Android Application
Development with Maven

Learn how to use and configure Maven to support all phases
of the development of an Android application

PACKT

www.it-ebooks.info

http://www.it-ebooks.info/

Android Application
Development with Maven

Learn how to use and configure Maven to support all
phases of the development of an Android application

Patroklos Papapetrou
Jonathan LALOU

open source

community experience distilled
PUBLISHING

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Android Application Development with Maven

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2015
Production reference: 1160315

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78398-610-1

www . packtpub.com

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

Credits

Authors
Patroklos Papapetrou

Jonathan LALOU

Reviewers
Daniel Beland

David Bernard
Brad Leege
Sujit Pal

Commissioning Editor
Akram Hussain

Acquisition Editor
Harsha Bharwani

Content Development Editor
Mohammed Fahad

Technical Editor
Abhishek R. Kotian

Copy Editors
Nithya P

Adithi Shetty

Project Coordinator
Danuta Jones

Proofreaders
Maria Gould

Lesley Harrison

Clyde Jenkins

Indexer
Mariammal Chettiyar

Graphics
Abhinash Sahu

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

www.it-ebooks.info

http://www.it-ebooks.info/

About the Authors

Patroklos Papapetrou is a software architect addicted to software quality and
an agile team leader with more than 15 years of experience in software engineering.
His expertise lies in Android and Java development. He believes and invests in
people and team spirit, seeking quality excellence. He's one of the authors of the
book SonarQube in Action, Manning Publications and his next writing attempt will be
The Art of Software Gardening. He treats software systems like flowers; that's why he
prefers to call himself a software gardener.

He's also an occasional speaker, conducting talks about clean code, Android
development, code quality, and software gardening.

I'd like to thank my loving and beautiful wife, Anna, for her patience
all these months, especially during the weekends. Without her
encouragement, I wouldn't have managed to finish my part of the
book. Thanks to my sons, Panagiotis (age 6) and Charis (4-years old),
who understood that sometimes, daddy couldn't play with them or
go to the park. You can have me back now! Thanks to our families
for their patience as well and for sometimes watching the kids to let
me work on the book.

www.it-ebooks.info

http://www.it-ebooks.info/

Jonathan LALOU is an engineer fascinated by new technologies, computer
sciences, and the digital world since his childhood. A graduate of the Ecole des
Mines — one of the best French polytechnic institutes — Jonathan has more than
14 years of experience in Java and the JEE ecosystem.

Jonathan has worked for several global companies and financial institutions, such as
Syred, Philips, Sungard, Ixis CIB, BNP Paribas, and Amundi AM. He has strong ties,
daily contacts, and frequent trips in Western Europe, Northern America, Judea, and
emerging Asia. During his career, Jonathan has successfully climbed many levels:
developer, architect, Scrum master, team leader, and project manager.

Now, Jonathan is CTO at SayaSoft (http://www.sayasoft.fr), a digital company
focused on very high value added projects he founded with two partners. SayaSoft
brings Java environment, migration of small and large organizations to agility, and
Android development to a new level. SayaSoft's customers are ensured to get
high-quality releases and quick ROL.

Jonathan's skills include a wide range of technologies and frameworks, such as
Spring, JPA /Hibernate, GWT, Mule ESB, JSF/PrimeFaces, Groovy, Android, EJB,
JMS, application servers, agile methods, and, of course, Apache Maven.

Jonathan also authored Apache Maven Dependency Management, published by Packt
Publishing in October 2013.

Jonathan is available on the cloud. You can read his blog at http://jonathan.
lalou. free. fr, catch him on Twitter at http://twitter.com/john the cowboy,
and find him on LinkedIn at http://www.linkedin.com/in/jonathanlalou.

www.it-ebooks.info

http://www.sayasoft.fr
http://jonathan.lalou.free.fr
http://jonathan.lalou.free.fr
http://twitter.com/john_the_cowboy
http://www.linkedin.com/in/jonathanlalou
http://www.it-ebooks.info/

About the Reviewers

Daniel Beland was an early adopter of Maven 1.0 from 2004 and has since used it
in many projects across diverse industries, ranging from Formula One, Music, DNA
laboratories to Defense and Security.

He currently works for Thales' Research and Technology Center in Quebec City,
Canada, where part of his work has been to develop cognitive assessment tools for
Android devices.

David Bernard is an experienced software developer. Over the past 15 years, he
worked as a freelancer for the bank, automotive, and game industries.

He also contributed to a lot of open source projects. He is the creator of several
plugins for Maven, Gradle, jEdit, Netbeans, Eclipse, Blender, and so on. His current
interest is in 3D and the gamedev pipeline.

He shares his latest contributions on GitHub at http://github.com/davidB.

www.it-ebooks.info

http://github.com/davidB
http://www.it-ebooks.info/

Brad Leege has a myriad of software development experience from across a variety
of industries as well as the public sector. This has given him the passion for open
source and open data and the desire to share it with others.

Suj it Pal is a Java/ Python programmer, whose main areas of interest are information
retrieval, distributed processing, natural language processing, and machine learning.
He was an early adopter and proponent of Maven at his company. He loves what

he does for a living, believes in lifelong learning, and shares his experiences at
http://sujitpal.blogspot.in/.

He works for Healthline Networks, Inc., a startup in the consumer healthcare space.

It has been a pleasure to review this book. Special thanks to the
author and the publishing team for making the process so enjoyable.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers, and more

For support files and downloads related to your book, please visit www. PacktPub. com.
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www. PacktPub. com

and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at servicee@packtpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

[@PACKT

https://www2.packtpub.com/books/subscription/packtlib

®

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
* Fully searchable across every book published by Packt

* Copy and paste, print, and bookmark content

* On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www. PacktPub. com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.it-ebooks.info/

Table of Contents

Preface 1
Chapter 1: Beginning with the Basics 7
Installing Java 7
Download and Install Apache Maven 8
Android SDK 8
Android development tools 9
Android SDK standalone 9
Creation of a new project 12
Integration with IDE 15
Eclipse 15

Set up and integration of Maven and Android SDK 15
Creation of a project in Eclipse 18
Intellid IDEA / Android Studio 21

Set up and integration of Maven and Android SDK 21
Import of project 25
NetBeans 28

Set up and integration of Maven and Android SDK 28
Import a project 30
Summary 31
Chapter 2: Starting the Development Phase 33
Reminders about Android projects 33
Creating an AVD 37
With the GUI 37
In-command line 38
Develop and Build 41
Cleaning 41
Generating sources 41
Build 42

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Emulator 43
Start 43
Stop 44
Stop all 44
Deploy 45
Undeploy 46

Architecture principles 48

Standalone application 48

Android application within an n-tier architecture 54

Android with dependencies on SDK Add-ons 57

Summary 58
Chapter 3: Unit Testing 59
Effectively testing Android applications 59
Running typical unit tests 60
Unit testing of activities 64
Creating a dedicated unit testing module 65
Running Android unit tests with Maven 67
Real unit testing with Robolectric 72

Configuring Robolectric with Maven 73

Running Robolectric unit tests 73

Best approach 76

Measuring test coverage 76
JaCoCo 77
Cobertura 80

Summary 81

Chapter 4: Integration Testing 83

Fundamentals of instrumentation testing 84

Running Android instrumentation tests 84
Creating a dedicated integration testing module 85
Writing a simple instrumentation activity test 87

Grabbing screenshots with Spoon 89
Configuring Spoon with Maven 90
Running Spoon and viewing the reports 94

Working with Robotium 95

Ul Tests made easy with Selendroid 98
Configuring Selendroid 98
Writing Selendroid Ul Tests for Maven native applications 101

Other integration testing tools 103

Summary 104

Lii]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Chapter 5: Android Flavors 105
Problem statement 105
Introducing Maven profiles 107
Creating build profiles 108

Separation by packaging 109
Separation by library 117
Summary 128

Chapter 6: Release Life Cycle and Continuous Integration 131

Optimizing an Android package 132
Signing an application 132
Obfuscating the code 138
Aligning and zipping uncompressed data 141
Transforming the package in shippable form 143

Releasing a new version 144
Perform a release without deployment to repository 144
Deploying to a local repository 147

Cl and automation best practices 150

Summary 156

Chapter 7: Other Tools and Plugins 157

Managing Android code quality 158
A short history about quality in Android 158
Analyzing with Lint using Maven 159
Unleashing the power of SonarQube 161

Boost development speed with GenyMotion 167
Deploying our example to a GenyMotion emulator 168

Summary 172

Index 173

[iii]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

During the months we were writing this book, a lot of people asked us what would
make this book special and why someone should care to read it. The most powerful
argument that I heard all this time was, "Hey, Google official supports only Gradle to
build Android applications and the latest release of Android Studio makes extensive
use of Gradle. Ant was already replaced and Maven is nowhere. Why do you spend
time writing about developing Android applications with Maven?"

Good questions! The answers, however, is hidden within the question itself. First of

all, there are no books out there that explain step by step about all the development
phases and critical tasks to build and manage the life cycle of an Android Application
with Maven. Maven is still —no matter if we like it or not— the most popular build tool.
Many "traditional" software houses that have invested time and efforts to standardize
their development process around Maven want to make the next step and expand their
portfolio to the Android Market. Clearly, having another build tool only for Android
development doesn't look very practical, although it's an option.

Companies would save a lot of money if they could just plug their Android
applications to the existing development life cycle, driven by Maven. At the same
time, it's true that Maven is a very mature, flexible, and robust build tool. Its
extensibility through plugins and the idea of descriptively configuring the build
process without the need to write scripts made it the de-facto standard.

The reality, however, has shown us that it's not always that easy. Maven provides
all the required plugins to do almost everything, but there are no instructions or
well-structured documentation. You can find blog posts here and there that shortly
cover some topics but this is not enough.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

This book aims to fill that gap. It will not teach you how to write Android
applications, although you will find some simple examples. It will guide you,
however, from A to Z, about how to set up all the necessary Maven configuration to
compile, run, test, deploy, release, and verify the quality of an Android application.
It's convenient for both experienced and young Android developers because we
provide all the example code to see Maven in action. This book is also for those

of you who already have some Maven experience but feel lost when you try to
integrate it with your Android development process.

You can read the book sequentially if you have little experience with Maven, but
you can also use it as a reference and jump to any chapter you want as each one is
dedicated to a particular topic. The provided code is separated in different folders
per chapter so that you can easily run the examples and verify that you have
correctly followed the instructions of the book.

We are confident that you will find the book useful and practical, and we hope
that it will help you build your next Android application with Maven.

What this book covers

Chapter 1, Beginning with the Basics, introduces you to the basic concepts of Maven
and guides you to install all the required software you need to develop an Android
application with Maven.

Chapter 2, Starting the Development Phase, sets the pace for the rest of the book. It
discusses the first step to set up a minimal Maven configuration to compile and
deploy an Android application to a real device or emulator.

Chapter 3, Unit Testing, covers several ways to write and run unit tests using various
tools. It also explains the differences between unit and integration testing and the
important role that both of them playing when developing an Android application.

Chapter 4, Integration Testing, completes the discussion about testing and presents
three alternatives of running Android instrumentation tests, and also provides
guidance on properly configuring Maven.

Chapter 5, Android Flavors, discusses the hot topic of maintaining multiple versions
(free, ads-supported, and paid) of the same application. It describes the problem
and then presents two ways to handle the case using Maven.

[2]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Chapter 6, Release Life Cycle and Continuous Integration, is all about releasing and
deploying an Android application to a Maven repository. A bonus topic in this
chapter discusses about automating everything using Jenkins, the most popular
continuous integration engine.

Chapter 7, Other Tools and Plugins, is the last chapter and covers two very important
topics: code quality with SonarQube and speeding up the development life cycle
using the non-standard emulators provided by Android.

What you need for this book

This book is about software development, so you will need to install some tools

in order to follow the examples and practices discussed. You can use almost all
operating systems (Windows, Linux, and Mac OS) to run the code included in this
book as most of the commands you will see run in a terminal window. All the other
software required is covered mostly in Chapter 1, Beginning with the Basics, where
we set up our development environment (SDKs, IDEs, and so on) so you don't
need to pre-install anything. This also applies to the rest of the chapters when we
demonstrate the integration of Maven with other popular tools. In general, don't
worry if you don't have anything installed yet. We will guide you step by step. On
the other hand, if you find yourself reading instructions about installing software
you already have in your environment, feel free to skip it.

Who this book is for

Android Application Development with Maven is intended for Android developers or
devops engineers who want to use Maven to effectively develop quality Android
applications. Whether you are already using Maven or another build tool, this book
focuses only on Maven topics that are related to the Android development. It would
be helpful, but not necessary, if you have some previous experience with Maven.

Conventions

In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows: "A
folder target containing a chapterl.apk archive should be created."

[31]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

A block of code is set as follows:

public class BookServiceImpl implements BookService
@Override

public Book createBook (String title, String format, String
color, Integer numberOfPages) {

final Book book = new Book () ;
book.setTitle(title) ;

book.setFormat (format) ;

book.setColor (color) ;

book . setNumberOfPages (numberOfPages) ;
return book;

}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

<dependencys>
<grouplds>${project.grouplid}</grouplds>
<artifactIdscontract</artifactIds>
<version>1.0-SNAPSHOT</version>
<type>pom</type>

</dependency>

Any command-line input or output is written as follows:

$ANDROID HOME//tools/android move avd --name Nexus 7 2012 --rename
Nexus_7_ 2012 bis

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Clicking
the Next button moves you to the next screen."

% Warnings or important notes appear in a box like this.

a1

~Q Tips and tricks appear like this.

[4]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedbackepacktpub. com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files from your account at http://www.
packtpub. com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http: //www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

[51]

www.it-ebooks.info

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://www.it-ebooks.info/

Preface

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[6]

www.it-ebooks.info

http://www.it-ebooks.info/

Beginning with the Basics

In this chapter, we will see how to download, install, and set up a development
environment, including the essential elements: Java Development Kit (JDK),
Apache Maven, Android SDK, and an Integrated Development Environment
(IDE). There will be pictures and illustrations provided to help you progress as
quickly as possible.

Throughout this work, we will assume that you have a basic knowledge of Java,
system, Maven, and IDEs and are familiar with terms such as: compiler, environment
variables, repository, plugin, goal, build, and so on.

Installing Java

Prior to anything else, download and install a JDK7 and optionally a Java Runtime
Environment (JRE). Both of them are downloadable from the Oracle website:
http://www.oracle.com/technetwork/java/javase/downloads/jdk7-
downloads-1880260.html. As a reminder, the JDK is a collection of tools needed to
develop, compile, and monitor a Java application in the development state, whereas
a JRE is needed to run a Java-compiled class or an archive. Keep in mind also that at
the time this book was written, Android was not officially supporting JDK8 and that
Oracle had already announced the end of public releases of JDK7. We hope that now
that you read these lines, Android is compatible with the latest JDK. If not, then you
should pick and install the latest available update of JDK?7.

Set the environment variable JAvA_HOME to the right location, such as /var/opt/
java or C:\win32app\jdk 1.7.X folder.

Then, add $JAVA HOME/bin or $JAVA_HOME$\bin parameter to your PATH variable.

www.it-ebooks.info

http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html
http://www.it-ebooks.info/

Beginning with the Basics

Check this by running the command java -versionin a terminal. Here is an
example of the expected output:

C:\>java -version

java version "1.7.0 45"

Java(TM) SE Runtime Environment (build 1.7.0 45-b18)
Java HotSpot (TM) Client VM (build 24.45-b08, mixed mode)

Download and Install Apache Maven

Download Maven 3.2.1 or greater from the Apache Maven website: http://maven.
apache.org/download. cgi. Install this by uncompressing it in a folder of your
choice. Set the environment variable M2_HOME to the right location, such as /usr/
lib/maven/ or C:\win32app\apache-maven-3.2.1 folder.

Then, add $M2_HOME/bin or $M2_HOME$\bin parameter to your PATH variable.
Check mvn setup is executable by running the command mvn -version.Here
is an example of the expected output:

C:\win32app\Console-2.00.bl48>mvn -version

Apache Maven 3.2.1 (ea8b2b07643dbblb84b6d16elf08391b666bcle9; 2014-
02-14T18:37:52+01:00)

Maven home: C:\win32app\apache-maven-3.2.1

Java version: 1.7.0 45, vendor: Oracle CorporationJava home:
C:\win32app\jdkl.7.0 _45\jre

Default locale: en US, platform encoding: Cpl252

OS name: "windows 7", version: "6.1", arch: "x86", family: "windows"

Android SDK

Two ways exist to install the SDK: the former is faster but it hides several
operations you should be aware of as an Android developer. The latter takes more
time but it introduces you to the tools and concepts coming with the SDK. Besides,
this allows you to customize your installation, such as the folders. If you are a
beginner, we encourage you to follow the first approach. You can always tune
Android SDK at a later time when you feel more confident and you are familiar
with the available settings.

[8]

www.it-ebooks.info

http://maven.apache.org/download.cgi
http://maven.apache.org/download.cgi
http://www.it-ebooks.info/

Chapter 1

Android development tools

You can download and install the official Android Studio from the Android website:
https://developer.android.com/sdk/index.html. Android Studio is a suite that
includes an integrated development environment (Android IDE), based on Intelli]
IDEA, with Android SDK tools, as well as other stuff like an embedded emulator
system image and platform tools.

For Windows users, after downloading the installer (. exe file), run it and just follow
the instructions provided by the installer. You can keep the default values suggested
if you are a beginner or if you are not sure how each setting affects the installation.
When you're done, you can run Android Studio by clicking on the icon created by
the installer.

For Linux users, unzip the file you downloaded to your favorite application
directory. Then, navigate to the android-studio/bin/ directory in a terminal
and execute studio.sh command. Regardless of your operating system, always
double-check before the installation that you have enough disk space. It varies
from OS to OS.

Android SDK standalone

Alternately, if you already have an installed IDE or text editor, you can install the
SDK manually. The following operations are long and tedious; however, any real
Android developer should experience them at least once.

Download Android SDK from Android website: https://developer.android.
com/sdk/index.html#other. Again for Windows users, it is highly recommended
to download the executable installer and follow the steps provided. Linux users can
uncompress the downloaded zipped file to the folder of their choice, let's say /home/
dev/android-sdk folder. In both cases, let's call the location where android SDK
installed: ANDROID HOME variable.

By default, the SDK has the following top-level directory tree:

4 sdk
add-ons
build-tools
docs
extras
platforms
platform-tools
sources
system-images

temp

tools

[o]

www.it-ebooks.info

https://developer.android.com/sdk/index.html
https://developer.android.com/sdk/index.html#Other
https://developer.android.com/sdk/index.html#Other
http://www.it-ebooks.info/

Beginning with the Basics

Let's explore and review the content of the starter SDK:

$ANDROID_HOME%\tools\: This folder gathers general utilities needed to
develop, test, and debug an application.

$ANDROID HOME%\platform-tools\: This folder contains other utilities, such
as adb and fastboot, needed by developers to design, code, and debug an
application on an actual device.

%ANDROID_HOME%\add-ons\: This folder is initially empty. It will be filled in
later on, in order to provide support to call and use Google APIs, for instance
the API allowing applications to communicate and display data from Google
Maps.

$ANDROID_HOME%\AVD Manager.exe: This parameter allows us to manage
the Android Virtual Devices (AVD), which are mere emulators. On first
launch, no AVD is available. The following screenshot shows the Android
Virtual Device Manager:

Android Virtual Device Manager |£|E|éj

Tools

Device Definitions

List of existing Android Virtual Devices located at C:\Users\jlalou’.android\avd
AVD Name Target Name Platform API Level CPU/ABL New...

Mo AVD available

| Refresh |

+" Avalid Android Virtual Device. A repairable Android Virtual Device.
2 An Android Virtual Device that failed to load. Click 'Details' to see the error.

The AVD you will create later will be stored in your personal folder under the
.android/avd path.

[10]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

To launch the SDK manager, if you are a Windows user, run $ANDROID HOME%\SDK
Manager . exe command. If you are working on Linux, open a terminal and navigate
to the tools/directory in the Android SDK and then execute:

android sdk.

In a first step like that shown in the following screenshot, install the packages
suggested by the SDK Manager: SDK Tools, SDK Platform tools, the current
API, and so on:

Packages Tools
SDK Path: C:h\deviandroidisdk
Packages
I5 Mame API Rew. Status 2
a [|[| Tools
[#] +~ Android SDK Tools 2400 [Update available: rev. 24.0.2
[]~+* Android SDK Platform-tocls 21 [Installed
[]+" Android SDK Build-tools 2112 [Installed
[+~ Android SDK Build-tonls 2111] Not installed
[+ Android SDK Build-tools 211 [| Not installed
[+ Android SDK Build-tools 2102 [] Not installed
[+~ Android SDK Build-tools 2101 [Not installed
]/ Android SDK Build-tools 21 [Not installed
[+~ Android SDK Build-tools 20 [] Not installed
[+~ Android SDK Build-tools 197 [| Not installed
]+ Android DK Build-tools 19.0.3 [| Mot installed
[+ Android SDK Build-tools 19.0.2 [Mot installed
[4" Android SDK Build-tools 1907 [| Not installed
[].# Android SDK Build-tools 18 [| Mot installed
[+~ Android SDK Build-tonls 1811 [Mot installed
[+ Android SDK Build-tools 1871 [| Not installed
14" Android SDK Build-tools 1601 [Net installed
[+~ Android SDK Build-tools 17 [Mot installed
a [0 Andreid 5.0.1 (API 21)
[] [# Documentation for Android SDK 21 1 [Installed
[]1Er SDK Platform 21 2 [Installed
| -I Samples for SDK 21 4 | Mot installed
¥ Android TV ARM EAB! v7a System Image 21 1 | Mot installed o
Show: [¥] Updates/New [¥]Installed Select Mew or Updates Install 11 packages...
[[] Obsolete Deselect All Delete 2 packages...

At the time of writing, the last version of Android is 5.0.1 Lollipop. The API level is
different from the grand public version: Lollipop corresponds to API 21, as well as
Android KitKat 4.4.2 did to API 19, Android 4.0 / IceCreamSandwich did to API117,
or Android 2.3.X / Gingerbread to API 10, and so on.

[11]

www.it-ebooks.info

http://www.it-ebooks.info/

Beginning with the Basics

Accept the license agreements as shown in the next screenshot, and let SDK Manager
download. This may take a while for the default set of packages , and will take
longer if you add other packages to the install list.

Choose Packages to Install | S| S-,
ke Package Description & License
+" Android 5DK License Packages N
+" Android SDK Toaols, revision 22.6 - Android SDK Tools, revision 22.6
+" Android SDK Platform-tools, revisicn - Andreid SDK Platform-tools, revision 19.0.1

. . . - Android SDK Build-tools, revision 19.0.3

+ Android SDKlBqu—tools, rlewsmn 19.L - Documentation for Android SDK, API18, revision 2

+" Documentation for Android SDK, APL _ sp platform Android 4.4.2, API19, revision 3

+" SDK Platform Android 4.4.2, API19, re - Samples for SDK API19, revision 3

+" Samples for SDK AP119, revision 3 - ARM EABI v7a System Image, Android API19, revision 2

+" ARM EABIv7a System Image, Androic - Intel %86 Atomn System Image, Android ﬁ_\F'I 19, revisio_n_E

- Google APIs (xB6 System Image), Android API19, revision 2
- Google APIs (ARM Systemn Image), Android API19, revision 3
+ Google APIs (86 System Image), And 4 rces for Andraid SDK, APT19, revision 2

+" Google APIs (ARM System Image), Ar - Android Support Library, revision 18.01

+" Seurces for Andreid SDK, API19, revis - Google USB Driver, revision 9

+" Android Support Library, revision 19.0

+"" Intel x86 Atomn System Image, Androil

License

+" Google USB Driver, revision 9 Terms and Conditions

Accept Reject

[Install l | Cancel |

Once this is done, the directory tree will change a lot. The different folders are filled
in with the elements selected in the preceding screenshot, such as Google APlIs,
drivers, documentation, sources, build tools, and so on.

Creation of a new project

Now, we create a new, basic project. Often, you may prefer to do this within your
IDE; anyway, creating a project with Maven and its artifacts and then importing
the new project into the IDE are more elegant practice: this will ensure the project
matches Android standards and is not IDE-dependent. Moreover, by default,
creating an Android project in an IDE and then adding Maven support to this
require some tricks and hacks.

[12]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

The first step needs a bit of work: determining the platform.version properties of
your Android install. Go to one among the installed platforms folder. If you have
downloaded only the latest SDK version, then it should be in the ANDROID HOME/
platforms/android-21 folder. Open the file source.properties. Search for
Platform.Version and Pkg.Revision properties. In the following sample file,

the respective values are 4.4.2 and 3:

AndroidVersion.ApiLevel=21

Layoutlib.Api=12

Layoutlib.Revision=2

Pkg.Desc=Android SDK Platform 5.0.1

Pkg.License=(..)

Pkg.LicenseRef=android-sdk-license

Pkg.Revision=2
Pkg.SourceUrl=https\://dl-ssl.google.com/android/repository/
repository-10.xml

Platform.MinToolsRev=22
Platform.Version=5.0.1

This allows us to conclude that the Platform.Version value is 5.0.1_r2. This is
actually the combination of the properties: Platform.Version and Pkg.Revision.
Note this value well as we will need to use it in a few places.

For the following Maven commands, you are assumed to have set the ANDROID_HOME
environment variable; otherwise, you will need to suffix all the commands with the
proper@f—Dandroid.sdk.path:/path/to/Android/SDK/install.PJOWCVveneed
to install the android. jar file as any regular Maven artifact in our local repository:
mvn install:install-£file \

-Dfile=%ANDROID HOME%\platforms\android-21\android.jar \
-DgroupId=com.google.android \

-DartifactId=android \

-Dversion=5.0.1 r2 \

-Dpackaging=jar \

-DgeneratePom=true

Unfortunately, you will have to perform this operation for each Android platform

version your application will support. Yet, for Android artifacts prior to 4.1.1.4
(included), the corresponding archives are accessible via Maven Central Repository.

In a later chapter, we will see how to automate the installation
= of Android artifacts in local repository.

[13]

www.it-ebooks.info

http://www.it-ebooks.info/

Beginning with the Basics

Open a terminal, run the command as follows:

mvn archetype:generate \
-DarchetypeArtifactId=android-quickstart \
-DarchetypeGroupId=de.akquinet.android.archetypes \
-DarchetypeVersion=1.1.0 \
-DgroupId=com.packt.androidMaven \
-DartifactId=chapter \
-Dversion=1.0-SNAPSHOT \
-Dplatform=21 \
--batch-mode \

--quiet

Then, a new folder chapteri is created. Go to this folder. You should find the tree of
a classic Android project:

f—assets

f—res
f——drawable-hdpi
p

f——-drawable-mdpi
f——drawable-xhdpi
f——drawable-xxhdpi
f—1layout

f—menu

f—values

f—values-sw600dp
f—values-sw720dp-land
f—values-vill
L—~values-vl4

L packt
L——androidMaven

At the root of the project is the Project Object Model (POM), serialized as a
pom.xml file. Beware that the pom. xm1 file is a representation of the actual POM,
but discrepancies do exist between the actual POM and the pom. xml file.

Open the POM file in write mode with any regular text editor. Check the
<platform.version> tag. This contains the same value as retrieved earlier
(in our case: 5.0.1_r2); if it does not, then set it.

[14]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

You can run a successful mvn setup clean installation. A folder target containing

a chapterl.apk archive should be created. Theoretically, this APK file (short for,
Android PacKage) can run on a compatible Android device, such as a smart phone,
a tablet, or even a smart watch.

Debug Certificate expired
If you get a build failure with an error similar to the following;:

[ERROR] Failed to execute goal
com.jayway.maven.plugins.android.generation2:android-

~\l maven-plugin:3.8.2:apk (default-apk) on project
helloWorld: Debug Certificate expired on 02/02/13 00:10
-> [Help 1]

Then, do not worry. Delete the debug . keystore file that is located in
~/ .android/or $USERPROFILES%\ .android folder. This may fix most
of the cases; if it does not, do not panic. Had your Android SDK been
installed in parallel with a former version, another . \android\debug.
keystore file may remain there. Delete it and relaunch the build.

Integration with IDE

Unless weird exceptions arise, Maven features are fully integrated within the three
major IDEs of the market: Eclipse, Intelli] IDEA, and NetBeans. So, on this side,
nothing special needs to be done. However, integrating Android SDK to the IDEs
may need some additional operations.

Eclipse

In this section, we will go through the steps you need to follow in order to set up
Maven and Android SDK to be used with Eclipse IDE. Some months ago, Eclipse
was Google's first choice for creating the Android Studio but recently Intelli] won the
battle. Users that want to use Eclipse Luna for Android development need to follow
some steps that we will describe in the following section.

Set up and integration of Maven and Android SDK

First of all, we need to manually install the Google plugin. Go to Help | Install new
software. In the dialog that appears, enter the update site URL into the work with
text box:

https://dl.google.com/eclipse/plugin/4.4

[15]

www.it-ebooks.info

http://www.it-ebooks.info/

Beginning with the Basics

Add a name to remember the URL subscription and click OK. Then, wait for
the list of modules to be retrieved. At the end, you should see something like

the following screenshot:

Available Software

Check the items that you wish te install.

Waork with:

type filter text

Mame

» [000 Developer Tools

» []000 Google &pp Engine Teels for Android (requires ADT)

- [] 000 Google &pp Engine Tools for Maven (requires m2e-wtp 1.5+)
4 (00 Google Plugin for Eclipse (required)

[+] 54+ Goegle Plugin for Eclipse 4.4

» []000 GWT Designer for GPE
4 []000 SDKs

[(] 5+ Goegle App Engine Java 5DK 1.9.17

Select All Deselect All 7 items selected

Details

Show only the latest versions of available software
[¥] Group items by catego

P il gory
[] Show only software applicable to target environment

Contact all update sites during install te find required software

Google Plugins - https://dl.goegle.com/eclipse/plugin/d.4

o
D 3

v Add...

Find more software by working with the "Available Software Sites” preferences.

Version
3.8.0,201410302155-rel-rd4

1817

Hide items that are already installed

What is already installed?

Check the boxes for the Developer Tools and the Google Plugin for Eclipse and
then click on Next and finally accept the license agreement.

[16]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Then, set up the Android SDK: Window | Preferences | Android |. Browse to set
the SDK Location field value | OK:

[type filter text Android G-

[» General A

Android Pref
‘ ndroid Preferences

Build SDK Location: | C:\deviandroidisdk | | Browsze...
DDMS
Editars
Launch Target Name Vendar Platfarm APl .

Lint Error Checking Android 5.0.1 Android Open Source Project 50,1 21

b LegCat Google APls Google Inc. 5.0.1 21
NDK

Usage Stats
Ant
C/C++

Code Recommenders

Mote: The list of SDK Targets below is only reloaded once you hit 'Apply' or 'OK',

Data Management
Google

Help
Install/Update
Java

Java EE

Java Persistence

v W W W W W W W

JavaScript

Maven

olylyn
Run/Debug v

@ [ok || cance |

| Restore Defauﬂs| | Apply |

v v v v v

[17]

www.it-ebooks.info

http://www.it-ebooks.info/

Beginning with the Basics

Besides, Eclipse embeds a built-in version of Maven (3.2.1 with Eclipse 4.4 Luna).
Yet, you can use a specific version of Maven: go to Window | Preferences | Maven
| Installations | Add and browse to the right location | OK, as shown in the
following screenshot:

>
»
>
>
I »

>
»

»
»

>

<

= Preferences

type filter text

General

Android

Ant

Code Recommend

Help

Install/Update

Java

Maven
Archetypes
Discovery
Installations
Lifecycle Mappi
Templates
User Interface
User Settings

Warnings
Mylyn
Run/Debug
Team

1n |

@

Installations e v

Select the installation used to launch Maven: -
|:| Embedded (3.0.4/1.4.0.20130531-2315)
.|| External C\portableApps\apache-maven-3.2.1 (3.2.1) :

Remove

m

Mote: Embedded runtime is always used for dependency
resolution, but does not use global settings when it is used
to launch Maven. To learn more, visit the Maven web
page.

Global settings from installation directory (open file):
Ch\portableAppsiapache-maven-3.2 1\conf\settings.xml Browse...

[OK] I Cancel

Creation of a project in Eclipse

Open New (Alt+Shift+N) | Project | Maven | Maven Project. Click Next on the first
window that is displayed and you see the following screenshot:

[18]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

New Maven project e :
Select an Archetype

Catalog: | All Catalogs w | | Configure... |

Filter | | %€
Group Id Artifact d Version 2
org.apache.cecoon cocoon-22-archetype-webapp RELEASE
org.apache.maven.archetypes maven-archetype-j2ee-simple RELEASE
org.apache.maven.archetypes maven-archetype-marmalade-mojo RELEASE
org.apache.maven.archetypes maven-archetype-mojo RELEASE
org.apache.maven.archetypes maven-archetype-portlet RELEASE
org.apache.maven.archetypes maven-archetype-profiles RELEASE

E org.apache.maven.archetypes maven-archetype-quickstart RELEASE i Y]

Show the last version of Archetype only []Include snapshot archetypes Add Archetype...

» Advanced

® BT T

If you try to filter the catalog with the keyword "android", the list will probably show
nothing; so, we need to add the archetype we want to use for the project creation.
Click on the Add Archetype button and fill in the archetype details as shown in the
next screenshot and click on the OK button:

Archetype Group Id: | de.akguinet.android.archetypes

Archetype Artifact |d: | android-guickstart

Archetype Version: 1.1.0

Repository URL:

@

[19]

www.it-ebooks.info

http://www.it-ebooks.info/

Beginning with the Basics

Now, the archetype should be available and selected in the dialog box we are looking
at. Click again on Next and enter the same data we have specified to maven when
we created the project using command line —see the following screenshot. Don't
forget to change the platform property value to 21 as this is the SDK version we have
installed so far. The default, which is 16, will cause the maven goals to fail because
the corresponding SDK is not yet installed in our environment:

New Maven project -
Specify Archetype parameters [M

Group Id: | com.packt.androidMaven W
Artifact Id: | chapter] v
Version: | W

Package: | com.packt.androidMaven.chapterl v

Properties available from archetype:

MName Value Add...
platform 16 Remove
emulator not-specified =

android-plugin-versi... 3.8.2

» Advanced

@ o | e

Now, you can open a terminal window and run the following command:

mvn clean install

You can also run the same goal using Eclipse and that's all. We have achieved the
same result using our favorite IDE with just a few steps and we are now ready to
start developing, testing, and running our first android application with Maven.

[20]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

IntelliJ IDEA / Android Studio

Intelli] IDEA is an IDE designed for Java development.

Set up and integration of Maven and Android SDK

Android Studio is promoted by Google as IDE for Android projects. Actually,
Android Studio can be seen as a fork of main Intelli] IDEA tool. Therefore,
installation and configuration for both of them looks very similar or identical.

For pure Android projects, Intelli] IDEA Community is sufficient: it includes core
features such as Maven, Git, and Android support. Anyway, if you intend to
develop enterprise projects linked with other Java/JEE frameworks and multitier
architecture, you should consider installing the Ultimate version. Besides, beware
that, at least so far, Android Studio is proposed as the suggested IDE from Google
to develop Android applications.

Download Intelli] IDEA from the page http://www.jetbrains.com/idea/
download/ and/or Android Studio from this one: https://developer.android.
com/sdk/index.html

On first launch, Intelli] IDEA and Android Studio will ask you whether you already
have an install. If you do, then hint at the location of the settings as shown in the
following screenshot:

= Complete Installation {&J

You can import your settings from a previous version of Android Studio.

I want to import my settings from a custom locatior

Specify config folder or installation home of the previous version of Android Studio:

@) I do not have a previous version of Android Studio or I do not want to import my settings

Of course, settings of an Intelli] IDEA install can be used for Android Studio and vice
versa. The next steps of setup differ for Intelli] IDEA and Android Studio.

[21]

www.it-ebooks.info

http://www.jetbrains.com/idea/download/
http://www.jetbrains.com/idea/download/
https://developer.android.com/sdk/index.html
https://developer.android.com/sdk/index.html
http://www.it-ebooks.info/

Beginning with the Basics

Specific to Android Studio

Go to the settings (Ctrl+Alt+S) and then Plugins. Verify that the Maven plugins
are installed.

Unlike, do uncheck Gradle plugin as shown in the following screenshot:

Emmet (Zen Coding)
External Diff Tools
External Tools

File and Code Templates
File Types

General

HTTP Proxy

Images

Intentions

JavaFX

Keymap

Live Templates
Menus and Toolbars
Notifications
Passwords

E

A

E

E

A

E

A

A

L

E

“ Git Integration
“ GitHub

¢ Google Cloud Tools For Android Studio

types of projects. The
Gradle versions 1.8 10 1.11
are supported. This plugin
provides Gradle integration.

= Settings
@ Plugins Reset
Ccvs p .
) Q- Y Show: | All plugins =
Git N S
Mercurial £ Android Designer [l Gradle
Subversion) .
£ Android Support O | version: N/A
IDE Settings .
Appearance £ Commander 4] Gradle is a build and
pp " iah E automation system. Gradle
Console Folding # Copyright can automate the building,
% . testing, publishing,
Debugger £ CVS Integration ™ deployment and etc. of
Editor ~ software packages or other
&
O
|

The following features are

¢ Groovy [} » Ability to deduce
Gradle home from t

? hg4idea ™ environment

/ variables or configu

¢ 118n for Java ™ Gradle home in a

" = product.
IntelliLang v ®» Ability to create a ne

" Gradle project or
JavaFX E import the existing

” P project with Gradle
JUnit E models.

¢ Maven Integration ™ & Auilivic ecl

Install JetBrains plugin... ‘ | Browse repositories... | | Install plugin from disk... |

o i

One might wonder why we need to disable Gradle to support Maven for Android
development? Actually, by default, Android Studio considers Android/Maven
projects as Eclipse-Android projects that are to be imported as regular Eclipse
projects and then migrated to Gradle. This is the reason why we need to disable

Gradle. Yet, this disables Android support, too. Don't worry, we will restore it later.

[22]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Besides, Android Studio should retrieve the Maven install location (based on the
environment variable M2_HOME). If it does not, or if you need to use a custom location
or version, you can navigate to Maven submenu inside the the settings (Ctrl+Alt+S)
and override locations for Maven install, settings, and repository as shown in the
following screenshot:

| Settings @

LQ, | Maven
Project Setti titled
roject Settings [untitled] D Work offine
Code Style
Compiler [Use plugin registry
Copyright
File Colors @ Execute goals recursively
File Encodings
Gant |:| Print exception stack traces
Gradle
GUI Designer |:| Always update snapshots
Inspections o Cutput level: Info
Language Injections
Checksum policy: Na Giobal Policy
Schemas and OTDs
Scopes Multiproject build fail policy: | Default
Spelling
Tasks Plugin update policy: Default ignored by Maven 3+
Template Data Languages o
Terminal Maven home directory: | C:'\win32app\apache-maven-3.2 | [|:| Cverride
Version Control M2_HOME is used by default
XSLT File Associations User settings file: | C:\Usersijlalou’, m2\settings. xml | IT.I |:| CQverride
IDE Settings o
Appearance Local repository: | C:\Usersijlalouy, m2\repository | IZ.I |:| Cverride
Console Folding
Debugger
Editor
Emmet (Zen Coding)
External Diff Tools
m|Cancel|| || Help |

[23]

www.it-ebooks.info

http://www.it-ebooks.info/

Beginning with the Basics

Specific to IntelliJ IDEA

On installing Intelli] IDEA with the configuration wizard, take care to add Android
and Maven plugins as shown in the following screenshot:

I Intelli) IDEA Initial Configuration m_u

Select Other Plugins

Select the plugins to enable. Disabling unused plugins will improve IDE startup speed and performance.
To change plugin settings later, go to Settings | Plugins.

Android Designer (requires Android, UI Designer (Core))
Android (requires Properties, JUnit)

Ant (requires Properties) "
ASP
Aspect]
Base Cucumber '
| |
[crmL
| i
| Enable Al || Disable Al |

l Viewing java bytecede inside Intellid IDEA.

|| |
|

r wet> [pnish |[skp | 'J
e e ee———

Post this, we also choose which plugins we want to enable or disable, as shown in
the following screenshot:

[24]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

9l Intelli) IDEA Initial Configuration Wizard

=X

ek,

Select Other Plugins

To change plugin settings later, go to Settings | Plugins.

Select the plugins to enable. Disabling unused plugins will improve IDE startup speed and performance.

+'| JBoss jBPM
| JUnit

Maven (requires Properties, required by Spring Roo Console)
/| Maven Integration Extension (requires Maven)

Osmorc (required by dmServer)

| Enable Al | [Disable Al

Allows to synchronize your project with the remote hosts by FTP/SFTP.

< Previous Mext =

Einish] ‘ Skip

Import of project

Importing the project with Android Studio requires a bit more work than with pure

Intelli] IDEA.

Specific to Android Studio

We will follow the following steps to import an existing Android Maven project to

Android Studio and use this as our IDE to further development as follows:

1. Go to File |Import Project as shown in the following screenshot:

= Android Studio

= [S

Py
l@l Welcome to Android Studio

Recent Projects Quick Start
=1
=hic Create New Project
Nl
Ed Import Project
— .
E‘: Open Project
5 Check out from Version Control

}". Configure

F{ Docs and How-Tos

Android Studio 051 Build 1341061038 Check for updates now.

[25]

www.it-ebooks.info

http://www.it-ebooks.info/

Beginning with the Basics

2. Browse to the POM and select it. Click on OK. Accept default options:

= Import Project from Maven ‘ - ‘ ﬁ

Root directory | Di\Google Drive\pack‘t\61[}1\50urces\helloWorIdIDEAl l =

[_] Search for projects recursively

Project format: |.idea (directory based)n

(] Keep project files in: | |D

[_J Import Maven projects automatically

™ Create Android Studio modules for aggregator projects (with '‘pom’ packaging)
[Create module groups for multi-module Maven projects

™ Keep source and test folders on reimport

¥ Exclude build directory (%PROJECT_ROOT%/target)

[Use Maven output directories

Generated sources folders: | Detect automatically n

Phase to be used for folders update: | process-resources n

IDEA needs to execute one of the listed phases in order to discover all source folders that are configured via Maven plugins.
| Note that all test-* phases firstly generate and compile production sources.

Automatically download: [Sources] Documentation

Dependency types: | jar, test-jar, maven-plugin, ejb, ejb-client, jboss-har, jboss-sar, war, ear, bundle

[Comma separated list of dependency types that should be imported

| Environment settings... |

) O [o |

3. Confirm default options until Finish button. Android Studio displays the
imported project, which is considered for the moment as a mere Java project,
without any Android-specifics.

4. Go to the settings (Ctrl+Alt+S) | Plugins, restore the disabled plugins:
Android Designer, Android Support, Google Cloud Tools for Android
Studio, and Gradle.

[26]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

5. Restart Android Studio. The IDE informs you that the Android framework is
detected. Click on Configure as shown in the following screenshot:

== helloWorld - [D:\Google Drive\packt\6101\sources\helloWorldIDEA.OLD] - Android Studio (Preview) 0.5.

[Eile Edit View Navigate Code Analyze Refactor Build Run Iof O 1dOW, N

OHE G &4 0o G &9 W=k & %0 andoid framework is detected in the project Configure
% helloWorldIDEA.OLD

(7 project -‘ O | B I

[helloWorldIDEA.OLD [helloWorld] o
» [idea

! [assets

- Cires

IC0 Frameworks detected: Android framework is detected in the project Configure (a minute ago)

6. Check AndroidManifest.xml option and then click on OK:

—
Setup Frameworgg‘

™ & Android
¥ & AndroidManifestxml (/)

7. Open the project structure (Ctrl+Alt+Shift+S) | SDKs. Click on the + sign
(shortcut: Alt+Insert) | Add a new SDK | Select Android SDK | Browse to

ANDROID HOME variable | OK | Confirm both Java SDK and Build target |
OK:

| Create New Android SDK [

Java SDK: [1.7 ﬂ

Buid target: | Android 4.4.2 ﬂ

[27]

www.it-ebooks.info

http://www.it-ebooks.info/

Beginning with the Basics

You can run Maven to build the project from Android Studio. You are now ready
to develop!

| helloWorld - [D: droid Studio (Preview} 0.5.1 "‘. [P =

Eile Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help
| =)] O a & U [netowornd ~ | ¥ 0 ¥ m § LB 8 ? Q
helloWorldIDEA.OLD ' /1 pom.xml
& | B Project A\ B = | ¥~ I~ | mhelloWorld x Maven Projects #- I | &
= - o
& helloWaorldIDEA.OLD [helloWorld] <2ml version="1.0" encoding="UTF-8" 2> W& + b g
=i i Di<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://waw o test 3
2 laea xsi:schemalocation="http://maven.apache.org/POM/4.0.0 http://maven.a i 3
assets <modelVersion»4.0.0</modelVersion> package | =@
o - - -
e 2 gen <groupId>com. packt. mavenDroid. chapterl</groupId> & verify
8 <artifactIdshel loWorlde/artifactId> — m
E res <version>1.(0-SHAPSHOT</version> # install =
X ! . By
&) sre <packaging>apk</packaging> & site H
v <name>helloWorld</name> . =
target % deploy 3
8 =
S | Run = helloWorld [install] ¥~ L | |Eventlog - L&
LS ! [INFO] BUILD SUCCESS g [22:50:09 Framevorks detected: Android framework is detected in the |
= | [19F0] =L
= . [INFO] Total time: 16.171 = ‘
£ 3 o | [INF0] Finished at: 2014-03-17123:01:57+01:00 =
=¥ [INFO] Final Memory: 27M/335M N
E { [INFO] |
S (-
& _ Process finished with exit code 0 —
& mw m
 B: Android > 4 Run S TODO [Terminal [Zl Gradle Console Event Log
[711 CRLF * W &
=

Specific to IntelliJ IDEA

Actually, Intelli] IDEA is not as strongly linked to Gradle as Android Studio. This
is why, for Intelli] IDEA, the import follows the same template but is faster: simply
import the POM and add the Android SDK.

NetBeans

NetBeans is the third commonly used IDE in Java development community.
Originally maintained and promoted by Sun, now a division of Oracle, NetBeans
still has features that fits the needs of Android development.

Download NetBeans from https://netbeans.org/downloads/. Install it.

Set up and integration of Maven and Android SDK
Let's start the setup by following these steps:
1. GotoTools | Plugins. In the fourth tab ,that is, Installed, check whether

Maven plugin is installed. If needed, install or update it as shown in the
following screenshot:

[28]

www.it-ebooks.info

https://netbeans.org/downloads/
http://www.it-ebooks.info/

Chapter 1

Plugins

| Updates | Available Plugins (3/167) I Downloaded | Installed (1/38) | Seth'ngsl

Search:

Se... Mame Category Ac... ||
Maven

Version: 4.24.1
Source: NetBeans IDE 7.4 (Build 201310111528)

[

Plugin Description

MetBeans IDE support for Apache Maven.

Activate Deactivate Uninstall

2. Like Eclipse, a default version of Maven is embedded; yet, you can override
it: Tools | Options | Java | Maven | Executions | Maven Home.

Android plugin for NetBeans is NBAndroid. It is not available through
default update centers. Besides, the features of free version are poor and
limited. Anyway, a 1-month evaluation plan is offered.

3. Go to Settings tab. Add and enter the name and URL, respectively,
NBAndroid and http://nbandroid.org/updates/updates.xml,
as shown in the following screenshot:

O Update Center Customizer ﬂ

Mame: NBAndoid|
Check for updates automatically

URL: http: ffnbandroid. org/updates jupdates. xml

Ok l l Cancel

[29]

www.it-ebooks.info

http://www.it-ebooks.info/

Beginning with the Basics

4. Go to Available Plugins, check Android and NBAndroid Extensions
(NBAndroid Gradle Support is not needed, unless you think of using both
Maven and Gradle), and then Install. Accept the license, dismiss the warning
about nonsigned modules, and restart NetBeans.

5. Go to Tools | Options | Miscellaneous | Android | set Android SDK
location as shown in the following screenshot:

O Cptions [&J
@y B WES Q, [Filter (Ctrl+F)
% B & B im|G
General Editor Fonts & Colors Keymap Java Miscellaneous

| Action Items| Android | 55 Preprocessors | Dif'FI Files I Qutput I Tasks |Termina| | Versioning | Windows|

SDK Location: |C:\win32appl\android-sdk-r22.6

Location of Android SDK has to be specified before you can start Android application development.
Download Android SDK

Subscription Information: Upload Key File =

Mo license,
Full functionality is available for NBAndroid. org subscribers,
Subscribe at http: f/nbandroid.org/subscription/

Get NBAndroid.org subscription

Allow collecting anonymous statistics about plugin usage

[visit NBAndroid website |

Expart... H Impaort...

Ok H Apply H Cancel I Help

Import a project

Go to File | Open Project (Ctrl+Shift+0O), browse until the folder containing the
POM. You are ready to develop with Android.

Downloading the example code

K You can download the example code files for all Packt books you have
purchased from your account at http: //www.packtpub. com. If you
purchased this book elsewhere, you can visit http: //www.packtpub.
com/support and register to have the files e-mailed directly to you.

[30]

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.it-ebooks.info/

Chapter 1

Summary

Thus, in this opening chapter, we learned or revised how to install Maven and the
Android SDK, and integrate them with an IDE. By now, you should be able to:

Set up the JDK

Set up Maven

Set up Android SDK

Set up a development environment

Importing any Android project into major IDEs based on Maven

The next chapter will teach you the basic steps to develop a simple Android
application using maven and so will use most of the things we discussed. If
you don't feel confident in your current knowledge, then feel free to read this
chapter again.

[31]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Starting the Development
Phase

In the previous chapter, we saw how to install a complete work area to develop an
Android application, using Maven as the build and project management tool. In this
chapter we will see how to take advantage of Maven during the development phase.

Reminders about Android projects

Before diving deeper into the subject, let's review some concepts and rules related
to Android.

At first glance, an Android project looks like any other Java project. Yet, some
differences are fundamental.

An Android project is made of sources (Java, XML, and property files) and code that
is generated by the system. All of these are compiled into bytecode and compressed
as an Android PacKage (APK) file. Some Android projects also can produce AAR
files but we will have the chance to learn more about this in a following chapter.

Let's open the Android project we have created in the previous chapter, using an
artifact. As seen, the hierarchy of folders and files is as following:

* assets/: This will be reviewed later.

e res/: Thisis a set of resources.

° res/drawable-*pi/*.png: Due to the strong fractionation of
Android system, and the high variety of devices, resources such
as pictures, fonts, and so on have to be taken into account while
releasing. Unless you do limit the portability of your application, you
have no choice but to adapt your resources to the largest audience.

www.it-ebooks.info

http://www.it-ebooks.info/

Starting the Development Phase

[e]

res/layout/activity main.xml: This file describes the widgets;
that is, the basic or complex graphical components and their position,
padding, and so on. Keep in mind, however, that most Android
projects have more than one activity. In this case, this folder will
contain information for each activity: you can consider each activity
as being a screen. The following code snippet shows the contents of
the activity main.xml file:
<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="match parent"
android:layout height="match parent"
android:paddingBottom="@dimen/activity vertical margin"
android:paddingLeft="@dimen/activity horizontal margin"
android:paddingRight=
"@dimen/activity horizontal margin"
android:paddingTop="@dimen/activity vertical margin"s
<TextView
android:layout width="wrap content"
android:layout height="wrap content"
android:text="@string/hello world"/>
</RelativeLayout>

res/menu/main.xml: This is the entry point of the application. It

looks like any other XML file in res/layout/ folder but there is a big
difference. This file is intended for use with a menuInflater parameter
to create a menu in the onCreateOptionsMenu method of your activity.

res/values*: These files gather constants, such as strings, themes,
and so on.

* src/main/java: Here is the folder for Java code specific to the application.

* target/generated-sources/r: This folder contains the Java code generated
based on the different files as described in the preceding text. Notice this
folder location is specific to projects built with Maven: by default, any
IDE should create a gen/ folder at the root of the project. To be even more
accurate, this folder and its content are generated by Maven when goal
android:generate-source method is executed.

e Onroot.

o

AndroidManifest.xml: This file summarizes different parameters,
such as the Software Development Kit (SDK) needed to compile
and/or to run the list of activities (among which the default activity),
the rights needed by this application:

<?xml version="1.0" encoding="utf-8"?>

<manifest
xmlns:android="http://schemas.android.com/apk/res/android"

[34]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

package="com.packt.androidMaven"
android:versionCode="1"
android:versionName="1.0-SNAPSHOT" >

<uses-sdk
android:minSdkVersion="8"
android:targetSdkVersion="21"/>

<application
android:allowBackup="true"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/AppTheme" >
<activity android:name=".HelloAndroidActivity">
<intent-filters>
<action
android:name="android.intent.action.MAIN"/>

<category android:name="android.intent.category.
LAUNCHER" />

</intent-filter>
</activity>
</application>
</manifest>

default.properties: The file used by Eclipse to determine the
target system. If you don't see this in your local environment and
you're not using Eclipse, then this is fine.

Now, let's review our POM and add some comments.

The headers are classic: they allow to determine the unique way to characterize our
artifact, thanks to the triplet groupId, artifactId, version parameters such as
shown in the following code snippet:

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
Xs1i:schemalocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4 0 0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.packt.androidMaven</groupId>
<artifactId>chapterl</artifactId>
<version>1l.0-SNAPSHOT</version>
<name>chapterl</name>

[35]

www.it-ebooks.info

http://www.it-ebooks.info/

Starting the Development Phase

The sole difference, compared to other Java project, is the packaging: here, our archive
is neither a "jar" nor an "ejb" or a "war" files, but the Android specific format: APK:

<packaging>apk</packaging>

The next block is made of properties. This corresponds to a good practice to factorize
constants, version numbers, and so on in a unique location, so as to limit and avoid
conflicts of versions:

<propertiess
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<platform.version>5.0.1 r2</platform.versionx>
<android.plugin.version>3.8.2</android.plugin.version>
</properties>

A block dependencies lists the dependencies of our project. So far, we depend
only on Android jar. The interesting point is that the dependency to Android jar is
of scope provided. Therefore (and logically), the Android jar will not be included
in the APK at the end of the compile because the intent is that the code will be run
within a specific environment (device or emulator) where the android. jar file is
expected to be in the classpath:

<dependenciess>
<dependencys>
<groupIds>com.google.android</groupIds>
<artifactIdsandroid</artifactIds>
<versions>${platform.version}</versions
<scope>provided</scope>
</dependency>
</dependencies>

At last, the build block references the Maven plugin for Android. This will be
explored later.

You can add the following block in your settings.xml file,
available in $M2_ HOME/conf or ~/ .m2 location:

<pluginGroups>
1 <pluginGroup>
h\
com.jayway.maven.plugins.android.generation?2
</pluginGroup>
</pluginGroups>

Then, you will be able to call the plugin without writing the full
qualified name (com. jayway.maven.plugins.android.
generation2:android-maven-plugin).

[36]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Creating an AVD

Before running any application, you have to create an Android Virtual Device
(AVD), a kind of software emulator for Android device. Alternatively, you can

run directly on a physical device (phone, tablet, and watch), which is actually
faster. However, creating AVD instances allows you to test your application in a
variety of configurations (OS version, screen size, memory, and so on) which is
almost impossible to do with real devices. You can perform this operation via the
Graphical User Interface (GUI), or in command line. Both produce the same result.

With the GUI

To run the AVD Manager in windows, you need to execute the AVD Manager.exe
file located in the $ANDROID HOME root; Linux users need to navigate to their SDK's
tools/ directory and execute:

$ android avd

When you see the dialog— the list probably contains no emulators - click on New
to add a new AVD. Fill out the fields relating to the device you want to emulate,
as shown in the following screenshot:

& | Create new Android Virtual Device (AVD) ﬁ

AVD Name: Nexus_7_2012

Device: [Nexus 7 (2012) (70", 800 x 1280: tvdlpi) -]
Target [Android 44.2 - API Level 19 -]
CPU/ABL [ARM (armeabi-v7a) -]
Keyboard: ["] Hardware keyboard present

Skin: [No skin ']
Front Camera: [None ']
Back Camera: None -

Memory Options:

RAM: 768 VM Heap: 32
Internal Storage: 200
SD Card:

© File: Browse...

Emulation Options: [Snapshot [T Use Host GPU

Qverride the existing AVD with the same name

[l o«][conce

[37]

www.it-ebooks.info

http://www.it-ebooks.info/

Starting the Development Phase

A pop up will confirm the result and the details of the device.

By default, the AVD are stored in ~/ .android/avd or
o $USERPROFILE%\ .android\avd location. You can override this
~ location by adding an environment variable named ANDROID_
Q SDK_HOME, pointing to $ANDROID_HOME/.android for instance.
Beware that AVD Manager will not create this folder if it does not yet
exist; you have to create this folder before running AVD Manager!

In-command line

To create an AVD in-command line, you have to determine the list of AVD you can
create owing to the configuration and content of your SDK.

Run the following command:

%ANDROID HOME%\tools\android list target

You get the following output (only the first target is printed, as well as the headers of
the others):

Available Android targets:
id: 1 or "android-21"

Name: Android 5.0.1

Type: Platform

API level: 21

Revision: 2

Skins: HVGA, QVGA, WQVGA400, WQVGA432, WSVGA, WVGA800

(default), WVGA854, WXGA720, WXGA800, WXGA800-7in, AndroidWearRound,
AndroidWearsS
quare, AndroidWearRound, AndroidWearSquare
Tag/ABIs : android-tv/armeabi-v7a, android-tv/x86, android-
wear/armeabi-v7a, android-wear/x86, default/armeabi-v7a, default/x86,
default/x8
6 64
id: 2 or "Google Inc.:Google APIs :21"
The general pattern to create an AVD is:

$ANDROID HOME/tools/android --name <name> --target <target> [options]

[38]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

The target with id 1 parameter corresponds to the platform android-21, and the
default skin is wvGA800. So, to create the same AVD as in the preceding output,
the command line will be as follows:

$ANDROID HOME/tools/android create avd --name Nexus 7 2012 \
--target "android-21" \
--skin WVGA800 \
--abi default/armeabi-v7a \

--path ~/.android/avd/Nexus 7 2012

Or, in short notation and default values:

$ANDROID HOME/tools/android create avd -n Nexus 7 2012 \
-t 1\
-b default/armeabi-v7a

The system confirms the creation of the AVD:

Android 5.0.1 is a basic Android platform.
Do you wish to create a custom hardware profile [nol]

Created AVD 'Nexus 7 2012' based on Android 5.0.1, ARM (armeabi-v7a)
processor,

with the following hardware config:
hw.lcd.density=240

hw.ramSize=512

vm.heapSize=48

Nonetheless, this command-line-created AVD differs from the one created via the
GUI, on the RAM size and heap size. You can edit the config. ini file within the
folder where the AVD is stored (by default, in a subfolder of ~/ .android/avd/),
and manually change these settings (as well as many others):

avd.ini.encoding=IS0-8859-1
abi.type=armeabi-v7a

hw.cpu.arch=arm

hw.cpu.model=cortex-a8

hw.lcd.density=240

hw.ramSize=512
image.sysdir.l=system-images\android-21\default\armeabi-v7a\
skin.name=WVGA800
skin.path=platforms\android-21\skins\WVGA800
tag.display=Default

tag.id=default

vm.heapSize=48

[39]

www.it-ebooks.info

http://www.it-ebooks.info/

Starting the Development Phase

u If you have to create multiple AVD with specific RAM and heap
~ sizes, you can straightly edit the template, which is located in the skin
Q you have chosen from the folder, for example, SANDROID HOME/
platforms/android-19/skins/WVGA800/hardware.ini.

You can print a list of the installed AVDs by running the command:

$ANDROID HOME/tools/android list avd

The expected output contains:

Available Android Virtual Devices:
Name: Nexus_7_2012
Path: C:\Users\jlalou\.android\avd\Nexus 7 2012.avd
Target: Android 5.0.1 (API level 21)
Tag/ABI: default/armeabi-v7a
Skin: WVGAS800

If you get such an error:

Error: Unable to find a 'userdata.img' file for ABI
~\IQ default/armeabi-v7a to copy into the AVD folder.

Then, check if the file ¥ANDROID HOME$%\system-images\
android-19\default\armeabi-v7a\userdata.img does exist.
If this does, this may be related to a known issue on certain versions
of the SDK. The best to do is to update the SDK.

You can also rename, move, and delete AVD with the three command lines,
respectively:

$ANDROID HOME//tools/android move avd --name Nexus 7 2012 --rename
Nexus 7 2012 bis
AVD 'Nexus 7 2012' moved.

$ANDROID HOME/tools/android move avd --name Nexus 7 2012 bis --path
$ANDROID HOME/tmp

AVD 'Nexus 7 2012 bis' moved.
$ANDROID HOME/tools/android delete avd --name Nexus 7 2012 bis
Deleting file\avd\Nexus 7 2012 bis.ini

Deleting folder ...android-sdk-r22.6\tmp

AVD 'Nexus 7 2012 bis' deleted.

[40]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Develop and Build

Now that we have learned how to manage emulators and we have understood the
typical Maven project structure and the basic configuration settings found in pom. xml
file, we are ready to start developing our simple application. Remember that this
book's purpose is not to teach how to code in Android SDK, but to explain how you
can effectively use maven to speed up the development process. We will explain the
required Maven commands but we will not focus on a particular IDE. Each IDE has its
own way of creating Maven command executions and it's out of the scope of this book.
You can experiment with your favorite IDE but in any case, if you want to master
Android Maven development you should be able to at least run all Maven commands
from a terminal window, like that discussed in the following sections and throughout
this whole book.

Cleaning

Our first step is to clean the project from any generated source code or other artifacts.
Typically, the Maven clean goal is included among any other target command, but
for clarity, since it's the first time we explain this, we will run separate commands.
During the next chapters, you will notice that the clean goal is executed with other
Maven goals. Open a terminal window and navigate to the root of our example
project. Then, run the following command:

mvn clean

Generating sources

Runmvn android:generate-sources command. Have a look at the expected output:

[INFO] Scanning for projects...

[INFO]
. o T -

[INFO] Building chapterl 1.0-SNAPSHOT
[INFO] === - - oo oo o e o e e e oo e e oo e e

[INFO]

[INFO] --- android-maven-plugin:3.8.2:generate-sources (default-cli) @
chapterl ---

[INFO] ANDROID-904-002: Found aidl files: Count = 0

[INFO] ANDROID-904-002: Found aidl files: Count = 0

[INFO] Manifest merging disabled. Using project manifest only

[INFO] C:\dev\android\sdk\build-tools\21.1.2\aapt.exe [package, -£, -

[41]

www.it-ebooks.info

http://www.it-ebooks.info/

Starting the Development Phase

-no-crunch, -I, C:\dev\android\sdk\platforms\android-21l\android.jar,
-M, C:\dev\android\packt\BookSteps\chapterl\AndroidManifest.xml, -S,
C:\dev\android\packt\BookSteps\chapterl\res, -A,

C:\dev\android\packt\BookSteps\chapterl\target\generated-sources\
combined-assets\assets, -m,

-J, C:\dev\android\packt\BookSteps\chapterl\target\generated-
sources\r,

--output-text-symbols, C:\dev\android\packt\BookSteps\chapterl\target,
--auto-add-overlay]

11102 o

[INFO] Total time: 1.709 s
[INFO] Finished at: 2015-01-18T18:23:01+02:00
[INFO] Final Memory: 13M/310M

Basically, as hinted, android:generate-sources goal calls the aapt tool from the
Android SDK.

As expected, a target/generated-sources file has been created. It contains the
regular files already seen in the preceding text, such as the r. java file.

Build

To build with Maven, simply run mvn clean install.
This compiles the project and generates several artifacts under target directory:

* classes.dex: This archive gathers the compressed bytecote generated
by compilation, in a format understandable by Dalvik, which is the Java
Virtual Machine executed below Android system. Actually, Dalvik is
quite more limited than HotSpot or JRockit (the major JVM in desktop
computers and servers), but is more adapted to short-resource devices
such as smartphones and tablets.

* {artifactId}.ap_: This archive gathers the resources of the application:
XML, picture files, and so on.

* {artifactId}.apk: This Android PacKage, compressed and signed. Basically,
the APK file merges the {artifactId}.ap_and classes.dex files.

[42]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

* {artifactId}.jar: A Java archive containing zipped bytecode
(.class files).

Actually, in the operation of building, our aim is to get an APK file; therefore,
running another goal such asmvn clean android:apk may have obtained the
same result.

Emulator

You can start and stop one or many emulators with Maven commands:

Start

mvn android:emulator-start starts up an AVD. By default, Maven searches for
an AVD named Default. This can be overridden via changing some options:

e Either in the POM: add a block similar to:

<plugin>
<groupIds>com.jayway.maven.plugins.android.generation2</
groupIds>
<artifactIds>android-maven-plugin</artifactId>
<versions>${android.plugin.version}</versions>
<extensionss>true</extensions>
<configuration>
<sdk>
<platform>21</platform>
</sdk>
<emulator>
<!--Name of the AVD to start/stop-->
<avd>Nexus 7 2012</avd>
<!-- Timeout to consider whether or not the AVD is
successful or failed. Do not be stingy on this wvalue,
since your material configuration may affect and influence
on startup speed-->

<wait>30000</wait>
<!-- Any other option-->
<options></options>
</emulator>
</configuration>
</plugin>

[43]

www.it-ebooks.info

http://www.it-ebooks.info/

Starting the Development Phase

¢ In the command line:

mvn android:emulator-start -Dandroid.emulator.avd=Nexus 7 2012 \
-Dandroid.emulator.wait=30000 \

-Dandroid.emulator.options=-no-skin

The options available are those of $ANDROID_HOME/tools/emulator: you can
display them by running $ANDROID HOME/tools/emulator -help, or, alternatively,
by consulting this Gist: https://gist.github.com/JonathanLalou/180c87554d82
78b0e6d7

The expected output is like:

[INFO] Building chapterl 1.0-SNAPSHOT

[10) R T T
[INFO]

[INFO] --- android-maven-plugin:3.8.2:emulator-start (default-cli) @
helloWorld ---

[INFO] Android emulator command: ""C:\win32app\android-sdk-r22.6\tools\
emulator"" -avd Nexus 7 2012

[INFO] Found 0 devices connected with the Android Debug Bridge

[INFO] Starting android emulator with script: C:\Users\jlalou\AppData\
Local\Temp\ConsolePortableTemp\\android-maven-plugin-emulator-start.vbs
[INFO] Waiting for emulator start:300000

[INFO] Emulator is up and running.

Actually, under Windows the plugin only calls a VB script to launch the emulator.

Stop

mvn android:emulator-stop stops up an AVD. By default, Maven searches for
an AVD named Default. Like emulator-start goal, this default behavior can be
overridden if the POM contains a <configurations> block pointing at the AVD,
or if the command line includes the option -Dandroid.emulator.avd=<name_of_
the AVD>

Stop all

mvn android:emulator-stop stops all AVD running on the system.

[44]

www.it-ebooks.info

https://gist.github.com/JonathanLalou/180c87554d8278b0e6d7
https://gist.github.com/JonathanLalou/180c87554d8278b0e6d7
http://www.it-ebooks.info/

Chapter 2

Deploy
With Maven, provided that you have already built the project through mvn clean
install, run the command:

mvn android:deploy.

This output is similar to:

[INFO] --- android-maven-plugin:3.8.2:deploy (default-cli) @

helloWorld ---

[INFO] Waiting for initial device list from the Android Debug Bridge
[INFO] Found 1 devices connected with the Android Debug Bridge

[INFO] android.device parameter not set, using all attached devices
[INFO] Emulator emulator-5554 Nexus 7 2012 unknown sdk found.

[INFO] emulator-5554 Nexus 7 2012 unknown sdk : Successfully

installed C:\Users\jlalou\==PRIVATE==\GDrive\packt\6101l\sources\
helloWorldWithoutIDEA\target\chapterl.apk to emulator-5554 Nexus 7 2012
unknown_sdk

Then, in the emulator, the APK that you have compiled and deployed appears in the
application list (as shown in the following screenshot: fourth line, second column):

B 5554 Newus T 2012 L

WIDGETS

Browser Calculator Calendar

© # F

Clock tom Dev Settings
L

Downloads Email Gallery

e B

Gestures ¥ q Music
Builder

a.e

Phone S

-

[45]

www.it-ebooks.info

http://www.it-ebooks.info/

Starting the Development Phase

By default, Maven deploys the application on all active emulators; to deploy
on a single target, add the -Dandroid.device=<name_of_the AVD> parameter,
as given here:

mvn android:deploy -Dandroid.device=Nexus 7 2012

[INFO] --- android-maven-plugin:3.8.2:deploy (default-cli) @
AndroidTier ---

[INFO] Waiting for initial device list from the Android Debug Bridge
[INFO] Found 1 devices connected with the Android Debug Bridge
[INFO] android.device parameter set to Nexus 7 2012

[INFO] emulator-5554 Nexus 7 2012 unknown sdk : Successfully

installed C:\Users\jlalou\==PRIVATE==\GDrive\packt\6101l\sources\
helloWorldWwithoutIDEA\target\chapterl.apk to emulator-5554 Nexus 7 2012
unknown_sdk

Undeploy

To undeploy the application, run:

mvn android:undeploy

The output contains:

[INFO] --- android-maven-plugin:3.8.2:undeploy (default-cli) @
helloWorld ---

[INFO] Waiting for initial device list from the Android Debug Bridge
[INFO] Found 1 devices connected with the Android Debug Bridge
[INFO] android.device parameter not set, using all attached devices
[INFO] Emulator emulator-5554 Nexus 7 2012 unknown sdk found.

[INFO] emulator-5554 Nexus 7 2012 unknown sdk : Successfully
uninstalled com.packt.mavenDroid.chapterl from emulator-

5554 Nexus 7 2012 unknown sdk

[46]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

B 5554:Nexus T 2012

WIDGETS

APl Demos owSser Calculator
=
= ’

Clock

P

Dev Tools Downloads

People

.
Phone Searg Settings Speech
Recorder

The application does not appear anymore.

At this point, you may not be convinced of the advantage of such goals. Anyway,
step back and think of the industrialization of deployments and tests on a great
diversity of devices.

[47]

www.it-ebooks.info

http://www.it-ebooks.info/

Starting the Development Phase

Architecture principles

Now that we are able to build and deploy on an AVD, let's resume the development
phase itself.

Standalone application

In "simple cases", the Android application has no contact with any other tier.
The application is self-dependent. Therefore, the principles of architecture
common to any other standalone application apply.

The application has to be divided based on functional criteria, for instance:
domain or model, Data Access Object (DAO), service, and view. In Android
terminology, views are activities. A graph of direct dependencies is shown
in the following image:

View } Senice) DAC

¥ Y

Model ‘

In other terms, the view may have direct access to the services, but not to the DAO
layer. Yet, any layer is aware of the model.

This best practice allows developing many applications built on common basic
blocks, with a frontend and a behavior being totally different.

The management of external dependencies is regular: dependencies are defined
mainly by the triplet groupId, artifactId, and version parameters; the
dependency scope can be compile, provided, runtime, or system. If your
application depends on another Android application, do no forget that the
dependency type is apk, and not jar.

[48]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Since you add external dependencies to your Android application
project, you should get the following error, repeated as many times as
inner or anonymous classes appear in your dependency graph:

[INFO] warning: Ignoring InnerClasses attribute for an
anonymous inner class

[INFO] (any.class.from.any.package) that doesn't come
with an

[INFO] associated EnclosingMethod attribute. This class
was probably produced by a

[INFO] compiler that did not target the modern .class
file format. The recommended

[INFO] solution is to recompile the class from source,
using an up-to-date compiler

[INFO] and without specifying any "-target" type
options. The consequence of ignoring

[INFO] this warning is that reflective operations on
this class will incorrectly

[INFO] indicate that it is *not* an inner class.

This error is not to worry about. If it does bore you, you can get the
source code of the dependencies in the case of open source projects,
and then include them in your own source code (anyway, beware of
licenses such as General Public License (GPL) that may require you to
make your application source code become GPL, too). More seriously,
this problem means your project, or one of its dependencies or even
sub-dependencies, requires Java 1.3 back-compatibility. As stated, you
can ignore this warning,.

<modules>

<modules>model</module>
<modulesservice</modules>
<modules>AndroidTier</module>

</modules>

As an example, let's consider the project com.packt .androidMaven. : sampleProject
where you can download from here : https://github.com/ppapapetrou7é/
AndroidMavenDevelopment/tree/master/Chapter2. It is a regular project, with
three submodules:

[49]

www.it-ebooks.info

https://github.com/ppapapetrou76/AndroidMavenDevelopment/tree/master/Chapter2
https://github.com/ppapapetrou76/AndroidMavenDevelopment/tree/master/Chapter2
http://www.it-ebooks.info/

Starting the Development Phase

Q

We haven't discussed Maven modules so far; so, it's a good idea to
explain their purpose. The idea behind modules is to split a large
project into smaller functional pieces of projects. Each module
should have a concrete sets of responsibilities and low level module
should not be dependent to high level modules. When Maven builds
a multimodule project, it uses a mechanism that is called a reactor.
Actually, here's what maven does:

* Collects all the available modules to build
* Sorts the projects into the correct build order
* Builds the selected projects in order

Our first module, model, consists of a single file, representing an entity Book,
as a Java bean, with mere properties, getters and setters, and an overridden
toString () method:

public class Book

private
private
private
private
private
private

Integer id;

String title;

String format;

String color;

Integer numberOfPages;
Boolean brandNew;

public Book() {

}

public String toString() {
return "Book{" +
nid=" + id +

n
’

n
’

n
’

n
’

!}!;
}
// plus

}

title='" + title + '"\'' +
format='" + format + '\'' +
color='" + color + '"\'' +

numberOfPages=" + numberOfPages +

brandNew=" + brandNew +

getters and setters

Module service depends only on model parameter:

<project xmlns:xsi="http://www.w3.0org/2001/XMLSchema-instance"
xmlns="http://maven.apache.org/POM/4.0.0"

Xsi:schemalLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4 0 0.xsd">

<modelVersion>4.0.0</modelVersion>

[50]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

<parent>
<groupId>com.packt.androidMaven</groupId>
<artifactId>sampleProject</artifactId>
<version>1.0-SNAPSHOT</versions>

</parent>

<artifactIdsservice</artifactIds

<version>${project.parent.version}</versions>

<name>service</names>

<dependencies>
<dependencys>
<groupld>${project.parent.groupld}</grouplds>
<artifactIds>model</artifactIds>
<version>${project.parent.version}</versions>
</dependency>
</dependencies>
</project>

A service interface BookService is declared, with one method to implement:

Book createBook (String title, String format, String color, Integer
numberOfPages) ;

The implementation creates an instance of Book class:

public class BookServiceImpl implements BookService

@Override
public Book createBook (String title, String format, String
color, Integer numberOfPages) {

final Book book = new Book () ;

book.setTitle (title) ;

book.setFormat (format) ;

book.setColor (color) ;

book . setNumberOfPages (numberOfPages) ;

return book;

}

The Android application, com.packt .androidMaven:AndroidTier, depends on
model and service parameter. We may have not declared the dependency on model
parameter, because of the transitive and implicit dependencies induced because

of service. Besides, the Android application obviously depends on com.google.
android:android jar:

<dependencies>
<dependency>

[51]

www.it-ebooks.info

http://www.it-ebooks.info/

Starting the Development Phase

<groupId>com.google.android</groupIds>
<artifactIdsandroid</artifactIds>
<version>${platform.version}</versions>
<scope>provided</scope>

</dependency>

<dependencys>
<!--Add a dependency on 'model' -->
<groupld>${project.groupld}</grouplds>
<artifactIds>model</artifactIds>

<version>${project.version}</versions>

</dependency>

<!--Add a dependency on 'service' -->

<dependencys>
<groupld>${project.groupld}</grouplds>
<artifactIdsservice</artifactIds>
<version>${project.version}</versions>

</dependency>

</dependencies>

The Android application consists of a single activity, calling the service and displaying
the result:

public void onCreate (Bundle savedInstanceState)
super.onCreate (savedInstanceState) ;
final TextView textview;
final Book book;
book = bookService.createBook ("Maven and Android", "eBook",
"black", 150);
textview = new TextView (this) ;
textview.setText (book.toString()) ;
setContentView (textview) ;

}
You can build the project from the parent POM folder:
mvn clean install

Then, go to AndroidTier module folder. Start up Android emulator and deploy
the APK:

mvn android:emulator-start
mvn android:deploy

[52]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

The result appears in the emulator as shown in the following screenshot:

I8 5554:Nexus_7_2012.

I Android with dependencies

Book{id=null, title="Maven and Android’, format='eBook’, color='black’, numberOfPages=150,
brandNew=null}

[53]

www.it-ebooks.info

http://www.it-ebooks.info/

Starting the Development Phase

Android application within an n-tier
architecture

Standalone Android applications are more the exception than the rule: the trend
for Android applications is to be part of two or three-tier architecture: this way, the
Android application is only one view (among others), connected to one (or more)
servers through HTTP (JSON or SOAP web services), linked to a backend such as
a database, as shown in the following screenshot:

U

Backend

/bsem\ /enshi
o _ v
. o ompd =

Android application i0s application SR ©
Wotkstation Laptop

Android application i0s application e
Worstation

An Android application integrated within a larger project must follow the same rules
as any other multi-tier project:

The Android application artifact should contain only the resource and source code
specific to the application. In other terms, matching with Model-View-Controller
(MVC) design pattern, concentrate the look and feel the information in the project
that will generate the APK. Business treatments, common to the Android application
and a web application for instance, must be factorized in a common business layer.

[54]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Q

Many advantages and benefits result therefrom: first, the code is
factorized. Second, you can move business intelligence and logic
in a computer far more powerful than an Android device, which
is, by definition, limited in CPU and RAM. Third, you protect your
business algorithms from reverse-engineering: an Android APK,
although encrypted and signed, remains breakable.

Android applications often are in dialog with a server. On
development time, the emulator has to access the web server (in
general, a servlet container such as Tomcat or Jetty) that is deployed
on the same physical machine as the emulator. To access the local
web server, getting localhost or 127.0.0.1 is not used: rather, use the
IP 10.0.2.2 (do not forget the port number, such as the default 8080)
which is mapped to the localhost on which the emulator is running.

Another best practice is to expose the entities and interfaces needed by the Android

application in

a minimal set of dependencies.

In the following schema, the Android application depends only on an artifact named
contract, gathering entities and declared service interfaces. You may notice that the
service implementation web application artifacts also depend only on contract as

well as on dao:

Contracts

Entities

h

Service interfaces

DAQ

r A

Senvice Implementation

Android APK Web application WAR

[55]

www.it-ebooks.info

http://www.it-ebooks.info/

Starting the Development Phase

Here is how Maven manages such a situation:

The parent POM contains a <packaging>pom</packaging> tag and declares
its submodules:

<modules>
<modules>entity</module>
<modulesservice</modules>
<modules>contract</module>
<module>dao</module>
<module>service-impl</module>
<moduleswebtier</modules>
<modules>AndroidTier</module>

</modules>

The entity parameter has no special dependency, unlike service parameter that
depends on entity parameter.

contract declares itself as pom, and propagates the two dependencies onto entity
and service parameters:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>com.packt.androidMaven.chapter2</groupIds>
<artifactIdsmultitiers</artifactIds>
<version>1.0-SNAPSHOT</version>
</parent>
<packaging>pom</packaging>
<artifactIdscontract</artifactIds>
<version>1.0-SNAPSHOT</version>
<!-- This POM declares and propagates two dependencies -->
<dependencies>
<dependency>
<groupId>com.packt.androidMaven.chapter2</groupIds>
<artifactIdsentity</artifactId>
<version>1.0-SNAPSHOT</version>
</dependency>
<dependency>
<groupId>com.packt.androidMaven.chapter2</groupIds>
<artifactIdsservice</artifactId>

[56]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

<version>1.0-SNAPSHOT</versions>
</dependency>
</dependencies>
</project>

AndroidTier and webtier parameters behave in a similar manner: they depend
only on contract. service-impl declares a dependency on dac parameter in more
of contract parameter. Beware! The dependency on the contract parameter must
be declared with type pom:

<dependencys>
<groupld>${project.groupld}</grouplds>
<artifactIdscontract</artifactIds>
<version>1.0-SNAPSHOT</versions>
<type>pom</type>

</dependency>

Android with dependencies on SDK Add-ons

You may need some dependencies, external of core Android, but yet linked to it.
The most common case is when you depend on Google Maps. The JAR file of
Google Maps is installed with the other add-ons by default install configuration.

If your project depends on Google Maps (or, similarly, to usb or ef fects JARs),
firstly you have to install the dependencies in your local repository:

mvn install:install-file \

-Dfile=%ANDROID HOME%\add-ons\addon-google apis-google-19\libs \
-DgroupId=com.google.android \

-DartifactId=maps \

-Dversion=19_r3 \

-Dpackaging=jar \

-DgeneratePom=true

Then, declare the dependency, specifying the scope as provided:

<dependencys>
<groupId>com.google.android.maps</groupld>
<artifactIds>maps</artifactIds>
<version>19 r3</versions
<!-- the JAR is already available within the Android emulator or
device ; no use to embed it within your application -->
<scope>provided</scope>

</dependency>

[57]

www.it-ebooks.info

http://www.it-ebooks.info/

Starting the Development Phase

The <versions> tag of artifact maps differs from that of "Android
_ core" JAR: 19_r3 versus 4.4.2_r3. In other terms, for Android add-ons,
& the version to write follows the API level, whereas "Android core"
s follows the release version. In a further chapter, we will deal with
maven-android-sdk-deployer plugin, which eases the installation
process of Android dependencies.

Summary

Thus, in this second chapter, we learned or revised concepts related to Android

SDK and tools. We reviewed how to create AVDs in the GUI and in the command
line. We saw how to start/stop an emulator from Maven, and how to clean, build,
deploy, and undeploy an APK onto an emulator. Finally, we described best practices
in the architecture of Android projects managed by Maven.

In the next chapter, we will begin exploring unit testing.

[58]

www.it-ebooks.info

http://www.it-ebooks.info/

Unit Testing

So far, we have discussed some fundamental steps needed for setting up your
development environment and for creating a very simple Android application using
Maven. We also saw how to manage Android emulators and run the application
during development stages. In this chapter, we will cover the topic of unit

testing. We will see the configuration needed for running unit tests using various
frameworks and get reports about code coverage.

This and the subsequent chapter, will not teach you how to write tests for Android
application, although there will be some minimal examples to demonstrate the
material of each chapter. If you're not familiar with the concepts discussed in the
next pages, you are strongly encouraged to read the resources that we will provide
in each section.

Effectively testing Android applications

Before we start to discuss the essential Maven plugins to run Android application
tests, it's important to review some good practices we should have in mind. In every
software system, there are two generic types of testing: Unit Testing and Integration
Testing. Each type has its own characteristics and targets on different goals. Let's
quickly make their differences and their purposes clear:

* Unit testing focuses on ensuring that the individual units of source code
are doing the things right. Such tests should run very fast, should not
depend on each other or on any external resources, and should evaluate
the expected output of the code under testing.

* Integration tests, on the other hand, can be slow and focus on testing
software as an integrated system with external resources. In-container
testing, database testing, or even Ul testing fall into this category. For an
Android application, the integration tests require the presence of a real
device (phone, tablet, and so on) or an emulator.

www.it-ebooks.info

http://www.it-ebooks.info/

Unit Testing

As we will see in this chapter and the next one, it is not a good idea to mix the
execution of unit and integration tests; so bear in mind that when talking of an
Android application, unit tests usually test the business logic and the code of the
activities as isolated entities, whereas integration testing ensures the behavior of
the application from a user point of view. Now that we outlined the purpose of
these testing types in an Android application context, it is time to start configuring
our Maven project.

Running typical unit tests

From this chapter until the end of this book, we will use a sample project to
demonstrate the topics we will cover. For this one, we will reuse the basic structure
of the three-module (model, service, and AndroidTier) Maven project we introduced
in Chapter 2, Starting the Development Phase, with some naming modifications, and
we will build on top of this. The complete source code can be found on the following
GitHub link https://github.com/ppapapetrou76/AndroidMavenDevelopment /
tree/master/Chapter3.

_ Assume that you have a git client installed in your machine, you can
% clone the project locally by running the following command:
o

git clone https://github.com/ppapapetrou7é/
AndroidMavenDevelopment.

Running our first unit test with Maven is easy. By default, Maven uses the
maven-surefire-plugin command to execute unit tests for all files found under
the /src/test/java/ directory; so, we don't need to add any dependency to our
pom.xml file. We need, however, to add a Maven dependency of the unit testing
framework that we will use. JUnit and TestNG are the most popular unit testing
frameworks for Java; so, we strongly advised to use one of them, as both of them
are fully compatible with Android application development.

The business logic of the project is located in our service module; so, we need to add
the following lines inside the dependencies tag of the corresponding pom.xm1 file.

For Junit (http://junit.org):

<dependencys>
<groupId>junit</groupIld>
<artifactId>junit</artifactIds>
<version>4.10</versions>
<scope>test</scope>
</dependency>

[60]

www.it-ebooks.info

https://github.com/ppapapetrou76/AndroidMavenDevelopment/tree/master/Chapter3
https://github.com/ppapapetrou76/AndroidMavenDevelopment/tree/master/Chapter3
git clone https://github.com/ppapapetrou76/AndroidMavenDevelopment.
git clone https://github.com/ppapapetrou76/AndroidMavenDevelopment.
http://www.it-ebooks.info/

Chapter 3

Although the latest JUnit version at the time this book was written was 4.11, we use
4.10 for avoiding some compatibility issues discovered when implementing the test
cases of this and the following chapter.

For TestNG (http://testng.org):

<dependency>
<grouplds>org.testing</groupIds>
<artifactIds>testing</artifactIds>
<version>6.8.8</version>
<scope>test</scope>
</dependency>

You have already noticed that we have defined the scope of the

testing library dependency as test. This instructs Maven to use
s~ this dependency only when executing test-related phases and not

include this when building the package.

Before we implement our first unit test and run it with Maven, let's have a look of
the parent pom. xm1 file of our sample project:

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4 0 0.xsd">
<modelVersions>4.0.0</modelVersions>
<groupId>com.packt.androidMaven</groupId>
<artifactId>sampleProject</artifactId>
<version>1.0-SNAPSHOT</versions>
<packagings>pom</packaging>
<name>AndroidDevelopmentMaven</name>
<description>Android App Development with Maven</descriptions>

<modules>
<module>model</module>
<modules>service</modules>
<module>AndroidTier</modules>

</modules>

<propertiess
<project.build.sourceEncoding>UTF-
8</project.build.sourceEncoding>
<platform.version>5.0.1 r2</platform.versionx>
<android.plugin.version>3.8.2</android.plugin.version>

</properties>

[61]

www.it-ebooks.info

http://www.it-ebooks.info/

Unit Testing

<builds>
<finalName>${project.artifactId}</finalName>
<pluginManagement >
<pluginss>
<plugins>
<groupId>com.jayway.maven.plugins.android.generation?2
</groupld>
<artifactIdsandroid-maven-plugin</artifactId>
<version>${android.plugin.version}</versions>
<extensions>true</extensions>
</plugin>
</plugins>
</pluginManagement >
</build>
</project>

Accordingly, the pom. xml files of the three submodules have changed. Here's
how the service module pom.xml file will look like after the addition of the
JUnit dependency:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
Xs1i:schemalLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>com.packt.androidMaven</groupId>
<artifactIds>sampleProject</artifactIds>
<version>1.0-SNAPSHOT</version>
</parent>
<artifactIdsservice</artifactIds>
<packaging>jar</packaging>
<dependencies>
<dependency>
<grouplds>${project.parent.groupld}</grouplds>
<artifactIds>model</artifactIds>
<versions>${project.parent.version}</versions
</dependency>
<dependency>
<groupId>junit</grouplds>
<artifactId>junit</artifactIds>
<version>4.10</version>
<scope>test</scope>

[62]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

</dependency>
</dependencies>
</project>

Now, we can move forward and write a very simple unit test using the JUnit library.
Normally, all known IDEs have plenty of utilities to quickly add unit test classes,
but since this book is not IDE-specific, we will follow the generic way. Create a

new class named BookServiceImplTest under the /src/test/java/com/packt/
androidmaven/service directory and add the following code:

package com.packt.androidmaven.service;
import com.packt.androidmaven.model.Book;
import org.junit.Assert;
import org.junit.Test;
public class BookServiceImplTest {
private final BookService bookService = new BookServiceImpl () ;

private static final String TITLE = "Maven and Android";
private static final String FORMAT = "eBook";
private static final String COLOR = "Black";

private static final Integer PAGES = 190;

@Test
public void should create book () {

Book actualBook = bookService.createBook (TITLE, FORMAT, COLOR,
PAGES) ;

Assert.assertEquals (TITLE, actualBook.getTitle()) ;
Assert.assertEquals (FORMAT, actualBook.getFormat()) ;
Assert.assertEquals (COLOR, actualBook.getColor()) ;
Assert.assertEquals (PAGES, actualBook.getNumberOfPages()) ;
Assert.assertNull (actualBook.getId()) ;

Assert.assertNull (actualBook.isBrandNew ()) ;

}

The next step is to execute the test we just implemented. First, navigate to the root
directory of your project and run the following Maven command to compile and
install all the artifacts produced by this project in the local Maven repository.

We don't want to run the tests this time, and so we instruct Maven to skip them:

mvn clean install -DskipTests

After this we navigate to the service module directory, open a terminal, and run
the following Maven command:

mvn clean test

[63]

www.it-ebooks.info

http://www.it-ebooks.info/

Unit Testing

The output should look similar to the following screenshot:

NFO] ————-
HFO] BUILD
0 — N PSS ——

NFO1 Fi d at: 20815-81-23T17:21:18+02:08
WF0] Final
NFO]

I
I
I
IHFD] T
1
I
1

You can create as many unit tests that are needed for the business logic of your
application just like you're writing test for any java application and see their results
by running the command we already described. Now, let's move on and discover the
second important part of Android unit testing.

Unit testing of activities

Clearly, one of the most important parts of an Android application is the
implementation of activities. Like we already discussed, all applications have
activities, but only a few of them include domain models and business logic.
The norm is to create applications that behave like clients of an existing backend
system using web services.

There are two types of activities testing:

* Unit testing: Each activity is tested in isolation from the rest of the application.
This type of testing focuses on the layout and the expected components.

* Integration testing (in Android, it's also called instrumentation): Each
activity is tested as part of the overall application. This type of testing
ensures that the activities are doing the right things on user behavior,
such as opening new activities, displaying toast messages, and so on.

In this chapter, we are going to see how to use Maven to drive the unit testing of
activities and part of the following chapter will discuss the instrumentation testing.

. Although we distinguish two types of activities testing, in practice
both of them need an emulator to run. The reason why we call one of
s~ these types as 'Unit Testing' has to do with the fact that an activity is
considered as the smallest unit of code in the Android context.

[64]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Before we discuss the necessary Maven configuration for running activity unit tests,
we need to explain that Maven, although it is a great build tool, is not very clever in
all cases. So, if you start writing activity unit tests in the same module that your unit
tests are placed, it won't find any difference and will try to run all of them. But like
we mentioned before, activities unit tests need an emulator; therefore, they will fail
and most probably we will see an error message about using stubs.

To overcome this issue, we create a new Maven module and we place all of our tests
inside the /src/test/java/ folder. Let's see the steps we need to create this module
and run our first activity unit test.

Creating a dedicated unit testing module

We open a terminal and navigate to the root folder of the application. Then, we type
the following commands to create a new module:

mvn archetype:generate \
-DarchetypeArtifactId=android-quickstart \
-DarchetypeGroupId=de.akquinet.android.archetypes \
-DarchetypeVersion=1.1.0 \
-DgroupId=com.packt.androidMaven \
-DartifactId=AndroidUnitTests \
-Dversion=1.0-SNAPSHOT \
-Dplatform=21 \
--batch-mode \

To verify that the new module was correctly generated, first ensure that a folder
named AndroidUnitTests was created under the root folder of our project. Then,
open our parent pom.xml file. Locate the <modules> tag and check that a new entry
<module>AndroidUnitTests</module> has been added. We need to also change
(or add it if it is not there) the <packaging> tag to the value of apk. Our next step is
to add the dependency of the actual Android application module in the pom.xm1 file
of our new module. It is required that we define it as a 'jar' dependency so that we
can invoke R. references in our tests.

R is the class containing the definitions for all resources of your
* packaged application. You can consider it as the namespace of your
application; so, if in our case since manifest package name is com.
"~ packt.androidMaven, the R class will be generated with the symbols
of all our resources in this class: com.packt .androidMaven.R

[65]

www.it-ebooks.info

http://www.it-ebooks.info/

Unit Testing

Finally, we need to add a test library (android-test) provided by an Android that
will help us write android-oriented unit tests. Here is the final version of our new
module's pom.xml file:

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
Xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>

<parent>
<groupId>com.packt.androidMaven</groupIld>
<artifactIds>sampleProject</artifactId>
<version>1.0-SNAPSHOT</version>

</parent>

<artifactId>AndroidUnitTests</artifactIds>

<packagings>apk</packaging>

<dependenciess>

<dependencys>
<groupId>com.packt.androidMaven</groupIld>
<artifactIds>AndroidTier</artifactIds>
<versions>${project.version}</versions
<scope>provided</scope>
<types>jar</type>

</dependency>

<dependencys>
<groupId>com.google.android</groupIds>
<artifactIdsandroid-test</artifactIds>
<version>4.1.1.4</version>
<scope>provided</scope>

</dependency>

</dependencies>
</projects>

You may have noticed that the version of android-test library is
different from the Android library version. Recall from the previous
+ chapter Maven we manually added the android. jar library to our
% local maven repository. One might think that this could be done also
g for the android-test. jar library. The problem is that this library
is not included in Android SDK, and so we need to stick to the latest
available library that can be found in a public repository.

[66]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

We are almost ready to write and run our first activity unit test. There is one last
thing we need to modify to the module we created. Like we have already discussed,
these tests require an emulator to run and so, in practice, this module is an Android
application that needs a manifest file. We have to change the manifest file created
by the archetype. Let's take a look how this should look like and explain the most
important parts in the next section:

<?xml version="1.0" encoding="UTF-8"?>
<manifest
xmlns:android="http://schemas.android.com/apk/res/android"
package="com.packt.androidMaven.tests"
android:versionCode="1"
android:versionName="1.0-SNAPSHOT" >
<application android:allowBackup="true">
<uses-library android:name="android.test.runner"/>
</application>
<instrumentation
android:name="android.test.InstrumentationTestRunner"
android:targetPackage="com.packt.androidMaven"
android:label="Unit Tests of Android Maven App."/>
</manifest>

Running Android unit tests with Maven

It's a good practice to place our tests in a different package than the package used
inside the application module. Keep in mind that our test classes should be placed
under the /src/main/java/ location and not under /src/test/java, because they
are considered as typical code to run in a device or an emulator.

[% A good idea is to create a subpackage and name it tests.]
s

The name of the test package should be described inside the manifest tag. Then,
we need to specify that this module is a test project by setting the uses-library
tag inside the application tag as is shown in the preceding example. Finally,
we need to drive the instrumentation process by setting the responsible class, the
target package (our tests should be located there), and optionally a name of this
instrumentation.

[67]

www.it-ebooks.info

http://www.it-ebooks.info/

Unit Testing

Let's review the code of our Android application. It consists of two very simple
activities. The first one, BookActivity, invokes a method from a business layer
class and displays a text and a button. Clicking on this button, the second activity
AuthorActivity is started with an intent with some custom attributes. Both classes
are located under /src/main/java/com/packt/androidMaven package of the
AndroidTier module:

package com.packt.androidMaven;

import android.app.Activity;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.view.View.OnClickListener;

import android.widget.Button;

import android.widget.TextView;

import com.packt.androidmaven.model.Book;

import com.packt.androidmaven.service.BookService;
import com.packt.androidmaven.service.BookServiceImpl;

public class BookActivity extends Activity {
private Button button;
private TextView textView;
public final static String AUTHOR =
"com.packt.androidMaven.AUTHOR" ;

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);
setTextValue () ;
addListenerOnButton () ;

private void setTextValue()
BookService bookService = new BookServiceImpl () ;
final Book book = bookService.createBook ("Maven and Android",
"eBook", "black", 150);
textView = (TextView) findvViewById(R.id.textl);
textView.setText (book.toString()) ;

public void addListenerOnButton() {
button = (Button) findViewById(R.id.buttonl) ;

[68]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

button.setOnClickListener (new OnClickListener()
@Override
public void onClick (View view) {
Intent intent = new Intent (view.getContext (),
AuthorActivity.class) ;
intent.putExtra (AUTHOR, "Patroklos Papapetrou") ;
startActivity (intent) ;

package com.packt.androidMaven;

import android.app.Activity;

import android.content.Intent;

import android.os.Bundle;

import android.widget.TextView;

public class AuthorActivity extends Activity {

}

@Override
public void onCreate (Bundle savedInstanceState)

super .onCreate (savedInstanceState) ;

Intent intent = getlIntent();

String message = intent.getStringExtra (BookActivity.AUTHOR) ;
TextView textView = new TextView (this) ;
textView.setTextSize (40) ;

textView.setText (message) ;

setContentView (textView) ;

Now, create a JUnit 3 test class and name it BookActivityTest inside the
AndroidUnitTests module under the /src/main/java/com/packt/androidMaven
directory. The reason why we are using JUnit 3 is because Android testing is built on
the top of this version and JUnit 4 is not currently supported.

If you want to experiment with JUnit 4 testing in Android, then
M you can try this open source library https://github.com/
Q dthommes/JUnit4Android. Since it's not officially supported
and not fully compatible with Android testing, we will stick with
JUnit 3 and use this for the book examples.

[69]

www.it-ebooks.info

http://www.it-ebooks.info/

Unit Testing

Here's the JUnit 3 test class that will test our activity in isolation:

package com.packt.androidMaven.tests;

import android.content.Intent;

import android.widget.TextView;

import android.widget.Button;

import android.test.ActivityUnitTestCase;

import android.test.suitebuilder.annotation.SmallTest;
import com.packt.androidMaven.BookActivity;

import com.packt.androidMaven.R;

public class BookActivityTest extends ActivityUnitTestCase<BookActivi
ty> {
BookActivity bookActivity;
private TextView textView;
private Button button;
public BookActivityTest ()
super (BookActivity.class) ;

@Override

protected void setUp() throws Exception
super.setUp () ;
startActivity (new
Intent (getInstrumentation () .getTargetContext (),
BookActivity.class), null, null);

bookActivity = (BookActivity) getActivity() ;
textView = (TextView) bookActivity.findViewById(R.id.textl) ;
button = (Button) bookActivity.findViewById(R.id.buttonl) ;

}

@Override

protected void tearDown () throws Exception {
super.tearDown () ;

@SmallTest

public void testPreconditions() {
assertNotNull (button) ;
assertNotNull (textView) ;

@SmallTest

[70]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

public void testButtonLabel ()
String actual = button.getText () .toString() ;
String expected = "View Author Name!";
assertEquals (expected, actual) ;

}

@SmallTest

public void testTextViewText ()
String actual = textView.getText () .toString() ;
String expected = "Book{id=nu11, title='Maven and Android',
format='eBook', color='black', numberOfPages=150,
brandNew=null}";

assertEquals (expected, actual) ;

}
}

Let's quickly explain the test code, as it's not inside the scope of this book. Each test
class should extend the base android.test.ActivityUnitTestCase class and
initialize it with the activity class under test. It's a good practice to initialize the
activity in the @setup method. Then, we should get a reference to the started activity
and references to all objects that we need to test. In our case, we got reference to

the Textview view and the Button objects. Another good practice is to have a test
method with the name testPreconditions in order to verify that the activity was
initialized properly and all object references are available. Finally, we can write

the actual tests. In the example class, we test the labels of the button and the text
displayed. Of course, you can extend your test cases to completely test every aspect
of the expected view of the target activities.

If you are not familiar with the @SmallTest annotation on the top of
each test method, then you might want to take a look at this article:
http://googletesting.blogspot.gr/2010/12/test-sizes.
html that clearly explains their meaning. In short, we can specify three

% types of tests:w

* Small: This test doesn't interact with any file system or network
* Medium: This test accesses file systems on box that is running tests

* Large: This test accesses external file systems, networks, and so on

We are ready to run our activity unit test. But wait! Don't be fooled. We will not run
the tests like typical unit tests. Take the following command:

mvn clean test

[71]

www.it-ebooks.info

http://www.it-ebooks.info/

Unit Testing

This command will run nothing because there are not tests, like we explained, under
the /src/test/java package. Instead, we should open a terminal, navigate to the
AndroiduUnitTests folder, and run the following command:

mvn clean install

By default, this command will try to deploy the target application to all connected
devices and running emulators; so, we advise you to connect to at least one device
or run the emulator of your choice like we discussed in Chapter 2, Starting the
Development Phase before you try to run the tests. Later on in this book, we will see
how to configure testing on specific devices or emulators. The expected output of
the preceding command should contain, among others, the following screenshot:

Real unit testing with Robolectric

So far, we saw how to run Android unit tests using Maven in an emulator or a real
device (smart phone, tablet, and so on). If you have followed the examples provided
in this chapter, you should have noticed by now that running activity unit tests

is quite slow. Every time we need to follow the cycle of building the project, then
deploy this to the device/emulator, and finally launch the application and run the
tests. This automatically is done by Maven, but it is clearly not according to one of
the core concepts of Unit testing: Run tests fast!

There must be a more clever way to do this, and it has a name from the future:
Robolectric (http://robolectric.org/) is an Android unit testing framework
that lets us run unit tests inside the Java Virtual Machine (JVM) of our
development environment in a couple of seconds without the need of Android
SDK. And it's getting even better. We can use our favorite JUnit 4 style to run

our test classes, which is far better than the old JUnit 3 style, and we don't need a
dedicated module to drive the execution in devices/emulators. Let's take a look
right away at the steps needed to run Robolectric tests with Maven. TestNG is not
supported currently, out of the box, by Robolectric.

[72]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Configuring Robolectric with Maven

Integrating Maven with Robolectric is quite simple. All we have to do is to add the
following couple of dependencies in the pom. xml file of our AndroidTier module:

<dependencys>
<groupId>junit</groupIld>
<artifactId>junit</artifactIds>
<version>${junit.version}</versions>
<scope>test</scope>

</dependency>

<dependencys>
<groupIds>org.robolectric</groupld>
<artifactIdsrobolectric</artifactIds>
<version>${robolectric.version}</versions>
<scope>test</scope>

</dependency>

The versions of the dependencies can be specified as properties like this:

<propertiess
<robolectric.version>2.2</robolectric.versions>
<junit.version>4.1ll</junit.version>
</properties>

Bear in mind that since both of these dependencies are needed only for test
execution, we specify the correct scope when declaring them.

Running Robolectric unit tests

Now, it's time to write a Robolectric test to verify the view of our BookActivity
class. This test class can be perfectly placed under the /src/test/java/com/
packt/androidMaven package of the AndroidTier module. You can find its
implementation as follows:

package com.packt.androidMaven;

import android.widget.Button;

import android.widget.TextView;

import static org.hamcrest.CoreMatchers.equalTo;
import static org.junit.Assert.assertThat;
import org.junit.Before;

import org.junit.Test;

import org.junit.runner.RunWith;

import org.robolectric.Robolectric;

[73]

www.it-ebooks.info

http://www.it-ebooks.info/

Unit Testing

import org.robolectric.RobolectricTestRunner;

@RunWith (RobolectricTestRunner.class)
public class RobolectricBookActivityTest
private BookActivity bookActivity;
private TextView textView;
private Button button;

@Before

public void init () {
bookActivity =
Robolectric.buildActivity (BookActivity.class) .create() .get () ;
textView = (TextView) bookActivity.findViewById(R.id.textl) ;
button = (Button) bookActivity.findViewById(R.id.buttonl) ;

@Test

public void testButtonLabel ()
String actual = button.getText () .toString() ;
String expected = "View Author Name!";
assertThat (expected, equalTo(actual)) ;

@Test
public void testTextViewText ()
String actual = textView.getText () .toString() ;

String expected = "Book{id=null, title='Maven and Android',
format='eBook', color='black', numberOfPages=150,
brandNew=null}";

assertThat (expected, equalTo(actual)) ;

}

The idea is exactly the same with the test cases we discussed in the previous
paragraphs. Before each test, we create the activity by invoking the Robolectric.
buildActivity () method and we get a reference to the components under testing.
Then, we can write test methods that assert their expected behavior and attributes.
As you can see, the test is a pure JUnit 4 class, and the only line that makes this
particular to the Robolectric execution is that the class is annotated to run using

the RobolectricTestRunner attribute.

To run our test, simply open a terminal, navigate to the application folder
AndroidTier, and run the command as shown in the following screenshot:

mvn clean test

[74]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

i Lo

andio idH

:: B, Errors:

The output will look similar to the following;:

Test run: 2, Failures: 0, Errors: 0, Skipped: 0

You don't need to worry about the warning as it makes no harm.
* Many people have the same question and there is an open ticket

(https://github.com/robolectric/robolectric/

issues/1251) to fix it or provide a clear solution, but for now
let's ignore it as it doesn't affect the test execution.

If you want to run only a specific test class, you can simply run the following
command:

mvn clean test -Dtest=RobolectricBookActivityTest

You can also use your favorite IDE to do so since all of them provide such features.
You can see the results of running Robolectric unit tests inside an IDE as shown in
the following screenshot:

» Both tests passed.(5.645 5)
g 4 com.packt.androidMaven. Robolect

¥ testButtonLabel
& @ testTextViewText

[75]

www.it-ebooks.info

http://www.it-ebooks.info/

Unit Testing

Best approach

Isn't it so cool that we don't need a different module for writing unit tests any more?
Of course, it is; so you might wonder by now, which of the two approaches we
discussed in this chapter is better to follow. The standard way suggested by Google
or the Robolectric way? Although there is no silver bullet, we favor the latter for the
reasons we mentioned in the previous section.

We need to be aware, however, that Robolectric may not support (now or in

the future) components or behavior needed for completely testing an activity.
Furthermore, Robolectric doesn't test activities against real devices or emulators and
this might not catch corner case or incompatibilities or issues with particular versions
and devices. In this case, we have two options:

* Use a combination of the two practices we discussed so far. Have Robolectric
tests during the development but let a build server run the instrumentation
tests. This way, we can have fast tests during development but also catch
problems when the application runs on a real device.

* Leave the parts that are not supported by Robolectric to be integration tested
as we will see in the next chapter.

In all cases, it's up to you to decide based on your experience and skills, your
requirements and the complexity of your application. The good thing is that we
have choices, and Maven is here to support our decisions and easily drive the
execution of any tests.

Measuring test coverage

Having a complete test suites of the source code is very important to know that

the application is bug-free and it has the expected behavior. However, when the
application is growing, it's hard to keep track of which classes are adequately tested
or not. It's hard to know, on other words, the test coverage of our application.

Thankfully, there are several tools that compute the test coverage, and they integrate
very well with Maven; so in this section we will pick two of them (the most popular
and stable ones) and we will see what is the necessary configuration to gather this
information while running our unit tests.

[76]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

JaCoCo

Java Code Coverage (JaCoCo) (http://www.eclemma.org/jacoco/trunk/doc/
maven.html) tool has become the most popular tool for java code coverage in

the last couple of years. The main reasons that made it the first choice is that it is
free/open source, it continuously evolves, it is fast, and does on-the-fly bytecode
instrumentation which leads to more accurate results of code coverage, whereas
the majority of the other tools does offline instrumentation. Maven integration is
supported out of the box by a very easy to configure plugin, and in this section we
will briefly describe the steps to integrate it with our application.

The modifications we will make in order to use JaCoCo will be done in the parent
pom.xml file so that all modules can use it without any additional change. We will
create a Maven profile, and we will configure it to execute JaCoCo for computing
coverage and creating an HTML report.

Maven profiles are mostly used to provide customizable configuration
. for different environments or to provide optional tasks during a build.
% Explaining the details of Maven profiles is out of the context of this
L book; so for more details we suggest that you take a look at Maven's
official page about profiles http://maven.apache.org/guides/
introduction/introduction-to-profiles.html.

Locate the parent pom.xml and add the following section. Usually, the profiles tag
is placed near the end of the file:

<profiles>
<profile>
<id>jacoco</id>
<builds>
<pluginss>
<plugins>
<grouplds>org.jacoco</groupIld>
<artifactId>jacoco-maven-plugin</artifactIds>
<version>0.7.2.201409121644</version>
<executionss>
<execution>
<id>default-prepare-agent</id>
<goals>
<goal>prepare-agent</goal>
</goals>
</executions>
<execution>

[77]

www.it-ebooks.info

http://maven.apache.org/guides/introduction/introduction-to-profiles.html
http://maven.apache.org/guides/introduction/introduction-to-profiles.html
http://www.it-ebooks.info/

Unit Testing

<id>default-report</id>
<phase>prepare-package</phase>
<goals>
<goal>report</goal>
</goals>
</executions>
<execution>
<id>default-check</id>
<goals>
<goal>check</goals>
</goals>
</executions>
</executions>
<configurations>
<excludes>
<exclude>**/R.class</exclude>
<exclude>** /R$* . class</exclude>
<exclude>**/BuildConfig.class</exclude>
</excludes>
</configurations>
</plugin>
</plugins>
</build>
</profile>
</profiles>

In a few words, this profile defines the version of the maven-jacoco plugin and
describes what actions should be done in each phase of the Maven build life cycle.
Finally, we exclude some android-specific autogenerated code because we don't
want to pollute the code coverage report with classes that we cannot affect.

To instruct Maven to use JaCoCo for code coverage and generate report, we need
to run the following command:

mvn clean package -Pjacoco

Let's elaborate a little more about this command. The -Pjacoco command tells
Maven to find the profile named jacoco and use it during its execution. This
practically means that all configurations included in this profile will be added to
the configuration included in the <build> tag of the pom.xm1 file. Additionally,
we need to specify the package Maven phase because we have instructed JaCoCo
to produce the report during the prepare-package Maven phase. Run the
following command:

mvn clean test -Pjacoco

[78]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

The coverage will be computed and stored in a binary (not human-readable) file
named jacoco.exec, located under the target folder, but no HTML reports will
be generated.

The last step is to see the coverage report. Find and open the /target/site/
jacoco/index.html file with your favorite browser / html viewer and it will
look like the following image:

[AndroidTier & Sessions
AndroidTier

Element Missed Instructions+ Cov.+ Missed Branches = Cov.+ Missed+ Cxty+ Missed= Lines+ Missed+ Methods+ Missed= Classes
3 com packt androidMaven 44% nfa 13 18 23 a7 13 18 1 13
Total 750f 133 44% 0of0 nfa 13 18 23 a7 13 18 1" 13

You can click on the package and see the details about the coverage of each class as
shown in the following image:

= AndroidTier > £} com packtandroidMaven [l Source Files ¢® Sessions

com.packt.androidMaven

Element Missed Instructions + Cov.+ Missed Branches = Cov Missed+ Cxty+ Missed+ Lines+ Missed+ Methods+ Missed+ Classes
©® AuthorActivity 0% nfa 2 2 9 k] 2 2 1 1
w View OnClickListener() {.] T 26% nfa 1 2 4 5 1 2 0 1
T 100% nfa o 4 0 14 0 4] 1

45 0f 103 56% 0of0 nfa 3 & 13 27 3 8 1 3

Then, you can drill down to the class level and see the coverage of each individual
file as illustrated in the next image:

[Ew AndroidTier > &3 com.packt.androidMaven > & BookActivity

BookActivity

Element Missed Instructions+~ Cov.+ Missed Branches + Cov.© Missed+ Cxty+ Missed® Lines® Missed+ Methods
o setTextValua(e 100% nfa 0 1 0 5 0 1
@ addListenerOnButton() =20 100% nia 0 1 0 3 0 1
@ onCreate(Bundle)] 100% nia 0 1 0 5 0 1
@ BookActivity() = 100% nfa 0 1 0 1 0 1
Total 00of52 100% Oof0 nfa 0 4 0 14 0 4

[79]

www.it-ebooks.info

http://www.it-ebooks.info/

Unit Testing

Cobertura

A very reliable alternative to JaCoCo is the Cobertura code coverage tool
(http://mojo.codehaus.org/cobertura-maven-plugin/). We can add like we did
with JaCoCo, a new profile to configure the cobertura-maven plugin as shown next.
You don't need to delete the JaCoCo profile. They can live with both of them in the
same pom. xml file:

<profiles>
<id>cobertura</id>
<builds>
<pluginss>
<plugins>
<groupId>org.codehaus.mojo</grouplds>
<artifactIds>cobertura-maven-plugin</artifactIds>
<version>2.5.2</version>
<configurations>
<instrumentations>
<excludes>
<exclude>**/R.class</exclude>
<exclude>**/R$* . class</exclude>
<exclude>**/BuildConfig.class</exclude>
</excludes>
</instrumentations>
</configurations>
</plugin>
</plugins>
</builds>
</profile>

As you can see, we exclude again the classes that we don't want to get reports for
coverage and declare the name and version of the plugin.

o Keep in mind that although there is a newest cobertura-maven
~ plugin (2.6), we use the previous version (2.5.2) because it's not
Q compatible with the Robolectric testing framework and needs

manual declaration of some dependencies.

Now, let's run the following Maven command to run our tests including the
cobertura plugin:

mvn clean package cobertura:cobertura -Pcobertura

[80]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

To see the generated HTML report by the plugin, we can just open this file
:/target/site/cobertura/index.html and then we can navigate from the
application level to the package level and the class level just like we did with the
JaCoCo report. The following image shows how a cobertura report looks:

Packages Coverage Report - All Packages
Package - # Classes Line Coverage
All Packages 3 53% 1
it andraidhiz 3 s S :
All Packages Report generated by Cobertura 1.9.4.1 on 10/19/14 9:40 PM.
Classes

Summary

This chapter was dedicated to the Android unit testing. We covered the two different
ways of testing activities (with and without the usage of emulators/devices), and we
saw how to get reports about the code coverage. By now, you should be able to:

* Understand the difference between unit and integration testing

* Run unit tests in device/emulator using the Android testing library

* Run pure JUnit 4 tests using the Robolectric testing framework

* Configure Maven to generate code coverage reports using JaCoCo

and Cobertura

In the next chapter, we will continue our discussion about testing. This time,
we will cover tools for integration testing that work well with maven.

[81]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Integration Testing

This chapter continues our discussion about Android application testing. Chapter 3,
Unit Testing was dedicated to unit testing, but this one is about integration testing.
We have categorized integration testing into instrumentation testing and Graphical
User Interface (GUI) testing. This classification might not be very clear to you; so
let us explain the reasoning behind this decision.

Both these types of testing require the presence of an emulator or a real Android
device. Instrumentation testing mostly focuses on verifying the interaction between
activities and intents, while GUI testing ensures that the user interface (UI) components
have the expected behavior. This statement does not exclude instrumentation testing
from verifying Ul components or vice versa. In the following sections, we will cover
two tools of each category and the corresponding Maven plugins that let us automate
their execution and their reporting capabilities.

Like we already made clear, our intention is not to provide a reference for the tools
we cover, although you can learn more than the basics to start using them with your
application. Our goal is to give you a practical guide on how to set up your Maven
configuration to effectively use these tools in your development life cycle. For the
purpose of a complete and working example, we will show you some sample code
in order to see these tools in action.

The first part of this chapter discusses the framework provided by Android SDK
and the necessary Maven configuration you need to make it work. It also presents
an alternative way of doing instrumentation testing using Spoon. The second part
is dedicated to GUI testing by covering Selendroid and Robotium, two of the most
popular tools in this field.

www.it-ebooks.info

http://www.it-ebooks.info/

Integration Testing

Fundamentals of instrumentation testing

Before we see how we can configure Maven to execute Android instrumentation
tests, let us elaborate a little more about instrumentation testing. To run such tests,
you will want to set up two things. First, you need a project that contains your tests,
and second you need to deploy your application to a device or a running emulator.
Then, you will be able to run the tests against the deployed application. You should
be familiar with this structure, as we have already seen it in the previous chapter
when we discussed unit testing as an activity.

The difference, however, is that activity unit testing is limited to testing one activity
in isolation of the rest of the system, whereas instrumentation testing can verify the
interaction of all Android components: activities, content providers, and services. You
can start activities by other activities, make use of content providers and consume
services and run complete test scenarios in various Android versions and devices.

This last statement is very critical, and it is even more important that the tool or
the build framework you will choose to run your tests. Verifying your application
in as many as possible target devices should be your number one priority in your
integration testing strategy. Then, the tools, the configuration, and everything else
comes in.

Now that we set the pace about instrumentation testing, it is time to discover what
Android offers us out of the box, and how you can easily configure Maven to do it.

Running Android instrumentation tests

Android uses, like we already saw, JUnit 3. It is the underlying framework to
support instrumentation testing execution. All the tests you will write need to
extend one of the following classes that extend the basic class ActivityTestCase:

* ActivityInstrumentationTestCase2: This class is used for running
activity tests

* ProviderTestCase2: This class is used for running tests of content
providers and making sure that your tests always run against a clean dataset

* ServiceTestCase: This class is used for validating the various states of
your services

test classes provide specific methods and features that facilitate

M Keep in mind also that each of the previously mentioned base
Q the testing of their target components.

[84]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Creating a dedicated integration testing
module

Our first step is to create a new dedicated Maven module that will host our
instrumentation test cases. You should by now be able to create a new Maven
module but for clarity we include the series of required steps.

Open a terminal and navigate to the root folder of the application. Then, type the
following to create a new module:

mvn archetype:generate \
-DarchetypeArtifactId=android-quickstart \
-DarchetypeGroupId=de.akquinet.android.archetypes \
-DarchetypeVersion=1.1.0 \
-DgroupId=com.packt.androidMaven \
-DartifactId=AndroidIntegrationTests \
-Dversion=1.0-SNAPSHOT \
-Dplatform=21 \
--batch-mode \

You can verify that the Maven module was correctly created by following the same
steps we covered in Chapter 3, Unit Testing when created a similar Maven module for
activity unit testing.

Double-check also that the <modules> tag in your parent pom.xm1 file (the pom.xml
file found in the project's root folder) looks like the following snippet:

<modules>
<module>model</modules>
<modulesservice</modules
<module>AndroidTier</modules>
<module>AndroidUnitTests</module>
<module>AndroidIntegrationTests</module>
</modules>

Then, you should include in the newly created AndroidIntegrationTest module's
pom.xml file, like we did in the unit testing module, the dependency of the Android
application that our integration tests will run against, and finally we should add a
similar manifest file that describes the purpose of this module. Next, you can see
how the pom.xm1 file should look. If you compare it with the file generated by the
Maven archetype, you will notice that we have removed all the configurations that
are already defined on the parent pom.xm1 file:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"

[85]

www.it-ebooks.info

http://www.it-ebooks.info/

Integration Testing

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven
.apache.org/xsd/maven -4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>com.packt.androidMaven</groupId>
<artifactId>sampleProject</artifactIds>
<version>1.0-SNAPSHOT</version>
</parent>
<artifactId>AndroidIntegrationTests</artifactIds>
<packagings>apk</packaging>
<dependencies>
<dependencys>
<groupld>com.packt.androidMaven</groupId>
<artifactIds>AndroidTier</artifactIds>
<versions>${project.version}</versions
<scope>provided</scope>
<type>jar</type>
</dependency>
<dependency>
<groupId>com.google.android</groupIds>
<artifactIdsandroid-test</artifactId>
<scope>provided</scope>
</dependency>
</dependencies>
</projects>

Again, like we did in Chapter 3, Unit Testing, we should simplify the corresponding
AndroidManifest.xml file created by the archetype. Here's how it should look. It's
exactly the same with the file we saw in the previous chapter. We just changed the
label to distinguish them:

<?xml vergion="1.0" encoding="UTF-8"?>
<manifest
xmlns:Android="http://schemas.android.com/apk/res/android"
package="com.packt.androidMaven.tests"
android:versionCode="1"
android:versionName="1.0-SNAPSHOT" >
<application android:allowBackup="true">
<uses-library android:name="android.test.runner"/>
</application>
<instrumentation android:name=
"android.test.InstrumentationTestRunner"
android:targetPackage="com.packt.androidMaven"
android:label="Integration Tests of Android Maven App."/>
</manifest>

[86]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Writing a simple instrumentation activity test

Before we give you the code of a very simple test class, let us remind you that
instrumentation tests should be placed under /src/main/java/ location and

not under /src/test/java location, because they are considered as typical code
which is supposed to be executed in a real device or a running emulator. Keeping a
consistency across all Maven modules is always a good practice; so, we suggest that
all instrumentation tests are placed under the com.packt .androidMaven.tests
package. This is also the package name we included in the AndroidManifest .xml
file which was shown in the previous section.

Now, it is time to write a test case that validates the behavior of our little activity
class BookActivity. This time, we don't need to implicitly start the activity like
we did in the unit test example we saw in Chapter 3, Unit Testing, but the Android
test framework will do this for us when we run the instrumentation test case. We
don't want to also test the existence and appearance of all components. Instead, we
want to verify that when the user clicks on the activity's button, then a new activity
AuthorActivity is started.

Here's the code of our instrumentation test case:

package com.packt.androidMaven.tests;

import android.app.Instrumentation.ActivityMonitor;
import android.test.ActivityInstrumentationTestCase2;
import android.test.suitebuilder.annotation.SmallTest;
import android.widget.Button;

import com.packt.androidMaven.AuthorActivity;

import com.packt.androidMaven.BookActivity;

import com.packt.androidMaven.R;

import static junit.framework.Assert.assertNotNull;

public class BookActivityTest extends ActivityInstrumentationTestCase2
<BookActivitys> {

private BookActivity bookActivity;
private Button button;
public BookActivityTest ()

super (BookActivity.class) ;

@Override

protected void setUp() throws Exception
super.setUp () ;
bookActivity = (BookActivity) getActivity() ;
assertNotNull (bookActivity) ;

[87]

www.it-ebooks.info

http://www.it-ebooks.info/

Integration Testing

button = (Button) bookActivity.findViewById(R.id.buttonl) ;

}

@Override
protected void tearDown() throws Exception
super.tearDown () ;

}

@SmallTest

public void testClickButton()
ActivityMonitor activityMonitor =
getInstrumentation() .

addMonitor (AuthorActivity.class.getName (), null, false);
bookActivity.runOnUiThread (new Runnable()

@Override

public void run() {

button.performClick () ;

}
3N
AuthorActivity authorActivity = (AuthorActivity)
getInstrumentation() .waitForMonitorWithTimeout
(activityMonitor, 5000) ;
assertNotNull (authorActivity) ;
authorActivity.finish() ;

}

Let's explain some parts of the code, although it's not the main purpose of this book.
The meat of the test case is found in testClickButton () test method. First, we
need to register the next activity — the one that will be opened when we click on our
button — that needs to be monitored. This is done by adding an AcitivityMonitor
parameter to the current instrumentation that monitors the AuthoraActivity class.
Then, we open the activity by performing a button-click inside a UI thread. Finally,
we get a reference to the activity that is monitored by the AcitivityMonitor
parameter, and we check to see if it is null or not. Don't forget to also close the
opened activity, especially if you have some more tests in the same class.

Let's build the complete package by skipping any unit tests by running the following
Maven command in the root folder of our application.

mvn clean package -DskipTests torun our instrumentation test—assuming that
you already have a real device connected or a running emulator and that the actual
Android application is already deployed —we need to execute the following Maven
command from a terminal inside the AndroidIntegrationTests directory:

mvn clean install

[88]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

- Remember that our test code is not placed in Maven's test folder and
so we can't execute the tests by the typical command such as follows:
-

mvn clean test

If everything goes right (it should!), you will see something like the following
screenshot when the Maven command finishes:

[INFO]1 Found 1 devices connected with the Android Debug Bridge

[INFO] android.device parameter not set. using all attached devices

[INFO]1 Device CBS51Z24BUWNU _Sony_C5383 found.

[INFO1 CB5124BUNMU_Sony_CLh383 : Successfully installed C:sdevsandroidspackt™And
roidMavenDevelopment~Chapterd4~AndroidIntegrationTeststarget “AndroidintegrationT
ests_apk to CBS124BUNU_Sony_C5303

LINFOQ1

[INFO]1 —— android-maven—plugin:=3.8.2:internal-integration—-test <{default—-interna
1-integration—test? B AndroidlntegrationTests ——

[INFO1 Found 1 devices connected with the Android Debug Bridge

[INFO] android.device parameter not set, uwusing all attached devices

[INFO]1 Device CBS1Z24BWNU _Sony_C5383 found.

[INFO1 CB5124BUNU_Sony_CH383 : RBunning instrumentation tests in com.packt.andy
pidMaven.tests

[INFO1 CBS51Z24BUHU_Sony_C5383 - Run started: com.packt_androidMaven_-tests, 1
ests:

[INFO]1 CBS1Z4BUWMU_Sony_C5383 - Start [1-1]1: com.packt_androidMaven_tests_H
pokfActivityTestiitestClickButton

[INFO1 CB5124BUNMU_Sony_C5383 - End [1/11: com.packt.androidMaven.tests . Boo
kActivityTesti#testClickButton

[INFO1 CB5124BUNU_Sony_C5383 : Run ended: 1821 m=

LINF(1] Tests run: 1, Failures: @, Errors: @

If you're running instrumentation tests on a slow device or emulator, you might

also notice that all interactions instructed in the tests are displayed while running the
tests. This is one of the major reasons why we have classified under unit testing, tests
that validate activities in isolation. This applies to, when talking about integration
tests in Android.

Grabbing screenshots with Spoon

A typical Android application consists of several activities with many components
and various flows of user interaction. Instrumentation tests should be able to cover
if not all, most of the activity flows; so, hundreds of instrumentation tests might run
every time the corresponding Maven goal is invoked. It is also very common during
the development cycles that some tests might get broken due to some recent changes
or new Android SDKs or new incompatible devices. Maven can report on the errors
found during a test run, but in some cases the information provided is not enough.
A picture worth a thousand words, so wouldn't be much better if we could have a
report of all screenshots taken during integration test execution?

[89]

www.it-ebooks.info

http://www.it-ebooks.info/

Integration Testing

Spoon (http://square.github.io/spoon/) comes to the rescue and allows us

to do two things that are not offered through the Android testing framework. First
while running the tests we can grab screenshots and second, after finishing the test
execution, we can produce a more human-readable test report. But there's more.
Spoon can run all your instrumentation tests across all connected devices or running
emulators and produce comprehensive reports per device or per test case. Let's take
a look right away of the steps needed to drive instrumentation tests using Spoon
with Maven.

Configuring Spoon with Maven

For clarity and to avoid mixing standard Android instrumentation tests with
Spoon-driven tests, let's create a new Maven module like we previously did in
this chapter, but this time we should give a different name to the module; that is,
SpoonIntegrationTests. Here's the corresponding Maven command line to
execute inside the root folder of our application:

mvn archetype:generate \
-DarchetypeArtifactId=android-quickstart \
-DarchetypeGroupId=de.akquinet.android.archetypes \
-DarchetypeVersion=1.1.0 \
-DgroupId=com.packt.androidMaven \
-DartifactId=SpoonIntegrationTests \
-Dversion=1.0-SNAPSHOT \
-Dplatform=21 \
--batch-mode \

Integrating Maven with Spoon requires a series of steps. First, we need to add a
dependency to the Spoon client and the Spoon Maven plugin in the pom.xm1 file
of our SpoonIntegrationTests module. Next you can find the pom. xml file of
the newly created Spoon module, as it should look like this:

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://Maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
Xsi:schemaLocation="http://Maven.apache.org/POM/4.0.0
http://Maven.apache.org/xsd/Maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>

<parent>
<groupId>com.packt.AndroidMaven</groupld>
<artifactId>sampleProject</artifactId>
<version>1.0-SNAPSHOT</version>

</parent>

[90]

www.it-ebooks.info

http://square.github.io/spoon/
http://www.it-ebooks.info/

Chapter 4

<artifactId>SpoonIntegrationTests</artifactIds>
<packagings>apk</packaging>
<propertiess
<spoon.version>1l.1l.2</spoon.version>
</properties>
<dependencies>
<dependencys>
<groupId>com.packt.androidMaven</groupId>
<artifactIds>AndroidTier</artifactIds>
<version>${project.version}</versions>
<scope>provided</scope>
<type>jar</types>
</dependency>
<dependencys>
<groupId>com.packt.androidMaven</groupId>
<artifactIds>AndroidTier</artifactIds>
<version>${project.version}</versions>
<scope>provided</scope>
<type>apk</type>
</dependency>
<dependencys>
<groupId>com.google.android</groupIds>
<artifactIdsandroid-test</artifactIds>
<version>4.1.1.4</versions>
<scope>provided</scope>
</dependency>
<dependencys>
<groupId>com.squareup . spoon</groupIds>
<artifactIds>spoon-client</artifactIds>
<version>${spoon.version}</versions>
</dependency>
</dependencies>
<builds>
<pluginss>
<plugins>
<groupId>com.squareup . spoon</groupIds>
<artifactId>spoon-maven-plugin</artifactIds>
<version>${spoon.version}</versions>
<configurations>
<title>Spoon 'Android Development with Maven'
Sample</titles>
<debug>true</debug>
</configurations>
<executionss>

[91]

www.it-ebooks.info

http://www.it-ebooks.info/

Integration Testing

<execution>
<phase>integration-test</phase>
<goals>
<goal>run</goals>
</goals>
</executions>
</executions>
</plugins>
</plugins>
</build>
</project>

As you can see, we still need the same dependencies of the target Android
application and the Android test libraries. The spoon-maven plugin is also
configured to run during the Maven integration test phase. Next, we need to give
our target application the following permissions in order to be allowed to take
screenshots during instrumentation test execution. To do this, you should add the
following lines in the AndroidManifest.xml file of the AndroidTier module.

<uses-permission android:name=
"android.permission.DISABLE KEYGUARD"/>

<uses-permission android:name="android.permission.WAKE LOCK"/>

Please make sure that the preceding permissions are granted only for instrumentation
tests and not for production applications unless it is absolutely necessary. Ideally,

we should use Maven profiles to specify a test-ready profile and a production-ready
profile. Since the profile concept is covered in the next chapter, we strongly advise you,
as an exercise, to come back to this one, after finishing Chapter 5, Android Flavors, and
try to change our approach by introducing profiles.

You should also copy the BookActivityTest class we created for instrumentation
tests in the previous section under the same name and same package com/packt/
androidMaven/tests location. We are going to change it a little in a few moments,
but for now don't modify it. First we need to create a new instrumentation test
runner which disables the keyguard and wake up the screen during execution. For
simplicity you can place it in the same package with the BookActivityTest class.
Here's the code of the test runner class. What it actually does is to first unlock the
device so that the tests can input keystrokes, and then wakes up the screen for
getting screenshots:

package com.packt.androidMaven.tests;
import android.app.Application;

import android.app.KeyguardManager;
import android.os.PowerManager;

[92]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

import android.test.InstrumentationTestRunner;

import static android.content.Context.KEYGUARD SERVICE;
import static android.content.Context.POWER SERVICE;

import static android.os.PowerManager.ACQUIRE CAUSES WAKEUP;
import static android.os.PowerManager.FULL WAKE LOCK;

import static android.os.PowerManager.ON AFTER RELEASE;

public class SpoonInstrumentationTestRunner extends
InstrumentationTestRunner {

@Override
public void onStart() {
runOnMainSync (new Runnable () {
@Override

Application app (Application)
getTargetContext () .getApplicationContext () ;
String simpleName =
SpoonInstrumentationTestRunner.class.getSimpleName () ;
((KeyguardManager) app.getSystemService (KEYGUARD SERVICE))
.newKeyguardLock (simpleName) .disableKeyguard () ;
((PowerManager) app.getSystemService (POWER SERVICE))
.newWakeLock (FULL WAKE LOCK | ACQUIRE CAUSES WAKEUP |
ON_AFTER RELEASE, simpleName).acquire() ;
}
1)

super.onStart () ;

public void run() {
(

}

The manifest file of our newly created module should also look like the following.
Notice that we don't anymore use the Android instrumentation test runner, but the
test runner we just created before:

<?xml versgion="1.0" encoding="UTF-8"?>
<manifest
xmlns:android="http://schemas.android.com/apk/res/android"
package="com.packt.androidMaven.tests"
android:versionCode="1"
android:versionName="1.0-SNAPSHOT" >
<application android:allowBackup="true">
<uses-library android:name="android.test.runner"/>
</application>
<instrumentation android:name=".SpoonInstrumentationTestRunner"
android:targetPackage="com.packt .androidMaven"
android:label="Spoon Tests of Android Maven App."/>
</manifest>

[93]

www.it-ebooks.info

http://www.it-ebooks.info/

Integration Testing

Now, let's go back to the BookActivityTest class and instruct Spoon to grab some
screenshots during test execution. Add the following line:

Spoon.screenshot (bookActivity, "Book Activity started");

Take this as the first line of the testclickButton () method and the following as the
last line of the same method:

Spoon.screenshot (authorActivity, "Author Activity opened") ;

Running Spoon and viewing the reports

Now, we are ready to let Spoon drive the execution of our instrumentation tests. To
do so, run the following commands from a terminal inside the Maven module folder
that contains the Spoon instrumentation tests SpoonIntegrationTest:

mvn clean:packagemvn spoon:run

The output is completely different of what we've seen so far running standard unit
and integration Android tests and this is absolutely expected because now the tests
are executed by a different Maven plugin. When all tests are completed, the reports
have been generated and can be found under the /target/spoon-output directory.
Open the index.html file with your favorite browser, and you will get a report
similar to the following image:

Spoon Android
Development with Maven
Sample |

BookActivityTest

Click Button
Nexus4-18-xhdpi

Sony C5303

[94]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

You can click on any device or emulator and see the detailed results for the selected
target or you can click on the green bar which represents the test cases run and see
the results of a specific test case.

We strongly recommend you to create some more tests on your own, add statements
to grab screenshots, make some tests intentionally failing, and run all of them against
several emulators. The report will be really a blast!

Working with Robotium

Robotium (https://code.google.com/p/robotium/) is yet another framework
that focuses on instrumentation testing, but it's more friendly for Ul testing. Like
we did in almost every tool we have discussed so far, you need to create a separate
Maven module. Here's the corresponding Maven command line to execute inside
the root folder of our application:

mvn archetype:generate \
-DarchetypeArtifactId=android-quickstart \
-DarchetypeGroupId=de.akquinet.android.archetypes \
-DarchetypeVersion=1.1.0 \
-DgroupId=com.packt.androidMaven \
-DartifactId=RobotiumTests \
-Dversion=1.0-SNAPSHOT \
-Dplatform=21 \
--batch-mode \

When you are done, double-check that the parent Maven configuration file, pom.
xml, contains the new module in the <modules> tag. The pom.xml file of the newly
created module, RobotiumTests, should contain the required dependencies for
Robotium and the application under testing like we saw in the previous sections:

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
Xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>

<parent>
<groupIds>com.packt.androidMaven</groupIld>
<artifactId>sampleProject</artifactId>
<version>1.0-SNAPSHOT</version>

</parent>

<artifactId>RobotiumTests</artifactIds>

[95]

www.it-ebooks.info

https://code.google.com/p/robotium/
http://www.it-ebooks.info/

Integration Testing

<packagings>apk</packaging>
<propertiess
<robotium.version>5.2.1</robotium.versions>
</properties>
<dependencies>
<dependencys>
<groupId>com.packt.androidMaven</groupId>
<artifactIds>AndroidTier</artifactIds>
<version>${project.version}</versions>
<scope>provided</scope>
<type>jar</types>
</dependency>
<dependencys>
<groupId>com.packt.androidMaven</groupId>
<artifactIds>AndroidTier</artifactIds>
<version>${project.version}</versions>
<scope>provided</scope>
<type>apk</type>
</dependency>
<dependencys>
<groupId>com.google.android</groupId>
<artifactIdsandroid-test</artifactIds>
<version>4.1.1.4</versions>
<scope>provided</scope>
</dependency>
<dependencys>
<groupIds>com.jayway.android.robotium</groupId>
<artifactIdsrobotium-solo</artifactIds>
<version>${robotium.version}</versions>
</dependency>
</dependencies>
</project>

The application should also contain the same AndroidManifest .xml file of the
AndroidIntegrationTests module. You can change, however, if you want the
application label to include the word "Robotium". Typically, we could merge these two
modules, but for better clarity we decided to handle each tool in a different module.

A Robotium test looks similar to the classic Android instrumentation test but the
library contains the solo class which provides several helper methods to drive the
execution of the test and the assertion of the UI components. In the following text,
you can find a very simple Robotium test case. It opens the BookActivity activity,
clicks on the button, then verifies that the second activity, AuthorActivity, has been
opened, and finally checks that the expected text exists.

[96]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Here's the exact code of what we have discussed so far:

package com.packt.androidMaven.tests;

import android.test.ActivityInstrumentationTestCase2;
import android.test.suitebuilder.annotation.SmallTest;
import com.packt.androidMaven.AuthorActivity;

import com.packt.androidMaven.BookActivity;

import com.robotium.solo.Solo;

import static junit.framework.Assert.assertTrue;
import static junit.framework.Assert.fail;

public class BookActivityTest extends ActivityInstrumentationTestCase2

<BookActivitys> {
private Solo solo;
public BookActivityTest ()
super (BookActivity.class) ;

@Override
public void setUp() throws Exception {
solo = new Solo(getInstrumentation(), getActivity());

@Override
public void tearDown () throws Exception {
solo.finishOpenedActivities () ;

@SmallTest
public void testClickButton() throws Exception {
solo.clickOnButton ("View Author Name!") ;
if (solo.waitForActivity(AuthorActivity.class)){
assertTrue (solo.searchText ("Patroklos Papapetrou")) ;
}
else {
fail ("No author activity started!");

}

If we compare this test with the test of page 4, we will notice that both of them set
up the testing environment by initializing the activity we want to test, run the test
methods, and finally release all resources. The main difference is that, when using

Robotium, the code is more compact and clearly more simple and readable.

[97]

www.it-ebooks.info

http://www.it-ebooks.info/

Integration Testing

To run our test, we need to execute the following Maven command from a terminal
inside the Robotium tests Maven module folder:

mvn clean install

Please make sure that the emulator/device screen you will use to
JM run Robotium tests is unlocked; otherwise, you will receive an error
Q during execution. If you haven't compiled the parent project so far,
you can run the following Maven command on the root folder:

mvn clean package

The output is expected to be the same with the one we saw when running
instrumentation tests using Android's testing framework.

Ul Tests made easy with Selendroid

So far, we examined frameworks and tools that focus on Android components such
as activities, services, intents, and so on. This is, with no doubt, very useful, but one
of the key factors for a successful mobile application is a bug-free UL In this section,
we will discuss one of the most popular —and easy to use with Maven — tools for

UI: Selendroid (http://selendroid.io/). One might argue that Selendroid is not
the only available options for Android Ul Testing, and this is absolutely true. It is a
highly emerging field, but at the time of writing the book we had to pick only one of
them due to the limited number of pages. We made our choice based on the level of
integration with Maven, the maturity, stability, and the easiness of writing test cases.

Selendroid is a testing framework for native, hybrid, and mobile web applications
based on Selenium, the most popular web Ul testing framework. To use Selendroid,
you should have a basic knowledge of Selenium because the tests are written using
the Selenium 2 Client API. You can run Selendroid tests against emulators or real
devices connected to the machine that runs the Selenium Client. In the remaining
part of this section, we will show you how to configure Maven, then we will explore
a basic Selendroid test case for our application, and finally we will see how to run
the test using Maven.

Configuring Selendroid
Again, you will need to create a new Maven module and give it the following name:
SelendroidTests with the following Maven command:
mvn archetype:generate \
-DarchetypeArtifactId=android-quickstart \

-DarchetypeGroupId=de.akquinet.android.archetypes \

[98]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

-DarchetypeVersion=1.1.0 \
-DgroupId=com.packt.androidMaven \
-DartifactId=SelendroidTests \
-Dversion=1.0-SNAPSHOT \
-Dplatform=21 \

--batch-mode \

When you finish creating the new module, the parent Maven configuration file,
pom.xml, should contain the new module in the <modules> tag, The pom.xm1 file
of the created module should contain the required dependencies for Selendroid
(the standalone server and the client) and JUnit 4, which is used as the underlying
framework to run the tests. You can see how this should look:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
Xs1i:schemalocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>com.packt.androidMaven</groupId>
<artifactIds>sampleProject</artifactIds>
<version>1.0-SNAPSHOT</version>
</parent>
<artifactId>SelendroidTests</artifactIds>
<propertiess
<gselendroid.version>0.12.0</selendroid.version>
</propertiess>
<dependencies>
<dependency>
<groupId>junit</groupIlds>
<artifactId>junit</artifactIds>
<version>4.10</version>
</dependency>
<dependency>
<groupld>io.selendroid</groupIld>
<version>${selendroid.version}</versions
<artifactId>selendroid-standalone</artifactIds>
</dependency>
<dependency>
<groupld>io.selendroid</groupIld>
<version>${selendroid.version}</versions
<artifactIdsselendroid-client</artifactIds>

[99]

www.it-ebooks.info

http://www.it-ebooks.info/

Integration Testing

</dependency>
</dependencies>
</project>

Now here comes the tricky part. So far, we learned that for almost all frameworks
we covered, we need to include the APK and JAR files of our target application as
dependencies to the pom. xml file. For Selendroid test cases, this is not required, but it
is expected that the APK file of the application to test is available in the same project.
A good practice is to place it under the src/main/resources folder. This way, we
can instruct Selendroid as we will see in a moment to use this APK for running the
tests. Clearly, we want this step to be an automated task; so, we need to add the
following section in the pom. xm1 file of the SelendroidTests module:

<builds>
<pluginss>
<plugins>
<grouplds>org.apache.maven.plugins</groupId>
<artifactId>maven-dependency-plugin</artifactIds>
<version>2.9</version>
<executionss>
<execution>
<id>copy-app</id>
<phase>generate-resources</phase>
<goals>
<goal>copy</goals>
</goals>
<configurations>
<artifactItems>
<artifactItem>
<groupId>com.packt.androidMaven</groupId>
<artifactIds>AndroidTier</artifactIds>
<version>${project.version}</versions>
<type>apk</type>
<outputDirectory>${project.build.directory}
</outputDirectorys>
<destFileName>AndroidTier.apk</destFileName>
</artifactItem>
</artifactItems>
</configurations>
</executions>
</executions>
</plugin>
</plugins>
</build>

[100]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

The preceding configuration tells Maven to grab the AndroidTier. apk file, which is
generated and located under the AndroidTier/target folder, and copy it to src/
main/resources folder of the SelendroidTests module. There's one more thing
we need to take care. Selendroid starts a web server on the device/emulator where
the Application Under Test (AUT) is deployed and tested. As you already know, to
allow an Android application to open network sockets we need to add the Internet
permission in the AndroidManifest .xml file of the AndroidTier module:

<uses-permission android:name="android.permission.INTERNET"/>

The last step is to run the following Maven command from the root folder of the
Maven project to copy the AndroidTier. apk file to the desired location. We don't
want to run all the tests we created so far; so, it's a good idea to use the skipTests
Maven argument:

mvn clean package -DskipTests

Now, we are ready to write a simple Selendroid test, which is discussed in the
following section.

Writing Selendroid Ul Tests for Maven native
applications

As we already mentioned, Selendroid tests use JUnit 4; so we should place them
under the src/test/java folder. Here's the code for a simple Selendroid test case
that verifies that the label of our button:

package com.packt.androidMaven.tests;

import io.selendroid.SelendroidCapabilities;
import io.selendroid.SelendroidConfiguration;
import io.selendroid.SelendroidDriver;

import io.selendroid.SelendroidLauncher;

import org.junit.AfterClass;

import org.junit.Assert;

import org.junit.BeforeClass;

import org.junit.Test;

import org.openga.selenium.By;

import org.openda.selenium.WebDriver;
import org.openda.selenium.WebElement;

public class SelendroidTest
private static SelendroidLauncher selendroidServer = null;

[101]

www.it-ebooks.info

http://www.it-ebooks.info/

Integration Testing

private static WebDriver driver = null;

@BeforeClass
public static void startSelendroidServer () throws Exception {
if (selendroidServer != null)

selendroidServer.stopSelendroid () ;
}
SelendroidConfiguration config = new
SelendroidConfiguration() ;
config.addSupportedApp ("target/AndroidTier.apk") ;
config.setForceReinstall (true) ;
selendroidServer = new SelendroidLauncher (config) ;
selendroidServer.launchSelendroid() ;
SelendroidCapabilities caps = new SelendroidCapabilities
("com.packt .AndroidMaven:1.0-SNAPSHOT") ;
driver = new SelendroidDriver (caps) ;

@AfterClass
public static void stopSelendroidServer() {
if (driver != null) {

driver.quit () ;

}

if (selendroidServer != null)
selendroidServer.stopSelendroid () ;

@Test

public void testShouldBeAbleToEnterText ()
WebElement button = driver.findElement (By.id ("buttonl")) ;
Assert.assertNotNull (button) ;
Assert.assertEquals ("View Author Name!", button.getText());

}
}

The code speaks for itself, but we would like to point out a couple of important things
you should have in mind. The @BeforeClass method is responsible for starting the
Selenium server using a configuration object, pointing to the APK file of the AUT. The
last line of this method initializes the Selendroid driver that will run the tests of the
class. It is strongly recommended, also, to use the setForceReinstall () method so
that even if the AUT is already deployed, Selendroid will deploy the latest available
version. The eafterClass method stops the Selendroid driver and the Selendroid
Server, which is a best practice that cleans up the resources used.

[102]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

To run the tests, you can simply run the following Maven command from a terminal
window in the selendroidTest module. Make sure that at least one device/
emulator is connected/running to your environment:

mvn test

M Selendroid tests, like Robotium tests, will not run on a device/emulator
Q that has a locked screen; so, make sure that before you run your tests
you have disabled any screen locks.

The output of the preceding Maven command is usually big, and so there's no reason
to display it here. You can see information messages about shell commands executed
by Selendroid, starting and stopping servers on your device/emulator and executing
tests. It's a good idea, however, to tell you what is going behind the scenes. The APK
of the AUT is resigned again with the same certificate that the Selendroid server is
signed, and both of them are deployed on the device. Then, the Selendroid client
joins the game and runs the test methods. Since they are typical JUnit 4 tests, the
surefire plugin will execute them and you will get the same output results like the
unit tests we discussed in the previous chapter.

Other integration testing tools

There are a couple of tools that we think deserve their own little space in this
integration testing chapter. We won't cover them in detail, but we want to give you
some basic idea of how you can use them in a Maven environment. The reason that
we didn't cover them in separate sections is that they don't have a straightforward
Maven integration, and many things should be done manually:

* Espresso (https ://code.google.com/p/android-test-kit/wiki/
Espresso): It is a funny-tiny framework that allows you to quickly run
integration tests without worrying about waits, syncs, sleeps, and all these
annoying things. The required library does not exist in any public Maven
repository; so, you need to download and build the code by yourself
and then add it to your local Maven repository. Then you can add the
dependency to your project. The idea is again the same. You need to add
the APK and JAR dependencies of the AUT in your pom.xml file and write
instrumentation tests using Espresso's testing utilities. To run the tests, an
mvn clean install command should be enough.

[103]

www.it-ebooks.info

http://www.it-ebooks.info/

Integration Testing

* Appium (http://appium.io): It is mostly known for testing iOS native
applications and mobile-web applications, but it can also be used for running
Android tests as well. For this purpose, you can use the java wrapper and
add it as a dependency to your pom. xml file:
<dependency>

<groupld>io.appium</groupld>
<artifactIds>java-client</artifactIds>
<version>2.1.0</version>

</dependency>

* Appium uses Selenium client; so, like Selendroid that we previously
discussed, we don't need the dependencies of the AUT in the pom.xm1 file.
However, you can't directly run the Appium server from Maven, and so it
should run prior to the test execution.

* Both tools look promising, but since they don't provide an easy integration
with Maven, we decided not to explain them in details. This, however,
doesn't stop you from playing with them and try to develop a way to make
them part of a Maven development process. Consider this as the next step
of your Maven expertise you will get from this book.

Summary

This chapter was dedicated to the Android integration and UI testing. We covered
four alternatives in detail to write your tests. We started by discussing the standard
way of writing instrumentation tests, as proposed by the Android framework. Then,
we saw some great tools like Spoon, Robotium, and Selendroid that either provide
better ways to write functional tests or add more features like screenshots and better
reporting. By now, you should be able to:

* Set up all tools in Maven as we discussed in this chapter

* Select the tool that fits better for your application or for your
development environment

* Write the basic integration tests and run them using Maven commands

We leave behind the topics of Android testing and we can move on to the next
chapter that is dedicated to how to use Maven for multi-versioned applications.

[104]

www.it-ebooks.info

http://www.it-ebooks.info/

Android Flavors

One of the problems that many Android developers have to deal with, regardless
of the build tool they are using, is the ability to create different versions of their
application based on the same code base with slightly different settings, set of
features, and so on. In this chapter, we discuss how we can configure Maven to
automate the process of creating different application versions. In particular, we
cover the following;:

* Introduction to Maven profiles
* Creating profiles with different package inclusions
* Dynamically modifying project's package in manifest file

* Managing Android libraries with Maven

Problem statement

Let's face the truth. Very few developers and no companies want to write code
without getting paid. Android application is not an exception to this rule. On the
other hand, we can find thousands of applications available in the market place,
free to download. How companies earn money while they make their applications
available without a download fee? There are three popular ways to monetize a
mobile application —not Android-specific:

* Support ads in the application

* Provide a minimum set of features in a free application (maybe called demo
version) and the complete feature set in a paid application

* Support in-app purchases (Freemium mode)

www.it-ebooks.info

http://www.it-ebooks.info/

Android Flavors

It seems that the last one has become the number one choice, especially when

we talk about applications that have to do with gaming or fun in general. But you
can find thousands of nongaming-related applications in the Android Market/
Google Play that follows the first two approaches. So far so good. The problems
begin when dealing with the fact that the Android Market/Google Play enforces
developers to use a unique package name for each application deployed in the
market place. The version concept is related to subsequent releases of the same
application; so, you cannot define flavors (free, ads-supported, paid) of the same
application keeping the package name untouched.

One might think that we can just change the package name inside the
AndroidManifest.xmnl file, set a demo flag to True or False, depending on the
version we want to build, recompile the project with the new package name, and
deploy it to Android Market. This would be an ideal scenario, but unfortunately
it is not that easy as it sounds.

Like we said, the application package name is configured inside the
AndroidManifest.xml file, as you can see in the following code sample.
This name will be used when uploading the application to Android Market.
We will discuss about deploying applications in the next chapter:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.packt.androidMaven"
android:versionCode="1"
android:versionName="1.0-SNAPSHOT" >
<uses-sdk
android:minSdkVersion="8"
android:targetSdkVersion="21" />
<activity android:name=".AuthorActivity" >
</activitys>
</application>
</manifest>

Now, try to change the value of the package name of the AndroidTier module
AndroidManifest.xml file to something else ,that is, com.packt .anroidMavenPaid,
and recompile your project. You will get some errors that look like the following:

COMPILATION ERROR :

com/packt/androidMaven/BookActivity.java: [23,25] package R does not exist
com/packt/androidMaven/BookActivity.java: [32,45] package R does not exist
com/packt/androidMaven/BookActivity.java: [37,41] package R does not exist

3 errors

[106]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

This happens because when Android generates the rR. java class, it uses the new
package name defined in AndroidManifest.xml file. However, the imports in our
Maven project across all Java classes still reference the previous name, com.packt .
anroidMaven. This is our primary road block, because every time you need to release
a new version you should go and manually change all imports in the application.
Clearly, you never want to do this.

A possible solution would be to have two branches of the same application. One for
developing the full paid version on the main branch and another one for packaging
the demo/ads-supported version. This second branch should have all the required
adjustments in the code to build the demo version including demo flags, different
manifest file, updated imports point to another rR. java class, and so on. You can try
it if you want, but after some time you will find yourself doing dangerous and error-
prone merges of these branches to keep them synced when you add code that should
exist in both versions.

There must be a more intelligent, more automated, and developer friendly solution
to overcome this problem. This solution has a name: Maven build profiles. In the
next section, we will shortly discuss the basic concept of Maven profiles and then we
will start configuring our application for building a demo version and a paid version.

Introducing Maven profiles

So far, our Maven configuration files, pom.xm1, are quite straightforward with no
advanced settings. Actually, we have already used Maven profiles in Chapter 3,
Unit Testing, when we wanted to compute the code coverage of our unit tests using
JaCoCo. Our case was to have this coverage computation executed only when we
explicitly instruct Maven to do it.

In general, build profiles are used in several cases. The most common scenario is to
make builds environment agnostic so that they can be executed in any platform or
operating system without changing them every time. Profiles can also be used when
we want to describe a specific set of build steps that are not required to be included
in our daily builds, like the code coverage computation we discussed in Chapter 3,
Unit Testing. Profiles are also used to make pom.xm1 files more readable. Instead of
having all build steps inside the <build> tag, we can modularize them in concrete
profiles that are activated by default when we trigger a build.

We can specify a profile by using a subset of the available elements we can use in
the pom.xm1 file. When a Maven build is triggered with one or more profiles, this
practically changes the pom.xml file during build time by merging the configuration
provided in these profiles with the parameters used in the main configuration path.

[107]

www.it-ebooks.info

http://www.it-ebooks.info/

Android Flavors

Profiles can be defined in three levels:

* Project level: This defines profiles in the pom. xml file itself. Such profiles
will be available only in the current project and also in projects that inherit
from it.

* User level: This defines profiles in the user settings.xml file. This file is
usually located under this folder: $USER_HOME%/ .m2/settings.xml. Such
profiles will be available for all projects of the login user.

* Global level: This defines profiles in the global —Maven installation
settings.xml file. This file is usually located under this folder: $M2_HOME%/
conf/settings.xml. Such profiles will be available for all projects run in the
target machine.

N If both user level and global level settings files exist, their contents get

merged, with the user-specific configuration being dominant.

Activation of build profiles can be done also in various ways including OS settings,
Maven settings, based on environment variables. In our case, however, we want to
trigger a profile explicitly and so we will use the command line activation like we
already did in Chapter 3, Unit Testing. The following command describes the manual
activation of profiles when running a Maven command:

mvn groupId:artifactId:goal -P profile-1,profile-2

profile-1 and profile-2 are profile names defined in any of the configuration
levels we mentioned previously.

Creating build profiles

When developing applications that can be distributed/downloaded from Android
Market/Google Play place in more than one flavor, we usually implement the project
structure in such a way so that the code is needed only for a particular version that is
located inside a package or a module and is completely isolated from the rest of the
application. Let's focus on the user story As a developer, I want to maintain in parallel
two versions of my application, one feature-limited and a full paid version. We can achieve
this isolation by keeping the code needed for the paid version in a different package
or in a completely different library. In the following section, we will show you

how you can configure Maven to handle both cases and create two different build
strategies. If you understand the fundamental concepts and the way we handle in
Maven different versions of the same application, then you expand this knowledge
to cover more than two versions, for instance, have an ads-supported version.

[108]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Separation by packaging

Let's try the first solution, Separate features by package. To demonstrate it, we will
need to add a new Android activity in our AndroidTier Maven module, located

in a different package than the one we used for the activities shown in the previous
chapters. Then, we will need to modify one of our existing activities, BookActivity.
java, and add a new button that starts the new activity only if it exists. Finally, we will
create two build profiles, one that includes the new activity and one that does not.

First we create a new package named com.packt.paid, and add the new activity as
shown here:

package com.packt.paid;

import android.app.Activity;
import android.os.Bundle;
import android.widget.TextView;

public class PaidActivity extends Activity {

@Override

public void onCreate (Bundle savedInstanceState)
super.onCreate (savedInstanceState) ;
TextView textView = new TextView (this) ;
textView.setTextSize (40) ;
textView.setText ("Thank you for purchasing my app!");
setContentView (textView) ;

}

Now we want to register this activity in our AndroidManifest.xml file but we want
to allow our application to start the activity without directly calling its class name.
This is needed because in the case of the free version our application will be built
without the paid package. To do so, we need to add an intent filter in its declaration.
Here is the code snippet you need to add in the AndroidManifest .xml file.

<activity android:name="com.packt.paid.PaidActivity" >
<intent-filters>
<action android:name="com.packt.paid.intent.action.Launch" />
<category android:name="android.intent.category.DEFAULT" />
</intent-filters
</activitys>

[109]

www.it-ebooks.info

http://www.it-ebooks.info/

Android Flavors

Finally, let's modify BookActivity.java class by adding a new button that, when
clicked, will try to start this new activity. If it is not found, it will display a message
prompting the user to purchase the paid version of the application. First, we need
to register this button in the activity main.xml file located under /res/layout
folder by adding the following XML configuration:

<Button
android:id="@+id/paidbutton"
android:layout width="wrap content"
android:layout height="wrap content"
android:text="@string/try me"
android:layout marginTop="65dp"
android:layout below="@+id/buttonl™
android:layout centerHorizontal="true" />

Don't forget to also add the new string resource we just used, @string/try_me, by
adding the following line inside the resources tag of the strings.xml file located
under /res/values folder:

<string name="try me"s>Try me!</strings

Finally, here's the updated version of the BookActivity.java class which contains a
new method to create a listener on the new button. When user clicks on this button,
then our application will try to start the paidactivity.java class by using the
intent filter we just specified in the AndroidManifest.xml file. The changes from the
previous version of the file are highlighted to better understand what is new in the
current implementation:

package com.packt.androidMaven;

import android.app.Activity;

import android.content.ActivityNotFoundException;
import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.view.View.OnClickListener;

import android.widget.Button;

import android.widget.TextView;

import android.widget.Toast;

import static android.widget.Toast.LENGTH SHORT;
import com.packt.androidmaven.model.Book;

import com.packt.androidmaven.service.BookService;
import com.packt.androidmaven.service.BookServiceImpl;

public class BookActivity extends Activity {

[110]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

private Button button;
private TextView textView;
public final static String AUTHOR = "com.packt.androidMaven.AUTHOR";

@Override

public void onCreate (Bundle savedInstanceState)
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);
setTextValue () ;
addListenerOnButton () ;
addListenerOnPaidButton() ;

private void setTextValue()
BookService bookService = new BookServiceImpl () ;
final Book book = bookService.createBook ("Maven and Android",
"eBook",
"black", 150) ;
textView = (TextView) findvViewById(R.id.textl);
textView.setText (book.toString()) ;

public void addListenerOnButton()

button = (Button) findViewById(R.id.buttonl) ;
button.setOnClickListener (new OnClickListener () {
@Override

public void onClick (View view) {
Intent intent = new Intent (view.getContext (), AuthorActivity.
class) ;
intent.putExtra (AUTHOR, "Patroklos Papapetrou") ;
startActivity (intent) ;

3N

public void addListenerOnPaidButton() {
button = (Button) findViewById(R.id.paidbutton);
button.setOnClickListener (new OnClickListener () {
@Override
public void onClick(View view) {
Intent intent = new Intent("com.packt.paid.intent.action.
Launch") ;
try {
startActivity(intent) ;

[111]

www.it-ebooks.info

http://www.it-ebooks.info/

Android Flavors

catch (ActivityNotFoundException e) {

Toast.makeText (view.getContext (), "You need to purchase the
full version!", LENGTH SHORT) .show();

}
}
RE
}
}

Now let's build our application by running the following Maven command in the
parent folder:

mvn clean package -DskipTests

Then, we can deploy it by running the following command inside the
AndroidTier module:

mvn android:deploy

If we run the application, we will see the main screen that now contains the new
button labeled Try me!. If we click on it, the new activity is started and we see the
message: Thank you for purchasing my app. The following image illustrates the
expected behavior/flow of our application so far;

% ml B &M

ekt e it o e Thank you for purchasing

my app!
View Author Name! :

Now, it's time to add a new Maven profile that will build our application by
excluding the com.packt .paid package so that when users install it they won't
be able to access the Paidactivity class.

To do this, simply add the following XML configuration inside the <project> tag
of AndroidTier's pom.xm1 file:

<profiless>
<profile>
<id>freeVersion</id>

[112]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

<builds>
<pluginss>
<plugins>
<groupld>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactIds>
<configurations>
<excludes>
<exclude>**/com/packt/paid/*.java</exclude>
</excludes>
</configurations>
</plugin>
</plugins>
</build>
</profile>
</profiles>

The profile we just created, when triggered, will exclude from the . apk file the
classes that belong to the com.packt.paid package. To test how our application will
behave with the new profile, open a terminal and execute the following command:

mvn clean package android:deploy -PfreeVersion

Al

~ If the application is already deployed to the target device/emulator,
you can replace the android:deploy part with android:redeploy.

Run the application and click on the Try me! button. You would expect to

see the message You need to purchase the full version!, but instead of this,
the application crashes and terminates abnormally. If you debug it, you will
also see that a ClassNotFoundException exception is thrown instead of
ActivityNotFoundException exception, which is the expected exception that
we catch inside our code. Let's see what is going on behind the scenes. The
activity is registered in our AndroidManifest.xml file; so, Android cannot
throw an ActivityNotFoundException exception. The device tries to start the
activity but the class has been excluded from our . apk file, and so we get this
ClassNotFoundException exception.

[113]

www.it-ebooks.info

http://www.it-ebooks.info/

Android Flavors

We made some progress — users cannot access the feature that is available only in the
paid version —but the overall user experience is not the desired one. The problem
here is that we need to remove the activity from the AndroidManifest .xml file.

The solution is not to remove it dynamically, but instruct Maven to use another

file when running the 'free version' profile. This can be done by adding some more
configuration inside the <plugins> tag of our created profile in the AndroidTier's
module pom. xml file. Our profile should look like the following:

<profiles>
<profile>
<id>freeVersion</id>
<builds>
<pluginss>
<plugins>
<groupId>org.apache.maven.plugins</groupIds>
<artifactId>maven-compiler-plugin</artifactId>
<configurations>
<excludes>
<exclude>**/com/packt/paid/*.java</exclude>
</excludes>
</configurations>
</plugin>
<plugin>
<groupId>com.jayway.maven.plugins.android.generation2
</groupld>
<artifactId>android-maven-plugin</artifactId>
<configuration>

<androidManifestFile>${basedir}/free/AndroidManifest.xml
</androidManifestFile>

</configuration>
</plugin>
</plugins>
</build>
</profile>
</profiles>

The added configuration instructs Maven to use the manifest file which is located
under the /free directory. The content of this file should be the same with the
original file without the code we previously added in page 4 of this chapter.

If you try to build and deploy the application using the free profile, you should
notice the expected behavior: a toast message prompting the user to purchase the
paid version of the applications.

[114]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Now, we can build both our free and paid versions of our application without doing
any manual modification in our configuration files by just invoking different Maven
commands inside the AndroidTier module directory, as summarized here:

* Build the complete paid version by running;:

mvn clean package

* Build the free version by running:

mvn clean package -PfreeVersion

However, there is one thing still missing. Both versions are built using the same
package name; so, based on the problem statement in the beginning of the chapter
we won't be able to deploy them in Android Market/Google Play because the second
one will be considered as an 'upgrade' of the first one. You can simply verify this by
trying to deploy both applications in the same device/emulator using this Maven
command:

mvn android:deploy

No matter what you do, the device will always have only one application installed.
The one you deployed last. Let's try to fix it. We need to find a way to dynamically
change the package name of the . apk file during our build execution without
modifying the actual manifest file, because this will make our activities not to run.
Our goal is to have the following package names:

* com.packt.androidMaven.paid package for the paid version

* com.packt.androidMaven. free package for the free version

First, we need to introduce a property in the pom.xm1 file of the AndroidTier
module, which will differentiate the package name. If you see the two names more
carefully, you will notice that only the last part of the package name changes;

so our property should just keep this value. Enter the following line inside the
<propertiess> tag:

<flavor>paid</flavors>

What we just did is to introduce a Maven property named flavor that has the
value of paid. Then, we need to instruct Maven to use this property and rename the
application package when creating the . apk file. To do so, add the following lines in
the pom.xml file of the AndroidTier's module:

<builds>
<pluginss>
<plugin>
<groupId>com.jayway.maven.plugins.android.generation?2
</grouplds>

[115]

www.it-ebooks.info

http://www.it-ebooks.info/

Android Flavors

<artifactIds>android-maven-plugin</artifactIds>
<configurations>

<renameManifestPackage>com.packt.androidMaven. ${flavor}
</renameManifestPackage>

</configurations>
</plugin>
</plugins>
</build>

This is done by configuring, as shown in the preceding module, the android-maven-
plugin to rename the manifest package to: com.packt .androidMaven. ${flavor},
where the ${flavor} variable will be replaced by its value, paid. If you build the
project again, the generated . apk file will include an AndroidManifest .xml file with
the expected package name which is: com.packt .androidMaven.paid. The last step
to complete our configuration is to set the same property to our free profile we have
previously added to the AndroidTier module's pom.xm1 file. This is done in order

to achieve the same behavior when the profile is used. Just add the following lines
inside the <profiles> tag of the "free" profile:

<propertiess
<flavors>free</flavors
</properties>

Build the project by triggering the profile for the free version:

mvn clean package -PfreeVersion

The generated . apk file will include again an AndroidManifest .xml file, but the
package name now will be: com.packt .androidMaven. free.

To ensure that everything works as expected, build the free version, deploy it in a
device or emulator, and run it. Verify that you don't have access to the paid feature.
Then, build the full version, deploy it to the same device or emulator. You should
notice that after deploying both applications, you can see two icons appearing in

the target device/emulator, which is exactly our goal. The only problem now is that
they both have the same name/description because both our builds use the same
resource files. To overcome this last issue, we can introduce a new property, let's call
it android.res.dir that will point to the resources directory of each version. We
finally need to add the following line:

<resourceDirectory>${android.res.dir}</}</resourceDirectory>

This line is added inside the <configurations tag of the android-maven-plugin just
like we did with the <androidManifestFile> tag.

[116]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

We leave this part as an exercise for you, create a directory /free/res, add the
required resources files, and so on, and set the correct property values in the pom.
xml file to validate that you have understood the concept of profiles and how you
can customize the build process based on the needs of each version.

You can find the complete code of the preceding example in the GitHub repository
https://github.com/ppapapetrou76/AndroidMavenDevelopment/tree/master/
Chapter5

After all these steps, we have managed to reach our goal: Parameterize our build
scripts to support in-parallel versions of the same application. In the next section,
we will discuss a different way to achieve the same without using Maven profiles.

Separation by library

The second approach to solve the problem of multiple versions is based on a
multimodule Maven project and the concept of Android library projects.

These projects contain shareable Android source code and resources
that you can reference in Android projects. This is useful when you have
common code that you want to reuse. Library projects cannot be installed
L onto a device; however, they are pulled into the . apk file at build time.

Android-maven project files documentation: https://developer.
android.com/tools/projects/index.html

In the next sections, we will guide you step by step to create such a project.
The completed source code can be found in the following GitHub repository:
https://github.com/ppapapetrou76/AndroidMavenDevelopment /tree/master/

Chapter5Libs

Our first step is to create a Maven multimodule project. You should be very
familiar with this process —we described several times in the previous chapters,
how to create a multimodule and submodules maven projects; so go on and
create a parent project with three submodules named: CommonLibrary,
FreeVersion and PaidvVersion accordingly.

When you finish, make sure that the parent pom.xm1 file looks like the following file:

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4 0 0.xsd">

[117]

www.it-ebooks.info

https://github.com/ppapapetrou76/AndroidMavenDevelopment/tree/master/Chapter5
https://github.com/ppapapetrou76/AndroidMavenDevelopment/tree/master/Chapter5
https://developer.android.com/tools/projects/index.html
https://developer.android.com/tools/projects/index.html
https://github.com/ppapapetrou76/AndroidMavenDevelopment/tree/master/Chapter5Libs
https://github.com/ppapapetrou76/AndroidMavenDevelopment/tree/master/Chapter5Libs
http://www.it-ebooks.info/

Android Flavors

<modelVersion>4.0.0</modelVersions>
<groupId>com.packt.androidMaven</groupId>
<artifactId>chapterS</artifactIds>
<version>1.0-SNAPSHOT</versions>

<packagings>pom</packaging>

<name>Chapter 5 - Library</names

<description>Android App Development with Maven</descriptions>

<modules>
<module>CommonLibrary</modules>
<modules>FreeVersion</module>
<modules>PaidVersion</modules>
</modules>
<propertiess
<project.build.sourceEncodings>
UTF-8</project.build.sourceEncoding>
<platform.version>5.0.1 r2</platform.versionx>
<android.plugin.version>3.8.2</android.plugin.versions>
<maven.compiler.source>1l.7</maven.compiler.sources>
<maven.compiler.target>1l.7</maven.compiler.target>
</properties>
<dependencyManagement >
<dependencies>
<dependencys>
<groupId>com.google.android</groupIds>
<artifactIdsandroid</artifactIds>
<version>${platform.version}</versions>
</dependency>
<dependencys>
<groupId>com.google.android</groupIds>
<artifactIdsandroid-test</artifactIds>
<version>4.1.1.4</versions>
</dependency>
</dependencies>
</dependencyManagement >

<builds>
<finalName>${project.artifactId}</finalName>
<pluginManagement >
<pluginss>
<plugins>
<groupId>com.jayway.maven.plugins.android.generation?2
</groupld>

[118]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

</
</pl
</plug
<plugi
<plu
<g

</

<a

<e

<C

</
</pl

<artifactIds>android-maven-plugin</artifactIds>
<version>${android.plugin.version}</versions>
<configurations>
<undeployBeforeDeploy>true</undeployBeforeDeploy>
</configurations>
<extensionss>true</extensions>
plugin>
uginss
inManagement >
ns>
gin>
roupIds>com.jayway.maven.plugins.android.generation2
grouplds>
rtifactId>android-maven-plugin</artifactIds>
xtensions>true</extensions>
onfigurations>
<sdk>
<platform>21</platform>
</sdk>
configurations>
ugins>

</plugins>

</build>
</project>

The pom.xm1 file of the CommonLibrary module should look like the following file:

<?xml versgion="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

Xs1i:schemalocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<parent>
<groupId>com.packt.androidMaven</groupId>
<artifactId>chapterS</artifactId>
<version>1.0-SNAPSHOT</version>

</parent>
<artifactId>CommonLibrary</artifactIds>

<packaging>aar</packaging>

<dependencies>

<dependency>

<groupId>com.google.android</groupId>

[119]

www.it-ebooks.info

http://www.it-ebooks.info/

Android Flavors

<artifactIdsandroid</artifactIds>
<scope>provided</scope>
</dependency>
</dependencies>
</project>

The packaging type of this module is .AAR, which is the binary
distribution of an Android library project. The file extension of the
. produced artifact, when building the project, should be AAR as
% well, but you can simply open the file by a zip viewer and view
s its contents that include among others the AndroidManifest.
xml file, a classes. jar file that includes all classes of the Maven
module, and a res folder that includes all the required resources
for the commonly used Android components.

The pom.xm1 files of the other two modules should look almost identical. The only
difference should be the <artifactIds> tagand optionally the name of the module.
You can see the Maven configuration file for the free version module as follows:

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4 0 0.xsd">

<modelVersion>4.0.0</modelVersion>

<parent>
<groupId>com.packt.androidMaven</groupId>
<artifactId>chapterS</artifactIds>
<version>1.0-SNAPSHOT</versions>

</parent>

<artifactIdsFreeVersion</artifactIds>

<packagings>apk</packaging>

<name>Free Version</name>

<dependencies>

<dependencys>
<groupId>com.google.android</groupIds>
<artifactIdsandroid</artifactIds>
<scope>provided</scope>

</dependency>

<dependencys>
<groupld>${project.groupld}</grouplds>
<artifactId>CommonLibrary</artifactIds>
<version>${project.version}</versions>

[120]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

<type>aar</types>
</dependency>
</dependencies>
</project>

The only tricky part is that we need to include the common library in the dependencies
section by providing the Maven dependency and specifying its type to be AAR.

Our next step is to write down the manifest files for each module. Android libraries
need a manifest file, but since these projects cannot be deployed to a device, we can
omit some configuration and move it directly to the actual Android projects.

Our example is almost identical to what we have seen so far. The common library
contains two activities, the main activity and an activity that is common/free to all
versions. So, all we need to do is to register these activities to the manifest file, as
shown in the next code snippet:

<?xml versgion="1.0" encoding="utf-8"?>

<manifest
xmlns:android="http://schemas.android.com/apk/res/android"
package="com.packt .androidmaven.common"
android:versionCode="1"
android:versionName="1.0-SNAPSHOT"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
Xsi:schemalocation="http://schemas.android.com/apk/res/android ">
<application>
<activity android:name=".MainActivity" >
<intent-filters>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER"
/>
</intent-filters>
</activitys>
<activity android:name=".FreeActivity" >
</activitys>
</application>
</manifest>

Since this is an Android Library project, it's clear that we don't need to specify the
application's icon, label, or theme like we did before, because this library project will
not be deployed in a device. Registering the activities is more than enough. Here's
the code of the two activities included in the shared library, CommonLibrary module:

package com.packt.androidmaven.common;

import android.app.Activity;
import android.os.Bundle;

[121]

www.it-ebooks.info

http://www.it-ebooks.info/

Android Flavors

import android.widget.TextView;

public class FreeActivity extends Activity {

}

@Override

public void onCreate (Bundle savedInstanceState)
super.onCreate (savedInstanceState) ;
TextView textView = new TextView (this) ;
textView.setTextSize (40) ;
textView.setText ("Hey I'm a free activity!");
setContentView (textView) ;

package com.packt.androidmaven.common;

import android.app.Activity;
import android.content.ActivityNotFoundException;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;
import android.view.View.OnClickListener;

import android.widget.Button;

import android.widget.TextView;

import android.widget.Toast;
import static android.widget.Toast.LENGTH SHORT;

public class MainActivity extends Activity {

private Button button;
private TextView textView;

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);
setTextValue () ;
addListenerOnButton () ;
addListenerOnPaidButton () ;

}

private void setTextValue() {
textView = (TextView) findvViewById(R.id.textl);
textView.sgetText ("Main Activity") ;

}

public void addListenerOnButton()
button = (Button) findViewById(R.id.buttonl) ;
button.setOnClickListener (new OnClickListener ()

{

[122]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

@Override

public void onClick (View view) {
Intent intent = new Intent (view.getContext (),
FreeActivity.class) ;
startActivity (intent) ;

I3F;
}

public void addListenerOnPaidButton()

button = (Button) findViewById(R.id.paidbutton) ;
button.setOnClickListener (new OnClickListener () {
@Override

public void onClick (View view) {

try {
Intent intent = new Intent () ;
intent.setAction ("com.packt.paid.intent.action.Launch") ;
startActivity (intent) ;

}

catch (ActivityNotFoundException e) {
Toast .makeText (view.getContext (), "You need to purchase
the full version!", LENGTH SHORT) .show() ;

3N
}
}

Bear in mind, also, that typical resource files like activities configurations, string
resources, and so on can and should be contained in this project for all the shared
Android components included in this module so that the other modules won't

need to include. This will avoid code and configuration duplication and will make
the development and release management much easier. However, you can always
override a property, a string, or anything else located under the res directory. A
typical case is to provide different icons or different application name for the paid
and free versions. You can have a default one in the common library and override it
in the corresponding Maven modules.

Now, let's see how the manifest files of our actual projects look like, starting with the
one located inside the free version:

<?xml versgion="1.0" encoding="utf-8"?>

<manifest
xmlns:android="http://schemas.android.com/apk/res/android"
package="com.packt.androidmaven. free"
android:versionCode="1"

[123]

www.it-ebooks.info

http://www.it-ebooks.info/

Android Flavors

android:versionName="1.0-SNAPSHOT"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://schemas.android.com/apk/res/android ">
<application android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/AppTheme" >
<activity
android:name="com.packt.androidmaven.common.MainActivity" >
<intent-filters>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER"
/>
</intent-filters>
</activity>
<activity
android:name="com.packt.androidmaven.common.FreeActivity" >
</activity>
</application>
</manifest>

The key point here is that we need to declare in the manifest file of the application
project all components that will be referenced and are imported from the common
library. This includes all activities, services, providers, as well as permissions. Bear
in mind that any reference to a library component should be done by using the fully
qualified package name. For instance in the previous example shown, we need to
reference both activities included in the common library, and so we use the complete
package name in their declaration.

Another good practice is to have different package name in the application projects
than the one used in the library project. But wait a minute? Wouldn't this cause

the problems we have discussed several times throughout this chapter? How our
classes will make use of the R. java class if we have different package names? Well,
that's the beauty of this approach. The classes included in the common library are
compiled with their package name and uses the original r. java class. The code
located in the application projects can use both R. java classes, the one imported
from the common library dependency and the one generated in the target project
during compile time. No more dynamic change of the package name. We have a
clearer and more robust solution here.

Going back to the manifest file of the free version module, you can see that we don't
register any new activities because, in our example, our simple free version uses only
the activities imported by the shared library:

[124]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

<?xml version="1.0" encoding="utf-8"?>

<manifest
xmlns:android="http://schemas.android.com/apk/res/android"
package="com.packt.androidmaven.paid"

android:versionCode="1"

android:versionName="1.0-SNAPSHOT"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://schemas.android.com/apk/res/android ">

<application android:icon="@drawable/ic_ launcher"
android:label="@string/app_name"
android:theme="@style/AppTheme" >

<activity
android:name="com.packt.androidmaven.common.MainActivity" >
<intent-filters>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER"
/>
</intent-filter>
</activity>
<activity
android:name="com.packt.androidmaven.common.FreeActivity" >
</activity>
</application>
</manifest>

On the other hand, the paid version needs to register a new activity, paidActivity.
java. The one that is only available in this version. The manifest is very similar to
the one we described for the free version, and in addition it contains the necessary
declaration of this activity. You can see the differences in the highlighted section of
the following configuration snippet:

<?xml versgion="1.0" encoding="utf-8"?>
<manifest
xmlns:android="http://schemas.android.com/apk/res/android"
package="com.packt .androidmaven.paid"
android:versionCode="1"
android:versionName="1.0-SNAPSHOT"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
Xsi:schemalocation="http://schemas.android.com/apk/res/android ">
<application android:icon="@drawable/ic_launcher"
android:label="@string/app name"
android:theme="@style/AppTheme" >
<activity
android:name="com.packt.androidmaven.common.MainActivity" >

[125]

www.it-ebooks.info

http://www.it-ebooks.info/

Android Flavors

<intent-filters>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER"
/>
</intent-filter>
</activity>
<activity
android:name="com.packt.androidmaven.common.FreeActivity" >
</activity>
<activity android:name=".PaidActivity" >
<intent-filter>
<action android:name="com.packt.paid.intent.action.Launch" />
<category android:name="android.intent.category.DEFAULT" />
</intent-filter>
</activity>
</application>
</manifest>

Like we said earlier, we won't list here the rest of the files of these projects source
code, resources files, and so on, as they are similar to the files we have presented
earlier in this book. They are always available in this GitHub project we already
mentioned. Our goal is to make sure that you understand the important parts of
this approach which are:

* Correct modularization
e Utilization of Android library
* Proper registration of all Android components in the manifest files

We are now ready to see our build configuration in action. First, we need to build the
whole project. Open a terminal window and execute the following command:

mvn clean package

Then, let's install the free version in a device/emulator and verify that we don't have
access to the restricted activity. Navigate to the Freeversion directory, make sure
that at least one device is connected or an emulator is running and deploy the free
version of our application:

mvn android:deploy

It's a good idea to completely uninstall all book example applications
= you have already installed in your device/emulator.

[126]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Now open the installed application —you will find it under the name Free Version —
and try to click on the two buttons appearing in the initial screen. The first one
should work and display a simple message in a new activity. The second one,
however, should only display a toast message. The following image illustrates

the expected behavior when clicking the buttons:

Hey I'm a free
activity!

View Free Activityl $ View Free Activity!

O > ki

You need to purchase the full versionl

Go back to the terminal window and run the same command inside the Paidversion
directory to deploy the paid version. Check again your device/emulator and you
will notice that there are two icons, as shown in the following image:

- —

Browser Calculator Calendar Camera

" m & ¥

Clock Contacts Dev Tools Downloads

8 -~

Free Version Gallery Messaging

s I'sd

Music Paid Version Phone

Settings Spare Parts Speech Recorder Voice Dialer

[127]

www.it-ebooks.info

http://www.it-ebooks.info/

Android Flavors

Now, start the paid version, and click again on the Try me! button. Et voila! The paid
feature is now active and available to the user who just "purchased" our application!

Thank you for
purchasing my
app!

Hey I'm a free
activity!

View Free Activity! $

You might also notice that when both applications are installed, the button from the
free version will also display the thank you message, launching the activity from
the paid application. This is because the paid version installation "unlocks" all paid
features and so even the paid version can see them.

One last thing before we finish this chapter. We discussed two Maven alternatives to
handle multiple versions of the same application. Both of them work fine and require
some Maven configuration. If you ask our opinion, we would go with the second
one. It's cleaner, more structured, and the Maven commands to deploy each version
are much simpler.

Summary

This was one of the most challenging chapters we have written, and at the same time
the most demanding one when talking to Android developers. We have stated one of
the biggest problems that Android development teams face when we want to manage
the development and build more than one version of the same application. We focused
on providing real value to the scenario of an application with two versions: one free
with limited features and one paid with all features available.

We provided two plans for making our Maven builds parameterized, and we
explained in detail all the essential steps to get you from zero to a complete build
configuration. Now that we have finished this chapter, we expect that you are
familiar enough to:

* Have a basic idea of how Maven profiles work and their purpose

* Tell the differences between the two ways we discussed for developing
more than one flavor of the same application

[128]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

* Configure Maven to build all versions without manually modifying
code, configuration files, or other resource files each time you want
to build the project

* Understand why an Android library project provides a better structure
and modularization in applications that need to have several versions,
paid, free, and so on

What is coming next? You will learn how to properly package and deploy
the application following Android suggested practices using the descriptive
Maven-way.

[129]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Release Life Cycle and
Continuous Integration

We are reaching the end of this book, but we still have some very important topics to
cover. So far, we have prepared our development environment, we have set up our
project structure, we learned how to write different type of tests, and we saw how

to support multiple versions of the same Android application. All the above have
been made easy with a declarative way using Maven configuration files and various
Maven plugins.

Our Android application is now ready to be released and delivered to our customers.
This chapter will guide you how to prepare the release of an application. We will also
discuss how to deploy the application to an in-house repository for internal use and all
the necessary steps to correctly prepare the APK package. Unfortunately, deploying an
application to Android Market/Google Play using Maven is not yet available. Google
released the first version of the publishing API (https://developers.google.com/
android-publisher/#publishing) in July 2014 but there's no Maven plugin, to
automate the process. The authors of this book have started working on such a plugin
but due to time constraints it was not ready at the time this book was published. We
will end this chapter by discussing a strategy of Continuous Integration (CI) that will
allow you to automate the build, release, and deployment process. The topics that we
will explore in this chapter are:

* Securing a package using a private key

* Obfuscating our code to protect from reverse engineering
* Zipalign the package

* Perform a release

* Deploy to a self-hosted repository

* Automation best practices

www.it-ebooks.info

https://developers.google.com/android-publisher/#publishing
https://developers.google.com/android-publisher/#publishing
http://www.it-ebooks.info/

Release Life Cycle and Continuous Integration

Optimizing an Android package

Google has well-defined a set of steps during the packaging and releasing phases
of an Android application to ensure authenticity, optimization, and security. There
are three suggested practices: sign, obfuscate, and zipalign. The first one is always
performed automatically by the Android build system, even if we don't explicitly
describe it in Maven configuration and specify a custom key. The other two are
optional, but highly recommended for all Android developers.

In this section of the chapter, we will briefly explain the purpose of each step,
and then we will discuss how we can configure Maven to run these tasks in
a well-structured way like we have already done in all previous examples.

Signing an application

Like we said, Android requires that all packages, in order to be valid for installation
in devices, need to be digitally signed with a certificate. This certificate is used by
the Android ecosystem to validate the author of the application. Thankfully, the
certificate is not required to be issued by a certificate authority. It would be a total
nightmare for every Android developer and it would increase the cost of developing
applications. However, if you want to sign the certificate by a trusted authority like
the majority of the certificates used in web servers, you are free to do it.

One might wonder It's the first time we talk about certificates and signing process prior to
installation, but throughout this book we have installed numerous times various applications
in devices and/or emulators. How did this happen since we haven't signed anything?

Android supports two modes of signing: debug and release. Debug mode is used by
default during the development of the application, and the release mode when we
are ready to release and publish it. In debug mode, when building and packaging
an application the Android SDK automatically generates a certificate and signs the
package. So don't worry; even though we haven't told Maven to do anything about
signing, Android knows what to do and behind the scenes signs the package with
the autogenerated key.

When it comes to distributing an application, debug mode is not enough; so, we
need to prepare our own self-signed certificate and instruct Maven to use it instead
of the default one. Before we dive to Maven configuration, let us quickly remind
you how to issue your own certificate. Open a command window, and type the
following command:

keytool -genkey -v -keystore my-android-release-key.keystore -alias my-
android-key -keyalg RSA -keysize 2048 -validity 10000

[132]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

If the keytool command line utility is not in your path, then it's a good idea to add
it. It's located under the $JAVA HOME%/bin directory. Alternatively, you can execute
the command inside this directory. Let us explain some parameters of this command.
We use the keytool command line utility to create a new keystore file under the
name my-android-release-key.keystore inside the current directory. The -alias
parameter is used to define an alias name for this key, and it will be used later on

in Maven configuration. We also specify the algorithm, RSA, and the key size, 2048;
finally we set the validity period in days. In our example, the generated key will be
valid for 10,000 days —long enough for many many new versions of our application!

After running the command, you will be prompted to answer a series of questions
like those shown in the following image:

T and last name?
Patlokloﬂ Papapetroun
nane of your organizational unit?
Freelancer
name of your organization?
[Unknownl: Freelancer
What is name of your City or Locality?
[Thessaloniki
name of your State or Province?
Macedonia
he two—letter country code for this wnit?
[Unknownl: GR
Is[CN;PatPuklos Papapetrou, OU=Freelancer, O0=Freelancer, L=Thesszaloniki, ST=Macedonia. CG=GR correct?
nol: yes

Generating 2 B48 bit RSA key pair and self-signed certificate (SHA256withRSA> with a validity of 18.8008 days
f Patroklos Papapetrou,. QU=Freelancer, 0=Freelancer. L=Thessaloniki, 5T=Macedonia. ¢=GR
wo for <my-android-key2>
(RETURN if same as keystore passwordlr:
[Storing my—android-release—key?_keyztorel

First, type twice a password for the keystore file. It's a good idea to note it down
because we will use it again in our Maven configuration. For the purposes of our
example, type the word :secret in both prompts. Then, we need to provide some
identification data, like name, surname, organization details, and location. Finally,
we need to set a password for the key. If we want to keep the same password with
the keystore file, we can just hit RETURN.

If everything goes well, we will see the final message that informs us that the key is
being stored in the keystore file with the name we just defined. After this, our key
is ready to be used to sign our Android application.

The key used in debug mode can be found in this file: ~/ . android.
debug. keystore and contains the following information:

. Keystore name: "debug.keystore"
% Keystore password: "android"
~ Key alias: "androiddebugkey"
Key password: "android"
CN: "CN=Android Debug,O=Android, C=US"

[133]

www.it-ebooks.info

http://www.it-ebooks.info/

Release Life Cycle and Continuous Integration

Now, it's time to let Maven use the key we just generated. We will again use in this
chapter, the example we presented in Chapter 5, Android Flavors —the multimodule
Android project with one paid and one free version. Before we add the necessary
configuration to our pom. xml file, we need to add a Maven profile to the global
Maven settings. Recall from the previous chapter that profiles defined in the user
settings.xml file can be used by all Maven projects in the same machine. This
file is usually located under this folder: $M2_HOME%/conf/settings.xml. One
fundamental advantage of defining global profiles in user's Maven settings is that
this configuration is not shared in the pom. xm1 file to all developers that work on
the application. The settings.xml file should never be kept under the Source
Control Management (SCM) tool. Users can safely enter personal or critical
information like passwords and keys, which is exactly the case of our example.

Now, edit the settings.xml file and add the following lines inside the
<profiless attribute:

<profile>
<ids>release</id>
<propertiess
<sign.keystores>/path/to/my/keystore/my-android-release-
key.keystore</sign.keystore>
<sign.alias>my-android-key</sign.alias>
<sign.storepass>secret</sign.storepass>
<sign.keypass>secret</sign.keypass>
</propertiess>
</profiles>

Keep in mind that the keystore name, the alias name, the keystore password, and
the key password should be the ones we used when we created the keystore file.

Clearly, storing passwords in plain text, even in a file that is normally
protected from other users, is not a very good practice. A quick way to
make it slightly less easy to read the password is to use XML entities
to write the value. Some sites on the internet like this one http://

~ coderstoolbox.net/string/#!encoding=xml&action=encod
Q e&charset=none provide such encryptions.

It will be resolved as plain text when the file is loaded; so Maven won't

even notice it. In this case, this would become:
<sign.storepass>s &H#101;cret</
sign.storepass>

[134]

www.it-ebooks.info

http://coderstoolbox.net/string/#!encoding=xml&action=encode&charset=none
http://coderstoolbox.net/string/#!encoding=xml&action=encode&charset=none
http://coderstoolbox.net/string/#!encoding=xml&action=encode&charset=none
http://www.it-ebooks.info/

Chapter 6

We have prepared our global profile and the corresponding properties, and so we

can now edit the pom.xm1 file of the parent project and do the proper configuration.
Adding common configuration in the parent file for all Maven submodules is a good
practice in our case because at some point, we would like to release both free and paid
versions, and it's preferable to avoid duplicating the same configuration in two files.

We want to create a new profile and add all the necessary settings there, because the
release process is not something that runs every day during the development phase.
It should run only at a final stage, when we are ready to deploy our application. Our
first priority is to tell Maven to disable debug mode. Then, we need to specify a new
Maven plugin name :maven-jarsigner-plugin, which is responsible for driving
the verification and signing process for custom/ private certificates. You can find the
complete release profile as follows:

<profiles>
<profile>
<id>release</id>
<build>
<plugins>
<plugin>
<groupIds>com.jayway.maven.plugins.android.generation2
</groupIld>
<artifactIds>android-maven-plugin</artifactIds>
<extensionss>true</extensionss>
<configuration>
<sdk>
<platform>19</platform>
</sdk>
<sign>
<debug>false</debug>
</sign>
</configurations>
</plugin>
<plugin>
<grouplds>org.apache.maven.plugins</groupIds>
<artifactIds>maven-jarsigner-plugin</artifactIds>
<executions>
<execution>
<id>signing</id>
<phase>package</phase>
<goals>
<goal>sign</goals>
<goal>verify</goals>
</goals>

[135]

www.it-ebooks.info

http://www.it-ebooks.info/

Release Life Cycle and Continuous Integration

<inheritedstrue</inheriteds>
<configurations>

<removeExistingSignaturess>true
</removeExistingSignatures>

<archiveDirectory />
<includes>

<include>${project.build.directory}/
${project.artifactId}.apk</include>

</includes>
<keystore>${sign.keystore}</keystores>
<alias>${sign.alias}</alias>
<storepass>${sign.storepass}</storepass>
<keypass>${sign.keypass}</keypass>
<verbose>true</verboses>
</configurations>
</execution>
</executions>
</plugin>
</plugins>
</build>
</profile>
</profiles>

We instruct the JAR signer plugin to be triggered during the package phase and run
the goals of verification and signing. Furthermore, we tell the plugin to remove any
existing signatures from the package and use the variable values we have defined in
our global profile, $sign.alias, $sign.keystore, $sign.storepass and $sign.
keypass. The "verbose" setting is used here to verify that the private key is used
instead of the debug key.

Before we run our new profile, for comparison purposes, let's package our
application without using the signing capability. Open a terminal window,
and type the following Maven command:

mvn clean package

When the command finishes, navigate to the paid version target directory,
/PaidvVersion/target, and take a look at its contents. You will notice that there
are two packaging files: a Paidversion. jar (size 14KB) and paidversion.apk
(size 46KB).

Since we haven't discussed yet about releasing an application, we can just run the
following command in a terminal window and see how the private key is used for
signing the package:

mvn clean package -Prelease

[136]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

You must have probably noticed that we use only one profile name, and that is the
beauty of Maven. Profiles with the same ID are merged together, and so it's easier to
understand and maintain the build scripts.

If you want to double-check that the package is signed with your private certificate,
you can monitor the Maven output, and at some point you will see something
similar to the following image:

Wed Dec @8 El META-IMF/MAMIFEST .MF
Wed Dec META-INF~MY—-ANDRO.SF

Wed Dec META-INE/MY-ANDRO .RSA

Wed Dec META-INF/

Yed Dec H META-INE/naven/

Wed Dec META-IMF-/maven com.packt .androidMaven/

Wed Dec META-INF/naven/com.packt .androidMavensPaidlVersion/
Wed Dec com/

Wed Dec comspackt/”

Yed Dec 46z com/packt/androidmaven/

Wed Dec comspackt/androidmaven/common/

Wed Dec comspackt-androidmaven paid/

Wed Dec META—-INF/naven/com.packt.androidMavensPaidVersion/pom.xnl
A \led Dec H META-INF/nmavencom.packt .androidMavensPaidlersion/pom.properties
Wed Dec comspackt sandroidmavenscommon-FreefActivity.c

Wed Dec 5 comspackt androidmavenscommon Mainfictivitysl.c

Wed Dec conspackt-androidmavenscommon-Mainfictivitys2.c

Wed Dec comspackt androidmavenscommonsMainfActivity.c

Wed Dec comspackt sandroidmavenscommon/R5dimen.cl

A Wed Dec comspackt androidmavenscommon Rédrawable .

Wed Dec A com/packt androidmaven/common/REid.c 1.

Wed Dec comspackt/androidmavenscommon RS layou

Wed Dec H con/packt /androidmaven/common~Rés

Wed Dec comnspackt/androidmaven/common~Rés

Wed Dec comspackt androidmavenscommon~R._cla

Wed Dec El comspacktsandroidmavenspaid- BuildCo q

Wed Dec comspackt-androidmavenspaid-PaidActivity.

Wed Dec com/packt ~ande uldmauen/pald/R$attl cl

Wed Dec

Wed Dec

Wed Dec El comspackt sandroidmavenspaid Reid.

Wed Dec =46 : 00 comspackt androidmavenspaid Ré laynut clas

Wed Dec El conspackt-androidmaven~paid-Rés

Wed Dec con/packt androidmaven/paid~Rés

Wed Dec com/packt androidmavenspaid-/R.c

227
138
819
1132
1518
1822
494
448
481
436
568
464
673
363
823
367
488
434
475
438
534
458
712

= signature was verified
entry is listed in manifest
at least one certificate was found in keystore
at least one certificate w found in identity scope
not signed by specified alias<{es)>

This output verifies that the classes have been properly signed through the execution
of the Maven JAR signer plugin.

To better understand how signing and optimization affects the packages generation,
we can navigate again to the /pPaidversion/target directory and take a look at the
files created. You will be surprised to see that the same packages exist again but they
have different sizes. The Paidversion. jar file has a size of 18KB, which is greater
than the file generated without signing. However, the paidversion. apk is smaller
(size 44KB) than the first version. These differences happen because the . jar file is
signed with the new certificate; so the size is getting slightly bigger, but what about
the . apk file. Should be also bigger because every file is signed with the certificate.

The answer can be easily found if we open both the . apk files and compare them.
They are compressed files so any well-known tool that opens compressed files can do
this. If you take a closer look at the contents of the . apk files, you will notice that the
contents of the . apk file that was generated using the private certificate are slightly
larger except the resources. arsc file. This file, in the case of custom signing, is
compressed, whereas in the debug signing mode it is in raw format. This explains
why the signed version of the . apk file is smaller than the original one.

[137]

www.it-ebooks.info

http://www.it-ebooks.info/

Release Life Cycle and Continuous Integration

There's also one last thing that verifies the correct completion of signing.

Keep the compressed . apk files opened and navigate to the META- INF directory.
These directories contain a couple of different files, and this is illustrated in the
following image:

m =] PaidVersion.apk\META-INF - ZIP archive, unpacked v m =] PaidVersion.apk\META-INF - ZIP archive, unpacked size 5
Mame ° Size Packed Type Name : Size Packed Type
File folder . File folder
851 486 MF File CERT.R5A 1,203 1,052 RS5AFile
CERT.SF 736 401 5F File
[AY-ANDRO.SF SF File L IMAN MF 683 369 MFFile

Private key files

Debug mode key files

The signed package with our personal certificate contains the key files named with
the alias we used when we created the certificate and the package signed in debug
mode contains the default certificate used by Android.

Later on in this chapter, we will see how the rest of the tools we will discuss affects
the size and contents of the . apk files.

Obfuscating the code

The next step is to obfuscate our code. Obfuscation is a practice that is available to
many programming languages. Its purpose is to make hard, really hard for potential
hackers to reverse-engineer your code. Android natively supports obfuscation
through a tool called ProGuard. This tool will remove unused code and will rename
all classes, attributes, and methods using some obscure names. It will also produce

a smaller . apk file because it shrinks and optimizes the code. Like we said, using
ProGuard is completely optional, but we strongly recommend it, especially when
your application uses security-sensitive features.

Following Android's practice, the android-Maven plugin doesn't activate the
ProGuard by default, so we need to explicitly enable it. This is pretty straightforward
by adding the <proguards attribute inside the configuration section and set the skip
flag to False. After this change, the android-Maven plugin should look like this:

<plugin>
<groupId>com.jayway.maven.plugins.android.generation2</groupIds>
<artifactIds>android-maven-plugin</artifactIds>
<extensionss>true</extensionss>

<configuration>

[138]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

<sdk>

<platform>19</platforms>

</sdk>
<sign>

<debug>false</debug>

</sign>

<proguard>

<skip>false</skip>

</proguard>

</configurations>

</plugin>

If we try to again package our application, we will notice that ProGuard is not
running and instead we see the following message in Maven log;:

Proguard skipped because the configuration file doesn't exist:

PATH/TO/MAVEN/PROJECT /proguard.cfg

So, we have to create that file and properly configure it. Explaining all the details
of ProGuard and the available properties is out of the context of this book; so, we
will just provide a suggested configuration for every Android project. Here are the
typical contents of a proguard. cfg file. Make sure that the same file exists under
every module directory:

-optimizationpasses 5

-dontusemixedcaseclassnames

-dontskipnonpubliclibraryclasses

-dontpreverify

-verbose

-optimizations
lcode/simplification/arithmetic, !field/*, !class/merging/*

-keep public
-keep public
-keep public
-keep public
-keep public
-keep public
-keep public
-keep public

class
class
class
class
class
class
class
class

*

*

*

extends
extends
extends
extends
extends
extends
extends

android

android.
android.
android.
android.
android.
android.

.app.Activity

app.Application

app.Service

content .BroadcastReceiver
content.ContentProvider

app .backup.BackupAgentHelper
preference.Preference

com.android.vending.licensing.ILicensingService

-keepclasseswithmembernames class * {

native <methodss>;

[139]

www.it-ebooks.info

http://www.it-ebooks.info/

Release Life Cycle and Continuous Integration

-keepclasseswithmembers class *

public <inits>(android.content.Context,
android.util.AttributeSet) ;

-keepclasseswithmembers class *

public <inits>(android.content.Context,
android.util.AttributeSet, int);

-keepclassmembers class * extends android.app.Activity {
public void * (android.view.View) ;

}

-keepclassmembers enum * {
public static **[] values() ;
public static ** valueOf (java.lang.String) ;

}

-keep class * implements android.os.Parcelable {
public static final android.os.Parcelable$Creator *;

}

adding this in to preserve line numbers so that the stack traces
can be remapped

-renamesourcefileattribute SourceFile

-keepattributes SourceFile,LineNumberTable

Android SDK comes with a default ProGuard file to be used as a
starting point. It is named proguard-android. txt and it can be
found under the /tools/proguard folder.
S If you want to read more about ProGuard features or use it for
other non-Android projects, you can visit the official web page here:
http://proguard.sourceforge.net

Before we explain the last part of the optimizing process, we can compare again
the generated files. Looking at /PaidvVersion/target directory after obfuscating
the packages, we notice that the . apk file is smaller and has a size of 43KB. This is
expected because, like we already discussed, during obfuscation all unused codes
are removed. Take a look at the following screenshot:

[140]

www.it-ebooks.info

http://proguard.sourceforge.net
http://www.it-ebooks.info/

Chapter 6

" File folder = File folder
META-IMNF File folder META-INF File folder
res File folder File folder
adicidlaniiacl 2l Sl <IVIL File il 2412 ?‘ﬂ_m.w;'
|| classes.dex 6,900 2,910 JPEX File || classes.dex 3,212 1,518 DEX File
= e s ryra T CARSC File ﬁ 2,120 107 ARSI
Classes without obfuscation Classes with obfuscation

The preceding image illustrates that the compiled application code, classes.dex, is
much smaller after obfuscation. The file has been reduced more than half of its size
before compression. This size reduction is more obvious in applications with larger
code bases than our little example.

Aligning and zipping uncompressed data

The last thing we need to take care during Android packaging is to optimize the
produced . apk files. Android SDK uses a tool called zipalign that applies an
alignment and zipping algorithm to the package; so, the total amount of memory
consumed when the application runs in a device is heavily reduced. Practically,
behind the scenes, zipalign makes sure that all uncompressed data like images or
raw files are aligned on 4-byte boundaries, which makes their access more efficient
during runtime using nmap () method.

Android advises that the tool is always used before packaging the application for
distribution. For development and debugging purposes, alignment is not necessary;
so, we will add all configurations needed in the "release" profile.

It is important that the alignment and compression of the . package
file are done only after signing the . apk file with the private key.

M Doing zipalign before signing won't have any effect because the signing
procedure will undo the alignment. Finally, bear in mind that making
changes to the aligned package is not recommended, because this
will cause disruption of the changed entries and all later entries. This
practically means that the package will not be aligned any more.

[141]

www.it-ebooks.info

http://www.it-ebooks.info/

Release Life Cycle and Continuous Integration

To do so, we will modify the configuration of the android-Maven plugin. First, we
need to enable the zipalign task in the parent pom.xm1 file. This is easily done in the
same way we enabled ProGuard in the previous section. In the <configurations
element, we add the <zipalign> element and we set the skip property to False.
Moreover, we can describe the names of the input and output APK package. After
this, we should tell the plugin to execute zipalign during the packaging phase. The
results of these changes are shown in the following code snippet. The bold letters
highlight the changes we did for the zipalign task;

<plugin>
<groupId>com.jayway.maven.plugins.android.generation2</groupIds>
<artifactIds>android-maven-plugin</artifactIds>
<extensions>true</extensions>
<configuration>
<sdk>
<platform>19</platform>
</sdk>
<sign>
<debug>false</debug>
</sign>
<proguards>
<skip>false</skip>
</proguards>
<zipalign>
<skip>false</skip>
<verboses>true</verbose>
<inputApk>${project.build.directory}/${project.artifactId}.apk
</inputApk>
<outputApk>${project.build.directory}/${project.artifactId}-
signed-aligned.apk</outputApk>
</zipalign>
</configurations
<executionss>
<execution>
<id>alignApk</id>
<phase>package</phase>
<goals>
<goal>zipalign</goals>
</goals>
</execution>
</executions>
</plugin>

[142]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Let's run once again in a terminal window the Maven packaging goal of our project
with the two release profiles:

mvn clean package -Prelease

Navigate to the /Paidversion/target directory, and you will observe that there's
anew .apk file named Paidversion-signed-aligned. This is the file name we
have instructed the android-Maven plugin to give to the generated packaged after
alignment, and so everything works as expected.

Transforming the package in shippable form

Well done! So far, we have properly configured our Maven pom. xm1 file to sign,
obfuscate, and align the application package, but still we are not ready to deploy.
Maven deploys the target packages to repositories (local or remote) but the
extension of Android packages, .apk file, is not understood as a valid package file;
so, it will probably be rejected during deployment. The build-helper plugin comes
to the rescue and can transform our package to a shippable form —to a file that can
be accepted by a Maven repository.

All we need to do is to add the plugin configuration to our release profile and
execute the attach-artifact goal during the packaging phase:

<plugins>
<grouplds>org.codehaus.mojo</grouplds>
<artifactIdsbuild-helper-maven-plugin</artifactIds>
<configurations>
<artifacts>
<artifacts>
<file>${project.build.directory}/${project.artifactid}-
signed-aligned.apk</file>
<types>apk</type>
<classifier>signed-aligned</classifier>
</artifact>
</artifactss>
</configurations
<executionss>
<execution>
<id>attach-signed-aligned</id>
<phase>package</phase>
<goals>
<goalsattach-artifact</goal>
</goals>
</execution>
</executions>
</plugin>

[143]

www.it-ebooks.info

http://www.it-ebooks.info/

Release Life Cycle and Continuous Integration

As shown in the preceding code snippet, first we develop the artifact that we want
to deploy to a Maven repository. In our case, the artifact is the package generated
after signing and aligning. Then, we add an execution element and we invoke the
attach-artifact goal. Now, we are ready for the final step and perform a release of
our application.

Releasing a new version

Although performing a release usually is followed by deploying the packages to a
Maven repository, it is not always required. This practically means that you can just
release an application or distribute it manually to its users.

The release process is supported by the Maven-release plugin, but we need to make
sure that the following requirements are met:

* Although this is optional, it is highly recommended to explicitly define the
version of the Maven-release plugin in the <pluginManagement > element
of the pom.xml file

* The SCM URL that points to the folder containing the pom. xml file is
correctly configured in the <scm> section of the pom. xm1 file

* There are no pending local modifications to be committed. Otherwise,
the plugin will display an error message.

The URL is prefixed with scm: [scm-provider] parameter. This
way, the plugin can execute the correct commands, behind the scenes,
% to commit changes of the pom.xml file and do the tagging. For more
"~ information on how to configure your favorite SCM, you can visit this
page: http://maven.apache.org/scm/scms-overview.html.

In the next two sections, we will first cover the details of releasing a new version
without deploying it to a local or remote repository, and then we will guide you
through the process of installing a local repository, Artifactory, and deploy the
released version to this repository.

Perform a release without deployment to
repository

Let's configure our application with the proper settings we just explained.
First, we will add the version of the Maven-release plugin in our parent

pom. xml file. To do so, just add the following code snippet in the boundaries
of the <pluginManagement > element:

[144]

www.it-ebooks.info

http://maven.apache.org/scm/scms-overview.html
http://www.it-ebooks.info/

Chapter 6

<plugins>
<groupld>org.apache.maven.plugins</groupId>
<artifactIds>maven-release-plugin</artifactIds>
<version>2.5.1</versions>

</plugin>

Then, add the next code snippet as part of the root element of the pom.xml file:

<scm>
<developerConnections>
scm:git:https://github.com/ppapapetrou76/
AndroidMavenDevelopment/tree/master/Chapteré
</developerConnections>
</scm>

Now, we can briefly explain the steps to release the application. The process typically
consists of two steps:

1. Prepare.
2. Perform PP.

First, we prepare the release by providing information such as the number of the
next version, the tag name, and so on. Actually, this release prepare step is the actual
release of the application without deploying it to a local or a remote repository.
During this step, the Maven-release plugin will do the following;:

1. Check that there are no uncommitted changes in the sources. It will raise
an error if found.

2. Check that there are no SNAPSHOT dependencies. It will raise an error
if found.

3. Change the version in the pom. xm1 files from 1.0-SNAPSHOT to the new
version we will provide or the default one, 1.0.

4. Make changes the SCM information in the pom.xm1 file to include the final
destination of the tag.

Commit the modified pom.xml files.

Tag the code in the SCM with the version name that we will provide.

[145]

www.it-ebooks.info

http://www.it-ebooks.info/

Release Life Cycle and Continuous Integration

7. Bump the version in the pom.xml files to a new value we will provide or the
default one, that is, 1.1-SNAPSHOT.

Commit the modified pom.xml files SNAPSHOT is a very special
version qualifier. Maven treats it as a not-yet-released version of the
current version number. In other words, it is generally considered as
the development version. The "SNAPSHOT" qualifier, although not
required, has become a standard for naming the development versions
and it's the way we have followed so far through the examples of

this book. The Maven-release plugin expects to find it in the version
number, and requires a "clean" number version without such
qualifier; this is why during the release process it suggests only the
version number for the release.

Then, we can "perform" the release, which in practice means that the Maven-release
plugin will:

e Check out from an SCM URL with optional tag.

* Run the predefined Maven goals to release the project. We will talk about
them in the next section of this chapter.

Now, it's time to "prepare" our release. Open a terminal window and type the
following command, in the directory where the parent pom.xm1 file is located, to
prepare the release:

mvn release:prepare -Prelease

You will prompted to answer a bunch of questions, but you can accept the proposed
value by just hitting RETURN, as shown in the following image:

Jhat i release s i ~ "Chapter 6 — Release"? {com.packt.androidMaven:chaptert? 1.8:
Jhat release "CommonLiby '? {com.packt.androidMaven:CommonLibrary?> 1.8:
Jhat release ree Uersion {com.packt .androidMaven:Freelersion) 1.8
Jhat release "Paid Uersion {com.packt .androidMaven:Paidlersion> 1.8

That 3 s 3 for "Chapter 6 — Relea: {com.packt.androidMaven: c]\aptelﬁ) chapterb-1.8:

Jhat new development on for "Chaptel b — Ri '? {com.packt.androidMaven:chapter6? 1. 1—SNHPSHOT H
Jhat new developnment for mmonLiby Ccom.packt.androidMaven :CommonLibrary? 1. 1—SNHPSHOT H
Jhat new development r "Free Ueps ? {com.packt.androidMaven:Freelersion?> 1.1-SNAPSHOT: :
Jhat is new development version for “Paid Uersion'? {com.packt.androidMaven:PaidUersiond 1.1-SHAPSHOT:

When the Maven task is completed, you can examine the changes made in our pom.
xml files. You will notice that all 1.0-SNAPSHOT versions have been replaced with
1.0, even in the dependencies of CommonLibrary module in the Maven configuration
of Paidversion and FreeVersion modules. The following line has also been added
to the <scm> element:

<tag>chapter6-1.0</tag>

[146]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

All changes have been pushed to the Git repository and a new tag with the name
chapter6-1.0 has been created. Hooray! We have just completed our release. Now,
our .apk file can be manually distributed to our customers and we can continue
working with the next development version, which in our case is 1.1-SNAPSHOT.

Deploying to a local repository

Clearly, distributing manually or keeping in a nonstandard way our release packages
are not a good practice. Like we already said, normally all Maven artifacts created
during the release process should be deployed in a Maven repository. Installing and
configuring a Maven repository is out of the context of this book. However, if you
don't have a Maven repository installed, we highly recommend that you download
and install Artifactory, the most popular, free, and open source Maven repository
management system.

Artifactory is a pure JEE standalone application. You can download

the latest version at the website: http: //www.jfrog.com/open-
source/ and you can find a very well-documented wiki that will guide
you to the installation and setup process here: https://www.jfrog.
com/confluence/display/RTF/Installing+Artifactory.

you can access it by locally pointing your browser to this URL:
http://localhost:8081.

Also keep in mind that the default credentials to log in are the
following: username = admin, password = password

~\‘Q Normally, after finishing the installation and start-up Artifactory,

You can also download a ready-to-use Artifactory installation by
downloading a Bitnami virtual machine: https://bitnami.com/
stack/artifactory.

Before we try to deploy application package to the Maven repository, we need

to make some final changes to our parent pom.xm1 file and tell Maven where is

our Maven repository. In Maven configuration terms, this is called Distribution
Management. The following code snippet should be copied inside the root element:

<distributionManagement >
<repositorys>
<id>internal.repo</id>
<name>Android Internal repo</name>

<urls>http://localhost:8081/artifactory/libs-release-
local</urls>

</repository>
</distributionManagement >

[147]

www.it-ebooks.info

http://www.jfrog.com/open-source/
http://www.jfrog.com/open-source/
https://www.jfrog.com/confluence/display/RTF/Installing+Artifactory
https://www.jfrog.com/confluence/display/RTF/Installing+Artifactory
http://localhost:8081
https://bitnami.com/stack/artifactory
https://bitnami.com/stack/artifactory
http://www.it-ebooks.info/

Release Life Cycle and Continuous Integration

In the preceding example, we have used one of the predefined

repositories that Artifactory is shipped with, like 1ibs-release-
i local to host released artifacts, 1ibs-snapshot-local to host

snapshot artifacts, and so on.

If we try to perform the release using the following command line (notice that
we don't need to specify the profiles any more because the packages are already
generated and that the step only deploys them to the repository), we will receive
a 401 error message (unauthorized):

mvn release:perform

This happens because every Maven repository does not allow artifact deployment
without some basic authentication. Therefore, we will tell Maven which pair of
username/ password should use to access Artifactory. However, this would not be
done in the pom. xml file but in the global Maven settings file because like we already
pointed out, sensitive or/and not shareable information should not be kept in the
pom.xml file. Edit the $M2_HOME%/conf/settings.xml file and add the following
lines of code inside the <servers> element:

<servers
<ids>internal.repo2</id>
<username>admin</username>
<password>password</password>
</servers>

o Maven provides a very elegant way of encrypting server passwords
~ in settings.exml files. You can take a look at http://maven.
Q apache.org/guides/mini/guide-encryption.html and if
you want you can try to apply the instructions in our example.

Notice that the server ID in the global settings file and the repository ID in the
project configuration file should be identical; otherwise, Maven will not be able to
utilize them and access the repository to and deploy. Now, run again the release
perform command and Maven should be able to successfully deploy the artifacts
to the given repository.

To verify that everything has been published correctly, you can log in to the admin
console of Artifactory and browse the 1ibs-release-local repository as shown in
the following image:

[148]

www.it-ebooks.info

http://maven.apache.org/guides/mini/guide-encryption.html
http://maven.apache.org/guides/mini/guide-encryption.html
http://www.it-ebooks.info/

Chapter 6

As illustrated in the preceding image, generated artifacts (JARs, APKs, and

Repository Browser

v @ libs-release-local
» [E3 com
v £ packt
~ (B3 androidMaven
» (£ CommonLibrary
* 3310
[™ CommeonLibrary-1.0.aar
% CommonLibrary-1.0.pom
[™ maven-metadata.xml
» [E3 FreeVersion
» E21.0
> FreeVersion-1.0.apk
» [FreeVersion-1.0 jar
% Freeversion-1.0 pom
™ maven-metadata_xml
» [OJ Paidversion
-~ £31.0
> PaidVersion-1.0.apk
» [y PaidVersion-1.0.jar

Compact empty folders

AARs) have been deployed to the repository. You notice also some files with .pom
extension. These are the pom.xm1 files of our project renamed to be aligned with the
names of the actual packages so that Maven can recognize them automatically.

There's one last thing that we want to share with you. You can achieve almost the
same result of release and deploy without using the Maven-release plugin following
these simple steps:

1.
2.
3.

Manually change all versions from 1.0-SNAPSHOT to 1.0.
Push the code to the SCM repository.

mvn clean package -Prelease

Deploy the artifacts by running this command on the parent directory
mvn deploy

Manually change all versions from 1.0 to 1.1-SNAPSHOT.
Push again the code to the SCM repository.

Generate the artifacts by running this command on the parent directory

[149]

www.it-ebooks.info

http://www.it-ebooks.info/

Release Life Cycle and Continuous Integration

Technically, the only difference is that there's no tag creation. Everything else is
exactly the same. Nevertheless, this approach is not recommended, because as we
will see in the last section of this chapter, it requires manual changes of files and it
cannot be easily automated.

Our packaging and deployment journey has to come to its end. We have created
configuration settings for every step required or recommended by Android for a
successful application release. The common characteristic of all steps is that it can
be done by running a single Maven command without touching the code or other
configuration files. Now, we are ready to move to the next level and automate
everything to a robust and automated CI environment.

Cl and automation best practices

Cl is an agile practice that improves and facilitates software development processes.
It requires developers to check-in the code frequently in a centralized source code
repository. Every check-in triggers a new build job that—at least —compiles the
code, runs unit tests, and builds the required artifacts (binaries, packages, and so
on). This is the minimum set of activities that typically run on a CI environment.
More sophisticated tasks, like nightly builds that run functional tests across different
operating systems or different devices/emulators when living in the Android
worlds, can also be achieved with proper configuration.

If setting up/using an SCM is considered as the "step A", when starting a new
software development project, then setting up CI jobs is definitely the "step

B". We can choose from a variety of open sources and commercial CI tools like
Jenkins (http://jenkins-ci.org), TeamCity (https://www.jetbrains.com/
teamcity/), Travis (https://travis-ci.org/), and Bamboo (https://www.
atlassian.com/software/bamboo) just to mention the most popular ones. For
simplicity, we will use in this section Jenkins CI. We regard it as the most easy to
install and use; so even if you're not familiar enough with it, we are sure that you
will easily follow our examples.

There are several excellent articles and resources on the web about this

that will explain in every detail the concept of CI and how developers

should adopt. We highly recommend Martin Fowler's article http: //
~\I www.martinfowler.com/articles/continuousIntegration.

html and a couple of books available from Packt Publishing that
Q focuses on popular CI tools like Jenkins and TeamCity.

Jenkins Continuous Integration Cookbook, Second Edition, Alan Mark Berg,
Packt Publishing.

Learning CI with TeamCity, Manoj Mahalingam, Packt Publishing,

[150]

www.it-ebooks.info

http://jenkins-ci.org
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://travis-ci.org/
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html
http://www.it-ebooks.info/

Chapter 6

Downloading and installing Jenkins CI is really a piece of cake. Pick up the package
for your local operating system and follow the installation guide found in this page:
https://wiki.jenkins-ci.org/display/JENKINS/Installing+Jenkins. There,
you should be able to access locally at port 8080, http://localhost:8080. By
default, Jenkins does not require any user authentication and so you can perform
all available actions we will show you in a minute.

Again, you can download a virtual machine with Jenkins installed and configured
by Btinami:

https://bitnami.com/stack/jenkins
or turnkey:
http://www.turnkeylinux.org/jenkins

Before we explain the job creation, we will do some global configuration and tell
Jenkins where Maven and Git Client are located. Make sure that you have the
required plugin installed in your Jenkins installation. In our case, we need the
Git Client plugin. You can manage Jenkins plugins if you click on the Manage
Jenkins link located at the top-left menu of your screen, and then click on the
Manage Plugins link.

If you are using other than Git SCM repository, you should do follow similar steps
to configure client's location. Now, click again on the Manage Jenkins link, but this
time click on the Configure System option, as shown in the following image:

Project Relationship Configure Svstem
Lonfgure System

Configure global settings and paths

4~ | Check File Fingerprint
#. Manage Jenkins L configure Global Security

Secure Jenkins; define who is allowed to access/use the system

In the administration page that you will be redirected, locate the Git Installations
section and click on the Add Git button. Then, just enter the full path to Git Client
and enter a description. The following image shows how the screen should look:

Git
Git installations
Git
Name Default
Path to Git executable gitexe @
Install automatically @

Add Git -

[151]

www.it-ebooks.info

https://wiki.jenkins-ci.org/display/JENKINS/Installing+Jenkins
https://bitnami.com/stack/jenkins
http://www.turnkeylinux.org/jenkins
http://www.it-ebooks.info/

Release Life Cycle and Continuous Integration

Do the same with your Maven installation. Locate the Maven Installations section
and click on the Add Maven button. Then, just enter the full path to Git Client and
enter a description, as shown in the following screenshot:

Maven

Maven installations Maven

Mame IMaven 3.2.2

MAVEN_HOME ' 22 che-maven-2.2.2
Install automatically (2]

Delete Maven

Add Maven

List of Maven installstions on this system

If you set up only one Git installation and one Maven installation, Jenkins will
always use these installations when needed. However, if for some you need to
create multiple Git or Maven installations Jenkins, will provide a list box in the job
configuration window to pick up the one to use. Click on the Save button to persist
our changes, and let's now create the basic build job that will be triggered after every
code check-in.

To do so, from the central Jenkins page, click on the New item link, located
on the top-left of your screen, and you will be seeing something similar to the
following image:

Item name Chapter 6

Freestyle project
This is the central feature of Jenkins. Jenkins will build your project, combining any SCM with any build system, and this can be even used for
something other than software build
*! Maven project
Build a maven project. Jenkins takes advantage of your POM files and drastically reduces the configuration

Build multi-configuration project
Suitable for projects that need a large number of different configurations, such as testing on multiple environments, platform-specific builds, etc

External Job

This type of job allows you to record the execution of a process run outside Jenkins. even on a remote machine. This is designed so that you can use
Jenkins as a dashboard of your existing automation system. See the documentation for more details

Copy existing Item
Copy from

We are so in luck because Jenkins takes advantage of all the configurations we have
been doing so far in the project's pom. xml file; so, we don't need to re-invent the
wheel. Just enter an item's name, select Maven project, and click on the OK button.

[152]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

In the project configuration page that follows, we will set up a few things regarding
the project location and when build will run. First, locate the section labeled Source
Code Management. If you have cloned our GitHub example, you can pick select Git
or the corresponding one if you're using another SCM repository. Then, we need to
specify the location of our root project. The following image illustrates the complete
SCM configuration for the project of this book:

Source Code Management
MNone
CVS
CV'S Projectset
= Git
Reposilories Repository URL i c-ygithub comippapapetrouT6/AndroidMavenDevelopment! ®
Credentials - none - v
o= Add @
Advanced...
Add Repository Delete Repository
Branches to build Branch Specifier (blank for"any’)| oot (7))
Add Branch Delete Branch

Now, it's time to tell Jenkins how to check for SCM changes and what to do when a
change is found. Locate the Build Triggers section and select the Build Periodically
option. In the text box that appears, enter the value of 00 0 0 0, five zeros separated
by spaces in between, they would appear as * * * * * on the screen. This will tell
Jenkins to check for changes every 1 minute. This is not the most efficient way, but
for simplicity we decided to follow this path in our examples. Take a look at the
following screenshot:

Build Triggers
Build whenever a SNAPSHOT dependency is built (7]
Trigger builds remotely (e.q., from scripts) (7]
Build after other projects are built (7]
< Build periodically (7]
Schedule TP
(7]
g
[153]

www.it-ebooks.info

http://www.it-ebooks.info/

Release Life Cycle and Continuous Integration

Finally, find the Build section and add the location of our root pom.xm1 file. Since
we want to build only the example of this chapter, we add the value of Chapters/
pom.xml file in the Root POM field, and then we define the Maven goals. In our case,
a simple "clean package" is enough for the post-commit build. Take a look at the
following screenshot:

Build
Root POM Chaptaré/pam.xml @
Goals and options clean package ®

Advanced...

Save your changes and make some minor modifications in a project file. Check in the
code and wait for Jenkins to join the game. If everything has been set up correctly,
within the next minute you will see that a new build has been triggered and runs

the goals we have defined in the previous section.

So far, we have done a small but crucial step toward automation. Every time a
new code or a modified code is pushed to our GitHub repository, Jenkins will
automatically build the project and run any unit tests, and so we will be aware
of broken builds or failing tests as soon as the code is checked-in. And this is the
essence of CI!

However, we haven't done anything about running integration tests and releasing/
deploying our application. Similarly to what we have done for the post-commit
build, we can create another job that will run only the integration tests. We have
discussed in Chapter 4, Integration Testing how to create profiles and run with the
proper Maven flags integration tests. You can just create a new Maven job and in

the Build section enter the corresponding Maven goals. Usually, integration tests
take more time than building and running unit tests; so, there are two recommended
approaches for this:

* Run them only if the post-commit build is successful

* Run them only one time every night

There is no right or wrong on which is the best way to do it. Pick the one that suits
better to your development style and your level of agility. A good point to start
thinking is to measure how long do the integration tests take to finish. If you test
your application across several devices and emulators and it takes some hours to
execute all these tests, then this is a sign that running them in the nightly build is
the best option.

[154]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

The final step is to set up some jobs for releasing and optionally deploying your
packages. Follow again the same steps to configure Jenkins, but this time make
sure that the job is not triggered automatically. Usually, the official release should
be done manually or automatically under certain circumstances (see for instance
the promoted builds Jenkins plugin: https://wiki.jenkins-ci.org/display/
JENKINS/Promoted+Builds +Plugin).

We highly recommend to set up a different job if you have multiple application
modules in the same project, like we do in the example of this chapter (paid version
versus free version). This way, you will be able to release and deploy only the
desired version of your application. In the following matrix, we have summarized
the strategy we have just discussed:

Build name Automation level Maven goals
Push commit Run after every check-in | Compile, run unit tests, generate
build debug-mode package
Integration Run after every Compile and package with custom
tests successful run of Post- signing, obfuscator, and zipalign
Build Commit tasks.
OR Run integration tests across many
Run on a nightly basis devices or emulators using the
produced package
Release/ Manually on demand Compile and package with custom
Deploy for each .apk of the signing, obfuscator, and zipalign
project tasks.
Do a release and optionally deploy to
a Maven repository

We have just scratched the surface of CI best practices and strategies when living
in the Android world. This topic could easily fit in a complete book. Our focus
was, however, to give you the basic knowledge and skills to implement a stable
and well-defined automation strategy that will help you increase the productivity
and streamline your development process. Based on our experience, not so many
development teams follow these practices; so, we strongly encourage you to
experiment with Jenkins or your favorite CI tool and try to automate as many
possible activities for your project.

[155]

www.it-ebooks.info

https://wiki.jenkins-ci.org/display/JENKINS/Promoted+Builds+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Promoted+Builds+Plugin
http://www.it-ebooks.info/

Release Life Cycle and Continuous Integration

Summary

We are so excited that you have completed reading this important chapter. We know
that Android developers struggle when it comes to proper package and release of

an application to the public. We have analyzed in many details the necessary steps
for a correct and complete packaging of Maven configuration. We also saw how to
deploy the generated packages to a public or a local Maven repository and finally
we discussed some automation best practices, and we went through some minimal
examples on how to configure Jenkins to automatically run your builds, unit tests,
integration tests, and release an application.

After finishing this chapter, you should have a solid knowledge of all the topics
covered so far, and we expect that you have learned the following:

* When doing Android packaging is highly recommended to use a custom
certificate, obfuscate, and zipalign the code

* Create your private certificate key

* Configure Maven for all the above steps using profiles

* Release an application

* Publish the generated packages to a Maven repository

* Understand the best CI and automation practices and be able to configure

the required jobs in Jenkins CI tool

The last chapter can be considered as a bonus one. We will discuss tools
and Maven plugins that will make the difference in any Android application
development process.

[156]

www.it-ebooks.info

http://www.it-ebooks.info/

Other Tools and Plugins

Welcome to the last chapter of this book. When we were figuring out the structure
and contents of the chapters, there were some topics that we wanted to cover but
didn't fit in any of the previous chapters. So, we decided to dedicate the last one to
tools and Maven plugins that are worth your attention when you develop Android
applications with Maven.

We had, however, two possible approaches. We had to list a big number of tools by
just mentioning their basic characteristics or limit them to not more than a couple
and discuss in detail how to effectively integrate them to your existing development
process. The answer was easy, and we clearly prefer the latter. As this is a practical
hands-on book, we want to provide you with as much as possible complete start-up
guides for each of the tools presented in this chapter. After a lot of research, we end
up to the following topics:

* Running static analysis using Android Lint

* Managing the quality of your code with SonarQube

* Boost the debugging and testing process with GenyMotion emulators
Both topics are presented through a step-by-step handbook, so you don't need to
have any previous experience with the above-mentioned tools. All examples are
based on the project we were looking at Chapter 5, Android Flavors, and Chapter 6,

Release Life Cycle and Continuous Integration, and we are confident that by finishing
this chapter you will be able to introduce and use them with your team.

www.it-ebooks.info

http://www.it-ebooks.info/

Other Tools and Plugins

Managing Android code quality

Over the last 2 or 3 years, there has been an increasing interest on managing
software quality from a code perspective. Companies realize that having a healthy
code base that allows development teams to quickly add new features, without
creating regression bugs, is one of the basic keys to business success. Customers
expect no less than a high-quality system. They demand quick adoption to rapid
market changes without the fear of :new version, new bugs, existing features broken.
This is why companies all over the globe are integrating numerous tools into their
development process to manage and eventually improve the code quality of their
large-scale systems. However, when it comes to mobile applications, people don't
think the same way. For some, unexplainable reason, maybe it's the fact that the
code base is not that large to manage quality. Or maybe the release cycles are

too short to include that "strange quality thing." We believe the opposite. Mobile
applications deserve to be managed from a quality perspective. The fact that some
of them are downloaded and used by millions of users is enough to convince you.
The larger is your target group, the more demands are created for your application.
If you fail your customers once, you will not have a second chance. That's the ugly
truth. On the other hand, setting up a complete quality tracking environment is not
that hard as you think and this is what we will go through the next sections.

A short history about quality in Android

Although the first version of Android SDK was officially released back to 2008, the
tirst Android specific quality tool (Android Lint) wasn't made available until 2011.
Our experience has shown that not many Android applications are statistically
analyzed with Lint.

According to Android's lint official web page:

The Android lint tool is a static code analysis tool that checks your Android project
source files for potential bugs and optimization improvements for correctness,
security, performance, usability, accessibility, and internationalization.

Source:http://developer.android.com/tools/help/lint . .html

When we were asking in the past people why they don't take advantage of Lint
features the most popular answer that we got was "We cannot keep track if the
quality is going up or down." For teams using Maven, things were even worse:
"the Maven Android plugin doesn't support the execution of lint checks."

[158]

www.it-ebooks.info

:http://developer.android.com/tools/help/lint.html
http://www.it-ebooks.info/

Chapter 7

We are all in luck because things changed drastically. First of all, the android-
maven-plugin, since version 3.5.1, officially supports the execution of Lint checks
and can provide a well-structured report, so, yes, Maven houses can take advantage
of Lint's static analysis. Later on, during the same year, SonarQube entered the
game of Android quality management by releasing the first version of a plugin that
leverages Android Lint's features in SonarQube ecosystem. This practically meant
that SonarQube users could not only have their Android application analyzed by
Lint but also get quality reports for all quality axis like complexity, duplications, test
coverage, architecture, documentation, and so on.

SonarQube (http://www.sonarqube.org) is a free and open source
system that very quickly has become the de facto standard for managing
code quality. In a few words, it is a code-quality management platform
that allows developer teams to manage, track, and eventually improve
the quality of the source code. It's a web-based application that keeps
historical data of a variety of metrics and gives trends of leading and

lagging indicators for all seven deadly sins of developers.

L

The big difference/advantage of SonarQube is that you don't need to
send quality reports to developers, but instead send the developers
to view the reports in a nicely designed web dashboard with rich
comparing and drill-down capabilities.

SonarQube supports more than 20 programming languages and it is

integrated with the most popular quality tools like PMD, CheckStyle,
FindBugs, and Lint.

Having said that, there is no excuse for treating source code quality of an Android
application, as a second-class citizen. Everything is there, waiting for you, and you
only need to do the right configuration. This is what we will discuss right away in
the next sections.

Analyzing with Lint using Maven

Our first attempt to analyze our code will be by using the "lint" goal of the
android-maven-plugin. By now, you should have seen several examples of
enabling/disabling such goals, so it will be quite straightforward for you.

[159]

www.it-ebooks.info

http://www.sonarqube.org
http://www.it-ebooks.info/

Other Tools and Plugins

Edit the parent pom. xm1 file of our multimodule (free VS paid) application and make
sure that the android-maven-plugin configuration looks like the following code
snippet. The actual changes are displayed in code highlighted characters. Keep in
mind also that these changes are done to the basic plugin configuration - not the
release profile. We definitely want to have these checks running every time we build
our code base:

<plugin>
<groupId>com.jayway.maven.plugins.android.generation2</groupIds>
<artifactIdsandroid-maven-plugin</artifactIds>
<extensions>true</extensions>
<configuration>
<sdk>
<platform>19</platform>
</sdk>
<lint>
<skip>false</skip>
<enableHtml>true</enableHtml>
<enableXml>false</enableXml>
</lint>
</configurations
<executions>
<execution>
<id>lint</id>
<goals>
<goal>lint</goal>
</goals>
<phase>install</phase>
</execution>
</executions>
</plugin>

Our changes target the plugin configuration and the goal execution. In short, we tell
Maven to enable the execution of lint analysis and produce only an HTML report.
Then, we instruct Maven to run the lint goal during the install phase. This is required
because lint needs the . apk file which - like we saw in the previous chapter - is
generated during the package phase. Now, we can simply run a clean build of our
application including the "install" phase:

mvn clean install | grep -i Lint

For clarity, we have filtered out Maven output to produce only the logs related to lint
execution. You should see something similar to the following screenshot:

[160]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[INFO1 —— android-maven—plugin:=3_.8.2:1int (lint> @ Freelersion ——

[INFO]1 Performing lint analysis.

[INFO1 Writing Lint HTML report in CG:sdevsandroidspackt AndroidMavenDevelopmentsChapter?~F
reelersionstargetslint—resultsslint—results—html

[INFO1 Running comman ndevsadt-bundle—windows—x86_64-201310838sdk~tools~lint .bat
[INFO1 with parameters: [——showall, ——html, C:“dev:androidipackt“AndroidMavenDevelopment™C
hapter?+~Freelersionstargetslint—resultsslint—-results—html, ——sowurces, C:devsandroidispackt
“AndroidMavenDeve lopment“Chapter? Freelersiontsrcmainsjava, GisdevsandroidspacktsAndroidM
avenDeve lopment~Chapter?~Freelerzion, ——exitcodel

[INFO1 Lint analysis completed successfully.

[INFO] —— android-maven—plugin:=3.8.2:1lint <(lint> @ PaidlUersion ——

[INFO1 Performing lint analysis.

[INFO1 Writing Lint HTML report in C::devsandroidipackt“AndroidMavenDevelopmentsChapter?«P
aidUersionstargetxlint—resultsslint—-results—html

[INFO1 Running comman sdevsadt—bundle—windows—x86_64-208131838~sdk~tools~1lint .bat
[INFO1 with parameters —showall, ——html, C:sdevsandroidspacktsAndroidHavenDevelopment™C
hapter?~Paidlersionstarget™lint—resultsslint-results—html, ——sources, C:sdeviandroidipackt
~“AndroidHavenDeve lopmentsChapter?Paidlersionssrcimainsjava, C:sdeviandroidspacktsAndroidH
avenDeve lopment~Chapter?~Paidlersion, —exitcodel

[INFO] Lint analysis completed successfully.

Now, you can browse the generated report, which can be found under target/
lint-results/lint-results-html directory of each module. For instance, the
following image illustrates the report you can see if you open the index.html file
of the CommonLibrary module:

Lint Report

Check performed at Sun Jan 04 13|
0 errors and 2 warnings found:

Project A Wamings
CommonlLibrary 2

You can explore the rest of the report by yourself. Just click on the module link and
you will see a list of the reported issues with detailed explanation, compliant and
non-compliant code, and a classification of severity. You will also see a list of all
disabled rules. Explaining all the rules of Android Lint is out of the scope of this
book, so we highly recommend you to explore the complete rule-set and understand
the purpose and impact of each rule.

Unleashing the power of SonarQube

We made a small step toward managing quality. By now, you are able to manually
analyze the application code using Maven. However, we lack automation. One way
to do this is to modify the postcommit Jenkins job we discussed in Chapter 6, Release
Life Cycle and Continuous Integration, and include the install phase in our Maven
execution goals. This way, every time someone checks in code in the SCM repository,
a new Lint analysis will be available as an HTML report.

[161]

www.it-ebooks.info

http://www.it-ebooks.info/

Other Tools and Plugins

This status has two drawbacks. First, there's no way to automatically figure out if
the latest check-in introduced new issues or if any of the previous detected issues
have been resolved. In other words, we cannot compare two quality snapshots.
Furthermore, identifying rule violations is only a small part of the code quality.
We have no reporting about complexity or duplications.

SonarQube comes to the rescue and can offer us everything that lint does, plus a lot
of meaningful metric. In this section, we will explain how to configure SonarQube
and run a complete analysis of our example application. Downloading and installing
SonarQube is easy by following the instructions that can be found at http://www.
sonarqube .org/downloads/ and http://docs.sonarqube.org/display/SONAR/
Setup+and+Upgrade.

For simplicity, you can keep the default settings without setting up a database. We
also recommend that you install the latest Long-Term Supported (LTS) version. At
the time of writing this book, the latest LTS was 4.5.1.

The SonarQube after it's installed looks something like the following:

Projects» Measures Issues Rules Quelity Profiles Quality Gates Login [EEElre]
I
Home

Welcome to SonarQube Dashboard PROJECTS
T Since you are able to read this, it means that you have successfully
started your SonarQube server. Well done! 0G NAME~ VERSION LOC TECHNICALDEBT LAST ANALYSIS

Dependencies
Compare

N

If you have not removed this text, it also means that you have not
yet played much with SonarQube. So here are a few pointers for
your next step:

No data

» Do you now want 1o run analysis on a project?

» Maybe start customizing dashboards? PROJECTS

» 0r simply browse the complete documentation?

» |f you have a question or an issue, please visit the Get Support
page

No data

SonarQube™ technology is powered by SonarSource S&
wersion 4.5.1 - LGPL v3 - Community - Decumentation - Get Support - Plugins - Web Service AP

Embedded database should be used for evaluation purpose only

The embedded database will not scale, it will not support upgrading to newer versions of SonarQube, and there is no support for migrating your data out of it into a different database engine.

After completing the installation, you can access the web dashboard by typing this
URL in your web browser: http://localhost:9000 and you should see the main
page as shown in the preceding image. Don't worry about the big red letters warning
you that you are using the embedded database. This is absolutely fine for our
demonstration purposes.

The default installation of SonarQube doesn't ship with the Android rules, so we
need to manually install the corresponding plugin. First, you need to log in as an
administrator (username/password : admin/admin). Once logged in, click on the
Settings link, which is on the top right of your screen and then on the Update
Center option on the left menu, under the SYSTEM section, and this is shown in
the following screenshot:

[162]

www.it-ebooks.info

http://www.sonarqube.org/downloads/
http://www.sonarqube.org/downloads/
http://docs.sonarqube.org/display/SONAR/Setup+and+Upgrade
http://docs.sonarqube.org/display/SONAR/Setup+and+Upgrade
http://localhost:9000
http://www.it-ebooks.info/

Chapter 7

gs Administrator = SYSTEM
Provisioning
Bulk Deletion
N~
System Info .
; Click here to
Click here to access sonarqube
; access the
admin menus
update center

Finally, click on the Available plugins tab, move down to the LANGUAGES section,
and click on the Android plugin. After installing it, you need to restart SonarQube to
complete installation and prepare the plugin for utilization. To verify that everything
was done properly, you can go back to the update center and check that the Android
plugin appears under the Installed plugins tab.

Now that our SonarQube installation is ready, let's configure Maven and then
analyze our sample project. We want to create a global SonarQube profile, so edit the
$M2_HOME%/conf /settings.xml file and add the following code snippet under the
<profiles> element:

<profile>
<ids>sonar</id>
<activations>
<activeByDefault>true</activeByDefaults>
</activations>
<propertiess
<sonar.jdbc.urls
jdbc:h2:tcp://localhost:9092/sonar
</sonar.jdbc.url>
<sonar.jdbc.username>sonar</sonar.jdbc.username>
<sonar.jdbc.password>sonar</sonar.jdbc.password>
</properties>
</profile>

The above configuration is valid only for the embedded database.
If you want to use SonarQube for a production environment,
it is strongly advised that you set up to use a real database. In
~ that case, you need to modify the <sonar.jdbc.urls> to the
Q corresponding JDBC URL. For instance, if you plan to use MySQL
then the JDBC URL will probably look like this:

jdbc:mysqgl://localhost:3306/sonar?useUnicode=true
& characterEncoding=utf8

[163]

www.it-ebooks.info

http://www.it-ebooks.info/

Other Tools and Plugins

It is time to run our first SonarQube analysis. Just open a terminal window,
navigate to the folder where the parent pom.xml file is located, and type the
following Maven commands:

mvn clean install
mvn sonar:sonar -Dsonar.profile="Android Lint" | grep -i Sonar

The first command will run a typical clean build of our application. The second will
trigger a SonarQube analysis with the Quality profile named Android Lint. The
command will also filter out only the Maven output which is related to SonarQube
to make it easier to check that the analysis has been completed successfully.

Accessing SonarQube's Ul again, we will find a new entry (Chapter 7-Quality, that
is the name of our sample project) under the PROJECTS section. Verify that your
screen is looking like the following image:

Projects + Measures Issues Rules Quality Profiles Quality Gates Settings Administrator » [EElE]

|
Home

Configure widgets = Manage dashboards

Welcome to SonarQube Dashboard PROJECTS

Since you are able to read this, it means that you have successfully started

your SonarQube server. Well done! QG NAME o VERSION LOC TECHNICAL LAST
DEBT ANALYSIS

TooLs

Dependencies

Compare

snnarqube\\\‘

If you have not removed this text, it also means that you have not yet played
much with SonarQube. So here are a few pointers for your next step: (%) Chapter 7- Quality 1.0-SNAPSHOT 80 20min 1449
» Do you now want to run analysis on a project?

» Maybe start customizing dashboards?
» Or simply browse the complete documentation?
» If you have a question or an issue, please visit the Get Support page PROJECTS

1 results

Size: Lines of code Color: Coverage
MY FAVOURITES

QG NAME LAST ANALYSIS

No data

Chapter 7 -
Quality

The name of the projects is a clickable link that will redirect us to the project's
dashboard. See the following image. A lot of things and numbers are shown on
that page. In short, the dashboard is composed of widgets that report on a different
quality axis. For example, you can see the information about the complexity, the
duplicated lines of code, the number of issues reported (yes, that's Android Lint),
and the technical debt ratio and other statistics about the size of the project. If you
make some changes on the code and run a new analysis again, on the top of your
screen you can see a drop-down list box with the text "Time changes". Picking a delta
(8) period, for instance "since previous analysis", the dashboard will slightly change
and will provide some additional reporting. You will see a comparison between the
previous analysis and the current analysis. This will make it easy to understand if
your project is doing well or the quality is going up or down.

[164]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Looks awesome, right? But something is missing from this dashboard. Can you
figure out what? What's one of the important quality axis that is not displayed in the
page we are looking at? Correct. Code coverage. We have spent two chapters in this
book to discuss about testing our application in all layers and SonarQube doesn't
support it? Don't worry, reporting on test coverage is one of the most important
things reported by SonarQube, but SonarQube itself doesn't run tests. We need to
tell it where to find the unit test results and the code coverage report, and this is
shown in the following image:

Version 1.0-SMAPSHOT - Jam 04 201514:53 | Time changes... v Configure widgets = Manage dashboards
Lines Of Code Files SOALE Rating Technical Debt Ratio
80 3 0.0%
Java Directories Lines

2 101 Technical Debt S5UES
0 /
Functions - 4
6 © Blocker 0
Classes Staterments © Critical 0
28 @ Major 0
ACce Minor 4 a [N
Ao info 0
Complexity
Duplications -
~ o] _J ffunction
0.0% i,
_ _ 3.‘_] fclass
0] 3 . :] ffile
Total: [:]
Directory Tangle Index Ut
0.0% =t 4 I
0 N
n Between File o l
:-| 1 2 4] -3 10 12
& Functions Files

So far, we haven't configured JaCoCo for the Paid VS Free Maven project, but we to
leave that to you as an exercise. You can follow the steps we explained in Chapter 3,
Unit Testing, and prepare the corresponding Maven profile.

Implement the profile on the parent project to make it available to
M all submodules. You can also use Robolectric in the project to add
Q a very simple Unit test and see how the coverage is reported on
SonarQube. Both can be found on the GitHub repository where the
code of this book is located.

[165]

www.it-ebooks.info

http://www.it-ebooks.info/

Other Tools and Plugins

We will focus on configuring SonarQube through Maven to read the test coverage
reports and produce some nice UI widgets on the project dashboard. Add the
following properties in the parent pom.xml file:

<sonar.junit.reportsPath>target/surefire-reports</sonar.junit.
reportsPaths>
<sonar.java.coveragePlugin>jacoco</sonar.java.coveragePlugin>
<sonar.jacoco.reportPath>target/jacoco.exec</sonar.jacoco.reportPath>
<sonar.profile>Android Lint</sonar.profile>

The following properties will instruct SonarQube to reuse the existing reports
generated by our favorite tools - Surefire and JaCoCo Maven plugins in our case. The
first property (sonar.junit.reportsPath) tells SonarQube where to find the unit
tests execution reports generated by surefire. Next, we tell SonarQube that our code
coverage tool is "jacoco" (sonar. java.coveragePlugin). Finally, we let SonarQube
know where to find the code coverage report (sonar.jacoco.reportpath). As

a bonus property, we added the sonar.profile property we previously used to
simplify our command line execution.

If you want to experiment a little more, you can also create a cobertura
M profile and set the value of the sonar.java.coveragePlugin
Q property to cobertura. In that case, you need to set sonar.
cobertura.reportPath property instead to a value that points to
cobertura file (that is: target/cobertura/cobertura. ser).

We can now run again a SonarQube analysis by executing the following Maven
commands on the directory where the parent pom.xm1 file is located:

mvn clean install -Pjacoco

mvin sonar:sonar

Going back to the project's dashboard, we will be able to see another widget that

will report on test execution and test coverage. It will look like the following image,
although the numbers may vary depending on how many tests you have written and
how many lines are hit by these tests. In our case, the numbers tell us that we have
implemented two test cases that cover almost half of our code base:

Unit Tests Coverage Unit Test Success
48.5% 100.0%

Line Coverage Failures E Tests
A8 _5: 0 L 0 :

[166]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Now, everything is set and you can continue playing around with SonarQube. You
can click on any number you see on the widgets and drill down to module, package,
or file level. This way, you will find out the exact location of an issue, a duplication
block of lines, a not covered by tests method, or even a complex piece of code.

SonarQube is a great product and clearly we cannot cover all its star features

in a few pages. There are several resources on the Internet including the official
documentation page (http://docs. sonarqube.org/) where you can read and find
out all the ways you can use it to continuously inspect the quality of an Android
application. You can also find articles and guidelines that will help you to integrate
it with other powerful and popular tools, like Jenkins, and make it a part of your
development process. We hope that the quick overview we did is fair enough to
excite your curiosity and explore it more.

Boost development speed with
GenyMotion

Every developer who writes Android application has used the emulators provided
by Android SDK to test and/or debug the code under development. I bet that
there's no one out there who hasn't been frustrated about the time the emulator
needs to load, deploy the application, and run it. Things are getting even worse
when you want to test large applications with time-consuming activities, in a
limited-resources environment.

The answer to these problems is called GenyMotion (https://www.genymotion.
com/) and it comes in two flavors: free and commercial. We will focus on the free
features that are enough to leave behind forever the old-fashioned Android SDK
emulators. So what is actually GenyMotion? Why is it so fast and what are the
advantages of using it over Android emulators?

GenyMotion is actually an Android running on VirtualBox (https://www.
virtualbox.org/) virtual machine (VM). VirtualBox is a visualization platform

for home and enterprise usages that can be run on almost every available operating
system of the market. It is so fast that some times Android applications start up
even faster than real devices. The key benefits of using GenyMotion includes but not
limited to are as follows:

* Supports all known operating systems like Windows, Linux, and Mac.

* Itis integrated with the most popular Android development tools like
Eclipse and Android Studio.

[167]

www.it-ebooks.info

http://docs.sonarqube.org/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.virtualbox.org/
https://www.virtualbox.org/
http://www.it-ebooks.info/

Other Tools and Plugins

* Supports a variety of sensors like battery, temperature, GPS, and many
more. Thus, developers can run tests and simulate real-world scenarios
by just using the emulator.

* Has x86 supports and ships with numerous preconfigured VMs. This
practically means that you don't need to spend even a minute to configure
these VMs.

* Supports device rotation, WiFi simulation, and can use the web camera
of the hosting environment to test camera-related features.

* Supports the most popular Android APIs starting from version 10 (2.3.7)
up to the latest version 21 (5.0)

There is only one problem with GenyMotion. Like we said, sometimes it runs even
faster than real devices, so we recommend that you test your applications to a real
device as well to make sure that they have the expected behavior. Actually, even if
you don't use GenyMotion it is not good practice to manually or automatically test
your applications only in emulators. Many things look and more importantly behave
differently when you run your code on a real device.

Deploying our example to a GenyMotion
emulator

You can download and install the free version of GenyMotion by following the
instructions found on the official website: http://www.genymotion.com. You
should create an account and download the binary for your operating system. The
instructions are very well documented, so you won't have any difficulties. If you
don't have VirtualBox installed, you will need to install it as well but don't worry.
You will find two available downloads for each GenyMotion version on their site.
One binary including VirtualBox and one without it. We strongly also recommend
to install the plugin for your favorite Integrated Development Enviroment (IDE)
(Eclipse or Android Studio).

[168]

www.it-ebooks.info

http://www.genymotion.com
http://www.it-ebooks.info/

Chapter 7

During the next sections, we will guide you to create an emulator based on the
project configuration settings and deploy our sample application. When we are
done with installing GenyMotion, we can start the management console. There is
also a command line interface but command-line lovers but for clarity we will stick
on to the graphical interface. This has been depicted in the following screenshot:

(o0 Genymotion for personal use - O R

0Q Genymotion

>

Add a new virtual d Ctri+N

Your virtual devices

Let's begin now:

1.

Our first step is to create a new emulator VM. Remember from our project
configuration that our target SDK platform is version 19, so we should create
an emulator built on that version:
<sdk>

<platform>19</platform>
</sdk>

Click on the Add button of the GenyMotion VM management console. It will
pop up a dialog box with all the available preconfigured virtual devices.

On the top left of that dialog, select the desired Android version, that is, 4.4.4
(SDK 19) in our case.

Scroll down to the filtered list and locate the device named: Samsung Galaxy
Note 3 - 4.4.4 - API 19 - 1080x1920.

[169]

www.it-ebooks.info

http://www.it-ebooks.info/

Other Tools and Plugins

5. Click on next, and enter a different name if you want. At the same page, you
can review the default configuration of that device. Isn't it so cool that you
don't need to care about the number of megabytes that are needed to run
this device or how many disk space is suggested to be reserved? We love
flexibility but in this case we tend to prefer stability over flexibility. This
has been depicted in the following screenshot:

Eé Select a new virtual device

Android version: 444 A Device model: _

Available virtual devices
~ Google Nexus 7 - 4.4.4 - API 19 - 800x1280
~ Google Nexus 7 2013 - 4.4.4 - AP119 - 1200x1920
v Motorola Moto X - 4.4.4- API19 - 7201280
~ Samsung Galaxy Note 3-4.4.4 - API 19 - 1080x1920

~ Samsung Galaxy 54 - 444 - AP 19 - 1080x1920

Samsung Galaxy 55 -4 44 - AP119 - 1080x1920

The Android instance is probably not downloaded, so GenyMotion will do that for
you. This will take some minutes depending on your Internet connection. Typically,
each VM is about 200 MB. When the download is complete, the image will be
displayed in the list of available emulators. You can select it and click on the Start
button. In less than a few seconds, your emulator is up and running and waiting for
you to use it.

Let us try to deploy our sample application with the typical way we have discussed
in Chapter 2, Starting the Development Phase. Keep the emulator running and open
again a terminal window. Navigate to the "Free version" directory end type the
following command:

mvn android:deploy | grep -i GenyMotion

[170]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

The deployment should not take more than 1 - 2 seconds. If you try to compare this
number with the time needed to deploy to a real device, you will probably notice
that it takes almost half time. The (filtered with the term GenyMotion) Maven output
will probably look like the following image:

[IHFO] Device 192.168.56.10@_5555 _Genymotion_SamsungGalaxyMote3—4.4.4-API19-1880x1928 foun

[IHFO] 1922.168.56.188_5555_Genymotion_SamsungGalaxyNote3d—4.4.4-API19-16880x1928 : Success
Fully uninstalled com.packt.androidmaven_free from 192 _168_56_1B0_5L555_Genymotion_SamsungG
alaxyNote3d—4.4.4-AFI17-1880x1928

[INFO1 Device 192 _168_.56.188_5555_Genymotion_SamsungGalaxyNote3—4_4_4-API19-1880x1928 foun

.

[INFO1 192.168.56.188_5555%_Genymotion_SamsungGalaxyNote3d—4.4_4-API119-1888x1928 :

Fully 1notalled G:ndevsandroidspacktsAndroidMavenDeve lopment~Chapter?Freelersiontarget™F
Ue »: to 192 _168 .56 180 5555 Genumotion SamsunaGalaxuMote3—4.4_4-API119-10888x1928

You can now use the GenyMotion emulator and manually test our application.

It will run super-fast! A very interesting exercise for you would be to add some
instrumentation tests using Robotium or Selendroid. Both tools were covered in
Chapter 4, Integration Testing. Then, create the proper Maven configuration and run
the tests against our GenyMotion emulator. Keep track of the time needed to run all
tests and then do the same but now using a standard Android emulator. Then, you
can run them once again but this time use a real device. It will be really amazing to
see and compare the results of each test execution.

GenyMotion, however, is not just another, faster and easier to use Android
emulator. It can be used also as an extension to your favorite testing framework
and write tests for a variety of sensors such as battery, camera, GPS, WiFi,
multitouch, and others. And the best of it is that you can integrate it with Maven
by adding a single dependency.

Unfortunately the best things in life don't come for free and all these fancy features
are only available in the commercial edition, so we cannot discuss them in detail,
as they are not part of the free version of GenyMotion. We strongly recommend
you, especially if you are writing Android applications for a software house and
you want to speed up your development and testing process to give this tool a try.
We believe it to be worth the effort.

[171]

www.it-ebooks.info

http://www.it-ebooks.info/

Other Tools and Plugins

Summary

This is the end! You have now mastered Android application development with

Maven and you are confident that Maven has nothing to be jealous from Ant or

even Gradle. We have discussed many times throughout this book of how every
software development activity can be simplified using declarative configuration and
make it part of the project itself with no advanced scripting knowledge or hard to
understand settings. The power of Maven - plugins - hides all the technical details
and lets you describe what you want to do in each phase. The rest is Maven's job,
and by now you should be convinced that it really does a pretty good job on that.

Our last chapter was dedicated to two different topics. We first covered the critical
but overlooked practice of managing code quality. We explored ways of analyzing
an application's source code. At the beginning, we saw how to configure Android
Lint and then we explained the advantages of SonarQube over a typical static-code
analyzer. We also ran a full analysis of our sample project and we saw what kind of
quality numbers we get by SonarQube. The last part of this book was dedicated to
an alternative toolset of emulators: GenyMotion. Although it is not related directly to
Maven, it works very well with what we have discussed in the previous chapter and
boosts the development and debugging speed.

After finishing the last chapter of this book, we expect that you have gained a solid
knowledge of SonarQube and GenyMotion and you are able to:

* Configure and run Android Lint analysis using Maven

* Configure and run SonarQube analysis using Maven

* Understand the advantages of SonarQube over a static-code analyzer

* Use GenyMotion emulators instead of the standard emulators provided by

Android SDK

So, this is the end of the book. We really hope you enjoyed the journey and you
found a lot of useful practical tips. Feel free to tweet about this book, write a blog
review, or just drop us an e-mail with your feedback. Good luck on your next
Android - Mavenized- project!

[172]

www.it-ebooks.info

http://www.it-ebooks.info/

A

activities testing
about 64, 65
Android unit tests, running with
maven 67-71
dedicated unit testing module,
creating 65-67
integration testing 64
unit testing 64
ActivityInstrumentationTestCase2 class 84
Android application
new version, releasing 144
problem statement 105-107
testing 59, 60
Android code quality
analyzing with Lint, Maven used 159-161
history 158, 159
managing 158
SonarQube, using 161-166
Android instrumentation tests
dedicated integration testing module,
creating 85
running 84
simple instrumentation activity test,
writing 87-89
Android PacKage (APK) file 15, 33
Android package optimization
about 132
application, signing 132-138
code, obfuscating 138-140
package, transforming in
shippable form 143, 144
uncompressed data, aligning 141-143
uncompressed data, zipping 141-143

Index

Android projects
about 33
folders and files 33, 34
POM,, reviewing 35, 36
Android SDK
about 7, 8
development tools 9
installing 9-12
URL, for downloading 9
Android Studio
installing 9
URL, for downloading 9, 21
Android Virtual Device. See AVD
Apache Maven 7
Appium
about 104
URL 104
Application Under Test (AUT) 101
architecture principles, Android projects
standalone application 48-52
with dependencies, on SDK Add-ons 57
within n-tier architecture 54-56
Artifactory 147
AVD
about 10, 37
building 42
cleaning 41
creating, with GUI 37, 38
creating, with in-command line 38-40
deploying, with mvn android:deploy
command 45, 46
developing 41
sources, generating 41, 42
starting, with mvn android:emulator-start
command 43, 44

www.it-ebooks.info

http://www.it-ebooks.info/

stopping by default, with mvn
android:emulator-stop command 44

stopping, mvn android:emulator-stop General Public License (GPL) 49
command used 44 GenyMotion
undeploying, with mvn android:undeploy about 167
command 46, 47 benefits 167
example, deploying to 168-171
B URL 167, 168
used, for boosting development speed 167
Bamboo global level, Maven profiles 108
URL 150 Graphical User Interface (GUI)
Bitnami about 37
URL 151 used, for creating AVD 37, 38
build profiles
creating 108 H
separation, by library 117-128
separation, by packaging 109-117 HotSpot 42
C I
Cobertura IDE
about 80 about 7
using 80 Eclipse 15
Continuous Integration (CI) Intelli] IDEA 21
about 131, 150 Maven, integration 15
best practices 150-155 NetBeans 28
in-command line
D used, for creating AVD 38-40
installation
Dalvik 42 Android SDK 9-12
Data Access Object (DAO) 48 Java Runtime Environment (JRE) 7
Distribution Management 147 JDK7 7
instrumentation testing
E about 83

fundamentals 84

Eclipse Integrated Development Environment. See

about 15, 168

Android SDK integration 15-18 . I]?E .
. . integration testing
Maven integration 15-18
about 59

project, creating 18-20
project, importing 30
setting up 15-18

Graphical User Interface (GUI) testing 83
instrumentation testing 83

E Intelli] IDEA
about 103 about 9,21
URL 103 Android SDK integration 21

Maven integration 21

[174]

www.it-ebooks.info

http://www.it-ebooks.info/

Maven integration, specific to Android

Studio 22

plugins, enabling 24

project importing, specific to Android
Studio 25-28

setting up 21

URL, for downloading 21

J

Java Code Coverage (JaCoCo)
about 77,165

URL 77

using 77-79

Java Development Kit (JDK) 7
Java Runtime Environment (JRE)
installing 7, 8

URL 7

Java Virtual Machine (JVM) 72
JDK7

installing 7, 8

URL, for downloading 7
Jenkins

URL 150

Jetty 55

JRockit 42

L

Lollipop 11

Maven

downloading 8
integration, with IDE 15
project, creating 12-14
URL, for downloading 8
Maven Central Repository 13
Maven profiles

about 107

global level 108

project level 108

user level 108

mvn android:emulator-start command

used, for starting AVD 43, 44
mvn android:emulator-stop command
used, for stopping all AVD 44
used, for stopping AVD by default 44
mvn android:undeploy command
used, for undeploying AVD 46, 47

N

NetBeans
about 28
Android SDK integration 28-30
Maven integration 28-30
setting up 28, 29
URL, for downloading 28

(0

obfuscation 138

P

ProGuard

about 138

URL 140
project level, Maven profiles 108
Project Object Model (POM) 14
ProviderTestCase2 class 84

R

release process, Android application

about 144

local repository, deploying 147-150

performing, without deployment to

repository 144-146

Robolectric

about 165

configuring, with maven 73

unit testing 72

unit tests, running 73-76
Robotium

about 95,171

Model-View-Controller (MVC) 54 URL .95 _
mvn android:deploy command working with 95-98
used, for deploying AVD 45, 46

[175]

www.it-ebooks.info

http://www.it-ebooks.info/

S testing
integration testing 59

Selendroid unit testing 59
about 98, 171 Tomcat 55
configuring 98-101 tools, integration testing
UI tests, writing for Maven native about 103
applications 101, 102 Appium 104
URL 98 Espresso 103
used, for Ul tests 98 Travis
Selenium 98 URL 150
ServiceTestCase class 84
Software Development Kit (SDK) 34 U
SonarQube
about 159 UI tests
advantage 159 with Selendroid 98
download link 162 unit testing
features 162 about 59
URL 159 Android applications, testing 59, 60
used, for managing code quality 162-167 running 60-64
Source Control Management (SCM) test coverage, measuring 76
tool 134 with Robolectric 72
Spoon user level, Maven profiles 108
about 89
configuring, with Maven 90-94 Vv
reports, viewing 94, 95 VirtualBox
running 94, 95 about 167
screenshots, grabbing with 89, 90 URL 167

URL 90
T z
TeamCity zipalign 141

URL 150
test coverage

Cobertura 80

JaCoCo 77

measuring 76

[176]

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

Thank you for buying
Android Application Development
with Maven

About Packt Publishing

Packt, pronounced 'packed’, published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www . packtpub . com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub. com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

Learning Apache
Maven 3

Kapila Bogahapitiya

———— P

Learning Apache Maven 3 [Video]
ISBN: 978-1-78216-666-5 Duration: 01:59 hours

Get to grips with the basics and concepts of building
a real-world Java application with Apache Maven

1. A practical example-driven approach to
learning Apache Maven 3.

2. Grasp the fundamentals and extend Apache
Maven 3 to meet your needs.

3. Learn to use Apache Maven with Java,
Enterprise Frameworks, and various other
cutting-edge technologies.

Maven Build
Customization

PACKT

Maven Build Customization
ISBN: 978-1-78398-722-1 Paperback: 270 pages

Discover the real power of Maven 3 to manage your
Java projects more effectively than ever

1. Administer complex projects customizing the
Maven framework and improving the software
lifecycle of your organization with "Maven
friend technologies".

2. Automate your delivery process and make it
fast and easy.

3. An easy-to-follow tutorial on Maven
customization and integration with a real
project and practical examples.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

Instant Apache Maven Starter
ISBN: 978-1-78216-760-0 Paperback: 62 pages

Get started with the fundamentals of developing Java
projects with Apache Maven

1. Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results.

Short | Fast | Focused

2. Create Java projects and project templates with
Apache Maven Starter Maven archetypes.

3. Manage project dependencies, project
coordinates, and multi-modules.

Maurizio Turatti Maurizio Pillitu

4. Download, install, and configure Maven on
different operating systems.

Android User Interface

Development Beginner's Guide
ISBN: 978-1-84951-448-4 Paperback: 304 pages

Quickly design and develop compelling user
interfaces for your Android applications

1. Leverage the Android platform's flexibility and
power to design impactful user-interfaces.

Android User
2. Build compelling, user-friendly applications
that will look great on any Android device.

3. Make your application stand out from the rest
with styles and themes.

4. A practical beginner's guide to take you step-
by-step through the process of developing user
interfaces to get your applications noticed!

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover

	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Beginning with the Basics
	Installing Java
	Download and Install Apache Maven
	Android SDK
	Android development tools
	Android SDK standalone

	Creation of a new project
	Integration with IDE
	Eclipse
	Set up and integration of Maven and Android SDK
	Creation of a project in Eclipse

	IntelliJ IDEA / Android Studio
	Set up and integration of Maven and Android SDK
	Import of project

	NetBeans
	Set up and integration of Maven and Android SDK
	Import a project

	Summary

	Chapter 2: Starting the Development Phase
	Reminders about Android projects
	Creating an AVD
	With the GUI
	In-command line

	Develop and Build
	Cleaning
	Generating sources
	Build
	Emulator
	Start
	Stop
	Stop all
	Deploy
	Undeploy

	Architecture principles
	Standalone application
	Android application within an n-tier architecture
	Android with dependencies on SDK Add-ons

	Summary

	Chapter 3: Unit Testing
	Effectively testing Android applications
	Running typical unit tests
	Unit testing of activities
	Creating a dedicated unit testing module
	Running Android unit tests with Maven

	Real unit testing with Robolectric
	Configuring Robolectric with Maven
	Running Robolectric unit tests
	Best approach

	Measuring test coverage
	JaCoCo
	Cobertura

	Summary

	Chapter 4: Integration Testing
	Fundamentals of instrumentation testing
	Running Android instrumentation tests
	Creating a dedicated integration testing module
	Writing a simple instrumentation activity test

	Grabbing screenshots with Spoon
	Configuring Spoon with Maven
	Running Spoon and viewing the reports

	Working with Robotium
	UI Tests made easy with Selendroid
	Configuring Selendroid
	Writing Selendroid UI Tests for Maven native applications

	Other integration testing tools
	Summary

	Chapter 5: Versions, dependencies,
and profiles
	Problem statement
	Introducing Maven profiles
	Creating build profiles
	Separation by packaging
	Separation by library

	Summary

	Chapter 6: Release Life cycle and Continuous Integration
	Optimizing an Android package
	Signing an application
	Obfuscating the code
	Aligning and zipping uncompressed data
	Transforming the package in shippable form

	Releasing a new version
	Perform a release without deployment to repository
	Deploying to a local repository

	CI and automation best practices
	Summary

	Chapter 7: Other Tools and Plugins
	Managing Android code quality
	A short history about quality in Android
	Analyzing with Lint using Maven
	Unleashing the power of SonarQube

	Boost development speed with GenyMotion
	Deploying our example to a GenyMotion emulator

	Summary

	Index

