

Mastering Java 9

Write reactive, modular, concurrent, and secure code

Dr. Edward Lavieri
Peter Verhas

BIRMINGHAM - MUMBAI

Mastering Java 9

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2017

Production reference: 1031017

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.
ISBN 978-1-78646-873-4

www.packtpub.com

http://www.packtpub.com

Credits

Authors
Dr. Edward Lavieri
Peter Verhas

Copy Editor
Safis Editing

Reviewer
Mandar Jog

Project Coordinator
Prajakta Naik

Commissioning Editor
Kunal Parikh

Proofreader
Safis Editing

Acquisition Editor
Denim Pinto

Indexer
Francy Puthiry

Content Development Editor
Lawrence Veigas

Graphics
Jason Monteiro

Technical Editor
Abhishek Sharma

Production Coordinator
Arvindkumar Gupta

About the Authors
Dr. Edward Lavieri is a veteran developer with a strong academic background. He earned a
doctorate in computer science from Colorado Technical University, an MS in management
information systems (Bowie State University), an MS in education (Capella University), and
an MS in operations management (University of Arkansas).

He has been creating and teaching computer science courses since 2002. Edward retired
from the U.S. Navy as a Command Master Chief after 25 years of service. As the founder
and creative director of three19, a software design and development studio, Edward is
constantly designing and developing software. He uses a variety of game engines and
development tools. His passions include developing adaptive learning systems, educational
games, and mobile apps.

Edward has authored Adaptive Learning for Educational Game Design (CreateSpace), Getting
Started with Unity 5 (Packt), Learning AWS Lumberyard Game Development (Packt), LiveCode
Mobile Development HOTSHOT (Packt), LiveCode Mobile Development Cookbook (Packt), and
Software Consulting: A Revolutionary Approach (CreateSpace). He was the technical editor for
Excel Formulas and Functions for Dummies (Wiley Publishing). He has also developed
numerous college courses involving computer science, information systems, and game
development.

Peter Verhas is a senior developer and software system architect with more than 30 years of
software development experience. He currently works for EPAM as a senior developer,
where he is involved in many customer projects and actively participates in the education
activities of the company. Peter writes a technical blog and is committed to open source
software development. He has been using Java since 2005 and is also an author at Java Code
Geeks.

About the Reviewer
Mandar Jog is an expert IT trainer with over 15 years of training experience. He is an expert
in technologies such as Java, J2EE, and Android. He also holds SCJP and SCWCD
certifications. He is an occasional blogger where he makes the readers feel "I can" for the
complex concepts in Java and J2EE. He is a regular speaker at many engineering colleges for
technical seminars and workshops.

He was also the technical reviewer of the book, Modular Programming in Java 9 by Packt.

Thanks a lot Tejaswini, you have been my inspiration throughout this journey. I am
equally grateful to my son, Ojas; his lovely smiles have always made me push myself
further.

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at https://www.amazon.com/dp/1786468735.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1786468735

Table of Contents
Preface 1

Chapter 1: The Java 9 Landscape 7

Java 9 at 20,000 feet 7
Breaking the monolith 9
Playing around with the Java Shell 10
Taking control of external processes 11
Boosting performance with G1 11
Measuring performance with JMH 11
Getting started with HTTP 2.0 12
Encompassing reactive programming 12
Expanding the wish list 12
Summary 13

Chapter 2: Discovering Java 9 14

Improved Contended Locking [JEP 143] 15
Improvement goals 16

Segmented code cache [JEP 197] 16
Memory allocation 17

Smart Java compilation, phase two [JEP 199] 18
Resolving Lint and Doclint warnings [JEP 212] 18
Tiered attribution for javac [JEP 215] 19
Annotations pipeline 2.0 [JEP 217] 20
New version-string scheme [JEP 223] 22
Generating run-time compiler tests automatically [JEP 233] 22
Testing class-file attributes generated by Javac [JEP 235] 23
Storing interned strings in CDS archives [JEP 250] 25

The problem 25
The solution 26

Preparing JavaFX UI controls and CSS APIs for modularization [JEP
253] 26

JavaFX overview 26
Implications for Java 9 28

Compact strings [JEP 254] 29
Pre-Java 9 status 30
New with Java 9 30

[ii]

Merging selected Xerces 2.11.0 updates into JAXP [JEP 255] 30
Updating JavaFX/Media to newer version of GStreamer [JEP 257] 31
HarfBuzz Font-Layout Engine [JEP 258] 32
HiDPI graphics on Windows and Linux [JEP 263] 33
Marlin graphics renderer [JEP 265] 34
Unicode 8.0.0 [JEP 267] 34

New in Unicode 8.0.0 34
Updated Classes in Java 9 35

Reserved stack areas for critical sections [JEP 270] 35
The pre-Java 9 situation 35
New in Java 9 36

Dynamic linking of language-defined object models [JEP 276] 37
Proof of concept 38

Additional tests for humongous objects in G1 [JEP 278] 38
Improving test-failure troubleshooting [JEP 279] 40

Environmental information 40
Java process information 41

Optimizing string concatenation [JEP 280] 41
HotSpot C++ unit-test framework [JEP 281] 42
Enabling GTK 3 on Linux [JEP 283] 42
New HotSpot build system [JEP 284] 44
Summary 44

Chapter 3: Java 9 Language Enhancements 45

Working with variable handlers [JEP 193] 46
Working with the AtoMiC Toolkit 47
Using the sun.misc.Unsafe class 49

Eliding depreciation warnings on import statements [JEP 211] 50
Milling Project Coin [JEP 213] 51

Using the @SafeVarargs annotation 51
The try-with-resource statement 52
Using the diamond operator 54
Discontinuing use of the underscore 55
Making use of private interface methods 56

Processing import statements correctly [JEP 216] 58
Summary 60

Chapter 4: Building Modular Applications with Java 9 61

A modular primer 62
Reviewing Java's platform module system [JEP-200] 64

[iii]

Modularizing JDK source code [JEP-201] 68
Pre-Java 9 JDK source code organization 69

Development tools 70
Deployment 70
Internationalization 70
Monitoring 71
RMI 71
Security 71
Troubleshooting 71
Web services 72

JavaFX tools 72
Java runtime environment 72
Source code 72
Libraries 73
C header files 74
Database 75

JDK source code reorganized 75
Understanding modular run-time images [JEP-220] 75

Runtime format adoption 76
Runtime image restructure 76
Supporting common operations 78
De-privileging JDK classes 78
Preserving existing behaviors 78

Getting to know the module system [JEP-261] 78
Module paths 79
Access-control boundary violations 80

Runtime 80
Modular Java application packaging [JEP-275] 82

Advanced look at the Java Linker 83
Java Packager options 83

JLink - The Java Linker [JEP-282] 87
Encapsulating most internal APIs [JEP-260] 89
Summary 90

Chapter 5: Migrating Applications to Java 9 91

Quick review of Project Jigsaw 92
Classpath 92
The monolithic nature of the JDK 93

How modules fit into the Java landscape 94
Base module 95
Reliable configuration 96
Strong encapsulation 97

[iv]

Migration planning 98
Testing a simple Java application 98
Potential migration issues 101

The JRE 102
Access to internal APIs 102
Accessing internal JARs 103
JAR URL depreciation 103
Extension mechanism 105
The JDK's modularization 106

Advice from Oracle 107
Preparatory steps 108

Getting the JDK 9 early access build 108
Running your program before recompiling 108
Updating third-party libraries and tools 108
Compiling your application 109

Pre-Java 9 -source and -target options 111
Java 9 -source and -target options 112

Running jdeps on your code 112
Breaking encapsulation 115

The --add-opens option 116
The --add-exports option 116
The --permit-illegal-access option 117

Runtime image changes 117
Java version schema 117
JDK and JRE layout 118

What has been removed 120
Updated garbage collection 121
Deployment 122

JRE version selection 122
Serialized applets 122
JNLP update 123

Nested resources 123
FX XML extension 123
JNLP file syntax 125
Numeric version comparison 125

Useful tools 126
Java environment - jEnv 127
Maven 128

Obtaining the M2Eclipse IDE 129
Summary 132

Chapter 6: Experimenting with the Java Shell 133

What is JShell? 134
Getting Started with JShell 134

[v]

Practical uses of JShell 140
Feedback modes 141

Creating a custom feedback mode 146
Listing your assets 148
Editing in the JShell 149

Modifying text 149
Basic navigation 150
Historical navigation 150
Advanced editing commands 151

Working with scripts 151
Start up scripts 151
Loading scripts 152
Saving scripts 152
Advanced scripting with JShell 153

Summary 154

Chapter 7: Leveraging the New Default G1 Garbage Collector 155

Overview of garbage collection 156
Object life cycle 156

Object creation 156
Object mid-life 157
Object destruction 157

Garbage collection algorithms 158
Mark and sweep 158
Concurrent mark sweep (CMS) garbage collection 158
Serial garbage collection 159
Parallel garbage collection 159
G1 garbage collection 159

Garbage collection options 160
Java methods relevant to garbage collection 165

The System.gc() method 166
The finalize() method 168

Pre-Java 9 garbage collection 169
Visualizing garbage collection 170
Garbage collection upgrades in Java 8 171
Case study - Games written with Java 172

Collecting garbage with the new Java platform 173
Default garbage collection 173
Depreciated garbage collection combinations 175
Unified garbage collection logging 176

Unified JVM logging (JEP-158) 177
Tags 177
Levels 178

[vi]

Decorations 178
Output 179
Command-line options 179

Unified GC logging (JEP-271) 179
Garbage collection logging options 180
The gc tag 182
Macros 182
Additional considerations 183

Persistent issues 184
Making objects eligible for garbage collection 184

Summary 187

Chapter 8: Microbenchmarking Applications with JMH 188

Microbenchmarking overview 189
Approach to using JMH 190

Installing Java 9 and Eclipse with Java 9 support 190
Hands-on experiment 193

Microbenchmarking with Maven 195
Benchmarking options 202

Modes 203
Time units 203

Techniques for avoiding microbenchmarking pitfalls 204
Power management 204
OS schedulers 204
Time sharing 205
Eliminating dead-code and constant folding 205
Run-to-run variance 206
Cache capacity 207

Summary 207

Chapter 9: Making Use of the ProcessHandle API 208

What are processes? 209
The new ProcessHandle interface 210
Getting the PID of the current process 210
Getting information about a process 211
Listing processes 213

Listing children 213
Listing descendants 214
Listing all processes 215

Waiting for processes 216
Terminating processes 217
A small process controller application 219

[vii]

Main class 220
Parameters class 221
The ParamsAndHandle class 222
The ControlDaemon class 223

Summary 226

Chapter 10: Fine-Grained Stack Tracing 227

Overview of the Java Stack 227
The importance of stack information 228

Example - Restricting callers 230
Example - Getting logger for caller 233

Working with StackWalker 234
Getting an instance of StackWalker 234

RETAIN_CLASS_REFERENCE 234
SHOW_REFLECT_FRAMES 235
SHOW_HIDDEN_FRAMES 235
Final thoughts on enum constants 238

Accessing classes 238
Walking methods 239

StackFrame 241
Performance 242
Summary 242

Chapter 11: New Tools and Tool Enhancements 243

The new HTTP client [JEP-110] 244
The HTTP client before Java 9 244
Java 9's new HTTP client 247
New API limitations 248

Simplified Doclet API [JEP-221] 250
The pre-Java 9 Doclet API 250

API enums 252
API classes 252
API interfaces 253
Problems with the pre-existing Doclet API 254

Java 9's Doclet API 254
Compiler tree API 254
Language model API 258

The AnnotatedConstruct interface 259
The SourceVersion enum 259
The UnknownEntityException exception 261

HTML5 Javadoc [JEP-224] 262
Javadoc search [JEP-225] 267

Introducing camel case search 268

[viii]

Remove launch-time JRE version selection [JEP-231] 268
Parser API for Nashorn [JEP-236] 269

Nashorn 269
Using Nashorn as a command-line tool 270
Using Nashorn as an embedded interpreter 273

EMCAScript 274
Parser API 275

Multi-release JAR files [JEP-238] 277
Identifying multi-release JAR files 277
Related JDK changes 279

Java-level JVM compiler interface [JEP-243] 280
BeanInfo annotations [JEP-256] 281

JavaBean 281
BeanProperty 282
SwingContainer 283
BeanInfo classes 283

TIFF image input/output [JEP-262] 284
Platform logging API and service [JEP-264] 286

The java.util.logging package 287
Logging in Java 9 289

XML Catalogs [JEP-268] 290
The OASIS XML Catalog standard 290
JAXP processors 291
XML Catalogs prior to Java 9 291
Java 9 platform changes 291

Convenience factory methods for collections [JEP-269] 291
Using collections before Java 9 292
Using new collection literals 295

Platform-specific desktop features [JEP-272] 295
Enhanced method handles [JEP-274] 296

Reason for the enhancement 297
Lookup functions 297
Argument handling 298
Additional combinations 298

Enhanced deprecation [JEP-277] 299
What the @Deprecated annotation really means 300

Summary 300

Chapter 12: Concurrency and Reactive Programming 301

Reactive Programming 302

[ix]

Reactive programming standardization 303
The New Flow API 305

The Flow.Publisher interface 306
The Flow.Subscriber interface 306
The Flow.Subscription interface 306
The Flow.Processor interface 307
Sample implementation 307

Additional Concurrency Updates 309
Java concurrency 309

Concurrency explained 309
System configurations 310
Java threads 311
Concurrency improvements 314

CompletableFuture API enhancements 315
Class details 316
Enhancements 320

Spin-Wait Hints 321
Summary 322

Chapter 13: Security Enhancements 323

Datagram Transport Layer Security 324
DTLS protocol version 1.0 324
DTLS protocol version 1.2 326
DTLS support in Java 9 329

Creating PKCS12 keystores 330
Keystore primer 330
Java Keystore (JKS) 330

Builder 331
The CallbackHandlerProtection class 332
The PasswordProtection class 332
The PrivateKeyEntry class 333
The SecretKeyEntry class 333
The TrustedCertificateEntry class 334

PKCS12 default in Java 9 335
Improving security application performance 335

Security policy enforcement 336
Permission evaluation 337
The java.Security.CodeSource package 337
Package checking algorithm 338

TLS application-layer protocol negotiation extension 339
TLS ALPN extension 340
The javax.net.ssl package 340

[x]

The java.net.ssl package extension 342
Leveraging CPU instructions for GHASH and RSA 343

Hashing 344
OCSP stapling for TLS 345

OCSP stapling primer 346
Changes for the Java 9 platform 347

DRBG-based SecureRandom implementations 348
Summary 349

Chapter 14: Command Line Flags 350

Unified JVM Logging [JEP 158] 350
Command-line options 351
Decorations 354
Levels 355
Output 355
Tags 356

Compiler control [JEP 165] 356
Compilation modes 356

C1 compilation mode 357
C2 compilation mode 357
Tiered compilation 357

Compiler control in Java 9 358
Diagnostic commands [JEP 228] 359
Heap profiling agent [JEP 240] 361
Removing your JHAT [JEP 241] 362
JVM command-line flag argument validation [JEP 245] 363
Compile for older platform versions [JEP 247] 364
Summary 367

Chapter 15: Best Practices In Java 9 368

Support for UTF-8 368
The ResourceBundle class 369

The nested class 370
Fields and constructors 374
Methods 375

Changes in Java 9 381
Unicode 7.0.0 381

The java.lang package 382
The java.text package 383
Additional significance 383

The Linux/AArch64 port 384

[xi]

Multi-resolution Images 385
Common Locale Data Repository (CLDR) 387
Summary 388

Chapter 16: Future Directions 389

Future Changes to the JDK 390
JDK changes targeted for Java 10 390

Repository consolidation 390
Native-header tool removal 391

JDK-related submitted proposals 392
Parallelize the Full GC Phase in CMS 392
REST APIs for JMX 392
Support heap allocation 394

JDK-related drafted proposals 394
Finalization promptness 394
Java memory model 395
Foreign Function Interfaces 396
Isolated methods 396
Reducing metaspace waste 396
Improving IPv6 support 397
Unboxed argument lists for method handles 398
Enhanced MandelblotSet demo using value types 399
Efficient array comparison intrinsics 400

Future changes to the Java Compiler 400
Policy for retiring javac -source and -target options 400
Pluggable static analyzers 400

Future Changes to the Java Virtual Machine 401
JVM-related submitted proposals 401

Container aware Java 401
Enable execution of Java methods on GPU 403
Epsilon GC - The arbitrarily low overhead garbage (non-) collector 403

JVM-related drafted proposals 404
Provide stable USDT probe points on JVM compiled methods 404
Concurrent monitor deflation 405
Provide a low-overhead way of sampling Java heap allocations 406
Diagnostic Command Framework 406
Enhanced Class Redefinition 407
Enable NUMA mode by default when appropriate 407
Value objects 408
Align JVM Access Checks 409

Future Changes to JavaX 409
JMX specific annotations for registration of managed resources 409
Modernize the GTK3 Look and Feel Implementation 410

Ongoing Special Projects 410

[xii]

Annotations pipeline 2.0 412
Audio Synthesis Engine 412
Caciocavallo 412
Common VM Interface 412
Compiler Grammar 413
Da Vinci Machine 413
Device I/O 413
Graal 413
HarfBuzz Integration 414
Kona 414
OpenJFX 414
Panama 414
Shenandoah 415

Summary 415

Index 416

Preface
Java 9 and its new features add to the richness of the language--one of the most-used
languages to build robust software applications. Java 9 comes with a special emphasis on
modularity, implemented from Project Jigsaw. This book is your one-stop guide to
mastering the changes made to the Java platform.

The book gives an overview and explanation of the new features introduced in Java 9 and
the importance of the new APIs and enhancements. Some of the new features of Java 9 are
groundbreaking, and if you are an experienced programmer, you will be able to make your
enterprise application leaner by implementing these new features. You will be provided
with practical guidance in applying the newly acquired knowledge in regards to Java 9 and
further information on future developments of the Java platform. This book will improve
your productivity, making your applications faster. By learning the best practices in Java,
you will become the go-to person in your organization for Java 9.

By the end of this book, you will not only know the important concepts of Java 9 but you
will also have a nuanced understanding of the important aspects of programming with this
great language.

What this book covers
Chapter 1, The Java 9 Landscape, explores the most significant features introduced in Java 9,
including Project Jigsaw, the Java Shell, G1 garbage collection, and reactive programming.
This chapter provides introductions to these topics, priming them for deeper coverage in
the subsequent chapters.

Chapter 2, Discovering Java 9, covers several changes to the Java platform to include heap
space efficiencies, memory allocation, compilation process improvements, type testing,
annotations, automated runtime compiler tests, and improved garbage collection.

Chapter 3, Java 9 Language Enhancements, focuses on the changes made to the Java language.
These changes impact variable handlers, depreciation warnings, improvements on Project
Coin changes implemented in Java 7, and import statement processing.

Preface

[2]

Chapter 4, Building Modular Applications with Java 9, examines the structure of a Java
module as specified by Project Jigsaw and how Project Jigsaw was implemented as part of
the Java platform. This chapter also reviews the key internal changes to the Java platform as
they relate to the new modular system.

Chapter 5, Migrating Applications to Java 9, explores how to migrate Java 8 applications to
the Java 9 platform. Both manual and semi-automated migration processes are covered.

Chapter 6, Experimenting with the Java Shell, covers JShell, the new command-line read-eval-
print loop tool in Java 9. Coverage includes information regarding the tool, the read-eval-
print loop concept, and the commands and command-line options for use with JShell.

Chapter 7, Leveraging the New Default G1 Garbage Collector, takes an in-depth look at garbage
collection and how it is handled in Java 9.

Chapter 8, Microbenchmarking Applications with JMH, examines how to write performance
tests using the Java Microbenchmark Harness (JMH), a Java harness library for writing
benchmarks for the Java Virtual Machine (JVM). Maven is used along with JMH to help
illustrate the power of microbenchmarking with the new Java 9 platform.

Chapter 9, Making Use of the ProcessHandle API, reviews new class APIs that enable the
management of operating system processes.

Chapter 10, Fine-Grained Stack Tracing, covers the new API that permits an effective means
of stack walking. The chapter includes detailed information on how to access stack trace
information.

Chapter 11, New Tools and Tool Enhancements, covers 16 Java Enhancement Proposals (JEPs)
that were incorporated into the Java 9 platform. These JEPs cover a wide range of tools and
updates to APIs to make development with Java easier with greater optimization
possibilities for our Java applications.

Chapter 12, Concurrency Enhancements, covers concurrency enhancements introduced with
the Java 9 platform. The primary focus is the support for reactive programming, a
concurrency enhancement that is provided by the Flow class API. Additional concurrency
enhancements introduced in Java 9 are also covered.

Chapter 13, Security Enhancements, covers several small changes made to the JDK that
involve security. The security enhancements introduced with the Java 9 platform provide
developers with a greater ability to write and maintain applications that are more secure
than previously possible.

Preface

[3]

Chapter 14, Command-Line Flags, explores the command-line flag changes in Java 9.
Concepts covered in this chapter include unified JVM logging, compiler control, diagnostic
commands, heap-profiling agent, JHAT, command-line flag argument validation, and
compiling for older platform versions.

Chapter 15, Best Practices in Java 9, focuses on working with utilities provided by the Java 9
platform to include UTF-8 property files, Unicode 7.0.0, Linux/AArch64 port,
multiresolution images, and common locale data repository.

Chapter 16, Future Directions, provides an overview of the future developments of the Java
platform, beyond Java 9. This includes a specific look at what is planned for Java 10 and
what further changes we are likely to see in the future.

What you need for this book
To work with this text, you will need at least a basic knowledge of the Java programming
language.

You will also need the following software components:

Java SE Development Kit 9 (JDK)
http:/ ​/​www. ​oracle. ​com/ ​technetwork/ ​java/ ​javase/ ​downloads/ ​

An Integrated Development Environment (IDE) for coding. Here are suggestions:
Eclipse

https:/ ​/​www. ​eclipse. ​org

IntelliJ
https:/ ​/​www. ​jetbrains. ​com/​idea/ ​

NetBeans
https:/ ​/​netbeans. ​org

Who this book is for
This book is for enterprise developers and existing Java developers. Basic knowledge of
Java is necessary.

http://www.oracle.com/technetwork/java/javase/downloads/
http://www.oracle.com/technetwork/java/javase/downloads/
http://www.oracle.com/technetwork/java/javase/downloads/
http://www.oracle.com/technetwork/java/javase/downloads/
http://www.oracle.com/technetwork/java/javase/downloads/
http://www.oracle.com/technetwork/java/javase/downloads/
http://www.oracle.com/technetwork/java/javase/downloads/
http://www.oracle.com/technetwork/java/javase/downloads/
http://www.oracle.com/technetwork/java/javase/downloads/
http://www.oracle.com/technetwork/java/javase/downloads/
http://www.oracle.com/technetwork/java/javase/downloads/
http://www.oracle.com/technetwork/java/javase/downloads/
http://www.oracle.com/technetwork/java/javase/downloads/
http://www.oracle.com/technetwork/java/javase/downloads/
http://www.oracle.com/technetwork/java/javase/downloads/
http://www.oracle.com/technetwork/java/javase/downloads/
http://www.oracle.com/technetwork/java/javase/downloads/
http://www.oracle.com/technetwork/java/javase/downloads/
https://www.eclipse.org
https://www.eclipse.org
https://www.eclipse.org
https://www.eclipse.org
https://www.eclipse.org
https://www.eclipse.org
https://www.eclipse.org
https://www.eclipse.org
https://www.eclipse.org
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://netbeans.org
https://netbeans.org
https://netbeans.org
https://netbeans.org
https://netbeans.org
https://netbeans.org
https://netbeans.org

Preface

[4]

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, and user input are shown as follows: "Under the subdirectory
structure of C:\chapter8-benchmark\src\main\java\com\packt is the
MyBenchmark.java file."

A block of code is set as follows:

 public synchronized void protectedMethod()
 {
 . . .
 }

New terms and important words are shown in bold.

Warnings or important notes appear like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book--what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.

To send us general feedback, simply email feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

http://www.packtpub.com/authors

Preface

[5]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at http:/ ​/​www.
packtpub.​com. If you purchased this book elsewhere, you can visit http:/ ​/​www. ​packtpub.
com/​support and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ ​/ ​github. ​com/
PacktPublishing/​Mastering- ​Java- ​9. We also have other code bundles from our rich
catalog of books and videos available at https:/ ​/​github. ​com/ ​PacktPublishing/ ​. Check
them out!

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Mastering-Java-9
https://github.com/PacktPublishing/Mastering-Java-9
https://github.com/PacktPublishing/Mastering-Java-9
https://github.com/PacktPublishing/Mastering-Java-9
https://github.com/PacktPublishing/Mastering-Java-9
https://github.com/PacktPublishing/Mastering-Java-9
https://github.com/PacktPublishing/Mastering-Java-9
https://github.com/PacktPublishing/Mastering-Java-9
https://github.com/PacktPublishing/Mastering-Java-9
https://github.com/PacktPublishing/Mastering-Java-9
https://github.com/PacktPublishing/Mastering-Java-9
https://github.com/PacktPublishing/Mastering-Java-9
https://github.com/PacktPublishing/Mastering-Java-9
https://github.com/PacktPublishing/Mastering-Java-9
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[6]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books--maybe a mistake in the text or the code--
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http:/ ​/​www. ​packtpub. ​com/ ​submit- ​errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to https:/ ​/​www. ​packtpub. ​com/ ​books/
content/​support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1
The Java 9 Landscape

Java is already a fully-grown adult in its own right more than two decades since its first
release. With a stunning community of developers and wide adoption in a number of
industries, the platform continues to evolve and keep up with the rest of the world in terms
of performance, security, and scalability. We will begin our journey by exploring the most
significant features introduced in Java 9, what are the biggest drivers behind them, and
what more we can expect in subsequent developments of the platform, along with some of
the things that did not make it in this release.

In this chapter, we will cover the following topics:

Java 9 at 20,000 feet
Breaking the monolith
Playing around with the Java Shell
Taking control of external processes
Boosting performance with G1
Measuring performance with JMH
Getting ready for HTTP 2.0
Encompassing reactive programming
Expanding the wish list

Java 9 at 20,000 feet
You might be asking yourself--isn't Java 9 just a maintenance release with a set of features
that did not make it into Java 8? There is plenty of new stuff in Java 9 that makes it a distinct
version in its own right.

The Java 9 Landscape

[8]

Inarguably, the modularization of the Java platform (developed as part of project Jigsaw) is
the biggest piece of work that makes it successfully in Java 9. Initially planned for Java 8,
but postponed, project Jigsaw is also one of the main reasons why the final release of Java 9
was further postponed. Jigsaw also introduces a few notable changes to the Java platform
and is one of the reasons Java 9 is considered a major release. We will explore these features
in detail in the subsequent chapters.

The JCP (Java Community Process) provides the mechanisms to turn a set of feature
proposals (also known as Java Enhancement Proposals or JEPs) into formal specifications
that provide the basis to extend the platform with new functionality. Java 9 is no different in
that regard. Apart from the Jigsaw-related Java enhancement proposals, there is a long list
of other enhancements that made it in Java 9. Throughout this book, we will discuss the
various features in terms of logical groups based on the corresponding enhancement
proposals, including the following:

The Java Shell (also called JShell)--an interactive shell for the Java platform
New APIs to work with operating system processes in a portable manner
The Garbage-first (G1) garbage collector introduced in Java 7 is made the default
garbage collector in Java 9
Adding the Java Microbenchmark Harness (JMH) tool that can be used to run
performance benchmarks against Java applications is included as part of the Java
distribution
Support for the HTTP 2.0 and WebSocket standards by means of a new client API
Concurrency enhancements among which is the definition of the Flow class,
which describes an interface for the reactive streams specification in the Java
platform

Some of the initial proposals that were accepted for release 9 did not make it there and were
postponed for a later release, along with other interesting things that developers may expect
in the future.

You can download the JDK 9 distribution for your system from http:/ ​/​www. ​oracle. ​com/
technetwork/​java/ ​javase/ ​downloads/ ​index. ​html, if you are eager to get your hands dirty
before trying to move through the other chapters and experimenting with the newly
introduced samples and concepts.

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

The Java 9 Landscape

[9]

Breaking the monolith
Over the years, the utilities of the Java platform have continued to evolve and increase,
making it one big monolith. In order to make the platform more suitable for embedded and
mobile devices, the publication of stripped down editions such as Java CDC and Java ME
was necessary. These, however, did not prove to be flexible enough for modern applications
with varying requirements in terms of functionality provided by the JDK. In that regard, the
need for a modular system came in as a viral requirement, not only to address
modularization of the Java utilities (overall, more than 5000 Java classes and 1500 C++
source files with more than 25,0000 lines of code for the Hotspot runtime), but also to
provide a mechanism for developers to create and manage modular applications using the
same module system used in the JDK. Java 8 provided an intermediate mechanism to
enable applications to use only a subset of the APIs provided by the entire JDK, and that
mechanism was named compact profiles. In fact, compact profiles also provided the basis
for further work that had to be done in order to break dependencies between the various
distinct components of the JDK required to enable implementation of a module system in
Java.

The module system itself has been developed under the name of project Jigsaw on the basis
of which several Java enhancement proposals and a target JSR (376) were formed. Much
was put in place to address the requirements of project Jigsaw--there was evidence of
concept implementation with more features proposed than the ones that successfully made
it into Java 9. Apart from that, a complete restructuring of the JDK code base has been made
along with a complete reorganization of the JDK distributable images.

There was considerable controversy in the community as to whether an existing and mature
Java module system such as OSGi should be adopted as part of the JDK instead of
providing a completely new module system. However, OSGI targets runtime behavior such
as the resolution of module dependencies, installation, uninstallation, starting and stopping
of modules (also named bundles in terms of OSGI), custom module classloaders, and so on.
Project Jigsaw however targets a compile-time module system where resolution of
dependencies happen when the application is compiled. Moreover, installing and
uninstalling a module as part of the JDK eliminates the need to include it as a dependency
explicitly during compilation. Furthermore, loading of module classes is made possible
through the existing hierarchy of classloaders (the bootstrap and the extension and system
classloaders), although, there was a possibility of using custom module classloaders pretty
much similar to the module classloaders of OSGI. The latter was, however, abandoned; we
will discuss Java module classloading in more detail when we talk about the details of the
module system in Java.

The Java 9 Landscape

[10]

Additional benefits from the Java module system include enhanced security and
performance. By modularizing the JDK and applications into Jigsaw modules, we are able
to create well-defined boundaries between components and their corresponding domains.
This separation of concerns aligns with the security architecture of the platform and is an
enabler of better resource utilization. We have dedicated two detailed chapters to all of the
preceding points, and to the topic of adopting Java 9 as well, which also requires a degree of
understanding on the possible approaches to migrating existing projects to Java 9.

Playing around with the Java Shell
For a long time, there has been no standard shell shipped with the Java programming
language to experiment with new language features or libraries or for rapid prototyping. If
you wanted to do this, you could write a test application with a main method, compile it
with javac, and run it. This could be done either at the command line or using a Java IDE;
however, in both cases, this is not as convenient as having an interactive shell for the
purpose.

Starting an interactive shell in JDK 9 is as simple as running the following command
(assuming the bin directory of your JDK 9 installation is in the current path):

jshell

You may find it somewhat puzzling that an interactive shell has not been introduced earlier
in the Java platform as many programming languages, such as Python, Ruby, and a number
of others, already come with an interactive shell in their earliest versions; However, this had
still not made it on the priority features list for the earlier Java releases, until now, and it is
out there and ready for use. The Java shell makes use of a JShell API that provides
capabilities to enable autocompletion or evaluation of expressions and code snippets,
among other features. A full chapter is dedicated to discussing the details of the Java shell
so that developers can make the best use out of it.

The Java 9 Landscape

[11]

Taking control of external processes
Up to JDK 9, if you wanted to create a Java process and handle process input/output, you
had to use either the Runtime.getRuntime.exec() method, which allows us to execute a
command in a separate OS process and get a java.lang.Process instance over which to
provide certain operations in order to manage the external process, or use the new
java.lang.ProcessBuilder class with some more enhancements in regard to interacting
with the external process and also create a java.lang.Process instance to represent the
external process. Both mechanisms were inflexible and also non-portable as the set of
commands executed by the external processes were highly dependent on the operating
system (additional effort had to be exerted in order to make the particular process
operations portable across multiple operating systems). A chapter is dedicated to the new
process API, providing developers with the knowledge of creating and managing external
processes in a much easier way.

Boosting performance with G1
The G1 garbage collector was already introduced in JDK 7 and is now enabled by default in
JDK 9. It is targeted for systems with multiple processing cores and a lot of available
memory. What are the benefits of the G1 compared to previous types of garbage collectors?
How does it achieve these improvements? Is there a need to manually tune it, and in what
scenarios? These, and several more questions regarding G1, will be discussed in a separate
chapter.

Measuring performance with JMH
On many occasions, Java applications may suffer from performance degradation.
Exacerbating the issue is a lack of performance tests that can provide at least a minimal set
of guarantees that performance requirements are met and, moreover, the performance of
certain features will not degrade over time. Measuring performance of Java applications is
not trivial, especially due to the fact that there is a number of compiler and runtime
optimizations that may affect performance statistics. For that reason, additional measures
such as warm-up phases and other tricks must be used in order to provide more accurate
performance measurements. The Java Microbenchmark Harness is a framework that
incorporates a number of techniques along with a convenient API that can be used for this
purpose. It is not a new tool, but is included with the distribution of Java 9. If you have not
added JMH to your toolbox yet, read the detailed chapter on the usage of JMH in the
context of Java 9 application development.

The Java 9 Landscape

[12]

Getting started with HTTP 2.0
HTTP 2.0 is the successor of the HTTP 1.1 protocol, and this new version of the protocol
addresses some limitations and drawbacks of the previous one. HTTP 2.0 improves
performance in several ways and provides capabilities such as request/response
multiplexing in a single TCP connection, sending of responses in a server-push, flow
control, and request prioritization, among others.

Java provides the java.net.HttpURLConnection utility that can be used to establish a
non-secure HTTP 1.1 connection. However, the API was considered difficult to maintain
and further extended with the support for HTTP 2.0 and, so, an entirely new client API was
introduced in order to establish a connection via the HTTP 2.0 or the web socket protocols.
The new HTTP 2.0 client, along with the capabilities it provides, will be covered in a
dedicated chapter.

Encompassing reactive programming
Reactive programming is a paradigm used to describe a certain pattern for propagation of
changes in a system. Reactiveness is not built in Java itself, but reactive data flows can be
established using third-party libraries such as RxJava or project Reactor (part of the Spring
Framework). JDK 9 also addresses the need for an API that aids the development of highly-
responsive applications built around the idea of reactive streams by providing the
java.util.concurrent.Flow class for the purpose. The Flow class, along with other
related changes introduced in JDK 9, will be covered in a separate chapter.

Expanding the wish list
Apart from all of the new stuff in JDK 9, a whole new set of features is expected in future
releases of the platform. Among these are the following:

Generics over primitive types: This is one of the features planned for JDK 10 as
part of project Valhalla. Other language enhancements, such as value handles, are
already part of Java 9 and will be introduced later in this book.

The Java 9 Landscape

[13]

Reified generics: This is another featured part of project Valhalla that aims to
provide the ability to preserve generic types at runtime. The related goals are
listed as follows:

The foreign functional interface aims to introduce a new API to call
and manage native functions. The API addresses some of the
drawbacks of JNI and especially a lack of simplicity for use by
application developers. The foreign functional interface is
developed as part of project Panama in the JDK ecosystem.
New money and currency API (developed under JSR 354) was
initially planned for Java 9, but was postponed.
New lightweight JSON API (developed under JSR 353) was also
planned for Java 9, but postponed to Java 10.

These are just some of the new things one may expect in subsequent releases of the JDK.
Project Penrose aims to bridge the gap between the module system in Java and the OSGi
module system, and to provide different methodologies for interoperability between the
two systems.

The Graal VM is another interesting research project that is a potential candidate for
subsequent releases of the Java platform. It aims to bring the runtime performance of Java
to dynamic languages such as JavaScript or Ruby.

A chapter dedicated to the future of JDK discusses all of these points in detail.

Summary
In this brief introductory chapter, we revealed the small universe of capabilities provided
by JDK 9. The module system introduced in this release of the platform is indisputably a
cornerstone in the development of Java applications. We also discovered that a number of
other major features and changes are introduced in JDK 9 that deserve special attention and
will be discussed in great detail in subsequent chapters.

In the next chapter, we will take a look at 26 internal changes to the Java platform.

2
Discovering Java 9

Java 9 represents a major release and consists of a large number of internal changes to the
Java platform. Collectively, these internal changes represent a tremendous set of new
possibilities for Java developers, some stemming from developer requests, others from
Oracle-inspired enhancements. In this chapter, we will review 26 of the most important
changes. Each change is related to a JDK Enhancement Proposal (JEP). JEPs are indexed
and housed at openjdk.java.net/jeps/0. You can visit this site for additional information
on each JEP.

The JEP program is part of Oracle's support for open source, open
innovation, and open standards. While other open source Java projects can
be found, OpenJDK is the only one supported by Oracle.

In this chapter, we will cover changes to the Java platform. These changes have several
impressive implications, including:

Heap space efficiencies
Memory allocation
Compilation process improvements
Type testing
Annotations
Automated runtime compiler tests
Improved garbage collection

http://openjdk.java.net/jeps/0

Discovering Java 9

[15]

Improved Contended Locking [JEP 143]
The JVM uses Heap space for classes and objects. The JVM allocates memory on the heap
whenever we create an object. This helps facilitate Java's garbage collection which releases
memory previously used to hold objects that no longer have a reference to it. Java Stack
memory is a bit different and is usually much smaller than heap memory.

The JVM does a good job of managing data areas that are shared by multiple threads. It
associates a monitor with every object and class; these monitors have locks that are
controlled by a single thread at any one time. These locks, controlled by the JVM, are, in
essence, giving the controlling thread the object's monitor.

So, what is contended locking? When a thread is in a queue for a currently locked object, it
is said to be in contention for that lock. The following diagram shows a high-level view of
this contention:

As you can see in the preceding illustration, any threads in waiting cannot use a locked
object until it is released.

Discovering Java 9

[16]

Improvement goals
The general goal of JEP 143 was to increase the overall performance of how the JVM
manages contention over locked Java object monitors. The improvements to contended
locking were all internal to the JVM and do not require any developer actions to benefit
from them. The overall improvement goals were related to faster operations. These include:

Faster monitor enter
Faster monitor exit
Faster notifications

The notifications are the notify() and notifyAll() operations that are called when the
locked status of an object is changed. Testing this improvement is not something you can
easily accomplish. Greater efficiency, at any level, is welcome, so this improvement is one
we can be thankful for even without any easily observable testing.

Segmented code cache [JEP 197]
The segmented code cache JEP (197) upgrade was completed and results in faster, more
efficient execution time. At the core of this change was the segmentation of the code cache
into three distinct segments--non-method, profiled, and non-profiled code.

A code cache is the area of memory where the Java Virtual Machine stores
generated native code.

Discovering Java 9

[17]

Each of the aforementioned code cache segments will hold a specific type of compiled code.
As you can see in the following diagram, the code heap areas are segmented by type of
compiled code:

Memory allocation
The code heap containing non-method code is for JVM internal code and consists of a 3 MB
fixed memory block. The rest of the code cache memory is equally allocated for the profiled
code and non-profiled code segments. You have control of this via command-line
commands.
The following command can be used to define the code heap size for the non-method
compiled code:

-XX:NonMethodCodeCodeHeapSize

The following command can be used to define the code heap size for the profiled compiled
methods:

-XX:ProfiledCodeHeapSize

The following command can be used to define the code heap size for the non-profiled
compiled methods:

-XX:NonProfiledCodeHeapSize

This Java 9 feature certainly stands to improve Java application efficiency. It also impacts
other processes that employ the code cache.

Discovering Java 9

[18]

Smart Java compilation, phase two [JEP
199]
The JDK Enhancement Proposal 199 is aimed at improving the code compilation process.
All Java developers will be familiar with the javac tool for compiling source code to
bytecode, which is used by the JVM to run Java programs. Smart Java Compilation, also
referred to as Smart Javac and sjavac, adds a smart wrapper around the javac process.
Perhaps the core improvement sjavac adds is that only the necessary code is recompiled.
Necessary code, in this context, is code that has changed since the last compile cycle.

This enhancement might not get developers excited if they only work on small projects.
Consider, however, the tremendous gains in efficiency when you continuously have to
recompile your code for medium and large projects. The time developers stand to save is
enough reason to embrace JEP 199.

How will this change how you compile your code? It probably will not, at least not yet.
Javac will remain the default compiler. While sjavac offers efficiencies regarding
incremental builds, Oracle has deemed it to not have sufficient stability to become part of
the standard compilation workflow.

You can read more information about the smart javac wrapper tool here:
http:/ ​/ ​cr. ​openjdk. ​java. ​net/ ​~briangoetz/ ​JDK- ​8030245/ ​webrev/ ​src/
share/ ​classes/ ​com/ ​sun/ ​tools/ ​sjavac/ ​Main. ​java- ​. ​html.

Resolving Lint and Doclint warnings [JEP
212]
Do not worry if you are not familiar with Lint or Doclint in Java. As you can determine
from the section title, they are sources that report warnings to javac. Let's take a look at each
one:

Lint analyzes byte code and source code for javac. The goal of Lint is to identify
security vulnerabilities in the code being analyzed. Lint can also provide insights
into scalability and thread locking concerns. There is more to Lint, and the overall
purpose is to save developers time.

http://cr.openjdk.java.net/~briangoetz/JDK-8030245/webrev/src/share/classes/com/sun/tools/sjavac/Main.java-.html
http://cr.openjdk.java.net/~briangoetz/JDK-8030245/webrev/src/share/classes/com/sun/tools/sjavac/Main.java-.html
http://cr.openjdk.java.net/~briangoetz/JDK-8030245/webrev/src/share/classes/com/sun/tools/sjavac/Main.java-.html
http://cr.openjdk.java.net/~briangoetz/JDK-8030245/webrev/src/share/classes/com/sun/tools/sjavac/Main.java-.html
http://cr.openjdk.java.net/~briangoetz/JDK-8030245/webrev/src/share/classes/com/sun/tools/sjavac/Main.java-.html
http://cr.openjdk.java.net/~briangoetz/JDK-8030245/webrev/src/share/classes/com/sun/tools/sjavac/Main.java-.html
http://cr.openjdk.java.net/~briangoetz/JDK-8030245/webrev/src/share/classes/com/sun/tools/sjavac/Main.java-.html
http://cr.openjdk.java.net/~briangoetz/JDK-8030245/webrev/src/share/classes/com/sun/tools/sjavac/Main.java-.html
http://cr.openjdk.java.net/~briangoetz/JDK-8030245/webrev/src/share/classes/com/sun/tools/sjavac/Main.java-.html
http://cr.openjdk.java.net/~briangoetz/JDK-8030245/webrev/src/share/classes/com/sun/tools/sjavac/Main.java-.html
http://cr.openjdk.java.net/~briangoetz/JDK-8030245/webrev/src/share/classes/com/sun/tools/sjavac/Main.java-.html
http://cr.openjdk.java.net/~briangoetz/JDK-8030245/webrev/src/share/classes/com/sun/tools/sjavac/Main.java-.html
http://cr.openjdk.java.net/~briangoetz/JDK-8030245/webrev/src/share/classes/com/sun/tools/sjavac/Main.java-.html
http://cr.openjdk.java.net/~briangoetz/JDK-8030245/webrev/src/share/classes/com/sun/tools/sjavac/Main.java-.html
http://cr.openjdk.java.net/~briangoetz/JDK-8030245/webrev/src/share/classes/com/sun/tools/sjavac/Main.java-.html
http://cr.openjdk.java.net/~briangoetz/JDK-8030245/webrev/src/share/classes/com/sun/tools/sjavac/Main.java-.html
http://cr.openjdk.java.net/~briangoetz/JDK-8030245/webrev/src/share/classes/com/sun/tools/sjavac/Main.java-.html
http://cr.openjdk.java.net/~briangoetz/JDK-8030245/webrev/src/share/classes/com/sun/tools/sjavac/Main.java-.html
http://cr.openjdk.java.net/~briangoetz/JDK-8030245/webrev/src/share/classes/com/sun/tools/sjavac/Main.java-.html
http://cr.openjdk.java.net/~briangoetz/JDK-8030245/webrev/src/share/classes/com/sun/tools/sjavac/Main.java-.html
http://cr.openjdk.java.net/~briangoetz/JDK-8030245/webrev/src/share/classes/com/sun/tools/sjavac/Main.java-.html
http://cr.openjdk.java.net/~briangoetz/JDK-8030245/webrev/src/share/classes/com/sun/tools/sjavac/Main.java-.html
http://cr.openjdk.java.net/~briangoetz/JDK-8030245/webrev/src/share/classes/com/sun/tools/sjavac/Main.java-.html
http://cr.openjdk.java.net/~briangoetz/JDK-8030245/webrev/src/share/classes/com/sun/tools/sjavac/Main.java-.html
http://cr.openjdk.java.net/~briangoetz/JDK-8030245/webrev/src/share/classes/com/sun/tools/sjavac/Main.java-.html
http://cr.openjdk.java.net/~briangoetz/JDK-8030245/webrev/src/share/classes/com/sun/tools/sjavac/Main.java-.html
http://cr.openjdk.java.net/~briangoetz/JDK-8030245/webrev/src/share/classes/com/sun/tools/sjavac/Main.java-.html
http://cr.openjdk.java.net/~briangoetz/JDK-8030245/webrev/src/share/classes/com/sun/tools/sjavac/Main.java-.html
http://cr.openjdk.java.net/~briangoetz/JDK-8030245/webrev/src/share/classes/com/sun/tools/sjavac/Main.java-.html
http://cr.openjdk.java.net/~briangoetz/JDK-8030245/webrev/src/share/classes/com/sun/tools/sjavac/Main.java-.html
http://cr.openjdk.java.net/~briangoetz/JDK-8030245/webrev/src/share/classes/com/sun/tools/sjavac/Main.java-.html
http://cr.openjdk.java.net/~briangoetz/JDK-8030245/webrev/src/share/classes/com/sun/tools/sjavac/Main.java-.html
http://cr.openjdk.java.net/~briangoetz/JDK-8030245/webrev/src/share/classes/com/sun/tools/sjavac/Main.java-.html
http://cr.openjdk.java.net/~briangoetz/JDK-8030245/webrev/src/share/classes/com/sun/tools/sjavac/Main.java-.html
http://cr.openjdk.java.net/~briangoetz/JDK-8030245/webrev/src/share/classes/com/sun/tools/sjavac/Main.java-.html
http://cr.openjdk.java.net/~briangoetz/JDK-8030245/webrev/src/share/classes/com/sun/tools/sjavac/Main.java-.html
http://cr.openjdk.java.net/~briangoetz/JDK-8030245/webrev/src/share/classes/com/sun/tools/sjavac/Main.java-.html
http://cr.openjdk.java.net/~briangoetz/JDK-8030245/webrev/src/share/classes/com/sun/tools/sjavac/Main.java-.html
http://cr.openjdk.java.net/~briangoetz/JDK-8030245/webrev/src/share/classes/com/sun/tools/sjavac/Main.java-.html
http://cr.openjdk.java.net/~briangoetz/JDK-8030245/webrev/src/share/classes/com/sun/tools/sjavac/Main.java-.html

Discovering Java 9

[19]

You can read more about Lint here:
https://en.wikipedia.org/wiki/Lint_(software).

Doclint is similar to Lint and is specific to javadoc. Both Lint and Doclint report
errors and warnings during the compile process. Resolution of these warnings
was the focus of JEP 212. When using core libraries, there should not be any
warnings. This mindset led to JEP 212, which has been resolved and implemented
in Java 9.

A comprehensive list of the Lint and Doclint warnings can be reviewed in
the https:/ ​/ ​bugs. ​openjdk. ​java. ​net JDK Bug System.

Tiered attribution for javac [JEP 215]
JEP 215 represents an impressive undertaking to streamline javac's type checking schema.
Let's first review how type checking works in Java 8; then we will explore the changes in
Java 9.

In Java 8, type checking of poly expressions is handled by a speculative attribution tool.

Speculative attribution is a method of type checking as part of javac's
compilation process. It has a significant processing overhead.

Using the speculative attribution approach to type checking is accurate, but lacks efficiency.
These checks include argument position, and are exponentially slower when testing in the
midst of recursion, polymorphism, nested loops, and lambda expressions. So the goal with
JEP 215 was to change the type checking schema to create faster results. The results
themselves were not inaccurate with speculative attribution; they were just not generated
rapidly.

https://en.wikipedia.org/wiki/Lint_(software)
https://bugs.openjdk.java.net
https://bugs.openjdk.java.net
https://bugs.openjdk.java.net
https://bugs.openjdk.java.net
https://bugs.openjdk.java.net
https://bugs.openjdk.java.net
https://bugs.openjdk.java.net
https://bugs.openjdk.java.net
https://bugs.openjdk.java.net
https://bugs.openjdk.java.net
https://bugs.openjdk.java.net

Discovering Java 9

[20]

The new approach, released with Java 9, uses a tiered attribution tool. This tool implements
a tiered approach for type checking argument expressions for all method calls. Permissions
are also made for method overriding. In order for this new schema to work, new structural
types are created for each of the following listed types of method arguments:

Lambda expressions
Poly expressions
Regular method calls
Method references
Diamond instance creation expressions

The changes to javac from JEP 215 are more complex than what has been highlighted in this
section. There is no immediate impact to developers other than a more efficient javac and
time saved.

Annotations pipeline 2.0 [JEP 217]
Java annotations refer to a special kind of metadata that resides inside your Java source
code files. They are not stripped by javac, so that they can remain available to the JVM at
runtime.

Annotations look similar to JavaDocs references because they start with the @ symbol. There
are three types of annotations. Let's examine each:

The most basic form of annotation is a marker annotation. These are standalone
annotations with the only component being the name of the animation. Here is an
example:

 @thisIsAMarkerAnnotation
 public double computeSometing(double x, double y)
 {
 // do something and return a double
 }

Discovering Java 9

[21]

The second type of annotation is one that contains a single value, or piece of data.
As you can see in the following code, the annotation, which starts with the @
symbol, is followed by parentheses containing data:

 @thisIsAMarkerAnnotation (data="compute x and y
 coordinates")
 public double computeSometing(double x, double y)
 {
 // do something and return a double
 }

An alternative way of coding the single value annotation type is to omit the data=
component, as illustrated in the following code:

 @thisIsAMarkerAnnotation ("compute x and y coordinates")
 public double computeSometing(double x, double y)
 {
 // do something and return a double
 }

The third type of annotation is when there is more than one data component. With
this type of annotation, the data= component cannot be omitted. Here is an
example:

 @thisIsAMarkerAnnotation (data="compute x and y
 coordinates", purpose="determine intersecting point")
 public double computeSometing(double x, double y)
 {
 // do something and return a double
 }

So, what has changed in Java 9? To answer this question, we need to recall a couple of
changes introduced with Java 8 that impacted Java annotations:

Lambda expressions
Repeated annotations
Java type annotations

These Java 8 related changes impacted Java annotations, but did not usher in a change to
how javac processed them. There were some hardcoded solutions that allowed javac to
handle the new annotations, but they were not efficient. Moreover, this type of coding
(hardcoding workarounds) is difficult to maintain.

So, JEP 217 focused on refactoring the javac annotation pipeline. This refactoring was all
internal to javac, so it should not be evident to developers.

Discovering Java 9

[22]

New version-string scheme [JEP 223]
Prior to Java 9, the release numbers did not follow industry standard versioning--semantic
versioning. For example, at the time of writing, the last four JDK releases were:

JDK 8 update 131
JDK 8 update 121
JDK 8 update 112

Semantic versioning uses a major, minor, patch (0.0.0) schema:
Major equates to new API changes that are not backwards compatible.
Minor is when functionality is added that is backwards compatible.
Patch refers to bug fixes or minor changes that are backwards compatible.

Oracle has embraced semantic versioning for Java 9 and beyond. For Java, a major-minor-
security schema will be used for the first three elements of Java version numbers:

Major: A major release consisting of a significant new set of features
Minor: Revisions and bug fixes that are backwards compatible
Security: Fixes deemed critical to improve security

This description of JEP 223 might make the versioning schema seem basic. To the contrary,
a very detailed set of rules and practices have been developed to manage the future version
numbers. To demonstrate the complexity, see the following example:

 1.9.0._32.b19

Generating run-time compiler tests
automatically [JEP 233]
Java is arguably the most used programming language and resides on an increasingly
diverse number of platforms. This exacerbates the problem of running targeted compiler
tests in an efficient manner. The purpose of JEP 233 was to create a tool that could automate
the runtime compiler tests.

Discovering Java 9

[23]

The tool that was created starts by generating a random set of Java source code and/or byte
code. The generated code will have three key characteristics:

Be syntactically correct
Be semantically correct
Use a random seed that permits reusing the same randomly-generated code

The source code that is randomly generated will be saved in the following directory:

 hotspot/test/testlibrary/jit-tester

These test cases will be stored for later re-use. They can be run from the j-treg directory or
from the tool's makefile. One of the benefits of re-running saved tests is to test the stability
of your system.

Testing class-file attributes generated by
Javac [JEP 235]
The lack of, or insufficient, capability to create tests for class-file attributes was the impetus
behind JEP 235. The goal is to ensure javac creates a class-file's attributes completely and
correctly. This suggests that even if some attributes are not used by the class-file, all class-
files should be generated with a complete set of attributes. There also needs to be a way of
testing that the class-files were created correctly, in regards to the file's attributes.

Prior to Java 9, there was no method of testing a class-file's attributes. Running a class and
testing the code for anticipated or expected results was the most commonly used method of
testing javac generated class-files. This technique falls short of testing to validate the file's
attributes.

There are three categories of class-file attributes--attributes used by the JVM, optional
attributes, and attributes not used by the JVM.

Discovering Java 9

[24]

Attributes used by the JVM include:

BootstrapMethods

Code

ConstantValue

Exceptions

StackMapTable

Optional attributes include:

Deprecated

LineNumberTable

LocalVariableTable

LocalVariableTypeTable

SourceDebugExtension

SourceFile

Attributes not used by the JVM include:

AnnotationDefault

EnclosingMethod

InnerClasses

MethodParameters

RuntimeInvisibleAnnotations

RuntimeInvisibleParameterAnnotations

RuntimeInvisibleTypeAnnotations

RuntimeVisibleAnnotations

RuntimeVisibleParameterAnnotations

RuntimeVisibleTypeAnnotations

Signature

Synthetic

Discovering Java 9

[25]

Storing interned strings in CDS archives
[JEP 250]
The method in which strings are stored and accessed to and from Class Data Sharing
(CDS) archives is inefficient, excessively time consuming, and wastes memory. The
following diagram illustrates the method in which Java stores interned strings in a CDS
archive:

The inefficiency stems from the current storage schema. Especially when the Class Data
Sharing tool dumps the classes into the shared archive file, the constant pools containing
CONSTANT_String items have a UTF-8 string representation.

UTF-8 is an 8-bit variable-length character encoding standard.

The problem
With the current use of UTF-8, the strings must be converted to string objects, instances of
the java.lang.String class. This conversion takes place on-demand which can result in
slower systems and unnecessary memory usage. The processing time is extremely short, but
the memory usage cannot be overlooked. Every character in an interned string requires at
least 3 bytes of memory and potentially more.

A related problem is that the stored strings are not accessible to all JVM processes.

Discovering Java 9

[26]

The solution
CDS archives now allocate specific space on the heap for strings:

The string space is mapped using a shared-string table, hash tables, and deduplication.

Deduplication is a data compression technique that eliminates duplicative
information in an archive.

Preparing JavaFX UI controls and CSS APIs
for modularization [JEP 253]
JavaFX is a set of packages that permits the design and development of media-rich
graphical user interfaces. JavaFX applications provide developers with a great API for
creating a consistent interface for applications. Cascading Style Sheets (CSS) can be used to
customize the interfaces. One of the great things about JavaFX is that the tasks of
programming and interface design can easily be separated.

JavaFX overview
There is a wonderful visual scripting tool called Scene Builder that allows you to create
graphical user interfaces by using drag and drop and property settings. Scene Builder
generates the necessary FXML files that are used by your Integrated Development
Environment (IDE) such as NetBeans.

Discovering Java 9

[27]

Here is a sample UI created with Scene Builder:

And, here is the FXML file created by Scene Builder:

 <?xml version="1.0" encoding="UTF-8"?>

 <?import java.lang.*?>
 <?import java.util.*?>
 <?import javafx.scene.control.*?>
 <?import javafx.scene.layout.*?>
 <?import javafx.scene.paint.*?>
 <?import javafx.scene.text.*?>

 <AnchorPane id="AnchorPane" maxHeight="-Infinity"
 maxWidth="-Infinity" minHeight="-Infinity"
 minWidth="-Infinity" prefHeight="400.0" prefWidth="600.0"
 xmlns:fx="http://javafx.com/fxml/1"
 xmlns="http://javafx.com/javafx/2.2">
 <children>
 <TitledPane animated="false" collapsible="false"
 layoutX="108.0" layoutY="49.0" text="Sample">
 <content>
 <AnchorPane id="Content" minHeight="0.0" minWidth="0.0"
 prefHeight="180.0" prefWidth="200.0">
 <children>
 <CheckBox layoutX="26.0" layoutY="33.0"
 mnemonicParsing="false" prefWidth="94.0"
 text="CheckBox" />
 <ColorPicker layoutX="26.0" layoutY="65.0" />
 <Hyperlink layoutX="26.0" layoutY="103.0"
 text="Hyperlink" />

Discovering Java 9

[28]

 <Label alignment="CENTER" layoutX="14.0" layoutY="5.0"
 prefWidth="172.0" text="This is a Label"
 textAlignment="CENTER">

 </Label>
 <Button layoutX="81.0" layoutY="146.0"
 mnemonicParsing="false" text="Button" />
 </children>
 </AnchorPane>
 </content>
 </TitledPane>
 </children>
 </AnchorPane>

Implications for Java 9
Prior to Java 9, JavaFX controls as well as CSS functionality were only available to
developers by interfacing with internal APIs. Java 9's modularization has made the internal
APIs inaccessible. Therefore, JEP 253 was created to define public, instead of internal, APIs.

This was a larger undertaking than it might seem. Here are a few actions that were taken as
part of this JEP:

Moving javaFX control skins from the internal to public API
(javafx.scene.skin)
Ensuring API consistencies
Generation of a thorough javadoc

The following classes were moved from internal packages to a public
javafx.scene.control.skin package:

AccordionSkin ButtonBarSkin ButtonSkin CellSkinBase

CheckBoxSkin ChoiceBoxSkin ColorPickerSkin ComboBoxBaseSkin

ComboBoxListViewSkin ComboBoxPopupControl ContextMenuSkin DateCellSkin

DatePickerSkin HyperLinkSkin LabelSkin LabeledSkinBase

ListCellSkin ListViewSkin MenuBarSkin MenuButtonSkin

MenuButtonSkinbase NestedTableColumHeader PaginationSkin ProgressBarSkin

ProgressIndicatorSkin RadioButtonSkin ScrollBarSkin ScrollPaneSkin

SeparatorSkin SliderSkin SpinnerSkin SplitMenuButtonSkin

Discovering Java 9

[29]

SplitPaneSkin TabPaneSkin TableCellSkin TableCellSkinBase

TableColumnHeader TableHeaderRow TableHeaderSkin TableRowSkinBase

TableViewSkin TableViewSkinBase TextAreaSkin TextFieldSkin

TextInputControlSkin TitledPaneSkin ToggleButtonSkin TooBarSkin

TooltipSkin TreeCellSkin TreeTableCellSkin TreeTableRowSkin

TreeTableViewSkin TreeViewSkin VirtualContainerBase VirtualFlow

The public javafx.css package now has the additional classes:

CascadingStyle.java:public class CascadingStyle implements
Comparable<CascadingStyle>

CompoundSelector.java:final public class CompoundSelector
extends Selector

CssError.java:public class CssError

Declaration.java:final public class Declaration

Rule.java:final public class Rule

Selector.java:abstract public class Selector

SimpleSelector.java:final public class SimpleSelector extends
Selector

Size.java:final public class Size

Style.java:final public class Style

Stylesheet.java:public class Stylesheet

CssParser.java:final public class CssParser

Compact strings [JEP 254]
The string data type is an important part of nearly every Java app. While JEP 254's aim was
to make strings more space-efficient, it was approached with caution so that existing
performance and compatibilities would not be negatively impacted.

Discovering Java 9

[30]

Pre-Java 9 status
Prior to Java 9, string data was stored as an array of chars. This required 16 bits for each
char. It was determined that the majority of String objects could be stored with only 8 bits,
or 1 byte of storage. This is due to the fact that most strings consist of Latin-1 characters.

The ISO Latin-1 Character Set is a single-byte set of character's encodings.

New with Java 9
Starting with Java 9, strings are now internally represented using a byte array along with a
flag field for encoding references.

Merging selected Xerces 2.11.0 updates into
JAXP [JEP 255]
Xerces is a library used for parsing XML in Java. It was updated to 2.11.0 in late 2010, so JEP
255's aim was to update JAXP to incorporate changes in Xerces 2.11.0.

JAXP is Java's API for XML processing.

Prior to Java 9, the JDK's latest update regarding XML processing was based on Xerces 2.7.1.
There were some additional changes to JDK 7 based on Xerces, 2.10.0. JEP 255 is a further
refinement of the JAXP based on Xerces 2.11.0.

Xerces 2.11.0 supports the following standards:

XML 1.0, Fourth Edition
Namespaces in XML 1.0, Second Edition
XML 1.1, Second Edition
Namespaces in XML 1.1, Second Edition
XML Inclusions 1.0, Second Edition

Discovering Java 9

[31]

Document Object Model (DOM)
Level 3

Core
Load & save

Level 2
Core
Events

Traversal & Range
Element Traversal, First Edition
Simple API for XML 2.0.2
Java APIs for XML Processing (JAXP) 1.4
Streaming API for XML 1.0
XML Schema 1.0
XML Schema 1.1
XML Schema Definition Language

The JDK was updated to include the following Xerces 2.11.0 categories:

Catalog resolver
Datatypes
Document Object Model Level 3
XML Schema Validation
XPointer

The public API for JAXP was not changed in Java 9.

Updating JavaFX/Media to newer version of
GStreamer [JEP 257]
JavaFX is used for creating desktop and web applications. JavaFX was created to replace
Swing as Java's standard GUI library. The Media class, javafx.scene.media.Media, is
used to instantiate an object representing a media resource. JavaFX/Media refers to the
following class:

 public final class Media extends java.lang.Object

Discovering Java 9

[32]

This class provides referential data to a media resource. The javafx.scene.media
package provides developers with the ability to incorporate media into their JavaFX
applications. JavaFX/Media utilizes a GStreamer pipeline.

GStreamer is a multimedia processing framework that can be used to
build systems that take in media from several different formats and, after
processing, export them in selected formats.

The purpose of JEP 257 was to ensure JavaFX/Media was updated to include the latest
release of GStreamer for stability, performance, and security assurances.

HarfBuzz Font-Layout Engine [JEP 258]
Prior to Java 9, the layout engine used to handle font complexities; specifically fonts that
have rendering behaviors beyond what the common Latin fonts have. Java used the
uniform client interface, also referred to as ICU, as the defacto text rendering tool. The ICU
layout engine has been depreciated and, in Java 9, has been replaced with the HarfBuzz font
layout engine.

HarfBuzz is an OpenType text rendering engine. This type of layout engine has the
characteristic of providing script-aware code to help ensure text is laid out as desired.

OpenType is an HTML formatted font format specification.

The impetus for the change from the ICU Layout Engine to the HarfBuzz Font Layout
Engine was IBM's decision to cease supporting the ICU Layout Engine. Therefore, the JDK
was updated to contain the HarfBuzz Font Layout Engine.

Discovering Java 9

[33]

HiDPI graphics on Windows and Linux [JEP
263]
JEP 263 was focused on ensuring the crispness of on-screen components, relative to the
pixel density of the display. The following terms are relevant to this JEP and are provided
along with the below listed descriptive information:

DPI-aware application: An application that is able to detect and scale images for
the display's specific pixel density
DPI-unaware application: An application that makes no attempt to detect and
scale images for the display's specific pixel density
HiDPI graphics: High dots-per-inch graphics
Retina display: This term was created by Apple to refer to displays with a pixel
density of at least 300 pixels per inch

Displaying graphics, both images and graphical user interface components, to the user is
typically of paramount performance. Displaying this imagery in high quality can be
somewhat problematic. There is large variability in computer monitor DPIs. There are three
basic approaches to developing for displays:

Develop apps without regard for the potential different display dimensions. In
other words, create a DPI-unaware application.
Develop a DPI-aware application that selectively uses pre-rendered image sizes
for a given display.
Develop a DPI-aware application that properly scales images up/down to account
for the specific display the application is run on.

Clearly, the first two approaches are problematic, and for different reasons. With the first
approach, the user experience is not considered. Of course, if the application was being
developed for a very specific display with no expected pixel density variability, then this
approach could be viable.

The second approach requires a lot of work on the design and development end to ensure
images for each expected display density are created and implemented programmatically.
In addition to the tremendous amount of work, the app size will unnecessarily increase, and
new and different pixel densities will not have been accounted for.

Discovering Java 9

[34]

The third approach is to create a DPI-aware application with efficient and effective scaling
capabilities. This approach works well and has been proven with the Mac retina displays.

Prior to Java 9, automatic scaling and sizing was already implemented in Java for the Mac
OS X operating system. This capability was added in Java 9 for Windows and Linux
operating systems.

Marlin graphics renderer [JEP 265]
JEP 265 replaced the Pisces graphics rasterizer with the Marlin graphics renderer in the Java
2D API. This API is used to draw 2D graphics and animations.

The goal was to replace Pisces with a rasterizer/renderer that was much more efficient and
without any quality loss. This goal was realized in Java 9. An intended collateral benefit
was to include a developer-accessible API. Previously, the means of interfacing with the
AWT and Java 2D was internal.

Unicode 8.0.0 [JEP 267]
Unicode 8.0.0 was released on June 17, 2015. JEP 267 focused on updating the relevant APIs
to support Unicode 8.0.0.

New in Unicode 8.0.0
Unicode 8.0.0 added nearly 8,000 characters. Here are the highlights of the release:

Ahom script for the Tai Ahom language (India)
Arwi, Tamil language (Arabic)
Cherokee symbols
CJK unified ideographs
Emoji symbols along with flesh-tone symbol modifiers
Georgian lari currency symbol
lk language (Uganda)
Kulango languge (Côte d’Ivoire)

Discovering Java 9

[35]

Updated Classes in Java 9
In order to fully comply with the new Unicode standard, several Java classes were updated.
The following listed classes were updated for Java 9 to comply with the new Unicode
standard:

java.awt.font.NumericShaper

java.lang.Character

java.lang.String

java.text.Bidi

java.text.BreakIterator

java.text.Normalizer

Reserved stack areas for critical sections
[JEP 270]
The goal of JEP 270 was to mitigate problems stemming from stack overflows during the
execution of critical sections. This mitigation took the form of reserving additional thread
stack space.

The pre-Java 9 situation
The JVM throws a StackOverflowError when it is asked to perform data computation in
a thread that has insufficient stack space and does not have permission to allocate
additional space. This is an asynchronous exception. The JVM can also throw the
StackOverflowError exception synchronously when a method is invoked.

When a method is invoked, an internal process is used to report the Stack Overflow. While
the current schema works sufficiently for reporting the error, there is no room for the calling
application to easily recover from the error. This can result in being more than a nuisance
for developers and users. If the StackOverflowError was thrown during a critical
computational operation, the data might be corrupted, causing additional problems.

Discovering Java 9

[36]

While not the sole cause of these problems, the effected status of locks from the
ReentrantLock class were a common cause of undesirable outcomes. This issue was
evident in Java 7 because the ConcurrentHasMap code implemented the ReentrantLock
class. The ConcurrentHasMap code was modified for Java 8, but problems still persisted
for any implementation of the ReentrantLock class. Similar problems existed beyond just
ReentrantLock class usage.

The following diagram provides a broad overview of the StackOverflowError problem:

In the next section, we will look at how this issue was resolved for Java 9.

New in Java 9
With the JEP 270 changes for Java 9, a critical section will automatically be given additional
space so that it can complete its execution and not suffer from the StackOverflowError.
This is predicated on the additional space allocation needs being small. The necessary
changes have been made to the JVM to permit this functionality.

The JVM actually delays the StackOverflowError, or at least attempts to, while critical
sections are executing. In order to capitalize on this new schema, methods must be
annotated with the following:

 jdk.internal.vm.annotation.ReservedStackAccess

Discovering Java 9

[37]

When a method has this annotation and a StackOverflowError condition exists,
temporary access to the reserved memory space is granted. The new process is, at a high
level of abstraction, presented as follows:

Dynamic linking of language-defined object
models [JEP 276]
Java interoperability was enhanced with JEP 276. The necessary JDK changes were made to
permit runtime linkers from multiple languages to coexist in a single JVM instance. This
change applies to high-level operations, as you would expect. An example of a relevant
high-level operation is the reading or writing of a property with elements such as accessors
and mutators.

The high-level operations apply to objects of unknown types. They can be invoked with
INVOKEDYNAMIC instructions. Here is an example of calling an object's property when the
object's type is unknown at compile time:

 INVOKEDYNAMIC "dyn:getProp:age"

Discovering Java 9

[38]

Proof of concept
Nashorn is a lightweight, high-performance, JavaScript runtime that permits embedding
JavaScript in Java applications. This was created for Java 8 and replaced the previous
JavaScript scripting engine that was based on Mozilla Rhino. Nashorn already has this
functionality. It provides linkage between high-level operations on any object of unknown
type, such as obj.something, where it produces the following:

 INVOKEDYNAMIC "dyn.getProp.something"

The dynamic linker springs into action and provides, when possible, the appropriate
implementation.

Additional tests for humongous objects in
G1 [JEP 278]
One of the long-favored features of the Java platform is the behind the scenes garbage
collection. JEP 278's focus was to create additional WhiteBox tests for humongous objects as
a feature of the G1 garbage collector.

WhiteBox testing is an API used to query JVM internals. The WhiteBox
testing API was introduced in Java 7 and upgraded in Java 8 and Java 9.

Discovering Java 9

[39]

The G1 garbage collector works extremely well, but there was room for some improved
efficiency. The way the G1 garbage collector worked is based on first dividing the heap into
regions of equal size, illustrated as follows:

The problem with the G1 garbage collector was how humongous objects were handled.

A humongous object in the context of garbage collection, is any object that
takes up more than one region on the heap.

The problem with humongous objects was that if they took up any part of a region on the
heap, the remaining space was not able to be allocated for other objects. In Java 9, the
WhiteBox API was extended with four types of new methods:

Methods with the purpose of blocking full garbage collection and to initiate
concurrent marking.
Methods that can access individual G1 garbage collection heap regions. Access to
these regions consist of attribute reading, such as with the current state of the
region.

Discovering Java 9

[40]

Methods with direct access to the G1 garbage collection internal variables.
Methods that can determine if humongous objects reside on the heap and, if so, in
what regions.

Improving test-failure troubleshooting [JEP
279]
For developers that do a lot of testing, JEP 279 is worth reading about. Additional
functionality has been added in Java 9 to automatically collect information to support
troubleshooting test failures as well as timeouts. Collecting readily available diagnostic
information during tests stands to provide developers and engineers with greater fidelity in
their logs and other output.

There are two basic types of information in the context of testing--environmental and
process.

Environmental information
When running tests, the testing environment information can be important for
troubleshooting efforts. This information includes the following:

CPU loads
Disk space
I/O loads
Memory space
Open files
Open sockets
Processes running
System events
System messages

Discovering Java 9

[41]

Java process information
There is also information available during the testing process directly related to Java
processes. These include:

C stacks
Core dumps
Mini dumps
Heap statistics
Java stacks

For additional information on this concept, read about the JDK's
regression test harness (jtreg).

Optimizing string concatenation [JEP 280]
JEP 280 is an interesting enhancement for the Java platform. Prior to Java 9, string
concatenation was translated by javac into StringBuilder : : append chains. This was
a sub-optimal translation methodology often requiring StringBuilder presizing.

The enhancement changed the string concatenation bytecode sequence, generated by javac,
so that it uses INVOKEDYNAMIC calls. The purpose of the enhancement was to increase
optimization and to support future optimizations without the need to reformat the javac's
bytecode.

See JEP 276 for more information on INVOKEDYNAMIC.

The use of INVOKEDYAMIC calls to java.lang.invoke.StringConcatFactory allows us
to use a methodology similar to lambda expressions instead of using StringBuilder's step-
wise process. This results in more efficient processing of string concatenation.

Discovering Java 9

[42]

HotSpot C++ unit-test framework [JEP 281]
HotSpot is the name of the JVM. This Java enhancement was intended to support the
development of C++ unit tests for the JVM. Here is a partial, non-prioritized, list of goals for
this enhancement:

Command-line testing
Create appropriate documentation
Debug compile targets
Framework elasticity
IDE support
Individual and isolated unit testing
Individualized test results
Integrate with existing infrastructure
Internal test support
Positive and negative testing
Short execution time testing
Support all JDK 9 build platforms
Test compile targets
Test exclusion
Test grouping
Testing that requires the JVM to be initialized
Tests co-located with source code
Tests for platform-dependent code
Write and execute unit testing (for classes and methods)

This enhancement is evidence of the increasing extensibility.

Enabling GTK 3 on Linux [JEP 283]
GTK+, formally known as the GIMP toolbox, is a cross-platform tool used for creating
Graphical User Interfaces (GUI). The tool consists of widgets accessible through its API.
JEP 283's focus was to ensure GTK 2 and GTK 3 were supported on Linux when developing
Java applications with graphical components. The implementation supports Java apps that
employ JavaFX, AWT, and Swing.

Discovering Java 9

[43]

We can create Java graphical applications with JavaFX, AWT, and Swing. Here is a table to
summarize those three approaches as they relate to GTK, prior to Java 9:

Approach Remarks

JavaFX • Uses a dynamic GTK function lookup
• Interacts with AWT and Swing via JFXPanel
• Uses AWT printing functionality

AWT • Uses a dynamic GTK function lookup

Swing • Uses a dynamic GTK function lookup

So, what changes were necessary to implement this JEP? For JavaFX, three specific things
were changed:

Automated testing was added for both GTK 2 and GTK 3
Functionality was added to dynamically load GTK 2
Support was added for GTK 3

For AWT and Swing, the following changes were implemented:

Automated testing was added for both GTK 2 and GTK 3
AwtRobot was migrated to GTK 3
FileChooserDilaog was updated for GTK 3
Functionality was added to dynamically load GTK 3
The Swing GTK LnF was modified to support GTK 3

Swing GTK LnF is short for Swing GTK look and feel.

Discovering Java 9

[44]

New HotSpot build system [JEP 284]
The Java platform used, prior to Java 9, was a build system riddled with duplicate code,
redundancies, and other inefficiencies. The build system has been reworked for Java 9 based
on the build-infra framework. In this context, infra is short for infrastructure. The
overarching goal for JEP 284 was to upgrade the build system to one that was simplified.
Specific goals included:

Leverage existing build system
Maintainable code
Minimize duplicate code
Simplification
Support future enhancements

You can learn more about Oracle's infrastructure framework at this site: http:/ ​/​www.
oracle.​com/​technetwork/ ​oem/ ​frmwrk- ​infra- ​496656. ​html

Summary
In this chapter, we covered some impressive new features of the Java platform, with specific
focus on javac, JDK libraries, and various test suites. Memory management improvements,
including heap space efficiencies, memory allocation, and improved garbage collection
represent a powerful new set of Java platform enhancements. Changes regarding the
compilation process resulting in greater efficiencies were part of our chapter. We also
covered important improvements, such as with the compilation process, type testing,
annotations, and automated runtime compiler tests.

In the next chapter, we will look at several minor language enhancements introduced in
Java 9.

http://www.oracle.com/technetwork/oem/frmwrk-infra-496656.html
http://www.oracle.com/technetwork/oem/frmwrk-infra-496656.html
http://www.oracle.com/technetwork/oem/frmwrk-infra-496656.html
http://www.oracle.com/technetwork/oem/frmwrk-infra-496656.html
http://www.oracle.com/technetwork/oem/frmwrk-infra-496656.html
http://www.oracle.com/technetwork/oem/frmwrk-infra-496656.html
http://www.oracle.com/technetwork/oem/frmwrk-infra-496656.html
http://www.oracle.com/technetwork/oem/frmwrk-infra-496656.html
http://www.oracle.com/technetwork/oem/frmwrk-infra-496656.html
http://www.oracle.com/technetwork/oem/frmwrk-infra-496656.html
http://www.oracle.com/technetwork/oem/frmwrk-infra-496656.html
http://www.oracle.com/technetwork/oem/frmwrk-infra-496656.html
http://www.oracle.com/technetwork/oem/frmwrk-infra-496656.html
http://www.oracle.com/technetwork/oem/frmwrk-infra-496656.html
http://www.oracle.com/technetwork/oem/frmwrk-infra-496656.html
http://www.oracle.com/technetwork/oem/frmwrk-infra-496656.html
http://www.oracle.com/technetwork/oem/frmwrk-infra-496656.html
http://www.oracle.com/technetwork/oem/frmwrk-infra-496656.html
http://www.oracle.com/technetwork/oem/frmwrk-infra-496656.html
http://www.oracle.com/technetwork/oem/frmwrk-infra-496656.html

3
Java 9 Language

Enhancements
In the previous chapter, we gained insight into some exciting new features contained in
Java 9. Our focus was on javac, the JDK libraries, and test suites. We learned about memory
management improvements including memory allocation, heap optimizations, and
enhanced garbage collection. We also covered changes to the compilation process, type
testing, annotations, and runtime compiler tests.

This chapter covers some changes in Java 9 that impact variable handlers, depreciation
warnings, improvements on Project Coin changes implemented in Java 7, and import
statement processing. These represent changes to the Java language itself.

The topics we will cover here are:

Variable handlers
Import statement depreciation warnings
Project Coin
Import statement processing

Java 9 Language Enhancements

[46]

Working with variable handlers [JEP 193]
Variable handlers are typed references to variables and are governed by the
java.lang.invoke.VarHandle abstract class. The VarHandle method's signature is
polymorphic. This provides for great variability in both method signatures and return
types. Here is a code sample demonstrating how a VarHandle might be used:

 . . .

 class Example
 {
 int myInt;
 . . .
 }
 . . .
 class Sample
 {
 static final VarHandle VH_MYINT;

 static
 {
 try
 {
 VH_MYINT =
 MethodHandles.lookup().in(Example.class)
 .findVarHandle(Example.class, "myInt", int.class);
 }
 catch (Exception e)
 {
 throw new Error(e);
 }
 }
 }

 . . .

As you can see in the preceding code snippet, the VarHandle.lookup() performs the
same operation as those that are performed by a MethodHandle.lookup() method.

The aim of this JEP was to standardize the way in which methods of the following classes
are invoked:

java.util.concurrent.atomic

sun.misc.Unsafe

Java 9 Language Enhancements

[47]

Specifically, methods that:

accessed/mutated object fields
accessed/mutated elements of an array

In addition, this JEP resulted in two fence operations for memory ordering and object
reachability. In the spirit of due diligence, special attention was given to ensure the JVM's
safety. It was important to ensure that memory errors did not result from these changes.
Data integrity, usability, and, of course, performance were key components of the
aforementioned due diligence and are explained as follows:

Safety: Corrupt memory states must not be possible.
Data integrity: Ensure access to an object's field uses identical rules used by:

getfield byte code
putfield byte code

Usability: The benchmark for usability was the sun.misc.Unsafe API. The goal
was to make the new API easier to use than the benchmark.
Performance: There could be no degradation of performance compared to the use
of the sun.misc.Unsafe API. The goal was to outperform that API.

In Java, a fence operation is what javac does to force a constraint on
memory in the form of a barrier instruction. These operations occur before
and after the barrier instruction, essentially fencing them in.

Working with the AtoMiC Toolkit
The java.util.concurrent.atomic package is a collection of 12 sub-classes that support
operations on single variables that are thread-safe and lock-free. In this context, thread-safe
refers to code that accesses or mutates a shared single variable without impeding on other
threads executing on the variable at the same time. This superclass was introduced in Java
7.

Java 9 Language Enhancements

[48]

Here is a list of the 12 sub-classes in the AtoMiC Toolkit. The class names, as you would
expect, are self-descriptive:

Atomic subclass

java.util.concurrent.atomic.AtomicBoolean

java.util.concurrent.atomic.AtomicInteger

java.util.concurrent.atomic.AtomicIntegerArray

java.util.concurrent.atomic.AtomicIntegerFieldUpdater<T>

java.util.concurrent.atomic.AtomicLong

java.util.concurrent.atomic.AtomicLongArray

java.util.concurrent.atomic.AtomicLongFieldUpdater<T>

java.util.concurrent.atomic.AtomicMarkableReference<V>

java.util.concurrent.atomic.AtomicReference<V>

java.util.concurrent.atomic.AtomicReferenceArray<E>

java.util.concurrent.atomic.AtomicReferenceFieldUpdater<T,V>

java.util.concurrent.atomic.AtomicStampedReference<V>

Volatile variables, fields, and array elements can be asynchronously modified by concurrent
threads.

In Java, the volatile keyword is used to inform the javac utility to read
the value, field, or array element from the main memory and not to cache
them.

Here is a code snippet that demonstrates the use of the volatile keyword for an instance
variable:

 public class Sample
 {
 private static volatile Sample myVolatileVariable; // a
 volatile instance variable

 public static Sample getVariable() // getter method
 {
 if (myVolatileVariable != null)
 {
 return myVolatileVariable;

Java 9 Language Enhancements

[49]

 }
 // this section executes if myVolatileVariable == null
 synchronized(Sample.class)
 {
 if (myVolatileVariable == null)
 {
 myVolatileVariable = new Sample();
 }
 }
 }

Using the sun.misc.Unsafe class
The sun.misc.Unsafe class, like other sun classes, is not officially documented or
supported. It has been used to circumvent some of Java's built-in memory management
safety features. While this can be viewed as a window to greater control and flexibility in
our code, it is a terrible programming practice.

The class had a single private constructor, so an instance of the class could not easily be
instantiated. So, if we tried to instantiate an instance with myUnsafe = new Unsafe(), a
SecurityException would be thrown in most circumstances. This somewhat unreachable
class has over 100 methods that permitted operations on arrays, classes, and objects. Here is
a brief sampling of those methods:

Arrays Classes Objects

arrayBaseOffset defineAnonymousClass allocateInstance

arrayIndexScale defineClass objectFieldOffset

ensureClassInitialized

staticFieldOffset

Java 9 Language Enhancements

[50]

Here is a secondary grouping of the sun.misc.Unsafe class method for information,
memory, and synchronization:

Information Memory Synchronization

addressSize allocateMemory compareAndSwapInt

pageSize copyMemory monitorEnter

freeMemory monitorExit

getAddress putOrderedEdit

getInt tryMonitorEnter

putInt

The sun.misc.Unsafe class was earmarked for removal in Java 9. There was actually some
opposition to this decision in the programming industry. To put their concerns to rest, the
class has been depreciated, but will not be completely removed. A special flag can be sent to
the JVM to utilize the original API.

Eliding depreciation warnings on import
statements [JEP 211]
This is one of the more simplistic JEPs for Java 9. Quite often, when we compile our
programs, we receive many warnings and errors. The compiler errors must be fixed as they
are typically syntactical in nature. The warnings, on the other hand, should be reviewed
and appropriately addressed. Some of the warning messages are ignored by developers.

This JEP provides slight relief in the number of warnings we receive. Specifically,
depreciation warnings caused by import statements are no longer generated. Prior to Java 9,
we could suppress deprecated warning messages with the following annotation:

 @SupressWarnings

Java 9 Language Enhancements

[51]

Now, with Java 9, the compiler will suppress depreciated warnings if one or more of the
following cases is true:

If the @Deprecated annotation is used
If the @SuppressWarnings annotation is used
If the use of the warning-generating code and the declaration are within the
ancestor class
If the use of the warning-generating code is within an import statement

The fourth condition listed was an addition in Java 9.

Milling Project Coin [JEP 213]
Project Coin was a feature set of minor changes introduced in Java 7. These changes are
listed as follows:

Strings in switch statements
Binary integral literals
Using underscores in numeric literals
Implementing multi-catch
Allowing for more precise re-throwing of exceptions
Generic instance creation improvements
Addition of the try-with-resources statement
Improvements to invoking varargs methods

Detailed information can be found in the following Oracle presentation: http:/ ​/​www.
oracle.​com/​us/​technologies/ ​java/ ​project- ​coin- ​428201. ​pdf.

JEP 213 focused on improvements to Project Coin's enhancements. There were five such
enhancements, each detailed as follows.

Using the @SafeVarargs annotation
In Java 9, we can use the @SafeVarargs annotation with private instance methods. When
we use this annotation, we are asserting that the method does not contain any harmful
operations on the varargs passed as parameters to the method.

http://www.oracle.com/us/technologies/java/project-coin-428201.pdf
http://www.oracle.com/us/technologies/java/project-coin-428201.pdf
http://www.oracle.com/us/technologies/java/project-coin-428201.pdf
http://www.oracle.com/us/technologies/java/project-coin-428201.pdf
http://www.oracle.com/us/technologies/java/project-coin-428201.pdf
http://www.oracle.com/us/technologies/java/project-coin-428201.pdf
http://www.oracle.com/us/technologies/java/project-coin-428201.pdf
http://www.oracle.com/us/technologies/java/project-coin-428201.pdf
http://www.oracle.com/us/technologies/java/project-coin-428201.pdf
http://www.oracle.com/us/technologies/java/project-coin-428201.pdf
http://www.oracle.com/us/technologies/java/project-coin-428201.pdf
http://www.oracle.com/us/technologies/java/project-coin-428201.pdf
http://www.oracle.com/us/technologies/java/project-coin-428201.pdf
http://www.oracle.com/us/technologies/java/project-coin-428201.pdf
http://www.oracle.com/us/technologies/java/project-coin-428201.pdf
http://www.oracle.com/us/technologies/java/project-coin-428201.pdf
http://www.oracle.com/us/technologies/java/project-coin-428201.pdf
http://www.oracle.com/us/technologies/java/project-coin-428201.pdf
http://www.oracle.com/us/technologies/java/project-coin-428201.pdf
http://www.oracle.com/us/technologies/java/project-coin-428201.pdf
http://www.oracle.com/us/technologies/java/project-coin-428201.pdf
http://www.oracle.com/us/technologies/java/project-coin-428201.pdf

Java 9 Language Enhancements

[52]

The syntax for usage is:

 @SafeVarargs // this is the annotation
 static void methodName(...)
 {

 /*
 The contents of the method or constructor must not
 perform any unsafe or potentially unsafe operations
 on the varargs parameter or parameters.
 */

 }

Use of the @SafeVarargs annotation is restricted to:

Static methods
Final instance methods
Private instance methods

The try-with-resource statement
The try-with-resource statement previously required a new variable to be declared for
each resource in the statement when a final variable was used. Here is the syntax for the
try-with-resource statement prior to Java 9 (in Java 7 or 8):

 try (// open resources)
 {
 // use resources
 } catch (// error)
 { // handle exceptions
 }
 // automatically close resources

Java 9 Language Enhancements

[53]

Here is a code snippet using the preceding syntax:

 try (Scanner xmlScanner = new Scanner(new File(xmlFile));
 {
 while (xmlScanner.hasNext())
 {
 // read the xml document and perform needed operations
 }
 xmlScanner.close();
 } catch (FileNotFoundException fnfe)
 {
 System.out.println("Your XML file was not found.");
 }

Now, with Java 9, the try-with-resource statement can manage final variables without
requiring a new variable declaration. So, we can now rewrite the earlier code, as shown
here in Java 9:

 Scanner xmlScanner = new Scanner(newFile(xmlFile));
 try (while (xmlScanner.hasNext())
 {
 {
 // read the xml document and perform needed operations
 }
 xmlScanner.close();
 } catch (FileNotFoundException fnfe)
 {
 System.out.println("Your XML file was not found.");
 }

As you can see, the xmlScanner object reference is contained inside the try-with-
resource statement block, which provides for automatic resource management. The
resource will automatically be closed as soon as the try-with-resource statement block
is exited.

You can also use a finally block as part of the try-with-resource
statement.

Java 9 Language Enhancements

[54]

Using the diamond operator
Introduced in Java 9, the diamond operator can be used with anonymous classes if the
inferred data type is denotable. When a data type is inferred, it suggests that the Java
Compiler can determine the data types in a method's invocation. This includes the
declaration and any included arguments.

The diamond operator is the less-than and greater-than symbol pair (<>).
It is not new to Java 9; rather, the specific use with anonymous classes is.

The diamond operator was introduced in Java 7 and made instantiating generic classes
simpler. Here is a pre-Java 7 example:

 ArrayList<Student> roster = new ArrayList<Student>();

Then, in Java 7, we could rewrite it:

 ArrayList<Student> roster = new ArrayList<>();

The problem was that this method could not be used for anonymous classes. Here is an
example in Java 8 that works fine:

 public interface Example<T>
 {
 void aMethod()
 {
 // interface code goes here
 }
 }

 Example example = new Example<Integer>()
 {
 @Override
 public void aMethod()
 {
 // code
 }
 };

While the preceding code works fine, when we change it to use the diamond operator, as
shown here, a compiler error will occur:

 public interface Example<T>
 {
 void aMethod()

Java 9 Language Enhancements

[55]

 {
 // interface code goes here
 }
 }

 Example example = new Example<>()
 {
 @Override
 public void aMethod()
 {
 // code
 }
 };

The error results from using the diamond operator with anonymous inner classes. Java 9 to
the rescue. While the preceding code results in a compile time error in Java 8, it works fine
in Java 9.

Discontinuing use of the underscore
The underscore character (_) can no longer be used as a legal identifier name. Earlier
attempts to remove the underscore in an identifier name were incomplete. The use of such
would generate a combination of errors and warnings. With Java 9, the warnings are now
errors. Consider the following sample code:

 public class Java9Tests
 {
 public static void main(String[] args)
 {
 int _ = 319;
 if (_ > 300)
 {
 System.out.println("Your value us greater than 300.");
 }
 else
 {
 System.out.println("Your value is not greater than 300.");
 }
 }
 }

Java 9 Language Enhancements

[56]

The preceding code, in Java 8, will result in compiler warnings for int _ = 319; and if (
_ > 300) statements. The warning is as of release 9, '_' is a keyword, and may not be used as
an identifier. So, in Java 9, you will not be able to use the underscore by itself as a legal
identifier.

It is considered bad programming practice to use identifier names that are
not self-descriptive. So, the use of the underscore character by itself as an
identifier name should not be a problematic change.

Making use of private interface methods
Lambda expressions were a big part of the Java 8 release. As a follow-up to that
improvement, private methods in interfaces are now feasible. Previously, we could not
share data between non-abstract methods of an interface. With Java 9, this data sharing is
possible. Interface methods can now be private. Let's look at some sample code.

This first code snippet is how we might code an interface in Java 8:

 . . .
 public interface characterTravel
 {
 pubic default void walk()
 {
 Scanner scanner = new Scanner(System.in);
 System.out.println("Enter desired pacing: ");
 int p = scanner.nextInt();
 p = p +1;
 }
 public default void run()
 {
 Scanner scanner = new Scanner(System.in);
 System.out.println("Enter desired pacing: ");
 int p = scanner.nextInt();
 p = p +4;
 }
 public default void fastWalk()
 {
 Scanner scanner = new Scanner(System.in);
 System.out.println("Enter desired pacing: ");
 int p = scanner.nextInt();
 p = p +2;
 }
 public default void retreat()
 {

Java 9 Language Enhancements

[57]

 Scanner scanner = new Scanner(System.in);
 System.out.println("Enter desired pacing: ");
 int p = scanner.nextInt();
 p = p - 1;
 }
 public default void fastRetreat()
 {
 Scanner scanner = new Scanner(System.in);
 System.out.println("Enter desired pacing: ");
 int p = scanner.nextInt();
 p = p - 4;
 }
 }

Now, in Java 9, we can rewrite this code. As you can see next, the redundant code has been
moved into a single private method called characterTravel:

 . . .
 public interface characterTravel
 {
 pubic default void walk()
 {
 characterTravel("walk");
 }
 public default void run()
 {
 characterTravel("run");
 }
 public default void fastWalk()
 {
 characterTravel("fastWalk");
 }
 public default void retreat()
 {
 characterTravel("retreat");
 }
 public default void fastRetreat()
 {
 characterTravel("fastRetreat");
 }
 private default void characterTravel(String pace)
 {
 Scanner scanner = new Scanner(System.in);
 System.out.println("Enter desired pacing: ");
 int p = scanner.nextInt();
 if (pace.equals("walk"))
 {
 p = p +1;

Java 9 Language Enhancements

[58]

 }
 else if (pace.equals("run"))
 {
 p = p + 4;
 }
 else if (pace.equals("fastWalk"))
 {
 p = p + 2;
 }
 else if (pace.equals("retreat"))
 {
 p = p - 1;
 }
 else if (pace.equals("fastRetreat"))
 {
 p = p - 4;
 }
 else
 {
 //
 }

Processing import statements correctly [JEP
216]
JEP 216 was issued as a fix to javac in regards to how import statements are processed. Prior
to Java 9, there were instances where the order of import statements would impact if the
source code was accepted or not.

When we develop applications in Java, we typically add import statements as we need
them, resulting in an unordered list of import statements. IDEs do a great job of color-
coding import statements that are not used, as well as informing us of import statements we
need but that have not been included. It should not matter what order the import
statements are in; there is no applicable hierarchy.

javac compiles classes in two primary steps. Specific to handling import statements, these
steps are type resolution and member resolution. The type resolution consists of a review of
the abstract syntax tree to identify declarations of classes and interfaces. The member
resolution includes determining the class hierarchy and individual class variables and
members.

Java 9 Language Enhancements

[59]

With Java 9, the order we list import statements in our classes and files will no longer
impact the compilation process. Let's look at an example:

 package samplePackage;

 import static SamplePackage.OuterPackage.Nested.*;
 import SamplePackage.Thing.*;

 public class OuterPackage
 {
 public static class Nested implements Inner
 {
 // code
 }
 }

 package SamplePackage.Thing;

 public interface Inner
 {
 // code
 }

In the preceding example, type resolution occurs and results in the following realizations:

SamplePackage.OuterPackage exists
SamplePackage.OuterPackage.Nested exists
SamplePackage.Thing.Innner exists

The next step is member resolution, and this is where the problem existed prior to Java 9.
Here is an overview of the sequential steps javac would use to conduct the member
resolution for our sample code:

Resolution of SamplePackage.OuterPackage begins.1.
The SamplePackage.OuterPackage.Nested import is processed.2.
Resolution of the SamplePackage.Outer.Nested class begins.3.
The inner interface is type checked, although, because it is not in scope at this4.
point, inner cannot be resolved.
Resolution of SamplePackage.Thing begins. This step includes importing all5.
member types of SamplePackage.Thing into scope.

Java 9 Language Enhancements

[60]

So the error occurs, in our example, because Inner is out of scope when resolution is
attempted. If steps 4 and 5 were swapped, it would not have been a problem.

The solution to the problem, implemented in Java 9, was to break the member resolution
steps into additional sub-steps. Here are those steps:

Analyze the import statements.1.
Create the hierarchy (class and interfaces).2.
Analyze class headers and type parameters.3.

Summary
In this chapter, we covered changes in Java 9 with regards to variable handlers and how
they relate to the Atomic Toolkit. We also covered depreciation warnings and why they are
now suppressed under specific circumstances. Five enhancements to changes introduced
with Java 7 as part of Project Coin were also reviewed. Finally, we explored the
improvements to import statement processing.

In the next chapter, we will examine the structure of a Java module as specified by Project
Jigsaw. We will take a deep dive into how Project Jigsaw is implemented as part of the Java
platform. Code snippets from a sample e-commerce application are used throughout the
chapter to demonstrate Java 9's modular system. Internal changes to the Java platform, in
regards to the modular system, are also discussed.

4
Building Modular Applications

with Java 9
In the last chapter, we covered changes in Java 9 with regards to variable handlers and how
they related to the AtoMiC Toolkit. We also covered depreciation warnings and why they
are now suppressed under specific circumstances. Five enhancements to changes
introduced with Java 7 as part of Project Coin were also reviewed. Finally, we explored the
improvements to import statement processing.

In this chapter, we will examine the structure of a Java module as specified by Project Jigsaw.
We will take a deep-dive into how Project Jigsaw is implemented as part of the Java
platform. We will also review key internal changes to the Java platform as they relate to the
modular system.

The topics we will cover here are:

An introduction to Java modularity
Review of the Java platform's module system
Modularizing JDK source code
Modular runtime images
Getting to know the module system
Modular Java application packaging
The Java linker
Encapsulation of internal APIs

Building Modular Applications with Java 9

[62]

A modular primer
Before we dive into the Java 9 enhancements in this chapter, let's examine what modularity
is in the context of Java.

We can define the term modular as a type of design or construction, in our context, of
computer software. This type of software design involves a set of modules that collectively
comprise the whole. A house, for example, can be built as a single structure or in a modular
fashion where each room is constructed independently and joined to create a home. With
this analogy, you could selectively add or not add modules in the creation of your home.
The collection of modules, in our analogy, becomes the design of your home. Your design
does not need to use every module, only the ones you want. So, for example, if there are
basement and bonus room modules and your design does not include those modular
rooms, those modules are not used to build your home. The alternative would be that every
home would include every room, not just the ones that are used. This, of course, would be
wasteful. Let's see how that correlates to software.

This concept can be applied to computer architecture and software systems. Our systems
can be comprised of several components instead of one behemoth system. As you can likely
imagine, this provides us with some specific benefits:

We should be able to scale our Java applications to run on small devices
Our Java applications will be smaller
Our modular code can be more targeted
Increased use of the object-oriented programming model
Additional opportunities for encapsulation
Our code will be more efficient
Java applications will have increased performance
Overall system complexity is reduced
Testing and debugging is easier
Code maintenance is easier

Building Modular Applications with Java 9

[63]

The shift to a modular system for Java was necessary for several reasons. Here are the
primary conditions of the Java platform as of Java 9 that led to the creation of the module
system for the Java 9 platform:

The Java Development Kit (JDK) was simply too big. This made it difficult to
support small devices. Even with the compact profiles discussed in the next
section, supporting some small devices was difficult at best and, in some cases,
not possible.
Due to the over-sized JDK, it was difficult to support truly optimized
performance with our Java applications. In this case, smaller is better.
The Java Runtime Environment (JRE) was too large to efficiently test and
maintain our Java applications. This results in time consuming, inefficient testing,
and maintenance operations.
The Java Archive (JAR) files were also too large. This made supporting small
devices problematic.
Because the JDK and JRE were all encompassing, security was of great concern.
Internal APIs, for example, that were not used by the Java application, were still
available due to the nature of the public access modifier.
Finally, our Java applications were unnecessarily large.

Modular systems have the following requirements:

There must be a common interface to permit interoperability among all connected
modules
Isolated and connected testing must be supported
Compile time operations must be able to identify which modules are in use
Runtime support for modules

A module is a new concept and component in Java 9; it is a named collection of data and
code. Specifically, modules are a collection of:

Packages
Classes
Interfaces
Code
Data
Resources

Building Modular Applications with Java 9

[64]

Key to successful implementation, a module in Java 9 is self-described in its modular
declaration. Module names must be unique and typically use the reverse domain name
schema. Here is an example declaration:

 module com.three19.irisScan { }

Module declarations are contained in a module-info.java file that should be in the
module's root folder. As one might expect, this file is compiled into a module-info.class
file and will be placed in the appropriate output directory. These output directories are
established in the module source code.

In the next sections, we will look at specific changes for Java 9 in regards to modularity.

Reviewing Java's platform module system
[JEP-200]
The core aim of JEP-200 was to modularize the Java Development Kit (JDK) using the Java
Platform Module System (JPMS). Prior to Java 9, our familiarity with the JDK includes
awareness of its major components:

Java runtime environment (JRE)
The interpreter (java)
Compiler (javac)
The archiver (jar)
Document generator (javadoc)

The task of modularizing the JDK was to break it into components that could be combined
at compile time or runtime. The modular structure is based on the following modular
profiles established as compact profiles in Java 8. Each of the three profiles is detailed in the
following tables:

Compact profile 1:

java.io java.lang.annotation java.lang.invoke

java.lang.ref lava.lang.reflect java.math

java.net java.nio java.nio.channels

java.nio.channels.spi java.nio.charset java.nio.charset.spi

java.nio.file java.nio.file.attribute java.nio.file.spi

java.security java.security.cert java.security.interfaces

Building Modular Applications with Java 9

[65]

java.security.spec java.text java.text.spi

java.time java.time.chrono java.time.format

java.time.temporal java.time.zone java.util

java.util.concurrent java.util.concurrent.atomic java.util.concurrent.locks

java.util.function java.util.jar java.util.logging

java.util.regex java.util.spi java.util.stream

java.util.zip javax.crypto javax.crypto.interfaces

javax.crypto.spec javax.net javax.net.ssl

javax.script javax.security.auth javax.security.auth.callback

javax.security.auth.login javax.security.auth.spi javax.security.auth.spi

javax.security.auth.x500 javax.security.cert

Compact profile 2:

java.rmi java.rmi.activation java.rmi.dgc

java.rmi.registry java.rmi.server java.sql

javax.rmi.ssl javax.sql javax.transaction

javax.transaction.xa javax.xml javax.xml.database

javax.xml.namespace javax.xml.parsers javax.xml.stream

javax.xml.stream.events javax.xml.stream.util javax.xml.transform

javax.xml.transform.dom javax.xml.transform.sax javax.xml.transform.stax

javax.xml.transform.stream javax.xml.validation javax.xml.xpath

org.w3c.dom org.w3c.dom.bootstrap org.w3c.dom.events

org.w3c.dom.ls org.xml.sax org.xml.sax.ext

org.xml.sax.helpers

Building Modular Applications with Java 9

[66]

Compact profile 3:

java.lang.instrument java.lang.management java.security.acl

java.util.prefs javax.annotation.processing javax.lang.model

javax.lang.model.element javax.lang.model.type javax.lang.model.util

javax.management javax.management.loading javax.management.modelmbean

javax.management.monitor javax.management.openmbean javax.management.relation

javax.management.remote javax.management.remote.rmi javax.management.timer

javax.naming javax.naming.directory javax.naming.event

javax.naming.ldap javax.naming.spi javax.security.auth.kerberos

javax.security.sasl javax.sql.rowset javax.sql.rowset.serial

javax.sql.rowest.spi javax.tools javax.xml.crypto

javax.xml.crypto.dom javax.xml.crypto.dsig javax.xml.crypto.dsig.dom

javax.xml.crypto.dsig.keyinfo javax.xml.crypto.dsig.spec org.ieft.jgss

The three compact module profiles represent the basis for the standardized modular system
in Java 9. The effectiveness of this standardization relies on the following six principles:

All JCP-governed modules must start with the string java.. So, if a module on
spatial utilities was being developed it would have a name such as
java.spatial.util.

JCP refers to the Java Community Process. JCP allows developers to
create technical specifications for Java. You can learn more about JCP and
become a member at the official JCP website--http:/ ​/ ​www.​jcp. ​org.

Non-JCP modules are considered part of the JDK and their names must start with
the string jdk..
Ensure method invocation chaining works properly. This is best illustrated with
the following flowchart:

http://www.jcp.org
http://www.jcp.org
http://www.jcp.org
http://www.jcp.org
http://www.jcp.org
http://www.jcp.org
http://www.jcp.org
http://www.jcp.org
http://www.jcp.org

Building Modular Applications with Java 9

[67]

As you can see in the preceding flowchart, it only applies to modules that
export a package.

Building Modular Applications with Java 9

[68]

The fourth principle deals with both standard and non-standard API packages
being used in a standard module. The following flowchart illustrates the
implementation of this principle's covenants:

The fifth design principle is that standard modules can be dependent upon more
than one non-standard module. While this dependency is permitted, implied
readability access to non-standard modules is not.
The final design principle ensures non-standard modules do not export standard
API packages.

Modularizing JDK source code [JEP-201]
As previously mentioned, Project Jigsaw had the goal of modularization. The envisioned
standard modular system would be applied to the Java SE platform and the JDK. In
addition to efficiency gains, the modular shift would result in better security and ease
maintainability. The enhancement detailed in JEP-201 focused on JDK source code
reorganization. Let's take a closer look.

Building Modular Applications with Java 9

[69]

Reorganizing the JDK's source code is a significant task and was accomplished with the
following subset of goals:

Provide JDK developers insights and familiarity with the new Java 9 modular
system. So, this goal was aimed at developers of the JDK, not mainstream
developers.
Ensure modular boundaries are established and maintained throughout the JDK
build process. This was a necessary precaution so the modular system would be
stable throughout Java 9's enhancements and, more specifically, in implementing
the modular system.
The third goal was to ensure future enhancements, specifically with Project Jigsaw,
could be easily integrated into the new modular system.

The significance of this source code reorganization cannot be overstated. The pre-Java 9
source code organization is 20 years old. This overdue JDK source code reorganization will
make the code much easier to maintain. Let's look at the previous organization of the JDK
source code and then examine the changes.

Pre-Java 9 JDK source code organization
The JDK is a compilation of code files, tools, libraries, and more. The following illustration
provides an overview of the JDK components:

Building Modular Applications with Java 9

[70]

The pre-Java 9 organization of the JDK components in the preceding illustration are
detailed in the next seven subsections.

Development tools
The development tools are located in the \bin directory. These tools include seven broad
categorizations, each detailed in the subsequent sections.

Deployment
This is a set of tools intended to help deploy Java applications:

appletviewer: This tool gives you the ability to run and debug Java applets
without the need for a web browser.
extcheck: This tool allows you to find conflicts in JAR files.
jar: This tool is used for creating and manipulating JAR files. JAR files are Java
Archive files.
java: This is the Java application launcher.
javac: This is the Java Compiler.
javadoc: This tool generates API documentation.
javah: This tool allows you to write native methods; it generates C header files.
javap: This tool disassembles class files.
javapackager: For signing and packaging Java applications, including JavaFX.
jdb: This is the Java debugger.
jdeps: This is an analyzer for Java class dependencies.
pack200: This is a tool that compresses JAR files into pack200 files. The
compression ratio using this tool is impressive.
unpack200: This tool unpacks pack200 files resulting in JAR files.

Internationalization
If you are interested in creating localizable applications, the following tool might come in
handy:

native2ascii: This tool creates Unicode Latin-1 from normal text.

Building Modular Applications with Java 9

[71]

Monitoring
Monitoring tools used for providing JVM performance data include:

jps: This is the JVM process status tool (jps). It provides a list of HotSpot JVMs
on a specific system.
jstat: This is the JVM statistics monitoring tool. It collects log data and
performance information from a machine with a HotSpot JVM.
jstatd: This is the jstat daemon tool. It runs an RMI server app for monitoring
HotSpot JVM operations.

RMI
RMI tools are Remote Method Invocation tools. They help developers create applications
that operate over a network to include the internet:

rmic: This tool can generate stubs and skeletons for objects over a network
rmiregistry: This is a registry service for remote objects
rmid: This tool is an activation system daemon for RMI
serialver: This tool returns the class serialVersionUID value

Security
This set of security tools empowers developers to create security policies that can be
enforced on the developer's computer system as well as on remote systems:

keytool: This tool manages security certificates and keystores
jarsigner: This tool generates and verifies JAR signatures for creating/opening
JAR files
policytool: This tool has a graphical user interface that helps developers
manage their security policy files

Troubleshooting
These experimental troubleshooting tools are useful for very specific troubleshooting. They
are experimental and, therefore, not officially supported:

jinfo: This tool provides configuration information for specific processes, files,
or servers.

Building Modular Applications with Java 9

[72]

jhat: This is a heap dump tool. It instantiates a web server so that a heap can be
viewed with a browser.
jmap: This displays heap and shared object memory maps from a process, file, or
server.
jsadebugd: This is Java's Serviceability Agent Debug Daemon. It acts as a debug
server for a process or file.
jstack: This is a Java Stack Trace tool that provides a thread stack trace for a
process, file, or server.

Web services
This set of tools provides a utility that can be used with Java Web Start and other web
services:

javaws: This is a command line tool that launches Java Web Start.
schemagen: This tool generates schemas for Java architecture. These schemas are
used for XML binding.
wsgen: This tool is used for generating JAX-WS artifacts that are portable.
wsimport: This tool is used for importing portable JAX-WS artifacts.
xjc: This is the binding compiler that is used for XML binding.

JavaFX tools
The JavaFX tools are located in a few different places including \bin, \man, and \lib
directories.

Java runtime environment
The Java runtime environment (JRE) is located in the \jre directory. Key contents include
the Java Virtual Machine (JVM) and class libraries.

Source code
The JDK's source code, pre-Java 9, has the following basic organizational schema:

 source code / [shared, OS-specific] / [classes / native] / Java API
 package name / [.file extension]

Building Modular Applications with Java 9

[73]

Let's look at this a bit closer. After the source code, we have two options. If the code is cross-
platform, then it is a shared directory; otherwise, it is operating system specific. For
example:

 src/share/...
 src/windows/...

Next, we have the classes directory or a native language directory. For example:

 src/share/classes/...
 src/share/classes/java/...

Next, we have the name of the Java API package followed by the file extension. The file
extensions depend on content such as .java, .c, and more.

Libraries
The \lib directory houses class libraries that are needed by one or more of the
development tools in the \bin directory. Here is a list of files in a typical Java 8 \lib
directory:

Building Modular Applications with Java 9

[74]

Reviewing the directory listing does not provide a great level of granular insight. We can
list the classes contained in any of the .jar files with the following command--jar tvf
fileName.jar. As an example, here is the class listing generated from executing jar tvf
javafx-mx.jar at the command line:

C header files
The /include directory contains C header files. These files primarily support the
following:

Java Native Interface (JNI): This is used for native-code programming support.
The JNI is used to embed Java native methods and the JVM into native apps.
JVM Tool Interface (JVM TI): This is used by tools for state inspections and
execution control for apps running the JVM.

Building Modular Applications with Java 9

[75]

Database
The Apache Derby relational database is stored in the /db directory. You can learn more
about Java DB at the following sites:

http:/​/​docs.​oracle. ​com/ ​javadb/ ​support/ ​overview. ​html

http:/​/​db.​apache. ​org/ ​derby/ ​manuals/ ​#docs_ ​10. ​11

JDK source code reorganized
In a previous section, you learned that the pre-Java 9 source code organization schema was
as follows:

 source code / [shared, OS-specific] / [classes / native] / Java API
 package name / [.file extension]

In Java 9, we have a new modular schema. That schema follows:

 source code / module / [shared, OS-specific] / [classes / native /
 configuration] / [package / include / library] /
 [.file extension]

There are a few differences in the new schema, most notably the module name. After the
shared or OS-specific directory, there is either the classes directory, the native directory for
C or C++ source files, or a configuration directory. This seemingly rudimentary organization
schema changes results in a much more maintainable code base.

Understanding modular run-time images
[JEP-220]
Java 9's modular system required changes to the runtime images for compatibility. Benefits
of these changes include enhancements in the following areas:

Maintainability
Performance
Security

http://docs.oracle.com/javadb/support/overview.html
http://docs.oracle.com/javadb/support/overview.html
http://docs.oracle.com/javadb/support/overview.html
http://docs.oracle.com/javadb/support/overview.html
http://docs.oracle.com/javadb/support/overview.html
http://docs.oracle.com/javadb/support/overview.html
http://docs.oracle.com/javadb/support/overview.html
http://docs.oracle.com/javadb/support/overview.html
http://docs.oracle.com/javadb/support/overview.html
http://docs.oracle.com/javadb/support/overview.html
http://docs.oracle.com/javadb/support/overview.html
http://docs.oracle.com/javadb/support/overview.html
http://docs.oracle.com/javadb/support/overview.html
http://docs.oracle.com/javadb/support/overview.html
http://docs.oracle.com/javadb/support/overview.html
http://docs.oracle.com/javadb/support/overview.html
http://docs.oracle.com/javadb/support/overview.html
http://db.apache.org/derby/manuals/#docs_10.11
http://db.apache.org/derby/manuals/#docs_10.11
http://db.apache.org/derby/manuals/#docs_10.11
http://db.apache.org/derby/manuals/#docs_10.11
http://db.apache.org/derby/manuals/#docs_10.11
http://db.apache.org/derby/manuals/#docs_10.11
http://db.apache.org/derby/manuals/#docs_10.11
http://db.apache.org/derby/manuals/#docs_10.11
http://db.apache.org/derby/manuals/#docs_10.11
http://db.apache.org/derby/manuals/#docs_10.11
http://db.apache.org/derby/manuals/#docs_10.11
http://db.apache.org/derby/manuals/#docs_10.11
http://db.apache.org/derby/manuals/#docs_10.11
http://db.apache.org/derby/manuals/#docs_10.11
http://db.apache.org/derby/manuals/#docs_10.11
http://db.apache.org/derby/manuals/#docs_10.11
http://db.apache.org/derby/manuals/#docs_10.11
http://db.apache.org/derby/manuals/#docs_10.11
http://db.apache.org/derby/manuals/#docs_10.11

Building Modular Applications with Java 9

[76]

Core to these changes was a new URI schema used for resource naming. These resources
include modules and classes.

A Uniform Resource Identifier (URI) is similar to a URL (Uniform
Resource Locator) in that it identifies the name and location of something.
For a URL, that something is a web page; for a URI, it is a resource.

There were five primary goals for JEP-220 and these are detailed in the following sections.

Runtime format adoption
A run-time format was created for Java 9, for adoption by stored classes and other resource
files. This format is applicable for stored classes and resources under the following
circumstances:

When the new run-time format has greater efficiencies (time and space) than the
pre-Java 9 JAR format.

A JAR file is a Java ARchieve file. This is a compressed file format based
on the legacy ZIP format.

When stored classes and other resources can be individually isolated and loaded.
When JDK and library classes and resources can be stored. This includes app
modules as well.
When they are devised in such a way as to promote future enhancements. This
requires them to be extensible, documented, and flexible.

Runtime image restructure
There are two types of runtime images in Java--JDK and JRE. With Java 9, both of these
image types were restructured to differentiate between files that can be used and modified
by users to internal files that can be used but not modified by developers and their apps.

Building Modular Applications with Java 9

[77]

The JDK build system, prior to Java 9, produces both a JRE and a JDK. The JRE is a complete
implementation of the Java platform. The JDK includes the JRE as well as other tools and
libraries. A notable change in Java 9 is that the JRE subdirectory is no longer part of the JDK
image. This change was made, in part, to ensure both image types (JDK and JRE) have
identical image structures. With a common and reorganized structure, future changes will
be more efficiently integrated.

If you created custom plugins prior to Java 9 that address a specific
structure, your app might not work in Java 9. This is also true if you are
explicitly addressing tools.jar.

The following diagram provides a high-level view of the contents of each image before Java
9's release:

The Java 9 runtime images are illustrated in the following diagram. As shown, a full JDK
image contains the same directories as a modular runtime image as well as demo, sample,
man, and includes directories:

There is no longer a difference between a JRE or JDK image. Now, with Java 9, a JDK image
is a JRE image that contains a full set of dev tools.

Building Modular Applications with Java 9

[78]

Supporting common operations
Developers occasionally must write code that performs operations requiring access to the
runtime image. Java 9 includes support for these common operations. This is possible due
to the restructuring and standardized JDK and JRE runtime image structures.

De-privileging JDK classes
Java 9 allows privilege revocation for individual JDK classes. This change strengthens
system security in that it ensures JDK classes only receive the permissions required for
system operations.

Preserving existing behaviors
The final goal of the JEP-220 was to ensure currently existing classes are not negatively
impacted. This refers to applications that do not have dependencies on internal JDK or JRE
runtime images.

Getting to know the module system
[JEP-261]
The purpose of this JEP was the implementation of the new module system for the Java
platform. You will recall that the modular system was created to provide reliable
configuration and strong encapsulation for Java programs. Key to this implementation was
the concept of link time. As illustrated here, link time is an optional phase in between
compile time and runtime. This phase allows the assembly of the appropriate modules into
an optimized runtime image. This is possible, in part, due to the jlink linking tool which you
will learn more about later in this chapter:

Building Modular Applications with Java 9

[79]

Module paths
It is important to organize modules so that they can be easily located. The module path, a
sequence of module components or directories, provides the organizational structure used
by searches. These path components are searched for in order, returning the first path
component that comprises a module.

Modules and their paths should not be considered to be the same as packages or class
paths. They are indeed different and have a greater level of fidelity. The key difference is
that, with classpaths, a singular component is searched for. Module path searches return
complete modules. This type of search is possible by searching the following paths, in the
presented order, until a module is returned:

Compilation module path
Upgrade module path
System modules
Application module path

Let's briefly review each of these paths. The compilation module path is only applicable at
compile time and contains the module definitions. The upgrade module path has the
compiled module definitions. The system modules are built-in and include Java SE and JDK
modules. The final path, the application module path, has the compiled module definitions
from the application modules as well as the library modules.

Building Modular Applications with Java 9

[80]

Access-control boundary violations
As a professional developer, you always want your code to be secure, portable, and bug-
free, which requires strict adherence to Java constructs such as encapsulation. There are
occasions, such as with white box testing, that you need to break the encapsulation that the
JVM mandates. This mandate permits cross-modular access.

To permit breaking the encapsulation, you can add an add-exports option in your module
declaration. Here is the syntax you will use:

 module com.three19.irisScan
 {
 - - add-exports <source-module>/<package> = <target-module>
 (, <target-module>)*
 }

Let's take a closer look at the preceding syntax. The <source-module> and <target-
module> are module names and <package> is the name of the package. Using the add-
exports option permits us to violate access-control boundaries.

There are two rules regarding using the add-exports option:

It can be used multiple times in a module
Each use must be of a unique pairing of <source-module> and <target-
module>

It is not recommended that the add-exports option be used unless
absolutely necessary. Its use permits dangerous access to a library
module's internal API. This type of use makes your code dependent on the
internal API not changing, which is beyond your control.

Runtime
The HotSpot virtual machine implements the <options> for the jmod and jlink
command-line tools. Here is the list of <options> for the jmod command-line tool:

Building Modular Applications with Java 9

[81]

Building Modular Applications with Java 9

[82]

Here is the list of <options> for the jlink command-line tool:

Modular Java application packaging
[JEP-275]
One of the great improvements in Java 9 is the size of the runtime binaries generated by the
Java Packager. This is possible in part due to the Java Linker, which is covered in the next
section. The Java Packager's workflow has essentially remained the same in Java 9 as it was
in Java 8. There have been, as you will see later in this section, new tools added to the
workflow.

Building Modular Applications with Java 9

[83]

The Java Packager solely creates JDK 9 applications. This change to the Java Packager is
intended to streamline and make the process of generating runtime images more efficient.
So, the Java Packager will only create runtime images for the SDK version that it is
associated with.

Advanced look at the Java Linker
Prior to the Java Linker tool, jlink, introduced in Java 9, runtime image creation included
copying the entire JRE. Then, unused components are removed. Simply put, jlink
facilitates the creation of runtime images with only the required modules. jlink is used by
the Java Packager to generate an embedded runtime image.

Java Packager options
The syntax for the Java Packager is as follows:

 javapackager -command [-options]

There are five different commands (-command) that can be used. They are described as
follows:

command Description

-createbss This command is used for converting files from CSS to binary

-createjar This command, used along with additional parameters, creates a JAR archive
file

-deploy This command is used to generate jnlp and HTML files

-makeall Combines the -createjar, -deploy, and compilation steps

-signJar This command creates and signs a JAR file

Building Modular Applications with Java 9

[84]

The [-options] for the -createbss command include:

The [-options] for the -createjar command include:

Building Modular Applications with Java 9

[85]

The [-options] for the -deploy command include:

Building Modular Applications with Java 9

[86]

Here are the remaining [-options] for the -deploy command:

The [-options] for the -makeall command include:

Building Modular Applications with Java 9

[87]

The [-options] for the -signJar include:

The Java Packager is divided into two modules:

 jdk.packager
 jdk.packager.services

JLink - The Java Linker [JEP-282]
The Java Linker, commonly referred to as JLink, is a tool that was created to create custom
runtime images. This tool collects the appropriate modules along with their dependencies,
then optimizes them to create the image. This represents a big change for Java, with the
release of Java 9. Before the Java Linker tool, jlink, was available, runtime image creation
included initially copying the entire JRE. In a subsequent step, the unused components
were removed. In Java 9, jlink creates runtime images with only the needed modules.
jlink is used by the Java Packager to generate an embedded runtime image.

As illustrated in a previous section, JEP-282 resulted in link time as an optional phase
between compile time and runtime. It is in this phase that the appropriate modules are
assembled into an optimized runtime image.

JLink is a command-line linking tool that permits the creation of runtime images containing
a smaller subset of the JDK modules. This results in smaller runtime images. The following
syntax consists of four components--the jlink command, options, the module path, and
the output path:

$ jlink <options> ---module-path <modulepath> --output <path>

Building Modular Applications with Java 9

[88]

Here is a list of the options that can be used with the jlink tool along with brief
descriptions of each:

The module path tells the linker where to find the modules. The linker will not use
exploded modules or JAR/JMOD files.

The output path simply informs the linker where to save the custom run-time image.

Building Modular Applications with Java 9

[89]

Encapsulating most internal APIs [JEP-260]
JEP-260 was implemented to make the Java platform more secure. The core of this JEP's goal
was to encapsulate the majority of internal APIs. Specifically, most of the JDK's internal
APIs are no longer accessible by default. Currently, internal APIs deemed to be critical and
widely-used remain accessible. In the future, we are likely to see functionality to replace
them, and at that time, those internal APIs will not be accessible by default.

So, why is this change necessary? There are a few widely-used APIs that are unstable and,
in some cases, not standardized. Unsupported APIs should not have access to internal
details of the JDK. Therefore, JEP-260 resulted in increased security of the Java platform.
Generally speaking, you should not use unsupported APIs in your development projects.

The aforementioned critical APIs (internal to the JDK) are:

sun.misc

sun.misc.Unsafe

sun.reflect.Reflection

sun.reflect.ReflectionFactory.newConstrutorForSerialization

The aforementioned critical internal APIs are still accessible in JDK 9. They will be
accessible with the jdk.unsupported JDK module. Full JRE and JDK images will contain
the jdk.unsupported module.

You can use the Java Dependency Analysis Tool, jdeps, to help determine
if your Java program has any dependencies on JDK internal APIs.

This is an interesting change to watch. It is likely that the currently accessible internal APIs
will not be accessible by default when Java 10 is released.

Building Modular Applications with Java 9

[90]

Summary
In this chapter, we examined the structure of Java modules as specified by Project Jigsaw and
took an in-depth look at how Project Jigsaw was implemented to improve the Java platform.
We also reviewed key internal changes to the Java platform as they relate to the modular
system. Our review started with a modular primer where we learned about Java 9's
modular system in terms of benefits and requirements.

We explored how Java 9 introduced modularity to the JDK including its source code and
organization of the same. The seven primary tool categories that make up the JDK were also
explored. As we learned, modularity in Java 9 also extends to runtime images resulting in
more maintainability, better performance, and increased security. The concept of link time
was introduced as an optional phase between compile-time and runtime. We concluded the
chapter with a look at the Java Linker and how Java 9 encapsulates internal APIs.

In the next chapter, we will explore how to migrate our existing applications to the Java 9
platform. We will look at both manual and semi-automated migration processes.

5
Migrating Applications to Java 9

In the previous chapter, we took a close look at the structure of Java modules as specified by
Project Jigsaw and examined how Project Jigsaw was implemented to improve the Java
platform. We also reviewed key internal changes to the Java platform with specific focus on
the new modular system. We started with a modular primer where we learned about Java
9's modular system in terms of benefits and requirements. Next, we explored how Java 9
introduced modularity to the JDK. This included a look at how the source code was
reorganized for Java 9. We also explored the JDK's seven primary tool categories and
learned that Java 9 modularity extends to runtime images resulting in more maintainability,
better performance, and increased security. The concept of link time was introduced as an
optional phase between compile-time and runtime. We concluded the chapter with a look at
the Java linker and how Java 9 encapsulates internal APIs.

In this chapter, we will explore how to migrate our existing applications to the Java 9
platform. We will look at both manual and semi-automated migration processes. Java 9 is a
major release with numerous changes to the JDK so developers should not be surprised if
their Java 8 code no longer works with Java 9. This chapter aims to provide you with
insights and processes to get your Java 8 code working with Java 9.

The topics we will cover in this chapter are:

Quick review of Project Jigsaw
How modules fit into the Java landscape
Migration planning
Advice from Oracle
Useful tools

Migrating Applications to Java 9

[92]

Quick review of Project Jigsaw
Project Jigsaw is the Java project that encompasses several change recommendations to the
Java platform. As you have read in earlier chapters, Java 9's greatest changes involve
modules and modularity. The initiative to move to modules in Java was driven by Project
Jigsaw. The need for modularity stemmed from two major challenges with Java:

Classpath
JDK

Next, we will review both of those challenges and see how they were addressed and
overcome with the new release to the Java platform, Java 9.

Classpath
Prior to Java 9, the classpath was problematic and the source of developer anguish. This
was evident in the numerous developer forums and, fortunately, Oracle was paying
attention. Here are the several instances in which the classpath can be problematic; here are
two primary cases:

The first case involves having two or more versions of a library on your
development computer. The way this was previously handled by the Java system
was inconsistent. Which library was used during the class loading process was
anyone's guess. This resulted in an undesired lack of specificity--not enough
details regarding which library was loaded.
The second case is in exercising the most advanced features of the class loader.
Often times, this type of class loader usage resulted in the most errors and bugs.
These were not always easy to detect and resulted in a lot of extra work for
developers.

Classpaths, before Java 9, were almost always very lengthy. Oracle, in a recent presentation,
shared a classpath that contained 110 JAR files. This type of unwieldy classpath makes it
difficult to detect conflicts or even determine if anything was missing and if so, what might
be missing. The re-envisioning of the Java platform as a modular system made these
classpath issues a thing of the past.

Modules solve the pre-Java 9 classpath problem by providing reliable
configuration.

Migrating Applications to Java 9

[93]

The monolithic nature of the JDK
Java has continually evolved in an impressive fashion since 1995 and with each
evolutionary step, the JDK grew larger. As with Java 8, the JDK had become prohibitively
large. Prior to Java 9, there were several problematic issues stemming from the monolithic
nature of the JDK, including:

Because the JDK is so large, it does not fit on very small devices. In some
development sectors this is enough reason to find a non-Java solution for
software engineering problems.
The oversized JDK resulted in waste. It was wasteful in terms of processing and
memory when running on devices, networks, and the cloud. This stems from the
fact that the entire JDK is loaded, even when only a small subset of the JDK is
required.
While the Java platform has great performance when running, the startup
performance, in terms of load and launch times, leaves much to be desired.
The vast number of internal APIs has also been a pain point. Because so many
internal APIs existed and were used by developers, the system has been difficult
to evolve.
The existence of internal APIs has made it difficult to make the JDK secure and
scalable. With so many internal dependencies, isolating security and scalability
issues has been overly problematic.

The answer to the monolithic woes of the JDK is the module. Java 9 introduced the module
and its own modular system. One of the great updates to the platform is that only the
modules needed are compiled, as opposed to the entire JDK. This modular system is
covered throughout this book.

Modules solve the pre-Java 9 JDK monolithic issue by providing strong
encapsulation.

Migrating Applications to Java 9

[94]

How modules fit into the Java landscape
As you can see from the following illustration, packages are comprised of classes and
interfaces, and modules are comprised of packages. Modules are a container of packages.
This is the basic premise, at a very high level, of Java 9's new modular system. It is
important to view modules as part of the modular system and not simply as a new level of
abstraction above packages, as the illustration might suggest.

So, modules are new to Java 9 and they, as you would expect, require declaration before
they can be used. A module's declaration includes names of other modules in which it has a
dependency. It also exports packages for other modules that have dependencies to it.
Modular declarations are arguably the most important modular issue to address as you
start developing with Java 9. Here is an example:

 module com.three19.irisScan
 {
 // modules that com.three19.irisScan depends upon
 requires com.three19.irisCore;
 requires com.three19.irisData;

 // export packages for other modules that are dependent
 upon com.three19.irisScan
 exports com.three19.irisScan.biometric;
 }

When programming a Java 9 application, your module declarations will be placed in a
module-info.java file. Once this file is completed, you simply run javac, the Java
Compiler, to generate the module-info.class Java class file. You accomplish this task in
the same manner that you currently compile your .java files into .class files.

You can also create modular JAR files that have your module-info.class file at its root.
This represents a great level of flexibility.

Migrating Applications to Java 9

[95]

Base module
When programming Java 9 applications, or porting existing applications programmed with
older versions of Java, the base module (java.base) must be used. Every module requires
the java.base module because it defines the critical, or foundational, Java platform APIs.
Here are the contents of the java.base module:

 module java.base
 {
 exports java.io;
 exports java.lang;
 exports java.lang.annotation;
 exports java.lang.invoke;
 exports java.lang.module;
 exports java.lang.ref;
 exports java.lang.reflect;
 exports java.math;
 exports java.net;
 exports java.net.spi;
 exports java.nio;
 exports java.nio.channels;
 exports java.nio.channels.spi;
 exports java.nio.charset;
 exports java.nio.charset.spi;
 exports java.nio.file;
 exports java.nio.file.attribute;
 exports java.nio.file.spi;
 exports java.security;
 exports java.security.aci;
 exports java.security.cert;
 exports java.security.interfaces;
 exports java.security.spec;
 exports java.text;
 exports java.text.spi;
 exports java.time;
 exports java.time.chrono;
 exports java.time.format;
 exports java.time.temporal;
 exports java.time.zone;
 exports java.util;
 exports java.util.concurrent;
 exports java.util.concurrent.atomic;
 exports java.util.concurrent.locks;
 exports java.util.function;
 exports java.util.jar;
 exports java.util.regex;
 exports java.util.spi;

Migrating Applications to Java 9

[96]

 exports java.util.stream;
 exports java.util.zip;
 exports java.crypto;
 exports java.crypto.interfaces;
 exports java.crytpo.spec;
 exports java.net;
 exports java.net,ssi;
 exports java.security.auth;
 exports java.security.auth.callbak;
 exports java.security.auth.login;
 exports java.security.auth.spi;
 exports java.security.auth.x500;
 exports java.security.cert;
 }

As you can see, the java.base module does not require any modules and it exports
numerous packages. It can be useful to have a list of these exports handy so you know what
is available to you as you start creating applications using the new Java platform, Java 9.

You will notice that in the previous section, we did not include the requires java.base;
line of code in our declaration of our com.three19.irisScan module. The updated code
is provided as follows and now includes the requires java.base; line of code:

 module com.three19.irisScan
 {
 // modules that com.three19.irisScan depends upon
 requires java.base; // optional inclusion
 requires com.three19.irisCore;
 requires com.three19.irisData;

 // export packages for other modules that are dependent
 upon com.three19.irisScan
 exports com.three19.irisScan.biometric;
 }

If you do not include the requires java.base; line of code in your module declarations,
the Java Compiler will automatically include it.

Reliable configuration
As suggested earlier in this chapter, modules provide a reliable configuration of our Java 9
applications that solves the classpath problem in earlier versions of the Java platform.

Migrating Applications to Java 9

[97]

Java reads and interprets modular declarations making the modules readable. These
readable modules permit the Java platform to determine if any modules are missing, if there
are duplicate libraries declared, or there are any other conflicts. In Java 9, very specific error
messages will be generated and output by the compiler or at runtime. Here is an example of
a compile-time error:

src/com.three19.irisScan/module-info.java: error: module not found:
com.three19.irisScan
requires com.three19.irisCore;
 ^
1 error

Here is an example of a runtime error that would occur if the module
com.three19.isrisCore was not found, but required by the com.three19.irisScan
app:

Error occurred during initialization of VM
java.lang.module.ResolutionException: Module com.three19.irisCore not
found, required by com.three19.irisScan app

Strong encapsulation
Earlier in this chapter, you read that Java 9's strong encapsulation remedied the monolithic
JDK issue. Encapsulation, in Java 9, is driven by the information in the module-info.java
file. The information in this file lets Java know what modules are dependent upon others
and what each of them exports. This underscores the importance of ensuring our module-
info-java files are properly configured. Let's look at an example written with standard
Java code, nothing new in Java 9 in the way this was coded:

Migrating Applications to Java 9

[98]

In the preceding example, the com.three19.irisScan module has an irisScanner
package intended for internal use and an irisScanResult class. If the
com.three19.access application tries to import and use the irisScanResult class, the
following error message will be produced by the Java Compiler:

src/com.three19.access/com/three19/access/Main.java: error: irisScanResult
is not accessible because package com.three19.irisScanner.internal is not
exported
 private irisSanResult scan1 = new irisScanResult();
 ^
1 error

If for some reason the compiler does not catch this error, although it would be very
unlikely, the following runtime error would occur:

Exception in thread "main" java.lang.IllegalAccessError: class
com.three19.access.Main (in module: com.three19.access) cannot access class
com.three19.irisScanner.internal.irisScanResult (in module:
com.three19.irisScan), com.three19.irisScanner.internal is not exported to
com.three19.access.

The detailed error messages will make debugging and troubleshooting much easier.

Migration planning
The changes to the Java platform are significant and Java 9 is considered a major release. It
would be naive to think our current Java applications will work seamlessly on Java 9. While
that might be the case, at least for simple programs, it is prudent to plan ahead and consider
the issues you are most likely to encounter. Before we look at these issues, let's test a simple
Java application in the next section.

Testing a simple Java application
The following code consists of a single Java class, GeneratePassword. This class prompts
the user for a desired password length and then generates a password based on the user's
requested length. If the user asks for a length shorter than 8, the default length of 8 will be
used. This code was written with the Java SE 1.7 JRE System Library:

 /*
 * This is a simple password generation app
 */

Migrating Applications to Java 9

[99]

 import java.util.Scanner;

 public class GeneratePassword
 {
 public static void main(String[] args)
 {
 // passwordLength int set up to easily change the schema
 int passwordLength = 8; //default value

 Scanner in = new Scanner(System.in);
 System.out.println("How long would you like your
 password (min 8)?");
 int desiredLength;
 desiredLength = in.nextInt();

 // Test user input
 if (desiredLength >8)
 {
 passwordLength = desiredLength;
 }

 // Generate new password
 String newPassword = createNewPassword(passwordLength);

 // Prepare and provide output
 String output = "\nYour new " + passwordLength
 + "-character password is: ";
 System.out.println(output + newPassword);
 }

 public static String createNewPassword(int lengthOfPassword)
 {
 // Start with an empty String
 String newPassword = "";

 // Populate password
 for (int i = 0; i < lengthOfPassword; i++)
 {
 newPassword = newPassword + randomizeFromSet(
 "aAbBcCdDeEfFgGhHiIjJkKlLmMnNoOpPqQrRsStTuUvVwWxXyYzZ
 0123456789+-*/?!@#$%&");
 }

 return newPassword;
 }

 public static String randomizeFromSet(String characterSet)
 {

Migrating Applications to Java 9

[100]

 int len = characterSet.length();
 int ran = (int)(len * Math.random());
 return characterSet.substring(ran, ran + 1);
 }
 }

In the following screenshot, we test the GeneratePassword app on a Mac running Java 8.
As you can see, we start by querying Java to verify the current version. In this test, Java
1.8.0_121 was used. Next, we compile the GeneratePassword Java file using the javac
utility. Lastly, we run the app:

As you can see from the preceding test, GeneratePassword.java was successfully
compiled with the GeneratePassword.class file resulting. The application was run using
the java GeneratePassword command. The user was prompted for a desired password
length and 32 was entered. The application then successfully generated a 32-character
random password and provided the appropriate output.

This test demonstrated the example application works successfully using JDK 1.8. Next, let's
test the same application using JDK 9.

Migrating Applications to Java 9

[101]

We start with the java -version command to show that we are using JDK 9 on this
computer. The following screenshot shows that we successfully compiled the .java file to a
.class file. When the application was run, it functioned as expected and provided the
proper results:

As you can see, we clearly demonstrated that a pre-Java 9 application has the potential to
successfully run on Java 9 without having to make any modifications. This is a simple case
study and featured a very basic Java program. This is, of course, the best case scenario, and
cannot be assumed. You will want to test your applications to ensure they run as expected
on the Java 9 platform.

In the next section, we will review some potential issues you might encounter when testing
your pre-Java 9 applications using the new Java platform with JDK 9.

Potential migration issues
The potential migration issues featured in this section include direct access to the JRE,
access to internal APIs, accessing internal JARs, JAR URL depreciation, the extension
mechanism, and the JDK's modularization. Let's look at each of these potential migration
issues.

Migrating Applications to Java 9

[102]

The JRE
Creating the Java 9's modular system resulted in some simplification in respect to the
number and location of development and utility tools. One such example is the JDK's
consumption of the JRE. In all pre-Java 9 versions, the Java platform included the JDK and
JRE as two separate components. In Java 9, these components have been combined. This is a
significant change and one that developers should be keenly aware of. If you have an
application that specifically points to the JRE directory, you will need to make changes to
avoid problems. The JRE contents are shown as follows:

Access to internal APIs
The Java 9 platform has encapsulated internal APIs to increase security of the platform and
applications written in Java. Applications that you program in Java 9 will not have default
access to the JDK's internal APIs, unlike with previous versions of the Java platform. Oracle
has identified some internal APIs as critical; those APIs remain accessible via the
jdk.unsupported JDK module.

The aforementioned critical APIs (internal to the JDK) are:

sun.misc

sun.misc.Unsafe

sun.reflect.Reflection

sun.reflect.ReflectionFactory.newConstrutorForSerialization

Migrating Applications to Java 9

[103]

If you have pre-Java 9 applications that implement any sun.* or com.sun.* package, you
will likely run into problems migrating your applications to Java 9. In order to address this
issue, you should review your class files for use of sun.* and com.sun.* packages.
Alternatively, you can use the Java dependency analysis tool, jdeps, to help determine if
your Java program has any dependencies on JDK internal APIs.

The jdeps tool is the Java dependency analysis tool, that can be used to
help determine if your Java program has any dependencies on JDK
internal APIs.

Accessing internal JARs
Java 9 does not permit access to internal JARs such as lib/ant-javax.jar, lib/dt.jar,
and others listed in the lib directory shown here:

The key thing to note here is that if you have Java applications that are dependent on one of
these tools residing in the lib folder, you will need to modify your code accordingly.

It is recommended that you test your IDE once you start using Java 9 to
ensure the IDE is updated and officially supports Java 9. If you use more
than one IDE for Java development, test each one to avoid surprises.

Migrating Applications to Java 9

[104]

JAR URL depreciation
JAR file URLs were, prior to Java 9, used by some APIs to identify specific files in the
runtime image. These URLs contain a jar:file: prefix with two paths; one to the jar and
one to the specific resource file within the jar. Here is the syntax for the pre-Java 9 JAR
URL:

 jar:file:<path-to-jar>!<path-to-file-in-jar>

With the advent of Java 9's modular system, containers will house resource files instead of
individual JARs. The new syntax for accessing resource files is as follows:

 jrt:/<module-name>/<path-to-file-in-module>

A new URL schema, jrt, is now in place for naming resources within a runtime image.
These resources include classes and modules. The new schema allows for the identification
of a resource without introducing a security risk to the runtime image. This increased
security ensures that the runtime image's form and structure remain concealed. Here is the
new schema:

 jrt:/[$MODULE[/$PATH]]

Interestingly, a jrt URL's structure determines its meaning, suggesting that the structure
can take one of several forms. Here are three examples of different jrt URL structures:

jrt:/$MODULE/$PATH: This structure provides access to the resource file,
identified with the $PATH parameter, within the module specified with the
$MODULE parameter
jrt:/$MODULE: This structure provides reference to all resource files within the
module specified with the $MODULE parameter
jrt:/: This structure provides reference to all resource files in the runtime image

If you have preexisting code that uses URL instances, returned by APIs, you should not
have any problems. On the other hand, if your code is dependent on the jar URL structure,
you will have problems.

Migrating Applications to Java 9

[105]

Extension mechanism
The Java platform previously had an extension mechanism that gave developers the ability
to make custom APIs available to all applications. As you can see in the following
illustration, extensions are plugins of sorts, or add-ons to the Java platform. The APIs and
classes in each extension are, by default, automatically available:

As the illustration suggests, Java applications have access both to the Java platform and
extensions without requiring classpaths. This feature was depreciated in Java 8 and no
longer exists in Java 9.

Migrating Applications to Java 9

[106]

The JDK's modularization
By now, you have a firm appreciation of Java 9's modularization. The old adage in Java, and
other object-oriented programming language, is everything is a class. Now, with Java 9,
everything is a module is the new adage. There are three type of modules as explained as
follows:

Module type Description

Automatic When a JAR is placed on a new module path, modules are automatically
created

Explicit/Named These modules are manually defined by editing the module-info.java file

Unnamed When a JAR is placed on a classpath, unnamed modules are created

When you migrate your applications to Java 9, your application and its libraries become
unnamed modules. So, you will need to ensure all the modules are in the module path.

Another thing to be aware of is that your runtime image will not contain the entire JDK.
Instead, it will only contain the modules your application requires. It is worth reviewing
how the JDK is modularized in Java 9. The following table contains the API specification for
the JDK in Java 9:

jdk.accessibility jdk.attach jdk.charsets jdk.compiler

jdk.crypto.cryptoki jdk.crypto.ec jdk.dynalink jdk.editpad

jdk.hotspot.agent jdk.httpserver jdk.incubator.httpclient jdk.jartool

jdk.javadoc jdk.jcmd jdk.jconsole jdk.jdeps

jdk.jdi jdk.jdwp.agent jdk.jlink jdk.jshell

jdk.jsobject jdk.jstatd jdk.localedata jdk.management

jdk.management.agent jdk.naming.dns jdk.naming.rmi jdk.net

jdk.pack jdk.packager.services jdk.policytool jdk.rmic

jdk.scripting.nashorn jdk.sctp jdk.security.auth jdk.security.jgss

jdk.snmp jdk.xml.dom jdk.zipfs

Migrating Applications to Java 9

[107]

The following table contains the API specification for Java SE in Java 9:

java.activation java.base java.compiler java.cobra

java.datatransfer java.desktop java.instrument java.logging

java.management java.management.rmi java.naming java.prefs

java.rmi java.scripting java.se java.se.ee

java.security.jgss java.security.sasi java.sql java.sql.rowset

java.transaction java.xml java.xml.bind java.xml.crypto

java.xml.ws java.xml.ws java.xml.ws.annotation

Remember, all applications will have access to java.base as it is in the
module path by default.

The following table contains the API specification for JavaFX in Java 9:

javafx.base javafx.controls javafx.fxml javafx.graphics

javafx.media javafx.swing javafx.web

There are two additional modules:

java.jnlp defines the API for JNLP (Java Network Launch Protocol)
java.smartcardio defines the API for the Java Smart Card Input/Output

For details on any of these modules, visit Oracle's Java® Platform, Standard
Edition & Java Development Kit Version 9 API Specification website: http:/ ​/
download. ​java. ​net/ ​java/ ​jdk9/ ​docs/ ​api/ ​overview- ​summary. ​html.

Advice from Oracle
Oracle has done a great job in bringing us this major update, version 9, to the Java platform.
Their insights into getting ready for Java 9 and how to migrate to the new JDK is worth
reviewing. In this section, we will look at preparatory steps, breaking encapsulation,
changes to the runtime image, components such as tools and APIs that have been removed,
changes to garbage collection, and deployment.

http://download.java.net/java/jdk9/docs/api/overview-summary.html
http://download.java.net/java/jdk9/docs/api/overview-summary.html
http://download.java.net/java/jdk9/docs/api/overview-summary.html
http://download.java.net/java/jdk9/docs/api/overview-summary.html
http://download.java.net/java/jdk9/docs/api/overview-summary.html
http://download.java.net/java/jdk9/docs/api/overview-summary.html
http://download.java.net/java/jdk9/docs/api/overview-summary.html
http://download.java.net/java/jdk9/docs/api/overview-summary.html
http://download.java.net/java/jdk9/docs/api/overview-summary.html
http://download.java.net/java/jdk9/docs/api/overview-summary.html
http://download.java.net/java/jdk9/docs/api/overview-summary.html
http://download.java.net/java/jdk9/docs/api/overview-summary.html
http://download.java.net/java/jdk9/docs/api/overview-summary.html
http://download.java.net/java/jdk9/docs/api/overview-summary.html
http://download.java.net/java/jdk9/docs/api/overview-summary.html
http://download.java.net/java/jdk9/docs/api/overview-summary.html
http://download.java.net/java/jdk9/docs/api/overview-summary.html
http://download.java.net/java/jdk9/docs/api/overview-summary.html
http://download.java.net/java/jdk9/docs/api/overview-summary.html
http://download.java.net/java/jdk9/docs/api/overview-summary.html
http://download.java.net/java/jdk9/docs/api/overview-summary.html
http://download.java.net/java/jdk9/docs/api/overview-summary.html

Migrating Applications to Java 9

[108]

Preparatory steps
Oracle provides a five-step process to help developers migrate their Java applications to
version 9. These steps are listed as follows and then covered in subsequent sections:

Get the JDK 9 early access build.1.
Run your program before recompiling.2.
Update third-party libraries and tools.3.
Compile your application.4.
Run jdeps on your code.5.

Getting the JDK 9 early access build
If you are reading this book before Java 9 is officially released, then you can obtain a JDK 9
early access build from here--http:/ ​/​jdk. ​java. ​net/ ​9/​. Early release builds are available
for Windows (32 and 64), macOS (64), Linux (32 and 64) and various Linux ARM, Solaris,
and Alpine Linux versions.

Taking the time to test your applications for Java 9 and get them migrated before Java 9 is
officially released, helps ensure you will not experience any downtime for services that rely
on your Java applications.

Running your program before recompiling
As indicated earlier in this chapter, there is a chance that your existing Java applications
will run without modification on the Java 9 platform. So, before you make any changes, try
running your current application on the Java 9 platform. If your application works fine on
Java 9, that is great, but your work is not complete. Review the next three sections on
updating third-party libraries and tools, compiling your application, and running jdeps on
your code.

Updating third-party libraries and tools
Third-party libraries and tools can help extend our applications and shorten development
time. For Java 9 compatibility, it is important to ensure that each third-party library and tool
you use is compatible with and supports version 9 of the JDK. Running your application on
Java 9 will not provide you with the level of insight you need to ensure you do not have
compatibility issues down the road. It is recommended that you review the official website
for each library and tool to verify compatibility with and support of JDK 9.

http://jdk.java.net/9/
http://jdk.java.net/9/
http://jdk.java.net/9/
http://jdk.java.net/9/
http://jdk.java.net/9/
http://jdk.java.net/9/
http://jdk.java.net/9/
http://jdk.java.net/9/
http://jdk.java.net/9/
http://jdk.java.net/9/
http://jdk.java.net/9/
http://jdk.java.net/9/

Migrating Applications to Java 9

[109]

If a library or tool that you use does have a version that supports JDK 9, download and
install it. If you find one that does not yet support JDK 9, consider finding a replacement for
it.

In our context, tools includes Integrated Development Environments (IDE). NetBeans,
Eclipse, and IntelliJ all have IDE versions that support JDK 9. Links to those sites are
provided as follows:

NetBeans: http:/ ​/​bits. ​netbeans. ​org/ ​download/ ​trunk/ ​nightly/ ​latest/ ​

Eclipse: https:/ ​/ ​www. ​eclipse. ​org/ ​community/ ​eclipse_ ​newsletter/ ​2015/ ​june/
article4. ​php

IntelliJ: https:/ ​/​www. ​jetbrains. ​com/ ​idea/ ​nextversion/ ​

Compiling your application
Your next step is to compile your application using JDK 9's javac. This is important, even if
your app works fine on JDK 9. You might not receive compiler errors, but watch for
warnings too. Here are the most common reasons your applications might not compile with
JDK 9, assuming they compiled fine prior to Java 9.

First, as indicated earlier in this chapter, most of the JDK 9 internal APIs are not accessible
by default. Your indication will be an IllegalAccessErrors error at runtime or compile
time. You will need to update your code so that you are using accessible APIs.

A second reason your pre-Java 9 applications might not compile with JDK 9 is if you use the
underscore character as a single character identifier. According to Oracle, this practice
generates a warning in Java 8 and an error in Java 9. Let's look at an example. The following
Java class instantiates an Object named _ and prints a singular message to the console:

 public class Underscore
 {
 public static void main(String[] args)
 {
 Object _ = new Object();
 System.out.println("This ran successfully.");
 }
 }

http://bits.netbeans.org/download/trunk/nightly/latest/
http://bits.netbeans.org/download/trunk/nightly/latest/
http://bits.netbeans.org/download/trunk/nightly/latest/
http://bits.netbeans.org/download/trunk/nightly/latest/
http://bits.netbeans.org/download/trunk/nightly/latest/
http://bits.netbeans.org/download/trunk/nightly/latest/
http://bits.netbeans.org/download/trunk/nightly/latest/
http://bits.netbeans.org/download/trunk/nightly/latest/
http://bits.netbeans.org/download/trunk/nightly/latest/
http://bits.netbeans.org/download/trunk/nightly/latest/
http://bits.netbeans.org/download/trunk/nightly/latest/
http://bits.netbeans.org/download/trunk/nightly/latest/
http://bits.netbeans.org/download/trunk/nightly/latest/
http://bits.netbeans.org/download/trunk/nightly/latest/
http://bits.netbeans.org/download/trunk/nightly/latest/
http://bits.netbeans.org/download/trunk/nightly/latest/
http://bits.netbeans.org/download/trunk/nightly/latest/
http://bits.netbeans.org/download/trunk/nightly/latest/
https://www.eclipse.org/community/eclipse_newsletter/2015/june/article4.php
https://www.eclipse.org/community/eclipse_newsletter/2015/june/article4.php
https://www.eclipse.org/community/eclipse_newsletter/2015/june/article4.php
https://www.eclipse.org/community/eclipse_newsletter/2015/june/article4.php
https://www.eclipse.org/community/eclipse_newsletter/2015/june/article4.php
https://www.eclipse.org/community/eclipse_newsletter/2015/june/article4.php
https://www.eclipse.org/community/eclipse_newsletter/2015/june/article4.php
https://www.eclipse.org/community/eclipse_newsletter/2015/june/article4.php
https://www.eclipse.org/community/eclipse_newsletter/2015/june/article4.php
https://www.eclipse.org/community/eclipse_newsletter/2015/june/article4.php
https://www.eclipse.org/community/eclipse_newsletter/2015/june/article4.php
https://www.eclipse.org/community/eclipse_newsletter/2015/june/article4.php
https://www.eclipse.org/community/eclipse_newsletter/2015/june/article4.php
https://www.eclipse.org/community/eclipse_newsletter/2015/june/article4.php
https://www.eclipse.org/community/eclipse_newsletter/2015/june/article4.php
https://www.eclipse.org/community/eclipse_newsletter/2015/june/article4.php
https://www.eclipse.org/community/eclipse_newsletter/2015/june/article4.php
https://www.eclipse.org/community/eclipse_newsletter/2015/june/article4.php
https://www.eclipse.org/community/eclipse_newsletter/2015/june/article4.php
https://www.eclipse.org/community/eclipse_newsletter/2015/june/article4.php
https://www.eclipse.org/community/eclipse_newsletter/2015/june/article4.php
https://www.eclipse.org/community/eclipse_newsletter/2015/june/article4.php
https://www.jetbrains.com/idea/nextversion/
https://www.jetbrains.com/idea/nextversion/
https://www.jetbrains.com/idea/nextversion/
https://www.jetbrains.com/idea/nextversion/
https://www.jetbrains.com/idea/nextversion/
https://www.jetbrains.com/idea/nextversion/
https://www.jetbrains.com/idea/nextversion/
https://www.jetbrains.com/idea/nextversion/
https://www.jetbrains.com/idea/nextversion/
https://www.jetbrains.com/idea/nextversion/
https://www.jetbrains.com/idea/nextversion/
https://www.jetbrains.com/idea/nextversion/
https://www.jetbrains.com/idea/nextversion/
https://www.jetbrains.com/idea/nextversion/

Migrating Applications to Java 9

[110]

When we compile this program with Java 8, we receive a warning that use of '_' as an
identifier might not be supported in releases after Java SE 8:

As you can see in the following screenshot, that is just a warning and the application runs
fine:

Now, let's try compiling the same class using JDK 9:

Migrating Applications to Java 9

[111]

As you can see, use of the underscore as a single character identifier still only resulted in a
warning and not an error. The application ran successfully. This test was run when JDK 9
was still in early release. It is assumed that running this test once JDK 9 has been officially
released will result in an error instead of just a warning. The error that would likely be
thrown is as follows:

Underscore.java:2: error: as of release 9, '_' is a keyword, and may not be
used as a legal identifier.

Even if this issue is not resolved with the formal release of JDK 9, use of an underscore as a
single character identifier is not good programming practice, so you should steer away from
using it.

A third potential reason for your pre-Java 9 programmed application not to compile with
JDK 9 is if you are using the -source and -target compiler options. Let's take a look at
the -source and -target compiler options pre-Java 9 and with Java 9.

Pre-Java 9 -source and -target options
The -source option specifies the Java SE version and has the following acceptable values:

Value Description

1.3 javac does not support features introduced after Java SE 1.3.

1.4 javac accepts code with language features introduced in Java SE 1.4.

1.5 or 5 javac accepts code with languages features introduced in Java SE 1.5.

1.6 or 6 javac reports encoding errors as errors instead of warnings. Of note, no new
language features were intruded with Java SE 1.6.

1.7 or 7 javac accepts code with language features introduced in Java SE 1.7. This is the
default value if the -source option is not used.

Migrating Applications to Java 9

[112]

The -target option tells javac what version of the JVM to target. The acceptable values
for the -target option are--1.1, 1.2, 1.3, 1.4, 1.5 or 5, 1.6 or 6 and 1.7 or 7. If the -
target option is not used, the default JVM target is dependent on the value used with the -
source option. Here is a table of -source values with their associated -target:

-source value default -target

unspecified 1.7

1.2 1.4

1.3 1.4

1.4 1.4

1.5 or 5 1.7

1.6 or 6 1.7

1.7 1.7

Java 9 -source and -target options
In Java 9, the supported values are shown as follows:

Supported values Remarks

9 This is the default, should no value be specified

8 Sets support to 1.8

7 Sets support to 1.7

6 Sets support to 1.6 and generates a warning (not an error) to indicate JDK 6
is depreciated

Running jdeps on your code
The jdeps class dependency analysis tool is not new to Java 9, but perhaps has never been
as important to developers with the advent of Java 9. An important step to migrating your
applications to Java 9 is to run the jdeps tool to determine the dependencies your
applications and its libraries have. The jdeps tool does a great job of suggesting
replacements if your code has dependencies on any internal APIs.

Migrating Applications to Java 9

[113]

The following screenshot shows the options available to you when using the jdeps
analyzer:

Migrating Applications to Java 9

[114]

Let's take a look at an example. Here is a simple Java class called DependencyTest:

 import sun.misc.BASE64Encoder;

 public class DependencyTest
 {
 public static void main(String[] args) throws
 InstantiationException, IllegalAccessException
 {
 BASE64Encoder.class.newInstance();
 System.out.println("This Java app ran successfully.");
 }
 }

Now, let's use javac to compile this class using Java 8:

As you can see, Java 8 successfully compiled the class and the application ran. The compiler
did give us a DependencyTest.java:6: warning: BASE64Encoder is internal
proprietary API and may be removed in a future release warning. Now, let's
see what happens when we try to compile this class using Java 9:

Migrating Applications to Java 9

[115]

In this case, with Java 9, the compiler gave us two warnings instead of one. The first
warning is for the import sun.misc.BASE64Encoder; statement and the second for the
BASE64Encoder.class.newInstance(); method call. As you can see, these are just
warnings and not errors, so the DependencyTest.java class file is successfully compiled.
Next, let's run the application:

Now, we can clearly see that Java 9 will not allow us to run the application. Next, let's run a
dependency test using the jdeps analyzer tool. We will use the following command line
syntax--jdeps DependencyTest.class:

As you can see, we have three dependencies: java.io, java.lang, and sun.misc. Here
we are given the suggestion to replace our sun.misc dependency with rt.jar.

Breaking encapsulation
The Java 9 platform is more secure than its predecessor versions due to, in part, the
increased encapsulation that resulted from the modular reorganization. That being said,
you might have a requirement to break through the modular system's encapsulation.
Breaking through these access control boundaries is permitted by Java 9.

Migrating Applications to Java 9

[116]

As you read earlier in this chapter, most internal APIs are strongly encapsulated. As
previously suggested, you might look for replacement APIs when updating your source
code. Of course, that is not always feasible. There are three additional approaches you can
take--using the --add-opens option at runtime; employing the --add-exports option;
and --permit-illegal-access command-line option. Let's look at each of those options.

The --add-opens option
You can use the --add-opens runtime option to allow your code to access non-public
members. This can be referred to as deep reflection. Libraries that do this deep reflection are
able to access all members, private and public. To grant this type of access to your code, you
use the --add-opens option. Here is the syntax:

 --add-opens module/package=target-module(,target-module)*

This allows the given module to open the specified package. The compiler will not produce
any errors or warnings when this is used.

The --add-exports option
You can use --add-exports to break encapsulation so that you can use an internal API
whose default is to be inaccessible. Here is the syntax:

 --add-exports <source-module>/<package>=<target-module>(
 ,<target-module>)*

This command-line option gives code in the <target-module> access to types in the
<source-module> package.

Another method of breaking encapsulation is with a JAR file's manifest. Here is an example:

 --add-exports:java.management/sun.management

The --add-exports command-line option should only be used if deemed
absolutely necessary. It is not advisable to use this option except for short-
term solutions. The danger of using it routinely is that any updates to
referenced Internal APIs could result in your code not working properly.

Migrating Applications to Java 9

[117]

The --permit-illegal-access option
A third option for breaking encapsulation is to use the --permit-illegal-access option.
Of course, it is prudent to check with third-party library creators to see if they have an
updated version. If that is not an option, you use --permit-illegal-access to gain
illegal access to operations to be implemented on the classpath. Due to the significantly
illegal operation here, you will receive warnings each time one of these operations occurs.

Runtime image changes
Java 9 represents a major change to the JDK and the JRE. Much of these changes are related
to modularity and have been covered in other chapters. There are still a few more things
you should consider.

Java version schema
With Java 9, the way the Java platform's version is displayed has changed. Here is an
example of a pre-Java 9 version format:

Now, let's look at how Java 9 reports its version:

As you can see, with Java 9, the version schema is now
$MAJOR.$MINOR.$SECURITY.$PATCH. This is markedly different than with previous
versions of Java. This will only impact your applications if you have code that parses the
string returned by the java -version command and option.

Migrating Applications to Java 9

[118]

JDK and JRE layout
How files are organized in the JDK and the JRE have changed in the new version of Java. It
is worth your time to familiarize yourself with the new filesystem layout. The following
screenshot shows the file structure of the JDK's /bin folder:

Migrating Applications to Java 9

[119]

Here is the layout of the \lib folder:

Migrating Applications to Java 9

[120]

What has been removed
Another area of change for the new version of the Java platform is that many platform
components have been removed. The following sections represent the most significant
components.

Notably, the rt.jar and tools.jar and dt.jar have been removed. These JAR files
contained class and other resources files and all resided in the /lib directory.

The endorsed standards override mechanism has been removed. In Java 9, both javac and
java will exit if they detect that mechanism. The mechanism was used for application
servers to override some JDK components. In Java 9, you can use upgradeable modules to
achieve the same result.

As previously covered in this chapter, the extension mechanism has also been removed.

The following listed APIs were previously depreciated and have been removed and are not
accessible in Java 9. Removal of these APIs is the result of the modularization of the Java
platform:

apple.applescript

com.apple.concurrent

com.sun.image.codec.jpeg

java.awt.dnd.peer

java.awt.peer

java.rmi.server.disableHttp

java.util.logging.LogManager.addPropertyChangeListener

java.util.logging.LogManager.removePropertyChangeListener

java.util.jar.Pack200.Packer.addPropertyChangeListener

java.util.jar.Pack200.Packer.removePropertyChangeListener

java.util.jar.Pack200.Unpacker.addPropertyChangeListener

java.util.jar.Pack200.Unpacker.removePropertyChangeListener

javax.management.remote.rmi.RMIIIOPServerImpl

sun.misc.BASE64Encoder

sun.misc.BASE64Decoder

sun.rmi.transport.proxy.connectTimeout

Migrating Applications to Java 9

[121]

sun.rmi.transport.proxy.eagerHttpFallback

sun.rmi.transport.proxy.logLevel

sun.rmi.transport.tcp.proxy

The following listed tools have been removed. In each case, the tool was previously
depreciated or its functionality superseded by better alternatives:

hprof

java-rmi.cgi

java-rmi.exe

JavaDB

jhat

native2ascii

Two additional things that have been removed in Java 9 are:

AppleScript engine. This engine was deemed as unusable and is dropped
without replacement.
Windows 32-bit client virtual machine. JDK 9 does support a 32-bit server JVM,
but not a 32-bit client VM. This change was made to focus on the increased
performance of 64-bit systems.

Updated garbage collection
Garbage collection has been one of Java's great claims to fame. In Java 9, the Garbage-First
(G1) garbage collector is now the default garbage collector on both 32- and 64-bit servers. In
Java 8, the default garbage collector was the parallel garbage collector. Oracle reports that
there are three garbage collection combinations that will prohibit your application from
starting in Java 9. Those combinations are:

DefNew + CMS
Incremental CMS
ParNew + SerialOld

We will take an in-depth look at Java 9 garbage collection in Chapter 7, Leveraging the New
Default G1 Garbage Collector.

Migrating Applications to Java 9

[122]

Deployment
There are three issues that you should be aware of, in the context of migrating to Java 9,
when you are deploying your applications. These issues are JRE version selection, serialized
applets, and the update to the JNLP.

JNLP is the acronym for Java Network Launch Protocol and is covered in
a later section of this chapter.

JRE version selection
Prior to Java 9, developers could request a JRE version other than the version being
launched when launching an application. This could be accomplished with a command-line
option or with a proper JAR file manifest configuration. This feature has been removed in
JDK 9 because of the way we typically deploy applications. Here are the three primary
methods:

Active installers
Java Web Start using JNLP
Native OS packaging systems

Serialized applets
Java 9 does not support the ability to deploy applets as serialized objects. In the past,
applets were deployed as serialized objects to compensate for slow compression and JVM
performance issues. With Java 9, compression techniques are advanced and the JVM has
great performance.

If you attempt to deploy your applets as serialized objects, your object attributes and
parameter tags will simply be ignored when your applet launches. Starting with Java 9, you
can deploy your applets using standard deployment strategies.

Migrating Applications to Java 9

[123]

JNLP update
The JNLP is used for launching applications on a desktop client using resources located on
a web server. JNLP clients include Java Web Start and Java Plug-in software because they
are able to launch applets that are remotely hosted. This protocol is instrumental in
launching RIAs.

RIAs are Rich Internet Applications and when launched with JNLP have access to the
various JNLP APIs that, with user permission, can access the user's desktop.

In Java 9, the JNLP specification has been updated. There are four specific updates as
detailed in the next sections.

Nested resources
The ability to use component extensions with nest resources in Java or j2se elements was
previously supported, but not documented in the specification. The specification has now
been updated to reflect this support. The previous specification read:

No java elements can be specified as part of the resources.

The updated specification for Java 9 now reads:

A java element in a component extension will not govern what version of java is used, but
may be used containing nested resource elements, and then those resources may be used
only when using a Java version that matches the given version as specified in section 4.6

This specific change ensures that extension JLP files must have java or j2se resources and
those resources will not dictate what JRE is used. Nested resources are permitted when
using the specified version.

FX XML extension
When using the JNLP, you create a JNLP file. Here is an example:

 <?xml version="1.0" encoding="UTF-8"?>
 <jnlp spec="1.0+" codebase="" href="">
 <information>
 <title>Sample/title>
 <vendor>The Sample Vendor</vendor>
 <icon href="sample-icon.jpg"/>
 <offline-allowed/>
 </information>
 <resources>
 <!-- Application Resources -->

Migrating Applications to Java 9

[124]

 <j2se version="1.6+"
 href="http://java.sun.com/products/autodl/j2se"/>
 <jar href="Sample-Set.jar" main="true" />
 </resources>
 <application-desc
 name="Sample Application"
 main-class="com.vendor.SampleApplication"
 width="800"
 height="500">
 <argument>Arg1</argument>
 <argument>Arg2</argument>
 <argument>Arg3</argument>
 </application-desc>
 <update check="background"/>
 </jnlp>

Two changes have been made to the <application-desc> element. First, the optional
type attribute has been added so the type of application can be annotated. The default type
is Java, so if your program is a Java app, you need not include the type attribute.
Alternatively, you can specify Java as your type as follows:

 <application-desc
 name="Another Sample Application"
 type="Java" main-class="com.vendor.SampleApplication2"
 width="800"
 height="500">
 <argument>Arg1</argument>
 <argument>Arg2</argument>
 <argument>Arg3</argument>
 </application-desc>

We can indicate other application types to include JavaFX as shown here:

 <application-desc
 name="A Great JavaFX Application"
 type="JavaFX" main-class="com.vendor.GreatJavaFXApplication"
 width="800"
 height="500">
 <argument>Arg1</argument>
 <argument>Arg2</argument>
 <argument>Arg3</argument>
 </application-desc>

If you indicate an application type that is not supported by the JNLP
client, your application launch will fail. For more information about JNLP,
you can consult the official documentation: http:/ ​/​docs. ​oracle. ​com/
javase/ ​7/​docs/ ​technotes/ ​guides/ ​javaws/ ​developersguide/ ​faq. ​html.

http://docs.oracle.com/javase/7/docs/technotes/guides/javaws/developersguide/faq.html
http://docs.oracle.com/javase/7/docs/technotes/guides/javaws/developersguide/faq.html
http://docs.oracle.com/javase/7/docs/technotes/guides/javaws/developersguide/faq.html
http://docs.oracle.com/javase/7/docs/technotes/guides/javaws/developersguide/faq.html
http://docs.oracle.com/javase/7/docs/technotes/guides/javaws/developersguide/faq.html
http://docs.oracle.com/javase/7/docs/technotes/guides/javaws/developersguide/faq.html
http://docs.oracle.com/javase/7/docs/technotes/guides/javaws/developersguide/faq.html
http://docs.oracle.com/javase/7/docs/technotes/guides/javaws/developersguide/faq.html
http://docs.oracle.com/javase/7/docs/technotes/guides/javaws/developersguide/faq.html
http://docs.oracle.com/javase/7/docs/technotes/guides/javaws/developersguide/faq.html
http://docs.oracle.com/javase/7/docs/technotes/guides/javaws/developersguide/faq.html
http://docs.oracle.com/javase/7/docs/technotes/guides/javaws/developersguide/faq.html
http://docs.oracle.com/javase/7/docs/technotes/guides/javaws/developersguide/faq.html
http://docs.oracle.com/javase/7/docs/technotes/guides/javaws/developersguide/faq.html
http://docs.oracle.com/javase/7/docs/technotes/guides/javaws/developersguide/faq.html
http://docs.oracle.com/javase/7/docs/technotes/guides/javaws/developersguide/faq.html
http://docs.oracle.com/javase/7/docs/technotes/guides/javaws/developersguide/faq.html
http://docs.oracle.com/javase/7/docs/technotes/guides/javaws/developersguide/faq.html
http://docs.oracle.com/javase/7/docs/technotes/guides/javaws/developersguide/faq.html
http://docs.oracle.com/javase/7/docs/technotes/guides/javaws/developersguide/faq.html
http://docs.oracle.com/javase/7/docs/technotes/guides/javaws/developersguide/faq.html
http://docs.oracle.com/javase/7/docs/technotes/guides/javaws/developersguide/faq.html
http://docs.oracle.com/javase/7/docs/technotes/guides/javaws/developersguide/faq.html
http://docs.oracle.com/javase/7/docs/technotes/guides/javaws/developersguide/faq.html
http://docs.oracle.com/javase/7/docs/technotes/guides/javaws/developersguide/faq.html
http://docs.oracle.com/javase/7/docs/technotes/guides/javaws/developersguide/faq.html

Migrating Applications to Java 9

[125]

The second change to the <application-desc> element in Java 9 is the addition of the
param sub-element. This allows us to provide the name of parameters along with their
value using the value attribute. Here is an example of how an <application-desc>
element of a JNLP file looks with the param sub-element and the value attribute included.
This example shows three sets of parameters:

 <application-desc
 name="My JRuby Application"
 type="JRuby"
 main-class="com.vendor.JRubyApplication"
 width="800"
 height="500">
 <argument>Arg1</argument>
 <argument>Arg2</argument>
 <argument>Arg3</argument>
 <param name="Parameter1" value="Value1"/>
 <param name="Parameter2" value="Value2"/>
 <param name="Parameter3" value="Value3"/>
 </application-desc>

If the application type is Java, then any param sub-elements you use will
be ignored.

JNLP file syntax
JNLP file syntax is now in complete compliance with XML specifications. Prior to Java 9,
you could use & to create complex comparisons. That is not supported with standard XML.
You can still create complex comparisons in JNLP files. Now you will use & instead of
&.

Numeric version comparison
The JNLP specification has been changed to reflect how numeric version elements were
compared against non-numeric version elements. Previous to the change, version elements
were compared lexicographically by ASCII value. With Java 9 and this JNLP specification
change, elements are still compared lexicographically by ASCII value. The change is evident
when the two strings have different lengths. In new comparisons, the shorter string will be
padded with leading zeros to match the length of the longer string.

Migrating Applications to Java 9

[126]

Lexicographical comparisons use a mathematical model that is based on
alphabetical order.

Useful tools
The first thing you will need to do before migrating your applications to Java 9 is to
download JDK 9. You can download the early access builds at this URL--http:/ ​/​jdk. ​java.
net/​9/​. You will need to accept the license agreement and then select which build to
download. As you can see in the following screenshot, there are several options based on
your operating system:

Now that you have JDK 9 installed on your development computer, let's look at a couple of
tools that can help facilitate migrating your applications to Java 9.

http://jdk.java.net/9/
http://jdk.java.net/9/
http://jdk.java.net/9/
http://jdk.java.net/9/
http://jdk.java.net/9/
http://jdk.java.net/9/
http://jdk.java.net/9/
http://jdk.java.net/9/
http://jdk.java.net/9/
http://jdk.java.net/9/
http://jdk.java.net/9/

Migrating Applications to Java 9

[127]

Java environment - jEnv
If you develop on a computer with Linux or macOS, you might consider using jEnv, an
open source Java environment management tool. This is a command-line tool, so do not
expect a GUI. You can download the tool at this URL--https:/ ​/​github. ​com/ ​gcuisinier/
jenv.

Here is the installation command for Linux:

$ git clone https://github.com/gcuisinier/jenv.git ~/.jenv

To download using macOS with Homebrew, use this command:

$ brew install jenv

You can also install on Linux or macOS using Bash as follows:

$ echo 'export PATH="$HOME/.jenv/bin:$PATH"' >> ~/.bash_profile
$ echo 'eval "$(jenv init -)"' >> ~/.bash_profile

Alternatively, you can install on Linux or macOS using Zsh as follows:

$ echo 'export PATH="$HOME/.jenv/bin:$PATH"' >> ~/.zshrc
$ echo 'eval "$(jenv init -)"' >> ~/.zshrc

After you have jEnv installed, you will need to configure it on your system as shown here.
You will need to modify the script to reflect your actual path:

$ jenv add /Library/Java/JavaVirtualMachines/jdk17011.jdk/Contents/Home

You will want to repeat the jenv add command for each version of the JDK on your
system. With each jenv add command, you will receive confirmation that the specific JDK
version was added to jEnv as follows:

$ jenv add /System/Library/Java/JavaVirtualMachines/1.6.0.jdk/Contents/Home
 oracle64-1.6.0.39 added
$ jenv add /Library/Java/JavaVirtualMachines/jdk17011.jdk/Contents/Home
 oracle64-1.7.0.11 added

You can check to see what JDK versions you have added to your jEnv by using $ jenv
versions at the Command Prompt. This will result in an output list.

https://github.com/gcuisinier/jenv
https://github.com/gcuisinier/jenv
https://github.com/gcuisinier/jenv
https://github.com/gcuisinier/jenv
https://github.com/gcuisinier/jenv
https://github.com/gcuisinier/jenv
https://github.com/gcuisinier/jenv
https://github.com/gcuisinier/jenv
https://github.com/gcuisinier/jenv
https://github.com/gcuisinier/jenv

Migrating Applications to Java 9

[128]

Here are three additional jEnv commands:

jenv global <version>: this sets the global version
jenv local <version>: this sets the local version
jenv shell <version>: this sets the instance version for the shell

Maven
Maven is an open source tool that can be used for building and managing Java-based
projects. It already supports Java 9 and is part of the Apache Maven Project. If you are not
already using Maven and you do a lot of Java development you might be enticed by the
following Maven objectives:

Making the build process easy
Providing a uniform build system
Providing quality project information
Providing guidelines for best practices development
Allowing transparent migration to new features

You can read more specifics about each of the Maven objectives at this site--https:/ ​/​maven.
apache.​org/​what- ​is- ​maven. ​html. To download Maven, visit this site--https:/ ​/​maven.
apache.​org/​download. ​cgi. Installation instructions for Windows, macOS, Linux, and
Solaris are available here--https:/ ​/​maven. ​apache. ​org/ ​install. ​html.

Maven can be integrated with Eclipse (M2Eclipse), JetBrains IntelliJ IDEA, and the Netbeans
IDE. The M2Eclipse IDE, as an example, provides rich integration with Apache Maven and
boasts the following features:

You can launch Maven builds from within Eclipse
Manage your dependencies for the Eclipse build path
Easily resolve Maven dependencies (you can do this directly from Eclipse and not
have to install a local Maven repository)
Automatically download required dependencies (from remote Maven
repositories)
Use software wizards to create new Maven projects, create pom.xml files, and to
enable Maven support for your plain Java projects
Rapid dependency search of Maven remote repositories

https://maven.apache.org/what-is-maven.html
https://maven.apache.org/what-is-maven.html
https://maven.apache.org/what-is-maven.html
https://maven.apache.org/what-is-maven.html
https://maven.apache.org/what-is-maven.html
https://maven.apache.org/what-is-maven.html
https://maven.apache.org/what-is-maven.html
https://maven.apache.org/what-is-maven.html
https://maven.apache.org/what-is-maven.html
https://maven.apache.org/what-is-maven.html
https://maven.apache.org/what-is-maven.html
https://maven.apache.org/what-is-maven.html
https://maven.apache.org/what-is-maven.html
https://maven.apache.org/what-is-maven.html
https://maven.apache.org/what-is-maven.html
https://maven.apache.org/what-is-maven.html
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/install.html
https://maven.apache.org/install.html
https://maven.apache.org/install.html
https://maven.apache.org/install.html
https://maven.apache.org/install.html
https://maven.apache.org/install.html
https://maven.apache.org/install.html
https://maven.apache.org/install.html
https://maven.apache.org/install.html
https://maven.apache.org/install.html
https://maven.apache.org/install.html
https://maven.apache.org/install.html
https://maven.apache.org/install.html

Migrating Applications to Java 9

[129]

Obtaining the M2Eclipse IDE
To obtain the M2Eclipse IDE, you must first have Eclipse installed. Here are the steps:

Start by opening your current Eclipse IDE. Next, select Preferences |1.
Install/Update | Available Software Sites as shown in the following screenshot:

Migrating Applications to Java 9

[130]

The next task is to add the M2Eclipse repository site to your list of Available2.
Software Sites. To accomplish this, click the Add button and enter values in the
Name and Location text input boxes. For Name, enter something to help you
remember that M2Eclipse is available at this site. For Location, enter the URL--
http://download.eclipse.org/technology/m2e/releases. Then, click the
OK button:

You should now see the M2Eclipse site listed in your list of Available Software3.
Sites as shown in the following screenshot. Your final step is to click the OK
button:

Migrating Applications to Java 9

[131]

Now, when you start a new project, you will see Maven Project as an option:4.

Maven is a proven tool for Java developers. You might consider obtaining additional
information on Maven with one of the following resources:

Apache Maven Project: https:/ ​/​maven. ​apache. ​org/ ​index. ​html

Apache Maven Cookbook: https:/ ​/​www. ​packtpub. ​com/ ​application- ​development/
apache-​maven- ​cookbook

Apache Maven 3.o Cookbook: https:/ ​/ ​www.​packtpub. ​com/ ​application-
development/ ​apache- ​maven- ​3- ​cookbook

Getting Started with Apache Maven [Video]: https:/ ​/​www. ​packtpub. ​com/
application- ​development/ ​getting- ​started- ​apache- ​maven- ​video

https://maven.apache.org/index.html
https://maven.apache.org/index.html
https://maven.apache.org/index.html
https://maven.apache.org/index.html
https://maven.apache.org/index.html
https://maven.apache.org/index.html
https://maven.apache.org/index.html
https://maven.apache.org/index.html
https://maven.apache.org/index.html
https://maven.apache.org/index.html
https://maven.apache.org/index.html
https://maven.apache.org/index.html
https://maven.apache.org/index.html
https://www.packtpub.com/application-development/apache-maven-cookbook
https://www.packtpub.com/application-development/apache-maven-cookbook
https://www.packtpub.com/application-development/apache-maven-cookbook
https://www.packtpub.com/application-development/apache-maven-cookbook
https://www.packtpub.com/application-development/apache-maven-cookbook
https://www.packtpub.com/application-development/apache-maven-cookbook
https://www.packtpub.com/application-development/apache-maven-cookbook
https://www.packtpub.com/application-development/apache-maven-cookbook
https://www.packtpub.com/application-development/apache-maven-cookbook
https://www.packtpub.com/application-development/apache-maven-cookbook
https://www.packtpub.com/application-development/apache-maven-cookbook
https://www.packtpub.com/application-development/apache-maven-cookbook
https://www.packtpub.com/application-development/apache-maven-cookbook
https://www.packtpub.com/application-development/apache-maven-cookbook
https://www.packtpub.com/application-development/apache-maven-cookbook
https://www.packtpub.com/application-development/apache-maven-cookbook
https://www.packtpub.com/application-development/apache-maven-cookbook
https://www.packtpub.com/application-development/apache-maven-cookbook
https://www.packtpub.com/application-development/apache-maven-3-cookbook
https://www.packtpub.com/application-development/apache-maven-3-cookbook
https://www.packtpub.com/application-development/apache-maven-3-cookbook
https://www.packtpub.com/application-development/apache-maven-3-cookbook
https://www.packtpub.com/application-development/apache-maven-3-cookbook
https://www.packtpub.com/application-development/apache-maven-3-cookbook
https://www.packtpub.com/application-development/apache-maven-3-cookbook
https://www.packtpub.com/application-development/apache-maven-3-cookbook
https://www.packtpub.com/application-development/apache-maven-3-cookbook
https://www.packtpub.com/application-development/apache-maven-3-cookbook
https://www.packtpub.com/application-development/apache-maven-3-cookbook
https://www.packtpub.com/application-development/apache-maven-3-cookbook
https://www.packtpub.com/application-development/apache-maven-3-cookbook
https://www.packtpub.com/application-development/apache-maven-3-cookbook
https://www.packtpub.com/application-development/apache-maven-3-cookbook
https://www.packtpub.com/application-development/apache-maven-3-cookbook
https://www.packtpub.com/application-development/apache-maven-3-cookbook
https://www.packtpub.com/application-development/apache-maven-3-cookbook
https://www.packtpub.com/application-development/apache-maven-3-cookbook
https://www.packtpub.com/application-development/apache-maven-3-cookbook
https://www.packtpub.com/application-development/getting-started-apache-maven-video
https://www.packtpub.com/application-development/getting-started-apache-maven-video
https://www.packtpub.com/application-development/getting-started-apache-maven-video
https://www.packtpub.com/application-development/getting-started-apache-maven-video
https://www.packtpub.com/application-development/getting-started-apache-maven-video
https://www.packtpub.com/application-development/getting-started-apache-maven-video
https://www.packtpub.com/application-development/getting-started-apache-maven-video
https://www.packtpub.com/application-development/getting-started-apache-maven-video
https://www.packtpub.com/application-development/getting-started-apache-maven-video
https://www.packtpub.com/application-development/getting-started-apache-maven-video
https://www.packtpub.com/application-development/getting-started-apache-maven-video
https://www.packtpub.com/application-development/getting-started-apache-maven-video
https://www.packtpub.com/application-development/getting-started-apache-maven-video
https://www.packtpub.com/application-development/getting-started-apache-maven-video
https://www.packtpub.com/application-development/getting-started-apache-maven-video
https://www.packtpub.com/application-development/getting-started-apache-maven-video
https://www.packtpub.com/application-development/getting-started-apache-maven-video
https://www.packtpub.com/application-development/getting-started-apache-maven-video
https://www.packtpub.com/application-development/getting-started-apache-maven-video
https://www.packtpub.com/application-development/getting-started-apache-maven-video
https://www.packtpub.com/application-development/getting-started-apache-maven-video
https://www.packtpub.com/application-development/getting-started-apache-maven-video

Migrating Applications to Java 9

[132]

Summary
In this chapter, we explored potential issues involved in migrating our existing applications
to the Java 9 platform. We looked at both manual and semi-automated migration processes.
This chapter provided you with insights and processes to get your Java 8 code working
with Java 9. Specifically, we conducted a quick review of Project Jigsaw, looked at how
modules fit into the Java landscape, provided tips for migration planning, shared advice
from Oracle regarding migration, and shared tools that you can use to help you as you get
started with Java 9.

In the next chapter, we will take a close look at the Java shell and the JShell API. We
demonstrate the JShell API and the JShell tool's ability to interactively evaluate declarations,
statements, and expressions of the Java programming language. We will demonstrate
features and use of this command-line tool.

6
Experimenting with the Java

Shell
In the previous chapter, we explored how to migrate pre-Java 9 applications to the new Java
platform. We examined several issues that might cause your current applications to have
problems running on Java 9. We started with a review of Project Jigsaw and then looked at
how modules fit into the new Java platform. We provided you with insights and processes
to get your Java 8 code working with Java 9. Specifically, we provided tips for migration
planning, shared advice from Oracle regarding migration, and shared tools that you can use
to help you as you get started with Java 9.

In this chapter, we will take our first look at the new command line, read-eval-print loop
(also referred to as REPL) tool in Java 9, the Java Shell (JShell). We will start with
introductory information regarding the tool, the read-eval-print loop concept, and move
into the commands and command-line options for use with JShell. We will take a
practitioner's approach to our review of the Java Shell and include examples you can try on
your own.

The following topics are covered in this chapter:

What is JShell?
Getting started with JShell
Practical uses of JShell
Working with scripts

Experimenting with the Java Shell

[134]

What is JShell?
JShell is a new tool introduced with Java 9. It is an interactive read-eval-print loop tool that
is used to evaluate the following Java programming language components--declarations,
statements, and expressions. It has its own API so that it can be used by external
applications.

Read-Eval-Print Loop is often referred to as REPL, taking the first letter
from each word in the phrase. It is also knows language shell or
interactive top-level.

The introduction of JShell was a result of Java Enhancement Program (JEP) 222. Here are
the stated goals of this JEP in regards to the Java Shell command-line tool:

Facilitate rapid investigation
Facilitate rapid coding
Provide an edit history

The rapid investigation and coding listed previously includes statements and expressions.
Impressively, these statements and expressions do not need to be part of a method.
Furthermore, variables and methods are not required to be part of a class, making this tool
especially dynamic.

In addition, the following listed features were included to make JShell much easier to use
and to make your time using JShell as time-efficient as possible:

Tab-completion
Auto-completion for end-of-statement semicolons
Auto-completion for imports
Auto-completion for definitions

Getting Started with JShell
JShell is a command-line tool that is located in the /bin folder. The syntax for this tool is
jshell <options> <load files>. As you can see here, there are several options that
can be used with this tool:

Experimenting with the Java Shell

[135]

You have already seen the -h option, that we executed with jshell -h. This provided the
listing of JShell options.

To log into your JShell, you simply use the jshell command. You will see that the prompt
in the command window changes accordingly:

Experimenting with the Java Shell

[136]

Exiting the shell is as easy as entering /exit. Once inside the JShell, you can enter any of
the following commands:

Command Functionality

/drop Use this command to delete a source entry that is referenced by name or id.
Here is the syntax:
 /drop <name or id>

/edit With this command, you can edit a source entry using a name or id reference.
Here is the syntax:
 /edit <name or id>

/env This powerful command allows you to view or change the evaluation context.
Here is the syntax:
 /env [-class-path <path>] [-module-path <path>]
 [-add-modules <modules]

/exit This command is used to exit the JShell. The syntax is simply /exit without
any options or parameters available.

/history The history command provides a history of what you have typed. The syntax
is simply /history without any options or parameters available.

/<id> This command is used to rerun a previous snippet by referencing the id. Here
is the syntax: /<id>
You can also run a specific snippet by referencing the nth previous snippet with
/-<n>.

/imports You can use this command to list the imported items. The syntax is /imports
and it does not accept any options or parameters.

/list This command will list the source you typed. Here is the syntax:
 /list [<name or id> | -all | -start]

/methods This command lists all declared methods as well as their signatures. Here is
the syntax:
 /methods [<name or id> | -all | -start]

/open Using this command, you can open a file as source input. Here is the syntax:
 /open <file>

/reload The reload command gives you the ability to reset and replay relevant history.
Here is the syntax:
 /reload [-restore] [-quiet] [-class-path
 <path>] [-module-path <path>]

Experimenting with the Java Shell

[137]

/reset This command resets the JShell. Here is the syntax:
 /reset [-class-path <path>] [-module-path
 <path>] [-add-modules <modules]

/save This command saves the snippet source to a file specified by you. Here is the
syntax:
 /save [-all | -history | -start] <file>

/set This command is used to set the JShell configuration information. Here is the
syntax:
 /set editor | start | feedback | mode | prompt |
 truncation | format

/types This command simply lists declared types. Here is the syntax:
 /types [<name or id> | -all | -start]

/vars This command lists all declared variables as well as their values. Here is the
syntax:
 /vars [<name or id> | -all | -start]

/! This command will rerun the last snippet. The syntax is simply /!

Several of the previously listed commands use the term snippet. In the
context of Java 9 and JShell, a snippet is one of the following:
- ClassDeclaration
- Expression
- FieldDeclaration
- ImportDeclaration
- InterfaceDeclaration
- MethodDeclaration

Experimenting with the Java Shell

[138]

Entering the /help or /? command in the JShell provides a complete list of commands and
syntax that can be used in the shell. That list is provided as follows:

Experimenting with the Java Shell

[139]

The /help command can be especially helpful if you are still new to JShell. As you can see
in the following screenshot, we can obtain an introduction to JShell by simply entering the
/help intro command:

If you find yourself using JShell often you might benefit from one or more of the following
listed shortcuts. These can be listed at any time from within JShell by using the /help
shortcuts command:

Experimenting with the Java Shell

[140]

Additional help can be obtained from within the JShell by using the /help command
followed by the command you want additional help on. For example, entering /help
reload provides detailed information regarding the /reload command. That information
is provided as follows:

Practical uses of JShell
Whether you are a new or seasoned developer or just new to Java, you are bound to find the
JShell very useful. In this section, we will look at some practical uses of JShell. Specifically,
we will cover:

Feedback modes
Listing your assets
Editing in the JShell

Experimenting with the Java Shell

[141]

Feedback modes
Command-line tools usually provide relatively sparse feedback in an effort to not
overcrowd the screen or otherwise become a nuisance to developers. JShell has several
feedback modes in addition to giving developers the ability to create their own custom
modes.

As you can see from the following screenshot, there are four feedback modes--concise,
normal, silent, and verbose. Here, we entered the /set feedback command without
any parameters to list the feedback modes as well as to identify what the current feedback
mode is. The first line of output displays the command-line command and argument set
that would be used to set the mode to the currently set mode. So, in the following
screenshot, the current feedback mode is set to verbose and the other three modes are
listed:

We can dictate which mode we want to enter when we first enter JShell by including an
option when we launch JShell. Here are the command-line options:

Command-line command and option Feedback mode

jshell -q concise

jshell -n normal

jshell -s silent

jshell -v verbose

You will notice that we use -q for concise mode instead of -c. The -c option has the -
c<flag> syntax and is used to pass <flag> to the compiler.

Experimenting with the Java Shell

[142]

The best way to review the differences between the feedback modes is to use examples.
Starting with the normal mode, we will execute command-line commands to accomplish
the following ordered feedback demonstration:

Create a variable.1.
Update the variable's value.2.
Create a method.3.
Update the method.4.
Run the method.5.

To start our first test, we will execute the /set feedback normal command at the
jshell> prompt, which sets the JShell feedback mode to normal. After entering the
normal feedback mode, we will enter the necessary commands to run our demonstration:

Experimenting with the Java Shell

[143]

After entering normal feedback mode, we entered int myVar = 3 to and received myVar
==> 3 as feedback. In our next command, we changed the value of the same variable and
received the same output with the new value. Our next statement, void quickMath()
{System.out.println("Your result is " + (x*30 + 19));}, used a variable that
was not declared and you see the resulting two-part feedback--one part indicating that the
method was created and the other to inform that the method cannot be invoked until the
undeclared variable is declared. Next, we changed our method to include the myVar
variable and the feedback reported that the method was modified. Our last step was to run
the method using quickMath(); and the results are as we expected.

Let's try this same feedback demonstration in concise mode:

As you can see from the preceding screenshot, the concise feedback mode provides us
with much less feedback. We created and modified the variables and received no feedback.
When we created the method with an undeclared variable, we received the same feedback
that we did in normal mode. We updated the method without confirmation or other
feedback.

Experimenting with the Java Shell

[144]

Our next use of the feedback demonstration will be in silent mode:

When we entered silent feedback mode, as you can see in the preceding screenshot, the
JShell prompt changed from jshell> to ->. There was no feedback provided when we
created the myVar variable, modified the myVar variable, or created the quickMath()
method. We intentionally created the quickMath() method to use an undeclared variable.
Because we were in silent feedback mode, we were not informed that the method had an
undeclared variable. Based on this lack of feedback, we ran the method and were not
provided any output or feedback. Next, we updated the method to include the myVar
declared variable and then ran the method.

The silent feedback mode might seem pointless as no feedback is
provided, but there is a great utility with this mode. Using the silent
mode might be appropriate for pipelining or simply when you want to
minimize the amount of terminal output. You can include specific,
conditional, outputs with implicit System.out.println commands, as
an example.

Experimenting with the Java Shell

[145]

Our last use of the feedback demonstration is in verbose feedback mode. This feedback
mode, as you would assume from its name, provides the most amount of feedback. Here
are our test results:

In our feedback demonstration, using verbose feedback mode, we receive a bit more
feedback as well as a nicer format for the feedback.

Experimenting with the Java Shell

[146]

Creating a custom feedback mode
While the internal feedback modes (normal, concise, silent, and verbose) cannot be
modified, you can create your own custom feedback mode. The first step in this process is
to copy an existing mode. The following example demonstrates how to copy the verbose
mode to a myCustom mode with the /set mode myCustom verbose -command
command string:

We used the -command option to ensure we would receive the command feedback. You can
make various changes to your feedback mode using the /set command along with one of
the options listed in the following screenshot:

Experimenting with the Java Shell

[147]

As an example, let's walk through the truncation setting that mandates how many
characters are displayed on each output line. Using the /set truncation command, as
illustrated in the following screenshot, shows the current truncation settings:

As you can see, our myCustom feedback mode has a truncation of 80. We will change that to
60 with the /set truncation myCustom 60 command and then use the /set
truncation command for verification:

As you can see in the previous screenshot, the truncation for our myCustom feedback mode
was successfully changed from the 80 inherited from the verbose mode to 60, based on
our use of the /set truncation myCustom 60 JShell command.

Experimenting with the Java Shell

[148]

Listing your assets
There are a few JShell commands that are convenient for listing assets that you have
created. Using the feedback demonstration from the previous section, we executed the
/vars, /methods, and /list commands to provide a list of variables, methods, and all
sources respectively:

We can also use the /list -all command and option combination to see what packages
the JShell imported. As you can see in the following screenshot, JShell imported several
packages that make our work within the shell more convenient, saving us time from having
to import these standard packages in our methods:

Experimenting with the Java Shell

[149]

If you just want to list the startup imports, you can use the /list -start command and
option combination. As you can see in the following screenshot, each start up import has an
"s" prefix and is numerically ordered:

Editing in the JShell
JShell is not a full-featured text editor, but there are several things you can do within the
shell. This section provides you with the editing techniques grouped into modifying text,
basic navigation, historical navigation, and advanced editing commands.

Modifying text
The default text edit/entry mode is that the text you type will appear at the current cursor
position. You have several options available to you when you want to delete text. Here is a
complete list:

Delete action PC keyboard
combination

Mac keyboard
combination

Delete the character at the current cursor location Delete Delete

Delete the character to the left of the cursor Backspace Backspace

Delete the text from the cursor location to the end
of the line

Ctrl + K Cmd + K

Delete the text from the cursor location to the end
of the current word

Alt + D Alt/Opt + D

Experimenting with the Java Shell

[150]

Delete from the cursor location to the previous
white space

Ctrl + W Cmd + W

Paste the most recently deleted text at the cursor
location

Ctrl + Y Cmd + Y

When the Ctrl + Y (or Cmd + Y on Mac) is used, you
will be able to use the Alt + Y keyboard
combination to cycle through previously deleted
text

Alt + Y Alt/Opt + Y

Basic navigation
While navigational control inside the JShell is similar to most command-line editors, it is
helpful to have a list of basic navigational controls:

Key/Key combination Navigation action

Left arrow Move backward one character

Right arrow Move forward one character

Up arrow Move up one line through history

Down arrow Move down one line forward through history

Return Enter (submit) the current line

Ctrl + A (cmd - A on Mac) Jump to the beginning of the current line

Ctrl + E (cmd - E on Mac) Jump to the end of the current line

Alt + B Jump back one word

Alt + F Jump forward one word

Historical navigation
JShell remembers the snippets and commands that you enter. It maintains this history so
that you can reuse snippets and commands you already entered. To cycle through snippets
and commands, you can hold down the Ctrl key (cmd on Mac) and then use the up and
down arrow keys until you see the snippet or command you want.

Experimenting with the Java Shell

[151]

Advanced editing commands
There are several more editing options to include search functionality, macros creation and
use, and more. JShell's editor is based on JLine2, a Java library for parsing console input and
editing. You can learn more about JLine2 at this URL: https:/ ​/​github. ​com/ ​jline/ ​jline2/
wiki/​JLine-​2.​x-​Wiki.

Working with scripts
Up to this point, you have entered data directly into JShell from the keyboard. You also
have the ability to work with JShell scripts which are a sequence of JShell commands and
snippets. The format is the same as other scripting formats with one command per line.

In this section, we will look at start up scripts, examine how to load scripts, how to save
scripts, and then end with a look at advanced scripting with JShell.

Start up scripts
Each time the JShell is launched, the start up scripts are loaded. This also occurs each time
the /reset, /reload, and /env commands are used.

By default, the DEFAULT start up script is used by JShell. If you want to use a different
start up script, you merely need to use the /set start <script> command. Here is an
example--/set start MyStartupScript.jsh. Alternatively, you can use the jshell --
start MyStartupScript.jsh command at the Command Prompt to launch JShell and
load the MyStartupScript.jsh JShell start up script.

When you use the /set start <script> command with the -retain option, you are
telling JShell to use the new start up script the next time you launch JShell.

https://github.com/jline/jline2/wiki/JLine-2.x-Wiki
https://github.com/jline/jline2/wiki/JLine-2.x-Wiki
https://github.com/jline/jline2/wiki/JLine-2.x-Wiki
https://github.com/jline/jline2/wiki/JLine-2.x-Wiki
https://github.com/jline/jline2/wiki/JLine-2.x-Wiki
https://github.com/jline/jline2/wiki/JLine-2.x-Wiki
https://github.com/jline/jline2/wiki/JLine-2.x-Wiki
https://github.com/jline/jline2/wiki/JLine-2.x-Wiki
https://github.com/jline/jline2/wiki/JLine-2.x-Wiki
https://github.com/jline/jline2/wiki/JLine-2.x-Wiki
https://github.com/jline/jline2/wiki/JLine-2.x-Wiki
https://github.com/jline/jline2/wiki/JLine-2.x-Wiki
https://github.com/jline/jline2/wiki/JLine-2.x-Wiki
https://github.com/jline/jline2/wiki/JLine-2.x-Wiki
https://github.com/jline/jline2/wiki/JLine-2.x-Wiki
https://github.com/jline/jline2/wiki/JLine-2.x-Wiki
https://github.com/jline/jline2/wiki/JLine-2.x-Wiki
https://github.com/jline/jline2/wiki/JLine-2.x-Wiki
https://github.com/jline/jline2/wiki/JLine-2.x-Wiki
https://github.com/jline/jline2/wiki/JLine-2.x-Wiki

Experimenting with the Java Shell

[152]

Loading scripts
Loading scripts in the JShell can be accomplished with one of the following methods:

You can use the /open command along with the name of the script as a
parameter. For example, if our script name is MyScript, we would use /open
MyScript.
A second option for loading scripts is to use the jshell MyScript.jsh at the
Command Prompt. This will launch JShell and load the MyScript.jsh JShell
script.

Saving scripts
In addition to creating JShell scripts in external editors, we can create them within the JShell
environment as well. When taking this approach, you will need to use the /save command
to save your scripts. As you can see in the following screenshot, the /save command
requires, at a minimum, a file name argument:

There are three options available to you with the /save command:

The -all option can be used to save the source of all snippets to the specified file.
The -history option saves a sequential history of all commands and snippets
you entered since JShell was launched. JShell's ability to perform this operation
informs you that it maintains a history of everything you enter.
The -start option saves the current start up definitions to the specified file.

Experimenting with the Java Shell

[153]

Advanced scripting with JShell
What are the limits of JShell? There is so much you can do with this tool, and you are
virtually only limited by your imagination and programming abilities.

Let's look at an advanced code base that can be used to compile and run Java programs
from a JShell script:

 import java.util.concurrent.*
 import java.util.concurrent.*
 import java.util.stream.*
 import java.util.*

 void print2Console(String thetext)
 {
 System.out.println(thetext);
 System.out.println("");
 }

 void runSomeProcess(String... args) throws Exception
 {
 String theProcess =
 Arrays.asList(args).stream().collect(
 Collectors.joining(" "));
 print2Console("You asked me to run: '"+theProcess+"'");
 print2Console("");
 ProcessBuilder compileBuilder = new
 ProcessBuilder(args).inheritIO();
 Process compileProc = compileBuilder.start();
 CompletableFuture<Process> compileTask =
 compileProc.onExit();
 compileTask.get();
 }

 print2Console("JShell session launched.")
 print2Console("Preparing to compile Sample.java. . . ")

 // run the Java Compiler to complete Sample.java
 runSomeProcess("javac", "Sample.java")
 print2Console("Compilation complete.")
 print2Console("Preparing to run Sample.class...")

 // run the Sample.class file
 runSomeProcess("java", "Sample")
 print2Console("Run Cycle compete.")

 // exit JShell

Experimenting with the Java Shell

[154]

 print2Console("JShell Termination in progress...)
 print2Console("Session ended.")

 /exit

As you can see with this script, we created a runSomeProcess() method and can use it to
explicitly compile and run external Java files.

Summary
In this chapter, we examined JShell, Java 9's new read-eval-print loop command-line tool.
We started with introductory information regarding the tool and looked closely at the read-
eval-print loop concept. We spent considerable time reviewing JShell commands and
command-line options. Our coverage included practical guides to feedback modes, asset
listing, and editing in the shell. We also gained experience working with scripts.

In the next chapter, we will look at Java 9's new default garbage collector. Specifically, we
will look at the default garbage collection, depreciated garbage collection combinations, and
examine garbage collection logging.

7
Leveraging the New Default G1

Garbage Collector
In the previous chapter, we examined Java Shell (JShell), Java 9's new read-eval-print loop
(REPL) command-line tool. We started with introductory information regarding the tool
and looked closely at the read-eval-print loop concept. We spent considerable time
reviewing JShell commands and command-line options. Our coverage included practical
guides to feedback modes, asset listing, and editing in the shell. We also gained experience
working with scripts.

In this chapter, we will take an in-depth look at garbage collection and how it is handled in
Java 9. We will start with an overview of garbage collection, and then look at specifics in the
pre-Java 9 realm. Armed with that foundational information, we will look at specific
garbage collection changes in the Java 9 platform. Lastly, we will look at some garbage
collection issues that persist, even after Java 9.

The following topics are covered in this chapter:

Overview of garbage collection
The pre-Java 9 garbage collection schema
Collecting garbage with the new Java platform
Persistent issues

Leveraging the New Default G1 Garbage Collector

[156]

Overview of garbage collection
Garbage collection is the mechanism used in Java to deallocate unused memory. Essentially,
when an object is created, memory space is allocated and dedicated to that object until it no
longer has any references pointing to it. At that time, the system deallocates the memory.
Java performs this garbage collection automatically for us, which can lead to a lack of
attention to memory usage and poor programming practices in the area of memory
management and system performance.

Java's garbage collection is considered an automatic memory management schema because
programmers do not have to designate objects as ready to be deallocated. The garbage
collection runs on a low-priority thread and, as you will read later in this chapter, has
variable execution cycles.

In our overview of garbage collection, we will look at the following concepts:

Object life cycle
Garbage collection algorithms
Garbage collection options
Java methods relevant to garbage collection

We will look at each of these concepts in the sections that follow.

Object life cycle
In order to fully understand Java's garbage collection, we need to look at the entire life cycle
of an object. Because the core of garbage collection is automatic in Java, it is not uncommon
to see the terms garbage collection and memory management as assumed components of the
object life cycle.

We will start our review of the object life cycle with object creation.

Object creation
Objects are declared and created. When we write an object declaration, or declare an object,
we are declaring a name or identifier so that we can refer to an object. For example, the
following line of code declares myObjectName as the name of an object of type
CapuchinMonkey. At this point, no object was created and no memory allocated for it:

 CapuchinMonkey myObjectName;

Leveraging the New Default G1 Garbage Collector

[157]

We use the new keyword to create an object. The following example illustrates how to
invoke the new operation to create an object. This operation results in:

 myObjectName = new CapuchinMonkey();

Of course, we can combine the declaration and creation statements together by using
CapuchinMonkey myObjectName = new CapuchinMonkey(); instead of
CapuchinMonkey myObjectName; and myObjectName = new CapuchinMonkey();.
They were separated in the preceding example for illustrative purposes.

When an object is created, a specific amount of memory is allocated for storing that object.
The amount of memory allocated can differ based on architecture and JVM.

Next look at the mid-life of an object.

Object mid-life
Objects are created and Java allocates system memory for storing that object. If the object is
not used, the memory allocated to it is considered wasted. This is something we want to
avoid. Even with small applications, this type of wasted memory can lead to poor
performance and even out-of-memory issues.

Our goal is to deallocate or release the memory, any previously allocated memory that we
no longer need. Fortunately, with Java, there is a mechanism for handling this issue. It is
called garbage collection.

When an object, such as our myObjectName example, no longer has any references pointing
to it, the system will reallocate the associated memory.

Object destruction
The idea of Java having a garbage collector running in the dark shadows of your code
(usually a low-priority thread) and deallocating memory currently allocated to
unreferenced objects, is appealing. So, how does this work? The garbage collection system
monitors objects and, as feasible, counts the number of references to each object.

When there are no references to an object, there is no way to get to it with the currently
running code, so it makes perfect sense to deallocate the associated memory.

Leveraging the New Default G1 Garbage Collector

[158]

The term memory leak refers to small memory chunks to be lost or
improperly deallocated. These leaks are avoidable with Java's garbage
collection.

Garbage collection algorithms
There are several garbage collection algorithms, or types, for use by the Java virtual
machine. In this section, we will cover the following garbage collection algorithms:

Mark and sweep
CMS garbage collection
Serial garbage collection
Parallel garbage collection
G1 garbage collection

Mark and sweep
Java's initial garbage collection algorithm, mark and sweep, used a simple two-step process:

Java first step, mark, is to step through all objects that have accessible references,1.
marking those objects as alive.
The second step, sweep, involves scanning the sea for any object that is not2.
marked.

As you can readily determine, the mark and sweep algorithm seems effective, but probably
not very efficient due to the two-step nature of this approach. This eventually lead to a Java
garbage collection system with vastly improved efficiencies.

Concurrent mark sweep (CMS) garbage collection
The concurrent mark sweep (CMS) algorithm for garbage collection scans heap memory
using multiple threads. Similar to the mark and sweep method, it marks objects for removal
and then makes a sweep to actually remove those objects. This method of garbage collection
is essentially an upgraded mark and sweep method. It was modified to take advantage of
faster systems and had performance enhancements.

Leveraging the New Default G1 Garbage Collector

[159]

To manually invoke the concurrent mark sweep garbage collection algorithm for your
application, use the following command-line option:

-XX:+UseConcMarkSweepGC

If you want to use the concurrent mark sweep garbage collection algorithm and dictate the
number of threads to use, you can use the following command-line option. In the following
example, we are telling the Java platform to use the concurrent mark sweep garbage
collection algorithm with eight threads:

-XX:ParallelCMSThreads=8

Serial garbage collection
Java's serial garbage collection works on a single thread. When executing, it freezes all other
threads until garbage collection operations have concluded. Due to the thread-freezing
nature of serial garbage collection, it is only feasible for very small programs.

To manually invoke the serial garbage collection algorithm for your application, use the
following command-line option:

-XX:+UseSerialGC

Parallel garbage collection
Prior to Java 9, the parallel garbage collection algorithm was the default garbage collector. It
uses multiple threads but freezes all non-garbage collection threads in the application until
garbage collection functions have completed, just like the serial garbage collection
algorithm.

G1 garbage collection
The G1 garbage collection algorithm was created for use with large memory heaps. This
approach involves segmenting the memory heap into regions. Garbage collection, using the
G1 algorithm, takes place in parallel with each heap region.

Another part of the G1 algorithm is that when memory is deallocated, the heap space is
compacted. Unfortunately, the compacting operation takes place using the Stop the World
approach.

The G1 garbage collection algorithm also prioritizes the regions based on those that have
the most garbage to be collected.

Leveraging the New Default G1 Garbage Collector

[160]

The G1 name refers to Garbage First.

To manually invoke the G1 garbage collection algorithm for your application, use the
following command-line option:

-XX:+UseG1GC

Garbage collection options
Here is a list of JVM sizing options:

Sizing description JVM option flag

Sets the initial heap size (young space plus tenured
space).

-XX:InitialHeapSize=3g

Sets the maximum heap size (young space plus tenured
space).

-XX:MaxHeapSize=3g

Sets the initial and maximum heap size (young space plus
tenured space).

-Xms2048m -Xmx3g

Sets the initial size of young space. -XX:NewSize=128m

Sets the maximum size of young space. -XX:MaxNewSize=128m

Sets young space size. Uses ration of young verses
tenured space. In the sample flag to the right, 3 means
that young space will be three times smaller than tenured
space.

-XX:NewRation=3

Sets the size of single survivor space as a portion of Eden
space size.

-XX:SurvivorRatio=15

Sets the initial size of the permanent space. -XX:PermSize=512m

Sets the maximum size of the permanent space. -XX:MaxPermSize=512m

Sets the size of the stack area dedicated to each thread in
bytes.

-Xss512k

Sets the size of the stack area dedicated to each thread in
Kbytes.

-XX:ThreadStackSize=512

Leveraging the New Default G1 Garbage Collector

[161]

Sets the maximum size of off-heap memory available to
the JVM.

-XX:MaxDirectMemorySize=3g

Here is a list of young garbage collection options:

Young garbage collection tuning option Flag

Sets the initial value for the number of collections
before an object will be promoted from young to
tenured space. This is referred to as the tenuring
threshold.

-XX:Initial\TenuringThreshold=16

Sets the maximum value for tenuring threshold. -XX:Max\TenuringThreshold=30

Sets the maximum object size allowed to be
allocated in young space. If an object is larger
than the maximum size it will be allocated to
tenured space and bypass young space.

-XX:Pretenure\SizeThreshold=3m

This can be used to promote all young objects
surviving the young collection to tenured space.

-XX:+AlwaysTenure

With this tag, objects from young space never get
promoted to tenured space as long as the survivor
space has sufficient room for them.

-XX:+NeverTenure

We can indicate that we want to use thread local
allocation blocks in the young space. This is
enabled by default.

-XX:+UseTLAB

Toggle this to allow the JVM to adaptively resize
the TLAB (Thread Local Allocation Blocks) for
threads.

-XX:+ResizeTLAB

Sets the initial size of TLAB for a thread. -XX:TLABSize=2m

Sets the minimum allowable size of TLAB. -XX:MinTLABSize=128k

Leveraging the New Default G1 Garbage Collector

[162]

Here is a list of concurrent mark sweep (CMS) tuning options:

CMS tuning option Flag

Indicates that you want to
solely use occupancy as a
criterion for starting a
CMS collection operation.

-XX:+UseCMSInitiating\OccupancyOnly

Sets the percentage CMS
generation occupancy to
start a CMS collection
cycle. If you indicate a
negative number, you are
telling the JVM you want
to use
CMSTriggerRatio.

-XX:CMSInitiating\OccupancyFraction=70

Sets the percentage CMS
generation occupancy that
you want to initiate a
CMS collection for
bootstrapping collection
statistics.

-XX:CMSBootstrap\Occupancy=10

This is the percentage of
MinHeapFreeRatio in
CMS generation that is
allocated prior to a CMS
cycle starts.

-XX:CMSTriggerRatio=70

Sets the percentage of
MinHeapFreeRatio in
the CMS permanent
generation that is
allocated before starting a
CMS collection cycle.

-XX:CMSTriggerPermRatio=90

This is the wait duration
after a CMS collection is
triggered. Use the
parameter to specify how
long the CMS is allowed
to wait for young
collection.

-XX:CMSWaitDuration=2000

Leveraging the New Default G1 Garbage Collector

[163]

Enables parallel remark. -XX:+CMSParallel\RemarkEnabled

Enables parallel remark of
survivor space.

-XX:+CMSParallel\SurvivorRemarkEnabled

You can use this to force
young collection before
the remark phase.

-XX:+CMSScavengeBeforeRemark

Use this to prevent
scheduling remark if
Eden used is below the
threshold value.

-XX:+CMSScheduleRemark\EdenSizeThreshold

Sets the Eden occupancy
percentage that you want
CMS to try and schedule a
remark pause.

-XX:CMSScheduleRemark\EdenPenetration=20

This is where you want to
start sampling Eden top at
least before young
generation occupancy
reaches 1/4th (in our
sample to the right) of the
size at which you want to
schedule remark.

-XX:CMSScheduleRemark\SamplingRatio=4

You can select
variant=1 or
variant=2 of
verification following
remark.

-XX:CMSRemarkVerifyVariant=1

Elects to use the parallel
algorithm for young space
collection.

-XX:+UseParNewGC

Enables the use of
multiple threads for
concurrent phases.

-XX:+CMSConcurrentMTEnabled

Sets the number of
parallel threads used for
the concurrent phases.

-XX:ConcGCThreads=2

Leveraging the New Default G1 Garbage Collector

[164]

Sets the number of
parallel threads you want
used for stop-the-world
phases.

-XX:ParallelGCThreads=2

You can enable
incremental CMS (iCMS)
mode.

-XX:+CMSIncrementalMode

If this is not enabled, CMS
will not clean permanent
space.

-XX:+CMSClassUnloadingEnabled

This allows
System.gc() to trigger
concurrent collection
instead of a full garbage
collection cycle.

-XX:+ExplicitGCInvokes\Concurrent

This allows
System.gc() to trigger
concurrent collection of
permanent space.

‑XX:+ExplicitGCInvokes\ConcurrentAndUnloadsClasses

iCMS (incremental concurrent mark sweep) mode is intended for servers
with a small number of CPUs. It should not be employed on modern
hardware.

Here are some miscellaneous garbage collection options:

Miscellaneous garbage collection options Flag

This will cause the JVM to ignore any
System.gc() method invocations by an
application.

-XX:+DisableExplicitGC

This is the (soft reference) time to live in
milliseconds per MB of free space in the heap.

-XX:SoftRefLRU\PolicyMSPerMB=2000

This is the use policy used to limit the time
spent in garbage collection before an
OutOfMemory error is thrown.

-XX:+UseGCOverheadLimit

Leveraging the New Default G1 Garbage Collector

[165]

This limits the proportion of time spent in
garbage collection before an OutOfMemory
error is thrown. This is used with
GCHeapFreeLimit.

-XX:GCTimeLimit=95

This sets the minimum percentage of free space
after a full garbage collection before an
OutOfMemory error is thrown. This is used with
GCTimeLimit.

-XX:GCHeapFreeLimit=5

Finally, here are some G1 specific options. Note that, these are all supported starting with
JVM 6u26:

G1 garbage collection options Flag

Size of the heap region. The default is 2,048 and the
acceptable range is 1 MiB to 32 MiB.

-XX:G1HeapRegionSize=16m

This is the confidence coefficient pause prediction
heuristics.

-XX:G1ConfidencePercent=75

This determines the minimum reserve in the heap. -XX:G1ReservePercent=5

This is the garbage collection time per MMU--time
slice in milliseconds.

-XX:MaxGCPauseMillis=100

This is the pause interval time slice per MMU in
milliseconds.

-XX:GCPauseIntervalMillis=200

MiB stands for Mebibyte which is a multiple of bytes for digital
information.

Java methods relevant to garbage collection
Let's look at two specific methods associated with garbage collection.

Leveraging the New Default G1 Garbage Collector

[166]

The System.gc() method
Although garbage collection is automatic in Java, you can make explicit calls to the
java.lang.System.gc() method to aid in the debugging process. This method does not
take any parameters and does not return any value. It is an explicit call that runs Java's
garbage collector. Here is a sample implementation:

 System.gc();
 System.out.println("Garbage collected and unused
 memory has been deallocated.");

Let's look at a more in-depth example. In the following code, we start by creating an
instance of the Runtime, using Runtime myRuntime = Runtime.getRuntime(); which
returns a singleton. This gives us access to the JVM. After printing some header information
and initial memory stats, we create an ArrayList with a size of 300000. Then, we create a
loop that generates 100000 array list objects. Lastly, we provide output in three passes,
asking the JVM to invoke the garbage collector with 1 second pauses in between. Here is the
source code:

 package MyGarbageCollectionSuite;

 import java.util.ArrayList;
 import java.util.concurrent.TimeUnit;

 public class GCVerificationTest
 {
 public static void main(String[] args) throws
 InterruptedException
 {
 // Obtain a Runtime instance (to communicate
 with the JVM)
 Runtime myRuntime = Runtime.getRuntime();

 // Set header information and output initial
 memory stats
 System.out.println("Garbage Collection
 Verification Test");
 System.out.println("-----------------------------
 -----------------------------");
 System.out.println("Initial JVM Memory: " +
 myRuntime.totalMemory() +
 "\tFree Memory: " + myRuntime.freeMemory());
 // Use a bunch of memory
 ArrayList<Integer> AccountNumbers = new
 ArrayList<>(300000);
 for (int i = 0; i < 100000; i++)

Leveraging the New Default G1 Garbage Collector

[167]

 {
 AccountNumbers = new ArrayList<>(3000);
 AccountNumbers = null;
 }

 // Provide update with with three passes
 for (int i = 0; i < 3; i++)
 {
 System.out.println("---------------------------
 -----------");
 System.out.println("Free Memory before
 collection number " +
 (i+1) + ": " + myRuntime.freeMemory());
 System.gc();
 System.out.println("Free Memory after
 collection number " +
 (i+1) + ": " + myRuntime.freeMemory());
 TimeUnit.SECONDS.sleep(1); // delay thread
 1 second
 }

 }

 }

As you can see from the following output, the garbage collector did not reallocate all of the
'garbage' during the first or even the second pass:

There is an alternative to using the System.gc() method to invoke the garbage collector. In
our example, we could have used myRuntime.gc(), our earlier singleton example.

Leveraging the New Default G1 Garbage Collector

[168]

The finalize() method
You can think of Java's garbage collector as a death dealer. When it removes something
from memory, it is gone. This so-called death dealer is not without compassion as it
provides each method with their final last words. The objects give their last words through a
finalize() method. If an object has a finalize() method, the garbage collector invokes
it before the object is removed and the associated memory deallocated. The method takes no
parameters and has a return type of void.

The finalize() method is only called once and there can be variability when it is run.
Certainly, the method is invoked before it is removed, but when the garbage collector runs
is dependent on the system. If, as an example, you have a relatively small app that is
running a memory-rich system, the garbage collector might not run at all. So, why include a
finalize() method at all? It is considered poor programming practice to override the
finalize() method. That being said, you can use the method if needed. In fact, you can
add code there to add a reference to your object to ensure it is not removed by the garbage
collector. Again, this is not advisable.

Because all objects in Java, even the ones you create yourself are child classes of
java.lang.Object, every object in Java has a finalize() method.

The garbage collector, as sophisticated as it is, might not close databases, files, or network
connections the way you want it done. If your application requires specific considerations
when its objects are collected, you can override the object's finalize() method.

Here is an example implementation that demonstrates a use case for when you might want
to override an object's finalize() method:

 public class Animal
 {
 private static String animalName;
 private static String animalBreed;
 private static int objectTally = 0;

 // constructor
 public Animal(String name, String type)
 {
 animalName = name;
 animalBreed = type;

 // increment count of object
 ++objectTally;
 }

 protected void finalize()

Leveraging the New Default G1 Garbage Collector

[169]

 {
 // decrement object count each time this method
 // is called by the garbage collector
 --objectTally;

 //Provide output to user
 System.out.println(animalName + " has been
 removed from memory.");

 // condition for 1 animal (use singular form)
 if (objectTally == 1)
 {
 System.out.println("You have " + objectTally + "
 animal remaining.");
 }

 // condition for 0 or greater than 1
 animals (use plural form)
 else
 {
 System.out.println("You have " + objectTally + "
 animals remaining.");
 }

 }

 }

As you can see in the preceding code, the objectTally count is incremented each time an
object of type Animal is created and decremented when one is removed by the garbage
collector.

Overriding an object's finalize() method is usually discouraged. The
finalize() method should normally be declared as protected.

Pre-Java 9 garbage collection
Java's garbage collection is not new to Java 9, it has existed since the initial release of Java.
Java has long had a sophisticated garbage collection system that is automatic and runs in
the background. By running in the background, we are referring to garbage collection
processes running during idle times.

Leveraging the New Default G1 Garbage Collector

[170]

Idle times refer to the time in between input/output such as between
keyboard input, mouse clicks, and output generation.

This automatic garbage collection has been one of the key factors in developers selecting
Java for their programming solutions. Other programming languages such as C# and
Objective-C have implemented garbage collection following the success of the Java
platform.

Let's next take a look at the following listed concepts before we look at the changes to
garbage collection in the Java 9 platform:

Visualizing garbage collection
Garbage collection upgrades in Java 8
Case study - Games written with Java

Visualizing garbage collection
It can be helpful to visualize how garbage collection works and, perhaps more importantly,
the need for it. Consider the following code snippet that progressively creates the string
Garbage:

 001 String var = new String("G");
 002 var += "a";
 003 var += "r";
 004 var += "b";
 005 var += "a";
 006 var += "g";
 007 var += "e";
 008 System.out.println("Your completed String
 is: " + var + ".");

Clearly, the preceding code generates the output provided as follows:

 Your completed String is Garbage.

What might not be clear is that the sample code results in five unreferenced string objects.
This is due, in part, because strings are immutable. As you can see in the following
illustration, with each successive line of code, the referenced object is updated and an
additional object becomes unreferenced:

Leveraging the New Default G1 Garbage Collector

[171]

The preceding unreferenced objects listed certainly will not break the memory bank, but it
is indicative of how quickly a large number of unreferenced objects can accumulate.

Garbage collection upgrades in Java 8
As of Java 8, the default garbage collection algorithm was the parallel garbage collector.
Java 8 was released with some improvements to the G1 garbage collection system. One of
these improvements was the ability to use the following command-line option to optimize
the heap memory by removing duplicative string values:

-XX:+UseStringDeduplication

The G1 garbage collector can view the character arrays when it sees a string. It then takes
the value and stores it with a new, weak reference to the character array. If the G1 garbage
collector finds a string with the same hash code, it will compare the two strings with a
character-by-character review. If a match is found, both strings end up pointing to the same
character array. Specifically, the first string will point to the character array of the second
string.

This method can require substantial processing overhead and should only be used if
deemed beneficial or absolutely necessary.

Leveraging the New Default G1 Garbage Collector

[172]

Case study - Games written with Java
Multiplayer games require extensive management techniques, both for server and client
systems. The JVM runs the garbage collection thread in a low-priority thread and
periodically runs. Server administrators previously used an incremental garbage collection
schema using the now depreciated -Xincgc command-line option to avoid server stalls
that occur when the server is overloaded. The goal is to have garbage collection run more
frequently and with much shorter execution cycles each time.

When considering memory usage and garbage collection, it is important to
use as little memory on the target system as possible and to limit pauses
for garbage collection to the extent feasible. These tips are especially
important for games, simulations, and other applications that require real-
time performance.

The JVM manages the heap where Java memory is stored. The JVM starts with a small heap
by default and grows as additional objects are created. The heap has two partitions--young
and tenured. When objects are initially created, they are created in the young partition.
Persistent objects are moved to the tenure partition. The creation of objects is usually very
quick with not much more than pointer incrementation. Processing in the young partition is
much faster than that of the tenured partition. This is important because it applies to the
overall app, or in our case, a game's efficiency.

It becomes important for us to monitor our game's memory usage and when garbage
collection occurs. To monitor garbage collection, we can add the verbose flag (-
verbose:gc) when we launch our game such as with the following example:

java -verbose:gc MyJavaGameClass

The JVM will then provide a line of formatted output for each garbage collection. Here is
the format of the verbose GC output:

 [<TYPE> <MEMORY USED BEFORE> -> MEMORY USED AFTER
 (TOTAL HEAP SIZE), <TIME>]

Let's look at two examples. In this first example, we see GC for type which refers to the
young partition we previously discussed:

 [GC 31924K -> 29732K(42234K), 0.0019319 secs]

Leveraging the New Default G1 Garbage Collector

[173]

In this second example, Full GC indicates that the garbage collection action was taken on
the tenured partition of the memory heap:

 [Full GC 29732K -> 10911K(42234K), 0.0319319 secs]

You can obtain more detailed information from the garbage collector using the -
XX:+PrintGCDetails option as shown here:

java -verbose:gc -XX:+PrintGCDetails MyJavaGameClass

Collecting garbage with the new Java
platform
Java came out of the gate with automatic garbage collection, making it a development
platform of choice for many programmers. It was commonplace to want to avoid manual
memory management in other programming languages. We have looked in-depth at the
garbage collection system to include the various approaches, or algorithms, used by the
JVM. Java 9 includes some relevant changes to the garbage collection system and was the
focus of three Java Enhancement Program (JEP) issues. Those issues are listed here:

Default garbage collection (JEP 248)
Depreciated garbage collection combinations (JEP 214)
Unified garbage collection logging (JEP 271)

We will review each one of these garbage collection concepts and their corresponding Java
Enhancement Plan (JEP) issue in the following sections.

Default garbage collection
We previously detailed the following garbage collection approaches used by the JVM prior
to Java 9. These are still plausible garbage collection algorithms:

CMS garbage collection
Serial garbage collection
Parallel garbage collection
G1 garbage collection

Leveraging the New Default G1 Garbage Collector

[174]

Let's briefly recap each of these approaches:

CMS garbage collection: The CMS garbage collection algorithm scans heap
memory using multiple threads. Using this approach, the JVM marks objects for
removal and then makes a sweep to actually remove them.
Serial garbage collection: This approach uses a thread-freezing schema on a
single thread. When the garbage collection is in progress, it freezes all other
threads until garbage collection operations have concluded. Due to the thread-
freezing nature of serial garbage collection, it is only feasible for very small
programs.
Parallel garbage collection: This approach uses multiple threads but freezes all
non-garbage collection threads in the application until garbage collection
functions have completed, just like the serial garbage collection algorithm.
G1 garbage collection: This is the garbage collection algorithm with the
following characteristics:

Is used with large memory heaps
Involves segmenting the memory heap into regions
Takes place in parallel with each heap region
Compacts the heap space when memory is deallocated
Compacting operations take place using the Stop the World
approach
Prioritizes the regions based on those that have the most garbage to
be collected

Prior to Java 9, the parallel garbage collection algorithm was the default garbage collector.
In Java 9, the G1 garbage collector is the new default implementation of Java's memory
management system. This is true for both 32 and 64-bit server configurations.

Oracle assessed that the G1 garbage collector, mostly due to its low-pause nature, was a
better performing garbage collection method than the parallel approach. This change was
predicated on the following concepts:

It is important to limit latency
Maximizing throughput is less important than limiting latency
The G1 garbage collection algorithm is stable

Leveraging the New Default G1 Garbage Collector

[175]

There are two assumptions involved with making the G1 garbage collection method the
default method over the parallel approach:

Making G1 the default garbage collection method will significantly increase its
use. This increased usage might unveil performance or stability issues not
realized before Java 9.
The G1 approach is more processor-intensive than the parallel approach. In some
use cases, this could be somewhat problematic.

On the surface this change might seem like a great step for Java 9 and that very well might
be the case. Caution, however, should be used when blindly accepting this new default
collection method. It is recommended that systems be tested if switching to G1 to ensure
your applications do not suffer from performance degradation or have unexpected issues
that are caused by the use of G1. As previously suggested, G1 has not benefited from the
widespread testing that the parallel method has.

This last point about the lack of widespread testing is significant. Making G1 the default
automatic memory management (garbage collection) system with Java 9 is tantamount to
turning developers into unsuspecting testers. While no major problems are expected,
knowing that there is potential for performance and stability issues when using G1 with
Java 9 will place greater emphasis on testing your Java 9 applications.

Depreciated garbage collection combinations
Oracle has been great about depreciating features, APIs, and libraries before removing them
from a new release to the Java platform. With this schema in place, language components
that were depreciated in Java 8 are subject for removal in Java 9. There are a few garbage
collection combinations that were deemed to be rarely used and depreciated in Java 8.
Those combinations, listed here, have been removed in Java 9:

DefNew + CMS
ParNew + SerialOld
Incremental CMS

These combinations, in addition to having been rarely used, introduced an unneeded level
of complexity to the garbage collection system. This resulted in an extra drain on system
resources without providing a commensurate benefit to the user or developer.

Leveraging the New Default G1 Garbage Collector

[176]

The following listed garbage collection configurations were affected by the aforementioned
depreciation in the Java 8 platform:

Garbage collection configuration Flag(s)

DefNew + CMS -XX:+UseParNewGC
-XX:UseConcMarkSweepGC

ParNew + SerialOld -XX:+UseParNewGC

ParNew + iCMS -Xincgc

ParNew + iCMS -XX:+CMSIncrementalMode
-XX:+UseConcMarkSweepGC

Defnew + ICMS -XX:+CMSIncrementalMode
-XX:+UseConcMarkSweepGC
-XX:-UseParNewGC

The Java Enhancement Program 214 (JEP 214) removed garbage collection combinations
depreciated in JDK 8. Those combinations are listed above along with the flags that control
those combinations. In addition, the flags to enable CMS foreground collections were
removed and are not present in JDK 9. Those flags are listed as follows:

Garbage collection combinations Flag

CMS foreground -XX:+UseCMSCompactAtFullCollection

CMS foreground -XX+CMSFullGCsBeforeCompaction

CMS foreground -XX+UseCMSCollectionPassing

The only assessed downside to the removal of the depreciated garbage collection
combinations is that applications that use JVM start up files with any of the flags listed in
this section, will need to have their JVM start up files modified to remove or replace the old
flags.

Unified garbage collection logging
The Java Enhancement Program #271 (JEP-271) titled, Unified GC Logging, is intended to re-
implement garbage collection logging using the unified JVM logging framework that was
previously introduced with JEP-158. So, let's first review the Unified JVM Logging
(JEP-158).

Leveraging the New Default G1 Garbage Collector

[177]

Unified JVM logging (JEP-158)
Creating a unified logging schema for the JVM was the central goal of JEP-158. Here is a
high-level list of the goals of the JEP:

Create a JVM-wide set of command-line options for all logging operations
Use categorized tags for logging
Provide six levels of logging:

Error
Warning
Information
Debug
Trace
Develop

This is not an exhaustive list of goals. We will discuss JEP-158 in greater
detail in Chapter 14, Command Line Flags.

The changes to the JVM, in the context of logging, can be categorized into:

Tags
Levels
Decorations
Output
Command-line options

Let's briefly look at these categories.

Tags
Logging tags are identified in the JVM and can be changed in source code if needed. The
tags should be self-identifying, such as gc for garbage collection.

Leveraging the New Default G1 Garbage Collector

[178]

Levels
Each log message has an associated level. As previously listed, the levels are error, warning,
information, debug, trace, and develop. The following chart shows how the levels have an
increasing level of verbosity in respect to how much information is logged:

Decorations
In the context of Java 9's logging framework, decorations is metadata about the log
message. Here is the alphabetic list of decorations that are available:

level
pid
tags
tid
time
timemillis
timenanos
uptime
uptimemillis
uptimenanos

For an explanation of these decorations, please refer to Chapter 14, Command Line Flags.

Leveraging the New Default G1 Garbage Collector

[179]

Output
The Java 9 logging framework supports three types of output:

stderr: Provides output to stderr
stdout: Provides output to stdout
text file: Writes the output to text files

Command-line options
A new command-line option was added to the logging framework to provide overall
control of the JVM's logging operations. The -Xlog command-line option has an extensive
array of parameters and possibilities. Here is one example:

-Xlog:gc+rt*=debug

In this example, we are telling the JVM to take the following actions:

Log all messages tagged with, at a minimum, the gc and rt tags
Use the debug level
Provide output to stdout

Unified GC logging (JEP-271)
Now that we have a general understanding of the changes to Java 9's logging framework,
let's look at what changes JEP-271 introduced. In this section we will look at the following
areas:

Garbage collection logging options
The gc tag
Macros
Additional considerations

Leveraging the New Default G1 Garbage Collector

[180]

Garbage collection logging options
Here is a list of garbage collection logging options and flags we had available to us before
the introduction of Java 9's logging framework:

Garbage collection logging option JVM option flag(s)

This prints the basic garbage collection
information.

-verbose:gc or -XX:+PrintGC

This will print more detailed garbage
collection information.

-XX:+PrintGCDetails

You can print timestamps for each
garbage collection event. The seconds are
sequential and begin from the JVM start
time.

-XX:+PrintGCTimeStamps

You can print date stamps for each
garbage collection event. Sample
format:
2017-07-26T03:19:00.319+400:[GC
. . .]

-XX:+PrintGCDateStamps

You can use this flag to print timestamps
for individual garbage collection work
thread tasks.

-XX:+PrintGC\TaskTimeStamps

Using this you can redirect garbage
collection output to a file instead of the
console.

-Xloggc:

You can print detailed information
regarding young space following each
collection cycle.

-XX:+Print\TenuringDistribution

You can use this flag to print TLAB
allocation statistics.

-XX:+PrintTLAB

Using this flag, you can print the times
for reference processing (that is, weak,
soft, and so on) during stop-the-world
pauses.

-XX:+PrintReferenceGC

This reports if the garbage collection is
waiting for native code to unpin objects
in memory.

-XX:+PrintJNIGCStalls

Leveraging the New Default G1 Garbage Collector

[181]

This will print a pause summary after
each stop-the-world pause.

-XX:+PrintGC\ApplicationStoppedTime

This flag will print time for each
concurrent phase of garbage collection.

-XX:+PrintGC\ApplicationConcurrentTime

Using this flag will print a class
histogram after a full garbage collection.

-XX:+Print\ClassHistogramAfterFullGC

Using this flag will print a class
histogram before a full garbage collection.

-XX:+Print\ClassHistogramBeforeFullGC

This creates a heap dump file after full
garbage collection.

-XX:+HeapDump\AfterFullGC

This creates a heap dump file before full
garbage collection.

-XX:+HeapDump\BeforeFullGC

This creates a heap dump file in an out-
of-memory condition.

-XX:+HeapDump\OnOutOfMemoryError

You use this flag to specify the path
where you want your heap dumps saved
on your system.

-XX:HeapDumpPath=<path>

You can use this to print CMS statistics,
if n >= 1. Applies specifically to CMS
only.

-XX:PrintCMSStatistics=2

This will print CMS initialization details.
Applies specifically to CMS only.

-XX:+Print\CMSInitiationStatistics

You can use this flag to print additional
information concerning free lists. Applies
specifically to CMS only.

-XX:PrintFLSStatistics=2

You can use this flag to print additional
information concerning free lists. Applies
specifically to CMS only.

-XX:PrintFLSCensus=2

You can use this flag to print detailed
diagnostic information following a
promotion (young to tenure) failure.
Applies specifically to CMS only.

-XX:+PrintPromotionFailure

Leveraging the New Default G1 Garbage Collector

[182]

This flag allows you to dump useful
information regarding the state of the
CMS old generation when a promotion
(young to tenure) failure occurs. Applies
specifically to CMS only.

-XX:+CMSDumpAt\PromotionFailure

When the -
XX:+CMSDumpAt\PromotionFailure

flag is used, you can use -
XX:+CMSPrint\ChunksInDump to
include additional details regarding free
chunks. Applies specifically to CMS only.

-XX:+CMSPrint\ChunksInDump

When using the -
XX:+CMSPrint\ChunksInDump flag,
you can include additional information
about the allocated objects using the -
XX:+CMSPrint\ObjectsInDump flag.
Applies specifically to CMS only.

-XX:+CMSPrint\ObjectsInDump

The gc tag
We can use the gc tag with the -Xlog option to inform the JVM to only log gc tagged items
at the info level. As you will recall, this is similar to using -XX:+PrintGC. With both
options, the JVM will log one line for each garbage collection operation.

It is important to note that the gc tag was not intended to be used on its own; rather, it is
recommended that it be used in conjunction with other tags.

Macros
We can create macros to add logic to our garbage collection logging. Here is the general
syntax for the log macro:

 log_<level>(Tag1[,...])(fmtstr, ...)

Here is an example of a log macro:

 log_debug(gc, classloading)("Number of objects
 loaded: %d.", object_count)

Leveraging the New Default G1 Garbage Collector

[183]

The following example skeleton log macro shows how you can use the new Java 9 logging
framework to create scripts for greater fidelity in logging:

 LogHandle(gc, rt, classunloading) log;
 if (log.is_error())
 {
 // do something specific regarding the 'error' level
 }

 if (log.is_warning())
 {
 // do something specific regarding the 'warning'
 level
 }

 if (log.is_info())
 {
 // do something specific regarding the 'info' level
 }

 if (log.is_debug())
 {
 // do something specific regarding the 'debug' level
 }

 if (log.is_trace())
 {
 // do something specific regarding the 'trace' level
 }

Additional considerations
Here are some additional items to be considered in regards to garbage collection logging:

Using the new -Xlog:gc should produce similar results to the -
XX:+PrintGCDetails command-line option and flag pairing
The new trace level provides the level of detail previously provided with the
verbose flag

Leveraging the New Default G1 Garbage Collector

[184]

Persistent issues
Even with the advent of Java 9, there were downsides to Java's garbage collection system.
Because it is an automatic process, we do not have complete control of when the collector
runs. We, as developers, are not in control of garbage collection, the JVM is. The JVM makes
the decision when to run garbage collection. As you have seen earlier in this chapter, we can
ask the JVM to run garbage collection using the System.gc() method. Despite our use of
this method, we are guaranteed that our request will be honored or that it will be complied
with in a timely manner.

Earlier in this chapter, we reviewed several approaches and algorithms for garbage
collection. We discussed how we, as developers, can take control of the process. That
assumes that we have the ability to take control of garbage collection. Even when we
specify a specific garbage collection technique, for example using -
XX:+UseConcMarkSweepGC for CMS garbage collection, we are not guaranteed that the
JVM will use that implementation. So, we can do our best to control how the garbage
collector works, but should remember that the JVM has the ultimate authority regarding
how, when, and if garbage collection occurs.

Our lack of complete control over garbage collection underscores the importance of writing
efficient code with memory management in mind. In the next sections, we will examine
how to write code to explicitly make objects eligible for garbage collection by the JVM.

Making objects eligible for garbage collection
An easy method for making objects available for garbage collection is to assign null to the
reference variable that refers to the object. Let's review this example:

 package MyGarbageCollectionSuite;

 public class GarbageCollectionExperimentOne
 {
 public static void main(String[] args)
 {

 // Declare and create new object.
 String junk = new String("Pile of Junk");

 // Output to demonstrate that the object
 has an active reference
 // and is not eligible for garbage collection.
 System.out.println(junk);

Leveraging the New Default G1 Garbage Collector

[185]

 // Set the reference variable to null.
 junk = null;

 // The String object junk is now eligible
 for garbage collection.

 }

 }

As indicated in the in-code comments, once the string object reference variable is set to null,
in this case using the junk = null; statement, the object becomes available for garbage
collection.

In our next example, we will abandon an object by setting its reference variable to point to a
different object. As you can see in the following code, that results in the first object being
available for garbage collection:

 package MyGarbageCollectionSuite;

 public class GarbageCollectionExperimentTwo
 {
 public static void main(String[] args)
 {
 // Declare and create the first object.
 String junk1 = new String("The first pile of
 Junk");

 // Declare and create the second object.
 String junk2 = new String("The second pile of
 Junk");

 // Output to demonstrate that both objects have
 active references
 // and are not eligible for garbage collection.
 System.out.println(junk1);
 System.out.println(junk2);

 // Set the first object's reference to the
 second object.
 junk1 = junk2;

 // The String "The first pile of Junk" is now
 eligible for garbage collection.

 }

Leveraging the New Default G1 Garbage Collector

[186]

 }

Let's review one final method of making objects available for garbage collection. In this
example, we have a single instance variable (objectNbr) that is a reference variable to an
instance of the GarbageCollectionExperimentThree class. The class does not do
anything interesting other than create additional reference variables to instances of the
GarbageCollectionExperimentThree class. In our example, we set the objectNbr2,
objectNbr3, objectNbr4, and objectNbr5 references to null. Although these objects
have instance variables and can refer to each other, their accessibility outside of the class
has been terminated by setting their references to null. This makes them (objectNbr2,
objectNbr3, objectNbr4, and objectNbr5) eligible for garbage collection:

 package MyGarbageCollectionSuite;
 {

 // instance variable
 GarbageCollectionExperimentThree objectNbr;

 public static void main(String[] args)
 {
 GarbageCollectionExperimentThree objectNbr2 = new
 GarbageCollectionExperimentThree();
 GarbageCollectionExperimentThree objectNbr3 = new
 GarbageCollectionExperimentThree();
 GarbageCollectionExperimentThree objectNbr4 = new
 GarbageCollectionExperimentThree();
 GarbageCollectionExperimentThree objectNbr5 = new
 GarbageCollectionExperimentThree();
 GarbageCollectionExperimentThree objectNbr6 = new
 GarbageCollectionExperimentThree();
 GarbageCollectionExperimentThree objectNbr7 = new
 GarbageCollectionExperimentThree();

 // set objectNbr2 to refer to objectNbr3
 objectNbr2.objectNbr = objectNbr3;

 // set objectNbr3 to refer to objectNbr4
 objectNbr3.objectNbr = objectNbr4;

 // set objectNbr4 to refer to objectNbr5
 objectNbr4.objectNbr = objectNbr5;

 // set objectNbr5 to refer to objectNbr2
 objectNbr5.objectNbr = objectNbr2;

 // set selected references to null
 objectNbr2 = null;

Leveraging the New Default G1 Garbage Collector

[187]

 objectNbr3 = null;
 objectNbr4 = null;
 objectNbr5 = null;

 }

 }

Summary
In this chapter we took an in-depth review of garbage collection as a critical pre-Java 9
platform component. Our review included object life cycle, garbage collection algorithms,
garbage collection options, and methods related to garbage collection. We looked at
upgrades to garbage collection in Java 8 and looked at a case study to help our
understanding of modern garbage collection. We then turned our focus to the changes to
garbage collection with the new Java 9 platform. Our exploration of garbage collection in
Java 9 included looks at default garbage collection, depreciated garbage collection
combinations, and unified garbage collection logging. We concluded our exploration of
garbage collection by looking at a few garbage collection issues that persist, even after Java
9.

In the next chapter we will look at how to write performance tests using the Java
Microbenchmark Harness (JMH), a Java harness library for writing benchmarks for the
JVM.

8
Microbenchmarking

Applications with JMH
In the previous chapter, we took an in-depth review of garbage collection to include an
object life cycle, garbage collection algorithms, garbage collection options, and methods
related to garbage collection. We took a brief look at upgrades to garbage collection in Java
8 and focused on changes with the new Java 9 platform. Our exploration of garbage
collection in Java 9 included looks at default garbage collection, depreciated garbage
collection combinations, unified garbage collection logging, and garbage collection issues
that persist, even after Java 9.

In this chapter, we will look at how to write performance tests using the Java
Microbenchmark Harness (JMH), a Java harness library for writing benchmarks for the
Java Virtual Machine (JVM). We will use Maven along with JMH to help illustrate the
power of microbenchmarking with the new Java 9 platform.

Specifically, we will cover the following topics:

Microbenchmarking overview
Microbenchmarking with Maven
Benchmarking options
Techniques for avoiding microbenchmarking pitfalls

Microbenchmarking Applications with JMH

[189]

Microbenchmarking overview
Microbenchmarking is used to test the performance of a system. This differs from
macrobenchmarking which runs tests on different platforms for efficiency comparison and
subsequent analysis. With microbenchmarking, we typically target a specific slice of code
on one system such as a method or loop. The primary purpose of microbenchmarking is to
identify optimization opportunities in our code.

There are multiple approaches to benchmarking and we will focus on using the JMH tool.
So, why benchmark at all? Developers do not always concern themselves with performance
issues unless performance is a stated requirement. This can lead to post-deployment
surprises that could have been avoided if microbenchmarking was conducted as part of the
development process.

Microbenchmarking takes place across several phases of a process. As shown in the
following diagram, the process involves design, implementation, execution, analysis, and
enhancement:

In the Design phase, we determine our goals and design our microbenchmark accordingly.
In the Implement phase, we are writing the microbenchmark and then, in the Execution
phase, we actually run the test. With microbenchmarking results in hand, we interpret and
analyze the results in the Analysis phase. This leads to code improvements in the
Enhancement phase. Once our code has been updated, we redesign the
microbenchmarking test, adjust the implementation, or go straight to the Execution phase.
This is a cyclical process that continues until we have achieved the performance
optimization we identified in our goals.

Microbenchmarking Applications with JMH

[190]

Approach to using JMH
Oracle's documentation indicates that the most ideal JMH use case is to use a Maven project
that is dependent on the application's JAR files. They further recommend that
microbenchmarking take place via the command-line and not from within an Integrated
Development Environment (IDE), as that could impact the results.

Maven, also referred to as Apache Maven, is a project management and
comprehension tool that we can use to manage our application project
build, reporting, and documentation.

To use JMH, we will use bytecode processors (annotations) to generate the benchmark code.
We use Maven archetypes to enable JMH.

In order to test the JMH, we require an IDE with support for Maven and Java 9. If you do
not yet have Java 9 or an IDE with Java 9 support, you can follow the steps in the next
section.

Installing Java 9 and Eclipse with Java 9 support
You can download and install Java 9 from the JDK 9 early access builds page--http:/ ​/​jdk.
java.​net/​9/​.

Once you have Java 9 installed, download the latest version of Eclipse. At the time of
writing this book, that was Oxygen. Here is the relevant link--https:/ ​/ ​www.​eclipse. ​org/
downloads/​.

http://jdk.java.net/9/
http://jdk.java.net/9/
http://jdk.java.net/9/
http://jdk.java.net/9/
http://jdk.java.net/9/
http://jdk.java.net/9/
http://jdk.java.net/9/
http://jdk.java.net/9/
http://jdk.java.net/9/
http://jdk.java.net/9/
http://jdk.java.net/9/
https://www.eclipse.org/downloads/
https://www.eclipse.org/downloads/
https://www.eclipse.org/downloads/
https://www.eclipse.org/downloads/
https://www.eclipse.org/downloads/
https://www.eclipse.org/downloads/
https://www.eclipse.org/downloads/
https://www.eclipse.org/downloads/
https://www.eclipse.org/downloads/
https://www.eclipse.org/downloads/
https://www.eclipse.org/downloads/

Microbenchmarking Applications with JMH

[191]

The next step is to enable Java 9 support in your IDE. Launch Eclipse Oxygen and select
Help | Eclipse Marketplace... , as shown in the following screenshot:

Microbenchmarking Applications with JMH

[192]

With the Eclipse Marketplace dialog window present search for Java 9 support using
the search box. As you can see in the following screenshot, you will be presented with an
Install button:

During the installation process, you will be required to accept the license agreement and,
upon completion, you will be required to restart Eclipse.

Microbenchmarking Applications with JMH

[193]

Hands-on experiment
Now that we have Eclipse updated to support Java 9, you can run a quick test to determine
if JMH is working on your development computer. Start by creating a new Maven project as
illustrated in the following screenshot:

Next, we need to add a dependency. We can do this by editing the pom.xml file directly
with the following code:

 <dependency>
 <groupId>org.openjdk.jmh</groupId>
 <artifactId>jmh-core</artifactId>
 <version>0.1</version>
 </dependency>

Microbenchmarking Applications with JMH

[194]

Alternatively, we can use the dependencies tab to enter the data in a dialog window, as
shown in the following screenshot. Using this form updates the pom.xml file with the
preceding code:

Microbenchmarking Applications with JMH

[195]

Next, we need to write a class that contains a JMH method. This is just as an initial test to
confirm our recently updated development environment. Here is sample code you can use
for your test:

 package com.packt.benchmark.test.com.packt.benchmark.test;

 import org.open.jdk.jmh.Main;

 public class Test
 {

 public static void main(String[] args)
 {
 Main.main(args);
 }
 }

We can now compile and run our very simple test program. The results are provided in the
Console tab, or the actual console if you are using the command-line. Here is what you will
see:

You can see that the program worked sufficiently to let us know that JMH is working. Of
course, there was, as the output indicates, no benchmarks set up. We will take care of that in
the next section.

Microbenchmarking with Maven
One approach to getting started with JMH is to use the JMH Maven archetype. The first step
is to create a new JMH project. At our system's command prompt, we will enter the mvn
command followed by a long set of parameters to create a new Java project and the
necessary Maven pom.xml file:

mvn archetype:generate -DinteractiveMode=false -
DarchetypeGroupId=org.openjdk.jmh -DarchetypeArtifactId=jmh -java-
benchmark-archetype -DgroupId=com.packt -DartifactId=chapter8-benchmark -
Dversion=1.0

Microbenchmarking Applications with JMH

[196]

Once you enter the mvn command and the preceding detailed parameters, you will see the
results reported to you via the Terminal. Depending on your level of use, you might see a
large number of downloads from https:/ ​/​repo. ​maven. ​apache. ​org/​maven2/ ​org/ ​apache/
mave/​plugins and other similar repository sites.

You will also see an information section that informs you about the project build process:

There will likely be additional plugin and other resources downloaded from the https:/ ​/
repo.​maven.​apache. ​org repositories. Then, you will see an informational feedback
component that lets you know the project is being generated in batch mode:

Finally, you will be presented with a set of parameters and a note that your project build
was successful. As you can see with the following example, the process took less than 21
seconds to complete:

https://repo.maven.apache.org/maven2/org/apache/mave/plugins
https://repo.maven.apache.org/maven2/org/apache/mave/plugins
https://repo.maven.apache.org/maven2/org/apache/mave/plugins
https://repo.maven.apache.org/maven2/org/apache/mave/plugins
https://repo.maven.apache.org/maven2/org/apache/mave/plugins
https://repo.maven.apache.org/maven2/org/apache/mave/plugins
https://repo.maven.apache.org/maven2/org/apache/mave/plugins
https://repo.maven.apache.org/maven2/org/apache/mave/plugins
https://repo.maven.apache.org/maven2/org/apache/mave/plugins
https://repo.maven.apache.org/maven2/org/apache/mave/plugins
https://repo.maven.apache.org/maven2/org/apache/mave/plugins
https://repo.maven.apache.org/maven2/org/apache/mave/plugins
https://repo.maven.apache.org/maven2/org/apache/mave/plugins
https://repo.maven.apache.org/maven2/org/apache/mave/plugins
https://repo.maven.apache.org/maven2/org/apache/mave/plugins
https://repo.maven.apache.org/maven2/org/apache/mave/plugins
https://repo.maven.apache.org/maven2/org/apache/mave/plugins
https://repo.maven.apache.org/maven2/org/apache/mave/plugins
https://repo.maven.apache.org/maven2/org/apache/mave/plugins
https://repo.maven.apache.org/maven2/org/apache/mave/plugins
https://repo.maven.apache.org
https://repo.maven.apache.org
https://repo.maven.apache.org
https://repo.maven.apache.org
https://repo.maven.apache.org
https://repo.maven.apache.org
https://repo.maven.apache.org
https://repo.maven.apache.org
https://repo.maven.apache.org
https://repo.maven.apache.org

Microbenchmarking Applications with JMH

[197]

A folder will be created based on the parameter we included in the -DartifactId option.
In our example, we used -DartifactId=chapter8-benchmark, and Maven created a
chapter8-benchmark project folder:

You will see that Maven created the pom.xml file as well as a source (src) folder. In that
folder, under the subdirectory structure of C:\chapter8-
benchmark\src\main\java\com\packt, is the MyBenchmark.java file. Maven created a
benchmark class for us:

Microbenchmarking Applications with JMH

[198]

Here are the contents of the MyBenchmark.java class created by the JMH Maven project
creation process:

 /*
 * Copyright (c) 2014, Oracle America, Inc.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or
 without
 * modification, are permitted provided that the following
 conditions are met:
 *
 * * Redistributions of source code must retain the above
 copyright notice,
 * this list of conditions and the following disclaimer.
 *
 * * Redistributions in binary form must reproduce the above
 copyright
 * notice, this list of conditions and the following
 disclaimer in the
 * documentation and/or other materials provided with the
 distribution.
 *
 * * Neither the name of Oracle nor the names of its
 contributors may be used
 * to endorse or promote products derived from this software
 without
 * specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
 CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
 PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
 CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 EXEMPLARY,
 OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
 OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
 WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
 OTHERWISE)

Microbenchmarking Applications with JMH

[199]

 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
 ADVISED OF
 * THE POSSIBILITY OF SUCH DAMAGE.
 */

 package com.packt;

 import org.openjdk.jmh.annotations.Benchmark;

 public class MyBenchmark
 {
 @Benchmark
 public void testMethod()
 {

 // This is a demo/sample template for building your JMH
 benchmarks.
 //Edit as needed.
 // Put your benchmark code here.
 }
 }

Our next step is to modify the testMethod() so that there is something to test. Here is the
modified method we will use for the benchmark test:

 @Benchmark
 public void testMethod()
 {
 int total = 0;
 for (int i=0; i<100000; i++)
 {
 total = total + (i * 2);
 }
 System.out.println("Total: " + total);
 }

With our code edited, we will navigate back to the project folder, C:\chapter8-
benchmark, in our example, and execute mvn clean install at the command prompt.

Microbenchmarking Applications with JMH

[200]

You will see several repository downloads, source compilations, plugin installations and,
finally the Build Success indicator, as shown here:

You will now see .classpath and .project files as well as a new .settings and target
subfolders in the project directory:

If you navigate to the \target subfolder, you will see that our benchmarks.jar file was
created. This JAR contains what we need to run our benchmarks.

Microbenchmarking Applications with JMH

[201]

We can update our MyBenchmark.java file in an IDE, such as Eclipse. Then, we can
execute mvn clean install again to overwrite our files. After the initial time, our builds
will be much faster, as nothing will need to be downloaded. Here is a look at the output
from the build process other than the first time:

Microbenchmarking Applications with JMH

[202]

Our last step is to run the benchmark tool. We can do that with the following command--
java -jar benchmarks.jar. Even for small benchmarks on simplistic code, as with our
example, the benchmarks could take some time to run. There will likely be several iterations
including warmups to provide a more concise and valid set of benchmark results.

Our benchmark results are provided here. As you can see, the test ran for 8 minutes and 8
seconds:

Benchmarking options
In the previous section, you learned how to run a benchmark test. In this section, we will
look at the following configurable options for running our benchmarks:

Modes
Time units

Microbenchmarking Applications with JMH

[203]

Modes
The output of our benchmark results, from the previous section, included a Mode column
that had the value of thrpt which is short for throughput. This is the default mode and there
are an additional four modes. All JMH benchmark modes are listed and described as
follows:

Mode Description

All Measures all other modes inclusively.

Average This mode measures the average time for a single benchmark to run.

Sample Time This mode measures the benchmark execution time and includes min and
max times.

Single Shot Time With this mode, there is no JVM warm up and the test is to determine how
long a single benchmark method takes to run.

Throughput This is the default mode and measures the number of operations per second
the benchmark could be run.

To dictate which benchmark mode to use, you will modify your @Benchmark line of code to
one of the following:

 @Benchmark @BenchmarkMode(Mode.All)
 @Benchmark @BenchmarkMode(Mode.Average)
 @Benchmark @BenchmarkMode(Mode.SamplmeTime)
 @Benchmark @BenchmarkMode(Mode.SingleShotTime)
 @Benchmark @BenchmarkMode(Mode.Throughput)

Time units
In order to gain greater fidelity in benchmark output, we can designate a specific unit of
time, listed here from shortest to longest:

NANOSECONDS

MICROSECONDS

MILLISECONDS

SECONDS

MINUTES

HOURS

DAYS

Microbenchmarking Applications with JMH

[204]

In order to make this designation, we simply add the following code to our @Benchmark
line:

 @Benchmark @BenchmarkMode(Mode.Average)
 @OutputTimeUnit(TimeUnit.NANOSECONDS)

In the preceding example, we have designated the average mode and nanoseconds as the
time unit.

Techniques for avoiding microbenchmarking
pitfalls
Microbenchmarking is not something that every developer will have to worry about, but for
those that do, there are several pitfalls that you should be aware of. In this section we will
review the most common pitfalls and suggest strategies for avoiding them.

Power management
There are many subsystems that can be used to help you manage the balance between
power and performance (that is, cpufreq). These systems can alter the state of time during
benchmarks.

There are two suggested strategies to this pitfall:

Disable any power management systems before running tests
Run the benchmarks for longer periods

OS schedulers
Operating system schedulers, such as Solaris schedulers, help determine which software
processes gain access to a system's resources. Use of these schedulers can result in
unreliable benchmarking results.

There are two suggested strategies to this pitfall:

Refine your system scheduling policies
Run the benchmarks for longer periods

Microbenchmarking Applications with JMH

[205]

Time sharing
Time-sharing systems are used to help balance system resources. Use of these systems often
results in irregular gaps between a thread's start and stop time. Also, CPU load will not be
uniform and our benchmarking data will not be as useful to us.

There are two suggested strategies to avoid this pitfall:

Test all code before running benchmarks to ensure things work as they should
Use JMH to measure only after all threads have started or all threads have
stopped

Eliminating dead-code and constant folding
Dead-code and constant folding are often referred to as redundant code and our modern
compilers are pretty good at eliminating them. An example of dead-code is code that will
never be reached. Consider the following example:

 . . .

 int value = 10;

 if (value != null)
 {
 System.out.println("The value is " + value + ".");
 } else
 {
 System.out.println("The value is null."); // This is
 a line of Dead-Code
 }

 . . .

In our preceding example, the line identified as dead-code is never reached since the
variable value will never be equal to null. It is set to 10 immediately before the conditional
if statement evaluates the variable.

Microbenchmarking Applications with JMH

[206]

The problem is that benchmarking code can sometimes be removed in the attempt to
eliminate dead-code.

Constant folding is the compiler operation that occurs when compile-time constraints are
replaced with actual results. The compiler performs constant folding to remove any
redundant runtime computations. In the following example, we have a final int
followed by a second int based on a mathematical calculation involving the first int:

 . . .

 static final int value = 10;

 int newValue = 319 * value;

 . . .

The constant folding operation would convert the two lines of the preceding code to the
following:

 int newValue = 3190;

There is one suggested strategy to this pitfall:

Use the JMH API support to ensure your benchmarking code is not eliminated

Run-to-run variance
There are a plethora of issues that can drastically impact the run-to-run variance in
benchmarking.

There are two suggested strategies to this pitfall:

Run the JVM multiple times within every subsystem
Use multiple JMH folks

Microbenchmarking Applications with JMH

[207]

Cache capacity
Dynamic randomly accessed memory (DRAM) is very slow. This can result in very
different performance results during benchmarking.

There are two suggested strategies to this pitfall:

Run multiple benchmarks with varying problem sets. Keep track of your memory
footprint during tests.
Use the @State annotation to dictate the JMH state. This annotation is sued to
define the instance's scope. There are three states:

Scope.Benchmark: The instance is shared across all threads that
are running the same test.
Scope.Group: One instance is allocated per thread group.
Scope.Thread: Each thread will have its own instance. This is the
default state.

Summary
In this chapter, we learned that the JMH is a Java harness library for writing benchmarks for
the JVM. We experimented with writing performance tests using Maven along with JMH to
help illustrate the procedures of microbenchmarking with the new Java 9 platform. We
started with a microbenchmarking overview, then dove deep into microbenchmarking with
Maven, reviewed benchmarking options, and concluded with a few techniques for avoiding
microbenchmarking pitfalls.

In the next chapter, we will learn to write an application that is managing other processes
and utilizes the modern process management API of the Java 9 platform.

9
Making Use of the

ProcessHandle API
In the previous chapter, we discovered the Java Microbenchmark Harness (JMH). We
explored performance tests and how to write them using JMH, the Java library for writing
benchmarks for the Java Virtual Machine. We started with an overview of
microbenchmarking, then looked at microbenchmarking with Maven, reviewed
benchmarking options, and concluded with techniques for avoiding microbenchmarking
pitfalls.

In this chapter, we will focus on the updates to the Process class and the new
java.lang.ProcessHandle API. Prior to Java 9, managing processes in Java was never
easy, because Java was rarely used to automate the controlling of other processes. The API
was insufficient with some features lacking and some tasks needed to be solved in a system
specific manner. For example, in Java 8, giving a process access to its own process identifier
(PID) was an unnecessarily difficult task.

In this chapter, the reader will gain all the knowledge that is needed to write an application
that manages other processes and utilizes the modern process management API of Java.

We will cover the following topics in this chapter:

What is and how to use the new ProcessHandle interface
How to get the PID of the current process
How to list different processes that run in the operating system
How to effectively wait for an external process to finish
How to terminate external processes

Making Use of the ProcessHandle API

[209]

What are processes?
In this section, we will review what processes are in the context of Java application
programming. If you are already familiar with processes, you might consider skipping this
section.

Processes are executional units in the operating system. When you start a program, you
start a process. When the machine boots the code, the first thing it does is, execute the boot
process. This process then starts other processes that become the child of the boot process.
These child processes may start other processes. This way, when the machine runs there are
trees of processes running. When the machine does something, it is done in some code
executing inside some process. The operating system also runs as several processes that
execute simultaneously. Applications are executed as one or more processes. Most of the
applications run as a single process but as an example, the Chrome browser starts several
processes to do all the rendering and network communication operations that finally
function as a browser.

To get a better idea about what processes are, start the task manager on Windows or the
Activity Monitor on OS X and click on the Process tab. You will see the different processes
that currently exist on the machine. Using these tools, you can look at the parameters of the
processes, or you can kill an individual process.

The individual processes have their memory allocated for their work and they are not
allowed to freely access each other's memory.

The execution unit scheduled by the operating system is a thread. A process consists of one
or more threads. These threads are scheduled by the operating system scheduler and are
executed in time slots.

With every operating system, processes have a process identifier, which is a number that
identifies the process. No two processes can be active at a time, sharing the same PID. When
we want to identify an active process in the operating system we use the PID. On Linux and
other Unix-like operating systems, the kill command terminates a process. The argument
to be passed to this program is the PID of the process, to terminate. Termination can be
graceful. It is something like asking the process to exit. If the process decides not to, it can
keep running. Programs can be prepared to stop upon such requests. For example, a Java
application may add a Thread object calling the
Runtime.getRuntime().addShutdownHook(Thread t) method. The thread passed is
supposed to start when the process is asked to stop and the thread can perform all tasks
that the program has to do before it exits. However, there is no guarantee that it does start.
It depends on the actual implementation.

Making Use of the ProcessHandle API

[210]

The new ProcessHandle interface
There are two new interfaces and also their implementations in Java 9 supporting the
handling of operating system processes. One of them is ProcessHandle, the other one is
ProcessHandle.Info, a nested interface of the prior.

A ProcessHandle object identifies an operating system process and provides methods to
manage the process. In prior versions of Java, this was possible only using operating system
specific methods using the PID to identify the process. The major problem with this
approach is that the PID is unique only while the process is active. When a process finishes,
the operating system is free to reuse the PID for a new process. When we know only the
PID of a process and check to see if the process is still running, what we are really doing is
checking if there is an active process with that PID. Our process may be alive when we
check it, but the next time our program queries the process state, it might be a different
process.

The desktop and server operating systems try not to reuse the PID values for as long as
possible. On some embedded systems the operating system may only use 16-bit to store the
PID. When only 16-bit values are used, there is a greater chance that the PIDs will be
reused. We can avoid this problem using the ProcessHandle API. We can receive a
ProcessHandle and can call the handle.isAlive() method. This method will return
false when the process finishes. This works even if the PID was reused.

Getting the PID of the current process
We can gain access to the PID of the processes via the handle. The
handle.getPid()method returns a Long representing the numerical value of the PID.
Since it is safer to access the processes through the handle, the importance of this method is
limited. It may come in handy when our code wants to give information about itself to some
other management tool. It is a common practice for programs to create a file that has the
numeric PID as the name of the file. It may be a requirement that a certain program does
not run in multiple processes. In that case, the code writes its own PID file to a specific
directory. If a PID file with that name already exists, processing stops. If the previous
process crashed and terminated without deleting the PID file, then the system manager can
easily delete the file and start the new process. If the program hangs, then the system
manager can easily kill the dead process if s/he knows the PID.

To get the PID of the current process, the call chain ProcessHandle.current().
getPid() can be used.

Making Use of the ProcessHandle API

[211]

Getting information about a process
To get information about a process, we need access to the Info object of the process. This is
available through a ProcessHandle. We use a call to the handle.info() method to
return it.

The Info interface defines query methods that deliver information about the process. These
are:

command() returns an Optional<String> containing the command that was
used to start the process
arguments() returns an Optional<String[]> that contains the arguments that
were used on the command-line after the command to start the process
commandLine() returns an Optional<String> that contains the whole
command-line
startInstant() returns an Optional<Instant>, which essentially represents
the time the process was started
totalCpuDuration() returns an Optional<Duration>, which represents the
CPU time used by the process since it was started
user() returns an Optional<String> that holds the name of the user the
process belongs to

The values returned by these methods are all Optional because there is no guarantee that
the actual operating system or the Java implementation can return the information.
However, on most operating systems it should work and the returned values should be
present.

The following sample code displays the information on a given process:

 import java.io.IOException;
 import java.time.Duration;
 import java.time.Instant;
 public class ProcessHandleDemonstration
 {
 public static void main(String[] args) throws
 InterruptedException, IOException
 {
 provideProcessInformation(ProcessHandle.current());
 Process theProcess = new
 ProcessBuilder("SnippingTool.exe").start();
 provideProcessInformation(theProcess.toHandle());
 theProcess.waitFor();
 provideProcessInformation(theProcess.toHandle());

Making Use of the ProcessHandle API

[212]

 }
 static void provideProcessInformation(ProcessHandle theHandle)
 {
 // get id
 long pid = ProcessHandle.current().pid();
 // Get handle information (if available)
 ProcessHandle.Info handleInformation = theHandle.info();
 // Print header
 System.out.println("|=============================|");
 System.out.println("| INFORMATION ON YOUR PROCESS |");
 System.out.println("|=============================|\n");
 // Print the PID
 System.out.println("Process id (PID): " + pid);
 System.out.println("Process Owner: " +
 handleInformation.user().orElse(""));
 // Print additional information if available
 System.out.println("Command:" +
 handleInformation.command().orElse(""));
 String[] args = handleInformation.arguments().orElse
 (new String[]{});
 System.out.println("Argument(s): ");
 for (String arg: args) System.out.printf("\t" + arg);
 System.out.println("Command line: " + handleInformation.
 commandLine().orElse(""));
 System.out.println("Start time: " +
 handleInformation.startInstant().
 orElse(Instant.now()).toString());
 System.out.printf("Run time duration: %sms%n",
 handleInformation.totalCpuDuration()
 .orElse(Duration.ofMillis(0)).toMillis());
 }
 }

Here is the console output for the preceding code:

Making Use of the ProcessHandle API

[213]

Listing processes
Prior to Java 9, we did not have the means to obtain a list of active processes. With Java 9 it
is now possible to get the processes in a stream. There are three methods that return a
Stream<ProcessHandle>. One lists the child processes. The other lists all the descendants;
the children and the children of those recursively. The third lists all the processes.

Listing children
To get the stream of process handles that can be used to control the children, the static
method processHandle.children() should be used. This will create a snapshot of the
children processes of the process represented by processHandle and create the Stream.
Since processes are dynamic there is no guarantee that during the code execution, while our
program attends to the handles, that all children processes are still active. Some of them
may terminate and our process may spawn new children, perhaps from a different thread.
Thus the code should not assume that each of the ProcessHandle elements of the stream
represents an active and running process.

The following program starts 10 command prompts in Windows and then counts the
number of children processes and prints it to standard output:

 package packt.mastering.java9.process;
 import java.io.IOException;

 public class ChildLister {
 public static void main(String[] args) throws IOException {
 for (int i = 0; i < 10; i++) {
 new ProcessBuilder().command("cmd.exe").start();
 }
 System.out.println("Number of children :" +
 ProcessHandle.current().children().count());
 }
 }

Executing the program will result in the following:

Making Use of the ProcessHandle API

[214]

Listing descendants
Listing the descendants is very similar to listing children, but if we call the
processHandle.descendants() method then the Stream will contain all the children
processes and the children processes of those processes and so on. The following program
starts command prompts with command-line arguments so that they also spawn another
cmd.exe that terminates:

 package packt.mastering.java9.process;

 import java.io.IOException;
 import java.util.stream.Collectors;

 public class DescendantLister {
 public static void main(String[] args) throws IOException {
 for (int i = 0; i < 10; i++) {
 new ProcessBuilder().command("cmd.exe","/K","cmd").
 start();
 }
 System.out.println("Number of descendants: " +
 ProcessHandle.current().descendants().count();
 }
 }

Running the command a few times will result in the following, non-deterministic output:

Making Use of the ProcessHandle API

[215]

The output clearly demonstrates that when the Stream of the descendants is created not all
processes are alive. The sample code starts 10 processes and each of them starts another.
The Stream does not have 20 elements because some of these sub-processes were
terminated during processing.

Listing all processes
Listing all the processes is slightly different from listing descendants and children. The
method allProcess() is static and returns a Stream of handles of all processes that are
active in the operating system at the time of execution.

The following sample code prints the process commands to the console that seem to be Java
processes:

 package packt.mastering.java9.process;
 import java.lang.ProcessHandle.Info;
 public class ProcessLister {
 private static void out(String format, Object... params) {
 System.out.println(String.format(format, params));
 }
 private static boolean looksLikeJavaProcess(Info info) {
 return info.command().isPresent() &&
 info.command().get().
 toLowerCase().indexOf("java") != -1;
 }

 public static void main(String[] args) {
 ProcessHandle.allProcesses().
 map(ProcessHandle::info).
 filter(info -> looksLikeJavaProcess(info)).
 forEach(
 (info) -> System.out.println(
 info.command().orElse("---"))
);
 }

 }

Making Use of the ProcessHandle API

[216]

The output of the program lists all the process commands that have the string java inside:

Your actual output may, of course, be different.

Waiting for processes
When a process starts another process, it may wait for the process many times because it
needs the result of the other program. If the structure of the task can be organized in a way
that the parent program can do something else while waiting for the child process to finish,
then the parent process can invoke the isAlive() method on the process handle. Many
times, the parent process has nothing to do until the spawned process finishes. Old
applications implemented loops that called the Thread.sleep() method so CPU was not
excessively wasted and from time to time the process was checked to see if it was still alive.
Java 9 offers a much better approach to the waiting process.

The ProcessHandle interface has a method called onExit that returns a
CompletableFuture. This class was introduced in Java 8 and makes it possible to wait for
a task to be finished without looping. If we have the handle to a process we can simply call
the handle.onExit().join() method to wait until the process finishes. The get()
method of the returned CompletableFuture will return the ProcessHandle instance that
was used to create it in the first place.

We can call the onExit() method on the handle many times and each time it will return a
different CompletableFuture object, each related to the same process. We can call the
cancel() method on the object but it will only cancel the CompletableFuture object and
not the process and also does not have any effect on the other CompletableFuture objects
that were created from the same ProcessHandle instance.

Making Use of the ProcessHandle API

[217]

Terminating processes
To terminate a process we can call the destroy() method or the destroyForcibly()
method on the ProcessHandle instance. Both of these methods will terminate the process.
The destroy() method is expected to terminate the process gracefully executing the
process shutdown sequence. In this case the shutdown hooks added to the run time are
executed if the actual implementation supports the graceful, normal termination of
processes. The destroyForcibly() method will enforce process termination, and in this
case the shutdown sequence will not be executed.

If the process managed by the handle is not alive then nothing happens when the code calls
any of these methods. If there are any CompletableFuture objects created calling the
onExit() method on the handle then they will be completed after the call to the
destroy() or destroyForcefully() method when the process has terminated. This
means that the CompletableFuture object will return from a join() or some similar
method after some time when the process termination is complete and not immediately
after destroy() or destroyForcefully() returned.

It is also important to note that process termination may depend on many things. If the
actual process that is waiting to terminate another does not have the right to terminate the
other process then the request will fail. In this case the return value of the method is false.
It is also important to understand that a return value of true does not mean that the
process has actually terminated. It only means that the termination request was accepted by
the operating system and that the operating system will terminate the process at some point
in the future. This will actually happen rather soon, but not instantaneously and thus it
should not be a surprise if the method isAlive() returns true for some time after the
method destroy() or destroyForcefully() returned the value true.

The difference between destroy() and destroyForcefully() is implementation
specific. The Java standard does not state that destroy() does terminate the process letting
the shutdown sequence be executed. It only requests the process be killed. Whether the process
represented by this ProcessHandle object is normally terminated or not is implementation dependent
(http:/​/​download. ​java. ​net/ ​java/ ​jdk9/ ​docs/ ​api/ ​java/ ​lang/ ​ProcessHandle.
html#supportsNormalTermination- ​-​).

To learn more about ProcessHandle interface, visit http:/ ​/​download.
java. ​net/ ​java/ ​jdk9/ ​docs/ ​api/ ​java/ ​lang/ ​ProcessHandle. ​html.

http://download.java.net/java/jdk9/docs/api/java/lang/ProcessHandle.html#supportsNormalTermination--
http://download.java.net/java/jdk9/docs/api/java/lang/ProcessHandle.html#supportsNormalTermination--
http://download.java.net/java/jdk9/docs/api/java/lang/ProcessHandle.html#supportsNormalTermination--
http://download.java.net/java/jdk9/docs/api/java/lang/ProcessHandle.html#supportsNormalTermination--
http://download.java.net/java/jdk9/docs/api/java/lang/ProcessHandle.html#supportsNormalTermination--
http://download.java.net/java/jdk9/docs/api/java/lang/ProcessHandle.html#supportsNormalTermination--
http://download.java.net/java/jdk9/docs/api/java/lang/ProcessHandle.html#supportsNormalTermination--
http://download.java.net/java/jdk9/docs/api/java/lang/ProcessHandle.html#supportsNormalTermination--
http://download.java.net/java/jdk9/docs/api/java/lang/ProcessHandle.html#supportsNormalTermination--
http://download.java.net/java/jdk9/docs/api/java/lang/ProcessHandle.html#supportsNormalTermination--
http://download.java.net/java/jdk9/docs/api/java/lang/ProcessHandle.html#supportsNormalTermination--
http://download.java.net/java/jdk9/docs/api/java/lang/ProcessHandle.html#supportsNormalTermination--
http://download.java.net/java/jdk9/docs/api/java/lang/ProcessHandle.html#supportsNormalTermination--
http://download.java.net/java/jdk9/docs/api/java/lang/ProcessHandle.html#supportsNormalTermination--
http://download.java.net/java/jdk9/docs/api/java/lang/ProcessHandle.html#supportsNormalTermination--
http://download.java.net/java/jdk9/docs/api/java/lang/ProcessHandle.html#supportsNormalTermination--
http://download.java.net/java/jdk9/docs/api/java/lang/ProcessHandle.html#supportsNormalTermination--
http://download.java.net/java/jdk9/docs/api/java/lang/ProcessHandle.html#supportsNormalTermination--
http://download.java.net/java/jdk9/docs/api/java/lang/ProcessHandle.html#supportsNormalTermination--
http://download.java.net/java/jdk9/docs/api/java/lang/ProcessHandle.html#supportsNormalTermination--
http://download.java.net/java/jdk9/docs/api/java/lang/ProcessHandle.html#supportsNormalTermination--
http://download.java.net/java/jdk9/docs/api/java/lang/ProcessHandle.html#supportsNormalTermination--
http://download.java.net/java/jdk9/docs/api/java/lang/ProcessHandle.html#supportsNormalTermination--
http://download.java.net/java/jdk9/docs/api/java/lang/ProcessHandle.html#supportsNormalTermination--
http://download.java.net/java/jdk9/docs/api/java/lang/ProcessHandle.html#supportsNormalTermination--
http://download.java.net/java/jdk9/docs/api/java/lang/ProcessHandle.html#supportsNormalTermination--
http://download.java.net/java/jdk9/docs/api/java/lang/ProcessHandle.html#supportsNormalTermination--
http://download.java.net/java/jdk9/docs/api/java/lang/ProcessHandle.html
http://download.java.net/java/jdk9/docs/api/java/lang/ProcessHandle.html
http://download.java.net/java/jdk9/docs/api/java/lang/ProcessHandle.html
http://download.java.net/java/jdk9/docs/api/java/lang/ProcessHandle.html
http://download.java.net/java/jdk9/docs/api/java/lang/ProcessHandle.html
http://download.java.net/java/jdk9/docs/api/java/lang/ProcessHandle.html
http://download.java.net/java/jdk9/docs/api/java/lang/ProcessHandle.html
http://download.java.net/java/jdk9/docs/api/java/lang/ProcessHandle.html
http://download.java.net/java/jdk9/docs/api/java/lang/ProcessHandle.html
http://download.java.net/java/jdk9/docs/api/java/lang/ProcessHandle.html
http://download.java.net/java/jdk9/docs/api/java/lang/ProcessHandle.html
http://download.java.net/java/jdk9/docs/api/java/lang/ProcessHandle.html
http://download.java.net/java/jdk9/docs/api/java/lang/ProcessHandle.html
http://download.java.net/java/jdk9/docs/api/java/lang/ProcessHandle.html
http://download.java.net/java/jdk9/docs/api/java/lang/ProcessHandle.html
http://download.java.net/java/jdk9/docs/api/java/lang/ProcessHandle.html
http://download.java.net/java/jdk9/docs/api/java/lang/ProcessHandle.html
http://download.java.net/java/jdk9/docs/api/java/lang/ProcessHandle.html
http://download.java.net/java/jdk9/docs/api/java/lang/ProcessHandle.html
http://download.java.net/java/jdk9/docs/api/java/lang/ProcessHandle.html
http://download.java.net/java/jdk9/docs/api/java/lang/ProcessHandle.html
http://download.java.net/java/jdk9/docs/api/java/lang/ProcessHandle.html
http://download.java.net/java/jdk9/docs/api/java/lang/ProcessHandle.html
http://download.java.net/java/jdk9/docs/api/java/lang/ProcessHandle.html

Making Use of the ProcessHandle API

[218]

This is because some operating systems do not implement the graceful process termination
feature. In such situations, the implementation of destroy() is the same as calling
destroyForcefully().The system specific implementation of the interface
ProcessHandle must implement the method supportsNormalTermination() that is
true only if the implementation supports normal (not forceful) process termination. The
method is expected to return the same value for all invocations in an actual implementation
and should not change the return value during the execution of a JVM instance. There is no
need to call the method multiple times.

The following examples demonstrate process starting, process termination, and waiting for
the process to terminate. In our example, we use two classes. This first class demonstrates
the .sleep() method:

 package packt.mastering.java9.process;

 public class WaitForChildToBeTerminated
 {
 public static void main(String[] args)
 throws InterruptedException
 {
 Thread.sleep(10_000);
 }
 }

The second class in our example calls the WaitForChildToBeTerminated class:

 package packt.mastering.java9.process;

 import java.io.IOException;
 import java.util.Arrays;
 import java.util.concurrent.CompletableFuture;
 import java.util.stream.Collectors;

 public class TerminateAProcessAfterWaiting {
 private static final int N = 10;

 public static void main(String[] args)
 throws IOException, InterruptedException {
 ProcessHandle ph[] = new ProcessHandle[N];

 for (int i = 0; i < N; i++)
 {
 final ProcessBuilder pb = ew ProcessBuilder().
 command("java", "-cp", "build/classes/main",
 "packt.mastering.java9.process.
 WaitForChildToBeTerminated");

Making Use of the ProcessHandle API

[219]

 Process p = pb.start();
 ph[i] = p.toHandle();
 }
 long start = System.currentTimeMillis();
 Arrays.stream(ph).forEach(ProcessHandle::destroyForcibly);

 CompletableFuture.allOf(Arrays.stream(ph).
 map(ProcessHandle::onExit).
 collect(Collectors.toList()).
 toArray(new CompletableFuture[ph.length])).
 join();
 long duration = System.currentTimeMillis() - start;
 System.out.println("Duration " + duration + "ms");
 }
 }

The preceding code starts 10 processes, each executing the program that sleeps 10 seconds.
Then it forcibly destroys the processes, more specifically, the operating system is asked to
destroy them. Our example joins the CompletableFuture that is composed from the array
of CompletableFuture objects, which are created using the handles of the individual
processes.

When all the processes are finished then it prints out the measured time in milliseconds.
The time interval starts when the processes are created and the process creation loop
finished. The end of the measured time interval is when the processes are recognized by the
JVM returning from the join() method.

The sample code sets the sleeping time to 10 seconds. This is a more noticeable time period.
Running the code twice and deleting the line that destroys the processes can result a much
slower printout. Actually the measured and printed elapsed times will also show that
terminating the processes has an effect.

A small process controller application
To summarize and put into use all that we have learned in this chapter we look at a sample
process control application. The functionality of the application is very simple. It reads from
a series of configuration file(s) parameters how to start some processes and then if any of
them stops, it tries to restart the process.

Making Use of the ProcessHandle API

[220]

Even a real life application can be created from this demo version. You can extend the set of
parameters of the process with environment variable specifications. You can add default
directory for the process, input and output redirection or even how much CPU a process is
allowed to consume without the controlling application killing and restarting it.

The application consists of four classes.

Main: This class that contains the public static void main method and is used to
start up the daemon.
Parameters: This class contains the configuration parameters for a process. In
this simple case it will only contain one field, the commandLine. If the application
gets extended this class will contain the default directory, the redirections, and
CPU use limiting data.
ParamsAndHandle: This class that is nothing else than a data tuple holding a
reference to a Parameters object and also a process handle. When a process dies
and gets restarted the process handle is replaced by the new handle, but the
reference to the Parameters object never changes, it is configuration.

ControlDaemon: This class implements the interface Runnable and is started as
a separate thread.

In the code we will use most of the process API we discussed in the previous sections,
Terminating processes and we will use a lot of threading code and stream operations.
Understanding the threading work of the JVM is important independent of the process
management also. It has, however emphasized importance when used together with the
process API.

Main class
The main method takes the name of the directory from the command line argument. It
treats this as relative to the current working directory. It uses a separate method from the
same class to read the set of configurations from the files in the directory and then starts the
control daemon. The following code if the main method of the program:

 public static void main(String[] args) throws IOException,
 InterruptedException
 {
 // DemoOutput.out() simulated - implementation no shown
 DemoOutput.out(new File(".").getAbsolutePath().toString());
 if (args.length == 0) {
 System.err.println("Usage: daemon directory");
 System.exit(-1);

Making Use of the ProcessHandle API

[221]

 }
 Set<Parameters> params = parametersSetFrom(args[0]);
 Thread t = new Thread(new ControlDaemon(params));
 t.start();
 }

Although this is a daemon, we are starting it as a normal thread and not as a daemon
thread. When a thread is set to be a daemon thread it will not keep the JVM alive. When all
other non-daemon threads stop, the JVM will just exit and the daemon threads will be
stopped. In our case, the daemon thread we execute is the only one that keeps the code
running. After that was started the main thread has nothing more to do, but the JVM should
stay alive, until it is killed by the operator issuing a Unix kill command or pressing
Control + C on the command line.

Getting the list of the files that are in the directory specified and getting the parameters
from the file is simple using the new Files and Paths classes from the JDK:

 private static Set<Parameters>
 GetListOfFilesInDirectory(String directory) throws IOException
 {
 return Files.walk(Paths.get(directory))
 .map(Path::toFile)
 .filter(File::isFile)
 .map(file -> Parameters.fromFile(file))
 .collect(Collectors.toSet());
 }

We get a stream of the files in the form of Path objects, map it to File objects, then we filter
out the directories if there are any in the configuration directory and map the remaining
plain files to Parameters objects using the static method fromFile of the Parameters
class. Finally, we return a Set of the objects.

Parameters class
Our Parameters class has a field and a constructor as listed as follows:

 final String[] commandLine;

 public Parameters(String[] commandLine) {
 this.commandLine = commandLine;
 }

Making Use of the ProcessHandle API

[222]

The parameter class has two methods. The first method, getCommandLineStrings, gets
the command line strings from the properties. This array contains the command and the
command line parameters. If it was not defined in the file then we return an empty array:

 private static String[] getCommandLineStrings(Properties props)
 {
 return Optional
 .ofNullable(props.getProperty("commandLine"))
 .orElse("")
 .split("\\s+");
 }

The second method is the static fromFile that reads the properties from a properties
file:

 public static Parameters fromFile(final File file)
 {
 final Properties props = new Properties();
 try (final InputStream is = new FileInputStream(file)) {
 props.load(is);
 } catch (IOException e) {
 throw new RuntimeException(e);
 }
 return new Parameters(getCommandLineStrings(props));
 }

If the set of parameters handled by the program is extended then this class should also be
modified.

The ParamsAndHandle class
The ParamsAndHandle is a very simple class that holds two fields. One for the parameters
and the other is the handle to the process handle that is used to access the process started
using the parameters:

 public class ParamsAndHandle
 {
 final Parameters params;
 ProcessHandle handle;

 public ParamsAndHandle(Parameters params,
 ProcessHandle handle) {
 this.params = params;
 this.handle = handle;
 }

Making Use of the ProcessHandle API

[223]

 public ProcessHandle toHandle() {
 return handle;
 }
 }

Since the class is closely tied to the ControlDaemon class from where it is used there is no
mutator or accessor associated with the field. We see the two classes as something inside the
same encapsulation boundaries. The toHandle method is there so that we can use it as a
method handle, as we will see in the next chapter.

The ControlDaemon class
The ControlDaemon class implements the Runnable interface and is started as a separate
thread. The constructor gets the set of the parameters that were read from the properties
files and converts them to a set of ParamsAndHandle objects:

 private final Set<ParamsAndHandle> handlers;

 public ControlDaemon(Set<Parameters> params) {
 handlers = params
 .stream()
 .map(s -> new ParamsAndHandle(s,null))
 .collect(Collectors.toSet());
 }

Because the processes are not started at this point, the handles are all null. The run()
method starts the processes:

 @Override
 public void run() {
 try {
 for (ParamsAndHandle pah : handlers) {
 log.log(DEBUG, "Starting {0}", pah.params);
 ProcessHandle handle = start(pah.params);
 pah.handle = handle;
 }
 keepProcessesAlive();
 while (handlers.size() > 0) {
 allMyProcesses().join();
 }
 } catch (IOException e)
 {
 log.log(ERROR, e);
 }
 }

Making Use of the ProcessHandle API

[224]

Processing goes through the set of parameters and uses the method (implemented in this
class later) to start the processes. The handles to each process get to the ParamsAndHandle
object. After that, the keepProcessesAlive method is called and waits for the processes to
finish. When a process stops it gets restarted. If it cannot be restarted it will be removed
from the set.

The allMyProcesses method (also implemented in this class) returns a
CompletableFuture that gets completed when all the started processes have stopped.
Some of the processes may have been restarted by the time the join() method returns. As
long as there is at least one process running, the thread should run.

Using the CompletableFuture to wait for the processes and the while loop, we use
minimal CPU to keep the thread alive so long as long there is at least one process we
manage running, presumably even after a few restarts. We have to keep this thread alive
even if it does not use CPU and executes no code most of the time to let the
keepProcessesAlive() method do its work using CompletableFutures. The method is
shown in the following code snippet:

 private void keepProcessesAlive()
 {
 anyOfMyProcesses()
 .thenAccept(ignore -> {
 restartProcesses();
 keepProcessesAlive();
 });
 }

The keepProcessesAlive() method calls the anyOfMyProcesses() method that returns
a CompletableFuture, which is completed when any of the managed processes exits. The
method schedules to execute the lambda passed as an argument to the thenAccept()
method for the time the CompletableFuture is completed. The lambda does two things:

Restarts the processes that are stopped (probably only one)
Calls the keepProcessesAlive() method

It is important to understand that this call is not performed from within the
keepProcessesAlive() method itself. This is not a recursive call. This is scheduled as a
CompletableFuture action. We are not implementing a loop in a recursive call, because
we would run out of stack space. We ask the JVM executors to execute this method again
when the processes are restarted.

Making Use of the ProcessHandle API

[225]

It is important to know that the JVM uses the default ForkJoinPool to schedule these tasks
and this pool contains daemon threads. That is the reason we have to wait and keep the
method running because that is the only non-daemon thread that prevents the JVM from
exiting.

The next method is restartProcesses():

 private void restartProcesses()
 {
 Set<ParamsAndHandle> failing = new HashSet<>();
 handlers.stream()
 .filter(pah -> !pah.toHandle().isAlive())
 .forEach(pah -> {
 try {
 pah.handle = start(pah.params);
 } catch (IOException e) {
 failing.add(pah);
 }
 });
 handlers.removeAll(failing);
 }

This method starts the processes that are in our set of managed processes and which are not
alive. If any of the restarts fail it removes the failing processes from the set. (Be aware not to
remove it in the loop to avoid ConcurrentModificationException.)

The anyOfMyProcesses() and allMyProcesses() methods are using the auxiliary
completableFuturesOfTheProcessesand() method and are straight forward:

 private CompletableFuture anyOfMyProcesses()
 {
 return CompletableFuture.anyOf(
 completableFuturesOfTheProcesses());
 }

 private CompletableFuture allMyProcesses() {
 return CompletableFuture.allOf(
 completableFuturesOfTheProcesses());
 }

Making Use of the ProcessHandle API

[226]

The completableFuturesOfTheProcesses() method returns an array of
CompletableFutures created from the currently running managed processes calling their
onExit() method. This is done in a compact and easy to read functional programming
style, as shown here:

 private CompletableFuture[] completableFuturesOfTheProcesses()
 {
 return handlers.stream()
 .map(ParamsAndHandle::toHandle)
 .map(ProcessHandle::onExit)
 .collect(Collectors.toList())
 .toArray(new CompletableFuture[handlers.size()]);
 }

The set is converted to a stream, mapped to a stream of ProcessHandle objects (this is
why we needed the toHandle() method in the ParamsAndHandle class). Then the handles
are mapped to CompletableFuture stream using the onExit() method and finally we
collect it to a list and convert to an array.

Our last method to complete our sample application is as follows:

 private ProcessHandle start(Parameters params)
 throws IOException {
 return new ProcessBuilder(params.commandLine)
 .start()
 .toHandle();
 }

This method starts the process using a ProcessBuilder and returns the ProcessHandle
so that we can replace the old one in our set and manage the new process.

Summary
In this chapter we discussed how Java 9 better enables us to manage processes. Prior to Java
9, process management from within Java required OS specific implementations and was
less than optimal in terms of CPU use and coding practice. The modern API, with new
classes like ProcessHandle, makes it possible to handle almost all aspects of processes.
We listed the new API, and had simple example codes for the use of each of them. In the
second half of the chapter we put together a whole application managing processes where
the learned API was put into practice.

In the next chapter, we will take a detailed look at the new Java Stack Walking API released
with Java 9. We will use code samples to illustrate how to use the API.

10
Fine-Grained Stack Tracing

Java 9 comes with a new stack walker API that lets the program walk the calling stack. This
is a very special functionality that is rarely needed by ordinary programs. The API can be
useful for some very special cases--for functionality that is delivered by framework. So, if
you want an efficient means of stack walking that gives you filterable access to stack trace
information, you will enjoy this new stack walker API.

The API gives fast and optimized access to the call stack, implementing lazy access to the
individual frames.

In this chapter, we cover the following topics:

Overview of the Java Stack
The importance of stack information
Using StackWalker
The StackFrame
Performance

Overview of the Java Stack
Before we dive into the stack walker, let's start by covering the Java Stack. This is basic stack
information, not specific to the stack walker.

The Java runtime has a class named Stack, which can be used to store objects using the last-
in-first-out (LIFO) policy.

Fine-Grained Stack Tracing

[228]

When arithmetic expressions are calculated they are done using a stack. If we add A and B
in our code first A is pushed on the Operand Stack, then B is pushed on the Operand Stack
and finally the addition operation is executed, which fetches the two topmost elements of
the Operand Stack and pushes the result, A + B there.

The JVM is written in C and executes calling C functions and returning from there. This
call-return sequence is maintained using the Native Method Stack just like any other C
program.

Finally, when the JVM creates a new thread it also allocates a call stack containing frames
that in turn contain the local variables, reference to the previous frame, and reference to the
class that contains the executing method. When a method is invoked a new frame is created.
The frame is destroyed when a method finishes its execution, in other words, returns or
throws an exception. This stack, the Java Virtual Machine Stack, is the one that the stack
walker API manages.

The importance of stack information
Generally speaking we need the stack information when we want to develop caller
dependent code. Having information about the caller allows our code to make decisions
based on that information. In general practice, it is not a good idea to make functionality
dependent on the caller. Information that affects the behavior of a method should be
available via parameters. Caller dependent code development should be fairly limited.

The JDK accesses stack information with native methods that are not available to Java
applications. The SecurityManager is a class that defines an application's security policy.
This class checks that the caller of a reflection API is allowed to access the non-public
members of another class. To do that it has to have access to the caller class and it does that
through a protected native method.

This is an example of implementing some security measures without having to walk
through a stack. We open our code for external developers to use it as a library. We also call
methods of classes provided by the library user and they may call back to our code. There is
some code that we want to allow library users to call but only if they were not called from
our code. If we did not want to allow some of the code to be accessed directly by the library
using code we could use Java 9's modular structure not exporting the package containing
the classes not to be invoked. This is the reason we set the extra condition that the code is
available for the callers from outside, except if they were called by our code:

Fine-Grained Stack Tracing

[229]

Another example is when we want to get access to a logger. Java applications use many
different loggers and the logging system is usually very flexible so that the output of the
different loggers can be switched on and off based on the actual need to introspect into the
code. The most common practice is to use a different logger for each class and the name of
the logger is usually the name of the class. The practice is so common that the logging
framework even provides logger access methods that accept the reference to the class itself
instead of the name. It essentially means that the call to get the handle of a logger looks
something like the following:

 private static final Logger LOG = Logger.getLogger(MyClass.class);

A problem can arise when we create new classes from existing classes if we forget to alter
the name of the class name in the call for getting a new logger. This is not a serious problem,
but it is common. In that case our code will use the logger of the other class and it will
actually work, but may create confusion when we analyze the log files. It would be much
nicer if we had a method that returns the logger that is named as the class of the caller.

Let's continue our exploration of stack information in the next two sections with code
snippet examples.

Fine-Grained Stack Tracing

[230]

Example - Restricting callers
In this section we develop a sample library with two methods. The hello() method prints
hello to the standard output. The callMe() method accepts a Runnable as an argument
and runs it. The first method however is restricted. It executes only if the caller is purely
outside of the library. It throws an IllegalCallerException if the caller obtained the
control in a way that the library was calling out, presumably via the second method
invoking the passed Runnable. The implementation of the API is simple:

 package packt.java9.deep.stackwalker.myrestrictivelibrary;
 public class RestrictedAPI {
 public void hello(){
 CheckEligibility.itIsNotCallBack();
 System.out.println("hello");
 }
 public void callMe(Runnable cb){
 cb.run();
 }
 }

The code that performs the eligibility checking is implemented in a separate class to keep
things simple. We will examine that code shortly, but before that we look at the main code
we use to start the demonstration. The main program code we use to demonstrate the
functionality is the following:

 package packt.java9.deep.stackwalker.externalcode;

 import
 packt.java9.deep.stackwalker.myrestrictivelibrary.RestrictedAPI;

 public class DirectCall {

 public static void main(String[] args) {
 RestrictedAPI api = new RestrictedAPI();
 api.hello();
 api.callMe(() -> {
 api.hello();
 });
 }
 }

Fine-Grained Stack Tracing

[231]

This code creates an instance of our API class and then directly invokes the hello()
method. It should work and should print the characters hello on screen. The next code line
asks the callMe() method to call back the Runnable provided in form of a lambda
expression. In this case the call will fail, because the caller is outside but was called from
inside the library.

Let's now look at how the eligibility check is implemented:

 package packt.java9.deep.stackwalker.myrestrictivelibrary;

 import static java.lang.StackWalker.Option.RETAIN_CLASS_REFERENCE;

 public class CheckEligibility {
 private static final String packageName
 = CheckEligibility.class.getPackageName();

 private static boolean notInLibrary(StackWalker.StackFrame f) {
 return !inLibrary(f);
 }

 private static boolean inLibrary(StackWalker.StackFrame f) {
 return f.getDeclaringClass().getPackageName()
 .equals(packageName);
 }

 public static void itIsNotCallBack() {
 boolean eligible = StackWalker
 .getInstance(RETAIN_CLASS_REFERENCE)
 .walk(s -> s.dropWhile(CheckEligibility::inLibrary)
 .dropWhile(CheckEligibility::notInLibrary)
 .count() == 0
);
 if (!eligible) {
 throw new IllegalCallerException();
 }
 }
 }

The itIsNotCallBack() method is the one called from the hello() method. This method
creates a stack walker and invokes the walk() method. The argument of the walk()
method is a Function that converts a Stream of StackFrame objects to some other value
that the walk() method will return.

At first this argument setting might seem complex and difficult to understand. It would be
more logical to return a Stream that provides the StackFrame objects instead of forcing the
caller to define a Function that will get this as an argument.

Fine-Grained Stack Tracing

[232]

The sample code uses a lambda expression to define the Function as an argument to the
walk() method. The argument to the lambda expression s is the stream. Since the first
element of this stream is the actual call we drop it. Because these calls should also be
refused if the caller is not eligible even though the call to method hello() was through
some other class and method that is already inside the library, we drop all elements from
the frame that belong to classes inside the package of the class CheckEligibility. This
package is packt.java9.deep.stackwalker.myrestrictivelibrary and in the code
this string is stored in the field packageName. The resulting stream contains only the
StackFrame objects that are from outside of the library. We drop these also until the stream
exhausts or until we find a StackFrame that again belongs to the library. If all elements
were dropped we are good. In this case the result of count() is zero. If we find some class
in the StackFrame that belongs to the library it means that the outside code was called
from the library and in this case we have to refuse working. In this case the variable eligible
will be false and we throw an exception, as can be seen in the following screenshot:

Fine-Grained Stack Tracing

[233]

Example - Getting logger for caller
To get a logger, Java 9 has a new API. Using this API a module can provide an
implementation for the service LoggerFinder, which in turn can return a Logger
implementing the getLogger() method. This eliminates the dependency of libraries on
specific loggers or logger facades, which is a huge advantage. The smaller but still annoying
issue requiring us to write the name of the class again as the parameter to the method
getLogger() is still there.

To avoid this cumbersome task, we create a helper class that looks up the caller class and
retrieves the logger that is suitable for the caller class and module. Because in this case there
is no need for all the classes referenced in the stack trace we will call the
getCallerClass() method of the StackWalker class. We create a class named Labrador
in the package packt.java9.deep.stackwalker.logretriever:

 package packt.java9.deep.stackwalker.logretriever;

 import java.lang.System.Logger;
 import java.lang.System.LoggerFinder;

 import static java.lang.StackWalker.Option.RETAIN_CLASS_REFERENCE;

 public class Labrador {
 public static Logger retrieve() {
 final Class clazz = StackWalker
 .getInstance(RETAIN_CLASS_REFERENCE)
 .getCallerClass();
 return LoggerFinder.getLoggerFinder().getLogger(
 clazz.getCanonicalName(), clazz.getModule());
 }
 }

Before Java 9 the solution for this issue was getting the StackTrace array from the Thread
class and looking up the name of the caller class from there. Another approach was
extending the SecurityManager that has a protected method getClassContext() that
returns an array of all the classes on the stack. Both solutions walk through the stack and
compose an array although we only need one element from the array. In case of logger
retrieval it may not be a significant performance penalty since loggers are usually stored in
private static final fields and thus are initialized once per class during class
initialization. In other use cases the performance penalty may be significant.

After we have seen two examples we will look at the details of StackWalker inner
working.

Fine-Grained Stack Tracing

[234]

Working with StackWalker
In this section you will become more familiar with how to work with StackWalker. We
will explore the following topics in this section:

Getting an instance of StackWalker
Stack walking options

Getting an instance of StackWalker
To perform the walking over the stack elements we need an instance of the stack walker. To
do that, we invoke the getInstance() method. As shown here, there are four overloaded
versions of this method:

static StackWalker getInstance()

static StackWalker getInstance(StackWalker.Option option)

static StackWalker getInstance(Set<StackWalker.Option> options)

static StackWalker getInstance(Set<StackWalker.Option> options,
int estimateDepth)

The first version does not take any arguments and returns a StackWalker instance that will
let us walk through normal stack frames. This is usually what we would be interested in.
The other versions of the method accept a StackWalker.Option value or values. The
enum StackWalker.Option, as the name suggests, is inside the class StackWalker and
has three values:

RETAIN_CLASS_REFERENCE

SHOW_REFLECT_FRAMES

SHOW_HIDDEN_FRAMES

These enum options have self-descriptive names and are explained in the next sections.

RETAIN_CLASS_REFERENCE
If we specify the first option enum constant, RETAIN_CLASS_REFERENCE, as an argument
to the getInstance() method then the returned instance grants us access to the classes
that the individual stack frames reference during the walking.

Fine-Grained Stack Tracing

[235]

SHOW_REFLECT_FRAMES
The SHOW_REFLECT_FRAMES enum constant will generate a walker that includes the frames
that source from some reflective calling.

SHOW_HIDDEN_FRAMES
Finally the enum constant option, SHOW_HIDDEN_FRAMES will include all the hidden frames,
which contain reflective calls as well as call frames that are generated for lambda function
calls.

Here is a simple demonstration of reflective and hidden frames:

 package packt;
 import static java.lang.StackWalker.Option.SHOW_HIDDEN_FRAMES;
 import static java.lang.StackWalker.Option.SHOW_REFLECT_FRAMES;
 public class Main {

The main method allowing us to execute this code directly calls the method simpleCall():

 public static void main(String[] args) {
 simpleCall();
 }

The method simpleCall() simply calls on as the name suggests:

 static void simpleCall() {
 reflectCall();
 }

The next method in the chain is a bit more complex. Although this also only calls the next
one, it does so using reflection:

 static void reflectCall() {
 try {
 Main.class.getDeclaredMethod("lambdaCall",
 new Class[0])
 .invoke(null, new Object[0]);
 } catch (Exception e) {
 throw new RuntimeException();
 }
 }

Fine-Grained Stack Tracing

[236]

In this next example, we have a method that calls using a lambda:

 static void lambdaCall() {
 Runnable r = () -> {
 walk();
 };
 r.run();
 }

The last method before the actual walking is called walk():

 static void walk() {
 noOptions();
 System.out.println();
 reflect();
 System.out.println();
 hidden();
 }

The preceding walk() method calls three methods, one after the other. These methods are
very similar to each other and provided here:

 static void noOptions() {
 StackWalker
 .getInstance()
 .forEach(System.out::println);
 }

 static void reflect() {
 StackWalker
 .getInstance(SHOW_REFLECT_FRAMES)
 .forEach(System.out::println);
 }

 static void hidden() {
 StackWalker
 // shows also reflect frames
 .getInstance(SHOW_HIDDEN_FRAMES)
 .forEach(System.out::println);
 }

Fine-Grained Stack Tracing

[237]

The preceding three methods print out the frames to the standard output. They use the
forEach() method of the stack walker. Here is the output of the stack walking program:

stackwalker/packt.Main.noOptions(Main.java:45)
stackwalker/packt.Main.walk(Main.java:34)
stackwalker/packt.Main.lambda$lambdaCall$0(Main.java:28)
stackwalker/packt.Main.lambdaCall(Main.java:30)
stackwalker/packt.Main.reflectCall(Main.java:19)
stackwalker/packt.Main.simpleCall(Main.java:12)
stackwalker/packt.Main.main(Main.java:8)

This output only contains the frames that belong to calls that are in our code. The main()
method calls simpleCall(), which calls reflectCall(), that in turn calls
lambdaCall(), which calls a lambda expression, that calls walk() and so on. The fact that
we did not specify any option does not delete the lambda call from the stack. We performed
that call, thus it must be there. What it deletes are the extra stack frames that are needed by
the JVM to implement the lambda. We can see on the next output, when the option was
SHOW_REFLECT_FRAMES, that the reflective frames are already there:

stackwalker/packt.Main.reflect(Main.java:58)
stackwalker/packt.Main.walk(Main.java:36)
stackwalker/packt.Main.lambda$lambdaCall$0(Main.java:28)
stackwalker/packt.Main.lambdaCall(Main.java:30)
java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native
Method)
java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke(NativeMethod
AccessorImpl.java:62)
java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(Delegati
ngMethodAccessorImpl.java:43)
java.base/java.lang.reflect.Method.invoke(Method.java:547)
stackwalker/packt.Main.reflectCall(Main.java:19)
stackwalker/packt.Main.simpleCall(Main.java:12)
stackwalker/packt.Main.main(Main.java:8)

In this case the difference is that we can see that the call from the reflectCall() method
to lambdaCall() method is not direct. The reflectCall() method calls the invoke()
method that calls another method of the same name defined in a different class that in turn
calls the invoke0() method, which is a native method provided by the JVM. After that we
finally get to the lambdaCall() method.

In the output we can also see that these reflective calls belong to the module java.base
and not our stackwalker module.

Fine-Grained Stack Tracing

[238]

If we include the hidden frames in addition to the reflective frames, specifying the option
SHOW_HIDDEN_FRAMES, then we will see the following output:

stackwalker/packt.Main.hidden(Main.java:52)
stackwalker/packt.Main.walk(Main.java:38)
stackwalker/packt.Main.lambda$lambdaCall$0(Main.java:28)
stackwalker/packt.Main$$Lambda$46/269468037.run(Unknown Source)
stackwalker/packt.Main.lambdaCall(Main.java:30)
java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native
Method)
java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke(NativeMethod
AccessorImpl.java:62)
java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(Delegati
ngMethodAccessorImpl.java:43)
java.base/java.lang.reflect.Method.invoke(Method.java:547)
stackwalker/packt.Main.reflectCall(Main.java:19)
stackwalker/packt.Main.simpleCall(Main.java:12)
stackwalker/packt.Main.main(Main.java:8)

This includes an extra hidden frame that the JVM is using to execute the lambda call. In
addition, the reflective frames are also included.

Final thoughts on enum constants
We can also specify more than one option giving a set of the options. The simplest way of
doing that is to use the static of() method of the java.util.Set interface. This way the
RETAIN_CLASS_REFERENCE option can be combined with either the
SHOW_REFLECT_FRAMES option or the SHOW_HIDDEN_FRAMES option.

Although it is technically possible to combine SHOW_REFLECT_FRAMES and
SHOW_HIDDEN_FRAMES as an option set, there is really no advantage in doing that. The
latter includes the first, so the combination of the two is exactly same as the second.

Accessing classes
When we want to access the class objects during a stack walk, we have to specify the
RETAIN_CLASS_REFERENCE option. Although the StackFrame interface defines the
getClassName() method, that could be used to access a class of the name using the
Class.forName() method, doing so would not guarantee that the class the StackFrame
object refers to was loaded by the same class loader as the code calling Class.forName().
In some special cases, we could end up with two different classes of the same name loaded
by two different class loaders.

Fine-Grained Stack Tracing

[239]

When the option is not used during the creation of the StackWalker instance then the
methods that otherwise return a class object will throw an
UnsupportedOperationException exception. That way getDeclaringClass() cannot
be used on the StackFrame and getCallerClass() on the StackWalker.

Walking methods
The StackWalker defines the forEach() method that expects a Consumer (preferably in
the form of a lambda expression) that is invoked for each element of the stack trace walking
up the stack. The argument to the Consumer method is a StackFrame object.

Although a method named forEach is also defined by the Stream interface and the
method walk() passes a Stream object to the Function it gets as argument, we should not
confuse the two. The forEach() method of StackWalker is a simpler, and most of the
time less effective way to get through all the elements of the stack trace.

It is less effective, in most cases, because it forces the StackWalker instance to get all the
elements of the stack trace so that the forEach() method can traverse through each
element to the end. If we know that we will not traverse through the stack trace to the end
we should use the walk() method that is accessing the stack the lazy way and thus leave
more room for performance optimization.

The StackWalker class has the walk() method, which is the defining method that makes it
a walker. The method accepts a Function that is called by the StackWalker. The return
value of the walk() method will be the object returned by the Function. The argument to
the Function is a Stream<StackFrame> that delivers the stack frames. The first frame is
the one that contains the walk() method call, the next is the one that was calling method
that contains the call to walk(), and so on.

The Function can be used to calculate some value based on the StackFrame objects that
come from the stream and decide if a caller is eligible calling our code or not.

Fine-Grained Stack Tracing

[240]

You might ponder, after reviewing the walk() method that needs a Function that in turn
gets a Stream<StackFrame> as argument, why it is so complicated. We might wish we
could get a Stream<StackFrame> from the StackWalter instance directly. The simplest
approach would be to pass the stream back from the Function. Consider the following
example:

 // EXAMPLE OF WHAT NOT TO DO!!!!
 public static void itIsNotCallBack() {
 Stream<StackWalker.StackFrame> stream =
 StackWalker
 .getInstance(RETAIN_CLASS_REFERENCE)
 .walk(s -> s);
 boolean eligible = // YOU GET EXCEPTION!!!!
 stream.dropWhile(CheckEligibility::inLibrary)
 .dropWhile(CheckEligibility::notInLibrary)
 .count() == 0;
 if (!eligible) {
 throw new IllegalCallerException();
 }
 }

What we were doing is simply returning the stream directly from the walker call and
walking through it afterwards doing the same calculation. Our results are an
IllegalStateException exception instead of the eligibility check.

The reason for that is that the implementation of the StackWalker is highly optimized. It
does not copy the whole stack to provide source information for the stream. It works from
the actual, living stack. To do that it has to be sure that the stack is not modified while the
stream is in use. This is something very similar to the
ConcurrentModificationException that we might get if we alter a collection while we
iterate over it. If we passed the stream up in the call stack and then wanted to get the
StackFrame out of it, the stream would try to get the information from the stack frame that
is long gone, since we returned from the method that it belonged to. That way the
StackWalker does not make a snapshot of the whole stack but rather it works from the
actual one and it must ensure that the part of the stack it needs does not change. We may
call methods from the Function and that way we can dig deeper in the call chain but we
cannot get higher while the stream is in use.

Also do not try to play other tricks, like extending the StackWalker class. You cannot. It is
a final class.

Fine-Grained Stack Tracing

[241]

StackFrame
In previous sections, we iterated through the StackFrame elements, and provided sample
code snippets, but did not take the time to examine it more closely. StackFrame is an
interface defined inside the StackWalker class. It defines accessors, and a converter that
can be used to convert the information to StackTraceElement.

The accessors the interface defines are the following:

getClassName() will return the binary name of the class of the method
represented by the StackFrame.
getMethodName() will return the name of the method represented by the
StackFrame.
getDeclaringClass() will return the class of the method represented by the
StackFrame. If the Option.RETAIN_CLASS_REFERENCE was not used during
the creation of the StackWalker instance then the method will throw
UnsupportedOperationException.
getByteCodeIndex() gets the index to the code array containing the execution
point of the method represented by the StackFrame. The use of this value can be
helpful during bug hunting when looking at the disassembled Java code that the
command line tool javap can give us. The programmatic use of this value can
only be valuable for applications that have direct access to the byte code of the
code, java agents or libraries that generate byte code during run-time. The
method will return a negative number in case the method is native.
getFileName() returns the name of the source file the method represented by
the StackFrame was defined.
getLineNumber() returns the line number of the source code.
isNativeMethod() returns true if the method represented by the StackFrame
is native and false otherwise.

The StackFrame does not provide any means to access the object that the method belongs
to. You cannot access the arguments and the local variables of the method represented by
the StackFrame and there is no other way you can accomplish that. This is important. Such
access would be too invasive and is not possible.

Fine-Grained Stack Tracing

[242]

Performance
Our coverage of StackWalker would not be complete without a look at performance
considerations.

StackWalker is highly optimized and does not create huge memory structures that go
unused. That is the reason why we have to use that Function passed to the method
walker() as an argument. This is also the reason why a StackTrace is not automatically
converted to a StackTraceElement when created. This only happens if we query the
method name, the line number of the specific StackTraceElement. It is important to
understand that this conversion takes a significant amount of time and if it was used for
some debug purpose in the code it should not be left there.

To make the StackWalker even faster we can provide an estimate about the number of
StackFrame elements that we will work with in the stream. If we do not provide such an
estimate, the current implementation in the JDK will use eight StackFrame objects pre-
allocated and when that is exhausted, the JDK will allocate more. The JDK will allocate the
number of elements based on our estimate unless we estimate a value larger than 256. In
that case, the JDK will use 256.

Summary
In this chapter, we learned how to use the StackWalker and provided example code. Our
detailed review of the API included different usage scenarios, options, and information. We
explained the API's complexity and shared how and how not to use the class. We closed
with some related performance issues that the user has to be aware of.

In our next chapter, we will cover over a dozen Java Enhancement Proposals that were
incorporated in the Java 9 platform. The featured changes will cover a wide range of tools
and updates to APIs that are aimed at making developing with Java easier and the ability to
create optimized Java applications. We will look at the new HTTP client, changes to the
Javadoc and Doclet API, the new JavaScript parser, JAR and JRE changes, the new Java-
level JVM compiler interface, support for TIFF images, platform logging, XML catalog
support, collections, new platform-specific desktop features, and enhancements to method
handling and the depreciation annotation.

11
New Tools and Tool

Enhancements
In the previous chapter, we explored Java 9's new stack walker API and learned how it
enables Java applications to walk the calling stack. This is a specialized functionality that is
not often implemented in Java applications. That being said, the API may be good for some
very special cases, such as for functionality that is delivered by a framework. You learned
that if you develop framework-supporting application programming and you want code
that depends on the caller context, then the stack walker API is for you. We also discovered
that the API gives fast and optimized access to the call stack, implementing lazy access to
the individual frames.

In this chapter, we will cover 16 Java Enhancement Proposals (JEPs) that were
incorporated into the Java 9 platform. These JEPs cover a wide range of tools and updates to
APIs to make developing with Java easier, with greater optimization possibilities for our
resulting programs.

Our review of new tools and tool enhancements will include the following:

The new HTTP client
Javadoc and the Doclet API
mJRE changes
JavaScript parser
Multi-release JAR files
The Java-level JVM compiler interface
TIFF support
Platform logging
XML Catalogs

New Tools and Tool Enhancements

[244]

Collections
Platform-specific desktop features
Enhanced method handling
Enhanced deprecation

The new HTTP client [JEP-110]
In this section, we will review Java's Hypertext Transfer Protocol (HTTP) client, starting
with a pre-Java 9 look and then diving into the new HTTP client that is part of the Java 9
platform. This approach is needed to support an understanding of the changes made in Java
9.

The HTTP client before Java 9
JDK version 1.1 introduced the HttpURLConnection API that supported HTTP-specific
features. This was a robust class that included the fields listed here:

chunkLength

fixedContentLength

fixedContentLengthLong

HTTP_ACCEPTED

HTTP_BAD_GATEWAY

HTTP_BAD_METHOD

HTTP_BAD_REQUEST

HTTP_CLIENT_TIMEOUT

HTTP_CONFLICT

HTTP_CREATED

HTTP_ENTITY_TOO_LARGE

HTTP_FORBIDDEN

HTTP_GONE

HTTP_INTERNAL_ERROR

HTTP_LENGTH_REQUIRED

HTTP_MOVED_PERM

HTTP_MOVED_TEMP

HTTP_MULT_CHOICE

New Tools and Tool Enhancements

[245]

HTTP_NO_CONTENT

HTTP_NOT_ACCEPTABLE

HTTP_NOT_AUTHORITATIVE

HTTP_NOT_FOUND

HTTP_NOT_IMPLEMENTED

HTTP_NOT_MODIFIED

HTTP_OK

HTTP_PARTIAL

HTTP_PAYMENT_REQUIRED

HTTP_PRECON_FAILED

HTTP_PROXY_AUTH

HTTP_REQ_TOO_LONG

HTTP_RESET

HTTP_SEE_OTHER

HTTP_SERVER_ERROR

HTTP_UNAUTHORIZED

HTTP_UNAVAIABLE

HTTP_UNSUPPORTED_TYPE

HTTP_USE_PROXY

HTTP_VERSION

instanceFollowRedirects

method

responseCode

responseMessage

As you can see from the list of fields, there was a great support for HTTP. In addition to a
constructor, there are a plethora of available methods, including the following ones:

disconnect()

getErrorStream()

getFollowRedirects()

getHeaderField(int n)

getHeaderFieldDate(String name, long Default)

getHeaderFieldKey(int n)

getInstanceFollowRedirects()

New Tools and Tool Enhancements

[246]

getPermission()

getRequestMethod()

getResponseCode()

getResponseMessage()

setChunkedStreamingMode(int chunklen)

setFixedLengthStreamingMode(int contentLength)

setFixedlengthStreamingMode(long contentLength)

setFollowRedirects(boolean set)

setInstanceFollowRedircts(boolean followRedirects)

setRequestMethod(String method)

usingProxy()

The class methods listed earlier are in addition to the methods inherited from the
java.net.URLConnection class and the java.lang.Object class.

There were problems with the original HTTP client that made it ripe for updating with the
new Java platform. Those problems were as follows:

The base URLConnection API had, defunct protocols such as Gopher and FTP
increasingly over the years
The HttpURLConnection API predated HTTP 1.1 and was overly abstract,
making it less usable
The HTTP client was woefully under documented, making the API frustrating
and difficult to use
The client only functioned on one thread at a time
The API was extremely difficult to maintain due to the above points about it
predating HTTP 1.1 and it lacking sufficient documentation

Now that we know what was wrong with the HTTP client, let's look at what's in store for
Java 9.

New Tools and Tool Enhancements

[247]

Java 9's new HTTP client
There were several goals associated with creating the new HTTP client for the Java 9
platform. JEP-110 was the organizing proposal for the new HTTP client. The primary goals
of JEP-110 are listed here and featured the creation of the new HTTP client presented. These
goals are presented in the broad categories of ease of use, core capabilities, additional
capabilities, and performance:

Ease of use:
The API was designed to provide up to 90 percent of HTTP-related
application requirements.
The new API is usable, without unnecessary complexity, for the
most common use cases.
A simplistic blocking mode is included.
The API supports modern Java language features. Lambda
expressions, a major new introduction released with Java 8, are an
example.

Core capabilities:
Supports HTTPS/TLS
Supports HTTP/2
Provides visibility on all details related to HTTP protocol requests
and responses
Supports standard/common authentication mechanisms
Provides headers received event notifications
Provides response body received event notifications
Provides error event notifications

Additional capabilities:
The new API can be used for WebSocket handshakes
It performs security checks in concert with the current networking
API

Performance:
For HTTP/1.1:

The new API must perform at least as efficiently as
the previous API.
Memory consumption must not exceed that of
Apache HttpClient, Netty, and Jetty, when being
used as a client API.

New Tools and Tool Enhancements

[248]

For HTTP/2:
Performance must exceed that of HTTP/1.1.
The new performance must match or exceed that of
Netty and Jetty when being used as a client API. No
performance degradation should be a result of the
new client.
Memory consumption must not exceed that of
Apache HttpClient, Netty, and Jetty, when being
used as a client API.

Avoids running timer threads

New API limitations
There are some intentional shortcomings of the new API. While this might sound counter-
intuitive, the new API was not intended to completely replace the current
HttpURLConnection API. Instead, the new API is intended to eventually replace the
current one.

The following code snippet provides an example of how to implement the
HttpURLConnect class to open and read a URL in a Java application:

 /*
 import statements
 */

 public class HttpUrlConnectionExample
 {
 public static void main(String[] args)
 {
 new HttpUrlConnectionExample();
 }
 public HttpUrlConnectionExample()
 {
 URL theUrl = null;
 BufferedReader theReader = null;
 StringBuilder theStringBuilder;

 // put the URL into a String
 String theUrl = "https://www.packtpub.com/";

 // here we are creating the connection
 theUrl = new URL(theUrl);
 HttpURLConnection theConnection = (HttpURLConnection)

New Tools and Tool Enhancements

[249]

 theUrl.openConnection();

 theConnection.setRequestedMethod("GET");

 // add a delay
 theConnection.setReadTimeout(30000); // 30 seconds
 theConnection.connect();

 // next, we can read the output
 theReader = new BufferedReader(
 new InputStreamReader(theConnection.getInputStream()));
 theStringBuilder = new StringBuilder();

 // read the output one line at a time
 String theLine = null;
 while ((theLine = theReader.readLine() != null)
 {
 theStringBUilder.append(line + "\n");
 }

 // echo the output to the screen console
 System.out.println(theStringBuilder.toString());
 // close the reader
 theReader.close();
 }
 }
 . . .

The preceding code does not include exception handling for brevity.

Here are some specific limitations of the new API:

Not all HTTP-related functionality is supported. It is estimated that about 10
percent of the HTTP's protocol is not exposed by the API.
Standard/common authentication mechanisms have been limited to basic
authentication.
The overarching goal of the new API was the simplicity of use, which means that
performance improvements might not be realized. Certainly, there will be no
performance degradation, but there is not likely to be an overwhelming level of
improvement, either.
There is no support for filtering on requests.

New Tools and Tool Enhancements

[250]

There is no support for filtering on responses.
The new API does not include a pluggable connection cache.
There is a lack of a general upgrade mechanism.

The new API is delivered as part of the Java 9 platform in the incubator mode. This suggests
that the API will be standardized in a future Java platform, perhaps with Java 10.

Simplified Doclet API [JEP-221]
The Doclet API and Javadoc are closely related. Javadoc is a documentation tool and the
Doclet API provides functionality so that we can inspect the javadoc comments embedded
at the source-levels of libraries and programs. In this section, we will review the pre-Java 9
status of the Doclet API and then explore the changes introduced to the Doclet API in the
Java 9 platform. In the following section, we will review Javadoc.

The pre-Java 9 Doclet API
The pre-Java 9 Doclet API, or the com.sun.javadoc package, gives us access to look at
javadoc comments located in the source code. Invoking a Doclet is accomplished by using
the start method. That method's signature is public static boolean start(RootDoc
root). We will use the RootDoc instance as a container for the program structure
information.

In order to call javadoc, we need to pass the following:

Package names
Source file names (for classes and interfaces)
An access control option--one of the following:

package

private

protected

public

When the preceding listed items are used to call javadoc, a documented set is provided as a
filtered list. If our aim is to obtain a comprehensive, unfiltered list, we can use
allClasses(false).

New Tools and Tool Enhancements

[251]

Let's review an example Doclet:

 // Mandatory import statement.
 import com.sun.javadoc.*;

 // We will be looking for all the @throws documentation tags.
 public class AllThrowsTags extends Doclet
 {
 // This is used to invoke the Doclet.
 public static boolean start(Rootdoc myRoot)
 {
 // "ClassDoc[]" here referes to classes and interfaces.
 ClassDoc[] classesAndInterfaces =
 myRoot.classesAndInterfaces();
 for (int i = 0; i < classesAndInterfaces.length; ++i)
 {
 ClassDoc tempCD = classesAndInterfaces[i];
 printThrows(tempCD.contructors());
 printThrows(tempCD.methods());
 }
 return true;
 }

 static void printThrows(ExecutableMemberDoc[] theThrows)
 {
 for (int i = 0; i < theThrows.length; ++i)
 {
 ThrowsTag[] throws = theThrows[i].throwsTags();

 // Print the "qualified name" which will be a the
 class or
 // interface name.
 System.out.println(theThrows[i].qualifiedName());

 // A loop to print all comments with the Throws Tag that
 // belongs to the previously printed class or
 interface name
 for (int j = 0; j < throws.length; ++j)
 {
 // A println statement that calls three methods
 from the
 // ThrowsTag Interface: exceptionType(),
 exceptionName(),
 // and exceptionComment().
 System.out.println("--> TYPE: " +
 throws[j].exceptionType() +
 " | NAME: " + throws[j].exceptionName() +
 " | COMMENT: " + throws[j].exceptionComment());

New Tools and Tool Enhancements

[252]

 }
 }
 }
 }

As you can see by the thoroughly commented code, gaining access to the javadoc content is
relatively easy. In our preceding example, we would invoke the AllThrows class using the
following code in the command line:

javadoc -doclet AllThrowsTags -sourcepath <source-location> java.util

The output of our result will consist of the following structure:

<class or interface name>
 TYPE: <exception type> | NAME: <exception name> | COMMENT: <exception
comment>
 TYPE: <exception type> | NAME: <exception name> | COMMENT: <exception
comment>
 TYPE: <exception type> | NAME: <exception name> | COMMENT: <exception
comment>
<class or interface name>
 TYPE: <exception type> | NAME: <exception name> | COMMENT: <exception
comment>
 TYPE: <exception type> | NAME: <exception name> | COMMENT: <exception
comment>

API enums
The API consists of one enum, LanguageVersion, which provides the Java programming
language version. The constants for this enum are Java_1_1 and Java_1_5.

API classes
The Doclet class provides an example of how to create a class to start a Doclet. It contains
an empty Doclet() constructor and the following methods:

languageVersion()

optionLength(String option)

start(RootDoc root)

validOptions(String[][] options, DocErrorReporter reporter)

New Tools and Tool Enhancements

[253]

API interfaces
The Doclet API contains the following listed interfaces. The interface names are self-
describing. You can consult the documentation for additional details:

AnnotatedType

AnnotationDesc

AnnotationDesc.ElementValuePair

AnnotationTypeDoc

AnnotationTypeElementDoc

AnnotationValue

ClassDoc

ConstructorDoc

Doc

DocErrorReporter

ExecutableMemberDoc

FieldDoc

MemberDoc

MethodDoc

PackageDoc

Parameter

ParameterizedType

ParamTag

ProgramElementDoc

RootDoc

SeeTag

SerialFieldTag

SourcePosition

Tag

ThrowsTag

Type

TypeVariable

WildcardType

New Tools and Tool Enhancements

[254]

Problems with the pre-existing Doclet API
Fueling the need for a new Doclet API were several issues with the pre-existing Doclet API:

It was not ideal for testing or concurrent usage. This stemmed from its
implementation of static methods.
The language model used in the API had several limitations and became more
problematic with each successive Java upgrade.
The API was inefficient, largely due to its heavy use of substring matching.
There was no reference provided regarding the specific location of any given
comment. This made diagnostics and troubleshooting difficult.

Java 9's Doclet API
Now that you have a good handle on the Doclet API as it existed prior to Java 9, let's look at
what changes have been made and delivered with the Java 9 platform. The new Doclet API
is in the jdk.javadoc.doclet package.

At a high level, the changes to the Doclet API are as follows:

Updates the com.sun.javadoc Doclet API to take advantage of several Java SE
and JDK APIs
Updates the com.sun.tools.doclets.standard.Standard Doclet to use the
new API
Supports the updated Taglet API that is used to create custom javadoc tags

In addition to the changes listed earlier, the new API uses the two APIs listed here:

Compiler tree API
Language model API

Let's explore each of these in the following sections.

Compiler tree API
The compiler tree API is in the com.sun.source.doctree package. It provides several
interfaces to document source-level comments. These APIs are represented as Abstract
Syntax Trees (ASTs).

New Tools and Tool Enhancements

[255]

There are two enums:

AttributeTree.ValueKind with the following constants:
DOUBLE

EMPTY

SINGLE

UNQUOTED

DocTree.Kind with the following constants:
ATTRIBUTE

AUTHOR

CODE

COMMENT

DEPRECATED

DOC_COMMENT

DOC_ROOT

END_ELEMENT

ENTITY

ERRONEOUS

EXCEPTION

IDENTIFIER

INHERIT_DOC

LINK

LINK_PLAIN

LITERAL

OTHER

PARAM

REFERENCE

RETURN

SEE

SERIAL

SERIAL_DATA

SERIAL_FIELD

SINCE

START_ELEMENT

New Tools and Tool Enhancements

[256]

TEXT

THROWS

UNKNOWN_BLOCK_TAG

UNKNOWN_INLINE_TAG

VALUE

VERSION

The com.sun.source.doctree package contains several interfaces. They are detailed in
the following table:

Interface name Extends A tree node for: Non-inherited methods

AttributeTree DocTree HTML element getName(), getValue(), getValueKind()

AuthorTree BlockTagTree,
DocTree

@author block tag getName()

BlockTagTree DocTree Base class for
different types of
block tags

getTagName()

CommentTree DocTree An embedded
HTML comment
with the following
HTML tags--<!--
text-->

getBody()

DeprecatedTree BlockTagTree @deprecated

block tag
getBody()

DocCommentTree DocTree Body block tags getBlockTags(), getBody(),
getFirstSentence()

DocRootTree InlineTagTree @docroot inline
tag

N/A

DocTree N/A Common interface
for all

accept(DocTreeVisitor<R,D>visitor,Ddata),
getKind()

New Tools and Tool Enhancements

[257]

DocTreeVisitor<R,P> N/A R = return type of
visitor's methods; P
= type of the
additional
parameter

visitAttribute(AttributeTree node, P p),
visitAuthor(AuthorTree node, P p),
visitComment(CommentTree node, P p),
visitDeprecated(DeprecatedTree node, P p),
visitDocComment(DocCommentTree node, P p),
visitDocRoot(DocRootTree node, P p),
visitEndElement(EndElementTree node, P p),
visitEntity(EntityTree node, P p),
visitErroneous(ErroneousTree node, P p),
visitIdentifier(IdentifierTree node, P p),
visitInheritDoc(InheritDocTree node, P p),
visitLink(LinkTree node, P p),
visitLiteral(LiteralTree node, P p),
visitOther(DocTree node, P p),
visitParam(ParamTree node, P p),
visitReference(ReferenceTree node, P p),
visitReturn(ReturnTree node, P p),
visitSee(SeeTree node, P p),
visitSerial(SerialTree node, P p),
visitSerialData(SerialDataTree node, P p),
visitSerialField(SerialFieldTree node, P

p), visitSince(SinceTree node, P p),
visitStartElement(StartElementTree node, P

p), visitText(TextTree node, P p),
visitThrows(ThrowsTree node, P p),
visitUnknownBlockTag(UnknownBlockTagTree

node, P p),
visitUnknownInlineTag(UnknownInlineTagTree

node, P p), visitValue(ValueTree node, P
p), visitVersion(VersionTree node, P p)

EndElementTree DocTree End of an HTML
element </name>

getName()

EntityTree DocTree An HTML entity getName()

ErroneousTree TextTree This is for
malformed text

getDiagnostic()

IdentifierTree DocTree An identifier in a
comment

getName()

InheritDocTree InlineTagTree @inheritDoc

inline tag
N/A

InlineTagTree DocTree Common interface
for inline tags

getTagName()

LinkTree InlineTagTree @link or
@linkplan inline
tags

getLabel(), getReference()

LiteralTree InlineTagTree @literal or
@code inline tags

getBody()

ParamTree BlockTagTree @param block tags getDescription(), getName(),
isTypeParameter()

New Tools and Tool Enhancements

[258]

ReferenceTree DocTree Used to reference a
Java lang element

getSignature()

ReturnTree BlockTagTree @return block tags getDescription()

SeeTree BlockTagTree @see block tags getReference()

SerialDataTree BlockTagTree @serialData

block tags
getDescription()

SerialFieldTree BlockTagTree @serialData

block tags and
@serialField

field names and
descriptions

getDescription(), getName(), getType()

SerialTree BlockTagTree @serial block tags getDescription()

SinceTree BlockTagTree @since block tags getBody()

StartElementTree DocTree Start of an HTML
element < name
[attributes]
[/] >

getAttributes(), getName(), isSelfClosing()

TextTree DocTree Plain text getBody()

ThrowsTree BlockTagTree @exception or
@throws block tags

getDescription(), getExceptionname()

UnknownBlockTagTree BlockTagTree Unrecognized
inline tags

getContent()

UnknownInlineTagTree InlineTagTree Unrecognized
inline tags

getContent()

ValueTree InlineTagTree @value inline tags getReference()

VersionTree BlockTagTree @version block
tags

getBody()

Language model API
The language model API is in the java.lang.model package. It includes packages and
classes that are used for language processing and language modeling. It consists of the
following components:

AnnotatedConstruct interface
SourceVersion enum
UnknownEntityException exception

Each of these language model API components is further explored in the next three sections.

New Tools and Tool Enhancements

[259]

The AnnotatedConstruct interface
The AnnotatedConstruction interface provides an annotatable construct to the language
model API that has been part of the Java platform since version 1.8. It is applicable to
constructs that are either an element (Interface Element) or a type (Interface TypeMirror).
The annotations for each of these constructs differ, as shown in this table:

Construct type Interface Annotation

element Element Declaration

type TypeMirror Based on use of a type name

The AnnotatedConstruction interface has three methods:

getAnnotation(Class<A> annotationType): This method returns the type
of the construct's annotation

getAnnotationMirrors(): This method returns a list of annotations that are on
the construct

getAnnotationsByType(Class<A> annotationType): This method returns
the construct's associated annotations

The SourceVersion enum
The SourceVersion enum consists of the following constants:

RELEASE_0

RELEASE_1

RELEASE_2

RELEASE_3

RELEASE_4

RELEASE_5

RELEASE_6

RELEASE_7

RELEASE_8

New Tools and Tool Enhancements

[260]

It is anticipated that the SourceVersion enum will be updated to include
RELEASE_9 once the Java 9 platform has been officially released.

This enum also contains several methods, which are as follows:

Method name: isIdentifier

public static boolean isIdentifier(CharSequence name)

This method returns true if the parameter string is a Java identifier or keyword.

Method name: isKeyword

public static boolean isKeyword(CharSequence s)

This method returns true if the given CharSequence is a literal or keyword.

Method name: isName

public static boolean isName(CharSequence name)

This method returns true if the CharSequence is a valid name.

Method name: latest

public static SourceVersion latest()

This method returns the latest source version for modeling purposes.

Method name: latestSupported

public static SourceVersion latestSupported()

This method returns the latest source version that can be fully supported for modeling.

Method name: valueOf

public static SourceVersion valueOf(String name)

New Tools and Tool Enhancements

[261]

This method returns the enum constant based on the parameter string provided.

You should be aware that the value(String name) method throws two
exceptions: IllegalArgumentException and NullPointerException.

Method name: values

public static SourceVersion[] values()

This method returns an array of the enum constants.

The UnknownEntityException exception
The UnknownEntityException class extends RuntimeException and is a superclass of
unknown exceptions. The class constructor is as follows:

 protected UnknownEntityException(String message)

The constructor creates a new instance of UnknownEntityException with the message
provided as a string argument. The method does not take additional arguments.

This class does not have its own methods, but inherits methods from both
java.lang.Throwable and class.java.lang.Object classes as shown here:

The java.lang.Throwable class methods:

addSuppressed()

fillInStackTrace()

getCause()

getLocalizedMessage()

getMessage()

getStackTrace()

getSuppressed()

initCause()

printStackTrace()

setStackTrace()

toString()

New Tools and Tool Enhancements

[262]

The java.lang.Object class methods:

clone()

equals()

finalize()

getClass()

hashCode()

notify()

notifyAll()

wait()

HTML5 Javadoc [JEP-224]
The Javadoc tool has been updated for the Java 9 platform. It can now generate HTML 5
markup output in addition to HTML 4. The new Javadoc tool provides support for both
HTML 4 and HTML 5.

HTML 4 will continue, even with the advent of the Java 9 platform, to be the default
Javadoc output format. HTML 5 will be an option and will not become the default output
markup format until Java 10.

The following short Java application simply generates a 319-wide by 319-high frame. It is
shown here without any Javadoc tags, which we will discuss later in this section:

 /import javax.swing.JFrame;
 import javax.swing.WindowConstants;

 public class JavadocExample
 {

 public static void main(String[] args)
 {
 drawJFrame();
 }

 public static void drawJFrame()
 {
 JFrame myFrame = new JFrame("Javadoc Example");
 myFrame.setSize(319,319);
 myFrame.setDefaultCloseOperation(
 WindowConstants.EXIT_ON_CLOSE);
 myFrame.setVisible(true);

New Tools and Tool Enhancements

[263]

 }
 }

Once your package or class is completed, you can generate a Javadoc using the Javadoc tool.
You can run the Javadoc tool, located in your JDK /bin directory, from the command line or
from within your Integrated Development Environment (IDE). Each IDE handles Javadoc
generation differently. For example, in Eclipse, you would select Project from the pull-
down menu and then Generate Javadoc. In the IntelliJ IDEA IDE, you select the Tools pull-
down menu and then Generate Javadoc.

The following screenshot shows the IntelliJ IDEA interface for the Generate Javadoc
functionality. As you can see, the -html5 command-line argument has been included:

New Tools and Tool Enhancements

[264]

When the OK button is clicked, you will see a series of status messages, as shown in the
following example:

"C:\Program Files\Java\jdk-9\bin\javadoc.exe" -public -splitindex -use -
author -version -nodeprecated -html5
@C:\Users\elavi\AppData\Local\Temp\javadoc1304args.txt -d C:\Chapter11\JD-
Output
Loading source file C:\Chapter11\src\JavadocExample.java...
Constructing Javadoc information...
Standard Doclet version 9
Building tree for all the packages and classes...
Generating C:\Chapter11\JD-Output\JavadocExample.html...
Generating C:\Chapter11\JD-Output\package-frame.html...
Generating C:\Chapter11\JD-Output\package-summary.html...
Generating C:\Chapter11\JD-Output\package-tree.html...
Generating C:\Chapter11\JD-Output\constant-values.html...
Generating C:\Chapter11\JD-Output\class-use\JavadocExample.html...
Generating C:\Chapter11\JD-Output\package-use.html...
Building index for all the packages and classes...
Generating C:\Chapter11\JD-Output\overview-tree.html...
Generating C:\Chapter11\JD-Output\index-files\index-1.html...
Generating C:\Chapter11\JD-Output\index-files\index-2.html...
Generating C:\Chapter11\JD-Output\index-files\index-3.html...
Building index for all classes...
Generating C:\Chapter11\JD-Output\allclasses-frame.html...
Generating C:\Chapter11\JD-Output\allclasses-frame.html...
Generating C:\Chapter11\JD-Output\allclasses-noframe.html...
Generating C:\Chapter11\JD-Output\allclasses-noframe.html...
Generating C:\Chapter11\JD-Output\index.html...
Generating C:\Chapter11\JD-Output\help-doc.html...

javadoc exited with exit code 0

Once the Javadoc tool exits, you are ready to view the Javadoc. Here is a screenshot of what
was generated based on the previously provided code. As you can see, it is formatted in the
same manner in which the formal Java documentation from Oracle is documented:

New Tools and Tool Enhancements

[265]

New Tools and Tool Enhancements

[266]

When we generated the Javadoc, multiple documents were created, as illustrated by the
directory tree provided in the following screenshot:

You can also add optional tags that are recognized by the Javadoc tool. Those tags are
provided here:

@author

@code

@deprecated

@docRoot

@exception

@inheritDoc

@link

New Tools and Tool Enhancements

[267]

@linkplain

@param

@return

@see

@serial

@serialData

@serialField

@since

@throws

@value

@version

For more information on how to write document comments for the
Javadoc tool, you can visit Oracle's official instructions at http:/ ​/​www.
oracle. ​com/ ​technetwork/ ​articles/ ​java/ ​index- ​137868. ​html.

Javadoc search [JEP-225]
Prior to Java 9, the standard Doclet generated API documentation pages that made
navigating them difficult. Unless you are very familiar with the layout of these
documentation pages, you will likely use browser-based find functionality to search text.
This is considered clunky and suboptimal.

The Java 9 platform includes a search box as part of the API documentation. This search box
is granted by the standard Doclet and can be used to search for text within the
documentation. This represents a great convenience for developers and is likely to change
our usage of Doclet-generated documentation.

With the new Javadoc search functionality, we have the ability to search for the following
indexed components:

Module names
Package names
Types
Members
Terms/phrases indexed using the new @index inline tag

http://www.oracle.com/technetwork/articles/java/index-137868.html
http://www.oracle.com/technetwork/articles/java/index-137868.html
http://www.oracle.com/technetwork/articles/java/index-137868.html
http://www.oracle.com/technetwork/articles/java/index-137868.html
http://www.oracle.com/technetwork/articles/java/index-137868.html
http://www.oracle.com/technetwork/articles/java/index-137868.html
http://www.oracle.com/technetwork/articles/java/index-137868.html
http://www.oracle.com/technetwork/articles/java/index-137868.html
http://www.oracle.com/technetwork/articles/java/index-137868.html
http://www.oracle.com/technetwork/articles/java/index-137868.html
http://www.oracle.com/technetwork/articles/java/index-137868.html
http://www.oracle.com/technetwork/articles/java/index-137868.html
http://www.oracle.com/technetwork/articles/java/index-137868.html
http://www.oracle.com/technetwork/articles/java/index-137868.html
http://www.oracle.com/technetwork/articles/java/index-137868.html
http://www.oracle.com/technetwork/articles/java/index-137868.html
http://www.oracle.com/technetwork/articles/java/index-137868.html
http://www.oracle.com/technetwork/articles/java/index-137868.html
http://www.oracle.com/technetwork/articles/java/index-137868.html
http://www.oracle.com/technetwork/articles/java/index-137868.html

New Tools and Tool Enhancements

[268]

Introducing camel case search
The new Javadoc search functionality includes a great shortcut using camel case search. As
an example, we can search for openED to find the openExternalDatabase() method.

Remove launch-time JRE version selection
[JEP-231]
Prior to Java 9, we could use the mJRE (Multiple JRE) feature to specify a specific JRE
version, or range of versions, for launching our applications. We would accomplish this via
the command-line option -version or with an entry in the JAR file's manifest. The
following flowchart illustrates what happens based on our selection:

This functionality was introduced with JDK 5 and was not fully documented in that release
or any subsequent release prior to JDK 9.

New Tools and Tool Enhancements

[269]

The following specific changes were introduced with the Java 9 platform:

The mJRE feature has been removed.
The launcher will now produce an error whenever the -version command-line
option is used. This is a terminal errors in that processing will not continue.
A warning will be produced if there is a -version entry in a JARs manifest. The
warning will not stop execution.

Interestingly, the presence of a -version entry in a manifest file will only generate a
warning. This is by design, to take into account the likelihood of the entry being in older
JAR file. It is estimated that this warning will be changed into a terminal error when the
Java 10 platform is released.

Parser API for Nashorn [JEP-236]
The focus of JEP 236 was to create an API for Nashorn's EMCAScript abstract syntax tree. In
this section, we will individually look at Nashorn, EMCAScript and then the Parser API.

Nashorn
Oracle Nashorn is a JavaScript engine for the JVM developed in Java by Oracle. It was
released with Java 8. It was created to provide developers with a highly efficiently and
lightweight JavaScript runtime engine. Using this engine, developers were able to embed
JavaScript code in their Java applications. Prior to Java 8, developers had access to the
JavaScript engine created by Netscape. That engine, introduced in 1997, was maintained by
Mozilla.

Nashorn can be used both as a command-line tool and as an embedded interpreter in Java
applications. Let's look at examples of both.

Nashorn is the German word for rhinoceros. The name spawned from the
Rhino-named JavaScript engine from the Mozilla Foundation. Rhino is
said to have originated from the picture of the animal on a JavaScript book
cover. File this one under interesting facts.

New Tools and Tool Enhancements

[270]

Using Nashorn as a command-line tool
The Nashorn executable file, jjs.exe, resides in the \bin folder. To access it, you can
navigate to that folder or, if your system path is set up appropriately, you can launch into
the shell by entering the jjs command in a Terminal / Command Prompt window on your
system:

New Tools and Tool Enhancements

[271]

Here, you can see an open terminal window that first checks the version of Java and then
uses the jjs -version command to launch the Nashorn shell. In this example, both Java
and Nashorn are version 1.8.0.121. Alternatively, we can simply launch Nashorn with the
jjs command, and the shell will open without the version identification:

Next, let's create a short JavaScript and run it using Nashorn. Consider the following simple
JavaScript code that has three simple lines of output.

 var addtest = function()
 {
 print("Simple Test");
 print("This JavaScript program adds the numbers 300
 and 19.");
 print("Addition results = " + (300 + 19));
 }
 addtest();

To have Java run this JavaScript application, we will use the jjs address.js command.
Here is the output:

New Tools and Tool Enhancements

[272]

There is a lot you can do with Nashorn. From the Command Prompt/Terminal window, we
can execute jjs with the -help option to see a full list of command-line commands:

As you can see, using the -scripting option gives us the ability to create scripts using
Nashorn as a text editor. There are several built-in functions that are useful when using
Nashorn:

echo(): This is similar to a System.out.print() Java method
exit(): This exits Nashorn

New Tools and Tool Enhancements

[273]

load(): This loads a script from a given path or URL
print(): This is similar to a System.out.print() Java method
readFull(): This reads a file's contents
readLine(): This reads a single line from stdin
quit(): This exits Nashorn

Using Nashorn as an embedded interpreter
A more common use of Nashorn, compared to using it as a command-line tool, is using it as
an embedded interpreter. The javax.script API is public and can be accessed via the
nashorn identifier. The following code demonstrates how we can gain access to Nashorn,
define a JavaScript function, and obtain the results--all from within a Java application:

 // required imports
 import javax.script.ScriptEngine;
 import javax.script.ScriptEngineManager;

 public class EmbeddedAddTest
 {
 public static void main(String[] args) throws Throwable
 {
 // instantiate a new ScriptEngineManager
 ScriptEngineManager myEngineManager =
 new ScriptEngineManager();

 // instantiate a new Nashorn ScriptEngine
 ScriptEngine myEngine = myEngineManager.getEngineByName(
 "nashorn");

 // create the JavaScript function
 myEngine.eval("function addTest(x, y) { return x + y; }");

 // generate output including a call to the addTest function
 via the engine
 System.out.println("The addition results are:
 " + myEngine.eval("addTest(300, 19);"));
 }
 }

New Tools and Tool Enhancements

[274]

Here is the output provided in the console window:

This is a simplistic example to give you an idea of what is possible with embedded use of
Nashorn. There are ample examples in Oracle's official documentation.

EMCAScript
EMCA (European Computer Manufacturers Association) was formed in 1961 as a
standards organization for both information systems and communications systems. Today,
the EMCA continues to develop standards and issue technical reports to help standardize
how consumer electronics, information systems, and communications technology are used.
They are over 400 ECMA standards, most of which have been adopted.

You will notice that EMCA is not spelled with all capital letters as it is no
longer considered an acronym. In 1994, the European Computer
Manufacturers Association formally changed its name to EMCA.

EMCAScript, also referred to as ES, was created in 1997 as a scripted-language specification.
JavaScript implements this specification. The specification includes the following:

Complementary technologies
Libraries
Scripting language syntax
Semantics

New Tools and Tool Enhancements

[275]

Parser API
One of the changes in the Java platform with version 9 is to provide specific support for
Nashorn's EMCAScript abstract syntax tree. The goals of the new API are to provide the
following:

Interfaces to represent Nashorn syntax tree nodes
The ability to create parser instances that can be configured with command-line
options
A visitor pattern API for interfacing with AST nodes
Test programs to use the API

The new API, jdk.nashorn.api.tree, was created to permit future changes to the
Nashorn classes. Prior to the new Parser API, IDEs used Nashorn's internal AST
representations for code analysis. According to Oracle, use of the
idk.nashorn.internal.ir package prevented the modernization of Nashorn's internal
classes.

Here is a look at the the class hierarchy of the new jdk.nashorn.api.tree package:

New Tools and Tool Enhancements

[276]

The following graphic illustrates the complexity of the new API, featuring a full interface
hierarchy:

New Tools and Tool Enhancements

[277]

The last component of the jdk.nashorn.api.tree package is the enum hierarchy, shown
here:

Multi-release JAR files [JEP-238]
The JAR file format has been extended in the Java 9 platform and now permits multiple
versions of class files to exist in a single JAR file. The class versions can be specific to a Java
release version. This enhancement allows developers to use a single JAR file to house
multiple releases of their software.

The JAR file enhancement includes the following:

Support for the JarFile API
Support for standard class loaders

The changes to the JAR file format resulted in necessary changes to core Java tools so that
they are able to interpret the new multiple-release JAR files. These core tools include the
following:

javac
javap
jdeps

Finally, the new JAR file format supports modularity as the key characteristic of the Java 9
platform. The changes to the JAR file format have not resulted in reduced performance of
related tools or processes.

Identifying multi-release JAR files
Multi-release JAR files will have a new attribute, Multi-Release: true. This attribute
will be located in the JAR MANIFEST.MF main section.

New Tools and Tool Enhancements

[278]

The directory structure will differ between standard JAR files and multi-release JAR files.
Here is a look at a typical JAR file structure:

This illustration shows the new multi-release JAR file structure with Java version-specific
class files for both Java 8 and Java 9:

New Tools and Tool Enhancements

[279]

Related JDK changes
Several changes had to be made to the JDK to support the new multi-release JAR file
format. These changes include the following:

The URLClassLoader is JAR-based and was modified so that it can read class
files from the specified version.
The new module-based class loader, new to Java 9, was written so that it can read
class files from the specified version.
The java.util.jar.JarFile class was modified so that it selects the
appropriate class version from the multi-release JAR files.
The JAR URL scheme's protocol handler was modified so that it selects the
appropriate class version from the multi-release JAR files.
The Java Compiler, javac, was made to read identified versions of the class files.
These version identifications are made using the -target and -release
command-line options with the JavacFileManager API and the
ZipFileSystem API.
The following tools were modified to take advantage of the changes to the
JavacFileManager API and the ZipFileSystem API:

javah: This generates C header and source files
schemagen: This is the schema generator for namespaces in Java
classes
wsgen: This is the parser for web service deployment

The javap tool was updated to support the new versioning schema.
The jdeps tool was modified to support the new versioning schema.
The JAR packing tool set was updated accordingly. This tool set consists of
pack200 and unpack200.
Of course, the JAR tool was enhanced so that it can create the multi-release JAR
files.

All related documentation has been updated to support all the changes involved in
establishing and supporting the new multi-release JAR file format.

New Tools and Tool Enhancements

[280]

Java-level JVM compiler interface [JEP-243]
The JEP-243 was to create a Java-based JVM Compiler Interface (JVMCI). The JVMCI
enables a Java compiler (which must have been written in Java) to be used as a dynamic
compiler by the JVM.

The reasoning behind the desire for the JVMCI is that it would be a highly optimized
compiler that does not require low-level language features. Some JVM subsystems require
low-level functionality, such as with garbage collection and bytemode interpretation. So,
the JVMCI was written in Java instead of C or C++. This provides the collateral benefit of
some of Java's greatest features, such as the following ones:

Exception handling
IDEs that are both free and robust
Memory management
Runtime extensibility
Synchronization
Unit testing support

As JVMCI was written in Java, it will arguably be easier to maintain.

There are three primary components of the JVMCI API:

Virtual machine data structure access
Installing compiled code with its metadata
Using the JVM's compilation system

The JVMCI actually existed, to some extent, in Java 8. The JVMCI API was only accessible
via a class loader that worked for code on the boot class path. In Java 9, this changes. It will
still be experimental in Java 9, but more accessible. In order to enable the JVMCI, the
following series of command-line options must be used:

-XX:+UnlockExperimentalVMOptions -XX:+EnableJVMCI -XX:+UseJVMCICompiler -
Djvmci.Compiler=<name of compiler>

Oracle is keeping the JVMCI experimental in Java 9 to permit further testing and to afford
the greatest level of protection for developers.

New Tools and Tool Enhancements

[281]

BeanInfo annotations [JEP-256]
The JEP-256 focused on replacing @beanifo javadoc tags with more appropriate
annotations. Furthermore, these new annotations are now processed at runtime so that
BeanInfo classes can be generated dynamically. The modularity of Java 9 resulted in this
change. The creation of custom BeanInfo classes has been simplified and the client library
has been modularized.

In order to fully grasp this change, we will review JavaBean, BeanProperty, and
SwingContainer before going any further into this JEP.

JavaBean
A JavaBean is a Java class. Like other Java classes, JavaBeans are reusable code. They are
unique in their design because they encapsulate several objects into one. There are three
conventions a JavaBean class must follow:

The constructor should not take any arguments
It must be serializable
It must contain mutator and accessor methods for its properties

Here is an example JavaBean class:

 public class MyBean implements java.io.Serializable
 {
 // instance variables
 private int studentId;
 private String studentName;

 // no-argument constructor
 public MyBean()
 {
 }
 // mutator/setter
 public void setStudentId(int theID)
 {
 this.studentId = theID;
 }

 // accessor/getter
 public int getStudentId()
 {
 return studentId;

New Tools and Tool Enhancements

[282]

 }

 // mutator/setter
 public void setStudentName(String theName)
 {
 this.studentName = theName;
 }

 // accessor/getter
 public String getStudentName()
 {
 return studentName;
 }

 }

Accessing JavaBean classes is as simple as using the mutator and accessor methods. This is
likely not new to you, but there is a good chance you did not know that those carefully
coded classes you created were called JavaBean classes.

BeanProperty
BeanProperty is an annotation type. We use this annotation to specify a property so that
we can automatically generate BeanInfo classes. This is a new annotation for Java 9.

The BeanProperty annotation has the following optional elements:

boolean bound

String description

String[] enumerationValues

boolean expert

boolean hidden

boolean preferred

boolean required

boolean visualUpdate

New Tools and Tool Enhancements

[283]

SwingContainer
SwingContainer is an annotation type. We use this annotation to specify a swing-related
property so that we can automatically generate BeanInfo classes. This is a new annotation
for Java 9.

The SwingContainer annotation has the following optional elements:

String delegate

boolean value

Now that we have reviewed JavaBean, BeanProperty, and SwingContainer, let's take a
look at the BeanInfo classes.

BeanInfo classes
For the most part, BeanInfo classes are automatically generated at runtime. The exception
is with Swing classes. Those classes generate BeanInfo classes based on the @beaninfo
javadoc tags. This is done at compile time, not runtime. In Java 9, the @beaninfo tags have
been replaced with @interface JavaBean, @interface BeanProperty, and
@interface SwingContainer annotations.

These new annotations are used to set the corresponding attributes based on the optional
elements noted in the previous sections. As an example, the following code snippet sets the
attributes for a SwingContainer:

 package javax.swing;

 public @interface SwingContainer
 {
 boolean value() default false;
 String delegate() default "";
 }

This provides us with three benefits:

It will be much easier to specify attributes in Bean classes instead of having to
create individual BeanInfo classes
We will be able to remove auto-generated classes
The client library is much more easily modularized with this approach

New Tools and Tool Enhancements

[284]

TIFF image input/output [JEP-262]
JEP-262 is pretty straight forward. For Java 9, the image input/output plugins have been
extended to include support for the TIFF image format. The ImageIO class extends the
Object class and is part of Java SE. The class contains several methods for encoding and
decoding images. Here is a list of static methods:

Method Return value

createImageInputStream(Object input) ImageInputStream

createImageOutputStream(Object output) ImageOutputStream

getCacheDirectory() Current value of the
CacheDirectory

getImageReader(ImageWriter writer) ImageReader

getImageReaders(Object input) Iterator of current ImageReaders

getImageReadersByFormatName(String
formatName)

Iterator of current ImageReaders
with the specified format name

getImageReadersByMIMEType(String MIMEType) Iterator of current ImageReaders
of the specified MIME type

getImageReadersBySuffix(String fileSuffix) Iterator of current ImageReaders
with the specified suffix.

getImageTranscoders(ImageReader reader) Iterator of current
ImageTranscoders

getImageWriter(ImageReader reader) ImageWriter

getImageWriters(ImageTypeSpecifier type,
String formatName)

Iterator of current ImageWriters
that can encode to the specified
type

getImageWritersByFormatName(String
formatName)

Iterator of current ImageWriters
with the specified format name

getImageWritersByMIMEType(String MIMEType) Iterator of current ImageWriters
of the specified MIME type

getImageWritersBySuffix(String fileSuffix) Iterator of current ImageWriters
with the specified suffix.

getReaderFileSuffixes() String array with file suffixes
understood by current readers

New Tools and Tool Enhancements

[285]

getReaderFormatNames() String array with format names
understood by current readers

getReaderMIMETypes() String array with MIME types
understood by current readers

getUseCache() UseCache value

getWriterFileSuffixes() String array of file suffixes
understood by current writers

getWriterFormatNames() String array with format names
understood by current writers

getWriterMIMETypes() String array with MIME types
understood by current writers

read(File input) BufferedImage with an
ImageReader

read(ImageInputStream stream) BufferedImage with
ImageInputStream and an
ImageReader

read(InputStream input) BufferedImage with
InputStream and ImageReader

read(URL input) BufferedImage with an
ImageReader

There are also a few static methods that do not return a value or return a Boolean:

Method Description

scanForPlugins() Performs the following actions:
• Scans the application classpath for plugins
• Loads plugin service provider classes
• Registers service provide instances in the
IIORegistry

setCacheDirectory(File
cacheDirectory)

This is where the cache files will be stored.

setUseCache(boolean useCache) This method toggles if the cache will be
disk-based or not. This applies to
ImageInputStream and
ImageOutputStream instances.

New Tools and Tool Enhancements

[286]

write(RenderedImage im, String
formatName, File output)

Writes an image to the specified file.

write(RenderedImage im, String
formatName, ImageOutputStream
output)

Writes an image to an
ImageOutputStream.

write(RenderedImage im, String
formatName, OutputStream output)

Writes an image to an OutputStream.

As you can glean from the provided methods, the image input/output framework provides
us with a convenient way of using image codecs. As of Java 7, the following image format
plugins were implemented by javax.imageio:

BMP
GIF
JPEG
PNG
WBMP

The TIFF is, as you can see, not on the list of image file formats. TIFFs are a common file
format and, in 2001, macOS, with the release of MacOS X, used the format extensively.

The Java 9 platform includes ImageReader and ImageWriter plugins for the TIFFs. These
plugins have been written in Java and have been bundled in the new
javax.imageio.plugins.tiff package.

Platform logging API and service [JEP-264]
The Java 9 platform includes a new logging API enabling platform classes to log messages.
It has a commensurate service for manipulating the logs. Before we go too far into what is
new regarding the logging API and service, let's review java.util.logging.api which
was introduced in Java 7.

New Tools and Tool Enhancements

[287]

The java.util.logging package
The java.util.logging package includes classes and interfaces that collectively comprise
Java's core logging features. This functionality was created with the following goals:

Problem diagnosis by end users and system administrators
Problem diagnosis by field service engineers
Problem diagnosis by the development organization

As you can see, the primary purpose was to enable maintenance of remote software.

The java.util.logging package has two interfaces:

public interface Filter

Purpose: This provides fine-grain control over logged data
Method:

isLoggable(LogRecord record)

public interface LoggingMXBean

Purpose: This is the logging facility's management interface
Methods:

getLoggerLevel(String loggerName)

getLoggerNames()

getparentLoggerName(String loggerName)

setLoggerLevel(String loggerName, String
levelName)

The following table provides the java.util.logging package classes, along with a brief
description regarding what each class provides in respect to logging functionality and
management:

Class Definition Description

ConsoleHandler public class ConsoleHandler
extends StreamHandler

Publishes log records to
System.err

ErrorManager public class ErrorManager
extends Object

Used to process errors during
logging

FileHandler public class FileHandler
extends StreamHandler

File logging

New Tools and Tool Enhancements

[288]

Formatter public abstract class
Formatter extends Object

For formatting LogRecords

Handler public abstract class
Handler extends Object

Exports Logger messages

Level public class Level extends
Object implements
Serializable

Controls level of logging. The
levels, in descending order,
are--severe, warning, info,
config, fine, finer, and finest

Logger public class Logger extends
Object

Logs messages

LoggingPermission public final class
LoggingPermission extends
BasicPermission

SecurityManager checks
this

LogManager public class LogManager For maintaining shared state
between loggers and logging
services

LogRecord public class LogRecord
extends Object implements
Serializable

Passed between handlers

MemoryHandler public class MemoryHandler
extends Handler

Buffers requests in memory

SimpleFormatter public class SimpleFormatter
extends Formatter

Provides human-readable
LogRecord metadata

SocketHandler public class SocketHandler
extends StreamHandler

Network logging handler

StreamHandler public class StreamHandler
extends Handler

Stream-based logging
handler

XMLFormatter public class XMLFormatter
extends Formatter

Formats logs into XML

Next, let's review what changes were made in Java 9.

New Tools and Tool Enhancements

[289]

Logging in Java 9
Prior to Java 9, there were multiple logging schemas available, including
java.util.logging, SLF4J, and Log4J. The latter two are third-party frameworks that
have separate facade and implementation components. This pattern has been replicated in
the new Java 9 platform.

Java 9 introduced changes to the java.base module so that it would handle logging
functions and not rely on the java.util.logging API. It has separate facade and
implementation components. This means that when using third-party frameworks, the JDK
only needs to provide the implementation component and return platform loggers that
work with the requesting logging framework.

As you can see in the following illustration, we use the java.util.ServiceLoader API to
load our LoggerFinder implementation. The JDK uses a default implementation if a
concrete implementation is not found using the system class loader:

New Tools and Tool Enhancements

[290]

XML Catalogs [JEP-268]
JEP 268, titled XML Catalogs, focused on creating a standard XML Catalog API to support
the OASIS XML Catalogs Standard v1.1. The new API defines catalog and catalog-resolve
abstractions so that JAXP processors can use them. In this section, we will look at the
following:

The OASIS XML Catalog standard
JAXP processors
XML Catalogs prior to Java 9
Java 9 platform changes

The OASIS XML Catalog standard
XML (eXtensible Markup Language) Catalogs are XML documents consisting of catalog
entries. Each entry pairs an identifier to another location. OASIS is a not-for-profit
consortium with the mission of advancing open standards. They published the XML catalog
standard, version 1.1., in 2005. This standard has two basic use cases:

Map an external identifier to a URI reference
Map a URI reference to another URI reference

Here is a sample XML catalog entry:

 <public publicId="-//Packt Publishing Limited//Mastering Java 9//EN"
uri="https://www.packtpub.com/application-development/mastering-java-9"/>

The complete OASIS XML Catalog standard can be found at the official site: https:/ ​/​www.
oasis-​open.​org/​committees/ ​download. ​php/ ​14809/ ​xml- ​catalogs. ​html

https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html

New Tools and Tool Enhancements

[291]

JAXP processors
The Java API for XML processing is referred to as JAXP. As its name suggests, this API is
used for parsing XML documents. There are four related interfaces:

DOM: Document Object Model parsing
SAX: Simple API for XML parsing
StAX: Streaming API for XML parsing
XSLT: Interface to transform XML documents

XML Catalogs prior to Java 9
The Java platform has had an internal catalog resolver since JDK 6. There was no public
API, so external tools and libraries were used to access the functionality. Moving into Java
9, the goal was to make the internal catalog resolver a standard API for common use and
ease of support.

Java 9 platform changes
The new XML Catalog API, delivered with Java 9, follows the OASIS XML Catalogs
standard, v1.1. Here are the feature and capability highlights:

Implements EntityResolver
Implements URIResolver
Creation of XML Catalogs is possible via the CatalogManager
CatalogManager will be used to create CatalogResolvers
OASIS open catalog file semantics will be followed

Map an external identifier to a URI reference
Map a URI reference to another URI reference

CatalogResolvers will implement the JAXP EntityResolver interface
CatalogResolvers will implement the JAXP URIResolver interface
The SAX XMLFilter will be supported by the resolver.

Since the new XML Catalog API will be public, the pre-Java 9 internal catalog resolver will
be removed, as it will no longer be necessary.

New Tools and Tool Enhancements

[292]

Convenience factory methods for collections
[JEP-269]
The Java programming language does not support collection literals. Adding this feature to
the Java platform was proposed in 2013 and revisited in 2016, but it only gained exposure as
a research proposal, not for future implementation.

Oracle's definition of a collection literal is "a syntactic expression form that
evaluates to an aggregate type, such as an array, list, or map" (http:/ ​/​openjdk.
java. ​net/ ​jeps/ ​186).

Of course, that is until Java 9 is released. Implementing collection literals in the Java
programming language is reported to have the following benefits:

Performance improvement
Increased safety
Reduction of boilerplate code

Even without being part of the research group, our knowledge of the Java programming
language clues us in to additional benefits:

Ability to write shorter code
Ability to write space-efficient code
Ability to make collection literals immutable

Let's look at two cases--using collections before Java 9, and then with the new support for
collection literals in the new Java platform.

Using collections before Java 9
Here is an example of how we would create our own collections prior to Java 9. This first
class defines the structure for PlanetCollection. It has the following components:

A single instance variable
A one argument constructor
Mutator/setter method
Accessor/getter method
Method to print the object

http://openjdk.java.net/jeps/186
http://openjdk.java.net/jeps/186
http://openjdk.java.net/jeps/186
http://openjdk.java.net/jeps/186
http://openjdk.java.net/jeps/186
http://openjdk.java.net/jeps/186
http://openjdk.java.net/jeps/186
http://openjdk.java.net/jeps/186
http://openjdk.java.net/jeps/186
http://openjdk.java.net/jeps/186
http://openjdk.java.net/jeps/186
http://openjdk.java.net/jeps/186

New Tools and Tool Enhancements

[293]

Here is the code implementing the preceding listed constructor and methods:

 public class PlanetCollection
 {
 // Instance Variable
 private String planetName;

 // constructor
 public PlanetCollection(String name)
 {
 setPlanetName(name);
 }

 // mutator
 public void setPlanetName(String name)
 {
 this.planetName = name;
 }

 // accessor
 public String getPlanetName()
 {
 return this.planetName;
 }

 public void print()
 {
 System.out.println(getPlanetName());
 }
 }

Now, let's look at the driver class that populates the collection:

 import java.util.ArrayList;

 public class OldSchool
 {
 private static ArrayList<PlanetCollection> myPlanets =
 new ArrayList<>();

 public static void main(String[] args)
 {
 add("Earth");
 add("Jupiter");
 add("Mars");
 add("Venus");
 add("Saturn");
 add("Mercury");

New Tools and Tool Enhancements

[294]

 add("Neptune");
 add("Uranus");
 add("Dagobah");
 add("Kobol");
 for (PlanetCollection orb : myPlanets)
 {
 orb.print();
 }

 }

 public static void add(String name)
 {
 PlanetCollection newPlanet = new PlanetCollection(name);
 myPlanets.add(newPlanet);
 }
 }

Here is the output from this application:

This code is, unfortunately, very verbose. We populated our collection in static initializer
blocks instead of using a field initializer. There are other methods of populating our list, but
they are all more verbose than they should have to be. These other methods have additional
problems, such as the need to create extra classes, the use of obscure code, and hidden
references.

Let's now take a look at the solution to this problem, provided by the new Java 9 platform.
We will look at what is new in the next section.

New Tools and Tool Enhancements

[295]

Using new collection literals
In order to rectify the currently required code verbosity in creating collections, we need
library APIs for creating collection instances. Look at our pre-Java 9 code snippet in the
previous section and then consider this possible refactoring:

 PlanetCollection<String> myPlanets = Set.of(
 "Earth",
 "Jupiter",
 "Mars",
 "Venus",
 "Saturn",
 "Mercury",
 "Neptune",
 "Uranus",
 "Dagobah",
 "Kobol");

This code is highly human-readable and not verbose.

The new implementation will include static factory methods on the following interfaces:

List

Map

Set

So, we are now able to create unmodifiable instances of List collections, Map collections,
and Set collections. They can be instantiated with the following syntax:

List.of(a, b, c, d, e);

Set.of(a, b, c, d, e);

Map.of();

The Map collections will have a set of fixed arguments.

Platform-specific desktop features [JEP-272]
The exciting JEP-272 was to create a new public API so that we can write applications with
access to platform-specific desktop features. These features include interacting with task
bars/docks and listening for application and system events.

New Tools and Tool Enhancements

[296]

The macOS X com.apple.eawt package was an internal API and, starting with Java 9, is no
longer accessible. In support of Java 9's new embedded platform-specific desktop features,
apple.applescript classes are being removed from the Java platform without
replacement.

This effort had several objectives:

Create a public API to replace the functionality in com.apple.{east,eio}
Ensure OS X developers do not loose functionality. To this end, the Java 9
platform has replacements for the following packages:

com.apple.eawt

com.apple.eio

Provide developers with a near-common set of features for platforms (that is,
Windows and Linux) in addition to OS X. The common features include:

Login/logout handler with event listeners
Screen lock handler with event listeners
Task bar / dock actions to include:

Requesting user attention
Indicating task progress
Action shortcuts

The new API will be added to the java.awt.Desktop class.

Enhanced method handles [JEP-274]
The Enhanced Method Handles JEP-274 was to improve the following listed classes, to
make common usage easier with improved optimizations:

MethodHandle class
MethodHandles class
MethodHandles.Lookup class

The listed classes are all part of the java.lang.invoke package, which has been updated
as part of the Java 9 platform. The improvements were made possible through the use of
lookup refinement and MethodHandle combinations for loops and try...finally
blocks.

New Tools and Tool Enhancements

[297]

In this section, we will look at the following regarding JEP-274:

Reason for the enhancement
Lookup functions
Argument handling
Additional combinations

Reason for the enhancement
This enhancement stemmed from developer feedback and the desire to make the
MethodHandle, MethodHandles, and MethodHandles.Lookup classes much easier to use.
There was also the call to add additional use cases.

The changes resulted in the following benefits:

Enabled precision in the usage of the MethodHandle API
Instantiation reduction
Increased JVM compiler optimizations

Lookup functions
Changes regarding lookup functions, for the Java 9 platform, include the following:

MethodHandles can now be bound to non-abstract methods in interfaces
The lookup API allows class lookups from different contexts

The MethodHandles.Lookup.findSpecial(Class<?> refs, String name,
MethodType type, Class<?> specialCaller) class has been modified to permit
locating super-callable methods on interfaces.

In addition, the following methods have been added to the MethodHandles.Lookup class:

Class<?> findClass(String targetName)

Class<?> accessClass(Class<?> targetClass)

New Tools and Tool Enhancements

[298]

Argument handling
Three updates were made to improve MethodHandle argument handling for the Java 9
platform. These changes are highlighted as follows:

Argument folding using foldArguments(MethodHandle target,
MethodHandle combinator) did not previously have a position argument.

Argument collection using the
MethodHandle.asCollector(Class<?> arrayType, int

arrayLength) method did not previously support collecting the
arguments into an array except for the trailing element. This has
been changed, and there is now an additional asCollector
method to support that functionality in Java 9.

Argument spreading using the MethodHandle.asSpreader(Class<?>
arrayType, int arrayLength) method spreads the contents of the trailing
array to a number of arguments, in a reverse method of argument collection.
Argument spreading has been modified to support the expansion of an array
anywhere in the method signature.

The new method definitions for the updated asCollector and
asSpreader methods are provided in the next section.

Additional combinations
The following addition combinations have been added to support the ease of use and
optimizations for the MethodHandle, MethodHandles, and MethodHandles.Lookup
classes of the java.lang.invoke package in the Java 9 platform:

Generic loop abstraction:
MethodHandle loop(MethodHandle[] . . . clauses)

While loops:
MethodHandle whileLoop(MethodHandle init,
MethodHandle pred, MethodHandle body)

Do...while loops:
MethodHandle doWhileLoop(MethodHandle init,
MethodHandle body, MethodHandle pred)

New Tools and Tool Enhancements

[299]

Counting loops:
MethodHandle countedLoop(MethodHandle iterations,
MethodHandle init, MethodHandle body)

Data structure iteration:
MethodHandle iteratedLoop(MethodHandle iterator,
MethodHandle init, MethodHandle body)

Try...finally blocks:
MethodHandle tryFinally(MethodHandle target,
MethodHandle cleanup)

Argument handling:
Argument spreading:

MethodHandle asSpreader(int pos, Class<?>
arrayType, int arrayLength)

Argument collection:
MethodHandle asCollector(int pos,
Class<?> arrayType, int arrayLength)

Argument folding:
MethodHandle foldArguments(MethodHandle
target, int pos, MethodHandle combiner)

Enhanced deprecation [JEP-277]
There are two facilities for expressing deprecation:

@Deprecated annotation
@deprecated javadoc tag

These facilities were introduced in Java SE 5 and JDK 1.1, respectively. The @Deprecated
annotation was intended to annotate program components that should not be used because
they were deemed dangerous and/or there was a better option. That was the intended use.
Actual use varied including and because warnings were only provided at compile time;
there was little reason to ignore the annotated code.

The Enhanced Deprecation JEP-277 was taken on to provide developers with clearer
information regarding the intended disposition of the APIs in the specification
documentation. Work on this JEP also resulted in a tool for analyzing a program's use of
deprecated APIs.

New Tools and Tool Enhancements

[300]

To support this fidelity in information, the following components have been added to the
java.lang.Deprecated annotation type:

forRemoval():
Returns Boolean true if the API element has been slated for future
removal
Returns Boolean false if the API element has not been slated for
future removal but is deprecated
Default is false

since():
Returns a string containing the release or version number, at which
point the specified API was marked as deprecated

What the @Deprecated annotation really means
When an API, or methods within an API, has/have been marked with the @Deprecated
annotation, one or more of the following conditions typically exists:

There are errors in the API for which there is no plan to fix them
Using the API is likely to result in errors
The API has been replaced by another API
The API is experimental

Summary
In this chapter, we covered 16 JEPs that were incorporated into the Java 9 platform. These
JEPs cover a wide range of tools and updates to APIs to make developing with Java easier,
with greater optimization possibilities for our resulting programs. Our review included a
look at the new HTTP client, changes to Javadoc and the Doclet API, the new JavaScript
parser, JAR and JRE changes, the new Java-level JVM compiler interface, the new support
for TIFF images, platform logging, XML Catalog support, collections, and the new platform-
specific desktop features. We also looked at enhancements to method handling and the
deprecation annotation.

In the next chapter, we will cover concurrency enhancements introduced with the Java 9
platform. Our primary focus will be the support for reactive programming that is provided
by the flow class API. We will also explore additional concurrency enhancements
introduced in Java 9.

12
Concurrency and Reactive

Programming
In the previous chapter, we covered several Java Enhancement Proposals (JEPs) that were
incorporated into the Java 9 platform. These JEPs represented a wide range of tools and
updates to APIs to make developing with Java easier, with greater optimization possibilities
for our Java applications. We looked at the new HTTP client, changes to Javadoc and the
Doclet API, the new JavaScript parser, JAR and JRE changes, the new Java-level JVM
compiler interface, the new support for TIFF images, platform logging, XML catalog
support, collections, and the new platform-specific desktop features. We also looked at
enhancements to method handling and the deprecation annotation.

In this chapter we will cover concurrency enhancements introduced with the Java 9
platform. Our primary focus will be the support for reactive programming, a concurrency
enhancement that is provided by the Flow class API. Reactive programming is a new
concept for Java 9, so we will take an exploratory approach to the topic. We will also
explore additional concurrency enhancements introduced in Java 9.

Specifically, we will cover the following topics:

Reactive programming
The new Flow API
Additional concurrency updates
Spin-wait hints

Concurrency and Reactive Programming

[302]

Reactive Programming
Reactive programming is when applications react to an asynchronous data stream as it
occurs. The following image illustrates the flow:

Reactive programming is not a fancy software engineering term only used by academics. It
is, in fact, a programming model that can result in much greater efficiencies as opposed to
the more common method of having applications iterate over data that is in memory.

There is more to reactive programming. First, let's consider that the data stream is provided
by a publisher in an asynchronous manner to the subscriber.

Data streams are a binary input/output of strings and primitive data types.
The DataInput interface is used for an input stream and the DataOutput
interface is used for output streams.

Processors, or a chain of processors, can be used to transform the data stream without the
publisher or subscriber being impacted. In the following example, the Processors work on
the stream of data without Publisher or Subscriber involvement, or even awareness:

Concurrency and Reactive Programming

[303]

In addition to greater efficiency, reactive programming represents several additional
benefits, which are highlighted here:

The code base can be less verbose, making it:
Easier to code
Easier to maintain
Easier to read

Stream processing results in memory efficiencies
This is a solution for a variety of programming applications
Less boiler-plate code needs to be written, so development time can be focused
on programming core functionalities
The following types of programming require less time and code:

Concurrency
Low-level threading
Synchronization

Reactive programming standardization
There are standards in many aspects of software development, and reactive programming
has not escaped this. There is a Reactive Streams initiative to standardize asynchronous
stream processing. The specific focus, in the context of Java, is with the JVM and JavaScript.

Concurrency and Reactive Programming

[304]

The Reactive Streams initiative aims at tackling the issue of governing how the data stream
is exchanged between threads. As you will recall from the previous section, the idea of
processors is predicated on there being no impact on the publisher or receiver. This no-
impact mandate stipulates that the following are not required:

Data buffering
Data translation
Conversion

The basic semantics of the standard define the regulation of data stream element
transmission. This standard was specifically established for delivery with the Java 9
platform. Reactive Streams includes a library that will help developers convert from
org.reactivestreams and java.util.concurrent.Flow namespaces.

The key to being successful with reactive programming and the Reactive Streams
standardization is understanding the relevant terminology:

Term Description

Demand Demand refers to the subscriber's request for more elements as well
as referring to the total number of elements requested that have not
been fulfilled by the publisher yet.

Demand Demand also refers to the total number of elements requested that
have not been fulfilled by the publisher yet.

External
synchronization

External access coordination for thread safety.

Non-obstructing Methods are said to be non-obstructing if they rapidly execute
without the requirement for heavy computations. Non-obstructing
methods do not delay a subscriber's thread execution.

NOP NOP execution is execution that can be called repeatedly without
impact to the calling thread.

Responsivity This term refers to a component's ability to respond.

Return normally Return normally refers to when there are no errors--the normal
condition. The onError method is the only way permitted by the
standard to inform the subscriber of a failure.

Concurrency and Reactive Programming

[305]

Signal One of the following methods:
• cancel
• onComplete
• onError
• onNext
• onSubscribe
• request

You can obtain the standard on Maven Central (https:/ ​/​search. ​maven. ​org). Here is the
standard from Maven Central as of the publication date of this book:

 <dependency>
 <groupId>org.reactivestreams</groupId>
 <artifactId>reative-streams</artifactId>
 <version>1.0.1</version>
 </dependency>

 <dependency>
 <groupId>org.reactivestreams</groupId>
 <artifact>reactive-streams-tck</artifactId>
 <version>1.0.0</version>
 <scope>test</scope>
 </dependency>

In the next section, we will look at the Flow APIs in the Java 9 platform, as they correspond
to the Reactive Streams specification.

The New Flow API
The Flow class is part of the java.util.concurrent package. It helps developers
incorporate reactive programming in their applications. The class has one method,
defaultBufferSize(), and four interfaces.

The defaultBufferSize() is a static method that returns the default buffer size for
publishing and subscribing buffering. This default value is 256 and it is returned as an int.
Let's look at the four interfaces.

https://search.maven.org
https://search.maven.org
https://search.maven.org
https://search.maven.org
https://search.maven.org
https://search.maven.org
https://search.maven.org
https://search.maven.org
https://search.maven.org

Concurrency and Reactive Programming

[306]

The Flow.Publisher interface
The Flow.Publisher interface is a functional interface. A Publisher is a producer of data
sent to subscribers:

 @FunctionalInterface
 public static interface Flow.Publisher<T>

This functional interface can serve as a lambda expression assignment target. It only takes
one argument--the subscribed item type <T>. It has one method:

void onSubscribe(Flow.Subscription subscription)

The Flow.Subscriber interface
The Flow.Subscriber interface is used to receive messages and its implementation is
shown here:

 public static interface Flow.Subscriber<T>

This interface is set up to receive messages. It only takes one argument--the subscribed item
type <T>. It has the following methods:

void onComplete()

void onError(Throwable throwable)

void onNext(T item)

void onSubscribe(Flow.Subscription subscription)

The Flow.Subscription interface
The Flow.Subscription interface ensures that only subscribers receive what is requested.
Also, as you will see here, a subscription can be cancelled at anytime:

 public static interface Flow.Subscription

Concurrency and Reactive Programming

[307]

This interface does not take any arguments and is the linkage that controls the messages
between instances of Flow.Publisher and Flow.Subscriber. It has the following
methods:

void cancel()

void request(long n)

The Flow.Processor interface
The Flow.Processor interface can serve as both a Subscriber and a Publisher. The
implementation is provided here:

 static interface Flow.Processor<T,R> extends Flow.Subscriber<T>,
 Flow.Publisher<R>

This interface takes two arguments--the subscribed item type <T> and the published item
type <R>. It does not have its own methods, but does inherit the following method from
java.util.concurrent.Flow.Publisher:

void subscribe(Flow.Subscriber<? super T> subscriber)

Flow.Processor also inherits the following methods from the
java.util.concurrent.Flow.Subscriber interface:

void onComplete()

void onError(Throwable throwable)

void onNext(T item)

void onSubscribe(Flow.Subscription subscription)

Sample implementation
In any given implementation of reactive programming, we will have a Subscriber that
requests data and a Publisher that provides the data. Let's first look at a sample
Subscriber implementation:

 import java.util.concurrent.Flow.*;

 public class packtSubscriber<T> implements Subscriber<T>
 {
 private Subscription theSubscription;

Concurrency and Reactive Programming

[308]

 // We will override the four Subscriber interface methods

 @Override
 public void onComplete()
 {
 System.out.println("Data stream ended");
 }

 @Override
 public void onError(Throwable theError)
 {
 theError.printStackTrace();
 }

 @Override
 public void onNext(T theItem)
 {
 System.out.println("Next item received: " + theItem);
 theSubscription.request(19); // arbitrary number for
 example purposes
 }

 @Override
 public void onSubscribe(Subscription theSubscription)
 {
 this.theSubscription = theSubscription;
 theSubscription.request(19);
 }

 }

As you can see, implementing the Subscriber is not difficult. The heavy work is done with
the processors in-between the Subscriber and Publisher. Let's look at a sample
implementation where the Publisher publishes a data stream to subscribers:

 import java.util.concurrent.SubsmissionPublisher;

 . . .

 // First, let's create a Publisher instance
 SubmissionPublisher<String> packtPublisher = new
 SubmissionPublisher<>();

 // Next, we will register a Subscriber
 PacktSubscriber<String> currentSubscriber = new
 PacktSubscriber<>();
 packtPublisher.subscribe(currentSubscriber);

Concurrency and Reactive Programming

[309]

 // Finally, we will publish data to the Subscriber and
 close the publishing effort
 System.out.println("||---- Publishing Data Stream ----||");
 . . .
 packtPublisher.close();
 System.out.println("||---- End of Data Stream Reached ----||");

Additional Concurrency Updates
The More Concurrency Updates Java Enhancement Proposal, JEP 266, aimed to improve
the use of concurrency in Java. In this section, we will briefly explore the concept of Java
concurrency and look at related enhancements to the Java 9 platform:

Java concurrency
Supporting Reactive Streams
CompletableFuture API enhancements

Java concurrency
In this section, we will start with a brief explanation of concurrency, then look at system
configurations, cover Java threads, and then look at the concurrency improvements.

Concurrency explained
Concurrent processing has been around since the 1960s. In those formative years, we
already had systems that permitted multiple processes to share a single processor. These
systems are more clearly defined as pseudo-parallel systems because it only appeared that
multiple processes were being simultaneously executed. Our computers today still operate
in this manner. The difference between the 1960s and current day is that our computers can
have multiple CPUs, each with multiple cores, which better supports concurrency.

Concurrency and parallelism are often used as interchangeable terms.
Concurrency is when multiple processes overlap, although the start and
stop times could be different. Parallelism occurs when tasks start, run, and
stop at the same time.

Concurrency and Reactive Programming

[310]

System configurations
There are several different processor configurations that need to be considered. This section
features two common configurations. The first configuration is that of shared memory and
is illustrated here:

As you can see, the shared memory system configuration has multiple processors that all
share a common system memory. The second featured system configuration is a distributed
memory system:

With the distributed memory system, each processor has its own memory and each
individual processor is fully linked with the other processors, making for a distributed
system that is fully linked.

Concurrency and Reactive Programming

[311]

Java threads
A thread in Java is a program execution and is built into the JVM. The Thread class is part
of the java.lang package (java.lang.Thread). Threads have priorities that control in
what order the JVM executes them. While the concept is simple, implementation is not. Let's
start by taking a close look at the Thread class.

The Thread class has two nested classes:

public static enum Thread.State

public static interface Thread.UncaughtExceptionHandler

There are three instance variables for managing thread priorities:

public static final int MAX_PRIORITY

public static final int MIN_PRIORITY

public static final int NORM_PRIORITY

The Thread class has eight constructors, all of which allocate a new Thread object. Here are
the constructor signatures:

public Thread()

public Thread(Runnable target)

public Thread(Runnable target, String name)

public Thread(String name)

public Thread(ThreadGroup group, Runnable target)

public Thread(ThreadGroup group, Runnable target, String name)

public Thread(ThreadGroup group, Runnable target, String name,
long stackSize)

public Thread(ThreadGroup group, String name)

The Thread class also has 43 methods, six of which have been deprecated. The remaining
methods are listed here, save for the accessors and mutators which are listed separately.
You can consult the documentation for details about each of these methods:

public static int activeCount()

public final void checkAccess()

protected Object clone() throws CloneNotSupportedException

public static Thread currentThread()

Concurrency and Reactive Programming

[312]

public static void dumpStack()

public static int enumerate(Thread[] array)

public static boolean holdsLock(Object obj)

public void interrupt()

public static boolean interrupted()

public final boolean isAlive()

public final boolean isDaemon()

public boolean isInterrupted()

join methods:
public final void join() throws InterruptedException

public final void join(long millis) throws
InterruptedException

public final void join(long millis, int nano) throws
InterruptedException

public void run()

sleep methods:
public static void sleep(long mills) throws
InterruptedException

public static void sleep(long mills, int nano)
throws InterruptedException

public void start()

public String toString()

public static void yield()

Here is the list of accessors/getters and mutators/setters for the Thread class:

accessors/getters:
public static Map<Thread, StackTraceElement[]>
getAllStacktraces()

public ClassLoader getContextClassLoader()

public static Thread.UncaughtExceptionHandler
getDefaultUncaughtExceptionHandler()

public long getId()

public final String getName()

public final int getPriority()

public StackTraceElement[] getStackTrace()

Concurrency and Reactive Programming

[313]

public Thread.State getState()

public final ThreadGroup getThreadGroup()

public Thread.UncaughtExceptionHandler
getUncaughtExceptionHandler()

mutators/setters:
public void setContextClassLoader(ClassLoader cl)

public final void setDaemon(boolean on)

public static void
setDefaultUncaughtExceptionHandler(Thread.UncaughtEx
ceptionHandler eh)

public final void setName(String name)

public final void setPriority(int newPriority)

public void
setUncaughtExceptionHandler(Thread.UncaughtException
Handler eh)

In Java, concurrency is commonly referred to as multithreading. As indicated earlier,
managing threads, and especially multithreads, requires great fidelity in control. Java
employs a couple of techniques including the use of locks. Code segments can be locked to
ensure that only a single thread can execute that code at any given time. We can lock classes
and method with the use of the synchronized keyword. Here is an example of how to lock
an entire method:

 public synchronized void protectedMethod()
 {
 . . .
 }

The next code snippet demonstrates how to use the synchronized keyword to lock blocks of
code within a method:

 . . .
 public class unprotectedMethod()
 {
 . . .
 public int doSomething(int tValue)
 {
 synchronized (this)
 {
 if (tValue != 0)
 {

Concurrency and Reactive Programming

[314]

 // do something to change tValue
 return tValue;
 }
 }
 }
 }

Concurrency improvements
The ability to employ multiple threads in our Java applications stands to greatly improve
efficiency and leverage the increasing processing capabilities of modern computers. The use
of threads in Java gives us great granularity in our concurrency controls.

Threads are at the core of Java's concurrency functionality. We can create a thread in Java by
defining a run method and instantiating a Thread object. There are two methods of
accomplishing this set of tasks. Our first option is to extend the Thread class and override
the Thread.run method. Here is an example of that approach:

 . . .
 class PacktThread extends Thread
 {
 . . .
 public void run()
 {
 . . .
 }
 }

 . . .

 Thread varT = new PacktThread();

 . . .

 // This next line is start the Thread by executing
 the run() method.
 varT.start();

 . . .

Concurrency and Reactive Programming

[315]

A second approach is to create a class that implements the Runnable interface and passing
an instance of the class to the constructor of the Thread. Here is an example:

 . . .
 class PacktRunner implements Runnable
 {
 . . .
 public void run()
 {
 . . .
 }
 }

 . . .

 PacktRunner varR = new PacktRunner();
 Thread varT = new Thread(varR);

 . . .

 // This next line is start the Thread by executing the
 run() method.
 varT.start();

 . . .

Both of these methods work equally well, and which one you use is considered to be the
developer's choice. Of course, if you are looking for additional flexibility, the second
approach is probably a better one to use. You can experiment with both methods to help
you make your determination.

CompletableFuture API enhancements
The CompleteableFuture<T> class is part of the java.util.concurrent package. The
class extends the Object class and implements the Future<T> and CompletionStage<T>
interfaces. This class is used to annotate threads that can be completed. We can use the
CompletableFuture class to represent a future result. When the complete method is used,
that future result can be completed.

It is important to realize that if multiple threads attempt to simultaneously complete (finish
or cancel), all but one will fail. Let's look at the class and then look at the enhancements.

Concurrency and Reactive Programming

[316]

Class details
The CompleteableFuture<T> class has one internal class that marks asynchronous tasks:

 public static interface
 CompletableFuture.AsynchronousCompletionTask

The constructor for the CompleteableFuture<T> class has to be in sync with the provided
constructor signature, and it takes no arguments. The class has the following methods
organized by what they return.

Returns a CompletionStage:

public CompletableFuture<Void> acceptEither(CompletionStage<?
extends T> other, Consumer<? super T> action)

public CompletableFuture<Void>
acceptEitherAsync(CompletionStage<? extends T> other,
Consumer<? super T> action)

public CompletableFuture<Void>
acceptEitherAsync(CompletionStage<? extends T> other,
Consumer<? super T> action, Executor executor)

public <U> CompletableFuture<U> applyToEither(CompletionStage<?
extends T> other, Function<? super T, U> fn)

public <U> CompletableFuture<U>
applyToEitherAsync(CompletionStage<? extends T> other,
Function<? super T, U> fn)

public <U> CompletableFuture<U>
applyToEitherAsync(CompletionStage<? extends T> other,
Function<? super T, U> fn, Executor executor)

public static <U> CompletedStage<U> completedStage(U value)

public static <U> CompletionStage<U> failedStage(Throwable ex)

public <U> CompletableFuture<U> handle(BiFunction<? super T,
Throwable, ? extends U> fn)

public <U> CompletableFuture<U> handleAsync(BiFunction<? super
T, Throwable, ? extends U> fn)

public <U> CompletableFuture<U> handleAsync(BiFunction<? super
T, Throwable, ? extends U> fn, Executor executor)

public CompletionStage<T> minimalCompletionStage()

public CompletableFuture<Void> runAfterBoth(CompletionStage<?>
other, Runnable action)

Concurrency and Reactive Programming

[317]

public CompletableFuture<Void>
runAfterBothAsync(CompletionStage<?> other, Runnable action)

public CompletableFuture<Void>
runAfterBothAsync(CompletionStage<?> other, Runnable action,
Executor executor)

public CompletableFuture<Void>
runAfterEither(CompletionStage<?> other, Runnable action)

public CompletableFuture<Void>
runAfterEitherAsync(CompletionStage<?> other, Runnable action)

public CompletableFuture<Void>
runAfterEitherAsync(CompletionStage<?> other, Runnable action,
Executor executor)

public CompletableFuture<T> whenComplete(BiConsumer<? super T,
? super Throwable> action)

public CompletableFuture<T> whenCompleteAsync(BiConsumer<?
super T, ? super Throwable> action)

public CompletableFuture<T> whenCompleteAsync(BiConsumer<?
super T, ? super Throwable> action, Executor executor)

These methods return a CompletionStage:

public CompletableFuture<Void> thenAccept(Consumer<? super T>
action)

public CompletableFuture<Void> thenAcceptAsync(Consumer<? super
T> action)

public CompletableFuture<Void> thenAcceptAsync(Consumer<? super
T> action, Executor executor)

public <U> CompletableFuture<Void>
thenAcceptBoth(CompletionStage<? extends U> other, BiConsumer<?
super T, ? super U> action)

public <U> CompletableFuture<Void>
thenAcceptBothAsync(CompletionStage<? extends U> other,
BiConsumer<? super T, ? super U> action)

public <U> CompletableFuture<Void>
thenAcceptBothAsync(CompletionStage<? extends U> other,
BiConsumer<? super T, ? super U> action, Executor executor)

public <U> CompletableFuture<U> thenApply(Function<? super T, ?
extends U> fn)

Concurrency and Reactive Programming

[318]

public <U> CompletableFuture<U> thenApplyAsync(Function<? super
T, ? extends U> fn)

public <U> CompletableFuture<U> thenApplyAsync(Function<? super
T, ? extends U> fn, Executor executor)

public <U, V> CompletableFuture<V>
thenCombine(CompletionStage<? extends U> other, BiFunction<?
super T, ? super U, ? extends V> fn)

public <U, V> CompletableFuture<V>
thenCombineAsync(CompletionStage<? extends U> other,
BiFunction<? super T, ? super U, ? extends V> fn)

public <U, V> CompletableFuture<V>
thenCombineAsync(CompletionStage<? extends U> other,
BiFunction<? super T, ? super U, ? extends V> fn, Executor
executor)

public <U> CompletableFuture<U> thenCompose(Function<? super T,
? extends CompletionStage<U>> fn)

public <U> CompletableFuture<U> thenComposeAsync(Function<?
super T, ? extends CompletionStage<U>> fn)

public <U> CompletableFuture<U> thenComposeAsync(Function<?
super T, ? extends CompletionStage<U>> fn, Executor executor)

public CompletableFuture<Void> thenRun(Runnable action)

public CompletableFuture<Void>thenRunAsync(Runnable action)

public CompletableFuture<Void>thenRunAsync(Runnable action,
Executor executor)

These methods return a CompleteableFuture:

public static CompletableFuture<Void>
allOf(CompletableFuture<?>...cfs)

public static CompletableFuture<Object>
anyOf(CompletableFuture<?>... cfs)

public CompletableFuture<T> completeAsync(Supplier<? extends T>
supplier, Executor executor)

public CompletableFuture<T> completeAsync(Supplier<? extends T>
supplier)

public static <U> CompletableFuture<U> completedFuture(U value)

Concurrency and Reactive Programming

[319]

public CompletableFuture<T> completeOnTimeout(T value, long
timeout, TimeUnit unit)

public CompletableFuture<T> copy()

public CompletableFuture<T> exceptionally(Function<Throwable, ?
extends T> fn)

public static <U> CompletableFuture<U> failedFuture(Throwable
ex)

public <U> CompletableFuture<U> newIncompeteFuture()

public CompletableFuture<T> orTimeout(long timeout, TimeUnit
unit)

public static ComletableFuture<Void> runAsync(Runnable
runnable)

public static CompletableFuture<Void> runAsync(Runnable
runnable, Executor executor)

public static <U> CompletableFuture<U> supplyAsync(Supplier<U>
supplier)

public static <U> CompletableFuture<U> supplyAsync(Supplier<U.
supplier, Executor executor)

public CompletableFuture<T> toCompletableFuture()

These methods return a Executor:

public Executor defaultExecutor()

public static Executor delayedExecutor(long delay, Timeunit
unit, Executor executor)

public static Executor delayedExecutor(long delay, Timeunit
unit)

These methods return a boolean:

public boolean cancel(boolean mayInterruptIfRunning)

public boolean complete(T value)

public boolean completeExceptionally(Throwable ex)

public boolean isCancelled()

public boolean isCompletedExceptionally()

public boolean isDone()

Concurrency and Reactive Programming

[320]

No return type:

public void obtrudeException(Throwable ex)

public void obtrudeValue(T value)

Additional methods:

public T get(long timeout, TimeUnit unit) throws
InterruptedException, ExecutionException, TimeoutException

public T get() throws InterruptedException, ExecutionException

public T getNow(T valueIfAbsent)

public int getNumberOfDependents()

public T join()

public String toString()

Enhancements
The CompleteableFuture<T> class received the following enhancements as part of the
Java 9 platform:

Added time-based enhancements:
This enables completions based on lapsed time
Delayed executions are now also supported

Significant enhancement to subclasses:
Extending CompletableFuture is easier
Subclasses support alternative default executors

Specifically, the following methods were added in Java 9:

newIncompleteFuture()

defaultExecutor()

copy()

minimalCompletionStage()

completeAsync()

orTimeout()

completeOnTimeout()

Concurrency and Reactive Programming

[321]

delayedExecutor()

completedStage()

failedFuture()

failedStage()

Spin-Wait Hints
With concurrency, we need to ensure that threads waiting to be executed actually get
executed. The concept of spin-wait is a process that continually checks for a true condition.
The aim of Java Enhancement Proposal 285 was to create an API that permits Java code to
issue hints that a spin loop is currently being executed.

While this is not a feature that every Java developer will use, it can be useful for low-level
programming. The hint system simply issues hints--indications, and performs no other
actions. Justifications for adding these hints include the following assumptions:

A spin loop's action time can be improved when using a spin hint
Use of spin hints will reduce thread-to-thread latency
CPU power consumption will be reduced
Hardware threads will execute faster

This hint functionality will be contained in a new onSpinWait() method as part of the
java.lang.Thread class. Here is an example of implementing the onSpinWait() method:

 . . .

 volatile boolean notInReceiptOfEventNotification;

 . . .

 while (notInReceiptOfEventNotification);
 {
 java.lang.Thread.onSpinWait();
 }

 // Add functionality here to read and process the event

 . . .

Concurrency and Reactive Programming

[322]

Summary
In this chapter, we covered concurrency enhancements introduced with the Java 9 platform.
We took a deep look at concurrency both as a core Java concept and with an eye to what
Java 9 is delivering. We also explored the Flow class API that supports reactive
programming, a new concept in Java 9. In addition, we explored concurrency enhancements
and the new spin-wait hints introduced in Java 9.

In the next chapter, we will highlight the security enhancements introduced in Java 9 along
with practical examples.

13
Security Enhancements

In the last chapter, we covered concurrency enhancements introduced with the Java 9
platform. We took an in-depth look at concurrency both as a core Java concept and as a
series of enhancements for Java 9. We also explored the Flow class API that supports
Reactive Programming, a new concept in Java 9. In addition, we explored concurrency
enhancements and the new Spin-Wait hints introduced in Java 9.

In this chapter, we will look at several small changes made to the JDK that involve security.
The size of these changes does not reflect their significance. The security enhancements
introduced with the Java 9 platform provide developers with a greater ability to write and
maintain applications that are more secure than previously possible.

Specifically, we will review the following content areas in this chapter:

Datagram Transport Layer Security
Creating PKCS12 keystores
Improving security application performance
TLS application-layer protocol negotiation extension
Leveraging CPU instructions for GHASH and RSA
OCSP stapling for TLS
DRBG-based SecureRandom implementations

Security Enhancements

[324]

Datagram Transport Layer Security
Datagram Transport Layer Security (DTLS), is a communications protocol. The protocol
provides a layer of security for datagram-based applications. DTLS permits secure
communications and is based on the Transport Layer Security (TLS) protocol. Embedded
security helps ensure messages are not forged, tampered with, or eavesdropped.

Let's review the relevant terminology:

Communication protocol: A set of rules that govern how information is
transmitted.
Datagram: A structured transfer unit.
Eavesdropping: Undetected listening to in-transit data packets.
Forgery: Transmission of a packet with falsified sender.
Network packet: A formatted unit of data for transmission.
Tampering: The altering of data packets after the sender transmits them and
before the intended receiver receives them.
TLS protocol: The most common network security protocol. Uses, as an example,
IMPA and POP for email.

The DTLS Java Enhancement Proposal 219 is aimed at creating an API for the DTLS
versions 1.0 and 1.2.

In the sections that follow, we will look at each of the DTLS versions, 1.0 and 1.2, and then
review the changes to the Java 9 platform.

DTLS protocol version 1.0
DTLS protocol version 1.0 was established in 2006 and provides communications security
for datagram protocols. Here are the basic characteristics:

Permits client/server applications to communicate without permitting:
Eavesdropping
Tampering
Message forgery

Based on the TLS protocol
Provides security guarantees
The DLS protocol's datagram semantics are preserved

Security Enhancements

[325]

The following diagram illustrates where the Transport Layer fits into the overall schema of
SSL/TLS protocol layers and protocols for each layer:

DTLS protocol version 1.0 provides detailed specifications with the major areas of coverage
listed as follows:

Ciphers:
Anti-replay block cipher
New cipher suites
Standard (or null) stream cipher

Denial of service countermeasures
Handshake:

Message format
Protocol
Reliability

Messages:
Fragmentation and reassembly
Loss-insensitive messaging
Size
Timeout and retransmission
Packet loss

Path Maximum Transition Unit (PMTU) discovery
Record layer
Record payload protection
Reordering
Replay detection
Transport layer mapping

Security Enhancements

[326]

DTLS protocol version 1.2
DTLS protocol version 1.2 was published in January 2012 and is copyrighted by the Internet
Engineering Task Force (IETF). This section shares code samples that illustrate the changes
in version 1.2.

The following code illustrates the TLS 1.2 handshake message header. This format supports:

Message fragmentation
Message loss
Reordering

 // Copyright (c) 2012 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 struct
 {
 HandshakeType msg_type;
 uint24 length;
 uint16 message_seq; // New field
 uint24 fragment_offset; // New field
 uint24 fragment_length; // New field
 select (HandshakeType)
 {
 case hello_request: HelloRequest;
 case client_hello: ClientHello;
 case hello_verify_request: HelloVerifyRequest; // New type
 case server_hello: ServerHello;
 case certificate:Certificate;
 case server_key_exchange: ServerKeyExchange;
 case certificate_request: CertificateRequest;
 case server_hello_done:ServerHelloDone;
 case certificate_verify: CertificateVerify;
 case client_key_exchange: ClientKeyExchange;
 case finished: Finished;
 } body;
 } Handshake;

The code presented in this section is from the DTLS protocol
documentation and is republished here in accordance with IETF's Legal
Provisions Relating to IETF Documents.

Security Enhancements

[327]

The record layer contains the information that we intend to send into records. The
information starts off inside a DTLSPlaintext structure and then, after the handshake
takes place, the records are encrypted and are eligible to be sent by the communication
stream. The record layer format follows with new fields in version 1.2 annotated with the
// New field in-code comments as follows:

 // Copyright (c) 2012 IETF Trust and the persons identified
 as authors of the code. All rights reserved.

 struct
 {
 ContentType type;
 ProtocolVersion version;
 uint16 epoch; // New field
 uint48 sequence_number; // New field
 uint16 length;
 opaque fragment[DTLSPlaintext.length];
 } DTLSPlaintext;

 struct
 {
 ContentType type;
 ProtocolVersion version;
 uint16 epoch; // New field
 uint48 sequence_number; // New field
 uint16 length;
 opaque fragment[DTLSCompressed.length];
 } DTLSCompressed;

 struct
 {
 ContentType type;
 ProtocolVersion version;
 uint16 epoch; // New field
 uint48 sequence_number; // New field
 uint16 length;
 select (CipherSpec.cipher_type)
 {
 case block: GenericBlockCipher;
 case aead: GenericAEADCipher; // New field
 } fragment;
 } DTLSCiphertext;

Security Enhancements

[328]

Finally, here is the updated handshake protocol:

 // Copyright (c) 2012 IETF Trust and the persons identified
 as authors of the code. All rights reserved.

 enum {
 hello_request(0), client_hello(1),
 server_hello(2),
 hello_verify_request(3), // New field
 certificate(11), server_key_exchange (12),
 certificate_request(13), server_hello_done(14),
 certificate_verify(15), client_key_exchange(16),
 finished(20), (255) } HandshakeType;

 struct {
 HandshakeType msg_type;
 uint24 length;
 uint16 message_seq; // New field
 uint24 fragment_offset; // New field
 uint24 fragment_length; // New field
 select (HandshakeType) {
 case hello_request: HelloRequest;
 case client_hello: ClientHello;
 case server_hello: ServerHello;
 case hello_verify_request: HelloVerifyRequest; // New field
 case certificate:Certificate;
 case server_key_exchange: ServerKeyExchange;
 case certificate_request: CertificateRequest;
 case server_hello_done:ServerHelloDone;
 case certificate_verify: CertificateVerify;
 case client_key_exchange: ClientKeyExchange;
 case finished: Finished;
 } body; } Handshake;

 struct {
 ProtocolVersion client_version;
 Random random;
 SessionID session_id;
 opaque cookie<0..2^8-1>; // New field
 CipherSuite cipher_suites<2..2^16-1>;
 CompressionMethod compression_methods<1..2^8-1>; } ClientHello;

 struct {
 ProtocolVersion server_version;
 opaque cookie<0..2^8-1>; } HelloVerifyRequest;

Security Enhancements

[329]

DTLS support in Java 9
Java 9's implementation of the DTLS API is transport-independent and light-weight. The
design considerations for the API were as follows:

Read timeouts will not be managed
The implementation will use a single TLS record for each wrap/unwrap operation
The application, not the API, will be required to:

Determine timeout values
Assemble out-of-order application data

The DTLS is a protocol used to secure data from the application layer before that data is
passed to a transport layer protocol. DTLS is a good solution for encrypting and
transmitting real-time data. Caution should be exercised so that we do not introduce
vulnerabilities in our application's implementation. Here are security considerations
specific to implementing DTLS in your Java 9 applications:

Implement DTLS v1.2, since that is the latest version supported by Java 9.
Avoid Rivest-Shamir-Adleman (RSA) encryption. If RSA must be used, add
addition security to your private keys since this is a weak point for RSA.
Use 192 bits or more when using the Elliptic Curve Diffie-Hellman (ECDH)
anonymous key agreement protocol. The 192-bit value is based on a National
Institute of Standards and Technology (NIST) recommendation.
The use of Authenticated Encryption with Associated Data (AEAD), a form of
encryption, is highly recommended. AEAD provides authenticity, confidentiality,
and integrity assurances on the data being encrypted and decrypted.
Always implement the renegotiation_info extension when implementing
handshake renegotiation.
Establish a Forward Secrecy (FS) capability in all Java applications using a
communication protocol. Implementing FS ensures past session encryption keys
are not compromised when long-term encryption keys are compromised. Ideally
a Perfect Forward Secrecy (PFS), where each key is only valid for a single
session, would be used in the Java applications that call for the greatest security
of transmitted data.

Security Enhancements

[330]

Creating PKCS12 keystores
The Java 9 platform provides increased security for keystores. In order to appreciate the
changes ushered in by Java Enhancement Proposal 229, create PKCS12 keystores by default,
we will first review the concept of keystores, look at the KeyStore class, and then look at
the changes.

Keystore primer
The concept of a KeyStore is relatively simple. It is essentially a database file, or data
repository file, that stores public key certificates and private keys. The Keystore will be
stored in the /jre/lib/security/cacerts folder. As you will see in the next section, this
database is managed by Java's java.security.KeyStore class methods.

KeyStore features include:

Contains one of the following entry types:
Private keys
Public key certificates

Unique alias string names for every entry
Password protection for each key

Java Keystore (JKS)
The java.security.KeyStore class is the storage facility for cryptographic keys and
certificates. This class extends java.lang.Object, see as follows:

 public class KeyStore extends Object

There are three types of entries managed by a KeyStore, each implements the
KeyStore.Entry interface, one of the three interfaces provided by the KeyStore class. The
Entry implementations are defined in the following table:

Implementation Description

KeyStore.PrivateKeyEntry • Contains the PrivateKey and can store it in a
protected format
• Contains the certificate chain for the public key

Security Enhancements

[331]

KeyStore.SecretKeyEntry • Contains the SecretKey and can store it in a
protected format

KeyStore.TrustedCertifcateEntry • Contains a single public key Certificate from
an external source

This class has been part of the Java platform since version 1.2. It has one constructor, three
interfaces, six sub-classes, and several methods. The constructor definition is:

 protected KeyStore(KeyStoreSpi keyStoresSpi,
 Provider provider, String type)

The KeyStore class contains the following interfaces:

public static interface KeyStore.Entry:
This interface serves as a marker for KeyStore entry types and
contains no methods.

public static interface KeyStore.LoadStoreParameter:
This interface serves as a marker for load and store parameters and
has the following method that returns null or the parameter used
to protect the KeyStore data:

getProtectionParameter()

public static interface KeyStore.ProtectionParameter:
This interface serves as a marker for KeyStore protection
parameters and contains no methods.

The java.security.KeyStore class also contains the six nested classes listed as follows.

Builder
The KeyStore.Builder class is used when you want to defer the instantiation of a
KeyStore:

 public abstract static class KeyStore.Builder extends Object

Security Enhancements

[332]

This class provides the necessary information for instantiating a KeyStore object. The class
has the following methods:

public abstract KeyStore getKeyStore() throws KeyStoreException

public abstractKeyStore.ProtectionParameter
getProjectionParameter(String alias) throws KeyStoreException

Three options for newInstance:
public static KeyStore.Builder newInstance(KeyStore
keyStore, KeyStore.ProtectionParameter
protectionParameter)

public static KeyStore.Builder newInstance(String
type, Provider provider, File file,
KeyStore.ProtectionParameter protection)

public static KeyStore.Builder newInstance(String
type, Provider provider,
KeyStore.ProtectionParameter protection)

The CallbackHandlerProtection class
The KeyStore.CallbackHandlerProtection class definition is as follows:

 public static class KeyStore.CallbackHandlerProtection extends
 Object implements KeyStore.ProtectionParameter

This class provides a ProtectionParameter to encapsulate a CallbackHandler and has
the following method:

 public CallbackHandler getCallbackHandler()

The PasswordProtection class
The KeyStore.PasswordProtection class definition is as follows:

 public static class KeyStore.PasswordProtection extends Object
 implements KeyStore.ProtectionParameter, Destroyable

Security Enhancements

[333]

This call provides an implementation of ProtectionParameter that is password-based.
The class has the following methods:

public void destroy() throws DestroyFailedException:
This method clears the password

public char[] getPassword():
Returns a reference to the password

public boolean isDestroyed():
Returns true if the password was cleared

The PrivateKeyEntry class
The KeyStore.PrivateKeyEntry class definition is as follows:

 public static final class KeyStore.PrivateKeyEntry extends
 Object implements KeyStore.Entry

This creates an entry to hold a PrivateKey and the corresponding Certificate chain.
This class has the following methods:

public Certificate getCertificate():
Returns the end entity Certificate from the Certificate chain

public Certificate[] getCertificateChain():
Returns the Certificate chain as an array of Certificates

public PrivateKey getPrivateKey():
Returns the PrivateKey from the current entry

public String toString():
Returns the PrivateKeyEntry as a String

The SecretKeyEntry class
The KeyStore.SecretKeyEntry class definition is as follows:

 public static final class KeyStore.SecretKeyEntry extends
 Object implements KeyStore.Entry

Security Enhancements

[334]

This class holds a SecretKey and has the following methods:

public SecretKey getSecretKey():
Returns the entry's SecretKey

public String toString():
Returns the SecretKeyEntry as a String.

The TrustedCertificateEntry class
The KeyStore.TrustedCertificateEntry class definition is as follows:

 public static final class KeyStore.TrustedCertificateEntry extends
 Object implements KeyStore.Entry

This class holds a trusted Certificate and has the following methods:

public Certificate getTrustedCertificate():
Returns the entry's trusted Certificate

public String toString():
Returns the entry's trusted Certificate as a String

The key to using this class is understanding the flow. First, we must load the KeyStore,
using the getInstance method. Next we request access to the KeyStore instance. Then,
we have access to read and write to the Object:

The following code snippet shows the load-request-access implementation:

 . . .

 try {
 // KeyStore implementation will be returned for the default type
 KeyStore myKS = KeyStore.getInstance(KeyStore.getDefaultType());

 // Load

Security Enhancements

[335]

 myKS.load(null, null);
 // Instantiate a KeyStore that holds a trusted certificate
 TrustedCertificateEntry myCertEntry =
 new TrustedCertificateEntry(generateCertificate());

 // Assigns the trusted certificate to the "pack.pub" alias
 myKS.setCertificateEntry("packt.pub",
 myCertEntry.getTrustedCertificate());
 return myKS;
 }
 catch (Exception e) {
 throw new AssertionError(e);
 }
 }
 . . .

PKCS12 default in Java 9
Prior to Java 9, the default KeyStore type was Java KeyStore (JKS). The Java 9 platform
now uses PKCS as the default KeyStore type, more specifically, PKCS12.

PKCS is the acronym for Public Key Cryptography Standards.

This change to PKCS provides stronger cryptographic algorithms as compared to JKS. As
you would expect, JDK 9 will still be compatible with JKS to support previously developed
systems.

Improving security application performance
Java Enhancement Proposal 232, titled Improving Security Application Performance, was
focused on performance improvements when running applications with a security manager
installed. Security managers can result in processing overhead and less than ideal
application performance.

Security Enhancements

[336]

This is an impressive undertaking as current CPU overhead when running security
managers is estimated to result in 10-15% performance degradation. It is not feasible to
completely remove the CPU overhead as some CPU processing is required to run the
security manager. That being said, the intention of this proposal (JEP-232) was to decrease
the overhead percentage as much as possible.

This effort resulted in the following optimizations, each detailed in subsequent sections:

Security policy enforcement
Permission evaluation
Hash code
Package checking algorithm

Security policy enforcement
JDK 9 uses ConcurrentHashMap for mapping ProtectionDomain to
PermissionCollection. ConcurrentHashMap is typically used for high concurrency in
applications. It has the following characteristics:

Thread safe
Enter map does not need to be synchronized
Fast reads
Writes use locks
No object-level locking
Locking at a very granular level

The ConcurrentHashMap class definition follows:

 public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
 implements ConcurrentMap<K, V>, Serializable

In the preceding class definition, K refers to the type of keys maintained by the hash map
and V indicates the type of mapped values. There is a KeySetView sub-class and several
methods.

Security Enhancements

[337]

There are three additional classes related to enforcing security policy--ProtectionDomain,
PermissionCollection, and SecureClassLoader:

The ProtectionDomain class is used to encapsulate a group of classes so that
permissions can be granted to the domain.
The PermissionCollection class represents a collection of permission objects.
The SecureClassLoader class, which extends the ClassLoader class, provides
additional functionality for defining classes with permissions for retrieval by the
system policy. In Java 9, this class uses ConcurrentHashMap for increased
security.

Permission evaluation
Under the category of permission evaluation, three optimizations were made:

The identifyPolicyEntries list previously had policy provider code for
synchronization. This code has been removed in JDK 9.
PermissionCollection entries are now stored in a ConcurrentHashMap. They
were previously stored as a HashMap in a Permission class.
Permissions are now stored in concurrent collections in subclasses of
PermissionCollection.

The java.Security.CodeSource package
A hash code is an object-generated number that is stored in a hash table for rapid storage
and retrieval. Every object in Java has a hash code. Here are some characteristics and rules
for hash codes:

Hash codes are the same for equal objects within a running process
Hash codes can change between execution cycles
Hash codes should not be used as keys

The Java 9 platform includes a modified hashCode method of
java.security.CodeSource to optimize DNS lookups. These can be processor intensive,
so a String version of the code source URL is used to compute hash codes.

Security Enhancements

[338]

The CodeSource class definition follows:

 public class CodeSource extends Object implements Serializable

This class has the following methods:

public boolean equals(Object obj): Returns true if the objects are equal.
This overrides the equals method in the Object class.
public final Certificate[] getCertificates(): Returns an array of
certificates.
public final CodeSigner[] getCodeSigners(): Returns an array of the
code signers associated with the CodeSource.
public final URL getLocation(): Returns the URL.
public int hashCode(): Returns the hash code value for the current object.
public boolean implies(CodeSource codesource): Returns true if the
given code source meets the following criteria:

is not null
object's certificates are not null
object's location is not null

public String toString(): Returns a String with information about the
CodeSource to include the location and certificates.

Package checking algorithm
Java 9's final performance improvement when running applications with a security
manager installed, came in the form of the java.lang.SecurityManager package
enhancements. Specifically, the checkPackageAccess method's package checking
algorithm was modified.

Security Enhancements

[339]

The java.lang.SecurityManager class allows applications to implement security policy
on specific operations. The public void checkPackageAccess(String pkg) method,
of this class receives a comma-delimited list of restricted packages from the the
getProperty method. As illustrated here, depending on the evaluation, the
checkPackageAccess method can throw one of two exceptions:

TLS application-layer protocol negotiation
extension
Java Enhancement Proposal 244, simply enhanced the javax.net.ssl package so that it
supports the Transport Layer Security (TLS) ALPN (Application Layer Protocol
Negotiation) extension. This extension permits application protocol negotiation for TLS
connections.

Security Enhancements

[340]

TLS ALPN extension
The ALPN is a TLS extension and can be used to negotiate which protocol to implement
when using a secure connection. ALPN represents an efficient means of negotiating
protocols. As indicated in the following diagram, there are five basic steps to TLS
handshakes:

The javax.net.ssl package
The java.net.ssl package contains classes relating to secure socket packages. This
permits us to use SSL as an example, for the reliable detection of errors introduced to the
network byte stream. It also provides the ability to encrypt the data as well as provide
authentication of client and server.

This package includes the following interfaces:

public interface HandshakeCompletedListener extends
EventListener

public interface HostnameVerifier

public interface KeyManager

public interface ManagerFactoryParameters

Security Enhancements

[341]

public interface SSLSession

public interface SSLSessionBindingListener extends
EventListener

public interface SSLSessionContext

public interace TrustManager

public interface X509KeyManager extends KeyManager

public interface X509TrustManager extends TrustManager

The java.net.ssl package also has the following sub-classes:

public class CertPathTrustManagerParameters extends Object
implements ManagerFactoryParameters

public abstract class ExtendedSSLSession extends Object
implements SSLSession

public class HandshakeCompleteEvent extends EventObject

public abstract class HttpsURLConnection extends
HttpURLConnection

public class KeyManagerFactory extends Object

public abstract class KeyManagerFactorySpi

public class KeyStoreBuilderParameters extends Object
implements ManagerFactoryParameters

public class SSLContext extends Object

public abstract class SSLContextSpi extends Object

public abstract class SSLEngine extends Object

public class SSLEngineResult extends Object

public class SSLParameters extends Object

public final class SSLPermission extends BasicPermission

public abstract class SSLServerSocket extends ServerSocket

public abstract class SSLServerSocketFactory extends
ServerSocketFactory

public class SSLSessionBindingEvent extends EventObject

public abstract class SSLSocket extends Socket

public abstract class SSLSocketFactory extends SocketFactory

public class TrustManagerFactory extends Object

public abstract class TrustManagerFactorySpi extends Object

Security Enhancements

[342]

public abstract class X509ExtendedKeyManager extends Object
implements X509KeyManager

public abstract class X509ExtendedTrustManager extends Object
implements x509TrustManager

The java.net.ssl package extension
The change to the java.net.ssl package in the Java 9 platform is that it now supports the
TLS ALPN extension. Key benefits of this change are:

TLS clients and servers can now use multiple application-layer protocols, which
may or may not use the same transport-layer port
The ALPN extension permits clients to prioritize application-layer protocols it
supports
Servers can select a client protocol and for the TLS connection
Supports HTTP/2

The following illustration was previously presented as the five basic steps to TLS
handshakes. Updated for Java 9 and presented here, the illustration indicates where the
protocol names are shared between the client and server:

Security Enhancements

[343]

Once the client's list of application layer protocols is received, the server can select the
server's preferred intersection value and externally scan initial plain text ClientHellos
and select an ALPN protocol. An application server will do one of the following:

Select any of the supported protocols
Decide that the ALPN values (remotely offered and locally supported) are
mutually exclusive
Ignore the ALPN extension

Other key behaviors with regards to the ALPN extension:

The server can alter connection parameters
After the SSL/TLS handshake starts, the application can query to see if an ALPN
value has been selected yet
After the SSL/TLS handshake ends, the application can review which protocol
was used

A ClientHello is the first message in the TLS handshake. It has the following structure:

 struct {
 ProtocolVersion client_version;
 Random random;
 SessionID session_id;
 CipherSuite cipher_suites<2..2^16-1>;
 CompressionMethod compression_methods<1..2^8-1>;
 Extension extensions<0..2^16-1>;
 } ClientHello;

Leveraging CPU instructions for GHASH and
RSA
The self-descriptive title of Java Enhancement Proposal (JEP) 246, Leverage CPU
Instructions for GHASH and RSA, provides great insight into its goal. The point of this JEP
was to improve the performance of cryptographic operations, specifically GHASH and
RSA. The performance improvement has been achieved in Java 9 by leveraging the newest
SPARC and Intel x64 CPU instructions.

This enhancement did not require new or modified APIs as part of the Java 9 platform.

Security Enhancements

[344]

Hashing
Galois HASH (GHASH) and Rivest-Shamir-Adleman (RSA) are crypto systems hashing
algorithms. Hashes are a fixed length string or number generated from a string of text.
Algorithms, specifically hashing algorithms, are devised so that the resultant hashes cannot
be reverse engineered. We use hashing to store passwords that are generated with a salt.

Salts, in cryptology, are random data used as an input to a hashing
function to generate a password. Salts help protect against rainbow table
attacks and dictionary attacks.

The following graphic illustrates the basics of how hashing works:

As you can see, the hashing algorithm is fed plain text and a salt resulting in a new hashed
password and the salt being stored. Here is the same graphic with sample input/output to
demonstrate the functionality:

Security Enhancements

[345]

The validation process, the following diagram starts with the user entering their plain text
password. The hashing algorithm takes that plain text and rehashes it with the stored salt.
Then the resulting hashed password is compared to the stored one:

OCSP stapling for TLS
Online Certificate Status Protocol (OCSP) stapling is a method of checking the revocation
status of digital certificates. The OCSP stapling approach for determining an SSL
certificate's validity is assessed as being both safe and quick. The determination speed is
achieved by permitting web servers to provide the validity information on its organic
certificates instead of the lengthier process of requesting validating information from the
certificate's issuing vendor.

Online Certificate Status Protocol (OCSP) stapling was previously
referred to as the Transport Layer Security (TLS) certificate status request
extension.

Security Enhancements

[346]

OCSP stapling primer
THE OCSP stapling process involves several components and validity checks. The
following graphic illustrates the OCSP stapling process:

As you can see, the process starts when the user attempts to open an SSL-encrypted website
via their browser. The browser queries the web server to ensure the SSL-encrypted website
has a valid certificate. The web server queries the certificate's vendor and is provided with
both the certificate status and the digital signed time-stamp. The web server takes those two
components (certificate status and digital signed time-stamp), staples them together, and
returns the stapled set to the requesting browser. The browser can then check the validity of
the time-stamp and decide whether to display the SSL-encrypted website or to display an
error.

Security Enhancements

[347]

Changes for the Java 9 platform
Java Enhancement Proposal 249, OCSP Stapling for TLS, implements OCSP stapling via
the TLS certificate status request extension. OSCP stapling checks the validity of X.509
certificates.

X.509 certificates are digital certificates that use the X509 Public Key
Infrastructure (PKI).

Prior to Java 9, the certificate validity check (really, the check to see if the certificate has
been revoked) can be enabled on the client side and has the following inefficiencies:

OCSP responder performance bottlenecks
Performance degradation based on multiple passes
Additional performance degradation if OCSP checking is performed client side
False fails when browsers do not connect to an OCSP responder
Susceptibility of denial of service attacks on OCSP responders

The new OCSP stapling for TLS includes the following system property changes for the
Java 9 platform:

jdk.tls.client.enableStatusRequestExtension:
Default setting: true
Enables status_request extension
Enables status_request_v2 extension
Enables processing CertificateStatus messages from server

jdk.tls.server.enableStatusRequestExtension:
Default setting: false
Enables OCSP stapling support server-side

jdk.tls.stapling.responseTimeout:
Default setting: 5000 milliseconds
Controls maximum time allocated by server to obtain OCSP
responses

jdk.tls.stapling.cacheSize:
Default setting: 256
Controls maximum number of cache entries
Can set maximum to zero eliminates ceiling

Security Enhancements

[348]

jdk.tls.stapling.cacheLifetime:
Default setting: 3600 seconds (1 hour)
Controls maximum lifetime of a cached response
Can set value to zero in order to disable cache lifetime

jdk.tls.stapling.responderURI:
Default setting: none
Can set a default URI for certificates without the Authority Info
Access (AIA) extension
Does not override the AIA extension unless
jdk.tls.stapling.Override property is set

jdk.tls.stapling.respoderOverride:
Default setting: false
Allows a jdk.tls.stapling.responderURI provided property
to override AIA extension values

jdk.tls.stapling.ignoreExtensions:
Default setting: false
Disables OCSP extension forwarding as specified in
status_request or status_request_v2 TLS extensions.

The status_request and status_request_v2 TLS hello extensions are now supported
by both client and server-side Java implementations.

DRBG-based SecureRandom
implementations
Prior to Java 9, the JDK had two approaches to generating secure random numbers. One
method, written in Java, used SHA1-based random number generation and was not terribly
strong. The other method was platform-dependent and used preconfigured libraries.

Deterministic Random Bit Generator (DRBG) is a method for generating random
numbers. It has been approved by the National Institute of Standards and Technology
(NIST), a branch of the U.S. Department of Commerce. DRBG methodologies include
modern and stronger algorithms for generating secure random numbers.

Security Enhancements

[349]

Java Enhancement Proposal 273, DRBG-Based SecureRandom Implementations aimed to
implement three specific DRBG mechanisms. These mechanisms are listed as follows:

Hash_DRBG

HMAC_DRBG

CTR_DRBG

You can learn specifics about each of the DRBG mechanisms at http:/ ​/
nvlpubs. ​nist. ​gov/ ​nistpubs/ ​SpecialPublications/ ​NIST. ​SP.​800- ​90Ar1.
pdf

Here are the three new APIs:

SecureRandom: New methods allowing the configuration of SecureRandom
objects with the below listed configurable properties:

seeding
reseeding
random-bit-generation

SecureRandomSpi: new methods to implement the SecureRandom methods
SecureRandomParameter: new interface so input can be passed to the new
SecureRandom methods

Summary
In this chapter, we looked at several small, but significant changes to the JDK that involve
security. The featured security enhancements that are part of the Java 9 platform provide
developers with the distinct ability to write and maintain applications that implement
security. Specifically, we covered DTLS, keystores, improving security application
performance, the TLS application-layer protocol negotiation extension, leveraging CPU
instructions for GHASH and RSA, OCSP stapling for TLS, and DRBG-based SecureRandom
implementations.

In the next chapter we will explore the new command-line flags used in Java 9 as well as
changes to various command-line tools. Our coverage will include managing the Java JVM
run-time and compiler using the new command-line options and flags.

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf

14
Command Line Flags

In the previous chapter, we looked at several security changes to the JDK. Java 9's security
enhancements provide developers with the ability to write and maintain applications that
implement security. Specifically, we covered datagram transport layer security, Keystores,
improving security application performance, the TLS application-layer protocol negotiation
extension, leveraging CPU instructions for GHASH and RSA, OCSP stapling for TLS, and
DRBG-based SecureRandom implementations.

In this chapter, we will explore several changes to the Java 9 platform with the common
theme of command-line flags. Specifically, we will cover the following concepts:

Unified JVM logging
Compiler control
Diagnostic commands
Heap profiling agent
Removing your JHAT
Command-line flag argument validation
Compiling for older platform versions

Unified JVM Logging [JEP 158]
Creating a unified logging schema for the JVM was the central goal of JEP-158. Here is a
comprehensive list of the goals of the JEP:

Create a JVM-wide set of command-line options for all logging operations
Use categorized tags for logging
Permit messages to have multiple tags, also referred to as tag sets

Command Line Flags

[351]

Provide six levels of logging:
Error
Warning
Information
Debug
Trace
Develop

Select which messages are logged based on levels
Optionally direct logging to the console or a file

Print one line at a time and do not support interleaving within the
same line

Permit output of multiple line logs (non-interleaved)
Format all logging messages so that they are easily human-read
Add decorations such as uptime, level, and tags
Like levels, select which messages are logged based on decorations
Convert pre-Java 9 tty>print logging to use unified logging as the output
Permit dynamic message configuration using jcmd and MBeans
Permit the ability to enable and disable individual log messages
Add ability to determine the order in which decorations are printed

The unified logging changes to the JVM can be grouped into the five categories listed here:

Command-line options
Decorations
Levels
Output
Tags

Let's briefly look at each of these categories.

Command-line options
The new command-line option, -Xlog, was added to the logging framework in Java 9. This
command-line option has an extensive array of parameters and possibilities. The basic
syntax is simply -Xlog followed by an option. Here is the formal basic syntax:

-Xlog[:option]

Command Line Flags

[352]

Here is a basic example with the all option:

-Xlog:all

Here is the extensive command-line syntax used to configure the new unified logging:

-Xlog[:option]

option := [<what>][:[<output>][:[<decorators>][:<output-
options>]]]
 'help'
 'disable'

what := <selector>[,...]

selector := <tag-set>[*][=<level>]

tag-set := <tag>[+..]
 'all'

tag := name of tag

level := trace
 debug
 info
 warning
 error

output := 'stderr'
 'stdout'
 [file=]<filename>

decorators := <decorator>[,...]
 'none'

decorator := time
 uptime
 timemillis
 uptimemillis
 timenanos
 uptimenanos
 pid
 tid
 level
 tags

output-options := <output_option>[,...]

Command Line Flags

[353]

output-option := filecount=<file count>
 filesize=<file size in kb>
 parameter=value

The following -Xlog examples are followed by a description:

-Xlog:all

In the preceding example, we are telling the JVM to take the following actions:

Log all messages
Use the info level
Provide output to stdout

With this example, all warning messages will still be output to stderr.

The next example, shown here, logs messages at the debug level:

-Xlog:gc+rt*=debug

In the preceding example, we are telling the JVM to take the following actions:

Log all messages tagged with, at a minimum, the gc and rt tags
Use the debug level
Provide output to stdout

The next example pushes the output to an external file:

-Xlog:disable - Xlog:rt=debug:rtdebug.txt

In the preceding example, we are telling the JVM to take the following actions:

Disable all messages except those tagged with rt tags
Use the debug level
Provide output to a file named rtdebug.txt

Command Line Flags

[354]

Decorations
In the context of Java 9's logging framework, decorations are metadata about the log
message. Here is the alphabetic list of decorations that are available:

level: The level associated with the logged message
pid: PID = Processor IDentifier
tags: The tag-set associated with the logged message
tid: TID = Thread IDentifier
time: Refers to current date and time using ISO-8601 format
timemillis: Current time in milliseconds
timenanos: Current time in nanoseconds
uptime: Time, in seconds and milliseconds, since the JVM started
uptimemillis: Time, in milliseconds, since the JVM started
uptimenanos: Time, in nanoseconds, since the JVM started

Decorations can be surpassed or included in unified logging output. Regardless of which
decorations are used, they will appear in the output in the following order:

time1.
uptime2.
timemillis3.
uptimemillis4.
timenanos5.
uptimenanos6.
pid7.
tid8.
level9.
tags10.

Command Line Flags

[355]

Levels
Logged messages are individually associated with a verbosity level. As previously listed,
the levels are error, warning, information, debug, trace, and develop. The following chart
shows how the levels have an increasing level of verbosity in respect to how much
information is logged. The develop level is for development purposes only and is not
available in on-product application builds:

Output
The Java 9 logging framework supports three types of output with examples of direct use
with the -Xlog command-line syntax:

In the following example, we provide output to stderr:

-Xlog:all=warning:stderr:none

The following example provides output to stdout:

-Xlog:all=warning:stdout:none

The following example writes the output to a text file:

-Xlog:all=warning:file=logmessages.txt:none

Command Line Flags

[356]

Tags
The new logging framework consists of a set of tags identified in the JVM. These tags can be
changed in source code if needed. The tags should be self-identifying, such as gc for
garbage collection.

When more than one tag is grouped together, they form a tag-set. When we add our own
tags via source code, each tag should be associated with a tag-set. This will help ensure the
tags stay organized and easily human-readable.

Compiler control [JEP 165]
Controlling Java Virtual Machine compilers might seem like an unnecessary task, but for
many developers, this is an important aspect of testing. Java Enhancement Proposal 165
detailed a plan to implement runtime management of JVM compilers. This is accomplished
with method-dependent compiler flags.

In this section, we will start with a look at JVM compilation modes, then look at the
compiler that can be controlled using the Java 9 platform.

Compilation modes
The changes in the Java 9 platform include granular control of both the c1 and c2 JVM
compliers. As you can see in the following illustration, the Java HotSpot JVM has two Just-
in-Time (JIT) compilation modes--c1 and c2:

Command Line Flags

[357]

The C1 and C2 compilation modes use different compilation techniques and, if used on the
same code base, can produce different sets of machine code.

C1 compilation mode
The C1 compilation mode inside Java HotSpot VM is typically used for applications that
have the following characteristics:

Quick startup
Increased optimization
Client-side

C2 compilation mode
The second compilation mode, C2, is used by applications with the following listed
characteristics:

Long runtimes
Server-side

Tiered compilation
Tiered compilation allows us to use both c1 and c2 compilation modes. Starting with Java 8,
tiered compilation is the default process. As illustrated here, the c1 mode is used at startup
to help provide greater optimization. Then, once the app has sufficiently warmed up, the c2
mode is employed:

Command Line Flags

[358]

Compiler control in Java 9
Java 9 comes with the promise of the ability to have finite control over JVM compilers and
to make changes at runtime. These additional abilities do not degrade performance. This
permits greater fidelity of testing and testing optimization as we can run small compiler
tests without having to relaunch the entire JVM.

To control compiler operations, we need to create a directives file. These files contain
compiler directives which consist of a set of options with values. Directive files essentially
use a subset of JSON:

The JavaScript Object Notation (JSON) format is used for data-interchange. The directive
files have the following formatting differences from JSON:

int and doubles are the only supported number formats
Double forward slash (//) can be used for comment lines
Trailing commas (,) can be used in arrays and objects
Escape characters are not supported
Option names are formatted as strings and do not have to be quoted

You can learn more about JSON at http:/ ​/ ​www.​json. ​org.

http://www.json.org
http://www.json.org
http://www.json.org
http://www.json.org
http://www.json.org
http://www.json.org
http://www.json.org
http://www.json.org
http://www.json.org

Command Line Flags

[359]

We can add our directive file using the following syntax at the command line:

-XX:CompilerDirectivesFile=<file>

Here is a shell example of a directives file:

 [// Open square bracket marks the start of the directives file

 { // Open curly brace marks the start of a directive block

 // A directives block that applies specifically to the C1 mode
 c1: {
 // directives go here
 },
 // A directives block that applies specifically to the C2 mode
 c2: {
 // directives go here
 },

 // Here we can put a directives that do not apply to
 // a specific compiler mode

 },

 { // can have multiple directive blocks

 c1: {
 // directives go here
 }

 c2: {
 // directives go here
 }
 }

] // Close square bracket marks the start of the directives file

Diagnostic commands [JEP 228]
The Java Enhancement Proposal 228, Add More Diagnostic Commands, defined seven
additional diagnostic commands to enhance the ability to diagnose the JDK and the JVM.
The new diagnostic commands are detailed here.

Command Line Flags

[360]

The print_codegenlist command prints methods that are currently queued for
compilation. Since c1 and c2 compilation modes are on separate queues, this command
would need to be issued to a specific queue.

The dump_codelist diagnostic command will print the following listed information for
the compiled methods:

Full signature
Address range
State

Alive
Nonentrant
Zombie

In addition, the dump_codelist diagnostic command allows the output to be directed to
stdout or to a specified file. Output can be in XML form or standard text.

The print_codeblocks command allows us to print:

Code cache size
Code cache list
List of blocks in the code cache
Addresses for code blocks

Th datadump_request diagnostic command sends a dump request to the Java Virtual
Machine Tool Interface (JVMTI). This replaces the Java Virtual Machine Debug Interface
(JVMDI) and the Java Virtual Machine Profiling Interface (JVMPI) interfaces.

With the set_vmflag command, we can set a command-line flag or option in the JVM or
the libraries.

Th print_class_summary diagnostic command prints a list of all loaded classes as well as
the structure of their inheritance.

The print_utf8pool command prints all UTF-8 string constants.

Command Line Flags

[361]

Heap profiling agent [JEP 240]
Java Enhancement Proposal 240 is titled Remove the JVM TI hprof Agent. Here are the key
terms associated with this JEP and referenced in the title that might be new to you:

Tool Interface (TI): This is a native programming interface that allows tools to
control the execution of applications that are being run inside the Java Virtual
Machine. The interface also permits state inquiries. The full nomenclature for this
tool is the Java Virtual Machine Tool Interface, or JVM TI.
Heap Profiling (HPROF): This is an internal JDK tool used for profiling a JVM's
use of CPUs and the heap. The most common exposure developers have to hprof
is the file that is generated when following a crash. The generated file contains a
heap dump.

The Java 9 JDK does not contain the hprof agent. It was removed largely because there are
superior alternatives available. Here is a table of the related functionality:

HPROF Functionality Alternative

Allocation Profiler
(heap=sites)

Java VisualVM

CPU Profiler
(cpu=samples)
(cpu=times)

Java VisualVM
Java Flight Recorder

Heap Dumps
(heap=dump)

Internal JVM functionality:
• GC.heap_dump(icmd <pid> GC.heap_dump)
• jmap -dump

Interestingly, when HPROF was originally created, it was not intended to be used in
production. In fact, it was only meant to test code for the JVM Tool Interface. So, with the
advent of the Java 9 platform, the HPROF library (libhprof.so) will no longer be part of
the JDK.

Command Line Flags

[362]

Removing your JHAT [JEP 241]
The Java Heap Analysis Tool (JHAT) is used to parse Java heap dump files. The syntax for
this heap dump file parsing tool is as follows:

jhat
 [-stack <bool>]
 [-refs <bool>]
 [-port <port>]
 [-baseline <file>]
 [-debug <int>]
 [-version]
 [-h|-help]
 <file>

Here is a quick look at the options associated with the JHAT command:

Option Description Default

-J<flag> This passes <flag> to the runtime system. N/A

-stack<bool> Toggles tracking of object allocation call stack. true

-refs<bool> Toggles tracking of references to objects. true

-port<port> Indicates the port for the JHAT HTTP server. 7000

-exclude<exclude-filename> Exclude indicated file from reachable objects
query.

N/A

-baseline<filename> Specifies the baseline heap dump for use in
comparisons.

N/A

-debug<int> Sets verbosity of output. N/A

-version Simply outputs the JHAT release number. N/A

-h
-help

Provides help text. N/A

JHAT has been part of the Java platform since JDK-6 in an experimental form. It was not
supported and has been deemed to be outdated. Starting with Java 9, this tool will no
longer be part of the JDK.

Command Line Flags

[363]

JVM command-line flag argument validation
[JEP 245]
In this chapter, you have gained exposure to much of the command-line flag usage with the
Java 9 platform. Java Enhancement Proposal 245, titled Validate JVM Command-Line Flag
Arguments, was created to ensure all JVM command-line flags with arguments are
validated. The primary goals of this effort were:

Avoid JVM crashes
Provide error messages to inform of invalid flag arguments

As you can see from the following graphic, there was no attempt to auto-correct the flag
argument errors; rather, just to identify the errors and prevent the JVM from crashing:

A sample error message is provided here and indicates that the flag argument was out of
range. This error would be displayed during the flag argument range check performed
during the JVM's initialization:

exampleFlag UnguardOnExecutionViolation = 4 is outside the allowed range [
0 . . . 3]

Command Line Flags

[364]

Here are some specifics regarding this change to the Java platform:

Expand on the current globals.hpp source file to ensure complete flag default
values and permissible ranges are documented
Define a framework to support adding new JVM command-line flags in the
future:

This will include value ranges and value sets
This will ensure the validity checking will apply to all newly added
command-line flags

Modify macro tables:
Add min/max for optional range
Add constraint entries for the following:

Ensure constraint checks are performed each time a
flag changes
All manageable flags will continue to be checked
while the JVM is running

Compile for older platform versions [JEP
247]
The Java Compiler, javac, has been updated for Java 9 to ensure it can be used to compile
Java programs to run on user-selected older versions of the Java platform. This was the
focus of Java Enhancement Proposal 247, Compile for Older Platform Versions.

Command Line Flags

[365]

As you can see in the following screenshot, javac has several options including -source
and -target. The javac presented in the following screenshot is from Java 8:

The -source option is used to dictate the Java version accepted by the compiler. The -
target option informs which version of class files javac will produce. By default, javac
generates class files in the most recent java version and that of the platform APIs. This can
cause a problem when the compiled application uses APIs that are only available in the
most recent platform version. This would render the application ineligible to run on older
platform versions, despite what is dictated with the -source and -target options.

To address the aforementioned problem, a new command-line option is introduced with the
Java 9 platform. This option is the --release option and, when used, will automatically
configure javac to generate class files that link against a specific platform version. The
following screenshot shows the javac options with the Java 9 platform. As you can see, the
new --release option is included:

Command Line Flags

[366]

Here is the syntax for the new option:

javac --release <release> <source files>

Command Line Flags

[367]

Summary
In this chapter we explored several changes to the Java 9 platform with the common theme
of command-line flags. Specifically, we covered unified JVM logging, compiler control, new
diagnostic commands, removal of the HPROF heap profiling agent, the removal of the
JHAT, command-line flag argument validation, and the ability to compile for older platform
versions.

In the next chapter, we will focus on best practices with additional utilities provided with
the Java 9 platform. These will include UTF-8, Unicode 7.0, Linux, and more.

15
Best Practices In Java 9

In the last chapter, we explored several changes regarding command-line flags in Java 9.
Specifically, we covered unified JVM logging, compiler control, new diagnostic commands,
removal of the HPROF heap profiling agent, the removal of the Java Heap Analysis Tool
(JHAT), command-line flag argument validation, and the ability to compile for older
platform versions.

In this chapter, we will focus on best practices with additional utilities provided with the
Java 9 platform. Specifically, we will cover:

Support for UTF-8
Unicode 7.0.0
Linux/AArch64 port
Multi-resolution images
Common Locale Data Repository

Support for UTF-8
Unicode Transformation Format-8 (UTF-8) is a character set that encapsulates all Unicode
characters using one to four 8-bit bytes. It is the byte-oriented encoded form of Unicode.
UTF-8 is and has been the predominant character set for encoding web pages since 2009.
Here are some characteristics of UTF-8:

Can encode all 1,112,064 Unicode code points
Uses one to four 8-bit bytes
Accounts for nearly 90% of all web pages
Is backward compatible with ASCII
Is reversible

Best Practices In Java 9

[369]

The pervasive use of UTF-8 underscores the importance of ensuring the Java platform fully
supports UTF-8. This mindset led to the Java Enhancement Proposal 226, UTF-8 property
resource bundles. With Java 9 applications, we have the ability to specify property files that
have UTF-8 encoding. The Java 9 platform includes changes to the ResourceBundle API to
support UTF-8.

Let's take a look at the pre-Java 9 ResourceBundle class, followed by what changes were
made to this class in the Java 9 platform.

The ResourceBundle class
The following class provides developers with the ability to isolate locale-specific resources
from a resource bundle. This class significantly simplifies localization and translation:

 public abstract class ResourceBundle extends Object

Creating resource bundles needs a purposeful approach. For example, let's imagine that we
are creating a resource bundle that will support multiple languages for a business
application. Our button labels, among other things, will be displayed differently depending
on the current locale. So, for our example, we can create a resource bundle for our buttons.
We can call it buttonResources. Then, for each locale, we can create a
buttonResource_<identifier>. Here are some examples:

buttonResource_ja: for Japanese
buttonResource_uk: for UK English
buttonResource_it: for Italian
buttonResource_lh: for Lithuanian

We can use a resource bundle with the same name as the base name for our default bundle.
So, buttonResource would contain our default bundle.

To obtain a locale-specific object, we make a call to the getBundle method. An example
follows:

 . . .

 ResourceBundle = buttonResource =
 ResourceBundle.getBundle("buttonResource", currentLocale);

 . . .

Best Practices In Java 9

[370]

In the next sections we will examine the ResourceBundle class by looking at its nested
class, field and constructor, and included methods.

The nested class
There is one nested class associated with the ResourceBundle class, that is the
ResourceBundle.Control class. It provides callback methods that are used when the
ResourceBundle.getBundle method is used:

 public static class ResourceBundle.Control extends Object

The ResourceBundle.Control class has the following fields:

public static final List<String> FORMAT_CLASS

public static final List<String> FORMAT_DEFAULT

public static final List<String> FORMAT_PROPERTIES

public static final long TTL_DONT_CACHE

public static final long TTL_NO_EXPIRATION_CONTROL

The class has a single, empty constructor and the following methods:

getCandidateLocales():

 public List<Locale> getCandidateLocales(String baseName,
 Locale locale)

Component Details

Throws NullPointerException (if baseName or locale is null)

Parameters baseName: a fully qualified class name
locale: the desired locale

Returns List of candidate locales

Best Practices In Java 9

[371]

getControl():

 public static final ResourceBundle.Control getControl(
 List<String> formats)

Component Details

Throws IllegalArgumentException (if formats is unknown)
NullPointerException (if formats is null)

Parameters formats: These are the formats that will be returned by the
ResourceBundle.Control.getFormats method

Returns A ResourceBundle.Control that supports the formats specified

getFallbackLocale():

 public Locale getFallbackLocale(String baseName, Locale locale)

Component Details

Throws NullPointerException (if baseName or locale is null)

Parameters baseName: a fully qualified class name
locale: the desired locale that could not be found with the
ResourceBundle.getBundle method

Returns The fallback locale

getFormats():

 public List<String> getFormats(String baseName)

Component Details

Throws NullPointerException (if baseName is null)

Parameters baseName: a fully qualified class name

Returns A list of Strings with their formats so the resource bundles can be loaded

Best Practices In Java 9

[372]

getNoFallbackControl():

 public static final ResourceBundle.Control
 getNoFallbackControl(List<String> formats)

Component Details

Throws IllegalArgumentException (if formats is unknown)
NullPointerException (if formats is null)

Parameters formats: these are the formats that will be returned by the
ResourceBundle.Control.getFormats method

Returns A ResourceBundle.Control that supports the formats specified without a
fallback locale.

getTimeToLive():

 public long getTimeToLive(String baseName, Locale locale)

Component Details

Throws NullPointerException (if baseName is null)

Parameters baseName: a fully qualified class name
locale: the desired locale

Returns Zero or a positive millisecond that is offset from the cached time

needsReload():

 public boolean needsReload(String baseName, Locale locale,
 String format, ClassLoader loader, ResourceBundle bundle,
 long loadTime)

Component Details

Throws NullPointerException (if any of the following listed parameters are null):
• baseName
• locale
• format
• loader
• bundle

Best Practices In Java 9

[373]

Parameters baseName: a fully qualified class name
locale: the desired locale
format: the resource bundle format
loader: the ClassLoader that should be used to load the bundle
bundle: the expired bundle
loadTime: a time bundle was added to the cache

Returns true/false to indicate if the expired bundle needs to be reloaded

newBundle():

 public ResourceBundle newBundle(String baseName, Locale locale,
 String format, ClassLoader loader, boolean reload)

Component Details

Throws ClassCastException (if the loaded class cannot be cast to
ResourceBundle)
ExceptionInInitializerError (if initialization fails)
IllegalAccessException (if the class or constructor is not accessible)
IllegalArgumentException (if the format is unknown)
InstantiationException (if the class instantiation fails)
IOException (resource reading error)
NullPointerException (if any of the following listed parameters are null):
• baseName
• locale
• format
• loader
SecurityException (if access to new instances is denied)

Parameters baseName: a fully qualified class name
locale: the desired locale
format: the resource bundle format
loader: the ClassLoader that should be used to load the bundle
reload: true/false flag indicating if the resource bundle has expired

Returns Instance of the resource bundle

Best Practices In Java 9

[374]

toBundleName():

 public String toBundleName(String baseName, Locale locale)

Component Details

Throws NullPointerException (if baseName or locale is null)

Parameters baseName: a fully qualified class name
locale: the desired locale

Returns The bundle name

toResourceName():

 public final String toResourceName(String bundleName,
 String suffix)

Component Details

Throws NullPointerException (if bundleName or suffix is null)

Parameters bundleName: the name of the bundle
suffix: the suffix for the file name

Returns The converted resource name

Fields and constructors
The ResourceBundle class has one field as described here:

 protected Resourcebundle parent

The parent bundle is searched by the getObject method when a specified resource is not
found.

The constructor for the ResourceBundle class is as shown here:

 public ResourceBundle()
 {
 }

Best Practices In Java 9

[375]

Methods
The ResourceBundle class has 18 methods, each described here:

clearCache():

 public static final void clearCache()

Component Details

Throws None

Parameters None

Returns None

 public static final void clearCache(ClassLoader loader)

Component Details

Throws NullPointerException (if loader is null)

Parameters loader: the class loader

Returns None

containsKey():

 public boolean containsKey(String key)

Component Details

Throws NullPointerException (if key is null)

Parameters key: resource key

Returns true/false depending on if the key is in the ResourceBundle or parent
bundles

Best Practices In Java 9

[376]

getBundle():

 public static final ResourceBundle getBundle(String baseName)

Component Details

Throws MissingResourceException (if the resource bundle for the provided
baseName is not found)
NullPointerException (if baseName is null)

Parameters baseName: fully qualified class name

Returns Resource bundle based on the given baseName and the default locale

 public static final ResourceBundle getBundle(String baseName,
 Resourcebundle.Control control)

Component Details

Throws IllegalArgumentException (if the passed control performs improperly)
MissingResourceException (if the resource bundle for the provided
baseName is not found)
NullPointerException (if baseName is null)

Parameters baseName: fully qualified class name
control: the control provides information so the resource bundle can be
loaded

Returns Resource bundle based on the given baseName and the default locale

 public static final ResourceBundle getBundle(String baseName,
 Locale locale)

Component Details

Throws MissingResourceException (if the resource bundle for the provided
baseName is not found)
NullPointerException (if baseName or locale is null)

Parameters baseName: fully qualified class name
locale: desired locale

Returns Resource bundle based on the given baseName and locale

Best Practices In Java 9

[377]

 public static final ResourceBundle getBundle(String baseName,
 Locale targetLocale, Resourcebundle.Control control)

Component Details

Throws IllegalArgumentException (if the passed control performs improperly)
MissingResourceException (if the resource bundle for the provided
baseName is not found in any of the locales)
NullPointerException (if baseName, control, or locale is null)

Parameters baseName: fully qualified class name
control: the control provides information so the resource bundle can be
loaded
targetLocale: desired locale

Returns Resource bundle based on the given baseName and locale

 public static final ResourceBundle getBundle(String baseName,
 Locale locale, ClassLoader loader)

Component Details

Throws MissingResourceException (if the resource bundle for the provided
baseName is not found in any of the locales)
NullPointerException (if baseName, loader, or locale is null)

Parameters baseName: fully qualified class name
locale: desired locale
loader: class loader

Returns Resource bundle based on the given baseName and locale

Best Practices In Java 9

[378]

 public static final ResourceBundle getBundle(String baseName,
 Locale targetLocale, ClassLoader loader,
 ResourceBundle.Control control)

Component Details

Throws IllegalArgumentException (if the passed control performs improperly)
MissingResourceException (if the resource bundle for the provided
baseName is not found in any of the locales)
NullPointerException (if baseName, control, loader, or
targetLocale is null)

Parameters baseName: fully qualified class name
control: the control providing information so the resource bundle can be
loaded
loader: class loader
targetLocale: desired locale

Returns Resource bundle based on the given baseName and locale

getKeys():

 public abstract Enumeration<String> getKeys()

Component Details

Throws None

Parameters None

Returns Enumeration of keys in the ResourceBundle and parent bundles

getLocale():

 public Locale getLocale()

Component Details

Throws None

Parameters None

Returns the locale of the current resource bundle

Best Practices In Java 9

[379]

getObject():

 public final Object getObject(String key)

Component Details

Throws MissingResourceException (if the resource for the provided key is not
found)
NullPointerException (if key is null)

Parameters key: this is the key for the desired object

Returns The object for the key provided

getString():

 public final String getString(String key)

Component Details

Throws ClassCastException (if the found object is not a key)
MissingResourceException (if the resource for the provided key is not
found)
NullPointerException (if key is null)

Parameters key: this is the key for the desired String

Returns The String for the key provided

getStringArray():

 public final String[] getStringArray(String key)

Component Details

Throws ClassCastException (if the found object is not a String array)
MissingResourceException (if the resource for the provided key is not
found)
NullPointerException (if key is null)

Parameters key: this is the key for the desired String array

Returns The String array for the key provided

Best Practices In Java 9

[380]

handleGetObject():

 protected abstract Object handleGetObject(String key)

Component Details

Throws NullPointerException (if key is null)

Parameters key: key for the desired Object

Returns The object for the given key

handleKeySet():

 protected Set<String> handleKeySet()

Component Details

Throws None

Parameters None

Returns Set of keys in ResourceBundle

keySet():

 public Set<String> keySet()

Component Details

Throws None

Parameters None

Returns Set of keys in ResourceBundle and its parent bundles

setParent():

 protected void setParent(ResourceBundle parent)

Component Details

Throws None

Parameters parent: the parent bundle for the current bundle

Returns None

Best Practices In Java 9

[381]

Changes in Java 9
The properties file format, based on ISO-8859-1, was previously supported by the Java
platform. That format does not easily support escape characters, although it does provide
an appropriate escape mechanism. The use of ISO-8859-1 requires conversion between the
text characters and their escaped form.

The Java 9 platform includes a modified ResourceBundle class with the default file
encoding set to UTF-8 vice ISO-8859-1. This saves applications the time it takes to make the
aforementioned escape mechanism conversions.

Unicode 7.0.0
Java Enhancement Proposal 227, titled Unicode 7.0, was created to indicate the need to
update the appropriate APIs to support Unicode version 7.0. That version of Unicode was
released on June 16, 2014. Previous to Java 9, Unicode version 6.2 was the latest version
supported.

You can learn more about Unicode version 7.0.0 at the official
specification page at: http:/ ​/​unicode. ​org/ ​versions/ ​Unicode7. ​0.​0/ ​.

At the time this book was published, the most recent Unicode standard was version 10.0.0,
released on June 20, 2017. Interestingly, the Java 9 platform will support Unicode version
7.0.0, but not the more recent version 10.0.0 of the Unicode standard. In addition to the two
Unicode specifications listed here, from version 7.0.0, will not be implemented by the Java 9
platform:

Unicode Technical Standard #10 (UTS #10)
Unicode collation algorithm: details how to compare Unicode
strings

Unicode Technical Standard #46 (UTS #46)
Unicode Internationalizing Domain Names for Applications
(IDNA) Compatibility processing: comprehensive mapping for
text case and domain name variants

http://unicode.org/versions/Unicode7.0.0/
http://unicode.org/versions/Unicode7.0.0/
http://unicode.org/versions/Unicode7.0.0/
http://unicode.org/versions/Unicode7.0.0/
http://unicode.org/versions/Unicode7.0.0/
http://unicode.org/versions/Unicode7.0.0/
http://unicode.org/versions/Unicode7.0.0/
http://unicode.org/versions/Unicode7.0.0/
http://unicode.org/versions/Unicode7.0.0/
http://unicode.org/versions/Unicode7.0.0/
http://unicode.org/versions/Unicode7.0.0/
http://unicode.org/versions/Unicode7.0.0/
http://unicode.org/versions/Unicode7.0.0/
http://unicode.org/versions/Unicode7.0.0/
http://unicode.org/versions/Unicode7.0.0/
http://unicode.org/versions/Unicode7.0.0/

Best Practices In Java 9

[382]

The core of the Java 9 platform changes, specific to Unicode 7.0.0 support, includes the
following Java classes:

java.lang package

Character
String

java.text.package

Bidi
BreakIterator
Normalizer

Let's take a quick look at each of those classes to help solidify our comprehension of the
broad impact that support for Unicode 7.0.0 has on the Java 9 platform.

The java.lang package
The java.lang.package provides fundamental classes used in nearly every Java
application. In this section, we will look at the Character and String classes.

The Character class:

 public final class Character extends Object implements
 Serializable, Comparable<Character>

This is one of the many core classes that has been around since the first version of Java. An
object of the Character class consists of a single field of type char.

The String class:

 public final class String extends Object implements
 Serializable, Comparable<String>, CharSequence

Strings, another core originating class, are immutable character strings.

Modifying the Character and String classes to support a newer version of Unicode,
version 7.0 for Java 9, is an important step to help keep Java relevant as the premier
programming language.

Best Practices In Java 9

[383]

The java.text package
The Bidi, BreakIterator, and Normalizer classes are not as widely used as the
Character and String classes. Here is a brief overview of those classes.

The Bidi class:

 public final class Bidi extends Object

This class is used to implement Unicode's bidirectional algorithm. This is used to support
Arabic or Hebrew.

For specific information on the Unicode Bidirectional Algorithm, visit http:/
/​unicode. ​org/ ​reports/ ​tr9/​.

The BreakIterator class:

 public abstract class BreakIterator extends Object
 implements Cloneable

This class is used for finding text boundaries.

The Normalizer class:

 public final class Normalizer extends Object

This method contains two methods:

isNormalized: used to determine if char values of a given sequence are
normalized
normalize: normalizes a sequence of char values

Additional significance
As previously stated, JDK 8 supports Unicode 6.2. Version 6.3 was released on September
30, 2013 with the following listed highlights:

Bidirectional behavior improvements
Improved Unihan data
Better support for Hebrew

http://unicode.org/reports/tr9/
http://unicode.org/reports/tr9/
http://unicode.org/reports/tr9/
http://unicode.org/reports/tr9/
http://unicode.org/reports/tr9/
http://unicode.org/reports/tr9/
http://unicode.org/reports/tr9/
http://unicode.org/reports/tr9/
http://unicode.org/reports/tr9/
http://unicode.org/reports/tr9/
http://unicode.org/reports/tr9/

Best Practices In Java 9

[384]

Version 7.0.0, released on June 16, 2014, introduced the following changes:

Added 2,834 characters
Increased support for Azerbaijan, Russian, and high German
dialects
Pictographic symbols
Historic scripts for several countries and regions

Updates to the Unicode bidirectional algorithm
Nearly 3,000 new Cantonese pronunciation entries
Major enhancements to the Indic script properties

The vast changes to Unicode with version 6.3 and 7.0.0 underscores the importance of the
Java 9 platform supporting 7.0.0 as opposed to 6.2, as with Java 8.

The Linux/AArch64 port
Java Enhancement Proposal 237 (JEP 237) had a single goal of porting JDK 9 to
Linux/AArch64. In order to understand what this means to us as Java 9 developers, let's talk
a bit about hardware.

ARM is a British company that has been creating computing cores and architectures for
over three decades. Their original name was Acorn RISC Machine (ARM), with RISC
standing for Reduced Instruction Set Computing. Somewhere along the way, they changed
their name to Advanced RISC Machine (ARM), and finally, to ARM Holdings or just ARM.
They license their architectures to other companies. ARM reports that there have been over
100 billion ARM processors manufactured.

Best Practices In Java 9

[385]

In late 2011, ARM came out with a new ARM architecture called ARMv8. This architecture
included a 64-bit optional architecture called AArch64, which, as you would expect, came
with a new instruction set. Here is an abbreviated list of AArch64 features:

A64 instruction set:
31 general purpose 64-bit registers
Dedicated zero or stack pointer registers
The ability to take 32-bit or 64-bit arguments

Advanced SIMD (NEON) - enhanced:
32x 128-bit registers
Supports double-precision floating points
AES encrypt/decrypt and SHA-1/SHA-2 hashing

New exception system

Oracle did a great job of identifying this architecture as something that needs to be
supported in the new Java 9 platform. The new AArch64 architecture is said to essentially
be an entirely new design. JDK 9 has been successfully ported to Linux/AArch64 with the
following implementations:

Template interpreter
C1 JIT compiler
C2 JIT compiler

For information about the C1 and C2 JIT compilers, refer to Chapter 14,
Command Line Flags.

Multi-resolution Images
The purpose of Java Enhancement Proposal 251 was to create a new API that supports
multi-resolution images. Specifically, to allow a multi-resolution image to encapsulate
several resolution variants of the same image. This new API will be located in the
java.awt.image package. The following diagram shows how multi-resolution can
encapsulate a set of images, with different resolutions, into a single image:

Best Practices In Java 9

[386]

This new API will give developers the ability to retrieve all image variants or retrieve a
resolution-specific image. This is a powerful set of capabilities. The java.awt.Graphics
class will be used to retrieve the desired variant from the multi-resolution image.

Here is a quick look at the API:

 package java.awt.image;

 public interface MultiResolutionImage
 {
 Image getResolutionVariant(float destinationImageWidth,
 float destinationImageHeight);

 public List <Image> getResolutionVariants();
 }

Best Practices In Java 9

[387]

As you can see in the preceding code example, the API contains the
getResolutionVariant and getResolutionVariants that return an Image and a list of
images respectively. Since MultiResolutionImage is an interface, we will need an
abstract class to implement it.

Common Locale Data Repository (CLDR)
Java Enhancement Proposal 252, uses CLDR Locale Data by default, implements the
decision to use locale data from the Unicode Common Locale Data Repository by default.
CLDR is a key component of many software applications that supports multiple languages.
It is touted as the largest locale data repository and is used by a plethora of large software
providers to include Apple, Google, IBM, and Microsoft. The widespread use of CLDR has
made it the unofficial industry standard repository for locale data. Making this the default
repository in the Java 9 platform further solidifies it as the software industry standard.

Interestingly, CLDR was already part of JDK 8, but was not the default library. In Java 8, we
had to enable CLDR by setting a system property as shown here:

 java.locale.providers=JRE,CLDR

So, in Java 9, we no longer have to enable CLDR as it will be the default repository.

There are additional locale data repositories in the Java 9 platform. They are listed here in
their default lookup order:

Common Locale Data Repository (CLDR).1.
COMPAT - previously JRE.2.
Service Provider Interface (SPI).3.

To change the lookup order, we can change the java.locale.providers setting as
illustrated:

 java.locale.providers=SPI,COMPAT,CLDR

In the preceding example, SPI would be first, followed by COMPAT, and then CLDR.

Best Practices In Java 9

[388]

Summary
In this chapter, we focused on best practices with additional utilities provided by the Java 9
platform. Specifically, we covered UTF-8 property files, Unicode 7.0.0, Linux/AArch64 port,
multi-resolution images, and Common Locale Data Repository.

In the next chapter, our final chapter, we will look at the future direction for the Java
platform by looking ahead to what we can expect in Java 10.

16
Future Directions

In the last chapter, we focused on best practices with some exciting utilities provided by the
Java 9 platform. Specifically, we covered UTF-8 Property Files, Unicode 7.0.0,
Linux/AArch64 port,multi-resolution images, and common locale data repository.

This chapter provides an overview of the future development of the Java platform, beyond
Java 9. We will look at what is planned for Java 10 and what further changes we are likely to
see in the future. Each potential change to the Java platform will be characterized as
targeted, submitted, or drafted. Targeted refers to changes that have been earmarked for
Java 10. Submitted refers to a change that has been submitted but does not target a specific
version of the Java platform. Changes that are drafted are still on the drawing board and are
not ready to be submitted or designated as targeted.

Specifically, this chapter covers future changes to the Java platform grouped in the
following categories:

JDK changes
Java Compiler
Java Virtual Machine
JavaX
Special projects

Future Directions

[390]

Future Changes to the JDK
The Java Development Kit is at core of the Java platform and is continually being updated
with new capabilities and efficiencies realized with each release. Looking beyond Java 9, we
see a multitude of possible changes to the JDK. Many of these changes will be implemented
in Java 10 and others might be saved for later releases.

The changes to the JDK in Java 10 and beyond are presented in the following proposal
categories:

Targeted for Java 10
Submitted Proposals
Drafted Proposals

JDK changes targeted for Java 10
At the time of this book's publication, the following listed Java Development Kit (JDK)-
related changes were slated for inclusion in the Java 10 platform:

Repository consolidation
Native-Header Tool Removal

Repository consolidation
The Java 9 platform consists of eight distinct repositories as depicted in the following
diagram. In Java 10, we should see all of these repositories combined into a single
repository:

Future Directions

[391]

Repository consolidation should help streamline development. Moreover, it should increase
the ease of maintaining and updating the Java platform.

You can get an early look at this repository at http:/ ​/​hg. ​openjdk. ​java.
net/​jdk10/ ​consol- ​proto/ ​.

Native-header tool removal
The javah tool is used to generate C header files and C source files from Java classes. C
programs can reference the generated header files and source files.

Here is a look at the life and death of the javah tool:

As illustrated earlier, the javah tool was introduced with Java 7 and its functionality was
included in the javac that came with JDK8. This functionality was reportedly superior
compared to that of the original tool. In JDK 9, developers received warnings each time the
javah tool was used, informing them of its pending removal from the JDK. The tool is slated
for removal in JDK 10.

http://hg.openjdk.java.net/jdk10/consol-proto/
http://hg.openjdk.java.net/jdk10/consol-proto/
http://hg.openjdk.java.net/jdk10/consol-proto/
http://hg.openjdk.java.net/jdk10/consol-proto/
http://hg.openjdk.java.net/jdk10/consol-proto/
http://hg.openjdk.java.net/jdk10/consol-proto/
http://hg.openjdk.java.net/jdk10/consol-proto/
http://hg.openjdk.java.net/jdk10/consol-proto/
http://hg.openjdk.java.net/jdk10/consol-proto/
http://hg.openjdk.java.net/jdk10/consol-proto/
http://hg.openjdk.java.net/jdk10/consol-proto/
http://hg.openjdk.java.net/jdk10/consol-proto/
http://hg.openjdk.java.net/jdk10/consol-proto/
http://hg.openjdk.java.net/jdk10/consol-proto/
http://hg.openjdk.java.net/jdk10/consol-proto/
http://hg.openjdk.java.net/jdk10/consol-proto/
http://hg.openjdk.java.net/jdk10/consol-proto/

Future Directions

[392]

JDK-related submitted proposals
The following Java Enhancement Proposals have been submitted, but have not yet been
committed for delivery as part of the Java 10 platform. Oracle has set a two-year release
plan, so it is safe to assume that, many if not all, of the proposals listed in this section and
beyond have a chance of being part of the Java 10 platform:

Parallelize the Full GC Phase in CMS
REST APIs for JMX
Support Heap Allocation

Parallelize the Full GC Phase in CMS
In Chapter 7, Leveraging the New Default G1 Garbage Collector, we reviewed the changes to
the Concurrent Mark Sweep (CMS) garbage collector. CMS garbage collection involves
scanning heap memory, marking objects for removal and then making a sweep to actually
remove those objects. The CMS method of garbage collection is essentially an upgraded
"Mark and Sweep" method; which you can refer to Chapter 7, Leveraging the New Default G1
Garbage Collector, for additional information.

The current downside to CMS garbage collection is that the serial mark and sweep is
implemented using a single thread. This results in unwanted pause times. Currently, full
garbage collection takes place in four phases:

Marking phase: Mark objects for collection
Forwarding phase: Determine where live objects will be relocated
Adjust pointer phase: Updates points based on new locations of live objects
Compaction phase: Moves objects to designated locations

The future plan for CMS is to implement the mark and sweep so they can be performed in
parallel. The change is not to the garbage collection algorithm. Instead, each of the above
listed phases will be parallelized. This will result in greater efficiencies for CMS garbage
collection and hopefully eliminate, or significantly reduce, pause times.

REST APIs for JMX
Representational State Transfer (REST), RESTful programming, and RESTful API use a
client/server cacheable communications protocol, usually HTTP. REST is a common
software architecture for developing networked applications.

Future Directions

[393]

One of the future changes to the Java platform is to provide RESTful web interfaces to
MBeans.

Managed Bean (MBean) is an object in Java that represents a resource to
be managed. These resources could include a specific hardware device, an
application, a service, or other component.

The interfaces will permit MBeans to use the following HTTP methods:

CONNECT

DELETE

GET

HEAD

OPTIONS

POST

PUT

TRACE

MBeans are managed using Java Management Extensions (JMX). The JMX architecture has
three levels, as depicted in the following diagram:

As you can see, the REST adapter is part of the Distributed Services level. That level
contains both connectors and adapters. The connectors provide mirroring of agent level
interfaces to remote clients. The adapters, on the other hand, convert the interfaces using a
different protocol. The future change will be to transform the services at the Agent level to
REST APIs.

Future Directions

[394]

Support heap allocation
A proposed future change is to allow developers to designate alternate memory devices for
the Java heap. Specifically, the proposal is to permit developers to designate non-DRAM
memory for the Java heap. This change takes advantage of the decreasing cost of memory
and memory devices.

Implementation is likely to use an AllocateHeapAt flag.

JDK-related drafted proposals
This section covers several JDK-related proposals that, at the time of this book's publication,
were in the draft phase. That suggests they might not be fully analyzed or might even be
cancelled. That being said, it is likely that each of these will move from drafted, to
submitted, and then to targeted for the Java 10 platform.

Draft proposals covered in this section are as follows:

Finalization promptness
Java memory model
Foreign function interface
Isolated methods
Reduce metaspace waste
Improve IPv6 support
Unboxed argument lists for method handles
Enhanced MandelblotSet Demo Using Value Types
Efficient Array Comparison Intrinsics

Finalization promptness
The Java language includes finalization to clean up objects that were unreachable by
garbage collection. The proposed change is to make this process quicker and will require
modifications to the following:

ReferenceHandleThread

FinalizerThread

java.lang.ref.Reference

Future Directions

[395]

Additional changes related to increasing the promptness of finalization includes the
creation of a new API. The following graphic details how the API will be able to implement
GC and runtime actions, and then inform that finalization needs to take place. This certainly
should result in faster processing:

Java memory model
There is a continuing effort to keep Java's memory model (JMM) updated. Current efforts
are focused on several areas to include:

Shared memory concurrency
JVM concurrency support
JDK components
Tools

Expected results of JMM-related engineering efforts are as follows:

Improved formalization
JVM voverage
Extended scope
C11/C++11 compatibility
Implementation guidance
Testing support
Tool support

Future Directions

[396]

Foreign Function Interfaces
Foreign Function Interfaces (FFI) are software APIs that permits programs to call
methods/functions from a program written in a different language. In an upcoming version
of the JDK, we are apt to see an FFI that allows developers to call upon shared libraries and
operating-system kernels directly from java methods. The proposed FFI will reportedly also
enable developers to manage native memory blocks.

The new FFI will be similar to Java Native Access (JNA) and Java Native Runtime (JNR).
JNA is a library that permits access to native shared libraries without having to use the Java
Native Interface (JNI). JNR is a Java API that is used for calling native code. The proposed
FFI will permit and optimize native method calls as well as optimized native memory
management.

Isolated methods
The MethodHandles.Lookup class is part of the java.lang.invoke package. We use
lookup objects to create method handles and a lookup class to access them. Here is the
header for the lookup class:

 public static final class MethodHandles.Lookup extends Object

Future changes to the MethodHandles.Lookup class will support the loading of method
byte codes without the need for an attached class. Furthermore, these methods will be
referenced using method handles. The class will have a new loadCode method.

Reducing metaspace waste
Currently, when metaspace chunks are freed, they cannot be used as different sized chunks.
So, if metaspace chunk A was freed and was of size X, that space cannot be reused for a
metaspace chunk greater than or less than size X. This results in a tremendous amount of
unusable metaspace waste. This can also lead to out-of-memory errors.

A future change to the JDK will resolve this issue by increasing the reuse of metaspace
chunks. The change will support the following cases:

Allow neighboring chunks to form a larger chunk
Allow larger chunks to be divided into smaller chunks

This proposed change resolves the issue by ensuring smaller chunks can be reused and that
larger chunks are not wasted as they can be split to support the reuse of smaller chunks.

Future Directions

[397]

Improving IPv6 support
Internet Protocol version 6 (IPv6) is the current version of the Internet Protocol. The
Internet Protocol provides the identification and location schema that enables Internet
traffic routing. IPv6 is considered an Internet layer protocol that is sued by packet-switched
networking.

The following diagram shows the history of the Internet Protocol:

IPv6 is the replacement for IPv4 and has several changes that the Java platform should
support. Key IPv6 changes from IPv4 are categorized as follows:

Jumbograms
Larger address space
Mobility
Multicasting
Network-layer security
Options extensibility
Privacy
Simplified router processing
Stateless address auto-configuration

Future Directions

[398]

As the Internet continues to transition from IPv4 to IPv6, the following cases are possible
and should all be supported in the Java 10 platform:

Multiple versions of IPv4 exist
One version of IPv6 exists
Multiple versions of IPv6 exist
Multiple versions of IPv4 and one version of IPv6 exist
Multiple versions of IPv4 and IPv6 exist

Unboxed argument lists for method handles
The way in which unboxed argument lists are currently handled can lead to processing
inefficiencies. This is especially true when we use Object[] or List<object> as variable-
length argument lists. Java uses java.lang.invoke to transform the method calls using
boxing. In Java, autoboxing is when the compiler automatically converts primitive types
and their corresponding object wrapper classes. Here is the list of wrapper classes along
with the corresponding primitive type:

Wrapper class Primitive type

Boolean boolean

Byte byte

Character char

Double double

Float float

Integer int

Long long

Short short

As you can see from the following illustration autoboxing occurs when we go from
primitive values to an object of the associated wrapper class and, when we go from an
object of a wrapper class to primitive values it is called unboxing:

Future Directions

[399]

The inefficiencies are due to mismatches between the argument's list actual types and the
array or list encasing them. In a future Java release, these inefficiencies will be removed. A
new ArgumentList class will be added to the Java platform that polymorphically boxes
valid arguments lists into a heap node.

Enhanced MandelblotSet demo using value types
This low priority Java Enhancement Proposal is likely to be implemented in Java 10 as its
scope is limited. The plan is to develop a sample Java application that demonstrates
improvements in memory and performance specific to using Valhalla project components,
value types, and generics instead of primitive types.

Valhalla project components refer to user-defined custom immutable
primitive types as value types.

You can read more about value types in the Java Virtual Machine section of this chapter.

A Mandelbrot set is a specific example of fractal mathematics used in chaos theory. The
sample MandelbrotSet that accompanied JDK 8 provides a comparison of parallel and
sequential data streams. In Java 10 or beyond, the sample MandelbrotSet will be updated to
show performance and memory efficiencies between using Valhalla project components,
value types and generics as opposed to primitive types.

Future Directions

[400]

Efficient array comparison intrinsics
A future change to the Java platform will be to include a method for comparing arrays.
Currently, this is something developers have to code on their own. The change will be
incorporated by adding something similar to the compareTo method in
java.util.Arrays.

Although specifics are not available, the prospect of being able to compare arrays using
native functionality is exciting. This is a component that will save many developers time.
This is likely to be realized in the Java 10 platform release.

Future changes to the Java Compiler
There are two notable draft changes to the Java platform, specifically the Java Compiler.
These Java Enhancement Proposals are listed as follows and detailed in this section:

Policy for retiring javac -source and -target options
Pluggable static analyzers

Policy for retiring javac -source and -target
options
A formal draft proposal has been submitted to define a policy for retiring -source and -
target options. This effort is to help reduce maintenance costs of the compiler. The -
source and -target options were provided to ease development efforts, but not formally
required by any standards. Starting with the Java 9 platform, these target options are not
recognized.

The new policy is called "one plus three back" which means that the current version will be
supported as well as the three previous releases. This policy will persist with JDK 10.

Pluggable static analyzers
An ongoing research Java Enhancement Proposal was initiated in the summer of 2013 as an
exploratory measure and future support for a full Java Enhancement Proposal to empower
developers to define extensions that can, at compile time, conduct the arbitrary static
analysis. The research is to see how a pluggable static type analyzer framework can be
implemented for the Java Compiler.

Future Directions

[401]

The goals of the research are as follows:

Collect static analyzer requirements
Analyze static analyzers
Determine the requirements for a framework that supports static analyzers
Implement and test

The final outcome of the ongoing research will be either to submit a feature Java
Enhancement Proposal or to make the recommendation that pursuit of the feature cease.

Future Changes to the Java Virtual Machine
Several new features and enhancements to the Java Virtual Machine (JVM) and core
libraries have been submitted and drafted. It is likely that at least some of these features and
enhancements will be realized in the Java 10 platform, and others will be saved for later
releases.

JVM-related submitted proposals
There are three Java Enhancement Proposals that have been submitted. While, not currently
earmarked for Java 10, it is likely that we will see the changes when Java 10 is released. The
three proposals are listed as follows:

Container aware Java
Enable execution of Java methods on GPU
Epsilon GC: The arbitrarily low overhead gGarbage (non-) collector

Container aware Java
An effort is being made so the JVM and core libraries are aware when they are running in a
container. Moreover, to be adaptive in the use of available system resources. This feature is
especially relevant with the ubiquitous nature of cloud computing.

Future Directions

[402]

There are two major components of the proposed feature:

Detection:
Determine if Java is running inside a container

Container resource exposure:
Expose container resources limits
Expose container resource configuration

Several configuration status points have been initially identified:

General CPU-related Memory-related

isContainerized CPU Period Block I/O Device Weight

CPU Quota Block I/O Weight

CPU Set Memory Nodes Current Memory Usage

CPU Sets Device I/O Read Rate

CPU Usage Device I/O Write Rate

CPU Usage Per CPU Max Memory Usage

Number of CPUs Maximum Kernal Memory

Memory Swappiness

OOM Kill Enabled

OOM Score Adjustment

Shared Memory Size

Soft Memory Limit

Total Memory Limit

Initially, this feature is scheduled to support Docker on Linux-64. A likely scenario is that
this feature be released with Java 10 with sole support for Docker on Linux-64. Then,
feature support will be expanded in subsequent releases of the Java platform.

Future Directions

[403]

Enable execution of Java methods on GPU
Enabling the seamless ability for Java applications to take advantage of GPUs is the subject
of project Sumatra. The goal is to use Java's Stream API in parallel and the lambda
programming model. It makes great sense for us to exploit the processing power and
efficiency of GPUs.

The overarching goal is to make this feature easy to use for developers. The feature will be
implemented with the following characteristics:

Do not change the syntax of the Java parallel stream API
Hardware and software stacks should be automatically detected
Automatic detection and analysis to determine if using the GPU makes sense
from a performance standard
Provide CPU execution when offloading processing to a GPU fails
There will be no performance degradation
There will be no new security risks introduced by this feature
There will be memory persistence between the CPU and GPU

The key benefit of this Java Enhancement Proposal will be performance improvements for
our Java applications.

Epsilon GC - The arbitrarily low overhead garbage (non-
) collector
In Chapter 7, Leveraging the New Default G1 Garbage Collector, we detailed the enhancements
to Java's Garbage Collection with the release of the Java 9 platform. In the spirit of
continuous improvement, a Java Enhancement Proposal has been submitted to develop a
garbage collection to specifically handle memory allocation. This garbage collector will
signal the JVM to shutdown when no more memory is available on the Java heap.

The goal is for this garbage collector to be passive and use very limited overhead. The
introduction of this garbage collection is not intended to degrade performance.

This change will not impact current garbage collectors.

Future Directions

[404]

JVM-related drafted proposals
The following Java Enhancement Proposals have been drafted for a future version of the
Java platform and are detailed in this section:

Provide stable USDT probe points on JVM compiled methods
Concurrent Monitor Deflation
Low-overhead way of sampling Java heap allocations
Diagnostic Command Framework
Enhanced Class Redefinition
Enable NUMA mode by default when appropriate
Value objects
Align JVM Access Checks

Provide stable USDT probe points on JVM compiled
methods
User-level Statistically Defined Tracing (USDT) is used to insert probe points to mark the
entry and exit of methods. Compilers then permit a handshake with tracing tools so that
those tools can discover the probe points and manipulate them.

Common tracing tools are Dtrace and Berkeley Packet Filters (BPF).

The Java Virtual Machine, even with JVM 9, does not support this technology set. The
current lack of support stems from how the JVM generates compiled code; it does this
dynamically without any static Executable Linkable Files (ELFs). Tracing tools need the
ELFs to work. An additional mitigating factor is that the JVM dynamically patches its own
generated code which does not support external patching.

Future Directions

[405]

In a future Java release, likely Java 10, the JVMTI (JVM Tools Interface) will be modified to
support probe tools to perform their standard operations on the JVM's dynamically
compiled code. Provisionally identified changes to JVMTI APIs include:

Adding patch points or method entry and exit
The enumeration of the compiled methods
State change notifications on compiled method load
Query support
Toggle trace points on/off
Making chunks of compiled methods inspectable

The good news is that there will not need to be any changes to how Java code is compiled. It
can already be patched, so the required functionality will be created by modifying the
USDT API as well as a few changes to the JVM.

Concurrent monitor deflation
A monitor, in our context, is a synchronized mechanism that controls concurrent access to
an object. Monitors help prevent multiple threads from accessing a monitored object at the
same time. The JVM automatically switches between three monitor implementation
methods. The three implementation methods are illustrated as follows:

Future Directions

[406]

The initial lock of a Java object uses biased locking. That method ensures only the locking
thread can lock the object. With this approach, the JVM installs a thread pointer in the Java
object. When a second thread attempts to lock the Java object, the JVM switches to the basic
locking monitor implementation method. This second method uses compare-and-swap
(CAS) operations. When a CAS operation fails, such as when a second thread attempt to
lock the Java object, the JVM switches to the third monitor implementation method. That
method is a full-blown monitor. This method requires native heap storage which is referred
to as the monitor being inflated.

The purpose of the Concurrent Monitor Deflation Java Enhancement Proposal is to perform
monitor deflation while the threads are running. This will decrease the JVM-induced pause
times.

Provide a low-overhead way of sampling Java heap
allocations
Mismanagement of Java heaps can result in heap exhaustion, and insufficient memory due
to memory fragmentation (GC thrashing). In a future release of Java, most likely Java 10, we
will have a means of sampling Java heap allocations. This will be implemented by
enhancing the Java Virtual Machine Tools Interface (JVMTI). The resulting functionality
will provide an extremely low-overhead solution.

Diagnostic Command Framework
Java Enhancement Proposal 137, Diagnostic Command Framework, proposes a framework
be created for sending diagnostic commands to the Java Virtual Machine.

The framework will include a Java Management Extension (JMX) interface, which will
permit remote issuing of diagnostic commands via a JMX connection.

The JRocket Mission Control tools already have this feature successfully implemented. This
served as proof of concept and it is therefore extremely likely that this enhancement will be
part of the Java 10 platform.

Future Directions

[407]

Enhanced Class Redefinition
Java Enhancement Proposal 159, Enhanced Class Redefinition, calls for enhanced JVM
capabilities in regards to class redefinition at runtime. Specifically the proposal includes the
following class redefinition operations:

Adding super types
Adding methods
Adding static fields
Adding instance fields
Removing methods
Removing static fields
Removing instance fields

Current JVM class redefinition capabilities are limited to method swapping. This is viewed
as extremely restrictive. With the new proposed enhancement, developers will not have to
restart their applications after changes. This is especially beneficial when dealing with large
and distributed systems.

Enable NUMA mode by default when appropriate
Java Enhancement Proposal 163, enable NUMA mode by default when appropriate. This
proposal is only applicable to NUMA hardware. The intent is to have the JVM enable the
following flag when it detects NUMA hardware:

 XX:+UseNUMA

This flag can currently be evoked manually. With the proposed enhancement, it will be
evoked automatically by the JVM when it has detected that it is running on a NUMA piece
of hardware.

Non-Uniform Memory Access (NUMA) is a memory model used in
computer multiprocessing. With this memory model, access time is
dependent on the memory location relative to that of the processor.

This will be an easy enhancement to implement and is likely to be part of the Java 10
platform release.

Future Directions

[408]

Value objects
Java Enhancement Proposal 169, value objects, intended to provide the necessary JVM
infrastructure to permit working with objects that are immutable as well as objects that are
without reference. This new infrastructure will allow for the efficient by-value computation
with non-primitive data types.

The set of goals for this proposal include the following:

More closely align java.lang.Integer and int semantics.
Make Java data structures more portable
Support abstract data types with a performance similar to that of Java primitive
data types:

User-defined
Library-defined

Optimize parallel computations by enabling function-style computation with
pure data
Improve support for:

Complex numbers
Vector values
Tuples

Increase safety and security
Decrease "defensive copying"

One of the stated implementation strategies is to add a lockPermanently operation. It will
get passed an Object and then mark that Object as both immutable and unaliasable. The
concept of a permanently locked object stipulates that:

Fields cannot be changed
Elements of an array cannot be changed
No synchronization is possible
'Waiting' methods cannot be evoked
'Notifying' methods cannot be evoked
Identity hash codes inquiries are not permitted
Pointer equality checks cannot be performed

This is likely to be one of the more popular additions to the Java 10 platform.

Future Directions

[409]

Align JVM Access Checks
Java Enhancement Proposal 181, Align JVM Checks with Java Language Rules for Nested
Classes, focuses on the need to align JVM access checking rules with Java language rules,
specifically for constructors, fields, and methods in nested classes. This will be
accomplished by partitioning related classes in nests. Class files will be able to access
private names of other class files in the same nest.

Nests will share an access control context. With the advent of nests, access bridges will not
be required. The bulk of the change will be to the JVM's access rules.

Future Changes to JavaX
The Javax.* packages are the subject of two specific Java Enhancement Proposals that
have been submitted for a future Java platform release. Those proposals are as follows:

JMX specific annotations for registration of managed resources
Modernize the GTK3 Look and Feel implementation

JMX specific annotations for registration of
managed resources
The draft Java Enhancement Proposal titled, JMX specific annotations for registration of
managed resources, will provide a set of annotations for registration and configuration of
MBeans (Managed Bean).

An MBean is a Java Object representing a manageable resource (app,
service, component, or device).

The goal of this proposal is to lessen the burden on developers in the registration and
configuring of MBeans. In addition, the source code readability will increase by ensuring all
MBean declaration components are co-located.

Future Directions

[410]

The JMX specific annotations will be located in the javax.management.annotations
package.

This Java Enhancement Proposal has been specifically planned for Java 11. Although, there
is a possibility that it could be redesigned for Java 10.

Modernize the GTK3 Look and Feel
Implementation
GTK3 is a widget toolkit used for creating graphical user interfaces, formally known as the
GIMP toolkit. The draft Java Enhancement Proposal titled, Modernize the GTK3 Look and
Feel implementation, calls for the rewriting of the current GTK2 Look and Feel so that it
uses GTK3 instead.

GTK3 implementation will not replace GTK2. It is important to note that one or the other,
not both of these can be used at runtime.

You can access the GTK3 reference manual at https:/ ​/​developer. ​gnome.
org/​gtk3/ ​stable/ ​.

Ongoing Special Projects
Java Enhancement Proposals present design and implementation changes to the Java
platform. The criteria for a JEP being drafted is that the work must meet at least one of the
following:

At least two weeks of engineering work
Signifies a significant change to the JDK
Represents a high demand issue for developers or customers

https://developer.gnome.org/gtk3/stable/
https://developer.gnome.org/gtk3/stable/
https://developer.gnome.org/gtk3/stable/
https://developer.gnome.org/gtk3/stable/
https://developer.gnome.org/gtk3/stable/
https://developer.gnome.org/gtk3/stable/
https://developer.gnome.org/gtk3/stable/
https://developer.gnome.org/gtk3/stable/
https://developer.gnome.org/gtk3/stable/
https://developer.gnome.org/gtk3/stable/
https://developer.gnome.org/gtk3/stable/
https://developer.gnome.org/gtk3/stable/
https://developer.gnome.org/gtk3/stable/

Future Directions

[411]

Projects, on the other hand, represent collaborative efforts that are sponsored by one of the
following groups:

2D Graphics
Adoption
AWT
Build
Compatibility and specification review
Compiler
Conformance
Core Libraries
Governing Board
HotSpot
Internationalization
JMX
Members
Networking
NetBeans Projects
Porters
Quality
Security
Serviceability
Sound
Swing
Web

Groups are formal and new ones can be proposed.

The following listed active projects represent possible future enhancement areas to the Java
platform. Brief information about each project is provided later in this section and provides
insight into general areas of future changes:

Annotations pipeline 2.0
Audio Synthesis Engine
Caciocavallo
Common VM Interface

Future Directions

[412]

Compiler Grammar
Da Vinci Machine
Device I/O
Graal
HarfBuzz Integration
Kona
OpenJFX
Panama
Shenandoah

Annotations pipeline 2.0
This project explores improvements to how annotations are handled within the Java
compiler pipeline. There is no intention to propose changing specifications; rather, the focus
is on performance enhancements.

Audio Synthesis Engine
This project is looking at the creation of a new midi synthesizer for the JDK. The current
midi synthesizer belongs to a licensed library. The working group would like to see the new
midi synthesizer as an open source JDK asset.

Caciocavallo
The Caciocavallo project aims to improve the OpenJDK Abstract Windows Toolkit (AWT)
internal interfaces. This extends to 2D subsystems. The proposed improvement stands to
ease the way AWT is ported to new platforms.

Common VM Interface
The Common VM Interface project has the goal of documenting the VM interface for
OpenJDK. This should make it easier for Classpath VMs and other VMs to use OpenJDK.

Future Directions

[413]

Compiler Grammar
The Compiler Grammar project is working on an experimental Java Compiler that is based
on ANTLR grammar. ANTLR, Another Tool for Language Recognition, is a parser that
reads, processes, and executes structured text or binary files. The project team hopes this
Java Compiler will replace the current one as it uses a hand-written parser, LALR (Look-
Ahead Left to Right). The LALR parser has been identified by the project group as fragile
and difficult to extend.

Da Vinci Machine
The Da Vinci Machine Project, represents the effort to extend the JVM with support for non-
Java languages. Current efforts are focused on allowing the new languages to exist
alongside Java in the JVM. Performance and efficiency are key characteristics of the effort.

Device I/O
This project intends to provide access to generic peripheral devices via a Java-level API. The
initial list of peripheral devices the project team wants to support include:

GPIO (General Purpose Input/Output)
I2C (Inter-Integrated Circuit Bus)
SPI (Serial Peripheral Interface)
UART (Universal Asynchronous Receiver/Transmitter)

Graal
The Graal project has the goal of exposing VM functionality via Java APIs. This exposure
will permit developers to write, in Java, dynamic compilers for a given language runtime.
This effort includes the development of a multi-language interpreter framework.

Future Directions

[414]

HarfBuzz Integration
The HarfBuzz Integration project hopes to integrate the HarfBuzz layout engine into the
Java Development Kit. This is intended to replace the ICU layout engine with the HarfBuzz
layout engine. The ICU layout engine has been deprecated, solidifying the importance of
this project's future success.

Kona
The Kona project, is working to define and implement Java APIs to support the Internet of
Things (IoT) domain. This includes networking technologies and protocols. Although not
stated, safety and security will be paramount to this effort's implementation success.

OpenJFX
There are not many details available regarding the OpenJFX project. The stated goal of this
project is to create the next-generation Java client toolkit. Based on the project title, it can be
assumed that the group wants to create an OpenJFX version of JavaFX, which is a set of
packages used to create rich internet applications.

Panama
Project panama is focused on enhancing the connections between JVM and non-Java APIs.
The project includes the following selected components:

Native function calls
Native data access from JVM
Native data access inside JVM heap
New data layouts in JVM heap
API extraction tools for header files

The project team has generated a repository tree that matches JDK 9's structure. This
significantly increases the likelihood of the project's success.

Future Directions

[415]

Shenandoah
Project Shenandoah has the goal of significantly reducing the pause times with garbage
collection operations. The approach is to have more garbage collection operations run
concurrently with the Java application. In Chapter 7, Leveraging the New Default G1 Garbage
Collector you read about CMS and G1. The Shenandoah project intends to add concurrent
compaction to the possible garbage collection approaches.

Summary
In this chapter we provided an overview of the future developments of the Java platform,
beyond Java 9. We looked at what is planned for Java 10 and what further changes we are
likely to see beyond Java 10. Each potential change to the Java platform was characterized
as targeted, submitted, or drafted. Specifically, we covered future changes to the Java
platform grouped in the following categories: JDK Changes, Java Compiler, Java Virtual
Machine, JavaX, and special projects.

Index

@
@Deprecated annotation 300
@SafeVarargs annotation
 using 51

A
Abstract Syntax Trees (ASTs) 254
Abstract Windows Toolkit (AWT) 412
access-control boundary violations
 about 80
 runtime 80
Acorn RISC Machine (ARM) 384
additional concurrency updates
 about 309
 CompletableFuture API enhancements 315
 Java concurrency 309
ALPN (Application Layer Protocol Negotiation) 339
AnnotatedConstruct interface 259
ANTLR parser 413
application module path 79
assets
 listing 148
Atomic Toolkit
 working with 47
Authenticated Encryption with Associated Data

(AEAD) 329
Authority Info Access (AIA) 348

B
BeanInfo annotations [JEP-256]
 about 281
 BeanProperty 282
 JavaBean 281
 SwingContainer 283
BeanInfo classes
 about 283

 benefits 283
BeanProperty
 about 282
 optional elements 282
benchmarking options
 about 202
 modes 203
 time units 203
Berkeley Packet Filters (BPF) 404
best practices, Java 9
 Common Locale Data Repository (CLDR) 387
 Linux/AArch64 port 384
 multi-resolution images 385
 support for UTF-8 368
 Unicode 7.0.0 381

C
C header files 74
camel case search 268
Cascading Style Sheets (CSS) 26
CDS archives [JEP 250]
 interned strings, storing 25
Class Data Sharing (CDS) 25
classes
 accessing 238
 updated, in Java 9 35
CMS garbage collection 174
collection literals
 benefits 292
 reference link 292
collections [JEP-269]
 factory methods, used for 292
 new collection literals, using 295
 using, before Java 9 292, 293
command line flags
 compiler control [JEP 165] 356
 diagnostic commands [JEP 228] 359

[417]

 heap profiling agent [JEP 240] 361
 JHAT [JEP 241], removing 362
 JVM command-line flag argument validation [JEP

245] 363
 older platform versions [JEP 247], compiling for

364

 unified JVM logging [JEP 158] 350
Common Locale Data Repository (CLDR) 387
communication protocol 324
compact strings [JEP 254]
 about 29
 Java 9, updates 30
 pre-Java 9 status 30
compare-and-swap (CAS) 406
compilation module path 79
compiler control [JEP 165]
 about 356
 C1 compilation mode 357
 C2 compilation mode 357
 compilation modes 356
 compiler control, in Java 9 358
 tiered compilation 357
compiler tree API
 enums 255
 interfaces 256
CompletableFuture API enhancements 315
CompleteableFuture*T* class
 about 316
 enhancements 320
concurrent mark sweep (CMS) 158, 162, 392
constant folding
 about 206
 eliminating 205
contended locking [JEP 143]
 about 15
 goals, improving 16
ControlDaemon class 223, 226
CPU instructions
 leveraging, for GHASH 343
 leveraging, for RSA 343
critical sections [JEP 270]
 stack areas, reserved 35
CSS APIs
 preparing, for modularization [JEP 253] 26
current process

 PID, obtaining 210

D
data streams 302
datagram 324
Datagram Transport Layer Security (DTLS)
 about 324
 security, considerations 329
 supporting, in Java 9 329
dead-code
 about 205
 eliminating 205
depreciation warnings
 suppressing, on import statements [JEP 211] 50
Deterministic Random Bit Generator (DRBG)
 about 348
 reference link 349
development tools
 about 70
 deployment tool 70
 internationalization tool 70
 monitoring tool 71
 RMI tools 71
 security tool 71
 troubleshooting tool 71
 web services tool 72
diagnostic commands [JEP 228] 360
diamond operator
 about 54
 using 54
Distributed Services level 393
Doclet API [JEP-221]
 pre-Java 9 Doclet API 250
 simplifying 250
Doclet API, Java 9
 about 254
 compiler tree API 254, 255
 language model API 258
Doclet API
 pre-existing, issues 254
Doclint warning [JEP 212]
 reference link 19
 resolving 19
Document Object Model (DOM) 31
documented set 250

[418]

DPI-aware application 33
DPI-unaware application 33
DRBG-Based SecureRandom Implementations

349

DTLS protocol version 1.0 324
DTLS protocol version 1.2 326, 328
dynamic linking
 of language-defined object models [JEP 276] 37
dynamic randomly accessed memory (DRAM) 207

E
eavesdropping 324
Eclipse
 reference link 109
 URL, for downloading 190
Elliptic Curve Diffie-Hellman (ECDH) 329
EMCAScript 274
enhanced deprecation [JEP-277]
 @Deprecated annotation 300
 about 299, 300
enhanced method handles [JEP-274]
 about 296, 297
 additional combinations 298, 299
 lookup functions 297
 MethodHandle argument, handling 298
 need for 297
Executable Linkable Files (ELFs) 404
external processes
 controlling 11

F
factory methods
 used, for collections [JEP-269] 292
feedback modes
 about 141, 145
 custom feedback mode, creating 146
finalize() method 168, 169
Flow API
 about 305
 Flow.Processor interface 307
 Flow.Publisher interface 306
 Flow.Subscriber interface 306
 Flow.Subscription interface 306
 sample implementation 307
Foreign Function Interfaces (FFI) 396

forgery 324
Forward Secrecy (FS) 329
future changes, Java Compiler
 pluggable static analyzers 400
 policy for retiring javac -source and -target

options 400
future changes, JavaX
 about 409
 GTK3 Look and Feel Implementation,

modernizing 410
 JMX specific annotations, for registration of

managed resources 409
future changes, JDK
 JDK changes targeted for Java 10 390
 JDK-related drafted proposals 394
 JDK-related submitted proposals 392
future changes, JVM
 JVM-related drafted proposals 404
 JVM-related submitted proposals 401
future developments, Java platform
 Java Compiler 400
 JavaX 409
 JDK 390

G
G1 [JEP 278]
 humongous objects, tests 38
G1 garbage collection
 about 159
 options 165
Galois HASH (GHASH)
 about 344
 CPU instructions, leveraging 343
garbage collection algorithms
 about 158
 concurrent mark sweep (CMS) algorithm 158
 G1 garbage collection 159
 mark and sweep 158
 parallel garbage collection 159
 serial garbage collection 159
garbage collection logging
 considerations 183
 gc tag 182
 macros 182
 options 180

[419]

garbage collection, issues
 about 184
 object eligibility 184, 186
garbage collection
 about 155, 156, 188
 combination Flag 176
 combinations, depreciating 175
 configuration Flag 176
 default garbage collection 173
 finalize() method 168, 169
 Java methods 165
 object, life cycle 156
 options 160
 System.gc() method 166, 167
 upgrading, in Java 8 171
 visualizing 170
 with new Java platform 173
Garbage-first (G1)
 about 8, 121
 performance, enhancing 11
GIMP toolbox 42
Graal VM 13
Graphical User Interfaces (GUI) 42
GStreamer 32
GStreamer [JEP 257]
 JavaFX/Media, updating to new version of 32
GTK 3
 AWT 43
 enabling, on Linux [JEP 283] 42
 JavaFX 43
 Swing 43

H
HarfBuzz font-layout engine [JEP 258] 32
HartBuzz 32
hashing 344
Heap Profiling (HPROF) 361
heap profiling agent [JEP 240] 361
HiDPI graphics
 about 33
 for Linux [JEP 263] 33
 for Windows [JEP 263] 33
HotSpot 42
HotSpot build system [JEP 284] 44
HotSpot C++ unit-test framework [JEP 281] 42

 enhancement, goals 42
HTML5 Javadoc [JEP-224] 262, 264, 266
HTTP 2.0
 starting with 12
HTTP client [JEP-110]
 about 244
 benefits 247
 creating, for Java 9 247
 Java 9 244
 new API, limitations 248
humongous objects
 tests, in G1 [JEP 278] 38
Hypertext Transfer Protocol (HTTP) 244

I
import statements [JEP 211]
 depreciation warnings, suppressing 50
import statements [JEP 216]
 processing, correctly 58, 60
information
 obtaining, about process 211
infrastructure framework, Oracle
 reference link 44
instance, StackWalker
 enum constants 238
 obtaining 234
 RETAIN_CLASS_REFERENCE 234
 SHOW_HIDDEN_FRAMES 235, 238
 SHOW_REFLECT_FRAMES 235
Integrated Development Environment (IDE) 26,

109, 190
IntelliJ
 URL 109
internal APIs [JEP-260]
 encapsulating 89
internal catalog resolver 291
interned strings
 issues 25
 solutions 26
 storing, in CDS archives [JEP 250] 25
Internet Engineering Task Force (IETF) 326
Internet of Things (IoT) 414
Internet Protocol version 6 (IPv6) 397

[420]

J
Java 8
 garbage collection, upgrading 171
Java 9
 about 7
 best practices 368
 changes 381
 DTLS, supporting 329
 HTTP client [JEP-110] 244
 HTTP client [JEP-110], creating 247
 implications 28
 updates 30, 36
 URL 126
Java APIs for XML Processing (JAXP) 30, 31
Java Archive (JAR) 63
Java Community Process (JCP)
 about 8, 66
 URL 66
Java Compiler
 future changes 400
 Java Virtual Machine 401
Java concurrency
 about 309
 concurrency 309
 concurrency improvements 314
 Java threads 311
 system configurations 310
Java DB
 references 75
Java Development Kit (JDK)
 about 63
 future changes 390
Java Enhancement Plan (JEP) 173
Java Enhancement Program #271 (JEP-271) 176
Java Enhancement Program (JEP) 134
Java Enhancement Program 214 (JEP 214) 176
Java Enhancement Proposal 237 (JEP 237) 384
Java Enhancement Proposals (JEPs) 8, 243, 301
Java environment (jEnv)
 about 127
 URL 127
Java Heap Analysis Tool (JHAT) 362, 368
Java Keystore (JKS)
 about 330, 335

 builder class 331
 CallbackHandlerProtection class 332
 PasswordProtection class 332
 PrivateKeyEntry class 333
 SecretKeyEntry class 333
 TrustedCertificateEntry class 334
Java linker 91
Java Linker (JLink) 82, 83, 87
Java Linker [JEP-282] 87
Java Management Extension (JMX) 393, 406
Java memory model 395
Java Microbenchmark Harness (JMH)
 about 8, 188, 208
 Eclipse, installing 190
 experiments 193, 195
 Java 9, installing 190
 performance, measuring 11
 using 190
Java module systems
 about 9
 benefits 10
Java Native Access (JNA) 396
Java Native Interface (JNI) 74, 396
Java Native Runtime (JNR) 396
Java Network Launch Protocol (JNLP) 122
 about 107
 reference link 124
Java Packager
 about 82
 options 83
Java Platform Module System (JPMS)
 about 64
 reviewing 64, 68
Java runtime environment (JRE) 63, 72
Java Shell (JShell)
 about 8, 10, 133, 134, 155
 advanced editing commands 151
 advanced scripting 153
 assets, listing 148
 basic navigation 150
 command functionality 136
 editing in 149
 feedback modes 141, 143
 historical navigation 150
 practical uses 140

[421]

 starting 134, 139, 140
 text, modifying 149
Java Stack
 overview 227
Java Virtual Machine (JVM)
 about 72, 188
 future changes 401
 sizing options 160
Java Virtual Machine Debug Interface (JVMDI) 360
Java Virtual Machine Profiling Interface (JVMPI)

360

Java Virtual Machine Tool Interface (JVMTI) 74,
360, 405, 406

Java Web Start 72, 122
Java-level JVM compiler interface [JEP-243] 280
java.net.ssl package extension 342
java.Security.CodeSource package 337
java.util.logging package
 about 287
 ConsoleHandler class 287
 ErrorManager class 287
 FileHandler class 287
 Formatter class 288
 Handler class 288
 Level class 288
 LogManager class 288
 LogRecord class 288
 MemoryHandler class 288
 SimpleFormatter class 288
 SocketHandler class 288
 StreamHandler class 288
 XMLFormatter class 288
Java
 base module 95
 encapsulation 97
 future developments 389
 modules 94
 reliable configuration 96
JavaBean 281
javac 18
javac [JEP 215]
 tiered attribution 19
javac [JEP 235]
 test class-file attributes, generated 23
javac wrapper tool

 reference link 18
Javadoc search [JEP-225]
 about 267
 camel case search 268
Javadoc tool
 reference link 267
JavaFX 26
JavaFX tools 72
JavaFX UI controls
 preparing, for modularization [JEP 253] 26
JavaFX/Media
 about 32
 updating, to GStreamer [JEP 257] new version

32

JavaScript Object Notation (JSON) 358
javax.net.ssl package 340
JavaX
 future changes 409
JAXP [JEP 255]
 selected Xerces 2.11.0 updates, merging into 30
JAXP processors
 about 291
 interfaces 291
JDK 9
 features 12
 generics, over primitive types 12
 reified generics 13
 URL 190
 URL, for downloading 8
JDK Bug System
 reference link 19
JDK changes, targeted for Java 10
 about 390
 Native-header tool removal 391
 repository consolidation 390
JDK classes
 de-privileging 78
JDK Enhancement Proposal (JEP)
 about 14
 reference link 14
JDK Enhancement Proposal 199
 code compilation, improving 18
JDK source code [JEP-201]
 about 72
 C header files 74

[422]

 database 75
 deployment tools 70
 JavaFX tools 72
 JDK source code reorganized 75
 JRE 72
 libraries 73
 modularizing 68
 pre-Java 9 JDK source code organization 69
JDK-related drafted proposals
 IPv6 support, improving 397
 about 394
 efficient array comparison intrinsics 400
 enhanced MandelblotSet demo, value types

used 399
 finalization promptness 394
 Foreign Function Interfaces (FFI) 396
 isolated methods 396
 Java memory model 395
 metaspace waste, reducing 396
 unboxed argument lists, for method handles 398
JDK-related submitted proposals
 about 392
 Full GC Phase, parallelizing in CMS 392
 REST APIs, for JMX 392
 support heap allocation 394
JEP 223
 versioning schema 22
JHAT [JEP 241]
 removing 362
jstat 71
JVM command-line flag argument validation [JEP

245] 363
JVM Compiler Interface (JVMCI) 280
JVM process status tool (jps) 71
JVM-related drafted proposals
 about 404
 Concurrent Monitor Deflation 405
 Diagnostic Command Framework 406
 Enhanced Class Redefinition 407
 JVM Access Checks, aligning 409
 Low-Overhead way of sampling Java Heap

Allocations, providing 406
 NUMA mode, enabling by default 407
 USDT probe points, providing on JVM compiled

methods 404

 Value objects 408
JVM-related submitted proposals
 about 401
 Container aware Java 401
 Epsilon GC 403
 Java methods execution, enabling on GPU 403

K
keystore primer 330
keystores
 benefits 330

L
LALR parser 413
language model API
 about 258
 AnnotatedConstruct interface 259
 SourceVersion enum 259, 260, 261
 UnknownEntityException exception 261
language-defined object models [JEP 276]
 dynamic linking 37
last-in-first-out (LIFO) 227
launch-time JRE version selection [JEP-231]
 selecting 268, 269
link time 91
Lint warning
 about 18
 reference link 18
Linux [JEP 263]
 HiDPI graphics 33
Linux [JEP 283]
 GTK 3, enabling 42
Linux/AArch64 port 384
logging API [JEP-264]
 about 286
 in Java 9 289
 java.util.logging package 287
logging service [JEP-264]
 about 286
 in java 9 289
 java.util.logging package 287
lookup functions 297

[423]

M
main class 220
marker annotation 20
Marlin graphics renderer [JEP 265] 34
Maven
 about 128
 M2Eclipse IDE, obtaining 129
 microbenchmarking 195, 202
 references 128, 131, 196
MBean 393, 409
Mebibyte (MiB) 165
memory leak 157
MethodHandle agrument
 handling 298
microbenchmarking
 about 189
 Analysis phase 189
 avoiding, techniques 204
 cache capacity 207
 constant folding, eliminating 205
 dead-code, eliminating 205
 Design phase 189
 Enhancement phase 189
 Execution phase 189
 Implement phase 189
 JMH, using 190
 OS schedulers 204
 power management 204
 run-to-run variance 206
 time-sharing 205
 with Maven 195, 202
migration, issues
 extension mechanism 105
 internal APIs, accessing 102
 internal JARs, accessing 103
 JAR URL, depreciation 104
 JRE 102
 JSK modularization 106
migration
 Java application, testing 98
 planning 98
 potential issues 101
mJRE (Multiple JRE) 268
modes 203

modular 62
Modular Java application [JEP-275]
 Java Linker 83
 packaging 82
modular primer 62
modular runtime images [JEP-220]
 about 75
 common operations, supporting 78
 existing behaviors, preserving 78
 JDK classes, de-privileging 78
 restructuring 76
 runtime format, adopting 76
modularization [JEP 253]
 CSS APIs, preparing 26
 Java 9, implications 28
 JavaFX UI controls, preparing 26
modularizing
 JDK source code [JEP-201] 68
module paths 79
 application module path 79
 compilation module path 79
 system modules 79
 upgrade module path 79
module system [JEP-261]
 about 78
 access-control boundary violations 80
 module paths 79
modules
 in Java 94
multi-release JAR files [JEP-238]
 about 277
 identifying 278
 JDK changes 279
multi-resolution images 385

N
Nashorn [JEP-236]
 EMCAScript 274
 parser API 269, 275, 276, 277
nashorn identifier 273
Nashorn
 about 38, 269
 using, as command-line tool 270, 271, 272, 273
 using, as embedded interpreter 273, 274
National Institute of Standards and Technology

[424]

(NIST) 329
NetBeans
 URL 109
network packet 324
new API
 limitations 249
new collection literals
 using 295
Non-Uniform Memory Access (NUMA) 407

O
OASIS XML Catalog standard
 about 290
 reference link 290
object
 creating 156
 destruction 157
 life cycle 156
 storing 157
Online Certificate Status Protocol (OCSP) stapling
 for TLS 345
 Java 9 platform, changes 347
 process 346
Operand Stack 228
Oracle
 --add-exports option 116
 --add-opens option 116
 --permit-illegal-access option 117
 -target options 111, 112
 about 107
 application, compiling 109
 deployment 122
 encapsulation, breaking 115
 excluded features 120
 FX XML extension 123
 garbage collection, updating 121
 Java 9 -source 112
 Java version schema 117
 jdeps, executing 112
 JDK 9 early access build, obtaining 108
 JDK layout 118
 JNLP file syntax 125
 JNLP, updating 123
 JRE layout 118
 JRE version selection 122

 nested resources 123
 numeric version, comparison 125
 pre-Java 9 -source 111
 preparatory steps 108
 program, executing 108
 runtime image, modifications 117
 serialized applets 122
 third-party libraries and tools, updating 108
OS schedulers 204

P
package checking algorithm 338
parallel garbage collection 159, 174
parameters class 222
ParamsAndHandle class 222
parser API 275, 276, 277
Path Maximum Transition Unit (PMTU) 325
Perfect Forward Secrecy (PFS) 329
Pipeline 2.0 [JEP 217]
 annotations 20
PKCS12 keystores
 creating 330
 default keystore 335
 Java Keystore (JKS) 330
 keystore primer 330
platform-specific desktop features [JEP-272] 295,

296

power management 204
pre-Java 9 Doclet API
 about 250
 classes 252
 enums 252
 interfaces 253
pre-Java 9 garbage collection
 about 169
 games, written with Java case study 172
private interface methods
 using 56
process controller application
 about 219
 ControlDaemon class 220, 223, 226
 main class 220
 parameters class 220, 221
 ParamsAndHandle class 220, 222
process identifier (PID)

[425]

 about 208
 obtaining, of current process 210
processes
 about 209
 allProcess() 215
 children, listing 213
 descendants, listing 214
 information, obtaining 211
 listing 213, 215
 terminating 217, 219
 waiting for 216
ProcessHandle interface
 about 210
 references 218
Project Coin [JEP 213]
 @SafeVarargs annotation, using 51
 about 51
 changes 51
 diamond operator, using 54
 private interface methods, using 56
 reference link 51
 try-with-resource statement 52
 underscore, discontinuing 55
Project Jigsaw
 about 9
 classpath 92
 monolithic nature 93
 reviewing 92
public javafx.css package
 classes 29
public javafx.scene.control.skin package
 classes, moved from internal packages 28
Public Key Cryptography Standards (PKCS) 335
Public Key Infrastructure (PKI) 347

R
reactive programming
 about 12, 302
 standardization 303
Reactive Streams 303
Remote Method Invocation (RMI) 71
Representational State Transfer (REST) 392
ResourceBundle class
 about 369
 fields and constructors 374

 methods 375
 nested class 370
retina display 33
Rich Internet Applications (RIAs) 123
RISC (Reduced Instruction Set Computing) 384
Rivest-Shamir-Adleman (RSA)
 about 329, 344
 CPU instructions, leveraging 343
run-time compiler tests [JEP 233]
 generating, automatically 22
run-to-run variance 206
runtime format
 adopting 76

S
Scene Builder 26
scripts
 loading 152
 saving 152
 startup scripts 151
 working with 151
security application
 java.Security.CodeSource package 337
 package checking algorithm 338
 performance, improving 335
 permission, evaluating 337
 security policy, enforcing 336
security policy
 classes, used 337
 enforcing 336
segmented code cache JEP (197)
 about 16
 memory allocation 17
selected Xerces 2.11.0 updates
 merging, into JAXP [JEP 255] 30
semantic versioning 22
serial garbage collection 159, 174
server stalls 172
Service Provider Interface (SPI) 387
smart Java compilation (sjavac) 18
SourceVersion enum
 about 259, 260, 261
 method 261
 methods 260
special projects

[426]

 about 410
 Annotations pipeline 2.0 412
 Audio Synthesis Engine 412
 Caciocavallo 412
 Common VM Interface 412
 Compiler Grammar 413
 Da Vinci Machine 413
 Device I/O 413
 Graal 413
 HarfBuzz Integration 414
 Kona 414
 OpenJFX 414
 Panama 414
 Shenandoah 415
speculative attribution 19
spin-wait
 about 321
 hint 321
SSL / TLS protocol 325
stack areas
 in pre-Java 9 situation 35
 Java 9, updates 36
 reserved, for critical sections [JEP 270] 35
stack information
 about 229
 callers, restricting example 230, 232
 importance 228
 logger, obtaining for caller example 233
StackFrame
 about 241
 getByteCodeIndex() 241
 getClassName() 241
 getDeclaringClass() 241
 getFileName() 241
 getLineNumber() 241
 getMethodName() 241
 isNativeMethod() 241
StackWalker
 classes, accessing 238
 instance, obtaining 234
 performance 242
 walking methods 239, 240
 working with 234
startup scripts 151
string concatenation [JEP 280] 41

string space 26
sun.misc.Unsafe class
 using 49
SwingContainer
 about 283
 optional elements 283
system modules 79
System.gc() method 166

T
tampering 324
tenuring threshold 161
test class-file attributes
 generated, by javac [JEP 235] 23
 unused, by JVM 25
test-failure troubleshooting [JEP 279]
 environmental information 40
 improving 40
 Java process, information 41
throughput (thrpt) 203
tiered attribution
 for javac [JEP 215] 19
TIFF image input/output [JEP-262]
 about 284
 static methods 284
 static methods, returning Booleans 285
time units 203
time-sharing 205
TLAB (Thread Local Allocation Blocks) 161
TLS ALPN extension 340
TLS protocol 324
Tool Interface (TI) 361
tools
 about 126
 jEnv 127
 Maven 128
Transport Layer 325
Transport Layer Security (TLS) 339
 about 324, 345
 OCSP stapling 345
try-with-resource statement 52

U
underscore character
 discontinuing 55

Unicode 7.0.0
 about 381
 additional significance 383
 java.lang package 382
 java.text package 383
Unicode 8.0 [JEP 267]
 about 34
 Java 9, updated classes 35
 new features 34
Unicode Transformation Format-8 (UTF-8)
 about 368
 ResourceBundle class 369
unified garbage collection logging
 about 176
 JEP-271 179
 unified JVM logging (JEP-158) 177
unified JVM logging [JEP 158]
 about 177, 350
 command-line options 179, 351
 decorations 178, 354
 levels 178, 355
 output 179, 355
 tags 177, 356
Uniform Resource Identifier (URI) 76
UnknownEntityException exception 261
upgrade module path 79
URL (Uniform Resource Locator) 76
User-level Statistically Defined Tracing (USDT)

404

UTF-8 property resource bundle 369

V
variable handlers [JEP 193]
 Atomic Toolkit, working 47
 components 47
 sun.misc.Unsafe class, using 49
 working with 46

W
walking methods 239, 240
Windows [JEP 263]
 HiDPI graphics 33

X
Xerces 30
XML (eXtensible Markup Language) 290
XML Catalogs [JEP-268]
 about 290
 Java 9 platform, updates 291
 JAXP processors 291
 OASIS XML Catalog standard 290
 prior to Java 9 291

Y
young garbage collection
 options 161

	Title Page
	Copyright
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: The Java 9 Landscape
	Java 9 at 20,000 feet
	Breaking the monolith
	Playing around with the Java Shell
	Taking control of external processes
	Boosting performance with G1
	Measuring performance with JMH
	Getting started with HTTP 2.0
	Encompassing reactive programming
	Expanding the wish list
	Summary

	Chapter 2: Discovering Java 9
	Improved Contended Locking [JEP 143]
	Improvement goals

	Segmented code cache [JEP 197]
	Memory allocation

	Smart Java compilation, phase two [JEP 199]
	Resolving Lint and Doclint warnings [JEP 212]
	Tiered attribution for javac [JEP 215]
	Annotations pipeline 2.0 [JEP 217]
	New version-string scheme [JEP 223]
	Generating run-time compiler tests automatically [JEP 233]
	Testing class-file attributes generated by Javac [JEP 235]
	Storing interned strings in CDS archives [JEP 250]
	The problem
	The solution

	Preparing JavaFX UI controls and CSS APIs for modularization [JEP 253]
	JavaFX overview
	Implications for Java 9

	Compact strings [JEP 254]
	Pre-Java 9 status
	New with Java 9

	Merging selected Xerces 2.11.0 updates into JAXP [JEP 255]
	Updating JavaFX/Media to newer version of GStreamer [JEP 257]
	HarfBuzz Font-Layout Engine [JEP 258]
	HiDPI graphics on Windows and Linux [JEP 263]
	Marlin graphics renderer [JEP 265]
	Unicode 8.0.0 [JEP 267]
	New in Unicode 8.0.0
	Updated Classes in Java 9

	Reserved stack areas for critical sections [JEP 270]
	The pre-Java 9 situation
	New in Java 9

	Dynamic linking of language-defined object models [JEP 276]
	Proof of concept

	Additional tests for humongous objects in G1 [JEP 278]
	Improving test-failure troubleshooting [JEP 279]
	Environmental information
	Java process information

	Optimizing string concatenation [JEP 280]
	HotSpot C++ unit-test framework [JEP 281]
	Enabling GTK 3 on Linux [JEP 283]
	New HotSpot build system [JEP 284]
	Summary

	Chapter 3: Java 9 Language Enhancements
	Working with variable handlers [JEP 193]
	Working with the AtoMiC Toolkit
	Using the sun.misc.Unsafe class

	Eliding depreciation warnings on import statements [JEP 211]
	Milling Project Coin [JEP 213]
	Using the @SafeVarargs annotation
	The try-with-resource statement
	Using the diamond operator
	Discontinuing use of the underscore
	Making use of private interface methods

	Processing import statements correctly [JEP 216]
	Summary

	Chapter 4: Building Modular Applications with Java 9
	A modular primer
	Reviewing Java's platform module system [JEP-200]
	Modularizing JDK source code [JEP-201]
	Pre-Java 9 JDK source code organization
	Development tools
	Deployment
	Internationalization
	Monitoring
	RMI
	Security
	Troubleshooting
	Web services

	JavaFX tools
	Java runtime environment
	Source code
	Libraries
	C header files
	Database

	JDK source code reorganized

	Understanding modular run-time images [JEP-220]
	Runtime format adoption
	Runtime image restructure
	Supporting common operations
	De-privileging JDK classes
	Preserving existing behaviors

	Getting to know the module system [JEP-261]
	Module paths
	Access-control boundary violations
	Runtime

	Modular Java application packaging [JEP-275]
	Advanced look at the Java Linker
	Java Packager options

	JLink - The Java Linker [JEP-282]
	Encapsulating most internal APIs [JEP-260]
	Summary

	Chapter 5: Migrating Applications to Java 9
	Quick review of Project Jigsaw
	Classpath
	The monolithic nature of the JDK

	How modules fit into the Java landscape
	Base module
	Reliable configuration
	Strong encapsulation

	Migration planning
	Testing a simple Java application
	Potential migration issues
	The JRE
	Access to internal APIs
	Accessing internal JARs
	JAR URL depreciation
	Extension mechanism
	The JDK's modularization

	Advice from Oracle
	Preparatory steps
	Getting the JDK 9 early access build
	Running your program before recompiling
	Updating third-party libraries and tools
	Compiling your application
	Pre-Java 9 -source and -target options
	Java 9 -source and -target options

	Running jdeps on your code

	Breaking encapsulation
	The --add-opens option
	The --add-exports option
	The --permit-illegal-access option

	Runtime image changes
	Java version schema
	JDK and JRE layout

	What has been removed
	Updated garbage collection
	Deployment
	JRE version selection
	Serialized applets
	JNLP update
	Nested resources
	FX XML extension
	JNLP file syntax
	Numeric version comparison

	Useful tools
	Java environment - jEnv
	Maven
	Obtaining the M2Eclipse IDE

	Summary

	Chapter 6: Experimenting with the Java Shell
	What is JShell?
	Getting Started with JShell
	Practical uses of JShell
	Feedback modes
	Creating a custom feedback mode

	Listing your assets
	Editing in the JShell
	Modifying text
	Basic navigation
	Historical navigation
	Advanced editing commands

	Working with scripts
	Start up scripts
	Loading scripts
	Saving scripts
	Advanced scripting with JShell

	Summary

	Chapter 7: Leveraging the New Default G1 Garbage Collector
	Overview of garbage collection
	Object life cycle
	Object creation
	Object mid-life
	Object destruction

	Garbage collection algorithms
	Mark and sweep
	Concurrent mark sweep (CMS) garbage collection
	Serial garbage collection
	Parallel garbage collection
	G1 garbage collection

	Garbage collection options
	Java methods relevant to garbage collection
	The System.gc() method
	The finalize() method

	Pre-Java 9 garbage collection
	Visualizing garbage collection
	Garbage collection upgrades in Java 8
	Case study - Games written with Java

	Collecting garbage with the new Java platform
	Default garbage collection
	Depreciated garbage collection combinations
	Unified garbage collection logging
	Unified JVM logging (JEP-158)
	Tags
	Levels
	Decorations
	Output
	Command-line options

	Unified GC logging (JEP-271)
	Garbage collection logging options
	The gc tag
	Macros
	Additional considerations

	Persistent issues
	Making objects eligible for garbage collection

	Summary

	Chapter 8: Microbenchmarking Applications with JMH
	Microbenchmarking overview
	Approach to using JMH
	Installing Java 9 and Eclipse with Java 9 support
	Hands-on experiment

	Microbenchmarking with Maven
	Benchmarking options
	Modes
	Time units

	Techniques for avoiding microbenchmarking pitfalls
	Power management
	OS schedulers
	Time sharing
	Eliminating dead-code and constant folding
	Run-to-run variance
	Cache capacity

	Summary

	Chapter 9: Making Use of the ProcessHandle API
	What are processes?
	The new ProcessHandle interface
	Getting the PID of the current process
	Getting information about a process
	Listing processes
	Listing children
	Listing descendants
	Listing all processes

	Waiting for processes
	Terminating processes
	A small process controller application
	Main class
	Parameters class
	The ParamsAndHandle class
	The ControlDaemon class

	Summary

	Chapter 10: Fine-Grained Stack Tracing
	Overview of the Java Stack
	The importance of stack information
	Example - Restricting callers
	Example - Getting logger for caller

	Working with StackWalker
	Getting an instance of StackWalker
	RETAIN_CLASS_REFERENCE
	SHOW_REFLECT_FRAMES
	SHOW_HIDDEN_FRAMES
	Final thoughts on enum constants

	Accessing classes
	Walking methods

	StackFrame
	Performance
	Summary

	Chapter 11: New Tools and Tool Enhancements
	The new HTTP client [JEP-110]
	The HTTP client before Java 9
	Java 9's new HTTP client
	New API limitations

	Simplified Doclet API [JEP-221]
	The pre-Java 9 Doclet API
	API enums
	API classes
	API interfaces
	Problems with the pre-existing Doclet API

	Java 9's Doclet API
	Compiler tree API
	Language model API
	The AnnotatedConstruct interface
	The SourceVersion enum
	The UnknownEntityException exception

	HTML5 Javadoc [JEP-224]
	Javadoc search [JEP-225]
	Introducing camel case search

	Remove launch-time JRE version selection [JEP-231]
	Parser API for Nashorn [JEP-236]
	Nashorn
	Using Nashorn as a command-line tool
	Using Nashorn as an embedded interpreter

	EMCAScript
	Parser API

	Multi-release JAR files [JEP-238]
	Identifying multi-release JAR files
	Related JDK changes

	Java-level JVM compiler interface [JEP-243]
	BeanInfo annotations [JEP-256]
	JavaBean
	BeanProperty
	SwingContainer
	BeanInfo classes

	TIFF image input/output [JEP-262]
	Platform logging API and service [JEP-264]
	The java.util.logging package
	Logging in Java 9

	XML Catalogs [JEP-268]
	The OASIS XML Catalog standard
	JAXP processors
	XML Catalogs prior to Java 9
	Java 9 platform changes

	Convenience factory methods for collections [JEP-269]
	Using collections before Java 9
	Using new collection literals

	Platform-specific desktop features [JEP-272]
	Enhanced method handles [JEP-274]
	Reason for the enhancement
	Lookup functions
	Argument handling
	Additional combinations

	Enhanced deprecation [JEP-277]
	What the @Deprecated annotation really means

	Summary

	Chapter 12: Concurrency and Reactive Programming
	Reactive Programming
	Reactive programming standardization

	The New Flow API
	The Flow.Publisher interface
	The Flow.Subscriber interface
	The Flow.Subscription interface
	The Flow.Processor interface
	Sample implementation

	Additional Concurrency Updates
	Java concurrency
	Concurrency explained
	System configurations
	Java threads
	Concurrency improvements

	CompletableFuture API enhancements
	Class details
	Enhancements

	Spin-Wait Hints
	Summary

	Chapter 13: Security Enhancements
	Datagram Transport Layer Security
	DTLS protocol version 1.0
	DTLS protocol version 1.2
	DTLS support in Java 9

	Creating PKCS12 keystores
	Keystore primer
	Java Keystore (JKS)
	Builder
	The CallbackHandlerProtection class
	The PasswordProtection class
	The PrivateKeyEntry class
	The SecretKeyEntry class
	The TrustedCertificateEntry class

	PKCS12 default in Java 9

	Improving security application performance
	Security policy enforcement
	Permission evaluation
	The java.Security.CodeSource package
	Package checking algorithm

	TLS application-layer protocol negotiation extension
	TLS ALPN extension
	The javax.net.ssl package
	The java.net.ssl package extension

	Leveraging CPU instructions for GHASH and RSA
	Hashing

	OCSP stapling for TLS
	OCSP stapling primer
	Changes for the Java 9 platform

	DRBG-based SecureRandom implementations
	Summary

	Chapter 14: Command Line Flags
	Unified JVM Logging [JEP 158]
	Command-line options
	Decorations
	Levels
	Output
	Tags

	Compiler control [JEP 165]
	Compilation modes
	C1 compilation mode
	C2 compilation mode
	Tiered compilation

	Compiler control in Java 9

	Diagnostic commands [JEP 228]
	Heap profiling agent [JEP 240]
	Removing your JHAT [JEP 241]
	JVM command-line flag argument validation [JEP 245]
	Compile for older platform versions [JEP 247]
	Summary

	Chapter 15: Best Practices In Java 9
	Support for UTF-8
	The ResourceBundle class
	The nested class
	Fields and constructors
	Methods

	Changes in Java 9

	Unicode 7.0.0
	The java.lang package
	The java.text package
	Additional significance

	The Linux/AArch64 port
	Multi-resolution Images
	Common Locale Data Repository (CLDR)
	Summary

	Chapter 16: Future Directions
	Future Changes to the JDK
	JDK changes targeted for Java 10
	Repository consolidation
	Native-header tool removal

	JDK-related submitted proposals
	Parallelize the Full GC Phase in CMS
	REST APIs for JMX
	Support heap allocation

	JDK-related drafted proposals
	Finalization promptness
	Java memory model
	Foreign Function Interfaces
	Isolated methods
	Reducing metaspace waste
	Improving IPv6 support
	Unboxed argument lists for method handles
	Enhanced MandelblotSet demo using value types
	Efficient array comparison intrinsics

	Future changes to the Java Compiler
	Policy for retiring javac -source and -target options
	Pluggable static analyzers

	Future Changes to the Java Virtual Machine
	JVM-related submitted proposals
	Container aware Java
	Enable execution of Java methods on GPU
	Epsilon GC - The arbitrarily low overhead garbage (non-) collector

	JVM-related drafted proposals
	Provide stable USDT probe points on JVM compiled methods
	Concurrent monitor deflation
	Provide a low-overhead way of sampling Java heap allocations
	Diagnostic Command Framework
	Enhanced Class Redefinition
	Enable NUMA mode by default when appropriate
	Value objects
	Align JVM Access Checks

	Future Changes to JavaX
	JMX specific annotations for registration of managed resources
	Modernize the GTK3 Look and Feel Implementation

	Ongoing Special Projects
	Annotations pipeline 2.0
	Audio Synthesis Engine
	Caciocavallo
	Common VM Interface
	Compiler Grammar
	Da Vinci Machine
	Device I/O
	Graal
	HarfBuzz Integration
	Kona
	OpenJFX
	Panama
	Shenandoah

	Summary

	Index

