Dr. Edward Lavieri, Peter Verhas

Vastering
Java 9

Write reactive, modular, concurrent, and secure code

LI Packt>

Mastering Java 9

Write reactive, modular, concurrent, and secure code

Dr. Edward Lavieri
Peter Verhas

Packt

BIRMINGHAM - MUMBAI

Mastering Java 9

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2017

Production reference: 1031017

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78646-873-4

www.packtpub.com

http://www.packtpub.com

Authors
Dr. Edward Lavieri
Peter Verhas

Reviewer
Mandar Jog

Commissioning Editor
Kunal Parikh

Acquisition Editor
Denim Pinto

Content Development Editor
Lawrence Veigas

Technical Editor
Abhishek Sharma

Credits

Copy Editor
Safis Editing

Project Coordinator
Prajakta Naik

Proofreader
Safis Editing

Indexer
Francy Puthiry

Graphics
Jason Monteiro

Production Coordinator
Arvindkumar Gupta

About the Authors

Dr. Edward Lavieri is a veteran developer with a strong academic background. He earned a
doctorate in computer science from Colorado Technical University, an MS in management
information systems (Bowie State University), an MS in education (Capella University), and
an MS in operations management (University of Arkansas).

He has been creating and teaching computer science courses since 2002. Edward retired
from the U.S. Navy as a Command Master Chief after 25 years of service. As the founder
and creative director of threel9, a software design and development studio, Edward is
constantly designing and developing software. He uses a variety of game engines and
development tools. His passions include developing adaptive learning systems, educational
games, and mobile apps.

Edward has authored Adaptive Learning for Educational Game Design (CreateSpace), Getting
Started with Unity 5 (Packt), Learning AWS Lumberyard Game Development (Packt), LiveCode
Mobile Development HOTSHOT (Packt), LiveCode Mobile Development Cookbook (Packt), and
Software Consulting: A Revolutionary Approach (CreateSpace). He was the technical editor for
Excel Formulas and Functions for Dummies (Wiley Publishing). He has also developed
numerous college courses involving computer science, information systems, and game
development.

Peter Verhas is a senior developer and software system architect with more than 30 years of
software development experience. He currently works for EPAM as a senior developer,
where he is involved in many customer projects and actively participates in the education
activities of the company. Peter writes a technical blog and is committed to open source
software development. He has been using Java since 2005 and is also an author at Java Code
Geeks.

About the Reviewer

Mandar Jog is an expert IT trainer with over 15 years of training experience. He is an expert
in technologies such as Java, J2EE, and Android. He also holds SCJP and SCWCD
certifications. He is an occasional blogger where he makes the readers feel "I can" for the
complex concepts in Java and J2EE. He is a regular speaker at many engineering colleges for
technical seminars and workshops.

He was also the technical reviewer of the book, Modular Programming in Java 9 by Packt.

Thanks a lot Tejaswini, you have been my inspiration throughout this journey. I am
equally grateful to my son, Ojas; his lovely smiles have always made me push myself
further.

www.PacktPub.com

For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.comand as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub. com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

. Mapt

www .packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
¢ On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Customer Feedback

Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at https://www.amazon.com/dp/1786468735.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1786468735

Table of Contents

Preface 1
Chapter 1: The Java 9 Landscape 7
Java 9 at 20,000 feet 7
Breaking the monolith 9
Playing around with the Java Shell 10
Taking control of external processes 11
Boosting performance with G1 11
Measuring performance with JMH 11
Getting started with HTTP 2.0 12
Encompassing reactive programming 12
Expanding the wish list 12
Summary 13
Chapter 2: Discovering Java 9 14
Improved Contended Locking [JEP 143] 15
Improvement goals 16
Segmented code cache [JEP 197] 16
Memory allocation 17
Smart Java compilation, phase two [JEP 199] 18
Resolving Lint and Doclint warnings [JEP 212] 18
Tiered attribution for javac [JEP 215] 19
Annotations pipeline 2.0 [JEP 217] 20
New version-string scheme [JEP 223] 22
Generating run-time compiler tests automatically [JEP 233] 22
Testing class-file attributes generated by Javac [JEP 235] 23
Storing interned strings in CDS archives [JEP 250] 25
The problem 25
The solution 26
Preparing JavaFX Ul controls and CSS APIs for modularization [JEP
253] 26
JavaFX overview 26
Implications for Java 9 28
Compact strings [JEP 254] 29
Pre-Java 9 status 30

New with Java 9 30

Merging selected Xerces 2.11.0 updates into JAXP [JEP 255] 30
Updating JavaFX/Media to newer version of GStreamer [JEP 257] 31
HarfBuzz Font-Layout Engine [JEP 258] 32
HiDPI graphics on Windows and Linux [JEP 263] 33
Marlin graphics renderer [JEP 265] 34
Unicode 8.0.0 [JEP 267] 34
New in Unicode 8.0.0 34
Updated Classes in Java 9 35
Reserved stack areas for critical sections [JEP 270] 35
The pre-Java 9 situation 35
New in Java 9 36
Dynamic linking of language-defined object models [JEP 276] 37
Proof of concept 38
Additional tests for humongous objects in G1 [JEP 278] 38
Improving test-failure troubleshooting [JEP 279] 40
Environmental information 40
Java process information 41
Optimizing string concatenation [JEP 280] 41
HotSpot C++ unit-test framework [JEP 281] 42
Enabling GTK 3 on Linux [JEP 283] 42
New HotSpot build system [JEP 284] 44
Summary 44
Chapter 3: Java 9 Language Enhancements 45
Working with variable handlers [JEP 193] 46
Working with the AtoMiC Toolkit 47
Using the sun.misc.Unsafe class 49
Eliding depreciation warnings on import statements [JEP 211] 50
Milling Project Coin [JEP 213] 51
Using the @SafeVarargs annotation 51
The try-with-resource statement 52
Using the diamond operator 54
Discontinuing use of the underscore 55
Making use of private interface methods 56
Processing import statements correctly [JEP 216] 58
Summary 60
Chapter 4: Building Modular Applications with Java 9 61
A modular primer 62
Reviewing Java's platform module system [JEP-200] 64

[ii]

Modularizing JDK source code [JEP-201] 68
Pre-Java 9 JDK source code organization 69
Development tools 70
Deployment 70
Internationalization 70

Monitoring 71

RMI 71

Security 71
Troubleshooting 71

Web services 72

JavaFX tools 72

Java runtime environment 72

Source code 72
Libraries 73

C header files 74
Database 75

JDK source code reorganized 75
Understanding modular run-time images [JEP-220] 75
Runtime format adoption 76
Runtime image restructure 76
Supporting common operations 78
De-privileging JDK classes 78
Preserving existing behaviors 78
Getting to know the module system [JEP-261] 78
Module paths 79
Access-control boundary violations 80
Runtime 80
Modular Java application packaging [JEP-275] 82
Advanced look at the Java Linker 83
Java Packager options 83
JLink - The Java Linker [JEP-282] 87
Encapsulating most internal APIs [JEP-260] 89
Summary 90
Chapter 5: Migrating Applications to Java 9 91
Quick review of Project Jigsaw 92
Classpath 92
The monolithic nature of the JDK 93
How modules fit into the Java landscape 94
Base module 95
Reliable configuration 96
Strong encapsulation 97

[iii]

Migration planning 98
Testing a simple Java application 98
Potential migration issues 101

The JRE 102
Access to internal APls 102
Accessing internal JARs 103
JAR URL depreciation 103
Extension mechanism 105
The JDK's modularization 106

Advice from Oracle 107

Preparatory steps 108
Getting the JDK 9 early access build 108
Running your program before recompiling 108
Updating third-party libraries and tools 108
Compiling your application 109

Pre-Java 9 -source and -target options 111
Java 9 -source and -target options 112
Running jdeps on your code 112

Breaking encapsulation 115
The --add-opens option 116
The --add-exports option 116
The --permit-illegal-access option 117

Runtime image changes 117
Java version schema 117
JDK and JRE layout 118

What has been removed 120

Updated garbage collection 121

Deployment 122
JRE version selection 122
Serialized applets 122
JNLP update 123

Nested resources 123
FX XML extension 123
JNLP file syntax 125
Numeric version comparison 125

Useful tools 126
Java environment - jEnv 127
Maven 128

Obtaining the M2Eclipse IDE 129

Summary 132

Chapter 6: Experimenting with the Java Shell 133
What is JShell? 134
Getting Started with JShell 134

[iv]

Practical uses of JShell 140
Feedback modes 141
Creating a custom feedback mode 146

Listing your assets 148
Editing in the JShell 149
Modifying text 149

Basic navigation 150
Historical navigation 150
Advanced editing commands 151
Working with scripts 151
Start up scripts 151
Loading scripts 152
Saving scripts 152
Advanced scripting with JShell 153
Summary 154
Chapter 7: Leveraging the New Default G1 Garbage Collector 155
Overview of garbage collection 156
Obiject life cycle 156
Object creation 156

Object mid-life 157

Object destruction 157
Garbage collection algorithms 158
Mark and sweep 158
Concurrent mark sweep (CMS) garbage collection 158

Serial garbage collection 159

Parallel garbage collection 159

G1 garbage collection 159
Garbage collection options 160
Java methods relevant to garbage collection 165
The System.gc() method 166

The finalize() method 168
Pre-Java 9 garbage collection 169
Visualizing garbage collection 170
Garbage collection upgrades in Java 8 171
Case study - Games written with Java 172
Collecting garbage with the new Java platform 173
Default garbage collection 173
Depreciated garbage collection combinations 175
Unified garbage collection logging 176
Unified JVM logging (JEP-158) 177

Tags 177

Levels 178

[v]

Decorations 178

Output 179
Command-line options 179

Unified GC logging (JEP-271) 179
Garbage collection logging options 180

The gc tag 182

Macros 182

Additional considerations 183
Persistent issues 184
Making objects eligible for garbage collection 184
Summary 187
Chapter 8: Microbenchmarking Applications with JMH 188
Microbenchmarking overview 189
Approach to using JMH 190
Installing Java 9 and Eclipse with Java 9 support 190
Hands-on experiment 193
Microbenchmarking with Maven 195
Benchmarking options 202
Modes 203
Time units 203
Techniques for avoiding microbenchmarking pitfalls 204
Power management 204
OS schedulers 204
Time sharing 205
Eliminating dead-code and constant folding 205
Run-to-run variance 206
Cache capacity 207
Summary 207
Chapter 9: Making Use of the ProcessHandle API 208
What are processes? 209
The new ProcessHandle interface 210
Getting the PID of the current process 210
Getting information about a process 211
Listing processes 213
Listing children 213
Listing descendants 214
Listing all processes 215
Waiting for processes 216
Terminating processes 217
A small process controller application 219

[vil

Main class 220
Parameters class 221
The ParamsAndHandle class 222
The ControlDaemon class 223
Summary 226
Chapter 10: Fine-Grained Stack Tracing 227
Overview of the Java Stack 227
The importance of stack information 228
Example - Restricting callers 230
Example - Getting logger for caller 233
Working with StackWalker 234
Getting an instance of StackWalker 234
RETAIN_CLASS REFERENCE 234
SHOW_REFLECT FRAMES 235
SHOW_HIDDEN_FRAMES 235

Final thoughts on enum constants 238
Accessing classes 238
Walking methods 239
StackFrame 241
Performance 242
Summary 242
Chapter 11: New Tools and Tool Enhancements 243
The new HTTP client [JEP-110] 244
The HTTP client before Java 9 244
Java 9's new HTTP client 247
New API limitations 248
Simplified Doclet API [JEP-221] 250
The pre-Java 9 Doclet API 250

APl enums 252

API classes 252

APl interfaces 253
Problems with the pre-existing Doclet API 254

Java 9's Doclet API 254
Compiler tree API 254
Language model API 258

The AnnotatedConstruct interface 259

The SourceVersion enum 259

The UnknownEntityException exception 261

HTML5 Javadoc [JEP-224] 262
Javadoc search [JEP-225] 267
Introducing camel case search 268

[vii]

Remove launch-time JRE version selection [JEP-231] 268
Parser API for Nashorn [JEP-236] 269
Nashorn 269
Using Nashorn as a command-line tool 270

Using Nashorn as an embedded interpreter 273
EMCAScript 274
Parser API 275
Multi-release JAR files [JEP-238] 277
Identifying multi-release JAR files 277
Related JDK changes 279
Java-level JVM compiler interface [JEP-243] 280
BeanInfo annotations [JEP-256] 281
JavaBean 281
BeanProperty 282
SwingContainer 283
BeanlInfo classes 283
TIFF image input/output [JEP-262] 284
Platform logging API and service [JEP-264] 286
The java.util.logging package 287
Logging in Java 9 289
XML Catalogs [JEP-268] 290
The OASIS XML Catalog standard 290
JAXP processors 291
XML Catalogs prior to Java 9 291
Java 9 platform changes 291
Convenience factory methods for collections [JEP-269] 291
Using collections before Java 9 292
Using new collection literals 295
Platform-specific desktop features [JEP-272] 295
Enhanced method handles [JEP-274] 296
Reason for the enhancement 297
Lookup functions 297
Argument handling 298
Additional combinations 298
Enhanced deprecation [JEP-277] 299
What the @Deprecated annotation really means 300
Summary 300
Chapter 12: Concurrency and Reactive Programming 301
Reactive Programming 302

[viii]

Reactive programming standardization 303
The New Flow API 305
The Flow.Publisher interface 306
The Flow.Subscriber interface 306
The Flow.Subscription interface 306
The Flow.Processor interface 307
Sample implementation 307
Additional Concurrency Updates 309
Java concurrency 309
Concurrency explained 309

System configurations 310

Java threads 311
Concurrency improvements 314
CompletableFuture APl enhancements 315
Class details 316
Enhancements 320
Spin-Wait Hints 321
Summary 322
Chapter 13: Security Enhancements 323
Datagram Transport Layer Security 324
DTLS protocol version 1.0 324
DTLS protocol version 1.2 326
DTLS support in Java 9 329
Creating PKCS12 keystores 330
Keystore primer 330
Java Keystore (JKS) 330
Builder 331

The CallbackHandlerProtection class 332

The PasswordProtection class 332

The PrivateKeyEntry class 333

The SecretKeyEntry class 333

The TrustedCertificateEntry class 334
PKCS12 default in Java 9 335
Improving security application performance 335
Security policy enforcement 336
Permission evaluation 337
The java.Security.CodeSource package 337
Package checking algorithm 338
TLS application-layer protocol negotiation extension 339
TLS ALPN extension 340
The javax.net.ssl package 340

[ix]

The java.net.ssl package extension 342
Leveraging CPU instructions for GHASH and RSA 343
Hashing 344
OCSP stapling for TLS 345
OCSP stapling primer 346
Changes for the Java 9 platform 347
DRBG-based SecureRandom implementations 348
Summary 349
Chapter 14: Command Line Flags 350
Unified JVM Logging [JEP 158] 350
Command-line options 351
Decorations 354
Levels 355
Output 355
Tags 356
Compiler control [JEP 165] 356
Compilation modes 356

C1 compilation mode 357

C2 compilation mode 357

Tiered compilation 357
Compiler control in Java 9 358
Diagnostic commands [JEP 228] 359
Heap profiling agent [JEP 240] 361
Removing your JHAT [JEP 241] 362
JVM command-line flag argument validation [JEP 245] 363
Compile for older platform versions [JEP 247] 364
Summary 367
Chapter 15: Best Practices In Java 9 368
Support for UTF-8 368
The ResourceBundle class 369
The nested class 370

Fields and constructors 374
Methods 375
Changes in Java 9 381
Unicode 7.0.0 381
The java.lang package 382
The java.text package 383
Additional significance 383
The Linux/AArch64 port 384

[x]

Multi-resolution Images 385
Common Locale Data Repository (CLDR) 387
Summary 388
Chapter 16: Future Directions 389
Future Changes to the JDK 390
JDK changes targeted for Java 10 390
Repository consolidation 390
Native-header tool removal 391
JDK-related submitted proposals 392
Parallelize the Full GC Phase in CMS 392

REST APIs for JMX 392

Support heap allocation 394
JDK-related drafted proposals 394
Finalization promptness 394

Java memory model 395

Foreign Function Interfaces 396

Isolated methods 396
Reducing metaspace waste 396
Improving IPv6 support 397
Unboxed argument lists for method handles 398
Enhanced MandelblotSet demo using value types 399

Efficient array comparison intrinsics 400
Future changes to the Java Compiler 400
Policy for retiring javac -source and -target options 400
Pluggable static analyzers 400
Future Changes to the Java Virtual Machine 401
JVM-related submitted proposals 401
Container aware Java 401

Enable execution of Java methods on GPU 403

Epsilon GC - The arbitrarily low overhead garbage (non-) collector 403
JVM-related drafted proposals 404
Provide stable USDT probe points on JVM compiled methods 404
Concurrent monitor deflation 405

Provide a low-overhead way of sampling Java heap allocations 406
Diagnostic Command Framework 406
Enhanced Class Redefinition 407

Enable NUMA mode by default when appropriate 407

Value objects 408

Align JVM Access Checks 409
Future Changes to JavaX 409
JMX specific annotations for registration of managed resources 409
Modernize the GTK3 Look and Feel Implementation 410
Ongoing Special Projects 410

[xi]

Annotations pipeline 2.0 412

Audio Synthesis Engine 412
Caciocavallo 412
Common VM Interface 412
Compiler Grammar 413

Da Vinci Machine 413
Device I/0O 413
Graal 413
HarfBuzz Integration 414
Kona 414
OpenJFX 414
Panama 414
Shenandoah 415
Summary 415
Index 416

[xii]

Preface

Java 9 and its new features add to the richness of the language--one of the most-used
languages to build robust software applications. Java 9 comes with a special emphasis on
modularity, implemented from Project Jigsaw. This book is your one-stop guide to
mastering the changes made to the Java platform.

The book gives an overview and explanation of the new features introduced in Java 9 and
the importance of the new APIs and enhancements. Some of the new features of Java 9 are
groundbreaking, and if you are an experienced programmer, you will be able to make your
enterprise application leaner by implementing these new features. You will be provided
with practical guidance in applying the newly acquired knowledge in regards to Java 9 and
further information on future developments of the Java platform. This book will improve
your productivity, making your applications faster. By learning the best practices in Java,
you will become the go-fo person in your organization for Java 9.

By the end of this book, you will not only know the important concepts of Java 9 but you
will also have a nuanced understanding of the important aspects of programming with this
great language.

What this book covers

Chapter 1, The Java 9 Landscape, explores the most significant features introduced in Java 9,
including Project Jigsaw, the Java Shell, G1 garbage collection, and reactive programming.
This chapter provides introductions to these topics, priming them for deeper coverage in
the subsequent chapters.

Chapter 2, Discovering Java 9, covers several changes to the Java platform to include heap
space efficiencies, memory allocation, compilation process improvements, type testing,
annotations, automated runtime compiler tests, and improved garbage collection.

Chapter 3, Java 9 Language Enhancements, focuses on the changes made to the Java language.
These changes impact variable handlers, depreciation warnings, improvements on Project
Coin changes implemented in Java 7, and import statement processing.

Preface

Chapter 4, Building Modular Applications with Java 9, examines the structure of a Java
module as specified by Project Jigsaw and how Project Jigsaw was implemented as part of
the Java platform. This chapter also reviews the key internal changes to the Java platform as
they relate to the new modular system.

Chapter 5, Migrating Applications to Java 9, explores how to migrate Java 8 applications to
the Java 9 platform. Both manual and semi-automated migration processes are covered.

Chapter 6, Experimenting with the Java Shell, covers JShell, the new command-line read-eval-
print loop tool in Java 9. Coverage includes information regarding the tool, the read-eval-
print loop concept, and the commands and command-line options for use with JShell.

Chapter 7, Leveraging the New Default G1 Garbage Collector, takes an in-depth look at garbage
collection and how it is handled in Java 9.

Chapter 8, Microbenchmarking Applications with [MH, examines how to write performance
tests using the Java Microbenchmark Harness (JMH), a Java harness library for writing
benchmarks for the Java Virtual Machine (JVM). Maven is used along with JMH to help
illustrate the power of microbenchmarking with the new Java 9 platform.

Chapter 9, Making Use of the ProcessHandle API, reviews new class APIs that enable the
management of operating system processes.

Chapter 10, Fine-Grained Stack Tracing, covers the new API that permits an effective means
of stack walking. The chapter includes detailed information on how to access stack trace
information.

Chapter 11, New Tools and Tool Enhancements, covers 16 Java Enhancement Proposals (JEPs)
that were incorporated into the Java 9 platform. These JEPs cover a wide range of tools and
updates to APIs to make development with Java easier with greater optimization
possibilities for our Java applications.

Chapter 12, Concurrency Enhancements, covers concurrency enhancements introduced with
the Java 9 platform. The primary focus is the support for reactive programming, a
concurrency enhancement that is provided by the Flow class API. Additional concurrency
enhancements introduced in Java 9 are also covered.

Chapter 13, Security Enhancements, covers several small changes made to the JDK that
involve security. The security enhancements introduced with the Java 9 platform provide
developers with a greater ability to write and maintain applications that are more secure
than previously possible.

[2]

Preface

Chapter 14, Command-Line Flags, explores the command-line flag changes in Java 9.
Concepts covered in this chapter include unified JVM logging, compiler control, diagnostic
commands, heap-profiling agent, JHAT, command-line flag argument validation, and
compiling for older platform versions.

Chapter 15, Best Practices in Java 9, focuses on working with utilities provided by the Java 9
platform to include UTE-8 property files, Unicode 7.0.0, Linux/A Arch64 port,
multiresolution images, and common locale data repository.

Chapter 16, Future Directions, provides an overview of the future developments of the Java
platform, beyond Java 9. This includes a specific look at what is planned for Java 10 and
what further changes we are likely to see in the future.

What you need for this book

To work with this text, you will need at least a basic knowledge of the Java programming
language.

You will also need the following software components:

¢ Java SE Development Kit 9 (JDK)

® http://www.oracle.com/technetwork/java/javase/downloads/

¢ An Integrated Development Environment (IDE) for coding. Here are suggestions:

e Eclipse

® https://www.eclipse.org
o Intelli]

® https://www.jetbrains.com/idea/
¢ NetBeans

® https://netbeans.org

Who this book is for

This book is for enterprise developers and existing Java developers. Basic knowledge of
Java is necessary.

[3]

http://www.oracle.com/technetwork/java/javase/downloads/
http://www.oracle.com/technetwork/java/javase/downloads/
http://www.oracle.com/technetwork/java/javase/downloads/
http://www.oracle.com/technetwork/java/javase/downloads/
http://www.oracle.com/technetwork/java/javase/downloads/
http://www.oracle.com/technetwork/java/javase/downloads/
http://www.oracle.com/technetwork/java/javase/downloads/
http://www.oracle.com/technetwork/java/javase/downloads/
http://www.oracle.com/technetwork/java/javase/downloads/
http://www.oracle.com/technetwork/java/javase/downloads/
http://www.oracle.com/technetwork/java/javase/downloads/
http://www.oracle.com/technetwork/java/javase/downloads/
http://www.oracle.com/technetwork/java/javase/downloads/
http://www.oracle.com/technetwork/java/javase/downloads/
http://www.oracle.com/technetwork/java/javase/downloads/
http://www.oracle.com/technetwork/java/javase/downloads/
http://www.oracle.com/technetwork/java/javase/downloads/
http://www.oracle.com/technetwork/java/javase/downloads/
https://www.eclipse.org
https://www.eclipse.org
https://www.eclipse.org
https://www.eclipse.org
https://www.eclipse.org
https://www.eclipse.org
https://www.eclipse.org
https://www.eclipse.org
https://www.eclipse.org
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://netbeans.org
https://netbeans.org
https://netbeans.org
https://netbeans.org
https://netbeans.org
https://netbeans.org
https://netbeans.org

Preface

Conventions

In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, and user input are shown as follows: "Under the subdirectory
structure of C:\chapter8-benchmark\src\main\java\com\packt is the
MyBenchmark. java file."

A block of code is set as follows:

public synchronized void protectedMethod()
{

}
New terms and important words are shown in bold.

Warnings or important notes appear like this.

Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book--what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.

To send us general feedback, simply email feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

[4]

http://www.packtpub.com/authors

Preface

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code

You can download the example code files for this book from your account at http: //www.
packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box.

Select the book for which you're looking to download the code files.
Choose from the drop-down menu where you purchased this book from.
Click on Code Download.

NSOk

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR /7-Zip for Windows
e Zipeg /iZip / UnRarX for Mac
e 7-Zip [/ PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Mastering-Java-9. We also have other code bundles from our rich
catalog of books and videos available at https://github.com/PacktPublishing/. Check
them out!

[5]

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Mastering-Java-9
https://github.com/PacktPublishing/Mastering-Java-9
https://github.com/PacktPublishing/Mastering-Java-9
https://github.com/PacktPublishing/Mastering-Java-9
https://github.com/PacktPublishing/Mastering-Java-9
https://github.com/PacktPublishing/Mastering-Java-9
https://github.com/PacktPublishing/Mastering-Java-9
https://github.com/PacktPublishing/Mastering-Java-9
https://github.com/PacktPublishing/Mastering-Java-9
https://github.com/PacktPublishing/Mastering-Java-9
https://github.com/PacktPublishing/Mastering-Java-9
https://github.com/PacktPublishing/Mastering-Java-9
https://github.com/PacktPublishing/Mastering-Java-9
https://github.com/PacktPublishing/Mastering-Java-9
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books--maybe a mistake in the text or the code--
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[6]

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

The Java 9 Landscape

Java is already a fully-grown adult in its own right more than two decades since its first
release. With a stunning community of developers and wide adoption in a number of
industries, the platform continues to evolve and keep up with the rest of the world in terms
of performance, security, and scalability. We will begin our journey by exploring the most
significant features introduced in Java 9, what are the biggest drivers behind them, and
what more we can expect in subsequent developments of the platform, along with some of
the things that did not make it in this release.

In this chapter, we will cover the following topics:

e Java 9 at 20,000 feet

e Breaking the monolith

¢ Playing around with the Java Shell

¢ Taking control of external processes

¢ Boosting performance with G1

e Measuring performance with JMH

¢ Getting ready for HTTP 2.0

¢ Encompassing reactive programming
¢ Expanding the wish list

Java 9 at 20,000 feet

You might be asking yourself--isn't Java 9 just a maintenance release with a set of features
that did not make it into Java 8? There is plenty of new stuff in Java 9 that makes it a distinct
version in its own right.

The Java 9 Landscape

Inarguably, the modularization of the Java platform (developed as part of project Jigsaw) is
the biggest piece of work that makes it successfully in Java 9. Initially planned for Java §,
but postponed, project Jigsaw is also one of the main reasons why the final release of Java 9
was further postponed. Jigsaw also introduces a few notable changes to the Java platform
and is one of the reasons Java 9 is considered a major release. We will explore these features
in detail in the subsequent chapters.

The JCP (Java Community Process) provides the mechanisms to turn a set of feature
proposals (also known as Java Enhancement Proposals or JEPs) into formal specifications
that provide the basis to extend the platform with new functionality. Java 9 is no different in
that regard. Apart from the Jigsaw-related Java enhancement proposals, there is a long list
of other enhancements that made it in Java 9. Throughout this book, we will discuss the
various features in terms of logical groups based on the corresponding enhancement
proposals, including the following:

¢ The Java Shell (also called JShell)--an interactive shell for the Java platform

e New APIs to work with operating system processes in a portable manner

e The Garbage-first (G1) garbage collector introduced in Java 7 is made the default
garbage collector in Java 9

¢ Adding the Java Microbenchmark Harness (JMH) tool that can be used to run
performance benchmarks against Java applications is included as part of the Java
distribution

e Support for the HTTP 2.0 and WebSocket standards by means of a new client API

¢ Concurrency enhancements among which is the definition of the F1ow class,

which describes an interface for the reactive streams specification in the Java
platform

Some of the initial proposals that were accepted for release 9 did not make it there and were
postponed for a later release, along with other interesting things that developers may expect
in the future.

You can download the JDK 9 distribution for your system from http://www.oracle.com/
technetwork/java/javase/downloads/index.html, if you are eager to get your hands dirty
before trying to move through the other chapters and experimenting with the newly
introduced samples and concepts.

[8]

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

The Java 9 Landscape

Breaking the monolith

Over the years, the utilities of the Java platform have continued to evolve and increase,
making it one big monolith. In order to make the platform more suitable for embedded and
mobile devices, the publication of stripped down editions such as Java CDC and Java ME
was necessary. These, however, did not prove to be flexible enough for modern applications
with varying requirements in terms of functionality provided by the JDK. In that regard, the
need for a modular system came in as a viral requirement, not only to address
modularization of the Java utilities (overall, more than 5000 Java classes and 1500 C++
source files with more than 25,0000 lines of code for the Hotspot runtime), but also to
provide a mechanism for developers to create and manage modular applications using the
same module system used in the JDK. Java 8 provided an intermediate mechanism to
enable applications to use only a subset of the APIs provided by the entire JDK, and that
mechanism was named compact profiles. In fact, compact profiles also provided the basis
for further work that had to be done in order to break dependencies between the various
distinct components of the JDK required to enable implementation of a module system in
Java.

The module system itself has been developed under the name of project Jigsaw on the basis
of which several Java enhancement proposals and a target JSR (376) were formed. Much
was put in place to address the requirements of project Jigsaw--there was evidence of
concept implementation with more features proposed than the ones that successfully made
it into Java 9. Apart from that, a complete restructuring of the JDK code base has been made
along with a complete reorganization of the JDK distributable images.

There was considerable controversy in the community as to whether an existing and mature
Java module system such as OSGi should be adopted as part of the JDK instead of
providing a completely new module system. However, OSGI targets runtime behavior such
as the resolution of module dependencies, installation, uninstallation, starting and stopping
of modules (also named bundles in terms of OSGI), custom module classloaders, and so on.
Project Jigsaw however targets a compile-time module system where resolution of
dependencies happen when the application is compiled. Moreover, installing and
uninstalling a module as part of the JDK eliminates the need to include it as a dependency
explicitly during compilation. Furthermore, loading of module classes is made possible
through the existing hierarchy of classloaders (the bootstrap and the extension and system
classloaders), although, there was a possibility of using custom module classloaders pretty
much similar to the module classloaders of OSGI. The latter was, however, abandoned; we
will discuss Java module classloading in more detail when we talk about the details of the
module system in Java.

[9]

The Java 9 Landscape

Additional benefits from the Java module system include enhanced security and
performance. By modularizing the JDK and applications into Jigsaw modules, we are able
to create well-defined boundaries between components and their corresponding domains.
This separation of concerns aligns with the security architecture of the platform and is an
enabler of better resource utilization. We have dedicated two detailed chapters to all of the
preceding points, and to the topic of adopting Java 9 as well, which also requires a degree of
understanding on the possible approaches to migrating existing projects to Java 9.

Playing around with the Java Shell

For a long time, there has been no standard shell shipped with the Java programming
language to experiment with new language features or libraries or for rapid prototyping. If
you wanted to do this, you could write a test application with a main method, compile it
with javac, and run it. This could be done either at the command line or using a Java IDE;
however, in both cases, this is not as convenient as having an interactive shell for the
purpose.

Starting an interactive shell in JDK 9 is as simple as running the following command
(assuming the bin directory of your JDK 9 installation is in the current path):

jshell

You may find it somewhat puzzling that an interactive shell has not been introduced earlier
in the Java platform as many programming languages, such as Python, Ruby, and a number
of others, already come with an interactive shell in their earliest versions; However, this had
still not made it on the priority features list for the earlier Java releases, until now, and it is
out there and ready for use. The Java shell makes use of a JShell API that provides
capabilities to enable autocompletion or evaluation of expressions and code snippets,
among other features. A full chapter is dedicated to discussing the details of the Java shell
so that developers can make the best use out of it.

[10]

The Java 9 Landscape

Taking control of external processes

Up to JDK 9, if you wanted to create a Java process and handle process input/output, you
had to use either the Runt ime . getRuntime.exec () method, which allows us to execute a
command in a separate OS process and get a java.lang.Process instance over which to
provide certain operations in order to manage the external process, or use the new
java.lang.ProcessBuilder class with some more enhancements in regard to interacting
with the external process and also create a java.lang.Process instance to represent the
external process. Both mechanisms were inflexible and also non-portable as the set of
commands executed by the external processes were highly dependent on the operating
system (additional effort had to be exerted in order to make the particular process
operations portable across multiple operating systems). A chapter is dedicated to the new
process API, providing developers with the knowledge of creating and managing external
processes in a much easier way.

Boosting performance with G1

The G1 garbage collector was already introduced in JDK 7 and is now enabled by default in
JDK 9. It is targeted for systems with multiple processing cores and a lot of available
memory. What are the benefits of the G1 compared to previous types of garbage collectors?
How does it achieve these improvements? Is there a need to manually tune it, and in what
scenarios? These, and several more questions regarding G1, will be discussed in a separate
chapter.

Measuring performance with JMH

On many occasions, Java applications may suffer from performance degradation.
Exacerbating the issue is a lack of performance tests that can provide at least a minimal set
of guarantees that performance requirements are met and, moreover, the performance of
certain features will not degrade over time. Measuring performance of Java applications is
not trivial, especially due to the fact that there is a number of compiler and runtime
optimizations that may affect performance statistics. For that reason, additional measures
such as warm-up phases and other tricks must be used in order to provide more accurate
performance measurements. The Java Microbenchmark Harness is a framework that
incorporates a number of techniques along with a convenient API that can be used for this
purpose. It is not a new tool, but is included with the distribution of Java 9. If you have not
added JMH to your toolbox yet, read the detailed chapter on the usage of JMH in the
context of Java 9 application development.

[11]

The Java 9 Landscape

Getting started with HTTP 2.0

HTTP 2.0 is the successor of the HTTP 1.1 protocol, and this new version of the protocol
addresses some limitations and drawbacks of the previous one. HTTP 2.0 improves
performance in several ways and provides capabilities such as request/response
multiplexing in a single TCP connection, sending of responses in a server-push, flow
control, and request prioritization, among others.

Java provides the java.net .HttpURLConnection utility that can be used to establish a
non-secure HTTP 1.1 connection. However, the API was considered difficult to maintain
and further extended with the support for HTTP 2.0 and, so, an entirely new client API was
introduced in order to establish a connection via the HTTP 2.0 or the web socket protocols.
The new HTTP 2.0 client, along with the capabilities it provides, will be covered in a
dedicated chapter.

Encompassing reactive programming

Reactive programming is a paradigm used to describe a certain pattern for propagation of
changes in a system. Reactiveness is not built in Java itself, but reactive data flows can be
established using third-party libraries such as RxJava or project Reactor (part of the Spring
Framework). JDK 9 also addresses the need for an API that aids the development of highly-
responsive applications built around the idea of reactive streams by providing the
java.util.concurrent.Flow class for the purpose. The Flow class, along with other
related changes introduced in JDK 9, will be covered in a separate chapter.

Expanding the wish list

Apart from all of the new stuff in JDK 9, a whole new set of features is expected in future
releases of the platform. Among these are the following:

¢ Generics over primitive types: This is one of the features planned for JDK 10 as
part of project Valhalla. Other language enhancements, such as value handles, are
already part of Java 9 and will be introduced later in this book.

[12]

The Java 9 Landscape

¢ Reified generics: This is another featured part of project Valhalla that aims to
provide the ability to preserve generic types at runtime. The related goals are
listed as follows:
¢ The foreign functional interface aims to introduce a new API to call
and manage native functions. The API addresses some of the
drawbacks of JNI and especially a lack of simplicity for use by
application developers. The foreign functional interface is
develo