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Preface

Java 9 and its new features add to the richness of the language--one of the most-used
languages to build robust software applications. Java 9 comes with a special emphasis on
modularity, implemented from Project Jigsaw. This book is your one-stop guide to
mastering the changes made to the Java platform.

The book gives an overview and explanation of the new features introduced in Java 9 and
the importance of the new APIs and enhancements. Some of the new features of Java 9 are
groundbreaking, and if you are an experienced programmer, you will be able to make your
enterprise application leaner by implementing these new features. You will be provided
with practical guidance in applying the newly acquired knowledge in regards to Java 9 and
further information on future developments of the Java platform. This book will improve
your productivity, making your applications faster. By learning the best practices in Java,
you will become the go-fo person in your organization for Java 9.

By the end of this book, you will not only know the important concepts of Java 9 but you
will also have a nuanced understanding of the important aspects of programming with this
great language.

What this book covers

Chapter 1, The Java 9 Landscape, explores the most significant features introduced in Java 9,
including Project Jigsaw, the Java Shell, G1 garbage collection, and reactive programming.
This chapter provides introductions to these topics, priming them for deeper coverage in
the subsequent chapters.

Chapter 2, Discovering Java 9, covers several changes to the Java platform to include heap
space efficiencies, memory allocation, compilation process improvements, type testing,
annotations, automated runtime compiler tests, and improved garbage collection.

Chapter 3, Java 9 Language Enhancements, focuses on the changes made to the Java language.
These changes impact variable handlers, depreciation warnings, improvements on Project
Coin changes implemented in Java 7, and import statement processing.
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Chapter 4, Building Modular Applications with Java 9, examines the structure of a Java
module as specified by Project Jigsaw and how Project Jigsaw was implemented as part of
the Java platform. This chapter also reviews the key internal changes to the Java platform as
they relate to the new modular system.

Chapter 5, Migrating Applications to Java 9, explores how to migrate Java 8 applications to
the Java 9 platform. Both manual and semi-automated migration processes are covered.

Chapter 6, Experimenting with the Java Shell, covers JShell, the new command-line read-eval-
print loop tool in Java 9. Coverage includes information regarding the tool, the read-eval-
print loop concept, and the commands and command-line options for use with JShell.

Chapter 7, Leveraging the New Default G1 Garbage Collector, takes an in-depth look at garbage
collection and how it is handled in Java 9.

Chapter 8, Microbenchmarking Applications with [MH, examines how to write performance
tests using the Java Microbenchmark Harness (JMH), a Java harness library for writing
benchmarks for the Java Virtual Machine (JVM). Maven is used along with JMH to help
illustrate the power of microbenchmarking with the new Java 9 platform.

Chapter 9, Making Use of the ProcessHandle API, reviews new class APIs that enable the
management of operating system processes.

Chapter 10, Fine-Grained Stack Tracing, covers the new API that permits an effective means
of stack walking. The chapter includes detailed information on how to access stack trace
information.

Chapter 11, New Tools and Tool Enhancements, covers 16 Java Enhancement Proposals (JEPs)
that were incorporated into the Java 9 platform. These JEPs cover a wide range of tools and
updates to APIs to make development with Java easier with greater optimization
possibilities for our Java applications.

Chapter 12, Concurrency Enhancements, covers concurrency enhancements introduced with
the Java 9 platform. The primary focus is the support for reactive programming, a
concurrency enhancement that is provided by the Flow class API. Additional concurrency
enhancements introduced in Java 9 are also covered.

Chapter 13, Security Enhancements, covers several small changes made to the JDK that
involve security. The security enhancements introduced with the Java 9 platform provide
developers with a greater ability to write and maintain applications that are more secure
than previously possible.

[2]
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Chapter 14, Command-Line Flags, explores the command-line flag changes in Java 9.
Concepts covered in this chapter include unified JVM logging, compiler control, diagnostic
commands, heap-profiling agent, JHAT, command-line flag argument validation, and
compiling for older platform versions.

Chapter 15, Best Practices in Java 9, focuses on working with utilities provided by the Java 9
platform to include UTE-8 property files, Unicode 7.0.0, Linux/A Arch64 port,
multiresolution images, and common locale data repository.

Chapter 16, Future Directions, provides an overview of the future developments of the Java
platform, beyond Java 9. This includes a specific look at what is planned for Java 10 and
what further changes we are likely to see in the future.

What you need for this book

To work with this text, you will need at least a basic knowledge of the Java programming
language.

You will also need the following software components:

¢ Java SE Development Kit 9 (JDK)

® http://www.oracle.com/technetwork/java/javase/downloads/

¢ An Integrated Development Environment (IDE) for coding. Here are suggestions:

e Eclipse

® https://www.eclipse.org
o Intelli]

® https://www.jetbrains.com/idea/
¢ NetBeans

® https://netbeans.org

Who this book is for

This book is for enterprise developers and existing Java developers. Basic knowledge of
Java is necessary.

[3]
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Conventions

In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, and user input are shown as follows: "Under the subdirectory
structure of C:\chapter8-benchmark\src\main\java\com\packt is the
MyBenchmark. java file."

A block of code is set as follows:

public synchronized void protectedMethod()
{

}
New terms and important words are shown in bold.

Warnings or important notes appear like this.

Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book--what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.

To send us general feedback, simply email feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

[4]
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Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code

You can download the example code files for this book from your account at http: //www.
packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box.

Select the book for which you're looking to download the code files.
Choose from the drop-down menu where you purchased this book from.
Click on Code Download.

NSOk

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR /7-Zip for Windows
e Zipeg /iZip / UnRarX for Mac
e 7-Zip [/ PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Mastering-Java-9. We also have other code bundles from our rich
catalog of books and videos available at https://github.com/PacktPublishing/. Check
them out!
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Preface

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books--maybe a mistake in the text or the code--
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.
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The Java 9 Landscape

Java is already a fully-grown adult in its own right more than two decades since its first
release. With a stunning community of developers and wide adoption in a number of
industries, the platform continues to evolve and keep up with the rest of the world in terms
of performance, security, and scalability. We will begin our journey by exploring the most
significant features introduced in Java 9, what are the biggest drivers behind them, and
what more we can expect in subsequent developments of the platform, along with some of
the things that did not make it in this release.

In this chapter, we will cover the following topics:

e Java 9 at 20,000 feet

e Breaking the monolith

¢ Playing around with the Java Shell

¢ Taking control of external processes

¢ Boosting performance with G1

e Measuring performance with JMH

¢ Getting ready for HTTP 2.0

¢ Encompassing reactive programming
¢ Expanding the wish list

Java 9 at 20,000 feet

You might be asking yourself--isn't Java 9 just a maintenance release with a set of features
that did not make it into Java 8? There is plenty of new stuff in Java 9 that makes it a distinct
version in its own right.



The Java 9 Landscape

Inarguably, the modularization of the Java platform (developed as part of project Jigsaw) is
the biggest piece of work that makes it successfully in Java 9. Initially planned for Java §,
but postponed, project Jigsaw is also one of the main reasons why the final release of Java 9
was further postponed. Jigsaw also introduces a few notable changes to the Java platform
and is one of the reasons Java 9 is considered a major release. We will explore these features
in detail in the subsequent chapters.

The JCP (Java Community Process) provides the mechanisms to turn a set of feature
proposals (also known as Java Enhancement Proposals or JEPs) into formal specifications
that provide the basis to extend the platform with new functionality. Java 9 is no different in
that regard. Apart from the Jigsaw-related Java enhancement proposals, there is a long list
of other enhancements that made it in Java 9. Throughout this book, we will discuss the
various features in terms of logical groups based on the corresponding enhancement
proposals, including the following:

¢ The Java Shell (also called JShell)--an interactive shell for the Java platform

e New APIs to work with operating system processes in a portable manner

e The Garbage-first (G1) garbage collector introduced in Java 7 is made the default
garbage collector in Java 9

¢ Adding the Java Microbenchmark Harness (JMH) tool that can be used to run
performance benchmarks against Java applications is included as part of the Java
distribution

e Support for the HTTP 2.0 and WebSocket standards by means of a new client API

¢ Concurrency enhancements among which is the definition of the F1ow class,

which describes an interface for the reactive streams specification in the Java
platform

Some of the initial proposals that were accepted for release 9 did not make it there and were
postponed for a later release, along with other interesting things that developers may expect
in the future.

You can download the JDK 9 distribution for your system from http://www.oracle.com/
technetwork/java/javase/downloads/index.html, if you are eager to get your hands dirty
before trying to move through the other chapters and experimenting with the newly
introduced samples and concepts.
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The Java 9 Landscape

Breaking the monolith

Over the years, the utilities of the Java platform have continued to evolve and increase,
making it one big monolith. In order to make the platform more suitable for embedded and
mobile devices, the publication of stripped down editions such as Java CDC and Java ME
was necessary. These, however, did not prove to be flexible enough for modern applications
with varying requirements in terms of functionality provided by the JDK. In that regard, the
need for a modular system came in as a viral requirement, not only to address
modularization of the Java utilities (overall, more than 5000 Java classes and 1500 C++
source files with more than 25,0000 lines of code for the Hotspot runtime), but also to
provide a mechanism for developers to create and manage modular applications using the
same module system used in the JDK. Java 8 provided an intermediate mechanism to
enable applications to use only a subset of the APIs provided by the entire JDK, and that
mechanism was named compact profiles. In fact, compact profiles also provided the basis
for further work that had to be done in order to break dependencies between the various
distinct components of the JDK required to enable implementation of a module system in
Java.

The module system itself has been developed under the name of project Jigsaw on the basis
of which several Java enhancement proposals and a target JSR (376) were formed. Much
was put in place to address the requirements of project Jigsaw--there was evidence of
concept implementation with more features proposed than the ones that successfully made
it into Java 9. Apart from that, a complete restructuring of the JDK code base has been made
along with a complete reorganization of the JDK distributable images.

There was considerable controversy in the community as to whether an existing and mature
Java module system such as OSGi should be adopted as part of the JDK instead of
providing a completely new module system. However, OSGI targets runtime behavior such
as the resolution of module dependencies, installation, uninstallation, starting and stopping
of modules (also named bundles in terms of OSGI), custom module classloaders, and so on.
Project Jigsaw however targets a compile-time module system where resolution of
dependencies happen when the application is compiled. Moreover, installing and
uninstalling a module as part of the JDK eliminates the need to include it as a dependency
explicitly during compilation. Furthermore, loading of module classes is made possible
through the existing hierarchy of classloaders (the bootstrap and the extension and system
classloaders), although, there was a possibility of using custom module classloaders pretty
much similar to the module classloaders of OSGI. The latter was, however, abandoned; we
will discuss Java module classloading in more detail when we talk about the details of the
module system in Java.

[9]
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Additional benefits from the Java module system include enhanced security and
performance. By modularizing the JDK and applications into Jigsaw modules, we are able
to create well-defined boundaries between components and their corresponding domains.
This separation of concerns aligns with the security architecture of the platform and is an
enabler of better resource utilization. We have dedicated two detailed chapters to all of the
preceding points, and to the topic of adopting Java 9 as well, which also requires a degree of
understanding on the possible approaches to migrating existing projects to Java 9.

Playing around with the Java Shell

For a long time, there has been no standard shell shipped with the Java programming
language to experiment with new language features or libraries or for rapid prototyping. If
you wanted to do this, you could write a test application with a main method, compile it
with javac, and run it. This could be done either at the command line or using a Java IDE;
however, in both cases, this is not as convenient as having an interactive shell for the
purpose.

Starting an interactive shell in JDK 9 is as simple as running the following command
(assuming the bin directory of your JDK 9 installation is in the current path):

jshell

You may find it somewhat puzzling that an interactive shell has not been introduced earlier
in the Java platform as many programming languages, such as Python, Ruby, and a number
of others, already come with an interactive shell in their earliest versions; However, this had
still not made it on the priority features list for the earlier Java releases, until now, and it is
out there and ready for use. The Java shell makes use of a JShell API that provides
capabilities to enable autocompletion or evaluation of expressions and code snippets,
among other features. A full chapter is dedicated to discussing the details of the Java shell
so that developers can make the best use out of it.

[10]
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Taking control of external processes

Up to JDK 9, if you wanted to create a Java process and handle process input/output, you
had to use either the Runt ime . getRuntime.exec () method, which allows us to execute a
command in a separate OS process and get a java.lang.Process instance over which to
provide certain operations in order to manage the external process, or use the new
java.lang.ProcessBuilder class with some more enhancements in regard to interacting
with the external process and also create a java.lang.Process instance to represent the
external process. Both mechanisms were inflexible and also non-portable as the set of
commands executed by the external processes were highly dependent on the operating
system (additional effort had to be exerted in order to make the particular process
operations portable across multiple operating systems). A chapter is dedicated to the new
process API, providing developers with the knowledge of creating and managing external
processes in a much easier way.

Boosting performance with G1

The G1 garbage collector was already introduced in JDK 7 and is now enabled by default in
JDK 9. It is targeted for systems with multiple processing cores and a lot of available
memory. What are the benefits of the G1 compared to previous types of garbage collectors?
How does it achieve these improvements? Is there a need to manually tune it, and in what
scenarios? These, and several more questions regarding G1, will be discussed in a separate
chapter.

Measuring performance with JMH

On many occasions, Java applications may suffer from performance degradation.
Exacerbating the issue is a lack of performance tests that can provide at least a minimal set
of guarantees that performance requirements are met and, moreover, the performance of
certain features will not degrade over time. Measuring performance of Java applications is
not trivial, especially due to the fact that there is a number of compiler and runtime
optimizations that may affect performance statistics. For that reason, additional measures
such as warm-up phases and other tricks must be used in order to provide more accurate
performance measurements. The Java Microbenchmark Harness is a framework that
incorporates a number of techniques along with a convenient API that can be used for this
purpose. It is not a new tool, but is included with the distribution of Java 9. If you have not
added JMH to your toolbox yet, read the detailed chapter on the usage of JMH in the
context of Java 9 application development.
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Getting started with HTTP 2.0

HTTP 2.0 is the successor of the HTTP 1.1 protocol, and this new version of the protocol
addresses some limitations and drawbacks of the previous one. HTTP 2.0 improves
performance in several ways and provides capabilities such as request/response
multiplexing in a single TCP connection, sending of responses in a server-push, flow
control, and request prioritization, among others.

Java provides the java.net .HttpURLConnection utility that can be used to establish a
non-secure HTTP 1.1 connection. However, the API was considered difficult to maintain
and further extended with the support for HTTP 2.0 and, so, an entirely new client API was
introduced in order to establish a connection via the HTTP 2.0 or the web socket protocols.
The new HTTP 2.0 client, along with the capabilities it provides, will be covered in a
dedicated chapter.

Encompassing reactive programming

Reactive programming is a paradigm used to describe a certain pattern for propagation of
changes in a system. Reactiveness is not built in Java itself, but reactive data flows can be
established using third-party libraries such as RxJava or project Reactor (part of the Spring
Framework). JDK 9 also addresses the need for an API that aids the development of highly-
responsive applications built around the idea of reactive streams by providing the
java.util.concurrent.Flow class for the purpose. The Flow class, along with other
related changes introduced in JDK 9, will be covered in a separate chapter.

Expanding the wish list

Apart from all of the new stuff in JDK 9, a whole new set of features is expected in future
releases of the platform. Among these are the following:

¢ Generics over primitive types: This is one of the features planned for JDK 10 as
part of project Valhalla. Other language enhancements, such as value handles, are
already part of Java 9 and will be introduced later in this book.
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¢ Reified generics: This is another featured part of project Valhalla that aims to
provide the ability to preserve generic types at runtime. The related goals are
listed as follows:
¢ The foreign functional interface aims to introduce a new API to call
and manage native functions. The API addresses some of the
drawbacks of JNI and especially a lack of simplicity for use by
application developers. The foreign functional interface is
develo