначальную отметку порядка 

следования байтов. 

Такой практике присущ лишь один недостаток. Компания Oracle в своей ре­
ализации языка Java упорно отказывается следовать стандарту Unicode, ссыла­
ясь на потенциальную несовместимость. А это означает, что программирующие 

на Java должны сделать то, что не сделает платформа, а именно: проиrnорировать 
код символа U+FEFF, если он встретится вначале читаемого текстового файла . 

• ВНИМАНИЕ! К сожалению, разработчики комплекта JDK не следуют приведенной выше реко­
мендации. Если передать компилятору javac достоверный исходный файл в кодировке UTF-
8, который начинается с отметки порядка следования байтов, его компиляция завершится 
неудачно выдачей сообщения об ошибке "illegal character: \65279" (недопустимый 
СИМВОЛ: КОД \65279J. 



Глава 7 • Интернационализация 

7 .6.6. Кодирование символов в исходных файлах 
Не следует забывать, что при написании программы на Java неизбежно при­

ходится иметь дело с компилятором, пользуясь инструментальными средствами 

в лока.л.ьной операционной системе. Допустим, для создания исходных файлов 

программы на Java используется стандартный текстовый редактор Notepad в ки­
тайской версии Windows. Полученный в итоге исходный код не является пере­
носимым (т.е. независимым от платформы) из-за того, что в нем используется 

локальная кодировка символов (GB или BIGS, в зависимости от региональных 
настроек операционной системы). Классы становятся переносимыми только по­

сле компиляции, и в этом случае идентификаторы и текстовые сообщения пред­

ставляются с помощью модифицированной кодировки UTF-8. Это означает, что 
при компиляции и выполнении программы предполагается использование трех 

перечисленных ниже кодировок символов. 

• Исходные файлы: локаль11ая кодировка. 

• Файлы классов: модифицированная кодировка UTF-8. 

• Виртуальная машина: кодировка UTF-16. 

(О модифицирован11ой кодировке UTF-8 и кодировке UTF-16 см. в главе 1.) 

СОВЕТ. Конкретную кодировку исходного файла можно указать в командной строке с помо­
щью параметра -encoding: 

javac -encoding Big5 Мyfile.java 

7. 7. Комплекты ресурсов 
При интернационализации приложений на другие языки приходится перево­

дить огромное количество сообщений, надписей на кнопках и т.п. Для упрощения 

этой задачи рекомендуется собрать все переводимые символьные строки в отдель­

ном месте, которое обычно называется ресурсом. В этом случае переводчику доста­

точно отредактировать файлы ресурсов, не затрагивая исходный код программы. 

В языке Java для определения строковых ресурсов используются файлы свойств, 
а для других разновидностей ресурсов создаются классы ресурсов. 

НА ЗАМЕТКУ! Технология использования ресурсов в Java отличается от аналогичной техно­
логии в операционных системах Windows и Мае OS. В программе, предназначенной для вы­
полнения под Windows или Мае OS, такие ресурсы, как меню, диалоговые окна, пиктограммы 
и сообщения, хранятся отдельно от самой программы. Поэтому специальный редактор ресур­
сов позволяет просматривать и видоизменять эти ресурсы, не затрагивая программный код. 

НА ЗАМЕТКУ! В главе 5 первого тома настоящего издания описывается принцип разме­
щения ресурсов (файлов данных, звука и изображения! в архивном JАR-файле. Метод 
getResource () из класса Class находит нужный файл, открывает его и возвращает URL, 
указывающий на искомый ресурс. При размещении файлов в архивном JАR-файле поиск 
файлов возлагается на загрузчик классов. Однако этот механизм не поддерживает региональ­

ные настройки. 



7.7. Комплекты ресурсов 

7.7 .1. Обнаружение комплектов ресурсов 
Для интернационализации приложений создаются так называемые ко.мплек­

ть1 ресурсов. Каждый комплект представляет собой файл свойств или класс, кото­

рый описывает элементы, характерные для конкретных регионал1.ных настроек, 

например сообщения, надписи и т.д. Для каждою комплекта ресурсов должны 

быть предоставлены все региональные настройки, поддержка которых предусма­

тривается в прикладной программе. 

Комплекты ресурсов именуются по специальным условным обозначениям. На­

пример, ресурсы, характерные для Германии, размещаются 11 файле имяКомплекта _ 

de _ DE, а ресурсы, общие для стран, в которых исполюуется немецкий язык, -
в классе имяКомплекта _ de. В целом комплекты ресурсов для отдел1,ных стран име­
нуются следующим образом: 

имяКомплекта_язык_страна 

Комплекты ресурсов для всех одноязычных стр<111 име11уются таким образом: 

имяКомплекта язык 

Наконец, в качестве резерва ресурсы, применяемые по умолчанию, размеща­

ются в файле, имя которого не указывается без всяких суффиксов. Загружается 

комплект ресурсов следующим образом: 

ResourceBundle currentResources = 
ResourceBundle.getBundle(имяKoмплeктa, 

текУШИеРегиональныеНастройки) ; 

Метод getBundle () пытается загрузить комплект ресурсов, совпадающий с те­
кущими региональными настройками по языку и стране. Если попытка :iагрузки 

завершится неудачей, то поочередно опускается страна и я:iык. Затем аналогич­

ный поиск ресурсов осуществляется в региональных настройках по умолчанию 

и происходит обращение к комплекту ресурсов, выбираемому по умолчанию. 

Если и эта попытка оказывается безуспешной, то генерируется исключение типа 

MissingResourceException. 
Таким образом, метод getBundle () пытается :iагру:тть комплекты ресурсов 

в приведенной ниже последовательности, где ТРН - текущие региональные на­

стройки, а РНУ - региональные настройки по умолчанию. 

имяКомплекта_языкТРН_странаТРН 

имяКомплекта языкТРН 

имяКомплекта_языкТРН_странаРНУ 

имяКомплекта языкРНУ 

имя Комплекта 

И даже после того, как метод getBundle () обнаружит комплект ресурсов, на­
пример имя Комплекта_ de _ DE, 011 продолжит поиск ресурсов в комплектах имя­

Комплекта _ de и имяКомплекта. Если эти комплекты ресурсов существуют, они 
становятся родительскими по отношению к комплекту имяКомплекта _ de _ DE в ие­
рархии ресурсов. Родительские комплекты требуются на тот случай, если нужный 

ресурс не удастся обнаружить в текущем комплекте. Иными словами, если нуж­

ный ресурс не найден в комплекте имя Комплекта_ de_ DE, его поиск продолжает­
ся в комплектах имяКомплекта de и имяКомплекта. 



Глава 7 • Интернацнонапизация 

Очевидно, что это очень полезный механизм, но для его реализации при­

шлось бы немало программировать вручную. Поэтому механизм поддержки 

комплектов ресурсов в Java автоматически находит ресурсы, в наибольшей степе­
ни соответствующие конкретным региональным настройкам. Чтобы ввести в су­

ществующую программу новые региональные настройки, достаточно дополнить 

ими соответствующие комплекты ресурсов. 

НА ЗАМЕТКУ! Обнаружение комплектов ресурсов рассматривается здесь в упрощенном 
виде. Если региональные настройки содержат письмо или вариант языка, поиск ресур­

сов значительно усложняется. Подробнее об этом можно узнать из документации на метод 

ResourceBundle.Control.getCandidateLocales(). 

СОВЕТ. При разработке прикладной программы совсем не обязательно размещать все ресур­

сы в одном комплекте. Вместо этого один комплект ресурсов можно создать для надписей 

на кнопках, другой - для сообщений об ошибках и т.д. 

7.7 .2. Файлы свойств 
Интернационализация символьных строк осуществляется довольно просто. 

Для этого достаточно разместить все символьные строки в файле свойств, напри­

мер MyProgramStrings .properties. Файл свойств представляет собой обычный 
текстовый файл, каждая строка которого содержит ключ и значение, как показа­

но ниже. 

computeButton=Rechnen 
colorName=Ыack 

defaultPaperSize=210'297 

Файлы свойств именуются по принципу, описанному в предыдущем разделе, 

например, следующим образом: 

MyProgramStrings.properties 
MyProgramStrings_en.properties 
MyProgramStrings_de_DE.properties 

Комплект ресурсов можно загрузить аналогично приведенному ниже. 

ResourceBundle bundle = ResourceBundle.getBundle( 
"MyProgramStrings", locale); 

Для поиска конкретной символьной строки потребуется вызов, подобный сле­

дующему: 

String computeButtonLabel = 
bundle.getString("computeButton"); 

• ВНИМАНИЕ! До версии Java 9 файлы свойств должны были содержать символы только в коде 
ASCll. В прежних версиях Java для размещения в этих файлах символов в Юникоде следует ис­
пользовать формат \uxxxx. Например, строка colorName=Griin будет иметь следующий вид: 

colorName=Gr\uOOFCn 

Для подобного преобразования символов в файлах свойств можно также воспользоваться 

упоминавшейся ранее утилитой native2ascii. 



7. 7. Комплекты ресурсов 

7.7.З. Классы комплектов ресурсов 

Для поддержки ресурсов, не являющихся символьными строками, следует 

определить классы, производные от класса ResourceBundle. Выбор имен для та­
ких классов осуществляется в соответствии со стандартными обозначениями, как 

показано в приведенном ниже примере. 

MyProgramResources.java 
MyProgramResources_en.java 
MyProgramResources_de_DE.java 

Для загрузки класса комплекта ресурсов применяется тот же метод 

getBundle (),что и для загрузки файла свойств: 

ResourceBundle bundle = ResourceBundle.getBundle( 
"MyProgramResources", locale); 

• ВНИМАНИЕ! Если два комплекта ресурсов, один из которых реализован в виде класса, а дру­гой - в виде файла свойств, имеют одинаковые имена, то при загрузке предпочтение отда­

ется классу. 

В каждом классе комплекта ресурсов реализуется таблица поиска. Для полу­

чения каждого интернационализируемого значения следует предоставить сим­

вольную строку с соответствующим ключом, как показано ниже. 

var backgroundColor = (Color) bundle.getObject( 
"backgroundColor"); 

douЬle[] paperSize = (douЬle[]) bundle.getObject( 
"defaultPaperSize"); 

Самый простой способ реализовать класс комплекта ресурсов - создать под­

класс, производный от класса ListResourceBundle. Класс ListResourceBundle 
позволяет разместить сначала все ресурсы в массиве объектов, а затем выпол­

нить их поиск. Общая форма реализации подкласса, производного от класса 

ListResourceBundle, выглядит следующим образом: 

puЬlic class имяКомплекта_язык_страна 
extends ListResourceBundle 

private static final Object[J[J contents 
{ 

ключ1, значение1 ) , 
ключг, значение2 ) , 

puЫicObject[][] getContents() { returncontents;) 

Ниже приведены некоторые примеры реализации подклассов, производных 

от класса ListResourceBundle. 

puЫic class ProgramResources_de extends ListResourceBundle 
{ 

private static final Object [] [] contents 
{ 

{ "backgroundColor", Color.Ыack }, 



Глава 7 • Интернационализация 

{ "defaultPaperSize", new douЫe [] { 210, 297 } ) 

рuЫ ic Obj ect [] [] getContent s () { ret urn contents; ) 

puЫic class ProgramResources_en_US 
extends ListResourceBundle 

private static final Object[J [] contents 
{ 

"backgroundColor", Color.Ыue }, 
"defaultPaperSize", new douЫe [] 216, 279 } } 

puЫic Object [] [] getContents (} { return contents; ) 
) 

НА ЗАМЕТКУ! Размеры стандартных форматов бумаги задаютсR в миллиметрах. Во всех стра­

нах мира, кроме США и Канады, используютс11 форматы бумаги, размеры которых определ11ютс11 

по стандарту 150 216 [дополнительные сведени11 по данному вопросу можно найти в документе, 
доступном по адресу https: //www. cl. cam. ас. uk/%7Emgk25/iso-paper .html). 

Класс комплекта ресурсов можно также создать как подкласс, производный 

от класса ResourceBundle. В этом случае придется реализовать два приведен­
ных ниже метода для получения объекта типа Enumera t.ion, содержащего клю­
чи, а также для извлечения конкретного значения по заданному ключу. Метод 

getObj ect () из класса ResourceBundle вызывает определяемый полыователем 
метод handleGetObject (). 

Enumeration<String> getKeys() 
Object handleGetObject(String key) 

java.util.ResourceBundle 1.1 

• static ResourceBundle getвundle(String baseNamв, Locale loc) 

• static ResourceBundle getвundle(String baseNamв) 

Загружают класс комплекта ресурсов по указанному имени, а также его родительские классы 

в соответствии с заданными или устанавливаемыми по умолчанию региональными настройками. 

Если классы комплектов ресурсов наход11тся в пакете, то должно быть указано полное ИМR такого 

класса, например intl. Programresources. Классы комплектов ресурсов должны быть объ­
явлены открытыми [puЬlic), чтобы сделать их доступными ДЛR метода getвundle (). 

Object getObject (String name) 

Извлекает объект из указанного комплекта ресурсов или его родительских комплектов. 

• String getString (String name) 

Извлекает объект из указанного комплекта ресурсов или его родительских комплектов и при­

водит его к типу String. 

• String [] getStringArray (String namв) 

Извлекает объект из комплекта ресурсов или его родительских комплектов и представл11ет 

его в виде массива символьных строк. 



7.8. Пример интернациоиализации прикладной программы 

j ava. u til. ResourceBundle 1 . 1 /окончание/ 

• Enumeration<Strinq> qetкeys() 

Возвращает объект перечисления типа Enumeration, содержащий ключи из текущего ком­
плекта ресурсов. В этом объекте перечисляются также ключи из родительских комплектов 

ресурсов. 

• Object handleGetObject (String key) 

Если реализуется собственный механизм поиска ресурсов, этот метод следует переопреде­

лить таким образом, чтобы он возвращал значение по заданному ключу. 

7.8. Пример интернационализации прикладной программы 
В этом ра:целе и:ыоженный выше материал применяется 11а практике для ин­

тер11ационали:1ации прикладной программы для расчета пе11сионных сбере­

жений. В этой программе определяется, достаточно ли отчисляется денежных 

средств для выхода на пенсию. Для этого следует ввести свой возраст, сумму, ко­

торая отчисляется ю1ждый месяц, а также указал, другие данные (рис. 7.4) 

,дpplet 

,дррlе1 Slarted. 

·-=~""'--------.iRftirtmtnt lncom~,ti,O~~-.,:_ ....J 
1 Lll• E>.i>•<lancy'g; ; 

~-=] ' Гcomput• l 
· ~""'ОТвоп;х<'>>sQО;l'"!Т--- А 
~ &4 Ба1апс.е $588.949 бЭ r , 
fli~ бS 6а1~е SSSS, 3:97 11 i 
~ 66 Balance S.520, t&J 96 
~ 67 &lanc~ S.&83, 175 Зt 
~ 6З Вa:l!Sl"ICe S44J .334 1)8 1 

~ 69 6а1мс~ S4•J3, SSIJ 78 
~ "i:J &alэnce f360, 728 32 
it.~ 7J БаllУКе SЗtS ,164 -. 
~ :Z Баlм~>:е t2б6 SSl 97 
t.9e :з 6alanc~ S:1З. 980 62 
jil:ge :ч Ба111nо.:е $166 .929 бS 
Ago! iS tial<Y'IC.e S:ll2,276 14 
~ 76 Ealence SS-4 8З9 9' 
• ~ Ва1мсе GS, 365 56) 
~ 78 Salance (S68 , 6ЗЗ ЕЦ) 

~е 79 Вalcr'\Ce (St:ЭS , 06S SЗ) 
Age 00 Salмce (Нt.""4 ,818 81) 
~ 81 6all!ne~ CSZ18,0S9 " 5) 
~ 62 !lalatY..e <SЗS-4 , 962 73) 
~е: 83 Ва1аnс~ ; (S.435, 710 87) 
~ 84 ва1аnсе: i'JS20, "4~ 41) 

r~ _в~~,~:~ "::~~~3) 

Рис. 7.1 •. Рабочее окно 11рограммы для расчета пенсионных сuереже11ий 
с 11ол1,:ювательским интерфейсом на английском я.Jыке 

В текстовой области и на графике представлены данные о ежегодном состоя­

нии пенсион1юго счета. Если с возрастом остатки на пенсионном счете становят­

ся отрицателы1ыми, что наглядно пока:1ано на части графика, построенной ниже 

оси абсцисс, в таком случае следует принять какие-то меры, например, строже 

экономит~, дены·и, отложить дату выхода на пенсию и т.п. 

Программа для расчета пенсионных сбережений имеет три варианта пол1,:юва­

тел1,ского интерфейса на английском, немецком и китайском языках. Ниже перечис­

лены ооювные особешюсти и1rгер11ацио11ализации данной прикладной программы. 



Глава 7 • Интернационализация 

• Надписи и сообщеню1 переводятся с английского на немецкий и китайский 

я3ыки. Соответствующие ресурсы находятся в классах RetireResources_ 
de и Ret.ireResources _ zh, а ресурсы ДЛ}/ пол1,зовательского интерфей­
са на английском я:1ыке исполиуются в качестве резерв11ых и находятся 

в классе RetireResources. 

• При и:1менении региональных настроек :1а1юво форматируются надписи 

и содержимое текстовых полей. 

• Содержимое текстовых полей для ввода чисел, денежных сумм и процен­

тов представляется в формате, соответствующем выбранным региональным 

настройкам. 

• Для форматирования расчетного поля используется класс Message fomat. 
Форматирующая строка хранится в комплекте ресурсов для каждого я:1ыка . 

• Цвет графика меняется и :1анисимости от выбранного я:1ыка . Это никак не 

влияет на выполнение программой ее функций, а лишь демонстрирует по­

добную во:1можность. 

В листингах 7.5-7.8 приведе11 исходный код рассматриваемой цесь приклад­
ной программы, а в листингах 7.9-7.11 - содержимое файлов свойств для ин­

тернационализированных строк. На рис. 7.5 и 7.6 показаны немецкий и китай­
ский варианты пол1,:ювательского интерфейса данной программы. Для работы 

с данной программой на китайском языке необходимо запустип. ее в китайской 

версии Windows или установит~, самостоятельно китайские шрифты в операци-
01111ой системе. 

,<рр1е1 

JtC.ZiljltS All.t 35 

lllft1t1on[sii 1nvtstltlonsgf\ .... 1nnfi~ -

•Elnkomn1en nocl1 R11htst•n~бo 000.00 { 
Ltbtnserwutu11 8_? 1 

-r~ 
jll tt:r 1П'Шtfublii m 'М'", ~г ( ... 
f-1 ter. 64 WtNЬen 588.9~9,бЭ ( 
,._, ter 65 GuthIOen SSS 397, 11 ( 

~
1 tег 66 OJthllЬe't 2J 166,96 ( 
Jter fir Wthl!Ьen isэ 175, 31 t 
1 ter_ 68 Guth11Ьen 444 334,08 € 
1ter. б9 Guthaьtn 403.550,78 ( 

~lter 16 OJthat:!en 360 728,32 ( 
l'lter 71 ШtМЬеn ЗIS 7-54,74 ( 

~
l t!Г 12 Gut:МЬ@n 268 . 552, 97 ( 
1 t!r 73 WthaЬen 218 980,62 t: 
1 ter 74 Ciuth№en 166 5129,65 ( 
lter 75 Gu~ 112 276, 1<1 t 

f'1ter 76 Gut:Мt:len s.c 8S9,94 ( 
~1 ter. Т1 Wd'ulЬen -5 365, S6 ( 

~
1 ter 78 QJtNЬe"I -68 633,е.4 ( 
1 ter 79 QJ~n -135 065, 53 ( 
1 ter &J Шthailж'r -20~ 8 18,&1 f. 
1ter St WthaOen -278.059,75 ( 

~
1 t~r . 8Z Gu~ -354 962, 73 f. 
l ter 83 GuthвЬen -435 710,8" ( 
1 ter 84 Q.Jth8Ьen -5~1) 496, .it ( 
1 ter 85 Guthl!Ьen -609 521,ZЭ ~ 

Рис. 7.5. Рабо•1ее окно программы длн расчета пенсионных сбережений 
с 1юл1,зовательским интерфейсом 11а немецком нзыке 



7.8. Пример интернационапиэацин прикпадной программы 

j ava. util. ResourceBundle 1 . 1 {окончание} 

• Enumeration<String> getкeys() 

Возвращает объект перечисления типа Enumeration, содержащий ключи из текущего ком­
плекта ресурсов. В этом объекте перечисляются также ключи из родительских комплектов 

ресурсов. 

• Object handleGetObject (String key) 

Если реализуется собственный механизм поиска ресурсов, этот метод следует переопреде­
лить таким образом, чтобы он возвращал значение по заданному ключу. 

7 .8. Пример интернационализации прикладной программы 
В этом ра:меле изложенный выше материал применяется на практике для ин­

тернационали:~ации прикладной программы для расчета пенсионных сбере­

жений. В этой программе определяется, достаточно ли отчисляется денежных 

средств для выхода на пенсию. Для этого следует ввести свой возраст, сумму, ко­

торая отчисляется каждый месяц, а также указать другие данные (рис. 7.4) 

• Лpµ l t t V IE'W t"I l~ f' llH' ( l.i•.<;, - :: 

,Apple1 

Рис. 7.1 •. Рабочее окно про.-раммы для расчета пенсионных сбережений 
с пользовательским юперфейсом на английском языке 

В текстовой области и на графике представлены данные о ежегодном состоя­

нии пенсионного счета. Если с возрастом остатки на пенсионном счете становят­

ся отрицательными, что наглядно показано на части графика, построенной ниже 

оси абсцисс, в таком случае следует приш1п. какие-то меры, например, строже 

экономит~. де11ы·и, отложит~. дату выхода на пенсию и т.п. 

Программа для расчета пенсионных сбережений имеет три вариа1тта поль:юва­

тел1,скоrо интерфейса на английском, немецком и китайском яэыках. Ниже перечис­

лены ос1ювные особенности и1ттернационализации данной прикладной программы . 



Глава 7 • Интернационализация 

32 class RetireFrame extends JFrame 
33 { 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 

private JTextField 
private JTextField 
private JTextField 
private JTextField 

private JTextField 

private JTextField 
private JТextField 

private JTextField 

savingsField = new JTextField(lO); 
contribField = new JTextField(lO); 
incomeField = new JTextField(lO); 
currentAgeField = 
new JTextField(4); 
retireAgeField = 
new JTextField(4); 
deathAgeField = new JTextField(4); 
inflationPercentField 
new JTextField(6); 
investPercentField = 
new JTextField(6); 

46 private JTextArea retireText = new JTextArea(lO, 25); 
47 private RetireComponent retireCanvas = 

48 new RetireComponent(); 
49 private JButton computeButton = new JButton(); 
50 private JLabel languageLabel = new JLabel(); 
51 private JLabel savingsLabel = new JLabel(); 
52 private JLabel contribLabel = new JLabel(); 
53 private JLabel incomeLabel = new JLabel(); 
54 private JLabel currentAgeLabel = new JLabel(); 
55 private JLabel retireAgeLabel = new JLabel(); 
56 private JLabel deathAgeLabel = new JLabel(); 
57 private JLabel inflationPercentLabel = new JLabel(); 
58 private JLabel investPercentLabel = new JLabel(); 
59 private Retireinfo info = new Retireinfo(); 
60 private Locale[] locales = 
61 { Locale.US, Locale.CHINA, Locale.GERМANY }; 
62 private Locale currentLocale; 
63 private JComЬoBox<Locale> localeComЬo 
64 new LocaleComЬo(locales); 
65 private ResourceBundle res; 
66 private ResourceBundle resStrings; 
67 private NumЬerFormat currencyFmt; 
68 private NumЬerFormat numЬerFmt; 
69 private NumЬerFormat percentFmt; 
70 
71 puЫic RetireFrame() 
72 { 
73 setLayout(new GridBagLayout() ); 
74 add(languageLabel, new GBC(O, 0) 
75 .setAnchor(GBC.EAST) ); 
76 add(savingsLabel, new GBC(O, 1) 
77 .setAnchor(GBC.EAST) ); 
78 add(contribLabel, new GBC(2, 1) 
79 .setAnchor(GBC.EAST}); 
80 add(incomeLabel, new GBC(4, 1) 
81 . setAnchor ( GBC. EAST) ) ; 
82 add(currentAgeLabel, new GBC(O, 2) 
83 .setAnchor(GBC.EAST)); 
84 add(retireAgeLabel, new GBC(2, 2) 
85 .setAnchor(GBC.EAST)); 
86 add(deathAgeLabel, new GBC(4, 2) 
87 .setAnchor(GBC.EAST)); 
88 add(inflationPercentLabel, new GBC(O, 3) 



7.8. Пример интернационализации прикладной программы 

89 . setAnchor (GBC.EAST)); 
90 add(investPercentLabel, new GBC(2, 3) 
91 .setAnchor(GBC.EAST)); 
92 add(localeCombo, newGBC(l, О, 3, 1)); 
93 add(savingsField, new GBC(l, 1) .setWeight(lOO, 0) 
94 .setFill(GBC.HORIZONTAL)); 
95 add(contribField, new GBC(3, 1) .setWeight(lOO, 0) 
96 .setFill(GBC.HORIZONTAL)); 
97 add(incomeField, new GBC(5, 1).setWeight(lOO, 0) 
98 .setFill(GBC.HORIZONTAL)); 
99 add(currentAgeField, newGBC(l, 2).setWeight(lOO, 0) 
100 .setFill(GBC.HORIZONTAL)); 
101 add(retireAgeField, new GBC(3, 2).setWeight(lOO, 0) 
102 .setFill(GBC.HORIZONTAL) ); 
103 add(deathAgeField, new GBC(5, 2) .setWeight(lOO, 0) 
104 .setFill(GBC.HORIZONTAL)); 
105 add(inflationPercentField, new GBC(l, 3) 
106 .setWeight(lOO, 0) .setFill(GBC.HORIZONTAL) ); 
107 add(investPercentField, new GBC(3, 3) 
108 .setWeight (100, 0) .setFill (GBC.HORIZONTAL)); 
109 add(retireCanvas, new GBC(O, 4, 4, 1) 
110 .setWeight (100, 100) .setFill (GBC.BOTH)); 
111 add(new JScrollPane(retireText), пеw GBC(4, 4, 2, 1) 
112 .setWeight (0, 100) .setFill (GBC.BOTH)); 
113 
114 computeButton.setName("computeButton"); 
115 computeButton.addActionListener(event -> 
116 ( 
117 getinfo(); 
118 updateDatall; 
119 updateGraph(); 
120 }) ; 
121 add(computeButton, пеw GBC(5, 3)); 
122 
123 retireText.setEditaЬle(false); 

124 retireText.setFont(new Font( 
125 "Monospaced", Font.PLAIN, 10)); 
126 
127 info.setSavings(O); 
128 info.setContriЬ(9000); 

129 info.setincome(60000); 
130 info.setCurrentAge(35); 
131 info.setRetireAge(65); 
132 info.setDeathAge(85); 
133 info.setinvestPercent(O.l); 
134 info.setinflationPercent(0.05); 
135 
136 //региональные настройки США 

137 // выбираются по умолчанию: 
138 int localeindex = О; 
139 for (int i = О; i < locales.length; i++) 
140 // если текущие региональные настройки относятся 
141 //к числу выбираемых, то выбрать их: 

14 2 if ( getLocale () . equals ( locales [ i] ) ) 
143 localeindex = i; 
144 setCurrentLocale(locales[localeindex]); 
145 



Глава 7 • Интернационализация 

146 localeComЬo.addActionL1stener(event -> 
147 { 
148 setCurrentLocale( (Locale) 
149 localeCombo.getSelecteditem() ); 
150 validate(); 
151 } ) ; 
152 pack(); 
153 
154 
155 /** 
156 * Устанавливает текущие региональные настройки 
157 * @param locale Требующиеся региональные настройки 
158 * / 

159 puЫic void setCurrentLocale(Locale locale) 
160 { 
161 currentLocale = locale; 
162 localeComЬo.setLocale(currentLocale); 

163 localeComЬo.setSelecteditem(currentLocale); 

164 
165 res = ResourceBundle.getBundlel 
166 "retire.RetireResources", currentLocale); 
167 resStrings = ResourceBundle.getBundle( 
168 "retire.RetireStrings", currentLocale); 
169 currencyFmt = 
170 NumЬerFormat.getCurrencyinstance(currentLocale); 

171 numЬerFmt = 
172 NumЬerFormat.getNumЬerinstance(currentLocale); 

173 percentFmt = 
174 NumЬerFormat.getPercentinstance(currentLocale); 

175 
176 updateDisplay(); 
177 updateinfo(); 
178 updateData(); 
179 updateGraph(); 
180 
181 
182 /** 
183 * Обновляет все метки при отображении 
184 */ 
185 puЫic void updateDisplay() 
186 { 
187 languageLabel.setText( 
188 resStrings.getString("language") ); 
189 savingsLabel.setText( 
190 resStrings.getString("savings")); 
191 contribLabel.setText( 
192 resStrings.getString("contrib"I 1; 
193 incomeLabel.setText( 
194 resStrings.getString("income") ); 
195 currentAgeLabel.setText( 
196 resStrings.getString("currentAge"ll; 
197 retireAgeLabel.setText( 
198 resStrings.getString("retireAge") ); 
200 deathAgeLabel.setText( 
201 resStrings.getString("deathAge")); 
202 inflationPercentLabel.setText( 
203 resStrings.getString("inflationPercent") ); 



7 .8. Пример интернационализации прикладной программы 

204 investPercentLabel.setText( 
205 resStrings.getString("investPercent") ); 
206 computeButton.setText( 
207 resStrings.getString("computeButton") ); 
208 
209 
210 /** 
211 * Обновляет данные в текстовых полях 

212 */ 
213 puЫic void updateinfo() 
214 { 
215 savingsField.setText( 
216 currencyFmt.format(info.getSavings()) ); 
217 contribField.setText( 
218 currencyFmt.format(info.getContrib())); 
219 incomeField.setText( 
220 currencyFmt.format(info.getlncome() )); 
221 currentAgeField.setText( 
222 numЬerFmt.format(info.getCurrentAge())); 

223 retireAgeField.setText( 
224 numberFmt.format(info.getRetireAge())); 
225 deathAgeField.setText( 
226 numberFmt.format(info.getDeathAge()) ); 
227 investPercentField.setText( 
228 percentFmt.format(info.getinvestPercent())); 
229 inflationPercentField.setText( 
230 percentFmt.format(info.getlnflationPercent()) ); 
231 
232 
233 /** 
234 * Обновляет данные, отображаемые в текстовой области 

235 */ 
236 puЫic void updateData() 
237 { 
238 retireText.setText(""); 
239 var retireMsg = new MessageFormat(""); 
240 retireMsg.setLocale(currentLocale); 
241 retireMsg.applyPattern( 
242 resStrings.getString("retire")); 
243 
244 for (int i = info.getCurrentAge(); 
245 i <= info.getDeathAge(); i++) 
246 
247 Object[J args = { i, info.getBalance(i) }; 
248 retireText.append(retireMsg.format(args) + "\n"); 
249 
250 
251 
252 /** 
253 * Обновляет график 
254 * / 
255 puЫic void updateGraph() 
256 { 
257 retireCanvas.setColorPre((Color) 
258 res.getObject("colorPre") ); 
259 retireCanvas.setColorGain( (Color) 
260 res.getObject("colorGain")); 



Глава 7 • Интернационализация 

261 retireCanvas.setColorLoss((Color) 
262 res.getObject("colorLoss")); 
263 retireCanvas.setinfo(info); 
264 repaint(); 
265 
2 66 
2 67 / * * 
268 * Считывает данные, вводимые пользователем 

269 * в текстовых полях 

270 */ 
271 puЫic void getinfo() 
272 { 
273 try 
274 { 
275 info.setSavings(currencyFmt.parse( 
276 savingsField.getText ()) .douЬleValue ()); 
277 info.setContriЬ(currencyFmt.parse( 

278 contr ibField. getText () ) . douЬleValue () ) ; 
279 info.setincome(currencyFmt.parse( 
280 incomeField.getText ()) .douЫeValue ()); 
281 info.setCurrentAge(numberFmt.parse( 
282 currentAgeField.getText ()) .intValue()); 
283 info.setRetireAge(numЬerFmt.parse( 

284 retireAgeField. getText ()). intValue ()); 
285 info.setDeathAge(numЬerFmt.parse( 

286 deathAgeField. getText ()). intValue ()); 
287 
288 info.setinvestPercent(percentFmt.parse( 
289 investPercentField.getText()) .douЬleValue() ); 
2 90 inf о. setinf1a t ioпPercent (percent Fmt. parse ( 
291 inflationPercentField 
2 92 . getText () ) . douЫeValue () ) ; 
293 
294 catch (ParseException ех) 
295 { 
296 ex.priпtStackTrace(); 

297 
2 98 
299 
300 
301 /** 
302 * Данные, требуемые для расчета пенсионных отчислений 

303 */ 
304 class Retireinfo 
305 { 
306 private douЫe savings; 
307 private douЫe contrib; 
308 private douЫe income; 
309 private int currentAge; 
310 private int retireAge; 
311 private int deathAge; 
312 private douЫe inflationPercent; 
313 private douЫe investPercent; 
314 private int age; 
315 private douЫe balance; 
316 
317 /** 



7.8. Пример интернационализации прикладной программы 

318 * Получает остаток на счете, имеющийся 

319 * на указанный год 

320 * @param year Год для расчета остатка на счете 
321 * @return Сумма, имеющаяся (или требующаяся) 

322 на указанный год 

323 */ 
324 puЬlic douЫe getBalance(int year) 
325 { 
326 if (year < currentAge) return О; 

327 else if (year == currentAge) 
328 { 
329 age = year; 
330 balance = savings; 
331 return balance; 
332 
333 else if (year == age) return balance; 
334 if (year 1= age + 1) getBalance(year - 1); 
335 age = year; 
336 if (age < retireAge) balance += contrib; 
337 else balance -= income; 
338 balance = balance * (1 + (investPercent 
339 - inflationPercent)); 
340 return balance; 
341 
342 
343 /** 
344 * Получает сумму предыдущих сбережений 
345 * @return Сумма сбережений 
346 */ 
347 puЫic douЫe getSavings() 
348 { 
349 return savings; 
350 
351 
352 /** 
353 * Устанавливает сумму предыдущих сбережений 
354 * @param newValue Сумма сбережений 
355 */ 
356 puЬlic void setSavings(douЫe newValue) 
357 { 
358 savings = newValue; 
359 
360 
361 /** 
362 * Получает сумму ежегодных отчислений 
363 * на пенсионный счет 
364 * @return Сумма ежегодных отчислений 
365 */ 
366 puЫic douЫe getContrib() 
367 { 
368 return contrib; 
369 
370 
37 l /* * 
372 * Устанавливает сумму ежегодных отчислений 
373 * на пенсионньм счет 

374 * @param newValue Сумма ежегодных отчислений 



Глава 7 • Интернационализация 

375 */ 
376 puЫic void setContrib(douЫe newValue) 
377 { 
378 contrib = newValue; 
379 
380 
381 /** 
382 * Получает сумму ежегодного дохода 
383 * @return Сумма ежегодного дохода 
384 */ 
385 puЫic douЫe getincome() 
386 { 
387 return income; 
388 
389 
390 /** 
391 * Устанавливает сумму ежегодного дохода 
392 * @param newValue Сумма ежегодного дохода 
393 */ 
394 puЫic void setincome(douЫe newValue) 
395 { 
396 income = newValue; 
397 
398 
399 /** 
400 * Получает текущий возраст 
401 * @return Текущий возраст 
402 */ 
403 puЫic int getCurrentAge() 
404 { 
405 return currentAge; 
406 
407 
408 /** 
409 * Устанавливает текущий возраст 
410 * @param newValue Текущий возраст 
411 */ 
412 puЫic void setCurrentAge(int newValue) 
413 { 
414 currentAge = newValue; 
415 
416 
417 /** 
418 * Получает возраст для выхода на пенсию 
419 * @return Пенсионный возраст 
420 */ 
421 puЬlic int getRetireAge() 
422 { 
423 return retireAge; 
424 
425 
426 /** 
427 * Устанавливает возраст для выхода на пенсию 
428 * @param newValue ПенсионньШ возраст 
429 * / 
430 puЫic void setRetireAge(int newValue) 
431 { 



7.8. Пример интернационализации прикладной программы 

432 
433 
434 
435 

retireAge newValue; 

/** 
436 * Получает предполагаемую продолжительность жизни 
437 * @return Предполагаемая продолжительность жизни 
438 */ 
439 puЫic int getDeathAge() 
440 { 
441 return deathAge; 
442 
443 
444 /** 
445 * Устанавливает предполагаемую 
446 * продолжительность жизни 
447 * @param newValue Предполагаемая продолжительность 
448 
449 

* 
*/ 

жизни 

450 puЫic void setDeathAge(int newValue) 
451 { 
452 deathAge = newValue; 
453 
454 
455 /** 
456 * Получает предполагаемый уровень 
457 * инфляции в процентах 

458 * @return Уровень инфляции в процентах 

4 59 * / 
460 puЫic douЫe getinflationPercent() 
4 61 { 
462 return inflationPercent; 
4 63 
4 64 
465 /** 
466 * Устанавливает предполагаемьм уровень 
467 * инфляции в процентах 

468 * @param newValue Уровень инфляции в процентах 

469 */ 
470 puЫic void setinflationPercent(douЫe newValue) 
471 { 
472 inflationPercent = newValue; 
473 
474 
475 /** 
476 * Получает предполагаемый доход от капиталовложений 
477 * @return Доход от капиталовложений в процентах 
478 */ 
479 puЫic douЫe getinvestPercent() 
480 { 
481 return investPercent; 
482 
483 
484 /** 
485 * Устанавливает предполагаемьм доход 
486 * от капиталовложений 

487 * @param newValue Доход от капиталовложений 
488 * в процентах 



Глава 7 • Интернационапмэацмя 

48 9 * / 
490 puЫic void setinvestPercentldouЫe пewValue) 
491 { 
492 iпvestPerceпt = пewValue; 
4 93 
494 
4 95 
496 /** 
497 * Этот компонент рисует график результатов 
498 * пенсионных вложений 
4 99 * / 
500 class RetireCompoпeпt extends JCompoпeпt 
501 { 
502 
503 
504 
505 
506 
507 
508 
509 
510 
511 
512 
513 
514 
515 

private static fiпal iпt PANEL WIDTH = 400; 

516 
517 
518 
519 
520 
521 
522 
523 
524 
525 
526 
527 
528 
529 
530 
531 
532 
533 
534 
535 
536 
537 
538 
539 
540 
541 

private static fiпal iпt PANEL HEIGHT = 

private static fiпal Dimeпsioп PREFERRED 
пеw Dimeпsion(800, 

private Retireinfo iпfo 
private Color colorPre; 
private Color colorGain; 
private Color colorLoss; 

puЫic RetireCompoпent() 

{ 

= 
6001; 

пull; 

setSize(PANEL_WIDTH, PANEL HEIGHT); 

/** 

200; 
SIZE 

* Устанавливает данные для построения графика 
* пенсионных вложений 
* @param пewiпf o Новые данные о пенсионных вложениях 

*/ 
puЫic void setiпfo(Retireinfo пewiпfo) 
{ 

info = пewinfo; 
repaint(I; 

puЫic void paiпtCompoпent(Graphics g) 
{ 

var g2 = (Graphics2D) g; 
if (info == пull) returп; 

douЫe miпValue О; 

douЫe maxValue О; 

iпt i; 
for (i = info.getCurreпtAge(); 

i <= iпfo.getDeathAge(); i++) 

douЫe v = iпfo.getBalance(i); 

if (miпValue > v) miпValue v; 
if (maxValue < v) maxValue = v; 

542 if (maxValue == minValue) returп; 

543 
544 
545 

iпt barWidth getWidthl) / (info.getDeathAge() 
- iпfo.getCurreпtAge() + 1); 



7.8. Пример интернационализации прикладкой программы 

546 douЫe scale = getHeight() / (maxValue - minValue); 
547 
548 for (i = info.getCurrentAge(); 
549 i <= info.getDeathAge(); i++) 
550 
551 int xl = (i - info.getCurrentAge()) 
552 * barWidth + 1; 
553 int yl; 
554 douЫe v = info.getBalance(i); 
555 int height; 
556 int yOrigin = (int) (maxValue * scale); 
557 
558 if (v >= 0) 
559 { 
560 yl = (int) ( (maxValue - v) * scale); 
561 height = yOrigin - yl; 
562 
563 else 
564 { 
565 yl = yOrigin; 
566 height = (int) (-v * scale); 
567 
568 
569 if (i < info.getRetireAge()) 
570 g2.setPaint(colorPre); 
571 else if (v >= 0) g2.setPaint(colorGain); 
572 else g2.setPaint(colorLoss); 
573 var bar = new Rectangle2D.DouЬle(xl, yl, 
574 barWidth - 2, height); 
575 g2.fill(bar); 
576 g2.setPaint(Color.Ыack); 

577 g2.draw(bar); 
578 
57 9 
580 
581 /** 
582 * Устанавливает цвет графика для периода 
583 * до выхода на пенсию 
584 * @param color the desired color 
585 */ 
586 puЫic void setColorPre(Color color) 
587 { 
588 colorPre = color; 
589 repaint(); 
590 
591 
592 /** 
593 * Устанавливает цвет графика для периода после 
594 * выхода на пенсию, когда остаток на пенсионном 

595 * счете еще положительный 
596 * @param color Требующийся цвет 
597 */ 
598 puЫic void setColorGain(Color color) 
599 { 
600 colorGain color; 
601 repaint(); 
602 



Глава 7 • Интернационализация 

603 
604 /** 
605 * Устанавливает цвет графика для периода после 
606 * выхода на пенсию, когда остаток на пенсионном 

607 * счете уже отрицательный 
608 * @param color Требующийся цвет 
609 */ 
610 puЫic void setColorLoss(Color color) 
611 { 
612 colorLoss color; 
613 repaint(); 
614 
615 
616 puЬlic Dimension getPreferredSize() 
617 { return PREFERRED SIZE; 
618 

Листинг 7.6. Исходный код из файла retire/RetireResources. java 

1 package retire; 
2 
3 import java.awt.*; 
4 

5 /** 
6 * Нестроковые ресурсы для пользовательского 
7 * интерфейса на английском языке программы для 
8 * расчета пенсионных сбережений 
9 * @version 1.21 2001-08-27 
10 * @author Сау Horstmann 
11 * / 
12 puЫic class RetireResources 
13 extends java.util.ListResourceBundle 
14 
15 private static final Object [] [] contents = 

16 //НАЧАЛО ИНТЕРНАЦИОНАЛИЗАЦИИ 

17 { "colorPre", Color.Ыue f, 
18 { "colorGain", Color.white }, 
19 ( "colorLoss", Color.red } 
20 //КОНЕЦ ИНТЕРНАЦИОНАЛИЗАЦИИ 

21 } ; 
22 
23 puЫic Object[] [] getContents() 
24 ( 
25 return contents; 
26 
27 

Листинг 7.7. Исходный код из файла retire/RetireResources _ de. java 

1 package retire; 
2 
3 import java.awt.*; 
4 
5 /** 



7.8. Пример интернационализации прикладной программы 

6 * Нестроковые ресурсы для пользовательского 
7 * интерфейса на немецком языке программы для 
8 * расчета пенсионных сбережений 
9 * @version 1.21 2001-08-27 
10 * @author Сау Horstmann 
11 */ 
12 puЫic class RetireResources de 
13 extends java.util.ListResourceBundle 
14 
15 private static final ObJect [] [] contents 
16 // НАУАПО ИНТЕРНАЦИОНАПИЗАЦИИ 
17 ( "colorPre", Color.yellow ), 
18 ( "colorGain", Color.Ыack ), 
19 ( "colorLoss", Color.red } 
20 // КОНЕЦ ИНТЕРНАЦИОНАПИЗАЦИИ 
21 } ; 
22 
23 puЫic Object[] [] getContents() 
24 ( 
25 return contents; 
26 
27 

Листинг 7.8. Исходный код из файла retire/RetireResources _ zh. j ava 

1 package retire; 
2 
3 import java.awt.*; 
4 
5 /** 
6 * Нестроковые ресурсы для пользовательского 

7 * интерфейса на китайском языке программы для 
8 * расчета пенсионных сбережений 
9 * @version 1.21 2001-08-27 
10 * @author Сау Horstmann 
11 */ 
12 puЫic class RetireResources zh 
13 extends java.util.ListResourceBundle 
14 
15 private static final Object[J [] contents = 

16 // НАУАПО ИНТЕРНАЦИОНАПИЗАЦИИ 
17 ( "colorPre", Color.red }, 
18 ( "colorGain", Color.Ыue ), 
19 ( "colorLoss", Color.yellow ) 
20 // КОНЕЦ ИНТЕРНАЦИОНАПИЗАЦИИ 
21 } ; 
22 
23 puЫic Object [] [] getContents ( 1 
24 ( 
25 return contents; 
26 
27 



Глава 7 • Интернационализация 

Листинг 7.9. Содержимое файла свойств retire/RetireStrings .properties 

1 language=Language 
2 computeButton=Compute 
3 savings=Prior Savings 
4 contrib=Annual Contribution 
5 income=Retirement Income 
6 currentAge=Current Age 
7 retireAge=Retirement Age 
В deathAge=Life Expectancy 
9 inflationPercent=Inflation 
10 investPercent=Investment Return 
11 retire=Age: {0,numЬer) Balance: {l,numЬer,currency) 

Листинг 7.1 О. Содержимое файла свойств retire/RetireStrings _ de. properties 

1 language=Sprache 
2 computeButton=Rechneп 
3 savings=Vorherige Ersparnisse 
4 contrib=J\u00e4hrliche Eiпzahlung 
5 income=Einkommen nach Ruhestand 
6 currentAge=Jetziges Alter 
7 retireAge=Ruhestandsalter 
В deathAge=Lebenserwartung 
9 inflationPercent=Inflation 
10 investPercent=Investitionsgewinn 
11 retire=Alter: {0,number) Guthaben: {l,numЬer,currency) 

Листинг 7.11. Содержимое файла свойств retire/RetireStrings _ zh. properties 

1 language=~~ 
2 computeButton=i.tJf 
3 savings=ret1.J 
4 contrib=i.f~.ff~ 
5 income=Ш1*i&Л 
6 currentAge=!Ji!~ 
7 retireAge=~1*~~ 
В deathAge=ffi:IO.l~'tii 
9 inflationPercent=J!Jt/WJI 
10 investPercent=~~t!IM 
11 retire=~~: {0,number) ,~~: {l,numЬer,currency) 

Теперь вам должно быть понятно, как пользоваться средствами интернацио­

нализации в Java. В частности, для перевода текстовой информации на многие 
языки служат комплекты ресурсов, а средства форматирования и сортировки 

применяются для обработки текста с учетом региональных настроек. В следую­

щей главе будут рассмотрены вопросы написания сценариев, компиляции и об­

работки аннотаций. 



ГЛАВА 

Написание сценариев, 
компиляция и обработка 

"' 
аннотации 

В этой главе". 

• Написание сценариев для платформы Java 

• Прикладной интерфейс API для компилятора 

• Применение аннотаций 

• Синтаксис аннотаций 

• Стандартные аннотации 

• Обработка аннотаций на уровне исходного кода 

• Конструирование байт-кодов 

В этой главе рассматриваются три методики обработки кода. Прикладной ин­

терфейс API для сценариев позволяет вызывап, код на языке сценариев таким 
же образом, как и в языке JavaScript или Groovy. Прикладной интерфейс АР/ 
для компилятора дает возможность компилировать исходный код Java в самой 
прикладной программе, а обработчики аннотаций - обрабатывать файлы клас­

сов или исходного кода Java, содержащие аннотации. Из этой главы вы узнаете, 
что существует немало приложений для обработки аннотаций, начиная с про­

стой диагностики и заканчивая так называемым "конструированием байт-ко­

дов" - вставкой байт-кодов в файлы классов и даже выполнением программ. 



Глава В • Написание сценариев. компиляция и обработка аннотаций 

8.1. Написание сценариев для платформы Java 
Язык сценариев - это такой язык программирования, который позволяет 

избегать обычного цикла операций редактирования, компиляции, компоновки 

и выполнения благодаря интерпретации исходного текста программы во время 

выполнения. Языки сценариев обладают рядом следующих преимуществ. 

• Быстрый цикл обработки, стимулирующий стремление к эксперименти-

рованию. 

• Возможность изменяп, поведение выполняющейся программы. 

• Возможность для пользователей специально настраивать программы. 

С другой стороны, у большинства языков сценариев отсутствуют средства, не­

обходимые для разработки сложных прикладных программ, включая строгий 

контролr, типов, инкапсуляцию и модульность. 

В связи с этим возникает соблазн объединить преимущества языков сценариев 

с преимуществами традиционных языков программирования. Именно это и по­

зволяет сделать прикладной интерфейс API для сценариев на платформе Java. В 
частности, он предоставляет возможность вызывать из программы на Java сцена­
рии, написанные на JavaScript, Groovy, Ruby и даже таких экзотических языках, 
как Scheme и Haskell. Например, в проекте Renjin (www. renj in. org) предостав­
ляется реализованная в Java возможность программировать на языке R, который 
зачастую применяется в области статистического программирования. С этой це­

лью используется интерпретатор из прикладного интерфейса API для выполне­
ния сценариев. 

В последующих разделах будет показано, как выбирается интерпретатор сце­

нариев для конкретного языка, как выполняются сценарии и как пользоваться 

дополнительными преимуществами, которые дают некоторые интерпретаторы 

сценариев. 

8.1.1. Получение интерпретатора сценариев 
Интерпретатор сценариев - это, по существу, библиотека, позволяющая 

выполнять сценарии на конкретном языке. При запуске виртуальная маши­

на обнаруживает все доступные интерпретаторы сценариев. Получить их пе­

речень можно, создав объект типа ScriptEngineManager и вызвав метод 
getEngineFactories ().Далее у каждой фабрики интерпретаторов сценариев 
можно запросить сведения об именах поддерживаемых интерпретаторов, типах 

MIME и расширениях файлов. В табл. 8.1 приведены наиболее употребительные 
интерпретаторы сценариев и соответствующие им типы и расширения. 

Таблица 8.1. Свойства фабрик интерпретаторов сценариев 

Интерпретатор 

Nashorn 
(входит 

в состав JDK) 
Groovy 
Renjin 

Имена Типы MIME Расширения 

nashom, Nashorn, js, JS, application/javascript, js 
JavaScript, javascript, application/ecmascript, text/ 
ECMAScript, ecmascript javascript, text/ecmascript 

groovy 
Renjin 

Отсутствуют 

text/x-R 

groovy 

R, r, S, s 



8.1. Написание сценариев дnя платформы Java 

Обычно требующийся интерпретатор сценариев известен и может запра­

шиваться по имени, типу MIME или расширению, как показано в приведенном 
ниже примере. 

ScriptEngine engine = manager.getEngineByName("nashorn"); 

В версии Java 8 внедрен интерпретатор Nashorn сценариев на языке JavaScript, 
разработанный компанией Oracle. Предоставив необходимые архивные JАR-фай­
лы по пути к соответствующим классам, можно дополнить перечень языков на­

писания сценариев. 

javax.script.ScriptEngineМanager 6 

• List<ScriptEnqineFactory> qetEnqineFactories() 

Получает список всех обнаруженных фабрик интерпретаторов сценариев. 

• ScriptEnqine qetEnqineByName (Strinq name) 

• ScriptEnqine qetEnqineByExtension(Strinq extension) 

• ScriptEnqine qetEnqineByМimeType(Strinq mimeType) 

Получают интерпретатор сценариев с заданным именем, расширением файла сценари>~ или 

типом MIME. 

java.x. script. ScriptEngineFactory 6 

• List<Strinq> qetNames() 

• List<Strinq> qetExtensions() 

• List<Strinq> qetltimeТypes () 

Получают имена, расширени>~ файлов сценариев и типы MIME, по которым известна данна>~ 
фабрика. 

8.1.2. Выполнение сценариев и привязки 
Получив интерпретатор, можно приступить к вызову сценария: 

Object result = engine.eval(scriptString); 

Если сценарий хранится в файле, необходимо открыть поток чтения типа 

Reader и сделать следующий вызов: 

Object result = engine.eval(reader); 

С помощью одного и того же интерпретатора можно вызвать целый ряд сце­

нариев. Если какой-нибудь из сценариев содержит определения переменных, 

функций или классов, большинство интерпретаторов сценариев будет сохранять 

их для последующего использования. Так, в приведенном ниже примере кода 

возвращается значение 172 9. 

engine.eval("n = 1728"); 
Object result = engine.eval("n + l"); 



Глава В • Написание сценариев. номпипяция и обработка аннотаций 

НА ЗАМЕТКУ! Чтобы выяснить, безопасно ли параллельное выполнение сценариев во многих 
потоках, достаточно сделать следующий вызов: 

Object param = factory.getParameter("THREADING"); 

В итоге возвращается одно из перечисленных ниже значений. 

• null: параллельное выполнение небезопасно. 

• "МULTITНREADED": параллельное выполнение безопасно. Результаты исполнения одного 

потока могут быть доступны для другого потока. 

• "TНREAD-ISOLAТED": то же, ЧТО и значение "МULTIТНREADED", НО только для каждого 

потока исполнения поддерживаются разные привязки переменных. 

• "STATELESS": то же, что и значение "TНREAD-ISOLAТED", но только сценарии не могут 
изменять привязки переменных. 

Интерпретатор сценариев нередко требуется дополнят~, привязками перемен­

ных. Каждая привязка состоит из имени и связываемого объекта Java. Рассмо­
трим в качестве примера следующие операторы: 

engine.put(k, 1728); 
Object result = engine.eval("k + 1"); 

Код сценария читает определение объекта k из привязок в области видимости 
интерпретатора. И это очень важно, так как почти все языки сценариев могут 

получать доступ к объектам Java и зачастую посредством более простого, чем 
у Java, синтаксиса. Например: 

engine.put(b, new JButton() ); 
engine.eval("b.text = 'Ok'"); 

С другой стороны, можно извлекать значения переменных, привя:ынных опе­

раторами сценария, как показано ниже. 

engine.eval("n = 1728"); 
Object result = engine.get("n"); 

Кроме области видимости интерпретатора сценариев, существует и глобаль­

ная область видимости. /lюбые привязки, которые вводятся в объект типа Script 
EngineManager, становятся видимыми для всех и1rrерпретаторов сценариев. 

Вместо того чтобы вводить привязки в глобальную область видимости или 

в область видимости интерпретатора сценариев, их можно накапливать в объ­

екте типа Bindings и передавать методу eval (),как пока:ыно ниже. Это очень 
удобно, если набор привязок не требуется сохранять для последующих вы:ювов 

метода eval (). 

Bindings scope = engine.createBindings(); 
scope.put(b, new JButton() ); 
engine.eval(scriptString, scope); 

НА ЗАМЕТКУ! Безусловно, может возникнуть потребность иметь и другие области видимости, 

отличающиеся как от глобальной области видимости, так и от области видимости интерпре­

татора сценариев. Например, веб-контейнеру могут потребоваться области видимости за­

просов и сеансов. В подобных случаях разработчикам приходится самостоятельно создавать 

класс, реализующий интерфейс ScriptContext, чтобы управлять набором своих областей 
видимости. Каждая такая область видимости должна снабжаться целочисленным номером, 



8.1. Написание сценариев дnя платформы Java 

а поиск должен выполняться в первую очередь в областях видимости с наименьшим номе­

ром. IB стандартной библиотеке доступен только класс SimpleScriptContext, но он пред­
усматривает лишь глобальную область видимости, а также область видимости интерпретатора 

сценариев.! 

javax. script. ScriptEngine 6 

• Object eval (String script) 

• Object eval (Reader reader) 

• Object eval (String script, Bindings Ьindings) 

• Object eval (Reader readвr, Bindings Ьindings) 

Вычисляют сценарий, предоставляемый в символьной строке или средством чтения с учетом 

заданных привязок. 

• Object get (String key) 

• void put (String kву, Object value) 

Получают или размещают привязку в области видимости интерпретатора сценариев. 

• Bindings createBindings() 

Создает пустой объект типа Bindings, пригодный для данного интерпретатора сценариев. 

javax.script.ScriptEngineManager 6 

• Object get (String key) 

• void put (String kву, Object value) 

Получают или размещают привязку в глобальной области видимости. 

javax.script.Bindings 6 

• Object get (String key) 

• void put (String kву, Object value) 

Получают или размещают в области видимости привязку, представляемую данным объектом 

типа Bindings. 

8.1.З. Переадресация ввода-вывода 

Стандартный ввод-вывод можно переадресовывать в сценарии, вызывая метод 

setReader () или setWri ter () соответственно в контексте сценария, как пока­
зано в приведенном ниже примере кода, где любые данные, выводимые с помо­

щью таких функций JavaScript, как print () или println (), направляются объ­
екту writer. 

var writer = new StringWriter(); 
engine.getContext() .setWriter(new PrintWriter(writer, true) ); 



Глава 8 • Написание сценариев, компиляция и обработка аннотаций 

Методы setReader () и setWri ter () воздейсrвуют только на стандартные исrоч­
ники ввода-вывода данных в интерпретаторе сценариев. Например, при выполне­

нии приведенного ниже кода в сценарии JavaScript перенаправлен будет только 
первый вывод. Интерпретатору сценариев Nashom ничего неизвестно о стандартном 
исrочнике ввода данных, поэтому вызов метода setReader () ничего не даст. 
println ( "Hello"); 
java.lang.System.out.println("World"); 

javax. script. ScriptEngine 6 

ScriptContext getContext() 

Получает стандартный контекст сценариев для данного механизма. 

javax.script.ScriptContext 6 

• Reader getReader () 

• void setReader (Reader reader) 

• Writer getWriter () 

• void setWri ter (Wri ter wri ter) 

• Writer getErrorWriter() 

• void setErrorWri ter (Wri ter wri ter) 

Получают или устанавливают поток чтения для вводимых данных или поток записи для обыч­
ных или уведомляющих об ошибках выводимых данных. 

8.1.4. Вызов функций и методов из сценариев 
При наличии многих интерпретаторов сценариев функция может вызываться 

на языке сценариев и без вычисления конкретного кода сценария. Это удобно, 

если пользователям разрешается реали:ювывать службу на избранном ими языке 

сценариев. 

Те интерпретаторы сценариев, которые предоставляют подобные функцио­

нальные возможности, реализуют интерфейс InvocaЫe. В частности, этот ин­

терфейс реализуется интерпретатором сценариев Nashom. Чтобы вызвать функ­
цию из сценария, достаточно обратиться к методу invokeFunction (),указав 
в нем имя и параметры требуемой функции: 

11 определить функцию приветствия в JavaScript 
engine.eval("function greet(how, whom) 

{ return how + ', ' + whom + ' 1 ' } "); 

11 вызвать эту функцию с аргументами "Hello", "World" 
result = ( (InvocaЬle) engine) .invokeFunction("greet", 

"Hello", "World"); 

Если же язык сценариев является объектно-ориентированным, можно вызвать 

метод invokeMethod () следующим образом: 
11 определить класс Greeter в JavaScript: 
engine.eval("function Greeter(how) { this.how how } "); 



8.1. Написание сценариев дпя платформы Java 

engine.eval("Greeter.prototype.welcome =" 
+ " function (whom) " 
+ "{ return this.how + ', ' + whom + '1' 1"); 

11 получить экземпляр: 
Object уо = engine.eval("new Greeter('Yo')"); 

11 вызвать метод приветствия для экземпляра: 

result = ( (InvocaЬle) engine) .invokeMethod(yo, 
"welcome", "World"); 

НА ЗАМЕТКУ! Подробнее об определении классов в JavaScгipt см. в книге JavaScript-The 
Good Parts Дугласа Крокфорда !Douglas Cгockfoгd, издательство O"Reilly, 2008 г.1. 1 

НА ЗАМЕТКУ! Даже если механизм сценариев не реализует интерфейс InvocaЫe, 

метод все равно можно вызвать не зависящим от конкретного языка образом. Метод 

getмethodCallSyntax () из класса ScriptEngineFactory формирует символьную 
строку, которую можно затем передать методу eval (). Но все параметры этого метода долж­
ны быть привязаны к именам, в то время как метод invokeМethod О может вызываться 

с произвольными значениями параметров. 

Можно пойти еще дальше и запросить интерпретатор сценариев реализовать 

интерфейс Java. В этом случае появится возможность вызывать функции и мето­
ды из сценариев, используя синтаксис Java для вызова методов. И хотя это зави­
сит от конкретного интерпретатора сценариев, как правило, для каждого метода 

из интерфейса достаточно предоставить соответствующую функцию. Рассмо­

трим в качестве примера следующий интерфейс Java: 
puЬlic interface Greeter 
{ 

String greet(String whom); 

Если определить глобальную функцию с тем же именем в Nashom, ее можно 
вызвать через следующий интерфейс: 

11 определить функцию приветствия в JavaScript: 
engine.eval("function welcome(whom)" 

+ " { return 'Hello, ' + whom + '!' 1"); 

11 получить объект Java и вызвать метод Java: 
Greeter g = ( ( InvocaЬle) engine) .getinterface (Greeter.class); 
result = g.welcome("World"); 

В объектно-ориентированном языке сценариев доступ к классу из сценария 

можно получить через соответствующий интерфейс Java. В следующем приме­
ре кода демонстрируется, каким образом объект класса SimpleGreeter из языка 
JavaScript вызывается в синтаксисе языка Java: 
Greeter g = ( (InvocaЬle) engine) 

.getinterface(yo, Greeter.class); 
result = g.welcome("World"); 

1 В русском 11ереводе эта книга вышла IIOД названием favaScript. Cu,\t>Hl>le стороны в изда­

тельстве "Питер", СПб. 2012 г. 



Глава В • Написание сценариев, компиляция и обработка аннотаций 

Таким образом, интерфейс InvocaЫe оказывается удобным в том случае, 

если требуется вызвап, код сценария из кода Java, не особенно разбираясь в син­
таксисе языка сценариев. 

javax.script.InvocaЫe 6 

• Object invokeFunction(String name, Object ... parameters) 

• Object invokeМethod(Object implicitEarameter, String пате, 
Object. . . explici tE&rllZ/leters) 

Вызывают функцию или метод с указанным именем, передавая заданные параметры. 

• <Т> Т getinterface (Сlавв<Т> iface) 

Возвращает реализацию указанного интерфейса, методы которого реализуются с помощью 
функций из механизма сценариев. 

• <Т> Т getinterface (Object implicitEarameter, Class<T> iface) 

Возвращает реализацию указанного интерфейса, методы которого реализуются с помощью 

методов заданного объекта. 

В.1.5. Компиляция сценариев 

Некоторые интерпретаторы сценариев способны компилировать код сценария 

в промежуточную форму дл~I более эффективного выполнения. Такие интерпре­

таторы реализуют и1перфейс CompilaЫe. В следующем примере кода демонстри­
руется компилирование и вычисление кода, содержащегося в файле сценария: 

var reader = new FileReader("myscript.js"); 
CompiledScript script = null; 
if (engine implements CompilaЬle) 

CompiledScript script = 

( (CompilaЬle) engine) .compile(reader); 

После компиляции сценария можно перейти к его выполнению. В приведен­

ном ниже фрагменте кода демонстрируется выполнение скомпилированного 

кода сценария, если компиляция прошла успешно, а иначе - исходного сцена­

рия, если окажется, что механизм сценариев не поддерживает компиляцию. Без­

условно, компилировап, сценарий нужно лишь в том случае, если его требуется 

ВЫПОЛНИТ!> повторно. 

if (script != null) 
script.eval(); 

else 
engine.eval(reader); 

javax.script.CompilaЫв 6 

• CompiledScript compile (String script) 

CompiledScript compile (Reader reader) 

Компилируют сценарий, задаваемый символьной строкой или потоком чтения. 



В.1. Написание сценариев дпя платформы Java 

javax.script.CompiledScript 6 

• Object eval () 

• Object eval(Bindings bindings) 

Вычисляют данный сценарий. 

8.1.6. Пример создания сценария для обработки событий 
в пользовательском интерфейсе 

Чтобы продемонстрировать возможности прикладного интерфейса API 
для сценариев, рассмотрим пример программы, позволяющей пользователям 

задавать обработчики событий на избранном языке сценариев. 

Проанализируйте исходный код, приведенный в листинге 8.1. В этом коде 
средства создания сценариев вводятся в класс произвольного фрейма. По умол­

чанию это класс ButtonFrame из листинга 8.2, аналогичный по своим функциям 
программе обработки событий, демонстрировавшейся в первом томе настояще­

го издания, но с двумя отличиями: 

• у каждого компонента имеется свой собственный набор свойств name; 

• отсутствуют обработчики событий. 

Требующиеся обработчики событий определяются в файле свойств, а каждое 

свойство определяется в следующей форме: 

имяКомпонента.имяСобытия = кодСценария 

Так, если пользователь выбирает язык сценариев JavaScript, требующиеся 
обработчики событий предоставляются в файле j s. properties приведенным 
ниже образом. В сопутствующем коде имеются также файлы для Groovy и R. 
yellowButton.action=panel.background = java.awt.Color.YELLOW 
ЫueButton.action=panel.background = java.awt.Color.BLUE 
redButton.action=panel.background = java.awt.Color.RED 

Рассматриваемая здесь программа начинается с загрузки интерпретатора сце­

нариев на языке, указываемом в командной строке. Если же язык не указан, то 

по умолчанию выбирается JavaScript. 
Далее выполняется обработка сценария ini t. язык, если таковой имеется. И 

это удобно, поскольку интерпретаторы языков R и Scheme нуждаются в ряде гро­
моздких операций инициализации, которые вряд ли стоит включать в каждый 

сценарий для обработки событий. 

После этого осуществляется рекурсивный обход всех дочерних компонентов 

и ввод привязок (имя, объект) в область видимости интерпретатора сценари­

ев. Далее выполняется чтение из файла свойств язык.properties. Для каждо­

го свойства конструируется прокси-объект, замещающий обработчик событий, 

который, собственно, и заставляет выполняться код сценария. Подробности ре­

ализации механизма замещения носят несколько технический характер, поэто­

му тем, кто желает разобраться в нем, рекомендуется еще раз прочитать раздел, 



Глава 8 • Написание сценариев, компиляция и обработка аннотаций 

посвященный прокси-объектам в главе 6 первого тома настоящего издания. Но 
самое главное, что каждый обработчик событий вызывает следующий метод: 

engine.eval(scriptCode); 

Остановимся подробнее на обработке событий от кнопки выбора желтого 

цвета фона (объекте yellowButton). При обработке приведенной ниже строки 
кода обнаруживается компонент JButton под именем "yellowButton". 

yellowButton.action=panel.background = java.awt.Color.YELLOW 

Далее к этому компоненту присоединяется объект типа ActionListener с ме­
тодом actionPerformed (), который выполняет сценарий, если он создан сред­
ствами Nashorn: 
panel.background = java.awt.Color.YELLOW 

Интерпретатор сценариев содержит привязку, которая связывает имя 

"panel" с объектом типа JPanel. Когда наступает событие, выполняется метод 
setBackground () для этого объекта, а в итоге изменяется цвет фона панели. 

Запустить рассматриваемую здесь программу с обработчиками событий из 

сценария JavaScript можно, выполнив команду 

java ScriptTest 

А для того чтобы использовать обработчики событий из сценария Groovy, 
нужно выполнить такую команду: 

java -classpath . :groovy/lib/\* ScriptTest groovy 

где groovy - каталог, в котором установлен язык Groovy. Для реализации языка 
R по проекту Renjin архивные JАR-файлы для библиотеки Renjin Studio и интер­
претатора сценариев Renjin следует включить в путь к соответствующим классам. 
Оба эти компонента свободно доступны для загрузки по адресу www. renj in. 
org /downloads. html. 

В рассматриваемом здесь примере программы демонстрируется применение 

сценариев при программировании графического пользовательского интерфейса 

на платформе Java. Желающие могут пойти еще дальше и описать такой интер­
фейс с помощью ХМL-файла, как было показано в главе 3. В этом случае данная 
программа превратится в интерпретатор графических пользовательских интер­

фейсов с визуальным представлением, определяемым в формате XML, а также 
поведением, определяемым на языке сценариев. Это очень похоже на среду соз­

дания динамических серверных сценариев и динамических НТМL-страниц. 

Листинг 8.1. Исходный код из файла script/ScriptTest. java 

1 package script; 
2 
3 import java.awt. *; 

4 import java.beans. *; 
5 import java.io. *; 
6 import java.lang.reflect. *; 
7 import java.util.*; 
8 import javax.script. *; 
9 import javax.swing. *; 



8.1. Написание сценариев дnя платформы Java 

10 
11 /** 
12 * @version 1.03 2018-05-01 
13 * @author Сау Horstmann 
14 */ 
15 puЫic class ScriptTest 
16 { 
17 puЫic static void main(String[] args) 
18 { 
19 EventQueue.invokeLater( () -> 
20 { 
21 try 
22 { 
23 var manager = new ScriptEngineManager(); 
24 String language; 
25 if (args.length == 0) 
2 6 { 
27 System. out .println ( "AvailaЫe factories: "); 
28 for (ScriptEngineFactory factory : 
29 manager.getEngineFactories()) 
30 System.out.println(factory.getEngineName()); 
31 
32 language = "nashorn"; 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

else language = args[OJ; 

final ScriptEngine engine 
manager.getEngineByName(language); 

if (engine == null) 
{ 

System.err.println("No engine for " 
+ 1 anguage) ; 

System.exit(l); 

final String frameClassName = args.length < 2 
? "buttonsl.ButtonFrame" : args[l]; 

var frame (JFrame) Class 
.forName(frameClassName) 
.getConstructor() .newlnstance(); 

InputStream in = frame.getClass() 
.getResourceAsStream("init." + language); 

if (in ! = null) 
engine.eval(new InputStreamReader(in)); 

var components = 

new HashMap<String, Component>(); 
getComponentBindings(frame, components); 
components.forEach( (name, с) -> 

engine.put(name, с)); 

var events = new Properties(); 
in = frame.getClass() .getResourceAsStream( 

language + ".properties"); 
events.load(in); 



66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 

Глава 8 • Написание сценариев, компиляция м обработка аннотаций 

for (Object е : events.keySet()) 
{ 

String[] s = ((String) e).split("\\."); 
addListener(s[OJ, s[l], 

(String) events.get(e), 
engine, components); 

frame.setTitle("ScriptTest"); 
frame.setDefaultCloseOperation( 

JFrame.EXIT ON CLOSE); 
frame.setVisiЬle(true); 

78 catch (ReflectiveOperationException 
79 1 IOException 1 ScriptException 
80 1 IntrospectionException ех) 
81 
82 ex.printStackTrace(); 
83 ) 
8 4 ) ) ; 
85 
86 
87 
88 
89 
90 
91 
92 
93 

/** 
* Собирает все именованные компоненты в контейнер 
* @param с Компонент 
* @param namedComponents Отображение, в которое 

* 
* 
*/ 

вводятся все компоненты 

и их имена 

94 private static void getComponentBindings(Component с, 

95 Map<String, Component> namedComponents) 
96 
97 String name = c.getName(); 
98 if (name != null) { namedComponents.put(name, с); ) 
99 if (с instanceof Container) 
100 { 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 

/** 

for (Component child : 
( (Container) с) .getComponents()) 

getComponentBindings(child, namedComponents); 

* Вводит в объект приемник событий, метод которого 

* выполняет сценарий 
* @param beanName Имя компонента JavaBeans, 
* в который вводится приемник событий 

* @param eventName Имя компонента JavaBeans, 
* 
* 
* @param 
* @param 

например, "action" (действие) 

или "change" (изменение) 

scriptCode Выполняемь!Й код сценария 
engine Интерпретатор, выполняющий 

код сценария 

* @param bindings Привязки для выполнения сценария 
* @throws Исключение типа IntrospectionException 
*/ 

private static void addListener(String beanName, 



122 
123 
124 
125 
126 
127 

8.1. Написание сценариев дпя платформы Java 

String eventName, final String зcriptCode, 
ScriptEngine engine, Map<String, 
Component> components) 
throws ReflectiveOperationException, 

IntrospectionException 

128 Object bean = components.get(beanName); 
129 EventSetDescriptor descriptor = 
130 getEventSetDescriptor(bean, eventName); 
131 if (descriptor == null) return; 
132 descriptor.getAddListenerMethod() 
133 .invoke(bean, Proxy.newProxyinstance( 
134 null, new Class[] 
135 { descriptor.getListenerType() ), 
136 (proxy, method, args) -> 
137 { 
138 engine.eval(scriptCode); 
139 return null; 
140 ) 1 ) ; 

141 
142 
143 private static EventSetDescriptor 
144 getEventSetDescriptor( 
145 Object bean, String eventName) 
146 throws IntrospectionException 
147 
148 for (EventSetDescriptor descriptor : 
149 Introspector.getBeaninfo(bean.getClass()) 
150 .getEventSetDescriptors()) 
151 i f ( descr iptor. getName () . equals ( eventName) 1 
152 return descriptor; 
153 return null; 
154 
155 

Листинг 8.2. Исходный код из файла buttonsl/ButtonFrame. java 

1 package buttonsl; 
2 
3 import javax.swing.*; 
4 
5 /** 
6 * Фрейм с панелью кнопок 
7 * @version 1.00 2007-11-02 
8 * @author Сау Horstmann 
9 * / 
10 puЫic class ButtonFrame extends JFrame 
11 { 
12 
13 
14 

private static final int DEFAULT WIDTH = 300; 
private static final int DEFAULT HEIGHT = 200; 

15 private JPanel panel; 
16 private JButton yellowButton; 
17 private JButton ЫueButton; 
18 private JButton redButton; 



Глава В • Написание сценариев. компиляция и обработка аннотаций 

19 
20 puЫic ButtonFrarne() 
21 { 
22 setSize(DEFAULT_WIDTH, DEFAULT HEIGHT); 
23 
24 panel = new JPanel(); 
25 panel.setNarne("panel"); 
26 add(panel); 
27 
28 yellowButton = new JButton("Yellow"); 
29 yellowButton.setNarne("yellowButton"); 
30 ЫueButton = new JButton("Blue"); 
31 ЫueButton.setNarne("ЬlueButton"); 

32 redButton = new JButton("Red"); 
33 redButton.setNarne("redButton"); 
34 
35 panel.add(yellowButton); 
36 panel.add(ЬlueButton); 

37 panel.add(redButton); 
38 
39 

8.2. Прикладной интерфейс API для компилятора 
Имеется немало инструментальных средств, в которых требуется вызывать 

компилятор Java. К их числу, очевидно, относятся среды разработки и средства 
обучения программированию на Java, а также инструментальные средства, авто­
матизирующие процессы тестирования и построения прикладного кода. Еще од­

ним тому примером служит обработка веб-страниц типа JSP (JavaServer Pages) со 
встроенными операторами Java. 

8.2.1. Вызов компилятора 
Компилятор вызывается очень просто, как показано в приведенном ниже 

примере кода. Получаемое в итоге нулевое значение переменной resul t указы­
вает на удачный исход компиляции. 

JavaCornpiler cornpiler = 

ToolProvider.getSysternJavaCompiler(); 
OutputStream outStream = ... ; 

OutputStream errStream = ... ; 
int result compiler.run(null, outStream, errStream, 

"-sourcepath", "src", "Test.java"); 

Все выводимые данные и сообщения об ошибках компилятор направляет 

в указанные потоки вывода. В качестве параметров метода run () можно указы­
вать и пустое значение null. В данном случае используются стандартные потоки 
вывода System. out и System. err. Первый параметр метода run () обозначает 
поток ввода, но, поскольку никаких данных, вводимых с консоли, компилятор не 

принимает, значение этого параметра всегда оставляется пустым (null). Сам же 
метод run () наследуется из обобщенного интерфейса Tool, допускающего при­
менение инструментальных средств для чтения вводимых данных. 



8.2. Прикладной интерфейс API для компилятора 

Остальные параметры метода run () являются аргументами, которые следова­
ло бы передать утилите j avac, если бы этот метод вызывался из командной стро­
ки. Они могут обозначать как параметры командной строки, так и имена файлов. 

8.2.2. Запуск заданий на компиляцию 
С помощью объекта типа CompilationTask можно получить еще больший 

контроль над процессом компиляции. Это может быть удобно в том случае, если 

требуется предоставить исходный код из символьной строки, зафиксировать 

файлы классов в оперативной памяти или обработать сообщения или преду­

преждения об ошибках или неполадках. 

Чтобы получить задание на компиляцию в виде объекта типа 

CompilationTask, необходимо получить сначала объект compiler, как было по­
казано в предыдущем разделе, а затем сделать следующий вызов: 

JavaCompiler.CompilationTask task = compiler.getTask( 
/!если указано значение null этого параметра, 
// то используется поток вывода System.err: 

errorWr i ter, 
//если указано значение null этого параметра, 
//то используется стандартньШ диспетчер файлов: 

fileManager, 
// если указано значение null этого параметра, 
// то используется поток вывода System.err: 

diagnostics, 
//если конкретное значение этого параметра не 

/!указано, он принимает пустое значение null: 
options, 

//этот параметр служит для обработки аннотаций; 

//если конкретное значение этого параметра не 

//указано, он принимает пустое значение null: 
classes, 
sources); 

Три последних параметра в приведенном выше вызове являются экземпляра­

ми типа IteraЫe. Например, последовательность параметров компиляции мо­

жет быть задана следующим образом: 

IteraЫe<String> options = List.of ("-d", "bin"); 

В качестве параметра sources указывается итератор типа IteraЫe экзем­
пляров типа ,JavaFileObj ect, представляющих исходные файлы. Если требу­
ется скомпилировать файлы, находящиеся на жестком диске, следует получить 

стандартный диспетчер файлов в виде объекта типа StandardJavaFileManager 
и вызвать его метод getJavaFileObjects (): 

StandardJavaFileManager f ileManager = 
compiler.getStandardFileManager(null, null, null); 

IteraЬle<JavaFileObject> sources = 
fileManager.getJavaFileObjectsFromStrings( 

List .of ( "Filel. java", "File2. java" 11; 
JavaCompiler.CompilationTask task = compiler.getTask( 

null, null, null, options, null, sources); 



Глава 8 • Написание сценариев. компиляция и обработка аннотаций 

НА ЗАМЕТКУ! Параметр classes служит лишь для обработки аннотаций. И в этом случае не­
обходимо также сделать вызов task. processors (annotationProcessors) со списком 
объектов типа Processor. Характерный пример обработки аннотаций приведен в разделе 8.6. 

Метод ge t Та s k ( ) возвращает объект задания, но пока еще не запуска­
ет процесс компиляции. Класс Compi 1 а t i onTas k реализует интерфейс 
CallaЫe<Boolean>. Объект этого класса можно передать исполнителю типа 

Execu torService для параллельного исполнения или же сделать синхронный 
вызов, как показано ниже. 

Boolean success = task.call(); 

8.2.З. Фиксация диагностики 

Для приема появляющихся сообщений об ошибках устанавливается приемник 

диагностики, реализующий интерфейс DiagnosticListener. Всякий раз, когда 
компилятор выдает предупреждение или сообщение об ошибке, этот приемник 

получает объект типа Diagnostic. В частности, интерфейс DiagnosticListener 
реализуется в классе DiagnosticCollector, где собираются все диагностические 
данные для просмотра и анализа по завершении компиляции, как демонстриру­

ется в следующем примере кода: 

DiagnosticCollector<JavaFileObject> collector = 
new DiagnosticCollector<>(); 

compiler.getTask(null, fileManager, collector, null, 
null, sources) .call(); 

for (Diagnostic<? extends JavaFileObject> d : 
collector.getDiagnostics()) 

System.out.println(d); 

Объект типа Diagnostic содержит сведения о месте появления ошибки ком­
пиляции, включая имя файла, номер строки и столбца, а также удобочитаемое 

описание ошибки. 

Если требуется перехватывать сообщения об отсутствующих файлах, прием­

ник диагностики типа DiagnosticListener можно установить в стандартном 
диспетчере файлов: 

StandardJavaFileManager f ileManager = 
compiler.getStandardFileManager(diagnostics, null, null); 

8.2.4. Чтение исходных файлов из оперативной памяти 
Чтобы оперативно сгенерировать исходный код, его можно скомпилировать 

из оперативной памяти, не сохраняя исходные файлы на жестком диске. В част­

ности, для хранения скомпилированного кода можно воспользоваться следую­

щим классом: 

puЫic class StringSource extends SimpleJavaFileObject 
{ 

private String code; 



8.2. Прикладной интерфейс API дпя компилятора 

StringSource(String name, String code) 
{ 

super (URI .create ( "string: ///" + name. replace ('. ', '/') 
+ ".java"), Kind.SOURCE); 

this.code = code; 

puЫic CharSequence 
getCharContent(boolean ignoreEncodingErrors) 

return code; 

Далее остается лишь сгенерировап, код отдельных классов и предоставить 

компилятору список объектов типа StringSource: 

List<StringSource> sources = List.of(new StringSource( 
classNamel, classlCodeString), ... ); 

task = compiler.getTask(null, fileManager, diagnostics, 
null, null, sources); 

8.2.5. Запись байт-кодов в оперативную память 
Если исходный код классов компилируется оперативно, то сохранять файлы 

классов на жестком диске нет необходимости. Их можно сохранить в оператив­

ной памяти, чтобы сразу же загрузить их оттуда. Для этого прежде всего создает­

ся следующий класс, в котором хранятся получаемые в итоге байт-коды: 

puЫic class ByteArrayClass ext.ends SimpleJavaFileObject 
( 

private ByteArrayOutputStream out; 

ByteArrayClass(String name) 
( 

super(URI.create("bytes:///" + name.replace('. ', '/') 
+ ".class"), Kind.CLASS); 

puЫic byte[] getCode() 
{ 

return out.toByteArray(); 

puЫic OutputStream openOutputStream() throws IOException 
( 

out = new ByteArrayOutputStream(); 
return out; 

Затем необходимо сконфигурировать диспетчер файлов, в которые требуется 

выводить скомпилированные классы. 

List<ByteArrayClass> classes = new ArrayList<>(); 
StandardJavaFileManager stdFileManager = 

compiler.getStandardFileManager(null, null, null); 



Глава 8 • Написание сценариев, компиляция и обработка аннотаций 

JavaFileManager f ileManager = 

f; 

new ForwardingJavaFileManager<JavaFileManager> 
(stdFileManager) 

puЫic JavaFileObject getJavaFileForOutput( 
Location location, String className, 
Kind kind, FileObject siЫing) 
throws IOException 

if (kind == Kind.CLASS) 
{ 

ByteArrayClass outfile 
new ByteArrayClass(className); 

classes.add(outfile); 
return outfile; 

else 
return super.getJavaFileForOutput( 

location, className, kind, siЫing); 

Далее для загрузки классов потребуется соответствующий загрузчик (см. гла­

ву 10): 

puЫic class ByteArrayClassLoader extends ClassLoader 
{ 

private IteraЫe<ByteArrayClass> classes; 

puЫic ByteArrayClassLoader( 
IteraЫe<ByteArrayClass> classes) 

this.classes = classes; 

puЫic Class<?> findClass(String name) 
throws ClassNotFoundException 

for (ByteArrayClass cl : classes) 

if (cl.getName().equals("/" + name.replace('.','/') 
+ ". class" 1 1 

byte[J bytes = cl.getCode(); 
return defineClass(name, bytes, О, bytes.length); 

throw new ClassNotFoundException(name); 

По окончании компиляции следует вызвать метод Class. forName () с дан­

ным загрузчиком классов: 

ByteArrayClassLoader loader = 
new ByteArrayClassLoader(classes); 

Class<?> cl = Class.forName(className, true, loader); 



8.2. Прикладной интерфейс API дпя компилятора 

8.2.6. Пример динамического генерирования кода Java 
В технологии JSP для формирования веб-страниц в динамическом режиме до­

пускается сочетать НТМL-разметку с фрагментами исходного кода Java, как де­
монстрируется в следующем примере: 

<p>The current date and time is 
<Ь><%= new java.util.Date() %></Ь>.</р> 

Интерпретатор JSP динамически компилирует код Java в сервлет. В рассма­
триваемом здесь примере прикладной программы демонстрируется более про­

стой пример динамического генерирования кода Swing. Основной замысел состо­
ит в том, чтобы восполь:юваться построителем графического пользовательского 

интерфейса с целью расположить компоненты во фрейме и обозначить их пове­

дение во внешнем файле. В листинге 8.4 приведен очеш, простой пример класса 
фрейма, а в листинге 8.5 - исходный код для обозначения действий экранных 

кнопок. Следует заметить, что конструктор класса фрейма вызывает абстрактный 

метод addEventHandlers (), а генератор кода создает подкласс, реализующий 
метод addEventHandlers (),вводя приемник для обработки действий в каждой 
строке из файла свойств action. properties. (Расширение возможностей гене­
рировать код для обработки других типов событий оставляем читателю в каче­

стве упражнения для самостоятельной проработки.) 

Создаваемый в итоге подкласс размещается в пакете под именем х, которое 

нигде больше не должно использоваться в данной программе. Сгенерированный 

код принимает следующую форму: 

package х; 

puЬlic class Frame extends ИмяСуперкласса 
{ 

protected void addEventHandlers() 
{ 

ИмяKoмпoнeнтa1.addActionListener(event -> 
{ 

код первого обработчика событий 

} 1 ; 
//повторить для остальных обработчиков событий ... 

Метод buildSource () в программе из листинга 8.3 служит для генерирова­
ния этого кода и его размещения в объекте типа StringBuilderJavaSource. За­
тем этот объект передается компилятору java. 

Как пояснялось в предыдущем разделе, построение объектов типа 

ByteArrayJavaClass для каждого класса из пакета х осуществляется методом 
getJavaFileForOutput () из класса ForwardingJavaFileManager. Эти объекты 
перехватывают файлы классов, формируемые при компиляции класса х. Frame. 
Метод getJavaFileForOutput () вводит каждый объект файла в список прежде, 
чем возвратить его, чтобы в дальнейшем можно было обнаружить байт-коды. 

После компиляции классы, которые хранятся в данном списке, загружаются 

с помощью загрузчика классов, упоминавшегося в предыдущем разделе. Затем 

конструируется объект класса для отображения фрейма рассматриваемой здесь 

прикладной программы: 



Глава В • Написание сценариев. компиляция и обработка аннотаций 

var loader = new ByteArrayClassLoader(classFileObjects); 
var frame = (JFrame) loader.loadClass("x.Frame") 

. getConstructor () . newinstance (); 
frame.setVisiЬle(true); 

Если щелкнуть на экранных кнопках, цвет фона изменится обычным обра­

:юм. А для того чтобы убедиться, что действия экранных кнопок в самом деле 

компилируются динамически, измените какую-нибудь из сrрок в файле свойсrв 

action. properties, например, следующим образом: 

yellowButton=panel.setBackground(java.awt.Color.YELLOW); 
yellowButton.setEnaЫed(false); 

После этого запустите еще раз данную программу на выполнение. Если те­

пер1. щелкнуть на кнопке Yellow, она станет недоступной. Загляните также в ката­
логи с исходным кодом. Вы не обнаружите там ни исходных файлов, ни файлов 

классов из пакета х. Данный пример наглядно демонсrрирует применение дина­

мической компиляции вмесrе с сохранением файлов исходного кода и классов 

в оперативной памяти. 

Листинг 8.3. Исходный код из файла compiler/CompilerTest. java 

1 
2 
3 

5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

package compiler; 

import 
import 
irnport 
import 
import 

java.awt.*; 
' ' * Java.io. ; 
java.nio.file.*; 
java.util.*; 
java.util.List; 

import javax.swing.*; 
import javax.tools.*; 
import javax.tools.JavaFileObject.*; 

/** 
* @version l.10 2018-05-01 
* @author Сау Horstmann 
*/ 
puЫic class CompilerTest 
{ 
puЫic static void rnain(final String[) args) 

throws IOException, ReflectiveOperationException 

JavaCompiler compiler = 
ToolProvider.getSystemJavaCompiler(); 

25 var classFileObjects = 
26 new ArrayList<ByteArrayClass>(); 
27 var diagnostics = 
28 new DiagnosticCollector<JavaFileObject>(); 
29 
30 JavaFileManager fileManager = 
31 compiler.getStandardFileManager( 
32 diagnostics, null, null); 
33 fileManager = new ForwardingJavaFileManager 
34 <JavaFileManager>(fileManager) 



35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 

} ; 

8.2. nрикладной интерфейс API для компилятора 

puЫic JavaFileObject getJavaFileForOutput( 
Location location, String className, 
Kind kind, FileObject siЫing) 
throws IOException 

if (kind == Kind.CLASS) 
{ 

var fileObject = 
new ByteArrayClass(className); 

classFileObjects.add(fileObject); 
return fileObject; 

else return super.getJavaFileForOutput( 
location, className, kind, siЬling); 

53 String frameClassName = args.length == О 

54 ? "buttons2.ButtonFrame" : args[O]; 
55 // compiler.run(null, null, null, 
56 // frameClassName.replace(".", "/") + ".java"); 
57 
58 StandardJavaFileManager f ileManager2 = compiler 
59 .getStandardFileManager(null, null, null); 
60 var sources = new ArrayList<JavaFileObject>(); 
61 for (JavaFileObject о : 
62 fileManager2.getJavaFileObjectsFromStrings( 
63 List.of(frameClassName.replace( 
64 ".", "/") + ".java"))) 
65 sources.add(o); 
66 
67 JavaFileObject source = buildSource(frameClassName); 
68 JavaCompiler.CompilationTask task = compiler 
69 .getTask(null, fileManager, diagnostics, 
70 null, null, List.of(source) ); 
71 Boolean result = task.call(); 
72 
73 for (Diagnostic<? extends JavaFileObject> d 
74 diagnostics.getDiagnostics()) 
75 System.out.println(d.getKind() + ": " 
76 + d.getMessage(null) ); 
77 fileManager.close(); 
78 if ( 1 result) 
79 { 
80 System.out.println("Compilation failed."); 
81 System.exit(l); 
82 
83 
84 var loader = 
85 new ByteArrayClassLoader(classFileObjects); 
86 var frame = (JFrame) loader.loadClass("x.Frame") 
87 . getConstructor () . newinstance () ; 
88 
89 EventQueue.invokeLater( () -> 
90 { 
91 frame.setDefaultCloseOperation( 



92 
93 
94 
95 
96 
97 
98 
99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 

/* 

Глава В • Написание сценариев. компиляция и обработка аннотаций 

JFrame.EXIT ON CLOSE); 
frame.setTitle("CompilerTest"); 
frame.setVisiЬle(true); 

} ) ; 

* Генерирует исходный код подкласса, реализующего 

*метод addEventHandlers() 
* @return Объект файла, содержащий исходнь~ код в 

* построителе символьных строк 

*/ 
static JavaFileObject buildSource( 

String superclassName) 
throws IOException, ClassNotFoundException 

var builder = new StringBuilder(); 
builder.append("package x;\n\n"); 
builder.append("puЫic class Frame extends " 

+ superclassName + " {\n"); 
builder.append( 

"protected void addEventHandlers () { \n") ; 
var props = new Properties(); 
props.load(Files.newinputStream(Paths.get( 

superclassName. replace 1". ", "/") ) . getParent () 
.resolve("action.properties"))); 

for (Map.Entry<Object, Object> е : props.entrySet()) 
{ 

} 

var beanName = (String) e.getKey(); 
var eventCode = (String) e.getValue(); 
builder.append(beanName 

+ ".addActionListener(event -> {\n"); 
builder.append(eventCode); 
builder.append("\n} ) ;\n"); 

builder.append("} }\n"); 
return new StringSource("x.Frame", builder.toString()); 

Листинг 8.4. Исходный код из файла buttons2/ButtonFrame. java 

1 package buttons2; 
2 import javax.swing.*; 
3 
4 /** 
5 * Фрейм с панелью кнопок 
6 * @version 1.00 2007-11-02 
7 * @author Сау Horstmann 
8 */ 
9 puЫic abstract class ButtonFrame extends JFrame 
10 { 
11 puЬlic static final int DEFAULT WIDTH = 300; 
12 puЬlic static final int DEFAULT HEIGHT = 200; 
13 



8.2. Прикладной интерфейс API дnя компилятора 

14 protected JPanel panel; 
15 protected JButton yellowButton; 
16 protected JButton ЫueButton; 
17 protected JButton redButton; 
18 
19 protected abstract void addEventHandlers(); 
20 
21 puЫic ButtonFrame() 
22 { 
23 setSize(DEFAULT_WIDTH, DEFAULT HEIGHT); 
24 
25 panel = new JPanel(); 
26 add(panel); 
27 
28 yellowButton = new JButton("Yellow"); 
29 ЫueButton = new JButton("Blue"); 
30 redButton = new JButton("Red"); 
31 
32 panel.add(yellowButton); 
33 panel.add(ЬlueButton); 

34 panel.add(redButton); 
35 
36 addEventHandlers(); 
37 
38 

Листинг 8.5. Исходный код из файла buttons2/action .properties 

1 yellowButton=panel.setBackground(java.awt.Color.YELLOW); 
2 ЫueButton=panel.setBackground(java.awt.Color.BLUE); 

javax.tools.Tool 6 

• int run (InputStream in, OutputStream out, OutputStream err, 
String. . . argumвnts) 

Запускает утилиту компиляции с указанными потоками ввода и вывода, а также потоком вы­

вода сообщений об ошибках и аргументами командной строки. При удачном исходе компиля­

ции возвращает нулевое значение, при неудачном - ненулевое. 

javax.tools.JavaCompiler 6 

• StandardJavaFileМanager getStandardFileМanager(DiagnosticListener<? 

super JavaFileObject> diagnosticListвnвr, Locale localв, Charset 
charset) 

Получает стандартный диспетчер файлов для данного компилятора. Имеется возможность 

использовать стандартные сообщения об ошибках, региональные настройки и набор симво­

лов, указав в качестве соответствующих параметров пустые значения null. 



Глава В • Написание сценариев. компиляция и обработка аннотаций 

javax. tools. JavaCompiler 6 {окончание/ 

JavaCompiler.CompilationTask getTask(Writer out, JavaFileМanager 

EileМJ1nager, DiagnoaticListener<? super JavaFileObject> 
diagnosticListener, IteraЫe<String> options, IteraЫe<String> 

classesForAzшotationProcessing, IteraЫe<? extends JavaFileObject> 
sourceFiles) 
Получает задание на компиляцию, при вызове которого будут компилироваться указанные 
исходные файлы. Подробнее об зтом см. в предыдущем разделе. 

javax.tools.StandardJavaFileМanager 6 

• IteraЫe<? extenda JavaFileObject> getJavaFileObjectsFromStrings(It 
eraЫe<String> EileNamas) 

• IteraЫe<? extenda JavaFileObject> getJavaFileObjectsFromFiles(Iter 
аЫе<? extenda File> ~iles) 
Преобразуют последовательность файлов или их имен в последовательность экземпляров 

типа JavaFileObject. 

javax.tools.JavaCompilвr.CompilationTask 6 

• Boolean call ( ) 

Выполняет задание на компиляцию. 

javax.tools.DiagnosticCollector<S> 6 

• DiagnosticCollector() 

Создает пустой сборщик данных. 

• List<Diagnostic<? extends S>> getDiagnostics() 

Получает собранные диагностические данные. 

javax.tools.Diagnostic<S> 6 

• S getSource () 

Получает исходный объект, связанный с данной процедурой диагностики. 

• Diagnostic. Кind getКind () 

Получает тип данной процедуры диагностики, принимающий значение одной из следующих 
констант: ERROR, WARNING, МANDATORY _ WARNING, NOTE или ОТНЕR. 

• String getмessage (Locale 1оса1е) 

Получает сообщение, описывающее ошибку, обнаруженную в данной процедуре диагностики. 
Имеется возможность использовать стандартные региональные настройки, передав пустое 
значение null в качестве соответствующего параметра. 



В.Э. Применение аннотаций 

javax. tools. Diagnostic<S> 6 /окончание} 

• long getLineNumЬer () 

• long getColwnnNumЬer () 

Получают местоположение ошибки, обнаруженной в данной процедуре диагностики 

javax.tools.SimpleJavaFileObject 6 

• CharSequence getCharContent(boolean ignoreEncodingErrors) 

Этот метод переопределяется для объекта файла, представляющего исходный файл и гене­

рирующего ИСХОДНЫЙ КОД. 

• OutputStream openOutputStream() 

Этот метод переопределяется для объекта файла, представляющего файл класса и формиру­
ющего поток вывода, в который можно направлять генерируемые байт-коды. 

javax.tools.ForwardingJavaFileМanager<М extends JavaFileМanager> 6 

• protected ForwardingJavaFileМanager (М fileМanager) 

Создает объект типа JavaFileМanager, делегирующий все вызовы указанному диспетчеру 

файлов. 

• FileObject getFileForOutput(JavaFileМanager.Location location, 
String className, JavaFileObject.Кind kind, FileObject siЫing) 

Вызов этого метода перехватывается, если требуется заменить объект файла для записи 

файлов классов. Параметр kind может принимать значение одной из следующих констант: 
SOURCE, CLASS, НТМL ИЛИ ОТНЕR. 

8.3. Применение аннотаций 
Аннотация.ми называются дескрипторы, которые разработчики вставляют 

в свой исходный код, чтобы их можно было обработать соответствующими ин­

струментальными средствами. Эги инструментальные средства моrут действовать 

как на уровне исходного кода, так и на уровне файлов классов, в которых ком­

пилятор размещает аннотации. Аннотации не влияют на способ компиляции 

программ. Компилятор Java генерирует одинаковые инструкции виртуальной 
машины как с аннотациями, так и без них. 

Чтобы извлечь наибольшую пользу из аннотаций, необходимо выбрать под­

ходящее средство обработки. В исходный код следует вводить такие аннотации, 

которые распознаются избранным средством обработки, способным правильно 

интерпретировап, их и выполнять соответствующие действия над исходным ко­

дом. У аннотаций существует немало областей применения, поэтому их универ­

сальность может поначалу вызывап, недоразумения. Ниже перечислены некото­

рые из областей применения аннотаций. 



Глава 8 • Написание сценариев. компиляция и обработка аннотаций 

• Автоматическое генерирование вспомогательных файлов, например, фай­

лов дескрипторов развертывания или классов информации о компонентах 

JavaBeans. 

• Автоматическое генерирование кода для тестирования, протоколирования, 

семантической обработки транзакций и т.д. 

8.3.1. Введение в аннотации 
Начнем обсуждение аннотаций с основных понятий и продемонстрируем их 

практическое применение на конкретном примере, пометив методы как прием­

ники событий для компонентов AWT и представив обработчик аннотаций, спо­
собный анализировать аннотации и подключать приемники событий. Далее мы 

подробно рассмотрим синтаксические правила. Наконец, будут продемонстри­

рованы два расширенных примера обработки аннотаций: первый - на уровне 

исходного кода, второй - на уровне файлов классов, где библиотека Apache 
Bytecode Engineering Library применяется для вставки дополнительных байт-ко­
дов в аннотированные методы. 

Ниже приведен пример объявления простой аннотации. В частности, аннота­

ция @Test служит для аннотирования метода checkRandominsertions (). 

puЫic class MyClass 
{ 

@Test puЬlic void checkRandominsertions() 

Аннотация применяется в Java подобно модификатору и размещается перед 
аннотируемым элементом бе.з точки с запятой. (Модификатор - это ключевое 

слово вроде puЫic или static.) Имя каждой аннотации предваряется знаком @ 
подобно тому, как это делается в документирующих комментариях, автоматиче­

ски составляемых в формате Javadoc. Но документирующие комментарии в фор­
мате Javadoc размещаются между разделителями/** ... */, тогда как аннотации 
являются частью исходного кода. 

Сама аннотация @Test ничего не делает. Чтобы она смогла приносить какую­
то пользу, ей потребуется подходящее инструме1пальное средство. Например, ин­

струментальное средство модульного тестирования JUnit 5 (доступное по адресу 
https: / /j uni t. org /j uni t5/) способно вызвать все помеченные аннотацией @Test 
методы при тестировании класса. Другое инструментальное средство может удалить 

все тестовые методы из файла класса, чтобы исключить их из исходного кода про­

граммы после ее тестирования. Аннотации могут быть определены вместе со свои­

ми э.лементами, как демонстрируется в приведенном ниже примере кода. 

@Test(timeout="lOOOO") 

Эти элементы могут обрабатываться инструментальными средствами, способ­

ными обрабатывать аннотации. Элементы могут выглядеть и по-другому. Под­

робнее о них речь пойдет далее в этой главе. Помимо методов, аннотациями 

могут снабжаться классы, поля и локальные переменные, а сами аннотации -
размещаться на тех же местах, где и модификаторы типа puЫic или static. 



В.З. Применение аннотаций 

Как будет показано в разделе 8.4, аннотациями можно также снабжать пакеты, 
переменные параметров, параметры типа и примеры применения типов данных. 

Каждая аннотация должна определяться с помощью интерфейса аннотаций. 

Методы такого интерфейса должны соответствовать элементам определяемой им 

аннотации. Например, аннотация @Test для модульного тестирования средства­
ми JUnit определяется с помощью следующего интерфейса: 
@Target(ElementType.METHOD) 
@Retention(RetentionPolicy.RUNTIME) 
puЫic @interface Test 
{ 

long timeout() default 01; 

В объявлении @interface создается конкретный интерфейс Java, а инстру­
ментальные средства, обрабатывающие аннотации, получают объекты, классы 

которых реализуют сам интерфейс аннотаций. Например, для извлечения эле­

мента timeout из конкретной аннотации Test инструментальное средство вызы­
вает метод timeout (). 

Аннотации @Target и @Retention являются .мета-аннотация.ми. Они помеча­
ют аннотацию @Test, превращая ее в такую аннотацию, которая может приме­
няться только к методам и должна сохраняться при загрузке файла класса в вир­

туальную машину. Более подробно они рассматриваются в разделе 8.5.3. 
В этом разделе были представлены основные понятия метаданных и аннота­

ций к программам. В следующем разделе будет рассмотрен конкретный пример 

обработки аннотаций. 

НА ЗАМЕТКУ! Убедительные примеры применения аннотаций можно найти в библиотеках 

JCommander [http: //jcommander.orgJ и picocli [https: //picocli.infol. Анно­
тации применяются в этих библиотеках для обработки параметров командной строки. 

8.3.2. Пример аннотирования обработчиков событий 
Одной из наиболее утомительных задач в программировании пользователь­

ских интерфейсов является присоединение приемников к источникам событий. 

Многие приемники событий имеют следующий вид: 

myButton.addActionListener( () -> doSomething()); 

Во избежание подобных хлопот в этом разделе будет разработана специаль­

ная аннотация, определение которой приведено далее в листинге 8.8, а ее общая 
форма представлена ниже. 

@ActionListenerFor(source="myButton") 
void doSomething ( 1 { • • • ) 

Разработчику больше не придется делать вызовы метода addActionListener (). 
Вместо этого каждый метод приемника событий снабжается соответствующей 

аннотацией. В листинге 8.7 представлен класс But tonFrame, рассматривавший­
ся в главе 10 первого тома настоящего издания и реализованный заново вместе 
с подобными аннотациями. Для этого придется также реализовать интерфейс 

аннотаций, как демонстрируется в листинге 8.8. 



Глава В • Написание сценариев. компиляция и обработка аннотаций 

Разумеется, сами аннотации ничего не делают - они хранятся в исходном 

файле. Компилятор размещает их в файле классов, а виртуальная машина за­

гружает их. Следовательно, требуется какой-то механизм для анализа аннота­

ций и установки приемников действий. Эта обязанносп, возлагается на класс 

ActionListenerinstaller. В конструкторе класса ButtonFrame вызывается сле­
дующий метод и:~ класса ActionListenerinstaller: 

ActionListenerinstaller.processAnnotations(this); 

В статическом методе processAnnotations () перечисляются все методы объ­
екта, которые он получает. Для каждого метода извлекается и обрабатывается 

объект аннотации типа ActionListenerFor, как показано ниже. 

Class<?> cl obj.getClass(); 
for (Method m : cl.getDeclaredМethods()) 

{ 

ActionListenerFor а = 
m.getAnnotation(ActionListenerFor.class); 

if (а 1 = null) ... 

В данном случае применяется метод getAnnota tion (), определенный в ин­
терфейсе AnnotatedElement, который реализуют такие классы, как Method, 
Constructor, Field, Class и Package. Имя исходного поля хранится в объекте 
аннотации. Оно извлекается в результате вызова метода source (), а затем осу­
ществляется поиск соответствующего ему поля, как следует из приведенного 

ниже примера кода. 

String fieldName = a.source(); 
Field f = cl.getDeclaredField(fieldName); 

Этот пример наглядно показывает ограниченность рассматриваемой здесь 

аннотации. Исходный элемент должен обозначать имя поля, а представлять ло­

кальную переменную он не может. 

Остальная часть кода из рассматриваемого здесь примера программы носит 

довольно технический характер. В частности, для каждого аннотируемого метода 

со3дается прокси-объект, класс которого реализует интерфейс ActionListener 
с методом actionPerformed (), вьпывающим данный аннотируемый метод. 
(Подробнее о прокси-объектах см. в главе 6 первого тома настоящего издания.) 
Не особенно вдаваясь в подробности, которые здесь не так важны, отметим самое 

главное: функциональные возможности аннотаций устанавливаются с помощью 

метода processAnnotations ().Весь процесс обработки аннотаций схематиче­
ски представлен на рис. 8.1. 

В рассматриваемом здесь примере программы аннотации обрабатываются 

во время выполнения. Но их можно обрабатывать и на уровне исходного кода. 

В частности, генератор исходного кода может сгенерировать код для ввода при­

емников событий. С другой стороны, аннотации можно также обрабатывать 

на уровне байт-кода. Для этого редактор байт-кода может вставлять вызовы ме­

тода addActionListener () в конструктор фрейма. На первый взгляд эта задача 

кажется слишком сложной, но в настоящее время доступны библиотеки, упро­

щающие ее решение, как будет показано на конкретном примере, представлен­

ном в разделе 8.7. 



В . Э. Применение аннотаций 

Для обрвбоТl<и 
ЭННОТЭЦИЙ В ЭТОЙ 

программе 

применяется 

прикладной 

интерфейс АР! 

Компилятор Java Виртуальная 
машинаJаvа 

Исходный файл Файл класса 

Рис. 8.1. Оuработка аннотаций во время выполнения 

Пример, рассматриваемый в этом разделе, ни 11 коей мере нел1,зя рекомендо­

вал, в качестве сер1.ез11ого средства для разработки пол1>:1011ател1,ских интерфей­

сов. Применение служебного метода для ввода прием 11ико11 событий может ока­

зап,ся не менее удобным, чем вставка аннотаций в исходный код. (На самом деле 

попытка реализовать именно такой подход предпринята в классе j ava . beans. 
Even tHand l er. Этот класс нетрудно сделат~. дейст11ителыю полезным, предоста­

вив метод, вводящий обработчик событий, вместо того чтобы создавать его.) 

Тем не менее данный пример призван продемонстрировап, внутренний меха-

11и:1м аннотирования программы и анализа аннотаций. Его рассмотрение долж­

но помочь вам как следует подготовип.ся к и :1уче11ию материала последующих 

разделов, в которых подробно описан синтаксис а11нотаций. 

Листинг 8.6. Исходный код и з файла runtimeAnnotations/ 
ActionListenerinstaller.java 

l pac kage runt imeAnn otations ; 
2 
3 i mport J a va . awt .event .*; 
4 impor t java. l ang . reflect . *; 
5 
6 / ** 
7 * @ve rsion 1 . 00 2004- 08 - 17 
8 * @author Сау Ho rstmann 
9 */ 
10 puЫic class Act i onListeneri nst a lle r 
11 { 
12 / ** 
13 * Обрабатывает все аннотации типа Act i onListenerFor 
14 * в зада нном объекте 

15 * @param ob j Объект , методы которого могут иметь 

16 аннота ции типа Act i onLi stenerFor 
17 */ 
18 puЫic s t a t i c void processAnnot ations (Object ob j ) 
19 { 
20 t ry 
21 { 



Глава В • Написание сценариев. компиляция и обработка аннотаций 

22 Class<?> cl obj.getClass(); 
23 for (Method m : cl.getDeclaredMethods()) 
24 { 
25 ActionListenerFor а = 

26 m.getAnnotation(ActionListenerFor.class); 
27 if (а != null) 
28 { 
29 Field f = cl.getDeclaredField(a.source()); 
30 f.setAccessiЬle(true); 

31 addListener(f.get(obj), obj, m); 
32 
33 
34 
35 catch (ReflectiveOperationException е) 

36 
37 e.printStackTrace(); 
38 
39 
40 
41 /** 
42 * Вводит приемник действий, вызывающий заданный метод 

43 * @param source Источник событий, в который вводится 

44 * приемник действий 

45 * @param param Неявный параметр метода, вызываемого 

46 приемником действий 

47 * @param m Метод, вызываемый приемником действий 

48 */ 
49 puЫic static void addListener(Object source, 
50 fiпal Object param, final Method m) 
51 throws ReflectiveOperatioпExceptioп 
52 
53 var handler = new InvocationHandler() 
54 
55 puЫic Object invoke(Object proxy, Method mm, Object[] args) 
56 throws ThrowaЫe 
57 
58 return m.invoke(param); 
59 
60 } ; 
61 
62 Object listener = Proxy.newProxyinstance(null, 
63 new Class[] 
64 { java.awt.event.ActionListener.class }, handler); 
65 Method adder = source.getClass() .getMethod( 
66 "addActionListener", ActionListener.class); 
67 adder.invoke(source, listener); 
68 
69 

Листинг 8.7. Исходный код из файла buttonsЗ/ButtonFrame. java 

l package buttons3; 
2 
3 import java.awt.*; 



4 import javax.swing.*; 
5 import runtimeAnnotations.*; 
6 
7 /** 
8 * Фрейм с панелью кнопок 
9 * @version 1.00 2004-08-17 
10 * @author Сау Horstmann 
11 */ 
12 puЫic class ButtonFrame extends JFrame 
13 { 

8.3. Применение аннотаций 

14 private static final int DEFAULT WIDTH = 300; 
15 private static final int DEFAULT HEIGHT = 200; 
16 
17 private JPanel panel; 
18 private JButton yellowButton; 
19 private JButton ЫueButton; 
20 private JButton redButton; 
21 
22 puЬlic ButtonFrame() 
23 { 
24 setSize(DEFAULT_WIDTH, DEFAULT HEIGHT); 
25 
26 panel = new JPanel(); 
27 add(panel); 
28 yellowButton = new JButton("Yellow"); 
29 ЫueButton = new JButton("Blue"); 
30 redButton = new JButton ( "Red"); 
31 
32 panel.add(yellowButton); 
33 panel.add(ЬlueButton); 

34 panel.add(redButton); 
35 
36 ActionListenerinstaller.processAnnotations(this); 
37 
38 
39 @ActionListenerFor(source = "yellowButton") 
40 puЫic void yellowBackground() 
41 { 
42 panel.setBackground(Color.YELLOW); 
43 
44 
45 @ActionListenerFor (source = "ЫueButton") 
46 puЫic void ЫueBackground() 
47 { 
48 panel.setBackground(Color.BLUE); 
49 
50 
51 @ActionListenerFor(source "redButton") 
52 puЫic void redBackground() 
53 { 
54 panel.setBackground(Color.RED); 
55 
56 



Глава В • Написание сценариев. компиляция и обработка аннотаций 

Листинг 8.8. Исходный код из файла run timeAnnota tions /Ас tionLi s tenerFor. j ava 

1 package runtimeAnnotations; 
2 
3 import java.lang.annotation.*; 
4 
5 /** 
6 * @version 1.00 2004-08-17 
7 * @author Сау Horstmann 
в */ 
9 @Target(ElementType.METHOD) 
10 @Retention(RetentionPolicy.RUNTIME) 
11 puЫic @interface ActionListenerFor 
12 { 
13 String source(); 
14 

java.lang.reflect.AnnotatedElement 5.0 

boolean isAnnotationPresent(Class<? extends Annotation> 
a.nnotationType) 

Возвращает логическое значение true, если данный элемент снабжен аннотацией указан­
ного типа. 

• <Т extends Annotation> Т getAnnotation (Class<T> annota tionType) 

Получает аннотацию заданного типа или пустое значение null, если такая аннотация отсут­
ствует у данного элемента. 

• <Т extends Annotation> Т[] getAnnotationsByТype(Class<T> 

a.nnotationType) 8 

Получает все аннотации повторяющегося типа lсм. раздел 8.5.3] или возвращает массив ну­
левой длины. 

• Annota tion [] getAnnota tions () 

Получает все аннотации, доступные для данного элемента, включая унаследованные. Если 

доступные аннотации отсутствуют, возвращается массив нулевой длины. 

• Annotation [] getDeclaredAnnotations () 

Получает все аннотации, объявленные для данного элемента, исключая унаследованные. 

Если доступные аннотации отсутствуют, возвращается массив нулевой длины. 

8.4. Синтаксис аннотаций 
В последующих разделах поясняется все, ч:то следует :шать о синтаксисе ашю­

таций. 

8.4.1. Интерфейсы аннотаций 
Аннотация определяется с помощью своего интерфейса следующим образом: 

модификаторы @interface ИмяАннотации 
{ 



объявлениеЭлемента1 

объявлениеЭлемента: 

8.4. Синтаксис аннотаций 

Каждый элемент может быть объявлен в одной из следующих форм: 

тип имяЭлемента(); 

или 

тип имяЭлемента () default значение; 

Например, приведенная ниже аннотация состоит из двух элементов: 

assignedTo и severity. 

puЫic @interface BugReport 
{ 

String assignedTo() default "[none]"; 
int severity(); 

Все интерфейсы аннотаций неявно расширяют интерфейс j а v а. 1 ang. 
annotation.Annotation. Эго обычный интерфейс, а не интерфейс аннотаций. 
Предоставляемые им методы можно найти в конце этого раздела, где описывается 

соответствующий прикладной интерфейс API. Самостоятельно расширять интер­
фейсы аннотаций нельзя. Иными словами, все интерфейсы аннотаций могут не­

посредственно расширять только интерфейс j ava. lang. annotation.Annotation. 
Нельзя также предоставить классы, реализующие интерфейсы аннотаций. 

Методы из интерфейса аннотаций могут не иметь ни параметров, ни опера­

торов throws. Они не могут быть статическими, обобщенными с параметрами 
типа или методами с реализацией по умолчанию. 

Элемент аннотации может принимать один из следующих типов. 

• Примитивный тип (int, short, long, byte, char, douЫe, float или 
boolean). 

• Строковый тип String. 

• Тип Class (с каким-нибудь необязательным параметром вроде Class<? 
extends MyClass>). 

• Перечислимый тип enum. 

• Тип аннотации. 

• Массив перечисленных выше типов (массив массивов не является допусти­

мым типом элемента аннотации). 

puЫic @interface BugReport 
{ 

enum Status { UNCONFIRМED, CONFIRMED, FIXED, NOTABUG ); 
boolean showStopper() default false; 
String assignedTo() default "[none]"; 
Class<?> testCase() default Void.class; 
Status status() default Status.UNCONFIRMED; 
Reference ref() default @Reference(); //тип аннотации 
String[] reportedBy(); 



Глава В • Написание сценариев. компиляция и обработка аннотаций 

java.lang.a.nnotation.Annotation 5.0 

• Class<? extends Annotation> annotationТype() 

Возвращает объект типа Class, который представляет интерфейс аннотаций для данного 
объекта аннотации. Однако вызов метода getClass () для объекта аннотации привел бы 
к возврату конкретного класса, а не интерфейса. 

• boolean equals (Object other) 

Возвращает логическое значение true, если параметр othвr обозначает объект, класс ко­
торого реализует тот же интерфейс аннотаций, что и данный объект аннотации, и если все 

элементы этого объекта равны параметру othвr. 

• int hashCode () 

Возвращает хеш-код, совместимый с методом equals () и получаемый из имени интерфей­
са аннотаций и значений его элементов. 

• String toString () 

Возвращает строковое представление, содержащее название интерфейса аннотаций и зна­

чения элементов, например @BugReport (assignedTo= [none] , severity=O). 

8.4.2. Объявление аннотаций 
Каждая аннотация имеет следующую форму объявления: 

@Имя Аннотации (имя Элемента 1 =значение 11 

имяЭлемента2=значение;>, . . . 1 

В качестве примера ниже приведено объявление аннотации для сообщений 

о программных ошибках. 

@BugReport(assignedTo="Harry", severity=lO) 

Порядок следования элементов в аннотации особого значения не имеет. Так, 

следующая аннотация идентична приведенной выше: 

@BugReport(severity=lO, assignedTo="Harry") 

Значение, устанавливаемое в объявлении аннотации по умолчанию, исполь­

зуется в том случае, если для элемента аннотации не задано конкретное значе­

ние. Ниже приведен пример аннотации, где в качестве значения для элемента 

а s s ignedTo по умолчанию выбирается символьная строка " [ none] ". 

@BugReport(severity=lO) 

• ВНИМАНИЕ! Устанавливаемые по умолчанию значения не хранятся вместе с аннотацией, а вычисляются динамически. Так, если заменить значение, устанавливаемое по умолча­

нию в элементе assignedTo, строковым значением " []" и скомпилировать интерфейс 

BugReport заново, в аннотации @BugReport (severity=lO) будет использоваться новое 
устанавливаемое по умолчанию значение - даже в тех файлах классов, которые были ском­

пилированы до изменения этого значения. 

Аннотации можно упростить с помощью двух специальных сокращений. Так, 

если элементы не указаны, потому что они просто отсутствуют в аннотации или 

все они принимают значения, устанавливаемые по умолчанию, то круглые скоб­

ки не требуются. Например, аннотация 

@BugReport 



равнозначна такой аннотации: 

@BugReport(assignedTo="[none]", severity=O) 

Подобная аннотация называется .маркерной. 

8.4. Синтаксис аннотаций 

Другим специальным сокращением является одноJначная аннотация. Если эле­

мент аннотации имеет специальное имя value и больше никаких элементов не 

указано, то имя элемента и знак = могут быть опущены. Так, если определить 

интерфейс аннотаций ActionListenerFor, упоминавшийся в предыдущем раз­

деле, следующим обра:юм: 

puЫic @interface ActionListenerFor 
{ 

String value(); 

то сами аннотации можно записать так: 

@ActionListenerFor("yellowButton") 

а не так, как показано ниже. 

@ActionListenerFor(value="yellowButton") 

У каждого элемента может быть нескол1,ко аннотаций: 

@Test 
@BugReport(showStopper=true, reportedBy="Joe") 
puЫic void checkRandominsertions() 

Если автор аннотации объявил ее повторяющейся, такую аннотацию можно 

повторять неоднократно, как показано в следующем примере кода: 

@BugReport(showStopper=true, reportedBy="Joe"I 
@BugReport(reportedBy={"Harry", "Carl"IJ 
puЫic void checkRandominsertions() 

• 

НА ЗАМЕТКУ! Аннотации вычисляются компилятором, и поэтому значения всех элементов ан­

нотаций должны быть представлены константами, обрабатываемыми во время компиляции, 

как в следующем примере кода: 

@BugReport(showStopper=true, assignedTo="Harry", 
testCase=MyTestCase.class, 
status=BugReport. Status. CONFIRМED, . . . ) 

ВНИМАНИЕ! Элемент аннотации вообще не может принимать пустое значение null. Даже 
по умолчанию не допускается устанавливать в нем пустое значение null. Это не очень удоб­
но, поскольку для установки по умолчанию придется выбирать другие значения вроде "" или 
Void. class. 

Если в качестве значения элемента аннотации указывается массив, :шачения 

элементов такого массива заключаются в фигурные скобки: 

@BugReport ( ... , reportedBy={ "Harry", "Carl" 1) 

Если же элемент аннотации принимает единственное :шачевие, фигурные 

скобки можно опустить: 

11 допускается и подобно {"Joe"I: 
@BugReport ( ... , reportedBy="Joe") 



Глава В • Написание сценариев. компиляция и обработка аннотаций 

В качестве элемента аннотации может служить какая-нибудь другая аннота­

ция, что дает возможность создавать довольно сложные аннотации, как показано 

в приведенном ниже примере. 

@BugReport ( re f=@Reference ( id=" 3352 627" 1 , . . . ) 

НА ЗАМЕТКУ! Внедрение циклических зависимостей в аннотациях считается ошибкой. На­

пример, вследствие того, что аннотация BugReport содержит элемент тиnа Reference, ан­
нотация Reference не может содержать элемент тиnа BugReport. 

8.4.З. Аннотирование объявлений 

Аннотации моrут встречаться и во многих других местах прикладного кода. Эги 

места можно разделить на две категории: объяв.ления и J,tecтa употребления типов 

данных. Аннотации моrут появляться в объявлениях следующих элементов кода. 

• Пакеты. 

• Классы (включая и перечисления). 

• Методы. 

• Конструкторы. 

• Переменные экземпляра (включая и константы перечислимого типа). 

• Локальные переменные. 

• Переменные параметров. 

• Параметры типа. 

В объявлениях классов и интерфейсов аннотации указываются перед ключе­

вым словом class или interface следующим образом: 

@Enti ty puЫic class User ( . . . ) 

В объявлениях переменных аннотации указываются перед типом переменной 

таким образом: 

@SuppressWarnings("unchecked") List<User> users = ... ; 
puЫic User getUser(@Param("id") String userid) 

Параметр типа в обобщенном классе или методе может быть аннотирован так: 

puЫic class Cache<@ImmutaЫe V> ( ... } 

Пакет аннотируется в отдельном файле package-info. java, который содер­
жит только операторы объявления и импорта пакета с предшествующими ан­

нотациями, как показано ниже. Оnратите внимание на то, что оператор import 
следует после оператора package, в котором объявляется пакет. 

/*·k 
Документирующий комментарий на уровне пакета 

*/ 
@GPL(version="3") 
package com.horstmann.corejava; 
import org.gnu.GPL; 



8.4. Синтаксис аннотаций 

НА ЗАМЕТКУ! Аннотации всех локальных переменных отбрасываются при компилировании 

класса. Следовательно, они могут быть обработаны только на уровне исходного кода. Анало­

гично, аннотации пакетов не сохраняются вне уровня исходного кода. 

8.4.4. Аннотирование в местах употребления типов данных 
Аннотация в объявлении предоставляет некоторые сведения об объявляемом 

элементе кода. Так, в следующем примере кода аннотацией утверждается, что 

параметр userid объявляемого метода не является пустым: 

puЫic User getUser(@NonNull String userid) 

НА ЗАМЕТКУ! Аннотация @NonNull является частью каркаса Checkeг Framewoгk [https: / / 
checkerframework. org /). С помощью этого каркаса можно включать утверждения в при­
кладную программу, например, утверждение, что параметр не является пустым или относится 

к типу String и содержит регулярное выражение. В таком случае инструментальное средство 
статистического анализа проверит достоверность утверждений в данном теле исходного кода. 

Теперь допустим, что имеется параметр типа List<String> и требуется ка­
ким-то образом указать, что все символьные строки не являются пустыми. Имен­

но здесь и пригодятся аннотации в местах употребления типов данных. Такую 

аннотацию достаточно указать перед аргументом типа следующим образом: 

List<@NonNull String> 

Подобные аннотации можно указывать в следующих местах употребления ти­

пов данных. 

• Вместе с аргументами обобщенного типа: List<@NonNull String>, 
Comparator. <@NonNull String> reverseOrder (). 

• В любом месте массива: @NonNull String [] [] words (элемент массива 
words [ i] [ j] не является пустым), String @NonNull [] [] words (массив 
words не является пустым), String [} @NonNull [] words (элемент масси­
ва words [ i] не является пустым). 

• В суперклассах и реализуемых интерфейсах: class Warning extends 
@Localized Message. 

• В вызовах конструкторов: new @Loca1ized String ( ... ). 

• Во вложенных типах: Мар. @Localized Entry. 

• В операции приведения и проверки типов instanceof: (@Localized 
String) text, if (text instanceof @Localized String). (Аннотации 
служат для употребления только внешними инструментальными средства­

ми и не оказывают никакого влияния на поведение операции приведения 

и проверки типов instanceof.) 

• В местах укюа11ия исключений: puЫic String read () throws @Localized 
IOException. 

• Вместе с метасимволами подстановки и ограничениями типов: List< 
@Localized? extends Message>, List<? Extends @Loca1ized Message>. 

• В ссылках на методы и конструкторы: @Localized Message:: getText. 



Глава В • Написание сценариев. компиляция и обработка аннотаций 

Однако имеются некоторые места употребления типов данных, где аннотации 

не допускаются. Ниже приведены характерные примеры. 

@NoпNull Striпg.class //ОШИБКА: литерал класса не 

11 подлежит аннотированию! 
import java.laпg.@NoпNull Striпg; //ОШИБКА: импорт не 

//подлежит аннотированию 1 

Аннотации можно размещать до или после других модификаторов доступа 

вроде private и static. Обычно (хотя и не обязательно) аннотации в местах 
употребления типов размещаются после других модификаторов доступа, тогда 

как аннотации в объявлениях - перед другими модификаторами доступа. Соот­

ветствующие примеры приведены ниже. 

/!Аннотация в месте употребления типа данных: 

private @NonNull String text; 
/!Аннотация в объявлении переменной: 

@Id private String userld; 

НА ЗАМЕТКУ Автор аннотации должен указать место, в котором может появиться конкретная 

аннотация. Если аннотация допускается как в объявлении переменной, так и в месте употре­

бления типа данных, а применяется в объявлении переменной, то она указывается и в том 

и в другом месте. Рассмотрим в качестве примера следующее объявление метода: 

puЫic User getUser(@NonNull Striпg userld) 

Если аннотацию @NonNull можно применять как в параметрах, так и в местах употребле­
ния типов данных, то параметр userld аннотируется, а тип параметра обозначается как @ 

NonNull String. 

8.4.5. Аннотирование по ссылке this 

Допустим, требуется аннотировать параметры, которые не изменяются методом: 

puЫic class Point { 
puЬlic Ьооlеап equals (@ReadOпly Object other) { ... ) 

В таком случае инструментальное средство, обрабатывающее данную аннота­

цию, после анализа вызова 

p.equals(q) 

посчитает, что параметр q не изменился. А как насчет ссылки р? При вызове 
данного метода переменная this привязывается к ссылке р. Но ведь переменная 
this вообще не объявляется, а следовател1,но, не может быть аннотирована. 

На самом деле эту переменную можно объявить с помощью редко употребля­

емой разновидности синтаксиса, чтобы ввести аннотацию следующим образом: 

puЫic class Point { 
puЬlic boolean equals(@ReadOnly Point this, 

@ReadOnly Obj ect other) { . . . ) 



8.5. Стандартные аннотации 

Первый параметр в приведенном выше примере кода называется параметром 

но.лучате.ля. Он должен непременно называться this. Его тип относится к тому 
классу, объект которого создается. 

НА ЗАМЕТКУ! Параметром получателя можно снабдить только методы, но не конструкторы. По 

существу, ссылка this в конструкторе не является объектом данного типа до тех пор, пока 
конструктор не завершится. Напротив, аннотация, размещаемая в конструкторе, описывает 

конструируемый объект. 

Конструктору внутреннего класса передается другой скрытый параметр, 

а именно: ссылка на объект объемлющего класса. Этот параметр также можно 

указать явным образом: 

static class Sequence 
private int from; 
private int to; 

class Iterator implements java.util.Iterator<Integer> { 
private int current; 

puЫic Iterator(@ReadOnly Sequence Sequence.this) 
this.current = Sequence.this.from; 

Этот параметр именуется таким же образом, как и при ссылке на него: 

ОбъемлющийКласс. this. А его тип относится к объемлющему классу. 

8.5. Стандартные аннотации 
В пакетах j ava. lang, j ava. lang. annotation и j avax. annotation определен 

целый ряд интерфейсов аннотаций. Четыре из них определяют мета-аннотации, 

описывающие поведение интерфейсов аннотаций, а остальные - обычные ан­

нотации, которые разработчики могут применять для аннотирования элементов 

в своем исходном коде. Все эти аннотации вкратце перечислены в табл. 8.2 и бо­
лее подробно будут описаны в двух последующих разделах. 

Таблица 8.2. Стандартные аннотации 

Интерфейс аннотаций 

Deprecated 

SuppressWarnings 

Saf eVarargs 

Применение 

Все элементы кода 

Все элементы кода, 

кроме пакетов 

и аннотаций 

Назначение 

Аннотирует элемент кода как не 

рекомендуемый для применения 

Подавляет предупреждения 

указанного типа 

Методы и конструкторы Утверждает, что аргументы 

переменной длины безопасны 

для употребления 



Глава В • Написание сценариев. компиляция и обработка аннотаций 

Интерфейс аннотаций Применение 

Override Методы 

Functionalinterface Инrерфейсы 

PostConstruct, 
PreDestroy 

Resource 

Resources 
Generated 

Target 

Retention 

Documented 

Inherited 

RepeataЬle 

Метолы 

Классы, интерфейсы, 

метолы, 1юля 

Классы, интерфейсы 

Все ·1леме1пы кола 

Аннотации 

АннотаI\ИИ 

Аннота11ии 

Аннотации 

Аннопщии 

8.5.1. Аннотации для КОМПИЛЯЦИИ 

Окончание та6л. 8.2 

Назначение 

Проверяет, переопределяет ли 

данный метод соответствующий 

метод из суперкласса 

Обозначает интерфейс как 

функциональный с елинственным 

абсграктным методом 

Обозначает, что аннотированный 

метод должен вызываться сразу же 

после создания или непосредсrвенно 

перел удалением 

Если это класс или интерфейс, 

то аннотирует его как ресурс 

для применения в каком-нибул~, 

другом месте. Если это метол или 
поле, то аннотирует его как ресурс 

для внедрения 

Аннотирует массив ресурсов 

Аннотирует элемент как исхолный 

код, сгенерированный каким-нибуд~, 

инструментал~,ным средством 

Обозначает элементы, к которым 

может быт~, применена данная 

аннотация 

Обозначает, как долго должна 

сохраняться данная аннотация 

Обозначает, что данная 

аннотация должна быть включена 

в документацию на аннотируемые 

элементы кода 

Обозначает, что если данная 

аннотация применяется к классу, 

то она будет автоматически 

наследоваться всеми его подклассами 

Обозначает, что данную аннотацию 

можно неолнократно нрименяп, 

к одному и тому же элементу 

Аннотация @Deprecated может присоединяться к любым элементам, приме­
нение которых впред1, не рекомендуется. В таком случае компилятор будет выда­

вать соответствующее предупреждение, если нерекомендуемый элемент все-таки 

применяется в исходном коде. Эта аннотация имеет такое же назначение, как 

и дескриптор @deprecated в документирующих комментариях формата Javadoc. 

1!:'1 НА ЗАМЕТКУ! Утилита jdeprscan, входящая в состав комплекта JDK, позволяет просматри-
1,3 вать архивные JАR-файлы на наличие не рекомендованных к употреблению элементов кода. 



В.5. Стандартные аннотации 

Аннотация @SuppressWarnings указывает компилятору подавлять преду­
преждения определенного типа, как показано в приведенной ниже строке кода. 

@SuppressWarnings("unchecked") 

Аннотация @Override применяется только к методам. Компилятор проверя­
ет, чтобы метод с такой аннотацией действительно переопределял соответству­

ющий метод из суперкласса. Так, если сделать приведенное ниже объявление, 

компилятор выдаст ошибку, поскольку метод equals () не переопределяет ана­
логичный метод equals () из класса Object. Этот метод имеет параметр типа 
Obj ect, а не MyClass. 

puЫic MyClass 
{ 

@Override puЫic boolean equals(MyClass other); 

Аннотация @Generated предназначена для использования инструментальны­
ми средствами генерирования кода. Любой генерируемый исходный код может 

снабжаться аннотациями, чтобы отличаться от кода, предоставляемого програм­

мистом. Например, редактор кода может скрывать сгенерированный код, а гене­

ратор кода - удалять более старые версии сгенерированного кода. Каждая такая 

аннотация должна содержать одно:шачный идентификатор для генератора кода. 

Символьные строки с датами (в формате ISO 8601) и комментариями указывать 
необязательно. Ниже приведен характерный пример аннотации для генерирова­

ния кода. 

@Generated("com.horstmann.beanproperty", 
"2008-01-04Т12:08:56.235-0700"); 

8.5.2. Аннотации для управления ресурсами 
Аннотации @PostConstruct и @PreDestroy применяются в таких средах, ко­

торые управляют жизненным циклом объектов, например, в неб-контейнерах 

и серверах приложений. Методы, снабжаемые такими аннотациями, должны 

вьвываться сразу же после создания объекта или непосредственно перед его уда­

лением. 

Аннотация @Resource предназначена для внедрения ресурсов. Рассмотрим 
в качестве примера веб-приложение, получающее доступ к базе данных. Разуме­

ется, сведения о получении доступа к базе данных не должны жестко кодировать­

ся в таком приложении. Вместо этого у веб-контейнера должен быть какой-то 

пользовательский интерфейс для установки параметров подключения, а также 

имя JNDI для источника данных. Сослаться на источник данных в веб-приложе­
нии можно следующим образом: 

@Resource(name="jdbc/mydb") 
private DataSource source; 

При построении объекта, содержащего такое поле, веб-контейнер внедрит 

ссылку на указанный источник данных. 



Глава В • Написание сценариев. компиляция и обработка аннотаций 

8.5.З. Мета-аннотации 

Мета-аннотация @Target применяется к аннотации, ограничивая те элемен­
ты, которые должны быть снабжены данной аннотацией, как показано в приве­

денном ниже примере. 

@Target({ElementType.TYPE, ElementType.METHOD)) 
puЫic @interface BugReport 

В табл. 8.3 перечислены все возможные значения элементов данной мета-ан­
нотации. Они относятся к перечислимому типу ElementType. Указывать можно 
любое количество типов элементов, заключая их в фигурные скобки. 

Таблица 8.3. Типы элементов для мета-аннотации @Target 

Тип элемента Применение аннотации 

ANNOTATION ТУРЕ Объявления типов аннотаций 

РАСКАGЕ Пакеты 

ТУРЕ Классы (включая перечисления) и интерфейсы (включая типы 

аннотаций) 

МЕТНОD Методы 

CONSTRUCTOR Конструкторы 

FIELD Поля (включая константы перечислимого типа) 

PARAМETER Параметры методов или конструкторов 

LOCAL VARIAВLE Локальные переменные 

ТУРЕ PARAМETER Параметры типа 

ТУРЕ USE Места употребления типов данных 

Аннотацией без ограничений, накладываемых мета-аннотацией @Target, можно 
снабдить любой элемент кода. Компилятор проверяет, чтобы аннотацией снабжал­

ся только разрешенный элемент кода. Так, если снабдить аннотацией @BugReport 
поле, компилятор выдаст во время компиляции соответствующую ошибку. 

Мета-аннотация @Retention обозначает, насколько долго должна сохраняться 
аннотация. Указать можно не больше одного значения из перечисленных в табл. 8.4. 
По умолчанию устанавливается значение константы RetentionPolicy. CLASS. 

Таблица 8.4. Правила сохраняемости для мета-аннотации @Retention 

Правило сохраняемости Описание 

SOURCE Аннотации не включаются в файлы классов 

CLASS Аннотации включаются в файлы классов, но виртуальной машине 

не нужно их загружать 

RUNTIМE Аннотации включаются в файлы классов и загружаются 

виртуальной машиной. Они доступны через 11рикладной 

интерфейс API для рефлексии 

В упоминавшемся ранее примере реализации интерфейса аннотаций из ли­

стинга 8.8 аннотация @ActionListenerFor была объявлена со значением константы 
RetentionPolicy. RUNTIME, поскольку для обработки аннотаций в данном примере 
применялась рефлексия. В двух последующих разделах приведены примеры обра­

ботки аmютаций как на уровне исходного кода, так и на уровне файлов классов. 



8.5. Стандартные аннотации 

Мета-аннотация @Documented выдает подсказку о средствах документиро­
вания в формате Javadoc. Документируемые аннотации следует рассматривать 
в целях докуме11тирования таким же обра:юм, как и другие модификаторы, по­
добные protected или static. О применении остальных аннотаций в докумен­
тации не упоминается. Допустим, а11нотация @ActionListenerFor объявляется 
как документируемая следующим обра :юм: 

@Documented 
@Target(ElementType.METHOD) 
@Retention(Retenti onPolicy.RUNTIME) 
puЫic @interface ActionListenerFor 

В таком случае документация на каждый аннотированный метод будет содер­

жать эту аннотацию, как показано на рис. 8.2. Если же аннотация оказывается 
временной (как, 11апример, @BugReport ), то документировать ее применение 
вряд ли стоит. 

Bн11 o r1tr .н11 r -Moz 1ll .1 I н f'fO)(- - - ~ ------- - - - _ ·:-i -

fjle fdl! \6ew H1J!ory eooicmorlcs :LЬols l:jelp 

All Clastts 
ActюnlJstenerFor 

Ac~anListenerlnstaller 

tш,nanFra~ 
ВUttanTe st 

;"\ _, L.J file;///home/cay/Ьooks/cJS/code/V2chl3/Act1onLJstenerFor/lndex.html • • 

Buttonframe 

puЫic 8uttonFra11e () 

Jмethod Detall 

yellowBackground 

@Ас tlonLi,tenerfo г <вшn•"уе t tovaitt on•) 
puЫic void yellowВackground () 

ЫueBackground 

aAct1 onц5tenrrfor <шш•'" blue8Jtton") 
puЫic vaid ЫueВ.ckground () 

redBackground 

8Ac t1onlJsten~rFor {.UШ:U•" redEkltton") 
puЫic void rtdВ.ckground () 

hle :///'nome/cey/books/cj8/codetv2chlЗ/ActionListenerFo r/Вutt onFrame .ht ml 

Рис. 8.2. Документируемые аннотации 

НА ЗАМЕТКУ! Аннотацию вполне допустимо применять к самой себе. Например, аннотация 
@Documented аннотируется как @Documented. Поэтому в документации формата Javadoc 
на такие аннотации указано, являются ли они документируемыми. 

Мета-аннотация @Inherited применяется только к аннотациям классов. 
Когда в класс вводится наследуемая аннотация, все его подклассы автоматиче­

ски снабжаются точно такой же ашютацией. Это позволяет легко со3давать ан­

нотации, действующие таким же обра :юм, как и маркерные интерфейсы вроде 

Seria l izaЫe . 



Глава 8 • Написание сценариев. компиляции и обработка аннотаций 

На самом деле аннотация @SerializaЫe будет более уместной, чем маркерный 

интерфейс SerializaЬle без единого метода. Класс является сериализируемым из­

за наличия во время выполнения поддержки для чтения и записи его полей, а не 

из-за каких-то принципов объектно-орие1пированного проектирования. Аннотация 

описывает данное обстоятельство намного лучше, чем наследование и1перфейсов, 

ведь интерфейс SerializaЬle появился еще в версии JDK 1.1, т.е. намного раньше, 
чем аннотации. 

Допустим, для указания на то, что объекты класса могут сохраняп,ся в базе 

данных, определяется наследуемая аннотация @Persistent. В таком случае все 
подклассы этого класса будут автоматически аннотироваться как сохраняемые: 

@Inherited @interface Persistent 
@Persistent class Employee { . 
class Manager extends Employee { . } 

11 также @Persistent 

При поиске объектов, сохраняемых в базе данных, механизм сохраняемости 

будет обнаруживать как объекты типа Employee, так и объекты типа Manager. 
Начиная с версии Java 8 допускается неоднократное применение аннотации 

одного и того же типа к отдельному элементу. Ради обратной совместимости 

разработчикам повторяющейся аннотации пришлое~, предоставить контейнер­

ную аннотацию, содержащую повторяющиеся аннотации в массиве. Ниже пока­

за1ю, каким образом определяются аннотация @TestCase и ее контейнер. 

@RepeataЬle(TestCases.class) 

@interface TestCase { 
String params(); 
String expected(); 

@interface TestCases { 
TestCase[] value(); 

Всякий раз, когда пользователь предоставляет две или более аннотации 

@TestCase, они автоматически заключаются в оболочку аннотации @TestCases . 

• ВНИМАНИЕ! Обработка повторяющихся аннотаций требует особого внимания. Если вызвать метод qetAnnotation () для поиска повторяющейся аннотации, которая на самом деле не 
повторялась, то и в этом случае может быть получено пустое значение null. Объясняется 
это тем, что повторяющиеся аннотации были заключены в оболочку контейнерной аннотации. 

В таком случае следует вызвать метод qetAnnotationsByТype (), где просматривается 
контейнер и предоставляется массив повторяющихся аннотаций. Если бы имелась только 

одна аннотация, она была бы получена в массиве единичной длины. Имея в своем распоря­

жении данный метод, можно вообще не беспокоиться о контейнерной аннотации. 

8.6. Обработка аннотаций на уровне исходного кода 
В предыдущем разделе было показа1ю, каким образом аннотации анали:н1-

руются в выполняющейся программе. Еще одним примером применения ан­

нотаций служит автоматическая обработка исходных файлов для получения 



8.6. Обработка аннотаций на уровне мсходноrо кода 

дополнительного исходного кода, файлов конфигурации, сценариев и вообще 

всего, что можно сгенерировать. 

8.6.1. Процессоры аннотаций 
Обработка аннотаций встроена в компилятор Java. Во время компиляции про­

цессоры аннотаций можно вызывать по следующей команде: 

javac -processor ИмяКлассалроцессора1, ИмяКласса!Iроцессора;, ... 
Исходные_ файлы 

Компилятор обнаруживает аннотации в исходных файлах. Каждый процес­

сор аннотаций выполняется по очереди с учетом тех аннотаций, к которым он 

проявил интерес. Если процессор аннотаций со:\дает новый исходный файл, то 

данный процесс повторяется. Как только все исходные файлы будут обработаны, 

они компилируются. 

F::'I НА ЗАМЕТКУ Процессор аннотаций может только формировать новые исходные файлы, но не 
~ может изменять уже имеющиеся. 

Процессор аннотаций реализует интерфейс Processor, как правило, расши­
ряя класс AbstractProcessor. При этом нужно ука:Jать, какие именно аннота­
ции поддерживаются процессором. В данном случае это следующие аннотации: 

@SupportedAnnotationTypes("com.horstmann.annotations.ToString") 
@SupportedSourceVersion(SourceVersion.RELEASE_8) 
puЬlic class ToStringAnnotationProcessor 

extends AbstractProcessor 

@Override 
puЫic boolean process( 

Set<? extends TypeElement> annotations, 
RoundEnvironment currentRound) 

Процессору могут потребоваться конкретные типы аннотаций, метасимво­

лы подстановки вроде "com.horstmann. *" (т.е. все аннотации И3 пакета corn. 
horstmann и любых его подпакетов) или даже "*" (т.е. все аннотации вообще). 
Метод process () вызывается один раз в каждом цикле обработки со всеми ан­
нотациями, обнаруженными в любых файлах при выполнении данного цикла, 

а также со ссылкой на интерфейс RoundEnvironment, содержащей сведения о те­
кущем цикле обработки. 

8.6.2. Прикладной интерфейс API модели языка 
Для анализа аннотаций на уровне исходного кода служит прикладной ин­

терфейс API моде.ли Я3ыка. В отличие от прикладного и11терфейса API для реф­
лексии, представляющего классы и методы на урон11е виртуал1,ной машины, 

прикладной интерфейс API модели я3ыка позволяет анализировать программу 
на Java по правилам я3ыка Java. 



Глава 8 • Написание сценариев. компиляция и обработка аннотаций 

Компилятор получает дерево, узлами которого являются экземпляры классов, 

реализующих интерфейс javax. lang .model. element. Element, и производные 
от него интерфейсы TypeElement, VariaЬleElement, ExecutaЬleElement и т.д. 
Они служат статическими (на стадии компиляции) аналогами классов рефлек­

сии Class, Field/Parameter, Method/Constructor. 
Не вдаваясь в подробности прикладного интерфейса API модели языка, пере­

числим главные его особенности, о которых следует знать, приступая к обработке 

аннотаций. 

• Интерфейс RoundEnvironment предоставляет все элементы кода, помечен­
ные конкретной аннотацией. Для этой цели вызывается следующий метод: 

Set<? extends Element> getElementsAnnotatedWith( 
Class<? extends Annotation> а) 

• Эквивалентом интерфейса AnnotateElement для обработки аннотаций 
на уровне исходного кода является интерфейс AnnotatedConstruct. Для 
получения обычных или повторяющихся аннотаций из отдельного анноти­

рованного класса служат следующие методы: 

А getAnnotation(Class<A> annotationType) 
А[] getAnnotationsByType(Class<A> annotationType) 

• Интерфейс TypeElement представляет класс или интерфейс, а метод 
getEnclosedElements () получает список его полей и методов. 

• В результате вызова метода getSimpleName () по ссылке типа Element или 
метода getQualifiedName () по ссылке типа TypeElement получается объ­
ект типа Name, который может быть преобразован в символьную строку 
методом toString (). 

8.6.Э. Генерирование исходного кода с помощью аннотаций 

В качестве примера рассмотрим применение аннотаций с целью упростить 

реализацию методов типа toString. Такие методы нельзя ввести в исходные 
классы. Ведь процессоры аннотаций способны производить только новые клас­

сы, а не изменять уже имеющиеся. Следовательно, все подобные методы должны 

быть введены в служебный класс ToStrings следующим образом: 

puЫic class ToStrings { 
puЬlic static String toString (Point obj) { 

Сгенерированный код 

puЫic static String toString (Rectangle obj) ( 
Сгенерированный код 

puЫic static String toString (Object obj) { 
return Objects.toString(obj); 

В данном случае применять рефлексию не требуется, поэтому аннотируются 

методы доступа, но не поля: 



8.6. Обработка аннотаций на уровне исходного кода 

@ToString 
puЫic class Rectangle { 

@ToString(includeName=false) puЫic Point getTopLeft() 
{ return topLeft; ) 
@ToString puЫic int getWidth () { return width; } 
@ToString puЫic int getHeight () { return height; 

И тогда процессор аннотаций должен сгенерировать следующий исходный код: 

puЫic static String toString(Rectangle obj) { 
StringBuilder result = new StringBuilder(); 
resul t. append ( "Rectangle") ; 
result.append("["); 
result.append(toString(obj.getTopLeft())); 
result.append(","); 
result.append("width="); 
result.append(toString(obj.getWidth() )) ; 
result.append(","); 
resul t. append ( "height="); 
result.append(toString(obj.getHeight())); 
result.append("]"); 
return result.toString(); 

Шаблонный код выделен выше обычным шрифтом. Ниже приведен набро­

сок метода, получающего метод toString () для класса с заданным параметром 
типа TypeElement. 

private void writeToStringMethod( 
PrintWriter out, TypeElement te) { 

String className = te.getQualifiedName() .toString(); 
Вывести заголовок метода и объявление построителя 

символьных строк 

ToString ann = te.getAnnotation(ToString.class); 
if (ann.includeName()) 
Вывести код для ввода имени класса 

for (Element с : te.getEnclosedElements()) 
ann = c.getAnnotation(ToString.class); 
if (ann != null) { 

if (ann.includeName()) 
Вывести код для ввода имени поля 

Вывести код для присоединения 

метода toString(obj.ИмяMeтoдa()) 

Вывести код для возврата символьной строки 

Ниже приведен набросок метода process () из процессора аннотаций. В этом 
методе создается исходный файл для вспомогательного класса, а также выводит­

ся заголовок класса и по одному методу для каждого аннотируемого класса. 

puЫic boolean process( 
Set<? extends TypeElement> annotations, 
RoundEnvironment currentRound) { 

if (annotations.size() == 0) return true; 



try 
{ 

Глава 8 • Написание сценариев. компиляция и обработка аннотаций 

JavaFileObject sourceFile = processingEnv.getFiler() 
.createSourceFile( 

"com.horstmann.annotations.ToStrings"); 
try (PrintWriter out = 

new PrintWriter(sourceFile.openWriter())) 

Вывести код для пакета и класса 

for (Element е : currentRound 
.getElementsAnnotatedWith(ToString.class)) 

if (е instanceof TypeElement) 
{ 

TypeElement te = (TypeElement) е; 

writeToStringMethod(out, te); 

Вывести код для метода toString(Object) 
catch (IOException ех) 

processingEnv.getMessager() .printMessage( 
Kind.ERROR, ex.getMessage()); 

return true; 

За более подробными сведениями обращайтесь к примерам кода, сопро1ю­

ждающего данную книгу. Следует, однако, иметь в виду, что метод process () 
вызывается в последующих циклах обработки аннотаций с пустым списком ан­

нотаций. И тогда происходит немедленный возврат из данного метода, чтобы не 

создавать исходный файл дважды. 
Сначала скомпилируйте процессор аннотаций, а затем скомпилируйте и вы­

полните тестовую программу, введя следующие команды: 

javac sourceAnnotations/ToStringAnnotationProcessor.java 
javac -processor sourceAnnotations \ 

.ToStringAnnotationProcessor rect/*.java 
java rect.SourceLevelAnnotationDemo 

СОВЕТ. Чтобы просмотреть циклы обработки аннотаций, выполните команду javac с параме­
тром -XprintRounds. В итоге на экран будет выведен результат, аналогичный следующему: 

Round 1: 
input files: {chll.sec05.Point, chll.sec05.Rectangle, 

chll.sec05.SourceLevelAnnotationDemo) 
annotations: [com.horstmann.annotations.ToString] 
last round: false 

Round 2: 
input files: {com.horstmann.annotations.ToStrings) 
annotations: [] 
last round: false 

Round 3: 
input files: {) 
annotations: [] 
last round: true 



8.7. Конструирование байт-кодов 

В данном примере было продемонстрировано, каким образом инструмен­

тальные средства могут собирать аннотации из исходных файлов для получе­

ния других файлов. Формируемые в итоге файлы совсем не обязательно долж­

ны быть исходными. Процессоры аннотаций могут сформировать дескрипторы 

ХМL-разметки, файлы свойств, сценарии командного процессора, документацию 

в формате HTML и пр. 

НА ЗАМЕТКУ! Были предложения использовать аннотации, чтобы еще больше сократить объ­
ем рутинной работы. В самом деле, было бы замечательно, если бы тривиальные методы по­

лучения и установки генерировались автоматически. Например, аннотация 

@Property private String title; 

могла бы автоматически генерировать приведенные ниже методы. 

puЫic String getTitle() { return title;} 
puЫic void setTitle (String title) { this. title = title; 

Но эти методы должны быть введены в один и тот же класс. Для этого потребуется редак­

тирование исходного файла, а не только генерирование еще одного файла, что выходит за 

пределы возможностей обработчиков аннотаций. С этой целью можно было бы создать другое 

инструментальное средство, но оно уже не вписывалось бы в рамки основного назначения 

аннотаций. Ведь аннотация предназначена для описания элемента кода, а не в качестве ди­

рективы для добавления или изменения кода. 

8. 7. Конструирование байт-кодов 
Как пояснялось ранее, аннотации могут обрабатываться как во время выпол­

нения, так и на уровне исходного кода. Но существует еще и третий способ обра­

ботки аннотаций на уровне байт-кода. Если аннотации не удаляются на уровне 

исходного кода, они присутствуют в файлах классов. Формат этих файлов до­

куме1пирован (см. по адресу https: / /docs. oracle. com/j avase/specs/j vms/ 
selO/html). Это довольно сложный формат, и поэтому обрабатывать файлы 
классов без специальных библиотек было бы совсем не просто. К их числу отно­

сится библиотека ASM, доступная по адресу h t tp: / / asm. ow2. org. 

8. 7 .1. Модификация файлов классов 
В этом разделе будет показано, как пользоваться библиотекой ASM для до­

бавления в аннотированные методы протокольных сообщений. Так, если метод 

снабжен следующей аннотацией: 

@LogEntry(logger=ИмяPeгиcтpaтopa) 

то в начале этого метода вводятся байт-коды для оператора 

Logger.getLogger(ИмяPeгиcтpaтopa) 

.entering(ИмяКлacca, ИмяМетода); 

Если, например, снабдил, такой аннотацией метод hashCode () из класса 

Item следующим образом: 

@LogEntry(logger="global") puЫic int hashCode() 



Глава В • Написание сценариев. компиляция и обработка аннотаций 

то при каждом вызове этого метода будет выводиться приблизительно такое со­

общение: 

Мау 17, 2016 10:57:59 АМ Item hashCode 
FINER: ENTRY 

Чтобы добиться такого результата, необходимо выполнить следующие дей­

ствия. 

1. Загрузить байт-коды в файл класса. 

2. Определить местонахождение всех методов. 

3. Выполнить для каждого метода проверку на наличие в нем аннотации 
LogEntry. 

4. Если такая аннотация присутствует, ввести байт-коды для следующих ин­
струкций в начале метода: 

ldc ИмяРегистратора 
invokestatic java/util/logging/Logger.getLogger: 

(Ljava/lang/String;)Ljava/util/logging/Logger; 
ldc ИмяКласса 
ldc ИмяМетода 
invokevirtual java/util/logging/Logger.entering: 

(Ljava/lang/String;Ljava/lang/String;)V 

Вставка этих байт-кодов может показаться на первый взгляд сложной зада­

чей, но библиотека ASM существенно упрощает ее. Не вдаваясь в подробности 
анализа и вставки байт-кодов, обратимся к конкретному примеру программы из 

листинга 8.9. В этой программе редактируется файл классов и вставляется вызов 
регистратора в начале всех методов, снабженных аннотацией LogEntry. 

Ниже показано, каким образом инструкции для протоколирования вводятся 

в исходный файл Item. j ava, представленный в листинге 8.10, где asm -каталог, 
в котором установлена библиотека ASM. 

javac set/Item.java 
javac -classpath .:asm/liЬ/\* 

bytecodeAnnotations/EntryLogger.java 
java -classpath . :asm/lib/\* 

bytecodeAnnotations.EntryLogger set.Item 

Попробуйте выполнить следующую команду до и после изменения файла 

класса Item: 

javap -с set.Item 

В итоге инструкции для протоколирования должны быть вставлены в начале 

методов hashCode (), equals () и compareTo (), как показано ниже. 

puЫic int hashCode(); 
Code: 

О: ldc #85; // String global 
2: invokestatic #80; 

/! Method java/util/logging/Logger.getLogger: 
/! (Ljava/lang/String;)Ljava/util/logging/Logger; 

5: ldc #86; // String Item 
7: ldc #88; // String hashCode 



8.7. Конструирование байт-кодов 

9: invokevirtual #84; 
/! Method java/util/logging/Logger.entering: 
// (Ljava/lang/String;Ljava/lang/String;)V 

12: bipush 13 
14: aload О 

15: getfield #2; // Field description: 
11 Ljava/lang/String; 

18: invokevirtllal #15; // Method 
// java/lang/String.hashCode: ()I 

21: imlll 
22: Ьipush 17 
2 4: aload о -
25: getf ield #3; 11 Field partNumЬer:I 
28: imul 
29: iadd 
30: ireturn 

Программа SetTest из листинга 8.11 встанляет объекты типа Item в хеш-мно­
жество. Если запустить ее с измененным файлом класса, то появятся протокол1,­

ные сообщения, аналогичные приведенным ниже. 

Мау 17, 2016 10:57:59 АМ Item hashCode 
FINER: ENTRY 
Мау 17, 2016 10:57:59 АМ Item hashCode 
FINER: ENTRY 
Мау 17, 2016 10:57:59 АМ Item hashCode 
FINER: ENTRY 
Мау 17, 2016 10:57:59 АМ Item equals 
FINER: ENTRY 
[[description=Toaster, partNumber=l729], 
[description=Microwave, partNumЬer=4104]] 

Обратите внимание на вызов метода equals () при вставке одного и того же 
элемента дважды. Данный пример демонстрирует эффективносп, конструиро­

вания байт-кодов. Аннотации используются для ввода в прикладную программу 

директив, а инструментальное средство редактирования байт-кодов собирает эти 

директивы и соответственно видоизменяет инструкции виртуал1,ной машины. 

Листинг 8.9. Исходный код из файла bytecodeAnnotations/EntryLogger. java 

1 package bytecodeAnnotations; 
2 
3 import java.io.*; 
4 import java.nio.file.*; 
5 
6 import org.objectweb.asm.*; 
7 import org.objectweb.asm.commons.*; 
8 
9 /** 
10 * Вводит инструкции для протоколирования записей 
11 * вначале всех методов из класса, снабженного 

12 * аннотацией LogEntry 
13 * @versioп 1.21 2018-05-01 
14 * @author Сау Horstmann 
15 */ 



Глава 8 • Написание сценариев. компиляция и обработка аннотаций 

16 puЬlic class EntryLogger extends ClassVisitor 
17 { 
18 private String className; 
19 
20 /** 
21 * Конструирует объект типа EntryLogger, 
22 * вставляющий инструкции протоколирования в 
23 * аннотированные методы данного класса 
24 * @param cg the class 
25 */ 
26 puЫic EntryLogger(ClassWriter writer, 
27 String className) 
28 
29 super(Opcodes.ASM5, writer); 
30 this.className = className; 
31 
32 
33 puЫic MethodVisitor visitMethod(int access, 
34 String methodName, String desc, 
35 String signature, String[] exceptions) 
36 
37 MethodVisitor mv = cv.visitMethod(access, 
38 methodName, desc, signature, exceptions); 
39 return new AdviceAdapter(Opcodes.ASM5, mv, access, 
40 methodName, desc) 
41 
42 private String loggerName; 
43 
44 puЫic AnnotationVisitor visitAnnotation( 
45 String desc, boolean visiЬle) 
46 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 

return new AnnotationVisitor(Opcodes.ASM5) 

} ; 

puЫic void visit(String name, Object value) 
{ 

if (desc.equals( 
"LbytecodeAnnotations/LogEntry;") 

&& name.equals("logger")) 
loggerName = value.toString(); 

puЬlic void onMethodEnter() 
{ 

if (loggerName 1= nulli 
{ 

visitLdcinsn(loggerName); 
visitMethodinsn(INVOKESTATIC, 

"j ava/util/ logg ing /Logger", "getLogger", 
"(Ljava/lang/String;)" 

+ "Ljava/util/logging/Logger;", false); 
visitLdcinsn(className); 
visitLdcinsn(methodName); 
visitMethodinsn(INVOKEVIRTUAL, 

"java/util/logging/Logger", "entering", 



73 
74 
75 
76 
77 
78 
79 
80 
81 /** 

) 
} ; 

8.7. Конструирование байт-кодов 

"(Ljava/lang/String;Ljava/lang" 
+ "/String;)V", false); 

loggerName = null; 

82 * Вводит код регистрации записей в указанный класс 

83 * @param args Имя файла класса для вставки кода 
84 */ 
85 puЬlic static void main(String[] args) 
86 throws IOException 
87 
88 if (args.length == 0) 
89 
90 System.out.println("USAGE: java " 
91 + "bytecodeAnnotations.EntryLogger classfile"); 
92 System.exit(l); 
93 
94 Path path = Paths.get(args[O]}; 
95 var reader = 
96 new ClassReader(Files.newinputStream(path)); 
97 var writer = new ClassWriter( 
98 ClassWriter.COMPUTE MAXS 
99 1 ClassWriter.COMPUTE FRAМES); 
100 var entryLogger = new EntryLogger(writer, 
101 path.toString() .replace(".class", "") 
102 .replaceAll("[/\\\\]", ".")); 
103 reader.accept(entryLogger, 
104 ClassReader.EXPAND FRAМES); 
105 Files.write(Paths.get(args[O]), 
106 writer. toByteArray ()); 
107 
108 

Листинг 8.10. Исходный код из файла set/Item. java 

1 package set; 
2 
3 import java.util.*; 
4 import bytecodeAnnotations.*; 
5 
6 /** 
7 * Товар с описанием и номенклатурным номером 

В * @version 1.01 2012-01-26 
9 * @author Сау Horstmann 
10 */ 
11 puЫic class Item 
12 ( 
13 
14 
15 

private String description; 
private int partNumber; 

16 /** 



Глава В • Написание сценариев, компиляция и обработка аннотаций 

17 * Конструирует объект товара 
18 * @param aDescription Описание товара 
19 * @param aPartNumЬer Номенклатурный номер 
20 */ 
21 puЫic Item(String aDescription, int aPartNumber) 
22 { 
23 description = aDescription; 
24 partNumЬer = aPartNumber; 
25 
26 
27 /** 
28 * Получить описание данного товара 
29 * @return Описание товара 
30 */ 
31 puЫic String getDescription() 
32 { 
33 return description; 
34 
35 
36 puЫic String toString() 
37 { 
38 return "[description=" + description 
39 + ", partNumЬer=" + partNumЬer + "]"; 
40 
41 
42 @LogEntry(logger = "global") 
43 puЬlic boolean equals(Object otherObject) 
44 { 
45 if (this == otherObject) return true; 
46 if (otherObject == null) return false; 
4 7 if ( getClass () 1 = otherObj ect. getClass () ) 
48 return false; 
49 var other = (Item) otherObject; 
50 return Objects.equals(description, other.description) 
51 && partNumber == other.partNumber; 
52 
53 
54 @LogEntry(logger = "global") 
55 puЫic int hashCode() 
56 { 
57 return Objects.hash(description, partNumber); 
58 
59 

Листинг 8.11. Исходный код из файла set/SetTest. java 

1 package set; 
2 
3 import java.util.*; 
4 import java.util.logging.*; 
5 
6 /** 
7 * @version 1.03 2018-05-01 
8 * @author Сау Horstmann 
9 * / 



10 puЬlic class SetTest 
11 { 
12 puЫic static void maiп(Striпg[] args) 
13 { 
14 Logger. getLogger ( "com. horstmann") 
15 .setLevel(Level.FINEST); 
16 var haпdler = пеw CoпsoleHandler(); 
17 handler.setLevel(Level.FINEST); 
18 Logger.getLogger("com.horstmaпn") 

19 .addHandler(haпdler); 

20 
21 var parts = пеw HashSet<Item>(); 
22 parts.add(new Item("Toaster", 1279) ); 

В.7. Конструирование байт-кодов 

23 parts.add(new Item("Microwave", 4104)); 
24 parts.add(new Item("Toaster", 1279) ); 
25 System.out.priпtln(parts); 

26 
27 

8.7.2. Модификация байт-кодов во время загрузки 
В предыдущем разделе было представлено инструментальное средство, спо­

собное редактировать файлы классов. Но внедрение еще одного такого инстру­

ментального средства во время компоновки прикладной программы может 

оказаться непростым делом. Поэтому существует довольно привлекательный 

альтернативный способ, состоящий в том, чтобы отложить конструирование 

байт-кодов до стадии заzружи, на которой загружаются классы. 

В прикладном интерфейсе API для оснащения инструмента.льны.ми средства.ми 
имеется перехватчик, позволяющий устанавливать преобразователь байт-кодов. 

Этот преобразователь должен устанавливаться перед вызовом главного метода 

программы. Чтобы удовлетворить данному требованию, определяется агент (т.е. 

библиотека, загружаемая для контроля над программой). Код этого агента может 

выполнять в методе premain () операции, требующиеся для инициализации. 
Чтобы создать агент, необходимо выполнить следующие действия. 

1. Реализовать класс с помощью метода 

puЫic static void premain(Striпg arg, 
Instrumentation instr) 

2. Этот метод вызывается при загрузке агента. Агент может получить един­
ственный аргумент командной строки, передаваемый в качестве параметра 

arg. Параметр instr можно использовать для установки различных пере­
хватчиков. 

3. Создать файл манифеста, в котором устанавливается атрибут Premain­
Class, например, следующим образом: 

Premain-Class: bytecodeAnnotations.EntryLoggingAgent 

4. Упаковать код агента и манифест в архивный JАR-файл, например, так, как 
показано ниже. 



Глава В • Написание сценариев. компиляция и обработка аннотаций 

javac -classpath . :a5m/lib/\* 
bytecodeAnnotations/EntryLoggingAgent.java 

jar cvfm EntryLoggingAgent.jar \ 
bytecodeAnnotations/EntryLoggingAgent.mf \ 
bytecodeAnnotations/Entry*.class 

Чтобы запустить программу на java вместе с аге11том, необходимо ука :щть сле­

дующие параметры в кома11д11ой строке: 

java -jаvааgеnt:JАR-файл_с_агентон=АргументАгента . .. 

Например, чтобы :\а пустить программу Se t Те s t_ с агентом протоколирования 
записей, потребуется выполнить приведенные ниже команды, где аргумент Item 
обозначает имя класса, который агент должен модифицировать. 

javac set/SetTest.java 
java -javaagent :EntryLoggingAgent . jar=set.Item -classpath \ 

. : asm/ liЬ/\ * set. SetTest 

В листише 8.12 предсrавле11 исходный код аге11та, устанавлинающего преобра­
:юватель файлов классов. Этот преобра :ювател1, с11ачала проверяет, соответствует 

ли имя класса аргументу аге11та . Если оно соответствует, то преобразовател1, 1к­

пользует класс En tryLogge r, упоминавшийся в предыдущем разделе, для моди­

фикации байт-кодов. Но модифицированные байт-коды не сохраняются в фай­

ле . Вместо этого преобра:ювател1, иозвращает их для загрузки в виртуалы1ую 

машину (рис. 8.3). Иными словами, данный способ позволяет модифицирован 

байт-коды 11 динамическом режиме. 

Виртуальная 
машинаJаvа 

1 заnускае~' загружает 
1 \ 

ИсхОАНЫЙ файл Файл классов 

Рис. 8.3. Молифика11ия классов но время за1ру:1ки 

Листинг8.12. Исходный код из файла bytecodeAnnotations/ 
EntryLoggingAgent . java 

package byt ecodeAnrюtat ions ; 

2 
З import java.lang .inst rument . *; 
4 
5 i mport org. object web.asm.*; 
б 
7 / ** 
8 * @ve r sion 1 . 11 201 8- 05-01 
9 * @author Сау Horstmann 

ОтреАактированный 
файл классов 



10 */ 
11 puЫic class EntryLoggingAgent 
12 { 

8.7. Конструирование байт-кодов 

13 puЫic static void premain{final String arg, 
14 Instrumentation instr) 
15 
Lб instr.addTransformer( 
17 (loader, className, cl, pd, data) -> 
18 
19 if (lclassName.replace{"/", ".").equals(arg)) 
20 return null; 
21 var reader new ClassReader(data); 
22 var writer = new ClassWriter{ 
23 ClassWrit.er. COMPUTE МАХS 
24 1 ClassWriter.COMPUTE FRAМES); 
25 var el = new EntryLogger{writer, className); 
26 reader.accept{el, ClassReader.EXPAND_FRAМES); 

27 return writer.toByteArray{); 
28 1); 
29 
30 

Из этой главы вы узнали, как 

• вводить аннотации в исходный код программ на Java; 

• создавать свои собственные интерфейсы аннотаций; 

• реализовывать инструментальные средства, применяющие аннотации. 

Здесь продемонстрированы также три методики обработки кода: написание 

сценариев, компиляция программ на Java и обработка аннотаций. Первые две 
методики доволыю просты. Что же касается создания инструментальных средств 

обработки аннотаций, то эта методика, безусловно, сложна, и поэтому ею вряд 

ли рискнут воспользовап,ся многие разработчики. Однако в этой главе представ­

лены лиш1, самые основные сведения, необходимые для правильного понимания 

внутреннего механизма работы типичных инструментальных средств обработки 

аннотаций. Но, возможно, они вызовут у вас интерес к созданию своих собствен­

ных инструментальных средств для этих целей. 

В следующей главе речь пойдет уже о совершенно другом предмете: модуль­

ной системе на платформе Java, которая стала главным ноиовведением в версии 
Java 9, определиишим дальнейшее развитие платформы Java. 





ГЛАВА 

Модульная система 
на платформе Java 

В этой главе". 

• Понятие модуля 

• Именование модулей 

• Пример модульной программы "Hello, Modular World!" 

• Требования модулей 

• Экспорт пакетов 

• Модульные архивные JАR-файлы 

• Модули и рефлексивный доступ 

• Автоматические модули 

• Безымянные модули 

• Параметры командной строки для переноса прикладного кода 

• Переходные и статические требования 

• Уточненный экспорт и открытие модулей 

• Загрузка служб 

• Инструментальные средства для работы с модулями 

Важной особенностью ООП янляется инкапсуляция. Объявление класса состо­

ит из открытого интерфейса и его закрытой реализации. В обязанности класса 

может входить изменение реализации без воздействия на его пользователей. Мо­

дульная система обеспечивает те же преимущества для программирования, но 



Глава 9 • Модульная система на платформе Java 

только в крупном масштабе. Так, в модуле можно со:мават1, выборочно доступ­

ные классы и пакеты, чтобы контролировать процесс их ра:шития. 

Несколько модульных систем, существующих на платформе Java, опираются 
на загрузчики классов с целью их изоляции. Тем не менее в версии Java 9 вне­
дрена новая модульная система, которая официально называется Java Platform 
Module System (Модульная система на платформе Java) и поддерживается ком­
пилятором и виртуальной машиной Java. Она предна:шачена для модуляриза­
ции крупной кодовой базы на платформе Java. Но этой системой можно при 
желании воспользоваться для модуляризации собственных приложений. 

Независимо от того, пользуетесь ли вы модулями на платформе Java в своих 
приложениях, модуляризированная платформа Java все равно будет оказывать 
на вас влияние. В этой главе показано, как объявляются и применяются модули 

на платформе Java, как переносип, свои приложения для работы как с модуля­
ризированной платформой Java, так и со сторонними модулями. 

9 .1. Понятие модуля 
Основными стандартными блоками в ООП служат классы, обеспечивающие 

инкапсуляцию. Закрытые функциональные средства класса вроде методов могут 

быть доступны в коде только по специальному разрешению. В связи с этим воз­

никает вопрос о правах доступа. Так, если закрытая переменная изменилась, то 

можно выявить всех, кто мог быть тому виной. А если требуется видоизменить 

:!акрытое предстаиление, то должно бып, заранее извест1ю, на какие методы это 

окажет воздействие. 

Более крупное организационное группирование в Java обеспечивают пакеты, 
представляющие собой коллекцию классов. Пакеты обеспечивают также соответ­

ствующий уровень инкапсуляции. Любое функциональное средство (как откры­

тое, так и закрытое) доступно в пакете только из методов, находящихся в том же 

самом пакете. 

Но в крупных системах такого уроиня управления доступом явно недостаточ­

но. Любое функциональное средство, которое является открытым, т.е. доступным 

:1а пределами пакета, оказывается доступным поиск>Ду. Допустим, требуется ви­

доизменить или исключить редко испол1,:1уемое функционал1,ное средство. Если 

оно является открытым, то очень трудно предвидеть последствия такого измене­

ния. На это препятствие натолкнулись в свое время разработчики платформы 

Java. Комплект JDK стремительно ра:шивался в течение более двадцати лет, но 
некоторые его функциональные средства явно устарели. Характерным тому при­

мером служит архитектура CORBA. Вряд ли кто-нибуд1, из разработчиков вспом­
нит, когда пользовался пакетом org. omg. corba в последний раз, хотя он неиз­
менно включался в комплект JDK иплоп, до версии Java 10. Начиная с версии Java 
11, тем немногим разработчикам, кому этот пакет все еще может понадобип,ся, 
придется ввести требующиеся архивные JАR-файлы в свои проекты. 

А как насчет пакета java. awt? Ведь он вряд ли потребуется в серверном при­
ложении, за исключением класса j ava. awt. DataFlavor, применяемого в реали­
:ыции SOAP - протокола для веб-служб на основе XML. 



9 .2. Именование модулей 

Столкнувшись с проблемой растущего как снеж11ый ком объема кода, разра­

ботчики платформы Java решили, что им необходим какой-то мехавизм струк­
турировавия, обеспечивающий больший контроль 11ад кодом. С этой целью они 

проанализировали существующие модульные системы (11апример, OSGi) и на­
шли их непригодными для решения стоявшей перед ними :iадачи. Поэтому они 

разработали новую систему под 1ызва11ием /ava Platform Module System, которая те­
перь входит в состав языка и виртуальной маши11ы Java. Эга модульная система 
была успешно использована для модуляризации прикладного интерфейса Java 
АР!, и вы можете при желании прибегнуть к ней в своих приложениях. 

Модуль на платформе Java состоит из следующих частей. 

• Коллекция пакетов. 

• Допол11ител1,ные файлы ресурсов и прочие файлы, включая платформев-

110-ориентированные библиотеки. 

• Список пакетов, доступных в модуле. 

• Список всех модулей, от которых зависит данный модул1,. 

Инкапсуляция и зависимости соблюдаются на платформе Java как во время 
компиляции, так и при выполнении в виртуалыюй машине. А зачем вообще 

рассматривать применение модульной системы на платформе Java в собственных 
программах, если можно придерживаться традиционного подхода к архивным 

JАR-файлам, доступным по пути к классам? Применение модульной системы 

на платформе Java дает следующие преимущества. 

1. Строгая инкапсуляция. Доступ к конкретным пакетам можно контролиро­
вать, ве особевно беспокояс~, о поддержавии кода, который не предназна­

чается для общего употреблевия. 

2. Надежная конфигурация. Позволяет избежать таких затруднений, связан­
ных с путями к общедоступ11ым классам, как дублирование или отсутствие 

классов. 

Тем ве менее имеется ряд вопросов, которые модулr,ная система на плат­

форме Java не в состоянии разрешить. К их числу опюсится контроль версий 
модулей, отсутствие возможности указывать конкретную версию требующегося 

модуля или применять несколько версий модуля в одной и той же прикладной 

программе. Но для того чтобы восполь:юваться этими стол~, желанными 1юзмож­

ностям11, придется обратип,ся к другим механизмам вместо модул1,ной системы 

на платформе Java. 

9.2. Именование модулей 
Модуль - это коллекция пакетов. Имена пакетов в модуле не должны быть 

взаимосвяза11ы. В состав модуля j а va. sql могут, например, входить пакеты 
j а va. sql, j а vax. sql и j avax. transact ion. ха. Как следует из этого примера, 
вполне допустимо, чтобы совпадали имева модулей и входящих в них пакетов. 

Аналогично имени пакета, имя модуля состоит из букв, цифр, знаков подчер­

кивания и точки. Кроме того, между модулями, как и пакетами, не должно бып, 



Глава 9 • Модульная система на платформе Java 

иерархической взаимосвязи. Так, если имеется один модуль под именем com. 
horstmann, а другой - под именем com.horstmann.corejava, то в модульной 
системе они не должны быть связаны вместе. 

При создании модуля, предназначенного для применения в других модулях, 

очень важно, чтобы его имя было глобально однозначным. При этом предпола­

гается, что имена большинства модулей должны отвечать условным обозначени­

ям в обратном порядке следования имен доменов, как это делается в пакетах. 

Модуль проще всего обозначать по имени пакета верхнего уровня, предостав­

ляемого в данном модуле. Например, в фасаде загрузки SLF4J имеется модуль 
org.slf4j с пакетами org.slf4j, org.slf4j .spi, org.slf4j .event и org. 
slf4j .helpers. 

Такое условное обозначение предотвращает конфликты имен пакетов в моду­

лях. Любой заданный пакет может быть размещен только в одном модуле. Если 

имена модулей однозначны, а имена пакетов начинаются с имени модуля, то 

и имена пакетов будут однозначны. 

Для обозначения модулей можно употреблять более короткие имена, не 

предна:шаченные для применения другими программистами, например, в мо­

дуле, содержащем прикладную программу. Именно такой способ именования 

модулей и демонстрируется в этой главе. Например, модули, которые могут 

содержать библиотечный код, должны именоваться как com. ho r s tmann. u t i 1, 
а модули, содержащие прикладные программы с классом, в котором имеется 

метод main (), - более запоминающимися именами вроде v2ch09. hellomod. 

НА ЗАМЕТКУ! Имена модулей следует употреблять только в объявлениях самих модулей, но 
их вообще не стоит употреблять в исходных файлах классов Java. Имена пакетов следует упо­
треблять, как обычно. 

9.3. Пример модульной программы 
"Hello, Modular Wor ld ! " 

Попробуем перенести в модуль традиционную программу, выводящую привет­

ствие "Hello, Modular World!" (Здравствуй, модульный мир!). Для этого нам, пре­
жде всего, понадобится ра:~местить соответствующий класс в пакете, поскольку без­

ымянный пакет не может содержаться в модуле. Ниже показано, как это делается. 

package com.horstmann.hello; 

puЫic class HelloWorld 
{ 

puЬlic static void main (String [] args) { 
System.out.println("Hello, Modular World 1 "); 

До сих пор никаких особых изменений не произошло. Чтобы создать модуль 

v2ch09. hellomod, содержащий данный пакет, придется ввести его объявление. 
Этот модуль размещается в файле module-info. j ava, расположенном в базовом 
каталоге, т.е. там же, где и каталог сот. Базовый каталог принято именовать та­

ким же образом, как и модуль, как показано ниже. 



v2ch09. hellomod/ 
module-info.java 

com/ 
horstmann/ 

hello/ 
HelloWorld. j ava 

9.3. Пример модульной программы "Hello, Modular World!" 

В файле module-info. j ava содержится приведенное ниже объявление моду­
ля. Объявление данного модуля оказывается пустым потому, что он не только 

ничего не предоставляет всем остальным модулям, но и ничего не требует от них. 

module v2ch09.hellomod 

Теперь выполним компиляцию, как обычно: 

javac v2ch09.hellomod/module-info.java \ 
v2ch09.hellomod/com/horstmann/hello/HelloWorld.java 

Файл module-info.java не похож на исходный файл Java и, естественно, не 
может быть класса с именем module-info, поскольку имена классов не должны 
содержать дефиса. Ключевое слово module, а также ключевые слова requires, 
exports и т.д., употребляемые в приведенных далее примерах кода, относятся 
к так называемым "ограниченным" ключевым словам, имеющим специальное 

назначение только в объявлениях модулей. Данный файл компилируется в файл 

класса module-info. class, содержащий определение модуля в двоичной форме. 
Чтобы выполнить рассматриваемую здесь программу в виде модульного при­

ложения, следует указать путь к .модулю аналогично пути к классу, только он 

должен содержать модули. Кроме того, главный класс должен быть указан в фор­

ме имя_ модуля/имя_ класса, как показано ниже. 

java --module-path v2ch09.hellomod -module \ 
v2ch09.hellomod/com.horstmann.hello.HelloWorld 

Вместо параметров --module-path и -module в данной команде можно ука­
зать их однобуквенные аналоги -р и -m: 

java -р v2ch09.hellomod \ 
-m v2ch09.hellomod/com.horstmann.hello.HelloWorld 

Но в любом случае приветствие "Hello, Modular World!" появится на экра­
не. Тем самым демонстрируется, что первое наше приложение успешно модуля­

ризировано. 

НА ЗАМЕТКУ! В результате компиляции данного модуля будет выдано следующее предупре­

ждение: 

warning: [module] module name component v2ch09 should avoid terminal 
digitst 

Оно предназначено для того, чтобы отвадить разработчиков от желания вводить номера 

версий в имена модулей. Его можно, конечно, проигнорировать или подавить с помощью 

следующей аннотации: 

1 предупреждение: [модуль] в составляющей v2ch09 имени модуля 
следует избегать употребления оконечных цифр 



Глава 9 • Модульная система на платформе Java 

@SuppressWarnings ( "module") 
module v2ch09.hellomod { 
) 

В данном конкретном отношении объявление module подобно объявлению класса. В част­
ности, его можно аннотировать. (Тип аннотации должен иметь ее цель, в данном случае -
ElementТype .MODULE.! 

9.4. Требования модулей 
Теперь создадим новый модуль v2ch09. requiremod, в котором находится 

класс JOptionPane, применяемый n рассматриваемой здесь программе для ото­
бражения приветствия "Hello, Modular World! ": 

package com.horstmann.hello; 

import javax.swing.JOptionPane; 

puЫic class HelloWorld 
{ 

puЫic static void main(String[] args) { 
JOptionPane.showMessageDialog(null, 

"Hello, Modular Worldl"); 

Компиляция завершится неудачно со следующим сообщением об ошибке: 

error: package javax.swing is not visiЫe 
(package javax.swing is declared in module java.desktop, 
but module v2ch09.requiremod does not read it)· 

Комплект JDK модуляризирован, и теперь пакет j avax. swing содержится 
в модуле j ava. desktop. Таким образом, мы должны объявить свой модуль, как 
опирающийся на данный модуль. 

module v2ch09.requiremod { 
requires java.desktop; 

Цель проектирования модульной системы в том и состоит, чтобы требования 

модулей были явно заданы, а виртуальная машина смогла удовлепюрить все 

эти требования, прежде чем :ыпустить программу на выполнение. В примерах 

из предыдущего рюдела необходимость в явном задании требований моду лей 

не возникала, поскольку мы пользовались в них только пакетами j ava. lang 
и j ava. io и:3 состава модуля j ava. base, который требуется по умолчанию. 

Обратите внимание на то, что в модуле v2ch09.requiremod перечисляют­
ся только его собственные требования других модулей. В нем требуется модуль 

java.desktop, чтобы пользоваться пакетом javax.swing. В самом модуле java. 

2 ошибка: пакет javax.swing недоступен 
(пакет javax.swing определяется в модуле java.desktop, 
но в модуле v2ch09.requiremod он не читается) 



9.4. Требования модулей 

desktop объявляется, что ему требуются три других модуля, а именно: java. 
datatransfer, java.prefs и java.xml. 

На рис. 9.1 показан граф моду.леи, узлами которого являются отдельные мо­
дули, а ребрами, соединяющими узлы стрелками, - объявленные требования 

или подразумеваемое требование модуля j ava. base, если никаких требований 
вообще не объявлено. 

ch15.sec04 

Рис. 9 .1. Граф молу лей из примера прикладной 
программы "Hello, Modular World ! " 

Циклы в графе модулей не допускаются. Это означает, что модуль не может 

прямо или косвенно требовать самого себя. 

Права досrупа не передаются автоматически от одного модуля к другому. В рас­

сматриваемом здесь примере объявляется, что в модуле j ava. desktop требуется 
модуль java.prefs, а в том - модуль java.xrnl. Но это не дает модулю java. 
desktop права пользоваться пакетами из модуля java.xrnl, поскольку он должен 
быть объявлен явным образом. В математике отношение "требуется" не является 

транзитивным. В общем, такое поведение желательно, поскольку оно делает тре­

бования явными, но, как будет показано в разделе 9.11, его можно иногда смягчить. 

НА ЗАМЕТКУ! В сообщении об ошибке, приведенном в начале этого раздела, извещается, что 

в модуле v2ch09. requiremod не прочитан модуль java. desktop. В терминах модульной 
системы на платформе Java это означает, что модуль М читает модуль N в следующих случаях. 

1. Модулю Мтребуется модуль N. 

2. Модулю Мтребуется модуль, которому, в свою очередь, транзитивно требуется модуль 
Nlcм. далее раздел 9.11]. 

3. Модуль Nявляется модулем мили модулем java.base. 



Глава 9 • Модульная система на платформе Java 

9.5. Экспорт пакетов 
Как было показано в предыдущем рамеле, одному модулю требуется другой 

модуль, если необходимо воспользоваться его пакетами. Но это не делает автома­

тически доступными все пакеты из требующегося модуля. С помощью ключевого 

слова exports в модуле объявляется, какие из его пакетов являются доступными. 
Так, в приведенном ниже примере кода представлена часть объявления модуля 

j ava. xml. Таким образом, в данном пакете становятся доступными одни пакеты, 
но недоступными другие (например, пакет j dk. xml. internal), поскольку они 
не экспортируются. 

module java.xml { 
exports Javax.xml; 
exports javax.xml.catalog; 
exports javax.xml.datatype; 
exports javax.xml.namespace; 
exports javax.xml.parsers; 

Когда экспортируется пакет, его открытые (рuЫ i с) и защищенные 

(protected) классы, интерфейсы и их члены становятся доступными за преде­
лами данного модуля. (Как обычно, защищенные классы и их члены доступны 

только в их подклассах.) 

Тем не менее пакет, который не экспортируется, все равно недоступен за пре­

делами своего модуля. Это существенное отличие от прежних модулей в Java. 
В прошлом можно было пользоваться открытыми классами из любого пакета, 

даже если он и не входил в состав открытого прикладного интерфейса API. Обыч­
но, например, рекомендовалось пользоваться такими классами, как sun. тi sc. 
BASE64Encoder или сот. sun. rowset. CachedRowSetimpl, если в открытом при­
кладном интерфейсе API не предоставлялись соответствующие функциональные 
возможности. 

Ныне пакеты, не экспортированные из прикладного интерфейса API на плат­
форме Java, больше недоступны, поскольку все они содержатся в модулях. Вито­
ге некоторые программы больше не будут выполняться в версии Java 9. Безуслов­
но, это не должно стать неприятной неожиданностью для тех, кто и не собирался 

опираться на неоткрытые прикладные интерфейсы API. 
Воспользуемся операциями экспорта в простой ситуации. С этой цел1,ю под­

готовим модуль com. horstтann. greet, в котором экспортируется пакет под тем 
же самым именем coт.horstтann.greet, при условии, что модуль, предостав­

ляющий свой код для других модулей, должен обозначаться по имени находя­

щегося в нем пакета верхнего уровня. В этом модуле имеется также пакет сот. 

horstтann. greet. internal, который не экспортируется. 
Приведенный ниже открытый интерфейс Greeter находится в первом пакете. 

package com.horstmann.greet; 

puЫic interface Greeter { 
static Greeter newlnstance() 

return new com.horstmann.greet.internal.Greeterimpl(); 



9.5. Экспорт пакетов 

String greet(String subject); 

Во втором пакете находится приведенный ниже класс, в котором реализуется 

упомянутый выше интерфейс. Этот класс является открытым, поскольку он до­

ступен в первом пакете. 

package com.horstmann.greet.internal; 

import com.horstmann.greet.Greeter; 

puЫic class Greeterimpl implements Greeter 
puЫic String greet(String subject) 

return "Hello, "+ subject + "!"; 

Оба упомянутых выше пакета содержатся в модуле сот. horstmann. greet, но 
экспортируется только первый из них, как показа~ю ниже. Поэтому второй пакет 

недоступен за пределами данного модуля. 

module com.horstmann.greet { 
exports com.horstmann.greet; 

Перенесем рассматриваемую здесь прикладную программу во второй модуль, 

где требуется первый модуль: 

module v2ch09.exportedpkg { 
requires com.horstmann.greet; 

НА ЗАМЕТКУ После оператора exports указывается имя экспортируемого пакета, тогда как 
после оператора requires - имя требуемого модуля. 

Интерфейс Greeter применяется в рассматриваемой здесь прикладной про­
грамме для получения приветствия: 

package com.horstmann.hello; 

import com.horstmann.greet.Greeter; 

puЬlic class HelloWorld 
{ 

puЫic static void main(String[) args) 
{ 

Greeter greeter = Greeter.newinstance(); 
System.out.println(greeter.greet("Modular World") ); 

Ниже приведена структура исходных файлов для обоих рассматриваемых 

здесь модулей. 



Глава 9 • Модульная система на платформе Java 

com.horstmann.greet 
module-info.java 
com 

horstmann 
greet 

Greeter. j ava 
internal 

Greeterimpl. j ava 

v2ch09.exportedpkg 
module-info.java 

com 
horstmann 

hello 
HelloWorld. java 

Чтобы построить данную прикладную программу, необходимо скомпилиро­

вать сначала модуль сот. horstmann. greet, выполнив следующую команду: 

javac com.horstmann.greet/module-info.java \ 
com.horstmann.greet/com/horstmann/greet/Greeter.java \ 
com.horstmann.greet/com/horstmann/greet \ 

/internal/Greeterimpl.java 

Затем следует скомпилировать модул1, прикладной программы вместе с пер­

вым модулем по заданному пути к модулям: 

javac -р com.horstmann.greet \ 
v2ch09.exportedpkg/module-info.java \ 
v2ch09.exportedpkg/com/horstmann/hello/HelloWorld.java 

Наконец, остается лишь выполнить рассматриваемую здесь прикладную про­

грамму вместе с обоими модулями по заданному пути к модулям: 

java -р v2ch09.exportedpkg:com.horstmann.greet \ 
-m v2ch09.exportedpkg/com.horstmann.hello.BelloWorld 

СОВЕТ. Чтобы построить ту же самую прикладную программу в интегрированной среде раз­

работки Eclipse, придется создать в ней отдельный проект для каждого модуля, а затем от­
редактировать свойства проекта v2ch09. exportedpkg. Модуль com. horstmann .greet 
необходимо ввести в путь к модулям на вкладке Projects lрис. 9.21. 

Как видите, операторы requires и exports образуют основание модульной 
системы на платформе Java. По существу, эта система довольно проста. В моду­
лях объявляется, что конкретно им требуется и какие пакеты они предоставляют 

другим модулям. Незначительное отклонение от обычного назначения операто­

ра exports будет представлено в разделе 9.12. 

ВНИМАНИЕ! Модуль не обеспечивает область видимости. Следовательно, не допускается на­

личие пакетов с одинаковыми именами в разных модулях. И это справедливо даже для скры­
тых пакетов, которые не экспортируются. 



9.6. Модульные архивные JАR-файлы 

1- Properties for v2ch09.exportedpkg - п х 

г 
~ Resource 

Builders 

•m-mm•tiib 
~ java Code StylE 
~ java Compiler 
~ java Editor 

)avadoc Locati1 
Project Referer 
Run/Debug Set 

Java Build Path 

• source i1c1Erojects 1.lbraries Qrder and Export 

Bequired projects on the build path: 

v " Modulepath 
"com.horstmarin greet 
Classpath 

Cancel 

Remove 

Apply 

Рис. 9.2. Ввод зависимою модуля в 11роект, разрабатываемый в Eclipse 

9 .6. Модульные архивные JАR-файлы 
До сих мы просто компилировали модули в дерево каталогов исходного кода. 

Очевнд110, что ·ло неудовлетворительно щн1 ра:~вертывания модулей . Вместо ':)ТО­

го для ра :шертываш1я модулей достаточно ра :1местить все его классы в архивном 

JАR-файле, а файл module-iп fo . c l ass - в корневом каталоге. Такой архивный 

JАR-файл на:1ывается ~ноuульнь1.\1. 

Чтобы со:1дать модульный архивпый JАR-файл, следует восполь:юваться ути­

литой j ar, как обычно. Если же имеется несколько пакетов, то компиляцию не­
обходимо выполнит~, с параметром -d, в соответствии с которым файлы классов 
ра:1мещаются n отделыюм каталоге, который со:1дается, если он не существует. 

Затем можно выполнить утилиту j a r с параметром -с, чтобы сменить данный 

каталог для накапливания файлов. 

javac -d modules/com.horstmann.qreet \ 
$(find com.horstmann.qreet -name *.java) 

jar -cvf com.horstmann.greet.jar \ 
-С modules/com.horstmann .greet . 

Если для построения приме11>1ется такое инструменталыюе средство, как 

Maven, Ant или Gradle, то построение архивного JАR-файла следует выполнять, 
как обычно. И если в этот процесс включается файл module-info . c l ass, то в ко­
нечном итоге получается модул1>11ый архивный JАR-файл. Этот архивный JАR­

файл можно включить в пуп. к модулю, и тогда модуль будет :~агружен. 



Глава 9 • Модульная система на платформе Java 

ВНИМАНИЕ! В прошлом классы из пакета иногда распространялись через целый ряд архив­

ных JАR-файлов. !Такой пакет называется "разделенным ". ! Это, вероятно, была не сама удач­
ная идея, а с появлением модулей она стала вообще неосуществимой. 

Подобно обычным архивным JАR-файлам, в модульном архивном JАR-файле 

можно указать главный класс, как выделено ниже курсивом. 

javac -р com.horstmann.greet.jar \ 
-d modules/v2ch09.exportedpkg \ 
$(find v2ch09.exportedpkg -name *.java) 

jar -с -v -f v2ch09.exportedpkg.jar \ 
-е com.horstmann.hello.HвlloWorld \ 
-с modules/v2ch09.exportedpkg . 

Запуская прикладную программу на выполнение, следует указать модул1,, со­

держащий главный класс: 

java -р com.horstmann.greet.jar:v2ch09.exportedpkg.jar \ 
-m v2ch09.exportedpkg 

При создании архивного JАR-файла можно дополнителыю указать номер 

версии. В частности, с помощью параметра --module-version и знака @ имя ар­

хивного JАR-файла можно дополнить номером версии, как выделено ниже кур­

сивом. 

jar -с -v -f com . horstmann.greвt@l.O.jar \ 
--modulв-vвrsion 1.0 -С com.horstmann.greet 

Как обсуждалось ранее, номер версии не используется в модульной системе 

на платформе Java для разрешения модулей. Но он может быть запрошен дру­
гими инструментал1,ными средствами и каркасами . 

НА ЗАМЕТКУ! Выяснить номер версии можно средствами прикладного интерфейса API 
для рефлексии. Так, в следующем примере кода получается объект типа Optional, содержа­
щий символьную строку "1. 0" с искомым номером версии : 

Optional<String> version = Greeter.class.getModule() 
. getDescriptor () . rawVersion ( ) ; 

НА ЗАМЕТКУ! Модульным эквивалентом загрузчика классов является уровень. В модульной 

системе на платформе Java модули из комплекта JDK и прикладных программ загружаются 
на уровне начальной загрузки. Прикладная программа может загрузить другие модули, исполь­
зуя прикладной интерфейс API уровней, который в данной книге не рассматривается. В такой 
программе могут приниматься во внимание версии модулей . При этом предполагается, что 

разработчики таких программ, как серверы приложений на платформе Java ЕЕ, будут пользо­
ваться прикладным интерфейсом API уровней для поддержки модулей . 

СОВЕТ. Если модуль требуется загрузить в командную оболочку консольной утилиты JShell, 
архивный JАR-файл следует включить в путь к модулю и указать параметр --add-modules. 
как показано ниже. 

jshell --module-path com.horstmann.greet@l.O.jar \ 
--add-modules com.horstmann.greet 



9.7. Модули и рефлексивный доступ 

9. 7. Модули и рефлексивный доступ 
Как было показано в предыдущих разделах, в модульной сисrеме соблюдается 

инкапсуляция. В одном модуле моrут быть досrупны только те пакеты, которые 

экспортируются явным образом из другого модуля. В прошлом всегда имелась 

возможность преодолеть досадные ограничения на доступ с помощью рефлек­

сии. Как пояснялось в главе 5 первого тома настоящего издания, рефлексия дает 
возможность получить доступ к закрытым членам любого класса. 

Но в модульной системе такая возможность уже отсутсrвует. Если класс нахо­

дится в модуле, то получить рефлексивный доступ к его неоткрытым членам не 

удастся. В качестве напоминания в приведенном ниже примере кода показано, 

получить доступ к закрытым членам класса. 

Field f = obj.getClass() .getDeclaredField("salary"); 
f.setAccessiЬle(true); 

douЫe value = f.getDouЬle(obj); 
f.setDouЬle(obj, value * 1.1); 

Вызов f. setAccessiЫe (true) завершится удачно, при условии, что диспет­
чер защиты не запретит досrуп к закрытому полю. Но ведь прикладные програм­

мы на Java редко выполняются с диспетчерами защиты, а во многих библиоте­
ках применяется рефлексивный доступ. Характерными тому примерами служат 

объектно-реляционные преобразователи вроде JPA, автоматически сохраняющие 
объекты в базах данных, а также библиотеки вроде JAXB или JSON-B, выполняю­
щие взаимное преобразование объектов и данных формата XML или JSON. 

Чтобы воспользоваться модулями из такой библиотеки, придется проявить 

особую осторожность. В качестве примера, демонсrрирующего это положение, 

разместим класс Obj ectAnalyzer из главы 5 первого тома настоящего издания 
в модуле сот. horstmann. util. В этом классе имеется метод toString (), выво­
дящий поля объекта с помощью рефлексии. 

В отдельном модуле v2ch09. openpkg содержится приведенный ниже просrой 
класс Coun try. 
package com.horstmann.places; 

puЫic class Country 
{ 

private String name; 
private douЫe area; 

puЫic Country(String name, douЫe area) 
{ 

} 

this.name 
this.area 

/ / . . . 

name; 
area; 

В следующей короткой программе демонстрируется порядок анализа объекта 

типа Country: 

package com.horstmann.places; 

import com.horstmann.util.*; 



Глава 9 • Модульная система на платформе Java 

рuЫ1с class Demo 
{ 

puЬlic static void main(String[] args) 
throws ReflectiveOperationExcept1on 

var belgium = new Country("Belgium", 305101; 
var analyzer = new ObjectAnalyzer(); 
System.out.println(analyzer.toString(belgium) ); 

Теперь скомпилируем оба модуля и программу Demo следующим обра:юм: 
javac com.horstmann.util/module-info.java \ 

com.horstmann.util/com/horstmann/util/ObjectAnalyzer.java 
javac -р com.horstmann.util v2ch09.openpkg/module-info.java \ 

v2ch09.openpkg/com/horstmann/places/*.java 
java -р v2ch09.openpkq:com.horstmann.util \ 

-m v2ch09.openpkg/com.horstmann.places.Demo 

Выполнение данной программ завершится неудачно со следующим исключе­

нием: 

Exception in thread "main" 
java.lang.reflect.InaccessiЬleObjectException: 

UnaЫe to make field private 
java.lang.String com.horstmann.places.Country.name 

accessiЫe: module v2ch09.openpkg does not 
"opens com.horstmann.places" to module com.horstmann.util 3 

Разумеется, чисто теоретически нельзя нарушать инкапсуляцию и манипу­

лиронап, закрытыми членами объекта. Но такие механизмы, как ХМL-привязка 

или объектно-реляционное преобразование, настол~,ко распространены, что мо­

дульной системе приходится приспосабливаться к ним. 

Испол1,зуя оператор opens, модуль может оm/\рыть пакет, обеспечивая тем 
самым доступ ко всем классам и их членам н данном пакете но время выполне­

ния, а к закрытым членам - через рефлексию. Ниже показано, что для этого не­

обходимо сделать. И благодаря таким изменениям класс ObjectAnalyzer будет 
действовать правил1,но. 

module v2ch09.openpkg 
{ 

requires com.horstmann.util; 
opens com.horstmann.places; 

Модул1, можно обышип, как открытый (ореп) следующим образом: 

open module v2ch09.openpkg 
{ 

3 Исключение в "главном" потоке исполнения 
java.lang.reflect.InaccessiЫeObjectException: 

Не удалось получить доступ к полю 

private java.lang.String com.horstmann.places.Country.name: 
модуль v2ch09.openpkg не "открывает пакет com.horstmann.places" 
для модуля java.xml.11t.il 



9.7. Модули и рефлексивный доступ 

requires com.horstmann.util; 

Открытый модуль обеспечивает доступ во время выполнения ко всем его па­

кетам, как будто все они объявлены в операторах exports и opens. Но во время 
компиляции доступны только пакеты, экспортируемые явным образом. Откры­

тые модули сочетают в себе безопасность модульной системы во время компиля­

ции с классическим разрешительным поведением во время выполнения. 

Как упоминалось в главе 5 первого тома настоящего издания, архивные 
JАR-файлы могут содержать, помимо файлов классов и манифестов, файлы ресур­

сов, которые можно загружать методом Class. getResourceAsStream (),а теперь 
и методом Module. getResourceAsStream (). Если ресурс хранится в каталоге, 
совпадающем с пакетом из модуля, то пакет должен стать открытым для вызыва­

ющего кода. Ресурсы из других каталогов, а также файлы классов и манифестов 

могут стать доступными для чтения кому угодно. 

НА ЗАМЕТКУ! В качестве более практического примера объект типа Country можно было бы 
преобразовать в формат XML или JSON. Для преобразования в формат XML в состав версий 
Java 9 и 10 был включен модуль java.xml.Ьind, но затем он был исключен из состава 
версии Java 11 !вместе с модулями java. activation, java. corba, java. transaction, 
java.xml.ws и java.xml.ws.annotationl. Эти модули содержат пакеты, являющиеся 
также частью спецификации Jakaгta ЕЕ !ранее Java EEI, где прикладные интерфейсы API 
являются более объемлющими, чем в Java ЕЕ. Корпоративные серверы приложений нельзя 
модуляризировать, если комплект JDK вступает в конфликт с пакетами. К сожалению, на мо­
мент написания данной книги модуляризированная замена для привязки данных формата 

XML отсутствовала. 

Тем не менее в реализации JSON-B !стандартного уровня привязки данных в формате JSONI 
предоставляются модульные архивные JАR-файлы, если построить ее из исходного кода. 

Можно все же надеяться, что эти архивные JАR-файлы появятся в центральном хранилище 

Maven Centгal к тому времени, когда вы будете читать эти строки. В таком случае укажите 
эти архивные JАR-файлы в пути к модулям и выполните демонстрационную программу com. 
horstmann. places. Demo2. Преобразование в формат JSON завершится успешно, как 
только будет открыт пакет com. hors tmann . places. 

НА ЗАМЕТКУ! Вполне возможно, что в будущих библиотеках будут применяться переменные 

дескрипторы вместо рефлексии для чтения и записи данных в полях. Класс VarHandle подо­
бен классу Field. С его помощью можно прочитать или записать данные в указанном поле 
любого экземпляра конкретного класса. Но для получения объекта типа VarHandle в коде 
библиотеки потребуется объект типа Lookup, как показано ниже. 

puЬlic Object getFieldValue(Object obj, String fieldName, 
Lookup lookup) 

throws NoSuchFieldException, IllegalAccessException 

Class<?> cl = obj.getClass(); 
Field field = cl.getDeclaredField(fieldName); 
VarHandle handle = MethodHandles 

.privateLookupin(cl, lookup) 

.unreflectVarHandle(field); 
return handle.get(obj); 



Глава 9 • Модульная система на платформе Java 

Такой подход оказывается вполне работоспособным при условии, что объект типа Lookup 
формируется в том модуле, где имеется разрешение на доступ к полю. В каком-нибудь методе 

из модуля просто вызывается метод Methoc\Нandles. lookup (), где выдается объект, ин­
капсулирующий права доступа для вызывающего кода. Подобным образом один модуль может 

дать разрешение на доступ к закрытым членам другого модуля. На практике необходимо ре­

шить, как дать такое разрешение с минимальными затратами сил и средств. 

9.8. Автоматические модули 
Итак, мы выяснили, как применять на практике модульную систему на плат­

форме Java. Если начать с совершенно нового проекта, в котором весь код при­
дется писать самостоятельно, то можно разработать модули, объявить зависимо­

сти от них и упаковать спроектированную прикладную программу в модульные 

архивные JАR-файлы. 

Тем не менее это крайне редкий случай. Большинство разрабатываемых про­

ектов опираются на сторонние библиотеки. Разумеется, можно подождать до тех 

пор, пока поставщики всех имеющихся библиотек не превратят их в модули, 

а затем модуляризировать свой код. 

Но что делать, если ждать некогда? В модульной системе на платформе Java 
предоставляются два механизма для преодоления пропасти, образовавшейся 

между прикладными программами, разрабатывавшимися до появления модуль­

ной системы, и полностью модульными программами. Этими механизмами яв­

ляются автоматические и безымянные модули. 

В целях переноса прикладной программы любой архивный JАR-файл можно 

превратить в модуль, разместив его в каталоге по пути к модулю, а не к классу. 

Архивный JАR-файл без составляющей module-info. class в пути к модулю на­
зывается автоматическим модулем. Автоматический модуль подчиняется следую­

щим правилам. 

1. Модуль неявно содержит оператор requires для всех остальных модулей. 

2. Все пакеты из данного модуля экспортируются и открываются. 

3. Если в манифесте META-INF /MANIFEST. MF из архивного JАR-файла имеет­
ся запись с ключом Automatic-Module-Name, то его значением становится 
имя модуля. 

4. В противном случае имя модуля получается из имени архивного JАR-фай­
ла, из которого исключается любой оконечный номер версии, а последо­

вателыюсти символов, не являющихся буквенно-цифровыми, заменяются 

точками. 

В двух первых из перечисленных выше правил подразумевается, что пакеты 

в автоматическом модуле действуют так, как будто они указаны в пути к классам. 

Причина для применения пути к модулю заключается в выгоде, которую другие 

модули извлекают из выражения их зависимостей от данного модуля. 

Допустим, требуется реализовать модуль, обрабатывающий файлы в фор­

мате CSV, применяя для этой цели библиотеку Apache Commons CSV, а в фай­
ле module-info.java - выразить зависимость данного модуля от библиотеки 



9 .8. Автоматические модули 

Apache Commons CSV. Если ввести архивный файл commons-csv-1. 4. jar в путь 
к модулю, то все модули прикладной программы смогут ссылаться на модуль 

данной библиотеки. Он называется commons. csv потому, что оконечный номер 
версии -1. 4 был удален из его имени, а символ, не являющийся буквенно-циф­
ровым, заменен точкой. 

Это имя может быть вполне приемлемым мя обозначения модуля, поскольку 

библиотека Apache Commons CSV хорошо известна, и вряд ли кто-нибудь дру­
гой попробует воспользоваться тем же самым именем Д/\Я обозначения другого 

модуля. Но было бы лучше, если бы те, кто сопровождает архивный JАR-файл 

этой библиотеки, охотно согласились обозначить его как модуль в обратном по­

рядке следования доменных имен, желательно начиная с имени пакета верхнего 

уровня, как, например: org. apache. commons. csv. Для этого достаточно ввести 
следующую строку: 

Automatic-Module-Name: org.apache.commons.csv 

в файл манифеста META-INF /МANIFEST. MF, находящийся в архивном JАR-файле. 

Можно надеяться, что в конечном итоге они превратят свой архивный JАR-файл 

в настоящий модуль, введя файл module-info. j ava с зарезервированным име­
нем модуля, чтобы все остальные модули, ссылающиеся на модуль библиотеки 

Apache Commons CSV, смогли и дальше работать в нормальном режиме. 

НА ЗАМЕТКУ План перехода на модули является крупным социальным экспериментом, и ни­
кто не знает, чем он закончится. Следовательно, прежде чем указывать сторонние архивные 

JАR-файлы в пути к модулю, следует проверить, являются ли они модульными, а иначе - за­

дано ли в их манифесте имя модуля. В противном случае архивный JАR-файл можно пре­

образовать в автоматический модуль, но с готовностью обновить имя модуля в дальнейшем. 

На момент написания данной книги в версии 1.5 архивного JАR-файла библио­
теки Apache Commons CSV отсутствовал дескриптор модуля или имя автоматиче­
ского модуля. Тем не менее он будет действовать правильно по пути к модулям. Эту 

библиотеку можно загрузить по адресу https: / /commons. apache. org /proper / 
commons-csv, распаковать и разместить архивный файл commons-csv-1. 5. j ar в ка­
талоге с модулем v2ch9. automod. Этот модуль содержит приведенную ниже про­
стую программу, читающую данные о странах из файла формата CSV. 

package com.horstmann.places; 

import java.io.*; 
import org.apache.commons.csv.*; 

puЫic class CSVDemo 
{ 

puЫic static void main(String[] args) throws IOException 
{ 

var in = new FileReader("countries.csv"); 
IteraЬle<CSVRecord> records = 

CSVFormat.EXCEL.withDelimiter('; ') 
.withHeader() .parse(in); 

for (CSVRecord record : records) 



Глава 9 • Модульная система на платформе Java 

String name = record.get("Name"); 
douЫe area = DouЫe.parseDouЬle(record.get("Area")); 

System.out.println(name + " has area " + area); 

В данном случае архивный файл commons-csv-1. 5. j ar употребляется какав­
томатический модуль, поэтому его необходимо затребовать, как показано ниже. 

@SuppressWarnings("module") 
module v2ch09.automod 
{ 

requires commons.csv; 

Ниже приведены команды для компиляции и выполнения данной программы. 

javac -р v2ch09.automod:commons-csv-1.5.jar \ 
v2ch09.automod/com/horstmann/places/CSVDemo.java \ 
v2ch09.automod/module-info.java 

java -р v2ch09.automod:commons-csv-1.5.jar \ 
-m v2ch09.automod/com.horstmann.places.CSVDemo 

9.9. Безымянные модули 
Любой класс, отсутствующий в пути к модулю, является частью безымянного 

модуля. Формал1,но может быть больше одного безымянного модуля, но все по­

добные модули должны действовать как единое целое, называемое бе3ь1мяннь1.м 

модулем. Как и в автоматических модулях, в безымянном модуле могут быть до­

ступны все остальные модули, а все его пакеты - экспортированы и открыты. 

Тем не менее ни в одном из безымянных модулей недоступны другие безымян­

ные модули. А явным называется такой модуль, который не является ни автома­

тическим, ни безымянным, т.е. это такой модуль, в пути которому указан файл 

module-inf о. class. Иными словами, явные модули никогда не приводят к пу­
танице в путях к классам. 

Рассмотрим в качестве примера программу из предыдущего раздела. Допу­

стим, архивный файл commons-csv-1. 5. j ar требуется указать в пути к классам, 
а не к модулям, как показано ниже. 

java --module-path v2ch09.automod \ 
--class-path commons-csv-1.5.jar \ 
-m v2ch09.automod/com.horstmann.places.CSVDemo 

Теперь данная программа не запустится на выполнение, а вместо этого поя­

вится следующее сообщение об ошибке: 

Error occurred during initialization of boot layer 
java.lang.module.FindException: Module commons.csv 
not found, required Ьу v2ch09.automod4 

4 При инициализации уровня начальной загрузки возникла ошибка 
java.lang.module.FindException: модуль commons.csv, 
требующийся модулю v2ch09.automod, не найден 



9.1 О. Параметры командной строки дnя переноса прикладного кода 

Таким образом, переход к модульной системе на платформе Java по необхо­
димости оказывается восходящим процессом, как поясняется ниже. 

1. Сама платформа Java модуляр1вирована. 

2. Библиотеки модуляризированы с помощью автоматических модулей или 
же путем их преобразования в явные модули. 

3. Как только все библиотеки, применяемые 11 прикладной программе, ока­

жутся модуляризированными, ее исходный код можно перенести в модуль. 

НА ЗАМЕТКУ! Из автоматических модулей можно прочитать безымянный модуль, а следова­
тельно, их зависимости могут перейти в путь к классам. 

9 .1 О. Параметры командной строки для переноса прикладного кода 
Даже если модули не применяются в прикладных программах, избежат1, мо­

дульной системы все равно не удастся при переходе к Java 9 и последующим вер­
сиям. И даже если прикладной код находится по пути к классам в безымянном 

модуле, а все пакеты экспортируются и открываются, то он все равно взаимодей­

ствует с платформой Java, которая модуляризиро11ана. 
Стандартное поведение до версии Java 11 состояло 11 том, чтобы разрешить 

недопустимый доступ к модулям, но при первой же попытке подобного нару­

шения вывести соответствующее предупреждение 11а ко11сол1" В будущей версии 

Java такое стандартное поведение будет изменено, а недопустимый доступ отме­
нен. Чтобы дать программирующим на Java время подгото11ип,ся к такому из­
менению, им предлагается проверять свои прикладные программы с помощью 

параметра --illegal-access. Ниже перечислены четыре 1юзможных варианта 
его установки. 

1. --illegal-access=peпnit. Задается стандартное поведение в версии Java 
9, при первой попытке недопустимого доступа на консоль выводится пре­
дупреждающее сообщение. 

2. --illegal-access=warn. При первой попытке недопустимого доступа 
на консоль выводится предупреждающее сообщение. 

3. --illegal-access=debug. При первой попытке недопустимого доступа 
на консоль выводится предупреждающее сообщение и трассировка стека. 

4. --illegal-access=deny. Задается будущее стандартное поведение, любой 
недопустимый доступ отменяется. 

Теперь самое время проверить все сказанное выше на примере параметра 

--illegal-access=deny, чтобы подготовиться к тому моменту, когда такое по­
ведение станет стандартным. Итак, рассмотрим прикладную программу, в кото­

рой применяется бол1,ше недоступный внутренний прикладной интерфейс API 
вроде com. sun. rowset .CachedRowSetimpl. Лучшим средством в данном случае 
будет смена реализации. (Начиная с версии Java 7 кеширо11анный набор строк 
можно получить из таблицы с помощью класса RowSet.Provider.) Но допустим, 



Глава 9 • Модульная система на платформе Java 

что доступ к исходному коду отсутствует. В таком случае запустим прикладную 

программу с параметром -add-exports, указав модуль и пакет, который требу­
ется экспортировать, а также модуль (в данном случае безымянный), куда следу­

ет экспортировать этот пакет. 

java --illegal-access=deny --add-exports \ 
java.sql.rowset/com.sun.rowset=ALL_UNNAМED \ 

-jar МyApp.jar 

А теперь допустим, что рефлексия применяется в прикладной программе 

для доступа к закрытым полям или методам. Рефлексия в безымянном модуле 

вполне допустима, но больше невозможна для рефлексивного доступа к неот­

крытым членам классов на платформе Java. Например, в некоторых библиоте­
ках, формирующих классы Java в динамическом режиме, защищенный метод 
ClassLoader. defineClass () вызывается через рефлексию. Если подобная би­

блиотека применяется в прикладной программе, то в команду ее компиляции 

и запуска на выполнение следует ввести следующий параметр: 

--add-opens java.base/java.lang=ALL-UNNAМED 

Если ввести все эти параметры командной строки для обеспечения нормаль­

ной работоспособности унаследованного прикладного кода, то в конечном итоге 

получится кошмарная по своей сложности командная строка. Чтобы удобнее об­

ращаться с этими параметрами, их можно ввести в один или несколько файлов 

с префиксом @, как демонстрируется в следующем примере: 

java @optionsl @options2 -jar МyProg.java 

где файлы optionsl и options2 содержат параметры команды java. 
Для создания файлов параметров имеются следующие правила. 

• Отдельные параметры разделяются знаками пробелов, табуляции или но­

вой строки. 

• Аргументы, включающие в себя пробелы (например, "Program Files"), 
заключаются в двойные кавычки. 

• Строка, оканчивающаяся знаком \, соединяется со следующей строкой. 

• Знаки обратной косой черты должны быть экранированы, как, например, 

С:\ \Users\ \Fred. 

• Строки комментариев должны начинаться со знака #. 

9 .11. Переходные и статические требования 
Основная форма оператора requires была рассмотрена в разделе 9.4. В этом 

разделе будут рассмотрены два варианта этого оператора, которые иногда оказы­

ваются полезными. 

В некоторых случаях пользователю отдельного модуля может быть неудобно 

объявлять все требующиеся модули вручную. Рассмотрим в качестве примера 

модуль j avafx. controls, содержащий такие элементы пол1,зовательского ин­
терфейса, построенного на основе библиотеки JavaFX, как экранные кнопки. Мо­
дуль javafx.base требуется модулю javafx.controls и всем, кто пользуется 



9.11. Переходные и статические требования 

модулем j avafx. controls. (В отсутствие пакетов, доступных из модуля javafx. 
base, вряд ли удастся сделать что-нибудь с таким элементом управления из 
пользовательского интерфейса, как экранная кнопка типа Button.) Именно 
по этой причине требование модуля j avafx. base объявляется в модуле javafx. 
controls с помощью модификатора transi ti ve, как показано ниже. Теперь 
в любом модуле, где объявляется требование модуля j avafx. controls, автома­
тически требуется и модуль j avafx. base. 

module javafx.controls { 
requires transitive javafx.base; 

НА ЗАМЕТКУ! Некоторые программисты рекомендуют всегда пользоваться оператором 

requires transitive, если пакет из другого модуля применяется в открытом приклад­
ном интерфейсе API. Но эта рекомендация не подходит для программирования на языке Java. 
Рассмотрим в качестве примера следующий модуль: 

module java.sql { 
requires transitive java.logging; 

Пакет из модуля java. logging применяется во всем прикладном интерфейсе API из мо­
дуля java. sql лишь один раз, а точнее, в методе java. sql .Driver .parentLogger (), 
возвращающем объект типа java. util. logging. Logger. Поэтому было бы вполне при­
емлемо не объявлять требование этого модуля как переходное. И тогда лишь в тех модулях, 

где применяется данный метод, необходимо объявить, что в них требуется модуль java. 
logging. 

К числу наглядных примеров применения оператора requires transi ti ve 
относится агрегатный модуль, в котором отсутствуют пакеты, а имеются только 

переходные требования. Таким является модуль j ava. se, который объявляется 
следующим образом: 

module java.se { 

requires transitive java.compiler; 
requires transitive java.datatransfer; 
requires transitive java.desktop; 

requires transitive java.sql; 
requires transitive java.sql.rowset; 
requires transitive java.xml; 
requires transitive Java.xml.crypto; 

Программисту, которого не интересуют мелкоструктурные зависимости 

от модулей, может просто потребоваться модуль j ava. se и доступ ко всем мо­
дулям на платформе Java SE. 

Наконец, нечасто, но все же иногда применяется оператор requires static, 
в котором устанавливается, что модуль должен присутствовать во время компи­

ляции, но совсем не обязательно во время выполнения. Этот оператор применя­

ется в следующих случаях. 



Глава 9 • Модульная система на платформе Java 

1. Для доступа к аннотации, которая обрабатывается во время компиляции 
и объявляется в другом модуле. 

2. Для применения класса в другом модуле, если он доступен, а иначе -
для выпол11е11ия каких-нибуд1, других действий, как, например, в следую­

щем примере кода: 

try { 
new oracle.jdbc.driver.OracleDriver(); 

catch (NoClassDefFoundError er) 
11 выполнить что-нибудь другое 

9 .12. Уточненный экспорт и открытие модулей 
В этом разделе рассматриваются варианты операторов exports и opens, су­

жающих их область видимости до указанного ряда модулей. Например, модул1, 

j avafx. base содержит следующий оператор: 

exports com.sun.javafx.collections to javafx.controls, 
javafx.graphics, javafx.fxml, javafx.swing; 

Такой оператор обозначает уточненньzй экспорт. Одни из перечисляемых 

в нем модулей могут иметь доступ к пакету, а другие - нет. 

Чрезмерное употребление операторов уточненного экспорта может свиде­

тельствовать о неудачно выбранной модульной структуре. Тем не менее потреб­

ность в них может возникнуть при модуляризации существующей кодовой ба:ш. 

В данном случае разработчики платформы Java распределили код для JavaFX 
по нескольким модулям, и это трезвая мысл1,, поскол1,ку не во всех JаvаFХ-при­

ложениях требуется взаимодействие с FXML или Swing. Но реализаторы JavaFX 
свободно воспользовались в своем коде внутренними классами вроде com. sun. 
j avafx. col lections. ListListenerHelper. В проекте, разрабатываемом с нуля, 
вместо этого можно спроектировал, более надежный открытый прикладной ин­

терфейс API. 
Аналогичным образом можно наложить ограничение на модули, указываемые 

в операторе opens. Например, в примерах кода из раздела 9.7 можно было бы 
употребить уточнен11ый оператор opens, как выделено ниже полужирным. В ито­
ге пакет com. horstmann. places будет открыт только для модуля java. xml. ut il. 

9 .1 З. Загрузка служб 
Класс ServiceLoader (см. главу 6 первого тома настоящего издания) предо­

ставляет облегченный механизм для согласования интерфейсов служб с их реа­

лизациями, а модульная система на платформе Java упрощает применение этого 
механизма. 

Напомним вкратце, каким обра:юм происходит загрузка службы. У службы 

имеется интерфейс и одна или нескол1,ко возможных ее реализаций. Ниже при­

веден простой пример интерфейса службы приветствий. 



puЬlic interf ace GreeterService 
String greet(String subject); 
Locale getLocale(); 

9 .1 З. Загрузка служб 

В одном или нескольких модулях предоставляются реали:ыции данной служ­

бы, как, например, показано ниже. 

puЫic class FrenchGreeter implements GreeterService 
{ 

puЫic String greet(String subject) 
{ return "Bonjour " + subject; } 
puЫic Locale getLocale() 
{ return Locale.FRENCH; } 

Потребитель службы должен выбрать одну из предоставляемых ее реализа­

ций по наиболее подходящему для него критерию. 

ServiceLoader<GreeterService> greeterLoader = 
ServiceLoader.load(GreeterService.class); 

GreeterService chosenGreeter; 
for (GreeterService greeter : greeterLoader) { 

if ( ... ) { 
chosenGreeter = greeter; 

В прошлом реализации служб предоставлялись путем размещения текстовых 

файлов в каталоге META-INF/services из архивного JАR-файла, содержавшего 
классы реализаций, а ныне модульная система предлагает более совершенный 

способ. Вместо текстовых файлов в дескрипторы модулей вводятся соответству­

ющие операторы. 

В модуль, предоставляющий реализацию службы, вводится оператор 

provides, где перечисляется и~rгерфейс этой службы, который может быть опре­
делен в любом модуле, а также реализующий ее класс, который должен быть со­

ставной часть данного модуля. В качестве примера ниже приведен фрагмент кода 

из модуля jdk. securi ty. auth. По существу, это эквивалент текстового файла из 
каталога МЕТА- INF / services. 

module jdk.security.auth { 

provides javax.security.auth.spi.LoginModule with 
com.sun.security.auth.module.Krb5LoginModule, 
com.sun.security.auth.module.UnixLoginModule, 
com.sun.security.auth.module.JndiLoginModule, 
com.sun.security.auth.module.KeyStoreLoginModule, 
com.sun.security.auth.module.LdapLoginModule, 
com.sun.security.auth.module.NTLoginModule; 

В тех модулях, где употребляется данная служба, содержится оператор uses, 
как демонстрируется в следующем примере кода: 

module java.base { 

uses javax.security.auth.spi.LoginModule; 



Глава 9 • Модульная система на платформе Java 

Когда в коде модуля, где используется служба, вызывается метод Service 
Loader. load (интерфейс_ службы. class), загружаются классы соответствующих 
поставщиков данной службы, даже если они могут и не оказаться в доступных 

пакетах. 

В рассматриваемом здесь примере предоставляются реализации службы при­

ветствия на немецком и францу:кком языках в пакете сот. horstтann. greetsvc. 
internal. Модуль !>ТОЙ службы экспортирует пакет сот. horstтann. greetsvc, 
но не пакет с ее реализациями. В операторе provides сама служба и реализую­
щие ее классы объявляются в неэкспортируемом пакете, как показано ниже. 

module com.horstmann.greetsvc 
{ 

exports com.horstmann.greetsvc; 

provides com.horstmann.greetsvc.GreeterService with 
com.horstmann.greetsvc.internal.FrenchGreeter, 
com.horstmann.greetsvc.internal.GermanGreeterFactory; 

Данная служба употребляется в модуле v2ch09. useservice. Пользуяс~. клас­
сом ServiceLoader, можно обойти все предоставляемые службы приветствия 
и выбрать среди них наиболее подходящую для конкретного языка, как демон­

стрируется в приведенном ниже фрагменте кода. 

package com.horstmann.hello; 

import java.util.*; 
import com.horstmann.greetsvc.*; 

puЬlic class HelloWorld 
{ 

puЫic static void main(String[] args) 
{ 

ServiceLoader<GreeterService> greeterLoader 
ServiceLoader.load(GreeterService.class); 

String desiredLanguage = 
args.length >О? args[O] : "de"; 

GreeterService chosenGreeter = null; 
for (GreeterService greeter : greeterLoader) 
{ 

i f ( greeter. getLocale () . getLanguage () 
.equals(desiredLanguage)) 

chosenGreeter = greeter; 

if (chosenGreeter == null) 
System.out.println("No suitaЫe greeter."); 

else 
System.out.println( 

chosenGreeter.greet("Modular World") ); 

В объявлении модуля требуется модуль службы и объявляется применение 

службы приветствия типа GreeterService, как показано ниже. В резул~.тате объ­
явлений, сделанных в операторах provides и uses, модулю, употребляющему 



9 .14. Инструментальные средства для работы с модулями 

указанную службу приветствия, разрешается доступ к открытым классам ее реа­

лизации. 

module v2ch09.useservice 

requires com.horstmann.greetsvc; 
uses com.horstmann.greetsvc.GreeterService; 

Чтобы построить и выполнить программу из данного примера, необходимо 

скомпилировать сначала службу, выполнив следующую команду: 

javac com.horstmann.greetsvc/module-info.java \ 
com.horstmann.greetsvc/com/horstmann/greetsvc \ 

/GreeterService.java \ 
com.horstmann.greetsvc/com/horstmann/greetsvc \ 

/internal/*.java 

Затем необходимо скомпилировать и выполнить модуль, употребляющий 

данную службу, выполнив команду 

javac -р com.horstmann.greetsvc \ 
v2ch09.useservice/com/horstmann/hello/HelloWorld.java \ 
v2ch09.useservice/module-info.java 

java -р com.horstmann.greetsvc:v2ch09.useservice \ 
-m v2ch09.useservice/com.horstmann.hello.HelloWorld 

9 .14. Инструментальные средства для работы с модулями 
Утилита j deps служит для анализа зависимостей в отдельном ряде архивных 

JАR-файлов. Допустим, требуется модуляризировать инструментальное средство 

JUnit 4. Для выявления в нем зависимостей необходимо выполнить следующую 
команду: 

jdeps -s junit-4.12.jar hamcrest-core-1.3.jar 

По заданному параметру -s выводится следующий итоговый результат ана­
лиза зависимостей: 

hamcrest-core-1.3.jar -> java.base 
JUnit-4.12.jar -> hamcrest-core-1.3.jar 
junit-4.12.jar -> java.base 
junit-4.12.jar -> java.management 

По этому результату можно построить приведенный на рис. 9.3 граф модулей. 
Если опустить параметр -s, то после сводки модулей будет выведено соот­

ветствие одних пакетов и требующихся для них других пакетов и модулей. Если 

же добавить параметр -v, то будет выведено соответствие классов и требующих­
ся для них других пакетов и модулей. По заданному параметру --generate­
module-info выводятся файлы module-info для каждого проанали:трованного 
модуля: 

jdeps --generate-module-info /tmp/junit junit-4.12.jar \ 
hamcrest-core-1.3.jar 



Глава 9 • Модульная система на платформе Java 

management 

Рис. 9.3. Граф модулей, построенный утилитой jdeps 

НА ЗАМЕТКУ! Имеется также параметр для формирования графического вывода на "точеч­

ном" языке описания графов. Если установлено инструментальное средство dot, то, выпол­
нив следующие команды: 

jdeps -s -dotoutput /tmp/junit junit-4.12.jar \ 
ham.crest-core-1.3.jar 

dot -Тpnq /tmp/junit/summary.dot > /tmp/junit/summary.pnq 

можно получить файл изображения summary. pnq с приведенным на рис. 9.4 графом 
модулей. 

mana (java managementgement) 

java.base(java.base) 

Рис. 9.1+. Файл изображения summary .pnq 

Утилита j link служит для построения прикладной программы, которая вы­
полняется без отдельной исполняющей среды Java. В итоге получается намного 
более компактный образ, чем целый комплект JDK. При этом указываются моду­
ли, которые требуется включить, а также выходной каталог: 

jlink --module-path com.horstmann.qreet.jar: \ 
v2ch09.exportedpkq.jar:$JAVA_HOМE/jmods \ 

--add-modules v2ch09.exportedpkq --output /tmp/hello 



9.14. Инструментальные средства для работы с модулями 

В выходном каталоге находится подкаталог Ьin с исполняемым файлом java. 
Так, если выполнить следующую команду: 

bin/java -m v2ch09.exportedpkg 

из главного класса модуля будет вызван метод main (). 
Назначение утилиты j link состоит в том, чтобы скомплектовать минималь­

ный ряд модулей, которые требуются для выполнения прикладной программы. 

Все эти модули можно перечислить по следующей команде: 

bin/java --list-modules 

В рассматриваемом здесь примере выводится такой результат: 

v2ch09.exportedpkg 
com.horstmann.greet 
java.base@9 

Все модули включаются в файл liЬ/modules обра3а на стадии вы110.лнения. 

На моем компьютере этот файл занимает 23 Мбайт, тогда как образ всех моду­
лей JDK на стадии выполнения - 181 Мбайт, а вся прикладная программа -
45 Мбайт, т.е. на 10% мею,ше, чем весь комплект JDK, занимающий 486 Мбайт. 

Данное инструментальное средство может послужить основанием для упа­

ковки прикладной программы. Тем не менее придется получить ряд файлов 

для разных платформ и запустить на выполнение соответствующие сценарии 

для данной прикладной программы. 

НА ЗАМЕТКУ! Проверить образ на стадии выполнения можно по команде jimage. Тем не 
менее образы на стадии выполнения формируются во внутреннем для виртуальной машины 

Java формате и не предназначены для применения в других инструментальных средствах. 

Наконец, утилита jmod служит для построения и проверки файлов модулей, 
ВК!lючаемых в состав комплекта JDK. Если обратиться к каталогу jmods в ком­
плекте JDK, то в нем можно обнаружить файл с расширением jmod для каждого 
включенного в данный комплект моду ля. Но в нем больше нет файла rt. j ar. 

Подобно архивным JАR-файлам, эти файлы содержат файлы К11ассов. Они 

могут также содержать библиотеки платформешю-ориентированного кода, 

команды, файлы заголовков и конфигурации, а также правовые положения. 

В JМОD-файлах применяется формат ZIP, поэтому их содержимое можно про­
верить средствами ZIP. 

В отличие от архивных JАR-файлов, JМОО-файлы полезны только для компо­

новки, т.е. получения обра:юв на стадии выполнения. Потребность в получении 

JМОО-файлов во:шикает лишь в том случае, если требуется скомплектовать вме­

сте с модулями двоичные файлы, например, для библиотек платформенно-ори­

ентировашюго кода. 

НА ЗАМЕТКУ! Файлы rt. jar и tools. jar больше не входят в состав версии Java 9, поэ­
тому необходимо обновить любые ссылки на них. Так, если в файле правил защиты делается 

ссылка на файл tools. jar, эту ссылку необходимо заменить ссылкой на соответствующий 
модуль: 



Глава 9 • Модульная система на платформе Java 

grant codeBase "jrt:/jdk.compiler" { 
permission java.security.AllPermission; 

} ; 

Синтаксис jrt: обозначает файл времени выполнения Java. 

На этом глава, посвященная модульной системе на платформе Java, заверша­
ется. В следующей главе рассматривается еще одна важная тема безопасности. 

Безопасность всегда была отличительной особенностью платформы Java. В связи 
с постоянным увеличением степени риска в мире, в котором мы живем, ясное 

представление о средствах безопасности Java становится все более актуальным 
для многих разработчиков. 



ГЛАВА 

Безопасность 

В этой главе ... 

• Загрузчики классов 

• Диспетчеры защиты и полномочия 

• Аутентификация пользователей 

• Цифровые подписи 

• Шифрование 

С появлением технологии Java специалисты оценили по достоинству не только 
хорошо продуманные выразительные средства этого языка, но и механизмы обе­

спечения безопасности при выполнении аплетов, доставляемых через Интернет. 

Очевидно, что доставка исполняемых аплетов имеет смысл только тогда, когда по­

лучатели уверены, что код не может нанести ущерба работе их компьютеров. Поэ­

тому вопросы безопасности были и остаются основной заботой как разработчиков, 

так и пользователей технологии Java. Эго означает, что, в отличие от других языков 
и систем, в которых безопасность обеспечивалась в последнюю очередь, механиз­

мы защиты изначально стали неотъемлемой частью технологии Java. 
В технологии Java безопасность обеспечивают следующие три механизма. 

• Структурные функциональные возможности языка (например, проверка 

границ массивов, запрет на преобразования непроверенных типов данных, 

отсутствие указателей и т.д.). 

• Средства контроля доступа, определяющие действия, которые разрешается 

или запрещается выполнять в коде (например, может ли код получать до­

ступ к файлам, передавать данные по сети и т.д.). 

• Механизм цифровой подписи, предоставляющий авторам возможность 

применять стандартные алгоритмы для аутентификации своих программ, 

а пользователям - точно определять, кто создал код и изменился ли он 

с момента его подписания. 



Глава 1 О • Безопасность 

В этой главе сначала рассматриваются 3аzру3чuки классов, проверяющие фай­

лы классов на предмет целост11ости при их загрузке в виртуальную машину Java. 
А затем будет показа110, каким обра:юм этот механизм может выявлять в файлах 

классов признаки злонамерен11ых действий. 

Для обеспечения максима11ыюй бе:юпасности оба механизма загрузки клас­

сов (используемый по умолчанию и специальный) должны взаимодействовать 

с классом дис11етчера 3ПIJ\Иты, определяющим действия, которые разрешено или 

запрещено выполнят~, в коде. Поэтому далее в этой главе подробно поясняется, 

каким образом настраи11ается безопасность на платформе Java. 
И в завершение главы будут рассмотрены ра:ыичные алгоритмы шифрования, 

доступные в пакете j ava. securi ty и позволяющие подписывать код и обеспечи­
вать аутентификацию полr,зователей. Как обычно, основное внимание здесь уделя­

ется тоЛJ,ко тем вопросам, которые представляют наибольший интерес для разра­

ботчиков прикладных программ на Java. А тем, кому требуется более углубленное 
изучение данной темы, рекомендуем книгу Inside f mm 2 Platfonn Security: Architecture, 
API Oesigн, a11d Impleme11tatio11, 211d edition Jlи Гонга, Гэри Эллисона и Мэри Дейдж­
форд (Li Gong, Gary Ellison, Mary Dageforde; издательство Prentice Hal\ PTR, 2003 г.). 

10.1. Загрузчики классов 
Компилятор Java преобра:1ует исходные операторы языка в понятный для вир­

туал1,ной машины Java байт-код, который сохраняется в файле класса с расшире­
нием . class. В каждом файле класса содержится код определения и реализации 
тол1,ко для одного класса или интерфейса. В последующих разделах будет пока­

зано, каким образом 11иртуа11ы~ая машина Java загружает файлы классов. 

10.1.1. Процесс загрузки классов 
Виртуалшая машина Java загружает только те файлы классов, которые требу­

ются для выполнения программы в данный момент. Допустим, выполнение про­

граммы начинается с файла MyProgram. class. Ниже описаны действия, которые 
выполняет виртуал1,ная маши11а Java. 

1. В виртуальной машине имеется механизм загрузки файлов классов, напри­
мер, путем их чтения с диска или загрузки из Интернета. С помощью этого 

механи:~ма сначала :1агружается содержимое файла класса MyProgram. 

2. Если в классе MyProgram встречаются поля или объекты, ссылающиеся 
на классы других типов, то дополнительно :ыгружаются файлы этих клас­

сов. (Процесс :1агру:1ки всех классов, от которых зависит данный класс, назы­

вается ра.зре~uение.м класса.) 

3. Затем виртуал1,ная машина выполняет метод main () из класса MyProgram. 
(Этот метод является статическим, поэтому никаких экземпляров класса 

MyProgram создавап, 11е требуется.) 

4. Если для выполнения метода main () или вызываемого из него метода тре­
буются дополните11ьные классы, они загружаются далее из соответствую­

щих файлов. 



10.1. Загрузчики классов 

Но в механизме загрузки классов используется не один, а несколько загруз­

чиков. Каждой программе на Java сопутствует по меньшей мере три загрузчика 
классов: 

• загрузчик базовых классов; 

• загрузчик платформных классов; 

• загрузчик системных классов, иногда называемый загрузчиком прикладных 

классов. 

Загрузчик ба:ювых классов загружает платформные классы, содержащиеся 

в следующих модулях: 

java.base 
java.datatransfer 
java.desktop 
java.instrument 
java.logging 
java.management 
java.management.rmi 
java.naming 
java.prefs 
java.rmi 
java.security.sasl 
java.xml 

а также целый ряд внутренних модулей из комплекта JDK. 
Загрузчику базовых классов не соответствует ни один из объектов типа 

ClassLoader. Например, при вызове следующего метода возвращается пустое 
значение null: 

String.class.getClassLoader() 

До версии Java 9 классы платформы Java находились в архивном файле 
rt. j ar. А поскольку платформа Java стала теперь модульной, каждый ее модуль 
содержится в JМОD-файле (см. главу 9). Загрузчик платформных классов загру­
жает все классы платформы Java, которые были еще загружены загрузчиком ба­
зовых классов. Наконец, загрузчик системных классов загружает все прикладные 

классы по пути к модулям или классам. 

НА ЗАМЕТКУ! До версии Java 9 загрузчик расширений классов загружал стандартные рас­
ширения из каталога jre/lib/ext, а механизм замены утвержденных норм обеспечивал 
порядок замены некоторых платформных классов, включая реализации CORBA и XML, их но­
выми версиями. Оба эти механизма исключены из текущей версии Java. 

10.1.2. Иерархия загрузчиков классов 
Загрузчики классов связаны отношениями "родитель-потомок". У каждого 

загрузчика классов, за исключением базовых классов, имеется свой родительский 

загрузчик классов. Предполагается, что загрузчик классов дает возможность сво­

ему родителю загружать любой нужный класс и загружает его сам только в том 

случае, если этого не может сделать родитель. Так, если загрузчик системных 

классов получает запрос на загрузку системного класса (например, j ava. lang. 



Глава 1 О • Безопасность 

StringBuilder), сначала 011 предлагает загрузить его загрузчику платформных 
классов. Загру:~чик платформных классов, н свою очередь, предлагает сделап, ':)ТО 

загрузчику ба:юных классов. В итоге загрузчик ба:ювых классов 1tа ходит и :1агру­

жает класс из архивного файла r t . j a r, а нее остальные :1агру:1ч11ки классов пре­
кращают дальнейший поиск. 

Некоторые программы имеют модулы1ую архитектуру, где определе1111ые 

части кода упаковываются в допол11ителы1ые, 110 необюателыю подключае­

мые модули. Если подключаемые модули упаковываются в архивные JАR-фай­

лы, то классы ':)ТИХ модулей могут :1агружаться с помощью ':)К :1емпляра класса 

URLClassLoade r , как показано ниже. 

var url = new URL ("file:/ //path/to/plugin.ja r " ) ; 
var pluginLoader = new URLCla s sLoader(new URL [ ) { url )) ; 
Class<?> c l = plug i nLoader .loadClass ("mypac kage.MyC l ass " I ; 

В конструкторе класса URLClassLoader вообще не указан род11тел1. :1агрузчика 

подключаемых модулей типа plug inLoader, поэтому в роли его родителя будет 
выступап, :1агру:1чик системных классов. Схематическое представление иерархии 

загрузчиков классов приведено на рис. 10.1. 

Загрузчик 

базовых 
классов 

1:.-----

'------.".· 
Загрузчик 

платформных 

классов 

Загрузчик 

JМОD-файлы 

JМОО-файлы 

системных - - - - - _.,. путь к классам/ 
классов путь к модулям 

Загрузчик 
классов 

подключаемых 

модулей 
plugiп .jar 

Рис. 10.1. Иерархия за~ру:1•111ков классов 



10.1. Загрузчики классов 

• ВНИМАНИЕ! До версии Java 9 загрузчик системных классов был представлен экземпляром 
класса URLClassLoader. Некоторые программисты обычно прибегали к приведению типов, 
чтобы получить доступ к методу getURLs (), или же вводили архивные JАR-файлы в путь 
к классам, вызывая защищенный метод addURLs () через рефлексию. Но теперь и то и дру­
гое стало невозможным. 

Как правило, разработчиков прикладных программ мало интересует иерар­

хия загрузчиков классов. Обычно одни классы загружаются потому, что этого 

требуют другие классы, и этот процесс является абсолютно прозрачным для раз­

работчика. Но иногда разработчикам прикладных программ все-таки приходит­

ся вмешиnаться в данный процесс, чтобы указывать нужный загрузчик классов. 

Рассмотрим следующий пример. 

• В коде прикладной программы имеется вспомогательный метод, вызываю­

щий метод Class. forName (classNameString). 

• Этот метод вызывается из класса подключаемого модуля. 

• Параметр classNameString указывает на класс, содержащийся в архивном 
JАR-файле подключаемого модуля. 

Автор подключаемого модуля имеет все основания предполагать, что его 

класс будет загружаться. Но загрузка класса вспомогательного метода выполня­

лась загрузчиком системных классов, т.е. именно тем загрузчиком, который ис­

пользовался методом Class. forName (}.Это означает, что классы, находящиеся 
в архивном файле plugin. j ar, недоступны. Подобное явление называется инвер­
сией 3агру3чиков классов. 

Для устранения данного препятствия требуется, чтобы вспомогательный ме­

тод использовал нужный загрузчик классов. А для этого можно указать нужный 

загрузчик классов в виде параметра или установить его в качестве загрузчика кон­

текста классов в текущем потоке исполнения. Вторая методика применяется во 

многих каркасах (например, JAXP и JNDI). 
В каждом потоке исполнения имеется ссылка на загрузчик классов, называ­

емый 3аzру3чиком контекста классов. Таким загрузчиком для главного потока 

исполнения является загрузчик системных классов. При создании нового пото­

ка исполнения для него назначается загрузчик контекста классов из того пото­

ка исполнения, который его создает. Следовательно, если не вмешиваться в этот 

процесс, то для всех потоков исполнения в качестве загрузчика контекста классов 

назначается загрузчик системных классов. Тем не менее существует возможность 

указать любой другой загрузчик классов, сделав следующий вызов: 

Thread t = Thread.currentThread(); 
t.setContextClassLoader(loader); 

Вспомогательный метод может затем извлечь загрузчик контекста классов сле­

дующим образом: 

Thread t = Thread.currentThread(); 
ClassLoader loader = t.getContextClassLoader(); 
Class cl = loader.loadClass(className); 



Глава 1 О • Безопасность 

СОВЕТ. При написании метода, загружающего класс по имени. вызывающему его коду реко­

мендуется предоставлять возможность выбирать между передачей явно задаваемого загруз­

чика классов и применением загрузчика контекста классов. Просто использовать загрузчик 

класса этого метода нежелательно. 

10.1.З. Применение загрузчиков классов в качестве пространств имен 

Загрузчик 

базовых 

классов 

Загрузчик 

классов 

расширений 

Загрузчик 

системных 

классов 

Загрузчик Загрузчик 

классов для классов для 

приложения №1 приложения №2 

' ' Util.class 

Всякому программирующему на Java 
и:1весп10, что для устра11еш1я конфлик­

тов имен применяются име11а пакетов. 

Например, в стандарт110й библиотеке 

Java имеются два класса под име11ем 
Da te, 110 полностыо 011и именуются как 
j ava. 11t.i l. Da t.e и java . s q1. Da t. e . Ко­
роткие имена употребляются для удоf>­

ства проrраммирова1111я, 110 требуют 
включения соответствующих операто­

ров impo r t в исходный код. В выполня-
1ощейся программе все имена классон 

содержат имена своих пакетон. 

Но, как ни стра~шо, в пределах од­

ной и той же виртуаль11ой маш~111ы 

могут существовать два ра:шых класса, 

имеющих одинаковое имя класса и па­

кета. Дело в том, что класс определяет­

ся по его полному имет1 и :1агру:1ч11ку 

класса . Такая технология очень удобна 

при :sагрузке кода из нескол1,ких источ­

ников. Например, 11а сервере приложе­

ний для :~аrрузки каждого приложе1111я 

используются отдельные :1аrру:~чик11 

классов. Это по:нюляет виртуалыюй 

машине ра:~личать классы 11:1 ра :шых 

приложений не:1а11исимо от их имен. 

Допустим, на сервере приложений :1а­

гружаются два ра:шых приложения, и в 

каждом и:1 них имеется класс Uti1. Но 
11оскол1,ку каждый класс :1аrружается 

отдельным :~аrру:~чиком классов, ·,ни 

Рис. 10.2. Два :ы1ру:~чика классов :ы1ружакп классы полносп,ю ра:1личаются 11 не 
ра.111ые классы с одинаковыми именами конфликтуют между собой (рис. I 0.2). 

10.1.4. Создание собственного загрузчика классов 
Для специаль11ых целей можно создавать и свои собственн1.1е загру:~чики клас­

сов. Такой подход по:щоляет 11ыпол1нп1. какие-нибуд1, специалы1ые проверки, 

прежде чем передавал, байт-код виртуалы10й машине. Например, можно со:~дап. 



10.1. Загрузчики классов 

:1аrру:1чик классов, способный 3апрещат~, :1аrружу класса, который не был помечен 

как оплаче1111ый . Чтобы со3дать собственный :1аrру:1•1ик классов, достаточно расши­

рить класс ClassLoader и переопределить метод f i ndClass (St.r i ng className ). 
Метод loadClass () 113 суперкласса ClassLoader берет на себя все обязан-

1юсти по делегированию функций :~аrружи родитl:'льскому :\аrру:1чику классов 

и вы:1ывает метод fi ndClass ( J только в том случ<1е, если класс еще 11е был 3аrру­

же11 и если родительскому заrру3чику классов не удалось его 3<1гру:шть. Поэтому 

при самостоятельной реали3ации метода f indClass ( ) необходимо сделать так, 
чтобы 011 выполш1л следующее. 

1. Загружал байт-код класса из локалыюй файловой системы или какого-ни­
будь другого источника. 

2. Вы :1ывал метод defineClass ( ) И3 суперклисса ClassLoader для представ­
ления байт-кода виртуальной маши11е. 

В примере программы И3 листинга 10.1 демонстрируется реали3<1ция :1агруз­
чика классов, способного загружать файлы 3ашифрова1111ых классов. Эта про­

грамма сначала 3апрашивает у поль:ювателя имя первого :1агружаемого класса 

(т.е. класса, содержащего метод main ( ))и ключ расшифровки. Затем она исполь­

зует специалы1ый :~аrрузчик классов для 3агрузки ука:1а111юго класса и вызова 

метода main ( ). Этот специальный :1агру:~чик расшифровывает ука:1анный класс 
и все несистемные классы, на которые 011 ссылается, после чего программа нако­
нец-то вы3ывает метод main () И3 :1агруже111юrо класса (рис. 10.3). Ради простоты 
для шифрования файлов классов в рассматриваемом :sдесь примере использу­

ется древний шифр Юлия Цезаря, пренебрегая более чем 2000-лет11им опытом 

в области криптографии. 

IClassloader·Test 1_101 х 
1us'ca1cu1a1or 
~·у[_! 

Г t~ad 1 11 1 Calculator 1 D IX 

7 1 8 1 9 1 

• 1 5 1 6 . • 1 • -t·' IClassLoaderTest 1- IDI X ._ 
li.sslCalcu1ator + 

Kt\{4 __j t== 

~l 1 •. lмessage IX 

CD jav"l•n9.Cl•ssFormatError: lncompatiЬlt m191c Hlllt H 88841573 ln tlUS lllt CVCUli\Ot 

со~ 

Рис. 10.З. Про1-рамма ClassLoaderTest 

НА ЗАМЕТКУ! В прекрасной книге The Codebreakers Дэвида Кана IDavid Каhп; издательство 
Macmillan. 1967 г. 1 1 говорится, что Юлий Цезарь кодировал 24 буквы латинского алфави­
та, сдвигая их на 3 буквы. чем повергал в недоумение всех своих противников . На момент 

1 В русском ш~револс эта книга 11ы111ла 11ол 11а:ша1111см 8.1,1омщ1111:н 11:одо11 н и :Jлатслы:тве 
"Цснтр1юл111раф", М . 2000 г. 



Глава 1 О • Безопасность 

написания первоначального варианта этой главы правительство США ограничивало экспорт 

наиболее сложных методов шифрования. Поэтому использование довольно простого метода 

шифрования Юлия Цезаря в рассматриваемом здесь примере никак не нарушит экспортных 

ограничений. 

В рассматриваемом здесь варианте тайнописи Юлия Цезаря в качестве ключа 

используется число в пределах от 1 до 255. Для шифрования байт суммируется 
с этим ключом по модулю 256. Алгоритм шифрования реализован в программе 
из файла Caesar.java, исходный код которой приведен в листинге 10.2. Чтобы 
не поставить в тупик стандартный загрузчик классов, для зашифрованных фай­

лов классов используется расширение . caesar. 
При расшифровке загрузчик классов вычитает значение ключа из каждого 

байта. В прилагаемом к данной книге коде предлагаются четыре файла классов, 

зашифрованных с помощью традиционного значения З ключа шифрования. Эти 

классы нельзя загрузить и запустить на выполнение в стандартной виртуальной 

машине Java. Для этого понадобится специальный загрузчик классов, реализо­
ванный в рассматриваемой здесь программе ClassLoaderTest. 

Зашифрованные файлы классов имеют самое разное практическое примене­

ние (если, конечно, используется более сложный шифр, чем тайнопись Юлия 

Цезаря). Без ключа шифрования эти файлы классов бесполезны, поскольку они 

не могут выполняться в стандартной виртуальной машине Java, а восстановить их 
исходный код нелегко. 

Это означает, что для аутентификации пользователя класса или для провер­

ки того, что программа оплачена до запуска, можно воспользоваться специаль­

ным загрузчиком классов. Естественно, что шифрование является только одним 

из возможных применений специального загрузчика классов. Для решения дру­

гих задач, например, сохранения файлов классов в базе данных, можно создавать 

и применять иные разновидности загрузчиков классов. 

Листинг 10.1. Исходный код из файла classLoader/ClassLoaderTest. java 

1 package classLoader; 
2 
3 import java.io.*; 
4 import java.lang.reflect.*; 
5 import java.nio.file.*; 
6 import java.awt.*; 
7 import java.awt.event.*; 
8 import javax.swing.*; 
9 
10 /** 
11 * В этой программе демонстрируется специальньм загрузчик 

12 * классов, расшифровывающий файлы классов 

13 * @version 1.25 2018-05-01 
14 * @author Сау Horstmann 
15 */ 
16 puЫic class ClassLoaderTest 
17 { 
18 puЫic static void main(String[] args) 



10.1. Загрузчики классов 

19 
20 EventQueue.invokeLater( () -> 
21 { 
22 var frame = new ClassLoaderFrame(); 
23 frame.setTitle("ClassLoaderTest"); 
24 frame.setDefaultCloseOperation( 
25 JFrame.EXIT ON CLOSE); 
26 frame.setVisiЬle(true); 

27 ) 1; 
28 
29 
30 
31 /** 
32 * Этот фрейм содержит два текстовых поля для ввода 
33 * имени загружаемого класса и ключ расшифровки 
34 * 
35 */ 
36 class ClassLoaderFrame extends JFrame 
37 
38 private JTextField keyField = 
39 new JTextField("3", 41; 
40 private JTextField nameField = 
41 new JTextField("Calculator", 30); 
42 private static final int DEFAULT WIDTH = 300; 
43 private static final int DEFAULT HEIGHT = 200; 
44 
45 puЫic ClassLoaderFrame() 
4 6 { 
47 setSize(DEFAULT_WIDTH, DEFAULT HEIGHT); 
48 setLayout(new GridBagLayout() ); 
49 add(new JLabel("Class"), 
50 new GBC(O, 0).setAnchor(GBC.EAST)); 
51 add(nameField, new GBC(l, 0) .setWeightilOO, 0) 
52 . setAnchor ( GBC. WEST) ) ; 
53 add(new JLabel("Key"I, 
54 new GBC(O, 1) .setAnchor(GBC.EAST)); 
55 add(keyField, newGBC(l, 1).setWeight(lOO, 0) 
56 .setAnchor(GBC.WEST)); 
57 var loadButton = new JButton("Load"); 
58 add(loadButton, new GBC(O, 2, 2, 1)); 
59 loadButton.addActionListener(event -> 
60 runClass(nameField.getText(), 
61 keyField.getText())); 
62 pack 1); 

63 
64 
65 /** 
66 * Выполняет главный метод указанного класса 
67 * @param name имя класса 
68 * @param key Ключ расшифровки файлов классов 
69 */ 
70 puЫic void runClass(String name, String key) 
71 ( 
72 try 
7 3 { 



Глава 1 О • Безопасность 

74 var loader new CryptoClassLoader( 
75 Integer.parseint(key)); 
76 Class<?> с loader.loadClass(name); 
77 Method m = c.getMethod("main", String[] .class); 
78 m.invoke(null, (Object) new Strшg[] {f); 

79 
80 catch (ThrowaЫe t) 
81 { 
82 JOptionPane.showMessageDialog(this, t); 
83 
84 
85 
86 
87 /** 
88 * Этот загрузчик классов загружает их 
89 * из зашифрованных файлов 
90 * / 

91 class CryptoClassLoader extends ClassLoader 
92 
93 private int key; 
94 
95 /** 
96 * Конструирует загрузчик зашифрованных классов 
97 * @param k клюя расшифровки 
98 */ 
99 puЫic CryptoClassLoader(int k) 
100 { 
101 key = k; 
102 
103 
104 protected Class<?> findClass(String name) 
105 throws ClassNotFoundException 
106 
107 try 
108 { 
109 byte[] classBytes = null; 
110 classBytes = loadClassBytes(name); 
111 Class<?> cl = defineClass (name, classBytes, О, 

112 classBytes.lengthl; 
113 if (cl == null) 
114 throw new ClassNotFoundException(name); 
115 return cl; 
116 
117 catch (IOException el 
118 { 
119 throw new ClassNotFoundException(name); 
] 20 
121 
122 
123 /** 
124 * Загружает и расшифровывает байты из файла класса 
125 * @param name Имя класса 
126 * @return Массив с байтами из файла класса 
127 * / 
128 private byte[] loadClassBytes(String name) 



129 
130 

throws IOException 

10.1. Загрузчики классов 

131 String cname = name.replace('.', '/') + 11 .caesar 11 ; 

132 byte[] bytes = Files.readAllBytes(Paths.get(cname)); 
133 for (int i =О; i < bytes.length; i++) 
134 bytes[i] = (byte) (bytes[i] - key); 
135 return bytes; 
136 
137 

Листинг 10.2. Исходный код из файла classLoader/Caesar. java 

1 package classLoader; 
2 
3 import java.io.*; 
4 
5 /** 
6 * Шифрует файл, используя тайнопись Юлия Цезаря 

7 * @version 1.02 2018-05-01 
8 * @author Сау Horstmann 
9 * / 
10 puЫic class Caesar 
11 { 
12 puЬlic static void main(String[] args) throws Exception 
13 { 
14 if (args.length != 3) 
15 { 
16 System.out.println( 11 USAGE: java 11 

17 + 11 classLoader.Caesar in out key 11 ); 

18 return; 
19 
20 
21 try (var in = new FileinputStream(args[O]); 
22 var out = new FileOutputStream(args[l] )) 
23 
24 int key = Integer.parseint(args[2]); 
25 int ch; 
26 while ( (ch = in.read()) != -1) 
27 { 
28 byte с = (byte) (ch + key); 
29 out.write(c); 
30 
31 
32 
33 

java. lang. Class 1. О 

• ClassLoader getClassLoader{) 

Получает загрузчик для загрузки данного класса. 



Глава 1 О • Безопасность 

java.lang.ClassLoader 1.0 

• ClassLoader getParent () 1. 2 

Получает родительский загрузчик классов или пустое значение null, если это загрузчик ба­
зовых классов. 

• static ClassLoader getSystemClassLoader () 1. 2 

Получает загрузчик системных классов, т.е. тот, который применялся для загрузки первого 

прикладного класса. 

• protected Class findClass (String name) 1. 2 

Должен быть переопределен в загрузчике классов для поиска байт-кода класса и его пред­

ставления виртуальной машине благодаря вызову метода defineClass (). Для отделения 
имени пакета от имени класса следует использовать точку и не указывать суффикс . class. 

• Class defineClass(String пате, byte[] byteCodeData, int offsвt, 
int length) 

Передает виртуальной машине новый класс, предоставляя байт-код в определенном диапа­
зоне данных. 

java.net.URLClassLoader 1.2 

• URLClassLoader (URL [] urls) 

URLClassLoader (URL [] urls, ClassLoader parent) 

Создают загрузчик классов по указанному URL. Если URL оканчивается знаком /,то подраз­
умевается каталог, а иначе - архивный JАR-файл. 

java.lang.Thread 1.0 

• ClassLoader getContextClassLoader () 1 . 2 

Получает загрузчик классов, обозначенный создателем данного потока исполнения как наи­

более приемлемый для использования в этом потоке. 

void setContextClassLoader (ClassLoader loader) 1. 2 

Устанавливает загрузчик классов для кода в данном потоке исполнения. Если при запуске 

потока на исполнение загрузчик контекста классов не задан явно, то используется родитель­

ский загрузчик контекста классов. 

10.1.5. Верификация байт-кода 
Когда загрузчик классов представляет виртуальной машине байт-код класса, 

этот код сначала обследуется верификатором. Верификатор проверяет все клас­

сы за исключением системных и определяет те команды, которые моrут нанести 

ущерб виртуальной машине. 

Ниже приведены некоторые виды проверок, выполняемых верификатором. 

• Инициализация переменных перед их использованием. 

• Согласование типов ссылок при вызове метода. 



10.1. Загрузчики классов 

• Соблюдение правил доступа к :1акрытым данным и методам. 

• Доступ к локальным переменным в стеке во время выполнения. 

• Отсутствие переполнения стека. 

При невыполнении какой-нибудь из этих проверок класс считается повре­

жденным и :ыгружаться не будет. 

НА ЗАМЕТКУ! Теорема Гёделя утверждает, что невозможно разработать алгоритмы, способные 

обработать программу и выяснить, обладает ли она конкретным свойством !например, незави­
симостью от переполнения стека). В таком случае возникает вопрос: каким образом верифика­
тор может определить, что в файле класса не соблюдается соответствие типов, используются 

неинициализированные переменные и переполняется стек? Нет ли здесь противоречия зако­
нам логики? Никакого противоречия нет, потому что верификатор не является алгоритмом при­

нятия решений в смысле теоремы Гёделя. Если верификатор принимает программу, значит, она 

действительно безопасна. Но он может и отклонять команды виртуальной машины, даже если 

те выглядят вполне безопасными. !Вам, вероятно, уже доводилось сталкиваться с подобным за­
труднением и инициализировать переменную каким-нибудь фиктивным значением из-за того, 
что компилятор не в состоянии гарантировать ее должную инициализацию.) 

Такая строгая верификация требуется по соображениям безопасности. Слу­

чайные ошибки, связанные с исполь:юванием неинициализированных пере­

менных, могут легко нанести значительный ущерб программе, если вовремя не 

определить их. Еще важнее то обстоятельство, что при повсеместном доступе 

к Интернету необходимо обеспечить надежную защиту от злонамеренных попы­

ток недобросовестных программистов, стремящихся проникнуть в чужую систе­

му или нанести ей ущерб. Например, видоизменив значения в стеке выполняе­

мой программы или в закрытых полях системных объектов, любая программа 

способна нарушить систему защиты веб-браузера. 

Зачем же в таком случае создавать специальный верификатор для проверки 

всех этих условий? Ведь компилятор все равно не позволит сгенерировать файл 

класса, в котором предполагается использовать неинициализированную пере­

менную или область закрытых данных, доступную из другого класса. В самом 

деле, файл класса, сформированный компилятором Java, всегда проходит вери­
фикацию. Но используемый в этих файлах формат байт-кода хорошо докумен­

тирован, и всякий, имеющий опыт программирования на ассемблере и работы 

в шестнадцатеричном редакторе, может без труда создать вручную файл класса 

с достоверными, но потенциально опасными командами для виртуальной маши­

ны Java. Таким образом, верификатор блокирует :ыонамерешю измененные фай­
лы классов, а не только проверяет созданные компилятором файлы. 

В листинге 10.3 приведен пример программы VerifierTest, демонстрирую­
щий изменение файла класса вручную. В этой простой программе вызывается 

метод fun () и выводится резулнат его выполнения. Она может быть запущена 

из командной строки или в виде аплета. Метод fun () выполняет сложение чисел 
1 и 2, как показано ниже. 
static int fun() 

int m; 
int n; 



m = 1; 
n = 2; 

Глава 10 • Безопасность 

int r = m + n; 
return r; 

В качестве эксперимента попробуйте скомпилировать приведенный ниже ви­

доизмененный вариант метода fun (). 

static int fun () 
{ 

int m = 1; 
int n; 
m = 1; 
m = 2; 
int r = m + n; 
return r; 

В данном случае переменная n не инициализирована и может принимать 
произвольное значение. Естественно, что компилятор обнаружит эту ошибку 

и откажется компилировать программу. Для со:цания недопустимого файла 

класса придется немного потрудиться. Сначала запустите утилиту javap, чтобы 
выяснить, каким образом компилятор транслирует метод fun (): 

javap -с verifier.VerifierTest 

Эта утилита показывает байт-код из файла класса в мнемоническом виде: 

Method int fun 1) 
о iconst 1 
1 istore о -
2 iconst 2 

-
3 istore 1 
4 iload о -
5 iload 1 
6 iadd 
7 istore 2 
8 iload 2 
9 ireturn 

Чтобы изменить команду 3, т.е. заменить istore _ 1 на istore _О, воспользуй­
тесь шестнадцатеричным редактором. Таким образом, локальная переменная О 

(т.е. m) будет инициализирована дважды, а локальная переменная 1 (т.е. n) вооб­
ще не будет инициализирована. Чтобы сделать это, необходимо знать шестнад­

цатеричные значения команд. Эти значения приводятся ниже и взяты из кни­

ги The ]ava Virtua/ Machine Specificatio11 Тима Линдхольма и Фрэнка Йеллина (Tim 
Lindholm & Frank Yellin; издательство Prentice На\1РТR,1999 г.). 

о iconst 1 04 
1 istore о зв 

-
2 iconst 2 05 -
3 istore 1 зс 
4 iload О lA 

-

5 iload 1 lB 
-

6 iadd 60 
7 istore 2 ЗD 



10.1. Загрузчики классов 

8 iload 2 lC 
9 iretu r n АС 

Отредактирова1ъ любое их ·:>тих :шачений можно в шестнадцатеричном ре­

дакторе. На рис. 10.4 приведено рабочее окно шестнадцатеричного редактора 
Cnome с загруже1111ым файлом VerifierTest . class, в котором светло-серым 
выделены байт-коды метода fun () . 

61• Edit \litw Windows l:lelp 

0000030Е00 19 82 00 10 88 00 16 59 12 18 87 00 lA 88 00 lD 
0000031F~6 00 21 86 00 25 86 00 29 81 00 00 00 02 00 0А 00 
00000330100 00 0А 00 02 00 00 00 13 00 18 00 14 00 08 00 00 
0000034100 0С 00 01 00 00 00 19 00 2Е 00 2F 00 00 00 09 00 
000003521F 00 20 00 01 00 07 00 00 00 54 00 02 00 03 00 00 
00000363100 Од 04 38 05 ЗС lA 18 60 3D lC АС 00 00 00 02 00 

~~~~i~i~i ~! ~~ ~~ i~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ i~ ~~ ~~ ~~ ~~ 
000003д1:00 00 00 02 00 33 00 31 00 02 00 01 00 34 00 35 00
0000038801 00 07 00 00 00 53 00 04 00 02 00 00 00 18 28 88
000003С900 16 59 12 18 87 00 !А 88 00 lD 86 00 21 86 00 25
000003D~10 14 10 14 86 00 36 81 00 00 00 02 00 0А 00 00 00
000003Е80А 00 02 00 00 00 27 00 lд 00 28 00 08 00 00 00 16
000003FC00 02 00 00 00 18 00 ОС 00 OD 00 00 00 00 00 18 00
0000040Df3C 00 3D 00 01 00 01 00 3Е 00 00 00 02 00 ЗF

.. ! .. \ ..)•...

.......... . /
" "." "т.
. .. ; .< .. =

. ! . ,,",

Signed 8 bot: - ----, S1gned 32 bit: [l72 --- - - l Hexadecimal: !Ас - - -~

Unsigned 8 bit: l 112 - -- t Unsigned 32 bit: Г1п- -- - 1 Octal: ,..254 --~

Signed lб brt: 172

Unso9ned lб bot: ГJ72

l э2 bot Aoat:

l б4 brtfloat:

f2.4i02ззе· 4Э

11.39067s;)ов

B1nar)' Г10101100 - ----i

Show l1ttle endtan decod1n9

offset: З6Е; SI bytec from 365 to ЗбЕ seler:ted

l stгeamlen9'h: в ---т:J

] Show uns19ned and float as heкedecimal

Рис. 10.4. Вило~пме11е1111е fJайт-кода в 111естналцатерич11ом редакторе

Замените шестнадцатеричное :шачение ЗС на 38, сохраните файл, а затем по­
пытайтесь запустит~, программу VerifierTest на выполнение. В итоге ны полу­
чите следующее сообщение об ошибке:

Exception in thread "main " java . lang . VerifyError:
(c lass: VerifierTest , mettюd : fun signature: 1) I 1
Access1ng value from uninitialized regis ter 1-

Таким обра :юм, виртуальная машина Java обнаружила недопустимое видои:1-
менение байт-кода. Теперь :1апустите программу с параметром - nover ify (или
- Xverify : none), т.е . без верификации, как пока :1а110 ниже.

Метод f un () во:шращает случайную сумму, получаемую 11 ре:1ультате сложе-

1111я числа 2 с про11 :шольным значением, хранящимся в переменной n, которая не
была инициали :1Ирова11а. Ниже приведен типичный результат выполнения рас­

сматриваемой :1дес~, программы Ge:1 верификации байт-кода .

1 + 2 == 15102330

~И сключение в " главном " потоке исполнения java .lang .VerifyError :
(класс : Verif1erTest , ме тод : method : fun signature: llII
Дос туп к значению из неиниuиализирован ного реги стра 1

Глава 1 О • Безопасность

Листинг 10.З. Исходный код из файла verifier/VerifierTest. java

1 package verifier;
2
3 import java.awt.*;
4
5 /**
6 * этой прикладной программе демонстрируется
7 * верификатор байт-кода виртуальной машины Java.
8 * Если воспользоваться шестнадцатеричным редактором
9 * для видоизменения файла класса, то виртуальная

10 * машина Java должна обнаружить злонамеренное
11 * искажение содержимого файла класса
12 * @version 1.10 2018-05-05
13 * @author Сау Horstmann
14 */
15 puЫic class VerifierTest
16 {
17 puЫic static void main(String[] args)
18 {
19 System.out.printlп("l + 2 ==" + fun());
20
21
22 /**
23 * функция, вычисляющая сумму чисел 1 + 2
24 * @returп Сумму 3, если код не нарушен

25 */
26 puЫic static int fun()
27 {
28
29
30
31

iпt

iпt

m =
n =

m;
n;
1;
2;

32 // воспользоваться шестнадцатеричным редактором,
33 // чтобы изменить значение переменной m на 2
34 // в файле класса
35 int r = m + n;
36 return r;
37
38

10.2. Диспетчеры защиты и полномочия
После загрузки класса в виртуальную машину Java и проверки верификато­

ром в действие вступает второй механизм обеспечения безопасности на платфор­

ме Java: диспетчер защиты. Этой теме посвящены последующие разделы.

10.2.1. Проверка полномочий
Диспетчер защиты проверяет, разрешено ли прикладному коду выполнять

ту или иную операцию. Ниже перечислены операции, подвергаемые проверке

в диспетчере защиты. Существует немало других проверок, выполняемых дис­

петчером защиты в библиотеке Java.

10.2. Диспетчеры защиты и полномочия

• Создание нового загрузчика классов.

• Выход из виртуальной машины.

• Получение доступа к члену другого класса с помощью рефлексии.

• Получение доступа к файлу.

• Подключение через сетевой сокет.

• Запуск задания на печать.

• Получение доступа к системному буферу обмена.

• Получение доступа к очереди событий в AWT.

• Обращение к окну верхнего уровня.

Поведение по умолчанию при запуске прикладных программ на Java не пред­
усматривает никакой установки диспетчера защиты, поэтому все перечисленные

выше операции оказываются разрешенными. И напротив, аплеты опираются

на сильно ограничивающие правила защиты. Более строгая защита целесообраз­

на и в других случаях.

Допустим, вы выполняете в своей системе экземпляр контейнера сервлетов

Tomcat и разрешаете сотрудникам или учащимся устанавливать сервлеты. Но вам
бы не хотелось, чтобы любой из них вызывал метод System. exi t (), поскольку это
прекращало бы действие экземпляра Tomcat. В таком случае вы можете установить
такие правила защиты, которые приводят к генерированию исключения системы

защиты при вызове метода System. exi t () вместо прекращения работы вирту­
алыюй машины. В частности, метод е х i t () из класса Run t ime вызывает метод
checkExi t () диспетчера защиты. Ниже приведен исходный код метода exi t ().

puЬlic void exit(int status)
{

SecurityManager security = System.getSecurityManager();
if (security != null)

security.checkExit(status);
exitinternal(status);

Диспетчер защиты проверяет, откуда поступил запрос на завершение рабо­

ты виртуальной машины: из браузера или из отдельного сервлета. Если диспет­

чер защиты дает разрешение на выполнение этого запроса, метод checkExi t ()
возвращает управление и далее процесс обработки продолжается обычным об­

разом. Но если диспетчер защиты не запрещает выполнение запроса, то метод

checkExit () генерирует исключение типа SecurityException.
Метод exi t () продолжает выполняться только в том случае, если никакого

исключения не было. Затем он вызывает закрытый п.латформенно-ориентирован­

ный метод exi tinternal (),который и завершает работу виртуальной машины
Java. Другого способа для завершения работы виртуальной машины Java не суще­
ствует, а поскольку метод exitinternal () закрытый, то он не может вызываться
из какого-нибудь другого класса. Следовательно, всякий код, делающий попытку

выйти из виртуальной машины Java, должен вызывать метод exi t (),а следова­
тельно, проходить проверку защиты, выполняемую методом chec kExi t (), но
без генерирования соответствующего исключения.

Глава 1 О • Безопасность

Очевид1ю, что целост1юст1, правил :1ащиты :1ависит от тщателыюсти програм­

мированю1. Поставщики систем11ых служб в ста11дартной библиотеке должны

всегда обращат1,01 к диспетчеру :1ащиты перед попытками выполнить любые се­

рьезные операции.

Диспетчер защиты 11<1 пл;.пформе java позволяет как программистам, так
и системным адми11истраторам орга11и :ювап, тщательно продуманное управле­

ние отдел1,ными полномочиями. Более подробно об этом речь пойдет в следу­

ющем разделе, где сначала приводится краткий обзор модели защиты, реали :ю­

ванной на платформе Java 2, а :1атем показывается, как организуется управление
правами доступа с помощыо файлов 11равил 3ащит111, и, наконец, объясю1ето1, как

определят~, свои собстве1111ые виды прав доступа.

10.2.2. Организация защиты на платформе Java
Модел1, защиты в JDK версии 1.0 была очею, проста: локалы1ые классы имели

все полномочия, а 1юзмож1юсти удаленных классов были ограничены так 11азыва­

емой "песочницей", т.е. диспетчер защиты аплетов отказывал в любом доступе

к локалr,ным ресурсам. Подоfню тому, как ребенку разрешается играл, в песоч­

нице, строго ограничив'1я его действия ее пределами, удаленные классы имели

нозможност1, лиш1, выводит~, сведения 11а экран и юаимодейспювап, с пол~,зона­

телем. В версии JDK 1.1 эта модел1, была 11емного видоизменена, т. е. удаленный

код, на который был подписа11 довере1111ый объект, получал те же права доступа,
что и локал1,ные классы. Тем 11е ме11ее обе версии модели защиты были органи­

зо11а11ы по принципу "все или 11ичего", т.е. программы получали полный доступ

к ресурсам, или же их действие ограничивалос1, пределами "песочницы".

Начиная с версии Java SE 1.2 на платформе Java предоставляется намного бо­
лее гибкий механизм защиты. Правu,\а 3ащитп1 преобразуют 11сточн11ки кода в на­

боры 110,\номочиu, как показано на рис. 10.5.

Кодовая база 1
1 Размещение кода 1
1 Сертификаты 1

Кодовая база 2

.... Набор полномочий 1

Полномочие

#1а

Полномочие
#1Ь

Рис. 10.5. Правила .1ащ~пъ1

10.2. Диспетчеры защиты и полномочия

Каждый исто'lник кода характери:1уется кодовой ба.юй и набором сертификатов.

Кодовая база ука:1ывает место происхождения кода. Например, кодовой базой

кода удаленного аплета является URL типа НТТР, откуда этот аплет :1агружен,

а кодовой ба:юй кода в архивном JАR-файле - URL, по которому загружен этот
фаi1л. Сертификаты, если таковые имеются, предоставляются соответствующей

организацией и служат гарантией того, что данный код не является подделкой.

Подроб11ее о сертификатах речь пойдет далее в этой главе.

Под 11олномо•1ш•ми (иначе - правами доступа или привилегиями) подразу­

меваются любые свойства, которые проверяются диспетчером защиты. На плат­

форме Java поддерживается целый ряд представляющих полномочия классов,

каждый из которых инкапсулирует подробности конкретных полномочий. В ка­

честве примера ниже приведено получение эюемпляра класса Fil ePermission,
дающего рюреше11ие на чтение и запис1, любого файла в каталоге / tmp.

'1ar р = new FilePer mission("/tmp/ *", " read,write") ;

Но еще важнее, что в стандартной реали:~ации класс Policy считывает пол­
номочия и:~ фаitла 11рав доступа. В ·.пом файле те же самые полномочия на чтение

и :1апись, что и выше, выражаются следующим обра:~ом:

perm1ssi on java .io .FilePermi ssion "/tmp*", "re ad,write";

Более подроб1ю файлы прав доступа рассматриваются в следующем разделе.
На рис. 10.6 представлена иерархия классов полномочий, которые предоставля­
лис1, в версии Java 1.2. В последующих версиях Java было внедрено немало других
классов полномочий.

Audio
Permission

АWТ

Permission

Auth
Permission

Permission

Basic
Permission

Net
Permission

File
Permission

Socket
Permission

Security
Permission

SQL
Permission

SerializaЫe

Permission

Рис. 10.6. Часть существующей иерархии классов полномочий

Как было пока:~ано в предыдущем ра:1деле, в классе Secur i tyMar1ager имеют­
ся методы проверки :~ащиты типа chec kExi t () . Эти методы существуют только

Глава 1 О • Безопасность

для удобства программирования и обратной совместимости. Все они преобразу­

ются в стандартные проверки полномочий. В качестве примера ниже приведен

исходный код метода checkExi t () .

puЫic void checkExit()
{

checkPermission(new RuntimePermission("exitVM"));

У каждого класса имеется домен 3аu1иты, т.е. объект, который инкапсулирует

как источник кода, так и набор прав доступа этого класса. При необходимости

проверить то или иное полномочие диспетчер защиты типа Securi tyManager
сначала выясняет, к каким классам относятся все методы, находящиеся в настоя­

щий момент в стеке вызовов. Затем он получает доступ к доменам защиты всех

этих классов и выясняет, допускает ли их набор полномочий выполнение опера­

ции, проверяемой в данный момент. Если все домены дают разрешение на вы­

полнение данной операции, то проверка завершается успешно, в противном слу­

чае генерируется исключение типа Securi tyException.
А почему разрешение на выполнение операции должны давать все методы

в стеке вызовов? Для ответа на этот вопрос обратимся к конкретному примеру.

Допустим, что в методе ini t () из сервлета требуется открыть файл с помощью
следующего вызова:

var in = new FileReader(name);

Конструктор класса F i l е R е а d е r вызывает конструктор класса

FileinputStream, который, в свою очередь, обращается к методу checkRead ()
диспетчера защиты, а тот вызывает метод checkPermission () с объектом, полу­

чаемым из конструктора FilePermission (name, "read"). Внешний вид стека
вызовов в этом случае приведен в табл. 10.1.

Таблица 10.1. Стек вызовов во время проверки полномочий

Класс Метод Источник кода

SecurityМanager checkPermission null
SecurityМanager checkRead null
FileinputStream Constructor null
FileReader Constructor null
Сервлет init Источник кода

сер влета

Полномочия

AllPermission
AllPermission
AllPermission
AllPermission
Полномочия веб­

приложений в Tomcat

Классы FileinputStream и SecurityManager являются системными, их
источник кода - пустым значением null, а набор полномочий -экземпляром
класса AllPermission, который разрешает выполнять все операции. Qqевидно,
что полномоqия только этих классов не могут определить исход проверки. Поми­

мо них, метод checkPermission () должен принять во внимание и ограниqенные
полномоqия класса сервлета. Благодаря проверке всего стека вызовов механизм

защиты исклюqает вероятность выполнения одним классом важных операций

от имени какого-нибудь другого класса.

10.2. Диспетчеры защиты и полномочия

НА ЗАМЕТКУ! Приведенное выше краткое описание проверки полномочий дает лишь са­

мое общее представление о данном процессе. Многие технические детали в этом описании

были опущены. Учитывая тот факт, что в вопросах безопасности вся суть скрывается имен­

но в деталях, для ознакомления с ними рекомендуется книга Securing Java: Getting Oown to
Business with MoЬile Code Гэри Макгроу и Эда Фельтена IGaгy McGгaw & Ed Felteп; изда­
тельство Wiley, 1999 г.1. Электронная версия книги оперативно доступна по адресу www.
securingjava. com.

java.lang.SecurityManager 1.0

• void checkPermission (Permission р) 1. 2

Проверяет, предоставляет ли диспетчер защиты указанные полномочия. Если не предостав­

ляет, то генерируется исключение типа Securi tyException.

java.lang.Class 1.0

• ProtectionDomain getProtectionDomain () 1. 2

Получает доступ к представляющему данный класс домену защиты или возвращает пустое

значение null, если этот класс загружен без домена защиты.

java.security.ProtectionDomain 1.2

• ProtectionDomain(CodeSource source, PermissionCollection
pexmissions)

Создает домен защиты, исходя из указанного источника кода и прав доступа.

• CodeSource getCodeSource ()

Получает источник кода из данного домена защиты.

• boolean implies (Permission р)

Возвращает логическое значение true, если указанные полномочия разрешены в данном
домене защиты.

java.security.CodeSource 1.2

• Certificate[] getCertificates()

Получает цепочку сертификатов для подписей файлов классов, связанных с данным источ­

ником кода.

• URL getLocation ()

Получает кодовую базу файлов классов, связанных с данным источником кода.

Глава 1 О • Безопасность

10.2.З. Файлы правил защиты

Диспетчер правил .тщиты считывает содержимое файлов правил .тщиты, т.е. ин­

струкции для преобразования источников кода в полномочия. Ниже приведен

пример типичного файла правил защиты. Этот файл предоставляет полномочия

на чтение и запись файлов в каталог / tmp любому коду, загруженному по адресу
http://www.horstmann.com/classes.

grant codeBase "http://www.horstmann.com/classes"
{

permission java.io.FilePermission "/tmp/*", "read,write";
) ;

Устанавливаться файлы правил защиты могут только в стандартных местах.

По умолчанию такими местами являются:

• файл j ava. policy в основном каталоге платформы Java;

• файл . j ava. policy в рабочем каталоге пользователя (обратите внимание
на точку, стоящую в начале его имени).

НА ЗАМЕТКУ! Стандартные пути к этим файлам можно изменить в конфигурационном файле

java.security, находящемся в каталоге jre/lili/security. По умолчанию пути к этим
файлам указываются в конфигурационном файле и выглядят следующим образом:

policy.url.l=file:${java.home}/liЬ/security/java.policy

policy.url.2=file:${user.home}/.java.policy

Системный администратор может редактировать файл java. securi ty и указывать
для правил защиты URL, находящиеся на каком-нибудь другом сервере, исключая всякую
возможность для пользователей вносить изменения в эти правила. В файле правил защиты

можно указать сколько угодно URL [по порядку следования номеров]. Полномочия во всех
подобных файлах все равно объединяются.

Если требуется, чтобы правила защиты хранились вне файловой системы, можно сначала ре­

ализовать подкласс, производный от класса Policy и собирающий сведения обо всех пол­
номочиях, а затем изменить строку в конфигурационном файле java. security следующим
образом:

policy.provider=sun.security.provider.PolicyFile

Во время тестирования не имеет смысла постоянно вносить изменения в стан­

дартные файлы правил защиты, поэтому рекомендуется разместить сначала все

полномочия в отдельном файле, например, в файле МуАрр. policy, а затем ука­
зать явным образом имя этого файла для каждой прикладной программы. При­

менит~, правила защиты можно двумя способами. Во-первых, установить систем­

ное свойство в главном методе прикладной программы:

System.setProperty("java.security.policy", "MyApp.policy");

Во-вторых, запустить виртуальную машину, виедя следующую команду:

java -Djava.security.policy=МyApp.policy МуАрр

В приведенных выше примерах файл МуАрр. policy добавляется к остальным
действующим правилам защиты. Но если добавить еще один знак равенстиа,

т.е. ввести следующую команду:

java -Djava.security.policy==MyApp.policy МуАрр

10.2. Диспетчеры защиты и полномочия

то в прикладной программе будет использоваться только указанный файл пра­

вил защиты, а все стандартные файлы правил защиты - ишорироваться .

• ВНИМАНИЕ! Во время тестирования можно легко допустить ошибку, случайно оставив в те­кущем каталоге файл • java. policy, который может предоставлять многие, а то и все
возможные полномочия IA11Permission). Поэтому, заметив, что приложение как будто не
обращает внимания на ограничения, указанные в добавленном файле правил защиты, сле­

дует прежде всего проверить, не остался ли в текущем каталоге файл . java .policy. Ве­
роятность допустить подобную ошибку наиболее велика на системах UNIX, где файлы, имена
которых начинаются с точки, по умолчанию не отображаются.

Как упоминалось ранее, диспетчер защиты в прикладных программах на Java
по умолчанию не устанавливается. Эго означает, что до тех пор, пока он не будет

установлен, обнаружить действие файлов правил :}ащиты пе удастся. Установить

диспетчер защиты можно двумя способами. Во-первых, добавить в тело метода

main () следующую строку кода:
System.setSecurityManager(new SecurityManager());

Во-вторых, указать параметр -Djava.security.manager при :}апуске вирту­
альной машины Java из командной строки, как пока:1а110 ниже.
java -Djava.security.manager

-Djava.security.policy=МyApp.policy МуАрр

Далее в этом разделе подробно рассматриваются способы описания полно­

мочий в файле правил защиты и его формата, кроме способов указания серти­

фикатов, речь о которых пойдет ниже. Итак, в файле правил защиты содержится

последовательность записей grant, каждая из которых имеет следующий вид:

grant источник_кода
{

полномочие~;

полномочие.

В источнике кода содержатся сведения о кодо1юй базе (которая может опу­

скаться, если данная запись grant распространяется на код из всех источников),
а также имена доверенных уполномоченных и подписавших сертификаты лиц

(которые могут опускаться, если подписи не являются обязател1>ными для дан­

ной записи). Сведения о кодовой базе указываюто1 следующим образом:

codeBase "url"

Наличие косой черты (/) в конце URL означает, что ссылка делается на ката­
лог, а отсугствие этого знака - на архивный JАR-файл, как показано в приведен­

ных ниже примерах.

grant codeBase "www. horstmann. сот/ classes/" { . . . } ;
grant codeBase "www.horstmann.com/classes/MyApp.jar"

{ ... } ;

В качестве разделителя файлов в URL кодовой базы должны всегда исполь­
зоваться знаки косой черты, даже если речь идет об URL со ссылками на файлы
в операционной системе Windows, как в следующем примере:
grant codeBase "file:C:/myapps/classes/" { ... };

Глава 1 О • Безопасность

НА ЗАМЕТКУ! Как известно, URL типа http всегда начинаются двумя знаками косой черты
lhttp: / /!. Но в отношении URL типа file, по-видимому, возникает путаница из-за того,
что средство чтения файлов правил защиты разрешает использовать для них два формата:

file: //локальный файл и file: локальный файл. Более того, последняя косая чер­
та перед именем дискав Windows не является обязаrельной. Это означает, что приемлемыми
считаются все следующие варианты:

file:C:/dir/filename.ext
file:/C:/dir/filename.ext
file://C:/dir/filename.ext
file:///C:/dir/filename.ext

Как показывают проведенные нами проверки, на самом деле вариант file: ////С: /dir/
filename. ext также оказывается приемлемым, но найти этому разумное объяснение нам
так и не удалось.

НА ЗАМЕТКУ! Рассмотрим в качестве примера приложение, компилирующее некоторый код

Java и требующее для этой цели немало полномочий. До версии JDK 9 все полномочия мож­
но было предоставить прикладному коду в архивном файле tools. jar. Но этого архивного
JАR-файла больше не существует, поэтому требующиеся полномочия должны быть предостав­

лены соответствующему модулю, как показано ниже.

grant codeBase "jrt:/jdk.compiler"
{

permission java.security.AllPermission;
} ;

Полномочия задаются в следующей синтаксической форме:

permission ИмяКласса ИмяЦелевогоОбъекта, СписокДействий;

Вместо параметра Имя Кл а с са указывается полностью уточненное имя

класса, представляющего конкретные полномочия (например, j а v а.
io. FilePermission), а вместо параметра ИмяЦелевогоОбъекта - конкретный

целевой объект, на который должно распространяться действие указываемых

полномочий. Так, для полномочий доступа к файлам это может быть имя файла

и каталога, а для полномочий доступа к сетевым сокетам - на:шание и номер

порта хоста. Наконец, вместо параметра СписокДействий указывается перечень

охватываемых данным полномочием допустимых действий (например, чтения

или установления соединения), разделяемых запятой. В некоторых классах пол­

номочий не требуется указывать ни имена целевых объектов, ни списки дей­

ствий. В табл. 10.2 перечислены некоторые из наиболее употребительных классов
полномочий и охватываемые ими действия.

Таблица 10.2. Классы полномочий и связанные с ними целевые объекты и действия

Полномочия

java.
io.FilePermission
java.net.
SocketPermission
java.util.
PropertyPermission

Целевые объекты

Файлы (см. описание в тексте)

Сокеты (см. описание в тексге)

Свойсrва (см. описание в тексrе)

Действия

read, write,
execute,delete
accept, connect,
listen,resolve
read, write

Полномочия

java.lang.
RuntimePermission

java.awt.
AWТPermission

java.net.
NetPermission

10.2. Диспетчеры защиты и полномочия

Продолжение табл. 10.2

Целевые объекты

createClassLoader, getClassLoader,
setContextClassLoader,enaЬ

leContextClassLoaderOverr
ide, crea teSecuri tyМanager,
setSecurityмanager, exitVМ, getenv.
variaЬleName, shutdownНooks, setFactory,
setIO, modifyThread, stopThread,
modifyТhreadGroup,getProtectionDomain,

readFileDescriptor,
writeFileDescriptor, loadLiЬrary.
libraryName,accessClassinPackage.
packageName,defineClassinPackage.
packageName,accessDeclaredМemЬers.

className,queuePrintJob,getStackTrace,
setDefaultUncaughtExceptionHandler,
preferences,usePolicy
showWindowWi thoutWarningBanner,
accessClipboard, accessEventQueue,
createRobot, fullScreenExclusive,
listenToAllAWТEvents,

readDisplayPixels,
replaceKeyboardFocusМanager,

wa tchМousePoin ter,
setWindowAlwaysOnTop, setAppletStuЬ
setDefaultAuthenticator,
specifyStreamНandler,

requestPasswordAuthentication,
setProxySelector, getProxySelector,
setCookieHandler, getCookieHandler,
setResponseCache,getResponseCache

Действия

Отсутствуют

Отсутствуют

Отсутствуют

java.lang.reflect. suppressAccessChecks Отсутствуют
ReflectPermission
java. io. SerializaЬle enaЬleSuЬclassimlementation,

Permission
java.security.
SecurityPermission

enaЬleSuЬstitution

crea teAccessControlCon text,
getDomainComЬiner, getPolicy,
setPolicy, getProperty. keyName,
setProperty.keyName, insertProvider.
providerName, removeProvider.
providerName, setSystemScope,
setidentityPuЬlicKey, setidenti tyinfo,
addidentityCertificate,
removeiden ti tyCertif ica te,
printidenti ty,
clearProviderProperties.providerName,
putProviderProperty.providerName,
removeProviderProperty.providerName,
getSignerPrivateKey, setSignerKeyPair

Отсутствуют

Отсутствуют

Глава 1 О • Безопасность

Полномочия

java.security.
AllPermission
javax.audio.
AudioPermission
javax.security.auth.
AuthPermission

java.util.logging.
LoggingPermission
java.sql.
SQLPermission

Целевые объекты

Отсутствуют

Воспроизведение записи

doAs, doAsPrivileged, getSuЬject,
getSuЬjectFromDomainComЬiner,

setReadOnly, modifyPrincipals,
modifyPuЬlicCreden tials,
modifyPri va teCreden tials,
refreshCredential,destroyCredential,
createLoginContext.contextName,
getLoginConf igura tion,
setLoginConf igura tion,
refreshLoginConfiguration
control

setLog

Око11чанuе таб,1. 10.2

Действия

Отсутствуют

Отсутствуют

Отсутствуют

Отсутствуют

Отсутствуют

Как следует из табл. 10.2, большинство полномочий просто позволяют вы­
полнять определенные операции. К операции можно относип,ся как к целево­

му объекту с подразумеваемым действием "permi t" (разрешить). Все классы
полномочий, перечисленные в табл. 10.2, являются производными от класса
BasicPermission (см. рис. 10.6). Но классы с такими целевыми объектами, как
файл, сетевой сокет и свойство, оказываются более сложными и поэтому заслу­

живают дополнительного рассмотрения.

Целевые объекты прав доступа к файлам могут иметь следующую форму:

файл

каталог/

каталог/*

*
каталог/-

Файл

Каталог

Все файлы из данного каталога

Все файлы из текущего каталога

Все файлы из данного каталога и всех его подкаталогов

Все файлы из текущего каталога и всех его

подкаталогов

<<ALL FILES>> Все файлы из файловой системы

Например, приведенная ниже запись полномочий означает, что доступ разре­

шается ко всем файлам в каталоге /myapp и любом из его подкаталогов.

permission java.io.FilePermission
"/myapp/-", "read, write, delete";

Для обозначения обратной косой черты в пути к файлам в Windows этот знак
следует экранировать, указав его дважды:

permission java.io.FilePermission
"с:\ \myapp\ \-", "read, write, delete";

10.2. Диспетчеры защиты и полномочия

Целевые объекты прав доступа через сетевой сокет требуют указания хоста

(т.е. сетевого узла) и диапазона портов. Синтаксическая форма для указания хо­

ста выглядит следующим образом:

иня_хоста или IР-а.дрвс

localhost или пусJая сrрока
*.суффижс_донена

Одиночный хост

Локальный хост

Любой хост, принадлежащий домену, имя которого

оканчивается указанным суффиксом

* Все хос1ы

Номера портов являются необязательными и указываются в приведенной

ниже форме.

:n

:n­

:-n

:nl-n2

Единсrвенный порт

Все порты с номерами n и выше
Все порты с номерами n и ниже
Все порты в пределах от nl до n2

Ниже приведен пример записи прав доступа через сетевой сокет.

permission java.net.SocketPermission
"*. horstmann. com: 8000-8 999", "connect";

Наконец, целевые объекты прав доступа к свойствам могут принимать одну

из двух следующих форм:

csoii:cтso

префижс_свой:ства.*

Огделыюе своЙСJВО

Все свойства с указанным суффиксом

Таким образом, права доступа к свойствам могут выглядеть как 11 j ava. home"

и как 11 j а v а. vm. * ". Например, следующая запись полномочий означает, что

программе разрешается считывать все свойства, начинающиеся с j ava. vm:

permission java.util.PropertyPermission "java.vm.*", "read";

В файлах правил защиты допускается использовать и системные свойства.

Лексема $ {свойство 1 в этом случае заменяется значением свойства. Например,
лексема $ { user. home 1 :ыменяется основным каталогом пользователя. Ниже при­
веден типичный пример применения системного свойства user. home в записи

полномочий.

permission java.io.FilePermission
"${user.home}", "read,write";

Чтобы упростить дело при составлении не зависящих от используемой плат­

формы файлов правил защиты, вместо явных разделителей / или \ \ рекоменду­
ется использовать свойство file. separator или даже его сокращенный вариант

$ { / f. Например, для предоставления прав на чтение и запись в основном ка­
талоге пользователя и всех его подкаталогах можно воспользоваться следующей

записью, удобной с точки зрения переносимости:

permission java.io.FilePermission
"${user.home}${/}-", "read,write";

Глава 1 О • Безопасность

10.2.4. Специальные полномочия
В этом разделе будет показано, каким образом создаются собственные классы

полномочий, на которые пользователи могуг ссылаться в файлах правил защи­

ты. Для реализации классов полномочий следует расширить класс Permission
и реализовап. перечисленные ниже методы.

• Конструктор с двумя строковыми параметрами для указания объекта

и списка действий.

• Метод String getActions ().

• Метод boolean equals (Obj ect other).

• Метод int hashCode ().

• Метод boolean implies (Permission other).

Последний метод самый важный. Для полномочий предусмотрен определен­

ный порядок, IJ соответствии с которым наиболее общие полномочия подразуме­

вают испол1.зование специал1.ных прав доступа. Например, приведенное ниже

право доступа к файлу разрешает чтение и запись любого файла И3 каталога /
tmp и любых его подкаталогов.

pl = new FilePermission("/tmp/-", "read, write");

Это общее право доступа подра3умевает наличие других, специальных прав

доступа:

р2 new FilePermission("/tmp/-", "read");
рЗ = new FilePermission("/tmp/aFile", "read, write");
р4 = new FilePermission ("/tmp/aDirectory/-", "write");

Иными словами, право доступа к файлу pl подра3умевает наличие другого
права доступа р2, если выполняются следующие условия.

3. Набор целевых файлов в pl содержит набор целевых файлов в р2.

4. Набор действий в pl содержит набор действий в р2.
Рассмотрим в качестве примера применение метода impl ies (). Если кон­

структор класса Fileinp11tStream () открывает файл для чтения, то он прове­

ряет наличие прав такого доступа. Для выполнения этой проверки специа.льный

объект прав доступа передается методу checkPermission (),как показано ниже.

checkPermission(new FilePermission(fileName, "read"));

После этого диспетчер 3ащиты 3апрашивает все имеющиеся полномочия,

подра3умевается ли в них специальное право доступа. И если это право доступа

подра3умевается в любом И3 них, то оно проходит проверку. В частности, полно­

мочия типа AllPermission подра3умевают все права доступа.
Определяя собственные классы полномочий, необходимо также оболrачить

соответственно, что именно подра3умевается для объектов полномочий. Напри­

мер, для определения прав доступа полиователя Tommy к телеви:юру под управ­
лением технологии Java в некотором промежутке времени можно определить
следующий объект класса TVPermission:

new TVPermi ssion ("Tommy: 2-12: 1900-2 200", "watch, record")

10.2. Диспетчеры защиты и полномочия

Этот класс разрешает пользователю Tommy смотреть и записывать телевизи­
онные передачи на каналах 2-12 в период времени от 19:00 до 22:00. Для при­
менения приведенного ниже специального права доступа придется реализовать

метод implies ().

new TVPermission("Tommy:4:2000-2100", "watch"I

10.2.5. Реализация класса полномочий
В этом разделе на примере конкретной программы демонстрируется реали­

зация новых полномочий для контроля над текстом, вставляемым в текстовую

область. В обязанности этой программы входит предотвращение попыток вво­

да в текстовую область всевозможных "непристойных слов" вроде sex, drugs
и С++, но не rock-n-roll! Чтобы предоставить возможность передавать список
всех подобных непристойных слов в файл правил защиты, применяется специ­

альный класс полномочий. Он является производным от класса JTextArea
и всегда запрашивает диспетчер защиты, можно ли вводить новый текст в тек­

стовую область, как показано ниже. Если диспетчер защиты предоставляет

полномочия типа WordCheckPermission, новый текст вводится, а иначе метод
checkPermission () генерирует исключение.

class WordCheckTextArea extends JTextArea

puЫic void append(String text)
{

var р = new WordCheckPermission(text, "insert");
SecurityManager manager = System.getSecurityManager();
if (manager 1 = nulli manager.checkPermission(p);
super.append(text);

Полномочия на проверку слов (WordCheckPermission) допускают выполне­
ние двух следующих действий: insert (вставка указанного текста) и avoid (ввод
текста без указанных непристойных слов). Запускать рассматриваемую 3десь про­

грамму следует с помощью приведенного ниже файла правил защиты. В этом

файле предоставляется разрешение на вставку любого текста, который не содер­

жит такие непристойные слова, как sex, drugs и С++.

grant
{

} ;

permission permissions.WordCheckPermission
"sex, drugs, С++", "avoid";

При разработке класса WordCheckPermission особое внимание следует уде­
лить методу implies ().Ниже перечислены правила, определяющие, должны ли
полномочия pl предполагап, полномочия р2.

• Если полномочия pl допускают действие avoid, а полномочия р2 - дей­

ствие insert, то целевой объект с полномочиями р2 должен исключать все
слова из полномочий pl. Например, следующие полномочия:

permissions. WordCheckPermission "sex, drugs, С++", "avoid"

•

Глава 1 О • Безопасность

предполагают такие полномочия:

permissions.WordCheckPermission
"Mary had а little lamb", "insert"

• Если оба вида полномочий, pl и р2, допускают действие avoid, то набор
слов с полномочиями р2 должен содержать все слова из набора слов с пол­

номочиями pl. Например, следующие полномочия:

permissions.WordCheckPermission "sex,drugs", "avoid"

• предполагают такие полномочия:

permissions. WordCheckPermission "sex, drugs, С++", "avoid"

• Если оба вида полномочий pl и р2 допускают действие insert, то текст
с полномочиями pl должен содержать текст с полномочиями р2. Напри­
мер, следующие полномочия:

permissions.WordCheckPermission
"Mary had а little lamЬ", "insert"

• предполагают такие полномочия:

permissions. WordCheckPermission "а li ttle lamЬ", "insert"

Исходный код, реализующий класс WordCheckPermission, представлен в ли­
стинге 10.4. Следует заметить, что целевой объект полномочий извлекается мето­
дом с не совсем подходящим именем getName () из класса Permission.

Полномочия описываются в файлах правил защиты с помощью пары сим­

вольных строк, поэтому классы прав доступа должны быть подготовлены к син­

таксическому анализу этих строк. Так, в рассматриваемом здесь примере для пре­

образования списка разделяемых запятыми непристойных слов с полномочиями

avoid в подлинное множество типа Set используется следующий метод:

puЫic Set<String> badWordSet()
(

Set<String> set = new HashSet<String>();
set. addAll (Arrays. asList (getName () . spli t (", "))) ;
return set;

Эгот метод позволяет использовать для сравнения множеств (в данном слу­

чае - наборов слов) методы equals () и containsAll (). Как было показано
в главе 9 первого тома настоящего издания, метод equals () из класса Set при­
знает два множества равными в том случае, если в них содержатся одинаковые

элементы, независимо от порядка их расположения. Например, наборы слов

"sex, drugs, С++" и "С++, drugs, sex" будут признаны равными .

• ВНИМАНИЕ! Класс полномочий должен быть открытым [puЬlicl. Загрузчик файлов правил защиты не может загружать классы с уровнем доступности на уровне пакета, поэтому он про­

игнорирует любые классы, которые ему не удастся обнаружить.

В исходном коде, приведенном в листинге 10.5, показано, каким обра:юм
действует класс WordCheckPermission. Попробуйте ввести в текстовой обла­
сти какой-нибудь текст и щелкнуть на кнопке lnsert (Вставить). Если проверка

10.2. Диспетчеры защиты и полномочия

на бе:юпас1юсл, пройдет успеш110, текст будет вставлен в текстовую облает~"

в прот11111юм случае появится сообщение об ошибке (рис. 10.7).

Permission~st - D X

[Ma!}'Joves ~о .code ln С++ -j ~Sert.J
Магу had а l1ttle lamb

8 Message _ х

f ' 1 am sorry, but 1 cannot do that.

Рис. 10.7. Про1рамма PeпnissionTest в леitстн1111

На ·,_,том рассмотрение способов и средств 11астройки бе:юпасности на плат­

форме Java :1авершается. Как правило, вам придется лишь подкорректировал,
должным обрil :юм стандартные пол1юмочия. Но если потребуются допол11и­

телы1ые средслы для контроля Gе:юпас1юсти, то вы сможете тепер1, определип,

специ<1лы1ые классы пол1юмочиi1 и настроить их таким же обра:юм, Kilк и ста11-

дарт11ые ПОЛIЮМОУIIЯ.

Листинг 10.4. Исходный код из файла permissions/WordCheckPermission. java

package pe rmissions;
2
3 i mport java.secur1ty.*;
4 impo rt j a va . uti l .*;
5
6 / '*
7 * Полномочия на проверку непристойных слов

8 * /
9 puЫic c l ass Wo rdCheckPermi ssion extends Permission
10 {
11 priva t e String act1on;
12
1 3 / * *
14 * Ко нструирует полномочия на про верку

1 5 * непристойных слов

l C * @рагаm target Список разделяемых запятыми слов
l 7 * @ра rаш anPкt ~ оп Действие 11 вставить 11 или 11 исключить"

18 * /
19 рuЫ1 с Wo rdChec kPermi ss i on (
20 St ring ta r ge t , Str i ng anActi on)
21

Глава 10 • Безопасность

22 super(target);
23 act1on = anAction;
24
25 puЫic String getActions()
27 {
28 return action;
29
30
31 puЫic boolean equals(Object other)
32 {
33 if (other == null) return false;
34 if {!getClass().equals(other.getClass()))
35 return false;
36 var Ь = (WordCheckPermission) other;
37 if (!Objects.equals(action, b.action) 1
38 return false;
39 if ("insert".equals(action))
40 return Objects.equals(getName(), b.getName());
42 else if ("avoid".equals{action)) return
4 3 badWordSet (1 . equals (Ь. badWordSet () 1;
44 else return false;
45
46
47 puЫic int hashCode()
4 8 {
49 return Objects.hash(getName(), action);
50
51
52 рuЫ1с boolean implies(Permission other)
53 {
54 if (! (other instanceof WordCheckPermission))
55 return false;
56 var Ь = (WordCheckPermission) other;
57 if (action.equals("insert"ll
58 {
59 return b.action.equals("insert"I
60 && getName () . indexOf (Ь. getName ()) >= О;

61
62 else if (action.equals("avoid"))
63
64 if (b.action.equals ("avoid")) return
65 b.badWordSet() .containsAll(badWordSet());
66 else if (b.action.equals("insert"))
67 {
68 for (String badWord: badWordSet())
69 if (b.getName() .indexOf(badWord) >= 0)
70 return false;
71 return true;
72
73 else return false;
74
75 else return false;
76
77
78 /**
79 * Получает непристойные слова, описываемые

10.2. Диспетчеры защиты и полномочия

80 * данным правилом прав доступа
81 * @return Непристойные слова
82 */
83 puЫic Set<String> badWordSet()
84 {
85 Set<String> set = new HashSet<>();
8 6 set. addAll (Arrays. asList 1getName1) . split { ", "))) ;
87 return set;
88
89

Листинг 10.5. Исходный код из файла permissions/PermissionTest. java

1 package permissions;
2
3 import java.awt.*;
4
5 import javax.swing.*;
6
7 /**
8 * Этот класс демонстрирует применение специальньи
9 * полномочий типа WordCheckPermission
10 * @version 1.05 2018-05-01
11 * @author Сау Horstmann
12 */
13 puЫic class PermissionTest
14 {
15 puЫic static void main(String[] args)
16 {
17 System.setProperty("java.security.policy",
18 "permissions/PermissionTest.policy");
19 System.setSecurityManager(new SecurityManager());
20 EventQueue.invokeLater(() ->
21 {
22 var frame = new PermissionTestFrame();
23 frame.setTitle("PermissionTest");
24 frame.setDefaultCloseOperation(
25 JFrame.EXIT ON CLOSE);
26 frame.setVisiЬle(true);

27)) ;

28
29
30
31 /**
32 * Этот фрейм содержит текстовое поле для ввода слов
33 * в текстовой области, защищенной от вставки

34 * непристойных слов
35 */
36 class PermissionTestFrame extends JFrame
37
38 private JTextField textField;
39 private WordCheckTextArea textArea;
40 private static final int ТЕХТ ROWS = 20;
41 private static final int ТЕХТ COLUMNS = 60;
42

Глава 10 • Безопасность

43 puЫic PerrnissioпTestE'r,шte ()
4 4 {
45 textField = new JTextField(20);
46 var panel = new JPanel ();
47 panel.add(textField);
48 var openButton = new ,JButton("Insert");
49 panel.add(openButton);
50 openButton.add.Act.ionListener (event ->
51 insertWordз(textField.getText()));

52
53 add(panel, BorderLayout.NORTH);
54
55 textArea = new WordCheckTextArea();
56 textArea.setRows(TEXT_ROWS);
57 textArea.setColurnns(TEXT COLUMNS);
58 add(new JScrollPane(textArea), BorderLayout.CENTER);
59 pack();
60
61
62 /**
63 * Пытается вставить слова в текстовую область.

64 * Отображает диалоговое окно, если попытка

65 * окажется неудачной
66 * @pararn words Вставляемые слова
67 */
68 puЫic void iпsertWords(String words)
69 {
70 try
71 {
72 textArea.append(words + "\п");
73
74 catch (SecurityException ех)
7 5 {
76 JOptionPane.showMessageDialog(this,
77
78
79
80
81
82
83 /**

"I arn sorry,
ex.printStackTrace();

but I cannot do that.");

84 * Текстовая область, в которой метод ввода текста

85 * проверяет в целях безопасности, чтобы в нее не

86 * были вставлены непристойные слова
87 */
88 class WordCheckTextArea extends JTextArea
89 {
90
91
92
93
94
95
96
97

puЫic void append(String text)
{

var р = new WordCheckPermission(text, "insert");
SecurityManager rnanager = Systern.getSecurityManager();
if (rnanager != null) manager.checkPerrnission(p);
super.append(text);

10.3. Аутентификация пользователей

java.security.Permission 1.2

• Perm.ission (String name)

Создает полномочия с указанным именем целевого объекта.

• String getName ()

Возвращает имя целевого объекта для данных полномочий.

Ьoolean implies (Perm.ission otЬer)

Проверяет, предполагают ли данные полномочия другие полномочия. Это имеет место в том

случае, если в других полномочиях описывается более конкретное условие, вытекающее из

условия, указанного в данных полномочиях.

1 О.З. Аутентификация пользователей
В прикладном интерфейсе Java API предоставляется каркас под названием

JAAS (Java Authentication and Authorization Service - служба аутентификации

и авторизации в Java). Он позволяет сочетать аутентификацию, предоставляемую
на отдел1.ной платформе, с управлением правами доступа и подробно рассма­

тривается в последующих разделах.

10.3.1. Каркас JAAS
Как следует из названия каркаса JAAS, он состоит из двух компонентов. В част­

ности, компонент ауте1rгификации отвечает за опо:шавание пользователей про­

грамм, а компонент авторизации - :ы проверку их полномочий.

Каркас JAAS, по существу, представляет собой встраиваемый прикладной ин­
терфейс API, отделяющий прикладные программы на Java от конкретной техно­
логии, применяемой для реали:~ации средств ауте1rгификации. Помимо прочего,

в нем поддерживаются механизмы регистрации в UNIX и Windows, а также ме­
ханизмы аутентификации Kerberos и по сертификатам.

После аутентификации за пользователем может быть закреплен определен­

ный набор полномочий. Ниже приведен пример, в котором пользователю harry
предоставляется особый ряд полномочий, которых нет ни у кого из других поль­

зователей.

grant principal com.sun.security.auth.UnixPrincipal "harry"
{

permission java.util.PropertyPermission "user.*", "read";

) ;

В данном примере класс com.sun.security.auth.UnixPrincipal выпол­
няет проверку имени пользователя UNIX, запускающего программу. Метод
getName () из этого класса во:шращает имя поль:ювателя, которое зарегистриро­

вано в системе UNIX и сравнивается на равенство с именем harry.
Класс LoginContext дает диспетчеру защиты возможность проверить пра­

вильность предоставления таких полномочий. Ниже приведена общая структура

кода регистрации.

Глава 1 О • Безопасность

try
{

System.setSecurityManager(new SecurityManager());
//определяется в конфигурационном файле JAAS:
var context = new LoginContext("Loginl");
context.login();
// получить аутентифицированный объект типа Subject:
Subject subject = context.getSubject();

context.logout();

catch (LoginExcept1on exception) // это исключение
// генерируется при неудачной попытке регистрации

exception.printStackTrace();

Теперь объект s ub j е с t представляет прошедшего аутентификацию пол ьзо­
вателя. Строковый параметр "Loginl" в конструкторе класса LoginContext обо­
значает запись с аналогичным именем в конфигурационном файле JAAS. Ниже
приведен пример такого конфигурационного файла.

Loginl
{

com.sun.security.auth.module.UnixLoginModule required;
com.whizzbang.auth.module.RetinaScanModule sufficient;

) ;

Login2
{

) ;

Разумеется, в JDK не предусмотрено никаких модулей для биометрической
регистрации. В состав пакета com.sun.security.auth.module входят только
следующие модули:

UnixLoginModule
NTLog1nModule
Krb5LoginModule
JndlLoginModule
KeyStoreLoginModule

Правила регистрации состоят из ряда модулей, каждый из которых обозначен

как required, sufficient, requisi te или optional. Значение этих ключевых
слов можно понять из приведенного ниже описания алгоритма регистрации.

При регистрации выполняется аутентификация субъекта, который может

иметь несколько 11ринци11а.лов. Каждый принципал описывает какое-то свойство

субъекта, например, имя пользователя, идентификатор группы или роль. Как

было показано ранее в операторе grant, принципалы управляют правами до­
ступа. Объект типа com.sun.security.auth.UnixPrincipal описывает имя
поль:ювателя, зарегистрированное в UNIX, а объект типа UnixNumeric Group
Principal может выполнять проверку на принадлежность поль:ювателя к груп­
пе в UNIX. Предложение grant дает возможность проверить наличие принципа­
ла с помощью следующей синтаксической конструкции:

grant КлассПринципала "ИмяПринципала"

1 О.Э. Аутентификация пользователей

Следовательно, в рассматриваемом здесь примере это предложение принима­

ет следующий вид:

grant corn.sun.security.auth.UnixPrincipal "harry"

Когда пользователь регистрируется, в отдельном контексте управления досту­

пом должен быть выполнен код, требующий проверки принципалов. Для ини­

циирования нового привилегированного действия типа Pri viligedAction вызы­
вается статический метод doAs () или doAsPrivileged ().

Оба эти метода выполняют действие, вызывая метод run () для объекта, класс
которого реализует интерфейс PrivilegedAction, а также используя полномо­
чия принципалов субъекта, как показано ниже. Если же при выполнении дей­

ствий генерируются проверяемые исключения, то вместо упомянутого выше ин­

терфейса лучше реализовать интерфейс PriviligedExceptionAction.

PrivilegedAction<T> action = () ->
{

11 выполнить код с полномочиями принципалов субъекта

} ;

Т result = Subject.doAs(subject, action);
11 или Subject.doAsPrivileged(subject, action, null)

Методы doAs () и doAsPri vileged () отличаются лишь незначительно. Так,
метод doAs () запускается в текущем контексте управления доступом, а метод
doAsPri vileged () - в новом контексте. Кроме того, метод doAsPri vileged ()
позволяет разделять права доступа для кода регистрации и бизнес-логики. В рас­

сматриваемом здесь примере прикладной программы код регистрации имеет

следующие полномочия:

perrnission javax.security.auth.AuthPerrnission
"createLoginContext.Loginl";

perrnission javax.security.auth.AuthPerrnission
"doAsPrivileged";

Пользователь, прошедший аутентификацию, получает приведенные ниже

полномочия. Если бы вместо метода doAsPri vileged () использовался метод

doAs (), такие же полномочия требовались бы и коду регистрации!

perrnission java.util.PropertyPerrnission "user.*", "read";

В рассматриваемом здесь примере программы AuthTest (ее исходный код
приведен в листингах 10.6 и 10.7) демонстрируется, как ограничивать права до­
ступа определенных пользователей. Эта программа аутентифицирует пользо­

вателя, а затем выполняет простое действие, извлекающее системное свойство.

Чтобы данный пример программы оказался работоспособным, прикладной код

для регистрации и выполнения указанного действия следует упаковать в два от­

дельных архивных JАR-файла, выполнив следующие команды:

javac auth/*.java
jar cvf login.jar auth/AuthTest.class
jar cvf action.jar auth/SysPropAction.class

Как следует из файла правил защиты, содержимое которого приведено

в листинге 10.8, пользователь системы UNIX с именем harry обладает правами

Глава 1 О • Безопасность

на чтение всех файлов. Замените сначала имя harry своим учетным именем, а за­
тем выполните приведенную ниже команду. Настройка регистрации предсrавле­

на в листинге 10.9.

java -classpath loqin.jar:action.jar \
-Djava.security.policy=auth/AuthTest.policy \
-Djava.security.auth.loqin.confiq=auth/jaas.confiq \
auth.AuthTest

В системе Windows следует заменить UnixPrincipal на NTUserPrincipal
в файлах AuthTest. policy и j aas. configUnix, а также использовать точку с за­
пятой для разделения архивных JАR-файлов, как показано в приведенной ниже

команде.

java -classpath loqin.jar;action.jar ...

После этого программа AuthTest должна отобразить значение свойства
user. home. Но если зарегистрироваться под другим учетным именем, то должно
возникнуть исключение в связи с отсутствием требующихся полномочий .

• ВНИМАНИЕ! Очень важно выполнить все приведенные выше инструкции точно и аккуратно, поскольку даже незначительные отклонения могут привести к неверной настройке аутенти­

фикации пользователей.

Листинг 10.6. Исходный код из файла auth/AuthTest. java

1 package auth;
2
3 import javax.security.auth.*;
4 import javax.security.auth.login.*;
5
6 /**
7 * В этой программе демонстрируется аутентификация

9 * пользователей через специальную регистрацию и
10 * последующее выполнение действия типа SysPropAction
11 * привилегиями зарегистрированного пользователя
12 * @version 1.02 2018-05-01
13 * @author Сау Horstmann
14 * /
15 puЫic class AuthTest
16 {
17 puЫic static void main(final String[] args)
18 {
19 System.setSecurityManager(new SecurityManager());
20 try
21 {
22 var context = new LoginContext("Loginl");
23 context.login();
24 System.out .println ("Authentication successful. ");
25 Subject subject = context.getSubject();
26 System.out.println("subject=" + subject);
27 var action = new SysPropAction ("user. home") ;
28 String result = Subject.doAsPrivileged(
29 subject, action, null);

10.3. Аутентификация пользователей

30 System.out.println(result);
31 context.logout();
32
33 catch (LoginException е)

34 {
35 e.printStackTrace();
36
37
38

Листинг 10.7. Исходный код из файла auth/SysPropAction. java

1 package auth;
2
3 import java.security.*;
4
5 /**
6 * Это действие осуществляет поиск системного свойства
7 * @version 1.01 2007-10-06
8 * @author Сау Horstmann
9 */
10 puЫic class SysPropAction
11 implements PrivilegedAction<String>
12
13 private String propertyName;
14
15 /**
16 * Конструирует действие для поиска заданного свойства
17 * @param propertyName Имя свойства (например, "user.home")
18 */
19 puЫic SysPropAction(String propertyName)
20 {
21 this.propertyName = propertyName;
22
23
24 puЫic String run()
25 {
26 return System.getProperty(propertyName);
27
28

Листинг 10.8. Исходный код из файла auth/AuthTest.policy

1 grant codebase "file:login.jar"
2 {
3 permission javax.security.auth.AuthPermission
4 "createLoginContext.Loginl";
5 permission javax.security.auth.AuthPermission
6 "doAsPrivileged";
7 } ;
в

9 grant principal com.sun.security.auth.UnixPrincipal
10 "harry"

Глава 1 О • Безопасность

11
12 permission java. util. PropertyPermission "user. *", "read";
13 f;

Листинг 10.9. Исходный код из файла auth/jaas. config

1 Loginl
2 {
3 com.sun.security.auth.module.UnixLoginModule required;
4) ;

javax.security.auth.login.LoginContext 1.4

• LoginContext (String name)

Создает контекст регистрации. Параметр name соответствует дескриптору регистрации
в конфигурационном файле службы JAAS.

• void login ()

Регистрирует субъект, а при неудачном исходе регистрации генерирует исключение типа

LoginException. Вызывает метод login () для диспетчеров, указанных в конфигураци­
онном файле JAAS.

• void logout ()

Отменяет регистрацию субъекта. Вызывает метод logout () для диспетчеров, указанных
в конфигурационном файле JAAS.

• SuЬject getSuЬject ()

Возвращает аутентифицированный субъект.

javax.security.auth.SuЬject 1.4

• Set<Principal> getPrincipals()

Возвращает принципалы данного субъекта.

• static Object doAs(SuЬject suЬjвct, PrivilegedAction action)

• static Object doAs(SuЬject suЬject, PrivilegedExceptionAction
action)

• static Object doAsPrivileged(SuЬject suЬject, PrivilegedAction
action, AccessControlContext context)

• static Object doAsPrivileged(SuЬject suЬject,
PrivilegedExceptionAction action, AccessControlContext context)

Выполняют привилегированное действие от имени субъекта. Возвращают объект, сформиро­

ванный методом run () из класса, реализующего интерфейс PrivilegedAction. Методы
doAsPrivileged () выполняют действие в указанном контексте управления доступом. Для
них можно указать ··моментальный снимок·· контекста, полученный ранее в результате вызова

метода AccessController. getContext (). Если задано пустое значение null, код будет
выполняться в новом контексте.

10.3. Аутентификация пользователей

java.security.PrivilegedAction 1.4

Object run ()

Этот метод необходимо определить самостоятельно для выполнения кода от имени субъекта.

java.security.PrivilegedExceptionAction 1.4

• Object run ()

Этот метод необходимо определить самостоятельно для выполнения кода от имени субъекта.

Он может генерировать любые проверяемые исключения.

java.security.Principal 1.1

• String getName ()

Возвращает имя данного принципала.

10.3.2. Модули регистрации JAAS
В этом разделе рассматривается пример применения JAAS, демонстрирую-

щий следующее:

• как реализовать свой собственный модуль регистрации;

• как реализовать ролевую аутентификацию.

Предоставление собственного модуля регистрации бывает полезным в тех

случаях, когда учетные данные сохраняются в базе данных. Даже если вас впол­

не устраивает стандартный модуль регистрации, изучение процесса реализации

специального модуля поможет вам лучше разобраться с предназначением пара­

метров в конфигурационном файле JAAS.
Реализация механизма ролевой аутентификации играет важную роль в тех слу­

чаях, когда требуется управлять большим количеством пользователей. Размещать

имена всех допустимых пользователей в файле правил регистрации непрактично.

Вместо этого лучше поступить таким образом, чтобы модуль регистрации сопо­

ставлял пользователей с ролями вроде "admin" или "HR" и предоставлял им пра­
ва, исходя из их ролей.

Одна из задач модуля регистрации состоит в заполнении множества принципа­

лов аутентифицируемого субъекта. Если в модуле регистрации поддерживаются
роли, он должен также вводить в это множество объекты типа Principal, описы­
вающие соответствующие роли. К сожалению, в библиотеке Java отсутствует класс
для решения этой задачи, поэтому нам пришлось создать собственный класс, ис­

ходный код которого приведен в листинге 10.10. Эгот класс просто сохраняет пары
"описание-значение" типа role=admin. А его метод getName () возвращает их, что
дает возможность вводить ролевые полномочия в файл правил регистрации, как

показано ниже.

g rant principal S imple Principal "role=admin" { . . . f

Глава 1 О • Безопасность

Рассматриваемый здео, модул1, регистрации предусматривает поиск имен,

паролей и ролей полюователей в текстовом файле, содержащем строки, анало­

гичные приведенным ниже. Разумеется, при разработке реального модуля ре­

гистрации эти сведения следовало бы хранить в какой-нибуд1, базе данных или

словаре.

harrylsecretladmin
car11guessmelHR

Исходный код рассматриваемого здесь примера модуля регистрации типа

SimpleLoginModule представлен в листинге 10.11. Метод checkLogin () прове­

ряет, соответствуют ли имя пользователя и пароль какой-нибудь записи в файле

паролей. Если они соответствуют, то во множество принцип'1лов данного суб1,ек­

та вводятся два объекта типа SimplePrincipal:

Set<Principal> principals = subject.getPrincipals();
principals. add (new SimplePrincipal ("username", userr1ame)) ;
principals.add(new SimplePrincipal("role", role));

Остальная част~, модуля типа SimpleLoginModule доволыю проста. В частно-
сти, метод ini tialize () получает в качестве параметров следующее.

• Аутентифицируемый объект типа Subject.

• Обработчик для и:шлечения учетных данных.

• Отображение sharedSta te, которое можно 11споль:ювать для обмена дан­
ными между модулями регистрации.

• Отображение options, которое содержит пары "имя-значение", задавае­
мые при настройке модуля регистрации.

Допустим, рассматриваемый здесь модуль регистрации настраИ1J'1ется приве­

денным ниже образом. В таком случае этот модуль будет извлекап, из отображе­

ния options параметры настройки pwfile.

SimpleLoginModule required pwfile="password.txt";

Сбором имени пользователя и пароля данный модуль регистрации не зани­

мается, поскольку эта задача поручена отдельному обработчику. Такое разделе­

ние ответственности позволяет использовать один и тот же модуль, не особенно

беспокоясь, откуда именно поступают учетные данные: из диалогового окна ГПИ,

командной строки консоли или из конфиrурациошюго файла. Требующийся об­

работчик задается при создании экземпляра класса LoginContext, как показано
в приведенном ниже примере кода.

var = new LoginContext("Loginl", new com.sun.security
.auth.callback.DialogCallbackHandler());

Обработчик типа DialogCallbackHandler открывает простое диалоговое
окно в графическом пользовательском интерфейсе для запрашивания имени
пользователя и пароля, а обработчик типа com.sun.security.auth.callback.
TextCallbackHandler получает эти учетные данные с консоли.

Но в данном примере для получения имени поль:ювателя и пароля использу­

ется собственный графический пользовательский интерфейс (рис. 10.8). Для этой
цели создается специальный обработчик, способный сохранять и во:шращать

учетные данные, как демонстрируется в листинге 10.12.

10.3. Аутентификация пользователей

г. . ---- . ----- ·- -----------------------г---rv

8 JAASTest - [О 1Х
usernamt: /harry
!_l:_a_s_sw_o_п_t· _____________ I••••••
,_u_s_e_r._ho_m_ e _________ ~/ /home/cay

[Get Value /

Рис. 10.8. С11ещниы1ый модуль регистра~\ии

Этот обработчик состоит из еди11стве1111ого метода handle (), который обраба­
тывает массив объектов типа Callbac k. Интерфейс Ca l lback реализуется рядом
предопределенных классов вроде NameCallback и Passwo rdCallback . По жела-
11ию можно добавит~, к ним собственный класс, например Re tinaScanCallbac k.
Исходный код этого обработчика выглядит не очень изящно, поскол1>ку он ну­

ждается в а11али:1е типа объектов обратного вызова, как показано ниже.

puЫic void handle (Callback[J ca llbacks)
{

f o r (Callback cal lback : callbacksl
{

if (callback i ns tanceo f NameCa llback)
else if l callback instanceof PasswordCa llback)
else . . .

Модул1, регистрации сначала подготавливает массив объектов типа Callback,
которые требуются ему для аутентификации, как следует из приведенного ниже

фрагмента кода, а затем извлекает из ::Них объектов всю необходимую информа­

цию.

var nameCall = ne w NameCallbac k ("username: ") ;
var passCall = new PasswordCallback l"password : " false);
callbackHandler.handle(new Call back [)
{ nameCall, passCal l });

При 11ыпол11е11ии примера программы и:~ листинга 10.13 отображается фор­
ма для ввода учетных данных и имени системного свойства. При удачном исходе

аутентификации пол1.зователя значение этого свойства извлекается в объект типа

Pri vilegedActio n. Как следует из файла правил регистрации, содержимое ко­
торого приведено в листинге 10.14, правами на чтение свойств обладают только
пол1.зователи с рол1,ю admin.

Как и в примере программы И3 предыдущего раздела, код регистрации и код

дейспшя требуется ра :целить. Для ·:)того создаются два архивных JАR-файла :

javac * . java
jar cvf login.jar JAAS*.class Simple*.class
jar cvf action.jar SysPropAction.class

После этого рассматриваемая здес1, программа запускается на выполнение

по приведенной ниже команде. Содержимое конфигурациошюго файла пред­

ставлено 11 листинге 10.15.

Глава 1 О • Безопасность

java -classpath loqin.jar:action.jar \
-Djava.security.policy=JAASTest.policy \
-Djava.security.auth.loqin.config=jaas.confiq \
JAASTest

НА ЗАМЕТКУ! Можно также обеспечить поддержку более сложного двухэтапного протокола

и с его помощью сделать так, чтобы регистрация считалась завершенной только при успешном
выполнении всех модулей, предусмотренных в настройке регистрации. Подробнее об этом

можно узнать из руководства для разработчиков модулей регистрации, доступного по адресу
https://docs.oracle.com/javase/8/docs/technotes/quides/security/jaas/
JAASLМDevGuide. html.

Листинг 10.10. Исходный код из файла jaas/SimplePrincipal. java

1 package jaas;
2
3 import java.security.*;
4 import java.util.*;
5
6 /**
7 * Принципал с именованным значением (например,

8 * "role=HR" или "username=harry")
9 */
10 puЫic class SimplePrincipal implements Principal
11 {
12 private String descr;
13 private String value;
14
15 /**
16 * Конструирует принципал типа SimplePrincipal
17 *для хранения отдельного описания и значения

18 * @param descr Описание
19 * @param value Связанное с ним значение

20 */
21 puЫic SimplePrincipal(String descr, String value)
22 {
23
24
25
26
27
28
29
30

this.descr
this.value

/**

descr;
value;

* Возвращает имя роли
* @return Имя роли

*/
31 puЫic String getName()
32 {

данного принципала

33 return descr + "=" + value;
34
35
36 puЫic boolean equals(Object otherObject)
37 {
38 if (this == otherObject) return true;
39 if (otherObject == null) return false;
4 О i f (getClass 1) 1 = otherObj ect. getClass ())

1 О.Э. Аутентификация пользователей

41 return false;
43 var other = (SimplePrincipal) otherObject;
44 return Objects.equals(getName(), other.getName());
45
46
47 puЫic int hashCode()
48 {
49 return Objects.hashCode(getName());
50
51

Листинг 10.11. Исходный код из файла jaas/SimpleLoginМodule. java

1
2
3

package jaas;

4
5
6
7
8
9
10
11

import
import
import
import
import
import
import
import

12 /**

' ' * J ava. io. ;
java.nio.file.*;
java.security.*;
java.util.*;
javax.security.auth.*;
javax.security.auth.callback.*;
javax.security.auth.login.*;
javax.security.auth.spi.*;

13 * Этот модуль регистрации аутентифицирует
14 * пользователей, считывая их имена, пароли

15 * и роли из текстового файла
16 */
17 puЫic class SimpleLoginModule implements LoginModule
18 {
19 private Subject subject;
20 private CallbackHandler callbackHandler;
21 private Map<String, ?> options;
22
23 puЬlic void initialize(Subject subject,
24 CallbackHandler callbackHandler,
25 Map<String, ?> sharedState,
26 Map<String, ?> options)
27
28 this.subject = subject;
29 this.callbackHandler = callbackHandler;
30 this.options = options;
31
32
33 puЫic boolean login() throws LoginException
34 (
35 if (callbackHandler == null)
36 throw new LoginException("no handler");
37
38
39

var nameCall
var passCall

new NameCallback("username: ");
new PasswordCallback(

40 "password: ", false);
41 try
42 {

43
44
45

Глава 1 О • Безопасность

callbackHandler.handle(new Callback[]
{ narneCall, passCall });

46 catch (UnsupportedCallbackException е)

47 {
48 var е2 = new LoginException(
49 "Unsupported callback"J;
50 e2.initCause(e);
51 throw е2;
52
53 catch (IOException е)

54 {
55 LoginException е2 new LoginException(
56 "I/O exception in callback"I;
57
58
59
60

e2.initCause(e);
throw е2;

61 try
62 {
63 return checkLogin(narneCall.getNarne(),
64 passCall.getPassword());
65
66 catch (IOException ех)
67
68
69
70
71
72
73
74 /**

LoginException ех2
ex2.initCause(ex);
throw ех2;

пеw LoginException();

75 * Проверяет достоверность даннь~ аутентификации.
76 * Если они достоверны, то субъекту требуются

77 * принципалы для имени пользователя и его роли
78 * @pararn usernarne Имя пользователя
79 * @pararn password Символьный массив, содержащий пароль

80 * @return Логическое значение true, если

81
83

*
*/

данные достоверны

84 private boolean checkLogin(
85 String usernarne, char[] password)
86 throws LoginException, IOException
87
88 try (Scanner in = new Scanner(Paths.get(
89 + options.get("pwfile")), "UTF-8"))
90
91 while (in.hasNextLine())
92
93 String[] inputs = in.nextLine().split("\\I");
94 if (inputs[O] .equals(usernarne)
95 && Arrays.equals(inputs[l] .toCharArray(),
96 password))
97
98 String role inputs[2];

10.3. Аутентификация пользователей

99
100
101
102
103
104
105
106

Set<Princ1pal> principals =

subject.getPrincipals();
principals.add(new SimplePrincipal(

"username", username));
principals.add(new SimplePrincipal(

return true;

107
108 return false;
109
110
111
112 puЫic boolean logout()
113 {
114 return true;
115
116
117 puЫic boolean abort()
118 {
119 return true;
12 о
121
122 puЫic boolean commit()
12 3 {
124 return true;
12 5
12 6

"role", role));

10.12. Исходный код из файла aas/SimpleCallbackHandler. java

1 package jaas;
2
3 import javax.security.auth.callback.*;
4
5 /**
6 * Этот простой обработчик обратных вызовов
7 * предоставляет заданное имя пользователя и пароль
8 */
9 puЫic class SimpleCallbackHandler
10 implements CallbackHandler
11
12 private String username;
13 private char[] password;
14
15 /**
16 * Конструирует обработчик обратных вызовов
17 * @param username Имя пользователя
18 * @param password Символьный массив, содержащий пароль

19 */
20 puЫic SimpleCallbackHandler(String username, char[] password)
21 {
22
23

this.username
this.password

username;
password;

24
25

Глава 1 О • Безопасность

26 puЫic void handle(Callback[] callbacks)
27 {
28 for (Callback callback : callbacks)
29 {
30 if (callback instanceof NarneCallback)
31 {
32 ((NarneCallback) callback) .setNarne(usernarne);
33
34 else if (callback instanceof PasswordCallback)
35 {
36 ((PasswordCallback) callback) . setPassword (password);
37
38
39
40

Листинг 10.13. Исходный код из файла jaas/ JAASTest. java

1 package jaas;
2
3 irnport java.awt.*;
4 irnport javax.swing.*;
5
6 /**
7 * В этой программе сначала производится аутентификация

8 * пользователя через специальную регистрацию, а затем

9 * поиск системного свойства с назначенными для

10 * пользователя привилегиями
11 * @version 1.03 2018-05-01
12 * @author Сау Horstrnann
13 */
14 puЫic class JAASTest
15 {
16
17
18
19
20

puЫic static void rnain(final String[] args)
{

Systern.setSecurityManager(new SecurityManager());
EventQueue.invokeLater(() ->

{

21 var frarne = new JAASFrarne();
22 frarne.setDefaultCloseOperation(
23 JFrarne.EXIT ON CLOSE);
24 frarne.setTitle("JAASTest");
25 frarne.setVisiЬle(true);

26 }) ;
27
28

Листинг 10.14. Исходный код из файла jaas/ JAASTest .policy

1 grant codebase "file:login.jar"
2 {
3 perrnission java.awt.AWTPerrnission

10.3. Аутентификация пользователей

4 "showWindowWithoutWarningBanner";
5 permission java.awt.AWTPermission "accessEventQueue";
6 permission javax.security.auth.AuthPermission
7 "createLoginContext.Loginl";
8 permission javax.security.auth.AuthPermission
9 "doAsPrivileged";
10 permission javax.security.auth.AuthPermission
11 "modifyPrincipals";
12 permission java.io.FilePermission
13 "jaas/password. txt", "read";
14) ;
15
16 grant principal jaas.SimplePrincipal "role=admin"
1 7 {
18 permission java.util.PropertyPermission "*", "read";
19) ;

Листинг 10.15. Исходный код из файла jaas/jaas. config

1 Loginl
2 {
3
4

jaas.SimpleLoginModule required pwfile =
"jaas/password.txt" debug=true;

5) ;

javax.security.auth.callback.CallbackHandler 1.4

• void handle(Callback[] callЬacks)

Обрабатывает указанные объекты обратного вызова, взаимодействуя при необходимости
с пользователем, а затем сохраняет в них информацию, требующуюся для соблюдения безо­
пасности.

javax.security.auth.callback.NameCallback 1.4

• NameCallЬack (String prompt)

• NameCallback(String prompt, String de:faultName)

Создают объект типа NameCallback с указанным приглашением и именем по умолчанию.

• String getName ()

• void setName (String namв)

Получают или устанавливают имя, приобретаемое с помощью текущего объекта обратного
вызова.

• String getPrompt()

Получает приглашение, которое должно использоваться при запрашивании данного имени.

• String getDefaul tName ()

Получает имя по умолчанию, которое должно использоваться при запрашивании данного

имени.

Глава 1 О • Безопасность

javax.security.auth.callback.PasswordCallback 1.4

• PasswordCallЬack (String prampt, boolean echoOn)

Создает объект типа PasswordCallЬack с указанным приглашением и признаком режима

отображения эхо-символов.

• char [] getPassword ()

• void setPassword (char [] password)

Получают или устанавливают пароль, получаемый с помощью текущего объекта обратного

вызова.

• String qetProшpt ()

Получает приглашение, которое должно использоваться при запрашивании данного пароля.

• boolean isEchoOn ()

Получает признак режима отображения эхо-символов, который должен использоваться при

запрашивании данного пароля.

javax.security.auth.spi.LoginМodule 1.4

• void initialize(SuЬject suЬject, CallbackHandler handler,
Мap<Strinq, ?> sharedStatв, Мap<Strinq, ?> options)

Инициализирует объект типа LoqinModule для аутентификации указанного субъекта.
Для получения учетных данных использует указанный обработчик. Отображение sharвd­

Statв применяется для взаимодействия с другими модулями регистрации, а отображение

options - для хранения имен и значений, указанных при настройке данного экземпляра

модуля регистрации.

• boolean loqin ()

Обеспечивает выполнение процесса регистрации и заполняет принципалы субъекта.

Возвращает логическое значение true при удачном исходе регистрации.

• boolean comm.i t ()

Если сценарий регистрации предполагает завершение в два этапа, то данный метод вызыва­

ется после удачного завершения всех модулей регистрации. Возвращает логическое значе­

ние true при удачном исходе операции.

• boolean aЬort ()

Вызывается, если неудачный исход выполнения другого модуля предполагает отказ от реги­
страции. Возвращает логическое значение true при удачном исходе операции.

• boolean loqout ()

Отменяет регистрацию субъекта. Возвращает логическое значение true при удачном исходе
операции.

10.4. Цифровые подписи
Как упоминалось ранее, интерес к платформе Java зародился с аплетов. Но

программисты сразу поняли, что с практической точки зрения, несмотря 11а ши­

рокие а11имацио1111ые во:1мож1юсти, аплеты не полностью поддерживают модель

10.4. Цифровые ПОДПИСИ

безопасности. В версии JDK 1.0 аплеты очень строго контролировались. С дру­
гой стороны, в защищенной корпоративной сети компании риск атаки через

аплеты минимален, поэтому логично было бы предоставить аплетам, выпол­

няющимся в такой сети, дополнительные права. Разработчики из компании Sun
Microsystems быстро осознали преимущества, которые дает применение аплетов,
и поэтому решили предоставить пользователям возможность присваивать апле­

там ра.тые уровни защиты в зависимости от их происхождения. Так, если аплет

поступает от надежного, заслуживающего доверия поставщика, то ему можно

предоставить более обширные права доступа.

Для предоставления аплету дополнительных полномочий необходимо знат~,

ответы на следующие вопросы.

1. Откуда поступил аплет?

2. Не был ли его код поврежден во время передачи?

За последние пятьдесят лет специалисты в области математики и информа­

тики разработали немало сложных алгоритмов поддержки целостности данных

и цифровых подписей. Многие из них реализованы в пакете java. securi ty. Для
применения таких алгоритмов совсем не обязательно понимать математические

принципы, положенные в их основу. В последующих разделах описывается меха­

низм свертки сообщений, позволяющий обнаружить факт изменений в докумен­

те, а также показывается, каким образом цифровая подпись способна подтвер­

ждат~, личность подписавшегося.

10.4.1. Свертки сообщений
Свертка сообщения - это цифровой "отпечаток" блока данных. Например,

алгоритм безопасного хеширования SHA-1 (Secure Hash Algorithm #1) уплотня­
ет любой блок данных в последовательность из 160 бит (20 байт). По аналогии
с отпечатками пальцев, считается, что не существует двух одинаковых цифро­

вых отпечатков по алгоритму SHA-1. На самом деле это не так, поскольку алго­
ритм SHA-1 поддерживает только 2160 отпечатков. Следовательно, теоретически
они могут совпасть. Число 2160 настолько велико, что вероятность дублирования
цифровых отпечатков очен~, мала, но насколько? Как утверждается в книге True
Odds: Нош risks Affect Your Everyday Life Джеймса Уолша (James Walsh; издатель­
ство Merritt PuЬlishing, 1996 г.), вероятность смерти от удара молнии составляет
1/30000. Если подсчитать вероятность такого же исхода для 10 человек (выбран­
ных, например, злобным врагом), она окажется гораздо выше, чем вероятность

наличия двух одинаковых цифровых отпечатков по алгоритму SHA-1. (Конечно,
от удара молнии погибло гораздо больше, чем 10 человек, но здесь речь идет
о специально выбранной группе людей.)

Свертка сообщения обладает двумя важными свойствами.

• Если изменяется один или несколько битов данных, то изменяется и сверт­

ка сообщения.

• Исходное сообщение нельзя изменить таким образом, чтобы полученное

поддельное сообщение имело такую же свертку, как и у исходного сооб­

щения.

Глава 1 О • Безопасность

Второе свойство, конечно, соблюдается с определенной степенью вероятности.

Допустим, некий миллиардер составил следующее завещание:

"Пос.ле смерти мое имущество должно быть разделено между моими детьми,

но мой сын ;J,жордж ничего не получит".

Отпечаток данного сообщения по алгоритму SHA-1 имеет такой вид:
12 5F 09 03 Е7 31 30 19 2Е А6 Е7 Е4 90 43 84 В4 38 99 8F 67

Допустим, недоверчивый миллиардер отдал текст завещания одному адвока­

ту, а его отпечаток - другому. Допустим далее, что его сын Джордж подкупил

адвоката, у которого хранится завещание, чтобы заменить слово George на слово

Bill. В этом случае цифровой отпечаток по алгоритму SHA-1 поддельного заве­
щания будет отличаться от аналогичного отпечатка исходного завещания:

7D F6 АВ 08 ЕВ 40 ЕС CD АВ 74 ED Е9 86 F9 ED 99 Dl 45 Bl 57

Может ли Джордж составить такое поддельное завещание, которое имело бы

отпечаток оригинального завещания? Не может, потому что для перебора всех

вариантов ему не хватило бы времени существования Земли, даже если бы он

был счастливым обладателем миллиарда компьютеров, которые способны пере­

бирать миллион вариантов завещания в секунду.

Для вычисления таких сверток сообщений был разработан целый ряд алгорит­

мов. Двумя наиболее известными из них являются алгоритм SHA-1, разработан­
ный в США Национальным институтом стандартов и технологий (National Institute
of Standards and Technology - NIST), и алгоритм MD5, изобретенный Рональ­
дом Райвестом (Ronald Rivest) из Массачусетсского технологического института
(Massachusetts Institute of Technologies - МП). Оба эти алгоритма способны шиф­

ровать фрагменты сообщений своим оригинальным способом. Подробнее с ними

можно ознакомиться, например, в книге Cryptography and Netшork Secиrity, 7th Edition
Вильяма Столлингса (William Stallings; издательство Prentice Hall, 2017 г.). Однако
недавно в обоих алгоритмах были обнаружены незначительные изъяны, поэтому

специалисты по шифрованию из института NIST рекомендуют пользоваться более
надежными алгоритмами, в том числе SHA-256, SHA-384 или SHA-512.

Класс MessageDigest служит фабрикой для создания объектов, инкапсулиру­
ющих алгоритмы получения цифровых отпечатков. Этот класс содержит стати­

ческий метод getinstance (),возвращающий экземпляр подкласса, производ­
ного от данного класса. Поэтому класс MessageDigest может выступать в роли
фабричного класса или суперкласса для всех алгоритмов получения свертки со­

общения. В приведенном ниже примере показано, каким образом получается

объект для вычисления цифровых отпечатков по алгоритму SHA-1.

MessageDigest alg = MessageDigest.getinstance("SHA-1");

После создания объекта типа MessageDigest ему нужно передать все байты
сообщения, повторно вызывая метод upda te () . Так, в приведенном ниже фраг­
менте кода содержимое файла передается полученному выше объекту alg, фор­
мирующему цифровой отпечаток.

InputStream in = . . .
int ch;
while ((ch = in.read()) != -1)

alg. update ((byte) ch) ;

10.4. Цифровые подписи

С другой стороны, если байты размещаются в массиве, метод upda te () мож­
но применить ко всему массиву следующим образом:

byte [] bytes = . • . ;
alg.update(bytes);

Далее следует вызвать метод digest (), который дополняет вводимые дан­
ные недостающими битами (это необходимое условие для алгоритма получения

цифровых отпечатков), вычисляет цифровой отпечаток и возвращает свертку со­

общения в виде следующего байтового массива:

byte[] hash = alg.digest();

В примере программы из листинга 10.16 демонстрируется вычисление сверт­
ки сообщения. Чтобы запустить эту программу на выполнение, достаточно вве­

сти следующую команду:

java hash.Digest hash/input.txt SНА-1

Если же аргументы данной программы не будут указаны в командной стро­

ке, то будет выдано приглашение ввести имя файла и наименование алгоритма

для вычисления свертки сообщения.

Листинг 10.16. Исходный код из файла hash/Digest. java

1 package hash;
2
3 import java.io.*;
4 import java.nio.file.*;
5 import java.security.*;
6 import java.util.*;
7
8 /**
9 * В этой программе вычисляется свертка

10 * сообщения из файла
11 * @version 1.21 2018-04-10
12 * @author Сау Horstmann
13 */
14 puЬlic class Digest
15 (
16 /**
17 * @param args args[O] - имя файла,

18 * args[l] - дополнительно алгоритм

19 * (SHA-1, SHA-256 или MD5)
20 */
21 puЫic static void main(String[] args)
22 throws IOException, GeneralSecurityException
23
24 var in = new Scanner (System. in);
25 String f 1lename;
26 if (args.length >= 1)
27 filename = args[OJ;
28 else

Глава 1 О • Безопасность

29
30 System.out.print("File name: ");
31 filename = in.nextLine();
32
34 String algname;
35 if (args.length >= 2)
36 algname = args[l];
37 else
38
39 System.out.println("Select one of the following algorithms: ");
40 for (Provider р : Security.getProviders())
41 for (Provider.Service s : p.getServices())
42 if 1s.getType11 . equals 1"MessageDigest"1 1
43 System.out.println(s.getAlgorithm());
44 System.out.print("Algorithm: ");
45 algname = in.nextLine();
46
47 MessageDigest alg = MessageDigest.getinstance(algname);
48 byte[] input = Files.readAllBytes(Paths.get(filename) 1;
49 byte[] hash = alg.digest(input);
50 for (int i = О; i < hash.length; i++)
51 System.out.printf("%02X ", hash[i] & OxFF);
52 System.out.println();
53
54

java.security.MessageDigest 1.1

• static MessaqeDiqest qetlnstance(Strinq algorithmNamв)

Возвращает объект типа МessaqeDiqest, реализующий указанный алгоритм. Если такой ал­

горитм не поддерживается, то генерируется исключение типа NoSuchAlqorithmExcetion.

• void update (byte input)

void update (byte [] input)

• void update (byte[] input, int offset, int len)

Обновляют свертку сообщения, используя указанные байты.

• byte[] diqest()

Вычисляет свертку сообщения по алгоритму хеширования, возвращает вычисленную свертку

и устанавливает объект алгоритма в исходное состояние.

• void reset ()

Устанавливает объект свертки сообщения в исходное состояние.

10.4.2. Подписание сообщений
В предыдущем разделе было показано, как создавать свертку сообщения, т.е.

делать своего рода дактилоскопический отпечаток исходного сообщения. При

изменении сообщения цифровой отпечаток измененного сообщения не будет

совпадать с отпечатком исходного сообщения. Это о:шачает, что при доставке

10.4. Цифровые подписи

сообщения вместе с его цифровым отпечатком получатель сможет проверить,

не было ли оно подделано. Но если злоумышле1111ику удастся перехватить и со­

общение, и его исходный отпечаток, то он сможет легко изменить сообщение
и переделать этот отпечаток так, как ему нужно. В конце концов, алгоритмы по­

лучения сверток сообщений всем известны и не требуют исполь:ювания секрет­

ных ключей. В таком случае получатель поддельного сообщения и переделанно­

го цифрового отпечатка так и не узнает, что его сообщение было и:~мепено. Этот

недостаток позволяют устранить цифровые подписи.

Чтобы стал понятнее принцип действия цифровых подписей, придется снача­

ла ввести некоторые понятия из области шифрования откр111ть1.м ключом. Основ­

ными в этой области являются такие понятия, как открыт111u ключ и секретныu

ключ. Открытый ключ сообщается всем, а секретный держится в строгом секрете.

Соответствие между этими ключами устанавливается на основании математиче­

ских отношений, которые здесь не рассматриваются. (Тем, кому интересно узнать

о них более подробно, рекомендуется книга The Handbook of Applied Cryptography,
оперативно доступная для заказа по адресу http://www. cacr .math. uwaterloo.
ca/hac/.)

Эти ключи довольно длинные и сложные. В качестве примера ниже приведе­

на пара открытого и секретного ключей, полученных с помощью алгоритма DSA
(Digital Signature Algorithm - алгоритм создания цифровых подписей).

Открытый ключ:

: fca682ce8el2caba26efccf7110e526db078b05edecbcdleb4a208f Зае1617а
e0lf35b9la47e6df63413c5el2ed0899bcdl32acd50d99151bdc43ee7 37592е17

q: 962eddcc369cba8ebb260ee6b6a126d9346e38c5

g: 678471b27a9cf44ee91a49c5147dЫa9aaf244f05a434d648693ld2d 14271Ь9

e35030b71fd73dal79069b32e2935630elc2062354d0da20a6c416e50be 794са4

у: c0b6e67b4ac098eЫa32c5f8c4clf0e7e6fb9d832532e27d0bdab9ca2 d2a8123
ce5a8018b816la760480fadd040b927281ddb22cb9bc4df596d7de4dlb9 77d50

Соответствующий ему секретный ключ:

р: fca682ce8el2caba26efccf7110e526db078b05edecbcdleb4a208f3 ае1617а
e0lf35b9la47e6df63413c5el2ed0899bcd132acd50d99151bdc43ee737 592е17

q: 962eddcc369cba8ebb260ee6b6al26d9346e38c5

g: 67847lb27a9cf44ee9la49c5147dЫa9aaf244f05a434d648693ld2d 14271Ь9

e35030b7lfd73dal79069b32e2935630elc2062354d0da20aбc416e50be 794са4

х: 146c09f881656cc6c5lf27ea6c3a91b85edld70a

Считается, что вывести один ключ из другого практически невозможно. Не­

смотря на то что открытый ключ известен всем, у:и~ап, с его помощыо секретный

ключ злоумышленникам никогда не удастся, скол1,ко бы 11ычислител1,ных ресур­

сов ни было в их распоряжении.

В то, что никому не удастся вычислить секретный КЛJОЧ на основе открытого

ключа, трудно поверить, но, по крайней мере, пока еще никто не изобрел алго­

ритм, способный делать нечто подобное с ключами, генерируемыми с помощью

Глава 1 О • Безопасность

самых распространенных 11 настоящее время алгоритмов шифрования. И:1- :}а

того что эти ключи достаточно дли1111ые, для их расшифровки методом "грубой

силы", т.е. пугем простого перебора всех возможных вариантов, потребуется

больше комш,ютеров, чем может быть вообще создано И:\ всех атомов солнеч­

ной системы, и не одна тысяча лет. Разумеется, не исключено, что кому-нибудь

удастся придумать для разгадывания ключей шифрования более эффективный

алгоритм, чем простой перебор возможных вариантов.

Рассмотрим в качестве примера алгоритм шифрования RSA, изобретенный
Райвестом (Rivest), Шамиром (Shamir) и Адлема1юм (Adleman). Принцип дей­
ствия этого алгоритма основывается на сложности разложения бол1,ших чисел

на простые множители. За последние двадцать лет многие известные математи­

ки пытались разработать удачные алгоритмы разложения чисел 11а простые м1ю­

жители, но добиться этого пока еще никому не удалось. Из-за этого большинство

специалистов по шифрованию считают, что в настоящее время ключи длиной

2000 битов являются абсолютно защищенными от любых попыток взлома. Алго­
ритм шифрования DSA также считается довольно надежным. На рис. 10.9 пока­
зано, как выглядит процесс шифрования по алгоритму DSA на практике.

Сообщение

Подпись

Секретный ключ DSA

Открытый ключ

Алгоритм

создания

подписи

DSA

Алгоритм

верификации

DSA

Рис. 10.9. Обмен сообщениями с использованием цифровой 1юлписи,
открытых ключей и алюритма 111ифрова11ия DSA

10.4. Цифровые ПОДПИСИ

Допустим, Алиса хочет послать сообщение Бобу, а Боб желает быть уверен­

ным в том, что сообщение поступило именно от Алисы, а не от какого-то са­

мозванца. Для этого Алиса составляет сообщение и подписывает свертку этого

сообщения с помощью своего секретного ключа. Далее Боб получает копию ее

открытого ключа и применяет его для верификации подписи. При удачном завер­

шении процесса верификации Боб может быть уверен в следующем:

• исходное сообщение не было изменено;

• сообщение было подписано Алисой, обладающей секретным ключом, со­

ответствующим тому открытому ключу, который Боб использовал для ве­

рификации.

Из этого примера ясно видно, почему так важны секретные ключи. Если

кто-нибудь выкрадет секретный ключ Алисы или если правительство попросит

ее расшифровап, его, ей грозят неприятности, потому что выкравший ключ зло­
умышленник или представитель правительства сможет легко подделывать ее со­

общения, заявки на пересылку денежных средств и выполнять другие подобные

операции, а все будут считать, что все это делает сама Алиса.

10.4.З. Верификация подписи

В состав комплекта JDK входит утилита keytool командной строки, предназна­
ченная для генерирования сертификатов и управления ими. Пока что она способ­

на работать только в режиме командной строки, но можно надеяться, что в после­

дующих выпусках JDK ее функциональные возможности будут доступны и в виде
других, более удобных для пользователей версиях. В этом разделе она использует-

01 для того, чтобы показать, каким образом Алиса может подписывать документ

и отправлять его Бобу, а Боб - проверять и удостоверяться в том, что документ

был действительно подписан Алисой, а не каким-нибудь самозванцем.

Утилита keytool позволяет управлять хранилищами к.лючеu, базами данных
сертификатов и парами секретных и открытых ключей. У каждой записи в хра­
нилище ключей имеется свой псевдоним. Ниже показано, каким образом Алиса

может создап, хранилище alice. store и сгенерировать пару ключей с псевдо­
нимом alice, воспользовавшись утилитой keytool.
keytool -genkeypair -keystore alice.certs -alias alice

При создании или открытии хранилища появляется приглашение ввести па­

роль. В данном примере вводится простое слово secret. Но при создании хра­
нилища ключей с помощью утилиты keytool для каких-нибудь более серьезных
целей рекомендуется выбрать надежный пароль и хранить его в полном секрете.

При генерировании ключа появляется приглашение ввести следующую инфор­

мацию:

Enter keystore password: secret
(Введите пароль для хранилища ключей)

Reenter new password: secret
(Еще раз введите новый пароль)

What is your first and last name?
(Ваше имя и фамилия [неизвестно})

[Unknown): Alice Lee

Глава 1 О • Безопасность

What is the name of your organizational unit?
(Название подразделения вашей организации [неизвестно])

[Unknown]: Engineering Department
What is the name of your organization?
(Название вашей организации (неизвестно})

[Unknown] : АСМЕ Software
What is the name of your City or Locality?
(Название вашего города или местности [неизвестно})

[Unknown] : San Francisco
What is the name of your State or Province?
(Название вашего штата или провинции [неизвестно})

[Unknown] : СА
What is the two-letter country code for this unit?
(Введите двухбуквенный код страны для данного

подразделения [неизвестно})

[Unknown] : US
Is <CN=Alice Lee, OU=Engineering Department, О=АСМЕ Software,

L=San Francisco, ST=CA, C=US> correct?
(Все правильно?)

[no]: yes

В утилите keytool для идентификации владельцев ключей и создателей сер­
тификатов используются имена по стандарту Х.500 с составляющими для ука­

зания общего имени (Common Name - СМ), организационного подразделения

(Organizational Unit - OU), организации (Organization - О), местонахождения

(Location - L), штата (State - ST) и страны (Country - С). И в завершение требу­

ется указать пароль для ключа или нажать клавишу <Enter>, чтобы использовать
его в качестве пароля для хранилища ключей.

Допустим, Алисе требуется предоставить Бобу копию своего открытого клю­

ча. В таком случае ей нужно сначала экспортировать файл сертификата следую­

щим образом:

keytool -exportcert -keystore alice.certs \
-alias alice -file alice.cer

Теперь она может отправить этот сертификат Бобу. Боб же, получив этот сер­

тификат, может распечатать его по следующей команде:

keytool -printcert -file alice.cer

Ниже приведен пример такой распечатки. Если Боб захочет проверить, тот

ли сертификат он получил, он может позвонить Алисе и сверить свою копию

с исходным цифровым отпечатком сертификата по телефону.

Owner: CN=Alice Lee, OU=Engineering Department,
О=АСМЕ Software, L=San Francisco, ST=CA, C=US

Issuer: CN=Alice Lee, OU=Engineering Department,
О=АСМЕ Software, L=San Francisco, ST=CA, C=US

Serial numЬer: 470835се

Valid from: Sat Oct 06 18:26:38 PDT 2007 until:
Fri Jan 04 17:26:38 PST 2008

Certificate fingerprints:
MDS: ВС:18:15:27:85:69:48:В1:5А:С3:0В:1С:С6:11:В7:81

SHAl: 31:0A:AO:B8:C2:8B:3B:B6:85:7C:EF:C0:57:E5:94:
95:61:47:60:34

Signature algorithm name: SHAlwithDSA
Version: 3

10.4. Цифровые подписи

НА ЗАМЕТКУ! Некоторые создатели сертификатов публикуют цифровые отпечатки своих сер­

тификатов на веб-сайтах. Например, чтобы проверить сертификат компании DigiCert из ката­
лога хранилища ключей jre/liЬ/security/cacerts, можно отобразить сначала содер­

жимое этого каталога по следующей команде с параметром -list:

keytool -list -v -keystore jre/liЬ/security/cacerts

Паролем для доступа к данному хранилищу является слово changeit. А один из сертифи­
катов в нем будет выглядеть так:

Owner: CN=DigiCert Assured ID Root G3, OU=www.digicert.com,
O=DigiCert Inc, C=US

Isst1er: CN=DigiCert Assured ID Root G3, OU=www. dig icert. сот,
O=DigiCert Inc, C=US

Serial numЬer: bal5afalddfa0b54944afcd24a06cec
Valid from: Thu Aug 01 14:00:00 CEST 2013 until:

Fri Jan 15 13:00:00 СЕТ 2038
Certificate fingerprints:
SHAl: F5:17:A2:4F:9A:48:Cб:C9:F8:A2:00:26:9F:DC:OF:48:2C:

АВ:30:89

SHA256: 7E:37:CB:88:4C:47:09:0C:AB:36:55:1B:Aб:F4:5D:B8:

40:68:0F:BA:
16:6A:95:2D:Bl:00:71:7F:43:05:3F:C2

Чтобы удостовериться, что данный сертификат является действительным, достаточно посе­

тить веб-сайт компании DigiCert по адресу https: / /www.digicert.com/digicert­
root-certificates. htm.

Убедившись в правильности сертификата, Боб может далее импортировать

его в свое хранилище ключей по следующей команде:

keytool -importcert -keystore Ьob.certs -alias alice \

•
-file alice.cer

ВНИМАНИЕ! Ни в коем случае не следует импортировать непроверенный сертификат в хра­
нилище ключей. Ведь после ввода сертификата в хранилище ключей любая программа, поль­

зующаяся хранилищем ключей, предполагает, что данный сертификат можно использовать

для проверки цифровых подписей.

После этого Алиса может отправлять Бобу подписанные документы. Подпи­

сывать и проверять архивные JАR-файлы можно с помощью утилиты jarsigner.
Сначала Алисе следует ввести подписываемый документ в архивный JАR-файл:

jar cvf document.jar document.txt

Затем с помощью утилиты jarsigner она может добавить к этому файлу
свою цифровую подпись. Для этого ей достаточно указать хранилище ключей,

архивный JАR-файл и псевдоним используемого ключа в следующей команде:

jarsigner -keystore alice.certs document.jar alice

Получив этот файл, Боб может воспользоваться для его верификации утили­

той jarsigпer с параметром -verify, как показано ниже.

jarsigner -verify -keystore Ьob.certs document.jar

Глава 1 О • Безопасность

Указывать псевдоним ключа при этом Бобу не нужно. Утилита jarsigner
сама отыщет в цифровой подписи указанное в формате Х.500 имя владельца

ключа и произведет поиск соответствующих ему сертификатов в хранилище

ключей.

Если архивный JАR-файл не поврежден и цифровая подпись совпадает, тогда

утилита jarsigner отобразит приведенное ниже сообщение. В противном слу­
чае вместо него появится сообщение об ошибке:

jar verified.

10.4.4. Проблема аутентификации
Допустим, вы получаете сообщение от своей подруги Алисы, которая подпи­

сала его описанным выше способом, испол1>Зуя свой секретный ключ. У вас уже

может иметься копия ее открытого ключа, а иначе вам нетрудно будет получить

ее у самой Алисы или на ее неб-странице. Наличие этого ключа позволяет лег­

ко удостоверипся, что данное сообщение действительно написала Алиса и что

оно не было кем-то подделано. А теперь допустим, что вы получаете сообщение

от какого-то незнакомца, который представляется сотрудником известной компа­

нии по разработке программного обеспечения и предлагает вам воспользоваться

программой, прикрепленной им к данному сообщению. Этот незнакомец даже

присылает вам копию своего открытого ключа, чтобы вы могли удостовериться,

что именно он является автором данного сообщения. Вы проверяете его и убеж­

даетесь, что подпись действительна. Это подтверждает лишь то, что сообщение

было подписано с помощью соответствующего секретного ключа и что оно не

было подделано.

Но имейте в виду, что о самом авторе сообщения вам все равно ничего не и3вестно!

Сгенерировап, секретный и открытый ключи, подписать сообщение с помощью

секретного ключа и отправить его вместе с подходящим открытым ключом мог

кто угодно. Выяснение личности отправителя называется проблемой аутентифи­

кации.

Обычно проблема аутентификации разрешается очень просто. Например,

у вас и у отправителя может быть общий знакомый, которому вы оба доверяете.

Тогда отправитель может встретип,ся с вашим :шакомым лично и передать ему

диск с открытым ключом. Затем ваш знакомый может встретиться с вами, под­

твердить, что он действительно знает отправителя и что тот действительно рабо­

тает на известную компанию по разработке программного обеспечения, после

чего передать вам диск с открытым ключом (рис. 10.10). В таком случае получает­
ся, что гарантом аутентичности отправителя будет ваш знакомый.

На самом деле вашему знакомому совсем не обязательно встречаться с вами.

Он может просто подписап, файл с открытым ключом незнакомца с помощью

своего секретного ключа и послать его вам (рис. 10.11). При получении файла
с открытым ключом вы можете проверить подпись своего друга. А поскольку вы

ему доверяете, то у вас не сомнений, что он проверил учетные данные незнаком­

ца, прежде чем добавлять свою цифровую подпись.

Секретный ключ

п __
~

Незнакомый Открытый ключ

отправитель

10.4. Цифровые подписи

Файл с открытым ключом

Доверяемый~ .Q
канал Л

Вы

Доверяемый

канал

'

Друг

Рис. 10.1 О. Аутентификация через довере11но1п 1юсред11ика

х
Секретный ключ

r~

~
Незнакомый Открытый ключ
отправитель

Файл с ключом

Доверяемый

канал
l~

Добавление
подписи

Подписанный----'----.
файл с ключом

Вы

Секретный

ключ

х
ключ

Друг

Доверяемый

канал

Рис. 10.11. Ауr·е1пификаню1 через подпись доверенного посредника

Глава 1 О • Безопасность

Но у вас может и не быть такого общего :шакомого. В некоторых моделях до­

верительных отношений предполагается, что всегда существует некая "цепочка

доверия", т.е. цепочка общих знакомых, всем звеньям которой можно доверять.

Но на практике так бывает далеко не всегда. Вы можете доверять своей подруге

Алисе и знать, что она доверяет Бобу, но сами-то вы Боба не знаете, а следова­

тельно, не до конца уверены, стоит ли ему доверять. Другая модель доверитель­

ных отношений предполагает наличие какого-то одного хорошо зарекомендовав­

шего себя человека или органи:ыции, которой все могут безоговорочно доверять.

Наиболее и:шестными примерами такой организации служат компании DigiCert,
GlobalSign и Entrust.

Вам часто будут встречап,ся цифровые подписи, заверенные одной или не­

сколькими ручающимися за аутентичность организациями, и поэтому вам при­

дется самостоятельно оценивать, насколько им стоит доверять. Вы можете дове­

рять какому-нибудь сертифицирующему органу, например, потому, что часто

встречаете его логотип на многих неб-страницах, или потому, что слышали, буд­

то бы в нем применяются невероятные меры безопасности.

Но вы все равно должны иметь ясное представление, каким образом в подоб­

ных организациях прои:шодится аутентификация и что именно они проверяют.

Получить идентификатор "класса 1" от сертифицирующего органа можно, за­
полнив веб-форму и заплатив небольшой юное. В этой форме следует указать

имя, организацию, страну и адрес электронной почты. После заполнения формы

по указанному адресу отсылается ключ или инструкции, как его получить. Таким

образом, уверенным можно быть только в подлинности электронного адреса, по­

тому что имя и название организации не проверяются и могут быть любыми.

Существуют и более строгие классы идентификаторов, например, при желании

получить идентификатор "класса 3" сертифицирующий орган потребует пред­
ставить отчет о финансовом положении, официально заверенный у нотариуса. У

других организаций, занимающихся аутентификацией, будут друrие требования.

Поэтому очень важно, чтобы при получении заверенного цифровой подписью

сообщения вы ясно понимали, каким образом проверялась его подлинность.

10.4.5. Подписание сертификатов
В разделе 10.4.3 было показано, как Алиса воспользовалась самостоятельно

подписываемым сертификатом для передачи открытого ключа Бобу. Но ведь

Бобу пришлось проверить подлинность этого сертификата, сверив его с исход­

ным цифровым отпечатком от Алисы.

Допустим теперь, что Алисе требуется послать подписанное сообщение сво­

ей коллеге Синди, а та не любит тратить время на сверку цифровых подписей

с исходными отпечатками. В этом случае Синди может помочь посредническая

организация, которой она могла бы доверить проверку всех цифровых подписей.

В рассматриваемом здесь примере предполагается, что такой орrанизацией яв­

ляется отдел информационных ресурсов компании АСМЕ Software.
Этот отдел занимается выдачей сертификатов, т.е. выполняет функции сер­

тифицирующеzо органа. У каждого сотрудника компании АСМЕ Software имеет­
ся полученный из этого отдела открытый ключ, который находится в хранили­

ще ключей и перед установкой был тщательно сверен с цифровым отпечатком

10.4. Цифровые ПОДПИСИ

системным администратором. Этот сертифицирующий орган занимается также

подписанием ключей всех сотрудников компании АСМЕ Software. Благодаря
этому хранилище ключей автоматически доверяет устанавливаемым ключам со­

трудников данной компании, поскольку они подписаны с помощью доверяемого

ключа.

Ниже поясняется, как сымитировать этот процесс. Сначала создается храни­

лище ключей acmesoft. certs. Затем генерируется пара ключей и экспортиру­
ется открытый ключ по следующим командам:

keytool -genkeypair -keystore acmesoft.certs -alias acmeroot
keytool -exportcert -keystore acmesoft.certs \

-alias acmeroot -file acmeroot.cer

Открытый ключ экспортируется в "самозаверенный" сертификат, а затем вво­

дится в хранилище ключей каждого сотрудника следующим образом:

keytool -importcert -keystore cindy.certs -alias acmeroot \
-file acmeroot.cer

Чтобы иметь во:шожность отправлять подписанные сообщения Синди и лю­

бым другим сотрудникам компании АСМЕ Software, Алисе нужно принести свой
сертификат в отдел информационных ресурсов данной компании и подписать

его. Утилита keytool, к сожалению, не предоставляет никаких средств для реше­
ния подобной задачи. Для восполнения этого пробела в исходном коде, прилага­

емом к данной книге, предоставляется класс CertificateSigner. В этом случае
уполномоченному сотруднику компании АСМЕ Software остается только прове­
рить личность Алисы и сформировать подписанный сертификат по следующей

команде:

java CertificateSigner -keystore acmesoft.certs \
-alias acmeroot -infile alice.cer \
-outfile alice_signedЬy_acmeroot.cer

Очевидно, что выполнение такой команды связано с и:шестным риском и тре­

бует, чтобы у применяемой для подписания сертификата программы был доступ

к хранилищу ключей компании АСМЕ Software, а у уполномоченного сотрудни­
ка - необходимый для этого пароль.

После этого Алиса может передать файл alice_signedby_acmeroot.cer
Синди и любому другому сотруднику компании АСМЕ Software. В качестве аль­
тернативного варианта этот файл может быть также сохранен в каталоге дан­

ной компании. Напомним, что в этом файле содержится открытый ключ Али­

сы и подтверждение компании АСМЕ Software, что данный ключ действительно
принадлежит Алисе. Далее Синди может импортировать подписанный серти­

фикат Алисы в свое хранилище ключей по следующей команде:

keytool -importcert -keystore cindy.certs -alias alice \
-file alice_signedЬy_acmeroot.cer

При выполнении этой команды в хранилище ключей будет автоматически

проверено, был ли данный сертификат подписан с помощью уже имеющегося

в нем доверяемого корневого ключа. Благодаря этому Синди не придется сверять

его с исходным цифровым отпечатком данного сертификата. Введя один раз кор­

невой сертификат и сертификаты всех остальных лиц, часто присылающих ей

Глава 1 О • Безопасность

документы, Синди избавляется от необходимости впредь беспокоиться о храни­

лище ключей.

10.4.6. Запросы сертификатов
В предыдущем разделе был рассмотрен пример имитации сертифицирую­

щего органа с помощью хранилища ключей и класса CertificateSigner. Но
в большинстве сертифицирующих органов для управления сертификатами при­

меняется более сложное программное обеспечение и несколько иные форматы

сертификатов. В этом разделе обсуждаются дополнительные действия, которые

требуется выполнить для организации нормального взаимодействия с подобным

программным обеспечением.

Выберем для примера пакет программного обеспечения OpenSSL. Это про­
граммное обеспечение, как правило, предварительно устанавливается во многих

системах Linux и Мае OS Х вместе с портом Cygwin. Если оно не установлено, его
можно без особого труда загрузить по адресу https: / /www. openssl. org.

Чтобы создать сертифицирующий орган, следует запустить сценарий СА. Точ­

ное место расположения этого сценария зависит от конкретной операционной

системы. Так, в ОС Ubuntu его можно запустить по следующей команде:
/usr/lih/ssl/misc/CA.pl -newca

Этот сценарий создаст в текущем каталоге подкаталог demoCA, содержащий
пару корневых ключей и хранилище для сертификатов и списков аннулирования

сертификатов.

Далее необходимо импортировать открытый ключ в хранилище ключей, со­

зданное на Java для всех сотрудников. Но из-за того что этот ключ имеет формат
РЕМ (Privacy Enhanced Mail - почта повышенной секретности), а не легко рас­

познаваемый хранилищем ключей формат DER, сначала придется скопировать
файл demoCA/ cacert. pem в файл acmeroot. pem, открыть его в текстовом редак­
торе и удалить все, что находится перед строкой -----BEGIN CERTIFICATE----­
и после строки -----END CERTIFICATE-----.

После этого файл acmeroot. pem можно скопировать в каждое хранилище
ключей обычным способом, как показано ниже. Невероятно, но факт: угилита

keytool не способна выполнить эту операцию редактирования самостоятельно.

keytool -importcert -keystore cindy.certs -alias alice \
-file acmeroot.pem

Чтобы подписать открытый ключ Алисы, необходимо сначала сформировать

за11рос сертификата формате РЕМ по следующей команде:

keytool -certreq -keystore alice.store -alias alice \
-file alice.pem

Далее для подписания этого сертификата необходимо выполнить следующую

команду:

openssl са -in alice.pem -out alice_signedЬy_acmeroot.pem

После этого, как и прежде, из файла alice_signedby_acmeroot.pem сле­
дует удалить все строки, которые находятся за пределами маркеров BEGIN
CERTIFICATE/END CERTIFICATE, а затем импортировать ЭТОТ файл в хранилище

10.4. Цифровые подписи

ключей по приведенной ниже команде. Аналогичным образом можно подписать

сертификат с помощью ключа, выданного сертифицирующим органом.

keytool -importcert -keystore cindy.certs -alias alice \
-file alice_signedЬy_acmeroot.pem

10.4. 7. Подписание кода
Технология аутентификации чаще всего применяется для подписания испол­

няемых программ. Копируя программу из сети, пользователь вполне обоснован­

но может потребовать гарантий ее подлинности, поскольку такая программа мо­

жет нанести вред, если она заражена каким-нибудь вирусом. Поэтому требуется

полная уверенность в том, что программа предоставлена надежным источником

и во время пересылки не была изменена.

В этом разделе будет показано, как подписываются архивные JАR-файлы

и настраиваются средства Java для проверки достоверности подписи. Такая воз­
можность была предусмотрена для подключаемого модуля Java Plug-in, пред­
назначенного для запуска аплетов и приложений Java Web Start. И хотя эти
технологии не находят больше широкого применения, их, возможно, придется

поддерживать в унаследованных программных продуктах.

В первоначальной версии Java аплеты допускалось выполнять в "песочнице"
с ограниченными полномочиями непосредственно после их загрузки. Если же

пользователям требовались аплеты, способные получать доступ к локальной

файловой системе, устанавливать сетевые соединения и т.д., они должны были

явным образом давать свое согласие на подобные операции. Чтобы гарантиро­

вать от намеренного повреждения кода аплета в процессе его выполнения, такой

код снабжали цифровой подписью.

Обратимся к конкретному примеру. Допустим, что, выйдя в Интернет, поль­

зователь открывает веб-страницу, на которой предлагается запустить приклад­

ную программу неизвестного поставщика, как, например, показано на рис. 10.12.
Такая программа подписана сертификатом разработчика программного обеспе­

чения. В диалоговом окне указывается разработчик данной программы и созда­

тель сертификата. Пользователь должен решить, следует ли санкционировать

выполнение выбранной прикладной программы.

Попробуем выяснить, что известно пользователю в подобной ситуации и что

может повлиять на его решение. А известно следующее.

• Компания Thawte продала сертификат разработчику программного обе­
спечения.

• Прикладная программа действительно подписана этим сертификатом и во

время пересылки не была изменена.

• Сертификат действительно подписан компанией Thawte и проверен с по­
мощью открытого ключа, который находится в локальном файле cacerts.

Безусловно, ничто из приведенного выше не свидетельствует о том, что дан­

ную программу можно выполнить безопасно. Можно ли доверять поставщику,

если известно только его название и тот факт, что компания Thawte продала ему
сертификат разработчика программного обеспечения? Этих сведений явно недо­

статочно для принятия взвешенного решения.

Глава 1 О • Безопасность

The appllcatlon's dlgltal slgnature has been
verlfled. Do you want to run the
appllcatlon7

МVlow

PuЬllshor: ChomA><On Kft .

From: http:/,.,,.,w.chemexon.com

91 tiw•Y' tru•t content from th!t publshtr 1

О Тh1s appltcat1on 1N1U Ье run without the 5ecunty
restnct1ons norma/ly pro-Jided Ьу jav~.

О Caut1on· •chemAxon Кft: .• asserts that thts
appltcatton 1s safe. You should orUy run this
apphcaнon if you trust •chemAxon Кft .• to make
that assert1on.

Run] Cancell
О Тhе d191tal s19nature was generated with • trusted

certificatt .

Т'tl• d1;ttt l •lon•tvr• h•• bttr<t 11d.itd Ь)f •
tr\ltted 1ource

ftrtlficate Deta1ls ...

v chtmA><on кft . (т1'а""• cod !Foeld l'valut
~ т1'aNtt Codo Sognong СА(' ·Ymoon f;2 j[=.

1

1 Ser1al Numher [S94~024Э93821?02З5~46~. 8. 71. J

S19nature A!qorrthm JsНAlw1thRSA} 1

l~s1.:1er 'CN=Тh•xte Code S19ning СА О .• " 1
Yohd.!Y _- 1[From: Sun мау 14 17:00:00 РОТ .
suЬi•ct icii~chemA><on кft " ou~Develo".]1
Slgnature 0000' 4F 5Э Э6 90 OS 03 АС 71 ".
MOS Fmg•rpnnt }4l-2S:7C:C5:42·45 4С ·ВF;52;5Э :. " ,1 ...

~s,ов :65: 7E:OF:AO: 29 :42:09:62:56:62 :ВС: 4(,02 : ЭО :б2 :S4 'ЕА:!С

I•
flose

Рис. 10.12. Запуск rюл1111са111юй 11р11клал11ой программы

Сертификаты более пригодны для ра:~работю1 внутренних корпоратинных се­

тей, администраторы которых могут уста11он11л, файлы правил :~ащиты 11 серп1-

фикаты на локалы1ых машинах, чтоGы для запуска на выпол11е1ше доверяемого

кода не требовалос1, вмешател1,ство по11ь:ювателеii . Всякий ра:1, когда подк11ючае­

мый модул1, Java Plug-in :1агружает подш1са11111.1ii код, он оGращается :ia правами
доступа к файлу правил :1ащиты, а к хра1111лищу ключей - :1а подписями.

Далее в этом разделе поясш1ется, каким обр1.1 :юм создаются файлы пр1.1вил

:1ащиты, дающие ра:1реше11ие на выполнение прикладного кода и :1 и :шест11ых

источников. Допустим, компа11ии АСМЕ Software требуется, чтобы ее сотруд1~и ­

ки могли :~апускап. определе1111ые программы, требующие доступа к лока11ы1ым

файлам, но сделал, так, чтобы эти программы были доступны чере:~ брау:1ер

н виде приложений Web Start.
Как было пока:1а1ю ра11ее 11 этой главе, комп<111ия АСМЕ Software могл<1 бы

идентифицировал. программ1.1 по их кодовой ба:~е. Но это 0:111ачает, что eil 11р11 -

шлос1, бы обновмп1, файлы прав :1ащ1пы всяю1i1 ра:1, когда программы переносят­

ся на другой сервер. Поэтому 11 компа111ш АСМЕ Software вместо этого было пр11 -

ш1то решение 11од11uсь111т1111 архивные JАR-файлы, содержащие программный код.

Для этого сначал<1 формируется корневой сертификат по следующей команде:

keytool -qenkeypair -keystore acmesoft.certs -alias acmeroot

10.5. Шифрование

Ра:~умеется, хранилище ключей, содержащее секретный корневой ключ, долж­

но обязательно находиться в безопасном месте. Поэтому создается второе храни­

лище ключей client. certs для размещения в нем открытых сертификатов, и в
него сразу же вводится открытый сертификат acmeroot:

keytool -exportcert -keystore acmesoft.certs \
-alias acmeroot -file acmeroot.cer

keytool -importcert -keystore client.certs \
-alias acmeroot -file acmeroot.cer

Далее уполномоченный сотрудник компании АСМЕ Software может запустит~,
утилиту jarsigner, чтобы подписать любую прикладную программу, указав ар­
хивный JАR-файл и псевдоним секретного ключа следующим образом:

jarsiqner -keystore acmesoft.certs ACМEApp.jar acmeroot

После этого приложение Web Start можно считать готовым к развертыванию
на неб-сервере. Теперь перейдем к настройке бе:юпасности на стороне клиен­

та. Файл правил защиты должен рассылаться каждой клиентской машине. Для

ссылки на хранилище ключей файл правил защиты начинается со следующей

строки:

keyst.ore "URL _хранилища_ ключей", "тип_ хранилища __ ключей";

Указанный URL может быть как абсолютным, так и относительным. Относи­
тельные URL являются таковыми по отношению к месту расположения файла
правил защиты. Если хранилище формировалось с помощью утилиты keytool,
0110 будет относиться к типу JKS, как показано в приведенном ниже примере.

keystore "client. certs", "JKS";

Далее, операторы grant в файле правил защиты могут бып, снабжены суф­
фиксами signedBy "псевдоним", как выделено ниже полужирным. В этих опе­

раторах предоставляются полномочия любому коду, который может быть прове­

рен с помощью открытого ключа, связанного с указанным псевдонимом.

grdnt siqnedВy "acmeroot"
(

} ;

10.5. Шифрование
До сих пор рассматривалась аутентификация с помощью цифровых подпи­

сей. Еще одним важным средством обеспечения бе:юпасности является шифро­

аание. Информация, заверенная цифровой подписью, доступна для просмотра,

а подпись лишь подтверждает, что эта информация не была изменена. Для про­

смотра зашифрованных данных этого недостаточно, поскольку их нужно рас­

ш11фровап, с помощ1,ю согласовашюго ключа.

Аутентификации оказывается достаточно для подписания кода, который не

нужно скрывать. А шифрование требуется в тех случаях, когда прикладные про­

граммы передают конфиденциальную информацию, например, номера кредит­

ных карточек и прочие личные данные.

Глава 1 О • Безопасность

В прошлом во многих компаниях существовали патентные и экспортные огра­

ничения на исполь:ювание эффективных алгоритмов шифрования. Теперь же

все эти ограничения стали, к счастью, менее жесткими, а срок патентных огра­

ничений на использование ряда важных алгоритмов шифрования и вовсе истек.

В стандартной библиотеке текущей версии Java предусмотрены превосходные
средства шифрования.

10.5.1. Симметричные шифры
Криптографические расширения Java содержат класс Cipher, который явля­

ется суперклассом для всех классов, имеющих отношение к шифрованию. Для

создания объекта, реализующего алгоритм шифрования, метод getinstance ()
используется одним из следующих способов:

Cipher cipher = Cipher.getinstance(algorithName);

или

Cipher cipher = Cipher.getinstance(algorithName,
providerName);

В комплекте JDK для всех шифров используется поставщик SunJCE. Если имя
поставщика не указано явно, то по умолчанию принимается имя SunJCE. Если
же требуется воспользоваться алгоритмами шифрования, которые не поддержи­

ваются инструментальными средствами компании Oracle, следует указать дру­
гого поставщика. На:шание алгоритма шифрования задается в виде символьной

строки, например "DES" или "DES/CBC/PKCS5Padding".
Алгоритм DES (Data Encryption Standard - стандарт шифрования данных) -

один из наиболее старых алгоритмов шифрования с длиной ключа 56 бит. В на­
стоящее время он считается устаревшим, поскольку может взламываться ме­

тодом "грубой силы". Намного более эффективным оказывается появившийся

после него алгоритм AES (Advanced Encryption Standard - усовершенствованный

стандарт шифрования), подробное описание которого можно найти по адресу

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf. В рассматри­
ваемых далее примерах будет использоваться алгоритм шифрования AES.

Как только будет создан объект, реализующий алгоритм шифрования, его не­

обходимо инициализировать, указав режим и ключ шифрования, т.е. установив

параметры mode и key следующим образом:

int mode = . . . ;
Кеу key = ••. ;
cipher.init(mode, key);

Параметр mode может принимать значение одной из следующих констант:

Cipher.ENCRYPT_MODE
Cipher.DECRYPT_MODE
Cipher.WRAP_MODE
Cipher.UNWRAP_MODE

Режимы свертъrвания и развертывания применяются для шифрования одного

ключа на основе другого. Пример применения таких режимов будет приведен

в следующем разделе. После этого можно повторно вызывать метод upda te ()
для шифрования всех требующихся блоков данных, как показано ниже.

int ЫockSize = cipher.getBlockSize();
var inBytes = new byte[ЬlockSize];

. // прочитать байты из входного массива inBytes
iпt outputSize= cipher.getOutputSize(ЬlockSize);
var outBytes = пеw byte[outputSize];
iпt outLeпgth = cipher.update(iпBytes, О,

outputSize, outBytes);
. 11 записать байты в выходной массив outBytes

10.5. Шифрование

По завершении следует вызвать метод doFinal () один раз. Если доступен
последний блок вводимых данных (меньшего объема, чем указано в переменной

ЫockSize), то данный метод должен быть вызван следующим образом:

outBytes = cipher.doFinal(iпBytes, О, inLength);

Если были зашифрованы все вводимые данные, то данный метод должен быть

вызван таким образом:

outBytes = cipher.doFinal();

Вызывать метод doFinal () требуется для того, чтобы заполнить завершаю­
щий блок данных. Рассмотрим, например, алгоритм шифрования DES, в кото­
ром размер блока составляет 8 байт. Допустим, что размер последнего блока
вводимых данных оказывается меньше 8 байт. Разумеется, недостающие байты
можно дополнить нулями таким образом, чтобы блок занимал 8 байт, а затем
зашифровать его. Но после расшифровки блоков данных полученный результат

будет содержать несколько присоединенных в конце нулей, а следовательно, бу­

дет несколько отличаться от исходного файла данных. Это может вызвать опреде­

ленное затруднение, и для его преодоления как раз и требуется схе.ма Jапо.лнения.

Одной из наиболее часто применяемых является схема заполнения, описанная

в документе PuЫic Кеу Cryptography Standard #5 (PKCS - стандарт шифрова­

ния открытым ключом) специалистами из компании RSA Security, Inc. (https: / /
tools. ietf. org/html/rfc2898).

В этой схеме последний блок заполняется не нулями, а числами, равными не­

достающему количеству байтов. Иными словами, если L - это последний (не­

полный) блок данных, то он будет заполнен следующим образом:

L 01 если length (L) 7
L 02 02 если leпgth (L) 6
L 03 03 03 если leпgth (L) 5

L 07 07 07 07 07 07 07 если leпgth(L) 1

Наконец, если длина вводимых данных делится нацело на 8, то к вводимым
данным присоединяется и затем шифруется только один такой блок, как показа­

но ниже. При расшифровке на количество отбрасываемых заполняющих симво­

лов указывает самый последний байт простого текста.

08 08 08 08 08 08 08 08

10.5.2. Генерирование ключей шифрования
Для шифрования требуется сгенерировать ключ. Каждый алгоритм шиф­

рования предусматривает свой формат для ключей, но самое главное, что­

бы их генерирование выполнялось произвольным образом. Чтобы получить

Глава 1 О • Безопасность

сгенерированный совершенно произвол1,но ключ, требуется выполнить следую­

щие действия.

1. Создать объект типа KeyGenerator.

2. Инициализировать генератор случайных чисел. Если блок шифра имеет пе­
ременную длину, необходимо также указать желаемую длину блока.

3. Вызвать метод generateKey ().

В качестве примера ниже показано, каким образом генерируется ключ шиф­

рования по алгоритму AES.
KeyGenerator keygen = KeyGenerator.getinstance("AES"I;
var random = new SecureRandom(); 11 см. пояснение ниже

keygen.init (random);
Кеу key = keygen.generateKey();

С другой стороны, ключ шифрования можно также сгенерировать из фик­

сировашюго набора необработанных данных (например, пароля или вводи­

мых с клавиатуры символов). В таком случае следует восполь:юваться классом

SecretKeyfactory, как показано ниже.

11 16 байт для ключа шифрования по алгоритму AES:
byte [] keyData = . • . ;
var key = new SecretKeySpec(keyData, "AES"I;

При генерировании ключей следует удостовериться, что для этой цели ис­

пользуются 110длинно случайные числа. Например, обычный генератор случайных

чисел, реализуемый в классе Random, где в роли начал1,ных значений выступают
текущие дата и время, не будет генерировать случайные в достаточной степени

числа. Допустим, системные часы показывают время с точностью до 1/10 секун­
ды. Это означает, что на каждый день может приходиться максимум по 864000
начальных значений. Следовательно, узнав день генерирования ключа шифрова­

ния (его зачастую нетрудно вычислить по дате сообщения или дате истечения

срока действия сертификата), злоумышленнику останется лиш1, сгенерировать

все возможные значения за этот день.

Класс SecureRandom генерирует намного более надежные случайные числа,
чем класс Random. Но предоставлять ему начальное :тачение, с которого долж­
на начинаться числовая последовательность в прои:шолыюй точке, все равно

придется. Для этого удобнее всего получить случайные данные, вводимые ~п

какого-нибудь аппаратного устройства вроде генератора белого шума. С дру­

гой стороны, случайные данные можно получил,, запросив у пользователя вве­

сти любую бессмысленную последовательность символов, из которой в качестве

начального случайного значения должен выбираться тол1,ко один или два бита.

После накопления таких случайных битов в массив байтов они должны быть пе­

реданы методу setSeed (), как показано ниже.

var secrand = new SecureRandom();
var Ь = new byte[20];
11 заполнить массив подлинно случайными битами:
secrand.setSeed(b);

10.5. Шифрование

Если не указать генератору случайных чисел никакого началыюго :шачения,

он сформирует собственное 20-байтовое значение, :1апустив несколько потоков

на исполнение, переведя их в режим ожидания и рассчитаи точное время их вы­

хода из режима ожидания.

НА ЗАМЕТКУ! Трудно сказать, является ли такой алгоритм безопасным. Раньше алгоритмы,
действие которых основывалось на вычислении временных показателей некоторых ком­

понентов компьютера, например времени доступа к жесткому диску, зачастую оказывались

на поверку генерирующими недостаточно случайные числа.

В примере программы из листинга 10.17 демонстрируется применение алгорит­
ма шифрования AES. Служебный метод шифрования crypt () из листинга 10.18
будет еще не раз использован н остальных примерах далее в этой главе. Чтобы нос­

пользовап,ся данной программой, необходимо сначала сгенериро11ап, секретный

ключ, выполнив следующую команду:

java aes.AESTest -genkey secret.key

Полученный в итоге секретный ключ следует сохранип, н файле secret. key.
После этого шифрование можно выполнить по следующей команде:

java aes.AESTest -encrypt plaintextFile \
encryptec!File secret.key

Расшифровывание прои:шодится по такой команде:

java aes.AESTest -decrypt encryptedFile \
decryptec!File secret.key

Рассматриваемая здесь программа довольно проста. Сначала с помощью па­

раметра -genkey генерируется новый секретный ключ, который :1атем сохраняет­
ся в указанном файле. Эта операция обычно занимает много времени, поскольку

большая ее часть уходит на инициализацию генератора случайных чисел. Пара­

метры -encrypt и -decrypt предусматривают вы:юв одного и того же метода
crypt (), который, в свою очередь, вызывает такие методы для объекта шифро­
вания, как update () и doFinal ().Но следует иметь в виду, что метод update ()
вызывается повторно до тех пор, пока блоки вводимых данных не достигнут пол­

ной длины, и что метод doFinal () вызывается с частично заполненным блоком
вводимых данных (который затем заполняется) или вооfiще бе:ю всяких дополни­

тельных данных (для формирования одного заполняющего блока).

Листинг 10.17. Исходный код из файла aes/AESTest. java

1 package aes;
2
3 import java.io.*;
4 import java.security.*;
5 import javax.crypto.*;
6
7 /**
8 * В этой программе проверяется шифрование

9 * по алгоритму AES. Применение:

10 * java aes.AESTest -genkey keyfile

Глава 1 О • Безопасность

11 * java aes.AESTest -encrypt plaintext encrypted keyfile
12 * java aes.AESTest -decrypt encrypted decrypted keyfile
13 * @author Сау Horstmann
14 * @version 1.02 2018-05-01
15 */
16 puЫic class AESTest
17 {
18 puЫic static void main(String[] args)
19
20
21

throws IOException, GeneralSecurityException,
ClassNotFoundException

22 if (args[O] .equals("-genkey"))
23 {
24 KeyGenerator keygen =
25 KeyGenerator.getinstance("AES");
26 var random = new SecureRandom();
27 keygen.init(random);
28 SecretKey key = keygen.generateKey();
29 try (var out = new ObjectOutputStream(
30 new FileOutputStream(args[l]I 11
31
32
33
34
35 else
36 {

out.writeObject(key);

37 int mode;
38 if (args[O].equals("-encrypt"))
39 mode = Cipher.ENCRYPT_MODE;
40 else mode = Cipher.DECRYPT_MODE;
41
42 try (var keyin = new ObjectinputStream(
43 new FileinputStream(args[3]) 1;
44 var in = new FileinputStream(args[l]);
45 var out = new FileOutputStream(args[2]11
46
47
48
49
50
51
52
53
54

var key = (Кеу) keyin.readObject();
Cipher cipher = Cipher.getlnstance("AES"I;
cipher.init(mode, key);
Util.crypt(in, out, cipher);

Листинг 10.18. Исходный код из файла aes/Util. java

1 package aes;
2
3 import java.io.*;
4 import java.security.*;
5 import javax.crypto.*;
6

10.5. Шифрование

7 puЫic class Util
8 {
9 /**
10 * Использует шифр для преобразования байтов из
11 * потока ввода и направляет преобразованные байты
12 * в поток вывода

13 * @param in Поток ввода
14 * @param out Поток вывода
15 * @param cipher Шифр для преобразования байтов
16 * /
17 puЫic static void crypt(InputStream in,
18 OutputStream out, Cipher cipher)
19 throws IOException, GeneralSecurityException
20
21 int ЫockSize = cipher.getBlockSize();
22 int outputSize = cipher.getOutputSize(ЫockSize);
23 var inBytes = new byte[ЫockSize];
24 var outBytes new byte[outputSize];
25 int inLength = О;

26
27 var done = false;
28 while (1 done)
29 {
30 inLength = in.read(inBytes);
31 if (inLength == ЫockSize)
32 {
33 int outLength = cipher.update(inBytes, О,

34 ЫockSize, outBytes);
35 out.write(outBytes, О, outLength);
36
37 else done = true;
38
39 if (inLength > 0)
40 outBytes cipher.doFinal(inBytes, О, inLength);
41 else
42 outBytes cipher.doFinal();
43 out.write(outBytes);
44
45

javax. crypto. Cipher 1. 4

• static Cipher getinstance(String algorithmNamв)

• static Cipher getinstance(String algorithmNam.e, String
providвrNamв)

Возвращают объект типа Cipher, реализующий указанный алгоритм шифрования. Если же
такой алгоритм не поддерживается, то генерируется исключение типа NoSuchAlgorithm
Exception.

Глава 1 О • Безопасность

j avax. crypto. Cipher 1 . 4 (окончание/

int getвlockSize()

Возвращает размер шифруемого блока в байтах или нулевое значение, если алгоритм шиф­

рования не предусматривает манипулирование блоками данных.

• int getOutputSize (int inputLength)

Возвращает размер выходного буфера данных, который требуется, если следующие входные

данные имеют количество байтов, определяемое параметром inputLength. В этом методе
учитываются любые байты. буферизированные в объекте шифрования.

• void ini t (int mode, Кеу key)

Инициализирует объект, реализующий алгоритм шифрования. Параметр режима может при­

нимать значение одной из следующих констант: ENCRYPT _MODE, DECRYPT _ MODE, WRAP _

МОDЕ или UNWRAP MODE.

• byte [] update (byte [] in)

• byte[] update (byte[] in, int o:f:fset, int length)

• int update(byte[] in, int o:f:fset, int length, byte[] out)

Преобразуют один блок входных данных. Первые два метода возвращают выходные данные,

а третий метод возвращает сведения о количестве байтов, которые были размещены в мас­

сиве out.

• byte [] doFinal ()

• Ьуtе [] doFinal (byte [] in)

• byte[] doFinal(byte[] in, int o:f:fset, int length)

• int doFinal(byte[] in, int o:f:fset, int length, byte[J out)

Преобразуют последний блок входных данных и очищают буфер данного объекта шифрова­

ния. Первые три метода возвращают выходные данные, а четвертый метод возвращает све­

дения о количестве байтов, которые были размещены в массиве out.

javax.crypto.KeyGenerator 1.4

• static KeyGenerator getinstance(String algorithmNamв)

Возвращает объект типа KeyGenerator, реализующий указанный алгоритм шифрова­
ния. Если такой алгоритм не поддерживается, то генерируется исключение типа NoSuch
Algori thmException.

• void ini t (SecureRandom random)

• void init (int keySize, SecureRandom random)

Инициализируют генератор ключей шифрования.

• Secretкey genera teKey ()

Генерирует новый ключ шифрования.

j avax. crypto . spec . SecretкeySpec 1 . 4

• SecretкeySpec (byte [] key, String al.gori thmName)

Формирует новый секретный ключ по указанной спецификации.

10.5.З. Потоки шифрования

10.5. Шифрование

В библиотеке JCE имеется удобный набор классов, реализующих потоки вво­
да-вывода и способных автоматически шифровать и расшифровывать данные из

этих потоков. В качестве примера ниже показано, как с помощью одного из та­

ких классов зашифровать данные и вывести их в файл.

Cipher cipl1er = . . . ;
cipher.init(Cipher.ENCRYPT_MODE, key);
var out = new CipherOutputStream(

new FileOutputStream(outputFileName), cipher);
var bytes = new byte[BLOCKSIZE];
int inLength = getData(bytes); //получить данные из источника
while (inLength != -1)
{

out.write(bytes, О, inLength);
//получить дополнительные данные из источника:

inLength = getData(bytes);

out. flush ();

Подобным образом для чтения данных из файла и их расшифровки можно

применить класс CipherinputStream:

Cipher cipher = . . . ;
cipher.init(Cipher.DECRYPT_MODE, key);
var in = new CipherinputStream(

new FilelnputStream(inputFileName), cipher);
var bytes = new byte[BLOCKSIZE];
int inLength = in.read(bytes);
while (inLength != -1)
{

// вывести данные по месту назначения:
putData(bytes, inLength);
inLength in.read(bytes);

Классы потоков шифрования прозрачно обрабатывают вызовы методов

update () и doFinal (),что, безусловно, очень удобно.

j avax. crypto. CipherinputStream 1. 4

• CipherinputStream.(InputStream in, Cipher cipher)

Создает поток ввода, который считывает данные из потока ввода in и расшифровывает или
зашифровывает их, используя указанный шифр.

Глава 1 О • Безопасность

javax. crypto. CipherinputStream 1. 4 (окончание/

• int read()

• int read(byte[] Ь, int off, int len)

Считывают данные из потока ввода и автоматически расшифровывают или зашифровывают их.

javax.crypto.CipherOutputStream 1.4

• CipherOutputStream(OutputStream out, Cipher cipher)

Создает поток вывода, направляющий данные в заданный поток вывода out, и зашифровы­
вает или расшифровывает их, используя указанный шифр.

void write (int ch)

• void write(byte[] Ь, int off, int len)

Направляют данные в поток вывода и автоматически зашифровывают или расшифровывают их.

void flush ()

Выводит данные из буфера шифрования, очищая его и заполняя при необходимости недо­

стающие биты.

10.5.4. Шифрование открытым ключом
Алгоритмы шифрования DES и AES, рассматривавшиеся в предыдущем раз­

деле, являются си.м.метричными. Это о:шачает, что один и тот же ключ приме­

няется как для шифрования, так и для расшифровывания. У язвимым местом

всех симметричных алгоритмов шифрования является передача ключа. Так, если

Алиса отправляет Бобу :ышифровашюе сообщение, для его расшифровки Бобу

требуется тот же самый ключ, которым пользовалась Алиса. При изменении

ключа Алиса снова должна отправить Бобу вместе с сообщением новую версию

этого ключа по какому-нибудь защищенному каналу. Но если у нее нет доступа

к такому каналу связи с Бобом, то ей придется сначала зашифровать все отправ­

ляемые ему сообщения.

В качестве выхода из этого положения можно воспользоваться шифрова­

нием открытым ключом. В таком случае у Боба будет пара ключей: открытый

и соответствующий ему секретный ключ. Он сможет передавать свой открытый

ключ кому угодно, а секретный ключ хранить в тайне. Алисе же останется толь­

ко использовать этот открытый ключ для шифрования всех своих сообщений

Бобу.

Но, к сожалению, все не так просто. Дело в том, что все алгоритмы шифро­

вания открытым ключом действуют намного медленнее, чем алгоритмы шиф­

рования симметричными ключами вроде DES или AES. Поэтому было бы
неэффективно и непрактично использовать открытые ключи для шифрова­

ния данных большого объема. Впрочем, это затруднение нетрудно разрешить,

10.5. Шифрование

сочетая шифрование открытым ключом с симметричным шифрованием. Обра­

тимся за разъяснением к следующему примеру.

1. Алиса формирует произвольный симметричный ключ и шифрует им свое
сообщение.

2. Используя открытый ключ Боба, Алиса зашифровывает этот симметрич­
ный ключ.

3. Алиса посылает Бобу зашифрованное сообщение вместе с зашифро­

ванным симметричным ключом.

4. Используя секретный ключ, Боб расшифровывает симметричный ключ.

5. Используя расшифрованный симметричный ключ, Боб расшифровывает
полученное сообщение.

В данном примере никто, кроме Боба, не сможет расшифровать симметрич­

ный ключ, потому что секретный ключ имеется только у него. Таким образом,

неэффективный алгоритм шифрования открытым ключом применяется только

для небольшого объема данных симметричного ключа.

Наиболее распространенным для шифрования открытым ключом являет­

ся алгоритм RSA, изобретенный Райвестом, Шамиром и Адлеманом. До октя­
бря 2000 года этот алгоритм был защищен патентом, выданным компании RSA
Security Inc., а для получения лицензии на его использование приходилось пла­
тить 3%-ную пошлину с минимальным ежегодным взносом 50 тыс. долларов
США. В настоящее время этот алгоритм уже не является коммерческим и стал

всеобщим достоянием.

Чтобы воспользоваться алгоритмом шифрования RSA, необходимо создан
открытый и секретный ключи средствами класса KeyPairGenerator:

KeyPairGenerator pairgen = KeyPairGenerator.getinstance("RSA"I;
var randorn = new SecureRandorn(J;
pairgen.initialize(KEYSIZE, randorn);
KeyPair keyPair = pairgen.generateKeyPair();
Кеу puЫicKey = keyPair.getPuЫic();
Кеу privateKey = keyPair.getPrivate();

Для запуска на выполнение примера программы из листинга 10.19 приме­
няются три параметра. В частности, параметр -genkey служит для создания
пары ключей, параметр -encrypt - для генерирования ключа по алгоритму

шифрования AES и его свертывания с помощ1,ю открытого ключа, как показано
ниже.

Кеу key = •.. ; 11 ключ по алгоритму шифрования AES
Кеу puЫicKey .; 11 открытый ключ по алгоритму

11 шифрования RSA
Cipher cipher Cipher.getlnstance("RSA");
cipher.init(Cipher.WRAP_MODE, puЬlicKey);

byte[J wrappedKey = cipher.wrap(key);

Глава 1 О • Безопасность

Далее создается файл, состоящий и:3 следующих элементов.

• Длина свернутого ключа.

• Байты свернутого ключа.

• Огкрьпый текст, зашифрованный ключом по алгоритму AES.

Третий параметр, -decrypt, служит для расшифровывания файла. Чтобы

опробовать данную программу, необходимо сначала создать ключи по алгорит­

му шифрования RSA, выполнив следующую команду:

java rsa.RSATest -genkey puЬlic.key private.key

Затем следует зашифровать файл по команде:

java rsa.RSATest -encrypt plaintextFile \
encryptedFile puЬlic.key

Наконец, файл следует расшифровать и проверить, совпадают ли полученные

данные с ранее зашифрованными, введя команду

java rsa.RSATest -decrypt encryptedFile \
decryptedFile private.key

Листинг 10.19. Исходный код из файла rsa/RSATest. java

1 package rsa;
2
3 import java.io.*;
4 import java.security.*;
5 import javax.crypto.*;
6
7 /**
8 * В этой программе проверяется шифрование

9 * по алгоритму RSA. Применение:

10 * java rsa.RSATest -genkey puЬlic private
11 * java rsa.RSATest -encrypt plaintext encrypted puЬlic
12 * java rsa.RSATest -decrypt encrypted decrypted private
13 * @author Сау Horstmann
14 * @version 1.02 2018-05-01
15 */
16 puЫic class RSATest
17 {
18 private static final int KEYSIZE = 512;
19
21 puЫic static void main(String[] args)
22 throws IOException, GeneralSecurityException,
23 ClassNotFoundException
24
25 if (args[OJ.equals("-genkey"))
26 {
27 KeyPairGenerator pairgen =

28 KeyPairGenerator.getinstance("RSA");
29 var random = new SecureRandom();
30 pairgen.initialize(KEYSIZE, random);
31 KeyPair keyPair = pairgen.generateKeyPair();
32 try (var out = new ObjectOutputStream(

33 new FileOutputStream(args[l])))
34
35 out.writeObject(keyPair.getPuЬlic());
36
37 try (var out = new ObjectOutputStream(
38 new FileOutputStream(args[2])))
39
40
41
42

out.writeObject(keyPair.getPrivate());

43 else if (args[OJ.equals("-encrypt"))
44
45 KeyGenerator keygen =
46 KeyGenerator.getinstance("AES");
47 var random = new SecureRandom();
48 keygen.init(random);
49 SecretKey key = keygen.generateKey();
50
51 //свернуть с помощью открытого ключа

52 // по алгоритму шифрования RSA:
53 try (var keyin = new ObjectinputStream(

10.5. Шифрование

54 new FileinputStream(args[3]));
55 var out = new DataOutputStream(
56 new FileOutputStream(args[2]));
57 var in = new FileinputStream(args[l]))
58
59 var puЬlicKey = (Кеу) keyin.readObject();
60 Cipher cipher = Cipher.getinstance("RSA");
61 cipher.init(Cipher.WRAP_MODE, puЫicKey);
62 byte[] wrappedKey = cipher.wrap(key);
63 out.writeint(wrappedKey.length);
64 out.write(wrappedKey);
65
66 cipher = Cipher.getinstance("AES");
67 cipher.init(Cipher.ENCRYPT_MODE, key);
68 Util.crypt(in, out, cipher);
69
70
71 else
72
73 try (var in = new DatainputStream(
74 new FileinputStream(args[l]));
75 var keyin = new ObjectinputStream(
76 new FileinputStream(args[3]));
77 var out new FileOutputStream(args[2]))
78
79 int length in.readint();
80 var wrappedKey = new byte[length];
81 in.read(wrappedKey, О, length);
82
81 //развернуть с помощью секретного ключа

82 //по алгоритму шифрования RSA
83 var privateKey = (Кеу) keyin.readObject();
84
85 Cipher cipher = Cipher.getlnstance("RSA");
86 cipher.init(Cipher.UNWRAP_MODE, privateKey);

87
88
89
90
91
92
93
94
95
96
97

Глава 10 • Безопасность

Кеу key = cipher.unwrap(wrappedKey, "AES",
Cipher.SECRET_KEY);

cipher = Cipher.getlnstance("AES");
cipher.init(Cipher.DECRYPT_MODE, key);

Util.crypt(in, out, cipher);

В этой главе было пока:ыно, каким образом модель безопасности обеспечивает

контролируемое выполнение кода, что является отличительной и очень важной

особенностью платформы Java. Кроме того, были рассмотрены ра:ыичные службы,
предоставляемые в библиотеке Java для аутентификации и шифрования.

В следующей главе будут рассмотрены расширенные возможности для про­

граммирования средствами библиотеки Swing.

ГЛАВА

Расширенные средства
Swing и графика

В этой главе ...
~ Таблицы

~ Деревья

~ Расширенные средства AWT

~ Растровые изображения

~ Вывод изображений на печать

В этой главе продолжается начатое в первом томе настоящего издания обсуж­

дение набора компонентов из библиотек Swing и AWT, предназначенных для по­
строения графического пользовательского интерфейса и графики. Основное

внимание в ней уделяется разработке элементов пользовательского интерфейса

на стороне клиента, а также формированию изображений и графики на стороне

сервера. В состав библиотеки Swing входят сложные, логически развитые компо­
ненты для воспроизведения таблиц и деревьев. А с помощью прикладного интер­

фейса API для графики можно воспроизводить векторную графику практически
любой сложности. Наконец, применяя прикладной интерфейс API для вывода
на печать, можно формировать отпечатки и файлы формата PostScript.

11.1. Таблицы
Компонент JТаЫе служит для отображения таблицы в виде двухмерной

сетки объектов. Таблицы широко применяются при построении графическо­

го пользовательского интерфейса, поэтому разработчики библиотеки Swing

Глава 11 • Расширенные средства Swing и графика

уделили должное внима11ие со:1данию данного компонента. Компонент JТаЫе

имеет оченr, сложную структуру, но она, н отличие от других компонентон Swing,
практически скрыта от пол1,:ювателей. С помощr,ю нсего нескол1,ких строк кода

можно создатr, полноценную таблицу. Но для состанления специалы1ых таблиц

придется написатr, дополнителы1ый код, оформитr, их особый внешний вид 11 :~а­
дан конкретное их поведе11ие в ра:1рабатываемой прикладной программе.

В этом разделе поясш1ется, каким обра:юм со:1даются простые таблицы, как

организуется взаимодействие полюователеil с 1-1ими и как они чаще всего 11а­

страиваются. А11алогично другим сложным компонентам Swing, все особенности
манипулирования таблицами 11е1ю:1мож1ю подробно описать в одном ра:1деле.

Поэтому для углубленного и:1учения данного вопроса рекомендуется следующая

дополнителы1ая литература: книга Graphic]тт 1 м : Masteri11g the]FC, Volume ll: Sшi11g,
Зrit Editimz Дэвида М. Гери (David М. Ceary; издательство Prentice Hall, 1999 г.) или
книга Core Sioi11g Кима Топли (Kim Topley; юдател1.ство Prentice Hal\, 1999 г.).

11.1.1. Простая таблица
Компонент JТаЫе не хранит свои данные, а получает их 1п .\touc,\11 таб,\1щы .

Класс JТаЫе содержит ко11структор, который :1аключает двухмерный массив

объектов в оболочку модели, исnоль:1уемой по умолчанию. Именно такой способ

применяется в рассматриваемом :1десь перном примере со:1да11ия таблиц. Моде­

ли таблиц более подробно обсуждаются далее н этой главе.

На рис. 11.1 приведена типичная таблица с описаниями свойств планет Солнеч­
ной системы. Следует иметr, в виду, что н столбце Gaseous ука:~ывается логическое
:шачение true, если планета состоит в основном И3 водорода и гелия, а иначе -
логическое :шачение false. Значения в столбце Co l o r пока еще не имеют како­
го-то определенного смысла, 1ю этот столбец понадобится в следующих примерах.

Рис. 11.1. Пример 11ростой таблицы

Как следует и:~ приведе1111оl'О ниже фрагме11та кода, юятого иJ листиша 11.1,
в котором представлен исход11ый код рассматриваемого 3дес1. примера програм­

мы, данные таблицы храшrтоt в 11иде двухмерного массива :111аче11ий типа Obj ec t.

Object[J[J cells =
{

"Mercury", 2 4 40 .0, О, fal se, Color.YEIJLOW },
"Venus ", 6052.0 , О , fa lse, Color.YELLOW),

11.1. Таблицы

НА ЗАМЕТКУ! В данном случае используются преимущества автоупаковки . Так, значения
примитивных типов во втором, третьем и четвертом столбцах автоматически преобразуются

в объекты типа DouЫe, Integer и Boolean.

Для отображения каждого объекта в таблице вызывается метод toS tring ().
По·.пому цвета в последнем столбце предстанлены н ниде строк j а v a . awt .
Co1or [r = ... , g = . . . , Ь= ...] .

Сначала имена столбцов :ыдаются в отделыюм массиве сим1юлы1ых строк сле­

дующим обра:юм:

Stгing[] columnName s = { "Planet" , "Radius", "Moons ",
"Gaseous 11 , "Color" } ;

З<нем 11:1 массивов ячеек и имен столбцов составляется таблица:

va r tаЫе = new JTaЬle(cells, co l umnNames);

Таблицу мож1ю также снабд11ть по110сами прокрутки. Для этого достаточно

:1аключ1п1, ее в оболочку комп0t1е1па JScrol l Pane, как пока:~ано ниже. При про­
крутке таблицы ее :~аголовок не исче:~ает и:~ виду.

var рапе= ne w JSc rollPane (taЬle) ;

Если щелкнут~. кнопкой мыши на одном и:1 столбцов и перетащить его влево

или 1111рапо, вес1. столбец визуально отделяется от других столбцов 11ебол1.шим

промежутком (рис. 11.2). Перетаскиваемый столбец можно опустить на любом
другом месте. Такое переупорядочение столбцон возможно тол11ко в представле­

нии таблицы, и 0110 никак не влияет на модел1, данных.

С1 -
_ Ptanet _ ~ad!t!.L_ 0(15 Gaseous Color
Mercury 00 ;atse java.awt С ...
~enl1s 5052 .0 false i ava. awt. С.
Earth -- 6378.0 --- faJse Java. ам. С. '-

~--~----··-

""! Mars 3397 о false java.awt С
IJupiter 71492 .0 true java.awt С
Saturn 50268.0 true java.a,.,1 С -- С----· - ·t----- -- - -
Uranus 25559 о true j ava. awt. С. -

" л ,..

г Pri~

Рис. 11.2. Переме111е11ие с1олб11а в таблине

Чтобы и:1ме1шт~. ра:~меры столбца, достаточно навести курсор 1ta границу ра:1-
делu двух столбцов. Как только ука :1uтел1, мыши примет вид двой11ой стрелки,

остu11ето1 лиш1. перетащить границу ра:1дела столбцов в нужное место (рис. 11.3).
Чтобы выбрал, строку в таблице, достаточно щелкнуть на любом месте в этой

строке. Выбра1111ые строки таблицы выделяются другим цветом. Далее будет

пока:~ано, кuким обра:юм орган~вуется обработка событий выбора и:~ таблицы.

В рассматриваемом :1десь примере до11ускается редактироваш1е ячеек таблицы,

1ю внесенные в них и:1мене11ия не сохраняются . Поэтому при ра :1работке соб­

стве111юй прикладной программы вам придется выбирал, одно и:1 двух: вооб­

ще Juпретил, редактирование в ячейках таблицы или орга111но11ал, обработку

Глава 11 • Расширенные средства Swing и графика

событий редактирования и обновление модели таблицы. Подробнее об этом

далее в настоящем разделе.

Mars 3397 о
Jupiter 71492 о
Saturn 60268.0
Uranus 25559.0
bl""'4

1 Prl11t

Рис. 11.З. Изменение рюмеров столбцов в таблице

Наконец, если щелкнуть на заголовке столбца, строки таблицы будут автома­

тически отсортированы. Если щелкнуть еще раз, сортировка будет прои:щеде11а

в обратном порядке. Такое поведение активизируется при вызове следующего

метода:

taЫe .setAutoCreateRowSorter(true) ;

Для вывода таблицы на печап, вызывается следующий метод:

tаЫе .print ();

• ВНИМАНИЕ! Если таблица не вписывается в панель прокрутки, ее заголовок придется доба­

вить явным образом, сделав следующий вызов:

add(taЫe.getTaЫeHeader() , BorderLayout . NORTH);

Листинг11.1. Исходный код из файла taЫe/TaЬleTest.java

1 package tаЫе;
2
3 import Java . awt .*;
4 import java.awt.print.*;
5
6 import javax.swing.*;
7
8
9
10
11
12
13

/ **
* В этой программе демонстрируется
* отображения простой таблицы
* @version 1.14 2018 - 05-01
* @author Сау Horstmann
*/

14 puЫic class TaЬleTest

порядок

15 (
16
17
18
19
20
21

puЫic static void main (String [] args)
{

EventQueue. i nvokeLater (() - >
{

var frame = new PlanetTaЬleFrame() ;

frame.setTitle("TaЬleTest ") ;

22
23
24
25
26
27
28

frame.setDefaultCloseOperation(
JFrame.EXIT ON CLOSE);

frame.setVisiЬle(true);

} 1;

29 /**
30 * Эт·от фрейм содержит таблицу с данными о планетах

*/ 31
32
33

class PlanetTaЬleFrame extends JFrame
(

34 private String [] columnNames = ("Planet", "Radius",
35 "Moons", "Gaseous", "Color" } ;
36 private Object [] [] cells =
37 (
38 "Mercury", 2440.0, О, false, Color.YELLOW },
39 "Venus", 6052.0, О, false, Color.YELLOW },
40 "Earth", 6378 .О, 1, false, Color.BLUE } ,
41 "Mars", 3397.0, 2, false, Color.RED },
42 "Jupiter", 71492. О, 16, true, Color .ORANGE } ,
43 "Saturn", 60268.0, 18, true, Color.ORANGE },
44 "Uranus", 25559.0, 17, true, Color.BLUE },
45 "Neptune", 24766.0, 8, true, Color.BLUE },
46 "Pluto", 1137.0, 1, false, Color.BLACK}
4 7 } ;
48
49 puЫic PlanetTaЬleFrame()

50 (
51 var tаЫе = new JTaЬle(cells, columnNames);
52 taЫe.setAutoCreateRowSorter(true);

53 add(new JScrollPane(taЬle), BorderLayout.CENTER);
54 var printButton = new JButton("Print");
55 printButton.addActionListener(event ->
56 {
57 try (taЫe.print(); }
58 catch (SecurityException PrinterException ех)
59 (ex.printStackTrace(); }
60 }) ;
61 var buttonPanel = new JPanel();
62 buttonPanel.add(printButton);
63 add(buttonPanel, BorderLayout.SOUTH);
64 pack();
65
66

javax.swing.JTaЫe 1.2

• JТaЬle(Object[] [] entries, Object[] columnNames)

Составляет таблицу с моделью, используемой по умолчанию.

• void print() 5.0

Отображает диалоговое окно печати и выводит таблицу на печать.

11.1. Таблицы

Глава 11 • Расширенные средства Swing и графика

j avax. swing. JТаЬlе 1 . 2 (окончание/

boolean getAutoCreateRowSorter () 6

void setAutoCreateRowSorter (boolean newValue) 6

Получают или устанавливают свойство autoCreateRowSorter. По умолчанию оно прини­
мает логическое значение false. Если установлено именно это логическое значение, то при
любом изменении модели таблицы будет автоматически устанавливатьсs~ сортировщик строк,
выбираемый по умолчанию.

boolean getFillsViewportнeigh t () 6

void setFillsViewportнeight (Ьoolean newValue) 6

Получают или устанавливают свойство fillsViewportBeight. По умолчанию оно прини­
мает логическое значение false. Если установлено именно это логическое значение, то та­
блица всегда будет заполнs~ть объемлющую область просмотра.

11.1.2. Модели таблиц
Описанные в предыдущем разделе данные таблицы хранилис~, в виде двух­

мерного массива. Но такой способ в прикладном коде обычно не применяется.

Вместо вывода данных в массив для их отображения в табличном виде рекомен­

дуется реализовать собственную модель таблицы.

Реализовать модель таблицы совсем не трудно, поскольку для этой цели пред­

усмотрен отдельный класс AbstractTaЬleModel с большинством требующихся

методов. Остается лишь предоставить следующие три метода:

puЫic int getRowCount();
puЫic int getColumnCount();
puЫic Object getValueAt(int row, int column);

Метод getValueAt () можно реализовать несколькими способами. Так, если
требуется отобразить набор строк типа RowSet из таблицы, содержащий резуль­
тат запроса к базе данных, то подойдет следующий вариант реализации данного

метода:

puЫic Object getValueAt(int r, int с)

{

try
{

rowSet.absolute(r + 1);
return rowSet.getObject(c + 1);

catch ISQLException е)

{

e.printStackTrace();
return null;

Следующий пример программы еще проще. В ней составляется таблица из

рассчитанных значений, а именно: роста инвестиций при разных учетных ставках

(рис. 11.4).

11.1. Таблицы

Рис. 11.lt. Пример та\Jли11ы с 1\а1111ыми о росте
1111веспщиi1 нри ра:шых учетных ставках

В данном примере метод getVa l ueAt () выполняет расчет соответствующего
значения и форматирует его, как показано ниже.

puЫic Object getValueAt (int r, i nt с)
{

douЫe rate = (с + minRate) / 100 .0;
int nper1ods = r;
douЫe futureBa l a nce =

INITIAL_BALANCE * Math.pow(l + rate, nperiods);
r etu rn St ring.fo rma t (" i .2f", fu t ureBa l a nc e J ;

Методы getRowCount () и ge t Col umnCount () просто во:шращают количество
строк 11 столбцов соответственно:

pt1Ыic int getRowCount () { return years;)
puЫic int getColumnCount()
{ re t urn maxRate - minRate + 1; }

Если :ыrоловки столбцов не заданы яшю, то для них в методе ge tColumnName ()
из класса AbstractTaЬleMode l по умолчанию ис11ол1,зуются имена А, В, С и т.д.

Для и:ше11е11ия этих имен следует переопределит~, метод ge tColumnName () . В
данном примере 11 качестве заголовка столбца испо11юуется учетная ставка, как
пока:1а110 ниже. Весь исходный код программы И3 данного примера представ11ен

в л11сп111ге 11.2.

puЬl ic Str ing getColumnName(int с)

{ returп (с + minRat e) + " ";)

Листинг 11.2. Исходный код из файла taЬleМodel/InvestmentTaЫe. java

1 package taЫeModel;
2
З i mport java.awt.* ;
4
5 import javax. s wing . * ;

Глава 11 • Расширенные средства Swing и графика

6 import javax.swing.taЬle.*;
7
8 /**
9 * В этой программе демонстрируется построение

10 * таблицы по ее модели
11 * @versioп 1.04 2018-05-01
12 * @author Сау Horstmann
13 */
14 puЫic class InvestmentTaЫe
15 {
16
17
18
19

puЬlic static void main(String[] args)
{

EventQueue.invokeLater(() ->
{

20
21
22

var frame = new InvestmentTaЬleFrame();
frame.setTitle("InvestmentTaЬle");

frame.setDefaultCloseOperation(
23
24
25
26
27
28
29 /**

JFrame.EXIT_ON CLOSE);
frame.setVisiЬle(true);

}) ;

30
31

* Этот фрейм содержит таблицу капиталовложений
*/

32 class InvestmentTaЬleFrame extends JFrame
33
34
35
36
37
38
39
40
41
42

puЫic InvestmentTaЬleFrame()

{

var model = new InvestmentTaЬleModel(30,
var tаЫе = new JTaЬle(model);
add(new JScrollPane(taЬle));
pack ();

43 /**

5, 10);

44 * В этой модели таблицы рассчитывается содержимое
45 * ячеек таблицы всякий раз, когда оно запрашивается.

46 * В таблице представлен рост капиталовложений в

47 * течение ряда лет при разных учетных ставках
48 */
49 class InvestmentTaЬleModel extends AЬstractTaЬleModel
50
51 private static douЫe INITIAL BALANCE = 100000.0;
52
53 private int years;
54 private int minRate;
55 private int maxRate;
56
57 /**
58 * Конструирует модель таблицы капиталовложений
59 * @param у Количество лет
60 * @param rl Наинизшая учетная ставка для
61 * составления таблицы

62
63
64
65
66
67
68
69
70
71

* @param r2 Наивысшая учетная ставка для
* составления таблицы

*/
puЫic InvestmentTaЬleModel(int у, int rl, int r2)
(

years = у;
minRate rl;
maxRate = r2;

72 puЫic int getRowCount()
7 3 (
74 return years;
75
76
77 puЬlic int getColumnCount()
78 (
79 return maxRate - minRate + 1;
80
81
82 puЫic Object getValueAt(int r, int с)

83 (
84 douЫe rate = (с+ minRate) / 100.0;
85 int nperiods = r;
86 douЬle futureBalance = INITIAL BALANCE

11.1. Таблицы

87 * Math.pow(l + rate, nperiods);
88 return String.format("%.2f", futureBalance);
89
90
91 puЫic String getColumnName(int с)

92 (
93 return (с + minRate) + "%";
94
95

javax.swing.taЬle.TaЬleМodel 1.2

• int getRowCount ()

• int getColumnCount()

Получают количество строк и столбцов в модели таблицы.

• Object getValueAt(int row, int coluпm)

Получает значение из указанных строки и столбца таблицы.

• void setValueAt(OЬject newValue, int row, int column)

Устанавливает новое значение в указанных строке и столбце таблицы.

• boolean isCellEdi tаЫе (int row, in t column)

Возвращает логическое значение true, если ячейка в указанных строке и столбце таблицы
доступна для редактирования.

• String getColumnName (int соlшпn)

Получает заголовок столбца таблицы.

Глава 11 • Расширенные средства Swing и графика

11.1.Э. Манипулирование строками и столбцами таблицы

В этом разделе рассматриваются способы манипулирования строками

и столбцами таблицы. Таблица, составленная средствами Swing, имеет несимме­
тричную структуру, допускающую выполнение разных операций над строками

и столбцами. Дело в том, что компонент JТаЫе, реали3ующий таблицу в би­

блиотеке Swing, предна3начен для отображения строк одинаковой структуры,
например, данных из таблиц базы данных, а не объектов в виде прои3волыюй

двухмерной сетки. Такая асимметрия демонстрируется в данном рацеле на кон­

кретных примерах.

11.1.З.1. Классы столбцов таблицы

В следующем примере снова рассматривается таблица с данными о плане­

тах, но теперь особое внимание уделяется типам данных в столбцах. В частно­

сти, приведенный ниже метод И3 модели таблицы возвращает класс с описанием

типа столбца. Эти сведения используются в классе JТаЫе для выбора средства

воспроизведения, подходящего для конкретного класса столбца.

Class<?> getColumnClass(int columnlndex)

В табл. 11.1 перечислены действия, выполняемые по умолчанию, для воспро­
изведения столбцов по их типам (и соответствующим классам). Так, в столбцах

таблицы на рис. 11.5 показаны флажки и изображения. Автор выражает искрен­
нюю благодарность Джиму Эвинсу (Jim Evins) за любезно представленные изо­
бражения планет. Чтобы воспроизвести в таблице столбцы других типов, следует

установить специальное средство воспроизведения, как поясняется далее, в раз­

деле 11.1.4.

Таблица 11.1. Действия, выполняемые по умолчанию, для воспроизведения
столбцов таблицы по их типам

Тип

Boolean
Icon
Object

Как воспроизводится

Флажок

Изображение

Символьная строка

11.1.З.2. Доступ к столбцам таблицы

Компонент JТаЫе сохраняет сведения обо всех столбцах таблицы в объектах

типа TaЬleColumn, а объект типа TaЫeColumnModel манипулирует столбцами.

(На рис. 11.6 схематически показаны отношения между наиболее важными клас­
сами таблиц.) Если столбцы таблицы не предполагается перемещать или встав­

лять динамически, то обращаться к модели столбцов таблицы (и соответствую­

щему классу) придется нечасто. Чаще всего обращаться к этой модели требуется

для получения объекта типа TaЬleColumn, как показано ниже.

int columnlndex = ... ;
TaЫeColumn column = taЫe.getColumnModel()

.getColumn(columnindex);

11.1. Таблицы

~tclfl:tlon Edit

i!'I Rows

О Columns

Г Ctlls
--.,

f190!'i... G~seЩJS _ __ _ _ C9lo.!:__ ----~
о О Java.awt.Cofor[r=255,g=2SS,b=OJ j

Mars

Jup1ter

5aturn

l
1

1
6,3781

1

' 3.397'

71,492

L- +--
1

60,268

11 ava aw1Color(r•O,a•O,b • 255J

1

)ava ам Cotor[r=255,g=O,b•OJ

t
1

1

16\ "' 'Ja•-a а"1 Color(r=255,Q=200,t.•OJ

18 (!:'.) ava aW1 Color[r=255,Q•200,b=O[

Рис. 11.5. Пример таблицы с данными о 11ла11етах, в сголбцах которой

вос11роизволятся флажки и изоr1раже11ия планет

JТаЫе

TaЫeColumn

DefaultТaЫe

Model

AbstractTaЫe

Model

TaЫeModel

Рис. 11.6. Опюше1111я межлу табличными классами

Глава 11 • Расширенные средства Swing и графика

11.1.Э.Э. Изменение размеров столбцов таблицы

Класс TaЫeColumn позволяет изменять размеры столбцов. В частности,

для указания предпочтительной, минимальной и максимальной ширины столб­

ца испол1,зуются следующие методы:

void setPreferredWidth(int width)
void setMinWidth(int width)
void setMaxWidth(int width)

Полученная в итоге информация используется компонентом составле­

ния таблиц для размещения столбцов. Чтобы разрешить или запретить

пользователю изменять размеры столбцов, достаточно вызвать метод void
setResizaЫe (boolean resizaЬle), а для того чтобы изменить размеры столб­

ца программным путем - метод void setWidth (int width).
Если изменяются размеры одного столбца, то по умолчанию общие размеры

таблицы остаются прежними. Это, конечно, приводит к увеличению или умень­

шению размеров остальных столбцов. По умолчанию подобные изменения рас­

пространяются на все столбцы, расположенные справа от того столбца, разме­

ры которого изменяются. Благодаря этому требующиеся размеры всех столбцов

можно указывать слева направо.

В табл. 11.2 перечислены режимы изменения размеров таблицы при
изменении размеров столбца. Их можно указать, вызвав метод vo i d
setAutoResizeMode (int mode) из класса JТаЫе.

Таблица 11.2. Режимы изменения размеров таблицы

Режим

AUTO RESIZE OFF

AUTO RESIZE NEXT COLUМN

AUTO_RESIZE_SUBSEQUENT_COLUМNS

AUTO RESIZE LAST COLUМN

AUTO RESIZE ALL COLUМNS

Поведение

Размеры остал1,ных столбцов остаются

прежними, а размеры таблицы изменяются

Изменяются только размеры следующего

столбца

Равномерно изменяются размеры всех

11оследующих столбцов (выбирается

по умолчанию)

Изменяются размеры только последнего

столбца

Размеры всех столбцов таблицы изменяются

равномерно (это не самый лучший вариант,

так как он нс дает пользователю возможность

подгоняп, многие столбцы под требующиеся

ы

11.1.Э.4. Изменение размеров строк таблицы

Изменение высоты строк таблицы производится непосредственно в классе

JТаЫе. Если высота ячеек выше заданной по умолчанию, то ее придется указать

явно, как показано ниже.

taЫe.setRowHeight(height);

11.1. Таблицы

По умолчанию все строки таблицы имеют одинаковую высоту, но данную

установку можно изменить с помощью метода setRowHeight () следующим об­
разом:

taЫe.setRowHeight(row, height);

Конкретная высота строки задается упомянутыми выше методами за вычетом

величины междустрочного интервала. По умолчанию величина этого интервала

равна 1, но любое другое его :шачение можно указать следующим образом:

taЫe.setRowMargin(margin);

11.1.З.5. Выбор строк. столбцов и ячеек таблицы

В зависимости от заданного режима пользователь может выбирать строки,

столбцы и отдельные ячейки таблицы. По умолчанию допускается выбор стро­

ки, т.е. после щелчка кнопкой мыши на одной из ячеек будет выбрана вся строка

(см. рис. 11.5). Для отмены режима выбора строк достаточно вызвать следующий
метод:

taЫe.setRowSelectionAllowed(false)

В режиме выбора строк поль:ювателю можно разрешить выбор только одной

строки, нескольких смежных или несмежных строк таблицы. Для этого необхо­

димо получить модель выбора и вызвать ее метод setSelectionMode () следую­
щим образом:

tаЫе. getSelectionModel () . setSelectionMode (mode);

В качестве параметра mode можно указать следующие значения:

ListSelectionModel.SINGLE SELECTION
ListSelectionModel.SINGLE INTERVAL SELECTION
ListSelectionModel.MULTIPLE INTERVAL SELECTION

- -

По умолчанию режим выбора столбцов отключен. Его можно включить, вы­

звав следующий метод:

taЫe.setColumnSelectionAllowed(true)

Одновременное включение режимов выбора строк и столбцов равнозначно

включению режима выбора ячеек (рис. 11.7). Эти режимы можно указать явно,
вызвав следующий метод:

taЫe.setCellSelectionEnaЫed(true)

Чтобы посмотреть, каким образом выбор ячеек осуществляется на практике,

запустите на выполнение пример программы, исходный код которой представ­

лен в листинге 11.3. Активизируйте режим выбора строки, столбца или ячейки
из меню Selection (Выбор) и понаблюдайте за тем, как и:1Меняется поведение та­
блицы в данном режиме.

С помощью методов getSelectedRows () и getSelectedColumns () можно вы­
яснить, какие именно строки и столбцы были выбраны. Оба метода возвращают

массив int [] индексов выбранных элементов. Следует, однако, иметь в виду, что
значения индексов берутся из представления таблицы, а не из ба:ювой модели

таблицы. Попытайтесь выбрать строки и столбцы, а затем перетащите столбцы

Глава 11 • Расширенные средства Swing и графика

н ра:111ые места и отсортируйте строки, щелкая 11<1 :1аrоловках столбцон. Выбрав из

меню пункт Print Selection (Выбор для печати), посмотрите, какие строки и столбцы

отображаются как выбра1111ые. Есл11 же требуется преобра:ювал, :11rачения индек­

сон таблицы 11 :шачешrя индексон модели таiiлицы, то воспол1,:1уйтесь методами

conve rtRowindexToModel () и conver tCo l \1mпlпdexT0Model () 1п класса JТаЫе .

Stltction Edit

. Moons _G_aseous

Mars 3,397

Jupn~r 16 ,.. Java.awt Color[r•255,o•200,b=OI

5aturn 60,26Si 18 ~ ja\-a awt Color{r-2S5,g=200, b=OJ

r- --------

Uranus 25.559 17 ...] Java awt Color[r=O,g=0,b=255J

Рис. 11.7. Выбор ряла ячеек 11 таiiл1ще

11 . 1 . Э.6. Сортировка строк таблицы

Как было показано в рассмотренном выше первом примере таблицы, компо-

11е1п JTa b l e можно без особого труда допол 11ить функцией сортиронки строк

таблицы, вы:шав метод setAut oCrea t e RowSo r_-t er () .Но для того чтобы полу­

чил, бол1,ше во:1можностеii управлял, сортировкой строк таблицы, в компо-

11енте ,JТаЫ е следует установил, и настро11л, объект типа TaЬleRowSo rt. e r<M> .

ПарJметр типа М обозначает тип модели; 1111,1 должен был, подтип интерфейса
ТаЫ еМоdе 1 , кJ к показано 11нже.

va r s or t er = new TaЬleRowScrter <TaЫeModel > l model) ;

taЫe . setRowSorter (sorte rl;

Некоторые столбцы должны быть исключены 11:1 сортировки (например, стол­

бец с и :юбраже11иями в таблице с данными о планетах). Чтобы исключит~, от­

делыrые столбцы таблицы из сортировки, достJточ110 вызвал, следующий метод:

soйe r . s e t Sort aЬle(IМAGE_COLUMN , f a l se);

11.1. Таблицы

Для каждого столбца можно также установить специальное средство сравнения.

В рассматриваемом здесь примере предполагается отсортировать цвета в столбце

Color, отдавая предпочтение синему и зеленому цвету над красным. Если щел­
кнуть на столбце Color, планеты синего цвета окажутся внизу таблицы. Такой ре­
зультат сортировки по цвету достигается с помощью следующего метода:

sorter.setComparator(COLOR_COLUMN, new Comparator<Color>()
{

})

puЬlic int compare(Color cl, Color с2)

{

int d = cl.getBlue() - c2.get8lue();
if (d 1 = 0) return d;
d = cl.getGreen() - c2.getGreen();
if (d 1 = 0) return d;
return cl.getRed() - c2.getRed();

Если не указать компаратор для столбцов, сортировка будет произведена

в следующем порядке.

1. Если класс столбца относится к типу String, то по умолчанию использует­
ся средство сортировки, возвращаемое из метода Collator. getinstance ().
Это средство сортирует символьные строки в соответствии с текущими ре­

гиональными настройками. (Подробнее о региональных настройках и сред­

ствах сортировки см. в главе 7.)

2. Если класс столбца реализует интерфейс ComparaЬle, то используется ме­
тод compareTo (1.

3. Если для сортировки установлен преобразователь типа TaЬleString
Converter, то сортировку символьных строк, возвращаемых методом
toString () этого преобразователя, необходимо выполнять с помощью

средства сортировки, выбираемого по умолчанию. Чтобы воспользоваться

именно таким способом сортировки, необходимо определить преобразова­

тель символьных строк следующим образом:

sorter.setStringConverter(new TaЬleStringConverter()
{

puЬlic String toString(TaЬleModel model,
int row, int column)

}

}) ;

Object value = model.getValueAt(row, column);
преобразовать объект value в символьную строку
и возвратить ее

4. В противном случае вызывается метод toString () со значениями в ячей­

ках, которые упорядочиваются выбираемым по умолчанию средством со­

ртировки.

Глава 11 • Расширенные средства Swing и графика

11.1.З. 7. Фильтрация строк таблицы
Помимо сортировки строк таблицы, класс TaЬleRowSorter позволяет изби­

рателыю скрывать их. Этот процесс называется фильтрацией. Чтобы активизи­

ровать режим фильтрации, следует установил, соответствующий фильтр типа

RowFi 1 ter. Например, для того чтобы отобрать все строки таблицы, содержа­

щие хотя бы один спутник планеты, достаточно вызвать метод

sorter.setRowFilter(RowFilter.numЬerFilter(

ComparisonType.NOT_EQUAL, О, MOONS_COLUMNI);

Здесь используется предопределенный филнр чисел. Чтобы создать такой

фильтр, понадобятся следующие средства.

• Порядок сравнения (одна из констант EQUAL, NOT EQUAL, AFTER или
BEFORE).

• Объект подкласса, производного от класса NumЬer (например, Integer или

DouЫe). Допускаются только те объекты, которые имеют тот же класс, что

и у данного объекта типа NumЬer.

• От нуля и больше значений индекса столбца. Если эти значения не заданы,

поиск будет производиться по всем столбцам.

Аналогичным образом в статическом методе RowFi 1 ter. da teFi 1 ter ()

создается фильтр дат. Отличие состоит лишь в том, что вместо объекта типа

Number задается объект типа Date. Наконец, в статическом методе RowFil ter.

regexFi 1 ter () создается фильтр, осуществляющий поиск символьных строк,

совпадающих с регулярным выражением. Например, в следующей строке кода

отбираются только те планеты, название которых не оканчивается на "s". (Под­
робнее о регулярных выражениях см. в главе 2.)

sorter.setRowFilter(RowFilter.regexFilter(
" . * [л s] $", PLANET _ COLUMN)) ;

Кроме того, фильтры можно применять в различных сочетаниях с помощью

методов andFilter (), orFilter () и notfilter ().Так, если требуется отобрать

планеты, названия которых не оканчиваются на "s" и которые имеют как мини­
мум один спутник, для этого можно применить фильтры в следующем сочета­

нии:

sorter.setRowFilter(RowFilter.andFilter(List.of (
RowFi l ter. regexFil ter (". * [л s] $", PLANET_ COLUMN) ,
RowFilter.numЬerFilter(ComparisonType.NOT_EQUAL,

О, MOONS_COLUMN) 1));

Чтобы реализовать собственный фильтр, необходимо предоставип, объект

подкласса, производного от класса RowFil ter, и реализовать метод incl ude ()

с целью указать те строки таблицы, которые требуется отобрать и отобразить.

Сделать это нетрудно, хотя и не так просто в силу обобщенного характера класса

RowFil ter.
У класса Rowfil ter<M, I> имеются два параметра типа, обозначающие типы

модели и идентификатора строк таблицы. При манипулировании таблица­

ми модель всегда относится к подтипу TaЬleModel, а идентификатор - к типу

11.1. Таблицы

Integer. (Когда-нибудь остальные компоненты Swing будут также поддерживать
фильтрацию строк, как и в таблицах. Например, для отбора строк в компоне~пе

JTree может потребоваться класс RowFilter<TreeModel, TreePath>.)
Фильтр строк таблицы должен реализовывать следующий метод:

puЫic boolean include(RowFilter.Entry<? extends М,

? extends I> entry)

В классе RowFil ter. Entry предоставляются методы для получения модели,
идентификатора строк таблицы и значения по заданному индексу. Таким обра­

зом, фильтрацию можно производить как по идентификатору строк таблицы,

так и по их содержимому. Например, с помощью следующего фильтра отобра­

жается каждая вторая строка таблицы:

var filter = new RowFilter<TaЫeModel, Integer>()

puЬlic boolean include(Entry<? extends TaЬleModel,
? extends Integer> entry)

)

) ;

return entry.getidentifier() % 2 ==О;

Если же требуется отобрать только те планеты, которые содержат четное ко­

личество спутников, то вместо приведенного выше фильтра можно попытаться

применить следующий фильтр:

((Integer) entry.getValue(MOONS_COLUMN)) % 2 == О

В рассматриваемом здесь примере программы пользователю разрешается

скрывать произвольные строки таблицы. Индексы скрытых строк сохраняются

в наборе строк. А в фильтр строк включаются все строки таблицы, индекс кото­

рых отсутствует в данном наборе.

Такой механизм фильтрации не предназначен для применения фильтров,

критерии которых изменяются с течением времени. В рассматриваемом здесь

примере программы вызов приведенного ниже метода повторяется всякий раз,

когда изменяется набор скрытых строк таблицы. Как только фильтр установлен,

он сразу же применяется.

sorter.setRowFilter(filter);

11.1.З.8. Сокрытие и показ столбцов таблицы

Как было показано в предыдущем подразделе, строки таблицы можно от­

фильтровывать по их содержимому или идентификатору. Для сокрытия столб­

цов понадобится совершенно другой механизм.

Метод rernoveColurnn () из класса JТаЫе позволяет удалить столбец, опре­

деляемый параметром TaЬleColurnn, из представления таблицы, т.е. скрыть его

от пользователя, оставив в составе модели таблицы. Ниже показано, каким обра­

зом конкретный объект, описывающий столбец таблицы, извлекается из моде­

ли таблицы по известному номеру, получаемому, например, с помощью метода

getSelectedColurnns().

Глава 11 • Расширенные средства Swing и графика

TaЫeColumnModel colшnпModel ~ tаЫе. getColumпModel () ;
TaЬleColumn column = columnModel.getColumn(i);
taЫe.removeColumn(column);

Если :ыпомнить ::>тот объект, то впоследствии его можно ввести обратно в мо­

дель таблицы следующим образом:

taЫe.addColumn(column);

Этот метод добавляет столбец в конец таблицы. Если же столбец требуется

расположить в каком-нибудь другом месте, то для его перемещения на это место

следует вызвать метод moveColumn ().
Кроме того, создав объект типа ТаЬ 1еСо1 umn, можно сформировать новый

столбец, который соответствует индексу столбца в модели таблицы, как показано

ниже. Таким обра:юм, в таблице можно создать несколько столбцов, которые бу­

дут представлять один и тот же столбец в модели.

taЫe.addColumn(new TaЬleColumn(modelColumnindex));

В рассматриваемом здесь примере программы демонстрируется выбор

и фильтрация строк и столбцов таблицы. Исходный код этой программы пред­

ставлен в листинге 11.3.

Листинг 11.З. Исходный код из файла taЬleRowColumn/PlanetTaЫeFrame. java

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

package taЫeRowColumn;

import java.awt.*;
import java.util.*;

import javax.swing.*;
import javax.swing.taЫe.*;

/**
* Этот фрейм содержит таблицы с данными о планетах
*/
puЫic class PlanetTaЬleFrame extends JFrame
{

private static final int DEFAULT WIDTH = 600;
private static final int DEFAULT HEIGHT = 500;

puЬlic static final int COLOR_COLUMN 4;
puЬlic static final int IMAGE COLUMN 5;

private JТаЫе tаЫе;
private HashSet<Integer> removedRowindices;
private ArrayList<TaЫeColumn> removedColumns;
private JCheckBoxMenuitem rowsitem;
private JCheckBoxMenuitem columnsltem;
private JCheckBoxMenuitem cellsltem;

27 private String[] columnNames = { "Planet", "Radius",
28 "Moons", "Gaseous", "Color", "Image");
29
30 private Object [) () cells = {

11.1. Таблицы

31 "Mercury", 2440.0, О, false, Color.YELLOW,
32 new Imageicon(getClass()
33 .getResource("Mercury.gif"))),
34 "Venus", 6052. О, О, false, Color. YELLOW,
35 new Imageicon(getClass()
36 . getResource ("Venus. gif"))) ,
37 "Earth", 6378.0, 1, false, Color.BLUE,
38 new Imageicon(getClass()
39 .getResource("Earth.gif"))),
40 "Mars", 3397.0, 2, false, Color.RED,
41 new Imageicon(getClass()
42 .getResource("Mars.gif"))),
43 "Jupiter", 71492.0, 16, true, Color.ORANGE,
44 new Imageicon(getClass()
45 .getResource("Jupiter.gif"))),
46 "Saturп", 60268. О, 18, true, Color .ORANGE,
47 пеw Imageicon(getClass()
48 .getResource("Saturп.gif"))),
50 "Uranus", 25559.0, 17, true, Color.BLUE,
51 пеw Imageicon(getClass()
52 .getResource("Uraпus.gif"))),
53 "Neptune", 24766.0, 8, true, Color.BLUE,
54 пеw Imageicon(getClass()
55 .getResource("Neptune.gif"))),
56 "Pluto", 1137.0, 1, false, Color.BLACK,
57 пеw Imageicon(getClass()
58 .getResource("Pluto.gif"))));
59
60 puЫic PlanetTaЬleFrame()

61 {
62 setSize(DEFAULT_WIDTH, DEFAULT HEIGHT);
63
64 var model =
65 пеw DefaultTaЬleModel(cells, columnNames)
66
67 puЬlic Class<?> getColurnnClass(iпt с)

68 {
69 return cells[O][c].getClass();
70)
71) ;
72
73 tаЫе = new JTaЬle(model);
74
75 taЫe.setRowHeight(lOO);

76 taЫe.getColumпModel() .getColurnп(COLOR COLUMN)
77 .setMinWidth(250);
78 taЫe.getColumnModel() .getColumn(IМAGE_COLUMN)

7 9 . setMinWidth (100) ;
80
81 var sorter = new TaЬleRowSorter<>(model);
82 taЫe.setRowSorter(sorter);

83 sorter.setComparator(COLOR_COLUMN,
84 Comparator.comparing\Color: :getBlue)
85 .theпComparing(Color::getGreen)

86 .thenComparing(Color::getRed));
87 sorter.setSortaЫe(IMAGE COLUMN, false);

Глава 11 • Расширенные средства Swing и графика

88 add(new JScrollPane(taЬle), BorderLayout.CENTER);
89
90 removedRowindices = new HashSet<>();
91 removedColumns = new ArrayList<>();
92
93 var filter = new RowFilter<TaЬleModel, Integer>()
94
95 puЫic boolean include(Entry<? extends TaЬleModel,
96 ? extends Integer> entry)
97
98 return !removedRowindices
99 .contains(entry.getidentifier());
100
101) ;
102
103 // создать меню
104
105 var menuBar = new JМenuBar();
106 setJМenuBar(menuBar);

107
108 var selectionMenu = new JМenu("Selection");
109 menuBar.add(selectionMenu);
110
111 rowsitem = new JCheckBoxMenuitem("Rows");
112 columnsitem = new JCheckBoxMenuitem("Columns");
113 cellsitem = new JCheckBoxMenuitem("Cells");
114
115 rowsitem.setSelected(
116 taЫe.getRowSelectionAllowed());

117 columnsitem.setSelected(
118 taЫe.getColumnSelectionAllowed());

119 cellsitem.setSelected(
120 taЫe.getCellSelectionEnaЫed());
121
122 rowsitem.addActionListener(event ->
123 {
124 taЫe.clearSelection();

125 taЫe.setRowSelectionAllowed(

126 rowsitem.isSelected());
127 updateCheckboxMenuitems();
128)) ;
129
130 columnsitem.addActionListener(event ->
131 {
132 taЫe.clearSelection();

133 taЫe.setColumnSelectionAllowed(

134 columnsitem.isSelected());
135 updateCheckboxMenuitems();
136)) ;
137 selectionMenu.add(columnsitem);
138
139 cellsitem.addActionListener(event ->
140 {
141 taЫe.clearSelection();

142 taЫe.setCellSelectionEnaЫed(

143 cellsitem.isSelected());

11.1. Таблицы

144 updateCheckЬoxMenuitems();

14 5 }) ;
146 selectionMenu.add(cellsitem);
147
148 var taЬleMenu = new JМenu("Edit");
149 menuBar.add(taЬleMenu);

150
151 var hideColumnsitem = new JМenuitem ("Hide Columns");
152 hideColumnsitem.add.ActionListener(event ->
153 {
154 int[] selected = taЫe.getSelectedColumns();
155 TaЬleColumnModel columnModel =

156 taЫe.getColumnModel();

157
158 //удалить столбцы из представления таблицы,

159 //начиная с последнего индекса, но не

160 // затрагивая номера столбцов
161
162
163
164
165
166
167

for (int i = selected.length - 1; i >=О; i--)
{

TaЬleColumn column =
columnModel.getColumn(selected[i]);

taЫe.removeColumn(column);

168 //сохранить удаленные столбцы для отображения

169
170 removedColumns.add(column);
171 }
172 }) ;
173 taЬleMenu.add(hideColumnsitem);

174
175 var showColumnsitem = new JМenuitem("Show Columns");
176 showColumnsitem.add.ActionListener(event ->
177 {
178 // восстановить все удаленные столбцы
179 for (TaЬleColumn tc : removedColumns)
180 taЫe.addColumn(tc);

181 removedColumns.clear();
182 }) ;
183 taЬleMenu.add(showColumnsitem);

184
185 var hideRowsitem = new JМenuitem("Hide Rows");
186 hideRowsitem.add.ActionListener(event ->
187 {
188 int[] selected = taЫe.getSelectedRows();
189 for (int i : selected)
190 removedRowindices.add(
191 taЬle.convertRowindexToModel(i));

192 sorter.setRowFilter(filter);
193 }) ;
194 taЬleMenu.add(hideRowsitem);

195
196 var showRowsitem = new JМenuitem("Show Rows");
197 showRowsitem.add.ActionListener(event ->
198 {
199 removedRowindices.clear();

Г11ава 11 • Расширенные средства Swing и графика

200 sorter.setRowFilter(filter);
201 }) ;
202 taЬleMenu.add(showRowsitem);

203
204 var printSelectionitem =
205 new JМenuitem("Print Selection");
206 printSelectionitem.addActionListener(event ->
207 {
208 int[] selected = taЫe.getSelectedRows();
209 System.out.println("Selected rows:
210 " + Arrays.toString(selected) 1;
211 selected = taЬle.getSelectedColumns();
212 System.out.println("Selected columns:
213 " + Arrays.toString(selected));
214 }) ;
215 taЬleMenu.add(printSelectionitem);

216
217
218 private void updateCheckЬoxMenuitems()
219 {
220 rowsitem.setSelected(
221 taЫe.getRowSelectionAllowed() 1;
222 columnsitem.setSelected(
223 taЫe.getColumnSelectionAllowed());
224 cellsitem.setSelected(
225 taЫe.getCellSelectionEnaЫed());

226
227

javax.swing.taЬle.TaЬleМodel 1.2

Class getColumnClass (int columnindex)

Возвращает класс для определения типа значений в указанном столбце. Эти сведения ис­

пользуются для сортировки и воспроизведения значений в указанном столбце.

javax.swing.JТaЫe 1.2

• TaЬleColumnМodel getColumnМodel()

Получает модель столбца, описывающую расположение столбцов в таблице.

void setAutoResizeМode (int mode)

Устанавливает режим автоматического изменения размеров столбцов таблицы.

Параметры: mode Одно из значений следующих констант:

AUТO_RESIZE_OFF,

АUТО RESIZE NЕХТ _ COLUМN,

АUТО _ RESIZE _ SUВSEQUENТ _ COLUМNS,

AUТO _RESIZE _ LAST _ COLUМN,

АUТО RESIZE ALL COLUМNS

11.1. Таблицы

javax. swing. JТаЫе 1. 2 (окончание}

• int getRowМargin ()

• void setRowМargin(int margin)

Получают или устанавливают ширину интервала между ячейками смежных строк таблицы.

• int getRowHeight ()

• void setRowHeight (int height)

Получают или устанавливают высоту всех строк таблицы по умолчанию.

• int getRowHeight (int row)

• void setRowHeight (int row, int height)

Получают или устанавливают высоту указанной строки таблицы.

ListSelectionМodel getSelectionМodel()

Возвращает модель выбора списка. Эта модель требуется для того, чтобы сделать выбор
между строкой, столбцом и ячейкой.

• boolean getRowSelectionAllowed ()

void setRowSelectionAllowed(boolean Ы

Получают или устанавливают свойство rowSelectionAllowed. Если оно принимает ло­
гическое значение true, то строки выбираются из таблицы, если щелкнуть на ее ячейках.

• boolean getColumnSelectionAllowed()

• void setColumnSelectionAllowed(boolean Ь)

Получают или устанавливают свойство columnSelectionAllowed. Если оно принима­
ет логическое значение true, то столбцы выбираются из таблицы, если щелкнуть кнопкой
мыши на ее ячейках.

• boolean getCellSelectionEnaЫed()

Возвращает логическое значение true, если оба свойства, rowSelectionAllowed
и columnSelectionAllowed, принимают логическое значение true.

• void setCellSelectionEnaЬled(boolean Ь)

Присваивает обоим свойствам, rowSelectionAllowed и colwnnSelectionAllowed,
значение параметра ь.

• void addColumn (TaЬleColumn column)

Добавляет столбец, становящийся последним в представлении таблицы.

• void moveColumn (int :from, int to)

Перемещает столбец, находящийся в таблице по индексу :froщ на новое место по индексу

to. Эта операция затрагивает только представление таблицы.

• void removeColumn (TaЬleColumn column)

Удаляет указанный столбец из представления таблицы.

• int convertRowlndexToModel (int index) 6

• int convertColumnindexToModel(int index)

Возвращают индекс строки или столбца в модели по указанному индексу. Значение возвраща­
емого индекса отличается от значения параметра index, если производится сортировка или
фильтрация строк таблицы или же если столбцы перемещаются или удаляются из таблицы.

void setRowSorter(RowSorter<? extends TaЬleМodel> sorter)

Устанавливает средство сортировки строк таблицы.

Глава 11 • Расширенные средства Swing и графика

javax. swing. tаЫе. TaЬleColшnnМodel 1. 2

• TaЬleColumn getColumn (int index)

Возвращает объект, описывающий столбец по указанному индексу в представлении таблицы.

javax.swing.taЫe.TaЬleColumn 1.2

• TaЬleColumn (int mode.lCo.lшпnindex)

Создает столбец таблицы для представления столбца в модели таблицы по указанному ин­

дексу.

• void setPreferredWidth (int width)

• void setмi.nWidth (int width)

• void setмaxWidth(int width)

Задают предпочтительную, минимальную или максимальную ширину столбца равной значе­

нию параметра width.

• void setWidth (int width)

Задает конкретную ширину столбца равной значению параметра width.

• void setResizaЫe(Ьoolean Ь)

Если параметр Ь принимает логическое значение true, то допускается изменять размеры
столбца.

javax.swing.ListSelectionМodel 1.2

• void setSelectionМode(int mode)

Задает режим выбора.

Параметры: mode Одно из значений следующих

констант: SINGLE _ SELECTION,

SINGLE INТERVAL SELECTION или

МOLTIPLE INТERVAL SELECTION

javax.swing.DefaultRowSorter<М, I> 6

• void setComparator (int co.lumn, Comparator<?> comparator)

Устанавливает средство для сравнения со значением в указанном столбце.

• void setSortaЫe (int co.lumn, boolean enaЬ.led)

Разрешает или запрещает сортировку для указанного столбца.

• void setRowFil ter (RowFil ter<? super М,? super I> fi.l ter)

Устанавливает фильтр строк таблицы.

11.1. Таблицы

javax.swing.taЫe.TaЬleRowSorter<М extends ТаЫеМоdеl> 6

void setStringConverter(TaЬleStringConverter stringConverter)

Устанавливает преобразователь для сортировки и фильтрации строк таблицы.

javax.swing.taЫe.TaЫeStringConverter<М extends ТаЫеМоdеl> 6

aЬstract String toString(TaЬleМodel model, int row, int column)

Преобразует в символьную строку значение из указанного места в модели таблицы. Этот ме­
тод можно переопределить.

javax.swing.RowFilter<М, I> 6

• boolean include (RowFil ter. Entry<? extends М,? extends I> entry)

Определяет строки таблицы, которые остались после фильтрации. Этот метод можно перео­

пределить.

• static <М,I> RowFilter<М,I> numЬerFilter(RowFilter.ComparisonТype
tурв, NuшЬer numЬer, in t . .. indices)

• static <М,I> RowFilter<М,I> dateFilter(RowFilter.ComparisonТype
type, Date date, int ... indices)

Возвращают фильтр, включающий строки. которые содержат значения, совпадающие со
сравниваемым числом или датой. В качестве вида сравнения можно указать значение одной

из следующих констант: EQUAL, NOT EQUAL, AFTER или BEFORE. Если заданы любые ин­
дексы столбцов в модели, то поиск буДет производиться только в этих столбцах, а иначе - во
всех столбцах. Для фильтрации чисел класс, определяющий тип значений в ячейках таблицы,

должен совпадать с классом параметра nшnЬer.

• static <М,I> RowFilter<М,I> regexFilter(String regex, int ...
indicвs)

Возвращает фильтр, включающий строки, которые содержат значения, совпадающие со срав­

ниваемым регулярным выражением. Если заданы любые индексы столбцов в модели, то по­

иск будет производиться только в этих столбцах, а иначе - во всех столбцах. Следует, однако,

иметь в виду, что метод getStringValue () из класса RowFil ter. Entry возвращает со­
впавшую символьную строку.

• static <М,I> RowFilter<М,I> andFilter(IteraЬle<? extends
RowFilter<? super М,? super I>> :filters)

• static <М,I> RowFilter<М,I> orFilter(IteraЬle<? extends RowFilter<?
super М,? super I>> :fil ters)

Возвращают фильтр, включающий записи, входящие во все фильтры или хотя бы в один из

фильтров.

static <М, I> RowFilter<М, I> notFilter (RowFilter<М, I> :filter)

Возвращает фильтр, включающий записи, не входящие в указанный фильтр.

Глава 11 • Расширенные средства Swing и графика

javax.swing.RowFilter.Entry<М, I> 6

• I getidentifier ()

Возвращает идентификатор данной записи в строке таблицы.

• М getмodel ()

Возвращает модель данной записи в строке таблицы.

• Object getValue(int index)

Возвращает значение, хранящееся по указанному индексу в данной строке таблицы.

int getValueCount ()

Возвращает количество значений, хранящихся в данной строке таблицы.

String getStringValue(int index)

Возвращает значение, хранящееся по указанному индексу в данной строке таблицы и преоб­

разованное в символьную строку. Средство сортировки строк типа TaЬleRowSorter создает

записи, для которых в данном методе вызывается преобразователь отсортированных резуль­

татов в символьные строки.

11.1.4. Воспроизведение и редактирование ячеек
Как было показано в подразделе 11.1.3.2, тип столбца определяет способ вос­

произведения ячеек таблицы. По умолчанию для типов Boolean и Icon пре­
доставляются средства воспроизведения флажков или изображений. Для всех

остальных типов приходится самостоятельно устанавливап, специальное сред­

ство воспроизведения.

11.1.4.1. Воспроизведение ячеек таблицы
Средства воспроизведения ячеек в таблице подобны упоминавшимся ра­

нее средствам воспроизведения ячеек в списке. Они реализуют интерфейс

TaЬleCellRenderer с приведенным ниже единственным методом.

Component getTaЫeCellRendererComponent(
JТаЫе tаЫе, Object value, boolean isSelected,
boolean hasFocus, int row, int column)

Этот метод вызывается всякий раз, когда требуется снова воспроизвести та­

блицу. Он возвращает компонент, метод paint () которого служит для отобра­
жения содержимого ячейки.

В таблице, представленной на рис. 11.8, содержатся ячейки типа Color. Сред­
ство воспроизведения во:шращает панель с цветом фона в виде объекта цвета,

хранящегося в данной ячейке. Требующийся цвет передается в качестве параме­

тра value методу, устанавливающему цвет фона:

class ColorTaЬleCellRenderer extends JPanel
implements TaЬleCellRenderer

puЫic Component getTaЬleCellRendererComponent(
JТаЫе tаЫе, Object value, boolean isSelected,
boolean hasFocus, int row, int column)

setBackground ((Color) value) ;
if (hasFocusJ

setBorder(UIManager.getBorder (
"TaЬle.focusCellHighlightBorder ")) ;

else
setBorder(m1ll);

return t his ;

Plan~t Radius

-·----

Цars 3,397

- - -

Juprte1· 71, 492

5aturn t 60,268

--·-

- ·---1-- --·---- . ·--- -
----- __ 1 ---·--·---

2 о

16 [!-:]

18

11.1. Таблицы

lmage

:-~

Рис. 11.8. Таблица со срелствами воснроизвеления ячеек

Нетрудно заметить, что при получении ячейкой фокуса ввода средство вос­

произведения устанавливает рамку. (Для установки нужной рамки запрашивает­

ся объект типа U!Manager. А для выбора подходящего ключа поиска приходится
обращатьоr к исходному коду класса Defaul tTaЬleCellRendere r.)

СОВЕТ. Если конкретное средство воспроизведения должно просто выводить тексто­

вую строку или пиктограмму, его можно построить в виде подкласса, расширяющего класс

DefaultTaЬleCellRenderer. В таком случае средства , реализованные в суперклассе,

возьмут на себя ответственность за воспроизведение ячей ки в состоянии выбора или обла­

дания фокусом ввода.

Таблице необходимо каким-то образом указать, что для воспрои:шедения всех

объектов типа Co l o r следует использовать данное средство. Для этого предусмо­
трен метод setDefaul tRenderer () из класса JТаЫе. Ему передаются объект
типа Class и требующееся средство воспроизведения следующим образом:

taЫe . setDefaul tRenderer(Color . class ,

new ColorTaЬleCellRenderer ());

Глава 11 • Расширенные средства Swing и графика

В итоге ука:\а~11юе средство будет исполь:юваться для воспроизведения всех

объектов данного типа. Если средство воспроизведения требуется выбрать

по какому-нибудь другому критерию, придется создать подкласс, производный

от класса JТаЫе, а также переопределить метод getCellRenderer ().

11.1.4.2. Воспроизведение заголовков
Чтобы воспроизвести пиктограмму или иное изображение в заголовке столб­

ца таблицы, необходимо установить соответствующее значение для этого заго­

ловка следующим образом:

moonColumn.setHeaderValue(new Imageicon("Moons.gif"));

Но ведь заголовок столбца таблицы не настолько логически развит, чтобы са­

мостоятельно выбирать подходящее средство воспроизведения по указанному

значению. Поэтому данное средство придется установить вручную. Например,

для того чтобы показать пиктограмму в заголовке столбца, необходимо вызвать

следующий метод:

moonColumn.setHeaderRenderer(taЫe.getDefaultRenderer(

Imageicon.class));

11.1.4.З. Редактирование ячеек таблицы

Чтобы разрешить редактирование ячеек таблицы, следует получить из мо­
дели таблицы сведения о том, какие именно ячейки можно редактировать. Для

этой цели служит метод isCellEditaЫe ().Чаще всего редактируемыми объяв­

ляются не отдельные ячейки, а целые столбцы. Например, в приведенном ниже

фрагменте кода разрешается редактирование данных в четырех столбцах.

puЫic boolean isCellEditaЬle(int r, int с)

{

return с == PLANET_COLUMN 11 с == MOONS_COLUMN
1 1 с GASEOlJS COLUMN 1 1 с == COLOR COLUMN;

НА ЗАМЕТКУ! В классе AЬstractTaЬleМodel имеется метод isCellEditaЫe (), воз­
вращающий логическое значение false, а в классе DefaultTaЬleМodel этот метод пере­
определен и по умолчанию возвращает логическое значение true.

В примере программы, исходный код которой представлен в листингах 11.4-11.7,
можно устанавливать и сбрасывать флажки непосредственно в ячейках столбца

Gaseous таблицы с данными о планетах. В этой программе можно также выбирать
требующееся количество спутников планет из комбинированных списков в ячейках

столбца Moons, как показано на рис. 11.9. Ниже поясняется, как организовать редак­
тор ячеек таблицы на основании комбинированного списка. Наконец, если щел­

кнуть на любой ячейке в первом столбце Planet. рассматриваемой здесь таблицы,
эта ячейка получит фокус ввода, а следовательно, в нее можно ввести или отредак­

тировать название планеты.

11.1. Таблицы

Planet Radil1s

1----·--+----

Mercury

о

1

Venus 6,052 2 о
з

4

~
5
6
7

Eat1h 6,378 о

-· - - - --

Рис. 11.9. Редактирование ячеек таблицы

В данном примере программы демонстрируется применение трех вариан­

тов класса Defaul tCellEdi t o r для редактирования ячеек типа JTex tField,
JCheckBox и JComboBox. Класс JТаЫе автоматически устанавливает редактор

флажков для ячеек типа Boolean, а также редактор текстовых полей для всех
редактируемых ячеек, у которых отсутствует собственное средство 1юспроизведе­

ния. В текстовых полях имеется возможност1, редактировать сим1юл1,ные строки,

которые получаются в результате вьвова метода t oStr ing () со значением, воз­
вращаемым методом getValueAt () из модели таблицы.

По завершении редактирования в результате 11ызо11а метода

ge tCellEdi torValue () отредактироианное значение извлекается из соответству­
ющего редактора. Этот метод должен возвратип, значение пра11ил1,ного типа (т.е.

того типа, который возвращается методом getCo lumnType () из модели).
Редактор ячеек таблицы на основании комбинированного списка придется

создать вручную, потому что компоненту JТаЫе неизвестно, какие именно з11а­

чения могут подойти для отдельного вида ячейки . Так, в столбце Moons требует­
ся органи:ювать выбор любого :тачения в пределах от О до 20. Ниже приведен
соответствующий код для инициализации этими значениями комбинированного

списка.

var moonComЬo = ne w J ComboBox ();
f or (int i = О ; i <= 20 ; i ++)

moonCombo . add i tem (i);

Чтобы создан объект класса Defaul tCellEd i t or для такого типа данных, не­
обходимо передать комбиниро11а1шый список конструктору этого класса следую­

щим образом:

var moonEdi tor = new DefaultCe llEdi tor(moonCombo) ;

Глава 11 • Расширенные средства Swing и графика

Затем следует установить редактор, который, в отличие от средства воспро1н­

веде11ия цвета 11 столбце Color·, не должен :1ависеть от типа объекта. Его совсем
не 06я:1ателыю исполь:ювать для 1кех объектов типа In teger, а достаточно уста-

1ю1нпь только в отделыюм столбце следующим обра:юм:

moonCol шnn. set Се l lEdi tor 1 moor.Ed i t o 1 1 ;

11.1.4.4. Специальные редакторы
Запустите еще pa:i на выпол11е1111е рассматриваемую :1деСJ, программу и щел­

кните кнопкой мыши на ячейке столбца Color. На экране появится диалоговое
окно селектора ц&та планеты. Выберите нужный цвет и щелкните на кнопке ОК.

В итоге цвет ячейки и:~менится на выбранный (рис. 11.1 О).

, j TaЬleCellRenderTest _ о х

Planet Radius Gaseous Color 1ma11~ ____ __, ____ __.

1.tercury 2, 440 О,

1 __ J
1

Vent1s 6,052 -- 1 У7 -
.~_!tdlts !:!.~В _t__!~~ -1-. ----------- ·- -·

Eanh Rtctnt:

1 .
Proitw

[] .
[] Sample T~xt Sample Text

~ f c~~tl - [_ii,~t ~

Рис.11.10. Выбор нвета ячейки таuл1111ы

Редактор цвета ячеек таблицы я11,1яется 11е стандарт11ым, а специалы1ым, т.е.

определяется и реали3уется ра:~работчиком прикладной программы. Для со3-

да11ия специалыюго редактора 51чеек таблицы следует реализовал, интерфейс

Ta t)J.eCel lEdit.o.r. Впрочем, nоль:юнап,01 этим интерфейсом 11е оче111, удоб-

1ю, поэтому с версии Java 1.3 для обработки событий предоста11м1ется класс
Abst. ra c t Cl a ss Edi t or.

11.1. Таблицы

Метод getTaЬleCellEdi torComponent () из интерфейса TaЬleCellEdi tor
запрашивает компонент разрешения на воспрои:шедение ячейки таблицы. Он

действует таким же образом, как и метод getTaЬleCellRendererComponent ()
из интерфейса TaЬleCellRenderer, за исключением того, что у него отсутствует

параметр focus. Дело в том, что при редактировании ячейки таблицы предпола­
гается, что эта ячейка обязательно имеет фокус ввода. На время редактирования

компонент редактора временно за.меняет средство воспроизведения. В данном

случае возвращается пустая панель, для которой цвет не устанавливается. Это

явно указывает пользователю на то, что в данный момент ячейка редактируется.

Далее требуется отобразить соответствующий редактор, как только поль­

зователь щелкнет на ячейке таблицы. Компонент JТаЫе вызывает редактор

в ответ на соответствующее событие (например, щелчок кнопкой мыши). Для

приема всех событий, которые могут инициировать редактирование, в классе

AbstractCellEdi tor предусмотрен приведенный ниже метод. Но если перео­
пределить этот метод таким образом, чтобы он возвращал логическое :шачение

false, то компонент редактора не будет установлен в таблице.

puЫic boolean isCellEditaЬle(EventObject anEvent)
{

return true;

После установки компонента редактора вызывается метод shouldSelect
Cell () - предположительно, с тем же самым событием. В этом методе иници­

али3ируется процесс редактирования, например, отображается окно внешнего

редактора:

puЫic boolean shouldSelectCell(EventObject anEvent)
{

colorDialog.setVisiЬle(true);

return true;

Если поль:юватель откажется от редактирования ячейки таблицы, вызывается

метод cancelCellEdi ting (), а если он щелкнет на другой ячейке таблицы -
метод s topCel lEdi t ing (). В обоих случаях следует закрыть диалоговое окно
соответствующего редактора. При вызове метода stopCellEdi ting () в таблице

может появиться частично отредактированное значение. Если такое значение яв­

ляется допустимым, следует возвратить логическое :шачение true. Любое значе­
ние, выбранное в окне селектора цвета, будет допустимым, но при редактирова­

нии других данных следует убедиться в их достоверности.

Кроме того, из суперкласса следует вызвать методы, отвечающие за иници­

ирование соответствующих событий. В противном случае редактирование не

удастся отменить должным образом. В приведенном ниже фрагменте кода пока­

зано, каким образом отменяется редактирование.

puЫic void cancelCellEditing()
{

colorDialog.setVisiЬle(false);

super.cancelCellEditing();

Глава 11 • Расширенные средства Swing и графика

Наконец, необходимо определить метод, возвращающий значение, получаю­

щееся в результате редактирования:

puЬlic Object getCellEditorValue()
{

return colorChooser.getColor();

Таким образом, к специальному редактору ячеек таблицы предъявляются сле­

дующие требования.

1. Он должен расширять класс AbstractCellEditor и реализовывать интер­
фейс TaЬleCellEditor.

2. В нем должен быть определен метод getTaЬleCellEdi torComponent (),
предназначенный для предоставления компонента редактора. Это может

быть фиктивный компонент, если редактор предполагается отображать

в отдельном диалоговом окне, или же компонент для редактирования не­

посредственно в ячейке, как, например, комбинированный список или тек­

стовое поле.

3. В нем должны быть определены методы shouldSelectCell (),
stopCellEditing () и cancelCellEditing () для управления запу­

ском, завершением и отменой процесса редактирования. Для уведомле­

ния обработчиков событий из суперкласса должны быть вызваны методы

stopCellEdi ting () и cancelCellEdi ting ().

4. В нем должен быть определен метод getCellEdi torValue (),возвращаю­
щий значение, получаемое в результате редактирования.

Наконец, когда пользователь завершит редактирование, следует вызвать метод

stopCellEdi ting () или cancelCellEdi ting ().Так, при создании диалогового
окна селектора цвета устанавливаются приведенные ниже методы обратного вы­

зова, уведомляющие о подтверждении или отмене результатов редактирования

и инициирующие соответствующие события.

colorDialog = JColorChooser.createDialogl
null, "Planet Color", false, colorChooser,
EventHandler.create(ActionListener.class,

this, "stopCellEditing"),
EventHandler.create(ActionListener.class,

this, "cancelCellEditing"));

На этом реализация специального редактора завершается. Теперь вы знаете,

как сделать ячейку таблицы редактируемой и установить ее редактор. Остается

открытым лишь один вопрос: как обновить модель с учетом отредактированного

значения? По завершении редактирования компонент JТаЫе вызывает следую­

щий метод из модели таблицы:

void setValueAt(Object value, int r, int с)

Для сохранения нового значения этот метод придется переопределить. Пара­

метр value теперь будет обозначать объект, возвращаемый редактором ячейки
таблицы. В определении редактора ячейки таблицы задается тип объекта, ко­

торый возвращается методом getCel lEdi torVaJ.ue (). Так, при использовании

11.1. Таблицы

класса Defaul tCellEdi tor возможны три варианта указания типа для этого
значения. В частности, для редактора ячейки в виде флажка это тип boolean,
для текстового поля - тип String, а для комбинированного списка - тип объ­

екта, выбираемого пользователем.

Если объект value имеет другой тип, его необходимо привести к нужному
типу. Чаще всего это происходит при редактировании чисел в текстовом поле.

В данном примере комбинированный список содержит объекты типа Integer,
поэтому никакого приведения типов не требуется.

Листинг 11.4. Исходный код из файла taЬleCellRender /TaЬleCellRenderFrame. java

1 package taЫeCellRender;
2
3 import java.awt.*;
4 import javax.swing.*;
5 import javax.swing.taЫe.*;
6
7 /**
8 * Этот фрейм содержит таблицу с данными о планетах
9 */
10 puЫic class TaЬleCellRenderFrame extends JFrame
11 {
12 private static final int DEFAULT_WIDTH = 600;
13 private static final int DEFAULT HEIGHT = 400;
14
15 puЬlic TaЫeCellRenderFrame()

16 {
17 setSize(DEFAULT_WIDTH, DEFAULT HEIGHT);
18
19 var model = new PlanetTaЬleModel();
20 var tаЫе = new JTaЬle(model);
21 taЫe.setRowSelectionAllowed(false);

22
23 //установить средства воспроизведения и

24 //редактирования ячеек таблицы

25 taЫe.setDefaultRenderer(Color.class,

26 new ColorTaЬleCellRenderer());
27 taЫe.setDefaultEditor(Color.class,

28 new ColorTaЬleCellEditor());
29 var moonComЬo = new JComЬoBox<>();
30 for (int i = О; i <= 20; i++)
31 moonComЬo.additem(i);

32
33 TaЫeColumnModel columnModel
34 taЫe.getColumnModel();

35 TaЬleColurnn moonColurnn = colurnnModel.getColumn(
36 PlanetTaЬleModel.MOONS COLUMN);
37 moonColumn.setCellEditor(
38 new DefaultCellEditor(moonComЬo));
39 moonColumn.setHeaderRenderer(
40 taЫe.getDefaultRenderer(Imageicon.class));

41 moonColumn.setHeaderValue(new Imageicon(getClass()
42 .getResource("Moons.gif")));

Глава 11 • Расширенные средства Swing и графика

43
44 // показать таблицу
45 tаЫе. setRowHeight. 1100 i;
46 add(new JScrollPane(taЫeJ,
47 BorderLayout.CENTERi;
48
49

Листинг 11.5. Исходный код из файла taЫeCellRender/PlanetTaЬleModel. java

1 package taЬleCellRender;
2
3 import java.awt.*;
4 import javax.swing.*;
5 import javax.swing.taЫe.*;
6
7 /**
8 * Модель таблицы планет, определяющая значения,

9 * свойства воспроизведения и редактирования
10 * данных о планетах

11 */
12 puЫic class PlaпetTaЬleModel extends AbstractTaЬleModel
13 {
14
15
16
17
18

puЫic

puЫic

puЫic

puЫic

static
static
static
static

fiпal iпt

fiпal int
final iпt

final int.

PLANET COLUMN
-

MOONS COLUMN =
GASEOUS COLUMN
COLOR COLUMN

19 private Object[] [] cells = {

= О;

2;
= 3;
4;

20 { "Mercury", 2440.О, О, false, Color.YELLOW,
21 new Imageicon(getClass()
22 .getResource("Mercury.gif")I),
23 "Venus", 6052. О, О, false, Color. YELLOW,
24 new Imageicon(getClass()
25 .getResource("Venus.gif"ll),
26 "Earth", 6378.О, 1, false, Color.BLVE,
27 new Imageicon(getClass()
28 .getResource("Earth.gif"))),
29 "Mars", 3397.О, 2, false, Color.RED,
30 new Imageicon(getClass()
31 .getResource("Mars.gif"))),
32 "Jupiter", 71492.0, 16, true, Color.ORANGE,
33 new Imageicon(getClass()
34 .getResource("Jupiter.gif"))),
35 "Saturn", 60268.0, 18, true, Color.ORANGE,
36 new Imageicon(getClass()
37 .getResource("Saturn.gif"))),
38 "Uranus", 25559.0, 17, true, Color.BLVE,
39 new Imageicon(getClass()
40 .getResource("Vranus.gif"I)),
41 "Neptune", 24766.0, 8, true, Color.BLVE,
42 new Imageicon(getClass()
43 .getResource("Neptune.gif"))),
44 "Pluto", 1137.0, 1, false, Color.BLACK,
45 new Imageicon(getClass()

46 .getResource("Pluto.gif"))));
47
48 private String[] columnNames = { "Planet", "Radius",
49
50

"Moons 11 , "Gaseous", "Color", "Irnage" };

51 puЫic String getColumnName(int с)

52 {
53 return columnNames[c];
54
55
56 puЫic Class<?> getColumnClass(int с)

57 {
58 return cells [О] [с] . getClass ();
59
60
61 puЫic int getColumnCount()
62 {
63 return cells[O] .length;
64
65
66 puЫic int getRowCount()
67 {
68 return cells.length;
69
70
71 puЫic Object getValueAt(int r, int с)

72 {
73 return cells[r] [с];
74
75
76 puЫic void setValueAt(Object obj, int r, int с)

77 {
78 cells [r] [с] = obj;
79
ВО puЫic boolean isCellEditaЬle(int r, int с)

81 {
82 return с == PLANET_COLUMN 11 с == MOONS_COLUMN
83 11 с GASEOUS COLUMN 11 с == COLOR COLUМN;
84
85

Листинг 11.6. Исходный код из файла taЬleCellRender/
ColorTaЬleCellRenderer.java

1 package taЬleCellRender;
2
3 import java.awt. *;
4 import javax.swing. *;
5 import javax.swing.taЫe. *;
6
7 /**
8 * Это средство воспроизведения отображает цвет
9 * в виде панели с заданным цветом

10 */

11.1. Таблицы

Глава 11 • Расширенные средства Swing и графика

11 puЫic class ColorTaЬleCellRenderer
12 extends JPanel implements TaЬleCellRenderer
13
14 puЫic Component getTaЬleCellRendererComponent(
15 JТаЫе tаЫе, Object value, boolean isSelected,
16 boolean hasFocus, int row, int column)
17
18 setBackground ((Color) value 1 ;
19 if (hasFocus)
20 setBorder(UIManager.getBorder(
21 "TaЫe.focusCellHighlightBorder"));
22 else setBorder(null);
23 return this;
24
25

Листинг 11.7. Исходный код из файла taЫeCellRender/ColorTaЫeCellEdi tor. java

1 package taЫeCellRender;
2
3 import java.awt.*;
4 import java.awt.event.*;
5 import java.beans.*;
6 import java.util.*;
7 import javax.swing.*;
8 import javax.swing.taЫe.*;
9
10 /**
11 * Этот редактор открывает диалоговое окно селектора
12 * цвета для редактирования значения цвета в выбранной

13 * ячейке таблицы
14 */
15 puЫic class ColorTaЬleCellEditor
16 extends AЬstractCellEditor
17 implements TaЬleCellEditor
18
19 private JColorChooser colorChooser;
20 private JDialog colorDialog;
21 private JPanel panel;
22 puЬlic ColorTaЬleCellEditor()

23 (
24 panel = new JPanel();
25 // подготовить диалоговое окно выбора цвета
26
27 colorChooser = new JColorChooser();
28 colorDialog = JColorChooser.createDialog(
29 null, "Planet Color", false, colorChooser,
30 EventHandler.create(ActionListener.class,
31 this, "stopCellEditing"),
32 EventHandler.create(ActionListener.class,
33 this, "cancelCellEditing"));
34
35
36 puЫic Component getTaЬleCellEditorComponent(
37 JТаЫе tаЫе, Object value, boolean isSelected,

38 int row, int column)
39
40 11 Именно здесь получается текущее значение цвета,
41 // сохраняемое в диалоговом окне на тот случай,

42 //если пользователь начнет редактирование

43 colorChooser.setColor((Color) value);
44 return panel;
45
46
47 puЫic boolean shouldSelectCell(EventObject anEvent)
48 {
49 //начать редактирование

50 colorDialog.setVisiЬle(true);

51
52 //уведомить вызывающую часть программы о том,

53 //что данную ячейку разрешается выбрать

54 return true;
55
56
57 puЫic void cancelCellEditing()
58 {
59 // редактирование отменено - скрыть диалоговое окно

60 colorDialog.setVisiЬle(false);

61 super.cancelCellEditing();
62
63
64 puЫic boolean stopCellEditing()
65 {

11.1. Таблицы

66 // редактирование завершено - скрыть диалоговое окно

67 colorDialog.setVisiЬle(false);

68 super.stopCellEditing();
69
70 //уведомить вызывающую часть программы о том, что

71 //данное значение цвета разрешается использовать

72 return true;
73
74 puЫic Object getCellEditorValue()
75 {
76 return colorChooser.getColor();
77
78

javax.swing.JTaЬle 1.2

• TaЫeCellRenderer getDefaultRenderer(Class<?> type)

Получает средство воспроизведения, выбираемое по умолчанию для указанного типа ячейки
таблицы.

• TaЬleCellEditor getDefaultEditor(Class<?> type)

Получает редактор, выбираемый по умолчанию для указанного типа ячейки таблицы.

Глава 11 • Расширенные средства Swing и графика

javax.swing.taЫe.TaЬleCellRenderer 1.2

• Component getTaЫeCellRendererComponent(JТaЬle tаЫв, Object value,
Ьoolean sвlected, Ьoolean hasFocus, int row, int соlшпn)

Возвращает компонент, метод paint () которого вызывается для воспроизведения ячейки
таблицы.

Параметры: tаЫв Таблица, содержащая воспроизводимые ячейки

value

selected

hasFocus

row, соlшпn

Воспроизводимая ячейка

Принимает логическое значение

true, если текущая ячейка выбрана

Принимает логическое значение true,
если текущая ячейка обладает фокусом ввода

Номер строки и столбца с воспроизводимой ячейкой

javax.swing.taЬle.TaЬleColumn 1.2

void setCellEditor(TaЬleCellEditor editor)

void setCellRenderer(TaЬleCellRenderer renderer)

Устанавливают редактор и средство воспроизведения для всех ячеек в указанном столбце.

void setHeaderRenderer(TaЬleCellRenderer renderer)

Устанавливает средство воспроизведения для ячейки с заголовком в указанном столбце.

void setHeaderValue(OЬject value)

Устанавливает значение, которое должно быть отображено в виде заголовка в данном столбце.

javax.swing.DefaultCellEditor 1.2

• DefaultCellEditor(JComЬoBox соmЬоВох)

Создает редактор, предоставляющий комбинированный список для выбора значений ячеек
таблицы.

javax.swing.taЫe.TaЬleCell.Editor 1.2

Component getTaЬleCellEditorComponent(JТaЬle taЬle, Object value,
Ьoolean selected, int row, int соlшпn)

Возвращает компонент, метод paint () которого вызывается для воспроизведения ячейки

таблицы.

Параметры: taЬle Таблица, содержащая воспроизводимые ячейки

value

selected

row, col шпn

Воспроизводимая ячейка

Принимает логическое значение

true, если текущая ячейка выбрана

Номер строки и столбца с воспроизводимой ячейкой

11.2. Деревь11

javax.swing.CellEditox 1.2

• boolean isCellEdi taЬle (EventObject event)
Возвращает логическое значение true, если событие пригодно для запуска процесса редак­
тирования данной ячейки.

• boolean shouldSelectCell(EventObject anEvent)

Запускает процесс редактирования. Как правило, возвращаете>~ логическое значение true,
если редактируемая ячейка должна быть выбрана. Если же требуется, чтобы содержимое вы­

бранной ячейки не изменилось в результате редактирования, следует возвратить логическое

значение false.

• void cancelCellEdi ting ()

Отменяет процесс редактирования. Его результаты можно проигнорировать.

• boolean stopCellEditing ()

Останавливает процесс редактирования с намерением использовать его результаты.

Возвращает логическое значение true, если значение, получаемое в результате редактиро­
вания, оказывается допустимым.

• Object getCellEditorValue()

Возвращает результаты редактирования.

void addCellEditorListener(CellEditorListener 1)

• void removeCellEditorListener(CellEditorListener 1)

Вводят или удаляют обязательный приемник событий, наступающих при редактировании
ячеек таблицы.

11.2. Деревья
Каждому пользователю компьютера, оперирующего иерархической файло­

вой системой, знакомы древовидные представления файлов и каталогов. Это,

конечно, лишь один из многих примеров применения древовидной структуры.

В повседневной жизни такую же структуру обра:1ует система административ­

но-территориального деления страны на штаты, области и города (рис. 11.11).
Программирующим на Java нередко приходится писать код для отображения

подобных структур. И для этого в библиотеке Swing предусмотрен класс JTree.
Вместе со вспомогательными классами он берет на себя все хлопоты по компо­

новке древовидной структуры и обработке запросов поль:ювателей на ра:шерты­

вание и свертывание узлов дерева. В этом разделе пока:1ывается, как поль:юваться

средствами, доступными в классе JTree, для построения древовидных структур.
Подобно другим сложным компонентам Swing, :1десь рассматриваются только

самые общие и наиболее распространенные приемы оперирования деревьями.

Для углубленного изучения данного вопроса рекомендуется упоминавшаяся ра­

нее дополнительная литература: книга Graphic /тттм; Masteril1/~ the JFC, Vо/ите 11:
Szuing, Зrd Edition Дэвида М. Гери или же книга Core Szui1t/~ Кима Топли.

Приступая к рассмотрению деревьев, необходимо сначала пояснить харак­

терную для них терминологию (рис. 11.12). Прежде всего, дерево состоит из
у3.лов. Каждый узел может быть .листом (т.е. крает11м у.1.лом) или иметь дочерние

у.ны. У каждого узла, кроме корневого, имеется только один рОi)ите.льский у3е.л.

Глава 11 • Расширенные средсrва Swing и графика

А у всего дерева в целом имеется тол1,ко один корневоu у3е.л. Ряд дереш,ев с соб­

стве1111ыми корневыми узлами на :1ывается .лесом.

Рис. 11.11. Древовидная система а11ми11ис1ратив110-территор11алыюl'О

деления страны на штаты, обласп1 11 rорола

Дерево

Лес

)/~ }Д~ор,~у~ы
Родительский Узел

узел

Рис. 11.12. Терминология, употре6ляемая ллн 01111сшшя 11ре1ююц11ых струк1ур

11.2.1. Простые деревья
В рассматриваемом здесь первым неслож1юм примере программы будет по­

строено дерено лишь с несколькими у:иами, как показано далее 11а рис. 11.14.

11.2. Деревья

Подобно многим другим компонентам библиотеки Swing, программирующий
на Java создает модель иерархических данных, а компонент JTree автоматически
отображает их. Для создания объекта типа JTree его конструктору передается
модель дерева следующим образом:

TreeModel model = .•• ;

var tree = new JTree(model);

НА ЗАМЕТКУ! Некоторые конструкторы создают деревья из коллекции составляющих элемен­

тов, как показано ниже.

JTree(Object[] nodes)
JTree(Vector<?> nodes)
JTree(HashtaЬle<?, ?> nodes) //значения становятся узлами

Такие конструкторы практически бесполезны, потому что они создают только лес деревьев,

каждое из которых содержит единственный узел. Третий конструктор из приведенных выше

и вовсе не приносит никакой пользы, поскольку узлы передаются ему в произвольном поряд­

ке, который определяется хеш-кодами ключей.

Как же получить модель дерева? С помощью класса, реализующего интер­

фейс TreeMode1, можно создать собственную модель. Такой способ будет рас­
смотрен далее в этой главе, а до тех пор воспользуемся моделью дерева типа

Oefau1 tTreeModel, предоставляемой в библиотеке Swing по умолчанию. Для
построения используемой по умолчанию модели дерева необходимо предоста­

вить конструктору корневой узел следующим образом:

TreeNode root =
var model = new DefaultTreeModel(root);

где TreeNode - еще один интерфейс. Используемую по умолчанию модель

можно заполнить экземплярами любого класса, реализующего данный интер­

фейс. В данном случае применяется конкретный класс узлов дерева, называемый

Defaul tMutaЬleTreeNode и входящий в состав библиотеки Swing. Как показано
на рис. 11.13, этот класс реализует интерфейс MutaЬleTreeNode, производный
от интерфейса TreeNode.

Изменяемый по умолчанию узел дерева (т.е. экземпляр класса Defaul tMutaЫe
т re е Node) содержит поль.ювате.льский объект. Эти объекты воспроизводятся
для всех узлов. Если не задано специальное средство воспроизведения, то в дере­

ве отображается символьная строка, получаемая в результате выполнения метода

toString ().
В рассматриваемом здесь первом примере построения деревьев в качестве

пользовательских объектов применяются символьные строки, хотя на практике

древовидные структуры обычно заполняются более сложными объектами. Так,

для отображения дерева каталогов в качестве его узлов имеет смысл использо­

вать объекты типа File. Пользовательский объект можно указать сразу в кон­
структоре или в дальнейшем с помощью метода setUserObject ():

var node = new DefaultMutaЫeTreeNode("Texas");

node. setUserObject ("California");

Глава 11 • Расширенные средства Swing и графика

JТree

DefaultТree
Model

DefaultMutaЫe

TreeNode

=...о. ,

1
1

MutaЬ/e

TreeNode

TreeNode

Рис. 11.1 З. Иерархия 11аследова11ия шперфейсов 11 классов,

используемых 11ри 110с1рое1111и леревьен

Затем между у:иами следует установить от11ошения "родительский-дочер­

ний". Для этого 11еобходимо ввести дочерние у:1лы с помощью метода add (), 1~а­
чи11ая с корневого у:иа, как пока:1а110 в приведешюм ниже фрагменте кода. Полу­

чаемое в итоге простое дерево приведено на рис. 11.14.

var root = new DefaultMutaЫeTreeNode("Wor l d " J ;

var country = new DefaultMutaЬleTreeNodel"USA"J;
root.add(country) ;
var state = new DefaultMutaЫeTreeNode(" Ca lifornia ");

country.add(state) ;

Подобным обра:юм следует связать все узлы, а затем постронп. модель дерева

типа Deaful tTreeNode с корневым узлом, а на основе этой модели - само дере­

во с помощью компонента JTr ee:

va r treeMode l = new De f aultTreeMode l(rootJ ;
var tree = new J Tree (t reeModel l;

Можно поступит~, еще проще, передав кор11евой узе11 ко11структору классi1

JTree, который автоматически создаст модел1. дерева по умолчанию, как пока­

зано ниже. Вес1, исходный код рассматриваемою здес1, примера программы, де­

монстрирующей построение простого дерева, приведен в листинге 11.8.

va r t ree = new JTree(root);

World
? Cj IJSA

? С] Californ1a

D Sал Jose

D Cupert1no

9 Cj М 1chigan

D Ann АгЬоr
9 LJ Germany

'\" LJ Schleswig-Holstein

Рис. 11. 14. Простое дерево

11.2. Деревья

Листинг 11.8. Исходный код из файла tree/ SimpleTreeFrame. java

1 package t. ree;
2
3 import j ava x. s wing.*;
4 itnpo r t j ava x. s wing. tree .* ;
5
6 / *'
7 * Этот фрейм содержит простое дерево, отображающее

8 * построенную вручную модель дерева

9 * /
10 puЬlic c lass Simple Tr e e Fr ame ext e nds JFrame
11 {
12
13
14

p r ivate static f i nal i nt DE FAULT WIDTH = 300 ;
privat e s tat i c final i nt DE FAULT HE I GHT = 200 ;

15 puЫic SimpleTreeFrame ()
1 6 {
17 setSize (DEFAULT_WIDTH, DE FAULT HEIGHT) ;
18
19 // подготовить данные для модели дерева
20
21 va r· r·oot = new DefaultMut. aЫeTreeNode ("Worl d ");
22 var country = new DefaultMutaЫeTreeNode(" USA");

23 root.add (country);
2 4 var state = new DefaultMutaЫeTreeNode("Ca li fo rnia") ;

25 c ountry. add (s tate);
26 var city = new DefaultMut aЬleTreeNodel " San Jose ") ;
27 s tate . addl c ity) ;
28 c ity = ne w De faul tMutaЬleT reeNode (" Cupertino ");

29 s t a t e . a dd (c ity);
30 s t at e = new De f aul tMutaЫeT reeNode ("M i chigan "1;

31 country. a dd (state);
32 city = new DefaultMutaЬleTreeNode("Ann Arbor");
33 s t a te . add (c i ty);
34 cotint. r y = new Defat1 ltMt1t aЫeTreeNode ("Ge rma ny ");
35 root .add(count ry);
36 s t. a t.e = пеw De faul tMutaЬleT r eeNode ("Sch l eswig- Ho l s t ei n") ;

Глава 11 • Расширенные средства Swing и графика

37 count ry.add (state) ;
38 city = new DefaultMutaЫeTreeNode("Kie l") ;

39 state.add (ci tyl;
40
41 // nостроить дерево и разместить его на прокручиваемой панели :

42 JTree tree = new JTree (r oot) ;
43 add(new JScrollPane (tree)) ;
44
45

Дерево, отображаемое при выполнении данной программы , показано

на рис. 11.15. В рабочем окне программы будуг видны только корневой узел
и его дочерние узлы. Для развертывания поддеревьев следует щелкнуг1, мышью

на пиктограмме кружка (,'>1аркере узла). Линия, соединяющаяся с кружком, на­

правлена вправо, если поддерево свернуто, или вниз, если оно ра:sвернуто

(рис. 11.16). Неизnеспю, что имели в виду ра:~раfютчики визуалыюго стиля Metal,
но, по-видимому, кружок, соединяемый с линией, обозначает дверную ручку, ко­

торую следует понернугь вни:s по часовой стрелке, чтобы "открыть" поддерево.

о-- L1 Germanv

Рис. 11.15. Исходное состояние отображаемого лерева

Развернутое 0 World

поддерево - t c:J us.д
~ [:J Callfor11la
t c:J /.llchlgar1

Свернутое D .Ann иьоr
поддерево - .,.. c:J Gerniany

Рис. 11.16. Свер11у1ые и ра:1вер11уrые померевья

НА ЗАМЕТКУ! Разумеется, внешний вид дерева зависит от выбранного визуального стиля .

Приведенное выше описание относится к визуальному стилю Metal. В визуальных стилях
Windows и Motif для обозначения свернутого и развернутого дерева употребляются знаки +
и - [рис . 11 .17).

U SimpleTree

World
-J IJSA

1=1 Californiз

• San Jose

'
• Cupertino

(-::} l\>1ichigзn

• Ann Arbor
Gerniany

11.2. Деревья

Рис. 11.17. Дерево, отображаемое в 1ноуальном стиле Windows

Чтобы скрыть /IИIIИИ, связывающие родительские и дочерние узлы, как пока­

зано на рис. 11.18, необходимо ука:1ап, :тачение None свойства JTree . 1 i neStyle
С/lедующим образом:

tree .putClientProperty ("JTree. l i neStyle", "None " 1;

[j California

D San Jose

D Cupertino

9 [j Michigan

D .Ал11 Arbor

· 9 [j Germany
о- [j Sct1leswig-Holstein

Рис. 11.18. Дерево бе:~ соели11ителы1ых линий между у:иами

,4'1я отображения этих линий с/lедует ука :~ап, значение Ang led данного свой­
ства, как показа1ю ниже.

tree.putClieпtProperty("JTree.li neStyle", "Ang led" I ;

На рис. 11.19 показан еще один стиль представления структуры дерева с по­
мощью гори:юнтальных линий. Такое дерево отображается с гори:ю1палы1ыми

линиями, ра:1деляющими только дочерние узлы корневого у:иа. Но трудно себе

представить ситуацию, когда мог/lа бы пригодиться такая древовидная структура.

По умолчанию у корневого у:иа отсутствует маркер для снорчива11ю1 всего де­

рева. Если требуется этот маркер, то следует вы:шать приведешrый ниже метод.

На рис. 11.20 представлен результат вы:юва данного метода. Тепер1, все дерево
можно сворачивать и разворачиват1, полtюсп.ю.

t ree . setShowsRoot Haпdle s (t rue) ;

Глава 11 • Расширенные средства Swing и графика

World
9 L:J USA

9 Cj California

D San Jose

D Cupe11ino

о- u \,\ichigan
9 u Germany

9 Lj Schleswig-Holstein

D юе1 J
Рис. 11.19. Дерево с ра:1Деляющими 1ори:юнтальными линиями

Маркер

корневого

узла

9 L1 World
t L]USA

~ L1 Cal1forn1a
D San Jose
CJ Cupenino

о- с:! J.l 1Chigan
о- L] Germany

Рис. 11.20. Дерево с маркером кор11ево10 у:1Ла

Кроме того, корневой узел можно скрыть. Это может пригодиться, например,

для отображения леса, т .е. ряда деревьев с собсп1е1111ыми корневыми узлами. Все

дере11ы1 следует объединить 11 дереве с общим корнем, а затем скрыть этот об­
щий корень с помощыо следующего метода:

tree.setRootVisiЬle{false);

На рис. 11.21 приведен пример леса с двумя деревьями, имеющими корневые
узлы USA и Germany, объединенные в одном дереве со скрытым корневым у:мом .

USA
о- L:JR~al-ifo-r-ni~aj

о- Cj М ichigan

Germany
о- Cj Schleswig-Holstein

Рис. 11.21. !lec

11. 2. Деревья

Перейдем теперь от корня к листьям дерева. Для их отображения служит

пиктограмма листа бумаги, как пока:1а110 на рис. 11.22.

пиктограмма

папки

о- Cj California

9

пиктограмма

листа бумаги

Рис. 11.22. Пиктограммы папок и листов дерева

Итак, каждый у:1ел отображается отдельной пиктограммой. Для обо:шачения

у:111ов дерева имеются три вида пиктограмм: лист бумаги, открытая и закрытая

папки . Средству воспроизведения узлов должно быть и:шестно, какой именно

пиктограммой следует отображап, каждый у:1ел. По умолчанию решение при­

ш1мается следующим образом: если метод isLeaf () во:шращает логическое з11а­
че1ше true, то испол1.:1уется пиктограмма листа бумаги, а иначе - пиктограмма

папки.

Метод isLea f () из класса De fa u l tMutaЫeTreeNode возвращает логическое
:шачение t.r·ue, если у данного у:1ла отсутствуют дочерние у:иы. Таким обра:юм,

у:1лы дерева с дочерними узлами будут отображаться в виде папок, а у:иы дерева

без дочерних у:1лов - в виде листов бумаги.

Но такой способ обо:шачения у:1лов дерева подходит не для всех случаев. На­

пример, при добавлении у:иа Montana в дерево для отображения штата Монтана
бе:1 ука:1ания городов этот штат будет обо:шачен пиктограммой листа бумаги. Но

при ::пом будет нарушен сам принцип представления дерева, по которому такие

пиктограммы служат для обо:шачения городов.

Компоненту JTree неи:шеспю, какие именно у:1лы являются листами дерева, по­

:-пому для выяснения этого факта 011 обращается к модели дерева. Если же у:1ел без
дочерних у:иов не является листом дерева в принципе, то для определения листов

можно выбрать другой критерий, например, обратиться к свойству у:1ла, определя­

ющему допустимость в нем дочер11их у:1лов. Так, если для некоторого узла дочерние

у:1лы недопустимы, то сначала необходимо вызвать следующий метод:

node.se t AllowsChi l dren (false) ;

Затем следует запросит~, модел1, дерева, чтобы она выяснила с помощью свой­

ства допустимости дочерних узлов, является ли узел листом дерева и следует ли ото­

бражать его пиктограммой листа бумаги. С этой целью необходимо вызвать метод

setAsksAllowsChildren () из класса Dei-ault.TreeModel следующим образом:

model. se tAs ks All owsChildren(true);

Глава 11 • Расширенные средства Swing и графика

В таком случае те узлы, в которых допускается наличие дочерних узлов, будут

обо:шачены пиктограммами папок, а те узлы, в которых не допускается наличие

дочерних узлов, - пиктограммами листов бумаги. С другой стороны, задавая

в конструкторе дерева корневой узел, можно также указать на необходимость за­

прашивать свойство допустимости дочерних узлов, как показано ниже.

11 те узлы, где не допускаются дочерние узлы,

11 обозначаются пиктограммами листов бумаги:
var tree = пеw JTree(root, true);

javax.swing.JTree 1.2

• J'l'ree (TreeМodel model)

Конструирует дерево из указанной модели.

• J'l'ree (TreeNode root)

• J'l'ree (TreeNode root, boolean asksAllowChildrвn)

Конструируют дерево с заданной по умолчанию моделью, отображающей корневой узел и его

дочерние узлы.

Параметры: root

asksAllowChildrвn

Корневой узел

Логическое значение true предписывает

использовать свойство допустимости

дочерних узлов, чтобы выяснить,

является ли узел листом дерева

void setShowsRootHandles(boolean Ь)

Если параметр Ь принимает логическое значение true, то в корневом узле дерева отобра­
жается маркер свертывания.

void setRootVisiЬle(boolean Ь)

Если параметр Ь принимает логическое значение true, то корневой узел отображается,
а иначе он скрывается.

javax.swing.tree.TreeNode 1.2

• boolean isLeaf ()

Возвращает логическое значение true, если данный узел является листом.

• boolean getAllowsChildren ()

Возвращает логическое значение true, если данный узел может иметь дочерние узлы.

javax.swing.tree.МutaЬleTreeNode 1.2

• void setUserObject (Object userObject)

Задает пользовательский объект типа userObject, применяемый для воспроизведения
узла дерева.

11.2. Деревья

javax.swing.tree.TreeМodel 1.2

• Ьoolean isLeaf (Object node)
Возвращает логическое значение true, если узел node следует отобразить как лист дерева.

javax.swing.tree.DefaultTreeМodel 1.2

• void setAsksAllowsChildren(Ьoolean Ы
Если параметр ь принимает логическое значение true, то узлы отображаются как листья
дерева, при условии, что метод getAllowsChildren () возвращает логическое значение
false. В противном случае такой внешний вид узлов будет выбран, если метод isLeaf ()
возвратит логическое значение true.

javax.swing.tree.DefaultМutaЬleTreeNode 1.2

• DefaultмutaЫeTreeNode(OЬject userObject)
Создает изменяемый узел дерева с указанным пользовательским объектом.

• void add (MutaЫeTreeNode chil.d)

Вводит узел как последний дочерний узел в данном узле дерева.

• void setAllowsChildren(Ьoolean Ь)
Если параметр Ь принимает логическое значение true, в данный узел могут быть введены
дочерние узлы.

javax.swing.JComponent 1.2

void putClientProperty(OЬject key, Object val.ue)
Вводит указанную пару "ключ-значение" в небольшую таблицу, которой управляет каждый
компонент. Этот "запасной" механизм используется в некоторых компонентах библиотеки
Swing для хранения специальных свойств, определяющих их внешний вид.

11.2.1.1. Редактирование деревьев и путей к ним
В следующем примере программы демонстрируются способы редактирова­

ния деревьев. На рис. 11.23 показан пользовательский интерфейс данной про­
граммы, где для создания нового узла под названием New предусмотрены кнопки
Add SiЫing (Добавить равноправный узел) и Add Child (Добавить дочерний узел).
Для удаления текущего выбранного узла предназначена кнопка Delete (Удалить).

Для реализации такого поведения следует найти текущий выбранный узел.

В компоненте JTree предусмотрен интересный способ поиска такого узла
по пути к объекту, называемому иначе путем к дереву. Такой путь начинается

с корневого узла и состоит из последовательности дочерних у3лов (рис. 11.24).

Глава 11 • Расширенные средства Swing и графина

World

9 LI USA
~ d Callforn1a

? cj Mlch19an
D Ann .Arbor

DNew
о-~ Germany

С_л~~~iы11~] ~d сhМ] 1 Delete

Рис. 11.23. Релактироваш1е ,1,ерева

Рис. 11.24. Пуп. к лереву

Казалос1, бы, для поиска текущего узла лучше было бы воспол1,:ю11аться шпер­

фейсом TreeNode и методом getParent ().Но на самом деле компоненту J Tree
ничего неизвестно об интерфейсе т reeNode, поскольку он испол1,зуется только
для реализации 11 классе DefaultTreeModel, а не в интерфеi~iсе TreeModel. Де­
рево может имет~, модел1,, в у:иах которой не реализуется интерфейс TreeNode.
Например, в модели дерева с другими тиш~ми объектов могут вообще отсутство­

ват~, методы ge t Parent () и g e t Child ().В таком случае для организации свюей
между узлами применяется модел1, дерева, хотя компоненту J Tree ничего о них
неи:111еспю. Поэтому в компо11енте JTree предполагается всегда испол1,:ювап,
полные пути к дерены1м.

Класс TreePath управляет последовател1.ностыо ссылок на об'ы~к­

ты типа Object (а 11е TreeNode) с помощью нескольких методов. Напри­

мер, для получения ссылки на последний узел пути можно вы :шать метод

getLastPathComponent ().Для поиска текущего выбранного у:ыа служит метод

getSelectionPath () и:1 класса J Tree. Таким обра:юм, зная пуп. к дереву (на ос­

новании объекта типа Tree Ра t h), можно получил, ссылку на текущий выбран­
ный узел следующим обра:юм:

TreePath selectionPath = tree.ge t Se lectionPa t h (I ;
var selectedNode = (DefaultMutaЬleTreeNode)

selectionPat h. getLas tPa thComponent() ;

11.2. Деревья

Такой :ыпрос выполняется очень часто, поэтому для него разработан приве­

денный ниже служебный метод.

var selectedNode (DefaultMutaЫeTreeNodel

tree.getLastSelectedPathComponent();

Этот метод называется getLastSelectedPathComponent (), а 11е

getSelectedNode (), поскольку самому дереву ничего неизвестно об узлах, а его
модел1, оперирует тол1,ко путями к объектам.

НА ЗАМЕТКУ! Кроме путей к деревьям, для описания узлов дерева используются методы из

класса JТree, которые принимают или возвращают целочисленный индекс, обозначающий

позицию строки lт.е. номер строки, начиная с нуля) для узла во внутреннем представлении
дерева. Такие номера имеют только видимые узлы, причем номер строки может меняться

при свертывании, развертывании или изменении дерева. Поэтому номера, обозначающие
позиции строк, не рекомендуется применять для доступа к узлам. У каждого метода из клас­

са JТree, предназначенного для работы с позициями строк, имеется эквивалентный метод,

оперирующий путями к деревьям.

Получив выбранный у:~ел, можно приступать к его редактированию. Но до­

бавить к нему дочерние узлы нельзя, просто вызвав метод add () , как показано
ниже.

selectedNode.add(newNode); // Нельзя 1

Если изменяется структура узлов, то изменения вносятся в модель дерева,

а связашюе с ним представление об этом не уведомляется. Следовательно, такое

уведомление необходимо послать самостоятельно. Но если для ввода нового узла

вы:шать метод insertNodeinto () из класса DefaultTreeModel, то такое уведом­
ление будет отправлено представлению дерева автоматически:

model.insertNodeinto(newNode, selectedNode,
selectedNode.getChildCount());

Аналогичным обра:юм применяется метод removeNodeFromParent () для уда­
ления узла и уведомления об обновлении представления дерева:

model.removeNodeFromParent(selectedNode);

Для изменения поль:ювательского объекта, но с сохранением структуры у:1ла

необходимо вы:шап, метод nodeChanged () следующим образом:

model.nodeChanged(changedNode);

Автоматическое уведомление является основным достоинством модели типа

DefaultTreeModel. Лри создании собственных моделей деревьев такое уведом­
ление приходится органи:ювывать самостоятельно. Более подробно этот вопрос

обсуждается в упоминавшей ранее книге Core Swiug Кима Топли .

• ВНИМАНИЕ! В состав класса DeafultTreeМodel входит метод reload(), полностью пе­
резагружающий модель дерева. Но метод reload () не следует вызывать только для обнов­
ления дерева после внесения нескольких изменений в нее. Дело в том, что при таком обнов­
лении дерева все узлы за пределами дочерних узлов корневого узла снова будут свернуты.

Такое поведение дерева может оказаться неудобным для пользователей, вынуждая их раз­

вертывать дерево после каждого вносимого в него изменения.

Глава 11 • Расширенные средства Swing и графина

Если представление получает уведомление об изменении структуры узлов де­

рева, оно обновляет отображение узлов, не развертывая их для просмотра вновь

добавленных узлов. Например, добавление в рассматриваемом здесь приме­

ре программы нового дочернего у:ыа в свернутые узлы произойдет незаметно

для пользователя. В таком случае придется специально организовать разверты­

вание родительских узлов для отображения введенного нового дочернего узла.

Для этого из класса JTree можно вызвать метод ma keV i s iЫe () ,принимающий

путь, ведущий к отображаемому на экране узлу.

Таким образом, для отображения вновь введенного узла придется сформиро­

вать путь к нему от корневого узла дерева. Для получения этого пути сначала

следует вызвать метод getPathToRoo t () из класса DeafultTreeModel . Он воз­
вращает массив TreeArra y [] для всех узлов (от текущего до корневого), который
далее передается конструктору класса Tre ePa th. В приведенном ниже фрагменте
когда показано, каким образом вновь введенный узел делается видимым.

TreeNode[] nodes = model.getPathToRoot(newNode) ;
var path = new Tree Path(nodes) ;
tree.makeVisiЬle (path);

НА ЗАМЕТКУ! Любопытно, что класс Defaul tTreeМodel ведет себя так. как будто ему во­

обще ничего неизвестно о классе TreePath, хотя он и предназначен для взаимодействия
с классом JTree. В то же время в классе JTree широко применяются пути и вообще не
используются массивы объектов узлов .

Теперь допустим, что дерево находится на прокручиваемой панеЛи. После раз­

вертывания дерева новый узел все еще может быть за пределами текущего окна

просмотра. Для перехода к новому узлу следует вместо метода makeVi s iЫe ()
вызвать метод scro llPathToV i s iЫe (), как показано ниже. Этот метод раз­

вертывает все узлы, указанные в заданном пути, прокручивая содержимое окна

вплоть до последнего узла в конце пути (рис. 11.25).

tree .scrollPat hToVisiЬle(path) ;

"
9 LJ USA

9 u Californ1a
D San Jose

D San Diego
9 LJ M1chigan Прокручено для

•

D Ann Аrь~ отображения узла
D New -;

1~~~~~~~~~~~~~~~-~~-

Add SIЫing 11 Add Child 11 Delete

Рис. 11.25. Автоматическая прокрутка дерева
на панели для просмотра ново1·0 узла

После двойного щелчка мышью откроется показанное на рис. 11.26 окно ре­
дактора ячеек, вызываемого по умолчанию. Для его реализации служит класс

De f aultCellEditor. А для редактирования узлов с иными объектами, кроме сим­
вольных строк, можно установить другие редакторы ячеек. Это делается аналогично

установке редакторов ячеек таблицы, как поясю1лоо, ранее в данной главе.

L'I California

D San jose

D San Diego

9 L'I Michigan

D Ann Arbor

D Detroitl

Add SiЫing 11 Add Cltild 11 Delete

11.2. Деревья

Рис. 11.26. Используемый 110 умолчанию редактор ячеек дерева

В листинге 11.9 приведен весь исходный код рассматриваемого здесь примера
программы редактирования отдельных у:1лов дерева. Запустите эту программу

на выполнение, создайте несколько у:1лов и отредактируйте их, дважды щелкнув

на имени у:~ла. Убедитесь в том, что свернутые деревья разворачиваются и содер­

жимое окна прокручивается для отображения нового дочернего узла в области

просмотра.

Листинг 11.9. Исходный код из файла treeEdi t/TreeEdi tFrame. java

1 package treeEdit ;
2
3 i mport java. awt .*;
4
5 i mport javax. swi ng. *;
6 import javax. swing.tree .*;
7
8 / **
9 * Фрейм с деревом и кнопками для его редактирования
10 */
11 puЬlic class TreeEditframe extends Jframe
12 {
13 private sta t ic final int DEfAULT WIDTH = 400 ;
14 pr1vate stat i c fina l int DE f AULT HEIGHT = 200 ;
1 5
16 private DefaultTreeModel model;
17 private J Tr ee tree;
18
1 9 puЫic TreeEditframe()
20 {
21 setSi ze (DEfAULT_WI DT H, DEfAULT HE IGHT);
22
2 3 // построить дерево
24
25 TreeNode r oot = makeSamp l eT ree();
26 model = new DefaultTreeMode l (root);
27 tree = new JTree(mode l) ;
28 tree .setEditaЬle(true) ;

29
30 //ввести прокручиваемую панель с деревом

Глава 11 • Расширенные средства Swing и графика

31
32 var scrollPane = new JScrollPane(tree);
33 add(scrollPane, BorderLayout.CENTER);
34
35 makeButtons();
36
37
38 puЫic TreeNode makeSampleTree()
39 {
40 var root = new DefaultMutaЫeTreeNode("World");
41 var country = new Defaul tMutaЫeTreeNode ("USA") ;
42 root.add(country);
43 var state = new DefaultMutaЫeTreeNode(
44 "California");
45 country.add(state);
46 var city = new DefaultMutaЬleTreeNode("San Jose");
47 state.add(city);
48 city = new DefaultMutaЫeTreeNode("San Diego");
49 state.add(city);
50 state = new DefaultMutaЫeTreeNode("Michigan");
51 country.add(state);
52 city = new DefaultMutaЬleTreeNode("Ann Arbor");
53 state.add(city);
54 country = new DefaultMutaЫeTreeNode("Germany");
55 root.add(country);
56 state = new DefaultMutaЬleTreeNode(
57 "Schleswig-Holstein");
58 country.add(state);
59 city = new DefaultMutaЫeTreeNode("Kiel");
60 state.add(city);
61 return root;
62
63
64 /**
65 * Создает кнопки для ввода родственнь~,
66 * дочерних узлов и их удаления
67 * /
68 puЫic void makeButtons()
69 {
70 var panel = new JPanel();
71 var addSiЬlingButton = new JButton("Add SiЫing");
72 addSiЫingButton.addActionListener(event ->
73 (
74 var selectedNode = (DefaultMutaЫeTreeNode)

75 tree.getLastSelectedPathComponent();
76
77 if (selectedNode == null) return;
78
79 var parent = (DefaultMutaЫeTreeNode)

80 selectedNode.getParent();
81
82 if (parent == null) return;
83
84 var newNode = new DefaultMutaЫeTreeNode("New");
85
86 int selectedindex
87 parent.getindex(selectedNode);

11.2. Деревья

88 model.insertNodeinto(newNode, parent,
89 selectedindex + 1);
90
91 //отобразить теперь новьlli узел

92
93 TreeNode[] nodes = model.getPathToRoot(newNode);
94 var path = new TreePath(nodes);
95 tree.scrollPathToV1siЬle(path);

96 }) ;
97 panel.add(addSiЬlingButton);

98
99 var addChildButton = new JButton("Add Cr1ild");
100 addChildButton.addActionListener (event. ->
101 {
102 var selectedNode = (DefaultMutaЫeTreeNode)

103 tree.getLastSelectedPathComponent();
104
105
106
107
108
109
110
111
112
113

if (selectedNode == null) return;

var newNode = new Defaul tMutaЫeтr·eeNode ("New") ;
model.insertNodeinto(newNode, selectedNode,

selectedNode.getChildCount());

11 отобразить теперь новый узел

114 TreeNode[J nodes = model.getPathToRoot(newNode);
115 var path = new TreePath(nodes);
116 tree.scrollPathToVisiЬle(path);

117 }) ;
118 panel.add(addChildButton);
119
120 var deleteButton = new JButton("Delete");
121 deleteButton.addActionListener(event ->
122 {
123 var selectedNode = (DefaultMutaЫeTreeNode)

124 tree.getLastSelectedPathComponent();
125
126 if (selectedNode 1= null
127 && selectedNode.getParent () 1= null)
128 model.removeNodeFromParent(selectedNode);
129 }) ;
130 panel.add(deleteButton);
131 add(panel, BorderLayout.SOUTH);
132
133

javax.swing.JTree 1.2

• TreePath getSelectionPath()

Получает путь к текущему выбранному узлу дерева (или путь к первому выбранному узлу, если
выбрано сразу несколько узлов). Возвращает пустое значение null, если ни один из узлов
не выбран.

Глава 11 • Расширенные средства Swing и графика

j avax. swing. JТree 1 . 2 {окончание/

• Object getLastSelectedPathComponent()

Получает объект, который представляет текущий выбранный узел дерева !или первый вы­
бранный узел, если выбрано сразу несколько узлов). Возвращает пустое значение null, если
ни один из узлов не выбран.

• void makeVisiЬle(TreePath path)

Развертывает все узлы дерева по заданному пути.

• void scrollPathToVisiЬle(TreePath path)

Развертывает все узлы дерева по заданному пути, и если дерево находится на прокручивае­

мой панели, то прокручивает его, чтобы обеспечить отображение последнего узла по задан­

ному пути.

j avax. swing. tree. TreePa th 1 . 2

• Object getLastPathComponent ()

Получает последний объект по заданному пути, т.е. объект узла, указанный в пути к дереву.

javax. swing. tree. TreeNode 1. 2

• TreeNode getParent ()

Возвращает родительский узел данного узла дерева.

• TreeNode getChildAt (int index)

Ищет дочерний узел дерева по указанному индексу. Значение индекса должно находиться

в пределах от О до getChildCount () - 1.

• int getChildCount ()

Возвращает количество дочерних узлов данного узла дерева.

• Enumeration children()

Возвращает объект типа Enumeration для перебора всех дочерних узлов данного узла
дерева.

javax.swing.tree.DefaultTreeМodel 1.2

• int index)

Вводит объект newChil.d в качестве дочернего узла в родительский узел parent по ука­
занному индексу и уведомляет приемники событий от модели дерева.

• void removeNodeFromParent(МutaЫeTreeNode node)

Удаляет узел node из модели дерева и уведомляет приемники событий от этой модели.

• void insertNodeinto(MutaЫeTreeNode newChil.d, MutaЬleTreeNode

parent, void nodeChanged(TreeNode node)

Уведомляет приемники событий от модели дерева об изменениях в заданном узле node.

11.2. Деревья

javax. swing . tree. Defaul tTreeМodel 1. 2 (окончание/

• void nodesChanged(TreeNode parent, int[] changedChildindexes)

Уведомляет приемники событий от модели дерева об изменениях во всех дочерних узлах ро­

дительского узла parent по указанным индексам.

void reload ()

Перезагружает все узлы в модели дерева . Эту операцию следует выполнять только в тех слу­
чаях, когда узлы полностью изменились под внешним воздействием.

11.2.2. Перечисление узлов дерева
Иногда требуется найти узел дерева, нач:иная с корневого узла и перебирая

все доч:ерю1е узлы до тех пор, пока не будет найден совпадающий узел. Для

перебора узлов в классе DefaultMutaЫeTre eNode предоставляется несколько

удобных методов.

Методы breadthFirstEnumeration () и dep th Fi r stEnumera tion () возвра­

щают объект типа Enume r a t ion. У этого объекта имеется метод nextElement () ,
предназнач:е1111ый для последовательного обращения ко всем доч:ерним уз­

лам текущего узла. Если объект типа Enumeration получен с помощ1,ю метода
breadthfirstEnumeration (), 011 представляет результаты обхода в ширину всех

дочерних у:1лов текущего узла. А объект типа Enumerat i on, во :1вращаемый ме­

тодом depthF'irstEnumeration (), содержит результаты обхода всех доч:ерних

у3лов текущего узла в глубину. На рис. 11.27 схематич:ески показаны оба способа
обхода узлов дерева.

Обход в ширину Обход в глубину

Рис. 11.27. С11осоf>ы обхола узлов дерева

Обход у:1лов дерева в ширину выполняется по отдельным уровням : снач:ала

корневой узел, затем все его доч:ерние узлы, после ч:его все доч:ерние у:ыы этих

дочерних у:~лов и т.д. Воспроизвести резулнаты такого обхода совсем не трудно.

А вот обход узлов дерева в глубину похож на поиск выхода из лабиринта.

В этом случ:ае обход выполняется по какому-то одному пути до тех пор, пока

не будет достигнут листовой узел . Затем происходит возврат назад и выбор

Глава 11 • Расширенные средства Swing и графика

ближайшего 1ю1юго пути, после чего обход продолжается по этому же пути

до тех пор, пока не будет достигнут листовой узел, и т.д.

Такой способ иначе называется обходо.\t ti обрптноАt щ1ряс)ке, поскол1.ку

в процессе поиска сначала посещаются дочерние, а затем родител1,ские узАы.

Именно поэтому метод post OrderTraversa l () действует подо61ю методу

depthFirstTraversal ().Следует отметип, и метод preOrderTra versa l (), ко­
торый также предна:нrачен для обхода в глубину, но в получаемых результатах

родител1,ские узлы предшествуют дочерним. Ниже приведен образец типичной

реали:}ации обхода дерева в ширину непосредственно в коде.

Enumeration breadth First = node.breadthFirstEnumera tion();
while (breadthFirst .hasMoreElements())

сделать что-нибудь с результатом вызова

метода breadthFirst .next Element() ;

Наконец, метод pathFromAnces t orEnumera t i o n () служит для поиска пути
от родительского узла к заданному и для перечисления узлов по этому пути .

Принцип его работы основывается на вы:юве метода getParent () для данного
узла до тех пор, пока не будет 11айден заданный родител1,ский узел. После этого

предоставляется пут~, для обхода дерева в обратном порядке.

В следующем примере программы демонстрируется приме11ею1е описанных

выше методов для обхода дерева иерархического 1ыследоваш1я классов. Как тол1.ко

в текстовом поле, расположе111юм в нижней части рабочего окна данной програм­

мы, будет указано имя конкретного класса, он будет введен в дерено иерархическо­

го наследования со всеми своими суперклассами, как показано на рис. 11.28.
»[dao;sTre_e ___________________________ Г- lD [Х

class java lang. ObJect
9 class Jа>э awr Сотропет

9 class java. awt Coпtainer
9 -.1 class java ам Window

9 class Java.a""' Frame
9 class Javax S'hJПg JFran1e

8 class ClassTre~Fram~
9 .J class 1а·,;а ui•l.AlJs racrCoJ/eC!1oп

9 class ;а•,;а ur11 Ats1rac!Lls1
8 class java. u1il.Aгra·,ust

9 oass 1ava и111 С ale.ryoa.r
8 class Java. util Gr~goпanCal~ndar

Add

Рис. 11.28. Дерево нерархическою 11аслеловаш1я классон

В рассматриваемом здесь примере исполь:1уется следующая важная особе11-

1юсть дерева: пол1,:ювательский объект у:~ла может быть объектом прои:шолыюго

типа. В данном примере узлы дерева представляют иерархическую структуру на­

следования классов, поэтому они относятся к одному типу Class. Во и:16ежаш1е
дублирования следует органи:ювать проверку наличия добавляемого класса в де­

реве. Это делается с помощью приведенного ниже метода .

11.2. Деревья

puЫic DefaultMut.aЬleTreeNode findUserObject (Object obj)
{

Enumeration е = root.breadthFirstEnumeration();
while (e.hasMoreElements())
{

DefaultMutaЫeTreeNode node
(DefaultMutaЬleTreeNode) e.nextElement();

if (node.getU.serObject () .eqc1als (obj))
return node;

return null;

11.2.3. Воспроизведение узлов дерева
При разработке прикладных программ нередко возникает потребность из­

менит~, способ отображения узлов дерева, например, обозначить их другими

пиктограммами или выделить их названия другим шрифтом. Подобные изме­

нения можно вносить с помощью средства воспроизведения ячеек дерева. По умол­

чанию для воспроизведения узлов дерева в компоненте JTree применяется класс
DefaultTreeCellRenderer, который расширяет класс JLabel. Этот класс фор­
мирует метку, состоящую из пиктограммы и метки узла.

НА ЗАМЕТКУ! Средство воспроизведения ячеек дерева не отображает маркеры свертывания
и развертывания подчиненных деревьев. Они являются частью общего визуального стиля,

поэтому изменять их не рекомендуется.

Специальную настройку воспроизведения узлов дерева можно произвести од­

ним из трех способов.

• Заменить с помощью класса Defaul tTreeCellRenderer пиктограммы,
шрифты и цвета фона, применяемые во всех узлах дерева.

• Установить используемое по умолчанию средство воспроизведения, рас­

ширяющее класс Defaul tTreeCellRenderer, а также применить разные
пиктограммы, шрифты и цвета фона в отдельных узлах дерева.

• Установить средство воспроизведения, реализующее интерфейс

TreeCellRenderer, чтобы воспроизводить в отдельных узлах дерева специ­
ально предусмотренные для них изображения.

Рассмотрим каждый из этих способов более подробно. Наиболее простой

способ изменения пиктограммы, шрифта и цвета фона узлов состоит в том,

чтобы построить объект типа Defaul tTreeCellRenderer в качестве средства
воспроизведения узлов дерева по умолчанию и установить его вместе с требуе­

мыми пиктограммами в дереве, как показано ниже. Результат выполнения этих

действий приведен на рис. 11.28, где в качестве пиктограмм узлов используются
изображения шариков.

var renderer = new DefaultTreeCellRenderer();
renderer.setLeaficon(new Imageicon("Ьlue-ball.gif"));

11 используется для листовых узлов
renderer.setClcsedicon(new Imageicon("red-ball.gif"));

Глава 11 • Расширенные средства Swing и графика

11 используется для свернутых узлов
renderer.setOpenicon(new Imagelcon("yellow-ball.gif"));

11 используется для развернутых узлов
tree.setCellRenderer(renderer);

Изменять шрифт и цвет фона не рекомендуется, так как легко нарушить об­

щий стилr, оформления пол1,зовательского интерфейса. Шрифт допускается из­

менять только для выделения отдел1,ных узлов. Так, на рис. 11.28 курсивом выде­
лены абстрактные классы.

Для изменения внешнего вида отдельных узлов следует установить специаль­

ное средство воспроизведения ячеек дерева. Данное средство во многом похоже

на средство воспроизведения ячеек из списка, рассмотренное ранее в этой гла­

ве. У интерфейса TreeCellRenderer имеется следующий единственный метод
getTreeCellRendererComponent():

Component getTreeCellRendererComponent(JTree tree,
Object value, boolean selected,
boolean expanded, boolean leaf,
int row, boolean hasFocus)

Метод getTreeCellRendererComponent () из класса DefaultTreeCell
Renderer возвращает ссылку this, т.е. текущую метку. (Напомним, что класс
DefaultTreeCellRenderer расширяет класс JLabel.) Чтобы создать специаль­
ный компонент, предназначенный для воспроизведения ячеек дерева, необходи­

мо расширить сначала класс DefaultTreeCellRenderer, а затем переопределить
метод getTreeCellRendererComponent (),предусмотрев в нем вызов из суперк­
ласса того метода, который подготовит все данные, необходимые для создания

метки. Кроме того, в данном методе задаются требующиеся значения свойств,

а по завершении своего выполнения он возвращает ссылку this.

class MyTreeCellRenderer extends DefaultTreeCellRenderer
{

} ;

puЫic Component getTreeCellRendererComponent(JTree tree,
Object value, boolean selected, boolean expanded,
boolean leaf, int row, boolean hasFocus)

Component comp = super.getTreeCellRendererComponent(
tree, value, selected,
expanded, leaf, row, hasFocus);

DefaultMutaЫeTreeNode node =
(DefaultMutaЫeTreeNode) value;

извлечь пользовательский объект из данного узла:

node.getUserObject();
Font font = подходящий шрифт;
comp.setFont(font);
return comp;

• ВНИМАНИЕ! Параметр value метода qetTreeCellRendererComponent () является уз­
ловым, а не пользовательским объектом. Напомним, что пользовательский объект относит­

ся к классу узлов DefaultмutaЬleTreeNode, а класс JТree может содержать узлы про­

извольного типа. Если в дереве используются узлы типа Defaul tмutaЬleTreeNode, то
на второй стадии следует извлечь пользовательский объект, как это было сделано в преды­

дущем примере кода.

•
11.2. Деревья

ВНИМАНИЕ! В классе DefaultTreeCellRenderer используется один и тот же объект мет­
ки для всех узлов, но для каждого узла изменяется ее текст. Если изменить шрифт для вы­

деления названия отдельного узла, то при последующем вызове упомянутого выше метода

следует восстановить используемый по умолчанию шрифт. В противном случае названия всех

последующих узлов будут выделены новым шрифтом~ Один из способов восстановления ис­

ходного шрифта представлен далее в листинге 11.1 О.

Средство воспроизведения типа ClassNameTreeCellRenderer из листин­
га 11.10 выделяет имя класса обычным шрифтом или курсивом в зависимости
от наличия модификатора ABSTRACT у объекта типа Class. Для обозначения
абстрактных классов не выбирается какой-то другой шрифт, чтобы не изменяп,

визуальный стиль, обычно применяемый для отображения дерева. По этой при­

чине курсив для обозначения абстрактного класса получается пугем наклона на­

чертания исходного шрифта, которым выделяются метки. Напомним, что в ре­

зультате всех вызовов возвращается только один общий объект типа JLabel. При
последующих вызовах метода getTreeCellRendererComponent () необходимо
снова вернугься к исходному шрифту. Обратите также внимание, каким образом

изменяются пиктограммы у:ыов в конструкторе класса C1assTreeFrame.

javax.swing.tree.DefaultмutaЬleTreeNode 1.2

• Enumeration breadthFirstEnumeration()

• Enumeration depthFirstEnumeration()

• Enumeration preOrderEnumeration()

Enumeration postOrderEnumeration()

Возвращают объект типа Enumeration, представляющий результаты обхода всех узлов
в модели дерева. При обходе в ширину дочерние узлы, находящиеся ближе к корневому

узлу, посещаются раньше. При обходе в глубину перед переходом к равноправному узлу по­

сещаются все дочерние узлы. Метод postOrderEnumeration () является аналогом мето­
да depthFirstEnumeration (). Обход в ширину !или в прямом порядке! подобен обходу
в глубину !или в обратном порядке! за исключением того, что родительские узлы перечисля­
ются прежде дочерних.

javax. swing. tree. TreeCell.Renderer 1. 2

• Component getTreeCellRendererCom.ponent(JТree tree, Object value,
boolean selected, boolean expanded, boolean lea:f, int row,
boolean hasFocus)

Возвращает компонент, метод paint () которого вызывается для воспроизведения ячейки

!или узла! дерева.

Параметры: tree

value

selected

Дерево, содержащее воспроизводимый узел

Воспроизводимый узел

Принимает логическое значение

true, если данный узел выбран

Глава 11 • Расширенные средства Swing и графика

javax. swing. tree. TreeCellRenderer 1 . 2 {окончание}

expanded Принимает логическое значение true, если видны
дочерние узлы данного узла дерева

leaf Принимает логическое значение true, если данный
узел должен отображаться как лист

row

hasFocus

Отображаемая строка, содержащая узел дерева

Принимает логическое значение true, если данный
узел обладает фокусом ввода

javax.swing.tree.DefaultTreeCellRenderer 1.2

• void setLeaficon (Icon icon)

• void setOpenicon(Icon iсоп)

• void setClosedicon (Icon icon)

Задают пиктограмму для обозначения листового, развернутого или свернутого узла .

11.2.4. Обработка событий в деревьях
Дерево чаще всего используется совместно с каким-нибуд1, другим компонен­

том. Например, при выборе какого-11ибуд1, у:1ла дерева в соседнем окне может

бып, пока:1ана определенная сопроводителы1ая информация. На рис. 11.29 пред­
ставлен пример программы, где для каждого у:~ла в правой тексто1юй области ав­

томатически отображаются статические переменные и переме1111ые экземпм1ра

соответствующего класса.

[8 [ClassTree --_--_------------------·· -=:-ОХ

class Java lang ObNCt
9 -1 class ;ava ам Cornponem

9 class Ja•a al't1.Conta1ner
9 ..,, class ja'1a av.1. Windo..v

9 class java а"'1 Frame
9 ,.1gi~s a.!~_=~n~JFran1e l

8 class ClassTreeFrani;;,
9 J class)а1'а !J!JI ADsrranC011eшon

9 J oass ;а·"а u11! . .AVsr.racrLIS1
8 cfass java lltil Arra,1..1st

f J Class Ja•.ta uт11 CaJendэr
8 class Java. ut1I Gr~gorianCalendar

1fstat1c 1nt ЕХIТ .OIJ_CLOSE 1
1s1atic java lang Ot•Ject defaultLool<AndFeeIOeco~
:1n1 defaultCloseOperation ,
~аvал sw1ng.Тra11sferHandler traлsf~rHa11dler 1

~ava;. sw1ng JRootPane rootPane 1
'boolean rootPaneCheckmgEnaЫed
i а"-ах. accessibtlrty Access1ЫeContext access1Ыe1

1
1

Рис.11.29. Пример 11ро1-раммы ллн 11росмотра классов

Чтобы добиться такого поведения, необходимо установит~, 11риемник са61>1 ·

muil выбора и.> дерева. Класс такого приемника событий должен реали:ювать

11.2. Деревья

интерфейс TreeSelectionListener со следующим единственным методом
valueChanged ():

void valueChanged(TreeSelectionEvent event)

Метод valueChanged () вызывается при каждом событии выбора или отмены
выбора узлов дерева. Приемник событий добавляется к дереву обычным обра:юм:

tree.addTreeSelectionListener(listener);

С помощью свойств модели типа TreeSelectionModel в классе JTree до­
пускается устанавливать конкретный режим выбора узлов дерева: только один

узел (свойство SINGLE_TREE_SELECTION), группа смежных узлов (свойство
CONTINGlJOlJS_TREE_SELECTION) или произвольная группа несмежных узлов
(свойство DISCONTINGlJOlJS_TREE_SELECTION). По умолчанию допускается выбор
прои:шолыюй группы несмежных узлов. В рассматриваемом здесь примере про­

граммы для просмотра классов допускается выбор только одного узла дерева, как

показано ниже. Никаких других действий, кроме установки конкретного режима

выбора, предпринимать не нужно.

int mode = TreeSelectionModel.SINGLE TREE SELECTION;
tree .getSelectionModel 1). setSelectionMode (mode);

НА ЗАМЕТКУ! Порядок выбора нескольких элементов зависит от конкретного визуально­

го стиля пользовательского интерфейса. Так, если применяется визуальный стиль Metal,
для выбора несмежных элементов lв данном случае - узлов дерева) следует нажать клавишу
<Ctгl> и, не отпуская ее, щелкнуть по очереди на каждом выбираемом элементе, а для выбора

нескольких смежных элементов - нажать клавишу <Shift> и, не отпуская ее, щелкнуть снача­

ла на первом, а затем на последнем элементе из выбираемой группы.

Чтобы выяснить, что именно выбрано в настоящий момент, необходимо за­

просить дерево, вызвав метод getSelectionPaths () следующим образом:

TreePath[] selectedPaths =.tree.getSelectionPaths();

Если же требуется ограничить возможности пользователя, разрешив ему вы­

бирать узлы дерева только по одному, то удобнее воспользоваться служебным

методом getSelectionPath (), который в общем случае возвращает первый же
выбранный путь к элементу или пустое :шачение null, если такой путь не выбран .

• ВНИМАНИЕ! В классе TreeSelectionEvent имеется метод getPaths (), который возвра­
щает массив объектов типа TreePath, но этот массив описывает изменения в самом выборе,
а не текущий результат выбора.

В листинге 11.1 О приведен исходный код класса фрейма для программы, ото­
бражающей иерархию наследования классов в виде древовидной структуры, где

абстрактные классы выделены курсивом. В листинге 11.11 представлен исходный
код, реализующий средство воспроизведения ячеек дерева. Если ввести полное

имя класса и нажать клавишу <Enter> или щелкнуть на кнопке Add, в дерево бу­
дет введен новый класс со 1кеми его суперклассами. В полное имя класса следует

включить имя пакета, например j ava. util .ArrayList.

Глава 11 • Расширенные средства Swing и графика

Рассматриваемая здесь программа немного трудна для понимания, поскольку

в ней для построения дерева классов используется рефлексия. Весь код постро­

ения дерева классов находится в методе addClass (). (Иерархия наследования
классов используется здесь лишь в качестве удобного примера для демонстрации

особенностей построения деревьев и обращения с ними, не усложняя програм­

мирование. При разработке собственных прикладных программ можно исполь­

зовать любые другие источники иерархических данных.) Для проверки наличия

вводимого класса в дереве вызывается метод findUserObj ect (),реализация ко­
торого описана в предыдущем разделе. В этом методе реализуется алгоритм об­

хода дерева в ширину. Если класс отсутствует в дереве, то сначала вводятся его

суперклассы, а затем создается и отображается новый узел для данного класса.

Когда выбран узел дерева, текстовая область справа заполняется полями вы­

бранного класса. В конструкторе фрейма накладываются ограничения, разреша­

ющие пользователю данной программы выбирать узлы дерева только по одно­

му, а также вводится приемник событий выбора из дерева. При вызове метода

valueChanged () его параметр события игнорируется, а у дерева запрашивается

только путь к текущему выбранному узлу. Далее последний узел, как обычно,

получается по заданному пути, и из него извлекается пользовательский объект.

После этого вызывается метод getFieldDescription (),где для формирования
символьной строки со всеми полями выбранного класса применяется рефлексия.

Листинг 11.10. Исходный код из файла treeRender/ClassTreeFrame. java

1 package treeRender;
2
3 import java.awt.*;
4 import java.awt.event.*;
5 import java.lang.reflect.*;
6 import java.util.*;
7
8 import javax.swing.*;
9 import javax.swing.tree.*;
10
11 /**
12 * В этом фрейме отображается дерево иерархии классов,

13 * текстовое поле и экранная кнопка Add для ввода
14 * новых классов в дерево

15 */
16 puЬlic class ClassTreeFrame extends JFrame
17 {
18 private static final int DEFAULT WIDTH = 400;
19 private static final int DEFAULT HEIGHT = 300;
20
21 private DefaultMutaЫeTreeNode root;
22 private DefaultTreeModel model;
23 private JTree tree;
24 private JTextField textField;
25 private JTextArea textArea;
26
27 puЫic ClassTreeFrame()
28 {

11.2. Деревья

29 setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
30
31 // в корне дерева иерархии классов

32 //находится класс Object:
33 root = new DefaultMutaЬleTreeNode(
34 java.lang.Object.class);
35 model = new DefaultTreeModel(root);
36 tree = new JTree(model);
37
38 // ввести этот класс, чтобы заполнить

39 //дерево некоторыми данными:

40 addClass(getClass());
41
42 //установить пиктограммы для обозначения узлов:

43 var renderer = new ClassNameTreeCellRenderer();
44 renderer.setClosedicon(new Imageicon(getClass()
45 .getResource("red-ball.gif")));
46 renderer.setOpenlcon(new Imagelcon(getClass()
47 .getResource("yellow-ball.gif")));
48 renderer.setLeaficon(new Imagelcon(getClass()
49 .getResource("Ьlue-ball.gif")));
50 tree.setCellRenderer(renderer);
51
52 //установить режим выбора узлов дерева:

53 tree.addTreeSelectionListener(event ->
54 {
55 // пользователь выбрал другой узел
56 //обновить его описание:

57 TreePath path = tree.getSelectionPath();
58 if (path == null) return;
59 var selectedNode = (DefaultMutaЬleTreeNode)

60 path.getLastPathComponent();
61 Class<?> с = (Class<?>)
62 selectedNode.getUserObject();
63 String description = getFieldDescription(c);
64 textArea.setText(description);
65)) ;
66 int mode = TreeSelectionModel.SINGLE TREE SELECTION;
67 tree.getSelectionModel() .setSelectionMode(mode);
68
69 // в этой текстовой области находится

70 // описание класса:
71 textArea = new JTextArea();
72
73 //добавить дерево и текстовую область:

74 var panel = new JPanel();
75 panel.setLayout(new GridLayout(l, 2));
76 panel.add(new JScrollPane(tree));
77 panel.add(new JScrollPane(textArea));
78
79 add(panel, BorderLayout.CENTER);
80
81 addTextField();
82
83
84 /**

Глава 11 • Расширенные средства Swing и графика

85 * Добавляет в фрейм текстовое поле и экранную

86 * кнопку Add для ввода нового класса
87 */
88 puЫic void addTextField()
8 9 {
90 var panel = new JPanel();
91
92 ActionListener addListener = event ->
93
94 // ввести класс, имя которого находится
95 // в текстовом поле:

96 try
97 {
98 String text = textField.getText();
99 // очистить текстовое поле, чтобы

100 // обозначить удачньм исход ввода класса:
101 addClass(Class.forName(text));
102 textField.setText("");
103
104 catch (ClassNotFoundException е)

105 {
106 JOptionPane.showMessageDialog(
107 null, "Class not found");
108
109);
110
111 //в этом текстовом nоле вводятся

112 // имена новых классов:
113 textField = new JTextField(20);
114 textField.addActionListener(addListener);
115 panel.add(textField);
116
117 var addButton = new JButton("Add");
118 addButton.addActionListener(addListener);
119 panel.add(addButton);
120
121 add(panel, BorderLayout.SOUTH);
122
123
124 /**
125 * Находит искомый объект в дереве

126 * @param obj Искомый объект
127 * @return Узел с объектом или пустое значение null,
128 * если объект отсутствует в дереве

129 */
130 puЫic DefaultMutaЫeTreeNode

131 findUserObject(Object obj)
132
133 //найти узел, содержащий пользовательский объект:
134 var е = (Enumeration<TreeNode>)
135 root .breadtt1E'irstEnumeration (1;
136 while (e.hasMoreElements())
137 {
138 var node = (DefaultMutaЫeTreeNode)

139 e.nextElement();
140 if (node.getUserObject().equals(obj))

141
142

return node;

143 return null;
144
145
146 /**
147 * Вводит новый класс и любые его родительские
148 * классы, nока еще отсутствующие в дереве

149 * @param с Вводимый класс

150 * @return Узел с вновь введенным классом

151 */
152 puЫic DefaultMutaЬleTreeNode addClass(Class<?> с)

153 {
154 // ввести новый класс в дерево

155

11.2. Деревья

156 // пропустить типы данных, не относящиеся к классам:

157 if (c.isinterface() 11 c.isPrimitive())
158 return null;
159
160 //если класс уже присутствует в дереве,

161 // возвратить его узел:
162 DefaultMutaЬleTreeNode поdе = findUserObject(c);
163 if (node != null) return node;
164
165 // класс отсутствует в дереве - ввести сначала

166 //его родительские классы рекурсивным способом

167
168 Class<?> s = c.getSuperclass();
169
170 DefaultMutaЬleTreeNode parent;
171 if (s == null) parent = root;
172 else parent = addClass(s);
173
174 // ввести затем класс как потомок
175 // его родительского класса:
176 var newNode = new DefaultMutaЫeTreeNode(c);
177 model.insertNodeinto(newNode, parent,
178 parent.getChildCount());
179
180 // сделать видимым узел с вновь введенным классом:
181 var path = пеw TreePath(
182 model.getPathToRoot(newNode));
183 tree.makeVisiЬle(path);

184
185 return newNode;
18 6
187
188 /**
189 * Возвращает описание полей класса
190 * @param Описываемый класс
191 * @return Символьная строка, содержащая все

192 * типы и имена полей описываемого класса

193 * /
194 puЫic static String getfieldDescription(Class<?> с)

195 {
196 //использовать рефлексию для обнаружения

Глава 11 • Расширенные средства Swing и графика

197 // типов и имен полей:
198 var r = new StringBuilder();
199 Field[] fields = c.getDeclaredFields();
200 for (int i = О; i < fields.length; i++)
201 {
202 Field f = fields[i];
203 if ((f.getModifiers() & Modifier.STATIC) 1= 0)
204 r.append("static ");
205 r.append(f.getType() .getName());
206 r.append(" ");
207 r.append(f.getName());
208 r.append("\n");
209
210 return r.toString();
211
212

Листинг 11.11. Исходный код из файла treeRender/
ClassNameTreeCellRenderer.java

1 package treeRender;
2
3 import java.awt.*;
4 import java.lang.reflect.*;
5 import javax.swing.*;
6 import javax.swing.tree.*;
7 /**
8 * Этот класс воспроизводит имя класса, вьщеляя его

9 * простым шрифтом или курсивом. Абстрактные классы
10 * выделяются только курсивом
11 */
12 puЫic class ClassNameTreeCellRenderer
13 extends DefaultTreeCellRenderer
14
15 private Font plainFont = null;
16 private Font italicFont = null;
17
18 puЫic Component getTreeCellRendererComponent(
19 JTree tree, Object value, boolean selected,
20 boolean expanded, boolean leaf, int row,
21 boolean hasFocus)
22
23 super.getTreeCellRendererComponent(tree, value,
24 selected, expanded, leaf, row, hasFocus);
25 //получить пользовательский объект:

26 var node (DefaultMutaЫeTreeNode) value;
27 Class<?> с= (Class<?>) node.getUserObject();
28
29 // сначала сделать простой шрифт наклонным:
30 if (plainFont == null)
31 {
32 plainFont = getFont();
33 //средство воспроизведения ячеек дерева иногда

34 //вызывается с меткой, имеющей пустой шрифт

11.2. Деревья

35 if (plainFont != null)
36 italicFont = plainFont.deriveFont(Font.ITALIC);
37
38
39 //установить наклонньм шрифт, если класс является

40 // абстрактным, а иначе - простой шрифт:

41 if ((c.getModifiers() & Modifier.ABSTRACT) == 0)
42 setFont(plainFont);
43 else
44 setFont(italicFont);
45 return this;
46
47

javax.swing.JTree 1.2

• TreePath getSelectionPath ()

• TreePath [] getSelectionPaths ()

Возвращают путь к первому выбранному узлу или массив путей ко всем выбранным узлам

дерева. Если ни один из узлов дерева не выбран, оба метода возвращают пустое значение

null.

javax.swing.eveпt.TreeSelectionListeпer 1.2

• void valueChanged(TreeSelectionEvent event)

Вызывается всякий раз, когда происходит выбор или отмена выбора узлов дерева.

javax.swing.event.TreeSelectionEvent 1.2

• TreePath getPath ()

• TreePath [] getPaths ()

Получают первый путь или все пути, которые изменились в результате данного события вы­

бора из дерева. Для получения сведений о текущем выборе, а не изменении выбора следует

вызывать метод JТree. getSelectionPath ().

11.2.5. Специальные модели деревьев
В качестве последнего примера манипулирования деревьями рассмотрим

программу, которая, подобно отладчику, проверяет содержимое переменной

или объекта. На рис. 11.30 показано рабочее окно данной программы.
Скомпилируйте и запустите эту программу на выполнение, прежде чем чи­

тать ее описание. Каждый узел дерева соответствует какому-нибудь полю экзем­

пляра. Если поле содержит объект, разверните структуру этого объекта для про­

смотра полей экземпляра его класса. Как видите, данная программа позволяет

просматривать содержимое своего фрейма. При более внимательном изучении

Глава 11 • Расширенные средства Swing и графика

нескольких полей экземпляра вы можете обнаружить некоторые уже :шакомые

вам классы. Кроме того, эта программа поз1юлнет оценип., наскол1,ко сложны

компоненты библиотеки Swing, предназначе1шые для построе11ия полиователь­
ского интерфейса.

class Objн11nspectorFrame this

D class javax. sw1ng.JTree tree=null

D int defaultCloseOperatюn = 1

D class javax sw1ng.TransferHandler transferHandler=null

9 Lj class javax.swi11g.JRootPane rootPa11e

D 1nt wi11dowDecoration5tyte=O

D class javax.swing.Jt.1enuBar menuBar=null

9 Lj class Java. awt Contarner contentPane

[) boolean lsAJignmentXSet=false

[) float alignmentX =O о

D boolean isAJignmentY'5et=false

D float aJignmentY=O.O

D class javax swing plaf ComponentUI ui

~ Lj class javax swing.event.Eventlistenerlist listeno?rlist

~ 1 _ 111 с=_ [U__

Рис. 11.30. Дерево для обслелования объектов

Данная программа примечательна тем, что для построения дерева в ней не

применяется модель типа Defa ul t Tre eMode l . При наличии данных, которые

уже иерархически организованы в виде древовидной структуры, вряд ли имеет

смысл испол1,зовать предлагаемое по умолчанию дерево и синхрони:шровать оба

дерева. Именно такая ситуация во:шикает в рассматриваемом здесь примере: об­

следуемые объекты уже связаны друг с другом с помощыо ссылок на них, и поэ­

тому нет никакой нужды дублиронан структуру их связей.

В интерфейсе Tr eeModel объявлено лиш1, несколько удобных методов. Пер­
вая группа методов позволяет найти у:1лы дерева, начиная с корня и продолжая

дочерними узлами. Эти методы 11ызываются в классе J Tr ee тол1.ко в том случае,

если узел был ра:шернут полюователем :

Obj ect getRoot()
int getChildCount (Object parent)
Obj e c t getChild (Obj e c t parent, int index)

В рассматриваемом здесь примере наглядно демонстрируется, почему для ин­

терфейса TreeMode l , как и для класса J Tree, не требуется я1111ое обо:шачение уз­

лов . Корневые и дочерние узлы могут быть объектами прои:11юлыюго типа, ин­

терфейс TreeMode l отвечает за уведомление класса J Tree об установлении с11я:1и

между ними. Следующий метод из и1rгерфейса TreeModel выполняет действия,
обрат11ые методу ge tChild ():

i nt getindexOfChild (Object parent, Ob j e c t c hi ld l

11.2. Деревья

Как следует из листинга 11.12, этот метод мож110 реали:ювать на основе пер­
вых трех методов. Модель дерева сообщает компоненту JTree, какие именно
узлы следует отобразить как листовые:

boolean isLeaf(Object node)

Если при выполнении кода изменяется модель дерева, то дерево следует уве­

домить о необходимости его воспрои:шедения заново. По::)тому дерево вводится

в модель как приемник событий типа TreeModelListener. Следовательно, в мо­
дели должны использоваться обычные методы управления обработчиками собы­

тий, как показано ниже, а их реализация представлена в листинге 11.13.
void addTreeModelListener(TreeModelListener l)
void removeTreeModelListener(TreeModelListener 1)

Для изменения содержимого дерева в его модели вы:\ывается один и:\ четырех

перечисленных ниже методов из интерфейса TreeModelListener.

void treeNodesChanged(TreeModelEvent е)

void treeNodesinserted(TreeModelEvent е)

void treeNodesRemoved(TreeModelEvent е)

void treeStructureChanged(TreeModelEvent е)

Объект типа TreeModelEven t описывает место, где происходят и:\менения
в дереве. Подробности организации событий, наступающих в модели дерева

при вводе и удалении узлов, здесь не рассматриваются в силу того, что они носят

слишком технический характер. Вам нужно лишь по:\аботиться об инициирова­

нии подобных событий, когда в дереве вводятся и удаляются отдельные узлы. В

листинге 11.12 демонстрируется пример инициирования события, наступающего
при замене корневого узла новым объектом.

СОВЕТ. Для упрощения кода инициирования событий рекомендуется удобный класс javax.
swing. EventListenerList, предназначенный для составления списка из приемников
событий. На примере трех последних методов из листинга 11.13 показано, как пользоваться
этим классом в прикладном коде.

Наконец, если пользовател~, редактирует узел дерева, то его модель вызывает­

ся с помощью следующего метода, где ука:\ываетоt вносимое изменение:

void valueForPathChanged(TreePath path, Object newValue)

Если же редактирование узлов не разрешается, этот метод вообще не вызыва­

ется. В таком случае построить модель еще проще. Для этого достаточно реали­

зовать три метода:

Object getRoot()
int getChildCount(Object parent)
Object getChild(Object parent, int index)

Эти методы описывают структуру дерева. После реали:\ации остальных пяти

методов, как показано в листинге 11.12, можно приступать к отображению дерева.
Теперь перейдем непосредственно к реализации рассматриваемого здесь при­

мера программы. В ней строится дерево, состоящее из объектов типа VariaЫe

в его узлах.

Гпава 11 • Расширенные средства Swing н графика

НА ЗАМЕТКУ! Если бы в данном примере применялась модель дерева типа DefaultTree
Model, то узлы были бы объектами типа DefaultмutaЫeTreeNode с пользовательскими
объектами типа VariaЫe.

Допустим, требуется проверить переменную, объявленную следующим образом:

Ernployee joe;

Эта переменная имеет тип Employee. class, и.мя j ое и 3Начение в виде ссылки
на объект j ое. В листинге 11.14 объект класса VariaЬle, описывающего эту пе­
ременную в рассматриваемом здесь примере программы, определяется следую­

щим образом:

var v = new VariaЬle(Ernployee.class, "joe", joe);

Если переменная относится к примитивному типу, то для ее значения нужно

создать объектную оболочку:

new VariaЫe (douЫe. class, "salary", new DouЫe (salary)) ;

Если же переменная относится к типу класса, то она имеет поля, которые

можно перечислить и собрать в объекте типа ArrayList с помощью рефлексии.
Метод getFields () из класса Class не возвращает поля суперкласса, поэтому
данный метод придется вызвать для всех суперклассов проверяемого класса. Для

этой цели служит исходный код, находящийся в конструкторе класса VariaЬle.

Метод getFields () из класса VariaЬle возвращает массив полей. Наконец,

метод toString () из класса VariaЫe форматирует метку узла дерева. Метка
всегда содержит тип и имя переменной, а если переменная не относится к типу

класса, то метка содержит также ее значение.

НА ЗАМЕТКУ! Если тип переменной представлен массивом, то его элементы в данном приме­

ре не отображаются. Впрочем, сделать это совсем не трудно, и такая возможность предостав­
ляется читателям в качестве дополнительного упражнения.

Перейдем непосредственно к модели дерева. Исходный код первых двух ее ме­

тодов несложен:

puЫic Object getRoot()
{

return root;

puЫic int getChildCount(Object parent)
{

return ((VariaЬle) parent).getFields().size();

Метод getChild () возвращает новый объект типа VariaЬle, описывающий
поле по указанному индексу. С помощью методов getType () и getName () из

класса Field можно получить тип и имя поля, а с помощью рефлексии - про­
читать значение поля, вызвав метод f. get (parentValue). Этот метод может сге­
нерировать исключение типа IllegalAccessException. Но в конструкторе клас­
са VariaЫe предоставлен свободный доступ ко всем полям, поэтому подобная

11.2. Деревья

исключительная ситуация вряд ли вообще возникнет. Ниже приведен весь исход­

ный код метода getChild ().

puЫic Object getChild(Object parent, int index)
{

ArrayList fields = ((VariaЬle) parent) .getFields ();
var f = (Field) fields.get(index);
Object parentValue = ((VariaЬle) parent) .getValue();
try
(

return new VariaЬle(f.getType(), f.getName(), f.get(parentValue));

catch (IllegalAccessException е)

(

return null;

Упомянутые выше три метода выявляют структуру дерева объектов для ком­

понента JTree. Остальные методы выполняют другие рутинные операции, как
следует из листинга 11.13.

Необходимо отметить следующую особенность рассматриваемой здесь моде­

ли дерева: она описывает бесконечное дерево. Это можно проверить на примере

одного из объектов типа WeakReference. Так, если щелкнуть в дереве на имени
переменной referent, произойдет возврат к исходному объекту, который содер­
жит идентичное подчиненное дерево с объектом типа WeakReference. Разумеет­
ся, сохранить бесконечное количество узлов невозможно, поэтому данная модел1,

дерева формирует дочерние узлы по требованию в процессе постепенного раз­

вертывания родительских узлов. Исходный код класса фрейма для данной про­

граммы представлен в листинге 11.12.

Листинг 11.12. Исходный код из файла treeМodel/ObjectinspectorFrame. java

l package treeModel;
2
3 import java.awt.*;
4 import javax.swing.*;
5
6 /**
7 * Этот фрейм содержит дерево объектов
8 */
9 puЫic class ObjectinspectorFrame extends JFrame
10 {
11 private JTree tree;
12 private static final int DEFAULT WIDTH = 400;
13 private static final int DEFAULT HEIGHT = 300;
14
15 puЫic ObjectinspectorFrame()
16 {
17 setSize(DEFAULT_WIDTH, DEFAULT HEIGHT);
18
19 //обследовать объект данного фрейма:

20

Глава 11 • Расширенные средства Swing и графика

21 var v = new VariaЬle(getClass(), "this", this);
22 var model = new ObjectTreeModel();
23 model.setRoot(v);
24
25 //построить и показать дерево:

26
27 tree = new JTree(model);
28 add(new JScrollPane(tree), BorderLayout.CENTER);
29
30

Листинг 11.13. Исходный код из файла treeModel/ObjectTreeModel. java

1 package treeModel;
2
3 import java.lang.reflect.*;
4 import java.util.*;
5 import javax.swing.event.*;
6 import javax.swing.tree.*;
7
8 /**
9 * Эта модель дерева описывает древовидную структуру
10 * объектов в Java. Дочерние узлы дерева являются
11 * объектами, хранящимися в переменных экземпляра

12 */
13 puЫic class ObjectTreeModel implements TreeModel
14 {
15 private VariaЫe root;
16 private EventListenerList listenerList
17 new EventListenerList();
18
19 /**
20 * Строит пустое дерево
21 */
22 puЫic ObjectTreeModel()
23 {
24 root = null;
25
26
27 /**
28 * Устанавливает заданную переменную в корне дерева
29 * @param v Переменная, описываемая в данном дереве

30 */
31 puЫic void setRoot(VariaЫe v)
32 {
33 VariaЫe oldRoot = v;
34 root = v;
35 fireTreeStructureChanged(oldRoot);
36
37
38 puЫic Object getRoot()
39 {
40 return root;
41
42

11 .2. Деревья

43 puЫic int getChildCount(Object parent)
44 {
45 return ((VariaЬle) parent). getFields (). size ();
46
47
48 puЫic Object getChild(Object parent, int index)
4 9 {
50 ArrayList<Field> fields =

51 ((VariaЫe) parent) . getFields () ;
52 var f = (Field) fields.get(index);
53 Object parentValue = ((VariaЬle) parent) .getValue();
54 try
55 {
56 return new VariaЬle(f.getType(}, f.getName(),
57 f.get(parentValue));
58
59 catch (IllegalAccessException е)

60 {
61 return null;
62
63
64
65 puЫic int getlndexOfChild(Object parent,
66 Object child)
67
68 int n = getChildCount(parent);
69 fог (int i = О; i < n; i++)
70 if (getChild(parent, i) .equals(child))
71 return i;
72 return -1;
73
74
75 puЫic boolean isLeaf(Object node)
76 {
77 return getChildCount(node) ==О;
78
79
80 puЫic void valueForPathChanged(
81 TreePath path, Object newValue)
82
83
84
85 puЬlic void addTreeModelListener(TreeModelListener 1)
86 {
87 listenerList.add(TreeModelListener.class, l);
88
89
90 puЫic void removeTreeModelListener(
91 TreeModelListener l)
92
93 listenerList.remove(TreeModelListener.class, l);
94
95
96 protected void fireTreeStructureChanged(
97 Object oldRoot)
98

Глава 11 • Расширенные средства Swing и графика

99 var event = new TreeModelEvent(this,
100 new Obj ect [] { oldRoot }) ;
101 for (TreeModelListener l : listenerList
102 .getListeners(TreeModelListener.class))
103 l.treeStructureChanged(event);
105
106

Листинг 11.14. Исходный код из файла treeModel/VariaЫe. java

l package treeModel;
2
3 import java.lang.reflect.*;
4 import java.util.*;
5
6 /**
7 * Переменная с типом, именем и значением

8 */
9 puЫic class VariaЫe
10 {
11 private Class<?> type;
12 private String name;
13 private Object value;
14 private ArrayList<Field> fields;
15
16 /**
17 *Сконструировать переменную

18 * @param аТуре Тип
19 * @param aName Имя
20 * @param aValue Значение
21 */
22 puЫic VariaЬle(Class<?> аТуре, String aName,
23 Object aValue)
24
25 type = аТуре;
26 name = aName;
27 value = aValue;
28 fields = new ArrayList<>();
29
30 // найти все поля, если это тип класса,
31 //за исключением символьных строк и
32 / / пустых значений null
33
34 if (!type.isPrimitive() && !type.isArray()
35 && !type.equals(String.class) && value 1 = null)
36
37 //получить поля из класса и всех его сулерклассов:
38 for (Class<?> с= value.getClass(); с != null;
39 с= c.getSuperclass())
40
41 Field [] fs = с. getDeclaredFields 1) ;
42 AccessiЫeObject.setAccessiЬle(fs, true};
43
44 //получить все нестатические поля:

45 for (Field f : fs)

46
47
48
49
50
51
52 /**

if ((f.getModifiers() & Modifier.STATICI
fields.add(f);

53 * Получает значение данной переменной
54 * @return Возвращает значение
55 */
56 puЫic Object getValue()
57 {
58 return value;
59
60
61 /**

11.2. Деревья

01

62 * Получает все нестатические поля из данной переменной
63 * @return Списочный массив переменных
64 с описаниями полей

65 */
66 puЬlic ArrayList<Field> getFields()
67 {
68 return fields;
69
70
71 puЫic String toString()
72 {
73 String r = type + " " + name;
74 if (type.isPrimitive()) r += "=" + value;
75 else if (type.equals(String.class)) r += "=" + value;
76 else if (value null) r += "=null";
77 return r;
78
79

javax. swing. tree. TreeModel 1. 2

Object getRoot ()

Возвращает корневой узел дерева.

• int getChildCount(Object parent)

Получает количество дочерних узлов заданного родительского узла дерева.

• Object getChild(Object parent, int index)

Получает дочерний узел заданного родительского узла дерева по указанному индексу.

• int getindexOfChild(Object parent, Object child)

Получает индекс указанного дочернего узла из заданного родительского узла дерева или

значение -1, если узел child не является дочерним родительского узла parent в данной
модели дерева.

Ьoolean isLeaf (Object · поdв)

Возвращает логическое значение true, если указанный узел является листом дерева.

Глава 11 • Расширенные средства Swing и графика

javax. swing. tree. TreeМodel. 1. 2 (окончание/

• void addTreeМodelListener(TreeМodelListener 1)

• void removeTreeМodelListener(TreeМodelListener 1)

Вводят или удаляют приемник событий, который уведомляется о происходящих в дереве из­
менениях.

• void valueForPathChanged(TreePath path, OЬject newValue)

Вызывается в тех случаях. когда значение узла изменяется в редакторе ячеек дерева.

Параметры: path Путь к отредактированному узлу

newVa.Iue Замещающее значение, возвращаемое

редактором ячеек дерева

javax.swing.event.TreeМodel.Listener 1.2

• void treeNodesChanged(TreeМodelEvent е)

• void treeNodesinserted(TreeМodelEvent е)

• void treeNodesRemoved(TreeМodelEvent е)

• void treeStructureChanged(TreeМodelEvent е)

Вызываются моделью при изменении узлов дерева.

javax.swing.event.TreeМodelEvent 1.2

• TreeМodelEvent(Object eventSource, TreePath node)

Конструирует событие в модели дерева.

Параметры: eventSource Модель дерева, инициирующая данное событие

node Путь к изменяемому узлу

11.З. Расширенные средства AWT
Для создания простых рисунков можно использовать методы из класса

Graphics. Они эффективны для разработки простых приложений, но их недо­
статочно для построения сложных фиrур или полного контроля над внешним

видом рисунков. В состав прикладного интерфейса Java 20 API входит библиоте­
ка классов для создания высококачественных рисунков. В последующих разделах

дается краткий обзор этого прикладного интерфейса.

11.3.1. Конвейер визуализации
В исходной версии JDK 1.0 применялся очень простой механизм для рисова­

ния фиrур. Для этого достаточно было выбрать нужный цвет, режим рисования

и вызвать подходящие методы из класса Graphics, например drawRect () или

11.Э. Расширенные средства AWT

fillOval (). В прикладном интерфейсе Java 20 API поддерживается намного
больше возможностей для рисования двухмерной графики. Он, в частности, по­

зволяет делать следующее.

• Легко формировать самые разные фигуры.

• Управлять обводкой, т.е. вычерчивать пером контуры фигур.

• Заполнять фигуры любым сплошным цветом, используя различные оттен­

ки и узоры.

• Выполнять нреобра.ювания для перемещения, масштабирования, вращения

и растягивания фигур.

• Отсекать фигуры таким образом, чтобы ограничить их произвольно выби­

раемым участком экрана.

• Выбирать правила ко.м1103иции, чтобы описывать порядок сочетания пиксе­

лей новой и уже существующей фигур.

• Давать ука.юния 110 вос11роU3ведению для достижения компромисса между
скоростью :ыгрузки и качеством рисования.

Чтобы нарисовап, фигуру, необходимо выполнить следующие действия.

1. Получить объект класса Graphics2D. Это подкласс, производный от клас­
са Graphics. Начиная с версии Java 1.2 такие методы, как paint ()
и paintComponent (),автоматически получают объект класса Graphics2D.
Поэтому остается только выполнить приведение типов, как показано ниже.

puЫic void paintComponent(Graphics g)
{

var g2 = (Graphics2D) g;

2. Вызвать приведенный ниже метод setRenderingHints (),чтобы добавить
указания по воспроизведению для достижения компромисса между скоро­

стью и качеством рисования.

RenderingHints hints = . . . ;
g2.setRenderingHints(hints);

3. Вызвать приведенный ниже метод setStroke (),чтобы задать обводку кон­
тура фигуры. Для обводки можно выбрать толщину, а также сплошную

или пунктирную линию.

Stroke stroke = ... ;
g2.setStroke(stroke);

4. Вы:шать приведенный ниже метод setPaint (),чтобы указать способ рас­
краски. Раскраска подразумевает закрашивание участков контура обводки

или внутренней области фигуры. Она может состоять из одного сплошного

цвета, нескольких меняющихся оттенков или мозаичных узоров.

Paint paint = • • • ;

g2.setPaint(paint);

Глава 11 • Расширенные средства Swing и графика

5. Вызвать метод c l ip (),чтобы :)адать област11 отсечения следующим обра:юм:

Shape clip = ••• ;

g2. clip (clip) ;

6. Вы:шать приведенный ниже метод setTr a n s f o rm () для 11реобра.юнанuя

рисунка из пользовательского пространства в пространство конкретного

устройства. Такое преобра:ювание следует выполнять в тех случаях, когда

фигуру проще создать в специальной системе координат, чем исполь:ювать

для этой цели координаты, выражаемые в пикселях.

AffineTrans f o rm transform = ••• ;

g2.transfo rm (transform) ;

7. Вызвать приведенный ниже метод se tCompo s i te (),чтобы задать правило
композиции, описывающее порядок объединения новых пикселей с уже су­

ществующими пикселями.

Composite c omposite = •.. ;

g2.setCompos ite(composit e) ;

8. Создать фигуру, как пока:1а1ю ниже. В прикладном интерфейсе Java 20 АР!
предусмотрено немало объектов фигур и методов для их сочетания.

Shape s ha pe = . . . ;

9. Нарисовать или заполнил, фигуру, как показано ниже. Под рисованием

подразумевается очерчивание контуров фигуры, а под заполнением - :~а­

крашивание ее внутренней области.

g 2 .draw (shape) ;
g2.f il l (s ha pe);

Разумеется, 11а практике выполнять все эти действия обычно не требуется,

поэтому для многих параметров двухмерного графического ко1пексга предусмо­

трены значения по умолчанию, изменят~, которые следует тол1,ко в случае особой

необходимости. В последующих разделах рассматриваются способы описания

фигур, обводок, раскрасок, преобразований и riравил компо:1иции.

Различные методы типа se t просто устанавливают состояние двухмерного
графического контекста и не относятся к конкретным рисункам. Аналогично фи­

гура воспроизводится не во время создания объекта типа Sha pe, а при вы:юве

методов draw () или fill (),когда новая фигура рассчитывается в конвейере 1m.1y­
tL\U3aцuu (рис. 11.31).

Обводка Преобразование Отсечение Заливка Композиция

Рис. 11.31. Конвейер вюуализации

11.3. Расширенные средства AWT

Для воспроизведения фигуры в конвейере визуализации выполняются следу­

ющие действия.

1. Обводится контур фигуры.

2. Выполняется преобразование фигуры.

3. Происходит отсечение фигуры. Данный процесс прекращается, как

только фигура перестает пересекать область отсечения.

4. Оставшаяся после отсечения часть фигуры заполняется.

5. Составляется в единый рисунок композиция из пикселей фигуры

и уже существующих пикселей. (Как показано на рис. 11.31, существующие
пиксели образуют круг, а фигура чашки накладывается на него.)

В следующем разделе сначала рассматриваются способы определения фигур,

а затем порядок установки двухмерного графического контекста.

j ava. awt. Graphics2D 1 . 2

• void draw (Shape s)

Рисует контур указанной фигуры в соответствии с текущей раскраской.

• void fill (Shape s)

Заполняет внутреннюю область фигуры в соответствии с текущей раскраской.

11.З.2. Фигуры

Ниже перечислен ряд методов из класса Graphics, применяемых для рисова­
ния фигур.

DrawLine ()
drawRectangle ()
drawRoundRect ()
drawЗDrect ()
drawPolygon ()
drawPolyline()
drawOval ()
drawArc 1)

Для них существуют соответствующие методы заполнения фигур, которые

были предусмотрены в классе Graphics в версии JDK 1.0. В прикладном интер­
фейсе Java 20 API используется совершенно другая, объектно-ориентированная
модель, где вместо методов применяются перечисленные ниже классы. Эти клас­

сы реализуют интерфейс Shape и рассматриваются в последующих подразделах.

Line2D
Rectangle2D
RoundRectangle2D
Ellipse2D
Arc2D
QuadCurve2D
CubicCurve2D
GeneralPath

Глава 11 • Расширенные средства Swing и графика

11.З.2.1. Иерархия классов рисования фигур

Классы Line2D, Rectaпgle2 D, RoundRectang 1e2D, El lipse2D и Arc2D соответ­
ствуют методам drawLine (), cirawRe ctangle () , d r awRoundRec t () , dr awOva l ()
и drawArc (). Для понятия "трехмерный прямоуголышк" 11е предусмотрено
соответствующего метода drawЗDRe ct ().Но в прикладном интерфейсе Java 20
API поддерживаются два дополюпелыrых класса для рисования кривых второ­
го и треп,его порядков, рассматриваемых далее. Для рисоваш·оr мrюгоуголынr­

ков также не предусмотрено отделы юго класса вроде Pol ygon 2 О, а предлаrается
класс Genera l Path, описывающий контуры, состоящие 11:111ю111ii и кривых rпо­

рого и третьего порядков. Класс Ge ne ralPath можно исполr,:ювап, для построе-
1rия многоугольников, к<1к пояс1rяется далее.

Чтобы нарисовать фигуру, необходимо сrrачала создап, о6ъект класса, реали­

:~ующего интерфейс Shape, а :1атем вы:шать метод draw 1) и:1 класс<1 Graph i c s 2 D.
Перечисленные ниже классы наследуют общий класс Rectangula rS hape . Как ~п­
веспю, эллипсы и дуги не являются прямоуголышкам11, но их можно вписать

в 02ранuчu11ающиu прямоуголы1ик (рис. 11.32).

Rect angle2D
RoundRectangle2D
Ellipse2D
Ar c 2D

[__)__ __ :

1 1
1 1 ____ _ _____ ..J

Рис. 11 .32. Эллине 11 лу1-у мож110вш1са1ъ
в оr·раr1ич11ваю111ий 11рнмоу1олышк

У каждого и:~ классов, 11а:1ваrrие которого ок<1нчивается нJ 2 с , имеются

два подкласса для :1Jдания коордиrrJт в виде числовых :шаче11ий типа f l оа t
и douЫe. Так, в первом томе настоящего и :1да11ия уже встречалис1, 060:111аче­

ния Rectangle2D. F' loat и Rectangle 2 D. DouЫ e . Такая же схема исполь:1уето1

для обо:111ачения других классов, например Arc2 О. F' loa t и Arc2 D. DouЬl e.

Для внутреннего представления координат во всех классах, предна :111ачеr111ых

для построения графики, исnоль:~уются числовые данные типа f l o a t , поскол1,ку
01111 требуют ме11ьше места для хра11е1111я, чем числовые данные т11па d oub 1e . К
тому же они поддерживают достаточную точrюоъ для геометр11ческ11х расчетов .

Но в я:и,1ке Java обработка числовых данных типа f l oa t выполш1ется оче11ь гро­
моJдкими и неуклюжими средствами. Поэтому большинство методов ~п классов

для построения графики принимают параметры пша douЬle и во:шращают :111а­

чения типа douЬle. Выбирал, тип числовых да1111ых (flo a t или douЫe) и соот­

ветствующий конструктор кл<1сса приходится только при со:1даш1и двухмерного

объекта, как noкa:ia110 11 следующем примере кода:

11.3. Расширенные средства AWT

var floatRect = new Rec tang le2D.Float(5F, l OF, 7 . 5F, 1 5F);
var douЬleRect = new Rectangle2D .DouЬle(5, 10, 7 .5, 15);

Классы Ххх2 D. Floa t и Ххх 2 D. DouЫe являются производными от клас­
сов Ххх2 D. После со:~дания объекта нет никакой нужды запоминать подклассы,
а можно просто сохранить созда1111ый объект в переменной суперкласса, как по­

ка:\ано в приведенном выше примере кода.

Судя по 11а:ша11иям классов Xxx2D . Float и Ххх20 . DouЫe, можно сделат1, вывод,

что 011и являюто1 внутренними для классов Xxx2D. Эrо простое синтаксическое пра­
вило по:щоляет и:1uежать чрезмерного увеличения длины имен внешних классов.

Наконец, предусмотрен класс Poin t2D, описывающий точку с координатами х и у.
Точки полезны для определения фюур, но сами они не являются фигурами.

На рис. 11.33 схематически представлены отношения наследования между
классами рисования фигур без ука:\ания подклассов DouЫe и Float. Устаревшие
классы, унаследова1шые из прежних версий JDK, выделены серым цветом.

GeneralPath

г:::l Path2D г::-1 Ouad CuЬic L:;.:J ~ Curve2D Curve2.~

Point2D

~----------------~------------т---~---------------J ________________ :

ф
•--- ... ·---!. ---1
1 1

Rectangular
Shape

Rectangle2D
Round

Rectangle2D

Рис. 11.33. Опюшения наслелования между классами рисования фи1ур

Глава 11 • Расширенные средства Swing и графика

11.З.2.2. Применение классов рисования фигур

О классах Line2 D, Rectangle2D и Ellipse2 D уже упоминалос1, в главе 10 пер­
вого тома настоящего издания, а в этом разделе речь пойдет о том, как поль­

зоваться классами для построения остальных двухмерных фигур. В частности,

для построения прямоугольника со скругленными углами в конструкторе класса

Ro undRe ctang le2 D следует указал, координаты верхнего левого угла, ширину,

высоту и размеры области скругления углов по осям х и у (рис. 11.34). Например,

в результате следующего вызова конструктора данного класса со:1дается прямоу­

голышк с радиусом скругления углов, равным 20:

va r r = new RoundRectangle2D. DouЬle (

150, 200 , 100, 50, 20, 20) ;

Ширина

(х,у) <;>----~-------------•:.:
1
1
1

Высота t ! i
дуги -----·~------------------=-----.! -Ширина

дуги

Рис. 11.З'. Построе11ие прямоуголь11ика со скру1·ле1111ыми

углами средствами класса RoundRectangle2D

Высота

Для построения дуги следует указать ограничивающий прямоугольник, на­

чальный угол, угол разворота дуги (рис. 11.35), а также один из видов замыкания
дуги: Arc2D . OPEN, Arc2D . PIE или Arc2D . CHORD. Ниже приведен пример постро­

ения дуги, а на рис. 11.36 - виды замыкания дуги .

var а = new Ar c 2D(x , у , width , height , startAngle,
arcAngle, closureType) ;

(х,у)

11 .Э. Расширенные средства AWT

г"-------------.:.-;:..----..::.-:.:--------------J
' ' i i
: Угол Начальный !

\ '
" __ "tY!..C?E'"""""""" ":

' ' ' ' ' ' ' ' ' ' '
."""""" """" "" ... " """ " ... """ ... """ """""" """ """ """.J

Ширина

Высота

Рис. 11.35. Построение эллиптической дуги

Arc2D.OPEN

Arc2D.PIE

Arc2D.CHORD

Рис. 11.36. Виды замыкания дуги

•
Глава 11 • Расширенные средства Swing и графика

ВНИМАНИЕ! Если дуга имеет эллиптическую форму, рассчитать ее углы не так-то просто. По
этому поводу в документации на прикладной интерфейс Java 20 API заявляется следующее:
"Углы задаются относительно ограничивающего прямоугольника таким образом, чтобы линия,
проведенная из центра эллипса к правому верхнему углу ограничивающего прямоугольника,

образовывала угол 45° с обеими его сторонами. Если же обрамляющий прямоугольник за­
метно длиннее по одной оси, чем по другой, углы к началу и концу отрезка дуги будут скаши­

ваться вдоль более длинной оси ограничивающей рамки". Но, к сожалению, в документации

ничего не говорится о том, как рассчитывать такое "скашивание". Поэтому покажем, как это
делается на практике.

Допустим, центр дуги находится в точке начала отсчета, а точка с координатами !х, yl -
на самой дуге. Угол скашивания в этом случае рассчитывается следующим образом:

skewec!Angle = Math.toDegrees(Math.atan2(-y * height, х * width));

В итоге получается значение в пределах от -180 до 180. Подобным образом рассчитыва­
ются сначала начальный и конечный углы скашивания, а затем их разность. Если получится

отрицательное значение, то прибавляется значение 360. Далее остается лишь предоста­
вить конструктору дуги значения начального угла и разности двух углов скашивания в ка­

честве параметров.

Запустив на выполнение пример программы, исходный код которой приведен в конце этого

раздела, можете сами убедиться, что описанный выше порядок расчета углов скашивания

действительно дает правильные значения параметров для конструктора дуги, как показано

далее на рис. 11.39.

В прикладном интерфейсе Java 20 API предусмотрены средства для постро­
ения кривых второго порядка (квадратичных) и третьего порядка (кубических).

Здесь не рассматриваются математические аспекты построения этих кривых,

но для демонстрации их возможностей предлагается запустить на выполнение

программу из листинга 11.15. Как показано на рис. 11.37 и 11.38, кривые второго
и третьего порядка определяются двумя конечными точками и одной или двумя

управляющими точками (для кривых второго и третьего порядка соответственно).

При перемещении управляющих точек изменяется форма кривых. Для построе­

ния кривых второго и третьего порядка задаются координаты конечных и управ­

ляющих точек, как показано в приведенном ниже примере кода.

var q new QuadCurve2D.DouЬle(startX, startY, controlX,
controlY, endX, endY);

var с= new CubicCurve2D.DouЬle(startX, startY, controllX,
controllY, control2X,
control2Y, endX, endY);

Кривые второго порядка не очень удобны, поэтому они редко применяются

на практике, в отличие от кривых третьего порядка (например, кривых Безье, вы­

черчиваемых средствами класса CuЬicCurve2D). Сочетая несколько кривых треть­

его порядка таким образом, чтобы в точках соединения совпадали углы их накло­

на, можно строить сложные поверхности. Более подробно об этом можно узнать

в книге Сотриtеr Graphics: Principles and Practice, Third Edititon Джеймса Фали, Ан­
дриса ван Дама, Стивена Фэйнера и др. (James D. Foley, Andries van Dam, Steven
К. Feiner et а\.; издательство Addison Wesley, 2013 г.).

11.Э. Расширенные средства AWT

•

Рис. 11.37. Кривая второго 11орялка

•

Рис. 11.38. Кривая третьего 11орялк<1

Для построения и сохранения произвольной кривой в виде последовательно­

сти линейных отре:1ков, кривых второго и третьего порядка предусмотрен класс

Gene ralPath. С этой целью методу moveTo () следует передать координаты пер­
вой точки контура строящейся кривой:

var path = new Genera l Path() ;
path.moveTo(lO, 20);

Далее контур строящейся кривой расширяется с помощью метода liпeTo (),
quadTo () или curveTo ().Эти методы продолжают ко1пур строящейся кривой
линией, кривой второго порядка или кривой тре1ъего порядка соответственно.

При вызове метода liпeTo () следует указать конечную точку, а при вызове двух
других методов построения кривых - сначала управляющие точки и затем ко­

нечную точку, как показано ниже. Наконец, контур строящейся кривой замыка­

ется с помощью метода closePath (), где проводится линия в обратном направ­

лении к начальной точке данного контура.

pa t h .lineTo(20 , 30) ;
pa th . curveTo(controllX, cont rollY, control2X, contro l 2Y,

e ndX, e ndY 1 ;

Глава 11 • Расширенные средства Swing и графика

Чтобы построить многоугольник, следует вызвать метод moveTo () для перехо­
да к первой его вершине, а затем несколько раз вызвать метод lineTo () для со­
единения отрезками линии остальных вершин многоугольника и вызвать метод

closePath (),чтобы замкнуть многоугольник. Более подробно этот процесс де­
монстрируется далее в примере программы из листинга 11.15. Общий контур
вычерчиваемой фигуры совсем не обязательно должен быть соединенным. Это

означает, что метод moveTo () можно вызвать в любой удобный момент, чтобы
начать построение нового отрезка контура.

Наконец, к общему контуру можно добавить произвольные объекты типа

Shape, используя для этой цели метод append (). При этом контур присоединя­
емой фигуры добавляется в конце общего контура вычерчиваемой фигуры. Вто­

рой параметр этого метода принимает логическое значение true, если новую
фигуру необходимо соединить с последней точкой общего контура, а иначе -
логическое значение false. Например, в приведенном ниже фрагменте кода
контур прямоугольника добавляется к общему контуру вычерчиваемой фигуры,

не соединяясь с этим контуром в его конце.

Rectangle2D r = . • . ;

path.append(r, false);

При следующем вызове метода append () сначала проводится прямая линия,
соединяющая конечную точку общего контура с начальной точкой прямоуголь­

ника r, а затем контур прямоугольника добавляется к общему контуру вычерчи­
ваемой фигуры:

path.append(r, true);

На рис. 11.37 и 11.38 показаны резу ль таты выполнения примера программы
из листинга 11.15. В рабочем окне этой программы находится раскрывающийся
список для выбора следующих видов вычерчиваемых фигур.

• Прямые линии.

• Прямоугольники, в том числе скругленные, а также эллипсы.

• Дуги (помимо самой дуги, отображаются контуры ограничивающего пря-

моугольника, маркер начального угла и угол разворота дуги).

• Многоугольники (вычерчиваемые средствами класса GeneralPath).

• Кривые второго и третьего порядка.

Изменить расположение управляющих точек можно с помощью мыши. Об­

ратите внимание на то, что при перемещении этих точек фигура автоматически

перерисовывается. Рассматриваемая здесь программа имеет довольно сложную

структуру, поскольку она оперирует многими фигурами и поддерживает их ав­

томатическую перерисовку при перетаскивании управляющих точек.

Абстрактный суперкласс ShapeMaker инкапсулирует общие функции всех
классов для построения фигур. У каждой фигуры имеются управляющие точки,

которые пользователь может перемещать, а метод getPointCount () возвращает
их количество. Для расчета конкретной формы фигуры, исходя из текущего по­

ложения управляющих точек, служит следующий абстрактный метод:

Shape makeShape(Point2D[) points)

11.З. Расширенные средства AWT

Метод to S tring () возвращает имя класса, и благодаря этому объекты

типа ShapeMa ke r могут быть просто внесены в комбинированный список типа
JComboBox. Для активизации режима перетаскивания управляющих точек
в классе ShapePanel следует предусмотреть обработку событий от мыши. Так,
если кнопка мыши нажата над прямоугольным маркером управляющей точки,

этот маркер перемещается при последующем движении мыши.

Большинство классов для построения фигур имеют очень простую струк­

туру. Их методы ma keShape () строят и возвращают требующуюся фигуру. Но

для применения класса ArcMaker приходится дополнительно рассчитывап, на­
чальный и конечный углы скашивания, как пояснялось выше. Поэтому для де­

монстрации правильности выполненных расчетов возвращаемая фигура вычер­

чивается средствами класса Ge neralPath, включая саму дугу, ограничивающий

ее прямоуrол1,ник и линии, проведенные из центра дуги к управляющим точкам

(рис. 11.39).

Рис. 11.39. Рабочее окно программы ShapeTest
с построенной дугой и ее вспомогательными элементами

Листинг 11.15. Исходный код из файла shape/ShapeTest . java

1 package shape;
2
3 import java.awt. *;
4 import j ava .awt . event.*;
5 impor t j ava . awt. geom . *;
6 import java. ut i l. *;
7 import javax.swing.*;
8
9 / **
10 * 8 этой программе демонстрирует ся построение

11 * различных двухмерных фигур
12 * @ ve rsioп 1. 04 2018- 05- 01
13 * @author Сау Horstmanп
1 4 */

Глава 11 • Расширенные средства Swing и графика

15 puЫic class ShapeTest
16 {
17 puЬlic static void maiп(Striпg[] args)
18 {
19 EveпtQueue.invokeLater(() ->
20 {
21 var frame = пеw ShapeTestFrame();
22 frame.setTitle("ShapeTest");
23 frame.setDefaultCloseOperatioп(

24 JFrame.EXIT~ON CLOSE);
25 frame.setVisiЬle(true);

2 6)) ;
27
28
29
30 /**
31 * Этот фрейм содержит комбинированньм список для
32 * выбора фигур, а также компонент для их рисования

33 */
34 class ShapeTestFrame exteпds JFrame
35 {
36 puЫic ShapeTestFrame()
37 {
38 var comp = new ShapeComponent();
39 add(comp, BorderLayout.CENTER);
40 var соmЬоВох = new JComЬoBox<ShapeMaker>();
41 comboBox.additem(пew LineMaker());
42 comboBox.addltem(пew RectaпgleMaker());

43 comboBox.additem(пew RouпdRectangleMaker());

44 comboBox.addltem(пew EllipseMaker());
45 comboBox.addltem(пew ArcMaker());
46 comЬoBox.addltem(пew PolygonMaker());
47 comboBox.addltem(пew QuadCurveMaker());
48 comЬoBox.addltem(new CubicCurveMaker());
49 comboBox.addActioпListener(event ->
50 {
51 ShapeMaker shapeMaker = comboBox.getltemAt(
52 comЬoBox.getSelectedlпdex());

53 comp.setShapeMaker(shapeMaker);
54)) ;
55 add(comЬoBox, BorderLayout.NORTH);
56 comp.setShapeMaker((ShapeMaker)
57 comЬoBox.getitemAt(O));

58 pack 1);

59
60
61
62 /**
63 * Этот компонент рисует фигуру и дает пользователю
64 * возможность перемещать определяющие ее точки
65 */
66 class ShapeCompoпeпt extends JComponent
67 {
68 private static final Dimension PREFERRED SIZE
69 new Dimension(300, 200);
70 private Point2D[] points;

11.3. Расширенные средства AWT

71
72

private static Random generator
private static int SIZE = 10;

пеw Random (} ;

73 private int current;
74 private ShapeMaker shapeMaker;
75
76 puЫic ShapeComponent(J
77 {
78 addМouseListener(new MouseAdapter(}
79 {
80 puЫic void mousePressed(MouseEvent event}
81 {
82 Point р = event.getPoint(};
83 for (int i =О; i < points.length; i++}
84 {
85 douЫe х points[i] .getX(} - SIZE / 2;
86 douЫe у points[i] .getY(} - SIZE / 2;
87 var r = пеw Rectangle2D.DouЬle(

88 х, у, SIZE, SIZE);
89 if (r.contains(p))
90 {
91
92
93
94
95
96

current = i;
return;

97 puЫic void mouseReleased(MouseEvent event)
98 {
99 current = -1;
100)
101 }) ;
102 addМOl1seMotionListener (new MouseMotionAdapter ()
103 {
104 puЫic void mouseDragged(MouseEvent event)
105 {
106 if (current == -1) return;
107 points[current] = event.getPoint();
108 repaint();
109 }
110 }) ;
111
112
113

current

114 /**

-1;

115 * Устанавливает построитель фигур и инициализирует
116 * его произвольным рядом точек
117 * @param aShapeMaker Построитель фигур, определяющий

118 * фигуру по ряду исходных точек

119 */
120 puЬlic void setShapeMaker(ShapeMaker aShapeMaker}
121 {
122 shapeMaker = aShapeMaker;
123 int п = shapeMaker.getPointCount();
124 poiпts = new Point2D[n];
125 for (int i = О; i < n; i++)
12 6 {

Глава 11 • Расширенные средства Swing и графика

127 douЫe х = generator.nextDouЬle() * getWidth();
128 douЫe у= generator.nextDouЬle() * getHeight();
129 points[i] = new Point2D.DouЬle(x, у);

130
131 repaint ();
132
133
134 puЫic void paintComponent(Graphics g)
135 {
136 if (points == null) return;
137 var g2 = (Graphics2D) g;
138 for (int i = О; i < points.length; i++)
139 {
140 douЫe х = points[i] .getX() - SIZE / 2;
141 douЫe у poшts[iJ.getY() - SIZE / 2;
142 g2.fill(new Rectangle2D.DouЬle(x, у, SIZE, SIZE));
143
144
145 g2.draw(shapeMaker.makeShape(points));
146
147
148 puЫic Dimension getPreferredSize()
149 { return PREFERRED_SIZE; 1
150
151
152 /**
153 * Построитель фигур по ряду исходных точек.
154 * Конкретные подклассы должны возвращать
155 * форму из метода makeShape()
156 */
157 abstract class ShapeMaker
158 {
159 private int pointCount;
160
161 /**
162 * Конструирует построитель фигур
163 * @param ointCount Количество исходных точек,
164 * требующихся для определения

165 * данной фигуры

166 */
167 puЫic ShapeMaker(int pointCount)
168 {
169 this.pointCount = pointCount;
170
171
1 72 /* *
173 * Получает количество исходных точек, требующихся

174 *для определения данной фигуры

175 * @return Количество исходных точек
176 * /
177 puЫic int getPointCount()
178 {
179 return pointCount;
180
181
182 /**

11.Э. Расширенные средства AWT

183 * Строит фигуру по заданному ряду исходных точек
184 * @param р Исходные точки, определяющие фигуру

185 * @return Фигура, определяемая исходными точками

186 */
187 puЫic abstract Shape makeShape(Point2D[] р);

188
189 puЫic String toString()
190 {
191 return getClass () .getName ();
192
193
194
195 /**
196 * Проводит линию, соединяющую две заданные точки

197 */
198 class LineMaker extends ShapeMaker
199
200
201
202
203
204
205
206

puЫic LineMaker()
{

super(2);

puЬlic Shape makeShape(Point2D[] р)

{

207 return new Line2D.DouЬle(p[0], p[l]);
208
209
210
211 /**
212 * Строит прямоугольник, соединяющий две

213 * заданные угловые точки
214 */
215 class RectangleMaker extends ShapeMaker
216 {
217 puЫic RectangleMaker()
218 {
219 super(2);
220
221
222 puЫic Shape makeShape(Point2D[] р)

223 {
224 var s = new Rectangle2D.DouЬle();
225 s.setFrameFromDiagonal(p[O], p[l]);
226 return s;
227
228
229
230 /**
231 * Строит прямоугольник со скругленными углами,
232 * соединяющий две заданные угловые точки
233 */
234 class RoundRectangleMaker extends ShapeMaker
235 {
236
237
238

puЫic RoundRectangleMaker()
{

super(2);

239
240

Глава 11 • Расширенные средства Swing и графика

241 puЫic Shape makeShape(Point2D[) р)

242 {
243 var s = new RoundRectangle2D.DouЬle(
244 о, о, о, о, 20, 20);
245 s.setFrameFromDiagonal(p[OJ, p[l));
246 return s;
247
248
249
250 /**
251 * Строит эллипс, вписанньм в ограничивающий

252 * прямоугольник с двумя заданными угловыми точками
253 */
254 class EllipseMaker extends ShapeMaker
255 {
256
257
258
259
260

puЫic EllipseMaker()
{

super(2);

261 puЫic Shape makeShape(Point2D[) р)

262 {
263 var s = new Ellipse2D.DouЬle();
264 s.setFrameFromDiagonal(p[OJ, p[l));
265 return s;
266
267
268
269 /**
270 * Строит дугу, вписанную в ограничивающий прямоугольник

271 * с двумя заданными угловыми точками. Начальньм и

272 * конечньм углы дуги задают линии, проведенные из

273 * центра ограничивающего прямоугольника в две заданные

274 * точки. Для демонстрации правильности расчета углов

275 * возвращаемая фигура состоит из дуги, ограничивающего

276 * прямоугольника и линий, образующих эти углы

277 * /
278 class ArcMaker extends ShapeMaker
279
280 puЬlic ArcMaker()
281 {
282 super(4);
283
284
285 puЬlic Shape makeShape(Poiпt2D[J р)

286 {
287 douЫe centerX = (р[О) .getX() + p[l) .getX()) / 2;
288 douЫe centerY = (р[О) .getY() + p[l) .getY()) / 2;
289 douЫe width = Math.abs(p[l) .getX() - p[OJ .getX());
290 douЫe height = Math.abs(p[l).getY() - p[OJ.gety());
291
292 douЫe skewedStartAngle = Math.toDegrees(
293 Math.atan2(-(p[2] .getY() - centerY) * width,
294 (р[2) .getX() - centerX) * height));

11.Э. Расширенные средства AWT

295 douЫe skewedEndAngle = Math.toDegrees(
296 Math.atan2(-(p[3] .getY() - centerY) * width,
297 (р[3] .getX() - centerX) * height));
298 douЫe skewedAngleDifference =
299 skewedEndAngle - skewedStartAngle;
300 if (skewedStartAngle < 0)
301 skewedStartAngle += 360;
302 if (skewedAngleDifference < 0)
303 skewedAngleDifference += 360;
304
305 var s = new Arc2D.DouЬle(
306 О, О, О, О, skewedStartAngle,
307 skewedAngleDifference, Arc2D.OPEN);
308 s.setFrameFromDiagonal(p[O], p[l]);
309
310 var g = new GeneralPath();
311 g.append(s, false);
312 var r = new Rectangle2D.DouЫe();
313 r.setFrameFromDiagonal(p[OJ, p[l]);
314 g.append(r, false);
315 var center = new Point2D.DouЬle(centerX, centerY);
316 g.append(new Line2D.DouЬle(center, р[2]), false);
317 g.append(new Line2D.DouЬle(center, р[3]), false);
318 return g;
319
320
321
322 /**
323 * Строит многоугольник, определяемьm шестью

324 * угловыми точками
325 */
326 class PolygonMaker extends ShapeMaker
327 {
328 puЫic PolygonMaker()
329 {
330 super(6);
331
332
333 puЫic Shape makeShape(Point2D[] р)

334 {
335 var s = new GeneralPath();
336 s.moveTo((float) р[О] .getX(), (float) р[О] .gety());
337 for (int i = 1; i < p.length; i++)
338 s.lineTo((float) p[i].getX(),
339 (float) p[i].getY());
340 s.closePath();
341 return s;
342
343
344
345 /**
346 * Строит кривую второго порядка, определяемую двумя

347 * конечными точками и одной управляющей точкой
348 */
349 class QuadCurveMaker extends ShapeMaker
350

Глава 11 • Расширенные средства Swing и графика

351 puЫic QuadCurveMaker()
352 {
353 super(3);
354
355
356 puЫic Shape makeShape(Point2D[] р)

357 {
358 return new QuadCurve2D.DouЬle(
359 р[О] .getX(), р[О] .getY(), p[l] .getX(),
360 p[l].getY(), p[2].getX(), p[2].getY());
361
362
363
364 /**
365 * Строит кривую третьего порядка, определяемую двумя

366 * конечными точками и двумя управляющими точками
367 * /
368 class CubicCurveMaker extends ShapeMaker
369
370 puЫic CubicCurveMaker()
371 {
372 super(4);
373
374
375 puЬlic Shape makeShape(Point2D[] р)

376 {
377 return new CubicCurve2D.DouЬle(
378 p[O].getX(), p[O].getY(), p[l].getX(),
379 p[l].getY(), p[2].getX(), p[2].gety(),
380 p[3].getX(), p[3].getY());
381
382

java.awt.geom.Round.Rectangle2D.DouЫe 1.2

• RoundRectangle2D .DouЫe (douЫe х, douЫe у, douЫe width, douЫe
height, douЬle arcWidth, douЬle arcHeight)

Строит прямоугольник со скругленными углами, исходя из заданных размеров ограничиваю­

щего прямоугольника и дуги скругления. Наглядное представление о параметрах arcWidth
и arcHeight дает рис. 11.34.

java.awt.geom.Arc2D.DouЫe 1.2

• Arc2D. DouЬle (douЬle х, douЬle у, douЬle w, douЬle h, douЬle

startAnglв, douЬle arcAnglв, int type)

Строит дугу, исходя из заданного ограничивающего прямоугольника, начального и конечно­
го угла, также вида замыкания дуги. Наглядное представление о параметрах startAngle
и arcAnglв дает рис. 11.35. Что касается параметра type, то он может принимать значение
одной из следующих констант: Arc2D. OPEN, Arc2D. PIE или Arc2D. CHORD.

11.3.3. Учасrки

java.awt.geom.QuadCurve2D.DouЫe 1.2

• QuadCurve2D.DouЬle(douЫe xl, douЫe yl, douЫe ctr:Lx, douЫe
ctrly, douЫe х2, douЫe у2)

Строит кривую второго порядка по начальной, управляющей и конечной точкам.

java.awt.geom.CuЬicCurve2D.DouЫe 1.2

• CuЬicCurve2D. DouЬle (douЬle xl, douЬle yl, douЬle ctrlxl, douЬle

ctrlyl, douЬle ctrlx2, douЬle ctrly2, douЬle х2, douЬle у2)

Создает кривую третьего порядка по начальной, двум контрольным и конечной точкам.

java.awt.geom.GeneralPath 1.2

GeneralPa th ()

Строит пустой общий контур.

java.awt.geom.Path2D.Float 6

• void moveTo (float х, float у)

Строит текущую точку с координатами х и у, т.е. начальную точку следующего отрезка линии.

• void lineTo (float х, float у)

• void quadTo (float ctr:Ix, float ctrly, float х, float у)

• void curveTo(float ctrlxl, float ctrlyl, float ctrlx2, float
ctrly2, float х, float у)

Рисуют прямую линию, кривую второго или третьего порядка от текущей до конечной точки

с координатами х и у, после чего конечная точка становится текущей.

java.awt.geom.Path2D 6

• void append (Shape s, boolean connect)

Присоединяет контур заданной фигуры к общему контуру. Если параметр connect прини­
мает логическое значение true, текущая точка общего контура соединяется прямой линией
с начальной точкой присоединяемой фигуры.

• void closePath ()

Замыкает контур, рисуя прямую линию от текущей точки к первой точке контура.

11.З.З. Участки

В предыдущем разделе обсуждались средства построения сложных фиrур

с помощью прямых линий и кривых второго и третьего порядка. Используя

Глава 11 • Расширенные средства Swing и графика

достаточное количество ли11ий и кривых, можно нарисовал, практически лю­

бую фиrуру. Например, контуры символов в шрифтах, которые отображаются
на :,экране и на отпечатке, состоят и:~ прямых линий и кривых третьего порядка.

Но иногда описать фигуру легче, составляя ее из участков, например, прямо­

угол1,ных, многоуголын.1х или овальных. В прикладном интерфейсе Java 20 АР!
поддерживаются четыре метода, выполш11ощие геометрические операции по­

строения нового участка ИJ двух исходных участков . Результаты выполнения :,этих

операций приведены на рис. 11.40.

• Метод add () составляет участок, который содержит все точки первого или
второго исходного участка. Эrо операция геометрического сложения участков.

• Метод suЬtract. () составляет участок, который содержит все точки перво­
го исходного участка, 11е входящие во второй исходный участок. Эrо опера­

ция геометрического вычитания участков.

• Метод intersect. () составляет участок, который содержит тол1,ко точки,

принадлежащие одновременно первому н второму исходному участкам.

Эrо операция геометрического пересечения участков.

• Метод exc lusiveOr() составляет участок, который содержит все точки,

принадлежащие первому или второму исходному участку, 110 не обоим
вместе. Эrо операция геометрического исключения участко11.

Сложение Вычитание

Пересечение Исключение

Рис. 11.40. Геометр11'1еские 011ерации построе11ш1
ноною участка и:\ лвух исхол11ых участков

Чтобы построить участок сложной геометрической формы, необходимо со­

здат1, сначала исходный участок:

var а = new Area();

11.З.З. Участки

Затем этот участок следует объединить с фигурой требующейся формы, вы­

полнив одну из упомянутых выше геометрических операций:

a.add(new Rectangle2D.DouЬle(...));
a.subtract(path);

Класс Area для построения участков реализует интерфейс Shape. В процес­
се построения участка можно очертит~, его границы с помощью метода draw ()
или заполнить внутреннюю его часть с помощ1,ю метода fill () из класса

Graphics2D.

java.awt.geom.Area

• void add(Area other)

• void suЬtract (Area other)

• void intersect (Area other)

• void exclusiveOr (Area other)

Выполняют геометрические операции построения нового участка, объединяя текущий уча­

сток с другим участком, определяемым параметром other. Получающийся в итоге участок
становится текущим.

11.Э.4. Обводка

Метод draw () из класса Graphics2D рисует границу фигуры, используя вы­
бранный в настоящий момент вид обводки. По умолчанию для обводки выбира­

ется сплошная линия толщиной в один пиксель. Для изменения вида обводки

предусмотрен метод setStroke (), которому в качестве параметра передается
экземпляр класса, реализующего интерфейс Stroke. В прикладном интерфейсе
Java 20 API определен только один такой класс - BasicStroke. В этом разделе
рассматриваются функциональные возможности данного класса.

Для обводки можно задать линию произвольной толщины. Например,

для выбора линии толщиной 10 пикселей и последующей обводки служит сле­
дующий код:

g2.setStroke(new BasicStroke(lO.OF));
g2.draw(new Line2D.DouЬle(...));

Если толщина линии обводки превышает один пиксель, то для формирова­

ния концов линии можно воспользоваться одним из перечисленных ниже стилей

(рис. 11.41).

• Торцевой конец линии. Линия обводки обрывается в конечной точке.

• Скругленный конец линии. В конце линии обводки добавляется полу­

круг.

• Квадратный конец линии. В конце линии обводки добавляется полуква­

драт.

Для соединения двух толстых линий обводки можно также указать один из

следующих стилей (рис. 11.42).

Глава 11 • Расширенные средства Swing и графина

• Косой стык. Соединяет линии обводки по прямой линии, перпендику­

лярной биссектрисе угла между ними.

• Скругленный стык. Соединяет линии обводки, обра:1уя скругленный ко­

нец линии.

• Угловой стык. Соединяет линии обводки, образуя клинообразный конец

линии .

11111111 Торцевой
- конец линии

Скругленный

конец линии

Квадратный

конец линии

•
Косой

стык

Скругленный

стык

Угловой

стык

Рис. 11.41. Стили окончания
линии обводки

Рис. 11.42. Стили соединения
линий обводки

Если две линии сходятся в угловом стыке под очень малым углом, тогда вме­

сто него используется косой стык, предотвращающий образование чрезмерно

длинных клиньев. А определяет такой переход между линиями 11реде.л сре3а, ко­

торый формально обозначает отношение расстояния между внутренним и внеш­

ним углами клина к его ширине. По умолчанию предел среза равен 10, что соот­
ветствует углу около 11°.

g2 .setStroke(new Bas i cStroke(lO . OF , BasicStroke.CAP_ROUND,
BasicStroke . JOIN ROUND)) ;

g2 .setStroke (new BasicStroke(lO . OF, Bas icStroke.CAP_BUTT,
Basi cStroke.JOIN_MITER, 15.0F / *предел среза * /)) ;

Наконец, для пунктирных линий обводки можно выбрать конкретный пун­

ктир. В примере программы из листинга 11.16 используется пунктир, соответ­

ствующий сигналу SOS в азбуке Морзе. Пунктир задается в виде массива типа
f l oa t [], который содержит длины рисуемых и пробельных отрезков обводки

(рис. 11.43).
При создании объекта типа BasicStroke, помимо самого пунктира, указыва­

ется также фа.~а пунктира, т.е. место начала пунктира на линии обводки. Обычно

11.3.3. Участки

фаза пунктира устанавливается равной нулю. В приведенном ниже примере кода

показано, каким образом задается пунктирный стиль линий обводки.

floa t [] dashPa ttern = { 10, 10 , 10 , 10, 10, 10 , 30 , 10, 30 , ... } ;
g2 .setStroke(new BasicStroke (l O. OF, BasicStroke.CAP BUTT,

BasicStro ke . J OIN MITER, 10 . 0F /* предел среза-* / ,
dashPatt e rn, О !* фаза пунктира * /)) ;

11 11 11 - -
10 10 10 10 10 10 30 10 30

Рис. 11.43. Пунктир для обводки

f 1 НА ЗАМЕТКУ! Стили окончания лини й распространяются и на все штрихи пунктира.

В примере программы из листинга 11.16 предоставляется возможность указать
стиль окончания линий обводки, стиль их соединения и пунктир (рис. 11 .44). Кро­
ме того, концы линий обводки можно перемещать, чтобы проверить действен­

ность предела среза. Для этого следует выбрать угловой стык, а затем перетащить

мышью отрезок линии обводки таким образом, чтобы две линии образовали очень

острый угол. По достижения предела среза угловой стык автоматически превра­

щается в косой.

@ Butt Сар

@ Miter Jol11

О Solld llne

О Round Сар

О Bevel joln

@ Dashed li11e

О Square Сар

О Round Joi11

Рис. 11.44. Рабочее окно программы StrokeTest

Глава 11 • Расширенные средства Swing и rрафика

Рассматриваемая здесь программа похожа на программу из листинга 11.15.
Обработчик событий от мыши реагирует на щелчок кнопкой мыши в конечной

точке линии обводки и при перемещении курсора будет передвигап, вслед за

ним конец линии обводки. Группа кнопок-переключателей уведомляет о выборе

пользователем стиля окончания и соединения линии обводки, а также сплошной

или пунктирной линии. Метод paintComponent () из класса StrokePanel ис­
пользуется для построения общего контура типа GeneralPath из двух отрезков,
соединяющих три точки, которые пользователь может перемещать с помощью

мыши. Затем создается объект типа BasicStroke, исходя из выбора, сделанного
пользователем. Наконец, линия обводки рисуется по сформированному контуру.

Листинг 11.16. Исходный код из файла stroke/StrokeTest. java

1 package stroke;
2
3 import java.awt.*;
4 import java.awt.event.*;
5 import java.awt.geom.*;
6 import javax.swing.*;
7

8 /* *
9 * В этой программе демонстрируются

10 * различные виды обводки
11 * @version 1.05 2018-05-01
12 * @author Сау Horstmann
13 * /
14 puЫic class StrokeTest
15 {
16 puЫic static void main(String[] args)
17 {
18 EventQueue.invokeLater(() ->
19 {
20 var frame = new StrokeTestFrame();
21 frame.setTitle("StrokeTest");
22 frame.setDefaultCloseOperation(
23 JFrame.EXIT ON CLOSE);
24 frame.setVisiЬle(true);

25)) ;
26
27
28
29 /**
30 * В этом фрейме пользователь может выбрать стиль

31 * окончания и соединения линий обводки, а также

32 * увидеть получающуюся в итоге линию обводки
33 * /
34 class StrokeTestFrame extends JFrame
35 {
36 private StrokeComponent canvas;
37 private JPanel buttonPanel;
38
39 puЫic StrokeTestFrame()
40 (

11 .3.3. Участки

41 caпvas = пеw StrokeCornpoпeпt();
42 add(caпvas, BorderLayout.CENTER);
43
44 buttoпPanel = new JPaпel();
45 buttonPanel.setLayout(new GridLayout(3, 3));
46 add(buttonPanel, BorderLayout.NORTH);
47
48 var groupl = new ButtoпGroup();
49 rnakeCapButton("Butt Сар", BasicStroke.CAP BUTT,
50 groupl);
51 rnakeCapButton("Rouпd Сар", BasicStroke.CAP_ROUND,
52 groupl);
53 rnakeCapButton("Square Сар", BasicStroke.CAP_SQUARE,
54 groupl);
55
56 var group2 = new ButtoпGroup();
5 7 rnakeJoinButtoп ("Mi ter Join", BasicStroke. ,JOIN _ MITER,
58 group2);
59 rnakeJoiпButton("Bevel Join", BasicStroke.JOIN_BEVEL,
60 group2);
61 rnakeJoiпButtoп("Round Joiп", BasicStroke.JOIN_ROUND,
62 group2);
63
64 var group3 = пеw ButtoпGroup();
65 rnakeDashButton ("Solid Line", false, group3);
66 rnakeDashButton ("Dashed Line", true, groupЗ);

67
68
69 / * *
70 * Создает кнопку-переключатель для выбора

71 * стиля окончания линии

72 * @pararn label Метка кнопки-переключатет1
73 * @pararn style Стиль окончания линии
74 * @pararn group Группа кнопок-переключателей
7 5 * /
76 private void rnakeCapButton(Striпg label,
77 final int style, ButtonGroup group)
78
79 // выбрать первую кнопку-переключатель в группе

80 boolean selected = group.getButtoпCount() ==О;
81 var button = пеw JRadioButton(label, selected);
82 buttoпPanel.add(buttoп);

83 group.add(buttoп);

84 buttoп.addActionListener(event ->
85 caпvas.setCap(style));

86 pack();
87
88
89 /**
90 * Создает кнопку-переключатель для выбора
91 * стиля соединения линий
92 * @pararn label Метка кнопки-переключателя
93 * @pararn style Стиль соединения линий
94 * @pararn group Группа кнопок-переключателей
95 */
96 private void rnakeJoinButtoп(Striпg label,

Глава 11 • Расширенные средства Swing и графика

97 final int style, ButtonGroup group)
98
99 // выбрать первую кнопку-переключатель в группе

100 boolean selected = group.getButtonCount() ==О;
101 var button = new JRadioButton(label, selected);
102 buttonPanel.add(button);
103 group.add(button);
104 button.adc:IActionListener(event ->
105 canvas.setJoin(style));
106
107
108 /**
109 * Создает кнопку-переключатель для выбора
110 * сплошных или пунктирных линий обводки
111 * @param label Метка кнопки-переключателя
112 * @param style Принимает логическое значение false,
113
114

*
*

115 * /

если линия сплошная, или логическое

значение true, если линия пунктирная

116 private void makeDashButtoп(Striпg label,
117 fiпal boolean style, ButtonGroup group)
118
119 //выбрать первую кнопку-переключатель в группе

120 boolean selected = group.getButtonCount() ==О;
121 var button = new JRadioButton(label, selected);
122 buttonPanel.add(button);
123 group.add(button);
124 button.adc:IActionListener(event ->
125 caпvas.setDash(style));

126
127
128
129 /**
130 * Этот компонент рисует две соединенные линии,
131 * используя разные объекты обводки и давая
132 * пользователю возможность перетаскивать три точки,
133 * определяющие линии обводки
134 */
135 class StrokeComponent extends JComponent
136 {
137 private static final Dimension PREFERRED SIZE
138 new Dimension(400, 400);
139 private static int SIZE = 10;
140
141 private Point2D[J points;
142 private int current;
143 private float width;
144 private int сар;
145 private int join;
146 private boolean dash;
147
148 puЫic StrokeComponent()
149 {
150 addМouseListener(new MouseAdapter()
151 {
152 puЫic void mousePressed(MouseEvent event)

153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

Point р = event.getPoint();
for (int i =О; i < points.length; i++)
{

douЫe х points[i] .getX() - SIZE / 2;
douЫe у points[i] .getY() - SIZE / 2;
var r = new Rectangle2D.DouЬle(

х, у, SIZE, SIZE);
if (r.contains(p) 1
{

current = i;
return;

169 puЫic void mouseReleased(MouseEvent event)
170 {
171 current = -1;
172)
1 73) 1 ;
174
175 addMouseMotionListener(new MouseMotionAdapter()
176 {
177 puЬlic void mouseDragged(MouseEvent event)
178 {
179 if (current == -11 return;
180 points[current] = event.getPoint();
181 repaint();
182)
183) 1 ;
184
185 points = new Point2D[3];
186 points [О] new Point2D. DouЫe (200, 100);
187 points[l] = new Point2D.DouЬle(l00, 200);
188 points[2] = new Point2D.DouЬle(200, 200);
189 current -1;
190 width = 8.0F;
191
192
193 puЫic void paintComponent(Graphics g)
194 {
195 var g2 = (Graphics2D) g;
196 var path = new GeneralPath();
197 path.moveTo((float) points(OJ .getX(),
198 (float) points[O] .getY() 1;
199 for (int i = 1; i < points.length; i++)
200 path.lineTo((float} points[i] .getX(),
201 (float) points[i].getY());
202 BasicStroke stroke;
203 if (dash)
204 {
205 float miterLimit = 10.0F;

11.З.З. Участки

206 float[] dashPattern = { lOF, lOF, lOF, lOF, lOF,
207 lOF, ЗОF, lOF, ЗОF, lOF, ЗОF, lOF,
208 lOF, lOF, lOF, lOF, lOF, ЗОF);

Глава 11 • Расширенные средства Swing и графика

209 f loat dashPhase = О;

210 stroke = new BasicStroke(width, сар, join,
211 miterLimit, dashPattern, dashPhase);
212
213 else stroke = new BasicStroke(width, сар, join);
214 g2.setStroke(stroke);
215 g2.draw(path);
216
217
218 /**
219 * Устанавливает стиль соединения линий
220 * @param j Стиль соединения линий

221 * /
222 puЫic void setJoin(int j)
223 {
224 join = j;
225 repaint ();
226
227
228 /**
229 * Устанавливает стиль окончания линий
230 * @param с Стиль окончания линий

231 * /
232 puЫic void setCap(int с)

233 {
234 сар = с;

235 repaint();
236
237
238 /**
239 * Устанавливает сплошные или пунктирные линии
240 * @param d Принимает логическое значение false,
241
242
243

*
*
*/

если линии сплошные, или логическое

значение true, если линии пунктирные

244 puЫic void setDash(boolean d)
245 {
246 dash = d;
24 7 repaint () ;
248
249
250 puЫic Dimension getPreferredSize()
251 { return PREFERRED SIZE;)
252

java.awt.Graphics2D 1.2

• void setStroke (Stroke s)

Устанавливает в качестве обводки для данного графического контекста указанный объект,
класс которого реализует интерфейс Stroke.

11.З.З. Участки

java.awt.BasicStroke 1.2

•
•
•
•

BasicStroke(float width)

BasicStroke(float width, int сар, int join)

BasicStroke(float width, int сар, int join, float m.iterlimit)

BasicStroke(float width, int сар, int join, float m.iterlimit,
float[J dash, float dashPhase)

Конструируют объект обводки с заданными свойствами .

Параметры: width Толщина обводки

сар

join

m.iterlimit

dash

dashPhase

Стиль окончания линии : САР _ вuтт.

CAP_ROUND или CAP_SQUARE

Стиль соединения линий:

JOIN _ BEVEL, JOIN _ МIТЕR или JOIN _ ROUND

Предел среза lв градусах! , ниже которого угловой

стык превращается в косой

Пунктир в виде массива длин отображаемых

и пробельных отрезков обводки

Фаза пунктира - длина отрезка. предшествующего

первой точке линии обводки, при условии, что

пунктир уже применяется до этой точки

11.З.5. Раскраска

Внутренняя часть фигуры заполняется путем раскраски. Для установки сти­

Л}t раскраски служит объект, класс которого реализует интерфейс Pa int . Этот
объект передаето1 методу set Pa i nt ().В прикладном интерфейсе Java 20 АР!
для этой цели предусмотрены следующие классы.

• Класс Colo r служит для заполнения фигуры сплошным цветом . Для этого

достаточно вызвать метод setPaint () , указав объект типа Co l or:

g2 . set Pa int (Col or .red);

• Класс Gradient Paint служит для заполнения фигуры градиентом, т.е. цве­

том, постепенно изменяющим свой оттенок (рис. 11.45).

• Класс TexturePaint служит для :ыполнения фигуры текстурой, т.е. повто­

ряющимся рисунком (рис. 11 .46).

Рис. 11.45. Гра;J.иенпшя раскраска

----·--~········ ...
~···········' " , , •••••••••••••••• ••••••••••••••••• , ,

"············· ._ , "••······"­......... " -

Рис. 11.46. Текстурная раскраска

Глава 11 • Расширенные средства Swing и графика

Для создания объекта типа GradientPaint следует указать две точки изме­
нения градиента и цвета, которые должны сменят~, друг друга в этих точках, как

показано ниже.

g2.setPaint(new GradientPaint(pl, Color.RED,
р2, Color.YELLOW));

Постепенное изменение цвета осуществляется по прямой, соединяющей эти

точки. Цвета остаются постоянными вдоль прямых, перпендикулярных к линии

соединения. Для точек, находящихся за пределами соединительной линии, зада­

ются цвета ее конечных точек соответственно.

Если же вызвать конструктор класса GradientPaint с параметром cyclic,
принимающим логическое значение true, то изменение цвета будет происхо­
дит~, циклически за пределами конечных точек соединительной линии.

g2.setPaint(new GradientPaint(pl, Color.RED, р2,

Color.YELLOW, true));

Для создания объекта типа TexturePaint следует указать объект типа
Bufferimage повторяющегося рисунка и прямоугольник привя3ки:

g2.setPaint(new TexturePaint(bufferedimage,
anchorRectangle));

Класс Bufferedimage будет более подробно рассматриваться далее в этой
главе, когда дойдет черед до обсуждения приемов обработки изображений. До

тех пор достаточно сказать, что самый простой способ получить буферизирован­

ное и:юбражение в виде объекта типа Bufferedimage - ввести его из файла:

bufferedimage = ImageIO.read(new File("Ьlue-ball.gif"));

Прямоугольник привязки повторяется бесконечное количество раз в направ­

лениях, параллельных осям х и у, образуя текстуру в виде мозаики. Исходный

рисунок масштабируется таким образом, чтобы вписаться в прямоугольник при­

вязки, а затем повторяется в каждом элементе мозаики.

j ava. awt. Graphics2D 1 . 2

void setPaint (Paint s)

Устанавливает в качестве раскраски для данного графического контекста указанный объект,

класс которого реализует интерфейс Paint.

java.awt.GradientPaint 1.2

• GradientPaint(float xl, float yl, Color colorl, float х2, float
у2, Color color2)

• GradientPaint(float xl, float yl, Color colorl, float х2, float
у2, Color color2, boolean cyclic)

11.З.З. Участки

j ava. awt. Gradien tPain t 1 . 2 (окончание/

• GradientPaint(Point2D pl, Color colorl, Point2D р2, Color color2)

• GradientPaint(Point2D pl, Color colorl, Point2D р2, Color color2,
boolean cyclic)

Создают объект градиентной раскраски. С его помощью фигура заполняется таким образом,

чтобы начальная точка с координатами xl и yl была окрашена цветом colorl, конечная
точка с координатами х2 и у2 - цветом color2, а в промежутке между ними цвет изменял­
ся линейно путем интерполяции. Цвета остаются постоянными вдоль прямой, перпендикуляр­

ной линии, соединяющей начальную и конечную точки. По умолчанию градиентная раскраска

не выполняется циклически. Это означает, что точки, находящиеся за соответствующими пре­

делами градиента, окрашиваются тем же самым цветом, что и начальная и конечная точки

градиента. Если же градиентная раскраска выполняется циклически, то интерполяция цветов

продолжается, возвращаясь сначала к цвету начальной точки, а затем непрерывно повторя­

ясь в обоих направлениях.

java.awt.TexturePaint 1.2

• TexturePaint (Bufferedimage tвxture, Rectangle2D anchor)

Создает объект текстурной раскраски. Прямоугольник привязки определяет мозаичное запол­

нение раскрашиваемого участка. Он повторяется бесконечное число раз в направлении обе­

их осей координат х и у, масштабируя заданное изображение текстуры таким образом, чтобы

оно заполняло каждый элемент мозаики.

11.З.6. Преобразование координат

Допустим, требуется нарисовать такой объект, как автомобиль, по и:шестным

исходным данным (высоте, расстоянию между осями и общей длине в метрах).

Конечно, все координаты рисуемых частей автомобиля можно выразить в пиксе­

лях, подсчитав количество пикселей, приходящихся на метр. Но все это можно

сделать намного проще, запросив соответствующий графический контекст и вы­

полнив в нем преобразование координат следующим образом:

g2.scale(pixelsPerMeter, pixelsPerMeter);
11 преобразовать в пиксели и нарисовать

11 масштабированную соответственно линию:
g2.draw(new Linе2D.DоuЫе(координаты_в_метрах));

Метод scale () из класса Graphics2D выполняет масштабное преобра.ювание

координат в заданном графическом контексте. При этом поль.ювательские коор­

динаты (единицы измерения, указанные пользователем) преобразуются в ат1а­

ратные координаты (пиксели). На рис. 11.47 приведен пример такого преобра~ю­
вания.

Преобразование координат очень удобно применять па практике, поскольку

оно позволяет оперировать общепринятыми единицами измерения. Все хлопоты

по их преобразованию в пиксели берет на себя заданный графический контекст.

Глава 11 • Расширенные средства Swing и графина

~Q~ -1 Г""""'.'-• о -~· о ~~~
170 пикселей ' 2,35м

260 пикселей
З ,7м

Пользовательские координаты Аппаратные координаты

Рис. 11.47. Пользовательские и ап11арат11ые коорлинаты

В языке Java предусмотрены четыре ос1ю1шых вида преобра:юнаний координат.

• Масштабирование. Увеличение или сокращение всех расстояний от фик­

сированной точки.

• Вращение. Поворот всех точек фигуры вокруг фиксированной точки.

• Перемещение. Передвижение всех точек фигуры на фиксированное рас­

стояние.

• Сдвиг. Фиксация одной линии и перемещение всех параллельных ей ли­

ний фигуры на расстояние, пропорциональное расстоянию от данной ли­

нии до фиксированной.

На рис. 11.48 показаны резул~.таты перечисленных ныше видов преобра:юва-
11ия, выполненных 11ад единичным квадратом.

D D о
Исходный Отмасштабированный Повернутый

квадрат

о
Перемещенный Сдвинутый

Рис. 11.48. Основные вилы 11реобразова11ин коорл1шат

Методы sca l e(), rot a te(), translate() и shear () из класса Graphi c s 2 D
реализуют перечисленные выше виды преобра:ювания. Применяя эти методы

н ра :шых сочетаниях, можно выnол11яп, соста11нь1с преобра:ювания, например,

повернуть фигуру и удвоить ее ра:шеры. Длs1 этого достаточно выполнил, опера­

ции нращения и масштабирования следующим обра:юм:

g2.rotate(angle);
g2.sca le(2 , 2) ;
g 2 . draw(.. .) ;

11.3.3. Участки

В да1111ом случае не важно, в какой именно последователыюсти будут ньшо/1-

нял,ся преобра:ю11i\1111я. Но н целом порядок выполнения бол1,ши11ства преобра­

:ю11а11ий u.11ecm :111аче11ие. Так, если требуется повернуть и сдвинул, и :юбражение,

Cililчaлi\ необходимо решить, какое имешю преобра :юва1111е ныполнил, первым,

чтобы доб11ться желаемого ре:1ул1,тата. Прео6ра :юваш1я в графическом контексте

выполш1ются 11 о6рапюм порядке по сран11е11ию с тем, как они были указаны.
Это 0:111ачает, что преобра:юва1111е, ука:1а111юе последним, выполш1ето1 первым .

Допускается любое количеспю преобра:юна1111!1 коорд1111ат. Рассмотрим сле­

дующую последо11атель11ость преобра:юваний:

g 2 . t ranslate (х, у) ;

ч 2 .rotat.e(a);

g 2 . t r a nsl.at.e(-x, -у);

Последнее преобразоnание (которое nыполняется перnым) неремещает всю

фигуру таким образом, чтобы то•1ка с координатами (х, у) совпала с точкой 11ача­

,ы отсчета. Второе преобразова1111е 11оворачивает фигуру на угол а вокруг точки

11а•1ала отсчета. Последнее 11реобра :юва1ше снова 11еремещает всю фигуру таким

образо:-.1, чтобы точка с коорд1111атами (х, у) сов11ала с точкоi1 начала отсчета.

13 итоге фшура 11оворач11вается вокруг точки с координатами (х, у), как 1юказано
11а рис. 11.49. Вращение фигуры вокруг точки, отличающейся от начала отсчета,

вы1юлняется дово,1ыю часто, rннтому для nыrюлнения данной 011еращш 11ред­

усмотре11 следующий метод:

q 2 . rotate (а, х, у) ;

Рис. 11.49. Соста1mые 11реоfiра :юва11ш1

Глава 11 • Расширенные средства Swing и графика

Как известно из теории матриц, вращение, масштабирование, перемещение,

сдвиг и различные их сочетания могут быть выражены в виде матриц преобразо­

вания следующим образом:

rx"'"'1-ra с е 1 rx1 упт - ь d ! • у

1 о о 1 1

Такие преобразования называются аффинными, а в прикладном интерфейсе

Java 20 API они описываются с помощью класса AffineTransform. Объект аф­
финного преобразования можно непосредственно создать, если известны компо­

ненты матрицы преобразования:

var t = new AffineTransform(a, Ь, с, d, е, f);

Для реализации отдельных типов преобра:юваний предусмотрены так­

же фабричные методы getRotateinstance (), getScaleinstance (),
getTranslateinstance () и getShearinstance (),назначение которых можно
легко определить по их названию. Например, при вызове метода

t = AffineTransform.getScaleinstance(2.0F, 0.5F);

возвращается преобразование, которое соответствует такой матрице:

r~ 0~5 ~1
Наконец, методы экземпляра setToRotate (), setToScale (),

setToTranslation () и setToShear () служат для указания нового вида преоб­
разования. Например:

11 установить вращение на заданньм угол:
t.setToRotation(angle);

Для замены текущего преобразования координат в графическом контексте

аффинным преобразованием, представленным объектом типа AffineTransform,
служит метод

g2.setTransform(t); 11 заменить текущее преобразование

Но на практике вызывать метод setTransform() все же не рекомендуется, по­
скольку он заменяет любое преобразование, которое может присутствовать в гра­

фическом контексте. Например, графический контекст для печати страницы с аль­

бомной ориентацией уже содержит преобразование вращением на 90°, и поэтому
при вызове метода setTransform () данное преобразование отменяется. В таком
случае вместо метода setTransform () рекомендуется вызвать метод trans form (),
как показано ниже. Этот метод объединяет текущее преобразование с новым объ­

ектом типа AffineTransform, представляющим аффинное преобразование.

11 составить текущее преобразование вместе с афинным:

g2.transform(t);

Если же требуется выполнить какое-нибудь преобразование временно, то

сначала следует сохранить предыдущее преобразование, затем составить вместе

11.Э.Э. Участки

с ним новое преобразование и восстановить прежнее преобразование, как пока­

зано в приведенном ниже фрагме~пе кода.

11 сохранить прежнее преобразование:

AffineTransform oldTransform = g2.getTransform();
g2.transform(t); //выполнить временное преобразование
рисовать в графическом контексте g2
//восстановить прежнее преобразование:

g2.setTransform(oldTransform);

java.awt.geom.AffineTransform 1.2

• douЫe :f')

• AffineTransform(float а, float Ь, float с, float d, float е, float :f')

Конструируют аффинное преобразование по приведенной ниже матрице.

•
•

•

l~ ~ { ~
AffineTransform (douЫe [] m)

AffineTransform(float[] m)

Конструируют аффинное преобразование по приведенной ниже матрице.

l П1[0] П1[2] П1[4]j
П1[1] П1[3] П1[5]

о о 1

static AffineTransform getRotateinstance(douЫe а)

Задает преобразование вращением против часовой стрелки вокруг точки начала отсчета

на угол а, указываемый в радианах. Ниже приведена матрица такого преобразования.

r
cos(a) -sin(a)

sin(a) cos(a)

о о

Если значение параметра а находится в пределах от О до п/2, то вращение происходит в на­

правлении от положительной оси х до положительной оси у.

• static AffineTransform getRotateinstance(douЬle а,

douЫe х, douЬle у)

Задает преобразование вращением против часовой стрелки вокруг точки с координатами

lx, yJ на угол а, указываемый в радианах.
• static AffineTransform getScaleinstance(douЫe sx, douЫe sy)

Задает преобразование масштабированием с масштабными коэффициентами sx и sy
по осям х и у соответственно. Ниже приведена матрица такого преобразования.

о

sy

о

Глава 11 • Расширенные средства Swing и графика

java. awt. geom .AffineTransform 1. 2 (окончнаие/

• static AffineTransform qetShearinstance (douhle shx, douhle shy)
Задает преобразование сдвигом с коэффициентами shx и shy по осям х и у. Ниже

приведена матрица такого пpeoбpaзoвaния.AffineTransform (douЫe а,

douhle Ь, douЬle с, douЬle d, douЬle е, static AffineTransform
qetTranslateinstance (douЬle tx, douЬle ty)

•
•
•

Задает преобразование перемещением на расстояния tx и ty по осям х и у. Ниже приведе­
на матрица такого преобразования.

1 ~ ~ :;1 l о о 1

void setToRotation(douЬle а)

void setToRotation(douЬle а, douЬle х, douЬle у)

void setToScale(douЬle sx, douЬle sy)

void setToShear(douЬle sx, douЬle sy)

void setToTranslation(douЬle tx, douЬle ty)

Устанавливают аффинное преобразование в соответствии с указанными параметрами. Эти

параметры интерпретируютсR таким же образом, как и в упомянутых выше методах типа
getxxxinstance () для основных преобразований.

java.awt.Graphics2D 1.2

• void setTransform(AffineTransform t)

Заменяет существующее преобразование координат в данном графическом контексте указан­

ным аффинным преобразованием t.

• void transform (AffineTransform t)

Составляет преобразование координат, существующее в данном графическом контексте, вме­

сте с аффинным преобразованием t.

• void rotate (douЬle а)

•
•
•
•

void rota te (douЬle а, douЬle х, douЬle у)

void scale(douЬle sx, douЬle sy)

void shear(douЬle sx, douЬle sy)

void translate(douЬle tx, douЬle ty)

Составляют преобразование координат, существующее в данном графическом контексте,

вместе с основным преобразованием по указанным параметрам. Эти параметры интерпре­
тируются таким же образом, как и в упомянутых выше методах типа qetXxxinstance ()
для основных преобразований.

11.3.7. Отсечение
Для выполнения всех графических операций только внутри ограниченного

участка в графическом контексте предусмотрена фигура отсечения:

11.З. З. Участки

g2.setClip(clipShape); //можно, но лучше все же

11 воспользоваться приведенным ниже методом:

g2.draw(shape); 11 рисовать толь ко внутри фигуры отсечения

Но на практике вызывал, метод se tCl ip () 11е рекомендуется, поскольку 011 :1а­
ме11яет все существующие фигуры отсечения в данном графическом контексте.

Как будет пока:ы1ю далее, графический ко11текст для печати уже содержит пря­

моуголышк отсечения, который по:щоляет избежать появления да1111ых на полях

страницы. В ·:Jтом случае вместо метода setClip () лучше вы:шал, метод clip ()
следующим оfiра:юм:

g2.clip(clipShape); //лучше вызвать именно этот метод

Метод clip () образует пересече11ие существующей фигуры отсечения сука­
:~ашюй фигурой. Если же фигуру отсечения требуется приме1тт1, временно, то

сначала следует сохранить прежнюю фигуру, :1атем добавил, новую и восстано-

111111> прежнюю. Ниже приведен характерный тому пример.

Shape oldClip = g2.getClipl); //сохранить прежнее отсечение

g 2 . c liplclipShapeJ; 11 произвести временное отсечение
ри,~овать в графическом контексте g2
g2 . setClipl o l dC lip) ; //восста новить прежнее отсечение

На рис. 11.50 110:1можности отсечения демонстрируются 1ia примере рисова­
ния до1юлыю 11е11ростого штрихо1юго рисунка, который отсекается сложной фи­

гурой, а именно контуром ряда сим1юлов.

Hello
World

Рис. 11.50. L)тсече11ие штрихового
р11су11ка фи1урами 6укв

Для получения контуров символов требуется контекст 11ас11рои.;11е()енuя шриф­

тtт. С ·лой целыо сначала вы:~ынается метод get FontRenderContex t () из класса
Gr·<1ph i cs2 О:

Font RenderCont e xt context = g2.getFontRe nde r Context ();

Затем со:~дается объект расположе11ия текста типа TextLayo u t , для чего 1к­
r10111,зуется символы~ая строка, шрифт и ктггекст воспроизведе11ия шрифтов:

var layoll t = пеw TextLayout("Hello", f ont, conte x t) ;

Объект расположения текста описывает последователыюст1, символов,

расположение и оформление которых определяется выбра1111ым контекстом

Глава 11 • Расширенные средства Swing и графика

воспроизведения шрифтов. Как известно, одни и те же символы могуr по-разно­

му выглядеть на экране и на печатной странице.

Но важнее другое: метод getOutline () возвращает объект типа Shape, опи­
сывающий фигуру контура символов в расположении текста. Эта фигура на­

чинается в точке начала отсчета с координатами (0,0). Но если такое располо­
жение не подходит, то при вызове метода getOutline () задается аффинное

преобразование, позволяющее указать, в какой именно точке должен появиться

контур:

AffineTransform transform =
AffineTransform.getTranslateinstance(O, 100);

Shape outline = layout.getOutline(transform);

Затем контур присоединяется к фигуре отсечения следующим образом:

var clipShape = new GeneralPath();
clipShape.append(outline, false);

Наконец, устанавливается фигура отсечения и рисуются линии штриховки,

как показано ниже. В итоге линии появляются только внутри символов.

g2.setClip(clipShape);
var р = new Point2D.DouЬle(O, 0);
for (int i О; i < NLINES; i++)
{

douЫe х

douЬle у .,
var q = new Point2D.DouЬle(x, у);

11 отсечь линии штриховки:

g2.draw(new Line2D.DouЬle(p, q));

java.awt.Graphics 1.0

• void setClip (Shape s) 1. 2

Задает фигуру s в качестве текущей фигуры отсечения.

• Shape qetClip () 1 . 2

Возвращает текущую фигуру отсечения.

j ava. awt. Graphics2D 1 . 2

• void clip (Shape s)

Образует пересечение текущей фигуры отсечения с заданной фигурой s.

FontRenderContext qetFontRenderContext()

Возвращает контекст воспроизведения шрифтов, требующийся для создания объекта типа

TextLayout.

11.З.З. Участки

java.awt.font.TextLayout 1 . 2

• TextLayout(Strinq s, Font f, FontRenderContext context)

Создает объект TextLayout, исходя из заданной символьной строки, шрифта и контекста
воспроизведения шрифтов.

• float qetAdvance ()

Возвращает ширину данного расположения текста.

• float qetAзcent ()

• float qetDeзcent()

Возвращают высоту данного расположения текста относительно базовой линии .

• floa t qetLeadinq ()

Возвращает расстояние между соседними строками для шрифта , применяемого в данном

расположении текста.

11.З.8. Прозрачность и композиция

В стандартной цветовой модели RGB каждый цвет описывается по трем его
ооювным составляющим: красной, зеленой и синей. Но иногда отдельные участ­

ки и :юбражения удобно сделап, прозрачными или частично прозрачными . При

наложении рисунка на уже существующее изображение прозрачные пиксели не

закрывают находящиеся под ними пиксели, а частично прозрачные пиксели сме­

шиваются с нижележащими пикселями. На рис. 11.51 приведен резул1,тат нало­
жения частично прозрачного прямоугольника на уже имеющееся изображение.

Обратите внимание на то, что детали изображения, находящиеся под прямоу­

голы1иком, по-прежнему видны.

Рис. 11.51. Наложение частично
про3ра•11юю 11рямоугольника на и :юбраже11ие

В прикладном интерфейсе Java 20 АР! прозрачносп, описывается с помощ1,ю
альфа-канала. Каждый пиксел~,, кроме красной, зеленой и синей составляющей

цвета, имеет значение прозрачности в альфа-канале, изменяющееся в предела

от О (полностью прозрачен) до 1 (совершенно непрозрачен). Например, прямоу­

голы1ик на рис. 11.51 заполнен бледно-желтым цветом с прозрачностью 50% сле­
дующим образом:

new Co l or(0. 7f, 0 . 7f , O.Of, 0 . 5f) ;

Тепер1, рассмотрим пример наложения двух фигур. Для этого требуется сме­

шал, или составить цвета и :тачения прозрачности в ал1,фа-канале исходных

Глава 11 • Расширенные средства Swing и графика

и целевых пикселей. Исследователи Портер (Porter) и Дафф (Duff) в области ком­
ш,ютерной графики сформулировали двенадцать возможных правил ко.м1103uции,

которые реализованы в прикладном интерфейсе Java 20 API. Однако только два
из них имеют практическое применение. Если эти правила покажутся слишком

сложными, то вместо них рекомендуется использовать простое правило SRC _

OVER, которое применяется по умолчанию к объектам типа Graphics2D и дает

интуитивно понятные результаты .

Рассмотрим вкратце теоретические основы правил композиции. Допустим,

исходный пиксель имеет значение прозрачности в альфа-канале а :;, а целевой r1ик­

сел11 - значение прозрачности а о. На рис. 11.52 показана диаграмма, схематиче­
ски поясняющая правило композиции для этих значений.

s

о ?

Рис. 11.52. Схематическое
представление правила композиции

Портер и Дафф считают, что значение прозрачности в альфа-канале выража­

ет вероятность использования цвета пикселя при объединении изображений. Для

исходного пикселя первоначальный цвет будет использоваться с вероятностью a s

и не использоваться с вероятностью 1 - as. Это же справедливо и для целевого

пикселя. Допустим, при составлении цветов эти вероятности независимы. На рис.

11.52 показаны четыре возможные ситуации. Если требуется использовать преи­
муществешю цвет исходного, а не целевого пикселя (эта ситуация обозначена бук­

вой S), то вероятность такого события равна a s · (1 - а о) . Аналоrично вычисляется

вероятность ао · (1 - a s) преимущественного исполь:ювания цвета целевого, а не

исходного пикселя (эта ситуация обозначена буквой D). Что же делать, если в ис­

ходном и целевом изображениях преимущественно выбирается свой цвет? Имен­

но в этой ситуации используются правила композиции Портера-Даффа. Если

предпочтение отдается исходному цвету, в таком случае правый нижний угол ди­

аrраммы помечается буквой S, а само правило компо:sиции называется SRC _ OVER.

По этому правилу исходный и целевой цвета сочетаются с весом a s и аг · (1 - a s)

соответственно.

Визуальный эффект применения этого правила композиции состоит в том,

что при смешении цветов исходного и целевого пикселей приоритет отдается

цвету исходного пикселя. В частности, если ас' = 1, то цвет целевого пикселя
вообще не принимается во внимание. Если a s = О, то исходный пиксель стано­

вится совершенно прозрачным, тогда как цвет целевого пикселя не изменяется.

11.З.З. Участки

В :1ависимости от того, как расставлены буквы щ1 диаграмме, можно сформи­

ровать и другие правила компо:шции. Все правила компо:1иции, поддерживаемые

в прикладном интерфейсе Java 20 АР!, перечислены в табл. 11.3 и схематически
пока:1аны на рис. 11.53. И:юбражения на этом рисунке представляют ре:~ультаты
применения правил компо3иции к прямоуголыюму участку исходного и:юбраже­

ния со степенью прозрачности О, 7 5 в альфа-ка11t1ле и ::млиптическому участку

целевого и :юбражения со степеныо nро:1рачности 1, О в альфа-канале.
Как можно :1аметить, бол1,шинство этих правил вряд ли применяются

на практике. Так, например, правило композиции DST _ I N представляет собой
крайний случай, когда во внимание совсем не принимается цвет исходного пик­

селя, тогда как его альфа-канал исполь3уется для и:iмене11ия целевого пикселя. В

отличие от него, правило компо:шции SRC может ок;,1:1а1ъся удобным, потому что

оно предписывает испол1,:ювап, исходный цвет, исключая смешение с целевым

цветом. Более подробно о правилах Портера-Дt1ффа можно прочитан в упо­

минавшейся ранее книге Computcr Graphics: P1·i11ciples a11d Practice, Thi1·d Editito11
Джеймса Фоли, Андриса ван Дама, Стивена Фэйнера и др.

Для соJдания объекта правила композиции, класс которого реали:~ует ин­

терфейс Composi te, служит метод setComposi t.e () и:1 класса Graphics2 О. В
состав прикладного интерфейса Java 20 API входит лишь один такой класс -
AlphaComposi t e . В этом классе реализованы все пра11илt1 Портера-Даффа, пред­
ставленные на рис. 11.53.

CLEAR EJ ЕЕ SRC_OUT ~ EF1
SRC • ffiJ DST_IN ~ вт
DST ~ ~ DST_OUT EJ ~

SRC_OVER • l o l ~I SRC_ATOP EJ ~
DST_OVER • lol ~ I DSТ_ATOP • вш

SRC_IN ~ Е@ XOR • ~

Рис. 11.53. Правила композиции Пор1ера-Даффа

Глава 11 • Расширенные средства Swing и графика

Таблица 11.3. Правила композиции Портера-Даффа

Правило Описание

CLEAR Исходные пиксели очищают целевые

SRC Исходные пиксели перезаписывают целевые и пустые пиксели

DST Исходные пиксели не оказывают никакого влияния на целевые пиксели

SRC OVER Исходные пиксели смешиваются с целевыми и перезаIIисывают нустые

пиксел и

DST OVER Исходные пиксели не оказывают никакого влияния на целевые пиксели

и перезаписывают пустые пиксели

SRC IN Исходные пиксели перезаписывают целевые пиксели

SRC ОUТ Исходные пиксели очищают целевые пиксели и перезаписывают пустые

пиксел и

DST IN Прозрачность в альфа-канале исходного изображения видои:1меняет целевое

изображение

DST ОUТ Дополнение до прозрачности в альфа-канале исходного и:юбражения

видоизменяет целевое изображение

SRC АТОР Исходные пиксели смешиваются с целевыми

DST АТОР Прозрачность в альфа-канале исходного изображения видоизменяет целевое

изображение. Исходные пиксели перезаписывают пустые пиксели

XOR Дополнение до прозрачности в альфа-канале исходного изображения

видоизменяет целевое изображение. Исходные пиксели перезаписывают

пустые пиксели

Для создания экземпляра правила типа AlphaComposi te служит фабричный
метод getinst.ance () из класса AlphaComposi te. В качестве параметров этого
метода указываются правило композиции и значение прозрачности в альфа-ка­

нале для пикселей исходного изображения, как показано в приведенном ниже

фрагменте кода.

int rule = AlphaComposite.SRC OVER;
float alpha = O.Sf;
g2.setComposite(AlphaComposite.getinstance(rule, alpha));
g2.setPaint(Color.Ьlue);

g2.fill(rectangle);

В этом фрагменте кода прямоугольник заполняется синим цветом со степе­

нью прозрачности О, 5 в альфа-канале. В соответствии с заданным правилом ком­
позиции SRC _ OVER этот прямоугольник прозрачно накладывается на уже суще­

ствующее изображение.

В примере программы из листинге 11.17 предоставляется возможность иссле­
довать правила композиции. Для этого достаточно выбрать конкретное правило

из комбинированного списка и установить ползунковым регулятором степень

прозрачности в альфа-канале для объекта типа AlphaComposi te.
В нижней части рабочего окна данной программы приводится краткое опи­

сание каждого правила композиции. Обратите внимание на то, что это описа­

ние автоматически составляется по диаграммам правил композиции. Например,

строка "DS" во втором ряду диаграммы приводит к появлению в описании пра­
вила композиции строки "Ьlends with destination" (смешивается с цветом целе­
вого изображения).

11.З.З. Участки

Но эта программа совсем не гарантирует, что используемый графический

контекст, соответствующий экрану, имеет ал1.фа-канал. Когда пиксели наклады­

наются на це11евое изображение без ал1,фа-ка11ала, цнета пикселей умножают­

ся 11а степеш, прозрачности в ал1.фа-канале, а затем эта степе111, отбрасывается.

В ряде правил композиции Портера-Даффа используются степени прозрачно­

сп1 n алыра-кzшале целевого изображения, и это указывает на 11ажную роль аль­
фа-канала. Поэтому для состамения и:юбражений (в данном случае - фигур)

исполиуется буферизированное и:юбражение с цветовой модел1,ю ARCB. После
составления результирующее изображение выводится на экран, как пока:}а110

н приведенном ниже фрагменте кода.

var image = new Bufferedimage(getWidth(), getHeight (),
Buffe r edlmage.TYPE_ INT_ARGB);

Graphic s 2D glmage = image.createGr aph1cs();
11 а теперь рисовать на изображении glmage
g2.drawlmage(image, null, О, 0);

В листингах 11.17 и 11.18 представле11 исходный код классов фрейма и ком­
понента. Класс Ru le из листинга 11.19 предоставляет краткое описание каждо­
го правила композиции, как показа110 на рис. 11.54. После запуска программы
на выполнение переместите пол:\унок регулятора слева направо, чтобы посмо­

треть результат применения выбранного правила композиции для наложения

фигур при разных степенях прозрачности в альфа-канале. Обратите особое вни­

мание на то, что правила DST _ I N и DST _ OUT отличаются лишь направлением из­
менения цвета целевого изображения (!) при изменении степени прозрачности
в альфа-канале исходного изображения.

[8 :co111positeтest ·-. ---- - -- ----. -~ Г...: fо [х

SRCOVER ..,.. Alph& ===Q=

Source Ыends w1th destination and overwrites empty p1xels .J

Рис. 11.54. Рабо•1ее окно нро1раммы Composi teTest

Глава 11 • Расширенные средства Swing и графика

Листинг 11.17. Исходный код из файла composi te/Composi teTestFrame. java

1 package composite;
2
3 import java.awt.*;
4
5 import javax.swing.*;
6
7 /**
8 * Этот фрейм содержит комбинированнь~ список для
9 * выбора правил, композиции, ползунок для изменения

10 * прозрачности в альфа-канале исходного изображения,

11 * а также компонент для отображения результатов

12 * составления изображений
13 */
14 class CompositeTestFrame extends JFrame
15 {
16
17
18
19
20
21
22
23

private static final int DEFAULT WIDTH = 400;
private static final int DEFAULT HEIGHT = 400;

private
private
private
private

CompositeComponent canvas;
JComboБox<Rule> ruleCombo;
JSlider alphaSlider;
JTextField explanation;

24 puЫic CompositeTestFrame()
25 {
26 setSize(DEFAULT_WIDTH, DEFAULT HEIGHT);
27
28 canvas = new CompositeComponent();
29 add(canvas, БorderLayout.CENTER);

30
31 ruleCombo = new JComboБox<>(new Rule[]
32 { new Rule ("CLEAR", " "),
33 new Rule("SRC", "S", "S"),
34 new Rule("DST", "" "DD"),
35 new Rule("SRC_OVER", "S", "DS"),
36 new Rule("DST OVER", "S", "DD"),
37 new Rule("SRC IN", " " " S"),
38 new Rule("SRC_OUT", " S", " "),
39 new Rule("DST IN", "","О"),
4 О new Rule ("DST _ OUT", " ", "D ") ,
41 new Rule("SRC_ATOP", "", "DS"),
42 new Rule("DST_ATOP", " S", " D"),
43 new Rule("XOR", "S", "D "),));
44 ruleCombo.addActionListener(event ->
4 5 {
46 var r = (Rule) ruleCombo.getSelecteditem();
47 canvas.setRule(r.getValue());
48 explanation.setText(r.getExplanation());
4 9 }) ;
50
51 alphaSlider = new JSlider(O, 100, 75);
52 alphaSlider.addChangeListener(event ->
53 canvas.setAlpha(alphaSlider.getValue()));

11.З.З. Участки

54 var panel = new JPanel();
55 panel.add(ruleComЬo);

56 panel.add(new JLabel("Alpha"));
57 panel.add(alphaSlider);
58 add(panel, BorderLayout.NORTH);
59
60 explanation = new JTextField();
61 add(explanation, BorderLayout.SOUTH);
62
63 canvas.setAlpha(alphaSlider.getValue());
64 Rule r = ruleComЬo.getitemAt(

65 ruleComЬo.getSelectedindex());
66 canvas.setRule(r.getValue());
67 explanation.setText(r.getExplanation());
68
69

Листинг 11.18. Исходный код из файла composite/CompositeComponent. java

1 package composite;
2
З import java.awt.*;
4 import java.awt.geom.*;
5 import java.awt.image.*;
6 import javax.swing.*;
7
8 /**
9 * Этот компонент рисует две формы,
10 * составленные по правилу композиции
11 */
12 class CompositeComponent extends JComponent
13 {
14 private int rule;
15 private Shape shapel;
16 private Shape shape2;
17 private float alpha;
18
19 puЫic CompositeCoшponent()

20 {
21
22
23
24

shapel
shape2

new Ellipse2D.DouЬle(l00, 100, 150, 100);
new Rectangle2D. DouЫe (150, 150, 150, 100);

25 puЫic void paintCoшponent(Graphics g)
2 6 {
27 var g2 = (Graphics2D) g;
28
29 var image = new Bufferedimage(getWidth(),
30 getHeight(), Bufferedimage.TYPE __ INT_ARGB);
31 Graphics2D giшage = iшage.createGraphics();
32 giшage.setPaint(Color.red);

33 gimage.fill(shapel);
34 AlphaCoшposite composite =

35 AlphaCoшposite.getinstance(rule, alpha);
36 gimage.setCoшposite(composite);

Глава 11 • Расширенные средства Swing и графика

37 gimage.setPaint(Color.Ыue);

38 gimage.fill(shape2);
3 9 g2. drawimage (image, null, О, О) ;
40
41
42 /**
43 * Устанавливает правило композиции
44 * @param r Правило композиции (в виде константы

45 * из класса AlphaComposite)
46 */
47 puЬlic void setRule(int r)
48 {
49 rule = r;
50 repaint();
51
52
53 /**
54 * Устанавливает значение прозрачности в
55 * альфа-канале исходного изображения
56 * @param а Значение прозрачности в пределах

57 * ОТ 0 ДО 100
58 */
59 puЫic void setAlpha(int а)

60 {
61 alpha = (float) а / 100.0F;
62 repaint();
63
64

Листинг 11.19. Исходный код из файла composi te/Rule. java

1 package composite;
2
3 import java.awt.*;
4
5 /**
6 * Этот класс описывает правило композиции Портера-Даффа
7 * /
8 class Rule
9 {
10 private String name;
11 private String porterDuffl;
12 private String porterDuff2;
13
14 /**
15 * Составляет правило композиции Портера-Даффа
16 * @param n Название правила композиции
17 * @param pdl Первьм ряд квадратов в правиле

18 * композиции Портера-Дафа

19 * @param pd2 Второй ряд в квадратов правиле
21 * композиции Портера-Дафа

22 */
23 puЫic Rule(String n, String pdl, String pd2)
24 {
25 name = n;

26
27
27
28

porterDuffl
porterDuf f2

pdl;
pd2;

29 /**
30 * Получает объяснение композиции по данному правилу
31 * @returп Объяснение композиции по данному правилу
32 */
33 puЫic String getExplanation()
34 {
35 var r = new StringBuilder("Source ");
36 if (porterDuff2.equals(" "))
37 r.append("clears");
38 if (porterDuff2. equals (" S"))
39 r.append("overwrites");
40 if (porterDuff2 .equals ("DS"))
41 r.append("Ьlends with");
42 if (porterDuff2.equals(" D"))
43 r.append("alpha modifies");
44 if (porterDuff2.equals("D "))
45 r.append("alpha complement modifies");
46 if (porterDuff2.equals("DD"))
47 r.append("does not affect");
48 r.append(" destination");
49 if (porterDuffl.equals(" S"))
50 r.append(" and overwrites empty pixels");
51 r.append(".");
52 return r.toString();
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

puЫic String toString()
{

return name;

/**
* Получает значение по данному правилу
* в классе AlphaComposite
* @return Значение константы из класса
* AlphaComposite или значение -1, если

* соответствующая константа отсутствует

*/
puЫic int getValue()
{

try
{

return (Integer) AlphaComposite.class
.getField (name) .get (null);

74 catch (Exception е)

75 {
76 return -1;
77
78
79

11.Э.Э. Участки

Глава 11 • Расширенные средства Swing и графика

java.awt.Graphics2D 1.2

• void setComposi te (Composi te s)

Устанавливает указанный объект, класс которого реализует интерфейс Composite, в каче­
стве правила композиции для данного графического контекста.

java.awt.AlphaComposite 1.2

• static AlphaComposite getinstance(int rule)

• static AlphaComposite getinstance(int rule, float sourceA.lpha)

Создают объект композиции на основе заданного правила и значения в альфа-канале.

Параметр rule, задающий правило композиции, может принимать одно из следующих зна­
чений: CLEAR, DST, SRC, SRC_OVER, DST_OVER, SRC_AТOP, SRC_IN, SRC_OUТ, DST_AТOP,
DST _ IN, DST _ ОUТ, XOR.

11.4. Растровые изображения
Применяя прикладной интерфейс Java2D API, можно создавать рисунки,

состоящие из линий, кривых и участков. Этот прикладной интерфейс служит

для построения векторной графики, поскольку для этой цели требуется указы­

вать математические свойства фиrур. Но для обработки изображений, состоящих

из отдельных пикселей, требуется оперировать растровыми данными цвета. В по­

следующих разделах поясняется, каким образом организуется обработка растро­

вых изображений в Java.

11.4.1. Чтение и запись изображений
В пакете j avax. imageio содержатся готовые средства для чтения и записи

файлов изображений в ряде наиболее употребительных форматов, а также би­

блиотека для чтения и записи файлов других форматов. В частности, поддержи­

ваются форматы GIF, JPEG, PNG, ВМР (растровый формат для Windows) и WBMP
(Wiгeless Bitmap - растровый формат для беспроводных сетей).

Основные функциональные возможности, доступные в библиотеке для чтения

и записи изображений, чрезвычайно просты. Так, для загрузки изображения из

файла применяется статический метод read () из класса ImageIO:

Fi le f = . . . ;
Bufferedimage image = ImageIO.read(f);

Класс ImageIO выбирает соответствующее средство чтения, исходя из типа
файла. Он проверяет расширение файла и соответствующее значение в заголов­

ке файла. Если для чтения данного файла нельзя найти подходящее средство

или оно не в состоянии расшифровать содержимое файла, то статический метод

read () из этого класса возвращает пустое значение null.
Так же просто осуществляется запись и:юбражения в файл, как показано

в приведенном ниже фрагменте кода. В данном случае форматирующая строка

11.4. Растровые изображения

в переменной format определяет формат изображения (например, JPEG или
PNG), а класс ImageIO выбирает соответствующее средство записи и сохраняет
изображение в файле.

Filef= ... ;
String format = ... ;
ImageIO.write(image, format, f);

11.4.1.1. Получение средств чтения и записи изображений по типам файлов
Для выполнения расширенных операций записи и чтения изображений, ко­

торые выходят за пределы простого использования статических методов read ()
и write () из класса ImageIO, необходимо прежде всего получить объекты типа
ImageReader и ImageWri ter соответственно. В классе ImageIO перечисляются
средства чтения и записи, отвечающие одному И3 следующих условий.

• Формат изображения, например JPEG.

•
•

Расширение файла, например jpg .

Тип MIME, например image/jpeg .

НА ЗАМЕТКУ! Стандарт MIME IMultipurpose lnternet Mail Extensions - многоцелевые расши­
рения почты в Интернете! определяет общие форматы данных !например, image/jpeg или
applica tion/pdfi.

Например, с помощью приведенного ниже фрагмента кода мож­

но получить средство чтения файлов изображений формата JPEG. Методы
getimageReaderBySuffix () и getimageReaderByMIMEType () возвращают сред­
ства чтения файлов изображений с указанным расширением или типом MIME.
ImageReader reader = null;
Iterator<ImageReader> iter =

ImageIO.getimageReadersByFormatName("JPEG");
if (iter.hasNext()) reader = iter.next();

Класс ImageIO позволяет обнаружить несколько средств чтения, каждое из ко­
торых способно обработать файлы изображений конкретного типа. В этом слу­

чае средство чтения выбирается исходя из более подробных сведений, которые

можно получить с помощью интерфейса поставщика услуг следующим образом:

ImageReaderSpi spi = reader.getOriginatingProvider();

Затем можно получип, название поставщика и номер версии:

String vendor = spi.getVendor();
String version = spi.getVersion();

Возможно, эти сведения помогут сделать выбор подходящего средства чтения

или хотя бы составить список доступных средств, чтобы пользователи могли вы­

брать наиболее подходящее из них по своему усмотрению. Но для начала будем

считать, что для чтения файлов изображений подходит первое же перечислен­

ное средство.

В примере программы из листинга 11.20 требуется найти расширения файлов
для всех доступных средств чтения, чтобы исполь:ювать их в фильтре файлов. Для

Глава 11 • Расширенные средства Swing и графика

этой цели следует вызвать статический метод ImageIO. getReaderFileSuffixes (),
как показано ниже.

String[] extensions = ImageIO.getWriterFileSuffixes();
chooser.setFileFilter(new FileNameExtensionFilter(

"Image files", extensions));

Что же касается сохранения изображений в файлах, то для этого потребует­

ся больше усилий. Хотелось бы, конечно, предоставить пользователю меню со

всеми поддерживаемыми форматами изображений. Но, к сожалению, метод

getWri terFormaNames () из класса IOimage для этой цели не подходит, потому
что он возвращает не совсем обычный перечень с лишними вариантами назва­

ний форматов, например, следующий:

jpg, ВМР, bmp, JPG, jpeg, wbmp, png, JPEG, PNG, WBMP, GIF, gif

Но это не совсем то, что должно отображаться в предполагаемом меню. Ведь

это должен быть перечень только предпочитаемых названий форматов. Поэтому

для этой цели используется вспомогательный метод getWriterFormats () (см.

листинг 11.20). Сначала в этом методе отыскивается первое средство записи, ас­
социируемое с названием каждого формата, а затем у него запрашиваются име­

ющиеся названия форматов в надежде, что первым будет перечислен наиболее

подходящий формат. Для средства записи изображений в файлы формата JPEG
такой подход вполне пригоден, поскольку первым это средство, естественно, пе­

речислит формат JPEG. (А вот средство записи изображений в файлы формата
PNG перечислит первым не название формата PNG, а его строчный эквивалент
png. Можно надеяться, что в ближайшем будущем этот недостаток будет устра­
нен, а до тех пор все строчные буквы в названии форматов придется преобразо­

вать в прописные.) После выбора названия предпочтительного формата все его

альтернативные названия просто удаляются из исходного набора, и так происхо­

дит до тех пор, пока не будут обработаны все названия форматов.

11.4.1.2. Чтение и запись файлов с несколькими изображениями
Некоторые файлы, например анимационного формата GIF, могут содер­

жать несколько изображений. Но статический метод read () из класса ImageIO
позволяет прочитать только одно из них. Для чтения нескольких изображений

необходимо преобразовать сначала источник входных данных (например, по­

ток ввода или файл) в объект потока ввода изображений, относящийся к типу

ImageinputStream, следующим образом:

InputStream in = • • . ;

ImageinputStream imagein =
ImageIO.createimageinputStream(in);

Затем этот объект следует присоединить к средству чтения, вызвав следую­

щий метод:

reader.setinput(imagein, true);

Второй параметр этого метода принимает логическое значение true, а это озна­
чает, что поток ввода находится в режиме просмотра данных только в прямом на­

правлении. Логическое значение false этого параметра допускает произвольный

11.4. Растровые изображения

доступ. В этом случае данные, читаемые из потока ввода, буферизуются, или вво­

дятся в режиме произвольного доступа к файлу. Произвольный доступ требует­

ся только для определенных операций. Например, для подсчета количества изо­

бражений в файле анимационного формата GIF нужно прочитать весь этот файл.
Если затем потребуется извлечь какое-нибудь изображение, то придется снова

прочитать все введенные данные.

Это имеет значение только для чтения из потока ввода, если файл содержит

несколько изображений, а формат изображения в его заголовке не предоставляет

нужных сведений, например, о количестве изображений. Для чтения изображе­

ний непосредственно из файла можно воспользоваться приведенным ниже фраг­

ментом кода.

File f= ... ;
ImageinputStream imagein =

ImageIO.createimageinputStream(f);
reader.setinput(imagein);

Присоединив средство чтения к потоку ввода изображений, можно присту­

пать к вводу из этого потока, вызвав приведенный ниже метод, где index - это

индекс изображений, начиная с нуля.

Bufferedimage image = reader.read(index);

Если поток ввода находится в режиме просмотра данных только в прямом на­

правлении, то изображения должны считываться до тех пор, пока метод read ()
не сгенерирует исключение типа IndexOutOgBoundsException. В противном
случае следует вызвать метод getNumimages (), как показано ниже.

int n = reader.getNumimages(true);

Параметр этого метода принимает логическое значение true, а это означает,
что при вводе разрешается поиск и подсчет количества изображений. Следует,

однако, иметь в виду, что метод getNumimages () генерирует исключение типа

IllegalStateException, если поток ввода находится в режиме просмотра дан­
ных только в прямом направлении. Данный метод возвращает значение -1, если
он не в состоянии определить количество изображений без поиска. В этом слу­

чае изображения придется считывать до тех пор, пока не возникнет исключение

типа IndexOutOfBoundsException.
Некоторые файлы могут содержать миниатюрные виды изображений для их

предварительного просмотра. Количество миниатюрных видов изображений

можно выяснить, сделав следующий вызов:

int count = reader.getNumThwnЬnails(index);

Извлечь конкретный миниатюрный вид по его индексу можно следующим

образом:

Bufferedimage thumЬnail =
reader.getThwnЬnail(index, thwnЬnailindex);

Иногда размеры изображения требуется получить еще до его извлечения из

файла. Это особенно важно, когда речь идет о крупном изображении или его

Глава 11 • Расширенные средства Swing и графика

передаче по низкоскоростному сетевому соединению. Для получения размеров

изображения по указанному индексу вызываются следующие методы:

int width = reader.getWidth(index);
int height = reader.getHeight(index);

Для записи нескольких и:юбражений в файл необходимо создать сначала объ­

ект типа IrnageWriter, а :1атем с помощью класса IOirnage перечислить все сред­
ства, способные записывать и:юбражения в конкретном формате:

String format = . . . ;
ImageWriter writer = null;
Iterator<ImageWriter> iter

ImageIO.getimageWritersByFormatName(format);
if (iter.hasNext()) writer = iter.next();

Затем поток вывода или файл следует преобразовать в поток вывода изобра­
жений (объект типа ImageOutputStrearn) и присоединить его к средству записи
следующим обра:юм:

File f = . . . ;
ImageOutputStream imageOut

ImageIO.createimageOutputStream(f);
writer.setOutput(imageOut);

Каждое и:юбражение следует заключить в оболочку объекта типа I IOirnage,
как показано ниже. Дополнительно можно предоставить список миниатюрных

видов и метаданные (например, алгоритм сжатия данных и цветовую инфор­

мацию). В рассматриваемом :1десь примере вместо списка миниатюрных видов

и метаданных указываются пустые значения null. За дополнительной справкой
по данному вопросу обращайтесь к документации на соответствующий приклад­

ной ишерфейс API.

var iioimage = new IIOimage(images[i], null, null);

Для записи первого и:юбражения вызывается метод wri te ():

writer.write(new IIOimage(images[O], null, null));

Для записи всех последующих изображений служит код из приведенного

ниже примера. В качест11е треп,его параметра при вызове метода wri te () может
быть указан объект типа IrnageWri tePararn, предоставляющий такие подробно­
сти, как мозаичное расположе11ие и алгоритм сжатия данных. В данном примере

в качестве треп.его параметра указано пустое значение null.

if (writer.caninsertimage(i))
writer.writeinsert (i, iiolmage, null);

Не все форматы допускают сохранение нескольких изображений в файлах.

В этом случае метод caninsertirnage () возвращает логическое значение false
по условию i > О, и тогда 11 файле сохраняется только одно изображение. В при­
мере программы и:1 листинга 11.20 изображения загружаются и сохраняются
в файлах тех форматов, для которых в библиотеке Java предусмотрены средства
чтения и 3аписи. Эта программа по3воляет отображать сразу несколько изобра­

жений, но не их миниатюрные виды, как показано на рис. 11.55.

11.4. Растровые изображения

• .
Filt

-- 1
- ··-

1
~

-~-
1

~-

1
~-

•
~

1 ._
1

"""" • '../

• '../

Рис. 11.55. А1шм<щ1юшыя 1юследователыюсть изображений в формате GIF

Листинг 11.20. Исходный код из файла imageIO/ImageIOFrame. java

package imageIO ;
2
3 import j ava . awt. i mage . *;
4 import java.io. *;
5 import java. util. *;
б

7 import j a va x .image io.*;
8 i mport j a va x. imageio .stream.* ;
9 import javax.swing .* ;
1 0 import javax .swi ng.fil echooser . *;
11
12 /* *
13 * В этом фрейме отображаются загружаемые изображения.
14 * Для загрузки и сохранения изображений в файл

1 ~) * предоставляются отдельные пункты меню

16 */
17 puЫic c lass ImageIOFrame exteпds JFrame
18 {
19 private static final int DE FAULT WI DTH = 400 ;
20 private s t a t ic final int DEFAULT HEIGHT = 400;
2 1
22 private s t atic Set<String> writ erForma t s
23 getWr i te rForma t s() ;
24
25 privat e Buf f e r edimage [] i mage s;
26

Глава 11 • Расширенные средства Swing и графика

27 puЫic ImageIOFrame()
28 {
29 setSize(DEFAULT_WIDTH, DEFAULT HEIGHT);
30
31 var fileMenu = new JМenu("File");
32 var openitem = new JMenuitem("Open");
33 openitem.addActionListener(event -> openFile());
34 fileMenu.add(openitem);
35
36 var saveMenu = new JМenu("Save");
37 fileMenu.add(saveMenu);
38 Iterator<String> iter = writerFormats.iterator();
39 while (iter.hasNext())
40 {
41 final String formatName = iter.next();
42 var formatitem = new JМenuitem(formatName);
43 saveMenu.add(formatitem);
44 formatitem.addActionListener(event ->
45 saveFile(formatName));
46
47
48 var exititem = new JМenuitem("Exit");
49 exititem.addActionListener(event -> System.exit(O));
50 fileMenu.add(exititem);
51
52 var menuBar = new JМenuBar();
53 menuBar.add(fileMenu);
54 setJМeni.1Bar (menuBar);
55
56
57 /**
58 * Открыть файл и загрузить изображения
59 * /
60 puЫic void openFile()
61 {
62 var chooser = new JFileChooser();
63 chooser.setCurrentDirectory(new File("."));
64 String[] extensions =
65 ImageIO.getReaderFileSuffixes();
66 chooser.setFileFilter(new FileNameExtensionFilter(
67 "Image files", extensions));
68 int r = chooser.showOpenDialog(this);
69 if (r != JFileChooser.APPROVE OPTION) return;
70 File f = chooser.getSelectedFile();
71 Вох Ьох = Box.createVerticalBox();
72 try
73 {
74 String name = f.getName();
75 String suffix = name.substring(
76 name.lastindexOf(' .') + 1);
77 Iterator<ImageReader> iter =
78 ImageIO.getimageReadersBySuffix(suffix);
79 ImageReader reader = iter.next();
80 ImageinputStream imagein =

81 ImageIO.createimageinputStream(f);
82 reader.setinput(imagein);

83
84
85
86
87
88
89
90

11.4. Растровые изображения

int count = reader.getNumimages(true);
images = new Bufferedimage[count];
for (int i = О; i < count; i++)
{

images[i] = reader.read(i);
box.add(new JLabel(new Imagelcon(images[i])));

91 catch (IOException е)

92 {
93 JOptionPane.showMessageD1alog(this, е);

94
95 setContentPane(new JScrollPane(box));
96 validate();
97
98
99 /**
100 * Сохранить текущее изображение в файле
101 * @param formatName Формат файла
102 * /
103 puЫic void saveFile(final String formatName)
104 {
105 if (images == null) return;
106 Iterator<ImageWriter> iter =
107 ImageIO.getimageWritersByFormatName(formatName);
108 ImageWriter writer = iter.next();
109 var chooser = new JFileChooser();
110 chooser.setCurrentDirectory(new File("."});
111 String[] extensions = writer
112 . getOriginatingProvider () . getFileSuff ixes () ;
113 chooser.setFileFilter(new FileNameExtensionFilter(
114 "Image files", extensions)};
115
116 int r = chooser.showSaveDialog(this);
117 if (r 1= JFileChooser.APPROVE OPTION) return;
118 File f = chooser.getSelectedFile(};
119 t ry
120 {
121 ImageOutputStream imageOut =
122 ImageIO.createimageOutputStream(f);
123 writer.setOutput(imageOut};
124
125 writer.write(new IIOimage(
126 images [0], null, null));
127 for (int i = 1; i < images.length; i++}
128 {
129 var iioimage =
130 new IIOimage(images[i], null, null};
131 if (writer.caninsertimage(i))
132 writer.writeinsert (i, iioimage, null);
133
134
135 catch (IOException е)

136 {
137 JOptionPane.showMessageDialog(this, е);

138

139
140

Глава 11 • Расширенные средства Swing и графика

141 /**
142 * Получает ряд предпочтительных названий
143 * форматов из всех средств записи.
144 * Предпочтительным считается первое название
145 * формата, указываемое средством записи
146 * @return Возвращает ряд названий форматов
147 */
148 puЫic static Set<String> getWriterFormats()
149 {
150 var writerFormats = new TreeSet<>();
151 var formatNames = new TreeSet<>(
152 Arrays.asList(ImageIO.getWriterFormatNames()));
153 while (formatNames.size() > 0)
154 {
155 String name = formatNames.iterator().next();
156 Iterator<ImageWriter> iter =
157 ImageIO.getimageWritersByFormatName(name);
158 ImageWriter writer = iter.next();
159 String[] names = writer
160 .getOriginatingProvider () .getFormatNames 1);
161 String format = names[O];
162 if (format.equals(format.toLowerCase()))
163 format = format.toUpperCase();
164 writerFormats.add(format);
165 formatNames.removeAll(Arrays.asList(names));
166
167 return writerFormats;
168
169

javax.imageio.ImageIO 1.4

static Bufferedimage read(File input)

static Bufferedimage read(InputStream input)

static Bufferedimage read (URL input)

Читают изображение из указанного источника ввода данных.

static boolean write(Renderedimage image, String formatName, File
output)

static boolean write(Renderedimage image, String formatName,
OutputStream output)

Записывают изображение в указанное место назначения вывода данных. Возвращают логи­

ческое значение false, если не удалось найти соответствующее средство записи.

static Iterator<ImageReader> getimageReadersByFormatName(String
formatName)

static Iterator<ImageReader> getimageReadersBySuffix(String
:fileSu:f:fix)

static Iterator<ImageReader> getimageReadersByМIМEТype(String
mimeТype)

11 .4. Растровые изображения

javax. irnageio. IrnageIO 1. 4 (окончание/

• static Iterator<ImageWriter> getimageWritarвByForaatNama(String
fonпatName)

• static Iterator<ImageWriter> getimageWriterвBySuffix(String
fileSuffix)

• static Iterator<ImageWriter> getimageWriterвByМIМEТype(String
mimeТype)

•
•
•

•

Получают все средства чтения или записи, поддерживающие указанный формат [например,
JPG), расширение файла [например, jpg) или тип MIME [например, mage/jpeg).

static String[] getReaderFormatNames()

static String[] getReaderMIМEТypes ()

static String[] getWri terForma tNames ()

static String[] getWri terMIМEТypes ()

static String[] getReaderFileSuffixes() 6

static String[] getWriterFileSuffixes() 6

Получают названия всех форматов, расширений файлов и типов MIME, которые поддержива­
ются средствами чтения и записи.

• ImageinputStream createimageinputStream(Object input)

• ImageOUtputStream createimageOutputStream(Object input)

Создают поток ввода или вывода изображений, исходя из указанного объекта. В каче­
стве такого объекта может быть указан файл, поток ввода-вывода, экземпляр класса
RandomAccessFile или другой объект, для которого существует соответствующий постав­
щик услуг. Если для манипулирования указанным объектом не зарегистрирован требующийся
поставщик услуг, возвращается пустое значение null.

javax.irnageio.IrnageReader 1.4

• void setlnput (Object input)

• void setlnput(Object input, boolean seekForwardOnly)

Устанавливают источник ввода данных для средства чтения.

Параметры: input Объект типа ImaqeinputStream или другой

объект, приемлемый для данного средства чтения

seekForwardOnly

• Bufferedlmage read (int index)

Принимает логическое значение true

для чтения только в прямом направлении.

По умолчанию средство чтения использует

произвольный доступ и, если требуется,

буферизирует данные изображения

Считывает изображение по указанному индексу, начиная с нуля. Если такое изображение от­
сутствует, генерируется исключение типа IndexOUtOfBoundsException.

Глава 11 • Расширенные средства Swing и графика

j avax. imageio . ImageReader 1 . 4 (окончание/

• int getNumima.ges(boolean allowSearch)

Получает количество изображений для данного средства чтения. Если параметр allow
Search принимает логическое значение false и количество изображений не может быть
определено без предварительного просмотра, возвращается значение -1. Если же пара­
метр allowSearch принимает логическое значение true и средство чтения находится
в режиме просмотра данных только в прямом направлении, генерируется исключение типа

IllegalSta teException.

• int getNum.ThumЬnails (int index)

Получает количество миниатюрных видов изображения по указанному индексу.

• Bufferedima.ge readТhumЬnail (int index, int thumЬnailindex)

Получает по индексу thumЬnailindex миниатюрный вид изображения, указанного по ин­

дексу index.

• int getWidth (int index)

• int getнeight (int index)

Получают ширину и высоту изображения. Если изображение не найдено, генерируется ис­

ключение типа IndexOutOfВoundsException.

• Ima.geReaderSpi getOriginatingProvider()

Получает поставщика услуг, создавшего данное средство чтения.

javax.imageio.spi.IIOServiceProvider 1.4

• String getVendorName ()

• String getVersion ()

Получают имя и версию данного поставщика услуг.

javax.imageio.spi.ImageReaderWriterSpi 1.4

• String [] getForma.tNames ()

• String[] getFileSuffixes()

• String [] getмIМETypes ()

Получают названия форматов, расширения файлов и типа MIME, которые поддерживаются
средствами чтения или записи, созданными данным поставщиком услуг.

javax. imageio. ImageWri ter 1. 4

• void setOutput (Object output)

Устанавливает место назначения вывода для данного средства записи.

11.4. Растровые изображения

javax. imageio. ImageWri ter 1. 4 (окончание}

Пара1-1етры: output Объект типа ImageOutputStream или другой объект,

приемлемый для данного средства записи

• void write (IIOimage image)

• void write(Renderedimage image)

Записывают одиночное изображение по месту вывода.

void writeinsert(int index, IIOimage i.magв, ImageWriteParam param)

Записывает изображение в файл с несколькими изображениями.

• boolean caninsertimage (int index)

Возвращает логическое значение true, если в файл можно ввести изображение по указан­
ному индексу.

• ImageWriterSpi getOriginatingProvider()

Получает поставщика услуг, создавшего данное средство записи.

javax. imageio. IIOimage 1. 4

IIOimage(Renderedimage i.mage, List thшпЬnails, IIOМetadata

mвtadata)

Создает объект типа IIOimage, исходя из указанного изображения, необязательных миниа­
тюрных видов и метаданных.

11.4.2. Манипулирование изображениями
Допустим, требуется улучшить внешний вид какого-нибудь изображения.

Для этого следует получить доступ к отдельным пикселям изображения и за­

менить их другими. Не исключено также, что придется сформировать новые

пиксели заново, например, для отображения результатов физических изме­

рений или математических расчетов. Класс Bufferedimage дает возможность

манипулировать пикселями изображения, а классы, реализующие интерфейс

BufferedimageOp, - преобразовывать изображения.

НА ЗАМЕТКУ! В версии JDK 1.0 предоставлялась совершенно другая и намного более слож­
ная среда для обработки изображений, которая была оптимизирована для пошагового вос­

произведения изображений, построчно загружавшихся из Интернета. Но манипулировать

изображениями в такой среде было совсем не просто. Поэтому в данной книге эта среда не

рассматривается.

11.4.2.1. Формирование растровых изображений
Большинство обрабатываемых и:юбражений считываются из файла и фор­

мируются аппаратными средствами (например, цифровой камерой или скане­

ром) или же программными (например, графическими приложениями). В этом

разделе рассматривается совершенно другая методика формирования растровых

изображений, предполагающая построение в каждый отдельный момент време­

ни тол1,ко одного пикселя.

Глава 11 • Расширенные средства Swing и графика

Чтобы сформировать растровое изображение, следует построить сначала объ­

ект типа Bufferedimage обычным способом:

image = new Bufferedimage(width, height,
Bufferedlmage.TYPE INT ARGB);

Затем необходимо вы:шать метод getRaster (),как показано ниже, чтобы по­

лучить объект типа Wri taЬleRaster, который служит для доступа к пикселям

растрового изображения с целью внести в них изменения.

WritaЫeRaster raster = image.getRaster();

Метод setPixel () позволяет задавать значение цвета отдел1,ного пикселя. Но

когда он применяется, возникает следующее осложнение: пикселю нельзя непо­

средственно присвоить значение цвета типа Color. Необходимо знать, каким об­

разом цвета определяются в буферизированном изображении, что зависит от его

типа. Так, если изображение относится к типу ТУРЕ_ INT _ ARGB, то каждый пик­

сель описывается четырьмя значениями (в пределах от О до 2 5 S): для красной,
зеленой и синей составляющих, а также для альфа-канала. Эти значения необ­

ходимо предоставит~, в виде массива из четырех элементов целого типа, как по­

казано ниже. В прикладном интерфейсе Java 20 API такие значения называются
выборочнь1ми .тачениями цвета пикселя.

int[] Ыасk = {О, О, О, 255 };
raster.setPixel(i, j, Ыасk);

• ВНИМАНИЕ! Метод setPixel () может принимать в качестве параметра массив типа

float [] или douЫe []. Следует, однако, иметь в виду, что значения цвета, которыми за­
полняется этот массив, не должны быть нормализованными в пределах от О до 1. О, как по­
казано ниже.

float[] red = { 1.0F, O.OF, O.OF, 1.0F };
raster.setPixel(i, j, red); 11 ОШИБКА'

Независимо от своего типа массив все равно должен быть заполнен значениями цвета в пре­

делах от О до 255.

Для установки значений группы прямоугольных пикселей в качестве параме­

тров метода setPixels () можно указать исходное положение, ширину и высоту

прямоугольника, а также массив с выборочными значениями цвета этой груп­

пы пикселей. Так, если изображение относится к типу ТУРЕ_ INT _ ARGB, сначала

следует указать величины красной, зеленой и синей составляющих и значение

прозрачности в альфа-канале для первого пикселя, а затем те же самые данные

для второго пикселя и т.д. В приведенном ниже фрагменте кода показано, как

это делается.

var pixels = new int[4 * width * height];
11 значение красной составляющей цвета 1-го пикселя:
pixels[OJ =

11 значение зеленой составляющей цвета 1-го пикселя:

pixels[l] =

11 значение синей составляющей цвета 1-го пикселя:

pixels[2] =
11 значение прозрачности в альфа-канале 1-го пикселя:

11.4. Растровые изображения

pixels[3] = ...

raster.setPixels(x, у, width, height, pixels);

Для чтения значения цвета пикселя служит приведенный ниже метод

getPixel (),возвращающий массив из четырех целых чисел.

var sample = new int[4];
raster.getPixel(x, у, sample);
var с= new Color(sample[O], sample[l],

sample[2], sample[3]i;

С помощью метода getPixels () можно прочитать значения цвета группы
пикселей следующим образом:

raster.getPixels(x, у, width, height, samples);

Методы getPixel () и setPixel () можно использовать и для другого типа
изображения, если известен способ представления в нем значений цвета пикселей.

Иными словами, чтобы применять эти методы, необходимо знать способ кодиро­

вания выборочных значений цвета пикселей в конкретном типе изображения.

Манипулировап, изображением становится сложнее, если его тип заранее не­

известен. У каждого типа растровых и:юбражений имеется своя цветовая моде.ль,

в соответствии с которой выборочные значения цвета пикселей можно привести

к стандартной цветовой модели RGB.

НА ЗАМЕТКУ! На самом деле цветоваR модель RGB не RBЛReтcR стандартом. Точное представ­
ление цветов зависит от характеристик используемого устройства отображениR. Цифровые

камеры, сканеры, мониторы и жидкокристаллические дисплеи имеют совершенно разные

характеристики. В результате одно и то же значение цвета RGB выглRдит по-разному на раз­
ных устройствах отображениR. Международный консорциум по цвету \lпteгпatioпal Соlог
Coпsoгtium - ICC; http://www. color. org] рекомендует сопровождать все цветовые
данные цветовым профилем IJC, который опредеnRет степень соответствиR цветов стандарт­
ной форме их представлениR по спецификации 1931 CIE XYZ. Эта спецификациR разработана
Международной комиссией по освещению (Commissioп lпteгпatioпale de l'Eclaiгage - CIE;
http://www. cie. со. atl, обеспечивающей техническую поддержку всех видов освещениR
и цвета. Она регламентирует стандартный метод представлениR всех цветов, которые глаз че­

ловека может воспринимать на основе трех гипотетических координат Х, У, Z. (Подробнее эта
спецификациR описана в главе 28 упоминавшейсR ранее книги Computer Graphics: Principles
and Practice, Third Edititon Джеймса Фоли, Андриса ван Дама, Стивена Фэйнера и др.]

Но цветовые профили ICC имеют очень сложную структуру. Поэтому нарRду с ними использу­
ется более простой стандарт sRGB lhttps: / /www. wЗ. org/Images/Color/ sRGB. html(,
который устанавливает точное соответствие значений цветов RGB спецификации 1931 CIE
XYZ. Он разработан специально длR стандартных цветных мониторов и используетсR в при­
кладном интерфейсе Java 20 API длR преобразованиR цветов RGB в значениR цветов других
цветовых моделей и пространств.

Для получения цветовой модели вызывается метод getColorModel ():

ColorModel model = image.getColorModel();

Для определения цвета пикселя следует вызвать приведенный ниже метод

getDataElements () из класса Raster, который возвращает объект типа Object
с описанием цвета в соответствии с конкретной цветовой моделью.

Object data = raster.getDataElements(x, у, null);

Глава 11 • Расширенные средства Swing и графика

НА ЗАМЕТКУ! Объект, который возвращается методом qetDataElements (), в действитель­
ности является массивом выборочных значений цвета пикселя. Это объясняет, почему метод

qetDataElements () называется именно так, а не иначе. Хотя для обработки данного объ­
екта знать об этом совсем не обязательно.

С помощью цветовой модели можно преобразовать полученный объект

в стандартные значения цвета ARGB. Метод getRGB () возвращает значение типа
in t, состоящее из :шачений степени прозрачности в альфа-канале, красной, зе­
леной и синей составляющих цвета, упакованных в четыре блока по 8 бит в ка­
ждом. Из этого целочисленного составного значения цвета с помощью конструк­

тора Color (int argb, boolean hasAlpha) можно создать объект типа Color:

int argb = model.getRGB(datal;
var color = new Color(argb, true);

Если же требуется установить определенный цвет пикселя, то описанные

выше действия следует выполнить в обратном порядке. Метод getRGB () из

класса Color возвращает целочисленное значение, состоящее из значений сте­
пени прозрачности в альфа-канале, красной, :1еленой и синей составляющих

цвета. Именно его следует ука:1ать в качестве параметра при вызове метода

getDataElements () из класса ColorModel, который, в свою очередь, возвратит
объект с описанием цвета пикселя в используемой цветовой модели. Далее этот

объект следует передать методу setDataElements () из класса Wri taЬleRaster,
как показано ниже.

int argb = color.getRGB();
Object data = model.getDataElements(argb, null);
raster.setDataElements(x, у, data);

Чтобы проиллюстрировать, каким образом растровое изображение форми­

руется из отделr,ных пикселей, рассмотрим пример рисования фрактального

множества Мандельброта, отдавая дань традиции. Множество Мандельброта об­

разуется путем связывания каждой точки плоскости с некоторой последователь­

ностью цифр. Если последователыюсть ограничена, точка отмечается цветом. Не­

окрашенные точки плоскости связаны с неограниченными последовательностями

цифр и остаются прозрачными (рис. 11.56).
Ниже показано, как построить простейшее множество Мандельброта. Снача­

ла необходимо отыскать для каждой точки с координатами (а, Ь) последователь­

ность, которая начинается с выражения (х, у) = (О, О), и применить к ней следую­

щие формулы:

Xnew = Х2 - у2 +а
Ynew = 2 . Х • У+ Ь

Если :шачение х или у больше 2, то последовательность будет превращаться
в бесконечную и окрашиваться цветом будут только те пиксел и, которые соответ­

ствуют точкам с координатами (а, Ь), ведущим к ограниченной последовательно­

сти. (Формулы для вычисления числовых последовательностей взяты из области

математики комплексных чисел в их исходном виде.)

11.4. Растровые изображения

Рис. 11.56. Множество Мандельброта

В примере программы из листинга 11.21 демонстрируется приме11ение класса
Co lo rModel для преобразования :шачений цвета типа Color 11 выборочные дан­

ные цвета пикселей. Этот процесс не 3а11исит от типа и:юбражения. Ради интереса

попробуйте поэкспериментиронап,, и:1Менив тип цвета для буфери:1ирова111юго

изображения на TYPE_BYTE_GRAY. В исходный код данной программы не нужно
вносить бол1,ше никаких других и3ме11ений, поскольку цветовая модел1, и :юбраже­

ния автоматически преобразует цвета пикселей в выборочные :шачения.

Листинг 11.21. Исходный код из файла ras terimage/Ras terimageFrame . j ava

1 package raster! mage ;
2
3 import java . a wt.*;
4 import java . awt .image.*;
5 import javax.swi ng.*;
6
7 /* *
8 * В этом фрейме показывается изображение

9 • множества Мандельброта
10 */
11 puЫic c lass Rasterima ge Frame ext e nds JFrame
12 (
13
14
15
16
17
18
19

private
private
private
private
private
private
pri va t e

static final
stati c final
static fi nal
static final
static final
s tatic fina l
stati c final

douЫe XМI N - 2 ;
douЫe ХМАХ 2;
douЫe YMI N -2;
douЫe УМАХ 2;
int МАХ ITERATIONS - 16;

-
int IМAGE WIDTH = 400; --
int IMAGE HE I GHT = 400;

-

Глава 11 • Расширенные средства Swing и графика

20
21 puЫic RasterimageFrame()
22 {
23 Bufferedimage image = makeMandelbrot(
24 IMAGE_WIDTH, IMAGE HEIGHT);
25 add(new JLabel(new Imageicon(image) 11;
26 pack();
27
28
29 /**
30 * Формирует изображение множества Мандельброта
31 * @param width Ширина изображения
32 * @parah height Высота изображения
33 * @return Изображение
34 */
35 puЫic Bufferedimage makeMandelbrot(
36 int width, int height)
37
38 var image = new Bufferedimage(width, height,
39 Bufferedimage.TYPE INT_ARGB);
40 WritaЫeRaster raster = image.getRaster();
41 ColorModel model = image.getColorModel();
42
43 Color fractalColor = Color.red;
44 int argb = fractalColor.getRGB();
45 Object colorData = model.getDataElements(argb, null);
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

for (int i
for (int
{

douЫe

douЫe

а

ь

О; i < width; i++J
О; < height; j++)

XМIN + i * (ХМАХ -
YMIN + j * (УМАХ -

if (1escapesToinfinity(a, Ь))

raster.setDataElements(i,

return image;

XMIN) 1 width;
YMIN) 1 height;

j ' colorData);

private boolean escapesToinfinity(douЫe а, douЫe Ь)

{

douЫe х =О.О;

douЫe у= О.О;

int iterations = О;

while (х <= 2 && у <= 2

douЫe xnew
douЫe ynew
х = xnew;
у = ynew;

&& iterations < МАХ ITERATIONS)

х * х у * у + а;

2 * х * у f Ь;

iterations++;

72 return х > 2 11 у > 2;
73
74

11.4. Растровые изображения

java.awt.image.Bufferedimage 1.2

• Bufferediшage (int width, int height, int imageType)

Создает объект буферизированного изображения.

Параметры: width, height Размеры изображения

imageТype

• ColorModel getColorModel()

Тип изображения. К числу наиболее распространенных

относятся следующие типы изображений:

TYPE_INТ_RGB,TYPE_INT_ARGB,

ТУРЕ БУТЕ GRAY и ТУРЕ БУТЕ INDEXED

Возвращает цветовую модель данного буферизированного изображения.

Wri taЬleRaster getRaster ()

Возвращает растр для доступа к пикселям данного буферизированного изображения с целью

их изменения.

java. awt. image. Raster 1. 2

• Object getDataElements (int х, int у, Object data)

Возвращает для точки растра выборочные данные в виде массива, тип элементов и длина

которого зависят от цветовой модели. Если параметр da ta не принимает пустое значение
null, то предполагается, что это значение является массивом для хранения выборочных
данных, причем массив заполнен. Если параметр data принимает пустое значение null, то
создается новый массив. Тип его элементов и длина зависят от цветовой модели.

int[] getPixel (int х, int у, int[] sampleValues)

float [] getPixel (int х, int у, float [] sampleValues)

• douЬle[] getPixel(int х, int у, douЬle[J sampleValues)

• int[J getPixels (int х, int у, int width, int height, int[)
sa.mpleValues)

• float[] getPixels(int х, int у, int width, int height, float[]
sa.mpleValues)

douЬle[] getPixels(int х, int у, int width, int height, douЬle[]

sa.mpleValues)

Возвращают выборочные значения для точки растра или группы точек, составляющих пря­

моугольную область. Эти значения помещаются в массив, длина которого зависит от конкрет­

ной цветовой модели. Если параметр sa.mpleValues принимает пустое значение null, то
создается новый массив. Применяются только в том случае, если заранее известно, каким

образом выборочные значения определяются для цветовой модели.

java.awt.image.WritaЬleRaster 1.2

• void setDataElements (int х, int у, Object data)

Задает выборочные данные для точки растра. Параметр data обозначает массив выбороч­
ных значений цвета пикселя. Тип элементов и длина этого массива зависят от конкретной

цветовой модели.

Глава 11 • Расширенные средства Swing и графика

java. awt. image. Wri taЬleRaster 1. 2 /окончание/

•
•

•

•

void setPixel(int х, int у, int[] samplвValuвs)

void setPixel(int х, int у, float[] samplвValuвs)

void setPixel(int х, int у, douЬle[] samplвValuвs)

void setPixels(int х, int у, int width, int hвight,
int[] samplвValues)

void setPixels(int х, int у, int width, int hвight,
float[] samplвValues)

void setPixels(int х, int у, int width, int height,
douЬle[] sampleValues)

Устанавливают выборочные значения для точки растра или группы точек, составляющих пря­

моугольную область. Применяются только в том случае, если заранее известен порядок коди­

ровки выборочных значений для цветовой модели.

java.awt.image.ColorModel 1.2

• int getRGB (Object data)
Возвращает значение цвета ARGB, которое соответствует выборочным данным, переданным
в массиве data, тип элементов и длина которого зависят от конкретной цветовой модели.

• Object getDataElements (int argb, Object data)
Возвращает выборочные данные для указанного значения цвета. Если параметр data не
принимает пустое значение null, то предполагается, что это массив, имеющий подходящую
длину для хранения данных и заполненный ими. Если параметр data принимает пустое зна­
чение null, то создается новый массив. Этот массив заполняется выборочными данными
цвета пикселя. Тип его элементов и длина массива зависят от цветовой модели.

java.awt.Color 1.0

• Color (int argb, boolean hasAlpha) 1. 2

Формирует цвет по указанному составному значению ARGB, если параметр hasAlpha при­
нимает логическое значение true, или же по указанному стандартному значению RGB, если
параметр hasAlpha принимает логическое значение false.

int getRGB ()

Возвращает значение ARGB, соответствующее данному цвету.

11.4.2.2. Фильтрация изображений
В предыдущем разделе рассматривался процесс формирования растрового

изображения заново. Но нередко требуется обработать уже имеющееся изобра­

жение. Безусловно, данные изображения можно сначала прочитать, используя

методы getPixel () /getDataElements (),представленные в предыдущем разде­
ле, а затем преобразовать их и записать обратно. Но, к счастью, в прикладном

интерфейсе Java 20 API поддерживается целый ряд фильтров, автоматически вы­
полняющих многие рутинные операции обработки изображений.

11.4. Расrровые изображения

Все классы, выполняющие операции манипулирования изображениями, реа­

лизуют интерфейс BufferedimageOp. Для преобразования одного изображения
в другое после создания объекта требующейся операции достаточно вызвать ме­

тод fil ter () следующим образом:

BufferedimageOp ор = ... ;
Bufferedimage filteredimage = new Bufferedimage(

image.getHeight(), image.getType());
op.filter(image, filteredimage);

Некоторые методы, например ор. fil ter (image, image), моrут непосред­
ствешю выполнять преобразование изображений, но большинство остальных

методов не способны на это. Ниже перечислены пять классов, реализующих ин­

терфейс BufferedimageOp.

Aff ineTransformOp
RescaleOp
LookupOp
ColorConvertOp
ConvolveOp

В частности, класс AffineTransformOp выполняет аффинное преобразование
пикселей. Например, в приведенном ниже фрагменте кода показано, как повер­

нуть изображение вокруг его ценrра.

Aff ineTransform transform = AffineTransform
.getRotateinstance(Math.toRadians(angle),

image.getWidth() / 2,
image.getHeight() / 2);

var ор = new AffineTransformOp(transform, interpolation);
op.filter(image, filteredimage);

При вызове конструктора класса AffineTransformOp в качестве параметров
следует указать аффинное преобразование и алгоритм интерrюляции. Интерпо­

ляция требуется для определения местоположения пикселей в целевом изобра­

жении, если исходные пиксели оказываются после преобразования где-то между

целевыми пикселями.

Например, после вращения исходные пиксели точно совпадают с целевы­

ми пикселями. Для интерполяции используются три алгоритма: бикубиче­

ский (AffineTransformOp. ТУРЕ BICUBIC), билинейный (AffineTransformOp.
TYPE_BILINEAR) и ступенчатый, или ближайшего соседа (AffineTransformOp.
TYPE _ NEAREST _ NEIGHBOR). Билинейная интерполяция выполняется дольше, но
позволяет добиться более качественного внешнего вида преобразованного изо­

бражения, чем два других алгоритма инrерполяции.

В примере программы из листинга 11.22 изображение поворачивается на 5°
(рис. 11.57). В частности, класс RescaleOp выполняет для каждой составляющей
цвета изображения следующую операцию по изменению масштаба:

x11ew =а . х + ь

(На составляющие прозрачности из альфа-канала эта операция не распро­

страняется.) В результате изменения масштаба на величину а > 1 увеличивает­

ся яркость изображения. Объект типа RescaleOp создается по указанным пара­
метрам масштабирования и дополнительным, но не обязательным параметрам

Глава 11 • Расширенные средства Swing и графика

рисования. В примере прогрJммы из листинга 11.22 для этой цели используется
приведенный ниже фрагмент кода. Кроме того, отдельные величины изменения

масштаба можно предоставит~, для каждой составляющей цвета, как поясняется

далее при описании прикладного интерфейса API.
float а= l.lf;
float 20.0f;
var ор = new RescaleOpla, Ь, nu l l) ;

Core Java
Volume JI • Advanced features

Рис. 11.57. Вращение и:юf>ражения

Конструктор класса I,ookupOp позволяет указап, про11:тол1.1юе отображение
выборочных :шачений цветJ. Для этого достаточно предоставил, таблицу, в кото­

рой указаны правила отображения каждого выборочного :1наченин цвета. В рас­

сматриваемом здес1, примере формируется негатис; исходного и :юбражения. Для

·,:~того каждая составляющая цвета с заменяется на 2 55 - с .

В качестве параметров ко11структору класса Lookl1pOp требуется указать объ­
ект типа LookupTaЫe и таблицу с необюател1,ными укюаниями по воспро­

изведению. Класс LookupTaЫe является абстрактным и имеет два конкретных

подкласса: ByteLookupTaЫe и Sho r tLookupTaЬle . На первый взгляд, для целей

преобразования было бы достаточно и класса ByteLookupTaЫe, поскольку :111а­
чения цвета RGB представлены в ниде байтон. Но из-за программной ошибки,

подробно описанной в документации, доступной по адресу l1ttps://Ьugs.java.com/

bugdatabase/view_bug.do?bug_id=6183251, вместо него в данном примере исполь­
:1уется класс ShortLoo kupTaЬle. В приведенном ниже фрагменте кода показа1ю,

каким образом формируется операция табличного поиска для преобра :юuа1шя

цветного изображе11ия в негатив.

va r negat i ve = new short [2 56];
for (int i = О ; i < 256 ; i ++)

negative [i] = (short) 1255 - i) ;
var tаЫе = new ShortLookupTaЬle (O , negative) ;
var ор = new LookupOp(taЫe, nul l) ;

Операция таблич11ого поиска выполняется над каждой составляющей цвета в от­

делыюсти, но не над составляющими прозрачности в ал1,фа-канале. Для преобра:ю­

вания каждой сост<11июощей цвета можно предоставить и другие таблицы поиска

(подробнее об этом см. далее в описании приклад1юrо интерфейса API).

11.4. Растровые изображения

НА ЗАМЕТКУ! Класс LookupOp нельзя применять к изображениям с индексированной циф­

ровой моделью, потому что в таких изображениях каждое выборочное значение цвета пиксе­

лей задается в виде смещения в палитре цветов.

Для преобра:ювания цветового пространства служит класс Col orConvertOp, ко­
торый :цееt, не рассматривается. Для наиболее глубоких преобразований предна­

з11аче11 класс Con vol veOp, который выполняет математическую операцию свертки.
Мы не будем углубляться в математические подробности выполнения операции

снертки, но понять оснонной ее принцип действия несложно. В качестне примера

рассмотрим филнр размытия, дейстние которого показано на рис. 11.58.

Рис. 11.58. Р<:нмытие и:юбражения

Размытие достигается путем замены каждого пикселя средним значением это­

го пикселя и соседних с ним восьми пикселей. Интуитивно понятно, почему эта

операция делает изображение размытым, а с математической точки зрения по­

лучение среднего значения может бып, представлено как операция свертки со

следующим ядром:

r: ; : : ; : : ; :i 1/9 1/9 1/9

Ядро свертки представляет собой матрицу с весами соседних :шачений. На­

пример, приведенное выше ядро приводит к размьпию изображения . А пред­

ставленное ниже ядро выполняет операцию 011ределения краев, т.е. определяет

участки, на которых происходит и:~менение цвета. Алгоритм определения краев

играет важную роль в обработке фотоизображений (рис. 11.59).

r ~l ~1 ~11
о -1 о

Глава 11 • Расширенные средства Swing и графика

(f~гo~·.1 'r(гi1 lj .. ~:,)· "l 1-;-=·'
·,~~ '/ \.~: ·' ~;.1\ Р.,,~

1•.tfojlJj ('' ll i '/~.'(il•/:111<(::/il ;rq,!(1.й·~\.·

·; 11
';~;·~··

..:­

. ~_,_

t).,
"~ .~;."

___ _ / ·:~ii::::(
•• /'- ;(.. , 1 • ' ·1 ·~(0 -c"1 ' l l

Рис. 11.59. Онределение краев и инверсия

Чтобы сформировать операцию свертки, необходимо сначала составить мас­

сив значений для ядра свертки и создать объект типа Kernel. Затем на основе
этого ядра следует создать объект типа Convol veOp, чтобы использовать его
для фильтрации и:юбражения следующим образом:

float [] e lements
{

} ;

O.Of, -1.0f, O.Of ,
-1.0f, 4.f, -1. 0f,
O.Of, -1 .0f, O.Of

var ke r nel = new Kernel(З, 3, elements};
var ор = new Convol veOp(ke rne l);
op.filter(image, f i lteredimage);

В примере программы из листинга 11.22 пользователю предоставляется воз­
можность загружать файлы формата GIF и JPEG и выполнять над ними описан­
ные выше операции. Простота кода этой программы объясняется тем, что в при­

кладном интерфейсе Java 20 API предусмотрены весьма эффективные средства
для обработки растровых изображений.

Листинг11.22. Исходный код из файла ImageProcessing/
ImageProcessingFrame.java

1 package imageProcessing;
2
3 import java . awt . *;
4 import java .awt . geom . *;
5 import java.awt .image . *;
б import java. io . *;

7
8 import javax.imageio. *;

9 import javax.swing. *;

10 import javax . swing.filechooser. *;
11

11.4. Растровые изображения

12 /**
13 * Этот фрейм содержит меню для загрузки изображения
14 * и выбора различных его преобразований, а также

15 * компонент для показа итогового изображения
16 */
17 puЫic class ImageProcessingFrame extends JFrame
18 {
19 private static final int DEFAULT WIDTH = 400;
20 private static final int DEFAULT HEIGHT = 400;
21
22 private Bufferedlmage image;
23
24 puЫic ImageProcessingFrame()
25 {
26 setTitle("ImageProcessingTest");
27 setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
28
2 9 add (new JComponent ()
30 {
31 puЫic void paintComponent(Graphics g)
32 {
33 if (image != null) g.drawimage(image, О, О, null);
34)
35)) ;
36
37 var fileMenu = new JMenu("File");
38 var openitem = new JMenuitem("Open");
39 openitem.addActionListener(event -> openFile());
40 fileMenu.add(openitem);
41
42 var exitltem = new JMenuitem("Exit");
43 exititem.addActionListener(event -> System.exit(O));
44 fileMenu.add(exititem);
45
46 var editMenu = new JMenu("Edit");
47 var Ыuritem = new JMenuitem("Blur");
48 Ыuritem.addActionListener(event ->
4 9 {
50 float weight = l.Of / 9.0f;
51 float[] elements = new float[9];
52 for (int i = О; i < 9; i++)
53 elements[i] = weight;
54 convolve(elements);
55)) ;
56 editMenu.add(Ьluritem);

57
58 var sharpenitem = new JMenuitem("Sharpen");
59 sharpenitem.addActionListener(event ->
60 {
61 float[J elements =
62 { O.Of, -1.0f, O.Of, -1.0f, 5.f,
63 -1.0f, O.Of, -1.0f, O.Of);
64 convolve(elements);
65)) ;

Глава 11 • Расширенные средства Swing и графика

6 6 edi tMenu. add (sharpenitem) ;
67
68 var brightenitem = new JМenuitem ("Brighten");
69 brightenitem.addActionListener(event ->
70 {
71 float а = l.lf;
72 float Ь = 20.0f;
73 var ор = new RescaleOp(a, Ь, null);
74 filter(op);
7 5 }) ;
76 editMenu.add(brightenitem);
77
78 var edgeDetectitem = new JMenuitem("Edge detect");
79 edgeDetectitem.addActionListener(event ->
80 {
81 float[] elements =

82 { O.Of, -1.0f, O.Of, -1.0f, 4.f,
83 -1.0f, O.Of, -1.0f, O.Of };
84 convolve(elements);
85)) ;
86 editMenu.add(edgeDetectitem);
87
88 var negativeitem = new JМenuitem("Negative");
89 negativeitem.addActionListener(event ->
90 {

short[] negative = new short[256 * 1];
for (int i = О; i < 256; i++)

negative[i] = (short) (255 - i);
var tаЫе = new ShortLookupTaЬle(O, negative);
var ор = new LookupOp(taЫe, null);
filter (ор);

91
92
93
94
95
96
97 }) ;

98 editMenu.add(negativeitem);
99
100 var rotateitem = new JМenuitem ("Rotate");
101 rotateitem.addActionListener(event ->
102 {
103 if (image == null) return;
104 var transform = AffineTransform
105 .getRotateinstance(Math.toRadians(5),
106 image.getWidth() / 2,
107 image.getHeight() / 2);
108 var ор = new AffineTransformOp(transform,
109 AffineTransformOp.TYPE BICUBIC);
110 filter(op);
111 }) ;
112 editMenu.add(rotateitem);
113
114 var menuBar = new JMenuBar();
115 menuBar.add(fileMenu);
116 menuBar.add(editMenu);
117 setJМenuBar(menuBar);

118
119

11.4. Растровые изображения

120 /**
121 * Открыть файл и загрузить изображение
122 */
123 puЫic void openFile()
124 {
125 var chooser = new JFileChooser(".");
126 chooser.setCurrentDirectory(
127 new File(getClass() .getPackage() .getName()));
128 Strig[] extensions =

129 ImageIO.getReaderFileSuffixes();
130 chooser.setFileFilter(new FileNameExtensionFilter(
131 "Image files", extensioпs));

132 int r = chooser.showOpenDialog(this);
133 if (r != JFileChooser.APPROVE OPTION) rett1rn;
134
135 try
136 {
137 Image img = ImageIO.read(
138 chooser. getSelectedFile ()) ;
139 image = new Bufferedimage(img.getWidth(null),
140 img.getHeight(null),
141 Bufferedlmage.TYPE_INT_RGB);
142 image.getGraphics() .drawimage(img, О, О, null);
143
144 catch (IOException е)

14 5 {
146 JOptioпPane.showMessageDialog(this, е);

147
148 repaint();
14 9
150
151 /**
152 * Применить фильтр и перерисовать
153 * @param ор Выполняемая операция преобразования
154 */
155 private void filter(BufferedimageOp ор)
156 {
157 if (image == null) return;
158 image = op.filter(image, пull);

159 repaint();
160
161
162 /**
163 * Выполнить свертку и перерисовать
164 * @param elemeпts Ядро свертки(массив иэ 9
165 элементов матрицы)

166 */
167 private void convolve(float[J elements)
168 {
169 var kernel = new Kernel(3, 3, elements);
170 CoпvolveOp ор = пеw CoпvolveOp(kernel);
171 filter(op);
172
173

Глава 11 • Расширенные средства Swing и графика

java. awt. image. ВufferedimageOp 1 . 2

• Bufferedimage fil ter (Bufferedimage source, Bufferedimage dest)

Выполняет операцию над исходным изображением source и сохраняет [а также возвраща­
ет! результат в виде изображения dest. Если в качестве параметра dest указано пустое
значение null, то создается новое целевое изображение, которое затем возвращается.

java.awt.image.AffineTransformOp 1.2

• AffineTransformOp(AffineTransform t, int interpolationType)

Создает объект для операции аффинного преобразования. В качестве алгоритма интерполя­

ции может быть указано значение одной из следующих констант: ТУРЕ_ BILINEAR, ТУРЕ_
BICUВIC ИЛИ ТУРЕ NEAREST NEIGНВOR.

j ava. awt. image. RescaleOp 1 . 2

• RescaleOp(float а, float Ь, RenderingHints hints)

• Res caleOp (floa t [] as, f loa t [] bs, Render ingHin ts hin ts)

Создают объект для следующей операции изменения масштаба: xn•w =а · х + Ь. При исполь­
зовании первого конструктора все составляющие цвета [кроме составляющей прозрачности
из альфа-канала! масштабируются с одинаковыми коэффициентами. При использовании вто­
рого конструктора значения предоставляются для каждой составляющей цвета в отдельности,

но не затрагивая составляющую прозрачности из альфа-канала, или же для составляющих

как цвета, так и прозрачности из альфа-канала.

j ava. awt. image. LookupOp 1 . 2

• LookupOp(LookupTaЬle taЬle, RenderingHints hints)

Создает объект операции поиска для указанной таблицы поиска.

java.awt.image.ByteLookupTaЫe 1.2

• ByteLookupTaЬle (int offset, byte [] data)

• ByteLookupTaЬle (int offset, byte [] [] data)

Создают таблицу поиска для преобразования значений типа byte. Значение смещения вы­
читается из входных данных до преобразования. Значения в первом конструкторе применя­

ются ко всем составляющим цвета, но не к составляющей прозрачности из альфа-канала.

При использовании второго конструктора значения предоставляются для каждой составля­

ющей цвета в отдельности, но не затрагивая составляющую прозрачности из альфа-канала,

или же для составляющих как цвета, так и прозрачности из альфа-канала.

11.5. Вывод изображений на печать

java.awt.image.ShortLookupTaЫe 1.2

• ShortLookupTaЬle(int o:E:Eset, short[] data)

• ShortLookupTaЬle(int o:E:Eset, short[] [] data)

Создают таблицу поиска для преобразования значений типа short. Значение смещения вы­
читается из входных данных до преобразования. Значения в первом конструкторе применя­

ются ко всем составляющим цвета, но не к составляющей прозрачности из альфа-канала.

При использовании второго конструктора значения предоставляются для каждой составля­

ющей цвета в отдельности, но не затрагивая составляющую прозрачности из альфа-канала,

или же для составляющих как цвета, так и прозрачности из альфа-канала.

j ava. awt. image. Convol veOp 1 . 2

ConvolveOp(Kernel kernel)

ConvolveOp(Kernel kernel, int вdgeCondition, RenderingHints hints)

Создают объект для операции свертки. В качестве параметра edgeCondi tion может быть
указано значение одной из следующих констант: EDGE NO ОР или EDGE ZERO FILL. С эти­
ми значениями следует обращаться особенно вниматёЛьно и аккуратно,-поскоilьку у них нет
достаточного количества соседних значений для вычисления свертки. По умолчанию уста­

навливается значение константы EDGE ZERO FILL.

java.awt.image.Kernel 1.2

Kernel(int width, int height, float[] matrixElements)

Создает ядро свертки для указанной матрицы.

11.5. Вывод изображений на печать
В последующих ра:~делах поясняется, насколько просто вывести растровое

изображение или графический рисунок на печатный лист бумаги. В них также

показывается, как организовать вывод растровых изображений и графических

рисунков на несколько печатных страниц и сохранить отпечаток в файле форма­

та PostScript.

11.5.1. Вывод графики на печать
В данном разделе рассматривается одна из наиболее распространенных за­

дач - печать двухмерной графики. Разумеется, графическое изображение может

содержать фрагменты текста, отформатированного различными шрифтами, или

даже полностью состоять из текста. Для вывода двухмерной графики на печать

необходимо выполнить следующие действия.

• Предоставить объект, класс которого реализует интерфейс PrintaЫe.

• Запустить задание на печать.

Глава 11 • Расширенные средства Swing и графина

В интерфейсе Pr in tаЫе объявлен еди11ствен~1ый метод pr i n t . () :

i nt print(Graphic s g, PageFor mat fo rmat, i nt page)

Этот метод вьпынается всякий раз, когда механизм печати форматирует стра­

ницу. В приклад1юм коде воспрои:щодятся фрагменты текста и изображения, ко­

торые должны быть напечатаны в заданном графическом контексте g . Формат
страницы (параметр f o rma t) определяет формат бумаги и поля для печати, а 1ю­

мер страницы (параметр page) служит для выбора воспрои:шодимой страницы.

Для запуска :ыдания на печать служит класс Print. e r J ob. Сначала для получе-
11ия объекта задания на печап, вы:1ы11ается статический метод ge t Р r i n t. e r,!ob (),
а затем с помощыо метода set.P r i n t aЫe () ука:1ынается печатаемый объект типа

PrintaЫe :

PrintaЫ e canva s = •.. ;

PrinterJob j ob = Pr i nt e rJob . getPr int e rJoЬ() ;

j ob.setPrint aЬle (canvas);

•
ВНИМАНИЕ! Не путайте класс PrinterJob с устаревшим классом PrintJob, которы й
управлял процессом печати в версии JDK 1.1.

Прежде чем запускать задание на печать, следует вы :1Вать метод pr i nt Di al og () ,
чтобы открыть диалоговое окно, приведенное на рис. 11.60. В этом окне пол1,:юва­

телю предоставляется возможность выбрать устройство для вывода на печать (если

доступно несколько печатающих устройств), указать диапа:юн печатаемых страниц

и сделать прочие настройки печати.

·а- [Ргтt1т- ----- ---------------- ~х

Prlnt Service

t!{ame: PSC- 750

sutus: Accepti11g jobs

Туре:

111to: О Pri11t То file

Pri11t Ra119e Copies

•! A!I Number _!!f copies: 1 ifВ

) PaQ!S То о

1 Print j гс;;;;еQ

Рис. 11.60. Вид диало1·01юю окна мн настройки нечати

независимо от исполь:1уемой платформы

11.5. Вывод изображений на печать

Все параметры печатающего устройства обычно собираются в экземпляре

класса, реализующего интерфейс PrintRequestAttributeSet, например, класса
HashPrintRequestAttributeSet:

var attributes = new HashPrintRequestAttributeSet();

Атрибуты печати должны бып, переданы методу printDialog () в виде объек­

та attributes. Метод printDialog () возвращает логическое значение true, если
пользовател~, подтверждает выбор параметров печати, или логическое значение

false, если пользователь отменяет внесенные изменения. В первом случае ВЫ3Ы­
вается метод print () из класса PrinterJob для запуска задания на печать. Он
может генерировать исключение типа PrinterException. В приведенном ниже
фрагменте кода в общих чертах демонстрируется органи3ация вывода на печать.

if (job.printDialog(attributes))
{

try
{

job.print(attributes);

catch (PrinterExceptio11 exception)
(

НА ЗАМЕТКУ! До выпуска версии J DK 1.4 в механизме печати Java использовались диалого­
вые окна настройки печати, ориентированные именно на ту платформу, на которой работал
пользователь. Для отображения платформенно-ориентированного диалогового окна настрой­

ки печати следует вызвать метод printDialog () без указания параметров. !В этом случае
пользовательские установки нельзя объединить в набор атрибутов печати.)

Во время печати в методе print () из класса PrinterJob неоднократно вызы­
вается метод print () для объекта типа PrintaЫe, свя3анного с текущим задани­
ем на печать. Но поскольку в задании на печать неизвестно количество выводи­

мых страниц, метод print () вызывается повторно, если он возвращает значение
константы PrintaЫe. PAGE_ EXISTS. Печать 3авершится лишь тогда, когда метод
print. () возвратит значение константы PrintaЬle. NO _ SUCH _ PAGE.

• ВНИМАНИЕ! Отсчет номеров страниц, передаваемых методу print (), начинается с нуля.

Таким образом, задание на печать не может определить количество страниц

до тех пор, пока печать не будет завершена. Поэтому в диалоговом окне настройки

печати не может быть представлен фактический диапазон номеров страниц, а вме­

сто него выводится сообщение "Pages 1 to 1" (Страниц от 1до1). В следующем
разделе будет показано, как этот недостаток устраняется с помощью объекта типа

Book, предоставляемого для задания на печать.
Итак, метод print () может повторно вы3ываться для объекта PrintaЫe

в задании на печать, чтобы напечатать одну и ту же страницу. Поэтому вместо

Глава 11 • Расширенные средства Swing и графика

подсчета количества страниц в методе print () лучше полагаться на номер стра­
ницы. Возможность многократного обращения к одной и той же странице пред­

назначена для обслуживания некоторых печатающих устройств, особенно ма­

тричных и струйных, которые применяют полосовой способ печати. Они печатают

сначала одну полосу, продвигают бумагу и затем печатают следующую полосу.

Полосовой способ печати может использоваться даже на лазерных принтерах,

которые обычно печатают сразу всю страницу. Это дает возможность управлять

размером файла буферизации печати.

Если для вывода полосы в задании на печать требуется объект типа Pr in tаЫе,
то следует указать область отсечения графического контекста печатаемой поло­

сой и вызвать метод print ().Таким обра:юм, все операции рисования будут вы­
полняться только на данной полосе, и только в пределах ее прямоугольной обла­

сти будут воспроизводиться рисуемые графические элементы. Методу print ()
совсем не обязателыю :шать об этих действиях, при условии, что он не затрагива­

ет область отсечения .

• ВНИМАНИЕ! Объект типа Graphics, возвращаемый методом print (), отсекается также
по полям печатной страницы. Хотя можно рисовать на полях страницы, если переместить

область отсечения. Но в графическом контексте печатающего устройства необходимо стро­

го соблюдать заданную область отсечения. Для дальнейшего ограничения области отсечения

следует вызывать метод clip (), а не setClip (). Если же требуется временно удалить об­
ласть отсечения, то в начале разрабатываемого метода print () придется вызвать метод
qetClip (),чтобы получить эту область для ее последующего восстановления.

Параметр типа PageFormat, устанавливаемый при вызове метода print (),
содержит сведения о печатаемой странице. Методы getWidth () и getHeight ()
возвращают формат бумаги, измеряемый в пунктах. Один пункт равен 1/72 дюй­
ма, а один дюйм составляет 25,4 миллиметра. Например, формат бумаги А4 при­
близител1,но равен 595х842 пункта, или 210х297 мм, а формат бумаги US Letter -
612х792 пункта, или 215,9х279,4 мм.

Пункты являются общепринятой единицей измерения в полиграфической

промышленности США. Эта же единица применяется по умолчанию для всех

графических контекстов печати. В этом можно убедиться на примере програм­

мы, исходный код которой приведен в конце данного раздела. Эта программа

печатает две строки текста, которые находятся на расстоянии 72 пунктов друг
от друга. Запустите эту программу, измерьте расстояние между напечатанными

строками и убедитесь в том, что оно равно в точности 1 дюйму, или 25,4 мм.
Методы getWidth () и getHeight () из класса PageFormat во:шращают пол­

ную ширину и высоту страницы. Но печатать можно не на всей странице. Обыч­

но пользователи самостоятельно задают размеры полей печатаемой страницы,

но даже если они этого не сделают вручную, поля печатаемой страницы все рав­

но будут определены автоматически. Дело в том, что печатающему устройству

необходимо каким-то образом удерживать листы бумаги, на которых произво­

дится печап,, и поэтому по краям остаются небольшие непечатаемые участки.

Методы getimageaЫeWidth () и getimageaЫeHeight () возвращают ши­
рину и высоту области, доступной для печати. Но поля не обязательно долж­

ны быть симметричными, поэтому следует также знать координаты верхнего

11.5. Вывод изображений на печать

левого угла области, достушюй дм1 печати, которая условно пока:1а11а на рис.

11 .61. Эти коорди11аты мож110 получип, с помощ1,ю методов ge t ImageaЫeX ()
н ge tlmageaЬleY () .

Координаты (х ,у)

доступной

для печати области

Высота

страницы

Ширина доступной

для печати области

" "
~------1

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1 1 ______ _,

" Ширина

страницы

Высота

доступной

для печати

области

Рис. 11.61. Ра:~меры страшщы и области,
лос1у111ю1·1 ллн 11ечати

СОВЕТ. Графический контекст, который передается методу print (), обрезается по по­
лям печатаемой страницы, тем не менее, начало системы координат остается по-прежнему

в верхнем левом углу страницы. Поэтому начало координат имеет смысл перенести в левый

верхний угол области, доступной для печати. Для этого разрабатываемый метод print ()
необходимо начать со следующей строки кода:

g. t ranslat e (page Forma t . get I mageaЬleX () , pageFormat. get ImageaЫeY 1)) ;

Если же требуетсн предоста111п1, поль:ювателю 1ю:1мож1юсп, самостоятелыю

оrtределяп, границы страницы и :~адавап, к11иж11ую или альбом11ую ориентацию,

11е уста11авливан других атрибутов печати, то для этого можно вы :шап, метод

pageDialog () и : 1 класса Prin ter,Job следующим обра:юм:

PageFormat format ~ job.pageDialog :attributes) ;

НА ЗАМЕТКУ! На одной из вкладок диалогового окна настройки печати содержатся параме­

тры печатаемой страницы (рис . 11 .621, которые пользовател ь может просмотреть и поправить
непосредственно перед печатью . Это особенно удобно, если в программе реализован прин­

цип WYSIWIG, когда на отпечатке получается именно то, что отображается на экране . Метод

pageDialog () возвращает объект ти па PageFormat со значениями параметров печати,
задаваемых пользователем.

Глава 11 • Расширенные средства Swing и графика

8 [Page Sett1p ------------------ - - ------:х

Mtdia

s11e: ~t-;r-_ ._--}~]

Sou1·.1:e: Automatially Stltct

Orit11tation Mvgins

0 ·~ fortrait
lt!t (in) right (in)

0 ~J !,a11dscapt 1_1 о 1.0

Heнrst Portr•it !ОР (111) JJ.ottom 011)

m
ГiТ- ! 1.о_ ~

, Rtvtrst Landsapt

Рис. 11.62. Вид диалогово1·0 окна мя настройки печатаемой
страницы независимо от ис11оль:1уемой платформы

В примере программы, исходный код которой принеде11 н листинrах 11.23
и 11.24, покюано, каким обра:юм один и тот же ряд фигур выводится 11а экран

и на печап" Класс PrintPa nel расширяет класс JPane l и реализует интерфейс
Pr in t ab1e , а его методы p a intComponent () и print () вызывают один и тот же

метод непосредственно для рисования, как выделено ниже полужирным.

c l ass Pri ntPane l ext e nds JPane l impl ements PrintaЫe
(

puЫic void paintComponent(Graphics g)
(

super.paintComponent(g);
var g2 = (G raphi cs2D) g ;
drawPage (g2);

puЫ ic int print(Graphi cs g , PageForma t pf , int page)
throws PrinterExcept i on

if (page >= 1) r e turn PrintaЬle. NO __ SUCH PAGE ;
var g2 ~ (Graph i cs2 D) g;
g2 . t ra n s late(pf .getimageaЬl eX () , pf . getimageaЬleY());

drawPa9e(92);
retu r n PrintaЬle . PAGE EX ISTS;

puЫic vo id drawPage(Graphics2D g2)
{

11 здесь следует общий код для рисова ния

11.5. Вывод изображений на печать

В рассматриваемом здесь примере для демонстрации вывода данных на пе­

чать используется то же изображение, что и на рис. 11.50. В этом изображении
контуры символов, составляющих строку "Hello, World", используются в каче­
стве области отсечения для линий штрихового рисунка.

Для :ыпуска 3адания на печать достаточно щелкнуть на экранной кнопке Print

(Печать), а для открытия диалогового окна настройки печати - на кнопке Page
setup (Параметры страницы). Соответствующий исходный код приведен в ли­

стинге 11.23.

НА ЗАМЕТКУ! Чтобы отобразить платформенно-ориентированное диалоговое окно па­

раметров печатаемой страницы, методу pageDialog () следует передать объект типа

PageFormat. Этот метод создает копию объекта, изменяет ее в соответствии с пользова­
тельскими установками и возвращает обратно, как показано ниже.

PageFormat defaultFormat = printJob.defaultPage();
PageFormat selectedFormat =

printJob.pageDialog(defaultFormat);

Листинг 11.23. Исходный код из файла print/PrintTestFrame. java

1 package print;
2
3 import java.awt.*;
4 import java.awt.print.*;
5
6 import javax.print.attribute.*;
7 import javax.swing.*;
8

9 /* *
10 * В этом фрейме отображается панель с двухмерной

11 * графикой и экранными кнопками для печати графики
12 * и установки формата страницы

13 */
14 puЬlic class PrintTestFrame extends JFrame
15 {
16 private PrintComponent canvas;
17 private PrintRequestAttributeSet attributes;
18
19 puЫic PrintTestFrame()
20 {
21 canvas = new PrintComponent();
22 add(canvas, BorderLayout.CENTER);
23
24 attributes = new HashPrintRequestAttributeSet();
25
26 var buttonPanel = new JPanel();
27 var printButton ~ new JButton("Print");
28 buttonPanel.add(printButton);
29 printButton.addActionListener(event ->
30 {
31 try
32 {

Глава 11 • Расширенные средства Swing и графика

PrinterJob job = PrinterJob.getPrinterJob();
job.setPrintaЬle(canvas);

if (job.printDialog(attributes))
job.print(attributes);

33
34
35
36
37
38
39

catch (PrinterException ех)
(

40 JOptionPane.showMessageDialog(
41 PrintTestFrame.this, ех);

42 }
4 3 }) ;
44
45 var pageSetupButton = new JButton("Page setup");
46 buttonPanel.add(pageSetupButton);
47 pageSetupButton.addActionListener(event ->
48 (
49 PrinterJob job = PrinterJob.getPrinterJob();
50 job.pageDialog(attributes);
51 }) ;
52
53 add(buttonPanel, BorderLayout.NORTH);
54 pack();
55
56

Листинг 11.24. Исходный код из файла print/PrintComponent. java

1 package print;
2
3 import java.awt.*;
4 import java.awt.font.*;
5 import java.awt.geom.*;
6 import java.awt.print.*;
7 import javax.swing.*;
8
9 /**
10 * Этот компонент формирует двухмерную графику

11 * для вывода на экран и на печать
12 */
13 puЫic class PrintComponent extends JComponent
14 implements PrintaЫe
15
16 private static final Dimension PREFERRED SIZE
17 new Dimension(300, 300);
18 puЫic void paintComponent(Graphics g)
19 (
20 var g2 = (Graphics2D) g;
21 drawPage(g2);
22
23
24 puЫic int print(Graphics g, PageFormat pf, int page)
25 throws PrinterException
26
27 if (page >= 1) return PrintaЬle.NO SUCH PAGE;

11.5. Вывод изображений на печать

28 var g2 = (Graphics2D) g;
29 g2.translate(pf.getimageaЬleX(), pf.getimageaЬleY());

30 g2.draw(new Rectangle2D.DouЬle(O, О,

31 pf.getimageaЬleWidth(),

32 pf.getimageaЬleHeight()));

33
34 drawPage(g2);
35 return PrintaЬle.PAGE EXISTS;
36
37
38 /**
39 * Этот метод рисует страницу в графическом

40 * контексте экрана и печатающего устройства
41 * @param g2 Графический контекст

42 */
43 puЫic void drawPage(Graphics2D g2)
4 4 {
45 FontRenderContext context =
46 g2.getFontRenderContext();
47 var f = new Font("Serif", Font.PLAIN, 72);
48 var clipShape = new GeneralPath();
49
50 var layout = new TextLayout("Hello", f, context);
51 AffineTransform transform =
52 AffineTransform.getTranslateinstance(O, 72);
53 Shape outline = layout.getOutline(transform);
54 clipShape.append(outline, false);
55
56 layout = new TextLayout("World", f, context);
57 transform =
58 AffineTransform.getTranslateinstance(O, 144);
59 outline = layout.getOutline(transform);
60 clipShape.append(outline, false);
61
62 g2.draw(clipShape);
63 g2.clip(clipShape);
64
65 f inal int NLINES = 50;
66 var р = new Point2D.DouЬle(O, 0);
67 for (int i О; i < NLINES; i++)
68 {
69 douЫe х (2 * getWidth() * i) / NLINES;
70 douЫe у

71 (2 * getHeight() * (NLINES - 1 - i)) / NLINES;
72 var q = new Point2D.DouЬle(x, у);

73 g2.draw(new Line2D.DouЬle(p, q));
74
75
76
77 puЫic Dimension getPreferredSize()
78 { return PREFERRED SIZE;
79

Глава 11 • Расширенные средства Swing и графика

java.awt.print.PrintaЫe 1.2

int print (Graphics g, PageFormat :format, int раgвNшоЬеr)

Воспроизводит страницу и возвращает значение константы PAGE_EXISTS или NO_SUCH_
PAGE.

Параметры: g

foгmat

pageNumber

Графический контекст, в котором

воспроизводится страница

Формат воспроизводимой страницы

Номер требуемой страницы

java.awt.print.PrinterJob 1.2

• static PrinterJob qetPrinterJob ()

Возвращает объект задания на печать.

• PageFormat defaultPage()

Возвращает установленный по умолчанию формат страницы для данного печатающего

устройства.

• boolean printDialoq(PrintRequestAttributeSet attriЬutes)

• boolean printDialoq ()

Открывают диалоговое окно, в котором пользователь может выбирать страницы для печати
и настраивать ее параметры. Первый метод отображает платформенно-независимое диало­

говое окно, а второй - платформенно-ориентированное окно. Оба метода изменяют задан­

ный объект attribute.s с учетом пользовательских настроек и возвращают логическое
значение true, если пользователь подтвердит установленные параметры настройки печати.

• PaqeFormat paqeDialoq(PrintRequestAttriЬuteSet attriЬutвs)

• PageFormat pageDialoq(PageFormat de:faults)

Выводят диалоговое окно настройки страницы. Первый из этих методов отображает плат­

форменно-независимое диалоговое окно, а второй - платформенно-ориентированное окно.

Оба метода возвращают объект типа PageFormat, определяющий формат, указанный поль­
зователем в диалоговом окне. Первый метод видоизменяет заданный объект attriЬutes

таким образом, чтобы тот отражал пользовательские установки. Второй метод не видоизме­

няет объект de:faul t.s.

• void setPrintaЬle(PrintaЫe р)

• void setPrintaЬle (PrintaЫe р, PageFormat :format)

Устанавливают объект типа PrintaЬle и необязательный формат страницы для текущего

задания на печать.

• void print ()

• void print(PrintRequestAttriЬuteSet attributвs)

Выводят на печать текущий объект типа PrintaЬle, повторно вызывая его метод print ()
и отправляя воспроизводимые страницы на печатающее устройство до тех пор, пока не будут

напечатаны все страницы.

11.5. Вывод изображений на печать

java.awt.print.PageFormat 1.2

• douЫe getWidth ()

• douЬle getHeight ()
Возвращают ширину и высоту страницы.

• douЫe getimageaЬleWidth ()
• douЫe getimageaЬleHeight()

Возвращают ширину и высоту доступной для печати области страницы.

• douЫe getimageaЬleX()

• douЫe getimageaЬleY()

Возвращают координаты верхнего левого угла доступной для печати области страницы.

• int getOrientation ()
Возвращают значение одной из следующих констант, определяющих ориентацию страницы:
PORТRAIT, LANDSCAPE или REVERSE LANDSCAPE. Ориентация прозрачна для программи­
рования, поскольку она автоматическиучитывается в установках формата страниц и графи­
ческого контекста.

11.5.2. Многостраничная печать
На практике объекты типа PrintaЫe нежелательно передавать заданию

на печать без предварительной обработки. Сначала следует получить экземпляр

класса, реализующего интерфейс РаgеаЫе. На платформе Java для этой цели
предоставляется класс Book, реализующий книгу, состоящую из разделов, пред­
ставленных объектами типа PrintaЫe. Для составления книги сначала вводятся

объекты типа PrintaЫe в ее разделы и организуется нумерация страниц:

var book = new Book();
PrintaЫe coverPage = . . . ;
PrintaЫe bodyPages = ••• ;
11 присоединить одну страницу:
book.append(coverPage, pageFormat);
book.append(bodyPages, pageFormat, pageCount);

Затем вызывается метод setPageaЫe (),чтобы передать книгу в виде объекта

типа Воо k заданию на печать:

printJob.setPageaЬle(book);

Теперь заданию на печать точно известно количество печатаемых страниц, а в

диалоговом окне настройки печати отображаются их номера, чтобы пользова­

тель мог выбрать весь диапазон печатаемых страниц или только его часть .

• ВНИМАНИЕ! Когда из задания на печать вызывается метод print () для объектов разделов
типа PrintaЬle, ему передается текущий номер страницы, отсчитываемый в пределах кни­

ги, а не каждого раздела. Это очень неудобно, поскольку в каждом разделе должны храниться

данные о количестве страниц в предыдущих разделах.

Для программирования наибольшую трудность при использовании класса

Book представляет подсчет и сохранение данных о количестве страниц в каждом
ра3деле во время печати. В объекте типа PrintaЫe следует составить алгоритм

Глава 11 • Расширенные средства Swing и графика

ко.м11оно11ки печатаемой страницы . Компоновку страницы необходимо рассчитап,

перед началом ее печати, чтобы определить количество печатаемых страниц и их

ра:1рывы. Сведения о компоновке страницы можно сохранить для далы1ейшего

применения во время печати. Следует также учитывать, что полыователь может

изменить формат страницы. В таком случае придется повторно рассчитать ком­

поновку страницы, даже если печатаемые данные не изменились.

В примере программы из листиша 11.26 показано, каким обра:юм оргашоу­
ется многостраничная печать. Эта программа выводит крупный :1аголовок (так

называемый баннер), состоящий и:1 строки символов очень бол1,шого ра:1мера,

и поэтому они располагаются на нескольких страницах (рис. 11.63). После распе­
чатки всех страниц поля обре3аются, а страницы склеиваются вместе.

Рис. 11.63. Ба~шер

Метод l a youtPages () из класса Banne r рассчитывает компоновку страницы.
Сначала компонуется строка сообщения, отформатированная шрифтом ра:1ме­

ром 72 пункта. Затем высота результирующей строки вычисляется и сравнивает­
ся с высотой печатаемой области страницы. На основании этих двух и:шерений

определяется масштабный коэффициент. При выводе на печать строка увеличи­

вается на этот масштабный коэффициент .

• ВНИМАНИЕ! Для точного размещения на странице печатаемой информации требуется доступ к графическому контексту печатающего устройства. К сожалению, получить доступ к этому

графическому контексту нельзя до тех пор, пока не начнется сама печать. В программе, рас­

сматриваемой здесь в качестве примера, все требующиеся действия выполняются в экран­

ном графическом контексте в надежде, что типографские параметры шрифтов на экране и на

печатной странице совпадут.

В методе ge tPageCount () И:J класса Banner сначала вызывается метод опреде­

ления компоновки страницы. Затем ширина символьной строки увеличивается

в масштабе и делится на ширину доступной для печати области отделыюй стра­

ницы. Частное от этого деления, округленное до следующего целого значения,

определяет искомое количество страниц.

Из всего сказанного выше можно сделап, вывод, что напечатать баннер не так­

та просто, поскольку отдельные части символа могут располагап.ся на разных

страницах. Но благодаря эффективным средствам прикладного интерфейса Java
20 API эта задача решается очень просто. Для получения конкретной страницы
вызывается метод translate () и:1 класса Graphic s 2D, смещающий верхний ле­
вый угол печатаемой символьной строки на заданное расстояние влево. Затем

устанавливается прямоугольная обласн отсечения с ра:1мерами текущей стра­

ницы (рис. 11.64). Наконец, масштаб графического контекста и:1меняется по мас­
штабному коэффициенту, вычисленному методом компоновки страницы.

11.5. Вывод изображений на печать

Перемещение

/ О/чение

Масштабирование

Рис. 11.64. Алгоритм 1юс1раничной печати баннера

Рассматринаемый здесь пример программы из листингов 25-28 демонстриру­
ет исти1111ый потенциал преобразований, благодаря которым код для воспроиз­

недения графического изображения на странице остается простым. Как видите,

преобразова11ю1 выполняют нею работу по размещению изображения н соответ­

ствующем месте и отсечению той его части, которая выходит за пределы доступ-

1юй для печати области страницы. В данном примере программы демонстриру­

ется еще один наглядный пример применения преобразований для организации

пред1~арител1,ного просмотра печатаемой страницы.

Листинг 11.25. Исходный код из файла Book/BookTestFrame. java

1 package book;
2
З import java.awt .* ;
4 impor t java. awt. priпt. * ;

5
б import j a vax .priпt. a t t ribute. * ;

7 i mport javax. sw iпg. *;

8
9 / **
10 * Этот фрейм содержит текстовое поле для ввода

11 * баннера, а также кнопки для печати, настройки

12 * и предварительного просмотра печатаемой страницы
13 * /
14 puЫic c l ass BookTes t Frame exteпds JFrame
1 5 (
16 private J Te xt Field t ext ;
17 private Page f o rmat pageFo r ma t ;
18 private Pri п tRequestAttribut eSet attribut es;
19
20 puЬli c Boo kTest Frame ()
21 {
22 t ex t ~ пеw J Text Fie ld();

Глава 11 • Расширенные средства Swing и графика

23 add(text, BorderLayout.NORTH);
24
25 attributes = new HashPrintRequestAttributeSet();
26
27
28

var buttonPanel new JPanel();

29 var printButton new JButton("Print");
30 buttonPanel.add(printButton);
31 printButton.addActionListener(event ->
32 {
33 try
34 {
35 PrinterJob job = PrinterJob.getPrinterJob();
36 job.setPageaЬle(makeBook());

37 if (job.printDialog(attributes))
38 {
39 job.print(attributes);
40
41
42 catch (PrinterException е)

43 {
44 JOptionPane.showMessageDialog(
45 BookTestFrame.this, е);

4 6 }
4 7 }) ;
48
49 var pageSetupButton = new JButton("Page setup");
50 buttonPanel.add(pageSetupButton);
51 pageSetupButton.addActionListener(event ->
52 {
53 PrinterJob job = PrinterJob.getPrinterJob();
54 pageFormat = job.pageDialog(attributes);
55 }) ;
56
57 var printPreviewButton
58 new JButton("Print preview");
59 buttonPanel.add(printPreviewButton);
60 printPreviewButton.addActionListener(event ->
61 {
62 var dialog = new PrintPreviewDialog(makeBook());
63 dialog.setVisiЬle(true);

64 }) ;
65
66 add(buttonPanel, BorderLayout.SOUTH);
67 pack () ;
68
69
70 /**
71 * Составляет книгу из страницы
72 * обложки и страниц баннера
73 */
7 4 рuЫ ic Book makeBook ()
75 {
76 if (pageFormat == null)
77 {
78 PrinterJob job = PrinterJob.getPrinterJob();

11.5. Вывод изображений на печать

79 pageFormat = job.defaultPage();
80
81 var book = new Book();
82 String message = text.getText();
83 var banner = new Banner(message);
84 int pageCount = banner.getPageCount(
85 (Graphics2D) getGraphics(), pageFormat);
86 book.append(new CoverPage(message
87 + " (" + pageCount + " pages) "), pageFoпнat) ;
88 book.append(banner, pageFormat, pageCount);
89 return book;
90
91

Листинг 11.26. Исходный код из файла book/Banner. java

1 package book;
2
3 import java.awt.*;
4 import java.awt.font.*;
5 import java.awt.geom.*;
6 import Java.awt.print.*;
7
8 /**
9 * Баннер для печати текстовой строки
10 * на нескольких страницах
11 */
12 puЫic class Banner implements PrintaЫe
13 (
14 private String message;
15 private douЫe scale;
16
17 /**
18 * Конструирует баннер
19 * @param m Строка сообщения
20 */
21 puЫic Banner(String m)
22 {
23 message = m;
24
25
2 6 /* *
27 * Получает количество страниц в данном разделе

28 * @param g2 Графический контекст
29 * @param pf Формат страницы
30 * @return Количество требующихся страниц
31 */
32 puЬlic int getPageCount(Graphics2D g2, PageFormat pf)
33 (
34 if (message.equals('"'ll return О;

35 FontRenderContext context =
36 g2.getFontRenderContext();
37 var f = new Font("Serif", Font.PLAIN, 72);
38 Rectangle2D bounds =
39 f.getStringBounds(message, context);

Глава 11 • Расширенные средства Swing и графика

40 scale = pf.getimageaЬleHeight()

41 / bounds.getHeight();
42 douЫe width = scale * bounds.getWidth();
43 int pages = (int) Math.ceil(
44 width / pf.getimageaЫeWidth());
45 return pages;
46
47
48 puЫic int print(Graphics g, PageFormat pf, int page)
49 throws PrinterException
50
51 var g2 = (Graphics2D) g;
52 if (page > getPageCount(g2, pf))
53 return PrintaЬle.NO SUCH PAGE;
54 g2.translate(pf.getimageaЬleX(),

55 pf.getimageaЬleY());

56
57 drawPage(g2, pf, page);
58 return PrintaЬle.PAGE EXISTS;
59
60
61 puЬlic void drawPage(Graphics2D g2,
62 PageFormat pf, int page)
63
64 if (message. equals ('"')) return;
65 page--; // учитывать страницу обложки
66
67 drawCropMarks(g2, pf);
68 g2.clip(new Rectangle2D.DouЬle(O, О,

69 pf.getimageaЫeWidth(),

70 pf.getimageaЬleHeight()));
71 g2.translate(-page * pf.getimageaЬleWidth(), 0);
72 g2.scale(scale, scale);
73 FontRenderContext context =
74 g2.getFontRenderContext();
75 var f = new Font("Serif", Font.PLAIN, 72);
76 var layout = new TextLayout(message, f, context);
77 Aff ineTransform transform = AffineTransform
78 .getTranslateinstance(O, layout.getAscent());
79 Shape outline = layout.getOutline(transform);
80 g2.draw(outline);
81
82
83 /**
84 * Рисует полудюймовые метки обрезки в углах страницы
85 * @param g2 Графический контекст
86 * @param pf Формат страницы
87 */
88 puЫic void drawCropMarks(
89 Graphics2D g2, PageFormat pf)
90
91 //длина метки обрезки= 1/2 дюйма:
92 final douЫe С = 36;
93 douЫe w = pf.getimageaЫeWidth();
94 douЫe h = pf.getimageaЬleHeight();
95 g2.draw(new Line2D.DouЬle(O, О, О, С));

11.5. Вывод изображений на печать

96
97
98
99
100
101
102
103
104
105
106 /**

g2.draw(new
g2.draw(new
g2.draw(new
g2.draw(new
g2.draw(new
g2.draw(new
g2.draw(new

Line2D.DouЬle(O,

Line2D.DouЬle(w,

Line2D.DouЬle(w,

Line2D.DouЬle(O,

Line2D.DouЬle(O,

Line2D.DouЬle(w,

Line2D.DouЬle(w,

О, С,

о, w,
о, w -
h, о,

h, С,

h, w,
h, w -

о 1) ;
С)) ;
с, 0));

h - С) 1;
h));
h - С) 1;
с, h)) ;

107 * Этот класс печатает страницу обложки с заглавием

108 */
109 class CoverPage implements PrintaЫe
110 {
111 private String title;
112
113 /**
114 * Конструирует страницу обложки
115 * @param t Заглавие

116 */
117 puЫic CoverPage(String t)
118 {
119 title = t;
120
121
122 puЫic int print(Graphics g, PageFormat pf, int page)
123 throws PrinterException
124
125 if (page >= 1) return PrintaЬle.NO SUCH PAGE;
126 var g2 = (Graphics2D) g;
127 g2.setPaint(Color.Ыack);

128 g2.translate(pf.getimageaЬleX(),

129 pf.getimageaЬleY());
130 FontRenderContext context =
131 g2.getFontRenderContext();
132 Font f = g2.getfont();
133 var layout = new TextLayout(title, f, context);
134 float ascent = layout.getAscent();
135 g2.drawString(title, О, ascent);
136 return PrintaЫe.PAGE EXISTS;
137
138

Листинг 11.27. Исходный код из файла book/PrintPreviewDialog. java

1 package book;
2
3 import java.awt.*;
4 import java.awt.print.*;
5
6 import javax.swing.*;
7
8 /**
9 * Этот класс реализует типичное окно

Глава 11 • Расширенные средства Swing и графика

10 * предварительного просмотра печати
11 * /
12 puЫic class PrintPreviewDialog extends JDialog
13 {
14 private static final int DEFAULT WIDTH = 300;
15 private static final int DEFAULT HEIGHT = 300;
16
17 private PrintPreviewCanvas canvas;
18
19 /**
20 * Конструирует диалоговое окно
21 * предварительного просмотра печати
22 * @param р ПечатаемьШ объект типа PrintaЫe
23 * @param pf Формат страницы
24 * @param pages Количество страниц в
25 * печатаемом объекте р

26 */
27 puЬlic PrintPreviewDialog(
28 PrintaЬle р, PageFormat pf, int pages)
29
30 var book = new Book();
31 book.append(p, pf, pages);
32 layoutUI (book) ;
33
34
35 /**
36 * Создает диалоговое окно предварительного
37 * просмотра печати
38 * @param Ь Объект книги типа Book
39 * /
40 puЫic PrintPreviewDialog(Book Ь)
41 {
42 layoutUI (Ь);
43
44
45 /**
46 * Компонует ГПИ в диалоговом окне

47 * @param book Предварительно просматриваемая книга
48 */
49 puЫic void layoutUI(Book book)
50 {
51 setSize(DEFAULT_WIDTH, DEFAULT HEIGHT);
52
53 canvas = new PrintPreviewCanvas(book);
54 add(canvas, BorderLayout.CENTER);
55
56 var buttonPanel = new JPanel();
57
58 var nextButton = new JButton("Next");
59 buttonPanel.add(nextButton);
60 nextButton.addActionListener(event ->
61 canvas.flipPage(l));
62
63 var previousButton = new JButton("Previous");
64 buttonPanel.add(previousButton);
65 previousButton.addActionListener(event ->

11.5. Вывод изображений на печать

66 canvas.flipPage(-1));
67
68 var closeButton = new JButton("Close");
69 buttonPanel.add(closeButton);
7 О closeBt1t ton. addAct ionList ener (event ->
71 setVisiЬle(false));

72
73 add(buttonPanel, BorderLayout.SOUTH);
74
75

Листинг 11.28. Исходный код из файла book/PrintPreviewCanvas. java

1 package book;
2
3 import java.awt.*;
4 import java.awt.geom.*;
5 import java.awt.print.*;
6 import javax.swing.*;
7
8 /**
9 * Холст для отображения предварительного
10 * просмотра печати

11 */
12 class PrintPreviewCanvas ext.ends JComponent
13
14 private Book book;
15 private int currentPage;
16
17 /**
18 * Конструирует холст для предварительного
19 * просмотра печати
20 * @param Ь Предварительно просматриваемая книга
21 */
22 puЫic PrintPreviewCanvas(Book Ь)
23 (
24 book = Ь;
25 currentPage = О;

26
27 puЫic void paintComponent(Graphics g)
28 {
29 var g2 = (Graphics2D) g;
30 PageFormat pageFormat =
31 book.getPageFormat(currentPage);
32 //координатах смещения начала страницы в окне:

33 douЫe xoff;
34 // координата у смещения начала страницы в окне:
35 douЫe yoff;
36 //масштабный коэффициент для подгонки

37 //просматриваемой страницы по размерам окна:

38 douЫe scale;
39 douЫe рх pageFormat.getWidth();
40 douЫe ру pageFormat.getHeight();
41 douЫe sx getWidth() - 1;
42 douЫe sy getHeight() - 1;

Глава 11 • Расширенные средства Swing и графика

43 //отцентровать по горизонтали:

44 lf (рх / ру < sx / sy)
45 {
46 scale = sy / ру;

47 xoff 0.5 * (sx - scale * рх);
48 yoff = О;

49
50 else
51 //отцентровать по вертикали:

52 {
53 scale = sx / рх;

54 xoff О;

55 yoff = 0.5 * (sy - scale * ру);
56
57 g2.translate((float) xoff, (float) yoff);
58 g2.scale((float) scale, (float) scale);
59
60 //нарисовать контуры страницы page, игнорируя поля:

61 var page = new Rectangle2D.DouЬle(0, О, рх, ру);

62 g2.setPaint(Color.white);
63 g2.fill(page);
64 g2.setPaint(Color.Ыack);

65 g2.draw(page);
66
67 PrintaЫe printaЫe

68 book.getPrintaЬle(currentPage);

69 t.ry
70 {
71 printaЫe.print(g2, pageFormat, currentPage);
72
73 catch (PrinterException е)

74 {
75 g2.draw(new Line2D.DouЬle(0, О, рх, ру));
76 g2.draw(new Line2D.DouЬle(px, О, О, ру));
77
78
7 9 /* *
80 * Листать книгу на заданное число страниц
81 * @param Ьу Число листаемых страниц.
82 * Отрицательные значения данного

83 * параметра обозначают листание книги назад

84 */
85 puЫic void flipPage(int Ьу)
8 6 {
87 int newPage = currentPage + Ьу;
88 if (0 <= newPage
89 && newPage < book.getNumЬerOfPages())
90
91 currentPage = newPage;
92 repaint();
93
94
95

11.5. Вывод изображений на печать

11.5.З. Службы печати

В предыдущих разделах было показано, как выводип, двухмерную графи­
ку на печать. Но прикладной интерфейс API для печати, внедренный в версии
Java 1.4, обладает более широкими возможностями. В этом прикладном интер­
фейсе определен целый ряд типов данных и поддерживается поиск служб пе­

чати для их вывода. Ниже перечислены некоторые из поддерживаемых типов

данных.

• Изображения в формате GIF, JPEG или PNG.

• Текстовые документы в формате HTML, PostScript или PDF.

• Неформатированные данные для печатающего устройства.

• Экземпляры классов, реализующих интерфейсы PrintaЫe, РаgеаЫе или

RenderaЫeimage.

Сами данные могут хранип,ся в любом источнике байтов или символов, на­

пример, в потоке ввода, неб-ресурсе, доступном по указанному URL, или в мас­
сиве. Сочетание типа данных и источника данных называется ра3новидностью

документа. Так, в классе DocFlavor определен целый ряд внутренних классов
для различных источников данных. Каждый из этих внутренних классов содер­

жит константы для указания разновидности документа. Например, приведенная
ниже константа описывает изображение формата GIF, считываемое из потока
ввода. Все разновидности документов, т.е. допустимые сочетания типов источни­

ков и данных, включая и тип MIME, перечислены в табл. 11.4.
DocFlavor.INPUT STREAМ.GI

Таблица 11.4. Разновидности документов для служб печати

Источник данных Тип данных

INPUТ SТRЕАМ GIF
URL JPEG
БУТЕ ARRAY PNG

POSTSCRIPT
PDF
ТЕХТ НТМL HOST

ТЕХТ НТМL US ASCII
ТЕХТ НТМL UТF 8 - - -
ТЕХТ НТМL UTF 16
ТЕХТ НТМL UTF 16LE

ТЕХТ НТМL UTF 16ВЕ

ТЕХТ PLAIN HOST

ТЕХТ PLAIN US ASCII
ТЕХТ PLAIN UТF 8

Тип MIME
image/gif
image/jpeg
ima.ge/png
application/postscript
application/pdf

text/html (в кодировке, характерной
для конкретною хоста)

text/html;charset=us-ascii
text/html;charset=utf-8
text/html;charset=utf-16
text/html;charset=utf-161e(пpямoй
порядок следования байтов)

text/html; charset=utf-16be (обратный
порядок следования байтов)

text/plain (в кодировке, характерной
для конкретноl'О хоста)

text/plain; charset=us-ascii

text/plain;charset=utf-8

Глава 11 • Расширенные средства Swing и графика

Источник данных Тип данных

ТЕХТ PLAIN UTF 16

ТЕХТ PLAIN UТF 16LE

ТЕХТ PLAIN UТF 16ВЕ

PCL

AUТOSENSE

READER ТЕХТ НТМL

SТRING ТЕХТ PLAIN

СНАR ARRAY

SERVICE PRINТAВLE

FORМATТED

PAGEAВLE

RENDERAВLE IМAGE

Окон•тние mallл. 11.4

Тип MIME
text/plain;charset=utf-16

text/plain; charset=utf-16le (11рямой
порядок следования байтов)

text/plain; charset=utf-16Ьe (обратный
порядок следования байтов)

application/vnd.hp-PCL (Hewlett Packard
Printer Control Language - язык управления
печатью от компании Hewlett)
application/octet-stream
(неформатированные данные для печатающего

устройста)

text/html;charset=utf-16

text/plain;charset=utf-16

Отсутствует

Отсутсrвует

Отсутствует

Допустим, требуется напечатать растровое изображение из файла форма­

та GIF. Для этого необходимо сначала выяснить, имеется ли соответствующая
служба печати, способная справип,ся с подобной :!адачей. Статический метод

lookupPrintServices () из класса PrintServiceLookup возвращает массив объ­
ектов типа PrintService, способных напечатать указанную разновидность доку­
мента, как показано ниже.

DocFlavor flavor = DocFlavor.INPUT STREAМ.GIF;
PrintService[] services = PrintServiceLookup

.lookupPrintServiceslflavor, null);

Второй параметр метода lookupPrintServices () принимает пустое значе­
ние null, которое означает, что поиск подходящей службы печати не ограничи­
вается какими-то определенными атрибутами печати. Более подробно атрибуты

печати рассматриваются в следующем разделе.

Если в результате поиска служб печати получен массив типа PrintService []
с несколькими элементами, то среди перечисленных в нем служб печати следует

выбирать какую-нибудь одну. Чтобы извлечь список имен служб печати (напри­

мер, имен печатающих устройств) и предоставить пользователю возможность

выбора, достаточно вызвать метод getName () из класса PrintService.
Далее из выбранной службы следует получить задание на печать:

DocPrintJob job = services[i] .createPrintJob();

Для печати документа определенной раз11овид1юсти необходимо создать объ­

ект, класс которого реалI>вует интерфейс Doc. Для этой цели в библиотеке Java
предусмотрен класс SimpleDoc. Конструктору класса SimpleDoc следует пере­
дать объект, представляющий источник данных, разновидность документа и до­

полнительный, но необязательный набор атрибутов печати, как показано в при­

веденном ниже примере кода.

11.5. Вывод изображений на печать

var in = new FileinputStream(fileName);
var doc = new SimpleDoc(in, flavor, null);

Наконец, когда все будет готово к печати, можно приступить к выводу доку­

мента на печать, вы:шав приведенный ниже метод. Как и прежде, пустое :шаче­

ние null второго параметра этого метода можно заменить набором атрибутов
печати.

job.print(doc, null);

Однако описанный выше процесс печати совершенно не похож на рассматри­

вавшийся в предыдущем разделе, потому что в данном случае отсутствует вся­

кое взаимодействие с пользователем посредством диалоговых окон. Применяя

подобный механизм, можно организовать печать на сервере, где поль:юватели

должны передавать :ыдапия на печать из специальной веб-формы.

javax.print.PrintServiceLookup 1.4

• PrintService(] lookupPrintServices(DocFlavor flavor, AttributeSet
attriЬutes)

Ищет службы печати, способные справиться с указанной разновидностью документа и атри­

бутами печати.

Параметры: flavor Разновидность документа

attriЬutвs

javax.print.PrintService 1.4

Требуемые атрибуты печати или пустое

значение null, если эти атрибуты не

принимаются во внимание

• DocPrintJob crea.tePrintJob ()

Составляет задание на печать для вывода экземпляра класса, реализующего интерфейс Doc
[например, SimpleDoc).

javax.print.DocPrintJob 1.4

• void print(Doc doc, PrintRequestAttriЬuteSet attriЬutes)

Выводит на печать заданный документ с указанными атрибутами печати.

Параметры: doc Печатаемый документ

attriЬutes Требуемые атрибуты печати или

пустое значение null, если эти атрибуты

не принимаются во внимание

Глава 11 • Расширенные средства Swing и графика

javax.print.SimpleDoc 1.4

• SimpleDoc(Object data, DocFlavor flavor, DocAttriЬuteSet

attriЬutвs)

Создает объект типа SimpleDoc, который может быть выведен на печать в задании типа
DocPrintJob.

Пара14етры: data

flavor

attriЬutвs

11.5.4. Потоковые службы печати

Объект с данными для печати, например,

поток ввода или объект типа PrintaЫe

Разновидность документа с данными для печати

Атрибуты печати документа или пустое

значение null, если атрибуты печати не требуются

Обычные службы печати направляют данные на печатающее устройство. По­

токовые службы печати формируют данные аналогичным образом, но направля­

ют их в поток вывода. Такая потребность возникает в тех случаях, когда необхо­

димо задержать печать или интерпретировать формат печати данных в других

программах. Если, например, данные печатаются в формате PostScript, их целе­
сообразно сохранить в файле, поскольку многие программы способны обращать­

ся с файлами формата PostScript. На платформе Java предусмотрена потоковая
служба печати, способная распечатывать растровые изображения и двухмерную

графику в формате PostScript. Эти службы можно использовать во всех систе­
мах - даже в тех, где нет локальных печатающих устройств.

Перечисление потоковых служб печати организовано немного сложнее, чем

локальных служб печати. Для этого необходимо получить сначала разновидность

печатаемого документа в виде объекта типа DocFlavor и тип MIME потока вывода,
а затем массив фабричных объектов, представляющих потоковые службы печати:

DocFlavor flavor = DocFlavor.SERVICE FORМATTED.PRINTABLE;
String mimeType = "application/postscript";
StreamPrintServiceFactory[] factories =

StreamPrintServiceFactory
.lookupStreamPrintServiceFactories(flavor, mimeType);

В классе StreamPrintServiceFactory нет ни одного метода, с помощью
которого можно было бы отличить один фабричный объект потоковой служ­

бы от другого, поэтому выбирается самый первый объект, находящийся в эле­

менте массива factories [0]. Для получения объекта потоковой службы пе­
чати типа StreamPrintService следует вызвать приведенный ниже метод
getPr intService (), указав поток вывода в качестве его параметра. Класс

StreamPrintService является производным от класса PrintService, поэтому
для вывода на печать остается лишь выполнить действия, описанные в предыду­

щем разделе.

var out = new FileOutputStream(fileName);
StreamPrintService service =

factories[OJ .getPrintService(out);

11.5. Вывод изображений на печать

javax.print.StreamPrintServiceFactory 1.4

• StreamPrintServiceFactory[] lookupStreamPrintServiceFactories(DocFla
vor :Elavor, String mimeТype)

Ищет потоковые службы печати, способные напечатать документ указанной разновидности

и создать поток вывода заданного типа MIME.

• StreamPrintService getPrintService(OutputStream out)

Получает службу печати, направляющую данные в указанный поток вывода.

В примере программы из листинга 11.29 показывается, как пользоваться пото­
ковой службой печати для вывода двухмерных фигур на печать в файл формата
PostScript. Фрагмент кода для рисования фигур можно заменить в данной про­
грамме на фрагмент кода для формирования любых двухмерных фигур средства­
ми прикладного интерфейса Java 20 API, чтобы вывести их на печать в форма­
те PostScript. Полученный в итоге файл нетрудно затем преобразовать в формат
PDF или EPS, используя внешнее инструментальное средство. (К сожалению, вы­
вод на печать в форматах PDF и EPS непосредственно в Java не поддерживается.)

НА ЗАМЕТКУ! В данном примере метод draw () вызывается для рисования двухмерных
фигур в графическом контексте объекта типа Graphics2D. Если же требуется нарисовать
поверхность конкретного компонента !например, таблицы или дерева), с этой целью можно
воспользоваться следующим фрагментом кода:

private static int IМAGE_WIDTH = component.getWidth();
private static int IМAGE_HEIGHT = component.getHeight();
puЫic static void draw(Graphics2D g2)
{ component.paint(g2);)

Листинг 11.29. Исходный код из файла printService/PrintServiceTest. java

1 package printService;
2
3 import java.awt.*;
4 import java.awt.font.*;
5 import java.awt.geom.*;
6 import java.awt.print.*;
7 import java.io.*;
8 import javax.print.*;
9 import javax.print.attribute.*;
10
11 /**
12 * В этой программе демонстрируется применение

13 * потоковых служб печати. В ней двухмерные фигуры

14 * выводятся в файл формата PostScript. Если имя

15 * целевого файла не указано в командной строке,
16 * полученньm результат сохраняется в файле out.ps
17 * @version 1.0 2018-06-01
18 * @author Сау Horstmann
19 */
20 puЫic class PrintServiceTest

21
22
23
24
25
25
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

Глава 11 • Расширенные средства Swing и графика

!/ здесь задаются размеры изображения:
private static int IМAGE_WIDTH = 300;
private static int IМAGE HEIGHT = 300;

puЫic static void draw(Graphics2D g2)
{

11 ниже следуют инструкции для рисования:

FontRenderContext context =

g2.getFontRenderContext();
var f = new Font("Serif", Font.PLAIN, 72);
var clipShape = new GeneralPath();

var layout = new TextLayout("Hello", f, context);
Aff ineTransform transform =

AffineTransform.getTranslateinstance(O, 72);
Shape outline = layout.getOutline(transform);
clipShape.append(outline, false);

layout = new TextLayout("World", f, context);
transform =

AffineTransform.getTranslateinstance(O, 144);
outline = layout.getOutline(transform);
clipShape.append(outline, false);

g2.draw(clipShape);
g2.clip(clipShape);

final int NLINES = 50;
var р = new Point2D.DouЬle(O, 0);
for (int i = О; i < NLINES; i++)
{

douЫe х

douЫe у

(2 * IМAGE WIDTH * i) / NLINES;
(2 * IМAGE HEIGHT * (NLINES - 1 - i))

/ NLINES;
var q = new Point2D.DouЬle(x, у);

g2.draw(new Line2D.DouЬle(p, q));

puЬlic static void main(String[] args)
throws IOException, PrintException

String fileName =
args.length > О ? args[O] : "out.ps";

DocFlavor f lavor =
DocFlavor.SERVICE FORМATTED.PRINTABLE;

var mimeType = "application/postscript";
StreamPrintServiceFactory[] factories =

StreamPrintServiceFactory
.lookupStreamPrintServiceFactories(

flavor, mimeType);
var out = new FileOutputStream(fileName);
if (factories.length > 0)

11.5. Вывод изображений на печать

75
76 PrintService service =

77 factories[OJ .getPrintService(out);
78 var doc = new SimpleDoc(new PrintaЬle()
79
80 puЬlic int print(Graphics g,
81 PageFormat pf, int page)
82
83 if (page >= 1)
84 return PrintaЬle.NO SUCH PAGE;
85 else
86
87 douЫe sfl pf.getimageaЬleWidth()

88 / (IМAGE WIDТH + 1);
89 douЫe sf2 pf.getimageaЬleHeight()

90 / (IМAGE_HEIGHT + 1);
91 douЫe s = Math.min(sfl, sf2);
92 var g2 = (Graphics2D) g;
93 g2.translate(
94 (pf.getWidth()
95 - pf.getimageaЫeWidth()) / 2,
96 (pf. getHeight ()
97 - pf.getimageaЬleHeight()) / 2);
98 g2.scale(s, s);
99 draw(g2);
100 return PrintaЬle.PAGE EXISTS;
101
102
103 }, flavor, null);
104 DocPrintJob job = service.createPrintJob();
105 var attributes = new HashPrintRequestAttributeSet();
106 job.print(doc, attributes);
107 }
108 else
109 System.out.println("No factories for" + mimeType);
110
111

11.5.5. Атрибуты печати
Прикладной интерфейс API для служб печати содержит сложный набор ин­

терфейсов и классов, предназначенных для указания различных типов атрибутов

печати, которые делятся на четыре основные группы. Первые две группы атрибу­

тов печати определяют запросы, направляемые на печатающее устройство.

• Атрибутьz 3anpoca печати. Запрашивают отдельные характеристики всех
объектов документов в задании на печать. В качестве примеров таких ха­

рактеристик можно привести двухстороннюю печать или формат бумаги.

• Атрибуты документа. Используются только для какого-нибудь одного объ­

екта документа.

Остальные две группы атрибутов содержат сведения о печатающем устрой­

стве и состоянии задания на печат1,.

Глава 11 • Расширенные средства Swing и графика

• Атрибуты С\!fЖбы печати. Содержат сведения о службе печати (например,

о производителе и модели печатающего устройства, а также о том, прини­

мает ли печатающее устройство задание на печать в настоящий момент).

• Атрибуть1 JаJания на печат~,. Содержат сведения о состош1ии определенного

задания на печать (например, завершено ли задание или еще не выполнено).

Для описания различных атрибутов печати предусмотре11 и11терфейс А t t r i b u t e
и перечисленные ниже подчине1111ые интерфейсы .

PrintRequestAttribute
DocAttribute
Pri ntServiceAttribute
PrintJobAttribut e
SupportedValuesAttribute

Отдельные классы атрибутов реализуют один или нескол1,ко этих юпер­

фейсов. Например, эюемпляры класса Co p ie s исполиуются для описания
количества копий печатаемого документа. Этот класс реали:1ует интерфейсы

PrintRequestAtt r ibute и PrintJobAttribute. Задание на печать может содер­
жать :ыпрос на печать нескольких копий, тогда как атрибутом задания на печап,

может быть количество фактически напечатанных копий. Фактическое количе­

ство копий может оказаться меньше требуемого из-за ограничений, накладывае­

мых печатающим устройством, или исчерпания бумаги.

Интерфейс Supp ortedVal uesAtt ribu t e указывает, что :тачения атрибу­

та не отражают фактический :ыпрос или текущее состояние, а демонстриру­

ют функциональные возможности службы печати. Например, объект класса

CopiesSupported реализует интерфейс Suppo r tedVa l ue sAtt r i bu te и сообщает,

что печатающее устройство поддерживает печать от 1 до 99 копий. На рис. 11 .65
схематически показана иерархия наследования интерфейсов и классов, реализу­

ющих атрибуты печати.

Attribute

у

1 1 1 1 1

Doc Print PrintJob Print Supported

Attribute Request Attribute Service Vafues
Attribute ~·1 Attribute Attribute

ll li
' ' '-- -- - ---r- -- -- -'

'
Copies

Рис. 11.65. Иерархия наследования интерфейсов и классов,

реали:~ующих атрибу1ы нечати

11.5. Вывод изображений на печать

Помимо интерфейсов и классов для отдел1,ных атрибутов печати, в приклад-

1юм интерфейсе АР/ для служб печати предусмотрены интерфейсы и классы

для наборов атрибутов печати. Так, у интерфейса AttribureSet имеются следу­
ющие подчинен11ые интерфейсы :

PrintRequestAttr i buteSet
DocAttributeSet
PrintServiceAttributeSet
PrintJobAttributeSet

Для каждого И3 них предусмотрен класс, реализующий свой интерфейс. Все­

го насчитываето1 пять таких классов, перечисленных ниже. На рис. 11 .66 схема­

тически пока:~ана иерархия наследования интерфейсов и классов, реализующих

наборы атрибутов печати.

HashAttributeSet
HashPrintRequestAttributeSet
HashDocAttributeSet
HashPrintServiceAttr ibuteSet
HashPrintJobAt tributeSet

PrintRequest
AttributeSet

' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 1

HashPrint
Request

AttributeSet

DocAttributeSet

' ' ' ' ' ' ' ' ' ' ' '
\ 1

HashDoc
AttributeSet

' ' ' ' ' ' ' ' ' ' ' ' ' '
Hash

Attribute
Set

~

PrintService
AttributeSet

' ' ' ' ' ' 'i ' ' i ' ' !' ' '
\ 1

HashPrintService
AttributeSet

'

PrintJob
AttributeSet

' ' ' ' ' ' ' ' ' ' ' '
', 1

HashPrintJob
AttributeSet

Рис. 11.66. Иерархия наследования интерфейсов и классов,
реализуютих 11аборы атрибуюв печати

Например, со:~дать набор атрибутов для запроса на печать можно следующим

обра:юм:

var attributes = пеw HashPrintRequestAttributeSet() ;

После создания 11абора атрибутов печати потребность в префиксе Hash отпа­
дает. А зачем вообще нужны все ·пи интерфейсы? Они дают возможность про­

верить правилыюсн испол1,зования атрибутов печати . Например, интерфейс

Глава 11 • Расширенные средства Swing и графина

DocAttributeSet принимает только те объекты, классы которых реализуют ин­
терфейс DocAttribute, а любая попытка добавить какой-нибудь другой атрибут
печати приведет к ошибке.

Набор атрибутов печати представляет собой особый вид отображения, где

ключи являются объектами класса Class, а значения - объектами класса, реали­

зующего интерфейс Attribute. Так, если создать и вставил, объект в набор атри­
бутов печати с помощью операции new Copies (1 О), то его ключом будет объект
Copies. class типа Class. Этот ключ называется категорией атрибутов печати. В
интерфейсе Attribute объявляется приведенный ниже метод, возвращающий
категорию атрибута печати. Класс Copies содержит определение этого метода
для возврата объекта Copies. class, но совсем не обязательно, чтобы категория
была объектом того же класса, что и класс атрибута печати.

Class getCategory()

При вводе атрибута печати в набор атрибутов категория извлекается автома­

тически, поэтому достаточно ввести только значение атрибута печати, как пока­

зано ниже. Если же впоследствии ввести другой атрибут печати из той же самой

категории, он будет записан вместо первого атрибута.

attributes.add(new Copies(10));

Категория используется в качестве ключа для извлечения атрибута печати,

как показано ниже.

AttributeSet attributes = job.getAttributes();
var copies = (Copies) attribute.get(Copies.class);

Наконец, атрибуты печати группируются по типам значений. Например,

атрибут типа Copies может иметь любое целочисленное значение, поскольку
класс Copies является расширением класса IntegerSyntax, предназначенного
для обработки всех целочисленных атрибутов печати. Метод getValue () из это­
го класса возвращает целочисленное значение атрибута печати:

int n = copies.getValue();

Перечисленные ниже классы инкапсулируют соответственно символ1,11ую

строку, дату/время или URI.
TextSyntax
DateTimeSyntax
URISyntax

К тому же многие атрибуты печати могут принимать ограниченное количе­

ство значений. Например, у атрибута типа PrintQuality имеются всего три до­
пустимых значения для указания экономного, нормального и высокого качества

печати, представленных следующими конста1пами:

PrintQuality.DRAFT
PrintQuality.NORМAL

PrintQuality.HIGH

Классы атрибутов печати с ограниченным количеством значений расширяют

класс EnumSyntax, предоставляющий удобные методы для установки перечис­
лимых значений с учетом типовой безопасности. Наличие таких классов избав­

ляет от необходимости беспокоиться о конкретном механизме реализации при

11.5. Вывод изображений на печать

исполь:ювании атрибутов печати. Достаточно внести в набор атрибутов печати

именованные значения следующим образом:

attributes.add(PrintQuality.HIGH);

Ниже показано, как проверить значение атрибута печати.

if (attributes.get(PrintQuality.class) == PrintQuality.HIGH)

Атрибуты печати перечислены в табл. 11.5. Во втором столбце приведен су­
перкласс каждого класса атрибута (например, класс IntegerSyntax для атри­
бута типа Copies) или набор перечислимых :щаче11ий. В последних четырех
столбцах указаны интерфейсы, которые реали:iует да1111ый класс атрибута:

DocAttribute (DA), PrintJobAttribute (PJA), Pr·intReчuestAttrlbute (PRA)
и PrintServiceAttribute (PSA).

Таблица 11.5. Атрибуты печати

Атрибут Суперкласс или набор констант DA PJA PRA PSA

перечислимого типа

Chromaticity МONOCНR~,COLOR ,/ ,/ ,/

ColorSupported SUPIORТED,NOТ_SUPIORТED ,/

Compression CC!fi'RESS,DEFLAТE,GZIP,NONE ,/

Copies IntegerSyntax ,/ ,/

DateTimeAtCompleted DateTimeSyntax ,/

DateTimeAtCreation DateTimeSyntax ,/

DateTimeAtProcessing DateTimeSyntax ,/

Destination URISyntax ,/ ,/

DocшnentName TextSyntax ,/

Fidelity FIDELITY_ТRUE,FIDELITY_FALSE ,/ ,/

Finishings NONE, STAPLE, EDGE _ STITCH, BIND, ,/ ,/ ,/

SADDLE_STITCH,COVER,
JobHoldUntil DateTimeSyntax ,/ ,/

JoЫmpressions IntegerSyntax ,/ ,/

JoЫmpressionsCompleted IntegerSyntax ,/

JobKOctets IntegerSyntax ,/ ,/

JobКOctetsProcessed IntegerSyntax ,/

JoЬМediaSheets IntegerSyntax ,/ ,/

JoЬМediaSheetsCompleted IntegerSyntax ,/

JoЬМessageFromOperator TextSyntax ,/

JobName TextSyntax ,/ ,/

JoЬOriginatingUserName TextSyntax ,/

JobPriority IntegerSyntax ,/ ,/

JobSheets STANDARD,NONE ,/ ,/

JobState АВОRТЕD, CANCELED, CClofPLEТED, ,/

PENDING, PENDING _ НELD, PROCESSING,
PROCESSING STOPPED

JobStateReason АВОRТЕD _ ВУ _ SУSТЕМ, DOCUМENТ _
FORМAT ERROR и пеоч.

Глава 11 • Расширенные средства Swing и графика

ПрщJо,1же1111е mati,1. 10.5

Атрибут Суnеркпасс или набор констант DA PJA PRA PSA

перечислимого типа

JobStateReasons HashSet -,/

мediaName ISO _ А4 _ WllIТE, ISO _ А4 _ ТRANSPARENТ, -,/ -,/ -,/

NA _ LETТER _ WllIТE, NA _ LETТER _
ТRANSPARENТ

мediaSize ISO.AO-ISO.AlO, ISO.BO-ISO.BlO,
ISO.CO-ISO.ClO, NA.LEТТER, NA.LEGAL
и другие форматы стра11ю1 и бумапt

мediaSizeName ISO.AO-ISO.AlO, ISO.BO-ISO.BlO, -,/ -,/ -,/

ISO.CO-ISO.ClO, NA.LEТТER, NA.LEGAL
и другие форматы страниц и бумаги

мediaTray ТОР, МIDDLE, :ВОТТЩ SIDE, ENVELOPE, -,/ -,/ -,/

LARGE_CAPACIТY,МAIN,МANOAL

МultipleDocumentнandling SINGLE_DOCUМENТ,SINGLE_DOCUМENТ_ -,/ -,/

NEW _ SНЕЕТ, SEPARAТE _ DOCUМENТS _
COLLAТED_COPIES,SEPARAТE_

DOCUМENТS UNCOLLAТED COPIES
NumЬerOfDocuments IntegerSyntax -,/

NumЬerOfinterveningJoЬs IntegerSyntax -,/

NumЬerUp IntegerSyntax -,/ -,/ -,/

OrientationRequested IORТRAIT,LANDSCAPE,REVERSE_ -,/ -,/ -,/

IORТRAIT,REVERSE_LANDSCAPE

OUtputDeviceAssigned TextSyntax -,/

PageRanges Setofinteger -,/ -,/ -,/

PagesPerМinute IntegerSyntax -,/

PagesPerМinuteColor IntegerSyntax -,/

PDLOverrideSupported АТТЕМРТЕD,NОТ_АТТЕМРТЕD -,/

PresentationDirection ТОRIGНТ _ ТО:ВОТТЩ ТОRIGНТ _ ТОТОР, -,/ -,/

ТОВОТ'!'Qоf _ ТОRIGНТ, ТОВОТ'!'Qоf _ ТОLЕFТ,
ТОLЕFТ _ ТО:ВОТТСМ, ТОLЕFТ _ ТОТОР,
ТОТОР_ТОRIGНТ,ТОТОР_ТОLЕFТ

Printerinfo TextSyntax -,/

PrinterisAcceptingJobs ACCEPТING_JOBS,NOТ_ACCEPТING_ -,/

JOBS
PrinterLocation TextSyntax -,/

PrinterМakeAndМodel TextSyntax -,/

PrinterМessageFromOperator TextSyntax -,/

PrinterМoreinfo URISyntax -,/

PrinterМoreinfoМanufacturer URISyntax -,/

PrinterName TextSyntax -,/

PrinterResolution ResolutionSyntax -,/ -,/ -,/

PrinterState PROCESSING,IDLE,SТOPPED,UNI<NOWN -,/

PrinterStateReason COVER _ OPEN, FUSER _ OVER _ ТЕМР,
МEDIA JАМ и п~оч.

11.5. Вывод изображений на печать

Атрибут

PrinterStateReaзonз

PrinterURI

PrintQuality

Суперкласс или набор констант
перечислимого типа

НазhМар

URISyntax

DRAFТ,NORМAL,HIGH

QueuedJoЬCount InteqerSyntax

ReferenceUriSchemeзSupported FILE, FТР, GOPНER, НТТР, НТТРS, NEWS,
NNТP, WAIS

TextSyntax

ERROR, REPORT, WARNING

Окончание табл. 10.5

DA PJA PRA PSA

,/ ,/ ,/

RequeзtingUзerName

Severity

SheetCollate COLLAТED, UNCOLLAТED ./ ./ ./

Sideз ONE _ SIDED, DUPLEX (или ТWО _ SIDED _ ./ ./ ./

LONG_EDGE), ТUМВLЕ (или ТWO_SIDED_
SHORT EDGE)

НА ЗАМЕТКУ! Как видите, многие из перечисленных в табл. 11.5 атрибутов печати являются
узкоспециализированными и появились вследствие применения протокола lпtегпеt Pгinting

Pгotocol 1.1 !по стандарту RFC 29111

НА ЗАМЕТКУ! В более ранней версии прикладного интерфейса API для служб печати были
внедрены классы JobAttriЬutes и PageAttriЬuteз, которые служили той же цели, что

и описываемые в этом разделе атрибуты печати. Но теперь эти классы считаются устаревшими.

javax.print.attriЬute.AttriЬute 1.4

• Сlазз getCategory()

Получает категорию данного атрибута печати.

String getName ()

Получает имя данного атрибута печати.

javax.print.attribute.AttriЬuteSet 1.4

boolean add(AttriЬute attr)

Вводит атрибут печати в набор атрибутов. Если в наборе имеется другой атрибут печати из
той же категории, он замещается новым атрибутом. Возвращает логическое значение true,
если в результате выполнения данной операции набор атрибутов изменился.

• AttriЬute get(Claзз category)

Извлекает атрибут печати с ключом данной категории или пустое значение null, если такого
атрибута не существует.

Глава 11 • Расширенные средства Swing и графика

javax.print. attribute.AttriЬuteSet 1. 4 {окончание}

• boolean remove (AttriЬute attr)

• boolean remove (Class category)

Удаляют заданный атрибут печати или атрибут указанной категории из набора атрибутов.

Возвращают логическое значение true, если в результате выполнения данной операции на­
бор атрибутов изменился.

AttriЬute [] toArray ()

Возвращает массив со всеми атрибутами печати из данного набора.

javax.print.PrintService 1. 4

• PrintServiceAttriЬuteSet getAttriЬutes()

Получает атрибуты данной службы печати.

javax.print.DocPrintJob 1.4

• PrintJoЬAttriЬuteSet getAttributes()

Получает атрибуты текущего задания на печать.

Вот и подошла к концу эта длинная глава, посвященная расширенным сред­

ствам AWT. В завершающей этот том главе будет рассмотрен совсем иной аспект
программирования на Java: взаимодействие на одной и той же машине с плат­
форменно-ориентированным кодом, написанным на другом языке программи­

рования.

ГЛАВА

Платформенно-
о р и е нти ро ванные

методь1

В этой главе ...
~ Вызов функции на С из программы на Java

~ Числовые параметры и возвращаемые значения

~ Строковые параметры

~ Доступ к полям

~ Кодирование сигнатур

~ Вызов методов на Java

~ Доступ к элементам массивов

~ Обработка ошибок

~ Применение прикладного интерфейса API для вызовов

~ Практический пример обращения к реестру Windows

Несмотря на все выгоды, которые дает решение пользоваться только Java, воз­
можны сиrуации, когда необходимо создавать (или использовать) код, написан­

ный на каком-то другом языке. Такой код обычно называется 11латформенно-ори­

ентиро11аннь1.м.

В частности, когда язык Java только появился, многие считали, что для ускоре­
ния работы критических частей прикладных программ на Java было бы выгоднее

Глава 12 • Платформенно-ориентированные методы

исполь:ювать язык С или С++. Но 1 ia практике такой прием редко оказывался эффек­

тивным. Презешация Java, проведенная на конференции JavaOne в 1996 году, очень
ясно это показала. Разработчики криптографической библиотеки из компании Sun
Microsystems продемонстрировали, что скорость выполнения криптографических
функций, реализованных только в коде Java, оказалась вполне удовлетворителыюй.
Безусловно, она уступала скорости выполнения тех же самых функций, написанных

на С, но отличие было не очень :шачителы1ым. Дело в том, что реализация плат­

формы Java окюалась намного более быстродейсгвующей, чем сетевой ввод-вывод.
Именно это и послужило насгоящей причиной более низкой прои:1водителыюсги.

Безусловно, у перехода на платформешю-ориентированный код имеются свои

недостатки. Если часть прикладной программы написана на каком-нибудь дру­

гом языке, придется предоставить отдельную специализированную библиотеку

для каждой платформы, которую планируется поддерживал" Код, который пи­

шется на С или С++, не предусматривает защиты против некорректного обраще­

ния к оперативной памяти вследствие неправильно заданного указателя. Это оз­

начает, что можно очень легко написать такие платформенно-ориентированные

методы, которые будут нарушать работу программы или заражать операцион­

ную систему :иовредным кодом.

Таким обра:юм, платформешю-ориентиронанный код рекомендуется исполь­

:ювать только в тех случаях, когда это действителыю необходимо. В частности, су­

ществуют три случая, когда выбор платформешю-ориентированного кода может

оказаться правильным.

• Прикладной программе требуется доступ к таким системным функциям

или устройствам, которые недоступны на платформе Java.

• Имеется немалое количество проверенного или отлаженного кода на дру­

гом языке, а также известны способы его переноса на все требующиеся це­

левые платформы.

• В результате сопоставительных испытаний обнаружено, что код, написан­

ный на Java, выполняется намного медленнее, чем эквивалентный ему код
на другом языке.

В состав платформы Java входит специальный прикладной интерфейс АР/
для организации юаимодействия с платформенно-ориентированным кодом

на С. Этот прикладной интерфейс называется JNI (Java Native Interface - плат­

форменно-ориентированный интерфейс Java). И в этой главе обсуждаются во­
просы программирования в прикладном интерфейсе JNI.

НА ЗАМЕТКУ С++! Для написания платформенно-ориентированных методов вместо С можно
также пользоваться языком С++. Он имеет ряд преимуществ, обеспечивая, например, более

строгий контроль соответствия типов и более удобный доступ к функциям JNI. Но в приклад­
ном интерфейсе JNI не поддерживается взаимное преобразование классов Java и С++.

12.1. Вызов функции на С из программы на Java
Допустим, имеется некоторая функция, написанная на С и выполняющая

что-нибудь поле:шое, но по той или иной причине ее нежелательно реализовывать

12.1. Вызов функции на С из программы на Java

заново на Java. Ради простоты предположим для начала, что это элементарная
функция, написанная на С, для вывода приветственного сообщения.

В языке программирования Java для организации вызова платформенно­
ориентированного метода служит ключевое слово nati ve, а сам метод, очевидно,
вводится в класс. В листинге 12.1 показано, как именно это делается. Ключевое
слово native предупреждает компилятор, что метод будет определяться внеш­
ним образом. Разумеется, платформенно-ориентированные методы не должны

содержать код, написанный на Java, поэтому объявление метода состоит только
из одного заголовка, после которого сразу же следует завершающая точка с за­

пятой. Благодаря этому объявления платформенно-ориентированных методов

становятся похожими на объявления абстрактных методов.

Листинг 12.1. Исходный код из файла helloNative/HelloNative. java

1 /**
2 * @version 1.11 2007-10-26
3 * @author Сау Horstmann
4 */
5 class HelloNative
6 {
7
8

puЫic static native void greeting();

НА ЗАМЕТКУ! Ради простоты в примерах программ, приведенных в этой главе, пакеты не
применяются.

В данном конкретном примере платформенно-ориентированный метод объ­

является и как статический (static). Платформенно-ориентированные методы
могут быть как статическими, так и нестатическими. Их рассмотрение было нача­

то со статического метода, чтобы не усложнять дело передачей параметров.

Класс из приведенного выше примера можно скомпилировать, но если

употребить его в программе, то виртуалы1ая машина Java уведомит, что
ей неизвестно, как найти функцию greeting (), выдав исключение типа
UnsatisfiedLinkError. Чтобы устранить этот недостаток, следует реализовать
платформешю-ориентированный код, т.е. написать соответствующую функцию

на С. Имя этой функции должно точно соответствовать ожиданиям nиртуалыюй

машины Java. Для этого необходимо соблюсти следующие правила.

1. Использовап, полное имя метода из кода Java, т.е. HelloNative.greeting.
Если класс находится в пакете, добавить перед именем метода имя этого

пакета, например com. horstmann. HelloNati ve. greeting.

2. Заменить все точки знаками подчеркивания и присоединить префикс
Java_, например Java_HelloNative_greeting или Java_com_horstmann_
HelloNative greeting.

3. Если в имени класса присутствуют символы, не являющиеся ни буквами, ни
цифрами в коде ASCII (например, знак_ или $), или же символы в Юни­
коде свыше '\u007F', заменить их последователыюсп,ю символов Охххх,

Глава 12 • Платформенно-ориентированные методы

указав вместо хххх четырехзначное шестнадцатеричное значение заменяе­

мого символа в Юникоде.

НА ЗАМЕТКУ! Если платформенно-ориентированные методы перегружаются, т.е. предостав­

ляется несколько платформенно-ориентированных методов с одинаковым именем, то в кон­

це имени каждого из них следует присоединить два знака подчеркивания и закодированные

типы аргументов. !Подробнее о кодировании типов аргументов речь пойдет далее в этой гла­
ве.! Так, если предоставляется один платформенно-ориентированный метод greeting ()
и другой платформенно-ориентированный метод greeting (int repea t), первый из
них должен именоваться как Java_HelloNative_greeting_, а другой - как Java_
HelloNative _greeting_ I.

Разумеется, вручную этого никто не делает. Для этого следует выполнить ко­

манду j avac с параметром -h, указав каталог, в котором должны размещаться
:ыголовочные файлы. Так, по приведенной ниже команде в текущем каталоге

создается заголовочный файл HelloNative.h, содержимое которого представле­
но в листинге 12.2.
javac -h . HelloNative.java

Листинг 12.2. Исходный код из файла helloNative/HelloNative. h

1 /* ЭТОТ ФАЙЛ НЕ РЕДАКТИРУЕТСЯ - он
2 формируется автоматически */
3 #include <jni.h>
4 /* Заголовочньm файл для класса HelloNative */
5
6 #ifndef Included HelloNative
7 #define Included HelloNative
В #ifdef cplusplus
9 extern "С" {
10 #endif
11 /*
12 * Класс: HelloNative
13 * Метод: greeting
14 *Сигнатура: ()V
15 */
16 JNIEXPORT void JNICALL Java HelloNative greeting
17 (JNIEnv *, jclass);
18
19 #ifdef
20 }
21 #endif
22 #endif

cplusplus

Как следует из листинга 12.2, данный файл содержит объявление функции
Java_HelloNative_greeting. (Макрокоманды JNIEXPORT и JNICALL определя­
ются в заголовочном файле j ni. h. Они обозначают зависящие от компилятора
спецификаторы для экспортируемых функций из динамически загружаемой би­

блиотеки.)

Остается лишь скопировать прототип функции из :ыголовочного фай­

ла в файл исходного кода и написать для этой функции код реализации, как

12.1. Вызов функции на С из программы на Java

показано в листинге 12.3. Не обращайте пока что внимания на арrументы env
и cl в этой простой функции. Подробнее об арrументах платформенно-ориенти­
рованных функций и методов речь пойдет далее в этой главе.

Листинг 12.З. Исходный код из файла helloNati ve/HelloNati ve. с

l /*
2 *@vers1on 1.10 1997-07-01
3 * @author Сау Horstmann
4 */
5
6 #include "HelloNative.h"
7 #include <stdio.h>
в

9 JNIEXPORT void JNICALL Java HelloNative_greeting(
10 JNIEnv* env, jclass cl)
11
12 printf("Hello Native World!\n");
13

НА ЗАМЕТКУ С++! Для реализации платформенно-ориентированных методов можно исполь­
зовать и язык С++. Но в этом случае функции, реализующие подобные методы, следует объяв­
лять как extern "С", как выделено полужирным в приведенном ниже примере кода.

extern "С"
JNIEXPORT void JNICALL Java_HelloNative_greeting(

JNIEnv* env, jclass cl)

cout << "Hello, Native World'" << endl;

Это не позволит компилятору Сн "скорректировать·· имена методов.

Далее платформенно-ориентированный код на С следует скомпилировать

в динамически загружаемую библиотеку. Этот процесс зависит от испол1,зуемо­

го компилятора. Например, для вызова компилятора GNU С н ОС Linux соотнет­
ствующая команда будет ныглядеть следующим образом:

gcc -fPIC -I jdk/include -I jdk/include/linux -shared \
-о libHelloNative.so HelloNative.c

Для вы:юва компилятора С от корпорации Microsoft н ОС Windows эта же
команда примет следующий вид:

cl -I jdk\include -I jdk\include\win32 -LD HelloNative.c \
-FeHelloNative.dll

где jdk обо:шачает каталог, в котором находится комплект JDK.

СОВЕТ. Если используется компилятор С от корпорации Microsoft, необходимо запустить
сначала командный файл vcvars32. bat или vsvars32. Ьа t из командной оболочки.
Этот командный файл автоматически установит путь и переменные окружения, требующие­
ся для компилятора. Найти этот файл можно в каталоге с: \Program Files\Мicrosoft
Visual Studio 14. O\Common7\ tools или в каком-нибудь другом с аналогичным назва­
нием. Подробнее об этом см. в документации на применяемую версию Visual Studio.

Глава 12 • Платформенно-ориентированные методы

Кроме того, можно воспользоваться бесплатно распространяемой средой про­

граммирования Cygwin, доступной для загрузки по адресу h t tp: / /www. cygwin.
сот. В ее состав входит компилятор GNU С, а также библиотеки для написания
кода в стиле Unix под ОС Windows. Если используется среда Cygwin, то команда
вызова компилятора С будет выглядеть следующим образом:

gcc -mno-cygwin -D int64="1ong long" -I jdk/include/ \
-I jdk/include/win32 -shared -Wl,--add-stdcall-alias \
-о HelloNative.dll HelloNative.c

НА ЗАМЕТКУ! В версии заголовочного файла jni md. h для Windows содержится следующее
объявление типа, характерное для компилятора С-от корпорации Microsoft:

typedef int64 jlong;

Следовательно, если используется компилятор GNU С, может возникнуть потребность отре­
дактировать данный файл, например, следующим образом:

#ifdef GNUC
typedef long long jlong;

#else
typedef int64 jlong;

#endif

С другой стороны, можно указать параметр командной строки -D _ int64=" long long"
при вызове компилятора.

Наконец, следует ввести в прикладную программу вызов метода s у s t em.
loadLibrary ().Для полной гарантии, что виртуальная машина будет загружать
библиотеку перед первым использованием класса, следует организовать статиче­

ский блок инициализации, как показано в листинге 12.4.

Листинг 12.4. Исходный код из файла helloNative/HelloNativeTest. java

1 /**
2 * @version 1.11 2007-10-26
3 * @author Сау Horstmann
4 */
5 class HelloNativeTest
6 {
7 puЬlic static void main(String[] args)
8 {
9 HelloNative.greeting();
10
11
12 static
13
14 System.loadLibrary("HelloNative");
15
16

На рис. 12.1 приведена общая схема обработки платформенно-ориентированно­
го кода. После компиляции и запуска рассматриваемой здесь программы на экране

появится сообщение "Hello, Native World!" (Здравствуй, родной мир).

Исходные файлы

.java

Исходный файл .java
с объявлением
платформенно-

Утилитаjаvаh

Заголовочный
файл .h

Исходный файл .с, Я
реализующий /
платформенно­

ориентированные

методы

---~

12.1. Вызов функции на С нз программы на Java

Компилятор

javac

Компилятор
и компоновщик

кода на С

Файлы
классов .c/ass

Виртуальная

машина Java

Вызов метода

• System.LoadUbrary()

Общая
библиотека

Рис. 12.1. Обработка 11латформе111ю-ориентирова111юю кола

Нд ЗАМЕТКУ! Пользователям ОС Linux придется включить текущий каталог в путь к библио­
теке . Для этого им придется установить переменную окружения LD _ LIBRARY _PATH следую­
щим образом :

export LD_LIBRARY_PATH=. :$LD_LIBRARY_PATH

или же установить системное свойство java. liЬrary .path, как показано ниже .

java -Djava . liЬrary.path=. HelloNativeTest

Глава 12 • Платформенно-ориентированные методы

Безусловно, резул1,тат не особенно впечатляет. Но если вспомнить, что вы­

водимое сообщение формируется командой, написанной на С, а не на Java, то
сразу становится очевидно, что это лишь первые шаги, которые удалось сделать

на пути к преодолению пропасти между этими двумя языками программиро­

вания!

Таким образом, для связывания платформенно-ориентированного метода

с программой на Java необходимо выполнить следующие действия.

1. Объявить платформешю-ориеrпированный метод в классе Java.

2. Выполнить команду javac . -h имя_файла.jаvа, чтобы получить заголо-

вочный файл с объявлением платформенно-ориентированного метода на С.

3. Реализовать платформенно-ориентированный метод на С.

4. Разместить полученный код в разделяемой библиотеке.

5. Загру:шть рамеляемую библиотеку в программу на Java.

java. lang. System 1. О

• void load.Library (Strinq liЬname)

Загружает библиотеку по указанному имени. Библиотека находится в том каталоге, который

указан в пути поиска библиотек. Конкретный способ поиска библиотеки зависит от использу­

емой операционной системь1.

НА ЗАМЕТКУ! Некоторые разделяемые библиотеки с платформенно-ориентированным ко­

дом требуют выполнения кода инициализации. Любой код инициализации можно разместить

в методе JNI OnLoad (). По завершении своей работы виртуальная машина Java будет
аналогичным образом вызывать метод JNI OnUnload (), если, конечно, предоставить его.
Ниже приведены прототипы этих методов. -

jint JNI_OnLoad(JavaVM* vm, void* reserved);
void JNI_OnUnload(JavaVM* vm, void* reserved);

Метод JNI_ OnLoad () должен возвратить самую раннюю версию виртуальной машины, кото­
рая требуется для нормальной работы библиотеки, например JNI _ VERSION _ l_ 2.

12.2. Числовые параметры и возвращаемые значения
Для обмена числовыми параметрами между кодами на С и Java следует ясно

понимать, какие типы параметров соответствуют друг другу. Например, в С име­

ются типы данных int и long, но их реализация :ывисит от конкретной плат­
формы. На одних платформах тип данных int представляет 16-разрядrюе цело­
численное :шачепие, а па других - 32-разрядное. В Java тип данных int всегда
представляет только 32-ра:iрядное целочисленное :шачение. Именно поэтому

в прикладном интерфейсе JNl и предоставляются такие типы данных, как j int,
j long и т.д. В табл. 12.1 приведено соответствие типов данных в Java и С.

12.2. Числовые параметры и возвращаемые значения

Таблица 12.1. Типы данных в Java и С

Java с Количество байтов

boolean jboolean 1
byte jbyte 1
char jchar 2
short jshort 2
int jint 4
long jlong 8
float jfloat 4
douЫe jdouЫe 8

В заголовочном файле j ni. h эти типы данных объявляются с помощью опе­
раторов typedef в качестве эквивалентных типов целевой платформы. В этом же
файле определяются также константы JN I _ FALSE = О и JNI _ TRUE = 1.

До версии Java 5.0 в Java не было непосредственного аналога функции
printf () на С. В приводимых ниже примерах предполагается, что по той или

иной причине используется только старая версия JDK, и поэтому решено реа­
ли:ювать аналогичные функциональные возможности благодаря вызову функ­

ции printf () на С из платформенно-ориентированного метода. В листинге 12.5
представлен исходный код класса Printfl, использующего платформенно-ори­
ентированный метод для вывода числового значения с плавающей точкой, ука-

3аююй точностью и шириной поля.

Листинг 12.5. Исходный код из файла printfl/Printfl. java

1 /**
2 * @version 1.10 1997-07-01
З * @author Сау Horstmann
4 */
5 class Pr int f1
6 {
7 puЫic static native int print(int width, int precision, douЫe х);
8
9 st.atic
1 о {
11 System.loadLibrary("Printfl");
12 }
13

Следует, однако, иметь в виду, что при реализации платформенно-ориенти­

рованного метода на С все параметры типа int и douЫe заменяются параметра­
ми типа jint и jdouЫe, как демонстрируется в листинге 12.6.

Листинг 12.6. Исходный код из файла printfl/Printfl. с

1 /**
2 @version 1.10 1997-07-01
3 @author Сау Horstmann
4 */

Глава 12 • Платформенно-ориентированные методы

5
6 #include "Printfl.h"
7 #include <stdio.h>
8
9 JNIEXPORT jint JNICALL Java_Printfl_print(JNIEnv* env,
10 j class cl, j int width,
11 jint precision, jdouЫe х)

12
13 char fmt[30];
14 jint ret;
15 sprintf (fmt, "%%%d. %df", width, precision);
16 ret = printf(fmt, х);

17 fflush(stdout);
18 return ret;
19)

В функции из листинга 12.6 сначала компонуется форматирующая строка
"%w.pf" с помощью переменной fmt, а затем вызывается стандартная функция
printf (),после чего возвращается количество выведенных символов. В листинге
12.7 приведен исходный код примера программы, где демонстрируется примене­
ние класса Printfl.

Листинг 12.7. Исходный код из файла printfl/PrintflTest. java

1 /**
2 * @version 1.10 1997-07-01
3 * @author Сау Horstmann
4 */
5 class PrintflTest
6 {
7 puЬlic static void main(String[) args)
8 {
9 int count = Printfl.print(B, 4, 3.14);
10 count += Printfl.print(S, 4, count);
11 System.out.println();
12 for (int i = О; i < count; i++)
13 System.out.print("-");
14 System.out.println();
15
16

12.З. Строковые параметры

Теперь рассмотрим, как обмениваться символьными строками с платфор­

менно-ориентированными методами. Как известно, в Java символьные строки
представляют собой последовательности кодовых точек в кодировке UTF-16, а в
С они оканчиваются нулевым символом последовательности байтов. Иными

словами, способы представления символьных строк в этих двух языках програм­

мирования заметно отличаются. Поэтому в прикладном интерфейсе JNI предо­
ставляются два ряда функций для манипулирования символьными строками:

первый из них позволяет преобразовывать символьные строки Java в байтовые

12.З. Строковые параметры

последовательности "модифицированного формата UTF-8", а второй - в масси­

вы символьных значений в кодировке UTF-16, т.е. в массивы типа j char. (Под­
робнее о кодировках UTF-8 и UTF-16, а также о "модифицированном формате
UTF-8" см. в главе 2. Напомним, что в кодировке UTF-8 и "модифицированном
формате UTF-8" символы кода ASCII оставляются без изменений, а все остальные
символы Юникода кодируются в виде мноrобайтовых последовательностей.)

НА ЗАМЕТКУ! Стандартный и модифицированный форматы UTF-8 отличаются только допол­
нительными символами с кодами свыше OxFFFF. В стандартной кодировке UTF-8 эти симво­
лы кодируются 4-байтовыми последовательностями. В модифицированном формате символ

сначала кодируется в виде так называемой "суррогатной пары" в кодировке UTF-16, а затем
каждый суррогат - в кодировке UTF-8. В итоге получается последовательность из 6 байт.
Такое решение нельзя назвать изящным, но другого выхода нет, ведь спецификация вирту­

альной машины Java была написана в те времена, когда длина символа в Юникоде ограни­
чивалась 16 битами.

Если в прикладном коде на С уже применяются символы в Юникоде, то луч­

ше всего воспользоваться вторым рядом функций преобразования символьных

строк. Если же все строки содержат только символы в коде ASCII, то можно вос­
пользоваться функциями преобразования символьных строк в "модифицирован­

ный формат UTF-8".
Платформенно-ориентированный метод со строковым параметром типа

String фактически получает значение типа j string. Платформенно-ориентиро­
ванный метод с возвращаемым строковым значением типа String должен воз­
вращать значение типа j string. Для чтения и создания объектов типа j string
применяются специальные функции JNI. Например, функция NewStringUTF ()
создает новый объект типа j string из массива char, содержащего символы
в коде ASCII или, что бывает намного чаще, байтовые последовательности, ко­
дированные в "модифицированном формате UTF-8". Функции JNI вызываются
не совсем обычно. Например, вызов функции NewStringUTF () выглядит следу­
ющим образом:

JNIEXPORT jstring JNICALL Java_HelloNative_getGreeting(
JNIEnv* env, jclass cl)

jstring jstr;
char greeting[] = "Hello, Native World\n";
jstr = (*env)->NewStringUTF(env, greeting);
return jstr;

НА ЗАМЕТКУ! Весь код здесь и далее в этой главе приводится на С, если не указано иное.

Во всех вызовах функций JNI используется указатель env, который является
первым параметром каждого платформенно-ориентированного метода. Он ссы­

лается на таблицу с указателями функций (рис. 12.2). Вследствие этого каждый
вызов функции JNI следует предварять префиксом (*env) ->для разыменования

Глава 12 • nпатформенно-орментмрованные методы

ко11кретного указателя функции. Более того, ука3атель e nv янляется также пер­
вым параметром каждой функции JNI.

Указатель env ~--------_:---~ Зарезервировано ~
Зарезервировано I

Зарезервировано ~

Зарезервировано

.! GetVersion -
DefineClass

~

~

FindClass
.... -

.
~! . .

Рис. 12.2. Указатель env

НА ЗАМЕТКУ С++! В языке С++ доступ к функциям JNI организуется проще . В версии класса

JNIEnv на С++ имеются встраиваемые функции-члены , способные автоматически выполнять

поиск указателей функций. Например, вызвать функцию NewStringUТF () в С++ можно сле­
дующим образом:

j s tr = env->NewStringUTF(greeting);

Обратите внимание на отсутствие указателя JNIEnv в списке параметров вызываемого метода .

Функция NewStringUTF () позволяет создавать новый объект типа j string.
Для считывания содержимого уже существующего объекта типа j s tr ing при­
меняется функция GetStringUTFCha rs (), которая возвращает указатель const
jbyte* на описывающие строку симнолы в модифицированном формате UTF-8.
Однако некоторые виртуальные машины Java могут исполь:ювать данный формат

для внутреннего представления символы1ых строк, из-за чего возможно получе­

ние указателя на конкретную символьную строку в Java. А поскольку символьные
строки в Java считаются неизменяемыми, то очень важно со нсей сер1,е:шостью
отнестись к обозначению const и не пытаться ничего записывать в такой сим­
вольный массив. С другой стороны, если в виртуальной машине применяется ко­

дировка UTF-16 или UTF-32 для внутреннего представления строк, то вызов функ­

ции GetString UTFChars () приведет к выделению нового блока памяти и его

заполнению эквивалентными символами в модифицированном формате UTF-8.
По 3авершении манипулирования символьной строкой следует вызвать функ­

цию ReleaseStringUTFChars () , чтобы сообщить об этом виртуальной машине,

которая должна освободить память, :~анимаемую данной строкой. Как и:шестно,

процесс "сборки мусора" происходит в отдельном потоке исполнения и может

12.Э. Строковые параметры

прерывать выполнение платформенно-ориентированных методов. Именно поэ­

тому требуется вы:шать функцию ReleaseStringtJTFChars ().
С другой стороны, можно предоставить свой буфер для хранения символов

строки, вызвав функции GetStringRegion () или GetStringUTFRegion (). Нако­
нец, функция GetStringUTFLength () возвращает количество символов, необходи­
мых для кодирования символьной строки в модифицированном формате UTF-8.

1!:'1 НА ЗАМЕТКУ! Описание прикладного интерфейса JNI API можно найти по адресу https: / /
~ docs.oracle.com/javase/7/docs/technotes/quides/jni.

Доступ к символьным строкам в Java из кода на С

• jstring NewStringUТF(JNIEnv* env, const char Ьуtев[])

Возвращает новый объект символьной строки в Java из оканчивающейся нулевым байтом
последовательности байтов в модифицированном формате UTF-8, или значение NULL, если
не удается сконструировать символьную строку.

• jsize GetStringUТFLength (JNIEnv* env, jstring вtring)

Возвращает количество байтов, требующееся для кодирования символьной строки в модифи­
цированном формате UTF-8 !без учета завершающего нулевого байта).

const jbyte* GetStringUТFChars(JNIEnv* вnv, jstring string,
jboolean* isCopy)

Возвращает указатель на символьную строку в модифицированном формате UTF-
8 или значение NULL, если создать символьный массив в таком формате не удает­
ся. Этот указатель остается действительным до тех пор, пока не будет вызвана функция
ReleaseStringUТFChars (). Параметр isCopy принимает значение NULL или указатель
на переменную типа jboolean, которая заполняется значением JNI _TRUE, если создается
копия символьной строки, а иначе - значение JNI _FALSE.

• void ReleaseStringUТFChars(JNIEnv* env, jstrinq вtring, const
jbyte bytes [])

Извещает виртуальную машину, что из платформенно-ориентированного кода больше не тре­
буется доступ к символьной строке Java через массив bytвs по указателю, возвращаемому
функцией GetStringUТFChars ().

• void GetStringRegion(JNIEnv* env, jstring вtring, jsize start,
jsize length, jchar* buffer)

Копирует последовательность двойных байтов в кодировке UTF-16 из символьной строки
в предоставляемый пользователем буфер размером, как минимум, 2xlength.

• void GetStringUТFRegion(JNIEnv* env, jstrinq вtring, jsize start,
jsize length, jbyte* buffer)

Копирует последовательность байтов в модифицированном формате UTF-8 из символьной
строки в буфер, предоставляемый пользователем. Емкости буфера должно хватить, чтобы
вместить все байты. В худшем случае копируется только Зxlвngth байтов.

jstring NewString(JNIEnv* env, const jchar charв[J, jsize length)

Возвращает новый объект символьной строки Java из символьной строки в Юн и коде или зна­
чение NULL, если создать символьную строку Java не удается.

Глава 12 • Платформенно-орментмрованные методы

Доступ к символьным строкам в Java из кода на С /окончание/

• jsize GetStringLength (JNIEnv* env, jstring string)

Возвращает количество символов в строке.

• const jchar* GetStringChars(JNIEnv* env, jstring string, jboolean*
isCopy)

Возвращает указатель на последовательность символов в Юн и коде или значение NULL, если

создать символьный массив в таком формате не удается. Указатель действует до тех пор, пока

не будет вызвана функция ReleaseStringUТFChars (). Параметр isCopy принимает
значение NULL или указатель на переменную типа jboolean, которая заполняется значени­
ем JNI _ ТRUE, если создается копия символьной строки, а иначе - значением JNI _FALSE.

• void ReleaseStringChars(JNIEnv* env, jstring string, const jchar
chars[])

Извещает виртуальную машину, что из платформенно-ориентированного кода больше не тре­

буется доступ к символьной строке Java через массив chars по указателю, возвращаемому
функцией GetStringChars ().

Теперь опробуем упомянутые выше функции на практике, разработав класс,

способный вызывать функцию sprintf () на С. Желательно, чтобы эта функция
вызывалась так, как показано в листинге 12.8.

Листинг 12.8. Исходный код из файла printf2/Printf2Test. java

1 /**
2 * @version 1.10 1997-07-01
3 * @author Сау Horstmann
4 */
5 class Printf2Test
6 (
7 puЫic static void main(String[] args)
8 {
9 douЫe price = 44.95;
10 douЫe tax = 7.75;
11 douЫe amountDue = price * (1 + tax / 100);
12
13 String s = Printf2.sprint("Amount due = %8.2f", amountDue);
14 System.out.println(s);
15
16

В листинге 12.9 представлен исходный код класса с платформенно-ориентиро­
ванным методом sprint ().

Листинг 12.9. Исходный код из файла printf2/Printf2. java

1 /**
2 * @version 1.10 1997-07-01
3 * @author Сау Horstmann
4 * /

12.Э. Строковые параметры

5 class Printf2
6 {
7 puЫic static native String sprint(String format, douЫe х);
8
9 static
10
11 System.loadLibrary("Printf2");
12
13

Таким образом, функция на С, с помощью которой форматируется число

с плавающей точкой, имеет следующий прототип:

JNIEXPORT jstring JNICALL Java_Printf2_sprint(JNIEnv* env,
jclass cl, jstring format, jdouЫe х)

Код, реализующий эту функцию на С, приведен в листинге 12.10. Следует,
однако, иметь в виду, что для считывания параметра форматирования forma t
вызывается функция GetStringUTFChars (), для генерирования возвращаемо­
го значения - функция NewStringUTF (), а для извещения виртуальной ма­
шины о том, что доступ к символьной строке больше не требуется, - функция

ReleaseStringUTFChars().

Листинг 12.10. Исходный код из файла printf2/Printf2. с

1 /**
2 @version 1.10 1997-07-01
3 @author Сау Horstmann
4 */
5
6 #include "Printf2.h"
7 #include <string.h>
8 #include <stdlib.h>
9 #include <float.h>
10
11 /**
12 * @param format Символьная строка со спецификатором
13 *формата для функции printf(), например, "%8.2f".
14 * Подстроки "%%" пропускаются

15 * @return Возвращает указатель на спецификатор формата,
16
17
18

*
*
*/

пропуская символ '%', или значение NULL в

отсутствие однозначного спецификатора формата

19 char* find format(const char format[])
20
21 char* р;

22 char* q;
23
24 p=strchr(format, '%');
25 while (р 1= NULL && *(р + 1) == '%')
26 /* пропустить подстроку "%%" */
27 р = strchr(p + 2, '%');

28 if (р NULL) return NULL;

Глава 12 • Платформенно-ориентированные методы

29 /* проверить единственность символа "%" */
30 р++;

31 q = strchr(p, '%');
32 while (q != NULL && *(q + 1) == '%')
33 /* пропустить подстроку "%%" */
34 q = strchr(q + 2, '%');

35 if (q != NULL)
36 return NULL; /* символ "%" не единственный */
37 q = р + strspn(p, "-0+#"); /*пропустить признаки*/
38 q += strspn (q, "0123456789");
39 /* пропустить ширину поля */
40 if (*q == '. '1
41 { q++; q += strspn(q, "0123456789");
42 /* пропустить точность */
43 if (strchr ("eEfFgG", *q) == NULL)
44 return NULL; /* это не формат с плавающей точкой */
45 return р;
46
47
48 JNIEXPORT jstring JNICALL Java Printf2 sprint(
49 JNIEnv* env, jclass cl,
50 jstring format, jdouЫe х)

51
52 const char* cformat;
53 char* fmt;
54 jstring ret;
55
56 cformat = (*env)->
57 GetStringUTFChars(env, format, NULL);
58 fmt = find format(cformat);
59 if (fmt == NULL)
60 ret = format;
61 else
62
63 char* cret;
64 int width = atoi(fmt);
65 if (width == 0) width = DBL DIG + 10;
66 cret = (char*) malloc(strlen(cformat) + width);
67 sprintf(cret, cformat, х);

68 ret = (*env)->NewStringUTF(env, cret);
69 free(cret);
70
71 (*env)->ReleaseStringUTFChars(env, format, cformat);
72 return ret;
73

В данной функции сохранен простой механизм обработки ошибок. Если код

форматирования, отвечающий за вывод числового значения с плавающей точ­

кой, не соответствует форме %w. ре (где с - один из символов е, Е, f, g или G),

тогда форматирование числового значения не выполняется. Далее в этой главе

будет показано, как организовать в платформенно-ориентированном методе ге­

нерирование исключения.

12.4. Доступ к полям

12.4. Доступ к полям
Все рассматривавшиеся до сих пор платформенно-ориентированные мето­

ды были статическими с числовыми и строковыми параметрами. Теперь речь

пойдет о методах, способных обращаться с объектами произвольного типа. Для

примера попробуем реализовать как платформешю-ориентированный мt.vroд из

класса Employee, упоминавшийся в главе 4 первого тома настоящего издания. И
хотя это несколько отвлеченный пример, он наглядно показывает, как получается

доступ к полям из платформенно-ориентированного метода.

12.4.1. Доступ к полям экземпляра
Чтобы выяснил" как получить доступ к полям экземпляра из платформен­

но-ориентированного метода, реализуем снова метод raiseSalary ().Исходный
код этого метода на java выглядит следующим обра:юм:
puЫic void raiseSalary(douЫe byPercent)
(

salary *= 1 + byPercent / 100;

Перепишем этот метод как платформенно-ориентированный. В отличие

от платформешю-ориентированных методов из предыдущих примеров, дан­

ный метод не является статическим. Поэтому в результате выполнения утилиты

j avah получается следующий прототип данного метода:

JNIEXPORT void JNICALL Java_Employee_raiseSalary(
JNIEпv *, jobject, jdouЬle);

Обратите внимание на второй параметр, который теперь имеет тип jobject.,
а не jclass. По существу, он является эквивалентом ссылки this. Статические
методы получают ссылку на класс, а нестатические - на конкретный объект.

Итак, нам требуется доступ к полю salary объекта, представленного неявным
параметром. В первоначальном варианте связывания кода Java и С в версии Java
1.0 подобная задача решалас1, очень просто. Программисты могли получить пря­
мой доступ к полям данных объекта. Но для прямого доступа всем виртуальным

машинам придется раскрыт~, внутреннюю структуру данных. Поэтому для по­

лучения и установки значений в полях программистам приходится обращаться

к специальным функциям JNI.
В рассматриваемом здесь примере поле salary относится к типу douЫe,

поэтому для доступа к нему воспользуемся функциями GetDouЬleField ()
и Set.DouЬleField(). Для доступа к полям данных других типов пред­

усмотрены функции GetintField () и SetintField (), GetObj ectField ()
и SetObjectField () и т.д. При обращении с ними применяется следующий

синтаксис:

х = (*env)->GetXxxField(env, this __ obj, fieldID);
(*env)->SetXxxField(eпv, t.his_obj, fieldID, х);

где параметр fieldID представляет значение специального типа, которое обо­
значает поле структуры, а суффикс Ххх - тип данных Java (например, Obj ect,
Boolean, Byte и т.д.). Чтобы получить значение fieldID, нужно сначала получил,

Глава 12 • Платформенно-ориентированные методы

значение, представляющее класс, используя функцию GetObj ectClass () или

FindClass ().В частности, функция GetObjectClass () возвращает класс произ­
вольного объекта, как показано ниже.

jclass class_Employee =
(*env)->GetObjectClass(env, this obj);

Функция FindClass () позволяет указать имя класса в виде символьной стро­
ки (вместо точки для разделения пакетов следует использовать знак /), как выде­
лено ниже полужирным.

jclass class_String =
(*env) ->FindClass (env, "java/lang/String");

Для получения параметра fieldID служит функция GetFieldID (),при вы­
зове которой указывается и.мя поля и его сигнатура, т.е. кодированное представ­

ление его типа. Например, в приведенной ниже строке кода получается иденти­

фикатор поля salary.
jfieldID id_salary = (*env)->

Get FieldID (env, class Employee, "salary", "О") ;

Символьная строка "D" обозначает здесь тип douЫe. Более подробно прави­
ла кодирования сигнатур полей рассматриваются в следующем разделе.

На первый взгляд, такой порядок доступа к полям данных может показаться

слишком сложным. Не следует, однако, забывать, что разработчики прикладного

интерфейса JNI не стремилис1, раскрывать поля данных напрямую, поэтому им
пришлось предоставить функции для установки и получения значений полей.

Для сокращения издержек, связанных с применением этих функций, вычисле­

ние идентификатора из имени поля выделено в отдельную задачу, поскольку она

требует наибол1,ших издержек вычислительных ресурсов. Следовательно, при не­

однократном обращении к полю с целью установить или получить его значение

идентификатор этого поля вычисляется только один раз.

Итак, принимая во внимание все сказанное выше, реализуем метод raise
Salary () как платформенно-ориентированный. Ниже приведен исходный код

этого метода, написанный на С.

JNIEXPORT void JNICALL Java_Ernployee_raiseSalary(
JNIEnv* env, jobject this obj, jdouЫe byPercent)

/* получить класс */
jclass class_Employee

(*env)->GetObjectClass(env, this_obj);
/* получить идентификатор поля */
jfieldID id_salary = (*env)->

Get FieldI D 1 env, class Ernployee, "salary", "D") ;
/* получить значение поля */
jdouЫe salary = (*env)->

GetDouЬleField(env, this obj, id_salary);
salary *= 1 + byPercent / 100;
/* установить значение поля */
(*env)->SetDouЫeField(env, this obj, id_salary, salary);

•
12.4. Доступ к полям

ВНИМАНИЕ! Ссылки на классы действительны только до завершения платформен­

но-ориентированного метода. Поэтому кешировать значения, возвращаемые функцией

GetObjectClass (). не удастся. Не пытайтесь сберечь ссылку на класс для последую­
щего использования при вызове платформенно-ориентированного метода. Всякий раз,

когда используется платформенно-ориентированный метод, следует вызывать функцию

GetObjectClass (). Если же это неприемлемо, ссылку можно зафиксировать с помощью
функции NewGlobalRef (). например, следующим образом:

static jclass class_X = О;

static jfieldID id_a;

if (class Х == 0)
{

jclass сх = (*env)->GetObjectClass(env, obj);
class Х = (*env)->NewGlobalRef(env, сх);

id_a = (*env)->GetFieldID(env, cls, "а"," ... ");

Теперь зафиксированную ссылку на класс и идентификаторы полей можно использовать

при последующих вызовах платформенно-ориентированного метода. По завершении всех
необходимых операций с классом, доступным по данной ссылке. ее следует удалить с помо­

щью функции DeleteGlobalRef ():

(*env)->DeleteGlobalRef(env, class_X);

В листинге 12.11 приведен исходный код примера программы на Java, а в ли­
стинге 12.12 - исходный код класса Ernployee. Что же касается исходного кода
платформенно-ориентированного метода raiseSalary () на С, то он представ­

лен в листинге 12.13.

Листинг 12.11. Исходный код из файла employee/EmployeeTest. java

1 /**
2 * @version 1.11 2018-05-01
3 * @author Сау Horstmann
4 */
5
6 puЬlic class EmployeeTest
7 {
8 puЫic static void main(String[] args)
9 {
10 var staff = new Employee[3];
11
12
13
14
15

staff[O]
staff [1]
staff[2]

new Employee("Harry Hacker", 35000);
new Employee("Carl Cracker", 75000);
new Employee ("Топу Tester", 38000);

16 for (Employee е : staff)
17 e.raiseSalary(5);
18 for (Employee е : staff)
19 e.print();
20
21

Глава 12 • Платформенно-ориентированные методы

Листинг 12.12. Исходный код из файла employee/Employee. java

l /**
2 * @version 1.10 1999-11-13
3 * @author Сау Horstrnann

*/
5
6 puЫic class Ernployee
7 {
8 private String narne;
9 private douЫe salary;
10
11 puЫic native void raiseSalary(douЫe byPercent);
12
13 puЫic Ernployee(String n, douЫe s)
14 {
15 narne п;

16 salary = s;
17
18
19 puЬlic void print()
20 {
21 Systern.out.println(narne +" "+ salary);
22
23
24 static
25 {
26 Systern. loadLibrary ("Ernployee");
28
29

Листинг 12.13. Исходный код из файла employee/Employee. с

1 /**
2 * @version 1.10 1999-11-13
3 * @author Сау Horstrnann
4 */
5
6 #include "Ernployee.h"
7
8 #include <stdio.h>
9
10 JNIEXPORT void JNICALL Java_Ernployee_raiseSalary(
11 JNIEnv* env, jobject this_obj, jdouЫe byPercent)
12
13 /* получить класс */
14 jclass class Ernployee
15 (*env)->GetObjectClass(env, this obj);
16
17 /* получить идентификатор поля */
18 jfieldID id_salary = (*env)->
19 Get E'ieldID (env, class Ernployee, "salary", "О") ;
20
21 /* получить значение поля */

12.4. Доступ к полям

22 JdouЫe salary = (*env) ->
23 GetDouЬleField(env, this obj, id salary);
24
25 salary *= 1 + byPercent / 100;
26
27 /* установить значение поля */
28 (*env)->SetDouЬleField(

29
30

env, this_obj, id_salary, salary);

12.4.2. Доступ к статическим полям
Доступ к статическим полям осуществляется аналогично доступу к не­

статическим полям. Для этой цели служат функции GetStaticFieldID ()
и GetStaticXxxField () /SetStaticXxxField (),которые действуют практиче­
ски так же, как и их нестатические аналоги, но имеют два отличия.

• Вследствие того что объект отсутствует, для получения ссылки на класс сле­

дует вызвать функцию FindClass () вместо функции GetObj ectClass ().

• Для доступа к статическому полю следует предоставить класс, а не объект.

В качестве примера ниже пока:1а110, как получить ссылку на стандартный по­

ток вывода System. out.

/* получить класс */
jclass class_System =

1 *env) ->FindClass (env, "java/lang/System");

/* получить идентификатор поля */
JfieldID id out (*env)->GetStaticFieldID(

епv, class_System, "out",
"Ljava/io/PriпtStream; ");

/* получить значение поля */
jobject obj out (*env)->GetStaticObjectField(

епv, class _ System, id out) ;

Доступ к полям

• jfieldID GetFieldID(JNIEnv* env, jclass cl, const char namв[],
const char :EieldSigna turв [])

Возвращает идентификатор поля в классе.

• Ххх GetxxxField(JNIEnv* env, jobject obj, jfieldID id)

Возвращает значение поля. В качестве типа Ххх поля может быть указано одно из следую­

щих обозначений: Object, Boolean, Byte, Char, Short, Int. Long, Float или DouЬle.

• void SetxxxField(JNIEnv* env, jobject obj, jfieldID id, Ххх value)

Устанавливает новое значение в поле. В качестве типа Ххх поля может быть указано одно
из следующих обозначений: Object, Boolean, Byte, Char, Short, Int, Long, Float или
DouЬle.

Глава 12 • Платформенно-ориентированные методы

Доступ К ПОЛЯМ (окончание/

• jfieldID GetStaticFieldID(JNIEnv* env, jclass cl, const char
name[], const char fie.ldSignature[])

Возвращает идентификатор статического поля в классе.

• Ххх GetStaticXxxField(JNIEnv* env, jclass cl, jfieldID id)

Возвращает значение статического поля. В качестве типа Ххх поля может быть указано одно

из следующих обозначений: Object, Boolean, Byte, Char, Short, Int, Long, Float или
DouЬle.

• void SetStaticXxxField(JNIEnv* env, jclass cl, jfieldID id,
Ххх value)

Устанавливает новое значение в статическом поле. В качестве типа Ххх поля может быть

указано одно из следующих обозначений: Object, Boolean, Byte, Char, Short, Int,
Long, Float или Douhle.

12.5. Кодирование сигнатур
Для доступа к полям экземпляра и вызова методов, определенных в Java, не­

обходимо знать правила корректирования имен типов данных и сигнатур мето­

дов. (Напомним, что сигнатура метода описывает параметры и возвращаемое

значение.) Для этой цели используется приведенная ниже схема кодирования.

в byte
с char
D douЫe

F float
I int
J long
Lию:1 класса; тип класса -
s short
v void
z boolean

Для описания типа массива служит знак [. Например, массив символьных
строк описывается следующим образом:

[Ljava/lang/String;

Двумерный массив float [] [] кодируется так:
[[Е'

Для полного обозначения сигнатуры метода сначала перечисляются все типы

параметров в круглых скобках, а затем указывается возвращаемый тип. Напри­

мер, сигнатура метода, получающего два целочисленных значения и возвращаю­

щего одно целочисленное значение, кодируется следующим образом:

(II) I

12.5. Кодирование сигнатур

Метод sprint (),упоминавшийся в разделе 12.3, имеет приведенную ниже
скорректированную сигнатуру. Она означает, что данный метод получает значе­

ние типа String и douЫe и возвращает значение типа String.

(Ljava/lang/String;D)Ljava/lang/String;

Обратите внимание на то, что точка с запятой в конце выражения Lимя _ кла с­

са; служит признаком окончания определяющего тип выражения, а не раздели­

телем параметров. Например, следующий конструктор:

Employee(java.lang.String, douЫe, java.util.Date)

имеет такую сигнатуру:

"(Ljava/lang/String;DLjava/util/Date;)V"

Обратите внимание на отсутствие разделителя между обозначениями D
и Ljava/util/Date;, а также на то, что в данной схеме кодирования для разде­
ления имен пакетов и классов требуется указывать знак косой черты (/), а не точ­
ки (.). Обозначение V в конце сигнатуры означает, что данный конструктор ничего

не возвращает, поскольку возвращаемое значение имеет тип void. И хотя возвра­
щаемый тип для конструкторов в Java не указывается, обозначение V все равно

должно добавляться в конце сигнатуры специально для виртуальной машины.

СОВЕТ. Для автоматического генерирования сигнатур методов из файлов классов достаточно

выполнить команду javap с параметром командной строки -в, например, следующим образом:

javap -в -private Employee

В итоге на экран будут выведены сигнатуры всех полей и методов указанного класса, как

показано ниже.

Compiled from "Employee.java"
puЫic class Employee extends java.lang.Object{
private java.lang.String name;

Signature: Ljava/lang/String;
private douЫe salary;

Signature: D
puЫic Employee(java.lang.String, douЬle);

Signature: (Lj ava/lang/String; D) V
puЬlic native void raiseSalary(douЬle);

Signature: (D)V
puЬlic void print();

Signature: () V
static {};

Signature: () V

НА ЗАМЕТКУ! Не существует никакого рационального объяснения тому, что программисты

вынуждены применять именно такую скорректированную схему кодирования сигнатур. Разра­

ботчики механизма вызова платформенно-ориентированного кода с таким же успехом могли

бы написать функцию, позволяющую сначала считывать сигнатуры в стиле языка программи­

рования Java, например, void (int, java. lang. String), а затем кодировать их в любое
удобное внутреннее представление. Но, с другой стороны, применение скорректированных

сигнатур позволяет приобщиться к таинствам программирования на уровне, близком к вир­

туальной машине.

Глава 12 • Платформенно·ориентированные методы

12.6. Вызов методов на Java
Итак, вы знаете, как вызывать функции, написанные на С, из прикладного

кода, написанного на Java. Именно для этого и служат платформенно-ориенти­
рованные методы. А можно ли выполнить обратную операцию, вызвав методы

на Java из функций на С, и зачем вообще может потребоваться такая операция?
Оказывается, что нередко из платформенно-ориентированного метода требует­

ся запраши11ат1, какую-нибуд1, службу из переданного ему объекта. Поэтому да­

лее будет показано, как добип,ся этого сначала для методов экземпляра, а затем

для статических методов.

12.6.1. Методы экземпляра
В качестве примера вы:юва метода экземпляра на Java из платформенно­

ориентированного кода усовершенствуем класс Printf, введя в него метод, дей­
ствующий как функция fprintf () на С. Следовательно, этот метод должен быть
в состоянии выводить отформатированную строку в произвольный поток в виде

объекта типа Pr·intWriter. Ниже показано, каким образом этот метод опреде­
ляется на Java.
class PrintfЗ
{

puЬlic native static void fprint(PrintWriter out,
String s, douЫe х);

Сначала выводимая символьная строка составляется в объекте s t r типа
String, как и в реали:ювашюм ранее методе sprint ().Затем из функции на С
вызывается метод print () и:1 класса PrintWriter. Любой метод на Java можно
вызвать из функции на С 11 следующей форме:
(*env)->CallXxxMethod(env, неявный_параметр,

идентификатор_ метода, явные_ параметры)

где Ххх обо:шачает во311ращаемый тип, например Void, Int, Obect и т.д. Если
для доступа к полю требуется его идентификатор, то для вызова метода следует

указать его идентификатор. Для получения идентификатора вызываемого метода

в прикладном интерфейсе JNI предусмотрена функция GetMethodID () с параме­

трами, которые задают класс, имя и сигнатуру метода.

В рассматриваемом :1десь примере требуется получить идентификатор метода

print () и:1 класса PrintWriter. В классе PrintWriter имеются девять ра:шых
методов под одинаковым именем print. Поэтому для выбора конкретного ва­
рианта следует точно ука:1ап, параметры и возвращаемое значение. Например,

для вы:юва метода void print (java. lang. String) следует закодировать его
скорректированную сигнатуру в символьной строке" (Ljava/lang/String;)V",
как пояснялось в предыдущем разделе. Ниже приведен весь код для вызова этого

метода.

/* получить класс */
class PrintWriter = (*env)->GetObjectClass(env, out);

12.6. Вызов методов на Java

/* получить идентификатор метода */
id priпt (*env)->GetMethodID(env, class PriпtWriter,

- "print", "(Ljava/lang/String;)V");

/* вызвать метод */
(*env)->CallVoidMethod(env, out, id_priпt, str);

В листинге 12.14 приведен исходный код примера программы на Java, а в ли­
стинге 12.15 - исходный код класса PrintfЗ. Исходный код платформенно-ори­

ентированного метода fprint () на С представлен в листинге 12.16.

НА ЗАМЕТКУ! Числовые идентификаторы методов и полей выполн.~ют те же функции, что

и объекты типа Мethod и Field из прикладного интерфейса API дл>~ рефлексии в Java. Дл.~
их взаимного преобразовани>~ служат следующие функции:

jobject ToReflectedMethod(JNIEnv* епv, jclass class,
jmethodID methodID) ;

// возвращает объект типа Method
methodID FromReflectedMethod(JNIEnv* епv, jobject method);
jobject ToReflectedField(JNIEnv* епv, jclass class,

jfieldID fieldID);
// возвращает объект типа Field

fieldID FromReflectedField(JNIEnv* env, jobject field);

12.6.2. Статические методы
Вызов статических методов из платформенно-орие~пированного кода выпол­

няется аналогично вы:юву методов экземпляра, за исключением следующих от­

личий.

• Применяются функции GetStaticMethodID () и CallStaticXxxMethod ().

• При вызове метода указывается объект класса, а не объект в виде неявного

параметра.

В качестве примера рассмотрим следующий вызов статического метода

getPr·oper·ty () из платформенно-орие1пированного метода:

System.getProperty("java.class.path")

Из этого метода возвращается символьная строка, содержащая текущий путь

к классу. Сначала необходимо обнаружить используемый класс, а в отсутствие

объектов класса System - вызвать функцию FindClass () вместо функции

GetObj ectClass (),как показано ниже.

jclass class_System = (*env)->FindClass(env, "java/lang/System");

Затем следует получить идентификатор статического метода getProperty ().
Параметр и возвращаемое значение этого метода представлены символьной

строкой, поэтому его сигнатура кодируется следующим образом:

"(Ljava/lang/String;)Ljava/lang/Striпg;"

Далее следует получить идентификатор данного метода:

jmethodID id_getProperty = (*env)->GetStaticMethodID(
env, class System, "getProperty",
"(Ljava/la~g/String;)Ljava/lang/Striпg;");

Глава 12 • Платформенно-ориентированные методы

Наконец, остается сделать вызов данного метода, как показано ниже. Следует,

однако, иметь в виду, что функции CallStaticObjectMethod () передается объ­
ект, представляющий класс.

jobject obj_ret = (*env)->CallStaticObjectMethod(
env, class_System, id_getProperty,
(*env)->NewStringUTF(env, "java.class.path"));

Значение, возвращаемое из данного метода, относится к типу j obj ect. Поэ­
тому для выполнения операций над символьными строками его придется приве­

сти к типу j string следующим образом:

jstring str ret = (jstring) obj_ret;

НА ЗАМЕТКУ С++! В языке С типы jstring и jclass, а также типы массивов, которые
рассматриваются далее, равнозначны типу jobject, поэтому выполнять приведение ти­
пов в упомянутой выше строке кода на С необязательно. Но в языке С++ эти типы являются

указателями на так называемые '"фиктивные" классы, имеющие правильную иерархию на­
следования. Например, присваивание значения типа jstring переменной типа jobject
допускается без приведения типов. Но в то же время приведение типов обязательно для при­

сваивания значения типа jobject переменной типа j string.

12.6.З. Конструкторы

В платформенно-ориентированном методе можно создать новый объект Java,
вызвав его конструктор с помощью функции NewObj ect () в следующей форме:

jobject obj new (*env)->NewObject (env, класс,

идентификатор_метода,

параметры_ конструктора) ;

Чтобы получить идентификатор метода, следует вызвать функцию

GetMethodID (),указав имя метода в символьной строке "<ini t>" и закодиро­
ванную сигнатуру конструктора с возвращаемым типом void. В качестве при­
мера ниже показано, каким образом в платформенно-ориентированном методе

создается объект типа FileOutputStream для потока вывода в файл.

const char[] fileName = " .•. ";

jstring str fileName = (*env)->NewStringUTF(env, fileName);
jclass class FileOutputStream =

(*env)=>FindClass(env, "java/io/FileOutputStream");
jmethodID id FileOutputStream = (*env)->GetMethodID(

- env, class FileOutputStream,
"<init>", ~(Ljava/lang/String;)V");

jobject obj stream (*env)->NewObject (
env, class_FileOutputStream,
id_FileOutputStream, str fileName);

Обратите внимание на то, что в сигнатуре конструктора описывается пара­

метр типа j ava. lang. String и возвращаемое значение типа void.

12.6.4. Альтернативные вызовы методов
В прикладном интерфейсе JNI существует несколько вариантов функций, по­

зволяющих вызывать методы на Java из платформенно-ориентированного кода.

12.6. Вызов методов на Java

И хотя эти функции играют не такую важную роль, как рассмотренные ранее,
они могут иногда принести большую полиу.

В частности, функции CallNonvirtualXxxMethod () принимают неявный па­
раметр, идентификатор метода, объект класса (который должен соответствовать

суперклассу задаваемого неявным образом аргумента), а также явные параметры.

Они вызывают версию метода в указанном классе в обход обычного механизма

динамической диспетчеризации. Все подобные функции имеют варианты с суф­
фиксом А или V. Они получают явно заданные параметры в массиве или структу­
ре типа va _ list, определенной в заголовочном файле stdarg. h на С.

Листинг 12.14. Исходный код из файла printf3/Printf3Test. java

1 import java.io.*;
2
3 /**
4 * @version 1.11 2018-05-01
5 * @author Сау Horstmann
6 * /
7 class PrintfЗTest
8 {
9 puЫic static void main(String[] args)
10 {
11 douЫe price = 44.95;
12 douЫe tax = 7.75;
13 douЫe amountDue = price * (1 + tax / 100);
14 var out = new PrintWriter(System.out);
15 PrintfЗ. fprint (out, "Amount due = %8. 2f\n", amountDue);
16 out.flush();
17
18

Листинг 12.15. Исходный код из файла printf3/Printf3. java

1 import java.io.*;
2 /**
3 * @version 1.10 1997-07-01
4 * @author Сау Horstmann
5 */
6 class PrintfЗ
7 {
8 puЫic static native void fprint(
9 PrintWriter out, String format, douЫe х);
10
11 static
12
13 System.loadLibraryl"Printf3");
14
15

Листинг 12.16. Исходный код из файла printfЗ/PrintfЗ. с

1 /**
2 * @version 1.10 1997-07-01

3
4
5
6
7

Гпава 12 • Ппатформенно-орментированные методы

* @author Сау Horstmann
*/

#include "Printf3.h"
#include <string.h>
#include <stdlib.h>
#include <float.h>
/**

8
9
10
11
12
13
14
15
16

* @param f ormat Символьная строка со спецификатором
*формата для функции printf(), например "%8.2f".
* Подстроки "%%" пропускаются

* @return Возвращает указатель на спецификатор формата,
* пропуская символ '%', или значение NULL в

* отсутствие однозначного спецификатора формата

*/
17 char* find format(const char format[])
18
19 char* р;

20 char* q;
21
22 р = strchr(format, '%');

23 while (р != NULL && *(р + 1) == '%')
24 /* пропустить подстроку "%%" */
25 р = strchr(p + 2, '%');
26 if (р == NULL) return NULL;
27 /* проверить единственность символа "%" */
28 р++;

29 q = strchr (р, '%');
30 while (q != NULL && *(q + 11 == '%')
31 /* пропустить подстроку "%%" */
32 q=strchr(q+2, '%');
33 if (q != NULL)
34 return NULL; /* символ "%" не единственный */
35 q = р + strspn(p, " -0+#"); /* пропустить признаки */
36 q += strspn (q, "0123456789");
37 /* пропустить ширину поля */
38 if (*q == '. ') { q++; q += strspп(q, "0123456789");
39 /* пропустить точность */
40 if (strchr("eEfFgG", *q) == NULL) return NULL;
41 /* это не формат с плавающей точкой */
42 return р;
43
44
45 JNIEXPORT void JNICALL Java Printf3 fprint(JNIEnv*
45 jclass cl, jobject out,
46 jstring format, jdouЫe х)
47

const char* cformat;
char* fmt;
jstring str;
jclass class PrintWriter;
jmethodID id_print;

env,

48
49
50
51
52
53
54
55
56

cformat = (*env)->GetStringUTFChars(env,
fmt = find format(cformat);

format, NULL) ;

if (fmt == NULL)
str = format;

57 else
58 (

12.6. Вызов мвтодов на Java

59 char* cstr;
60 int width = atoi(fmt);
61 if (width == 0) width = DBL DIG + 10;
62 cstr = (char*) malloc(strlen(cformat) + width);
63 sprintf(cstr, cformat, х);

64 str = (*env)->NewStringUTF(env, cstr);
65 free(cstr);
66
67 (*env)->ReleaseStringUTFChars(env, format, cformat);
68
69 /*вызвать метод ps.print(str) */
70
71 /* получить класс */
72 class PrintWriter = (*env)->GetObjectClass(env, out);
73
74 /* получить идентификатор метода */
75 id print (*env)->GetMethodID(env, class PrintWriter,
76 "print", "(Ljava/lang/String;)V");
77
78 /* вызвать метод */
79 (*env)->CallV01dMethod(env, out, id print, str);
80

Вызов методов на Java

• jmethodID GetмethodID(JNIEnv* env, jclas1 cl, const char name[],
const char methodSignature[])

Возвращает идентификатор метода в классе.

• Ххх CallXxxМethod (JNIEnv* env, jobject оЬj, jшethodID id, args)

• Ххх CallXxxМethodA (JNIEnv* env, jobject оЬj, jmethodID id,
jvalue args[])

• Ххх CallXxxМethodV (JNIEnv* env, jobject оЬj, jmethodID id,
va_list args)

Вызывают метод. В качестве возвращаемого типа Ххх может быть указано одно из следую­

щих обозначений: Object, Boolean, Byte, Char, Short, Int, Lonq, Float или DouЫe.
Первая функция принимает переменное количество аргументов, присоединяемых после

идентификатора метода. Вторая функция получает параметры метода в виде массива значе­

ний типа jvalue, который имеет вид следующего объединения:

typedef union jvalue
{

jboolean z;
byte Ь;
char с;

short s;
int i;
long j;
float f;
douЫe d;
object 1;
value;

Третья функция получает параметры метода в виде структуры va liвt, определяемой в за-
головочном файле stdarg.h на С. -

Глава 12 • Платформенно-ориентированные методы

Вызов методов на Java /окончание/

•

•

•

Ххх CallNonvirtualXxxМethod(JNIEnv* env, jobject obj, jclass cl,
jmethodID id, args)

Ххх CallNonvirtualXxxМethodA(JNIEnv* env, jobject obj, jclass cl,
jmethodID id, jvalue args[])

Ххх CallNonvirtualXxxМethodV(JNIEnv* env, jobject obj, jclass cl,
jmethodID id, va list args)

Вызывают метод в обход механизма динамической диспетчеризации. В качестве возвраща­

емого типа Ххх может быть указано одно из следующих обозначений: Object, Boolean,
Byte, Char, Short, Int, Long, Float или DouЫe. Первая функция имеет переменное
количество аргументов, присоединяемых после идентификатора метода. Параметры метода

передаются второй функции в массиве типа jvalue. Третья функция получает параметры
в виде структуры va _list, определяемой в заголовочном файле stdarg. h на С.

• jmethodID GetStaticМethodID (JNIEnv* env, jclass cl, const char
паше[], const char methodSignature[])

Возвращает идентификатор статического метода в классе.

• Ххх CallStaticXюcМethod(JNIEnv* env, jclass cl, jmethodID id, args)

• Ххх CallStaticXxxМethodA(JNIEnv* env, jclass cl, jmethodID id,
jvalue args [])

• Ххх CallStaticXxxМethodV(JNIEnv* env, jclass cl, jmethodID id,
va_list args)

Вызывают статический метод. В качестве возвращаемого типа Ххх может быть указано

одно из следующих обозначений: Object, Boolean, Byte, Char, Short, Int, Long, Float
или DouЫe. Первая функция имеет переменное количество аргументов, присоединяемых
после идентификатора метода. Вторая функция получает параметры метода в виде массива

типа jvalue, третья - в виде структуры va list, определяемой в заголовочном файле
stdarg.h на С. -

• jobject NewOЬject (JNIEnv* env, jclass cl, jmethodID id, args)

• jobject NewObjectA(JNIEnv* env, jclass cl, jmethodID id,
jvalue args [])

• jobject NewObjectV(JNIEnv* env, jclass cl, jmethodID id,
va_list args)

Вызывают конструктор класса. Идентификатор метода получается в результате вызова функ­

ции GetмethodID () с именем метода в виде строки "<init>" и возвращаемым типом
void. Первая функция имеет переменное количество аргументов, присоединяемых по­
сле идентификатора метода. Вторая функция получает параметры метода в виде массива

типа jvalue, третья - в виде структуры va list, определяемой в заголовочном файле
stdarg.h на С. -

12. 7. Доступ к элементам массивов
Все типы массивов в Java имеют соответствующие им типы массивов в С, пе­

речисленные в табл. 12.2.

12. 7. Доступ к элементам массивов

Таблица 12.2. Соответствие типов массивов в Java и С

Java
boolean[]
byte[]
char[]
int[]
short []
long []
float []
douЬle[]

Object[]

с

jbooleanArray
jbyteArray
jcharArray
jintArray
jshortArray
jlongArray
jfloatArray
jdouЬleArray

jobjectArray

НА ЗАМЕТКУ С++! В языке С все типы массивов, по существу, являются синонимами типа
jobject. В языке Сн они упорядочены в иерархическую структуру, как показано на рис.
12.3. Тип jarray обозначает обобщенный массив.

jobject ,,.

jarray ·!:
t

jobjectArray

jbooleanArray

jbyteArray 1""""-'1"'

, .. jcharArray

jshortArray '{'1>

jintArray

.. "
jlongArray f=~

jfloatArray

jdouЫeArray
1~

"_ -· .

·-·
Рис. 12.З. Иерархия наследования типов массивов в С++

Глава 12 • Платформенно-ориентированные методы

Функция GetArrayLength () возвращает длину массива, как показано ниже.

jarray array = ... ;
jsize length = (*env)->GetArrayLength(env, array);

Порядок доступа к элементам массива зависит от того, хранятся ли в нем

объекты или :и1ачения примитивных типов (числовые, символьные или ло­

гические). Для доступа к элементам массива объектов вызываются функции

GetObjectArrayElement () и SetObjectArrayElement ():

jobjectArray array = ... ;
int i, j;
jobject х = (*env)->GetObjectArrayElement(env, array, i);
(*env)->SetObjectArrayElement(env, array, j, х);

Несмотря на всю свою простоту, такой подход крайне неэффективен. Намно­

го лучше получить непосредственный доступ к элементам массива. И это особен­

но важно для выполнения операций с векторами или матрицами.

Функция GetXxxArrayElements () возвращает указатель С на началь­

ный элемент массива. Как и при обращении с обычными символ1,ными стро­

ками, если этот указатель больше не нужен, следует вызывап, функцию

ReleaseXxxArrayElements (),где Ххх - примитивный тип данных, а не объект.

Используя указатель С, можно непосредственно считывать и записывать значе­

ния элементов массива. Но такой указатель может указывать на ктzuю массива,

поэтому любые изменения будут отражены в исходном массиве толъко после вы­

зова функции ReleaseXxxArrayElements ().

НА ЗАМЕТКУ! Чтобы выяснить, с каким именно массивом приходится иметь дело, с ори­

гиналом или копией, укажите в качестве третьего параметра функции GetXxxArray
Elements () переменную типа jboolean. Если используется копия массива, то в результате
вызова данной функции переменная будет содержать значение JNI TRUE. Если же вас это
мало интересует, укажите в качестве третьего параметра функции GetXxxArrayElements ()
значение NULL.

Ниже приведен фрагмент кода, в котором все элементы массива типа douЫ е

умножаются на постоянное значение scaleFactor типа douЬle. Доступ к от­
дельным элементам массива а [i] осуществляется по указателю С.

jdouЫeArray array_a = ... ;
douЫe scaleFactor = • . . ;

douЫe* а= (*env)->GetDouЬleArrayElements(env, array_a, NULL);
for (i =О; i < (*env)->GetArrayLength(env, array_a); i++)

a(i] = a[i] * scaleFactor;
(*env)->ReleaseDouЬleArrayElements(env, array_a, а, 0);

Будет ли виртуальная машина Java копировать этот массив, зависит от спосо­
ба выделения памяти и организации сборки "мусора". Некоторые копирующие

системы сборки "мусора" перемещают объекты и обновляют ссылки на объекты.

Такая методика не совместима с "закреплением" за массивом определенного ме­

ста в памяти, поскольку система сборки "мусора" не может обновлять значения

указателей в платформенно-ориентированном коде.

12.7. Доступ к э.nементам массивов

НА ЗАМЕТКУ! В виртуальной машине Огасlе JVM массив значений типа boolean пред­
ставляется в виде массива, содержащего 32-разрядные значения. Функция GetBoolean
ArrayElements () распаковывает его и копирует в массив типа jboolean.

Для доступа лишь к нескольким элементам крупного массива служат функ­

ции GetXxxArrayRegion () и SetXxxArrayRegion ().Они копируют из массива
Java в массив С и обратно ':)Лементы в указанных пределах изменения индексов.

Новые массивы Java в платформенно-ориентированных методах создаются
с помощью функции NewXxxArray ().Для создания нового массива объектов сле­
дует ука:ыть его длину, тип ':)Леме11тов массива, а также исходное значение всех

элеме1rrов (как правило, NПLL). В приведенном ниже примере кода показано, как

':)ТО делается.

j class class _ Employee = (* env) -> FindClass (env, "Employee") ;
jobjectArray array_e = (*env)->NewObjectArray(env, 100,

class_Employee, NULL);

Массивы элементов простых типов устроены проще. Поэтому для них доста­

точно указать длину массива. Так, в результате выполнения следующей строки

кода массив заполняется нулями:

jdouЫeArray array d = (*env)->NewDouЬleArray(env, 100);

НА ЗАМЕТКУ! Для работы с прямыми буферами в прикладном интерфейсе JNI имеются сле­
дующие три функции:

jobject NewDirectByteBuffer(JNIEnv* env, void* address,
jlong capacity)

void* GetDirectBufferAddress(JNIEnv* env, jobject buf)
jlong GetDirectBufferCapacity(JNIEnv* env, jobject buf)

Прямые буфера применяются в пакете java. nio для поддержки более эффективных опера­
ций ввода-вывода и сведения к минимуму числа операций копирования данных между плат­

форменно-ориентированным кодом и массивами в Java.

Манипулирование массивами Java

• jsize GetArrayLenqth (JNIEnv* env, jarray array)

Возвращает количество элементов в массиве.

• jobject GetObjectArrayElement(JNIEnv* env, jobjectArray array,
j size index)

Возвращает значение указанного элемента массива.

• void SetObjectArrayElement(JNIEnv* env, jobjectArray array, jsize
index, jobject va.lue)

Устанавливает новое значение в элементе массива.

Глава 12 • Платформенно-ориентированные методы

Манипулирование массивами Java /окончание/

• Ххх* GetXxxArrayElements(JNIEnv* впv, jarray array,
jboolean* isCopy)

Выдает указатель С на элементы массива Java. В качестве типа Ххх поля может быть ука­
зано одно из следующих обозначений: Object, Boolean, Byte, Char, Short, Int, Long,
Float или DouЫe. Если указатель больше не требуется, он должен быть передан функции
ReleaseXxxArrayElements (). Параметр isCopy принимает значение NULL или указа­
тель на переменную типа jboolean, которая заполняется значением JNI _ TRUE, если соз­
дается копия массива, а иначе - значение JNI _FALSE.

• void ReleaseXxxArrayElements(JNIEnv* впv, jarray array,
Ххх elems[], jint mode)

Уведомляет виртуальную машину Java о том, что указатель, полученный с помощью функции
GetXxxArrayElements (), больше не требуется. Параметр mode может принимать одно
из следующих значений: О !освободить буфер elems после обновления элементов масси­
ва!, JNI СОММIТ lне освобождать буфер elems после обновления элементов массива) или
JNI_AВORT !освободить буфер elems без обновления элементов массива).

• void GetxxxArrayRegion (JNIEnv* env, jarray array, jint start,
jint length, Ххх elems[J)

Копирует элементы из массива Java в массив С. В качестве типа Ххх поля может быть ука­
зано одно из следующих обозначений: Object, Boolean, Byte, Char, Short, Int, Long,
Float или DouЬle.

• void SetxxxArrayRegion(JNIEnv* env, jarray array, jint start,
jint length, Ххх elems[])

Копирует элементы из массива С в массив Java. В качестве типа Ххх поля может быть ука­
зано одно из следующих обозначений: Object, Boolean, Byte, Char, Short, Int, Long,
Float или DouЬle.

12.8. Обработка ошибок
Применение платформенно-ориентированных методов представляет суще­

ственную угрозу нарушения безопасности программ на Java. В языке С не пред­
усмотрена защита от ошибочного указания диапазона массивов, использования

некорректных указателей и т.д. Для сохранения целостности программы и вирту­

альной машины программистам, создающим платформенно-ориентированные

методы, следует уделять особое внимание обработке подобных ошибок. Так, если

платформенно-ориентированный метод обнаружит какую-нибудь ошибку, кото­

рую он не в состоянии обработан самостоятельно, он должен сообщить о ней

виртуал1,ной машине Java, которая сгенерирует соответствующее исключение.
Для создания нового объекта исключения, как правило, вызывается функция

Throw () или ThrowNew (),генерирующая исключение в виртуальной машине Java
по завершении платформенно-ориентированного метода. Чтобы воспользовать­

ся функцией Throw (), следует вызвать функцию NewObj ect () с целью создать

экземпляр класса, производного от класса ThrowaЫe. Например, в приведенном

ниже фрагменте кода создается объект типа EOFException и генерируется соот­
ветствующее исключение.

jclass class_EOFException = (*env)->
FindClass(env, "java/io/EOFException");

jmethodID id_EOFException = (*env)->

12.В. Обработка ошибок

GetMethodID(env, class_EOFException, "<init>", "()V");
/* идентификатор конструктора без аргументов */

jthrowaЫe obj_exc = (*env)->
NewObject(env, class_EOFExcept1on, id_EOFException);

(*env)->Throw(env, obj ехс);

Но на практике удобнее пользоваться функцией ThrowNew ().Она также соз­
дает объект исключения, исходя из заданного класса и байтовой последователь­

ности в модифицированном формате UTF-8:
(*env)->ThrowNew(env, (*env)->

FindClass(env, "java/io/EOFException"),
"Unexpected end of file");

Функции Throw () и ThrowNew () только передают исключение, но не пре­
рывают поток управления в платформенно-ориентиронанном методе. Поэтому

виртуальная машина Java может генерировать исключение тол1,ко по заверше­
нии платформенно-ориентированного метода. Это означает, что после каждого

вызова функции Throw () или ThrowNew () должен быть указан оператор return.

НА ЗАМЕТКУ С++! Если платформенно-ориентированный метод реализуется на С++, в его

теле нельзя генерировать объект исключения Java. Теоретически взаимное преобразование
исключений в языках С++ и Java возможно, но в настоящее время оно не реализовано. Для
генерирования объектов исключений Java в платформенно-ориентированном коде на С++
придется воспользоваться функциями Throw () и ThrowNew (), а также принять меры, что­
бы платформенно-ориентированные методы не генерировали исключения С++.

Как правило, платформенно-ориентиронанный код не должен занимать­

ся обработкой исключений Java, но подобная ситуация может возникнуть
при вызове из платформенно-ориентированной функции метода на Java. На­
пример, функция SetObj ectArrayElement () генерирует исключение типа

ArrayindexOutOfBoundsException, если значение индекса выходит за границы
массива, а также исключение типа ArrayStoreException, если класс хранимо­
го объекта не является производным от класса элемента массива. В подобных

случаях в платформешю-ориентированном методе следует вызвать функцию

ExceptionOccured (), чтобы определип, факт генерирования исключения. Так,
в результате приведенного ниже вызова возвращается ссылка на текущий объект

исключения. Если же в очереди отсутствуют исключения, ожидающие обработ­

ки, то возвращается пустое значение NULL.

jthrowaЬle obj_exc = (*env)->ExceptionOccurred(env);

Если требуется лишь проверить, было ли сгенерировано исключение, не полу­

чая ссылку на объект исключения, достаточно сделать следующий вы:юв:

jboolean occurred = (*env)->ExceptionCheck(env);

В очередном рассматриваемом здесь примере программы реализуется плат­

форменно-ориентированный метод fp r i n t f () с некоторыми чрезмерными,

на первый взгляд, но весьма полезными на практике мерами для обработки сле­

дующих исключений.

Глава 12 • Платформенно-ориентированные методы

• NullPointerException, если указатель на форматирующую строку при­
нимает значение NULL.

• IllegalArgumentException, если форматирующая строка не содержит
спецификатор%, необходимый для вывода значений типа douЫe.

• OutOfMemoryError, если произошла ошибка при выполнении функции
malloc ().

Наконец, чтобы продемонстрировать, каким образом выполняется проверка

на наличие исключения при вызове метода на Java из платформенно-ориенти­
рованного кода, строка направляется в поток вывода посимвольно, а после выво­

да каждого символа вызывается функция ExceptionOccured (). В листинге 12.17
представлен исходный код платформенно-ориентированного метода, а в листин­

ге 12.18 - исходный код класса, содержащего этот метод. Однако если при вы:ю­

ве метода PrintWri ter. print () возникает исключение, то платформенно-ори­
ентированный метод завершает свою работу не сразу - сначала он освобождает

буфер cstr. Когда же происходит возврат и:~ платформенно-ориентированного
метода, виртуальная машина Java снова генерирует исключение. Тестовая про­
грамма из листинга 12.19 наглядно демонстрирует, каким обра:юм платформен­
но-ориентированный метод генерирует исключение, если форматирующая стро­

ка оказывается недействительной.

Листинг 12.17. Исходный ход из файла printf4/Printf4. с

1 /**
2 * @version 1.10 1997-07-01
3 * @author Сау Horstrnann
4 */
5
6 #include "Printf4.h"
7 #include <string.h>
8 #include <stdlib.h>
9 #include <float.h>
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

/**
* @pararn forrnat Символьная строка со спецификатором
*формата для функции printf(), например, "%8.2f".
* Подстроки "%%" пропускаются

* @return Возвращает указатель на спецификатор формата,
*
*

*/

пропуская символ '%', или значение NULL в

отсутствие однозначного спецификатора формата

char* find forrnat(const char forrnat[])

char* р;
char* q;

р = strchr (forrnat, '%');
while (р 1 = NULL && *(р + 1) == '%')

/* пропустить подстроку "%%" */
p=strchr(p+2, '%');

if (р == NULL) return NULL;

12. В. Обработка ошибок

29 /* проверить единственность символа "%" */
30 р++;

31 q=strchr(p, '%');
32 while (q != NULL && *(q + 1) == '%')
33 /* пропустить подстроку "%%" */
34 q=strchr(q+2, ·~,');

35 if lq ! = NULL)
36 return NULL; /' символ "%" не единственный */
37 q = р + strspn(p, "-0+#"); /*пропустить признаки*/

38 q += strspn(q, "0123456789");
39 /* пропустить ширину поля */
40 if (*q == '. ') { q++; q += strspn(q, "0123456789");
41 /* пропустить точность */
42 if (strchr("eEfFgG", *q) == NULL) return NULL;
43 /* это не формат с плавающей точкой */
44 return р;
45
46
47 JNIEXPORT void JNICALL Java_Printf4_fprint(JNIEnv* env,
48 jclass cl, jobject out,
49 jstring format, jdouЫe х)

50
51 const char* cformat;
52 char* fmt;
53 jclass class_PrintWriter;
54 jmethodID id print;
55 char* cstr;
56 int width;
57 int i;
58
59 if (format == NULL)
60 {
61 (*env)->ThrowNew (env, (*env)->FindClass (env,
62 "java/lang/NullPointerException"),
63 "Printf4.fprint: format is null"I;
64 return;
65
66
67 cformat = (*env)->
68 GetStringUTFChars(env, format, NULL);
69 fmt = find_format(cformat);
70 if (fmt == NULL)
71 {
72 (*env)->ThrowNew(env, (*env)->FindClass(env,
73 "java/lang/IllegalArgumentException"),
74 "Printf4.fprint: format is invalid");
7 5 return;
76
77 width = atoi(fmt);
78 if (width == 0) width = DBL DIG + 10;
79 cstr = (char*)malloc(strlen(cformat) + width);
80
81 if (cstr == NULL)
82 {
83 (*env)->ThrowNew(env, (*env)->FindClass(env,
84 "java/lang/OutOfMemoryError"),

Глава 12 • Платформенно-ориентированные методы

85
86
87
88

"Printf4.fprint: malloc failed");
return;

89 sprintf(cstr, cformat, х);

90
91 (*env)->ReleaseStringUTFChars(env, format, cformat);
92
93 /*вызвать функцию ps.print(str) */
94
95 /* получить класс */
96 class PrintWriter = (*env)->GetObjectClass(env, out);
97
98 /* получить идентификатор метода */
99 id_print (*env)->GetMethodID(env, class PrintWriter,
100 "print", "(C)V");
101
102 /* вызвать метод */
103 for (i = О; cstr[i] != О

104 && 1 (*env)-> ExceptionOccurred (env); i++)
105 (*env)->CallVoidМethod(env, out, id_print, cstr[i]);
106
107 free(cstr);
108

Листинг 12.18. Исходный ход из файла printf4/Printf4. java

1 import java.io.*;
2
3 /**
4 * @version 1.10 1997-07-01
5 * @author Сау Horstmann
6 * /
7 class Printf 4
8 (
9 puЬlic static native void fprint(
10 PrintWriter ps, String format, douЫe х);
11
12 static
13
14 System.loadLibrary("Printf4");
15
16

Листинг 12.19. Исходный ход из файла printf4/Printf4Test. java

1 import java.io.*;
2
3 /**
4 * @version 1.11 2018-05-01
5 * @author Сау Horstmann
6 */
7 class Printf4Test
8

12.9. Применение прикладного интерфейса API дnя вызовов

9 puЬlic static void main(String[] args)
10 {
11 douЫe price = 44.95;
12 douЫe tax = 7.75;
13 douЫe amountDue = price * (1 + tax / 100);
14 var out = new PrintWriter(System.out);
15 /* Этот вызов приведет к генерированию
16 * исключения, если в форматирующей строке

17 * отсутствует подстрока "%%"
18 */
19
20
21
22

Printf4.fprint(out, "Amount due
out. flush ();

%%8.2f\n", amountDue);

Обработка исключений в Java

• jint Throw(JNIEnv* env, jthrowaЫe obj)

Подготавливает исключение, которое должно генерироваться после выхода из платформен­
но-ориентированного кода. При удачном исходе возвращает нулевое значение, а иначе - от­

рицательное.

j int ThrowNew (JNIEnv* env, j class cl, const char msg [])

Подготавливает исключение типа cl, которое должно генерироваться при выходе из плат­
форменно-ориентированного кода. При удачном исходе возвращает нулевое значение,

а иначе - отрицательное. Параметр msg служит для построения объекта исключения типа
String в виде последовательности байтов в модифицированном формате UTF-8.

• jthrowaЫe ExceptionOccurred(JNIEnv* env)

Возвращает объект исключения, если исключение ожидает своей очереди, а иначе - значе­

ние NULL.

• jboolean ExceptionCheck (JNIEnv* env)

Возвращает логическое значение true, если исключение все еще ожидает своей очереди.

• void ExceptionClear(JNIEnv* env)

Удаляет все исключения, ожидающие своей очереди.

12. 9. Применение прикладного интерфейса API для вызовов
До сих пор рассматривались только программы на Java, делавшие вызовы

на С по двум наиболее вероятным причинам: код на С мог выполняться быстрее

или требовался доступ к таким функциональным возможностям, которые были

недоступны на платформе Java. А теперь рассмотрим обратную ситуацию, ког­
да имеется программа на С или С++ и требуется организовать из нее несколько

вызовов кода на Java. Внедрять виртуальную машину Java в программу на С или
С++ позволяет прикладной интерфейс API, специально предназначенный для 6Ы­
ЗО6О6. Ниже приведен минимальный фрагмент кода, который требуется для ини­

циализации виртуальной машины Java.

Глава 12 • Ппатформенно·ориентированные методы

JavaVMOption options[l];
JavaVMini tArgs vm __ args;
JavaVМ *jvm;
JNIEnv *env;

options[O] .optionStriлg = "-Djava.class.path=.";

memset (&vm_args, О, sizeof (vm __ args));
vm_args.version = JNI_VERSION 1 2;
vm_args.nOptions = 1;
vm_args.options = options;

JNI CreateJavaVM(&jvm, (void**) &env, &vm_args);

Вызов функции JNI_CreateJavaVM () приводит к созданию виртуальной ма­
шины и заполнению указателя j vm на нее, а также указателя env на среду вы­
полнения. Количество параметров для виртуальной машины Java можно указы­
вать любым, увеличивая размер массива options и значение в поле vm_args.
nOptions. Например, выполнение следующей строки кода приведет к отключе­
нию динамического компилятора:

options [i] .optionString = "-Djava.compiler=NONE";

СОВЕТ. Если возникают неполадки следующего характера: программа завершается аварий­

но, отказывается инициализировать виртуальную машину Java или не в состоянии загрузить
классы, необходимо включить режим отладки. Это делается следующим образом:

options[i] .optionString = "-verbose:jni";

В этом режиме выводятся сообщения с подробными сведениями о ходе инициализации вир­

туальной машины JVM. Если же сообщения о загрузке классов отсутствуют, следует проверить
установки как общего пути, так и пути к классам.

После настройки виртуалыюй машины Java можно приступать к вызову ме­
тодов на Java способом, описа11ным в предыдущих разделах, т.е. с помощью ука­
зателя env. Указатель j vm следует использовать только в том случае, если требу­
ется вызвать другие функции из прикладного программного интерфейса API. В
настоящее время имеется лиш1, четыре такие функции. Наиболее важной из них

является функция DestroyJavaVM (), вызываемая для прекращения работы вир­
туальной машины Java:

(*jvm) ->DestroyJavaVM (jvrn);

К сожалению, в Windows стало трудно осуществлять динамическое связы­
вание с функцией JNI_CreateJavaVM () из библиотеки jre/Ьin/clieпt/jvm.

dll из-за того, что правила снязывания в версии Vista изменились, а компания
Oracle по-прежнему делает ставку на устаревшую версию библиотеки рабочих
программ на С. В рассматриваемом здесь примере программы данное затрудне­

ние разрешается путем загрузки этой библиотеки вручную. Тот же самый под­

ход применяется и в утилите j ava. Убедиться в этом можно, проанализировав
исходный код из файла launcher/java_md.c, находящегося в архивном файле
src. jar, входящем в состав JDК.

12. 9. Применение прикладного интерфейса API ДllЯ вызовов

В листинге 12.20 представлен исходный код программы на С, где сначала
инициализируется виртуальная машина Java, а затем вызывается метод main ()
из класса Welcome, который рассматривался в главе 2 первого тома настоящего
издания. (Перед запуском этой программы следует скомпилировать исходный

файл Welcome. j ava.)

Листинг12.20. Исходный код из файла invocation/InvocationTest.c

1 /**
2 * @version 1.20 2007-10-26
3 * @author Сау Horstmann
4 */
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

#include <jni.h>
#include <stdlib.h>

#ifdef WINDOWS

#include <windows.h>
static HINSTANCE loadJVМLibrary(void);

typedef jint (JNICALL *CreateJavaVМ_t) (JavaVM **
' void **, JavaVMinitArgs *);

#endif

int main ()
(

JavaVMOption options[2);
JavaVMinitArgs vm_args;
JavaVM *jvm;
JNIEnv *env;
long status;

jclass class Welcome;
jclass class_String;
jobjectArray args;
jmethodID id_main;

#ifdef WINDOWS
HINSTANCE hjvmlib;
CreateJavaVM t createJavaVM;

#endif

options[OJ .optionString = "-Djava.class.path=.";
memset(&vm_args, О, sizeof(vm_args));
vm_args.version = JNI_VERSION 1 2;
vm_args.nOptions = 1;
vm_args.options = options;

#ifdef WINDOWS
hjvmlib = loadJVMLibrary();
createJavaVM = (CreateJavaVМ t) GetProcAddress(

hjvmlib, "JNI CreateJavaVМ");
status = (*createJavaVMI

(&jvm, (void **) &env, &vm args);

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

Глава 12 • Платформенно-ориентированные методы

#else
status

#endif

JNI CreateJavaVM(&jvm,
(void **) &env, &vm_args);

if (status == JNI ERR)
{

fprintf(stderr, "Error creating VM\n");
return 1;

class Welcome = (*env)->FindClass(env, "Welcome");
id main (*env)->GetStaticMethodID(

env, class Welcome,
"main", "([Ljava/lang/String;) V");

class_String = (*env)->FindClass(
env, "java/lang/String");

args = (*env)->NewObjectArray(
env, О, class_String, NULL);

(*env)->CallStaticVoidMethod(env, class_Welcome,
id_main, args);

(* j vm) ->DestroyJavaVM (jvm) ;

return О;

75 #ifdef WINDOWS
76
77 static int GetStringFromRegistry(HKEY key,
78 const char *name,
79 char *buf, jint bufsize)
80
81 DWORD type, size;
82
83 return RegQueryValueEx(key, name, О, &type,
84 О, &size) == О

85 && type == REG_SZ
86 && size < (unsigned int) bufsize
87 && RegQueryValueEx(key, name, О, О,

88 buf, &size) == О;

90
91
92 static void GetPuЬlicJREHome(char *buf, jint bufsize)
93
94 НКЕУ key, subkey;
95 char version[МAX РАТН];
96 /* найти текущую-версию JRE */
97 char *JRE КЕУ =
98 "Sof~ware\\JavaSoft\\Java Runtime Environment";
99 if (RegOpenKeyEx(HKEY_LOCAL_MACHINE, JRE КЕУ, О,

100 KEY _READ, &key) ! = 0)
101
102 fprintf (stderr, "Error opening registry key '%s' \n",
103 JRE КЕУ);

104 exit (1);
105

12. 9. Применение прикладного интерфейса API дпя вызовов

106
107 if (1GetStringFromRegistry (key, "CurrentVersion",
108 version, sizeof (version)))
109
110 fprintf(stderr, "Failed reading value of registry
111 key: \n\t s\\CurrentVersion\n", JRE_KEYI;
112 RegCloseKey(key);
113 exit(l);
114
115
116 /* Найти каталог, где установлена текущая версия */
117 if (RegOpenKeyEx(key, version, О, KEY_READ,
118 &subkey) 1 = 0)
119
120 fprintf(stderr, "Error opening registry
121 key '%s\\%s'\n", JRE КЕУ, version);
122 RegCloseKey(key);
123 exit (1);

124
125
126 if (!GetStringFromReg1stry (subkey, "JavaHome",
127 buf, bufsize))
128
129 fprintf(stderr, "Failed reading value of registry
130 key: \n\t%s\ \%s\ \JavaHome\n", 110 JRE_KEY,
131 version);
132 RegCloseKey(key);
133 RegCloseKey(subkey);
134 exit(l);
135
136
137 RegCloseKey(key);
138 RegCloseKey(subkey);
139
140
141 static HINSTANCE loadJVMLibrary(void)
142
143 HINSTANCE hl, h2;
144 char msvcdll[МAX_PATH];
145 char javadll[МAX_PATH];
146 GetPuЬlicJREHome(msvcdll, МАХ РАТН);

147 strcpy(javadll, msvcdll);
148 strncat (msvcdll, "\ \bin\ \msvcr71.dll",
149 МАХ РАТН - strlen(msvcdll));
150 msvcdll[MAX_PATH - 1] = '\0';
151 strncat (javadll, "\ \bin\ \client\ \jvm.dll",
152 МАХ РАТН - strlen(javadll));
153 javadll[MAX_PATH - 1] = '\О';

154
155 hl = LoadLibrary(msvcdll);
156 if (hl == NULL)
157
158 fprintf(stderr, "Can't load library msvcr71.dll\n");
159 exit(l);
160
161
162 h2 LoadLibrary(Javadll);

Глава 12 • Платформенно-ориентмрованные методы

163 if (h2 == NULL)
164 (
165 fprintf(stderr, "Can't load library jvm.dll\n");
166 exit(l);
167
168 return h2;
169
170
171 #endif

Чтобы скомпилировать эту программу в ОС Linux, выполните следующую ко­
манду:

gcc -I jdk/include -I jdk/include/linux -о InvocationTest \
-L jdk/jre/liЬ/i386/client -ljvm InvocationTest.c

Если же требуется скомпилировать данную программу в ОС Windows компи­
лятором от корпорации Microsoft, выполните приведенную ниже команду.

cl -D WINDOWS -I jdk\include \
-I-jdk\include\win32 InvocationTest.c \
jdk\liЬ\jvm.liЬ advapi32.liЬ

Непременно убедитесь, что в переменные окружения INCLUDE LIB включен

путь к заrоловочным файлам и файлам библиотек из прикладного интерфейса

API для Windows. В среде Cygwin данную программу можно скомпилировать
по следующей команде:

gcc -D WINDOWS -mno-cygwin -I jdk\include \
-I-jdk\include\win32 -D int64="long long" \
-I c:\cygwin\usr\include\w32api -о InvocationTest

Перед запуском данной программы на выполнение в ОС Linux/UNIX следует
удостовериться, что в переменную окружения LD _ LIBRARY _PATH включены ката­

логи для разделяемых библиотек. Так, если в Linux используется командная обо­
лочка bash, то для этой цели следует выполнить такую команду:

export LD LIBRARY РАТН= \
jdk/jre/lil>/i386/client:$LD_LIBRARY_PATH

Функции из прикладного интерфейса API для вызовов

jint JNI_CreateJavaVМ(JavaVМ** p_jvm, void** p_env, JavaVМinitArgs*

vm_args)

Инициализирует виртуальную машину Java. При удачном завершении возвращает нулевое
значение, а иначе - значение JNI _ ERR.

jint DestroyJavaVМ(JavaVМ* jvm)

Удаляет виртуальную машину Java. При удачном завершении возвращает нулевое значение,
а иначе - отрицательное. Эту функцию следует вызывать по указателю на виртуальную ма­

шину, например:

(*jvm) ->DestroyJavaVМ(jvm).

12.1 О. Практический пример обращения к реестру Windows

12.1 О. Практический пример обращения к реестру Windows
В этом разделе рассматривается пример применения всех перечисленных

ранее в этой главе способов обращения с платформе111ю-ориентирова1111ыми

методами для манипулирования символьными строками, массивами и объек­

тами, вы:юва конструкторов и обработки исключе11ий. Основная цель данного

примера - продемонстрировать с03дание на платформе Java оболочки для под­
множества функций, доступных в прикладном интерфейсе APl, реали:юванных
на С и преднюначенных для работы с реестром ОС Windows. В связи с тем что
в рассматриваемом здесь примере программы применяются функции для мани­

пулирования таким специфическим объектом, как реестр Windows, она, ра:}уме­
ется, не может быть перенесена на другие платформы. Именно по::>тому в Java
не предусмотрено никаких инструментальных средств для работы с реестром,

а предполагается, что для этой цели будет испол1,:юнав платформешю-ориенти­

ронанный код.

12.10.1. Общее представление о реестре Windows
Как известно, peecrp предстанляет собой хранилище конфигурационных дан­

ных для операционной системы Windows и прикладных программ. Наличие
такого хранилища очень удобно для администрироuания, создания резервных

копий и настройки прикладных программ. Недостаток реестра, однако, заклю­

чается в том, что он является также единой точкой отказа: при наличии ошибок

в peecrpe вся операционная сисrема будет работап, со сбоями, а возможно, и во­
обще не загрузится!

В связи с этим полиоваться реестром для хранения конфигурационных па­

раметров прикладных программ на Java не рекомендуется. С этой целыо лучше
воспользовап,ся прикладным интерфейсом API для сохранения глобальных па­
раметров настройки (подробнее об этом см. в главе 10 пер1юго тома настоящего
издания). В данном случае peecrp используется лиш1, для того, чтобы продемон­
стрировать, каким образом платформенно-ориентированные функции из нетри­

виалыюго прикладного интерфейса API заключаются в оболочку класса Java.
Основным инструментальным средством для работы с реестром является

редактор реестра. Его применение чревато крупными неприятностями для на­

чинающих пользователей, поэтому для его запуска не предусмотрено никаких

визуальных элементов пользовательского интерфейса. Чтобы вызнать редак­

тор реестра из командной строки или в диалоговом окне, которое появляется

на экране после выбора пункта меню Пуске:> Выполнить, следует ввести команду

regedi t. На рис. 12.4 показано, как выглядит окно редактора реестра.
В левой части окна редактора реестра представлены ключи, упорядоченные

в виде иерархической древовидной структуры. Следует, однако, имеп, в виду, что

каждый ключ находится в поддереве, начинающемся в одном из перечисленных

ниже узлов с префиксом НКЕУ.

НКЕУ CLASSES ROOT - -
НКЕУ CURRENT USER - -
НКЕУ LOCAL MACHINE

- -

Глава 12 • П11атформенно-орментированные методы

.:t..,...,,,""
f1'f: fdit !{- fJWfi"..es !:1е,

" ·~ Computtr
l«fY_CLASSES_RCIOf
НКEY_CUP.RENТJJSER

4, Consoh!
Conttc!P•мl

Enllironmcrl
EUOC
ldmtiti6

Krftio"d U)·out
~letwc1t.

"""'"'
.....
An•1og0evкu

AppO.uLow
AppltCompu«r /rк.

Cl1ssu

Cktnts
, Cygn111Scltutioм

"""~·
""" lfNgetA.gн:k

""
1.60_0)

" J, \ 1 Upd.tt
Polic:y

"""°'"' Ncatt(М!

• №mt Туре

•. Фtf•ul, IUG_SZ
t't fr~"C)' REG. DY•ORD

1
• L1ПUpdttt8tg1.- REG_S.Z
• UstUpdмcfl'lls- REG_SZ

: 1\'l'Upd.teS<h№lt: REG_DWORO

1

• j

ом.

(v.iueмt!МJ

ChCH100000(1781S792
Thu,~ Octlf1J701;423S GMT

Ttщ~Oct2'tn01~2ИGMT

0.0000000.C(U)

~- ~~~~~~~~~~~~~~~~~~~~-~~~~~
CcmputMНКEV _ CURR1N1)JSlR\Soft,,.мt\Jl\.'"tSoftV1~·1 Updftt\Pollq

Рис. 12.4. Редактор реестра в Windows

В правой части окна редактора реестра отображаются пары "имя-значение",

сня:~анные с конкретным ключом. Так, если уста1ювить версию Java 11, то ключ

НКЕУ LOCAL MACHINE \ Software\Java Soft\Java Runtime Environment - -
будет содержат~, такую пару "имя-значение":

CurrentVersion="ll.O 10"

В данном случае значение представлено в виде символыюй строки. Но :ша­

чения мoryr бып, также представлены в виде целых чисел или массивов байтов.

12.10.2. Интерфейс для доступа к реестру на платформе Java
Рассмотрим создание простого интерфейса для органи:1ации доступа к ре­

естру из прикладной программы на Java, а также его реали:~ацию в платфор­
менно-ориентированном коде. Эrот интерфейс позволяет выполнять лишь не­

сколько операций с реестром. Ради сокращения объема ра:1рабатываемого кода

в данном интерфейсе 11е померживаются многие важные операции, в том числе

ввод и удаление ключей. Но ДЛ>t их выполнения в таком интерфейсе нетрудно

реализовать соответствующие функции.

Используя даже ограниченный набор функций, над реестром можно выпол­

нят~, следующие действия:

•
•
•

получап, все имена, связа11ные с ключом;

читать значение, соответствующее имени;

связывать с именем новое :~начение .

12.1 О. Практический пример обращения к реестру Windows

Для выполнения подобных действий служит следующий класс Java, инкапсу­
лирующий ключ реестра:

puЫic class Win32RegKey
{

puЫic Win32RegKey(int theRoot, String thePath) { ... }
puЫic Enumeration names() { ... }
puЫic native Object getValue(String name);
puЫic native void setValue(String name, Object value);

puЬlic static final int HKEY_CLASSES_ROOT = Ох80000000;
puЬlic static final int HKEY_CURRENT_USER = Ох80000001;

puЬlic static final int НКЕУ LOCAL MACHINE = Ох80000002;

Метод names () возвращает объект типа Enumeration, который содержит все
имена, связанные с данным ключом. Их можно получить с помощью методов

hasMoreElements () /nextElement ().Метод getValue () возвращает объект, ко­
торый может быть символьной строкой, экземпляром класса Integer или бай­

товым массивом. Параметр value метода setValue () также должен относиться
к одному из этих трех ссылочных типов данных.

12.10.3. Реализация функций доступа к реестру в виде
платформенно-ориентированных методов

В рассматриваемом здесь примере программы необходимо реализовать сле­

дующие действия над реестром Windows:

• получение значения по имени;

• установка значения по имени;

• перечисление имен по ключам.

Ранее в этой главе уже были рассмотрены все основные инструментальные

средства, требующиеся для взаимного преобразования символьных строк и мас­

сивов на Java и С. Кроме того, ранее было показано, каким образом генерируют­
ся и обрабатываются исключения при возникновении ошибок.

Но по сравнению с примерами из предыдущих разделов применение плат­

форменно-ориентированных методов усложняется следующими двумя обстоя­

тельствами.Во-первых, методы getValue () и setValue () манипулируют данны­
ми типа Obj ect, которые могут относиться к одному из следующих конкретных
типов: String, Integer или byte [].Кроме того, в объекте перечислимого типа
должны хранип,ся сведения о состоянии между последовательными вызова­

ми методов hasMoreElements () /nextElement (). Рассмотрим сначала метод
getValue (), выполняющий перечисленные ниже действия (его исходный код
представлен в листише 12.22).

1. Огкрывает ключ в реестре. В прикладном интерфейсе API для доступа к ре­
естру требуется, чтобы ключи были открытыми.

2. Запрашивает тип и длину значения, связанного с данным именем.

3. Считывает данные запрашиваемого значения в буфер.

Глава 12 • Платформенно-ориентированные методы

4. Вызывает функцию NewStringUTF () для создания новой символьной стро­
ки с данными запрашиваемого значения, если это значение относится

к типу REG _ S Z (т.е. является строкой).

5. Вызывает конструктор класса Integer, если запрашиваемое значение отно­
сится к типу REG _ DWORD (т.е. является 32-разрядным целочисленным значе­
нием).

6. Взывает сначала функцию NewByteArray () для создания нового байтового
массива, а затем функцию SetByteArrayRegion () для копирования дан­
ных запрашиваемого значения в полученный массив, если это значение от­

носится к типу REG_BINARY (т.е. является байтовым массивом).

7. Если же запрашиваемое значение не относится ни к одному из перечислен­
ных выше типов или если при вызове функции и:~ прикладного интерфейса

API возникла какая-нибудь ошибка, генерирует исключение и освобождает
все полученные до сих пор ресурсы.

8. Закрывает ключ в реестре и возвращает созданный объект (типа String,
Integer или byte []).

Как видите, рассматриваемый здесь пример наглядно показывает, каким об­

разом формируются объекты разных типов в Java.
В данном платформенно-ориентированном методе совсем не трудно органи­

зовать возврат обобщенного значения, поскольку ссылку типа jstring, jint или
byte [] можно возвратить просто как ссылку типа jobject. Но метод setValue ()
получает ссылку на объект типа Obj ect и должен точно определить его конкрет­
ный тип, чтобы сохранить его в виде символьной строки, целочисленного значе­

ния или байтового массива. Этот тип можно определить, запросив класс объекта

value и получив ссылки на классы java.lang.String, java.lang.Integer или
j ava. lang. byte [],а затем сравнив их с помощью функции IsAssignaЫeFrom ().

Так, если classl и class2 являются ссылками на два ра:шых класса, то в ре­
зультате вызова приведенного ниже метода возвратится значение JNI _ TRUE, при
условии, что классы classl и class2 одинаковы или же класс classl является
подклассом, производным от класса class2.

(*env)->IsAssignaЬleFrom(env, classl, class2)

Но в любом случае ссылки на объекты класса classl могут быть приведены
к типу class2. Так, если приведенный ниже метод возвращает логическое значе­
ние true, это означает, что объект value является байтовым массивом.

(*env)->IsAssignaЬleFrom(env,

(*env)->GetObjectClass(env, value),
(*env) ->FindClass (env, "[В"))

Теперь рассмотрим метод setValue (),выполняющий перечисленные ниже
действия.

1. Открывает ключ в реестре для записи.

2. Определяет тип записываемого значения.

3. Вызывает функцию GetStringUTFChars () для получения указателя на сим­
волы, если значение относится к типу String.

12.1 О. Практический пример обращения к реестру Windows

4. Вызывает метод intValue () для извлечения целочисленного значения,

хранящегося в объекте-оболочке, если значение относится к типу Integer.

5. Вызывает метод GetByteArrayElements () для получения указателя

на байты, если значение относится к типу byte [].

6. Передает данные и длину значения в реестр.

7. Закрывает ключ в реестре.

8. Освобождает указатель на данные, если речь идет о значении типа
String или byte [].

Наконец, рассмотрим платформенно-ориенrированные методы для перечис­

ления имен по ключам реестра. Как следует из листинга 12.21, эти методы входят
в состав класса Win32RegKeyNameEnumeration. Чтобы начать процесс перечисле­
ния, следует сначала открыть ключ в реестре. На время существования объекта

перечислимого типа необходимо сохранить дескриптор ключа. Этот дескриптор

относится к типу DWORD (32-разрядное целочисленное значение) и поэтому может
быть сохранен в поле hkey объекта перечислимого типа. В самом начале процес­
са перечисления это поле инициали:шруется с помощью метода SetintFie1d ().
В дальнейшем значение поля hkey читается с помощью метода GetintFieJd ().

В объекте перечислимого типа из рассматриваемого здесь примера сохраня­

ются также три других элемента данных. В самом начале процесса перечисления

в реестре можно запросить количество пар "имя-значение", а также длину само­

го длинного имени. Эти сведения требуются для выделения символьного массива

на С и сохраняются в полях count и maxsize объекта перечислимого типа. Нако­
нец, поле index этого объекта инициализируется значением -1, указывая на на­
чало процесса перечисления. После инициализации других полей экземпляра

в этом поле устанавливается нулевое значение, которое затем инкрементируется

на каждом шаге перечисления.

Рассмотрим по очереди действия платформенно-ориентированных ме­

тодов, поддерживающих перечисление. Начнем с самого простого метода

hasMoreElements (), который выполняет следующие действия.

1. Извлекает :шачения полей index и count.

2. Если в поле index оказывается значение -1, то вь13ывается функция
startNameEnumeration (), которая открывает соответствующий ключ в ре­
естре, запрашивает значение счетчика и максимальную длину, а затем ини­

циализирует поля hkey, count, maxsize и index.

3. Если значение в поле index меньше значения в поле count, возвращает зна­
чение JNI TRUE, а иначе - значение JNI FALSE.

Метод nextElement () выполняет более сложные действия, перечисленные
ниже.

1. Извлекает :шачения полей index и count.

2. Если значение в поле index равно -1, вызывает функцию startName
Enumeration (),которая открывает соответствующий ключ в реестре, за­
прашивает значение счетчика и максимальную длину, а затем инициализи­

рует поля hkey, count, maxsize и index.

Глава 12 • Платформенно-ориентированные методы

3. Если значение в поле index равно значению в поле count, генерирует ис-
ключение типа NoSuchElementException.

4. Читает следующее имя из реестра.

5. Инкрементирует значение в поле index.

6. Если значение в поле index снова оказывается равным значению в поле
coun t, закрывает ключ в реестре.

Перед компиляцией исходного кода программы из данного примера не за­

будьте выполнить команду j avac с параметром -h и обоими исходными фай­
лами - Win32RegKey и Win32RegKeyNameEnumeration. Для компилятора
от корпорации Microsoft соответствующая командная строка будет выглядеть
следующим образом:

cl -I jdk\include -I jdk\include\win32 -LD Win32RegKey.c \
advapi32.liЬ -FeWin32ReqKey.dll

В среде Cygwin аналогичная команда будет выглядеть так:
qcc -mno-cyqwin -D int64="lonq lonq" -I jdk\include \

-I jdk\include\win32 \
-I c:\cyqwin\usr\include\w32api -shared -Wl, \
--add-stdcall-alias \
-о Win32ReqКey.dll Win32ReqKey.c

Но прикладной интерфейс API для доступа к реестру рассчитан исключитель­
но на применение в ОС Windows, поэтому в других операционных системах рас­
сматриваемая здесь программа работап, не будет.

В листинге 12.23 приведен код программы, позволяющей протестировать но­
вые функции, разработанные для обращения с реестром. Для проведения такого

тестирования три пары "имя-значение" (символьная строка, целое число и бай­

товый массив) сначала добавляются в следующий ключ реестра:

НКЕУ CURRENT USER\Software\JavaSoft\Java Runtime Environment

Затем перечисляются все имена этого ключа и извлекаются их значения.

Ниже приведен результат выполнения данной программы.

Default user=Harry Hacker
Lucky numЬer=lЗ
Small primes=2 3 5 7 11 13

Несмотря на то что добавление подобных пар имен и значений в данный

ключ вряд ли сможет нанести какой-нибудь вред реестру, после выполнения рас­

сматриваемого здесь примера программы их нетрудно удалить, если потребует­

ся, с помощью редактора реестра.

Листинг 12.21. Исходный код из файла win32reg/Win32RegKey. j ava

1 import java.util.*;
2
3 /**
4 * Объект класса Win32RegKey служит для получения и
5 * установки значений в ключах реестра Windows
6 * @version 1.00 1997-07-01

7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

12.1 О. Практический пример обращения к реестру Windows

* @author Сау Horstrnann
*/
puЫic class Win32RegKey
{

puЫic static final int НКЕУ CLASSES ROOT
Ох80000000;

puЫic static final int НКЕУ CURRENT USER
Ох80000001;

puЫic static final int НКЕУ LOCAL МACHINE = - -
Ох80000002;

puЬlic static final int НКЕУ USERS = Ох80000003;
puЫic static final int НКЕУ CURRENT CONFIG =

Ох80000005;

puЫic static final int НКЕУ DYN DATA = Ох80000006;

22 private int root;
23 private String path;
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

/**
* Получает значение ключа в реестре

* @pararn narne Имя ключа
* @returл Значение, связанное с заданным ключом

*/
puЫic native Object getValue(String narne);

/**
* Устанавливает значение ключа в реестре

* @pararn narne Имя ключа
* @pararn value Новое значение
*/
puЫic лative void setValue(String лаmе, Object value);

/**
* Создает объект ключа в реестре

* @pararn theRoot Один из следующих ключей:
* HKEY_CLASSES ROOT, НКЕУ CURRENT USER,
*
*

HKEY_LOCAL_МACHINE, HKEY_USERS,
НКЕУ CURRENT CONFIG, НКЕУ DYN DATA

* @pararn thePath Путь к ключу в реестре

*/
puЫic Wiл32RegKey(iлt theRoot, Striлg thePath)
{

root
path

theRoot;
thePath;

53 /**
54 * Перечисляет все имена ключей в реестре по пути,

55 * описываемому в данном объекте
56 * @return Возвращает список всех перечисляемых имен
57 */
58 puЫic Enurneration<String> пarnes()
59 {
60 returп new Win32RegKeyNarneEnurneration(root, path);
61
62 static

Глава 12 • Платформенно-ориентированные методы

63
64 System. loadLibrary ("Win32RegKey");
65
66
67
68 class Win32RegKeyNameEnurneration
69 irnplements Enurneration<String>
70
71 puЫic native String nextElernent();
72 puЫic native boolean hasMoreElements();
73 private int root;
74 private String path;
75 private int index = -1;
76 private int hkey = О;

77 private int rnaxsize;
78 private int count;
79
80
81
82
83
84
85
86

Win32RegKeyNarneEnumeration(int theRoot, String thePath)
{

.root
path

theRoot;
thePatl1;

87 class Win32RegKeyException extends RuntimeException
88 {
89
90
91
92

puЫic Win32RegKeyException()
{

}

93 puЫic Win32RegKeyException(String why)
94 {
95 super(why);
96
97

Листинг 12.22. Исходный код из файла win32reg/Win32RegKey. с

1 /**
2 * @version 1.00 1997-07-01
3 * @author Сау Horstrnann
4 */
5
6 #include "Win32RegKey.h"
7 #include "Win32RegKeyNameEnurneration.h"
8 #include <string.h>
9 #include <stdlib.h>
10 #include <windows.h>
11 JNIEXPORT jobject JNICALL Java_Win32RegKey_getValue(
12 JNIEnv* env, jobJect this_obj, jobject narne)
13
14 const char* cnarne;
15 jstring path;
16 const char* cpath;
17 НКЕУ hkey;

12.1 О. Практический пример обращения к реестру Windows

18 DWORD type;
19 DWORD size;
20 jclass this class;
21 jfieldID id_root;
22 jfieldID id path;
23 НКЕУ root;
24 jobject ret;
25 char* cret;
26
27 /* получить класс */
28 this class = (*eпv)->GetObjectClass(env, this obj);
29
30 /* получить идентификаторы полей */
31 id root (*env)->GetFieldID(env, this class,
32
33
34
35

id path
"root", "I");

(*env)->GetFieldID(env, this class, "path",
"Ljava/la;g/Striпg;");

36 /* получить поля */
37 root (HKEYI (*env)->GetintField(eпv, this obj,
38 id root);
39 path (jstring) (*env)->GetObjectField(env,
40 this_obj, id_path);
41 cpath = (*env)->GetStriпgUTFChars(env, path, NULL);
42
43 /* открыть ключ в реестре */
44 if (RegOpenKeyEx(root, cpath, О,

45 KEY_READ, &hkey) '= ERROR SUCCESS)
46
47 (*env)->ThrowNew(eпv, (*env)->FindClass(env,
48 "Win32RegKeyException"),
49 "Open key failed");
50 (*env)->ReleaseStringUTFChars(env, path, cpath);
51 return NULL;
52
53
54 (*env)->ReleaseStriпgUTFChars(env, path, cpath);
55 спаmе = (*env)->GetStringUTFChars(env, name, NULL);
56
57 /* обнаружить тип и длину значения */
58 if (RegQueryValueEx(hkey, cname, NULL, &type,
59 NULL, &size) != ERROR SUCCESS)
60
61 (*env)->ThrowNew (env, (*env) ->FindClass (env,
59 "Win32RegKeyException"),
60 "Query value key failed");
61 RegCloseKey(hkey);
62 (*env)->ReleaseStringUTFChars(env, паmе, cname);
63 return NULL;
64
65 /* выделить область памяти для хранения
66 конкретного значения */
67 cret = (char*)malloc(size);
68
69 /* прочитать значение */
70 if (RegQueryValueEx(hkey, cname, NULL, &type,

Глава 12 • Платформенно-ориентированные методы

71 cret, &size) 1= ERROR SUCCESS)
72
73 (*env)->ThrowNew(env, (*env)->FindClass(env,
74 "Win32RegKeyException"),
75 "Query value key failed");
76 free(cret);
77 RegCloseKey(hkey);
78 (*env)->ReleaseStringUTFChars(env, name, cname);
79 return NULL;
80
81
82 /* сохранить значение как символьную строку,
83 целое число или байтовьм массив в зависимости

84 от его типа */
85 if (type == REG SZ)
86
87 ret = (*env)->NewStringUTF(env, cret);
88
89 else if (type == REG_DWORD)
90 {
91 jclass class Integer = (*env)->
92 FindClass (env, "j ava/ lang /Integer" 1 ;

93 /* получить идентификатор метода для конструктора */
94 jmethodID id_Integer = (*env)->GetMethodID(env,
95 class_Integer, "<init>", "(I)V");
96 int value = * (int*) cret;
97 /* вызвать конструктор */
98 ret = (*env)->NewObject(env, class_Integer,
99 id Integer, value);
100
101 else if (type == REG BINARY)
102
103 ret = (*env)->NewByteArray(env, size);
104 (*env)->SetByteArrayRegion(env,
105 (jarray) ret, О, size, cret);
106
107 else
108 {
109 (*env)->ThrowNew(env, (*env)->FindClass(env,
110
111
112
113
114

ret NULL;

115 free(cret);
116 RegCloseKey(hkey);

"Win32RegKeyException"),
"Unsupported value type");

117 (*env)->ReleaseStr1ngUTFChars(env, name, cname);
118
119 return ret;
120
121 JNIEXPORT void JNICALL Java_Win32RegKey_setValue(
122 JNIEnv* env,jobject this_obj,
123 jstring name, jobject value)
124
125 const char* cname;
126 jstring path;

127 const char* cpath;
128 НКЕУ hkey;
129 DWORD type;
130 DWORD size;

12.1 О. Практический пример обращекия к реестру Windows

131 jclass this class;
132 jclass class_value;
133 jclass class_Integer;
134 jfieldID id_root;
135 jfieldID id path;
136 НКЕУ root;
137 const char* cvalue;
138 int ivalue;
139
140 /* получить класс */
141 this class = (*env)->GetObjectClass(env, this obj);
142
143 /* получить идентификаторы полей */
144 id root (*env)->GetFieldID(env,
145
146
147
148

id_path
this_class, "root", "I");

(*env)->GetFieldID(env, this class, "path",
"Ljava/la~g/String;");

149 /* получить поля */
150 root (НКЕУ) (*env)->GetintField(
151 env, this_obj, id_root);
152 path (jstring) (*env)->GetObjectField(
153 env, this_obj, id_path);
154 cpath = (*env)->GetStringUTFChars(env, path, NULL);
155
156 /* открыть ключ в реестре */
157 if (RegOpenKeyEx(root, cpath, О,

158 КЕУ WRIТE, &hkey) 1 = ERROR SUCCESS)
159
160 (*env) ->ThrowNew (env, (*env) ->FindClass (
161 env, "Win32RegKeyException"),
162 "Open key failed");
163 (*env)->ReleaseStringUTFChars(env, path, cpath);
164 return;
165
166
167 (*env)->ReleaseStringUTFChars(env, path, cpath);
168 cname = (*env)->GetStringUTFChars(env, name, NULL);
169
170 class value = (*env)->GetObjectClass(env, value);
171 class Integer = (*env)->FindClass(
172 env, "java/lang/Integer");
173 /* определить тип объекта, представляющего значение */
174 if ((*env)->IsAssignaЬleFrom(env, class value,
175 (*env)-> FindClass(env, "java/lang/~tring")))
176
177 /* это строка, поэтому получить

178 указатель на ее символы */
179 cvalue = (*env)->GetStringUTFChars(
180 env, (jstring) value, NULL);
181
182

type
size

REG SZ;
(*env)->GetStringLength(

Глава 12 • Платформенно·ориентированные методы

183 env, (jstring) value) + 1;
184
185 else if ((*env)->IsAssignaЬleFrom(
186 env, class_value, class_Integer))
187
188 /* это целое значение, поэтому вызвать

189 метод intValue(), чтобы получить значение */
190 jmethodID id_intValue = (*env)->GetMethodID(
191 env, class Integer, "1ntValue", "()I");
192 ivalue = (*env)->CalllntMethod(
193 env, value, id intValue);
194 type = REG DWORD;
195 cvalue = (char*)&ivalue;
196 size = 4;
197
198 else if ((*env)->IsAssignaЬleFrom(env, class_value,
199 (*env)->FindClass(env, "[В")))

200
201 /* это байтовьm массив, поэтому получить

202 указатель на байты */
203 type = REG_BINARY;
2 04 cvalue = (char*) (* env) ->GetByteArrayElement.s (
205 env, (Jarray) value, NULL);
206 size (*env)->GetArrayLength(env, (jarray) value);
207
208 else
209
210 /* неизвестно, как обрабатывать этот тип данных */
211 (*env)->ThrowNew(env, (*env)->FindClass(
212 env, "Win32RegKeyException"),
213 "Unsupported value type");
214 RegCloseKey(hkey);
215 (*env)->ReleaseStringUTFChars(env, name, cname);
216 return;
217
218
219 /* установить значение */
220 if (RegSetValueEx(hkey, cname, О, type,
221 cvalue, size) 1= ERROR SUCCESS)
222
223 (*env)->ThrowNew(env, (*env)->FindClass (
2 21 env, "Win32RegKeyExcept ion") ,
222
223
224
225 RegCloseKey(hkey);

"Set value failed");

226 (*env)->ReleaseStringUTFChars(env, name, cname);
227
228 /* если значение оказалось символьной строкой или
229 * байтовым массивом, освободить указатель */
230 if (type == REG_SZ)
231 {
232 (*env)->ReleaseStringUTFChars(
233 env, (jstring) value, cvalue);
234
235 else if (type == REG BINARY)

12.1 О. Практический пример обращения к реестру Windows

236
237 (*env)->ReleaseByteArrayElements(
238 env, (jarray) value, (jbyte*) cvalue, 0);
239
240
241
242 /* Вспомогательная функция, начинающая процесс

243 перечисления имен по ключам */
244 st.atic int startNameEnumeratioп (
245 JNIEnv* env, jobject this obj, jclass this class)
246
247 jfieldID id index;
248 jfieldID id count;
249 jfieldID id root;
250 jfieldID id_path;
251 jfieldID id hkey;
252 jfieldID id maxsize;
253
254 НКЕУ root;
255 jstring path;
256 const char* cpath;
257 НКЕУ hkey;
258 DWORD maxsize = О;

259 DWORD count О;

260
261 /* получить идентификаторы полей */
262 id root (*env) ->GetFieldID (
263
264
265
266
267
2 68
269
270
271
272
273
274

id_path

id_hkey

env, this_class, "root", "I");
(*env)->GetFieldID(env, this_class, "path",

"Ljava/lang/String;");
(*env)->GetFieldID(

env, this_class, "hkey", "I");
id maxsize = (*env)->GetFieldID(env, this_class,

id index

id count

"maxsize", "I");

(*env)->GetFieldID(env, this class,
"index", "I");

(*env)->GetFieldID(env, this class,
"count", "I");

275 /* получить значения из полей */
276 root (НКЕУ) (*env)->GetintField(
277 env, this_obj, id_root);
278 path ljstring) (*env)->GetObjectField(
279 env, this_obj, id_path);
280 cpath = (*env)->GetStringUTFChars(env, path, NULL);
281
282 /* открыть ключ в реестре */
283 if (RegOpenKeyEx(root, cpath, О,

284 KEY_READ, &hkey) 1 = ERROR SUCCESS)
285
286 (*env)->ThrowNew(env, (*env)->FindClass(
287 env, "Win32RegKeyException"),
288 "Ореп key failed");
289 (*env)->ReleaseStringUTFChars(env, path, cpath);
290 return -1;
291

292
293
2 94
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347

Глава 12 • Ппатформенно-ориентированные методы

(*env)->ReleaseStringUTFChars(env, path, cpath);
/* запросить число и максимальную длину имен */
if (RegQueryinfoKey(hkey, NULL, NULL, NULL, NULL,

NULL, NULL, &count, &maxsize,
NULL, NULL, NULL) 1= ERROR SUCCESS)

(*env) ->ThrowNew (env, (*env) ->FindClass (env,
"Win32RegKeyException"),
"Query info key failed");

RegCloseKey(hkey);
return -1;

/* установить значения в полях */
(*env)->SetintField(env, this_obj,

id_hkey, (DWORD) hkey);
(*env)->SetintField(env, this obj,

id_maxsize, maxsize + 1);
(*env)->SetintField(env, this_obj, id index, 0);
(*env)->SetintField(env, this obj, id_count, count);
return count;

JNIEXPORT jboolean JNICALL
Java Win32RegKeyNameEnumeration hasMoreElements(

JNIEnv* env, jobject this obj)
jclass this_class;
jfieldID id_index;
jfieldID id_count;
int index;
int count;
/* получить класс */
this class = (*env)->GetObjectClass(env, this obj);

/* получить идентификаторы полей */
id index (*env) ->GetFieldID (

id count
env, this_class, "index", "I");

(*env)->GetFieldID(
env, this class, "count", "I");

index = (*env)->GetintField(env, this obj, id index);
if (index == -1) /* в первьм раз */
{

count

index

else

startNameEnumeration(
env, this obj, this class);
О;

count = (*env)->GetintField(env, this obj, id count);
return index < count;

JNIEXPORT jobject JNICALL
Java_Win32RegKeyNameEnumeration_nextElement(

JNIEnv* env, jobject this_obj)

12.1 О. Практический пример обращения к реестру Windows

348 jclass this_class;
349 jfieldID id_index;
350 JfieldID id hkey;
351 jfieldID id count;
352 jfieldID id maxsize;
353
354 НКЕУ hkey;
355 int index;
356 int count;
357 DWORD maxsize;
358
359 char* cret;
360 jstring ret;
361
362 /* получить класс */
363 this class = (*env)->GetObjectClass(env, this obj);
364
365 /* получить идентификаторы полей */
366 id index (*env) ->GetFieldID (
367
368
369
370
371
372
373
374

id count
env, this_class,

(*env)->GetFieldID(
"index", "I") ;

env, this_class,
id hkey = (*env)->GetFieldID(

"count", "I") ;

id maxsize
env, this_class, "hkey", "I");

(*env)->GetFieldID(
env, this class, "maxsize", "I");

375 index = (*env)->GetintField(eпv, this obj, id index);
376 if (index == -1) /* first time */
377 {
378
379
380
381

count

index

382 else
383
384
385

count

startNameEnumeration(
env, this obj, this class);
О;

(*env)->GetintField(
env, this obj, id count);

386 if (index >= count) /* already at end */
387 {
388 (*env) ->ThrowNew (env, (*env) ->FindClass (
389 env, "Java/util/NoSuchElementException"),
390 "past end of enumeration");
391 return NULL;
392
393
394 maxsize = (*env)->GetintField(
395
396
397
398
399

hkey

cret

env, this_obj, id maxsize);
(НКЕУ) (*env) ->GetintField (

env, this obj, id hkey);
(char*)malloc(maxsize);

400 /* обнаружить следующее имя */
401 if (RegEnumValue(hkey, index, cret, &maxsize, NULL,
402 NULL, NULL, NULL)
403 != ERROR SUCCESS)

Глава 12 • Платформенно-ориентированные методы

404
405 (*env) ->ThrowNew (env, (*env) ->FindClass (env,
406 "Win32RegKeyException"),
407 "Enum value failed");
408 free(cret);
409 RegCloseKey(hkey);
410 (*env)->SetintField(
411 env, this obj, id_index, count);
412 return NULL;
413
414
415 ret = (*env)->NewStringUTF(env, cret);
416 free(cret);
417
418 /* инкрементировать индекс */
419 index++;
420 (*env)->SetintField(env, this obj, id index, index);
421
422 if (index == count) /* at end */
423 (
424 RegCloseKey(hkey);
425
426
427 return ret;
428

Листинг 12.23. Исходный код из файла win32reg/Win32RegKeyTest. java

1 import java.util.*;
2
3 /**
4 @version 1.03 2018-05-01
5 @author Сау Horstшann
6 */
7 puЫic class Win32RegKeyTest
8 (
9 puЫic static void main(String[] args)
10 {
11 var key = new Win32RegKey(
12 Win32RegKey.HKEY CURRENT USER,
13 "Software \ \JavaSoft \ \Java Runt ime Env i ronment" 1 ;
14
15 key.setValue("Default user", "Harry Hacker");
16 key.setValue("Lucky numЬer", new Integer(13));
17 key.setValue ("Small primes",
18 new byte[] (2, 3, 5, 7, 11 });
19
20 Enumeration<String> е = key.namesl);
21
22 while (e.hasMoreElements() 1
23 {
24 String name = e.nextElement();
25 System.out.print(name + "=");
26
27 Object value = key.getValue(name);

12.1 О. Практический пример обращения к реестру Windows

28
29 if (value instanceof byte[])
30 for (byte Ь : (byte []) value)
31 System.out.print ((Ь & OxFF) + " ");
32 else
33 System.out.print(value);
34
35 System.out.println();
36
37
38

Функции запроса типа данных

• jboolean IsAssignaЬleFrom(JNIEnv* env, jclass cll, jclass с12)

Возвращает значение JNI TRUE, если объекты одного класса lcll) могут быть присвоены
объектам другого класса 1;-12), а иначе - значение JNI_FALSE. Проверяет, являются ли
классы cll и cl2 одинаковыми, является ли класс cll производным от класса cl2, пред­
ставляет ли класс cl2 интерфейс, реализуемый классом cll или же каким-нибудь из его
суперклассов.

• jclass GetSuperclass (JNIEnv* env, jclass cl)

Возвращает суперкласс указанного класса. Если же cl представляет класс Object или ин­
терфейс, то возвращается значение NULL.

Вот и подошел к концу второй том настоящего и:1да11ия, :iавершающий дол­

гий экскурс в Java. В этом томе у вас была возможность о:шакомиться со многи­
ми расширенными средствами программирования па Java и дополнительными
прикладными интерфейсами API. В начале этого тома были рассмотрены такие
важные для всякого программирующего на Java темы, как потоки данных, XML,
сетевые соединения, базы данных и интернационали:iация. В :1авершающих этот

том главах обсуждались специальные вопросы бе:юпас11ости, модуляри:iации,

обработки аннотаций, расширенных средств для построения графики и при­

менения платформенно-ориентированных методов. Надеемся, что этот экскурс

в расширенные средства программирования на Java и прикладные интерфейсы
API оказался для вас занимательным и полезным, и теперь вы сможете приме­
нить приобретенные знания и навыки в своих проектах.

Предметный указатель
D

ОТО

задаваемые правила, 181
определения

сущностей, 184
типов документов, 179

связывание определений с ХМL­

документами, 180

н

НТТР-клиент

издатели тела запроса, применение, 276
обработчики тела ответа,

применение, 277
построение, 276
реализация, 276

J
JOBC

активизация трассировки, 300
драйверы

архивные JАR-файлы, 297
регистрация, 298
типы, 288

место в трехуровневой модели

приложений, 290
организация прикладного интерфейса

для доступа к базам данных, 288
основные цели, 289
пул соединений, организация, 351
синтаксис описания источников

данных, 297
спецификация, описание, 289

5
SQL

большие объекты, разновидности, 320
встроенные функции, назначение, 295
исключения

анализ, 306
типы, 306

метаданные

определение, 335
пшы, 335

назначение, 291

операторы

CREATE TABLE, применение, 295
OELETE, применение, 295
INSERT, применение, 295
SELECT, применение, 293
UPOATE, применение, 295
порядок выполнения, 302

переходы

назначение, 321
синтаксис, 321

подготовленные операторы,

назначение, 313
предупреждения, организация, 307
типы данных

основные, 295
расширенные, описание, 349

XML
вывод документов

в виде дерева ООМ, 215
средствами StAX, 217

допустимые типы атрибутов, 183
инструкции разметки и обработки, 168
каталоги и их файлы, применение, 181
определения ОТО

задаваемые правила, 181
способы предоставления, 180

поиск информации средствами
XPath, 196

практическое применение документов,

пример, 190
преобразование документов средствами

XSLT, 224
проверка достоверности документов

на соответствие определениям

ото, 184
особенности и средства, 179
по схеме типа XML Schema, 190

пространства имен

механизм, 202
обозначение,201

префикс, применение, 202
режим обработки, 203

синтаксический анализ

дерева ООМ, 171
документов, 169

Предметный указатель

смешанное содержимое, 167
структура документов, особенности, 166
сущности, определения и ссылки, 184
схемы документов типа XML Scl1ema

назначение, 187
типы элементов разметки,

разновидности, 188
сходство и отличие от HTML, 165
формирование документов

без пространств имен, 214
с пространствами имен, 214

•пение документов, 169
элементы разметки и атрибуты,

употребление, 167
XMLSchema

на:шачение и особенности, 179
схемы ХМL-документов, 187
типы элементов разметки, анонимное

определение, 189
XPath

назначение, 196
операции и выражения, описание, 197
описание у:ыов дерева DOM, 197
функции, описание, 197

XSLТ

назначение, 224
преобразование ХМL-документов, 224
спецификация, описание, 224
таблицы стилей

создание, 224
шаблоны преобразования, 225

z
ZIР-архивы

на:шачение, 99
чтение и запись данных, 99

А

Алгоритмы

безопасного хеширования

SHA, 108
SHA-1, 571

вычисления сверток сообщений,

описание, 572
интерполяции, применение, 745
кодирования Base64, назначение, 262
компоновки печатаемых страниц,

составление, 764
определения краев изображения, 747
регистрации, описание, 556
цифровой подписи, реализация, 571
шифрованин

AES, применение, 588
DES, применение, 588
DSA, применение, 575; 576
MD5, нрименение, 572
RSA, применение, 576; 597
SHA-1, применение, 572
открытым ключом, особенности, 596
симметричные, особенности, 596
тайнопись Юлия Цезаря,

описание, 528
А111ютации

анализ, средства, 479
в местах употребления типов,

11рименение, 471
в объявлениях, применение, 470
длн компиляции, на:шачение, 474
для управления ресурсами,

назначение, 475
документируемые, на:шачение, 477
инструментальные средства,

назначение, 460
контейнерные, 11рименение, 478
маркерные и однозначные, 469
мета-аннотации, применение, 476; 477
области применения, 459
обозначение в коле, 460
обработка

во время выполнения, 462
на уровне

байт-кола, 462; 483
исходного кода, 462; 479

обработчики событий, 461
объявление, 468
011релелен11е, 459
параметры получателей, ука:ы1ше, 473
повторяющиеся, особенности

обработки,478

процессоры, нрименение, 479
стандартные, ралювидности, 473
элементы

лопустимые тины, 467
объявление, 467
определение, 460

Аплеты

до11олнительные полномочия, 571
уровни защиты, 571

Аутентификация

механизмы, 555
модули правил решстрации, 556
пользователей, 555
проблема и разрешение, 580
ролевая, механизм, 561
субъект и пришпшалы, на:3Начение, 556

Б

Базы данных

Apache Derby, назначение, 296
выполнение запросов, 312
групповые обновления, 346
заполнение, 309
запуск сервера, порядок действий, 297
извлечение автоматически

генерируемых ключей, 324
как набор таблиц, 291
метаданные, применение, 336
множественные результаты, порядок

получения, 323
подготовка запросов, описание, 313
пул соединений, организация, 351
разновидности СУБД 296
результат запроса, получение, 292
скалярные функции, назначение, 322
соединение таблиц

внешнее, составление, 322
11 реи мущества, 292

составление запросов

в тексrовом виде на SQL, 293
по образцу, 293

схема и каталог, определение, 344
транзакции для сохранения

целоспюсти, 345
установление соединения, 299
хранимые процедуры, определение, 322
чтение и запись больших объектов, 320
экспериментальные, создание, 296

Безопасносгь

верификация байт-кода, 533
диспе1чер защиты

виды проверок, 536
назначение, 522
установка, 543

источники кода

кодовая база, 539
наборы сертификатов, 539

механизмы обеспечения, 521
полномочия

задание, 544
назначение, 539
пользоиательские, 548
порядок предположения, 548
проверка, 540

правила защиты

диспетчер, назначение, 542
назначение, 538
применение, 537; 542

Предметный указатель

Библиотеки

ASM, конструирование байт-кодов, 483
AWT, расширенные средсгва,
применение, 678

JCE, применение, 595
Swing

компоненты

JScrollPane, назначение
и применение, 603

JТаЬ\е, назначение и применение,

601;632
JTree, назначение и применение,

639; 671
расширенные средства,

применение, 601
Буферы данных

определение, 144
принцип действия, 144
свойства, 144

Ввод-вывод

байтов, 72

в

двоичных данных, 92
консольный, особенности, 412
разновидности, 76
текста, особенности, 82-85; 411

Верификаторы

виды проверок, 532
назначение, 532

Время

местное

обозначение, 358
общие операции, 365

отсчет

по временной шкале в Java, 354
способы и единицы измерения, 354
эпоха, исходная точка отсчета, 354

по Гринвичу, понятие, 367
поясное, обозначение, 366
средства форматирования,

разновидности, 370

д

Даты

корректоры

общедос1у11ные, 363
собственные, создание, 363

местные, обозначение, 358
средсгва форматирования,

разновидности, 370

Предметный указатель

Двухмерная графика
внутреннее представление

координат, 682
во;~можности рисования в Java 20
АР!, 679

вывод на нечать, порялок лействий, 753
дуги

построение, 684
расчет углов скашивания, 686

кривые второго и третьего порядка,

построение, 686
многоугольники, построение, 688
обводка

по умолчанию, 699
СТИЛИ ЛИНИЙ, 699

отсечение, назначение, 715
правила композиции, 718
преобразования

аффинные, определение, 712
координат, разновидности, 709
составные, порядок выполнения, 710

прозрачность, описание в альфа-

канале, 717
прямоугольники, построение, 684
участки, построение, операции, 698
фигуры

воспроизведение в конвейере

визуализации, 681
отсечения, назначение, 714
11орядок действий нри рисовании, 679
раскраска, разновидности, 707

Деревья

воспроизведение у:иов, 659
модели

назначение и построение, 641
110 умолчанию, ностроение, 641
специальные, применение, 672

назначение, 639
обзначение узлов, 647
обработка событий, 662
обход узлов, способы, 657
основные составляющие и их

обозначение, 639
поиск узлов по пути к дереву, 649
пользовательские объекты в у3лах, 641
простые, построение, 640
редактирование, способы, 649
редакторы ячеек, реализация, 652
сворчивание и ра3ворачивание, 645

Доступ

к FТР-файлу, защищенному паролем,
особенности, 262

к базам данных средствами SQL, 291
к веб-ресурсам, порядок действий, 260

з

Загру3чики классов

в качестве пространств имен,

применение, 526
иерархия,523

инверсия, явление, 525
контекста, назначение, 525
разновидности, 523
специальные, создание, 526

и

Идентификаторы ресурсов,

унифицированные

абсолютные и относительные, 259
иерархическая структура, 259
определение, 258
преобразование адресов, 260
про3рачные и непрозрачные, 259

Имена ресурсов, унифицированные,

определение, 258
И11тернационализа1\ия

идентификаторы валют, перечень, 391
кодирование символов, порядок, 411
комплекты ресурсов, назначение, 415
назначение, 377
окончания строк, интерпретация, 412
прикладной программы, пример, 419
региональные настройки, 378
сортировка, особенности, 400
файлы свойств, применение, 416
форматирование

даты и времени, 392
денежных сумм, 390
сообщений, 407
чисел, 384

Интерфейсы

AnnotatedE!ement, реализация
и методы, 462

Annotation, расширение и методы, 467
BufferedlmageOp, назначение

и реализация, 737; 745
CharSequence, реализация и методы, 60
Comparator, реализация, 400
CompilaЬ!e, назначение

и реализация, 442
Composite, назначение и реализация, 719
ContentHandler, назначение и методы,

204;209

DatabaseMetaData
методы, 326; 336
назначение, 336

Datalnput, реализация и методы, 93
DataOutput, реализация и методы, 92
DataSource, назначение, 350
DiagnosticListener, назначение
и реализация, 450

Doc, назначение и реализация, 774
Element, реализация и производные, 480
EntityResolver, реали:ыция и методы, 186
ErrorHandler, реализация и методы, 185
FileVisitor, назначение, реализаt\Ю!
и методы, 133

InvocaЬ\e, назначение и реализация, 440
LSSerializer, применение
и реализация, 215

MatchResu\t, назначение и методы, 157
Node

иерархия наследования

и реализация, 170
методы, 203

Paint, назначение и реализация, 707
Path, назначение и методы, 123
PrintaЬ\e, реализация и метод, 754
PrintRequestAttributeSet, назначение
и реализация, 755

Processor, реализация, 479
ResнltSet

методы, 303; 326
обработка результирующих

наборов, 303
ResнltSetMetaData, назначение, 336
Resнlt, реализация, 229
RowSet

методы, 334
назначение, 331
расширение, 331

SerializaЬ\e, назначение

и реализация, 103
Shape, назначение и реализация, 681
Source, реализа1111я, 228
Stream, реализация и методы, 23
TaЬ\eCel\Editor, назначение

и методы, 630
TaЬ\eCe\IRenderer, реализация

и метод, 626
Tempora!Adjнster, реализация, 363
Tool, назначение и методы, 448
TreeCe\IRenderer, реализация
и метод, 660

TreeMode!Listener, назначение
и методы, 671

Предметный указатель

TreeModel, назначение и реализация, 670
TreeSelectionListener, реали:ыция

и метод, 663
XMLReader, реализация, 229
аннотаций

назначение, 461
особенности,467

атрибутов нечати, назначение, 780
внода-вывода

иерархия,77

методы, 77
реализация, 77

деревьев, иерархия наследования, 641
наборов атрибутов, назначение, 781

к

Классы

AbstractClassEditor, назначение, 630
AbstractТaЬ\eModel, назначение

и методы, 606
AffineTransform, назначение
и методы, 712

AlphaComposite, назначение
и методы, 719

Area, назначение и методы, 699
Attribнtes, назначение и методы, 209
Banner, назначение и метолы, 764
BasicStroke

конструкторы и Мl"!тоды, 707
назначение, 699

Book, назначение и методы, 763
Buffered!mage, назначение и методы, 738
BufferedReader, на:шачение и методы, 86
Buffer, назначение, подклассы
и методы, 144

ByteBuffer, на:Jначение и методы, 137
ByteLookupTaЬ\e

конструкторы, 752
назначение, 746

Charset, назначение и метолы, 91
Cipher, назначение и методы, 588
ClassLoader, назначение и методы, 527
Collator, на:1начение и методы, 400
Collectors, назначение, методы
и коллекторы, 43

ColorConvertOp, назначение, 747
ColorModel, назначение и методы, 740
Color, назначение и методы, 740
ConvolveOp

конструкторы, 753
назначение, 747

Currency, на:шачение и методы, 390

Предметный унаэатель

DatalnputStream
методы, 80
назначение, 76

DataOutputStream, назначение, 76
DateTimeFormatter

методы, 372; 375
назначение, 370

DefaultCellEditor, назначение, 652
DefaultMutableTreeNode

методы, 647-649; 657
назначение, 641

DefaultТreeCel!Renderer, назначение

и методы, 659
DefaultTreeModel

методы, 651
назначение, 641; 651

DocumentВuilderFactory, методы, 177;
187;204

DocumentBuilder, методы, 177; 185
DriverManager

метод,302

назначение, 298
Duration

методы, 357
назначение, 355

FileChannel, назначение и методы, 146
FilelnputStream, назначение, 79
FileOutputStream, назначение, 79
Files

методы, 124; 130
назначение, 121

Graphics
методы, 681
назначение, 678

Graphics2D
методы, 679; 681; 699; 710
назначение, 679

HashPrintRequestAttributeSet,
назначение и методы, 755

HttpClient
назначение, 276
применение, 276

HttpResponse, назначение, 277
ImageIO, назначение и методы, 726-728
lnetAddress, назначение и методы, 241
lnputStream

методы, описание, 72
назначение, 72

lnputStreamReader, назначение, 83
Instant

методы, 357
назначение, 354

JТаЬ!е

методы, 605; 612
назначение, 602

JTree
конструкторы, 648
методы, 648; 651; 655; 669
назначение, 639

KeyPairGenerator, применение, 597
ListResourceBuпd \е, назначение

и производные, 417
Loca\Date

методы, 359
построение объектов, 359
применение, 360

Loca\DateTime, назначение, 365
Loca\e, назначение и методы, 381
Loca\Time

методы, 365
назначение, 364

LoginContext
методы, 560
назначение, 555

LookupOp, применение, 746
LookupTaЫe, назначение, 746
Matcher, назначение и методы, 157
MessageDigest, назначение и методы, 572
MessageFormat, назначение
и методы, 407

NumberFormat, назначение
и методы, 384

ObjecIOutpu tStream, назначение
и методы, 103

OffsetDateTime, назначение, 368
OutputStream

МеТО/1,Ы, 72
назначение, 72

OutputStreamWriter, назначение, 83
PageFormat, на:шачение и методы, 756
Path, назначение, 121
Pattern, назначение и методы, 24
Period

методы, 363
назначение,359

Permission, расширение и методы, 548
PrinterJob, назначение и методы, 754
PrintPane\, назначение и методы, 758
PrintServiceLookup, назначение
и методы, 774

PrintService, назначение и методы, 774
PrintWriter, на:шачение и методы, 83; 810
PushbacklnputStream, назначение, 80
RandomAccessFile, назначение
и методы, 95

Raster, назначение и методы, 739

Reader
метолы, 76
назначение, 72

RescaleOp
конструкторы, 752
назначение, 745

ResourceBundle
методы, 418
назначение и прои:шодные, 417

RoundRectangle2D, назначение
и применение, 684

RowFilter, назначение и методы, 616
SAXParserFactory, назначение

и метолы, 208
SAXParser, назначение и методы, 208
Scanner, на:шачение, 85
SecretKeyFactory, применение, 590
SecureRandom, назначение и методы, 590
SecurityManager, назначение и методы,

539
ServerSocket, назначение и методы, 247
ShortLookupTaЬle

назначение, 746
SimpleDoc, на:шачение
и конструктор, 774

Socket
методы, 240; 251
назначение, 239

SocketChannel
методы, 257
назначение, 251

SQLException, назначение и методы, 306
StandardCharsets, назначение
и константы, 91

Statement, назначение и методы, 302
StreamPrintServiceFactory,

назначение, 776
StreamPrintService, назначение, 776
TaЬleColumn, назначение и методы, 612
Tempora!Adjusters

методы, 364
назначение,363

Tl1readedEchoHandler, назначение
и методы, 247

TreePath, назначение и методы, 650
URI, назначение и методы, 259; 276
URL

методы, 258; 265
на:шачение, 258
применение, 276

URLClassLoader, экзем11ляры
и конструкторы, 524

Предметный указатель

URLConnection
методы, 261; 265
назначение, 258

Writer
методы, 76
назначение, 72

XMLinputFactory, назначение
и методы, 211

XMLStreamReader, назначение
и меюды, 213

XPathFactory, метолы, 200
XPath, методы, 200
ZiplnputStream, назначение и методы, 99
ZipOutputStream, назначение
и методы, 99

ZonedDateTime
методы, 367-369
назначение, 366
применение, 368

атрибутов печати, 780
даты и времени

взаимодействие с унаследованным

КОДОМ, 375
новые и старые, методы взаимного

преобразованин, 376
деревьев, иерархия наследования, 641
драйверов JDBC, регистрация, 298
загрузка

механизм, 522
разрешение класса, 522

комплектов ресурсов

определение, 417
реализации, 417

наборов атрибутов, назначение, 781
полномочий

домен защиты, 540
иерархия,539

011исание, 544
реализация, 548

потоков

ввода-вывода, иерархия, 75
шифрования, применение, 595

раскраски, назначение,707

рисования фигур, иерархия, 682
сериализация, особенности, 113
таблиц и столбцов, иерархия, 610

Кодировки символов

UTF-8
преимущество, 90
применение, 90

UTF-16
применение, 90
формы, 90

Предметный унаэатель

в Юникоде

кодовые единицы, назначение, 77
кодовые точки, назначение, 90

назначение, 82
отметка порядка следования байтов, 413
частичные, разновидности, 91

Коллекторы

нисходящие

назначение, 52
разновилности, 53

определение, 43
Компиляция кода Java

вызов компилятора

из приложений, потребность, 448
на компиляцию, простой способ, 448

выполнение заданий

на компиляцию, 449
диаiностические данные, фиксация, 450
динамическая, пример, 453
сохранение байт-кодов в памяти, 451
чтение исходных файлов

из памяти, 450
Комплекты ресурсов

иерархия,415

назначение, 415
обнаружение, 415

Компоненты Swing
JScrollPane, назначение
и применение, 603

JТаЬ\е, назначение и применение,

601;632
JTree, назначение

и применение, 639; 671
Конструирование байт-кодов

во время загрузки, 489
порядок действий, 484

Контекст

воспроизведения шрифтов,
применение, 715

графический, установка, 680
печатающего устройства,

графический, 756

м

Межсетевые адреса

и имена хостов, взаимное

преобразование, 241
но протоколу IPv6, 241

Методы

для потоков данных, отличия, 61
на Java, вызов из платформенно­
ориентированного кода, 826

платформенно-ориентированные
альтернативные варианты вызова, 812
лоступ

к полям экземпляра, 803
к статическим полям, 807

кодирование сигнатур, 808
объявление, 789
перегрузка,790

связывание с программой на Java, 794
строковые параметры, 796
числовые параметры, 794

сведения, назначение, 32
статические, вызов из платформенно­
ориентированного кода, 811

экземпляра, вызов платформенно­

ориентированного кода, 810
Модели

баз данных, реляционные, 292
выбора, назначение и применение, 613
деревьев

назначение, 641
построение, 641

доверительных отношений, 582
защиты, назначение, 538
приложений, 290

трехуровневые, особенности, 290
таблиц, назначение и реализация, 606

Модули

автоматические, определение

и правила, 508
агрегатные, назначение, 513
безымянные, назначение, 510
графы, узлы и ребра, 499
именование, 495
инструментальные средства, описание,

517-519
открытые, особенности, 507
параметры командной строки

для переноса кода, описание, 511
правила для со:мания файлов, 512

реализация и загрузка служб, 515
рефлексивный доступ, 505
составляющие, описание, 495
требования, 498
экспорт, 500
явные, определение, 510

Модульная система

назначение, 493
на платформе Java

назначение, 494
преимущества и недостатки, 495
уровни, назначение, 504

н

Наборы строк

кешируемые, назначение, 332
получение, 332
применение, 331

Накопление результатов

в отображениях, 47
в сгруктурах данных, 42

Необязательные значения

конвейеризация, 36
получение, 34
употребление, 35
формирование, 38

о

Обработка данных из формы на сервере,

11орядок действий, 268
О11ераторы

exports
назначение, 502
уточненные, применение, 514

opens
применение, 506
уточненные, применение, 514

provides, применение, 515
requires static, применение, 513
requires transitive, применение, 513
requires, назначение, 502
uses, применение, 515

Операции

оконечные, выполнение, 32
11реобразования, назначение, 28
сведения, назначение, 57
свертки

принцип действия, 747
формирование, 748
ядро, описание, 747

Отправка электронной почты

по протоколу SMTP, порядок
действий, 283

средствами JavaMail АР!, 284

п

Пакеты

com.sun.security.auth.module, назначение
и сосrав, 556

java.net, назначение, 241
java.nio, назначение, 137
java.secшity, назначение, 571
java.text, назначение, 384
java.time, назначение, 393

Предметный указате.nь

java.util.zip, назначение, 139
javax.imageio, назначение, 726
javax.sql.rowset, назначение, 331
javax.sql, назначение, 350
org.w3c.dom, назначение, 169
с интерфейсами аннотаций,

назначение, 473
уровень досrупа, 494

Передача данных на веб-сервер

команды и параметры, 268
порядок дейсrвий, 269

Печать

атрибуты

категории, 782
наборы, 781
разновиднопи, 779

двухмерной графики, порядок
дейсrвий, 753

документов, организация, 775
многопраничная, организация, 763
померживаемые типы данных, 773
полосовой способ, 756
принцип WYSIWIG, определение, 757
разновиднопи документов

определение, 773
указание, 773

формат бумаги в пунктах, 756
Платформенно-ориентированный код

доступ из методов

к массивам, порядок, 818
к полям экземпляра, 803
к сгатическим полям, 807

инициализация виртуальной машины

Java, 825
компилирование, 791
методы

кодирование сигна·rур, 808
на Java, порядок вызова, 826
объявление, 789
организация вызовов, 789
перегрузка, 790
связывание с программами

на Java, 794
патические, вызов, 811
строковые параметры, 796
числовые параметры, 794
экземпляра, вызов, 810

обработка ошибок и исключений, 820
определение, 787
организация взаимодейпвия

средпвами JNI, 788
порядок обработки, 792
правила написания, 789

Предметный указатель

прекращение работы виртуалыюй

машины Java, 826
соответствие типов

ланных, 794
массивоr1, 816

целесообразность применения, 788
Подписание

архивных JАR-файлов, 11ро11елура, 586
кода

на примере приложений Web
Start, 587

особенности, 585
Полузакрьпие

назначение, 250
на стороне клиента, механи:iм, 250

Последователыюсти

байтов, в потоках 1шола-вы1юда, 72; 90
данных, бесконечные, получение, 23
потоков ввода-вывода, со:1да11ие, 81
символов, кодировки, 90

Потоки

ввода

определение, 71
превращение в потоки чтения, 83
чтение с у11режлением, 80

ввода-вывода

буферизация данных, 80
разделение обязанностей, 79
сериализируемых объектов, 102
сочетание фильтроr1, 81
типы, описание, 75

вывода

определение, 71
превращение в 1ютоки :ш11иси, 83

данных

группирование и ра:целение

элементо11, 52
из11лечение, 30
каталогов, применение, 132
конвейер операций, органи:1ация, 21
назначение, 19
наконление резул1,татов, 42
невмешательство в операции, 24
объектов, 60
О'l'ЛИЧИЯ, 20
параллел1.ные, 11римt:!11ение, 65
преобра:ювание, 28
примитивных типов, 60
11ринци11 лействия, 20
рекоменлации 1ю обработке, 67
соединение, 31
создание, 22

сортировка, 31
упорядочение, 66

записи

автоматическая очистка, 84
вывод текста, 83

сканирования

применение, 85
создание, 85

чтения, ввод текста, 86
шифрования, применение, 595

Протоколы

нттr

запросы и ответы, 262
формат заголовка, 262

тсr, особенности, 240
UDP, особенности, 240

Протокольные сообщения, особенности

вывода, 413

р

Растровые изображения

выборочные значения цвета пикселя, 738
выбор средств чтения и записи, 727
вывод на печать, организация, 774
множество Мандельброта,

построение, 740
обработка, 726
размытие, 747
фильтрация, 744
формирование, 737
цветовые профили ПС, применение, 739
чтение и запись

нескольких изображений, 728
особенности, 726

Региональные настройки

на:тачение, 378
объекты, разновидности, 380
описание

дескрипторами, 380
отображаемыми именами, 382

по умолчанию, выбор, 381
правила составления, 379
составляющие, описание, 379

Регулярные выражения

назначение, 148
применение, 153
синтаксические конструкции, 149
совпадения

замена, 159
со многими строками, 157
с отдельными строками, 153

флаги сопоставления с шаблоном, 154

Р1_~стр Windows
организация дос1у11а, 832
релактор, приме11е11ие, 831

rе~~ультирующие наборы

анал1в, 302
обновляемые, обработка, 327
нрокручиваемые, обработка, 325

с

Свертки сообщений

ал1притмы вычисления, 572
011релелен11е, 571
свойсrва, 571

Серверы

обслуживание мно1·их клиентов, 247
нолключение через порт,

особенности, 237
реализа1щя, 244
IИПИЧНЫЙ цикл работы, 244

Сериализация

объектов

клонирование, 119
контроль версий, 116
механизм, 104
определение, 102
формат файлов, 011исание, 107; 112

ол1юэлементных м1южесгв, 115
нереходных полей объектов, 113
п11шзированных 11ере11ислений, 115

Сертификаты

1юдт1сание, 582
разработчиков программного

обеспечения, 585
сверка, 578
qюрмирование за11роса, 584

Сертиф1111ирующий ор1·ан

11м1пац11я функций, 583
созлание срелсгвами OpenSSL, 584
функции, 582

Си1паксические а1~али:ыторы

ХМL-локуменпщ раз11овидности, 169
лревовилные

DОМ-анали:1атор, нрименение, 169
особенносш, 169

определение, 169
!IОТОКОВЫе

SАХ-анали:1атор, нрименение, 204
StАХ-анали:1атор, 11рименение, 209
особенносrи, 204

Синтаксический анализ

URI, особеннос1и, 259
ХМL-документов, 169
смешанного солержимого, 182

Предметный указатель

Системы ZIР-файлов

назначение, 135
применение, 135

Службы

JAAS
модули регистра11ии, назначение, 561
назначение, 555
применение, 561

JNDI, назначение, 350
загрузка, порядок, 516
печати

обычные, применение, 774
потоковые, применение, 776
разновилнuсп1 локументов, перече11ь,

773
реализации, способы, 515

Со кеты

блокирующие, описание, 252
время ожидания, опрелеление, 240
закрытие, 244
определение, 239
открытие, 239
11рерываемые, шшсание, 251

Сортировка
ключи, назначение, 402
разложение на сосrавляющие,

режимы, 401
уровни избирательносrи, 400
формы нормализации в Юникоде, 401

Сценарии
вызов, 437
интерпретаторы

назначение, 436
наиболее употребительные, 436
получение, 436

компиляция, 442
переадресация ввода-вывода, 439
привя:1ки переменных, 438
создание, нример, 443
функции и метолы, вызов, 440

т

Таблицы

вывод на нечать, 604
особенности составления, 602
rюсrроение по молели, 606
нростые, сос1·авление, 602
специальные релакторы ячеек

реализация, 630
требования, 632

столбцы

воспроизвеление заголовков, 628

Предметный указатель

выбор, 613
досrуп, 610
изменение размеров, 603; 612
перетаскивание,603

порядок воспроизведения, 610
сокрытие и показ, 617
сортировка, 614

строки

выбор, 613
изменение размеров, 612
сортировка, 604; 614
фильтрация, 616

ячейки

воспроизведение, средства, 626
выбор, 613
редактирование, 603; 628

Типы данных

Optional
назначение, 34
преобразование в потоки данных, 39
применение, 34
рекомендации по применению, 37

SQL
основные, описание, 295
расширенные, описание, 349

Транзакции

автоматическая фиксация, 345
групповые обновления, 347
точки сохранения, назначение, 346
фиксация и откат, 345

у

Указатели ресурсов, унифицированные
определение, 258
применение, 263

Утилиты

jarsigner, назначение, 579
jar, применение, 503
javap, применение, 534
jdeprscan, назначение, 474
jdeps, применение, 517
jlink, применение, 518
jmod, применение, 519
keytool, назначение, 577
serialver, назначение, 116
telnet, применение, 236

ф

Файлы

атрибуты

основные, 129
получение, 129

блокировка

механизм, 146
особенности, 147
разделяемая и исключительная, 147

дополнительные параметры

для выполнения операций, 127
изображений

поддерживаемые форматы, 726
чтение и запись, 726

исходные, кодирование символов, 414
копирование, перемещение

и удаление, 127
модульные архивные формата JAR

назначение, 503
создание, 503

обход по каталогам, 130
отображаемые в памяти

каналы, получение, 137
применение, 137
режимы отображения, 137

правил защиты

места установки, 542
содержимое, 542
создание и распространение, 586

протокольные, кодировка

сообщений, 413
нут и

абсолютные и относительные, 121
разрешение, 122
составление, 122

свойств

назначение, 164
недостатки формата, 164
описание, 416

создание вместе с каталогами, 126
с произвольным досrупом

открытие, 95
указатель файла, 95
чтение и за11ись данных, 95

фильтрация по глобальному

шаблону, 132
чтение и запись данных, 124

Форматирование

даты и времени

взаимодействие с унаследованным

кодом, 376
средства, разновидности, 370
стили, 371; 392
элементы шаблонов, 372

сообщений

с учетом региональных настроек, 408
числа и даты, 407

текста с учето:v~ региональных настроек,

стили, 393
Форматы

SVG, особенности, 222
XML

назначение, 164
преимущества, 165

выбора, назначе11ие, 410
с обратным порялком следования

байтов, 93
с нрямым порялком следования

байтов, 93
файлов для сериализании объектов, 107

Функ11ии JNI
альтернативные варианты вызова

методов, 812
вызова

конструкторов на Java, 812
методов на Java, 810

лля генерирования исключений, 820
мя манипулирования символьными

строками, 796
доступа

к массивам на Java, 818
к полям, 803

особенности вы:юва, 797

ц

Цветовые модели

ARGB, назначение, 721
RGB, назначение, 717

Предметный указатель

SRGB, назначение, 739
назначение, 739
получение, 739

Цифровые подписи
алгоритмы, 571
верификация, 579
принцип действия, 575

ш

Шифрование

генерирование ключей, 589
открытый и секретный ключи,

назначение, 575
открытым ключом, процедура, 596
по алгоритму DSA, процесс, 576
применение, 587
режимы свертывания

и развертывания, 588
схемы заполнения, назначение, 589
хранилища ключей, управление, 577

я

Языки сценариев

назначение, 436
преимущества и недостатки, 436

JAVA
БИБЛИОТЕКА ПРОФЕССИОНАЛА
том 1. основы
ОДИННАДЦАТОЕ ИЗДАНИЕ

Кей Хорстманн Это первый том обнов,1енного,

Jлvл
JlЧ1 f С v ti JlA

Том 1. Основы
ОДИННАДЦАТОЕ ИЗДАНИЕ

www.williamspuЫishing.com

ISBN 978-5-907114-79-1

одиннадцатого издания

исчерпывающего справочного

руководства по программированию

на Java с учетом все.\ нововведений
в версиях Java SE 9. 10 и 11. В этом
томе подробно рассматриваются

основы программирования на

Java, в том числе основные типы
и фундаментальные структуры
данных. принципы объектно­
ориенп1рованного программирования

и его реализация в Java, обобщения.
коллекции, интерфейсы. лямбда­
выражения и функциональное
программирование, построение

графических поль'Jоватеньских
интерфейсов средствам и
библиотеки S\\ing. обработка
событий и искпючений.
паралленьное программирование.

а также экспериментальное

программирование с помощью

ути,1иты JShell. Из,1агаемый материа.1
дополняется многочисленными

примерами кода. которые 11е только

иллюстрируют основные понятия.

но и демонстрируют практические

приемы программирова11ия на Java.
Книга рассчитана на опытных
программ истов. собирающихся

перейти к версии Java SE 9. 10 ишt 11.
Она пос;~ужит исчерпывающим

руководством д.1я решения

практических задач прикладного

программирования на Java.

в продаже

JAVA
ПОЛНОЕ РУКОВОДСТВО
ДЕСЯТОЕ ИЗДАНИЕ

Герберт Шипдт

Java
Полное руководство
Десятое издание
Исчерпывающее описание
языка программирования Java

Герберт Шилдт 111

www.di а lekti ka .com

ISBN 978-5-6040043-6-4

Эта книга является
исчерnывающим справочным

nособием rю Я'JЫКУ
nрограммирования Java,
обновленным с учетом
nоследней вереи и Java SE 9.
В удобной и легко доступной
для юу•1ения форме в ней
nодробно рассматриваются все
языковые средства Java, в том
числе синтаксис, ключевые

слова, операuии, управляющие

и условные операторы, элементы

объектно-ориентированного
nрограммирования (классы ,
объекты, методы, обобщения,
интерфейсы, пакеты,
коллекции), аплеты и сервлеты,
библиотеки классов наряду
с такими нововведениями,

как модули и утилита JShell.
Основные принципы и
методики программирования

на Java 11редставлены на
многочисленных и наглядных

примерах наnисания nрограмм .

Книга рассчитана на широкий
круг читателей. интересующихся
программированием на Java.

в продаже

JAVA
ЭФФЕКТИВНОЕ ПРОГРАММИРОВАНИЕ
ТРЕТЬЕ ИЗДАНИЕ

ДжошуаБлох

Java
эффективное

программирование
Третье издание

www.d i а lekti ka. com

ISBN 978-5-6041394-4-8

Говоря о третьем издании
книги Java: эффективное
програм.wирование, достаточно

упомянуть ее автора, Джошуа
Блоха, и это будет наилучшей
ее рекомендацией.

Книга представляет собой
овеществленный опыт ее автора
как программиста на Java.
Новые возможности этого языка
программирования, появившиеся

в версиях, вышедших со

времени предыдущего издания

книги, по сути, знаменуют

появление совершенно новых

концепций, так что для их

эффективного использования
недостаточно просто узнать

об их существовании и
программировать на современном

Java с использованием
старых парадигм.

К программированию в полной
мере относится фраза Евклида
о том, что в геометрии нет

царских путей. Но пройти
путь изучения и освоения

языка программирования вам

может помочь проводник,

показывающий наиболее
интересные места и предупрежда­

ющий о ямах и ухабах. Таким
проводником может послужить

книга Джошуа Блоха. С ней вы
не заблудитесь и не забредете
в дебри, из которых будете
долго и трудно выбираться
с помощью отладчика.

в продаже

Исчерпывающее руководство по разработке пользовательских
интерфейсов и корпоративных приложений на Java!
Полностью обновлено по версии Java 11

Это одиннадцатое полностью обновленное по версии Java 11 издание представляет собой
солидное справочное руководство, рассчитанное на опытных программистов, стремя­

щихся писать надежный код на Java для реальных приложений . Во втором томе настоящего

издания освещаются расширенные средства для построения графических пользовательских

интерфейсов , работа в сети , вопросы программирования корпоративных приложений и безопасно-

сти, а также новая эффективная модульная система на платформе Java.
В этом надежном и полезном практическом руководстве описаны расширенные языковые средства, библиоте­
ки и прикладные интерфейсы, проиллюстрированные тщательно подобранными и проверенными примерами ,

отражающими нормы передовой практики и современный стиль программирования на Java. Приведенные
примеры просты для понимания, практически полезны и служат неплохой отправной точкой для написания

собственного кода .

ОСНОВНЫЕ ТЕМЫ КНИГИ

8 Наилучшие методики , идиомы и нормы передовой практики для написания высококачественного и надеж­
ного кода на Java.

8 Выгодное применение прикладных интерфейсов современной системы ввода-вывода, сериализации объек­
тов и регулярных выражений.

8 Эффективное подключение программ на Java к сетевым службам, реализация клиентов и серверов, а также
сбор веб-данных.

8 Компиляция и выполнение кода через прикладные интерфейсы для сценариев на других языках и компи­
лятора Java, а также обработка аннотаций.

8 ПодРобное изложение модульной системы на платформе Java и перенос кода для работы с ней.
8 Эффективное повышение безопасности с помощью современных средств, наиболее ценных для прикладно­

го программирования .

8 Программирование развитых пользовательских интерфейсов клиентских приложений и формирование изо­
бражений на сервере.

8 Синтаксический анализ, проверка достоверности данных, формирование ХМL-документов, применение
XPath, XSL и многих дРуrих средств обработки данных формата ХМL в Java.

8 Программирование баз данных средствами JDBC.
8 Интернационализация прикладных программ с локализованными датами , отметками времени , числами,

текстом и пользовательскими интерфейсами .

8 Эффективное использование кода, написанного на дРуrих языках , с помощью платформенно-ориентиро-
ванных методов из прикладного интерфейса JNI.

ПодРобное рассмотрение основных языковых средств Java, включая объекты, классы, наследование, интерфей­
сы, события, исключения , графику, основные компоненты библиотек Swing и АWГ, обобщения, многопоточную
обработку и отладку программ , предлагается в первом томе настоящего издания.

КЕЙ ХОРСТМАНН - профессор факультета вычислительной техники в Университете Сан-Хосе. Имеет зва­
ние "Чемпион по Java" и является частым докладчиком на многих отраслевых конференциях. Автор обоих
томов настоящего издания, а также книг Sca/afor lmpatient, Second Edilion (издательство Addison-Wesley, 1217 г.),
Саге Java 9 foithe lmpatient, Second Edition (Addison-Wesley, 2018 г.; в русском переводе книга вышла под названием
Java SE 9. Базовый курс в издательстве "Диалектика", 2018 г.) . В целом он написал более десятка книг для профес­
сиональных программистов и студентов, изучающих вычислительную технику.

Катеrория: программирование

Предмет рассмотрения: язык Java, версии 9-11
Уровень: промежуточный/продвинутый

www.dialektika.com
0 Pearson

www.informit.com/java
horstmann.com

ISBN 978-5-907144-38-5

