P

¢

Kotlin Language Documentation

Table of Contents

Getting Started

Basic Syntax

Idioms

Coding Conventions

Basics

Basic Types

Packages

Control Flow

Returns and Jumps

Classes and Objects

Classes and Inheritance

Properties and Fields

Traits

Visibility Modifiers

Extensions

Data Classes

Generics

Generic functions

Generic constraints

Nested Classes

Enum Classes

Object Expressions and Declarations

Delegation

Delegated Properties

Functions and Lambdas

Functions

Higher-Order Functions and Lambdas

Other

Multi-Declarations

10
15

16
16
22
23
27

29
29

35
38
41
44
47
48
52
53
55
56
57
59
60

64
64
70

75
75

Ranges

77

Type Checks and Casts

This Expression

82

84

85

Equality

Operator overloading

86

Null Safety

89

Exceptions

92

Annotations

94

Reflection

96

Reference

Interop

Java Interop

Tools

Using Maven

Using Ant
Using Griffon

Using Gradle

FAQ

FAQ

Comparison to Java

Comparison to Scala

104

106
106

115
115

119
122
123

126
126
129
130

Getting Started. Basic Syntax Kotlin Language (0.7.270)

Getting Started

Basic Syntax

Defining packages

Package specification should be at the top of the source file:

package my.demo
import java.util.*

1 ooc

It is not required to match directories and packages: source files can be placed arbitrarily in the file system.

See Packages.

Defining functions

Function having two Int parameters with Int return type:

fun sum(a: Int, b: Int): Int {
return a + b

Function with an expression body and inferred return type:
fun sum(a: Int, b: Int) = a + b
Function visible from outside of a module should have return type explicitly specified:

public fun sum(a: Int, b: Int): Int = a + b

Function returning no meaningful value:

fun printSum(a: Int, b: Int): Unit {
print(a + b)
}

Getting Started. Basic Syntax Kotlin Language (0.7.270)

Unit return type can be omitted:

public fun printSum(a: Int, b: Int) {
print(a + b)
}

See Functions.

Defining local variables

Assign-once (read-only) local variable:

val a: Int = 1

val b =1 // "Int" type is inferred

val c: Int // Type required when no initializer is provided
c =1 // definite assignment

Mutable variable:

var x = 5 // "Int’ type is inferred
X +=1

See also Properties And Fields.

Using string templates

fun main(args: Array<String>) {
if (args.size == @) return

print("First argument: ${args[0]}")
}

See String templates.

Using conditional expressions

fun max(a: Int, b: Int): Int {
if (a > b)
return a
else
return b

Using if as an expression:

fun max(a: Int, b: Int) = if (a > b) a else b

Getting Started. Basic Syntax Kotlin Language (0.7.270)

See if-expressions.

Using nullable values and checking for null

A reference must be explicitly marked as nullable when null value is possible.

Return null if str does not hold an integer:

fun parseInt(str: String): Int? {
7l ooc

Use a function returning nullable value:

fun main(args: Array<String>) {
if (args.size < 2) {
print("Two integers expected")

return
}
val x = parselnt(args[0])
val y = parselnt(args[1])

// Using "x * y° yields error because they may hold nulls.

if (x != null & y != null) {
// x and y are automatically cast to non-nullable after null check
print(x * y)

}

or

/] ...

if (x == null) {
print("Wrong number format in '${args[@]}'")
return

}

if (y == null) {
print("Wrong number format in '${args[1]}'")
return

// x and y are automatically cast to non-nullable after null check
print(x * y)

See Null-safety.

Using type checks and automatic casts

Getting Started. Basic Syntax Kotlin Language (0.7.270)

The is operator checks if an expression is an instance of a type. If an immutable local variable or property is
checked for a specific type, there’s no need to cast it explicitly:

fun getStringlLength(obj: Any): Int? {
if (obj is String) {
// ~obj is automatically cast to “String ™ in this branch
return obj.length

}

// “obj is still of type “Any outside of the type-checked branch
return null

or

fun getStringlLength(obj: Any): Int? {
if (obj !is String)
return null

// “obj" is automatically cast to "String in this branch
return obj.length
}

or even

fun getStringlLength(obj: Any): Int? {
// ~obj 1is automatically cast to "String on the right-hand side of "&&
if (obj is String && obj.length > 0)
return obj.length

return null

See Classes and Type casts.

Using a for loop

fun main(args: Array<String>) {
for (arg in args)
print(arg)

or

for (i in args.indices)
print(args[i])

See for loop.

Getting Started. Basic Syntax

Kotlin Language (0.7.270)

Using a while loop

fun main(args: Array<String>) {
var i = 0
while (i < args.size)
print(args[i++])

See while loop.
Using when expression

fun cases(obj: Any) {
when (obj) {

1 -> print("One")
"Hello" -> print("Greeting")
is Long -> print("Long")
lis String -> print("Not a string")
else -> print("Unknown™)
}
}

See when expression.

Using ranges

Check if a number is within a range using in operator:

if (x in 1..y-1)
print("0OK")

Check if a number is out of range:

if (x !in @..array.lastIndex)
print("out")

Iterating over a range:

for (x in 1..5)
print(x)

See Ranges.

Using collections

Iterating over a collection:

Getting Started. Basic Syntax Kotlin Language (0.7.270)

for (name in names)
println(name)

Checking if a collection contains an object using in operator:

if (text in names) // names.contains(text) is called
print("Yes")

Using function literals to filter and map collections:

names filter { it.startsWith("A") } sortBy { it } map { it.toUpperCase() } forEach {
print(it) }

See Higher-order functions and Function literals.

Getting Started. Idioms

Kotlin Language (0.7.270)

Idioms

A collection of random and frequently used idioms in Kotlin. If you have a favorite idiom, contribute it. Do a pull

request.

Creating DTO’s (POJO’s/POCO’s)

data class Customer(val name: String, val email: String)

provides a Customer class with the following functionality:

getters (and setters in case of var’s) for all properties
— equals()
— hashCode()

— toString()

— copy()

— componentl(), component2(), ..., for all properties (see Data classes)

Declaring a final local variable

val a = foo()

Default values for function parameters

fun foo(a: Int = @, b: String = "") { ... }

Filtering a list

val positives = list.filter { x -> x > @ }

Or alternatively, even shorter:

val positives = list.filter { it > © }

String Interpolation

println("Name $name")

Instance Checks

10

Getting Started. Idioms Kotlin Language (0.7.270)

when (x) {
is Foo -> ...
is Bar -> ...
else -> .

Traversing a map/list of pairs

for ((k, v) in map) {
println("$k -> $v")

k , v can be called anything.

Using ranges

for (i in 1..100) { ... }
for (x in 2..10) { ... }
Read-only list

val list = listof("a", "b", "c")

Read-only map

val map = mapOf("a" to 1, "b" to 2, "c" to 3)

Accessing a map

println(map["key"])

map["key"] = value

Lazy property

val p: String by Delegates.lazy {
// compute the string

Extension Functions

11

Getting Started. Idioms Kotlin Language (0.7.270)

fun String.spaceToCamelCase() { ... }

"Convert this to camelcase".spaceToCamelCase()

Creating a singleton

object Resource {
val name = "Name"

If not null shorthand

val files = File("Test").listFiles()

println(files?.size)

If not null and else shorthand

val files = File("Test").listFiles()

println(files?.size ?: "empty")

Executing a statement if null

val data = ...
val email = data["email"] ?: throw IllegalStateException("Email is missing!")

Execute if not null

val data = ...

datar?.let {
. // execute this block if not null

Return on when statement

12

Getting Started. Idioms Kotlin Language (0.7.270)

fun transform(color: String): Int {
return when (color) {

"Red" -> 0
"Green" -> 1
"Blue" -> 2

else -> throw IllegalArgumentException("Invalid color param value")

Return on try catch block

fun test() {
val result = try {
count()
} catch (e: ArithmeticException) {
throw IllegalStateException(e)

// Working with result

Return on if statement

fun foo(param: Int) {
val result = if (param == 1) {
"one"
} else if (param == 2) {
"two"
} else {

"three"

Single-expression functions

fun theAnswer() = 42

This is equivalent to

fun theAnswer(): Int {
return 42

This can be effectively combined with other idioms, leading to shorter code. E.g. with the when-expression:

13

Getting Started. Idioms Kotlin Language (0.7.270)

fun transform(color: String): Int = when (color) {

"Red" -> 0
"Green" -> 1
"Blue" -> 2

else -> throw IllegalArgumentException("Invalid color param value™)

14

Getting Started. Coding Conventions Kotlin Language (0.7.270)

Coding Conventions

This page contains the current coding style for the Kotlin language.

Naming Style
If in doubt default to the Java Coding Conventions such as:

— use of camelCase for names (and avoid underscore in names)
— types start with upper case

— methods and properties start with lower case

— use 4 space indentation

— public functions should have documentation such that it appears in Kotlin Doc

Kotlin does not have fields as a primary concept in the language — it only has properties. Avoid the use of prefixes
on properties, such as _ or m_ or other kinds of notation. If you need access to a backing field of a property, use the
$ prefix: $foo to refer to a field behind property foo ; never create a private property and call it _foo

Colon

There is a space before colon where colon separates type and supertype and there’s no space where colon
separates instance and type:

trait Foo<out T : Any> : Bar {
fun foo(a: Int): T

Unit

If a function returns Unit, the return type should be omitted:

fun foo() { // ": Unit" is omitted here

15

Basics. Basic Types Kotlin Language (0.7.270)

Basics

Basic Types

In Kotlin, everything is an object in the sense that we can call member functions and properties on any variable.
Some types are built-in, because their implementation is optimized, but to the user they look like ordinary classes.
In this section we describe most of these types: numbers, characters, booleans and arrays.

Numbers

Kotlin handles numbers in a way close to Java, but not exactly the same. For example, there are no implicit
widening conversions for numbers, and literals are slightly different in some cases.

Kotlin provides the following built-in types representing numbers (this is close to Java):

Type Bitwidth

Double 64
Float 32
Long 64
Int 32
Short 16
Byte 8

Note that characters are not numbers in Kotlin.

Literal Constants

There are the following kinds of literal constants for integral values:

— Decimals: 123

— Longs are tagged by a capital L : 123L

— Hexadecimals: 0xoF

— Binaries: 0b00001011
NOTE: Octal literals are not supported.
Kotlin also supports a conventional notation for floating-point numbers:

— Doubles by default: 123.5, 123.5e10

— Floats are tagged by f or F: 123.5f

16

Basics. Basic Types Kotlin Language (0.7.270)

Representation

On the Java platform, numbers are physically stored as JVM primitive types, unless we need a nullable number
reference (e.g. Int?) or generics are involved. In the latter cases numbers are boxed.

Note that boxing of numbers does not preserve identity:

val a: Int = 10000

print(a identityEquals a) // Prints 'true’

val boxedA: Int? = a

val anotherBoxedA: Int? = a

print(boxedA identityEquals anotherBoxedA) // !!!Prints 'false'!!!

On the other hand, it preserves equality:

val a: Int = 10000

print(a == a) // Prints 'true'

val boxedA: Int? = a

val anotherBoxedA: Int? = a

print(boxedA == anotherBoxedA) // Prints 'true'

Explicit Conversions
Due to different representations, smaller types are not subtypes of bigger ones. If they were, we would have

troubles of the following sort

// Hypothetical code, does not actually compile:
val a: Int? = 1 // A boxed Int (java.lang.Integer)
val b: Long? = a // implicit conversion yields a boxed Long (java.lang.Long)
print(a == b) // Surprise! This prints "false" as Long's equals() check for other part
to be Long as well
So not only identity, but even equality would have been lost silently all over the place.
As a consequence, smaller types are NOT implicitly converted to bigger types. This means that we cannot assign a

value of type Byte toan Int variable without an explicit conversion

val b: Byte = 1 // OK, literals are checked statically
val i: Int = b // ERROR

We can use explicit conversions to widen numbers

val i: Int = b.toInt() // OK: explicitly widened

Every number type supports the following conversions:

— toByte(): Byte
— toShort(): Short

— toInt(): Int

17

Basics. Basic Types Kotlin Language (0.7.270)

— tolLong(): Long

— toFloat(): Float
— toDouble(): Double
— toChar(): Char

Absence of implicit conversions is rarely noticeable because we can use literals almost freely cause the type is
inferred from the context, and arithmetical operations are overloaded for appropriate conversions, for example

val 1 = 1.toLong() + 3 // Long + Int => Long

Operations

Kotlin supports the standard set of arithmetical operations over numbers, which are declared as members of
appropriate classes (but the compiler optimizes the calls down to the corresponding instructions). See Operator

overloading.

As of bitwise operations, there’re no special characters for them, but just named functions that can be called in infix
form, for example:

val x = (1 shl 2) and Ox000FF000

Here is the complete list of bitwise operations (available for Int and Long only):

— shl(bits) — signed shift left (Java’s <<)

— shr(bits) - signed shift right (Java’s >>)

— ushr(bits) —unsigned shift right (Java’s >>>)
— and(bits) - bitwise and

— or(bits) - bitwise or

— xor(bits) - bitwise xor

— inv() - bitwise inversion

Characters

Characters are represented by the type Char . They can not be treated directly as numbers

fun check(c: Char) {
if (c == 1) { // ERROR: incompatible types
7/ oo

Character literals go in single quotes: '1', '\n', '\uFFee@' . We can explicitly convert a character to an Int
number

18

Basics. Basic Types Kotlin Language (0.7.270)

fun decimalDigitValue(c: Char): Int {
if (c !in '0'..'9")
throw IllegalArgumentException("Out of range")
return c.toInt() - '@'.toInt() // Explicit conversions to numbers

}

Like numbers, characters are boxed when a nullable reference is needed. Identity is not preserved by the boxing
operation.

Booleans

The type Boolean represents booleans, and has two values: true and false.
Booleans are boxed if a nullable reference is needed.

Built-in operations on booleans include

— || —lazy disjunction

— && —lazy conjunction

Arrays

Arrays in Kotlin are represented by the Array class, that has get and set functions (that turninto [] by
operator overloading conventions), and size , along with a few other useful member functions:

class Array<T>(val size: Int, init: (Int) -> T) {
fun get(index: Int): T
fun set(index: Int, value: T): Unit

fun iterator(): Iterator<T>

val indices: IntRange

To create an array we can call its constructor providing the array size and a function that knows how to initialize
elements of the array

val asc = Array<Int>(5, {i -> i * i}) // Creates an array [0, 1, 4, 9, 16]
Or, alternatively, we can use a library function array() and pass the item values to it, so that array(1, 2, 3)
creates an array [1, 2, 3].

As we said above, the [] operation stands for calls to member functions get() and set() . When compiling to
JVM byte codes, the compiler optimizes access to arrays so that there’s no overhead introduced, and all operations
work exactly like in Java

19

Basics. Basic Types Kotlin Language (0.7.270)

val array = array(1, 2, 3, 4)
array[x] = array[x] * 2 // no actual calls to get() and set() generated
for (x in array) // no iterator created

print(x)

Even when we navigate with an index, it does not introduce any overhead

for (i in array.indices) // no iterator created
array[i] += 2

Finally, in-checks have no overhead either

if (i in array.indices) { // same as (i >= @ & & i < array.size)
print(array[i])
}

Note: arrays are invariant. For the best performance on the JVM use specialized array classes.

Strings

Strings are represented by the type String . Strings are immutable. Elements of a string are characters that can
be accessed by the indexing operation: s[i] . A string can be iterated over with a for-loop:

for (c in str) {
println(c)
}

String Literals

Kotlin has two types of string literals: escaped strings that may have escaped characters in them and raw strings
that can contain newlines and arbitrary text. An escaped string is very much like a Java string:

val s = "Hello, world!\n"

Escaping is done in the conventional way, with a backslash.

A raw string is delimited by a triple quote (), contains no escaping and can contain newlines and any other

characters:

val text =
for (c in "foo")
print(c)

Templates

20

Basics. Basic Types Kotlin Language (0.7.270)

Strings may contain template expressions, i.e. pieces of code that are evaluated and whose results are
concatenated into the string. A template expression starts with a dollar sign ($) and consists of either a simple
name:

val i 10
val s "i = $i" // evaluates to "i = 10"

or an arbitrary expression in curly braces:

val s = "abc
val str = "$s.length is ${s.length}" // evaluates to "abc.length is 3"

21

Basics. Packages Kotlin Language (0.7.270)

Packages

A source file may start with a package declaration:

package foo.bar
fun baz() {}
class Goo {}

1 ooc

All the contents (such as classes and functions) of the source file are contained by the package declared. So, in the
example above, the full name of baz() is foo.bar.baz , and the full name of Goo is foo.bar.Goo .

If the package is not specified, the contents of such a file belong to “default” package that has no name.

Imports

Apart from the default imports declared by the module, each file may contain its own import directives. Syntax for
imports is described in the grammar.

We can import either a single name, e.g.
import foo.Bar // Bar is now accessible without qualification
or all the accessible contents of a scope (package, class, object etc):
import foo.* // everything in 'foo' becomes accessible
If there is a name clash, we can disambiguate by using as keyword to locally rename the clashing entity:

import foo.Bar // Bar is accessible
import bar.Bar as bBar // bBar stands for 'bar.Bar'

Visibility and Package Nesting

If a top-level declaration is marked private, it is private to the package it’s declared in (see Visibility Modifiers).
Since packages really nest in Kotlin, i.e. package foo.bar is considered a member of foo , if something is

private in a package, it is visible to all its subpackages.

Note that members of outer packages are not imported by default, i.e. in a file in package foo.bar we can’t
access members of foo without importing them.

22

Basics. Control Flow Kotlin Language (0.7.270)

Control Flow

If Expression

In Kotlin, if is an expression, i.e. it returns a value. Therefore there is no ternary operator (condition ? then : else),
because ordinary if works fine in this role.

// Traditional usage
var max = a
if (a < b)

max = b

// With else
var max: Int

if (a > b)
max = a
else
max = b

// As expression
val max = if (a > b) a else b

if branches can be blocks, and the last expression is the value of a block:

val max = if (a > b) {
print("Choose a")
a

}

else {
print("Choose b")
b

When if has only one branch, or one of its branches results in Unit , its type is Unit .

See the grammar for if.

When Expression

when replaces the switch operator of C-like languages. In the simplest form it looks like this

when (x) {
1 -> print("x == 1")
2 -> print("x == 2")

else -> { // Note the block
print("x is neither 1 nor 2")

}
}

23

Basics. Control Flow Kotlin Language (0.7.270)

when matches its argument against all branches consequently until some branch condition is satisfied. when is an
expression and results in the satisfied branch’s right hand side. If some of its branches return result in a value of
type Unit , the whole expression has type Unit . Note that the else branch is mandatory, unless the compiler
can prove that all possible cases are covered with branch conditions.

If many cases should be handled in the same way, the branch conditions may be combined with a comma

when (x) {
0, 1 -> print("x == 0 or x == 1")
else -> print("otherwise™)

}

We can use arbitrary expressions (not only constants) as branch conditions

when (x) {
parseInt(s) -> print("s encodes x")
else -> print("s does not encode x")

}

We can also check a value for being inor !in a range

when (x) {
in 1..10 -> print("x is in the range")
'in 10..20 -> print("x is outside the range")
else -> print("none of the above")

}

when can also be used as a replacement for an if-else-if chain. If no argument is supplied, the branch conditions
are simply boolean expressions, and a branch is executed when its condition is true:

when {
X.1is0dd() -> print("x is odd")
x.isEven() -> print("x is even"
else -> print("x is funny")

}

Continue inside when

Note: There are currently issues with this

Inside when expressions, continue jumps to the next branch condition, if any:

24

http://youtrack.jetbrains.com/issue/KT-771

Basics. Control Flow Kotlin Language (0.7.270)

when (x) {
in 1..100 ->
if (x.1is0dd())
continue // Jump to the next branch, i.e. '3, 101 -> ...'
else
print("Even between 1 and 100")
3, 101 -> print("3 or 101")
1000 -> continue // Error: continue is not allowed in the last branch

This mechanism replaces the concept of guards available in other languages. l.e. in Scala we have guard if
expressions in match (that corresponds to when):

// Scala

term match {
case Fun(x, y) if x ==y -> print(x)
case _ -> print("Nope!")

}

This can be rewritten in Kotlin as follows:

when (term) {
is Fun -> if (term.v != term.body) continue else print(term.x)
else -> print("Nope!")

}

See Returns and jumps for more information about continue. See the grammar for when.

For Loops

for loop iterates through anything that provides an iterator. The syntax is as follows:

for (item in collection)
print(item)

The body can be a block.

for (item: Int in ints) {
1l ooc

As mentioned before, for iterates through anything that provides an iterator, i.e.

— has an instance- or extension-function iterator() , whose return type
— has an instance- or extension-function next() , and

— has an instance- or extension-function hasNext() thatreturns Boolean .

If you want to iterate through an array or a list with an index, you can do it this way:

25

Basics. Control Flow Kotlin Language (0.7.270)

for (i in array.indices)
print(array[i])

Note that this “iteration through a range” is compiled down to optimal implementation with no extra objects created.

See the grammar for for.

While Loops

while and do..while work as usual

while (x > 9) {
X__

do {
val y = retrieveData()
} while (y != null) // y is visible here!

See the grammar for while.

Break and continue in loops

Kotlin supports traditional break and continue operators in loops. See Returns and jumps.

26

Basics. Returns and Jumps Kotlin Language (0.7.270)

Returns and Jumps
Kotlin has three structural jump operators

— return. By default returns from the nearest enclosing function.
— break. Terminates the nearest enclosing loop.

— continue. Proceeds to the next step of the nearest enclosing loop or to the next branch in the nearest

enclosing when-expression

Break and Continue Labels

Any expression in Kotlin may be marked with a label. Labels have the form of the @ sign followed by an identifier
for example: @abc , @fooBar are valid labels (see the grammar). To label an expression, we just put a label in
front of it

@loop for (i in 1..100) {
7l ooc

Now, we can qualify a break or a continue with a label:

@loop for (i in 1..100) {
for (j in 1..100) {
if (...)
break@loop

A break qualified with a label jumps to the execution point right after the loop marked with that label. A continue
proceeds to the next iteration of that loop.

Return at Labels

With function literals, local functions and object expression, functions can be nested in Kotlin. Qualified returns
allow us to return from an outer function. The most important use case is returning from a function literal. Recall
that when we write this:

fun foo() {
ints.forEach {
if (it == @) return
print(it)
}
}

The return-expression returns from the nearest enclosing function, i.e. foo . (Note that such non-local returns are
supported only for function literals passed to inline-functions.) If we need to return from a function literal, we have to
label it and qualify the return:

27

Basics. Returns and Jumps Kotlin Language (0.7.270)

fun foo() {
ints.forEach @lit {
if (it == @) return@lit
print(it)
}
}

Now, it returns only from the function literal. Often times it is more convenient to use implicits labels: such a label
has the same name as the function to which the lambda is passed:

fun foo() {
ints.forEach {
if (it == @) return@forEach
print(it)
}
}

When returning a value, the parser gives preference to the qualified return, i.e.

return@a 1

means “return 1 atlabel @a” and not “return a labeled expression (@a 1) ”.

Named functions automatically define labels

fun outer() {
fun inner() {
return@outer // the label @outer was defined automatically
}
}

28

Classes and Objects. Classes and Inheritance Kotlin Language (0.7.270)

Classes and Objects

Classes and Inheritance

Classes

Classes are first-class citizens in Kotlin and are declared using the keyword class

class Invoice {

Class bodies are optional. In Kotlin if a class has no body, it can omit the curly braces
class Invoice

Constructors

Classes in Kotlin can only have a single constructor, which is declared in the header and any initialization code
should be enclosed in an anonymous initializer

class Customer(name: String) {

logger.info("Customer initialized with value ${name}")

If the initialization is merely assigning values to class properties, this can be done without having to use an
anonymous initializer

class Customer(name: String) {

val customerName = name

In fact, for declaring properties and initializing them from the constructor, Kotlin has a more concise syntax

29

Classes and Objects. Classes and Inheritance Kotlin Language (0.7.270)

class Customer(val customerName: String) {

which is equivalent to the previous code. Much the same way as when declaring properties, those explicitly
declared in the constructor can be mutable (var) or read-only (val).

To specify a visibility of a constructor, use the following syntax:

class Customer private (name: String) { ... }

For more details, see Visibility Modifiers.

Creating instances of classes

To create an instance of a class, we call the constructor as if it were a regular function

val invoice = Invoice()

val customer = Customer("Joe Smith")

Note that Kotlin does not have a new keyword.

Class Members
Classes can contain

— Functions

— Properties

— Nested and Inner Classes

— Object Declarations

Inheritance

All classes in Kotlin have a common superclass Any , that is a default super for a class with no supertypes
declared:

class Example // Implicitly inherits from Any

Any is not java.lang.Object ;in particular, it does not have any members other than equals() , hashCode()
and toString() . Please consult the Java interoperability section for more details.

To declare an explicit supertype, we place the type after a colon in the class header:

open class Base(p: Int)

class Derived(p: Int) : Base(p)

30

Classes and Objects. Classes and Inheritance Kotlin Language (0.7.270)

As you can see, the base type can (and must) be initialized right there, using the parameters of the primary
constructor.

The open annotation on a class is the opposite of Java’s final: it allows others to inherit from this class. By
default, all classes in Kotlin are final, which corresponds to Effective Java, ltem 17: Design and document for
inheritance or else prohibit it.

Overriding Members

As we mentioned before, we stick to making things explicit in Kotlin. And unlike Java, Kotlin requires explicit
annotations for overridable members that we call open and for overrides:

open class Base {
open fun v() {}
fun nv() {}

}

class Derived() : Base() {
override fun v() {}

}

The override annotation is required for Derived.v() . If it were missing, the compiler would complain. If there is
no open annotation on a function, like Base.nv() , declaring a method with the same signature in a subclass is
illegal, either with override or without it. In a final class (e.g. a class with no open annotation), open members are
prohibited.

A member marked override is itself open, i.e. it may be overridden in subclasses. If you want to prohibit re-
overriding, use final:

open class AnotherDerived() : Base() {
final override fun v() {}

}

Wait! How will I hack my libraries now?!

One issue with our approach to overriding (classes and members final by default) is that it would be difficult to
subclass something inside the libraries you use to override some method that was not intended for overriding by the
library designer, and introduce some nasty hack there.

We think that this is not a disadvantage, for the following reasons:

— Best practices say that you should not allow these hacks anyway
— People successfully use other languages (C++, C#) that have similar approach

— If people really want to hack, there still are ways: in some cases it will be possible to write your hack in Java,
and Aspect frameworks always work for these purposes...

Overriding Rules

31

http://www.oracle.com/technetwork/java/effectivejava-136174.html

Classes and Objects. Classes and Inheritance Kotlin Language (0.7.270)

In Kotlin, implementation inheritance is regulated by the following rule: if a class inherits many implementations of
the same member from its immediate superclasses, it must override this member and provide its own
implementation (perhaps, using one of the inherited ones). To denote the supertype from which the inherited
implementation is taken, we use super qualified by the supertype name in angle brackets, e.g. super<Base> :

open class A {
open fun f() { print("A") }
fun a() { print("a") }

}

trait B {
fun f() { print("B") } // trait members are 'open' by default
fun b() { print("b") }

}

class C() : A(), B {
// The compiler requires f() to be overridden:
override fun f() {
super<A>.f() // call to A.f()
super.f() // call to B.f()

}
}

It’s fine to inherit from both A and B, and we have no problems with a() and b() since C inherits only one
implementation of each of these functions. But for () we have two implementations inherited by C , and thus we
have to override f() in C and provide our own implementation that eliminates the ambiguity.

Abstract Classes

A class and some of its members may be declared abstract. An abstract member does not have an
implementation in its class. Thus, when some descendant inherits an abstract member, it does not count as an
implementation:

abstract class A {
abstract fun f()

}
trait B {

open fun f() { print("B") }
}

class C() : A(), B {
// We are not required to override f()

}

Note that we do not need to annotate an abstract class open — it goes without saying. Neither need we annotate an
abstract function open.

We can override a non-abstract open member with an abstract one

32

Classes and Objects. Classes and Inheritance Kotlin Language (0.7.270)

open class Base {
open fun f() {}
}

abstract class Derived : Base() {
override abstract fun f()

}

Class Objects

In Kotlin, unlike Java or C#, classes do not have static methods. In most cases, package-level functions form a
good substitute for them, but there are a few cases when they don’t. These cases involve access to class’ internals
(private members).

For example, to replace a constructor with a factory method, we make the constructor private and provide a
function that calls the constructor. But if this function is located outside the class in question, it would not have any
access to the constructor.

To address this issue (and to provide some other interesting features), Kotlin introduces a concept of a class object
(the closest analog in other languages would be companion objects in Scala). Roughly speaking, a class object for
class C is an object (in the sense of Object declaration) that is associated to C . There may be not more than one

class object for each class. A class object is declared inside its associated class, and thus it can access its private
members. A class object for C itself is (usually) not an instance of C . For example:

class C {
class object {
fun create() = C()

}
}

fun main() {
val ¢ = C.create() // C denotes the class object here

At first you may think that this is just a way of grouping static members of a class together instead of mixing them
with instance members: in Java we access static members of C by calling C.foo() , and the same happens with
class object’'s members in Kotlin. But in fact there is an important difference: a class object can have supertypes,
and C, as an expression denotes this object as a value, so we can pass it around, say, as an argument for a
function. Let’s modify our example to demonstrate this

33

Classes and Objects. Classes and Inheritance Kotlin Language (0.7.270)

abstract class Factory<out T> {
abstract fun create(): T

}

class C {
class object : Factory<C>() {
override fun create(): C = C()

}
}

fun main() {
val factory = C // C denotes the class object
val ¢ = factory.create()

Note that class objects are never inherited:

class D : C()

val d = D.create() // Error: no class object for D

A description of some more interesting features related to class objects can be found in the Generic constraints
section.

Note: if you think that class objects are a great way of implementing singletons in Kotlin, please see Object
expressions and Declarations.

34

Classes and Objects. Properties and Fields Kotlin Language (0.7.270)

Properties and Fields

Declaring Properties

Classes in Kotlin can have properties. These can be declared as mutable, using the var keyword or read-only
using the val keyword.

public class Address {
public var name: String = ...
public var street: String
public var city: String = ...
public var state: String?
public var zip: String = ...

To use a property, we simply refer to it by name, as if it were a field in Java:

fun copyAddress(address: Address): Address {
val result = Address() // there's no 'new' keyword in Kotlin
result.name = address.name // accessors are called
result.street = address.street
/] ooc

return result

Getters and Setters

The full syntax for declaring a property is

var <propertyName>: <PropertyType> [= <property_initializer>]
<getter>
<setter>

The initializer, getter and setter are optional. Property type is optional if it can be inferred from the initializer or from
the base class member being overridden .

Examples

var allByDefault: Int? // error: explicit initializer required, default getter and

setter implied

var initialized = 1 // has type Int, default getter and setter

var setterVisibility: String = "abc" // Initializer required, not a nullable type
private set // the setter is private and has the default implementation

Note that types are not inferred for properties exposed as parts of the public API, i.e. public and protected, because
changing the initializer may cause an unintentional change in the public APl then. For example

35

Classes and Objects. Properties and Fields Kotlin Language (0.7.270)

public val example = 1 // error: a public property must have a type specified
explicitly

The full syntax of a read-only property declaration differs from a mutable one in two ways: it starts with val instead
of var and does not allow a setter:

val simple: Int? // has type Int, default getter, must be initialized in constructor
val inferredType = 1 // has type Int and a default getter

We can write custom accessors, very much like ordinary functions, right inside a property declaration. Here’s an
example of a custom getter:

val isEmpty: Boolean
get() = this.size ==

Since this property is purely derived from others, the compiler will not generate a backing field for it.

A custom setter looks like this:

var stringRepresentation: String
get() = this.toString()
set(value) {
setDataFromString(value) // parses the string and assigns values to other properties

}

Backing Fields

Classes in Kotlin cannot have fields. However, sometimes it is necessary to have a backing field when using
custom accessors. For these purposes, Kotlin provides an automatic backing field which can be accessed using
the $ symbol followed by the property name.

var counter = @ // the initializer value is written directly to the backing field
set(value) {
if (value >= 9)
counter = value

The $counter field can be accessed only from inside the class where the counter property is defined.

The compiler looks at the accessors’ bodies, and if they use the backing field (or the accessor implementation is lef
by default), a backing field is generated, otherwise it is not.

For example, in the following case there will be no backing field:

val isEmpty: Boolean
get() = this.size > ©

36

Classes and Objects. Properties and Fields Kotlin Language (0.7.270)

Backing Properties

If you want to do something that does not fit into this “implicit backing field” scheme, you can always fall back to
having a backing property.

private var _table: Map<String, Int>? = null
public val table: Map<String, Int>

get() {
if (_table == null)
_table = HashMap() // Type parameters are inferred
return _table ?: throw AssertionError("Set to null by another thread")

}

In all respects, this is just the same as in Java since access to private properties with default getters and setters is
optimized so that no function call overhead is introduced.

Overriding Properties

See Overriding Members

Delegated Properties

The most common kind of properties simply reads from (and maybe writes to) a backing field. On the other hand,
with custom getters and setters one can implement any behaviour of a property. Somewhere in between, there are
certain common patterns of how a property may work. A few examples: lazy values, reading from a map by a given
key, accessing a database, notifying listener on access, etc.

Such common behaviours can be implemented as libraries using delegated properties. For more information, look
here.

37

Classes and Objects. Traits Kotlin Language (0.7.270)

Traits

Traits are essentially interfaces with optional method implementations. What makes them different from abstract
classes is that traits cannot store state. They can have properties but these need to be abstract.

A trait is defined using the keyword trait
trait MyTrait {
fun bar()

fun foo() {
// optional body

}

Implementing Traits

A class or object can implement one or more traits

class Child : MyTrait {
fun bar() {
// body

Properties in Traits

Traits allow properties as long as these are stateless, that is because traits do not allow state.

trait MyTrait {
val property: Int // abstract

fun foo() {
print(property)

class Child : MyTrait {
override val property: Int = 29

Accessing state in trait

While traits cannot have state, you can access state

38

Classes and Objects. Traits Kotlin Language (0.7.270)

open class A(x: Int) {
val y = x * 2

}

trait B : A {
fun foo() {

print(y)
}
}

class C() : A(239), B {}

In this example, we have a base class A, that defines a concrete property y and initializes it. The trait B extends
this class, but does not pass a constructor parameter in, because traits have no initialization code at all. Note that E
has access to the property y defined in A. Now, class C extends A and initializes it with 239, and extends B.
Extending Bis OK because Brequires A, and we extend A.

What happens when we call foo() on an instance of C? It prints 478 (239 * 2), because the value of y is obtained
from this instance, and the constructor of C has written 239 there.

Resolving overriding conflicts

When we declare many types in our supertype list, it may appear that we inherit more than one implementation of
the same method. For example

trait A {
fun foo() { print("A") }
fun bar()

}

trait B {
fun foo() { print("B") }
fun bar() { print("bar") }

}

class C : A {
override fun bar() { print("bar") }

}

class D : A, B {
override fun foo() {
super<A>.foo()
super.foo()
}
}

39

Classes and Objects. Traits Kotlin Language (0.7.270)

Traits A and B both declare functions foo() and bar(). Both of them implement foo(), but only Bimplements bar()
(bar() is not marked abstract in A, because this is the default for traits, if the function has no body). Now, if we
derive a concrete class C from A, we, obviously, have to override bar() and provide an implementation. And if we
derive D from A and B, we don’t have to override bar(), because we have inherited only one implementation of it.
But we have inherited two implementations of foo(), so the compiler does not know, which one to choose, and
forces us to override foo() and say what we want explicitly.

40

Classes and Objects. Visibility Modifiers Kotlin Language (0.7.270)

Visibility Modifiers
Classes, objects, traits, constructors, functions, properties and their setters can have visibility modifiers. (Getters
always have the same visibility as the property.) There are four visibility modifiers in Kotlin:

— private — visible only in the declaring scope and its subscopes (inside the same module);

— protected — (applicable only to class/trait members) like private , but also visible in subclasses;

— internal — (used by default) visible everywhere within the same module (if the owner of declaring scope is
visible);

— public — visible everywhere (if the owner of declaring scope is visible).
NOTE: Functions with expression bodies and all properties declared public must always specify return types

explicitly. This is required so that we do not accidentally change a type that is a part of a public APl by merely
altering the implementation.

public val foo: Int = 5 // explicit return type required

public fun bar(): Int = 5 // explicit return type required

public fun bar() {} // block body: return type is Unit and can't be changed
accidentally, so not required

Below please find explanations of these for different type of declaring scopes.

Packages

Functions, properties and classes, objects and traits can be declared on the “top-level”, i.e. directly inside a
package:

// file name: example.kt
package foo

fun baz() {}
class Bar {}

— If you do not specify any visibility modifier, internal is used by default, which means that your declarations
will be visible everywhere within the same module;

— If you mark a declaration private , it will only be visible inside this package and its subpackages, and only
within the same module;

— Ifyoumark it public, itis visible everywhere;

— protected is not available for top-level declarations.

Examples:

41

Classes and Obijects. Visibility Modifiers Kotlin Language (0.7.270)

// file name: example.kt
package foo

private fun foo() {} // visible inside this package and subpackaged

public var bar: Int = 5 // property is visible everywhere
private set // setter is visible only in this package and subpackages

internal val baz = 6 // visible inside the same module, the modifier can be omitted

Classes and Traits

When declared inside a class:

— private means visible inside this class only (including all its members);
— protected — same as private + visible in subclasses too;
— internal — any client inside this module who sees the declaring class sees its internal members;

— public — any client who sees the declaring class sees its public members.
NOTE for Java users: outer class does not see private members of its inner classes in Kotlin.

Examples:

open class Outer {
private val a = 1
protected val b = 2
val ¢ = 3 // internal by default
public val d: Int = 4 // return type required

protected class Nested {
public val e: Int = 5

class Subclass : Outer() {
// a is not visible
// b, c and d are visible
// Nested and e are visible

class Unrelated(o: Outer) {
// o.a, o.b are not visible
// o.c and o.d are visible (same module)
// Outer.Nested is not visible, and Nested::e is not visible either

Constructors

To specify a visibility of a constructor, use the following syntax:

42

Classes and Objects. Visibility Modifiers Kotlin Language (0.7.270)

class C private (a: Int) { ... }

Here constructor is private. Unlike other declarations, by default, all constructors are public , which effectively
amounts to the being visible everywhere where the class is visible (i.e. a constructor of an internal class is only
visible within the same module).

Local declarations

Local variables, functions and classes can not have visibility modifiers.

43

Classes and Objects. Extensions Kotlin Language (0.7.270)

Extensions

Kotlin, similar to C# and Gosu, provides the ability to extend a class with new functionality without having to inherit
from the class or use any type of design pattern such as Decorator. This is done via special declarations called
extensions. Currently, Kotlin supports extension functions and extension properties.

Extension Functions

To declare an extension function, we need to prefix its name with a receiver type, i.e. the type being extended. The
following adds a swap functionto MutablelList<Int> :

fun MutableList<Int>.swap(x: Int, y: Int) {

val tmp = this[x] // 'this' corresponds to the list
this[x] = this[y]
this[y] = tmp

}

The this keyword inside an extension function corresponds to the receiver object (the one that is passed before
the dot). Now, we can call such a function on any MutablelList<Int>:

val 1 = mutableListOof(1, 2, 3)
l.swap(@, 2) // 'this' inside 'swap()' will hold the value of 'l'

Of course, this function makes sense for any MutablelList<T> , and we can make it generic:

fun <T> MutableList<T>.swap(x: Int, y: Int) {

val tmp = this[x] // 'this' corresponds to the list
this[x] = this[y]
this[y] = tmp

}

We declare the generic type parameter before the function name for it to be available in the receiver type
expression. See Generic functions.

Extensions are resolved statically

Extensions do not actually modify classes they extend. By defining an extension, you do not insert new members
into a class, but merely make new functions callable with the dot-notation on instances of this class.

We would like to emphasize that extension functions are dispatched statically, i.e. they are not virtual by receiver
type. If there’s a member and extension of the same type both applicable to given arguments, a member always
wins. For example:

class C {
fun foo() { println("member") }

fun C.foo() { println("extension") }

44

Classes and Objects. Extensions Kotlin Language (0.7.270)

If we call c.foo() ofany c oftype C, it will print “member”, not “extension”.

Extension Properties

Similarly to functions, Kotlin supports extension properties:

val <T> List<T>.lastIndex: Int
get() = size - 1

Note that, since extensions do not actually insert members into classes, there’s no efficient way for an extension
property to have a backing field. This is why initializers are not allowed for extension properties. Their behavior
can only be defined by explicitly providing getters/setters.

Example:

val Foo.bar = 1 // error: initializers are not allowed for extension properties

Scope of Extensions

Most of the time we define extensions on the top level, i.e. directly under packages:

package foo.bar

fun Baz.goo() { ... }
To use such an extension outside its declaring package, we need to import it at the call site:

package com.example.usage

import foo.bar.goo // importing all extensions by name "goo"

// or
import foo.bar.* // importing everything from "foo.bar"

fun usage(baz: Baz) {
baz.goo()
)

See Imports for more information.

Motivation

In Java, we are used to classes named “*Utils”: FileUtils, StringUtils and so on. The famous
java.util.Collections belongs to the same breed. And the unpleasant part about these Utils-classes is that
the code that uses them looks like this:

// Java
Collections.swap(list, Collections.binarySearch(list, Collections.max(otherList)),
Collections.max(list))

45

Classes and Objects. Extensions Kotlin Language (0.7.270)

Those class names are always getting in the way. We can use static imports and get this:

// Java
swap(list, binarySearch(list, max(otherList)), max(list))

This is a little better, but we have no or little help from the powerful code completion of the IDE. It would be so muck
better if we could say

// Java
list.swap(list.binarySearch(otherList.max()), list.max())

But we don’t want to implement all the possible methods inside the class List , right? This is where extensions
help us.

46

Classes and Objects. Data Classes Kotlin Language (0.7.270)

Data Classes
We frequently create classes that do nothing but hold data. In such classes some functionality is often mechanically
derivable from the data they hold. In Kotlin a class can be annotated as data :

data class User(val name: String, val age: Int)
This is called a data class. The compiler automatically derives the following members from all properties declared
in the primary constructor:

— equals() / hashCode() pair,
— toString() of the form "User(name=John, age=42)",

— componentN() functions corresponding to the properties in their order or declaration,

— copy() function (see below).

If any of these functions is explicitly defined in the class body or inherited from the base types, it will not be
generated.

NOTE that if a constructor parameter does not have a val or var in front of it, it will not be included in
computation of all these functions; nor will be properties declared in the class body or inherited from the
superclass.

Copying

It’s often the case that we need to copy an object altering some of its properties, but keeping the rest unchanged.
This is what copy() function is generated for. For the User class above, its implementation would be as follows:
fun copy(name: String = this.name, age: Int = this.age) = User(name, age)

This allows us to write

val jack = User(name = "Jack", age = 1)
val olderJack = jack.copy(age = 2)

Data Classes and Multi-Declarations

Component functions generated for data classes enable their use in multi-declarations:

val jane = User("Jane", 35)
val (name, age) = jane
println("$name, $age years of age") // prints "Jane, 35 years of age"

Standard Data Classes

The standard library provides Pair and Triple . In most cases, though, named data classes are a better design
choice, because they make the code more readable by providing meaningful names for properties.

47

Classes and Objects. Generics Kotlin Language (0.7.270)

Generics

As in Java, classes in Kotlin may have type parameters:

class Box<T>(t: T) {
var value = t

In general, to create an instance of such a class, we need to provide the type arguments:

val box: Box<Int> = Box<Int>(1)

But if the parameters may be inferred, e.g. from the constructor arguments or by some other means, one is allowed
to omit the type arguments:

val box = Box(1) // 1 has type Int, so the compiler figures out that we are talking
about Box<Int>

Variance

One of the most tricky parts of Java’s type system is wildcard types (see Java Generics FAQ). And Kotlin doesn'’t
have any. Instead, it has two other things: declaration-site variance and type projections.

First, let’s think about why Java needs those mysterious wildcards. The problem is explained in Effective Java, Iten
28: Use bounded wildcards to increase API flexibility . First, generic types in Java are invariant, meaning that
List<String> is not a subtype of List<Object> . Why so? If List was not invariant, it would have been no
better than Java’s arrays, cause the following code would have compiled and cause an exception at runtime:

// 3Java

List<String> strs = new ArraylList<String>();

List<Object> objs strs; // !!! The cause of the upcoming problem sits here. Java
prohibits this!

objs.add(1); // Here we put an Integer into a list of Strings

String s = strs.get(@); // !!! ClassCastException: Cannot cast Integer to String

So, Java prohibits such things in order to guarantee run-time safety. But this has some implications. For example,
consider the addAl1() method from Collection interface. What’s the signature of this method? Intuitively, we’d
put it this way:

// 3Java
interface Collection<E> ... {
void addAll(Collection<E> items);

}

But then, we would not be able to do the following simple thing (which is perfectly safe):

48

http://www.angelikalanger.com/GenericsFAQ/JavaGenericsFAQ.html
http://www.oracle.com/technetwork/java/effectivejava-136174.html

Classes and Objects. Generics Kotlin Language (0.7.270)

// Java
void copyAll(Collection<Object> to, Collection<String> from) {
to.addAll(from); // !!! Would not compile with the naive declaration of addAll:
// Collection<String> is not a subtype of Collection<Object>
}

(In Java, we learned this lesson the hard way, see Effective Java, Item 25: Prefer lists to arrays)

That’s why the actual signature of addAl1() is the following:

// Java
interface Collection<E> ... {

void addAll(Collection<? extends E> items);
}

The wildcard type argument ? extends T indicates that this method accepts a collection of objects of some
subtype of T, not T itself. This means that we can safely read T ’s from items (elements of this collection are
instances of a subclass of T), but cannot write to it since we do not know what objects comply to that unknown
subtype of T . In return for this limitation, we have the desired behaviour: Collection<String> is a subtype of
Collection<? extends Object> . In “clever words”, the wildcard with an extends-bound (upper bound) makes
the type covariant.

The key to understanding why this trick works is rather simple: if you can only take items from a collection, then
using a collection of String s and reading Object s from it is fine. Conversely, if you can only putitems into the
collection, it’s OK to take a collection of Object s and put String s into it: in Java we have List<? super
String> a supertype of List<Object> .

The latter is called contravariance, and you can only call methods that take String as an argumenton List<?
super String> (e.g., you can call add(String) or set(int, String)), while if you call something that
returns T in List<T>,youdontgeta String, butan Object.

Joshua Bloch calls those objects you only read from Producers, and those you only write to Consumers. He
recommends: “For maximum flexibility, use wildcard types on input parameters that represent producers or
consumers’, and proposes the following mnemonic:

PECS stands for Producer-Extends, Consumer-Super.

NOTE: if you use a producer-object, say, List<? extends Foo> , you are not allowed to call add() or set() o
this object, but this does not mean that this object is immutable: for example, nothing prevents you from calling
clear() toremove all items from the list, since clear() does nottake any parameters at all. The only thing
guaranteed by wildcards (or other types of variance) is type safety. Immutability is a completely different story.

Declaration-site variance

Suppose we have a generic interface Source<T> that does not have any methods that take T as a parameter,
only methods that return T :

49

http://www.oracle.com/technetwork/java/effectivejava-136174.html

Classes and Objects. Generics Kotlin Language (0.7.270)

// Java
interface Source<T> {
T nextT();

}

Then, it would be perfectly safe to store a reference to an instance of Source<String> in a variable of type
Source<Object> —there are no consumer-methods to call. But Java does not know this, and still prohibits it:

// 3Java

void demo(Source<String> strs) {
Source<Object> objects = strs; // !!l Not allowed in Java
1] ooc

}

To fix this, we have to declare objects of type Source<? extends Object> , which is sort of meaningless,
because we can call all the same methods on such a variable as before, so there’s no value added by the more
complex type. But the compiler does not know that.

In Kotlin, there is a way to explain this sort of thing to the compiler. This is called declaration-site variance: we
can annotate the type parameter T of Source to make sure that it is only returned (produced) from members of
Source<T> , and never consumed. To do this we provide the out modifier:

abstract class Source<out T> {
fun nextT(): T

}

fun demo(strs: Source<String>) {
val objects: Source<Any> = strs // This is OK, since T is an out-parameter

1 ococ

The general rule is: when a type parameter T of a class C is declared out, it may occur only in out-position in the
members of C, butin return C<Base> can safely be a supertype of C<Derived> .

In “clever words” they say that the class C is covariant in the parameter T, orthat T is a covariant type
parameter. You can think of C as being a producer of T'’s, and NOT a consumer of T'’s.

The out modifier is called a variance annotation, and since it is provided at the type parameter declaration site,
we talk about declaration-site variance. This is in contrast with Java’s use-site variance where wildcards in the
type usages make the types covariant.

In addition to out, Kotlin provides a complementary variance annotation: in. It makes a type parameter
contravariant: it can only be consumed and never produced. A good example of a contravariant class is
Comparable :

50

Classes and Objects. Generics Kotlin Language (0.7.270)

abstract class Comparable<in T> {
fun compareTo(other: T): Int

}

fun demo(x: Comparable<Number>) {
X.compareTo(1.0) // 1.0 has type Double, which is a subtype of Number
// Thus, we can assign x to a variable of type Comparable<Double>
val y: Comparable<Double> = x // OK!

}

We believe that the words in and out are self-explaining (as they were successfully used in C# for quite some time
already), thus the mnemonic mentioned above is not really needed, and one can rephrase it for a higher purpose:

The Existential Transformation: Consumer in, Producer out! :-)
Type projections

Use-site variance: Type projections

It is very convenient to declare a type parameter T as out and have no trouble with subtyping on the use site. Yes, i
is, when the class in question can actually be restricted to only return T ’s, but what if it can’t? A good example of
this is Array:

class Array<T>(val length: Int) {

fun get(index: Int): T { /* ... */ }

fun set(index: Int, value: T) { /* ... */ }
}

This class cannot be either co- or contravariant in T . And this imposes certain inflexibilities. Consider the following
function:

fun copy(from: Array<Any>, to: Array<Any>) {
assert(from.length == to.length)
for (i in from.indices)
to[i] = from[i]

This function is supposed to copy items from one array to another. Let’s try to apply it in practice:

val ints: Array<Int> = array(l, 2, 3)
val any = Array<Any>(3)
copy(ints, any) // Error: expects (Array<Any>, Array<Any>)

Here we run into the same familiar problem: Array<T> isinvariantin T, thus neither of Array<Int> and
Array<Any> is a subtype of the other. Why? Again, because copy might be doing bad things, i.e. it might attempt
to write, say, a String to from, and if we actually passed an array of Int there, a ClassCastException would
have been thrown sometime later.

51

http://en.wikipedia.org/wiki/Existentialism

Classes and Objects. Generic functions Kotlin Language (0.7.270)

Then, the only thing we want to ensure is that copy() does not do any bad things. We want to prohibit it from
writing to from , and we can:

fun copy(from: Array<out Any>, to: Array<Any>) {
7l ococ
}

What has happened here is called type projection: we said that from is not simply an array, but a restricted
(projected) one: we can only call those methods that return the type parameter T, in this case it means that we
can only call get() . This is our approach to use-site variance, and corresponds to Java’s Array<? extends
Object> , but in a slightly simpler way.

You can project a type with in as well:

fun fill(dest: Array<in String>, value: String) {
7l ooc

Array<in String> corresponds to Java’s Array<? super String> ,i.e. you can pass an array of
CharSequence or an array of Object tothe fill() function.

Star-projections

Sometimes you want to say that you know nothing about the type argument, but still want to use it in a safe way.
The safe way here is to say that we are dealing with an out-projection (the object does not consume any values of
unknown types), and that this projection is with the upper bound of the corresponding parameter, i.e. out Any? foi
most cases. Kotlin provides a shorthand syntax for this, that we call a star-projection: Foo<*> means Foo<out
Bar> where Bar is the upper bound for Foo ’s type parameter.

Note: star-projections are very much like Java’s raw types, but safe.

Generic functions

Not only classes can have type parameters. Functions can, too. Usually, we place the type parameters in angle
brackets after the name of the function:

fun singletonList<T>(item: T): List<T> {
7] coc

But for Extension functions it may be necessary to declare type parameters before specifying the receiver type, so
Kotlin allows the alternative syntax:

fun <T> T.basicToString() : String {
return typeinfo.typeinfo(this) + "@" + System.identityHashCode(this)
}

If type parameters are passed explicitly at the call site, they can be only specified after the name of the function:

52

Classes and Objects. Generic constraints Kotlin Language (0.7.270)

val 1 = singletonList<Int>(1)

Generic constraints

The set of all possible types that can be substituted for a given type parameter may be restricted by generic
constraints.

Upper bounds
The most common type of constraint is an upper bound that corresponds to Java’s extends keyword:

fun sort<T : Comparable<T>>(list: List<T>) {
Nl ooc

The type specified after a colon is the upper bound: only a subtype of Comparable<T> may be substituted for T
For example

sort(list(1, 2, 3)) // OK. Int is a subtype of Comparable<Int>
sort(list(HashMap<Int, String>())) // Error: HashMap<Int, String> is not a subtype of
Comparable<HashMap<Int, String>>

The default upper bound (if none specified) is Any? . Only one upper bound can be specified inside the angle
brackets. If the same type parameter needs more than one upper bound, we need a separate where-clause:

fun cloneWhenGreater<T : Comparable<T>>(list: List<T>, threshold: T): List<T>
where T : Cloneable {
return list when {it > threshold} map {it.clone()}

}

Class objects

Another type of generic constraints are class object constraints. They restrict the properties of a class object of the
root class of a type being substituted for T .

Consider the following example. Suppose, we have a class Default that has a property default that holds a
default value to be used for this type:

abstract class Default<T> {
val default: T

For example, the class Int could extend Default in the following way:

53

Classes and Objects. Generic constraints Kotlin Language (0.7.270)

class Int {
class object : Default<Int>() {
override val default = ©

}
7 ooc

Now, let’s consider a function that takes a list of nullable T’s,i.e. T?, and replaces all the null s with the default
values:

fun replaceNullsWithDefaults<T : Any>(list: List<T?>): List<T> {
return list map {
if (it == null)
T.default // Error: For now, we don't know if T's class object has such a property
else it

For this function to compile, we need to specify a type constraint that requires a class object of T to be of a
subtype of Default<T> :

fun replaceNullsWithDefaults<T : Any>(list : List<T?>) : List<T>
where class object T : Default<T> {
1 ococ

Now the compiler knows that T (as a class object reference) has the default property, and we can access it.

54

Classes and Objects. Nested Classes Kotlin Language (0.7.270)

Nested Classes

Classes can be nested in other classes

class Outer {
private val bar: Int = 1
class Nested {
fun foo() = 2

}
}

val demo = Outer.Nested().foo() // == 2

Inner classes

A class may be marked as inner to be able to access members of outer class. Inner classes carry a reference to
an object of an outer class:

class Outer {
private val bar: Int = 1
inner class Inner {
fun foo() = bar
}
}

val demo = Outer().Inner().foo() // ==

See Qualified this expressions to learn about disambiguation of this in inner classes.

55

Classes and Objects. Enum Classes Kotlin Language (0.7.270)

Enum Classes

The most basic usage of enum classes is implementing type-safe enums

enum class Direction {
NORTH
SOUTH
WEST
EAST

Each enum constant is an object.

Initialization

Since each enum is an instance of the enum class, they can be initialized

enum class Color(val rgb: Int) {
RED : Color(©xFFo00e)
GREEN : Color(©x00FFee)
BLUE : Color(0x0000FF)

Anonymous classes

Enum constants can also declare their own anonymous classes

enum class ProtocolState {

WAITING {

override fun signal() = TALKING
}
TALKING {

override fun signal() = WAITING
}

abstract fun signal(): ProtocolState
}

with their corresponding methods, as well as overriding base methods.

56

Classes and Objects. Object Expressions and Declarations Kotlin Language (0.7.270)

Object Expressions and Declarations

Sometimes we need to create an object of a slight modification of some class, without explicitly declaring a new
subclass for it. Java handles this case with anonymous inner classes. Kotlin slightly generalizes this concept with
object expressions and object declarations.

Object expressions

To create an object of an anonymous class that inherits from some type (or types), we write:

window.addMouselListener(object : MouseAdapter() {
override fun mouseClicked(e: MouseEvent) {

Il ooc

override fun mouseEntered(e: MouseEvent) {
1/ oo
}
})

If a supertype has a constructor, appropriate constructor parameters must be passed to it. Many supertypes may
be specified as a comma-separated list after the colon:

open class A(x: Int) {
public open val y: Int = x
}

trait B {...}

val ab = object : A(1), B {
override val y = 15

}
If, by any chance, we need “just an object”, with no nontrivial supertypes, we can simply say:

val adHoc = object
var x: Int = 0
var y: Int = 0

}
print(adHoc.x + adHoc.y)

Object declarations

Singleton is a very useful pattern, and Kotlin (after Scala) makes it easy to declare singletons:

57

http://en.wikipedia.org/wiki/Singleton_pattern

Classes and Objects. Object Expressions and Declarations Kotlin Language (0.7.270)

object DataProviderManager {
fun registerDataProvider(provider: DataProvider) {

//

val allDataProviders : Collection<DataProvider>

get() = // ...

This is called an object declaration. If there’s a name following the object keyword, we are not talking about an
expression anymore. We cannot assign such a thing to a variable, but we can refer to it by its name. Such objects
can have supertypes:

object DefaultListener : MouseAdapter() {
override fun mouseClicked(e: MouseEvent) {
//

override fun mouseEntered(e: MouseEvent) {

//

NOTE: object declarations can’t be local (i.e. be nested in directly inside a function), but they can be nested into
other object declarations or non-inner classes.

Semantical difference between object expressions and declarations
There is one important semantical difference between object expressions and object declarations:

— object declarations are initialized lazily, when accessed for the first time

— object expressions are executed (and initialized) immediately, where they are used

58

Classes and Objects. Delegation Kotlin Language (0.7.270)

Delegation

Class Delegation

The Delegation pattern has proven to be a good alternative to implementation inheritance, and Kotlin supports it
natively requiring zero boilerplate code. A class Derived can inherit from a trait Base and delegate all of its
public methods to a specified object:

trait Base {
fun print()
}

class BaseImpl(val x: Int): Base {
override fun print() { print(x) }

}
class Derived(b: Base) : Base by b
fun main() {

val b = BaseImpl(10)

Derived(b).print() // prints 10
}

The by-clause in the supertype list for Derived indicates that b will be stored internally in objects of Derived
and the compiler will generate all the methods of Base that forwardto b .

59

https://en.wikipedia.org/wiki/Delegation_pattern

Classes and Objects. Delegated Properties Kotlin Language (0.7.270)

Delegated Properties

There are certain common kinds of properties, that, though we can implement them manually every time we need
them, would be very nice to implement once and for all, and put into a library. Examples include

— lazy properties: the value gets computed only upon first access,

— observable properties: listeners get notified about changes to this property,

— storing properties in a map, not in separate field each.

To cover these (and other) cases, Kotlin supports delegated properties:

class Example {
var p: String by Delegate()
}

The syntax is: val/var <property name>: <Type> by <expression> . The expression after by is the
delegate, because get() (and set()) corresponding to the property will be delegated to it.

Property delegates don’t have to implement any interface, but they have to provide a get() function (and set()
— for var’s). For example:

class Delegate {
fun get(thisRef: Any?, prop: PropertyMetadata): String {
return "$thisRef, thank you for delegating '${prop.name}' to me!"

}

fun set(thisRef: Any?, prop: PropertyMetadata, value: String) {
println("$value has been assigned")

}
}

When we read from p that delegates to an instance of Delegate , the get() function from Delegate is called,
so that its first parameter is the object we read p from and the second parameter holds a description of p itself
(e.g. you can take its name). For example:

val e = Example()
println(e.p)

This prints
Example@33al17727, thank you for delegating ‘p’ to me!

Similarly, when we assignto p , the set() function is called. The first two parameters are the same, and the third
holds the value being assigned:

e.p = "NEW"
This prints

NEW has been assigned to ‘p’ in Example@33al7727.

60

Classes and Objects. Delegated Properties Kotlin Language (0.7.270)

Property Delegate Requirements
Here we summarize requirements to delegate objects.

For a read-only property (i.e. a val), a delegate has to provide a function named get that takes the following
parameters:

— receiver — must be the same or a supertype of the property owner (for extension properties — the type being
extended),

— metadata — must be of type PropertyMetadata or its supertype,
this function must return the same type as property (or its subtype).

For a mutable property (a var), a delegate has to additionally provide a function named set that takes the
following parameters:

— receiver — same as for get(),
— matadata — same as for get(),

— new value — must be of the same type as a property or its subtype.

Standard Delegates

The kotlin.properties.Delegates object from the standard library provides factory methods for several useful
kinds of delegates.

Lazy

Delegates.lazy() is a function that takes a lambda and returns a delegate that implements a lazy property: the
first callto get() executes the lambda passedto lazy() and remembers the result, subsequent calls to get()
simply return the remembered result.

import kotlin.properties.Delegates

val lazy: String by Delegates.lazy {
println("computed!™)

"Hello"

}

fun main(args: Array<String>) {
println(lazy)
println(lazy)

If you want thread safety, use blockinglLazy() : it works the same way, but guarantees that the values will be
computed only in one thread, and that all threads will see the same value.

Observable

Delegates.observable() takes two arguments: initial value and a handler for modifications. The handler gets
called every time we assign to the property, it has three parameters: a property being assigned to, the old value anc
the new one:

61

Classes and Objects. Delegated Properties Kotlin Language (0.7.270)

class User {
var name: String by Delegates.observable("<no name>") {
d, old, new ->
println("$old -> $new")

fun main(args: Array<String>) {
val user = User()
user.name = "first"
user.name = "second"

This example prints

<no name> -> first
first -> second

If you want to be able to intercept an assignment and “veto” it, use vetoable() instead of observable() .

Not-Null

Sometimes we have a non-null var, but we don’t have an appropriate value to assign to it in the constructor, i.e. it
must be assigned later. The problem is that you can’t have an uninitialized non-abstract property in Kotlin:

class Foo {
var bar: Bar // ERROR: must be initialized

We could initialize it with null, but then we’d have to check every time we access it.

Delegates.notNull() can solve this problem:

class Foo {
var bar: Bar by Delegates.notNull()

}

If this property is read before being written to for the first time, it throws an exception, after the first assignment it
works as expected.

Storing Properties in a Map

Delegates.mapVal() takes a map instance and returns a delegate that reads property values from this map,
using property name as a key. There are many use cases of this kind in applications like parsing JSON or doing
other “dynamic” things:

62

Classes and Objects. Delegated Properties Kotlin Language (0.7.270)

class User(val map: Map<String, Any?>) {
val name: String by Delegates.mapVal(map)
val age: Int by Delegates.mapVal(map)

In this example, the constructor takes a map:

val user = User(mapOf(
"name" to "John Doe",
"age" to 25

))

Delegates take values from this map (by the string keys — names of properties):

println(user.name) // Prints "John Doe"
println(user.age) // Prints 25

For var’s we can use mapVar() (note that it takes a MutableMap instead of read-only Map).

63

Functions and Lambdas

Functions

Function Declarations

Functions in Kotlin are declared using the fun keyword

fun double(x: Int): Int {
}

Parameters

Function parameters are defined using Pascal notation, i.e. name: type. Parameters are separated using commas.
Each parameter must be explicitly typed.

fun powerOf(number: Int, exponent: Int) {

Default Arguments

Function parameters can have default values, which are used when a corresponding argument is omitted. This
allows for a reduced number of overloads compared to other languages.

fun read(b: Array<Byte>, off: Int = @, len: Int = b.size) {

Default values are defined using the = after type along with the value. Default arguments must be the last in the list,
that is, it is not possible to have a parameter without a default argument following one with a default argument.

Named Arguments

Function parameters can be named when calling functions. This is very convenient when a function has a high
number of parameters or default ones.

Given the following function

64

Functions and Lambdas. Functions Kotlin Language (0.7.270)

fun reformat(str: String, normalizeCase: Boolean = true, upperCaseFirstLetter: Boolean
= true, divideByCamelHumps: Boolean = false, wordSeparator: Character = ' ') {

we could call this using default arguments

reformat(str)

However, when calling it with non-default, the call would look something like

reformat(str, true, true, false, ' ')

With named arguments we can make the code much more readable

reformat(str,
normalizeCase = true,
uppercaseFirstLetter = true,
divideByCamelHumps = false,
wordSeparator = ' '

)
and if we do not need all arguments

reformat(str, wordSeparator = ' ")

Unit-returning functions
If a function does not return any useful value, its return type is Unit . Unit is atype with only one value - Unit .

This value does not have to be returned explicitly

fun printHello(name: String?): Unit {
if (name != null)
println("Hello ${name}")
else
println("Hi there!™)
// “return Unit® or “return’ 1is optional

The Unit return type declaration is also optional. The above code is equivalent to

fun printHello(name: String?) {

Single-Expression functions

65

Functions and Lambdas. Functions Kotlin Language (0.7.270)

When a function returns a single expression, the curly braces can be omitted and the body is specified after a =
symbol

fun double(x: Int): Int = x * 2

Explicitly declaring the return type is optional when this can be inferred by the compiler

fun double(x: Int) = x * 2

Explicit return types
There are cases when an explicit return type is required:

— Functions with expression body that are public or protected. These are considered to be part of the public API
surface. Not having explicit return types makes it potentially easier to change the type accidentally. This is the
same reason why explicit types are required for properties.

— Functions with block body must always specify return types explicitly, unless it’s intended for them to return
Unit , in which case it is optional. Kotlin does not infer return types for functions with block bodies because

such functions may have complex control flow in the body, and the return type will be non-obvious to the reade!
(and sometimes even for the compiler).
Variable number of arguments (Varargs)
The last parameter of a function may be marked with vararg annotation
fun asList<T>(vararg ts: T): List<T> {
val result = ArraylList<T>()
for (t in ts) // ts is an Array

result.add(t)
return result

allowing a variable number of arguments to be passed to the function:
val list = asList(1, 2, 3)
Inside a function a vararg -parameter of type T is visible as an array of T, i.e.the ts variable in the example

above has type Array<T> .

Only one parameter may be annotated as vararg . It may be the last parameter or the one before last, if the last
parameter has a function type (allowing a lambda to be passed outside parentheses).

When we call a vararg -function, we can pass arguments one-by-one, e.g. asList(1, 2, 3), or, if we already
have an array and want to pass its contents to the function, we use the spread operator (prefix the array with *):

val a = array(1, 2, 3)
val list = aslList(-1, @, *a, 4)

66

Functions and Lambdas. Functions Kotlin Language (0.7.270)

Function Scope

In Kotlin functions can be declared at top level in a file, meaning you do not need to create a class to hold a
function, like languages such as Java, C# or Scala. In addition to top level functions, Kotlin functions can also be
declared local, as member functions and extension functions.

Local Functions

Kotlin supports local functions, i.e. a function inside another function

fun dfs(graph: Graph) {
fun dfs(current: Vertex, visited: Set<Vertex>) {
if (!visited.add(current)) return
for (v in current.neighbors)
dfs(v, visited)

dfs(graph.vertices[0], HashSet())
}

Local function can access local variables of outer functions (i.e. the closure), so in the case above, the visited can
be a local variable

fun dfs(graph: Graph) {
val visited = HashSet<Vertex>()
fun dfs(current: Vertex) {
if (!visited.add(current)) return
for (v in current.neighbors)
dfs(v)

dfs(graph.vertices[0])
}

Local functions can even return from outer functions using qualified return expressions

fun reachable(from: Vertex, to: Vertex): Boolean {
val visited = HashSet<Vertex>()
fun dfs(current: Vertex) {
// here we return from the outer function:
if (current == to) return@reachable true
// And here -- from local function:
if (!visited.add(current)) return
for (v in current.neighbors)
dfs(v)

dfs(from)
return false // if dfs() did not return true already

}

67

Functions and Lambdas. Functions Kotlin Language (0.7.270)

Member Functions

A member function is a function that is defined inside a class or object

class Sample() {
fun foo() { print("Foo") }

}

Member functions are called with dot notation

Sample().foo() // creates instance of class Sample and calls foo

For more information on classes and overriding members see Classes and Inheritance

Generic Functions
Functions can have generic parameters which are specified using angle brackets after the function name and

before the value parameters

fun singletonArray<T>(item: T): Array<T> {
return Array<T>(1, {item})

}

For more information on generic functions see Generics

Inline Functions

Inline functions are explained in Higher-Order Functions

Extension Functions

Extension functions are explained in their own section

Higher-Order Functions and Lambdas

Higher-Order functions and Lambdas are explained in their own section

Function Usage

Calling functions uses the traditional approach

val result = double(2)

Calling member functions uses the dot notation

Sample().foo() // create instance of class Sample and calls foo

Infix notation

68

Functions and Lambdas. Functions

Kotlin Language (0.7.270)

Functions can also be called using infix notations when

— They are member functions or extension functions

— They have a single parameter

// Define extension to Int
fun Int.shl(x: Int): Int {

// call extension function using infix notation
1 shl 2
// is the same as

1.shl(2)

69

Functions and Lambdas. Higher-Order Functions and Lambdas Kotlin Language (0.7.270)

Higher-Order Functions and Lambdas

Higher-Order Functions

A higher-order function is a function that takes functions as parameters, or returns a function. A good example of
such a function is lock() thattakes a lock object and a function, acquires the lock, runs the function and
releases the lock:

fun lock<T>(lock: Lock, body: () -> T): T {
lock.lock()

try {
return body()

}
finally {

lock.unlock()

}
}

Let’s examine the code above: body has a function type: () -> T, so it's supposed to be a function that takes n«
parameters and returns a value of type T . It is invoked inside the try-block, while protected by the lock , and its
result is returned by the lock() function.

If we want to call lock() , we can pass another function to it as an argument (see function references):

fun toBeSynchronized() = sharedResource.operation()

val result = lock(lock, ::toBeSynchronized)
Another, often more convenient way is to pass a function literal (often referred to as lambda expression):
val result = lock(lock, { sharedResource.operation() })
Function literals are described in more detail below, but for purposes of continuing this section, let’s see a brief

overview

— A function literal is always surrounded by curly braces,
— Its parameters (if any) are declared before -> (parameter types may be omitted),

— The body goes after -> (when present).

In Kotlin, there is a convention that if the last parameter to a function is a function, then we can omit the
parentheses

lock (lock) {
sharedResource.operation()

}

Another example of a higher-order function would be map() (of MapReduce):

70

http://en.wikipedia.org/wiki/MapReduce

Functions and Lambdas. Higher-Order Functions and Lambdas Kotlin Language (0.7.270)

fun <T, R> List<T>.map(transform: (T) -> R): List<R> {
val result = ArrayList<R>()
for (item in this)
result.add(transform(item))
return result

This function can be called as follows

val doubled = ints.map {it -> it * 2}

One other convention helps is that if a function literal has only one parameter, its declaration may be omitted (along
with the ->) and its name will be it

ints map {it * 2} // Infix call + Implicit 'it’

These conventions allow to write LINQ-style code

strings filter {it.length == 5} sortBy {it} map {it.toUpperCase()}

Inline Functions

Using higher-order functions imposes certain runtime penalties: each function is an object, and it captures a
closure, i.e. those variables that are accessed in the body of the function. Memory allocations (both for function
objects and classes) and virtual calls introduce runtime overhead.

But it appears that in many cases this kind of overhead can be eliminated by inlining the function literals. The
functions shown above are good examples of this situation. l.e., the lock() function could be easily inlined at
call-sites. Consider the following case:

lock(1l) {foo()}

Instead of creating a function object for the parameter and generating a call, the compiler could emit the following
code

lock.lock()

try {
foo()

}
finally {

lock.unlock()
}

Isn’t it what we wanted from the very beginning?

To make the compiler do this, we need to annotate the lock() function with the inline annotation:

7

http://msdn.microsoft.com/en-us/library/bb308959.aspx

Functions and Lambdas. Higher-Order Functions and Lambdas Kotlin Language (0.7.270)

inline fun lock<T>(lock: Lock, body: () -> T): T {
/] ...

Inlining may cause the generated code to grow, but if we do it in a reasonable way (do not inline big functions) it will
pay off in performance, especially at “megamorphic” call-sites inside loops.

Function Literals

A function literal as an “anonymous function”, i.e. a function that is not declared, but passed immediately as an
expression. Consider the following example:

max(strings, {a, b -> a.length < b.length})

Function max is a higher-order function, i.e. it takes a function value as the second argument. This second
argument is an expression that is itself a function, i.e. a function literal. As a function, it is equivalent to

fun compare(a: String, b: String): Boolean = a.length < b.length

Function Types

For a function to accept another function as a parameter, we have to specify a function type for that parameter. For
example the abovementioned function max is defined as follows:

fun max<T>(collection: Collection<out T>, less: (T, T) -> Boolean): T? {
var max: T? = null
for (it in collection)
if (max == null || less(max!!, it))
max = it
return max

The parameter less isoftype (T, T) -> Boolean ,i.e. a function that takes two parameters of type T and
returns a Boolean : true if the first one is smaller than the second one.

In the body, line 4, less is used as a function: it is called by passing two arguments of type T .

A function type is written as above, or may have named parameters, for documentation purposes and to enable
calls with named arguments.

val compare: (x: T, y: T) -> Int = ...

Syntactic form of function literals

The full syntactic form of function literals, i.e. literals of function types, is as follows:

val sum = {(x: Int, y: Int): Int -> x + y}

72

Functions and Lambdas. Higher-Order Functions and Lambdas Kotlin Language (0.7.270)

A function literal is always surrounded by curly braces, parameter declarations in the full syntactic form go inside
parentheses and have optional type annotations, the optional return type annotation goes after the parameter list,
the body goes after an -> sign. If we leave all the optional annotations out, what'’s left looks like this:

val sum: (Int, Int) -> Int = {(x, y) -> x + y}

As this is the most common case, Kotlin allows us to leave the parentheses out as well, if no type annotations are
present, and so we get the short syntactic form for functional literals:

val sum: (Int, Int) -> Int = {x, ¥ -> x + y}

It’s very common that a function literal has only one parameter. If Kotlin can figure the signature out itself, it allows
us not to declare the only parameter, and will implicitly declare it for us under the name it :

ints.filter {it > @} // this literal is of type '(it: Int) -> Boolean'

Note that if a function takes another function as the last parameter, the function literal argument can be passed
outside the parenthesized argument list. See the grammar for callSuffix.

Closures

A function literal (as well as a |ocal function and an object expression) can access its closure, i.e. the variables
declared in the outer scope. Unlike Java the variables captured in the closure can be modified:

var sum = ©
ints filter {it > @} forEach {
sum += it

}

print(sum)

Extension Function Literals

In addition to ordinary functions, Kotlin supports extension functions. This kind of functions is so useful, that
extension function literals are also supported. One of the most important examples of their usage is Type-safe
Groovy-style builders.

An extension function differs from an ordinary one in that it has a receiver type specification.

val sum = {Int.(other: Int): Int -> this + other}

Receiver type may be specified only in the full syntactic form of a function literal (remember that parameter types
and return type annotations are optional in this form).

Such a literal has a function type with receiver

sum : Int.(other: Int) -> Int

73

Functions and Lambdas. Higher-Order Functions and Lambdas Kotlin Language (0.7.270)

It can be called with a dot or in infix form (since it has only one parameter)

1.sum(2)
1 sum 2

74

Other. Multi-Declarations Kotlin Language (0.7.270)

Other

Multi-Declarations

Sometimes it is convenient to decompose an object into a number of variables, for example:
val (name, age) = person

This syntax is called a multi-declaration. A multi-declaration creates multiple variables at once. We have declared
two new variables: name and age, and can use them independently:

println(name)
println(age)

A multi-declaration is compiled down to the following code:

val name = person.componentl()
val age = person.component2()

The componentl() and component2() functions are another example of the principle of conventions widely
used in Kotlin (see operators like + and * , for-loops etc.). Anything can be on the right-hand side of a multi-
assignment, as long as the required number of component functions can be called on it. And, of course, there can
be component3() and component4() and so on.

Multi-declarations also work in for-loops: when you say
for ((a, b) in collection) { ... }

Variables a and b get the values returned by componentl1() and component2() called on elements of the
collection.

Example: Returning Two Values from a Function

Let’s say we need to return two things from a function. For example, a result object and a status of some sort. A
compact way of doing this in Kotlin is to declare a data class and return its instance:

75

Other. Multi-Declarations Kotlin Language (0.7.270)

data class Result(val result: Int, val status: Status)
fun function(...): Result {
// computations

return Result(result, status)

// Now, to use this function:
val (result, status) = function(...)

Since data classes automatically declare componentN() functions, multi-declarations work here.
NOTE: we could also use the standard class Pair and have function() return Pair<Int, Status>, butit’s

often better to have your data named properly.

Example: Multi-Declarations and Maps

Probably the nicest way to traverse a map is this:

for ((key, value) in map) {
// do something with the key and the value

To make this work, we should

— present the map as sequence of values by providing an iterator() function,

— present each of the elements as a pair by providing functions component1() and component2() .

And indeed, the standard library provides such extensions:

fun <K, V> Map<K, V>.iterator(): Iterator<Map.Entry<K, V> = entrySet().iterator()
fun <K, V> Map.Entry<K, V>.componentl() = getKey()
fun <K, V> Map.Entry<K, V>.component2() = getValue()

So you can freely use multi-declarations in for-loops with maps (as well as collections of data class instances etc).

76

Other. Ranges Kotlin Language (0.7.270)

Ranges

Range expressions are formed with rangeTo functions that have the operator form of .. which are
complemented by in and !in. Range is defined for any comparable type, but for number primitives it is optimized.
Here are examples of using ranges

if (i in 1..10) { // equivalent of 1 <=1 && i <= 10
println(i)
}

if (x !in 1.0..3.0) println(x)

if (str in "island".."isle") println(str)

Numerical ranges have an extra feature: they can be iterated over. Compiler takes care about converting this in
simple analogue of Java’s indexed for-loop, without extra overhead. Examples

for (i in 1..4) print(i) // prints "1234"
for (i in 4..1) print(i) // prints nothing

for (x in 1.0..2.0) print("$x ") // prints "1.0 2.0 "

What if you want to iterate over numbers in reversed order? It’s simple. You can use downTo() function defined ir
standard library

for (i in 4 downTo 1) print(i) // prints "4321"
Is it possible to iterate over numbers with arbitrary step, not equal to 1? Sure, step() function will help you

for (i in 1..4 step 2) print(i) // prints "13"
for (i in 4 downTo 1 step 2) print(i) // prints "42"

for (i in 1.0..2.0 step 0.3) print("$i ") // prints "1.0 1.3 1.6 1.9 "

How it works

There are two traits in the library: Range<T> and Progression<N> .

Range<T> denotes an interval in the mathematical sense, defined for comparable types. It has two endpoints:
start and end, which are included in the range. The main operation is contains , usually used in the form of

in/!in operators.

Progression<N> denotes an arithmetic progression, defined for number types. It has start, end and a non-
zero increment . Progression<N> is a subtype of Iterable<N> , so it can be used in for-loops and functions
like map, filter, etc. First elementis start, every next element equals previous plus increment . lteration
over Progression is equivalent to an indexed for-loop in Java/JavaScript:

77

Other. Ranges Kotlin Language (0.7.270)

// if increment > ©
for (int i = start; i <= end; i += increment) {

I coc

// if increment < ©
for (int i = start; i >= end; i += increment) {
1l ocoo

For numbers, the .. operator creates an object which is both Range and Progression . Result of downTo()
and step() functions is always a Progression .

Range Specifications
Use Cases

// Checking if value of comparable is in range. Optimized for number primitives.
if (i in 1..10) println(i)

if (x in 1.0..3.0) println(x)

if (str in "island".."isle") println(str)

// Iterating over arithmetical progression of numbers. Optimized for number primitives
(as indexed for-loop in Java).

for (i in 1..4) print(i) // prints "1234"

for (i in 4..1) print(i) // prints nothing

for (i in 4 downTo 1) print(i) // prints "4321"

for (i in 1..4 step 2) print(i) // prints "13"

for (i in (1..4).reversed()) print(i) // prints "4321"

for (i in (1..4).reversed() step 2) print(i) // prints "42"

for (i in 4 downTo 1 step 2) print(i) // prints "42"

for (x in 1.0..2.0) print("$x ") // prints "1.0 2.0 "

for (x in 1.0..2.0 step 0.3) print("$x ") // prints "1.0 1.3 1.6 1.9 "

for (x in 2.0 downTo 1.0 step 0.3) print("$x ") // prints "2.0 1.7 1.4 1.1 "

for (str in "island".."isle") println(str) // error: string range cannot be iterated
over

78

Other. Ranges Kotlin Language (0.7.270)

Common Traits Definition

There are two base traits: Range and Progression .

Range trait defines a range, or an interval in a mathematical sense. It has two endpoints, start and end, and
also contains() function which checks if the range contains a given number (it also can be used as in/!in
operator, which is neater). start and end are included in the range. If start == end, the range contains
exactly one element. If start > end, the range is empty.

trait Range<T : Comparable<T>> {
val start: T
val end: T
fun contains(element: T): Boolean

}

Progression defines a kind of arithmetical progression. It has start (the first element of progression), end
(the last element which can be included) and increment (difference between each progression element and
previous, non-zero). But the main feature of it is that the progression can be iterated over, so it is a subtype of

Iterable . end is not necessary the last element of progression. Also, progression can be empty if start <
end && increment < @ or start > end && increment > 0 .

trait Progression<N : Number> : Iterable<N> {

val start: N

val end: N

val increment: Number // not N, because for Char we'll want it to be negative
sometimes

// fun iterator(): Iterator<N> is defined in Iterable trait

}

Iteration over Progression is equivalent to an indexed for-loop in Java:

// if increment > ©
for (int i = start; i <= end; i += increment) {

7 ooc

// if increment < ©
for (int i = start; i >= end; i += increment) {
1) coc

Implementation Classes

To avoid unnecessary repetition, let’s consider only one number type, Int . For other number types
implementation is the same. Note that instances can be created using constructors of these classes, while it's more
handy to use rangeTo() (by this name, oras .. operator), downTo() , reversed() and step() utility
functions, which are introduced later.

IntProgression class is pretty straightforward and simple:

79

Other. Ranges Kotlin Language (0.7.270)

class IntProgression(override val start: Int, override val end: Int, override val
increment: Int): Progression<Int> {

override fun iterator(): Iterator<Int> = IntProgressionIteratorImpl(start, end,
increment) // implementation of iterator is obvious

}

IntRange is a bit tricky: it implements Progression<Int> along with Range<Int> , because it’s natural to
iterate over a range (default increment value is 1 for both integer and floating-point types):

class IntRange(override val start: Int, override val end: Int): Range<Int>,
Progression<Int> {
override val increment: Int

get() =1
override fun contains(element: Int): Boolean = start <= element && element <= end
override fun iterator(): Iterator<Int> = IntProgressionIteratorImpl(start, end,
increment)

}
ComparableRange is also simple (remember that comparisons are translated into invocation of compareTo()):

class ComparableRange<T : Comparable<T>>(override val start: T, override val end: T):
Range<T> {
override fun contains(element: T): Boolean = start <= element &% element <= end

}

Utility functions

rangeTo()
Set of rangeTo() functions in number types simply call constructors of *Range classes, e.g.:

class Int {

Il ooc
fun rangeTo(other: Byte): IntRange = IntRange(this, other)

Il ooc
fun rangeTo(other: Int): IntRange = IntRange(this, other)

Ml ooc

downTo()

downTo() extension function is defined for any pair of number types, here are two examples:

80

Other. Ranges Kotlin Language (0.7.270)

fun Long.downTo(other: Double): DoubleProgression {
return DoubleProgression(this, other, -1.0)

fun Byte.downTo(other: Int): IntProgression {
return IntProgression(this, other, -1)

reversed()

Set of reversed() extension functions are defined for each *Range and *Progression classes, and all of
them return reversed progressions.

fun IntProgression.reversed(): IntProgression {
return IntProgression(end, start, -increment)

}

fun IntRange.reversed(): IntProgression {
return IntProgression(end, start, -1)

}

step()

step() extension functions are defined for each *Range and *Progression classes, all of them return
progressions with modified step value (function parameter). Note that the step value is always positive, therefore
this function never changes the direction of iteration.

fun IntProgression.step(step: Int): IntProgression {
if (step <= @) throw IllegalArgumentException("Step must be positive, was: $step")
return IntProgression(start, end, if (increment > ©) step else -step)

}

fun IntRange.step(step: Int): IntProgression {
if (step <= @) throw IllegalArgumentException("Step must be positive, was: $step")
return IntProgression(start, end, step)

}

81

Other. Type Checks and Casts Kotlin Language (0.7.270)

Type Checks and Casts

is and !is Operators

We can check whether an object conforms to a given type at runtime by using the is operator or its negated form
lis:

if (obj is String) {
print(obj.length)
}

if (obj !is String) { // same as !(obj is String)
print("Not a String")
}

else {
print(obj.length)
}

Smart Casts

In many cases, one does not need to use explicit cast operators in Kotlin, because the compiler tracks the is -
checks for immutable values and inserts (safe) casts automatically when needed:

fun demo(x: Any) {
if (x is String) {
print(x.length) // x is automatically cast to String
}
}

The compiler is smart enough to know a cast to be safe if a negative check leads to a return:

if (x !is String) return
print(x.length) // x is automatically cast to String

or in the right-hand side of && and || :

// x is automatically cast to string on the right-hand side of " ||°
if (x !is String || x.length == @) return

// x is automatically cast to string on the right-hand side of "&&

if (x is String && x.length > 9)
print(x.length) // x is automatically cast to String

Such smart casts work for when-expressions and while-loops as well:

82

Other. Type Checks and Casts Kotlin Language (0.7.270)

when (x) {
is Int -> print(x + 1)
is String -> print(x.length + 1)
is Array<Int> -> print(x.sum())

“Unsafe” cast operator

Usually, the cast operator throws an exception if the cast is not possible. Thus, we call it unsafe. The unsafe cast in
Kotlin is done by the infix operator as (see operator precedence):

val x: String = y as String

Note that null cannot be castto String as this type is not nullable, i.e. if y is null, the code above throws an
exception. In order to match Java cast semantics we have to have nullable type at cast right hand side, like

val x: String? = y as String?

“Safe” (nullable) cast operator
To avoid an exception being thrown, one can use a safe cast operator as? that returns null on failure:

val x: String? = y as? String

Note that despite the fact that the right-hand side of as? is a non-null type String the result of the cast is nullable

83

Other. This Expression Kotlin Language (0.7.270)

This Expression
To denote the current receiver, we use this expressions:

— In a member of a class, this refers to the current object of that class

— In an extension function or an extension function literal, this denotes the receiver parameter that is passed or
the left-hand side of a dot.

If this has no qualifiers, it refers to the innermost enclosing scope. To refer to this in other scopes, label qualifier.
are used:

Qualified this

To access this from an outer scope (a class, or extension function, or labeled extension function literal we write
this@label where @label is a label on the scope this is meant to be from:

class A { // implicit label @A
class B { // implicit label @B
fun Int.foo() { // implicit label @foo

val a = this@A // A's this
val b = this@B // B's this
val ¢ = this // foo()'s receiver, an Int

val cl = this@foo // foo()'s receiver, an Int

val funLit = @lambda {String.() ->
val d = this // funLit's receiver
val dl1 = this@lambda // funLit's receiver

}

val funLit2 = { (s: String) ->
val d1 = this // foo()'s receiver, since enclosing function literal doesn't have
any receiver
}
}
}
}

84

Other. Equality Kotlin Language (0.7.270)

Equality
In Kotlin there are two types of equality:

— Referential equality (two references point to the same object)

— Structural equality (a check for equals())

Referential equality

There is no built-in operator to check for referential equality, for we believe that it is rarely needed. Instead, there’s
an inline function identityEquals() that can be called in the following way

a.identityEquals(b)
// or
a identityEquals b // infix call

And returns true if and only if a and b point to the same object.

Structural equality

Structural equality is checked by the == operation (and its negated counterpart !=). By convention, an
expression like a == b is translated to

a?.equals(b) ?: b.identityEquals(null)

l.e.if a isnot null, it callsthe equals(Any?) function, otherwise (i.e. a is null) it checks that b is
referentially equal to null .

Note that there’s no point in optimizing your code when comparing to null explicitly: a == null will be
automatically translated to a.identityEquals(null) .

85

Other. Operator overloading Kotlin Language (0.7.270)

Operator overloading

Kotlin allows us to provide implementations for a predefined set of operators on our types. These operators have
fixed symbolic representation (like + or *) and fixed precedence. To implement an operator, we provide a
member function or an extension function with a fixed name, for the corresponding type, i.e. left-hand side type for
binary operations and argument type for unary ones.

Conventions

Here we describe the conventions that regulate operator overloading for different operators.

Unary operations

Expression Translated to

+a a.plus()
-a a.minus()
la a.not()

This table says that when the compiler processes, for example, an expression +a, it performs the following steps:

— Determines the type of a, letitbe T.

— Looks up a function plus() with no parameters for the receiver T ,i.e. a member function or an extension
function.

— If the function is absent or ambiguous, it is a compilation error.

— If the function is present and its return type is R, the expression +a hastype R.

Note that these operations, as well as all the others, are optimized for Basic types and do not introduce overhead
of function calls for them.

Expression Translated to
a++ a.inc() + see below

a-- a.dec() + see below

These operations are supposed to change their receiver and (optionally) return a value.

. inc()/dec() shouldn’t mutate the receiver object.
By “changing the receiver” we mean the receiver-variable, not the receiver object.

The compiler performs the following steps for resolution of an operator in the postfix form, e.g. a++:

— Determines the type of a, letitbe T.
— Looks up a function inc() with no parameters, applicable to the receiver of type T .

— If the function returns a type R, then it must be a subtype of T.
The effect of computing the expression is:

— Store the initial value of a to a temporary storage a0,

86

Other. Operator overloading Kotlin Language (0.7.270)

— Assign the result of a.inc() to a,

— Return a@ as a result of the expression.
For a-- the steps are completely analogous.
For the prefixforms ++a and --a resolution works the same way, and the effect is:

— Assign the result of a.inc() to a,

— Return the new value of a as a result of the expression.

Binary operations

Expression Translated to

a+b a.plus(b)
a-b a.minus(b)
a*b a.times(b)
a/b a.div(b)
a%b a.mod(b)
a..b a.rangeTo(b)

For the operations in this table, the compiler just resolves the expression in the Translated to column.

Expression Translated to
ainb b.contains(a)

alinb Ib.contains(a)

For in and !in the procedure is the same, but the order of arguments is reversed.

Symbol Translated to

a[i] a.get(i)

ali, j] a.get(i, j)

a[i_1, ..., i_n] a.get(i_ 1, ..., i_n)
a[i] = b a.set(i, b)

a[i, j] =0b a.set(i, j, b)

a[i_,l, ..., in] =b a.set(i_l, ..., i_n, b)

Square brackets are translated to calls to get and set with appropriate numbers of arguments.

Symbol Translated to
a(i) a.invoke(i)
a(i, j) a.invoke(i, j)

a(i_1, ..., in) a.invoke(i_1, ..., i_n)

Parentheses are translated to calls to invoke with appropriate number of arguments.

87

Other. Operator overloading Kotlin Language (0.7.270)

Expression Translated to

a+=b a.plusAssign(b)
a-=b a.minusAssign(b)
a *=b a.timesAssign(b)
a/=b a.divAssign(b)
a%b a.modAssign(b)

For the assignment operations, e.g. a += b, the compiler performs the following steps:

— If the function from the right column is available

— If the corresponding binary function (i.e. plus() for plusAssign()) is available too, report error
(ambiguity).
— Make sure its return type is Unit , and report an error otherwise.

— Generate code for a.plusAssign(b)

— Otherwise, try to generate code for a = a + b (this includes a type check: the type of a + b mustbe a
subtype of a).

Note: assignments are NOT expressions in Kotlin.

Expression Translated to
a==>b a?.equals(b) ?: b.identityEquals(null)
al=b I(a?.equals(b) ?: b.identityEquals(null))

Note: identityEquals checks if two references point to the same object.
The == operation is special in two ways:

— It is translated to a complex expression that screens for null’s, and null == null is true.

— It looks up a function with a specific signature, not just a specific name. The function must be declared as

fun equals(other: Any?): Boolean

Or an extension function with the same parameter list and return type.

Symbol Translated to

a>b a.compareTo(b) > @
a<b a.compareTo(b) < ©
a > b a.compareTo(b) >= ©

a <=b a.compareTo(b) <= @

All comparisons are translated into calls to compareTo, that is required to return Int.

Infix calls for named functions

We can simulate custom infix operations by using infix function calls.

88

Other. Null Safety Kotlin Language (0.7.270)

Null Safety

Nullable types and Non-Null Types

Kotlin’s type system is aimed at eliminating null references from code, also known as the The Billion Dollar Mistake

One of the most common pitfalls in many programming languages, including Java is that of accessing a member of
a null references, resulting in null reference exceptions. In Java this would be the equivalent of a
NullPointerException or NPE for short.

Kotlin’s type system is aimed to eliminate NullPointerException ’s from our code. The only possible causes of
NPE’s may be

— An explicit callto throw NullPointerException()
— External Java code has caused it
— There’s some data inconsistency with regard to initialization (an uninitialized this available in a constructor is

used somewhere)

In Kotlin the type system distinguishes between references that can hold null (nullable references) and those that
can not (non-null references). For example, a regular variable of type String can not hold null:

var a: String = "abc
a = null // compilation error

To allow nulls, we can declare a variable as nullable string, written String? :

var b: String? = "abc
b = null // ok

Now, if you call a method on a , it’s guaranteed not to cause an NPE, so you can safely say
val 1 = a.length()

But if you want to call the same method on b , that would not be safe, and the compiler reports an error:
val 1 = b.length() // error: variable 'b' can be null

But we still need to call that method, right? There are a few ways of doing that.

Checking for null in conditions

First, you can explicitly check if b is null, and handle the two options separately:
val 1 = if (b != null) b.length() else -1

The compiler tracks the information about the check you performed, and allows the callto length() inside the if
More complex conditions are supported as well:

89

http://qconlondon.com/london-2009/presentation/Null+References:+The+Billion+Dollar+Mistake

Other. Null Safety Kotlin Language (0.7.270)

if (b != null & b.length() > @)
print("String of length ${b.length()}")
else
print("Empty string")

Note that this only works where b is immutable (i.e. a local val or a member val which has a backing field and is
not overridable), because otherwise it might happen that b changes to null after the check.

Safe Calls

Your second option is the safe call operator, written ?. :
b?.length()

This returns b.length() if b is not null, and null otherwise. The type of this expressionis Int? .

Safe calls are useful in chains. For example, if Bob, an Employee, may be assigned to a Department (or not), that
in turn may have another Employee as a department head, then to obtain the name of Bob’s department head, if
any), we write the following:

bob?.department?.head?.name
Such a chain returns null if any of the properties in it is null.

Elvis Operator

When we have a nullable reference r , we can say “if r is not null, use it, otherwise use some non-null value x”:
val 1: Int = if (b != null) b.length() else -1

Along with the complete if-expression, this can be expressed with the Elvis operator, written ?: :
val 1 = b?.length() ?: -1

If the expression to the left of ?: is not null, the elvis operator returns it, otherwise it returns the expression to the
right. Note that the right-hand side expression is evaluated only if the left-hand side is null.

The !'! Operator

The third option is for NPE-lovers. We can write b!! , and this will return a non-null value of b (e.g.,a String in
our example) or throw an NPE if b is null:

val 1 = b!!.length()

Thus, if you want an NPE, you can have it, but you have to ask for it explicitly, and it does not appear out of the
blue.

90

Other. Null Safety Kotlin Language (0.7.270)

By the way, !! is added for conciseness, and formerly was emulated by an extension function from the standard
library, defined as follows:

inline fun <T : Any> T?.sure(): T =
if (this == null)
throw NullPointerException()
else
this

Safe Casts

Regular casts may result into a ClassCastException if the object is not of the target type. Another option is to
use safe casts that return null if the attempt was not successful:

val aInt: Int? = a as? Int

91

Other. Exceptions Kotlin Language (0.7.270)

Exceptions

Exception Classes

All exception classes in Kotlin are descendants of the class Exception . Every exception has a message, stack
trace and an optional cause.

To throw an exception object, use the throw-expression
throw MyException("Hi There!")
To catch an exception, use the try-expression

try {
// some code

}

catch (e: SomeException) {
// handler

}
finally {

// optional finally block
}

There may be zero or more catch blocks. finally blocks may be omitted. However at least one catch or finall
block should be present.

Try is an expression

try is an expression, i.e. it may have a return value.
val a: Int? = try { parseInt(input) } catch (e: NumberFormatException) { null }

The returned value of a try-expression is either the last expression in the try block or the last expression in the
catch block (or blocks). Contents of the finally block do not affect the result of the expression.

Checked Exceptions
Kotlin does not have checked exceptions. There are many reasons for this, but we will provide a simple example.

The following is an example interface of the JDK implemented by StringBuilder class
Appendable append(CharSequence csq) throws IOException;

What does this signature say? It says that every time | append a string to something (a StringBuilder , some
kind of a log, a console, etc.) | have to catch those I0Exceptions . Why? Because it might be performing 10
(Writer also implements Appendable)... So it results into this kind of code all over the place:

92

Other. Exceptions Kotlin Language (0.7.270)

try {
log.append(message)

}
catch (IOException e) {
// Must be safe

And this is no good, see Effective Java, Item 65: Don’t ignore exceptions.

Bruce Eckel says in Does Java need Checked Exceptions?:

Examination of small programs leads to the conclusion that requiring exception specifications could both
enhance developer productivity and enhance code quality, but experience with large software projects
suggests a different result — decreased productivity and little or no increase in code quality.

Other citations of this sort:

— Java’s checked exceptions were a mistake (Rod Waldhoff)

— The Trouble with Checked Exceptions (Anders Hejlsberg)

Java Interoperability

Please see the section on exceptions in the Java Interoperability section for information about Java interoperability.

93

http://www.oracle.com/technetwork/java/effectivejava-136174.html
http://www.mindview.net/Etc/Discussions/CheckedExceptions
http://radio-weblogs.com/0122027/stories/2003/04/01/JavasCheckedExceptionsWereAMistake.html
http://www.artima.com/intv/handcuffs.html

Other. Annotations Kotlin Language (0.7.270)

Annotations

Annotation Declaration

Annotations are means of attaching metadata to code. To declare an annotation, put the annotation keyword in
front of a class

annotation class fancy

Usage

[fancy] class Foo {
[fancy] fun baz([fancy] foo: Int): Int {
return [fancy] 1

}
}

In most cases, the square brackets are optional and only required when annotating expressions or local
declarations:

fancy class Foo {
fancy fun baz(fancy foo: Int) {
[fancy] fun bar() { ... }
return [fancy] 1

}
}

Constructors

Annotations may have constructors that take parameters.

annotation class special(val why: String)

special("example") class Foo {}

Java Annotations

Java annotations are 100% compatible with Kotlin

import org.junit.Test
import org.junit.Assert.*

class Tests {
Test fun simple() {
assertEquals(42, getTheAnswer())
}
}

94

Other. Annotations Kotlin Language (0.7.270)

Java annotations can also be made to look like modifiers by renaming them on import

import org.junit.Test as test

class Tests {
test fun simple() {

95

Other. Reflection Kotlin Language (0.7.270)

Reflection

Reflection is a set of language and library features that allows for introspecting the structure of you own program at
runtime. Kotlin makes functions and properties first-class citizens in the language, and introspecting them (i.e.
learning a name or a type of a property or function at runtime) is closely intertwined with simply using functional or
reactive style.

Function References

When we have a named function declared like this:
fun isOdd(x: Int) = x % 2 =0

We can easily call it directly (is0dd(5)), but we can also pass it as a value, e.g. to another function. To do this,
we use the :: operator:

val numbers = 1listOf(1, 2, 3)
println(numbers.filter(::is0dd)) // prints [1, 3]

Here ::is0dd is a value of function type (Int) -> Boolean .

If we need to use a member of a class, or an extension function, it needs to be qualified, and the result will be of
type “extension function”, e.g. String: :toCharArray gives us an extension function for type String: String.
() -> CharArray .

Example: Function Composition

Consider the following function:

fun compose<A, B, C>(f: (B) -> C, g: (A) -> B): (A) -> C {
return {x -> f(g(x))}

It returns a composition of two functions passed to it: compose(f, g) = f(g(*)) . Now, you can apply it to
callable references:

fun length(s: String) = s.size

val oddLength = compose(::isOdd, ::length)

val strings = listOf("a", "ab", "abc")

println(strings.filter(oddLength)) // Prints "[a, abc]"

Property References

To access properties as first-class objects in Kotlin, we can also use the :: operator:

96

Other. Reflection Kotlin Language (0.7.270)

var x = 1

fun main(args: Array<String>) {
println(::x.get()) // prints "1"
t:x.set(2)
println(x) // prints "2"

The expression ::x evaluates to a property object of type KProperty<Int> , which allows us to read its value
using get() or retrieve the property name using the name property. For more information, please refer to the
docs on the KProperty class.

For a mutable property, e.g. var y = 1, ::y returns a value of type KMutableProperty<Int>, which has a
set() method.

To access a property that is a member of a class, we qualify it:

class A(val p: Int)

fun main(args: Array<String>) {
val prop = A::p
println(prop.get(A(1))) // prints "1"

For an extension property:

val String.lastChar: Char
get() = this[size - 1]

fun main(args: Array<String>) {
println(String::lastChar.get("abc")) // prints "c"
}

Interoperability With Java Reflection

On the Java platform, standard library contains extensions for reflection classes that provide a mapping to and from
Java reflection objects (see package kotlin.reflect.jvm). For example, to find a backing field or a Java
method that serves as a getter for a Kotlin property, you can say something like this:

import kotlin.reflect.jvm.*
class A(val p: Int)
fun main(args: Array<String>) {

println(A::p.javaGetter) // prints "public final int A.getP()"
println(A::p.javaField) // prints "private final int A.p"

97

http://jetbrains.github.io/kotlin/versions/snapshot/apidocs/kotlin/reflect/KProperty.html
http://jetbrains.github.io/kotlin/versions/snapshot/apidocs/kotlin/reflect/KMutableProperty.html

Other. Reflection Kotlin Language (0.7.270)

The concept of builders is rather popular in the Groovy community. Builders allow for defining data in a semi-
declarative way. Builders are good for generating XML, laying out Ul components, describing 3D scenes and
more...

For many use cases, Kotlin allows to type-check builders, which makes them even more attractive than the
dynamically-typed implementation made in Groovy itself.

For the rest of the cases, Kotlin supports Dynamic types builders.

A type-safe builder example

Consider the following code that is taken from here and slightly adapted:

import com.example.html.* // see declarations below

fun result(args: Array<String>) =
html {

head {
title {+"XML encoding with Kotlin"}

}

body {
hl {+"XML encoding with Kotlin"}
p {+"this format can be used as an alternative markup to XML"}

// an element with attributes and text content
a(href = "http://jetbrains.com/kotlin") {+"Kotlin"}

// mixed content

p {
+"This is some™
b {+"mixed"}

+"text. For more see the"
a(href = "http://jetbrains.com/kotlin") {+"Kotlin"}
+"project"

{+"some text"}
// content generated by
p{

for (arg in args)
+arg

This is a completely legitimate Kotlin code. You can play with this code online (modify it and run in the browser)
here.

How it works

98

http://groovy.codehaus.org/Builders
http://groovy.codehaus.org/GroovyMarkup
http://groovy.codehaus.org/GroovySWT
http://www.artima.com/weblogs/viewpost.jsp?thread=296081
http://groovy.codehaus.org/Builders
http://kotlin-demo.jetbrains.com/?folder=Longer_examples&name=HTML_Builder

Other. Reflection Kotlin Language (0.7.270)

Let’s walk through the mechanisms of implementing type-safe builders in Kotlin. First of all we need to define the
model we want to build, in this case we need to model HTML tags. It is easily done with a bunch of classes. For
example, HTML is a class that describes the <html> tag, i.e. it defines children like <head> and <body> . (See
its declaration below.)

Now, let’s recall why we can say something like this in the code:

html {
7] ooc
}

This is actually a function call that takes a function literal as an argument (see this page for details). Actually, this
function is defined as follows:

fun html(init: HTML.() -> Unit): HTML {
val html = HTML()
html.init()
return html

This function takes one parameter named init , which is itself a function. Actually, it is an extension function that

has a receiver of type HTML (and returns nothing interesting, i.e. Unit). So, when we pass a function literal as an
argument to html , it is typed as an extension function literal, and there’s a this reference available:

html {
this.head { /* ... */ }
this.body { /* ... */ }
}

(head and body are member functions of html .)

Now, this can be omitted, as usual, and we get something that looks very much like a builder already:

html {
head { /* ... */ }
body { /* ... */ }
}

So, what does this call do? Let’s look at the body of html function as defined above. It creates a new instance of
HTML , then it initializes it by calling the function that is passed as an argument (in our example this boils down to
calling head and body onthe HTML instance), and then it returns this instance. This is exactly what a builder
should do.

The head and body functions in the HTML class are defined similarly to html . The only difference is that they
add the built instances to the children collection of the enclosing HTML instance:

99

Other. Reflection Kotlin Language (0.7.270)

fun head(init: Head.() -> Unit) {
val head = Head()
head.init()
children.add(head)
return head

fun body(init: Body.() -> Unit) {
val body = Body()
body.init()
children.add(body)
return body

Actually these two functions do just the same thing, so we can have a generic version, initTag:

protected fun initTag<T : Element>(tag: T, init: T.() -> Unit): T {
tag.init()
children.add(tag)
return tag

}

So, now our functions are very simple:

fun head(init: Head.() -> Unit)

initTag(Head(), init)

fun body(init: Body.() -> Unit)

initTag(Body(), init)

And we can use them to build <head> and <body> tags.

One other thing to be discussed here is how we add text to tag bodies. In the example above we say something like

html {
head {

title {+"XML encoding with Kotlin"}

}
7 ooc

So basically, we just put a string inside a tag body, but there is this little + in front of it, so it is a function call that
invokes a prefix plus() operation. That operation is actually defined by an extension function plus() thatis a
member of the TagWithText abstract class (a parent of Title):

fun String.plus() {
children.add(TextElement(this))
}

So, what the prefix + does here is it wraps a string into an instance of TextElement and adds it to the
children collection, so that it becomes a proper part of the tag tree.

100

Other. Reflection Kotlin Language (0.7.270)

All this is defined in a package com.example.html thatis imported at the top of the builder example above. In the
next section you can read through the full definition of this package.
Full definition of the com.example.html package

This is how the package com.example.html is defined (only the elements used in the example above). It builds
an HTML tree. It makes heavy use of Extension functions and Extension function literals.

package com.example.html

import java.util.ArrayList
import java.util.HashMap

trait Element {
fun render(builder: StringBuilder, indent: String)

override fun toString(): String {
val builder = StringBuilder()
render(builder, "")
return builder.toString()

class TextElement(val text: String): Element {
override fun render(builder: StringBuilder, indent: String) {
builder.append("$indent$text\n")

abstract class Tag(val date: String): Element {
val children: ArraylList<Element> = ArrayList<Element>()
val attributes = HashMap<String, String>()

protected fun initTag<T: Element>(tag: T, init: T.() -> Unit): T {
tag.init()
children.add(tag)
return tag

override fun render(builder: StringBuilder, indent: String) {
builder.append("$indent<$name${renderAttributes()}>\n")
for (c in children) {
c.render(builder, indent + " ")
}
builder.append("$indent</$name>\n")

private fun renderAttributes(): String? {
val builder = StringBuilder()
for (a in attributes.keySet()) {
builder.append(" $a=\"${attributes[a]}\"")

}
return builder.toString()

101

Other. Reflection Kotlin Language (0.7.270)

abstract class TagWithText(name: String): Tag(name) {
fun String.plus() {
children.add(TextElement (this))

class HTML(): TagWithText("html") {
fun head(init: Head.() -> Unit)

initTag(Head(), init)

fun body(init: Body.() -> Unit) initTag(Body(), init)

class Head(): TagWithText("head") {
fun title(init: Title.() -> Unit) = initTag(Title(), init)

class Title(): TagWithText("title")

abstract class BodyTag(name: String): TagWithText(name) {
fun b(init: B.() -> Unit) initTag(B(), init)
fun p(init: P.() -> Unit) = initTag(P(), init)
fun hi(init: H1.() -> Unit) = initTag(H1(), init)
fun a(href: String, init: A.() -> Unit) {
val a = initTag(A(), init)
a.href = href

class Body(): BodyTag("body")

class B(): BodyTag("b")
class P(): BodyTag("p")
class H1(): BodyTag("h1")
class A(): BodyTag("a") {
public var href: String
get() = attributes["href"]!!
set(value) {
attributes["href"] = value

fun html(init: HTML.() -> Unit): HTML {
val html = HTML()
html.init()
return html

Appendix. Making Java classes nicer

In the code above there’s something that looks very nice:

102

Other. Reflection Kotlin Language (0.7.270)

class A() : BodyTag("a") {
var href: String
get() = attributes["href"]!!
set(value) { attributes["href"] = value }

We access the attributes map as if it were an associative array: just with the [] operation. By convention this
compiles to a call to get(K) or set(K, V), all right. But we said that attributes was a Java Map, i.e. it does
NOT have a set(K, V) . This problem is easily fixable in Kotlin:

fun <K, V> Map<K, V>.set(key: K, value: V) = this.put(key, value)

So, we simply define an exiension function set(K, V) that delegates to vanilla put and makes a Kotlin operator
available for a Java class.

103

Reference. Reflection Kotlin Language (0.7.270)

Reference

We’re working on revamping the API with a new style and much better contents. For now, please refer to the old
site

104

http://jetbrains.github.io/kotlin/versions/snapshot/apidocs/index.html

Reference. Reflection Kotlin Language (0.7.270)

Grammar

We are working on revamping the Grammar definitions and give it some style! Until then, please check the
Grammar from the old site

105

http://confluence.jetbrains.com/display/Kotlin/Grammar

Interop. Java Interop Kotlin Language (0.7.270)

Interop

Java Interop

Kotlin is designed with Java Interoperability in mind. Existing Java code can be called from Kotlin in a natural way,
and Kotlin code can be used from Java rather smoothly as well. In this section we describe some details about
calling Java code from Kotlin.

Calling Java code from Kotlin

Pretty much all Java code can be used without any issues

import java.util.*

fun demo(source: List<Int>) {
val list = ArraylList<Int>()
// 'for'-loops work for Java collections:
for (item in source)
list.add(item)
// Operator conventions work as well:
for (i in @..source.size() - 1)
list[i] = source[i] // get and set are called

Methods returning void

If a Java method returns void, it will return Unit when called from Kotlin. If, by any chance, someone uses that
return value, it will be assigned at the call site by the Kotlin compiler, since the value itself is known in advance
(being Unit).

Escaping for Java identifiers that are keywords in Kotlin

Some of the Kotlin keywords are valid identifiers in Java: in, object, is, etc. If a Java library uses a Kotlin
keyword for a method, you can still call the method escaping it with the backtick (') character

foo. is” (bar)

Null-Safety and Platform Types

106

Interop. Java Interop Kotlin Language (0.7.270)

Any reference in Java may be null, which makes Kotlin’s requirements of strict null-safety impractical for objects
coming from Java. Types of Java declarations are treated specially in Kotlin and called platform types. Null-checks
are relaxed for such types, so that safety guarantees for them are the same as in Java (see more below).

Consider the following examples:

val list = ArrayList<String>() // non-null (constructor result)
list.add("Item")

val size = list.size() // non-null (primitive int)

val item = list.get(@) // platform type inferred (ordinary Java object)

When we call methods on variables of platform types, Kotlin does not issue nullability errors at compile time, but the
call may fail at runtime, because of a null-pointer exception or an assertion that Kotlin generates to prevent nulls
from propagating:

item.substring(1) // allowed, may throw an exception if item == null

Platform types are non-denotable, meaning that one can not write them down explicitly in the language. When a
platform value is assigned to a Kotlin variable, we can rely on type inference (the variable will have an inferred
platform type then, as item has in the example above), or we can choose the type that we expect (both nullable
and non-null types are allowed):

val nullable: String? = item // allowed, always works
val notNull: String = item // allowed, may fail at runtime

If we choose a non-null type, the compiler will emit an assertion upon assignment. This prevents Kotlin’s non-null
variables from holding nulls. Assertions are also emitted when we pass platform values to Kotlin functions
expecting non-null values etc. Overall, the compiler does its best to prevent nulls from propagating far through the
program (although sometimes this is impossible to eliminate entirely, because of generics).

Notation for Platform Types

As mentioned above, platform types cannot be mentioned explicitly in the program, so there’s no syntax for them in
the language. Nevertheless, the compiler and IDE need to display them sometimes (in error messages, parameter
info etc), so we have a mnemonic notation for them:

— T! means“T or T?”,
— (Mutable)Collection<T>! means “Java collection of T may be mutable or not, may be nullable or not”,

— Array<(out) T>! means “Java array of T (or a subtype of T), nullable or not”

Mapped types

Kotlin treats some Java types specially. Such types are not loaded from Java “as is”, but are mapped to
corresponding Kotlin types. The mapping only matters at compile time, the runtime representation remains
unchanged. Java’s primitive types are mapped to corresponding Kotlin types (keeping platform types in mind):

Java type Kotlin type
byte kotlin.Byte

107

Interop. Java Interop Kotlin Language (0.7.270)

Java type Kotlin type
short kotlin.Short
int kotlin.Int
long kotlin.Long
char kotlin.Char
float kotlin.Float
double kotlin.Double
boolean kotlin.Boolean

Some non-primitive built-in classes are also mapped:

Java type Kotlin type
java.lang.Object kotlin.Any!
java.lang.Cloneable kotlin.Cloneable!
java.lang.Comparable kotlin.Comparable!
java.lang.Enum kotlin.Enum!
java.lang.Annotation kotlin.Annotation!
java.lang.Deprecated kotlin.deprecated!
java.lang.Void kotlin.Nothing!
java.lang.CharSequence kotlin.CharSequence!
java.lang.String kotlin.String!
java.lang.Number kotlin.Number!
java.lang.Throwable kotlin.Throwable!

Collection types may be read-only or mutable in Kotlin, so Java’s collections are mapped as follows (all Kotlin types
in this table reside in the package kotlin)

Java type Kotlin read-only Kotlin mutable type Loaded platform type

type
Iterator<T> Iterator<T> MutableIterator<T> (Mutable)Iterator<T>!
Iterable<T> Iterable<T> MutableIterable<T> (Mutable)Iterable<T>!
Collection<T> Collection<T> MutableCollection<T> (Mutable)Collection<T>!
Set<T> Set<T> MutableSet<T> (Mutable)Set<T>!
List<T> List<T> MutablelList<T> (Mutable)List<T>!
ListIterator<T> ListIterator<T> MutablelListIterator<T> (Mutable)ListIterator<T>!
Map<K, V> Map<K, V> MutableMap<K, V> (Mutable)Map<K, V>!

Map.Entry<K, V>

Map.Entry<K, V>

Java’s arrays are mapped as mentioned below:

Java type
int[]

Kotlin type
kotlin.IntArray!

MutableMap.MutableEntry<K,V>

108

(Mutable)Map.
(Mutable)Entry<k, V>!

Interop. Java Interop Kotlin Language (0.7.270)

Java type Kotlin type
String[] kotlin.Array<(out) String>!

Java generics in Kotlin

Kotlin’s generics are a little different from Java’s (see Generics). When importing Java types to Kotlin we perform
some conversions:
— Java’s wildcards are converted into type projections
— Foo<? extends Bar> becomes Foo<out Bar!>!

— Foo<? super Bar> becomes Foo<in Bar!>!

— Java’s raw types are converted into star projections

— List becomes List<*>! ,i.e. List<out Any?>!

Like Java’s, Kotlin’s generics are not retained at runtime, i.e. objects do not carry information about actual type
arguments passed to their constructors, i.e. ArrayList<Integer>() is indistinguishable from
ArraylList<Character>() . This makes it impossible to perform is-checks that take generics into account. Kotlin
only allows is-checks for star-projected generic types:

if (a is List<Int>) // Error: cannot check if it is really a List of Ints
// but
if (a is List<*>) // OK: no guarantees about the contents of the list

Java Arrays

Arrays in Kotlin are invariant, unlike Java. This means that Kotlin does not let us assign an Array<String> to an
Array<Any> , which prevents a possible runtime failure. Passing an array of a subclass as an array of superclass
to a Kotlin method is also prohibited, but for Java methods this is allowed (though platform types of the form
Array<(out) String>!).

Arrays are used with primitive datatypes on the Java platform to avoid the cost of boxing/unboxing operations. As
Kotlin hides those implementation details, a workaround is required to interface with Java code. There are
specialized classes for every type of primitive array (IntArray , DoubleArray , CharArray, and so on)to
handle this case. They are not related to the Array class and are compiled down to Java’s primitive arrays for
maximum performance.

Suppose there is a Java method that accepts an int array of indices:

public class JavaArrayExample {

public void removeIndices(int[] indices) {
// code here...

To pass an array of primitive values you can do the following in Kotlin:

109

Interop. Java Interop Kotlin Language (0.7.270)

val javaObj = JavaArrayExample()
val array = intArray(@, 1, 2, 3)
javaObj.removeIndices(array) // passes int[] to method

Java classes sometimes use a method declaration for the indices with a variable number of arguments (varargs).

public class JavaArrayExample {

public void removeIndices(int... indices) {
// code here...

In that case you need to use the spread operator * to pass the IntArray :

val javaObj = JavaArray()
val array = intArray(o, 1, 2, 3)
javaObj.removeIndicesVarArg(*array)

It’s currently not possible to pass null to a method that is declared as varargs.

Checked Exceptions

In Kotlin, all exceptions are unchecked, meaning that the compiler does not force you to catch any of them. So,
when you call a Java method that declares a checked exception, Kotlin does not force you to do anything:

fun render(list: List<*>, to: Appendable) {
for (item in list)
to.append(item.toString()) // Java would require us to catch IOException here

Object Methods

When Java types are imported into Kotlin, all the references of the type java.lang.Object are turnedinto Any .
Since Any is not platform-specific, it only declares toString() , hashCode() and equals() as its members,
so to make other members of java.lang.Object available, Kotlin uses extension functions.

wait()/notify()

Effective Java Item 69 kindly suggests to prefer concurrency utilities to wait() and notify() . Thus, these
methods are not available on references of type Any . If you really need to call them, you can cast to
java.lang.Object:

(foo as java.lang.Object).wait()

getClass()

110

http://www.oracle.com/technetwork/java/effectivejava-136174.html

Interop. Java Interop Kotlin Language (0.7.270)

To retrieve the type information from an object, we use the javaClass extension property.

val fooClass = foo.javaClass
Instead of Java’s Foo.class use javaClass().

val fooClass = javaClass<Foo>()

clone()
To override clone() , your class needs to extend kotlin.Cloneable :

class Example : Cloneable {
override fun clone(): Any { ... }

}

Do not forget about Effective Java, Item 11: Override clone judiciously.

finalize()
To override finalize() , all you need to do is simply declare it, without using the override keyword:
class C {

protected fun finalize() {
// finalization logic

}
}

According to Java’s rules, finalize() must not be private.

Inheritance from Java classes

At most one Java-class (and as many Java interfaces as you like) can be a supertype for a class in Kotlin. This
class must go first in the supertype list.

Accessing static members

Static members of Java classes form “class objects” for these classes. We cannot pass such a “class object”
around as a value, but can access the members explicitly, for example

if (Character.isLetter(a)) {
Il ococ

Calling Kotlin code from Java

Kotlin code can be called from Java easily.

1M

http://www.oracle.com/technetwork/java/effectivejava-136174.html

Interop. Java Interop Kotlin Language (0.7.270)

Package-Level Functions

All the functions and properties declared inside a package org.foo.bar are putinto a Java class hamed
org.foo.bar.BarPackage .

package demo
class Foo

fun bar() {
}

// 3Java
new demo.Foo();
demo.DemoPackage.bar();

For the root package (the one that’s called a “default package” in Java), a class named _DefaultPackage is
created.

Static Methods and Fields

As mentioned above, Kotlin generates static methods for package-level functions. On top of that, it also generates
static methods for functions defined in named objects or class objects of classes and annotated as
[platformStatic] . For example:

class C {
class object {
platformStatic fun foo() {}
fun bar() {}
}
}

Now, foo() is static in Java, while bar() is not:

C.foo(); // works fine
C.bar(); // error: not a static method

Same for named objects:

object Obj {
platformStatic fun foo() {}
fun bar() {}

In Java:

112

Interop. Java Interop Kotlin Language (0.7.270)

Obj.foo(); // works fine

Obj.bar(); // error

Obj.INSTANCES$.bar(); // works, a call through the singleton instance
Obj.INSTANCE$.foo(); // works too

Also, public properties defined in objects and class objects are turned into static fields in Java:

object Obj {
val CONST = 1

In Java:

int ¢ = Obj.CONST;

Handling signature clashes with [platformName]
Sometimes we have a named function in Kotlin, for which we need a different JVM name the byte code. The most

prominent example happens due to type erasure:

fun List<String>.filterValid(): List<String>
fun List<Int>.filterValid(): List<Int>

These two functions can not be defined side-by-side, because their JVM signatures are the same:
filterValid(Ljava/util/List;)Ljava/util/List; . If we really want them to have the same name in Kotlin,
we can annotate one (or both) of them with [platformName] and specify a different name as an argument:

fun List<String>.filterValid(): List<String>
[platformName("filterValidInt")
fun List<Int>.filtervalid(): List<Int>

From Kotlin they will be accessible by the same name filterValid , but from Java it willbe filterValid and
filterValidInt .

The same trick applies when we need to have a property x alongside with a function getX() :

val x: Int
[platformName("getX_prop")]
get() = 15

fun getX() = 10

Checked Exceptions

As we mentioned above, Kotlin does not have checked exceptions. So, normally, the Java signatures of Kotlin
functions do not declare exceptions thrown. Thus if we have a function in Kotlin like this:

113

Interop. Java Interop Kotlin Language (0.7.270)

package demo

fun foo() {
throw IOException()

}

And we want to call it from Java and catch the exception:

// Java

try {
demo.DemoPackage.foo();

}

catch (IOException e) { // error: foo() does not declare IOException in the throws list

1l ooc

we get an error message from the Java compiler, because foo() does not declare I0Exception . To work
around this problem, use the [throws] annotation in Kotlin:

[throws(javaClass<IOException>())] fun foo() {
throw IOException();

Null-safety

When calling Kotlin functions from Java, nobody prevents us from passing null as a non-null parameter. That’s
why Kotlin generates runtime checks for all public functions that expect non-nulls. This way we get a
NullPointerException in the Java code immediately.

Properties

Property getters are turned into getmethods, and setters — into set-methods.

114

Tools. Using Maven Kotlin Language (0.7.270)

Tools

Using Maven

Plugin and Versions
The kotlin-maven-plugin compiles Kotlin sources and modules. Currently only Maven v3 is supported.
Define the version of Kotlin you want to use via kotlin.version. The possible values are:

— X.Y-SNAPSHOT: Correspond to snapshot version for X.Y releases, updated with every successful build on the
Cl server. These versions are not really stable and are only recommended for testing new compiler features.
Currently all builds are published as 0.1-SNAPSHOT. To use a shapshot, you need to configure a snapshot
repository in the pom file.

— X.Y.Z: Correspond to release or milestone versions X.Y.Z, updated manually. These are stable builds. Release
versions are published to Maven Central Repository. No extra configuration is needed in your pom file.

The correspondence between milestones and versions is displayed below:

Milestone Version

M9 0.9.66
M8 0.8.11
M7 0.7.270
M6.2 0.6.1673
M6.1 0.6.602
M6 0.6.69
M5.3 0.5.998

Configuring Snapshot Repositories

To use a snapshot version of Kotlin, include the following repository definitions to the pom

115

Tools. Using Maven Kotlin Language (0.7.270)

<repositories>
<repository>
<id>sonatype.oss.snapshots</id>
<name>Sonatype 0SS Snapshot Repository</name>
<url>http://oss.sonatype.org/content/repositories/snapshots</url>
<releases>
<enabled>false</enabled>
</releases>
<snapshots>
<enabled>true</enabled>
</snapshots>
</repository>
</repositories>

<pluginRepositories>
<pluginRepository>
<id>sonatype.oss.snapshots</id>
<name>Sonatype 0SS Snapshot Repository</name>
<url>http://oss.sonatype.org/content/repositories/snapshots</url>
<releases>
<enabled>false</enabled>
</releases>
<snapshots>
<enabled>true</enabled>
</snapshots>
</pluginRepository>
</pluginRepositories>

Dependencies

Kotlin has an extensive standard library that can be used in your applications. Configure the following dependency
in the pom file

<dependencies>
<dependency>
<groupId>org.jetbrains.kotlin</groupId>
<artifactId>kotlin-stdlib</artifactId>
<version>${kotlin.version}</version>
</dependency>
</dependencies>

Compiling Kotlin only source code
To compile source code, specify the source directories in the tag:

<sourceDirectory>${project.basedir}/src/main/kotlin</sourceDirectory>
<testSourceDirectory>${project.basedir}/src/test/kotlin</testSourceDirectory>

The Kotlin Maven Plugin needs to be referenced to compile the sources:

116

Tools. Using Maven

Kotlin Language (0.7.270)

<plugin>
<artifactId>kotlin-maven-plugin</artifactId>
<groupId>org.jetbrains.kotlin</groupId>
<version>${kotlin.version}</version>

<executions>
<execution>
<id>compile</id>
<phase>compile</phase>
<goals> <goal>compile</goal> </goals>
</execution>

<execution>
<id>test-compile</id>
<phase>test-compile</phase>
<goals> <goal>test-compile</goal> </goals>
</execution>
</executions>
</plugin>

Compiling Kotlin and Java sources

To compile mixed code applications Kotlin compiler should be invoked before Java compiler. In maven terms that

means kotlin-maven-plugin should be run before maven-compiler-plugin.

It could be done by moving Kotlin compilation to previous phase, process-sources (feel free to suggest a better

solution if you have one):

<plugin>
<artifactId>kotlin-maven-plugin</artifactId>
<groupId>org.jetbrains.kotlin</groupId>
<version>0@.1-SNAPSHOT</version>

<executions>
<execution>
<id>compile</id>
<phase>process-sources</phase>
<goals> <goal>compile</goal> </goals>
</execution>

<execution>
<id>test-compile</id>
<phase>process-test-sources</phase>
<goals> <goal>test-compile</goal> </goals>
</execution>
</executions>
</plugin>

Using External Annotations

117

Tools. Using Maven Kotlin Language (0.7.270)

Kotlin uses external annotation to have precise information about types in Java libraries. To specify these
annotations, use annotationPaths in :

<plugin>
<artifactId>kotlin-maven-plugin</artifactId>
<groupId>org.jetbrains.kotlin</groupId>
<version>@.1-SNAPSHOT</version>

<configuration>
<annotationPaths>
<annotationPath>path to annotations root</annotationPath>
</annotationPaths>
</configuration>

Examples

An example Maven project can be downloaded directly from the GitHub repository

118

https://github.com/JetBrains/kotlin-examples/archive/master/maven.zip

Tools. Using Ant Kotlin Language (0.7.270)

Using Ant

Getting the Ant Tasks
Kotlin provides three tasks for Ant:

— kotlinc: Kotlin compiler targeting the JVM
— kotlin2js: Kotlin compiler targeting JavaScript

— withKotin: Task to compile Kotlin files when using the standard javac Ant task

These tasks are defined in the kotlin-ant.jar library which is located in the lib folder for the Kotlin Compiler

Targeting JVM with Kotlin-only source

When the project consists of exclusively Kotlin source code, the easiest way to compile the project is to use the
kotlinc task

<project name="Ant Task Test" default="build">
<typedef resource="org/jetbrains/jet/buildtools/ant/antlib.xml"
classpath="${kotlin.lib}/kotlin-ant.jar"/>

<target name="build">
<kotlinc src="hello.kt" output="hello.jar"/>
</target>
</project>

where ${kotlin.lib} points to the folder where the Kotlin standalone compiler was unzipped.

Targeting JVM with Kotlin-only source and multiple roots

If a project consists of multiple source roots, use src as elements to define paths

<project name="Ant Task Test" default="build">
<typedef resource="org/jetbrains/jet/buildtools/ant/antlib.xml"
classpath="${kotlin.lib}/kotlin-ant.jar"/>

<target name="build">
<kotlinc output="hello.jar">
<src path="rootl"/>
<src path="root2"/>
</kotlinc>
</target>
</project>

Targeting JVM with Kotlin and Java source

If a project consists of both Kotlin and Java source code, while it is possible to use kotlinc, to avoid repetition of tas
parameters, it is recommended to use withKotlin task

119

https://github.com/JetBrains/kotlin/releases/tag/build-0.9.66

Tools. Using Ant Kotlin Language (0.7.270)

<project name="Ant Task Test" default="build">

<path id="classpath">
<fileset dir="${idea.sdk}/1ib" includes="annotations.jar"/>
<fileset dir="${kotlin.home}" includes="kotlin-runtime.jar"/>
</path>

<typedef name = "withKotlin" classname =
"org.jetbrains.jet.buildtools.ant.KotlinCompilerAdapter"/>

<target name="build">
<delete dir="classes" failonerror="false"/>
<mkdir dir="classes"/>
<javac destdir="classes" includeAntRuntime="false" srcdir="rootl">
<classpath refid="classpath"/>
<withKotlin externalannotations="rootl/b/">
<externalannotations path="rootl/a/" />
</withKotlin>
</javac>
<jar destfile="hello.jar">
<fileset dir="/classes"/>
</jar>
</target>
</project>

Targeting JavaScript with single source folder

<project name="Ant Task Test" default="build">
<typdef resource="org/jetbrains/jet/buildtools/ant/antlib.xml"
classpath="${kotlin.lib}/kotlin-ant.jar"/>

<target name="build">
<kotlin2js src="rootl" output="out.js"/>
</target>
</project>

Targeting JavaScript with Prefix, PostFix and sourcemap options

<project name="Ant Task Test" default="build">
<taskdef resource="org/jetbrains/jet/buildtools/ant/antlib.xml"
classpath="${kotlin.lib}/kotlin-ant.jar"/>

<target name="build">
<kotlin2js src="rootl" output="out.js" outputPrefix="prefix"
outputPostfix="postfix" sourcemap="true"/>
</target>
</project>

References

120

Tools. Using Ant Kotlin Language (0.7.270)

Complete list of elements and attributes are listed below

kotlinc Attributes

Name Description Required Default
Value

src Kotlin source file or directory to compile Either src or module needs to

be defined
module Kotlin module to compile Either src or module needs to

be defined
output Destination directory Either output or jar is required
classpath Compilation class path No
classpathref Compilation class path reference No
stdlib Path to “kotlin-runtime.jar” No
includeRuntime If “jar” is used, whether Kotlin runtime No true

library is included

withKotlin attributes

Name Description Required Default Value

externalannotations Path to external annotations No

kotlin2js Attributes

Name Description Required
src Kotlin source file or directory to compile Yes
output Destination file Yes
library Library files (kt, dir, jar) No
outputPrefix Prefix to use for generated JavaScript files No
outputSuffix Suffix to use for generated JavaScript files No
sourcemap Whether sourcemap file should be generated No
main Should compiler generated code call the main function No

121

Tools. Using Griffon Kotlin Language (0.7.270)

Using Griffon

Griffon support is provided externally

122

https://github.com/griffon/griffon-kotlin-plugin

Tools. Using Gradle Kotlin Language (0.7.270)

Using Gradle

Plugin and Versions
The kotlin-gradle-plugin compiles Kotlin sources and modules.
Define the version of Kotlin you want to use via kotlin.version. The possible values are:

— X.Y-SNAPSHOT: Correspond to snapshot version for X.Y releases, updated with every successful build on the
Cl server. These versions are not really stable and are only recommended for testing new compiler features.
Currently all builds are published as 0.1-SNAPSHOT. To use a snapshot, you need to configure a snapshot
repository in the build.gradle file.

— X.Y.Z: Correspond to release or milestone versions X.Y.Z, updated manually. These are stable builds. Release
versions are published to Maven Central Repository. No extra configuration is needed in your build.gradle file.

The correspondence between milestones and versions is displayed below:

Milestone Version

M9 0.9.66
M8 0.8.11
M7 0.7.270
M6.2 0.6.1673
M6.1 0.6.602
M6 0.6.69
M5.3 0.5.998

Project Layout

Kotlin sources should be located in a separate directory kotlin which is located at the same level as the java
directory for Java sources:

project
- main (root)
- kotlin
- java

Configuring Dependencies

You need to add dependencies on kotlin-gradle-plugin and the Kotlin standard library:

123

Tools. Using Gradle Kotlin Language (0.7.270)

buildscript {
repositories {
mavenCentral()
}
dependencies {
classpath 'org.jetbrains.kotlin:kotlin-gradle-plugin:<version>'
}
}

apply "kotlin"

repositories {
mavenCentral()

}

dependencies {
compile 'org.jetbrains.kotlin:kotlin-stdlib:<version>'

}

Using Snapshot versions

If you want to use a snapshot version (nightly build), first add the snapshot repository and change the version to
0.1-SNAPSHOT:

buildscript {
repositories {
mavenCentral()
maven {
url 'http://oss.sonatype.org/content/repositories/snapshots’
}
}

dependencies {
classpath 'org.jetbrains.kotlin:kotlin-gradle-plugin:@.1-SNAPSHOT'
}
}

apply "kotlin"

repositories {
mavenCentral()
maven {
url 'http://oss.sonatype.org/content/repositories/snapshots"
}
}

dependencies {
compile 'org.jetbrains.kotlin:kotlin-stdlib:@.1-SNAPSHOT'

}

Android Projects

124

Tools. Using Gradle Kotlin Language (0.7.270)

Android’s Gradle model is a little different from ordinary Gradle, so if you want to build an Android project written in
Kotlin, you need kotlin-android plugin instead of kotlin:

buildscript {

}
apply "android’
apply 'kotlin-android’

Android Studio

If you are using Android Studio, add the following under android:

android {

sourceSets {
main.java.srcDirs += ‘src/main/kotlin’

}
}

This lets Android Studio know that your kotlin directory is a source root, so when the project model is loaded into
the IDE it will be properly recognized.

Using External Annotations

External annotations for JDK and Android SDK will be configured automatically. If you want to add more
annotations for some of your libraries, add the following line to your Gradle script:

kotlinOptions.annotations = file('<path to annotations>")

Examples

For more examples, including Android, Mixed Java/Kotlin, check out the Samples folder on GitHub

125

https://github.com/JetBrains/kotlin-examples/tree/master/gradle

FAQ. FAQ Kotlin Language (0.7.270)

FAQ

FAQ

Common Questions

What is Kotlin?

Kotlin is a statically typed language that targets the JVM and JavaScript. It is a general-purpose language intended
for industry use.

It is developed by a team at JetBrains although it is an OSS language and has external contributors.

Why a new language?

At JetBrains, we’ve been developing for the Java platform for a long time, and we know how good it is. On the othel
hand, we know that the Java programming language has certain limitations and problems that are either impossible
or very hard to fix due to backward-compatibility issues. We know that Java is going to stand long, but we believe
that the community can benefit from a new statically typed JVM-targeted language free of the legacy trouble and
having the features so desperately wanted by the developers.

The main design goals behind this project are

— To create a Java-compatible language,
— That compiles at least as fast as Java,
— Make it safer than Java, i.e. statically check for common pitfalls such as null pointer dereference,

— Make it more concise than Java by supporting variable type inference, higher-order functions (closures),
extension functions, mixins and first-class delegation, etc;

— And, keeping the useful level of expressiveness (see above), make it way simpler than the most mature
competitor — Scala.

How is it licensed?

Kotlin is an OSS language and is licensed under the Apache 2 OSS License. The Intellid Plug-in is also OSS.

It is hosted on GitHub and we happily accept contributors

Is it Java Compatible?

Yes. The compiler emits Java byte-code. Kotlin can call Java, and Java can call Kotlin. See Java interoperability.

126

FAQ. FAQ Kotlin Language (0.7.270)

Is there tooling support?

Yes. There is an Intellid IDEA plugin that is available as an OSS project under the Apache 2 License. You can use
Kotlin both in the free OSS Community Edition and Ultimate Edition of IntelliJ IDEA.

Is there Eclipse support?

Not currently although we plan to provide it after the Intellid IDEA plugin. We’re also eager and willing to help any
member of the community that wants to step up to the task!

Is there a standalone compiler?

Yes. You can download the standalone compiler and other builds tools from the release page on GitHub

Is Kotlin a Functional Language?

Kotlin is an Object-Orientated language. However it has support for higher-order functions as well as function
literals and top-level functions. In addition, there are a good humber of common functional language constructs in
the standard Kotlin library (such as map, flatMap, reduce, etc.). Also, there’s no clear definition on what a
Functional Language is so we couldn’t say Kotlin is one.

Does Kotlin support generics?

Kotlin supports generics with runtime retention. It also supports declaration-site variance and usage-site variance.
Kotlin also does not have wildcard types.

Are semicolons required?

No. They are optional.

Are curly braces required?

Yes.

Why have type declarations on the right?

We believe it makes the code more readable. Besides, it enables some nice syntactic features, for instance, it is
easy to leave type annotations out. Scala has also proven pretty well this is not a problem.

Will right-handed type declarations effect tooling?

No. It won’t. We can still implement suggestions for variable names, etc.

Is Kotlin extensible?

We are planning on making it extensible in a few ways: from inline functions to annotations and type loaders.

Can | embed my DSL into the language?

Yes. Kotlin provides a few features that help: Operator overloading, Custom Control Structures via inline functions,
Infix function calls, Extension Functions, Annotations and language quotations.

127

http://www.jetbrains.com/idea/features/editions_comparison_matrix.html
https://github.com/JetBrains/kotlin/releases/tag/build-0.9.66

FAQ. FAQ Kotlin Language (0.7.270)

What ECMAScript level does the JavaScript support?

Currently at 5.

Does the JavaScript back-end support module systems?

Yes. There are plans to provide CommondJS and AMD support.

128

FAQ. Comparison to Java Kotlin Language (0.7.270)

Comparison to Java

Some Java issues addressed in Kotlin

Kotlin fixes a series of issues that Java suffers from

— Null references are controlled by the type system.

— No raw types

— Arrays in Kotlin are invariant
— Kotlin has proper function types, as opposed to Java’s SAM-conversions

— Use-site variance without wildcards

— Kotlin does not have checked exceptions

What Java has that Kotlin does not

— Checked exceptions

— Primitive types that are not classes
— Static members

— Non-private fields

— Wildcard-types

What Kotlin has that Java does not

— Function literals + Inline functions = performant custom control structures

— Extension functions

— Null-safety

— Smart casts

— String templates
— Properties

— Primary constructors

— First-class delegation

— Type inference for variable and property types

— Singletons

— Declaration-site variance & Type projections

— Range expressions

— Operator overloading

— Class objects

129

FAQ. Comparison to Scala Kotlin Language (0.7.270)

Comparison to Scala
The two main design goals for Kotlin are:

— Make compilation at least as fast as Java

— Keep useful level of expressiveness while maintaining the language simple as possible

Taking this into account, if you are happy with Scala, you probably do not need Kotlin

What Scala has that Kotlin does not

— Implicit conversions, parameters, etc

— In Scala, sometimes it’s very hard to tell what’s happening in your code without using a debugger,
because too many implicits get into the picture

— To enrich your types with functions in Kotlin use Extension functions.

— Overridable type members
— Path-dependent types
— Macros

— Existential types

— Type projections are a very special case

— Complicated logic for initialization of traits

— See Classes and Inheritance

— Custom symbolic operations

— See Operator overloading

— Built-in XML

— See Type-safe Groovy-style builders

Things that may be added to Kotlin later:

— Structural types
— Value types

— Yield operator
— Actors

— Parallel collections

What Kotlin has that Scala does not

— Zero-overhead null-safety

— Scala has Option, which is a syntactic and run-time wrapper

— Smart casts

— Kaotlin’s Inline functions facilitate Nonlocal jumps

— First-class delegation. Also implemented via 3rd party plugin: Autoproxy

130

FAQ. Comparison to Scala Kotlin Language (0.7.270)

131

	Table of Contents
	Getting Started
	Basic Syntax
	Defining packages
	Defining functions
	Defining local variables
	Using string templates
	Using conditional expressions
	Using nullable values and checking for null
	Using type checks and automatic casts
	Using a for loop
	Using a while loop
	Using when expression
	Using ranges
	Using collections

	Idioms
	Creating DTO’s (POJO’s/POCO’s)
	Declaring a final local variable
	Default values for function parameters
	Filtering a list
	String Interpolation
	Instance Checks
	Traversing a map/list of pairs
	Using ranges
	Read-only list
	Read-only map
	Accessing a map
	Lazy property
	Extension Functions
	Creating a singleton
	If not null shorthand
	If not null and else shorthand
	Executing a statement if null
	Execute if not null
	Return on when statement
	Return on try catch block
	Return on if statement
	Single-expression functions

	Coding Conventions
	Naming Style
	Colon
	Unit

	Basics
	Basic Types
	Numbers
	Literal Constants
	Representation
	Explicit Conversions
	Operations

	Characters
	Booleans
	Arrays
	Strings
	String Literals
	Templates

	Packages
	Imports
	Visibility and Package Nesting

	Control Flow
	If Expression
	When Expression
	Continue inside when

	For Loops
	While Loops
	Break and continue in loops

	Returns and Jumps
	Break and Continue Labels
	Return at Labels

	Classes and Objects
	Classes and Inheritance
	Classes
	Constructors
	Creating instances of classes
	Class Members

	Inheritance
	Overriding Members
	Overriding Rules

	Abstract Classes
	Class Objects

	Properties and Fields
	Declaring Properties
	Getters and Setters
	Backing Fields
	Backing Properties

	Overriding Properties
	Delegated Properties

	Traits
	Implementing Traits
	Properties in Traits
	Accessing state in trait
	Resolving overriding conflicts

	Visibility Modifiers
	Packages
	Classes and Traits
	Constructors
	Local declarations

	Extensions
	Extension Functions
	Extensions are resolved statically
	Extension Properties
	Scope of Extensions
	Motivation

	Data Classes
	Copying
	Data Classes and Multi-Declarations
	Standard Data Classes

	Generics
	Variance
	Declaration-site variance

	Type projections
	Use-site variance: Type projections
	Star-projections

	Generic functions
	Generic constraints
	Upper bounds
	Class objects

	Nested Classes
	Inner classes

	Enum Classes
	Initialization
	Anonymous classes

	Object Expressions and Declarations
	Object expressions
	Object declarations
	Semantical difference between object expressions and declarations

	Delegation
	Class Delegation

	Delegated Properties
	Property Delegate Requirements
	Standard Delegates
	Lazy
	Observable
	Not-Null
	Storing Properties in a Map

	Functions and Lambdas
	Functions
	Function Declarations
	Parameters
	Default Arguments
	Named Arguments
	Unit-returning functions
	Single-Expression functions
	Explicit return types
	Variable number of arguments (Varargs)

	Function Scope
	Local Functions
	Member Functions
	Generic Functions
	Inline Functions
	Extension Functions
	Higher-Order Functions and Lambdas

	Function Usage
	Infix notation

	Higher-Order Functions and Lambdas
	Higher-Order Functions
	Inline Functions
	Function Literals
	Function Types
	Syntactic form of function literals
	Closures
	Extension Function Literals

	Other
	Multi-Declarations
	Example: Returning Two Values from a Function
	Example: Multi-Declarations and Maps

	Ranges
	How it works
	Range Specifications
	Use Cases
	Common Traits Definition
	Implementation Classes

	Utility functions
	rangeTo()
	downTo()
	reversed()
	step()

	Type Checks and Casts
	is and !is Operators
	Smart Casts
	“Unsafe” cast operator
	“Safe” (nullable) cast operator

	This Expression
	Qualified this

	Equality
	Referential equality
	Structural equality

	Operator overloading
	Conventions
	Unary operations
	Binary operations

	Infix calls for named functions

	Null Safety
	Nullable types and Non-Null Types
	Checking for null in conditions
	Safe Calls
	Elvis Operator
	The !! Operator
	Safe Casts

	Exceptions
	Exception Classes
	Try is an expression

	Checked Exceptions
	Java Interoperability

	Annotations
	Annotation Declaration
	Usage
	Constructors

	Java Annotations

	Reflection
	Function References
	Example: Function Composition

	Property References
	Interoperability With Java Reflection

	A type-safe builder example
	How it works
	Full definition of the com.example.html package
	Appendix. Making Java classes nicer

	Reference
	Interop
	Java Interop
	Calling Java code from Kotlin
	Methods returning void
	Escaping for Java identifiers that are keywords in Kotlin
	Null-Safety and Platform Types
	Mapped types
	Java generics in Kotlin
	Java Arrays
	Checked Exceptions
	Object Methods
	Inheritance from Java classes
	Accessing static members

	Calling Kotlin code from Java
	Package-Level Functions
	Static Methods and Fields
	Handling signature clashes with [platformName]
	Checked Exceptions
	Null-safety
	Properties

	Tools
	Using Maven
	Plugin and Versions
	Configuring Snapshot Repositories
	Dependencies
	Compiling Kotlin only source code
	Compiling Kotlin and Java sources
	Using External Annotations
	Examples

	Using Ant
	Getting the Ant Tasks
	Targeting JVM with Kotlin-only source
	Targeting JVM with Kotlin-only source and multiple roots
	Targeting JVM with Kotlin and Java source
	Targeting JavaScript with single source folder
	Targeting JavaScript with Prefix, PostFix and sourcemap options
	References
	kotlinc Attributes
	withKotlin attributes
	kotlin2js Attributes

	Using Griffon
	Using Gradle
	Plugin and Versions
	Project Layout
	Configuring Dependencies
	Using Snapshot versions
	Android Projects
	Android Studio

	Using External Annotations
	Examples

	FAQ
	FAQ
	Common Questions
	What is Kotlin?
	Why a new language?
	How is it licensed?
	Is it Java Compatible?
	Is there tooling support?
	Is there Eclipse support?
	Is there a standalone compiler?
	Is Kotlin a Functional Language?
	Does Kotlin support generics?
	Are semicolons required?
	Are curly braces required?
	Why have type declarations on the right?
	Will right-handed type declarations effect tooling?
	Is Kotlin extensible?
	Can I embed my DSL into the language?
	What ECMAScript level does the JavaScript support?
	Does the JavaScript back-end support module systems?

	Comparison to Java
	Some Java issues addressed in Kotlin
	What Java has that Kotlin does not
	What Kotlin has that Java does not

	Comparison to Scala
	What Scala has that Kotlin does not
	What Kotlin has that Scala does not

