Toby Weston

Learning
Java Lambdas

An in-depth look at one of the most important features
of modern Java

L Packt

Learning Java Lambdas

Table of Contents

Learning Java Lambdas
Credits

About the Author
www.PacktPub.com
Why subscribe?
Customer Feedback
Preface
What this book covers
What you need for this book
Who this book is for
Conventions
Reader feedback
Customer support
Downloading the color images of this book
Errata
Piracy
Questions
1. Introduction

The road to modern Java

Modern Java features
2. Lambdas Introduction

As in functional programming
1930s and the lambda calculus
1950s and LISP
What is a lambda

Functions vs classes
Lambdas in modern Java
Some theoretical differences
Functions vs classes
Some concrete differences

Capture semantics
Shadowed variables

Summary

A basic syntax
Syntax breakdown
Summary

3. Lambdas in Depth
Functional interfaces

(@FunctionalInterface

Extension

Other interface improvements
Summary
Type inference improvements
Java type inference
Target-typing for lambdas
Type parameters in method calls

Type parameters in chained method calls
Method references

Example

Method reference types

Constructor reference

Static method reference

Instance method reference of particular object (in this case, a closure)

Instance method reference of a arbitrary object whose instance is supplied later (Jambda)
Summary
Scoping
Effectively final
Circumventing final
Exception handling

Using a callback
Dealing with exceptions when writing lambdas

As a caller (dealing with exceptions when calling lambdas)
Lambdas vs closures

Basic differences

Other differences

Summary
Bytecode recap

Descriptors

Converting a method signature
Code examples

Example 1

Example 2

Example 3

Example 4

Example 4 (with method reference)
Example 5

Summary
A. Bytecode

WaitFor

Example 1
Example 2
Example 3

Example 4
Example 4 (with Method Reference)

Example 5

Learning Java Lambdas

Learning Java Lambdas

Copyright © 2017 Toby Weston

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher, except
in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held
liable for any damages caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

First published: March 2017
Production reference: 1290317
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78728-208-7

www.packtpub.com

http://www.packtpub.com

Credits

Author

Toby Weston

Acquisition Editor}{Indexer

Ben Renow-Clarke |[Mariammal Chettiyar

Technical Editor |[Production Coordinator

Nidhisha Shetty Arvindkumar Gupta

About the Author

Toby Weston specializes in modern software development; particularly, functional and object-
oriented programming, agile and lean best practice. He wrote the book Essential Acceptance Testing,
and he has written for magazines as well as does regularly blogging. He has been part of the software
industry for more than fifteen years and loves what he does. He loves talking and writing about 1t and
sharing his experiences online.

www.PacktPub.com

For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us

at service(@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

Mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt books and
video courses, as well as industry-leading tools to help you plan your personal development and
advance your career.

https://www.packtpub.com/mapt

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Why subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
e On demand and accessible via a web browser

Customer Feedback

Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial process. To
help us improve, please leave us an honest review on this book's Amazon page at
https://www.amazon.com/dp/1787282082.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and videos in
exchange for their valuable feedback. Help us be relentless in improving our products!

https://www.amazon.com/dp/1787282082

Preface

What this book covers

This book takes an in-depth look at lambdas and their supporting features; things like functional
interfaces and type inference.

After reading the book, you'll:

Have an overview of new features in modern Java

Understand lambdas in-depth, their background, syntax, implementation details and how and
when to use them

Understand the difference between functions to classes and why that's relevant to lambdas
Understand the difference between lambdas and closures

Appreciate the improvements to type inference that drive a lot of the new features

Be able to use method references and understand scoping and "effectively final"

Understand the differences in bytecode produced when using lambdas

Be able to reason about exceptions and exception handling best practice when using lambdas

What you need for this book

The latest version of JDK and a text editor or IDE.

Who this book is for

Whether you're migrating legacy Java programs to a more modern Java style or building applications
from scratch, this book will help you start to leverage the power of functional programming on the
Java platform.

Conventions

In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames,
dummy URLs, user input, and Twitter handles are shown as follows: "This LISP expression evaluates
to a function, that when applied will take a single argument, bind it to arg and then add 1 to 1t."

A block of code is set as follows:

void anonymousClass () {
final Server server = new HttpServer();
waitFor (new Condition () {
@Override
public Boolean isSatisfied() {

return !server.isRunning()
}
}) s
}

When we wish to draw your attention to a particular part of a code block, the relevant lines or items
are set in bold:

void anonymousClass () {
final Server server = new HttpServer()
wailtFor (new Condition() {
@Override
public Boolean isSatisfied() {

return !server.isRunning();
}
}) s
}

New terms and important words are shown in bold. Words that you see on the screen, for example,
in menus or dialog boxes, appear in the text like this: "In order to download new modules, we will go
to Files | Settings | Project Name | Project Interpreter."

Note
Warnings or important notes appear in a box like this.
Tip

Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this book-what you
liked or disliked. Reader feedback is important for us as it helps us develop titles that you will really
get the most out of. To send us general feedback, simply e-mail feedback@packtpub.com, and
mention the book's title in the subject of your message. If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, see our author guide

at www.packtpub.comv/authors.

http://www.packtpub.com/authors

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to get the
most from your purchase.

Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/diagrams used in this
book. The color images will help you better understand the changes in the output. You can download
this file from

https://www.packtpub.convsites/default/files/downloads/IearningJaval. ambdas_Colorlmages.pdf.

https://www.packtpub.com/sites/default/files/downloads/LearningJavaLambdas_ColorImages.pdf

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you
find a mistake in one of our books-maybe a mistake in the text or the code-we would be grateful if you
could report this to us. By doing so, you can save other readers from frustration and help us improve
subsequent versions of this book. If you find any errata, please report them by visiting
http://www.packtpub.com/submit-errata, selecting your book, clicking on the Errata Submission
Form link, and entering the details of your errata. Once your errata are verified, your submission will
be accepted and the errata will be uploaded to our website or added to any list of existing errata
under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/content/support and
enter the name of the book in the search field. The required information will appear under the Errata
section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At Packt, we
take the protection of our copyright and licenses very seriously. If you come across any illegal copies
of our works in any form on the Internet, please provide us with the location address or website name
immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at questions@packtpub.com,
and we will do our best to address the problem.

Chapter 1. Introduction

Welcome to Learning Java Lambdas.

Java underwent huge changes in it's version 8 release. A lot was driven by the perception that Java
was becoming long in the tooth. To compete with modern, functional programming languages, Java 8
introduced functional programming constructs like lambdas to better support a more functional style.

This book offers a concise explanation of lambdas and various other features required to make them
work in Java. As well as offering background, syntax and usage examples of lambdas, the book
describes other related features, such as functional interfaces and type inference.

The road to modern Java

Java 8 was released on March 18, 2014, two years seven months after the previous release. It was
plagued with delays and technical problems but when it finally came, it represented one of the biggest
shifts in Java since Java 5.

The headliners were of course lambdas and a retrofit to support functional programming ideas. With
languages such as Scala taking center stage and the modern trend towards functional programming,
Java had to do something to keep up.

Although Java is not and never will be a pure functional programming language, the changes in Java 8
enabled developers to use functional idioms more easily than in previous versions. With discipline
and experience, you can now get a lot of the benefits of functional programming without resorting to
third-party libraries.

Modern Java features

To give you an idea of just how big a change Java 8 was, and why it ushered in a new, modern Java,
here's a mostly complete list of the new features it introduced:

Lambda support.

The core APIs were updated to take advantage of lambdas, including the collection APIs and a
new functional package to help build functional constructs.

Entirely new APIs were developed that use lambdas, things like the stream API which brought
functional style processing of data. For example, functions like map and f1atMap from the
stream API enable a declarative way to process lists and move away from external iteration to
internal iteration. This in turn allows the /ibrary vendors to worry about the details and optimize
processing however they like. For example, Java now comes with a parallel way to process
streams without bothering the developer with the details.

Minor changes to the core APIs; new helper methods were introduced for strings, collections,
comparators, numbers and maths.

Some of the additions are changing the way that people code. For example, the optional class
will be familiar to some, and it enables a better way to deal with nulls.

There were various concurrency library improvements. Things like an improved concurrent hash
map, completable futures, thread safe accumulators, an improved read write lock (called a
StampedLock), an implementation of a work stealing thread pool and much more besides.
Support for adding static methods to interfaces.

Default methods (otherwise known as virtual extension or defender methods).

Type inference was improved and new constructs like functional interfaces and method
references were introduced to better support lambdas.

An improved date and time API was introduced (similar to the popular Joda-time library).

The 10 and n10 packages received welcome additions to enable working with 1O streams using
the new streams AP

Reflection and annotations were improved.

An entirely new JavaScript engine shipped with Java 8. Nashorn replaced Rhino, and was faster
and had better support for ECMA-Script.

JVM improvements; the integration with JRocket was completed, creating a faster JVM.

The JVM dropped the idea of perm gen, instead using native OS memory for class metadata.
This is a huge deal and provides better memory utilization.

The JRocket integration also brought Mission control (jmc) to the JDK as standard. It
compliments JConsole and Visual VM with similar functionality but adds very inexpensive
profiling.

Other miscellaneous improvements, like improvements to JavaFX, base64 encoding support and
more.

Chapter 2. Lambdas Introduction

In this chapter, we'll introduce the ideas of lambdas, we'll:

e Discuss some background to lambdas and functional programming in general
e Talk about functions versus classes in Java
e Look at the basic syntax for lambdas in Java

As in functional programming

Before we look at things in more depth, let's look at some general background to lambdas.

If you haven't seen it before, the Greek letter A (lambda) is often used as shorthand when talking about
lambdas.

1930s and the lambda calculus

In computer science, lambdas go back to the lambda-calculus. A mathematical notation for functions
introduced by Alonzo Church in the 1930s. It was a way to explore mathematics using functions and
was later re-discovered as a useful tool in computer science.

It formalized the notion of lambda terms and the rules to transform those terms. These rules or
functions map directly into modern computer science ideas. All functions in the lambda-calculus are
anonymous which again has been taken literally in computer science.

Here's an example of a lambda-calculus expression:

A lambda-calculus expression

AX.x+1

This defines an anonymous function or /ambda with a single argument x. The body follows the dot
and adds one to that argument.

1950s and LISP

In the 1950s, John McCarthy invented LISP whilst at MIT. This was a programming language
designed to model mathematical problems and was heavily influenced by the lambda-calculus.

It used the word lambda as an operator to define an anonymous function.
Here's an example:

A LISP expression

(Lambda (arg) (+ arg 1))

This LISP expression evaluates to a function, that when applied will take a single argument, bind it to
arg and then add 1 to it.

The two expressions produce the same thing, a function to increment a number. You can see the two
are very similar.

The lambda-calculus and LISP have had a huge influence on functional programming. The ideas of
applying functions and reasoning about problems using functions has moved directly into
programming languages. Hence the use of the term in our field. A lambda in the calculus is the same
thing as in modern programming languages and is used in the same way.

What is a lambda

In simple terms then, a lambda is just an anonymous function. That's it. Nothing special. It's just a
compact way to define a function. Anonymous functions are useful when you want to pass around
fragments of reusable functionality. For example, passing functions into other functions.

Many main stream languages already support lambdas including Scala, C#, Objective-C, Ruby, C++
(11), Python and many others.

Functions vs classes

Bear in mind that an anonymous function isn't the same as an anonymous class in Java. An anonymous
class in Java still needs to be instantiated to an object. It may not have a proper name, but it can be
useful only when it's an object.

A function on the other hand has no instance associated with it. Functions are disassociated with the
data they act on whereas an object 1s intimately associated with the data it acts upon.

You can use lambdas in modern Java anywhere you would have previously used a single method
interface so it may just look like syntactic sugar but it's not. Let's have a look at how they differ and
compare anonymous classes to lambdas; classes vs. functions.

Lambdas in modern Java

A typical implementation of an anonymous class (a single method interface) in Java pre-8, might look
something like this. The anonymousclass method is calling the waitFor method, passing in some
implementation of condition; in this case, it's saying, wait for some server to shutdown:

Typical usage of an anonymous class

void anonymousClass () {
final Server server = new HttpServer();
waltFor (new Condition() {
@Override
public Boolean isSatisfied () {

return !server.isRunning();
}
1)
}

The functionally equivalent lambda would look like this:

Equivalent functionality as a lambda

void closure () {
Server server = new HttpServer () :;
waitFor (() -> !server.isRunning()) ;

}

Where in the interest of completeness, a naive polling waitFor method might look like this:

class WaitFor {
static void waitFor (Condition condition) throws
InterruptedException {
while (!condition.isSatisfied())
Thread.sleep (250) ;

Some theoretical differences

Firstly, both implementations are in-fact closures, the latter is also a lambda. We'll look at this
distinction in more detail later in the Lambdas vs closures section. It means that both have to capture
their "environment" at runtime. In Java pre-8, this means copying the things the closure needs into an
instance of an class (an anonymous instances of Condition). In our example, the server variable
would need to be copied into the instance.

As it's a copy, it has to be declared final to ensure that it can not be changed between when it's
captured and when it's used. These two points in time could be very different given that closures are
often used to defer execution until some later point (see lazy evaluation for example). Modern Java
uses a neat trick whereby if it can reason that a variable is never updated, it might as well be final so
it treats it as effectively final and you don't need to declare it as final explicitly.

A lambda on the other hand, doesn't need to copy it's environment or capture any terms. This means it
can be treated as a genuine function and not an instance of a class. What's the difference? Plenty.

http://en.wikipedia.org/wiki/Lazy_evaluation

Functions vs classes

For a start, functions; genuine functions, don't need to be instantiated many times. I'm not sure if
instantiation 1s even the right word to use when talking about allocating memory and loading a chunk
of machine code as a function. The point is, once it's available, it can be re-used, it's idempotent in
nature as it retains no state. Static class methods are the closest thing Java has to functions.

For Java, this means that a lambda need not be instantiated every time it's evaluated which is a big
deal. Unlike instantiating an anonymous class, the memory impact should be minimal.

In terms of some conceptual differences then:

Classes must be instantiated, whereas functions are not.

When classes are newed up, memory is allocated for the object.

Memory need only be allocated once for functions. They are stored in the permanent area of the
heap.

Objects act on their own data, functions act on unrelated data.

Static class methods in Java are roughly equivalent to functions.

http://en.wikipedia.org/wiki/Pure_function

Some concrete differences

Some concrete differences between functions and classes include their capture semantics and how
they shadow variables.

Capture semantics

Another difference is around capture semantics for this. In an anonymous class, this refers to the
instance of the anonymous class. For example, Foo$Innerclass and not Foo. That's why you have
slightly odd looking syntax like Foo.this.x when you refer to the enclosing scope from the
anonymous class.

In lambdas on the other hand, this refers to the enclosing scope (Foo directly in our example). In fact,
lambdas are entirely lexically scoped, meaning they don't inherit any names from a super type or
introduce a new level of scoping at all; you can directly access fields, methods and local variables
from the enclosing scope.

For example, this class shows that the lambda can reference the firstName variable directly.

public class Example ({

private String firstName = "Jack";
public void example () {
Function<String, String> addSurname = surname -> {
// equivalent to this.firstName
return firstName + " " + surname; // or even,

this.firstName

b

Here, firstName 1s shorthand for this. firstName and because this refers to the enclosing scope
(the class Example), it's value will be "Jack".

The anonymous class equivalent would need to explicitly refer to £irstName from the enclosing
scope. You can't use this as in this context, this means the anonymous instance and there is no
firstName there. So, the following will compile:

public class Example {

private String firstName = "Charlie";
public void anotherExample () {
Function<String, String> addSurname = new Function<String,
String> () {
@Override
public String apply(String surname) {
return Example.this.firstName + " " + surname;

// OK

but this will not.

public class Example {
private String firstName = "Charlie";

public void anotherExample () {

Function<String, String> addSurname = new Function<String,
String> () {
@Override
public String apply(String surname) {
return this.firstName + " " + surname; // compiler error
}
}i
}
}
You could still access the field directly (that is, simply calling return firstName + " " +

surname) but you can't do so using this. The point here 1s to demonstrate the difference in capture
schematics for this when used in lambdas vs. anonymous instances.

Shadowed variables

Referencing shadowed variables becomes much more straight forward to reason about with the
simplified this semantics. For example,

public class ShadowingExample {
private String firstName = "Charlie";
public void shadowingExample (String firstName) {

Function<String, String> addSurname = surname -> {
return this.firstName + " " + surname;

b

Here, because this is inside the lambda, it refers to the enclosing scope. So this. firstName will
have the value "charilie" and not the method parameter of the same name. The capture semantics
make it clearer. If you use firstName (and drop the this), it will refer to the parameter.

In the next example, using an anonymous instance, firstName simply refers to the parameter. If you
want to refer to the enclosing version, you'd use Example.this.firstName:

public class ShadowingExample {
private String firstName = "Charlie";

public void anotherShadowingExample (String firstName) {

Function<String, String> addSurname = new Function<String,
String> () {
@Override
public String apply(String surname) {
return firstName + " " + surname;

Summary

Functions in the academic sense are very different things from anonymous classes (which we often
treat like functions in Java pre-8). It's useful to understand the distinctions to be able to justify the use
of lambdas for something other than just their concise syntax. Of course, there's lots of additional
advantages in using lambdas (not least the retrofit of the JDK to heavily use them).

When we take a look at the new lambda syntax next, remember that although lambdas are used in a
very similar way to anonymous classes in Java, they are technically different. Lambdas in Java need
not be instantiated every time they're evaluated unlike an instance of an anonymous class.

This should serve to remind you that lambdas in Java are not just syntactic sugar.

A basic syntax

Let's take a look at the basic lambda syntax.

A lambda is basically an anonymous block of functionality. It's a lot like using an anonymous class
instance. For example, 1f we want to sort an array in Java, we can use the Arrays.sort method
which takes an instance of the comparator interface.

It would look something like this:

Arrays.sort (numbers, new Comparator<Integer> () {
@Override
public int compare(Integer first, Integer second) {
return first.compareTo (second);

}
});

The comparator instance here is a an abstract piece of the functionality; it means nothing on its own;
it's only when it's used by the sort method that it has purpose.

Using Java's new syntax, you can replace this with a lambda which looks like this:

Arrays.sort (numbers, (first, second) -> first.compareTo (second));

It's a more succinct way of achieving the same thing. In fact, Java treats this as if it were an instance
of the comparator class. If we were to extract a variable for the lambda (the second parameter), it's
type would be comparator<Integer> just like the anonymous instance above.

Comparator<Integer> ascending = (first, second) -> first.compareTo (second);
Arrays.sort (numbers, ascending);

Because comparator has only a single abstract method on it; compareTo, the compiler can piece
together that when we have an anonymous block like this, we really mean an instance of comparator.
It can do this thanks to a couple of the other new features that we'll talk about later; functional
interfaces and improvements to type inference.

Syntax breakdown

You can always convert from using a single abstract method to a using lambda.

Let's say we have an an interface Example with a method app1y, returning some type and taking some
argument:

interface Example {
R apply (A arg);
}

We could instantiate an instance with something like this:

new Example () {
@Override
public R apply (A args) {
body

}
}r

And to convert to a lambda, we basically trim the fat. We drop the instantiation and annotation, drop
the method details which leaves just the argument list and the body.

(args) {
body
}

we then introduce the new arrow symbol to indicate both that the whole thing is a lambda and that
what follows is the body and that's our basic lambda syntax:

(args) -> {
body
}

Let's take the sorting example from earlier through these steps. We start with the anonymous instance:

Arrays.sort (numbers, new Comparator<Integer> () {
@Override
public int compare(Integer first, Integer second) {
return first.compareTo (second);
}
}) g

and trim the instantiation and method signature:

Arrays.sort (numbers, (Integer first, Integer second) {
return first.compareTo (second);

1) ;

introduce the lambda

Arrays.sort (numbers, (Integer first, Integer second) -> {
return first.compareTo (second) ;

1) ;

and we're done. There's a couple of optimizations we can do though. You can drop the types if the
compiler knows enough to infer them.

Arrays.sort (numbers, (first, second) -> {
return first.compareTo (second) ;

});

and for simple expressions, you can drop the braces to produce a lambda expression:

Arrays.sort (numbers, (first, second) -> first.compareTo (second));

In this case, the compiler can infer enough to know what you mean. The single statement returns a
value consistent with the interface, so it says, "no need to tell me that you're going to return something,
I can see that for myself".

For single argument interface methods, you can even drop the first brackets. For example the lambda
taking an argument x and returning x + 1;

(x) -> x + 1

can be written without the brackets

x =-> x + 1

Summary

Let's recap with a summary of the syntax options.

Syntax Summary:

nt x, int y) -> { return x + y; }

, v) —> { return x + y; }

, Y) —> X+ y; X => x %2

) —> System.out.println("Hey there!");
System.out::println;

The first example ((int x, int y) -> { return x + y; }) 1s the most verbose way to create a
lambda. The arguments to the function along with their types are in parenthesis, followed by the new
arrow syntax and then the body; the code block to be executed.

You can often drop the types from the argument list, like (x, y) -> { return x + y; }.The
compiler will use type inference here to try and guess the types. It does this based on the context that
you're trying to use the lambda in.

If your code block returns something or is a single line expression, you can drop the braces and return
statement, for example (x, y) -> x + y;.

In the case of only a single argument, you can drop the parentheses x -> x * 2.
If you have no arguments at all, the "hamburger" symbol 1s needed,
() -> System.out.println("Hey there!");.

In the interest of completeness, there is another variation; a kind of shortcut to a lambda called a
method reference. An example is something like system.out::printin;, which is basically a short
cut to the lambda (value -> System.out.prinltn(value).

We're going to talk about method references in more detail later, so for now, just be aware that they
exist and can be used anywhere you can use a lambda.

Chapter 3. Lambdas in Depth

In this section, we'll take a look at things in a little more detail and talk about some related topics,
things like:

Functional interfaces

Method and constructor references

Scope and effectively final variables

Exception transparency

The differences between lambdas and closures

As we've talked about how lambdas aren't just syntactic sugar, we'll have a look at the bytecode
lambdas produce

Functional interfaces

Java treats lambdas as an instance of an interface type. It formalizes this into something it calls
functional interfaces. A functional interface is just an interface with a single method. Java calls the
method a "functional method" but the name "single abstract method" or SAM is often used.

All the existing single method interfaces like Runnable and callable inthe JDK are now functional
interfaces and lambdas can be used anywhere a single abstract method interface is used. In fact, it's
functional interfaces that allow for what's called target typing; they provide enough information for
the compiler to infer argument and return types.

@Functionallnterface

Oracle have introduced a new annotation @FunctionalInterface to mark an interface as such. It's
basically to communicate intent but also allows the compiler to do some additional checks.

For example, this interface compiles:

public interface FunctionalInterfaceExample {
// compiles ok

}

but when you indicate that it should be a functional interface by adding the new annotation,

@FunctionallInterface // <- error here
public interface FunctionallnterfaceExample {
// doesn't compile

}

the compiler will raise an error. It tells us "Example 1s not a functional interface" as "no abstract
method was found". Often the IDE will also hint, IntelliJ will say something like "no target method
was found". It's hinting that we left off the functional method. A "single abstract method" needs a
single, abstract method.

So what if we try and add a second method to the interface?

@FunctionalInterface

public interface FunctionalInterfaceExample ({
void apply();
void illegal(); // <- error here

}

The compiler will error again, this time with a message along the lines of "multiple, non-overriding
abstract methods were found". Functional interfaces can have only one method.

http://www.jetbrains.com/idea/

Extension

What about the case of an interfaces that extends another interface?

Let's create a new functional interface called a and another called B which extends 2. The B interface
is still a functional interface. It inherits the parents app1y method as you'd expect:

@FunctionallInterface
interface A {

abstract void apply ()
}

interface B extends A {

}

If you wanted to make this clearer, you can also override the functional method from the parent:

@FunctionalInterface
interface A {

abstract void apply():
}

interface B extends A {
@Override
abstract void apply ()

We can verify it works as a functional interface if we use it as a lambda. We'll implement a method to
show that a lambda can be assigned to a type of A and a type of B below. The implementation just
prints out "A" or "B".

@FunctionallInterface
public interface A {
void apply ()

}

public interface B extends A {
@Override
void apply();

}

public static void main(String... args) {
A a = () -> System.out.println ("A");
B b= () -> System.out.println("B");

You can't add a new abstract method to the extending interface (B) though, as the resulting type
would have two abstract methods and the IDE would warn us and the compiler would error.

@FunctionalInterface
public interface A {

void apply();

public interface B extends A {

void illegal(); // <- can't do this
}
public static void main(String... args) {
A a = () -> System.out.println ("A");
B b= () -> System.out.println("B"); // <- error

In both cases, you can override methods from object without causing problems. You can also add
default methods (also new from Java 8 onward). As you'd probably expect, it doesn't make sense to
try and mark an abstract class as a functional interface.

Other interface improvements

Interfaces generally have had some new features added, they include:

e Default methods (virtual extension methods)
e Static interface methods

e And a bunch of new functional interfaces in the java.util. function package; things like
Function and Predicate

Summary

In this section we've talked about how any interface with a single method is now a "functional
interface" and that the single method is often called a "functional method" or SAM (for single abstract
method).

We looked at the new annotation and saw a couple of examples of how existing JDK interfaces like
Runnable and callable have been retrofitted with the annotation.

We also introduced the idea of target typing which is how the compiler can use the signature of a
functional method to help work out what lambdas can be used where. We skimmed over this a little as
we're going to talk about it later in the type inference section.

We discussed some examples of functional interfaces, how the compiler and IDE can help us out
when we make mistakes and got a feel for the kinds of errors we might encounter. Things like adding
more than one method to a functional interface. We also saw the exceptions to this rule, namely when
we override methods from object or implement default methods.

We had a quick look at interface inheritance and how that affects things and mentioned some of the
other interface improvements that we'll be covering later.

An important point to take away here is the idea that any place a functional interface is used, you can
now use a lambda. Lambdas can be used in-lieu of anonymous implementations of the functional
interface. Using a lambda instead of the anonymous class may seem like syntactic sugar, but they're
actually quiet different. See the Functions vs. classes section for more details.

Type inference improvements

There have been several type inference improvements in modern Java. To be able to support
lambdas, the way the compiler infers things has been improved to use target typing extensively. This
and other improvements over Java 7's inference were managed under the Open JDK Enhancement
Proposal (JEP) 101.

Before we get into those, lets recap on the basics.

Type inference refers to the ability for a programming language to automatically deduce the type of an
expression.

Statically typed languages know the types of things at compile time. Dynamically typed languages
know the types at runtime. A statically typed language can use type inference and drop type
information in source code and use the compiler to figure out what's missing.

Statically Compilation
Typed time

Dynamically
Typed

So this means that type inference can be used by statically typed languages (like Scala) to "look" like
dynamic languages (like JavaScript). At least at the source code level.

Here's an example of a line of code in Scala:
val name = "Henry"

You don't need to tell the compiler explicitly that the value is a string. It figures it out. You could
write it out explicitly like this,

val name : String = "Henry"

but there's no need.

As an aside, Scala also tries to figure out when you've finished a statement or expression based on it's
abstract syntax tree (AST). So often, you don't even need to add a terminating semi-colon.

Java type inference

Type inference is a fairly broad topic, Java doesn't support the type of inference. I've just been talking
about, at least for things like dropping the type annotations for variables. We have to keep that in:

String name = "Henry"; // <- we can't drop the String like Scala

So Java doesn't support type inference in the wider sense. It can't guess everything like some
languages. Type inference for Java then typically refers to the way the compiler can work out types
for generics. Java 7 improved this when it introduced the diamond operator (<>) but there are still
lots of limitations in what Java can figure out.

The Java compiler was built with type erasure; it actively removes the type information during
compilation. Because of type erasure, List<String> becomes List<Object> after compilation.

For historical reasons, when generics were introduced in Java 5, the developers couldn't easily
reverse the decision to use erasure. Java was left with the need to understand what types to substitute
for a given generic type but no information how to do it because it had all been erased. Type
inference was the solution.

All generic values are really of type object behind the scenes but by using type inference, the
compiler can check that all the source code usages are consistent with what it thinks the generic
should be. At runtime, everything is going to get passed around as instances of object with
appropriate casting behind the scenes. Type inference just allows the compiler to check that the casts
would be valid ahead of time.

So type inference is about guessing the types, Java's support for type inferences was due to be
improved in a couple of ways with Java 8:

1. Target-typing for lambdas.
and using generalized target-typing to:
1. Add support for parameter type inference in method calls.

2. Add support for parameter type inference in chained calls.

Lets have a look at the current problems and how modern Java addresses them.

Target-typing for lambdas

The general improvements to type inference in modern Java mean that lambdas can infer their type
parameters; so rather than use:

(Integer x, Integer y) -> x + y;

you can drop the Tnteger type annotation and use the following instead:

(x, y) -—> x + y;

This 1s because the functional interface describes the types, it gives the compiler all the information it
needs.

For example, if we take an example functional interface.

@FunctionalInterface
interface Calculation {

Integer apply(Integer x, Integer y);
}

When a lambda is used in-lieu of the interface, the first thing the compiler does is work out the target
type of the lambda. So if we create a method calculate that takes the interface and two integers.

static Integer calculate(Calculation operation, Integer x, Integer y) {
return operation.apply(x, Vv):;

}

and then create two lambdas; an addition and subtraction function

Calculation addition = (x, y) -> x + y;
Calculation subtraction = (x, y) -> x - y;

and use them like this:

calculate (addition, 2, 2);
calculate (subtraction, 5, calculate(addition, 3, 2));

The compiler understands that the lambdas addition and subtraction have a target type of Calculation
(it's the only "shape" that will fit the method signature of calculate). It can then use the method
signature to infer the types of the lambda's parameters. There's only one method on the interface, so
there's no ambiguity, the argument types are obviously Integer.

We're going to look at lots of examples of target typing so for now, just be aware that the mechanism
Java uses to achieve lots of the lambda goodness relies on improvements to type inference and this
idea of a target type.

Type parameters in method calls

The were some situations prior to Java 8 where the compiler couldn't infer types. One of these was
when calling methods with generic type parameters as arguments.

For example, the co11ections class has a generified method for producing an empty list. It looks
like this:

public static final <T> List<T> emptyList() { ... }
In Java 7 this compiles:
List<String> names = Collections.emptyList(); // compiles in Java 7

as the Java 7 compiler can work out that the generic needed for the emptyrist method is of type
string. What it struggles with though is if the result of a generic method is passed as a parameter to
another method call.

So if we had a method to process a list that looks like this:

static void processNames (List<String> names) {
System.out.println("hello " + name);

}

and then call it with the empty list method.

processNames (Collections.emptyList()); // doesn't compile in Java 7

it won't compile because the generic type of the parameter has been erased to object. It really looks
like this.

processNames (Collections.<Object>emptyList names) ;

This doesn't match the processList method.

processNames (Collections.<String>emptyList names) ;

So it won't compile until we give it an extra hint using an explicit "type witness".

processNames (Collections.<String>emptyList()); // compiles in Java 7
Now the compiler knows enough about what generic type is being passed into the method.

The improvements in Java 8 include better support for this, so generally speaking where you would
have needed a type witness, you no longer do.

Our example of calling the processNames now compiles!
processNames (Collections.emptyList ()); // compiles in Java 8

Type parameters in chained method calls

Another common problem with type inference is when methods are chained together. Lets suppose we
have a 1ist class:

static class List<E> {

static <T> List<T> emptyList () {
return new List<T>();

}
List<E> add(E e) {

// add element
return this;

}

and we want to chain a call to add an element to the method creating an empty list. Type erasure rears
it's head again; the type is erased and so can't be known by the next method in the chain. It doesn't
compile.

List<String> list = List.emptyList().add(": (")

This was due to be fixed in Java 8, but unfortunately it was dropped. So, at least for now, you'll still
need to explicitly offer up a type to the compiler; you'll still need a type witness.

List<String> list = List.<String>emptyList().add(":(");

Method references

I mentioned earlier that method references are kind of like shortcuts to lambdas. They're a compact
and convenient way to point to a method and allow that method to be used anywhere a lambda would
be used.

When you create a lambda, you create an anonymous function and supply the method body. When you
use a method reference as a lambda, it's actually pointing to a named method that already exists; it
already has a body.

You can think of them as transforming a regular method into a functional interface.

The basic syntax looks like this:

Class::method

or, a more concrete example:

String::valueOf

The part preceding the double colon is the target reference and after, the method name. So, in this
case, we're targeting the string class and looking for a method called vaiueof; we're referring to
the static method on string.

public static String valueOf (Object obj) { ... }

The double colon is called the delimiter. When we use it, we're not invoking the method, just
referencing it. So remember not to add brackets on the end.

String::valueOf(); // <-- error

You can't invoke method references directly, they can only be used in-lieu of a lambda. So anywhere
a lambda is used, you can use a method reference.

Example

This statement on it's own won't compile.

public static void main (String... args) {
String::valueOf;
}

That's because the method reference can't be transformed into a lambda as there's no context for the
compiler to infer what type of lambda to create.

We happen to know that this reference is equivalent to

(x) -> String.valueOf (x)

but the compiler doesn't know that yet. It can tell some things though. It knows, that as a lambda, the
return value should be of type string because all methods called valueof in string return a string.
But it has no idea what to supply as a argument. We need to give it a little help and give it some more
context.

We'll create a functional interface called conversion that takes an integer and returns a string. This
1s going to be the target type of our lambda.

@FunctionalInterface
interface Conversion {
String convert (Integer number);

}

Next, we need to create a scenario where we use this as a lambda. So we create a little method to
take in a functional interface and apply an integer to it.

public static String convert (Integer number, Conversion function) {
return function.convert (number) ;

}

Now, here's the thing. We've just given the compiler enough information to transform a method
reference into the equivalent lambda.

When we call convert method, we can do so passing in a lambda.

convert (100, (number) -> String.valueOf (number));

And we can replace the lambda with a reference to the vaiueof method. The compiler now knows
we need a lambda that returns a string and takes an integer. It now knows that the vaiueof method
"fits" and can substitute the integer argument.

convert (100, String::valueOf);

Another way to give the compiler the information it needs is just to assign the reference to a type.

Conversion b = (number) -> String.valueOf (number);

and as a method reference

Conversion a = String::valueOf;
the "shapes" fit, so it can be assigned.

Interestingly, we can assign the same lambda to any interface that requires the same "shape". For
example, if we have another functional interface with the same "shape",

Here, Example returns a string and takes an object so it has the same signature shape as valueof.

interface Example {
String theNamelIsUnimportant (Object object);

}

we can still assign the method reference (or lambda) to it.

Example a = String::valueOf;

Method reference types

There are four types of method reference:

e Constructor references
e Static method references
e And two types of instance method references

The last two are a little confusing. The first is a method reference of a particular object and the
second is a method reference of an arbitrary object but of a particular type. The difference is in how
you want to use the method and if you have the instance ahead of time or not.

Firstly then, lets have a look at constructor references.

Constructor reference

The basic syntax looks like this:

String: :new

A target type followed by the double colon then the new keyword. It's going to create a lambda that
will call the zero argument constructor of the string class.

It's equivalent to this lambda

() -> new String/()

Remember that method references never have the parentheses; they're not invoking methods, just
referencing one. This example is referring to the constructor of the string class but not instantiating
a string.

Lets have a look at how we might actually use a constructor reference.

If we create a list of objects we might want to populate that list say ten items. So we could create a
loop and add a new object ten times.

public void usage () {
List<Object> list = new ArrayList<>();
for (int i = 0; 1 < 10; i++) {

list.add (new Object());
}

but if we want to be able to reuse that initializing function, we could extract the code to a new method
called initialise and then use a factory to create the object.

public void usage () {
List<Object> list = new ArraylList<>();
initialise(list, ...);

}

private void initialise(List<Object> list, Factory<Object> factory) {
for (int 1 = 0; 1 < 10; i++) {
list.add(factory.create())
}
}

The Factory class is just a functional interface with a method called create that returns some
object. We can then add the object it created to the list. Because it's a functional interface, we can use
a lambda to implement the factory to initialize the list:

public void usage () {
List<Object> list = new ArrayList<>();
initialise(list, () -> new Object()):;

Or we could swap in a constructor reference.

public void usage () {
List<Object> list = new ArrayList<>();
initialise(list, Object: :new);

There's a couple of other things we could do here. If we add some generics to the initialise
method we can reuse it when initializing lists of any type. For example, we can go back and change
the type of the list to be st ring and use a constructor reference to initialize it.

public void usage () {
List<String> list = new ArrayList<>();
initialise(list, String::new);

private <T> void initialise(List<T> list, Factory<T> factory) {
for (int i = 0; i < 10; i++) {
list.add(factory.create())

We've seen how it works for zero argument constructors, but what about the case when classes have
multiple argument constructors?

When there are multiple constructors, you use the same syntax but the compiler figures out which
constructor would be the best match. It does this based on the target type and inferring functional
interfaces that it can use to create that type.

Let's take the example of a person class, it looks like this and you can see the constructor takes a
bunch of arguments.

class Person {
public Person(String forename, String surname, LocalDate
birthday, Sex gender, String emailAddress, 1int age) {
//
}

Going back to our example from earlier and looking at the general purpose initialise method, we
could use a lambda like this:

initialise(people, () -> new Person (forename, surname, birthday,
gender, email, age));

but to be able to use a constructor reference, we'd need a lambda with variable arguments and that
would look like this:

(a, b, ¢, 4, e, £f) -> new Person(a, b, ¢, 4, e, f);

but this doesn't translate to a constructor reference directly. If we were to try and use

Person: :new

it won't compile as it doesn't know anything about the parameters. If you try and compile it, the error
says you've created an invalid constructor reference that cannot be applied to the given types; it found
no arguments.

Instead, we have to introduce some indirection to give the compiler enough information to find an
appropriate constructor. We can create something that can be used as a functional interface and has
the right types to slot into the appropriate constructor.

Let's create a new functional interface called personFactory.

@FunctionalInterface

interface PersonFactory {
Person create(String forename, String surname, LocalDate
birthday, Sex gender, String emailAddress, int age);

}

Here, the arguments from personFactory match the available constructor on person. Magically, this
means we can go back and use it with a constructor reference of person.

public void example () {
List<Person> list = new ArrayList<>();
PersonFactory factory = Person::new;
//

}

Notice I'm using the constructor reference from person. The thing to note here is that a constructor
reference can be assigned to a target functional interface even though we don't yet know the

arguments.

It may seem a bit strange that the type of the method reference is personFactory and not person.
This extra target type information helps the compiler to know it has to go via personFactory to
create a person. With this extra hint, the compiler is able to create a lambda based on the factory
interface that will later create a Person.

Writing it out long hand, the compiler would generate this.

public void example () {
PersonFactory factory = (a, b, ¢, 4, e, f£) -> new Person(a, b,
c, d, e, £);

}

which could be used later like this:

public void example () {
PersonFactory factory = (a, b, ¢, 4, e, f£) -> new Person(a, b,
c, d, e, £);

Person person = factory.create (forename, surname, birthday,
gender, email, age);

Fortunately, the compiler can do this for us once we've introduced the indirection.

It understands the target type to use is PersonFactory and it understands that it's single abstract
method can be used in-lieu of a constructor. It's kind of like a two step process, firstly, to work out
that the abstract method has the same argument list as a constructor and that it returns the right type,
then apply 1t with colon colon new syntax.

To finish off the example, we need to tweak our initialise method to add the type information
(replace the generics), add parameters to represent the person's details and actually invoke the
factory.

private void initialise (List<Person> list, PersonFactory factory,

String forename, String surname,

LocalDate birthday, Sex gender,

String emailAddress, int age) {

for (int i = 0; i < 10; i++) {

list.add(factory.create (forename,
surname, birthday, gender,
emailAddress, age));

and then we can use it like this:

public void example () {
List<Person> list = new ArrayList<>();
PersonFactory factory = Person::new;

initialise(people, factory, a, b, ¢, d, e, £f);

or inline, like this:

public void example () {
List<Person> list = new ArrayList<>();
initialise (people, Person::new, a, b, c, 4, e, f);

Static method reference

A method reference can point directly to a static method. For example,

String::valueOf

This time, the left hand side refers to the type where a static method, in this case valueof, can be
found. It's equivalent to this lambda

X -> String.valueOf (x))

A more extended example would be where we sort a collection using a reference to a static method
on the class comparators.

Collections.sort (Arrays.asList (5, 12, 4), Comparators::ascending);

// equivalent to
Collections.sort (Arrays.asList (5, 12, 4), (a, b) -> Comparators.ascending(a,
b))

where, the static method ascending might be defined like this:

public static class Comparators {
public static Integer ascending(Integer first, Integer second)

{

return first.compareTo (second);

Instance method reference of particular object (in this
case, a closure)

Here's an example of an instance method reference of a specific instance:

X::toString

The x is a specific instance that we want to get at. It's lambda equivalent looks like this:

() -> x.toString/()

The ability to reference the method of a specific instance also gives us a convenient way to convert
between different functional interface types. For example:

Callable<String> ¢ = () -> "Hello";
Callable's functional method is call. When it's invoked the lambda will return "He110".

If we have another functional interface, Factory, we can convert the cal1able using a method
reference.

Factory<String> f = c::call;

We could have just re-created the lambda but this trick is a useful way to get reuse out of predefined
lambdas. Assign them to variables and reuse them to avoid duplication.

Here's an example of it in use:

public void example () {
String x = "hello";
function(x::toString);

}

This is an example where the method reference is using a closure. It creates a lambda that will call
the tostring method on the instance x.

The signature and implementation of function above looks like this:

public static String function (Supplier<String> supplier) {
return supplier.get();

}

The supplier interface is a functional interface that looks like this:

@FunctionalInterface

public interface Supplier<T> {
T get();

}

When used in our function, it provides a string value (via the call to get) and the only way it can do
that is if the value has been supplied to it on construction. It's equivalent to:

public void example () {
String X — "";
function(() -> x.toString()):;

}

Notice here that the lambda has no arguments (it uses the "hamburger" symbol). This shows that the
value of x isn't available in the lambda's local scope and so can only be available from outside it's
scope. It's a closure because must close over x (it will capture x).

If you're interested in seeing the long hand, anonymous class equivalent, it'll look like this. Notice
again how x must be passed in:

public void example () {
String x = "";
function (new Supplier<String> () {
@Override
public String get () {
return x.toString(); // <- closes over 'x'

}
1)
}

All three of these are equivalent. Compare this to the lambda variation of an instance method
reference where it doesn't have it's argument explicitly passed in from an outside scope.

Instance method reference of a arbitrary object whose
instance is supplied later (lambda)

The last case 1s for a method reference that points to an arbitrary object referred to by its type:

Object::toString

So in this case, although it looks like the left hand side is pointing to a class (like the static method
reference), it's actually pointing to an instance. The tostring method is an instance method on
Object, nota static method. The reason why you might not use the regular instance method syntax
1s because you may not yet have an instance to refer to.

So before, when we call x colon colon tostring, we know the value of x. There are some situations
where you don't have a value of x and in these cases, you can still pass around a reference to the
method but supply a value later using this syntax.

For example, the lambda equivalent doesn't have a bound value for x.

(x) -> x.toString ()

There difference between the two types of instance method reference is basically academic.
Sometimes, you'll need to pass something in, other times, the usage of the lambda will supply it for
you.

The example 1s similar to the regular method reference; it calls the tostring method of a string only
this time, the string is supplied to the function that's making use of the lambda and not passed in from
an outside scope.

public void lambdaExample () {
function("value", String::toString);

}

The string part looks like it's referring to a class but it's actually referencing an instance. It's
confusing, I know but to see things more clearly, we need to see the function that's making use of the
lambda. It looks like this.

public static String function(String wvalue, Function<String, String> function) {
return function.apply(value);

}

So, the string value is passed directly to the function, it would look like this as a fully qualified
lambda.

public void lambdaExample () {
function ("value", x -> x.toString()):;

}

which Java can shortcut to look like string: :tostring; it's saying "supply the object instance" at
runtime.

If you expand it fully to an anonymous interface, it looks like this. The x parameter is made available
and not closed over. Hence it being a lambda rather than a closure.

public void lambdaExample () {

function("value", new Function<String, String>{() {
@Override
// takes the argument as a parameter, doesn't need to close
over it

public String apply(String x) {
return x.toString();

1)

Summary

Oracle describe the four kinds of method
reference(http://docs.oracle.com/javase/tutorial/java/javaOO/methodreferences.html) as follows:

Kind Example
Reference to a static method ContainingClass: :staticMethodName
Reference to an instance method of a particular object ContainingObject::instanceMethodName

Reference to an instance method of an arbitrary object of a particular type|lcontainingType: :methodName

Reference to a constructor ClassName: :new

But the instance method descriptions are just plain confusing. What on earth is an instance method of
an arbitrary object of a particular type? Aren't all objects of a particular type? Why is it important
that the object is arbitrary?

I prefer to think of the first as an instance method of a specific object known ahead of time and the
second as an instance method of an arbitrary object that will be supplied later. Interestingly, this
means the first is a c/osure and the second is a /lambda. One is bound and the other unbound. The
distinction between a method reference that closes over something (a closure) and one that doesn't (a
lambda) may be a bit academic but at least it's a more formal definition than Oracle's unhelpful
description.

Kind Syntax Example
Reference to a static method Class: :staticMethodName String::valueOf
Reference to an instance method of a specific object object::instanceMethodName||x: :toString

Reference to an instance method of a arbitrary object supplied later||c1ass: : instanceMethodName |[String::toString

Reference to a constructor ClassName: :new String: :new

or as equivalent lambdas:

Kind Syntax As Lambda

Reference to a static method Class: :staticMethodName (s) -> String.valueOf (s)

http://docs.oracle.com/javase/tutorial/java/javaOO/methodreferences.html

Reference to an instance method of a specific object object: :instanceMethodNamel|() -> "hello".toString()

Reference to an instance method of a arbitrary object supplied later||c1ass: : instanceMethodName [[(s) -> s.toString()

Reference to a constructor ClassName: :new () => new String()

Note that the syntax for a static method reference looks very similar to a reference to an instance
method of a class. The compiler determines which to use by going through each applicable static
method and each applicable instance method. If it were to find a match for both, the result would be a
compiler error.

You can think of the whole thing as a transformation from a method reference to a lambda. The
compiler provides the transformation function that takes a method reference and target typing and can
derive a lambda.

Scoping

The good news with lambdas is that they don't introduce any new scoping. Using variables within a
lambda will refer to variables residing in the enclosing environment.

This 1s what's called lexical scoping. It means that lambdas don't introduce a new level of scoping at
all; you can directly access fields, methods and variables from the enclosing scope. It's also the case
for the this and super keywords. So we don't have to worry about the crazy nested class syntax for
resolving scope.

Let's take a look at an example. We have an example class here, with a member variable i set to the
value of 5.

public static class Example {
int 1 = 5;

public Integer example () {
Supplier<Integer> function = () -> 1 * 2;
return function.get();

}

In the examp1e method, a lambda uses a variable called i and multiplies it by two.

Because lambdas are lexically scoped, i simply refers to the enclosing classes' variable. It's value at
run-time will be 5. Using this drives home the point; this within a lambda is the same as without.

public static class Example {
int 1 = 5;
public Integer example () {
Supplier<Integer> function = () -> this.i * 2;
return function.get();

}

In the anotherExample method below, a method parameter is used which is also called i. The usual
shadowing rules kick in here and i will refer to the method parameter and not the class member
variable. The method variable shadows the class variable. It's value will be whatever is passed into
the method.

public static class Example {
int 1 = 5;

public Integer anotherExample (int i) {
Supplier<Integer> function = () -> 1 * 2;
return function.get();

If you wanted to refer to the class variable i and not the parameter i from within the body, you could
make the variable explicit with this. For example, supplier<Integer> function = () -> i *
2;.

The following example has a locally scoped variable defined within the yetAnotherExample
method. Remember that lambdas use their enclosing scope as their own, so in this case, i within the
lambda refers to the method's variable; i will be 15 and not 5.

public static class Example {
int 1 = 5;

public Integer yetAnotherExample () {
int i = 15;
Supplier<Integer> function = () -> i * 2;
return function.get();

}

If you want to see this for yourself, you could use a method like the following to print out the values:

public static void main (String... args) {
Example scoping = new Example();
System.out.println ("class scope = +
scoping.example()) ;
System.out.println ("method param scope
scoping.anotherExample (10));
System.out.println ("method scope =" 4
scoping.yetAnotherExample()) ;

}

The output would look like this:

class scope = 10
method param scope = 20
method scope = 30

So, the first method prints 10; 5 from the class variable multiplied by two. The second method prints
20 as the parameter value was 10 and was multiplied by two and the final method prints 30 as the
local method variable was set to 15 and again multiplied by two.

Lexical scoping means deferring to the enclosing environment. Each example had a different
enclosing environment or scope. You saw a variable defined as a class member, a method parameter
and locally from within a method. In all cases, the lambda behaved consistently and referenced the
variable from these enclosing scopes.

Lambda scoping should be intuitive if you're already familiar with basic Java scoping, there's really
nothing new here.

Eftectively final

In Java 7, any variable passed into an anonymous class instance would need to be made final.

This is because the compiler actually copies all the context or environment it needs into the instance
of the anonymous class. If those values were to change under it, unexpected side effects could happen.
So Java insists that the variable be final to ensure it doesn't change and the inner class can operate on
them safely. By safely, I mean without race conditions or visibility problems between threads.

Let's have a look at an example. To start with, we'll use Java 7 and create a method called fiiter
that takes a list of people and a predicate. We'll create a temporary list to contain any matches we
find then enumerate each element testing to see if the predicate holds true for each person. If the test is
positive, we'll add them to the temporary list before returning all matches.

// java 7

private List<Person> filter (List<Person> people, Predicate<Person> predicate) {
ArrayList<Person> matches = new ArrayList<>();
for (Person person : people)

if (predicate.test (person))
matches.add (person) ;
return matches;

}

Then we'll create a method that uses this to find all the people in a list that are eligible for retirement.
We set a retirement age variable and then call the £i1ter method with an arbitrary list of people and
a new anonymous instance of a Predicate interface.

We'll implement this to return true if a person's age is greater than or equal to the retirement age
variable.

public void findRetirees () {
int retirementAge = 55;
List<Person> retirees = filter (allPeople, new
Predicate<Person>

() |

@Override
public boolean test (Person person) {
return person.getAge() >= retirementAge; // <--

compilation error

});
}

If you try and compile this, you'll get a compiler failure when accessing the variable. This is because
the variable isn't final. We'd need to add fina1l to make it compile.

final int retirementAge = 55;

Note

Passing the environment into an anonymous inner class like this 1s an example of a closure. The
environment is what a closure "closes" over; it has to capture the variables it needs to do its job. The
Java compiler achieves this using the copy trick rather than try and manage multiple changes to the
same variable. In the context of closures, this is called variable capture.

Java 8 introduced the idea of "effectively final" which means that if the compiler can work out that a
particular variable is never changed, it can be used where ever a final variable would have be used.
It interprets it as "effectively" final.

In our example, if we switch to Java 8 and drop the fina1 keyword. Things still compile. No need to
make the variable final. Java knows that the variable doesn't change so it makes it effectively final.

int retirementAge = 55;
Of course, it still compiles if you were to make it final.

But how about if we try and modify the variable after we've initialized it?

int retirementAge = 55;
//
retirementAge = 65;

The compiler spots the change and can no longer treat the variable as effectively final. We get the
original compilation error asking us to make it final. Conversely, if adding the fina1 keyword to a
variable declaration doesn't cause a compiler error, then the variable is effectively final.

I've been demonstrating the point here with an anonymous class examples because the idea of
effectively final isn't something specific to lambdas. It is of course applicable to lambdas though. You
can convert this anonymous class above into a lambda and nothing changes. There's still no need to
make the variable final.

Circumventing final

You can still get round the safety net by passing in final objects or arrays and then change their
internals in your lambda.

For example, taking our list of people, lets say we want to sum all their ages. We could create a
method to loop and sum like this:

private static int sumAllAges (List<Person> people) {
int sum = 0;
for (Person person : people) {
sum += person.getAge();
}
return sum;

}

where the sum count is maintained as the list is enumerated. As an alternative, we could try and

abstract the looping behavior and pass in a function to be applied to each element. Like this:

public final static Integer forEach(List<Person> people, Function<Integer,
Integer> function) {
Integer result = null;
for (Person t : people) {
result = function.apply(t.getAge())
}
return result;

}

and to achieve the summing behavior, all we'd need to do is create a function that can sum. You could
do this using an anonymous class like this:

private static void badExample () {
Function<Integer, Integer> sum = new Function<Integer, Integer>
() A
private Integer sum = 0;
@Override

public Integer apply(Integer amount) {
sum += amount;
return sum;

by
}

Where the functions method takes an integer and returns an integer. In the implementation, the sum
variable is a class member variable and is mutated each time the function is applied. This kind of
mutation is generally bad form when it comes to functional programming.

Nether the less, we can pass this into our fortEach method like this:

forEach (allPeople, sum);

and we'd get the sum of all peoples ages. This works because we're using the same instance of the
function so the sum variable is reused and mutated during each iteration.

The bad news 1s that we can't convert this into a lambda directly; there's no equivalent to a member
variable with lambdas, so there's nowhere to put the sum variable other than outside of the lambda.

double sum = 0;
forEach (allPeople, x —-> {
return sum += X;

});

but this highlights that the variable isn't effectively final (it's changed in the lambda's body) and so it
must be made final.

But if we make it final

final double sum = 0;
forEach (allPeople, x -> {
return sum += X;

1) ;

we can no longer modify it in the body! It's a chicken and egg situation.

The trick around this is to use a object or an array; it's reference can remain final but it's internals can
be modified

int[] sum = {0};
forEach (allPeople, x -> sum[0] += x);

The array reference 1s indeed final here, but we can modify the array contents without reassigning the
reference. However, this is generally bad form as it opens up to all the safety issues we talked about
earlier. I mention it for illustration purposes but don't recommend you do this kind of thing often. It's
generally better not to create functions with side effects and you can avoid the issues completely, if
you use a more functional approach. A more idiomatic way to do this kind of summing is to use what's
called a fold or in the Java vernacular reduce.

Exception handling

There's no new syntax for exception handling in lambdas. Exceptions thrown in a lambda are
propagated to the caller, just as you'd expect with a regular method call. There's nothing special about
calling lambdas or handling their exceptions.

However, there are some subtleties that you need to be aware of. Firstly, as a caller of a lambda, you
are potentially unaware of what exceptions might be thrown, if any and secondly, as the author of a
lambda, you're potentially unaware what context your lambda will be run in.

When you create a lambda, you typically give up responsibility of how that lambda will be executed
to the method that you pass it to. For all you know, your lambda may be run in parallel or at some
point in the future and so any exception you throw may not get handled as you might expect. You can't
rely on exception handling as a way to control your program's flow.

To demonstrate this, lets write some code to call two things, one after the other. We'll use Runnable
as a convenient lambda type.

public static void runInSequence (Runnable first, Runnable second) {
first.run();
second.run () ;

}

If the first call to run were to throw an exception, the method would terminate and the second method
would never be called. The caller is left to deal the exception. If we use this method to transfer
money between two bank accounts, we might write two lambdas. One for the debit action and one for
the credit.

public void transfer (BankAccount a, BankAccount b, Integer amount) {
Runnable debit = () -> a.debit (amount);
Runnable credit = () -> b.credit (amount);

}

we could then call our runInsequence method like this:

public void transfer (BankAccount a, BankAccount b, Integer amount) {
Runnable debit = () -> a.debit (amount);
Runnable credit = () -> b.credit (amount);
runInSequence (debit, credit);

}

any exceptions could be caught and dealt with by using a try/catch like this:

public void transfer (BankAccount a, BankAccount b, Integer amount) {

Runnable debit = () -> a.debit (amount);
Runnable credit = () -> b.credit (amount) ;
try |

runInSequence (debit, credit);
} catch (Exception e) {

// check account balances and rollback

}

Here's the thing. As an author of the lambdas, I potentially have no idea how runinsequence is
implemented. It may well be implemented to run asynchronously like this:

public static void runInSequence (Runnable first, Runnable second) {
new Thread(() -> {
first.run();
second.run () ;
}) .start ()
}

In which case any exception in the first call would terminate the thread, the exception would
disappear to the default exception handler and our original client code wouldn't get the chance to deal
with the exception.

Using a callback

Incidentally, one way round the specific problem with raising an exception on a different thread than
the caller can be addressed with a callback function. Firstly, you'd defend against exceptions in the

runInSequence method:

public static void runInSequence (Runnable first, Runnable second) {
new Thread (() -> {
try |
first.run();
second.run () ;
} catch (Exception e) {
//

}
}) .start () ;

Then introduce an exception handler which can be called in the event of an exception:

public static void runInSequence (Runnable first, Runnable second,
Consumer<Throwable> exceptionHandler) {
new Thread (() -> {
try {
first.run () ;
second.run () ;
} catch (Exception e) {
exceptionHandler.accept(e);
}
}) .start () ;

Consumer is a functional interface (new in Java 8) that in this case takes the exception as an argument
to 1t's accept method.

When we wire this up to the client, we can pass in a callback lambda to handle any exception.

public void nonBlockingTransfer (BankAccount a, BankAccount b, Integer amount) {

Runnable debit = () -> a.debit (amount) ;
Runnable credit = () -> b.credit (amount) ;
runInSequence (debit, credit, (exception) -> {

/* check account balances and rollback */

1) ;

This is a good example of deferred execution and so has it's own foibles. The exception handler
method may (or may not) get executed at some later point in time. The nonBlockingTransfer
method will have finished and the bank accounts themselves may be in some other state by the time it
fires. You can't rely on the exception handler being called when it's convenient for you; we've opened
up a whole can of concurrency worms.

Dealing with exceptions when writing lambdas

Let's look at dealing with exceptions from the perspective of a lambda author, someone writing
lambdas. After this, we'll look at dealing with exceptions when calling lambdas.

Lets look at it as if we wanted to implement the t ransfer method using lambdas but this time wanted
to reuse an existing library that supplies the runInsequence method.

Before we start, let's take a look at the BankAccount class. You'll notice that this time, the debit and
credit methods both throw a checked exception; InsufficientFundsException.

class BankAccount {
public void debit (int amount) throws InsufficientFundsException

{
//

}

public void credit (int amount) throws
InsufficientFundsException

{
//

}

class InsufficientFundsException extends Exception { 1}

Let's recreate the transfer method. We'll try to create the debit and credit lambdas and pass these
into the runInsequence method. Remember that the runTnsequence method was written by some
library author and we can't see or modify it's implementation.

public void transfer (BankAccount a, BankAccount b, Integer amount) {
Runnable debit = () -> a.debit (amount); <- compiler error
Runnable credit = () -> b.credit (amount); <- compiler error
runInSequence (debit, credit);

}

The debit and credit both throw a checked exception, so this time, you can see a compiler error. It
makes no difference if we add this to the method signature; the exception would happen inside the
lambda. Remember I said exceptions in lambdas are propagated to the caller? In our case, this will
be the runInsequence method and not the point we define the lambda. The two aren't communicating
between themselves that there could be an exception raised.

// still doesn't compile
public void transfer (BankAccount a, BankAccount b, Integer amount)
throws InsufficientFundsException ({
Runnable debit = () -> a.debit (amount);
Runnable credit = () -> b.credit (amount) ;
runInSequence (debit, credit);

So if we can't force a checked exception to be transparent between the lambda and the caller, one
option 1s to wrap the checked exception as a runtime exception like this:

public void transfer (BankAccount a, BankAccount b, Integer amount) {
Runnable debit = () -> {
try |
a.debit (amount) ;
} catch (InsufficientFundsException e) {
throw new RuntimeException(e);

b
Runnable credit = () -> {
try |
b.credit (amount) ;
} catch (InsufficientFundsException e) {
throw new RuntimeException (e);

}i

runInSequence (debit, credit);

That gets us out of the compilation error but it's not the full story yet. It's very verbose and we still
have to catch and deal with, what's now a runtime exception, around the call to runInsSequence.

public void transfer (BankAccount a, BankAccount b, Integer amount) {
Runnable debit = () -> { ... };
b
Runnable credit = () -> { ... };
try |
runInSequence (debit, credit);
} catch (RuntimeException e) {
// check balances and rollback

There's still one or two niggles though; we're throwing and catching a Runt imeException whichis
perhaps a little loose. We don't really know what other exceptions, if any, might be thrown in the
runInSequence method. Perhaps it's better to be more explicit. Let's create a new sub-type of
RuntimeException and use that instead.

class InsufficientFundsRuntimekException extends RuntimeException ({
public
InsufficientFundsRuntimeException (InsufficientFundsException
cause) |
super (cause) ;

After we've modified the original lambda to throw the new exception, we can restrict the catch to
deal with only exceptions we know about; namely the TnsufficientFundsRuntimeException.

We can now implement some kind of balance check and rollback functionality, confident that we
understand all the scenarios that can cause it.

public void transfer (BankAccount a, BankAccount b, Integer amount) {
Runnable debit = () -> {
try |
a.debit (amount) ;
} catch (InsufficientFundsException e) {
throw new InsufficientFundsRuntimeException(e);

b
Runnable credit = () -> {
try |
b.credit (amount) ;
} catch (InsufficientFundsException e) {
throw new InsufficientFundsRuntimeException(e);

b

try {
runInSequence (debit, credit);

} catch (InsufficientFundsRuntimeException e) {
// check balances and rollback

The trouble with all this, is that the code has more exception handling boilerplate than actual business
logic. Lambdas are supposed to make things less verbose but this is just full of noise. We can make
things better if we generalize the wrapping of checked exceptions to runtime equivalents. We could
create a functional interface that captures an exception type on the signature using generics.

Let's name it callable and its single method; ca11. Don't confuse this with the class of the same
name in the JDK; we're creating a new class to illustrate dealing with exceptions.

@FunctionalInterface

interface Callable<E extends Exception> {
void call () throws E;

}

We'll change the old implementation of transfer and create lambdas to match the "shape" of the new
functional interface. I've left off the type for a moment.

public void transfer (BankAccount a, BankAccount b, Integer amount) {
??2? debit = () -> a.debit (amount);
??? credit = () -> b.credit (amount) ;

Remember from the type inference section that Java would be able to see this as a type of callable
as it has no parameters as does callable, it has the same return type (none) and throws an exception
of the same type as the interface. We just need to give the compiler a hint, so we can assign this to an
instance ofa callable.

public void transfer (BankAccount a, BankAccount b, Integer amount) {
Callable<InsufficientFundsException> debit = () ->
a.debit (amount) ;
Callable<InsufficientFundsException> credit = () ->
b.credit (amount) ;

Creating the lambdas like this doesn't cause a compilation error as the functional interface declares
that it could be thrown. It doesn't need to warn us at the point we create the lambda, as the signature
of the functional method will cause the compiler to error if required when we actually try and call it.
Just like a regular method.

If we try and pass them into the runInsequence method, we'll get a compiler error though.

public void transfer (BankAccount a, BankAccount b, Integer amount) {
Callable<InsufficientFundsException> debit = () ->
a.debit (amount) ;
Callable<InsufficientFundsException> credit = () ->
b.credit (amount) ;
runInSequence (debit, credit); <- doesn't compile

The lambdas are of the wrong type. We still need a lambda of type runnable. We'll have to write a
method that can convert froma callable to a Runnable. At the same time, we'll wrap the checked
exception to a run time one. Something like this:

public static Runnable unchecked(Callable<InsufficientFundsException> function)
{
return () -> {
try |
function.call () ;
} catch (InsufficientFundsException e) {
throw new InsufficientFundsRuntimeException (e);

}r

All that's left to do 1s wire it in for our lambdas:

public void transfer (BankAccount a, BankAccount b, Integer amount) {
Runnable debit = unchecked(() -> a.debit (amount)):;
Runnable credit = unchecked(() -> b.credit (amount)):;
runInSequence (debit, credit);

Once we put the exception handling back in we're back to a more concise method body and have dealt
with the potential exceptions in the same way as before.

public void transfer (BankAccount a, BankAccount b, Integer amount) {
Runnable debit = unchecked(() -> a.debit (amount));
Runnable credit = unchecked(() -> b.credit (amount));
try {

runInSequence (debit, credit);
} catch (InsufficientFundsRuntimeException e) {
// check balances and rollback
}
}

The downside is this isn't a totally generalized solution; we'd still have to create variations of the
unchecked method for different functions. We've also just hidden the verbose syntax away. The
verbosity is still there its just been moved. Yes, we've got some reuse out of it but if exception
handling were transparent or we didn't have checked exceptions, we wouldn't need to brush the issue
under the carpet quite so much.

It's worth pointing out that we'd probably end up doing something similar if we were in Java 7 and
using anonymous classes instead of lambdas. A lot of this stuff can still be done pre-Java 8 and you'll
end up creating helper methods to push the verbosity to one side.

It's certainly the case that lambdas offer more concise representations for small anonymous pieces of
functionality but because of Java's checked exception model, dealing with exceptions in lambdas will
often cause all the same verbosity problems we had before.

As a caller (dealing with exceptions when calling
lambdas)

We've seen things from the perspective of writing lambdas, now lets have a look at things when
calling lambdas.

Let's imagine that now we're writing the library that offers the runTnsequence method. We have
more control this time and aren't limited to using Runnable as a lambda type. Because we don't want
to force our clients to jump through hoops dealing with exceptions in their lambdas (or wrap them as
runtime exceptions), we'll provide a functional interface that declares that a checked exception might
be thrown.

We'll call it FinancialTransfer witha transfer method:

@FunctionalInterface
interface FinancialTransfer {
void transfer () throws InsufficientFundsException;

}

We're saying that whenever a banking transaction occurs, there's the possibility that insufficient funds
are available. Then when we implement our runTnsequence method, we accept lambdas of this type.

public static void runInSequence (FinancialTransfer first,
FinancialTransfer second) throws InsufficientFundsException

{
first.transfer () ;
second.transfer () ;

}

This means that when clients use the method, they're not forced to deal with exceptions within their
lambdas. For example, writing a method like this.

// example client usage

public void transfer (BankAccount a, BankAccount b, Integer amount) {
FinancialTransfer debit = () -> a.debit (amount);
FinancialTransfer credit = () -> b.credit (amount);

}

This time there is no compiler error when creating the lambdas. There's no need to wrap the
exceptions from BankAccount methods as runtime exceptions; the functional interface has already
declared the exception. However, runinsequence would now throw a checked exception, so it's
explicit that the client has to deal with the possibility and you'll see a compiler error.

public void transfer (BankAccount a, BankAccount b, Integer amount) {
FinancialTransfer debit = () -> a.debit (amount);
FinancialTransfer credit = () -> b.credit (amount);
runInSequence (debit, credit); <- compiler error

So we need to wrap the call ina try/catch to make the compiler happy:

public void transfer (BankAccount a, BankAccount b, Integer amount) {

FinancialTransfer debit = () -> a.debit (amount);
FinancialTransfer credit = () -> b.credit (amount);
try {

runInSequence (debit, credit); <- compiler error

} catch (InsufficientFundsException e) {
// whatever

The end result is something like we saw previously but without the need for the unchecked method.
As a library developer, we've made it easier for clients to integrate with our code.

But what about if we try something more exotic? Let's make the runTnsequence method
asynchronous again. There's no need to throw the exception from the method signature as it wouldn't
propagate to the caller if it were thrown from a different thread. So this version of the
runInSequence method doesn't include the throws clause and the transfer method is no longer
forced to deal with it. However, the calls to . transfer will still throw an exception.

public static void runInSequence (Runnable first, Runnable second) {

new Thread (() -> {
first.transfer () ; <- compiler error
second.transfer(); <- compiler error
}) .start () ;

public void transfer (BankAccount a, BankAccount b, Integer amount) {
FinancialTransfer debit = () -> a.debit (amount);
FinancialTransfer credit = () -> b.credit (amount);
runInSequence (debit, credit); <- compiler error

With the compiler errors still in the runInsequence method, we need another way to handle the
exception. One technique is to pass in a function that will be called in the event of an exception. We
can use this lambda to bridge the code running asynchronously back to the caller.

To start with, we'll add the catch block back in and pass in a functional interface to use as the
exception handler. I'll use the consumer interface here, it's new in Java 8 and part of the
java.util.function package. We then call the interface method in the catch block, passing in the
cause.

public void runInSequence (FinancialTransfer first,
FinancialTransfer second,
Consumer<InsufficientFundsException> exceptionHandler) {
new Thread (() -> {

try {
first.transfer () ;
second.transfer () ;

} catch (InsufficientFundsException e) {

exceptionHandler.accept(e);

}
}) .start () ;

}

To call it, we need to update the transfer method to pass in a lambda for the callback. The
parameter, exception below, will be whatever is passed into the accept method in runTnsequence.
It will be an instance of InsufficientFundsException and the client can deal with it however they
chose.

public void transfer (BankAccount a, BankAccount b, Integer amount) {

FinancialTransfer debit = () -> a.debit (amount);
FinancialTransfer credit = () -> b.credit (amount);
Consumer<InsufficientFundsException> handler = (exception) -> {

/* check account balances and rollback */
b
runInSequenceNonBlocking (debit, credit, handler);

}

There we are. We've provided the client to our library with an alternative exception handling
mechanism rather than forcing them to catch exceptions.

We've internalized the exception handling into the library code. It's a good example of deferred
execution; should there be an exception, the client doesn't necessarily know when his exception
handler would get invoked. For example, as we're running in another thread, the bank accounts
themselves may have be altered by the time it executes. Again it highlights that using exceptions to
control your program's flow is a flawed approach. You can't rely on the exception handler being
called when it's convenient for you.

Lambdas vs closures

The terms closure and lambda are often used interchangeably but they are actually distinct. In this
section we'll take a look at the differences so you can be clear about which is which.

Below is a table showing the release dates for each major version of Java. Java 5.0 came along in
2004 and included the first major language changes including things like generics support:

Java Details Years since prev
1.0 1996 -

1.1 1997 +1

1.2 1998 +1

1.3 2000 +2

1.4 2002 -7

5.0 2004 +2

6.0 2006 +2

7.0 2011 *5

8.0 2014 +3

Around 2008 to 2010 there was a lot of work going on to introduce closures to Java. It was due to go
in to Java 7 but didn't quite make it in time. Instead it evolved into lambda support in Java 8.
Unfortunately, around that time, people used the term "closures" and "lambdas" interchangeably and
so it's been a little confusing for the Java community since. In fact, there's still a project page on the
OpenJDK site for closures and one for lambdas.

From the OpenJDK project's perspective, they really should have been using "lambda" consistently
from the start. In fact, the OpenJDK got it so wrong, they ignored the fact that Java has had closure
support since version 1.1!

I'm being slightly pedantic here as although there are technical differences between closures and

http://openjdk.java.net/projects/closures/
http://openjdk.java.net/projects/lambda/

lambdas, the goals of the two projects were to achieve the same thing, even if they used the
terminology inconsistently.

So what is the difference between lambdas and closures? Basically, a closure is a type of lambda but
a lambda isn't necessarily a closure.

Basic differences

Just like a lambda, a closure is effectively an anonymous block of functionality, but there are some
important distinctions. A closure depends on external values (not just it's arguments) whereas a
lambda depends only on it's arguments. A closure is said to "close over" the environment it requires.

For example, the following:

(server) -> server.isRunning();

1s a lambda, but this

() -> server.isRunning() ;
1s a closure.

They both return a boolean indicating if some server is up but one uses it's argument and the other
must get the variable from somewhere else. Both are lambdas; in the general sense, they are both
anonymous blocks of functionality and in the Java language sense, they both use the new lambda
syntax.

The first example refers to a server variable passed into the lambda as an argument whereas the
second example (the closure) gets the server variable from somewhere else; that is the environment.
To get the instance of the variable, the lambda has to "close over" the environment or capture the
value of server. We've seen this in action when we talked about effectively final before.

Let's expand the example to see things more clearly. Firstly, we'll create a method in a static class to
perform a naive poll and wait. It'll check a functional interface on each poll to see if some condition
has been met.

class WaitFor {
static <T> void waitFor (T input, Predicate<T> predicate)
throws InterruptedException {
while (!predicate.test (input))
Thread.sleep (250);

}

We use predicate (another new java.util interface) as our functional interface and test it, pausing
for a short while if the condition is not satisfied. We can call this method with a simple lambda that
checks if some HTTP server is running.

void lambda () throws InterruptedException {
waitFor (new HttpServer (), (server) -> !server.isRunning());

}

The server parameter is supplied by our waitror method and will be the instance of HttpServer
we've just defined. It's a lambda as the compiler doesn't need to capture the server variable as we

supply it manually at runtime.

Note

Incidentally, we might have been able to use a method reference... waitFor (new HttpServer (),

HttpServer::isRunning) ;

Now, if we re-implement this as a closure, it would look like this. Firstly, we have to add another
waitFor method.

static void waitFor (Condition condition) throws InterruptedException {
while (!condition.isSatisfied())
Thread.sleep (250);
}

This time, with a simpler signature. We pass in a functional interface that requires no parameters. The
Condition interface has a simple issatisfied method with no argument which implies that we
have to supply any values an implementation might need. It's already hinting that usages of it may
result in closures.

Using it, we'd write something like this:

void closure () throws InterruptedException {
Server server = new HttpServer();
waitFor (() -> !server.isRunning());

}

The server instance is not passed as a parameter to the lambda here but accessed from the enclosing
scope. We've defined the variable and the lambda uses it directly. This variable has to be captured,
or copied by the compiler. The lambda "closes over" the server variable.

This expression to "close over" comes from the idea that a lambda expression with open bindings (or
free variables) have been closed by (or bound in) the lexical environment or scope. The result is a
closed expression. There are no unbound variables. To be more precise, closures close over values
not variables.

We've seen a closure being used to provide an anonymous block of functionality and the difference
between an equivalent lambda but, there are still more useful distinctions we can make.

Other differences

An anonymous function, is a function literal without a name, whilst a closure is an instance of a
function. By definition, a lambda has no instance variables; it's not an instance. It's variables are
supplied as arguments. A closure however, has instance's variables which are provided when the
instance is created.

With this in mind, a lambda will generally be more efficient than a closure as it only needs to
evaluated once. Once you have the function, you can re-use it. As a closure closes over something not
in it's local environment, it has to be evaluated every time it's called. An instance has to be newed up
each time it's used.

All the issues we looked at in the functions vs classes section are relevant here too. There may be
memory considerations to using closures over lambdas.

Summary

We've talked about a lot here so let's summarize the differences briefly.

Lambdas are just anonymous functions, similar to static methods in Java. Just like static methods, they
can't reference variables outside their scope except for their arguments. A special type of lambda,
called a closure, can capture variables outside their scope (or close over them) so they can use
external variables or their arguments. So the simple rule is if a lambda uses a variable from outside
it's scope, it's also a closure.

Closures can be seen as instances of functions. Which is kind of an odd concept for Java developers.

A great example is the conventional anonymous class that we would pass around if we didn't have the
new lambda syntax. These can "close over" variables and so are themselves closures. So we've had
closure support in Java since 1.1.

Take a look at this example. The server variable has to be closed over by the compiler to be used in
the anonymous instance of the condition interface. This is both an anonymous class instance and a
closure.

@since Java 1.1!
void anonymousClassClosure () {
Server server = new HttpServer();
wailtFor (new Condition() {
@Override
public Boolean isSatisfied() {
return !server.isRunning() ;
}
}) g
}

Lambda's aren't always closures, but closures are always lambdas.

In this section we'll explore how the compiler output differs when you compile anonymous classes to
when you compile lambdas. First we'll remind ourselves about java bytecode and how to read it.
Then we'll look at both anonymous classes and lambdas when they capture variables and when they
don't. We'll compare pre-Java 8 closures with lambdas and explore how lambdas are not just
syntactic sugar but produce very different bytecode from the traditional approaches.

Bytecode recap

To start with, let's recap on what we know about bytecode.

To get from source code to machine runnable code. The Java compiler produces bytecode. This is
either interpreted by the JVM or re-compiled by the Just-in-time compiler.

When it's interpreted, the bytecode is turned into machine code on the fly and executed. This happens
each time the bytecode is encountered but he JVM.

When it's Just-in-time compiled, the JVM compiles it directly into machine code the first time it's
encountered and then goes on to execute it.

Both happen at run-time but Just-in-time compilation offer lots of optimizations.

So, Java bytecode is the intermediate representation between source code and machine code.

Note

As a quick side bar: Java's JIT compiler has enjoyed a great reputation over the years. But going back
full circle to our introduction, it was John McCarthy that first wrote about JIT compilation way back
in 1960. So it's interesting to think that it's not just lambda support that was influenced by LISP.
(Aycock 2003, 2. JIT Compilation Techniques, 2.1 Genesis, p. 98).

The bytecode is the instruction set of the JVM. As it's name suggests, bytecode consists of single-byte
instructions (called opcodes) along with associated bytes for parameters. There are therefore a
possible 256 opcodes available although only about 200 are actually used.

The JVM uses a stack based computation model, if we want to increment a number, we have to do it
using the stack. All instructions or opcodes work against the stack.

So for example, 5 + 1 becomes 5 1 + where 5 is pushed to the stack,

3 VPR +
push 5 ----- ¥ 5 |
3 PR +
| |
o RS +

http://user.it.uu.se/~kostis/Teaching/KT2-04/jit_survey.pdf
http://en.wikipedia.org/wiki/Model_of_computation

1 is pushed then...

o +
push 4 soses = | 1 |
B i +
| 5 |
A +
| |
SO ST +

the + operator is applied. Plus would pop the top two frames, add the numbers together and push the
result back onto the stack. The result would look like this.

A S S +

iadd 3z 2= sooes > | o |
TN e +
| |
=% M e +
| |
S R o e +

Each opcode works against the stack like this so we can translate our example into a sequence of Java
bytecodes:

push 5 ----- ¥ | 5 |
3 PR +
| |
o RS +
| |
L, +

The push 5 opcode becomes iconst 5.

T I +
ingnsk B s > | 5 |
o &
| |
- OO e
| |
e +

The push 1 opcode becomes iconst 1:

T T +
feonst 1 oo] 1 |
e e +
| 5 |
T N x

and add becomes iadd.

: A +

jadd &0 s > | 6 |
< I +
| |
: - +
| |
TS +

The iconst x opcode and iadd opcode are examples of opcodes. Opcodes often have prefixes
and/or suffices to indicate the types they work on, i in these examples refers to integer, x is an
opcode specific suffix.

We can group the opcodes into the following categories:

Group Examples

Stack manipulation

aload n, istore, swap, dup2

Control flow mstructions

goto, ifeq, iflt

Object interactions

new, invokespecial, areturn

Arithmetic, logic and type conversion

iadd, fcmpl, i2b

Instructions concerned with stack manipulation, like a1oad and istore.
To control program flow with things like if and while, we use opcodes like goto and if equal.

Creating objects and accessing methods use codes like new and invokespecial. We'll be
particularly interested in this group when we look at the different opcodes used to invoke lambdas.

The last group is about arithmetic, logic and type conversion and includes codes like iadd, float
compare long (fcmp1) and integer to byte (i2b).

Descriptors

Opcodes will often use parameters, these look a little cryptic in the bytecode as they're usually
referenced via lookup tables. Internally, Java uses what's called descriptors to describe these
parameters.

They describe types and signatures using a specific grammar you'll see throughout the bytecode.
You'll often see the same grammar used in compiler or debug output, so it's useful to recap it here.

Here's an example of a method signature descriptor.

Example$l."<init>": (Lcom/foo/Example;Lcom/foo/Server;)V

It's describing the constructor of a class called $1, which we happen to know 1s the JVM's name for
the first anonymous class instance within another class. In this case Example. So we've got a
constructor of an anonymous class that takes two parameters, an instance of the outer class
com.foo.ExampleandaninswnceOfcom.foo.Server.

Being a constructor, the method doesn't return anything. The v symbol represents void.

Have a look at breakdown of the descriptor syntax below. If you see an uppercase z in a descriptor,
it's referring to a boolean, an uppercase B a byte and so on.

Descriptor Syntax Java Type

L boolean

B byte

C char

S short

I int

J long

F float

D double

L class; Fully-qualified class
[type [type]

(args) type Method type

V void (no return type)

A couple of ones to mention:

e (lasses are described with an uppercase 1. followed by the fully qualified class name, followed
by a semi-colon. The class name is separated with slashes rather than the dots.

e And arrays are described using an opening square bracket followed by a type from the list. No
closing bracket.

Converting a method signature

Let's take the following method signature and turn it into a method descriptor:

long £ (int n, String s, int[] array);

The method returns a 1ong, so we describe the fact that it is a method with brackets and that it returns
a long with a uppercase J.

()J

The first argument 1s of type int, SO we use an uppercase I.

(I)J

The next argument is an object, so we use L to describe it's an object, fully qualify the name and close
it with a semi-colon.

(ILString;)J

The last argument is an integer array so we drop in the array syntax followed by int type:

(ILString; [I)J

and we're done. A JVM method descriptor.

Code examples

Lets have a look at the bytecode produced for some examples.

We're going to look at the bytecode for four distinct blocks of functionality based on the example we
looked at in 1ambdas vs closures section.

We'll explore:

1. A simple anonymous class.

An anonymous class closing over some variable (an old style closure).
A lambda with no arguments.

A lambda with arguments.

A lambda closing over some variable (a new style closure).

Al

The example bytecode was generated using the javap command line tool. Only partial bytecode
listings are shown in this section, for full source and bytecode listings, see Appendix Aa. Also, fully
qualified class names have been shortened to better fit on the page.

Example 1

The first example is a simple anonymous class instance passed into our waitFor method.

public class Examplel {
// anonymous class

void example () throws InterruptedException {
waitFor (new Condition () {
@Override
public Boolean isSatisfied () {

return true;

If we look at the bytecode below, the thing to notice is that an instance of the anonymous class is
newed up at line 6. The #2 refers to a lookup, the result of which is shown in the comment. So it uses
the new opcode with whatever is at #2 in the constant pool, this happens to be the anonymous class
ExampleS1.

void example () throws java.lang.InterruptedException;
descriptor: ()V
flags:
Code:

stack=3, locals=1, args size=l
0: new #2 // class Examplel$l

3: dup

4: aload O

5: invokespecial #3 // Method Examplel$1l."": (LExamplel;)V
8: invokestatic #4 // Method WaitFor.waitFor:

(LCondition;)V
11: return
LineNumberTable:
line 10: O
line 16: 11
LocalVariableTable:
Start Length Slot Name Signature
0 12 0 this LExamplel;
Exceptions:
throws java.lang.InterruptedException

Once created, the constructor is called using invokespecial online 9. This opcode is used to call
constructor methods, private methods and accessible methods of a super class. You might notice the
method descriptor includes a reference to Example1. All anonymous class instances have this
implicit reference to the parent class.

The next step uses invokestatic to call our waitFor method passing in the anonymous class on line
10. The invokestatic opcode is used to call static methods and is very fast as it can direct dial a
method rather than figure out which to call as would be the case in an object hierarchy.

Example 2
The Example 2 class is another anonymous class but this time it closes over the server variable. It's
an old style closure:

public class Example?2 {
// anonymous class (closure)

void example () throws InterruptedException {
Server server = new HttpServer():;
waitFor (new Condition () {
@Override
public Boolean isSatisfied() {

return !server.isRunning();
}
1)

The bytecode is similar to the previous except that an instance of the server class is newed up (at
line 3.) and it's constructor called at line 5. The instance of the anonymous class s1 is still
constructed with invokespecial (atline 11.) but this time it takes the instance of server as an
argument as well as the instance of the calling class.

To close over the server variable, it's passed directly into the anonymous class:

void example () throws java.lang.InterruptedException;
Code:
0: new #2 // class ServerS$SHttpServer
3: dup
4: invokespecial #3 // Method ServerS$SHttpServer."": ()V
7: astore 1
8: new #4 // class Example2$1
11: dup

12: aload O

13: alocad 1

14: invokespecial #5 // Method Example2$l."":
(LExample?2;LServer;)V

17: invokestatic #6 // Method WaitFor.waitFor: (LCondition;)V

20: return

Example 3

The Example 3 class uses a Java lambda with our waitFor method. The lambda doesn't do anything
other than return true. It's equivalent to example 1.

public class Example3 {
// simple lambda
void example () throws InterruptedException {
waitFor (() -> true);

}

The bytecode is super simple this time. It uses the invokedynamic opcode to create the lambda at
line 3 which is then passed to the invokestatic opcode on the next line.

void example () throws java.lang.InterruptedException;
Code:
0: invokedynamic #2, 0 // InvokeDynamic #0:isSatisfied:
() LCondition;

5: invokestatic #3 // Method WaitFor.waitFor: (LCondition;)V
8: return

The descriptor for the invokedynamic call 1s targeting the i ssatisfied method onthe condition
interface (line 3.).

What we're not seeing here is the mechanics of invokedynamic. The invokedynamic opcode is a
new opcode to Java 7, it was intended to provide better support for dynamic languages on the JVM. It
does this by not linking the types to methods until run-time. The other "invoke" opcodes all resolve
types at compile time.

For lambdas, this means that placeholder method invocations can be put into the bytecode like we've
just seen and working out the implementation can be done on the JVM at runtime.

If we look at a more verbose bytecode that includes the constant pool we can dereference the
lookups. For example, if we look up number 2, we can see it references #0 and #26.

Constant pool:
#1 = Methodref #6.#21 // Object."":()V
#2 = InvokeDynamic #0:#26 // #0:isSatisfied: ()LCondition;

BootstrapMethods:
0: #23 invokestatic LambdaMetafactory.metafactory:
(LMethodHandlesS$SLookup; LString;
LMethodType; LMethodType;
LMethodHandle; LMethodType;) LCallSite;
Method arguments:

#24 ()LBoolean;

#25 invokestatic Example3.lambdaSexample$25: () LBoolean;

#24 ()LBoolean;

The constant 0 is in a special lookup table for bootstrapping methods (line 6). It refers to a static
method call to the JDK LambdaMetafactory to create the lambda. This is where the heavy lifting
goes on. All the target type inference to adapt types and any partial argument evaluation goes on here.

The actual lambda is shown as a method handle called 1ambda$exampie$25 (line 12) with no
arguments, returning a boolean. It's invoked using invokestatic which shows that it's accessed as a
genuine function; there's no object associated with it. There's also no implicit reference to a
containing class unlike the anonymous examples before.

It's passed into the LambdaMetafactory and we know it's a method handle by looking it up in the
constant pool. The number of the lambda 1s compiler assigned and just increments from zero for each
lambda required.

Constant pool:
// invokestatic Example3.lambda$example$25: () LBoolean;
#25 = MethodHandle #6:#35

Example 4

The Example 4 class is another lambda but this time it takes an instance of server as an argument.
It's equivalent in functionality to example 2 but it doesn't close over the variable; it's not a closure.

public class Exampled {
// lambda with arguments
void example () throws InterruptedException {
waitFor (new HttpServer (), (server) -> server.isRunning());

Just like example 2, the bytecode has to create the instance of server but this time, the
invokedynamic opcode references the test method of type predicate. If we were to follow the
reference (#4) to the boostrap methods table, we would see the actual lambda requires an argument of
type Httpserver and returns a z which is a primitive boolean.

void example () throws java.lang.InterruptedException;
descriptor: ()V
flags:
Code:

stack=2, locals=1, args size=1l
0: new #2 // class ServerSHttpServer

3: dup
4: invokespecial #3 // Method ServerS$HttpServer."": ()V
7: invokedynamic #4, 0 // InvokeDynamic #0:test:

() LPredicate;
12: invokestatic #5 // Method WaitFor.waitFor:
(LObject;LPredicate;)V
15: return
LineNumberTable:
line 13: O
line 15: 15
LocalVariableTable:
Start Length Slot Name Signature
0 16 0 this LExample4;
Exceptions:
throws java.lang.InterruptedException

So the call to the lambda 1is still a static method call like before but this time takes the variable as a
parameter when it's invoked.

Example 4 (with method reference)

Interestingly, if we use a method reference instead, the functionality 1s exactly the same but we get
different bytecode.

public class Exampled4 method reference {
// lambda with method reference
void example () throws InterruptedException {
waitFor (new HttpServer (), HttpServer::isRunning);

Via the call to LambdaMetafactory when the final execution occurs, method reference results ina
call to invokevirtual rather than invokestatic. The invokevirtual opcode is used to call
public, protected an package protected methods so it implies an instance is required. The instance is
supplied to the metafactory method and no lambda (or static function) is needed at all; there are no
lambda$ in this bytecode.

void example () throws java.lang.InterruptedException;
descriptor: ()V
flags:
Code:

stack=2, locals=1, args size=1l
0: new #2 // class ServerSHttpServer

3: dup
4: invokespecial #3 // Method ServerS$HttpServer."": ()V
7: invokedynamic #4, 0 // InvokeDynamic #0:test:

() LPredicate;
12: invokestatic #5 // Method WaitFor.waitFor:
(LObject;LPredicate;)V
15: return
LineNumberTable:
line 11: O
line 12: 15
LocalVariableTable:
Start Length Slot Name Signature
0 16 0 this LExample4 method reference;
Exceptions:
throws java.lang.InterruptedException

Example 5
Lastly, example 5 uses a lambda but closes over the server instance. It's equivalent to example 2 and
is a new style closure.

public class Example5 {
// closure

void example () throws InterruptedException {
Server server = new HttpServer():;
waitFor (() -> !server.isRunning());

It goes through the basics in the same way as the other lambdas but if we lookup the metafactory
method in the bootstrap methods table, you'll notice that this time, the lambda's method handle has an
argument of type server. It's invoked using invokestatic (line 9) and the variable is passed
directly into the lambda at invocation time.

BootstrapMethods:
0: #34 invokestatic LambdaMetafactory.metafactory:
(LMethodHandlesS$Lookup;
LString;LMethodType;
LMethodType;
LMethodHandle; LMethodType;)LCallSite;
Method arguments:

#35 ()LBoolean; // <-- SAM method to be implemented by the
lambda

#36 invokestatic Exampleb5.lambda$Sexample$35:

(LServer;)LBoolean;
#35 ()LBoolean; // <-- type to be enforced at invocation
time

So like the anonymous class in example 2, an argument is added by the compiler to capture the term
although this time, it's a method argument rather than a constructor argument.

Summary

We saw how using an anonymous class will create a new instance and call it's constructor with

invokespecial.

We saw anonymous classes that close over variables have an extra argument on their constructor to
capture that variable.

And we saw how Java lambdas use the invokedynamic instruction to defer binding of the types and
that a special 1ambda$ method handle is used to actually represent the lambda. This method handle
has no arguments in this case and is invoked using invokestatic making it a genuine function.

The lambda was created by the nLambdaMetafactory class which itself was the target of the

invokedynamic call.

When a lambda has arguments, we saw how the LambdaMetafactory describes the argument to be
passed into the lambda. The invokestatic opcode is used to execute the lambda like before. But we
also had a look at a method reference used in-lieu of a lambda. In this case, no 1ambdas method
handle was created and invokevirtual was used to call the method directly.

Lastly, we looked at a lambda that closes over a variable. This one creates an argument on the
1ambda$ method handle and again is called with invokestatic.

Appendix A. Bytecode

WaitFor

package Jjdk8.byte code;

class WaitFor {
static void waitFor (Condition condition) throws
InterruptedException {
while (!condition.isSatisfied())
Thread.sleep (250) ;

static <T> void waitFor (T input, Predicate<T> predicate)
throws InterruptedException {
while (!predicate.test (input))
Thread.sleep (250);

Example 1

package Jjdk8.byte code;
import static Jjdk8.byte code.WaitFor.waitFor;

@SuppressWarnings ("all")
public class Examplel ({

// anonymous class

void example () throws InterruptedException {
waitFor (new Condition () {
@Override
public Boolean isSatisfied() {

return true;

}

Classfile Examplel.class
Last modified 08-May-2014; size 603 bytes
MD5 checksum 7365ca98fe204£c9198043cef5d241be
Compiled from "Examplel.java"
public class Jjdk8.byte code.Examplel
SourceFile: "Examplel.java"
InnerClasses:
#2; //class jdk8/byte code/Examplel$l
minor version: 0
major version: 52
flags: ACC_PUBLIC, ACC_SUPER
Constant pool:
#1 = Methodref #6.#20 // java/lang/Object." <init>":()V
#2 = Class #21 // jdk8/byte_code/Examplel$l
#3 = Methodref #2.#22 // jdk8/byte code/Examplel$l." <init>":
(Ljdk8/byte_ code/Examplel;)V
#4 = Methodref #23.#24 //
jdk8/byte code/WaitFor.waitFor: (Ljdk8/byte code/Condition;)V
#5 = Class #25 // jdk8/byte_code/Examplel

#6 = Class #26 // java/lang/Object
#7 = Utf8 InnerClasses

#8 = Utf8 <init>

#9 = Utf8 ()V

#10 = Utf8 Code

#11 = Utf8 LineNumberTable

#12 = Utf8 LocalVariableTable

#13 = Utf8 this

#14 = Utf8 Ljdk8/byte code/Examplel;

#15 = Utf8 example

#16 = Utf8 Exceptions

#17 = Class #27 // java/lang/InterruptedException
#18 = Utf8 SourceFile

#19 = Utf8 Examplel. java

#20 = NameAndType #8:#9 // "":()V

#21 = Utf8 jdk8/byte_code/Examplel$l

#22 = NameAndType #8:#28 // "":(Ljdk8/byte code/Examplel;)V

#23 = Class #29 // jdk8/byte_code/WaitFor

#24 = NameAndType #30:#31 // waitFor: (Ljdk8/byte code/Condition;)V
#25 = Utf8 jdk8/byte code/Examplel

#26 = Utf8 java/lang/Object

#27 = Utf8 java/lang/InterruptedException

#28 = Utf8 (Ljdk8/byte code/Examplel;)V

#29 = Utf8 jdk8/byte_code/WaitFor

#30 = Utf8 waitFor

#31 = Utf8 (Ljdk8/byte_code/Condition;)V
{
public jdk8.byte code.Examplel();
descriptor: ()V
flags: ACC_PUBLIC
Code:
stack=1l, locals=1l, args_size=l
0: aload O
1: invokespecial #1 // Method java/lang/Object."<init>": ()V
4: return
LineNumberTable:
line 6: 0
LocalVariableTable:
Start Length Slot Name Signature
0 5 0 this Ljdk8/byte_code/Examplel;
void example () throws java.lang.InterruptedException;
descriptor: ()V

flags:
Code:
stack=3, locals=1l, args_size=l
0: new #2 // class
jdk8/byte code/Examplel$l
3: dup
4: aload O
5: invokespecial #3 // Method
jdk8/byte_ code/Examplel$l."<init>": (Ljdk8/byte_code/Examplel;)V

8: invokestatic #4 // Method

jdk8/byte_code/WaitFor.waitFor: (Ljdk8/byte code/Condition;)V
11: return
LineNumberTable:
line 10: O
line 16: 11
LocalVariableTable:
Start Length Slot Name Signature
0 12 0 this Ljdk8/byte code/Examplel;
Exceptions:
throws java.lang.InterruptedException

Example 2

package Jjdk8.byte code;
public interface Server {
Boolean isRunning () ;
public class HttpServer implements Server

@Override

public Boolean isRunning () {
return false;

}

package jdk8.byte code;

import static jdk8.byte code.Server.*;
import static Jjdk8.byte code.WaitFor.waitFor;

public class Example?2 {

// anonymous class (closure)

void example () throws InterruptedException {
Server server = new HttpServer();
waitFor (new Condition () {
@Override
public Boolean isSatisfied() {

return !server.isRunning()

}

Classfile Example2.class
Last modified 08-May-2014; size 775 bytes
MD5 checksum 2becf3c32e2b08abc50465aca7398c4b
Compiled from "Example2.java"
public class jdk8.byte code.Example2
SourceFile: "Example2.java"
InnerClasses:
#4; //class jdk8/byte code/Example2$51
public static #27= #2 of #25; //HttpServer=class

jdk8/byte code/Server$HttpServer of class jdk8/byte code/Server
minor version: 0

major version: 52
flags: ACC_PUBLIC, ACC_SUPER
Constant pool:

#1 = Methodref #8.4#24 // java/lang/Object."<init>": ()V
#2 = Class #26 // jdk8/byte code/Server$HttpServer
#3 =

Methodref #2.4#24 // jdk8/byte_code/Server$HttpServer."<init>":()V

#4 = Class #28 // jdk8/byte code/Example2$l

#5 = Methodref #4.4#29 // jdk8/byte_ code/Example2$l."<init>":
(Ljdk8/byte_code/Example2;Ljdk8/byte code/Server;)V

#6 = Methodref #30.#31 // jdk8/byte_code/WaitFor.waitFor:
(Ljdk8/byte_code/Condition;)V

#7 = Class #32 // jdk8/byte code/Example2

#8 = Class #33 // java/lang/Object

#9 = Utf£8 InnerClasses

#10 = Utf8 <init>

#11 = Utfs OV

#12 = Ut£8 Code

#13 = Utf8 LineNumberTable

#14 = Ut£S8 LocalVariableTable

#15 = Utf8 this

#16 = Utf8 Ljdk8/byte_code/Example2;

#17 = Ut£8 example

#18 = Utf8 server

#19 = Utf£8 Ljdk8/byte_ code/Server;

#20 = Utf£8 Exceptions

#21 = Class #34 // java/lang/InterruptedException
#22 = Ut£8 SourceFile

#23 = Utf8 Example2. java

#24 = NameAndType #10:#11 // "<init>": ()V

#25 = Class #35 // jdk8/byte code/Server

#26 = Utf8 jdk8/byte code/Server$HttpServer

#27 = Ut£8 HttpServer

#28 = Utf8 jdk8/byte code/Example2$1

#29 = NameAndType #10:#36 // "<init>":
(Ljdk8/byte_code/Example2;Ljdk8/byte code/Server;)V

#30 = Class #37 // jdk8/byte code/WaitFor

#31 = NameAndType #38:#39 // waitFor: (Ljdk8/byte_ code/Condition;)V
#32 = Utf8 jdk8/byte code/Example2

#33 = Utf£8 java/lang/Object

#34 = UtfS8 java/lang/InterruptedException

#35 = Utf8 jdk8/byte code/Server

#36 = Utf8 (Ljdk8/byte_code/Example2;Ljdk8/byte code/Server;)V
#37 = Ut£8 jdk8/byte code/WaitFor

#38 = Utf8 waitFor

#39 = Utf8 (Ljdk8/byte_code/Condition;)V

{
public jdk8.byte code.Example2();

descriptor: ()V
flags: ACC_PUBLIC

Code:
stack=1l, locals=l, args_size=l

0: alocad O
1l: invokespecial #1 // Method java/lang/Object."<init>": ()V
4: return
LineNumberTable:

line 6: 0
LocalVariableTable:
Start Length Slot Name Signature

0 5 0 this Ljdk8/byte code/Example2;

void example () throws java.lang.InterruptedException;
descriptor: ()V

flags:

Code:
stack=4, locals=2, args_size=l
0: new #2 //class jdk8/byte_code/Server$HttpServer
3: dup
4: invokespecial #3 //Method jdk8/byte code/Server$HttpServer."
<init>": ()V
7: astore_1
8: new #4 // class jdk8/byte_code/Example2$1
11: dup
12: aload 0
13: aload_1
14: invokespecial #5 // Method jdk8/byte code/Example2$l."<init>":
(Ljdk8/byte code/Example2;Ljdk8/byte code/Server;)V
17: invokestatic #6 // Method jdk8/byte code/WaitFor.waitFor:
(Ljdk8/byte_code/Condition;)V
20: return
LineNumberTable:
line 10: O
line 11: 8
line 17: 20
LocalVariableTable:
Start Length Slot Name Signature
0 21 0 this Ljdk8/byte code/Example2;
8 13 1 server Ljdk8/byte_code/Server;
Exceptions:

throws java.lang.InterruptedException

Example 3

package Jjdk8.byte code;
import static Jjdk8.byte code.WaitFor.waitFor;

public class Example3 {
// simple lambda
void example () throws InterruptedException {
waitFor (() -> true);
}
}

Classfile Example3.class

Last modified 08-May-2014; size 1155 bytes

MD5 checksum 22e120de85528efc921bbl158588bbaal

Compiled from "Example3.java"
public class jdk8.byte code.Example3

SourceFile: "Example3.java"

InnerClasses:

public static final #50= #49 of #53; //Lookup=class

java/lang/invoke/MethodHandles$Lookup of class java/lang/invoke/MethodHandles

BootstrapMethods:

0: #23 invokestatic java/lang/invoke/LambdaMetafactory.metafactory:
(Ljava/lang/invoke/MethodHandles$Lookup;Ljava/lang/String;Ljava/lang/invoke/Meth
odType;Ljava/lang/invoke/MethodType;Ljava/lang/invoke/MethodHandle;Ljava/lang/in
voke/MethodType;)Ljava/lang/invoke/CallSite;

Method arguments:

#24 ()Ljava/lang/Boolean;

#25 invokestatic jdk8/byte_ code/Example3.lambda$example$25:
() Ljava/lang/Boolean;

#24 ()Ljava/lang/Boolean;

minor version: 0

major version: 52

flags: ACC_PUBLIC, ACC_SUPER
Constant pool:

#1 = Methodref #6.#21 // java/lang/Object."<init>": ()V
#2 = InvokeDynamic #0:#26 // #0:isSatisfied: ()Ljdk8/byte code/Condition;
#3 = Methodref #27.4#28 // jdk8/byte_code/WaitFor.waitFor:
(Ljdk8/byte_code/Condition;)V

#4 = Methodref #29.#30 // java/lang/Boolean.valueOf:

(z) Ljava/lang/Boolean;

#5 = Class #31 // jdk8/byte code/Example3

#6 = Class #32 // java/lang/Object

#7 = Utfs8 <init>

#8 = Utf8 v

#9 = Utf8 Code

#10 = Utf£8 LineNumberTable

#11 = Ut£8 LocalVariableTable

#12 = Utf8 this

#13 = Utf8 Ljdk8/byte code/Example3;

#14 = Ut£S8 example

#15 = Ut£8 Exceptions

#16 = Class #33 // java/lang/InterruptedException

#17 = Ut£8 lambda$example$25

#18 = Utf8 () Ljava/lang/Boolean;

#19 = Utf8 SourceFile

#20 = Utf8 Example3. java

#21 = NameAndType #7:48 // "<init>":()V
#22 = Utf8 BootstrapMethods

#23 = MethodHandle #6:#34 // invokestatic

java/lang/invoke/LambdaMetafactory.metafactory:
(Ljava/lang/invoke/MethodHandles$Lookup;Ljava/lang/String;Ljava/lang/invoke/Meth
odType;Ljava/lang/invoke/MethodType;Ljava/lang/invoke/MethodHandle;Ljava/lang/in
voke/MethodType;)Ljava/lang/invoke/CallSite;

#24 = MethodType #18 // ()Ljava/lang/Boolean;

#25 = MethodHandle #6:#35 // invokestatic
jdk8/byte_code/Example3.lambda$example$25: () Ljava/lang/Boolean;

#26 = NameAndType #36:#37 // isSatisfied: ()Ljdk8/byte code/Condition;
#27 = Class #38 // jdk8/byte code/WaitFor

#28 = NameAndType #39:4#40 // waitFor: (Ljdk8/byte code/Condition;)V
#29 = Class #41 // java/lang/Boolean

#30 = NameAndType #42:4#43 // valueOf: (Z)Ljava/lang/Boolean;

#31 = Ut£8 jdk8/byte code/Example3

#32 = Utf£8 java/lang/Object

#33 = Utf£8 java/lang/InterruptedException

#34 = Methodref #44 . #45 //

java/lang/invoke/LambdaMetafactory.metafactory:
(Ljava/lang/invoke/MethodHandles$Lookup;Ljava/lang/String;Ljava/lang/invoke/Meth
odType;Ljava/lang/invoke/MethodType;Ljava/lang/invoke/MethodHandle;Ljava/lang/in
voke/MethodType;)Ljava/lang/invoke/CallSite;

#35 = Methodref #5.#46 // jdk8/byte code/Example3.lambda$example$25:
() Ljava/lang/Boolean;

#36 = Utf8 isSatisfied

#37 = Utf8 ()Ljdk8/byte_ code/Condition;

#38 = Utf8 jdk8/byte code/WaitFor

#39 = Utfs8 waitFor

#40 = Utf8 (Ljdk8/byte code/Condition;)V

#41 = Utf£8 java/lang/Boolean

#42 = Ut£8 valueOf

#43 = Utf£8 (Z2) Ljava/lang/Boolean;

#44 = Class #47 // java/lang/invoke/LambdaMetafactory
#45 = NameAndType #48:#52 // metafactory:

(Ljava/lang/invoke/MethodHandles$Lookup;Ljava/lang/String;Ljava/lang/invoke/Meth
odType;Ljava/lang/invoke/MethodType;Ljava/lang/invoke/MethodHandle;Ljava/lang/in
voke/MethodType;)Ljava/lang/invoke/CallSite;

#46 = NameAndType #17:#18 // lambda$example$25: ()Ljava/lang/Boolean;
#47 = Ut£8 java/lang/invoke/LambdaMetafactory

#48 = Utf8 metafactory

#49 = Class #54 // java/lang/invoke/MethodHandles$Lookup
#50 = Utf£8 Lookup

#51 = Utf8 InnerClasses

#52 = Utf8

(Ljava/lang/invoke/MethodHandles$Lookup;Ljava/lang/String;Ljava/lang/invoke/Meth
odType;Ljava/lang/invoke/MethodType;Ljava/lang/invoke/MethodHandle;Ljava/lang/in
voke/MethodType;)Ljava/lang/invoke/CallSite;

#53 = Class #55 // java/lang/invoke/MethodHandles

#54 = Utf£8 java/lang/invoke/MethodHandles$Lookup

#55 = Utf£8 java/lang/invoke/MethodHandles
{
public jdk8.byte code.Example3();
descriptor: ()V
flags: ACC_PUBLIC
Code:
stack=1l, locals=l, args_size=l
0: aload O
1: invokespecial #1 // Method java/lang/Object."<init>": ()V
4: return
LineNumberTable:
line 6: O
LocalVariableTable:
Start Length Slot Name Signature
0 5 0 this Ljdk8/byte_ code/Example3;
void example () throws java.lang.InterruptedException;
descriptor: ()V

flags:
Code:
stack=1l, locals=1l, args_size=l
0: invokedynamic #2, O // InvokeDynamic #0:isSatisfied:
() Ljdk8/byte code/Condition;
5: invokestatic #3 // Method jdk8/byte code/WaitFor.waitFor:

(Ljdk8/byte_code/Condition;)V
8: return

LineNumberTable:

line 10: O

line 11: 8
LocalVariableTable:

Start Length Slot Name Signature

0 9 0 this Ljdk8/byte code/Example3;
Exceptions:

throws java.lang.InterruptedException

Example 4

package Jjdk8.byte code;

import static Jjdk8.byte code.Server.HttpServer;
import static jdk8.byte code.WaitFor.waitFor;

public class Exampled {
// lambda with arguments
void example () throws InterruptedException {
waitFor (new HttpServer (), (server) -> server.isRunning())
}
}

Classfile Exampled.class
Last modified 08-May-2014; size 1414 bytes
MD5 checksum 7177£97£df30b0648a09ab98109a479c
Compiled from "Example4.java"
public class]Jjdk8.byte code.Example4
SourceFile: "Exampled.java"
InnerClasses:
public static #21= #2 of #29; //HttpServer=class
jdk8/byte_code/Server$HttpServer of class jdk8/byte code/Server
public static final #65= #64 of #67; //Lookup=class
java/lang/invoke/MethodHandles$Lookup of class java/lang/invoke/MethodHandles
BootstrapMethods:

0: #32 invokestatic java/lang/invoke/LambdaMetafactory.metafactory:
(Ljava/lang/invoke/MethodHandles$Lookup;Ljava/lang/String;Ljava/lang/invoke/Meth
odType;Ljava/lang/invoke/MethodType;Ljava/lang/invoke/MethodHandle;Ljava/lang/in
voke/MethodType;)Ljava/lang/invoke/CallSite;

Method arguments:
#33 (Ljava/lang/Object;)Z
#34 invokestatic jdk8/byte code/Example4.lambda$example33 : (L

rHttpServer;)Z
#35 (Ljdk8/byte code/Server$HttpServer;)2Z
minor version: 0
major version: 52
flags: ACC_PUBLIC, ACC_SUPER
Constant pool:

#1 = Methodref #9.4#28 //java/lang/Object."<init>": ()V

#2 = Class #30 //jdk8/byte code/Server$HttpServer
#3 = Methodref #2.4#28 //3jdk8/byte code/Server$HttpServer."<init>":
(v

#4 = InvokeDynamic #0:#36 // #0:test: ()Ljava/util/function/Predicate;
#5 = Methodref #37.4#38 // jdk8/byte code/WaitFor.waitFor:
(Ljava/lang/Object;Ljava/util/function/Predicate;)V

#6 = Methodref #2.#39 // jdk8/byte code/Server$HttpServer.isRunning:
() Ljava/lang/Boolean;

#7 = Methodref #40.#41 // java/lang/Boolean.booleanValue: ()Z
#8 = Class #42 // jdk8/byte code/Example4

#9 = Class #43 //java/lang/Object

#10 = Utf8 <init>

#11 = Ut£s OV

#12 = Utf8 Code

#13 = Ut£8 LineNumberTable

#14 = Utf8 LocalVariableTable

#15 = Utfs8 this

#16 = Ut£8 Ljdk8/byte code/Example4;

#17 = Ut£8 example

#18 = Utf£8 Exceptions

#19 = Class #44 // java/lang/InterruptedException

#20 = Utf£8 lambda$example$33

#21 = Utf£8 HttpServer

#22 = Utf8 InnerClasses

#23 = UtfS8 (Ljdk8/byte code/Server$HttpServer;)2

#24 = Utf£8 server

#25 = Utf8 Ljdk8/byte_code/Server$HttpServer;

#26 = Utf£8 SourceFile

#27 = Ut£8 Exampled. java

#28 = NameAndType #10:4#11 // "<init>": ()V

#29 = Class #45 // jdk8/byte code/Server

#30 = Utf£S8 jdk8/byte_code/Server$HttpServer

#31 = Utf8 BootstrapMethods

#32 = MethodHandle #6:#46 // invokestatic

java/lang/invoke/LambdaMetafactory.metafactory:
(Ljava/lang/invoke/MethodHandles$Lookup;Ljava/lang/String;Ljava/lang/invoke/Meth
odType;Ljava/lang/invoke/MethodType;Ljava/lang/invoke/MethodHandle;Ljava/lang/in
voke/MethodType;)Ljava/lang/invoke/CallSite;

#33 = MethodType #47 // (Ljava/lang/Object;)Zz

#34 = MethodHandle #6:#48 // invokestatic

jdk8/byte code/Example4.lambda$example33 : (L

J

d

k8/b

RO O D

e/s

\’4
e

rHttpServer;)Z

#23 // (Ljdk8/byte_code/Server$HttpServer;)Z
#49:#50 // test: ()Ljava/util/function/Predicate;
#51 // jdk8/byte_code/WaitFor

#52:#53 // waitFor:

(Ljava/lang/Object;Ljava/util/function/Predicate;)V

#35 = MethodType
#36 = NameAndType
#37 = Class

#38 = NameAndType
#39 = NameAndType
#40 = Class

#41 = NameAndType
#42 = Utf£8

#43 = Utf£8

#44 = Utf8

#45 = Utf£8

#46 = Methodref

#54 : #55 // isRunning: () Ljava/lang/Boolean;
#56 // java/lang/Boolean

#57:#58 // booleanValue: ()Z

jdk8/byte code/Example4

java/lang/Object
java/lang/InterruptedException

jdk8/byte code/Server

#59.#60 //

java/lang/invoke/LambdaMetafactory.metafactory:
(Ljava/lang/invoke/MethodHandles$Lookup;Ljava/lang/String;Ljava/lang/invoke/Meth
odType;Ljava/lang/invoke/MethodType;Ljava/lang/invoke/MethodHandle;Ljava/lang/in
voke/MethodType;)Ljava/lang/invoke/CallSite;

#47
#48
(L

J

d
k8/b

Ut£f8
Methodref

rHttpServer;)Z

#49
#50
#51
#52
#53
#54
#55
#56
#57
#58
#59
#60

Utfs8

= Utf8

Ut£f8
Ut£f8
Ut£f8
Utf8
Ut£f8
Ut£f8
Ut£f8
Ut£f8
Class

(Ljava/lang/Object;)Z
#8.4#61 // jdk8/byte_code/Example4.lambda$example33 :

test

() Ljava/util/function/Predicate;

jdk8/byte_code/WaitFor

waitFor
(Ljava/lang/Object;Ljava/util/function/Predicate;)V

isRunning

() Ljava/lang/Boolean;

java/lang/Boolean

booleanValue

()z

#62 // java/lang/invoke/LambdaMetafactory

= NameAndType #63:#66 // metafactory:

(Ljava/lang/invoke/MethodHandles$Lookup;Ljava/lang/String;Ljava/lang/invoke/Meth
odType;Ljava/lang/invoke/MethodType;Ljava/lang/invoke/MethodHandle;Ljava/lang/in
voke/MethodType;)Ljava/lang/invoke/CallSite;

#61

NameAndType

#20:#23 // lambda$example33 : (L

rHttpServer;)Z

#62 = Ut£8 java/lang/invoke/LambdaMetafactory

#63 = Utf8 metafactory

#64 Class #68 // java/lang/invoke/MethodHandles$Lookup

#65 Ut£f8 Lookup

#66 = Utf8
(Ljava/lang/invoke/MethodHandles$Lookup;Ljava/lang/String;Ljava/lang/invoke/Meth
odType;Ljava/lang/invoke/MethodType;Ljava/lang/invoke/MethodHandle;Ljava/lang/in
voke/MethodType;)Ljava/lang/invoke/CallSite;

#67 = Class #69 // java/lang/invoke/MethodHandles
#68 = Utf8 java/lang/invoke/MethodHandles$Lookup
#69 = Utf8 java/lang/invoke/MethodHandles

{
public jdk8.byte code.Example4();

descriptor: ()V
flags: ACC_PUBLIC
Code: stack=1l, locals=1l, args_size=l
0: aload 0 1:
invokespecial #1 // Method java/lang/Object."": ()V
4: return
LineNumberTable:
line 9: O
LocalVariableTable:
Start Length Slot Name Signature
0 5 0 this Ljdk8/byte_code/Example4;
void example () throws java.lang.InterruptedException;
descriptor: ()V

flags:
Code:
stack=2, locals=l, args_size=l
0: new #2 //class jdk8/byte code/Server$HttpServer
3: dup
4: invokespecial #3 //Method jdk8/byte_code/Server$HttpServer."

<init>": ()V
7: invokedynamic #4, O //InvokeDynamic #0:test:
() Ljava/util/function/Predicate;
12: invokestatic #5 // Method jdk8/byte code/WaitFor.waitFor:
(Ljava/lang/Object;Ljava/util/function/Predicate;)V
15: return
LineNumberTable:

line 13: 0
line 15: 15

LocalVariableTable:
Start Length Slot Name Signature
0 le6 0 this Ljdk8/byte code/Example4;
Exceptions:

throws java.lang.InterruptedException

Example 4 (with Method Reference)

package Jjdk8.byte code;

import static Jjdk8.byte code.Server.HttpServer;
import static jdk8.byte code.WaitFor.waitFor;

@SuppressWarnings ("all"™)
public class Exampled4 method reference {
// lambda with method reference
void example () throws InterruptedException {
waitFor (new HttpServer (), HttpServer::isRunning);

}

}

Classfile Exampled4 method reference.class
Last modified 08-May-2014; size 1271 bytes
MD5 checksum f8aef942361f29ef599adfec7a594948
Compiled from "Exampled4 method reference.java"
public class jdk8.byte code.Example4 method reference
SourceFile: "Exampled4 method reference.java"
InnerClasses:
public static #23= #2 of #21; //HttpServer=class
jdk8/byte code/Server$HttpServer of class jdk8/byte code/Server
public static final #52= #51 of #56; //Lookup=class
java/lang/invoke/MethodHandles$Lookup of class java/lang/invoke/MethodHandles
BootstrapMethods:

0: #26 invokestatic java/lang/invoke/LambdaMetafactory.metafactory:
(Ljava/lang/invoke/MethodHandles$Lookup;Ljava/lang/String;Ljava/lang/invoke/Meth
odType;Ljava/lang/invoke/MethodType;Ljava/lang/invoke/MethodHandle;Ljava/lang/in
voke/MethodType;)Ljava/lang/invoke/CallSite;

Method arguments:

#27 (Ljava/lang/Object;)z
#28 invokevirtual jdk8/byte code/Server$HttpServer.isRunning:
() Ljava/lang/Boolean;
#29 (Ljdk8/byte_code/Server$HttpServer;)Z
minor version: 0
major version: 52
flags: ACC_PUBLIC, ACC_SUPER
Constant pool:

#1 = Methodref #7.4#20 //java/lang/Object."<init>": ()V

#2 = Class #22 //3jdk8/byte code/Server$HttpServer

#3 = Methodref #2.4#20 // jdk8/byte code/Server$HttpServer."
<init>": ()V

#4 = InvokeDynamic #0:#30 // #0:test: ()Ljava/util/function/Predicate;
#5 = Methodref #31.4#32 // jdk8/byte_code/WaitFor.waitFor:
(Ljava/lang/Object;Ljava/util/function/Predicate;)V

#6 = Class #33 // jdk8/byte code/Example4 method reference
#7 = Class #34 // java/lang/Object

#8 = Utfs8 <init>

#9 = Utf8 v

#10 = UtfS8 Code

#11 = Utf8 LineNumberTable

#12 = Utf8 LocalVariableTable

#13 = Utf8 this

#14 = Utf£8 Ljdk8/byte code/Example4 method reference;
#15 = Utf8 example

#16 = Ut£8 Exceptions

#17 = Class #35 // java/lang/InterruptedException
#18 = Utf8 SourceFile

#19 = Utf8 Example4 method reference.java

#20 = NameAndType #8:#9 // "<init>": ()V

#21 = Class #36 // jdk8/byte code/Server

#22 = Ut£8 jdk8/byte_code/Server$HttpServer

#23 = Utf8 HttpServer

#24 = Utf£8 InnerClasses

#25 = Utf£8 BootstrapMethods

#26 = MethodHandle #6:#37 // invokestatic

java/lang/invoke/LambdaMetafactory.metafactory:
(Ljava/lang/invoke/MethodHandles$Lookup;Ljava/lang/String;Ljava/lang/invoke/Meth
odType;Ljava/lang/invoke/MethodType;Ljava/lang/invoke/MethodHandle;Ljava/lang/in
voke/MethodType;)Ljava/lang/invoke/CallSite;

#27 = MethodType #38 // (Ljava/lang/Object;)Z

#28 = MethodHandle #5:#39 // invokevirtual
jdk8/byte_code/Server$HttpServer.isRunning: () Ljava/lang/Boolean;

#29 = MethodType #40 // (Ljdk8/byte code/Server$HttpServer;)?Z
#30 = NameAndType #41:4#42 // test: ()Ljava/util/function/Predicate;
#31 = Class #43 //3jdk8/byte code/WaitFor

#32 = NameAndType #44:#45 // waitFor:
(Ljava/lang/Object;Ljava/util/function/Predicate;)V

#33 = Utfs jdk8/byte_code/Example4 method reference

#34 = Utf8 java/lang/Object

#35 = Utf£8 java/lang/InterruptedException

#36 = Utf8 jdk8/byte_code/Server

#37 = Methodref #46.#47 //

java/lang/invoke/LambdaMetafactory.metafactory:
(Ljava/lang/invoke/MethodHandles$Lookup;Ljava/lang/String;Ljava/lang/invoke/Meth
odType;Ljava/lang/invoke/MethodType;Ljava/lang/invoke/MethodHandle;Ljava/lang/in
voke/MethodType;)Ljava/lang/invoke/CallSite;

#38 = Utf8 (Ljava/lang/Object;) Z

#39 = Methodref #2.4#48 //

jdk8/byte code/Server$HttpServer.isRunning: () Ljava/lang/Boolean;

#40 = Utf£8 (Ljdk8/byte code/Server$HttpServer;)2Z

#41 = Utfs8 test

#42 = Ut£f8 () Ljava/util/function/Predicate;

#43 = Utf£S8 jdk8/byte_code/WaitFor

#44 = Utf£8 waitFor

#45 = Utf£8 (Ljava/lang/Object;Ljava/util/function/Predicate;)V
#46 = Class #49 // java/lang/invoke/LambdaMetafactory
#47 = NameAndType #50:#53 // metafactory:

(Ljava/lang/invoke/MethodHandles$Lookup;Ljava/lang/String;Ljava/lang/invoke/Meth
odType;Ljava/lang/invoke/MethodType;Ljava/lang/invoke/MethodHandle;Ljava/lang/in
voke/MethodType;)Ljava/lang/invoke/CallSite;

#48 = NameAndType #54:#55 // isRunning: () Ljava/lang/Boolean; #49 =
Ut£f8 java/lang/invoke/LambdaMetafactory
#50 = Utf8 metafactory

#51 = Class #57 // java/lang/invoke/MethodHandles$Lookup

#52 = Utf£8 Lookup

#53 = Utf8
(Ljava/lang/invoke/MethodHandles$Lookup;Ljava/lang/String;Ljava/lang/invoke/Meth
odType;Ljava/lang/invoke/MethodType;Ljava/lang/invoke/MethodHandle;Ljava/lang/in
voke/MethodType;)Ljava/lang/invoke/CallSite;

#54 = Utf8 isRunning

#55 = Utf£8 () Ljava/lang/Boolean;

#56 = Class #58 // java/lang/invoke/MethodHandles
#57 = Utf£8 java/lang/invoke/MethodHandles$Lookup
#58 = Utf8 java/lang/invoke/MethodHandles

{

public jdk8.byte code.Example4 method reference() ;
descriptor: ()V
flags: ACC_PUBLIC

Code:
stack=1l, locals=l, args_size=l
0: aload o0
1: invokespecial #1 // Method java/lang/Object."":()V
4: return
LineNumberTable:
line 7: O
LocalVariableTable:
Start Length Slot Name Signature
0 5 0 this Ljdk8/byte code/Example4 method reference; void

example () throws java.lang.InterruptedException;
descriptor: ()V

flags:
Code:
stack=2, locals=l, args_size=l
0: new #2 // class
jdk8/byte_code/Server$HttpServer
3: dup
4: invokespecial #3 // Method
jdk8/byte_ code/Server$HttpServer."<init>": ()V
7: invokedynamic #4, O // InvokeDynamic #0:test:
() Ljava/util/function/Predicate;
12: invokestatic #5 // Method

jdk8/byte code/WaitFor.waitFor:
(Ljava/lang/Object;Ljava/util/function/Predicate;)V
15: return

LineNumberTable:
line 11: O
line 12: 15
LocalVariableTable:
Start Length Slot Name Signature
0 16 0 this Ljdk8/byte code/Example4 method reference;
Exceptions:

throws java.lang.InterruptedException

Example 5

package Jjdk8.byte code;

import static jdk8.byte code.Server.*;
import static jdk8.byte code.WaitFor.waitFor;

public class Exampleb5 {

// closure

void example () throws InterruptedException {
Server server = new HttpServer();
waitFor (() -> !server.isRunning());

}

Classfile Example5.class

Last modified 08-May-2014; size 1470 bytes
MD5 checksum 7dd0£f577d4b4b903500264ac£9649c30
Compiled from "Example5.java"

public class jdk8.byte code.Example5
SourceFile: "Example5.java"

InnerClasses:

public static #31= #2 of #29; //HttpServer=class
jdk8/byte code/Server$HttpServer of class jdk8/byte code/Server

public static final #68= #67 of #70; //Lookup=class
java/lang/invoke/MethodHandles$Lookup of class java/lang/invoke/MethodHandles

BootstrapMethods:

0: #34 invokestatic java/lang/invoke/LambdaMetafactory.metafactory:
(Ljava/lang/invoke/MethodHandles$Lookup;Ljava/lang/String;Ljava/lang/invoke/Meth
odType;Ljava/lang/invoke/MethodType;Ljava/lang/invoke/MethodHandle;Ljava/lang/in
voke/MethodType;)Ljava/lang/invoke/CallSite;

Method arguments:

#35 ()Ljava/lang/Boolean; // <-- signature and return type of the SAM method to
be implemented by the lambda

#36 invokestatic jdk8/byte code/Example5.lambda$example$35:
(Ljdk8/byte_code/Server;)Ljava/lang/Boolean;

#35 ()Ljava/lang/Boolean; // <-- signature and return type to be enforced at
invocation time

minor version: 0

major version: 52

flags: ACC_PUBLIC, ACC_SUPER

Constant pool:

#1 = Methodref #10.4#28 //java/lang/Object."<init>": ()V

#2 = Class #30 //3dk8/byte code/Server$HttpServer
#3 = Methodref #2.4#28 // jdk8/byte code/Server$HttpServer."
<init>":()V

#4 = InvokeDynamic #0:#37 // #0:isSatisfied:
(Ljdk8/byte_code/Server;)Ljdk8/byte code/Condition;

#5 = Methodref #38.#39 // jdk8/byte_code/WaitFor.waitFor:

(Ljdk8/byte code/Condition;)V
#6 = InterfaceMethodref #29.#40 // jdk8/byte code/Server.isRunning:
() Ljava/lang/Boolean;

#7 = Methodref

#8 = Methodref
(Z2) Ljava/lang/Boolean;
#9 = Class

#10 = Class

#11 = Utfs

#12 = Utfs

#13 = UtfS8

#14 = Utfs

#15 = Ut£f8

#16 = Utf8

#17 = Utfs

#18 = UtfS8

#19 = Utfs

#20 = Utfs

#21 = Ut£f8

#22 = Class

#23 = Utf8

#24 = Ut£f8

#25 = Utfs8

#26 = UtfS8

#27 = Utfs

#28 = NameAndType
#29 = Class

#30 = Utfs

#31 = Utfs8

#32 = Ut£f8

#33 = Utfs

#34 = MethodHandle

#41.4#42 //
#41.#43 //

java/lang/Boolean.booleanValue: () Z
java/lang/Boolean.valueOf:

#44 //
#45 //
<init>

Ov

Code
LineNumberTable

LocalVariableTable

this

Ljdk8/byte_ code/Example5;

example

server

Ljdk8/byte_ code/Server;

Exceptions

#46 // java/lang/InterruptedException
lambda$example$35

(Ljdk8/byte code/Server;)Ljava/lang/Boolean;
StackMapTable

SourceFile

Example5. java

#11:#12 // "<init>": ()V

#47 // jdk8/byte code/Server

jdk8/byte code/Server$HttpServer

HttpServer

InnerClasses

BootstrapMethods

#6:#48 // invokestatic

jdk8/byte_ code/Example5
java/lang/Object

java/lang/invoke/LambdaMetafactory.metafactory:
(Ljava/lang/invoke/MethodHandles$Lookup;Ljava/lang/String;Ljava/lang/invoke/Meth
odType;Ljava/lang/invoke/MethodType;Ljava/lang/invoke/MethodHandle;Ljava/lang/in
voke/MethodType;)Ljava/lang/invoke/CallSite;

#35
#36

MethodType
MethodHandle

#49
#6:#50

// ()Ljava/lang/Boolean;
// invokestatic

jdk8/byte_code/Example5.lambda$example$35:
(Ljdk8/byte_code/Server;)Ljava/lang/Boolean;

#51:#52 // isSatisfied:

(Ljdk8/byte_code/Server;)Ljdk8/byte code/Condition;

#37 = NameAndType
#38 = Class

#39 = NameAndType
#40 = NameAndType
#41 = Class

#42 = NameAndType
#43 = NameAndType
#44 = Utf8

#45 = Utf8

#46 = Utf8

#47 = Utf8

#48 = Methodref

#53 //
#54:#55 //
#56:#49 //
#57 //

jdk8/byte code/WaitFor

waitFor: (Ljdk8/byte code/Condition;)V
isRunning: () Ljava/lang/Boolean;
java/lang/Boolean

#58:#59 // booleanValue: ()Z

#60:#61 // valueOf: (Z)Ljava/lang/Boolean;
jdk8/byte_ code/Example5

java/lang/Object
java/lang/InterruptedException

jdk8/byte code/Server

#62.4#63 //

java/lang/invoke/LambdaMetafactory.metafactory:
(Ljava/lang/invoke/MethodHandles$Lookup;Ljava/lang/String;Ljava/lang/invoke/Meth
odType;Ljava/lang/invoke/MethodType;Ljava/lang/invoke/MethodHandle;Ljava/lang/in
voke/MethodType;)Ljava/lang/invoke/CallSite;

#49

Utfs8

() Ljava/lang/Boolean;

#50 = Methodref #9.4#64 //
jdk8/byte_ code/Example5.lambda$example$35:
(Ljdk8/byte code/Server;)Ljava/lang/Boolean;

#51 = Utf£8 isSatisfied

#52 = Utf8 (Ljdk8/byte_code/Server;)Ljdk8/byte code/Condition;
#53 = Utf£8 jdk8/byte code/WaitFor

#54 = Utf8 waitFor

#55 = Utf£8 (Ljdk8/byte_code/Condition;)V

#56 = Utf8 isRunning

#57 = Ut£8 java/lang/Boolean

#58 = Utf8 booleanValue

#59 = Utf8 ()z

#60 = Utf8 valueOf

#61 = Utfs8 (Z) Ljava/lang/Boolean;

#62 = Class #65 // java/lang/invoke/LambdaMetafactory
#63 = NameAndType #66:#69 // metafactory:

(Ljava/lang/invoke/MethodHandles$Lookup;Ljava/lang/String;Ljava/lang/invoke/Meth
odType;Ljava/lang/invoke/MethodType;Ljava/lang/invoke/MethodHandle;Ljava/lang/in
voke/MethodType;)Ljava/lang/invoke/CallSite;

#64 = NameAndType #23:4#24 // lambda$example$35:
(Ljdk8/byte_code/Server;)Ljava/lang/Boolean;

#65 = Utf8 java/lang/invoke/LambdaMetafactory

#66 = Utfs8 metafactory

#67 = Class #71 // java/lang/invoke/MethodHandles$Lookup
#68 = Utf8 Lookup

#69 = Utfs8

(Ljava/lang/invoke/MethodHandles$Lookup;Ljava/lang/String;Ljava/lang/invoke/Meth
odType;Ljava/lang/invoke/MethodType;Ljava/lang/invoke/MethodHandle;Ljava/lang/in
voke/MethodType;)Ljava/lang/invoke/CallSite;

#70 = Class #72 //java/lang/invoke/MethodHandles
#71 = Utf£8 java/lang/invoke/MethodHandles$Lookup
#72 = Utfs8 java/lang/invoke/MethodHandles

{
public jdk8.byte code.Example5() ;
descriptor: ()V
flags: ACC_PUBLIC
Code:
stack=1l, locals=l, args_size=l
0: aload 0
1: invokespecial #1 // Method java/lang/Object."<init>": ()V
4: return
LineNumberTable:
line 6: O
LocalVariableTable:
Start Length Slot Name Signature
0 5 0 this Ljdk8/byte code/Example5;
void example () throws java.lang.InterruptedException;
descriptor: ()V

flags:
Code:
stack=2, locals=2, args_size=l
0: new #2 //class jdk8/byte code/Server$HttpServer
3: dup

4: invokespecial #3 // Method

jdk8/byte code/Server$HttpServer."<init>": ()V
7: astore_1

8: aload 1

9: invokedynamic #4, O // InvokeDynamic #0:isSatisfied:
(Ljdk8/byte_code/Server;)Ljdk8/byte code/Condition;

14: invokestatic #5 // Method

jdk8/byte code/WaitFor.waitFor: (Ljdk8/byte code/Condition;)V
17: return

LineNumberTable:
line 10: O
line 11: 8
line 12: 17
LocalVariableTable:
Start Length Slot Name Signature
0 18 0 this Ljdk8/byte code/Example5;
8 10 1 server Ljdk8/byte_ code/Server;
Exceptions:

throws java.lang.InterruptedException

	Learning Java Lambdas
	Credits
	About the Author
	www.PacktPub.com
	Why subscribe?
	Customer Feedback
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. Introduction
	The road to modern Java
	Modern Java features
	2. Lambdas Introduction
	λs in functional programming
	1930s and the lambda calculus
	1950s and LISP
	What is a lambda
	Functions vs classes
	Lambdas in modern Java
	Some theoretical differences
	Functions vs classes
	Some concrete differences
	Capture semantics
	Shadowed variables
	Summary
	λ basic syntax
	Syntax breakdown
	Summary
	3. Lambdas in Depth
	Functional interfaces
	@FunctionalInterface
	Extension
	Other interface improvements
	Summary
	Type inference improvements
	Java type inference
	Target-typing for lambdas
	Type parameters in method calls
	Type parameters in chained method calls
	Method references
	Example
	Method reference types
	Constructor reference
	Static method reference
	Instance method reference of particular object �⠀椀渀 琀栀椀猀 挀愀猀攀Ⰰ 愀 挀氀漀猀甀爀攀)
	Instance method reference of a arbitrary object whose instance is supplied later �⠀氀愀洀戀搀愀)
	Summary
	Scoping
	Effectively final
	Circumventing final
	Exception handling
	Using a callback
	Dealing with exceptions when writing lambdas
	As a caller �⠀搀攀愀氀椀渀最 眀椀琀栀 攀砀挀攀瀀琀椀漀渀猀 眀栀攀渀 挀愀氀氀椀渀最 氀愀洀戀搀愀猀)
	Lambdas vs closures
	Basic differences
	Other differences
	Summary
	Bytecode recap
	Descriptors
	Converting a method signature
	Code examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 4 �⠀眀椀琀栀 洀攀琀栀漀搀 爀攀昀攀爀攀渀挀攀)
	Example 5
	Summary
	A. Bytecode
	WaitFor
	Example 1
	Example 2
	Example 3
	Example 4
	Example 4 �⠀眀椀琀栀 䴀攀琀栀漀搀 刀攀昀攀爀攀渀挀攀)
	Example 5

