

Maven for Eclipse

A fast-paced guide that helps you create
a continuous delivery solution by integrating
Maven with an Eclipse environment

Sanjay Shah

BIRMINGHAM - MUMBAI

Maven for Eclipse

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2014

Production reference: 1190814

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-712-2

www.packtpub.com

Cover image by Asher Wishkerman (wishkerman@hotmail.com)

www.packtpub.com

Credits

Author
Sanjay Shah

Reviewers
Patrick Forhan

Peter Johnson

Luca Masini

Maurizio Pillitu

Bhavani P Polimetla

Commissioning Editor
Amarabha Banerjee

Acquisition Editor
Vinay Argekar

Content Development Editor
Shali Sasidharan

Technical Editors
Shruti Rawool

Aman Preet Singh

Copy Editors
Mradula Hegde

Gladson Monteiro

Project Coordinator
Neha Bhatnagar

Proofreaders
Simran Bhogal

Maria Gould

Ameesha Green

Indexer
Tejal Soni

Graphics
Abhinash Sahu

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

About the Author

Sanjay Shah has more than 9 years of experience of working in diverse areas of
application development across mobile and web platforms. He is currently working
as a software architect and has a number of enterprise applications to his name.

He is the co-author of the book Android Development Tools for Eclipse, Packt Publishing,
also co-authored by Khirulnizam Abd Rahman.

Along with being a literature enthusiast, he is fond of philosophy and enjoys life in
Nepal, the land of the highest peak in the world, Mt. Everest.

I would like to thank each and everyone who knows me and has
supported me at different stages of my life. Special thanks to my
parents without whom I wouldn't have been what I am today.

About the Reviewers

Patrick Forhan is a grizzled Java developer and an occasional accidental snake
handler. He posts ideas and articles at http://muddyhorse.com.

Peter Johnson has over 34 years of experience in enterprise computing.
He has been working with Java for 17 years and has been heavily involved in
Java performance tuning for the past 12 years. He is a frequent speaker on Java
performance topics at various conferences, including the Computer Measurement
Group annual conference, JBoss World, and Linux World. He is a moderator for the
IDE and WildFly/JBoss forums at JavaRanch. He is the co-author of the book JBoss in
Action, Manning Publications, also authored by Javid Jamae, and has been a reviewer
on numerous books on topics that range from Java to Windows PowerShell.

Luca Masini is a senior software engineer and an architect, born as a game
developer for Commodore 64 (Football Manager) and Commodore Amiga
(Ken il guerriero). He soon switched to object-oriented programming and
after that, from its beginning in 1995, he was fascinated by the Java language.

He worked on this passion as a consultant for major Italian banks, developing
and integrating the main software projects for which he usually was the technical
lead. He adopted Java Enterprise in environments, where COBOL was the flagship
platform, and converted them from mainframe-centric to distributed environments.

He then shifted his attention toward open source, starting from Linux and then
to enterprise frameworks. With enterprise frameworks, he was able to introduce
concepts such as IoC, ORM, and MVC with low impact. For that, he was an early
adopter of Spring, Hibernate, Struts, and a whole host of other technologies, which
in the long run, have given his customers a technological advantage and therefore,
reduced development costs.

http://muddyhorse.com

After introducing a new technology, he decided that it was time for simplification
and standardization of development with Java EE, and for this, he's now working
at the ICT of a large Italian company where he introduced build tools (Maven and
Continuous Integration), archetypes of projects, and Agile Development with
plain standards.

Finally, he focused his attention on mobilizing the enterprise, and now he is working
on a whole set of standard and development processes to introduce mobile concepts
and applications for sales force and management.

He has worked on the following books from Packt Publishing:

•	 Securing WebLogic Server 12c, co-authored by Rinaldi Vincenzo
•	 Google Web Toolkit GWT Java AJAX Programming, Prabhakar Chaganti
•	 Spring Web Flow 2 Web Development, Sven Lüppken and Markus Stäuble
•	 Spring Persistence with Hibernate, Ahmad Reza Seddighi
•	 JavaFX 1.2 Application Development Cookbook, Vladimir Vivien

Maurizio Pillitu has over 12 years of experience in the ICT industry, mostly
related to open source technologies. In these 12 years, he has held different positions:
Software Developer / Designer / Architect, Sales Engineer, Technical Trainer, and
Project and Team Leader.

Through experience and education, he tried to push the Agile approach, thus
providing a smooth path for change to the customer, incentivizing strong
collaboration, and carefully managing the expectations of both parties.

He is passionate about application lifecycle management and frequently advises
teams on how to structure software releases and deliveries in an automated and
sustainable way.

He has wide knowledge of J2EE technologies and related open source frameworks,
especially of Enterprise Content Management frameworks/products and large-scale
web publishing platforms.

He is always keen on contributing code and ideas to the open source communities.

The following are his specialties:

•	 Team behavior and dynamics (Certified Scrum Master)
•	 Application Lifecycle Management and build tools (Maven and

Puppet trainer)
•	 ECM/CMS open source solutions (ACA and ACE certifications)

You can contact him at http://www.linkedin.com/in/mpillitu.

Bhavani P Polimetla has been learning and working in the IT Industry since
1990. He graduated with a Bachelor's degree in Computer Science and a Master's
degree in Computer Applications from Andhra University, India. He has worked on
standalone Swing applications to grid computing and multi-tier architecture. He has
worked with top clients of the world, including three from Fortune 50 companies.
At present, he is working as a software architect in Mountain View, California, USA.

To demonstrate his skills, he has completed over 25 certifications in the subjects of
spectrum of Java, Database, Project Management, and Architecture. He has also
achieved lots of awards for many of his projects. He spends his free time indulging
in social service activities. To learn more about him, you can visit his website at
www.polimetla.com.

http://www.linkedin.com/in/mpillitu
www.polimetla.com

www.PacktPub.com

Support files, eBooks, discount offers,
and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com

Table of Contents
Preface	 1
Chapter 1: Apache Maven – Introduction and Installation	 7

Introduction to Maven	 8
Maven's origin	 8
Maven's principles	 8
Maven's component architecture	 9

The Plexus container	 10
Wagon	 10
Maven Doxia	 11
Modello	 11
Maven SCM	 11

Maven versus Ant	 12
Downloading Maven	 14
Installing Maven	 15

Installing Maven on Windows	 15
Installing Maven on Linux and Mac OS	 16

Verifying the installation of Maven	 16
Summary	 17

Chapter 2: Installing m2eclipse	 19
Introduction to m2eclipse	 19
Downloading Eclipse	 20
Installing and launching Eclipse	 21

Methods to install m2eclipse	 22
Using Eclipse Marketplace	 22
Using Update Site	 24

Setting up Maven for use	 27
Summary	 29

Table of Contents

[ii]

Chapter 3: Creating and Importing Projects	 31
The Maven project structure	 32
POM (Project Object Model)	 32

Maven coordinates	 34
POM relationships	 36
A simple POM	 37
A super POM	 37

The Maven project build architecture	 42
Other essential concepts	 42

Repository	 42
The local repository	 43
The central repository	 43
The remote repository	 43
Search sequence in repositories	 44

Project dependencies	 46
Dependency scopes	 46
Transitive dependencies	 47

Plugins and goals	 48
Site generation and reporting	 49

Creating a Maven project	 49
Using an archetype	 50
Using no archetypes	 53
Checking out a Maven project	 55

Importing a Maven project	 57
Summary	 58

Chapter 4: Building and Running a Project	 59
The build lifecycle	 60

The default lifecycle	 60
The clean lifecycle	 61
The site lifecycle	 62

The package-specific lifecycle	 63
The Maven console	 64
Building and packaging projects	 65
Running hello-project	 68
Summary	 69

Chapter 5: Spicing Up a Maven Project	 71
Creating the MyDistance project	 72
Changing the project information	 75
Adding dependencies	 76
Adding resources	 78

Table of Contents

[iii]

The application code	 80
Adding a form to get an input	 81
Adding a servlet	 83
Adding a utility class	 85

Running an application	 85
Writing unit tests	 87
Running unit tests	 91
Generating site documentation	 91
Generating unit tests – HTML reports	 94
Generating javadocs	 95
Summary	 96

Chapter 6: Creating a Multimodule Project	 97
Introduction	 97
Creating a parent project – POM	 99
Creating a core module	 102
Creating a webapp module	 105
Building a multimodule project	 109
Running the application	 111
Summary	 111

Chapter 7: Peeking into m2eclipse	 113
Other features in m2eclipse	 114

Add Dependency	 116
Add Plugin	 116
New Maven Module Project	 117
Download JavaDoc	 118
Download Source	 118
Open Javadoc	 120
Open POM	 120
Update Project	 121
Disable Workspace Resolution	 122
Disable Maven Nature	 122
Import Project(s) from SCM	 122

A form-based POM editor	 122
An overview	 123

Analyzing project dependencies	 124
Working with repositories	 127

Local Repositories	 128
Global Repositories	 129
Project Repositories	 129

Table of Contents

[iv]

m2eclipse preferences	 130
Maven	 131
Discovery	 132
Archetypes	 132
User Interface and User Settings	 133
Installations	 134
Warnings	 134
Templates	 135
Lifecycle Mappings	 135

Summary	 136
Index	 137

Preface
Maven for Eclipse is an indispensable guide to help you understand and use Maven
from within Eclipse IDE using the m2eclipse plugin. By no means is it an in-depth
and comprehensive resource. Rather, it's a quick and handy guide toward Maven
project's development. It starts with the basics of Apache Maven; covers core
concepts; and shows you how to create, import, build, run, package, and customize
to generate project artifacts of Maven projects using the m2eclipse plugin inside the
Eclipse IDE.

What this book covers
Chapter 1, Apache Maven – Introduction and Installation, provides users with a quick
introduction and installation reference to Apache Maven. By the end of this chapter,
users will have a Maven project running on their systems.

Chapter 2, Installing m2eclipse, serves as a reference for users to install the m2eclipse
plugin and also provides Maven integration for Eclipse. By the end of this chapter,
users will have m2eclipse installed on their systems and ready to be used.

Chapter 3, Creating and Importing Projects, starts with the Maven project structure,
introduces core aspects and concepts, and guides you toward creating and importing
Maven projects using the m2eclipse plugin. By the end of this chapter, users will be
familiar with the core concepts of the Maven project structure, and they'll be able to
create and import Maven projects.

Chapter 4, Building and Running a Project, introduces users to different build lifecycles
and teaches them how to view the m2eclipse console and build and run projects.
By the end of this chapter, users will be familiar with the build lifecycle and will be
competent at building and running projects using m2eclipse.

Preface

[2]

Chapter 5, Spicing Up a Maven Project, teaches users to create a simple web application,
shows ways to customize it, and provides guides on how to write and run unit tests.
By end of this chapter, users will learn to create web applications using m2eclipse and
change the POM file to generate reports against unit tests.

Chapter 6, Creating a Multimodule Project, intends to introduce the concept of
multimodule projects and teaches users to create, build, and run the project. At the
end of this chapter, users will know how to create and run a multimodule Maven
project using the m2eclipse plugin.

Chapter 7, Peeking into m2eclipse, dives into the m2eclipse plugin and introduces
different features and aspects that makes life easier. By the end of this chapter,
users will be familiar with every aspect of m2eclipse and will be able to use it
efficiently and with ease.

What you need for this book
It is recommended that you have a laptop or a desktop with the following
specifications for the best performance during development:

•	 4 GB RAM
•	 Windows OS 7 / Ubuntu 12.04 / Mac OS Maverick
•	 Dual core / iSeries processor
•	 Internet connection

Who this book is for
This book is aimed at beginners and existing developers who want to learn how
to use Maven for Java projects. It is assumed that you have experience in Java
programming and that you have used an IDE for development.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Plugins and goals can be included declaratively in the pom file to customize the
execution of a project."

Preface

[3]

A block of code is set as follows:

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt.mvneclipse</groupId>
 <artifactId>mvneclipse</artifactId>
 <version>1.2</version>
</project>

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

<!--General project Information -->
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt.mvneclipse</groupId>
 <artifactId>hello-project</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <name>hello-project</name>
 <url>http://maven.apache.org</url>
 <properties>1
 <project.build.sourceEncoding>UTF8</project.build.sourceEncoding>
</properties>

<repositories>
 <repository>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <id>central</id>
 <name>Maven Repository Switchboard</name>
 <url>http://repo1.maven.org/maven2</url>
 </repository>
</repositories>

Any command-line input or output is written as follows:

set PATH =%PATH%;%M2_HOME%\bin

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "To make
m2eclipse use the external Maven, navigate to Window | Preference in Eclipse, and
the Preference window appears."

Preface

[4]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata

Preface

[5]

will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.packtpub.com/support

Apache Maven – Introduction
and Installation

"A journey of a thousand miles starts with a single step", Lao Tzu. Rightly so, if you
are reading this sentence here, you have taken a step towards a journey of Maven
with Eclipse. As part of this journey, in the very first chapter, we will introduce you
to Maven and its basic architecture and then guide you through the installation
process through the following subtopics:

•	 Introduction to Maven
•	 Maven's origin
•	 Maven's principles
•	 Maven's component architecture
•	 Maven versus Ant
•	 Downloading Maven
•	 Installing Maven
•	 Installing Maven on Windows
•	 Installing Maven on Linux and Mac OS
•	 Verifying the installation of Maven

Apache Maven – Introduction and Installation

[8]

Introduction to Maven
Apache Maven's official site states that Apache Maven, which is also known as
Maven, is a software project management and comprehension tool. Generally,
software project management comprises planning, organizing, managing resource
pools, and developing resource estimates; hence, it is a meaningless abstraction
to justify Maven offerings. To put it in simple words, Maven is a comprehensive
approach towards the process of applying patterns to a build infrastructure with
primary goals as follows:

•	 Easing the build process
•	 Providing a uniform build system
•	 Providing quality project information
•	 Providing guidelines for best practice development
•	 Allowing transparent migration to new features

In order to achieve the preceding goals, Maven provides a set of build standards,
an artifact repository model, an engine that describes projects, and a standard
lifecycle to build, test, and deploy project artifacts.

Maven's origin
Maven, a Yiddish word that means accumulator of knowledge, was initially started as
an attempt to simplify the build processes in the Jakarta Turbine project. Prior to
Maven, Ant was the build tool used across projects, and there were different Ant
build files across different projects. Also, there were no standard or consistent Ant
build files for projects, and JARs were also required to be checked in subversion.
Hence, there was a growing necessity to standardize the project's build process and
its structure, publish project information, and reuse JARs across projects, which
resulted in the formation of a new tool, Maven. Maven has made the day-to-day
work of developers easy, and it provides comprehension of any Java project.

Maven's principles
Maven's principles can be stated in the following points:

•	 Convention over configuration: Maven defines the default project structure
and builds a life cycle that eases the burden during development. By specifying
a publicly defined model, it makes the project more understandable.

•	 Declarative execution: Maven defines a build life cycle that comprises
phases, which in turn are made up of plugin goals. Plugins and goals can be
included declaratively in the pom file to customize the execution of a project.

Chapter 1

[9]

•	 Reusability: Maven was built with reusability in mind. The build and
execution declaration in one project can be used across different projects.
Maven also makes it easier to create a component and integrate it into a
multiproject build system. Also, with Maven Best Practices, development
across the industry is encouraged.

•	 Coherent organization of dependency: Maven takes care of dependency
management, thus reducing the burden on the part of developers. Different
conflicts across dependencies are also handled beautifully.

•	 Focus on writing applications: With a standard project layout and build
lifecycle, there is no need to develop the build; the focus should primarily
be on building the application.

Maven's component architecture
Maven is built around different components as shown in the following diagram:

Maven component architecture (Reference Apache Team Presentation)

Apache Maven – Introduction and Installation

[10]

The Plexus container
Plexus is an IOC container that provides component-oriented programming to build
modular, reusable components that can be easily assembled and reused. Some of the
features supported are as follows:

•	 Component lifecycles
•	 Component instantiation strategies
•	 Nested containers
•	 Component configuration
•	 Auto-wiring
•	 Component dependencies
•	 Various dependency injection techniques, including constructor injection,

setter injection, and private field injection

More information on this can be found at http://plexus.
codehaus.org/.

Wagon
Maven Wagon is a transport abstraction used in the Maven artifact and
repository-handling code. Wagon defines a unified API, and it currently
has the following providers:

•	 File
•	 HTTP
•	 HTTP lightweight
•	 FTP
•	 SSH/SCP
•	 WebDAV

More information on this can be found at https://maven.apache.
org/wagon/.

http://plexus.codehaus.org/
http://plexus.codehaus.org/
https://maven.apache.org/wagon/
https://maven.apache.org/wagon/

Chapter 1

[11]

Maven Doxia
Doxia is a content generation framework that provides users with powerful techniques
to generate static and dynamic content. Doxia is also used in a web-based publishing
context to generate static sites, in addition to being incorporated into dynamic content
generation systems such as blogs, wikis, and content management systems.

For more information on Maven Doxia, refer to https://maven.
apache.org/doxia/.

Modello
The Modello component in Maven can be used to generate the following types
of artifacts at build time with reference to the data model:

•	 Java POJOs of the data model
•	 Java POJOs to XML
•	 XML to Java POJOs
•	 Xdoc documentation of the data model
•	 XML schema to validate that XML content matches the data model

For more information, refer to http://maven.apache.org/
maven-1.x/plugins/modello/.

Maven SCM
This component provides a common API to perform Source Code Management
(SCM) operations. The following type of SCMs are supported:

•	 Bazaar
•	 CVS
•	 Git
•	 Jazz
•	 Mercurial
•	 Perforce
•	 StarTeam
•	 Subversion
•	 CM energy

https://maven.apache.org/doxia/
https://maven.apache.org/doxia/
http://maven.apache.org/maven-1.x/plugins/modello/
http://maven.apache.org/maven-1.x/plugins/modello/

Apache Maven – Introduction and Installation

[12]

More information is available at http://maven.apache.org/scm/.

Maven versus Ant
Before the emergence of Maven, Ant was the most widely used build tool across Java
projects. Ant emerged from the concept of creating files in C/C++ programming to a
platform-independent build tool. Ant used XML files to define the build process and
its corresponding dependencies.

Another Neat Tool (Ant) was conceived by James Duncan Davidson while
preparing Sun's reference JSP/Servlet engine, Apache Tomcat. The following is a
simple sample of an Ant build file (http://ant.apache.org/manual/using.html):

<project name="MyProject" default="dist" basedir=".">
 <description>
 simple example build file
 </description>
 <!-- set global properties for this build -->
 <property name="src" location="src"/>
 <property name="build" location="build"/>
 <property name="dist" location="dist"/>

 <target name="init">
 <!-- Create the time stamp -->
 <tstamp/>
 <!-- Create the build directory structure used by compile -->
 <mkdir dir="${build}"/>
 </target>

 <target name="compile" depends="init"
 description="compile the source " >
 <!-- Compile the java code from ${src} into ${build} -->
 <javac srcdir="${src}" destdir="${build}"/>
 </target>

 <target name="dist" depends="compile"
 description="generate the distribution" >
 <!-- Create the distribution directory -->
 <mkdir dir="${dist}/lib"/>

<!-- Put everything in ${build} into the MyProject-${DSTAMP}.jar file
-->
 <jar jarfile="${dist}/lib/MyProject-${DSTAMP}.jar"
basedir="${build}"/>
 </target>

http://ant.apache.org/manual/using.html

Chapter 1

[13]

 <target name="clean"
 description="clean up" >
 <!-- Delete the ${build} and ${dist} directory trees -->
 <delete dir="${build}"/>
 <delete dir="${dist}"/>
 </target>
</project>

Downloading the sample code
You can download the sample code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If
you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed
directly to you.

This example shows how to build a simple JAR file. Note how all the details
corresponding to source files, class files, and JAR files have to be specified. Even the
sequence of steps must be specified. This results in a complex build file and often a lot
of duplicated XML.

Let's look at the simplest Maven build file, the pom file, which will be discussed in
more detail in Chapter 3, Creating and Importing Projects.

A simple pom file will look as shown in the following code snippet:

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt.mvneclipse</groupId>
 <artifactId>mvneclipse</artifactId>
 <version>1.2</version>
</project>

This is all we need to build and package as a JAR from a Java project. Some of the
differences between Ant and Maven in the preceding examples are as follows:

•	 Convention over configuration: Ant requires a developer to configure
everything right from the source code's location to the storage of a JAR file.
Maven, on the other hand, follows conventions, has a well-defined project
structure, and knows where to reference source, resource files, and place
the output.

•	 Lifecycle: Ant does not have a lifecycle and requires defining goals and
their dependencies. Also, in Ant, the sequence of tasks needs to be specified.
Maven has defined a lifecycle that consists of build phases and goals; hence,
no configuration is required.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Apache Maven – Introduction and Installation

[14]

Apart from the preceding differences that can be cited from the preceding simple
example, Maven is superior to Ant in the following aspects:

•	 Higher level of reusability: The build logic can be reused with Maven across
different projects in Maven.

•	 Less maintenance: With a standardized structure and the reusability option,
it requires less effort towards maintenance.

•	 Dependency management: One of the most superior aspects of Maven over
Ant is its ability to manage the corresponding dependencies. Though, lately,
Ant in combination with Apache Ivy does ease dependency management;
however, Maven has other aspects that outdo this combo offering.

•	 Automatic downloads: Maven downloads the dependencies automatically;
however, Ant lacks this. While Ant can use Ivy to replicate this behavior, it
requires additional behavior.

•	 Repository management: Maven repositories are arbitrary and accessible
locations that are designed to store the artifacts that Maven builds. They
manage repositories as local versus remote (will be discussed in detail in the
Repository section of Chapter 3, Creating and Importing Projects). Ant does not
have this aspect built.

Downloading Maven
To download Maven, please visit http://maven.apache.org/download.cgi. Click
on the latest version, apache-maven-x.x.x-bin.zip; at the time of writing this, the
current version is apache-maven-3.2.1-bin.zip. Download the latest version as
shown in the following screenshot:

Once the ZIP file is downloaded, extract the files to, let's say, maven3. After
extraction, the contents of the maven3 folder will have another folder named
apache-maven-3.2.1 and the contents of that folder will be as shown in the
following screenshot:

http://maven.apache.org/download.cgi

Chapter 1

[15]

Installing Maven
Before we install Maven, we need to have JDK installed. Check out the Java
installation with the following command:

>javac -version

For Windows, open the command prompt, and for Linux/Mac OS, open the terminal
and use the preceding command to see the version of the JDK that is installed.

If JDK is not installed, please refer to following link and install it:

http://www.oracle.com/technetwork/java/javase/index-137561.html

Once Java is in place, let's move towards Maven's installation.

Maven's installation is a simple two-step process:

•	 Setting up Maven home, that is, the M2_HOME variable
•	 Adding Maven home to the PATH variable

Installing Maven on Windows
The installation of Maven is just setting up Maven home in the extracted Maven
folder. For ease, let's assume the maven3 folder resides in C:\Program Files.
Now, set Maven home with the following command in the command prompt:

set M2_HOME="c:\Program Files\maven3\apache-maven-3.2.1"

Update the PATH variable as follows:

set PATH =%PATH%;%M2_HOME%\bin

http://www.oracle.com/technetwork/java/javase/index-137561.html

Apache Maven – Introduction and Installation

[16]

Alternatively, the variables can be set permanently by navigating to Desktop | My
Computer | Properties. Visit http://www.computerhope.com/issues/ch000549.
htm for more information.

Installing Maven on Linux and Mac OS
Let's assume the maven3 folder resides in the /opt folder. As Mac OS does not have
the /opt folder, let's create a folder opt in root, that is, /opt. Now, let's assume we
have maven3, the extracted folder in it. Then, set the Maven home by issuing the
following command via the terminal:

export M2_HOME=/opt/maven3/apache-maven-3.2.1

Add Maven to the PATH variable as follows:

export PATH=${M2_HOME}/bin:${PATH}

To add it permanently, add it to the bash file as follows:

cd $HOME

vi .bash_profile

Add the preceding variable, that is, two lines to the file, save it, and execute the
following command:

source .bash_profile

Verifying the installation of Maven
After performing the previous steps, its time to verify the installation of Maven.
To verify the installation, perform the following:

•	 For Windows, open the command prompt and type the following:
mvn -version

•	 For Linux and Mac OS, open the terminal and type the following:
mvn -version

http://www.computerhope.com/issues/ch000549.htm
http://www.computerhope.com/issues/ch000549.htm

Chapter 1

[17]

It should show the corresponding version of Maven installed, as shown in the
following screenshot:

Summary
Congratulations! By the end of this chapter, you have got yourselves acquainted with
Maven and have installed Maven in your system. Now you are ready to take a sprint
towards the journey. In the next chapter, you will learn about installing and setting
up the m2eclipse plugin for Eclipse.

Installing m2eclipse
We set out on our journey by taking the first step in the previous chapter; here, we
will take another step forward. In this chapter, we will start with the installation
of an IDE, that is, Eclipse, and then get into the details of installation of Maven
integration into the Eclipse plugin, that is, m2eclipse. The topics covered in this
chapter are:

•	 Introduction to m2eclipse
•	 Downloading Eclipse
•	 Installing and launching Eclipse
•	 Methods to install m2eclipse
•	 Setting up Maven for use

Introduction to m2eclipse
m2eclipse is a plugin that provides Maven integration with Eclipse. It intends to
bridge the gap between Eclipse and Maven, help to create projects using simple
intuitive interfaces from Maven Archetypes, and launch and manage the projects
build using a simple editor. It makes the use of Maven right from the IDE so much
easier. Some of the features provided by m2eclipse are as follows:

•	 Creating and importing Maven projects
•	 Launching the Maven build from within Eclipse
•	 Dependency management for the Eclipse build path
•	 Automatic dependency downloads and updates
•	 Materializing a project
•	 Browsing and searching remote Maven repositories
•	 Providing support for multimodule Maven projects

Installing m2eclipse

[20]

Apart from the preceding features, in conjunction with different m2e connectors
and the Mylyn plugin, it provides the ability to communicate with code versioning
repositories and task-based interfaces.

m2eclipse has been around since 2006 and is credited to Eugene Kuleshov. It was
developed under the Codehaus community for 2 years before it was moved to the
Eclipse Foundation in 2008.

Downloading Eclipse
If you have Eclipse installed, you can skip this and the next section and right away
proceed to the Installing m2eclipse section.

To download Eclipse, please visit the following URL:

https://www.eclipse.org/downloads/

The next screenshot can be visualized. At the time of writing this book, the latest
version of Eclipse is Eclipse Kepler 4.3.2 SR2, and we will be downloading this and
using it for the rest of the book.

Choose an appropriate OS from the dropdown and download the Eclipse IDE for
Java Developers package for the corresponding architecture, that is, 32 or 64 bit
(which is shown in the following screenshot). Choose 32 bit for 32-bit Java or 64 bit
for 64-bit Java installed in the system.

https://www.eclipse.org/downloads/

Chapter 2

[21]

In the next step, choose the appropriate mirror close to your location and the
download will begin. The mirror screen may look like the following screenshot:

Installing and launching Eclipse
Go to the location of the downloaded file, as shown in the preceding screenshot,
and extract it to a desired location of your choice. The extraction will result in
a folder named eclipse. The contents of the eclipse folder are shown in the
following screenshot:

Installing m2eclipse

[22]

We can see there is an application or executable file named eclipse, which on
double-clicking, launches the Eclipse IDE. When Eclipse is launched, it will prompt
you for a workspace location. Provide an appropriate location where the projects are
to be stored and click on OK. Now, we are right in the Eclipse space and ready for
action. You see something similar to the following screenshot:

Methods to install m2eclipse
Installing m2eclipse is fairly simple. Primarily, there are two ways to install the
m2eclipse plugin in Eclipse:

•	 Using Eclipse Marketplace: Use Eclipse Marketplace to find and install
the plugin

•	 Using update site: Add the m2eclipse update site and install

Using Eclipse Marketplace
The installation of m2eclipse using Eclipse Marketplace involves the following steps:

1.	 Navigate to Help | Eclipse Marketplace as shown in the following screenshot:

Chapter 2

[23]

2.	 Then, search for m2eclipse in the search box, and click on the Install
button for Maven integration for the Eclipse package, as shown in the
following screenshot:

Installing m2eclipse

[24]

3.	 On the next window, confirm the package to be installed as follows:

4.	 Accept the terms and conditions and click on Finish. After the installation is
done, the following prompt appears:

5.	 Click on Yes to restart Eclipse and to have the changes reflected.
6.	 For Mac users, choose the Restart Now option, and for other OSes,

choose Yes.

Using Update Site
The installation of m2eclipse using update site involves the following steps:

1.	 Navigate to Help | Install New Software and your screen will look similar
to the following screenshot:

Chapter 2

[25]

2.	 Click on the Add... button. Add the http://download.eclipse.org/
technology/m2e/releases site as the m2eclipse update site, as shown
in the following screenshot and click on OK:

http://download.eclipse.org/technology/m2e/releases
http://download.eclipse.org/technology/m2e/releases

Installing m2eclipse

[26]

3.	 Choose the packages as shown in the following screenshot:

4.	 Click on Next, agree to the terms, and finally click on Finish to start
installing. Once the installation is done, the following prompt appears:

5.	 Click on Yes to restart Eclipse and to have the changes reflected. For Mac users,
choose the Restart Now option and for users with other OSes, choose Yes.

Chapter 2

[27]

Eclipse Kepler 4.3.2 SR2 has m2eclipse installed and hence the preceding
step of installation would update the plugin to the latest one. Regardless
of any of the preceding methods of installation, m2eclipse that comes
packaged with Eclipse Kepler is still going to be updated.

So, midway, you will see something similar to the following screen:

6.	 Click on Next and accept the terms, click on Finish to start the installation,
and you will have to restart to have the changes reflected.

Setting up Maven for use
m2eclipse comes with an embedded Maven component in it, so the external Maven
installation discussed in Chapter 1, Apache Maven – Introduction and Installation, is
optional. However, to use the latest version of Maven, we are required to install
Maven externally, as discussed in the previous chapter. We also need to make
sure our m2eclipse plugin uses it. Also, the use of continuous integration servers
nowadays requires us to have a common Maven version across servers, thus making
use of the externally installed Maven.

Installing m2eclipse

[28]

To make m2eclipse use the external Maven version, navigate to Window | Preference
in Eclipse and the Preference window appears. Search for maven in the search box in
the left pane and click on Installations as shown in the following screenshot:

Click on the Add... button and select the location of the Maven directory. From the
previous chapter, our location was /opt/maven3/apache-maven-3.2.1. Check the
corresponding external Maven checkbox, as shown in the following screenshot, and
click on Apply followed by OK:

Chapter 2

[29]

Now, m2eclipse will make use of this Maven.

Summary
By the end of this chapter, you have learned about installing Eclipse and m2eclipse as
well as setting up m2eclipse to use the externally installed Maven. In the next chapter,
we will look at the important concepts of Maven and you will learn to create and
import Maven projects and familiarize yourself with the structure of Maven projects.

Creating and Importing
Projects

Let's proceed on our journey. In this chapter, we will start with the Maven project
structure followed by the build architecture, then we will cover some essential
concepts, and finally learn how to create simple Maven projects. The chapter is
divided into the following sections:

•	 The Maven project structure
•	 POM (Project Object Model)

°° Maven coordinates
°° POM relationships
°° Simple POM
°° Super POM

•	 The Maven project build architecture
•	 Other essential concepts

°° Repository
°° Project dependencies
°° Plugins and goals
°° Site generation and reporting

•	 Creating a Maven project
°° Using an archetype
°° Using no archetypes
°° Checking out a Maven project

•	 Importing Maven projects

Creating and Importing Projects

[32]

The Maven project structure
Maven, as stated in earlier chapters, follows convention over configuration. This
makes us believe that there is a standard layout of the Maven project structure.
Before we get into creating and playing with Maven projects, let's first understand
the basic common layout of Maven projects, as follows:

Folder/Files Description
src/main/java This contains an application's Java source files
src/main/resources This contains files of an application's resources such as

images, sounds, templates, and so on
src/main/filters This contains the resource's filter files
src/main/config This contains the configuration files of the application
src/main/scripts This has files of application-specific scripts
src/main/webapp This has sources files for web applications
src/test/java This contains unit test files of Java
src/test/resources This has unit testing-specific resources used in an

application
src/filters This has files of the test-specific filter for resources
src/it This has integration tests files (primarily for plugins)
src/assembly This contains files of the assembly descriptors
src/site This contains site artifacts
LICENSE.txt This denotes the projects license
NOTICE.txt This includes the notice and attributions that the

project depends on
README.txt This denotes the project's readme information
target This houses all the output of the build
pom.xml This is the project's pom file (which will be discussed in

detail in the forthcoming sections)

Though the previously mentioned layout is the standard recommended convention,
this can always be overridden in the project descriptor file (pom file).

POM (Project Object Model)
POM stands for Project Object Model. It is primarily an XML representation of
a project in a file named pom.xml. POM is the identity of a Maven project and
without it, the project has no existence. It is analogous to a Make file or a
build.xml file of Ant.

Chapter 3

[33]

A project in a broad sense should contain more than just mere code files and should
act as a one-stop shop for all the things concerning it. Maven fulfills this need using
the pom file. POM tends to answer questions such as: Where is the source code?
Where are the resources? How is the packaging done? Where are the unit tests?
Where are the artifacts? What is the build environment like? Who are the actors of
the project? and so on.

In a nutshell, the contents of POM fall under the following four categories:

•	 Project information: This provides general information of the project such
as the project name, URL, organization, list of developers and contributors,
license, and so on.

•	 POM relationships: In rare cases, a project can be a single entity and does
not depend on other projects. This section provides information about its
dependency, inheritance from the parent project, its sub modules, and so on.

•	 Build settings: These settings provide information about the build
configuration of Maven. Usually, behavior customization such as the location
of the source, tests, report generation, build plugins, and so on is done.

•	 Build environment: This specifies and activates the build settings for
different environments. It also uses profiles to differentiate between
development, testing, and production environments.

A POM file with all the categories discussed is shown as follows:

<project>
 <!-- The Basics Project Information-->
 <groupId>...</groupId>
 <artifactId>...</artifactId>
 <version>...</version>
 <packaging>...</packaging>
 <dependencies>...</dependencies>
 <parent>...</parent>
 <dependencyManagement>...</dependencyManagement>
 <modules>...</modules>
 <properties>...</properties>

 <!-- Build Settings -->
 <build>...</build>
 <reporting>...</reporting>
 <properties>...</properties>
 <packaging>...</packaging>

 <!-- More Project Information -->
 <name>...</name>

Creating and Importing Projects

[34]

 <description>...</description>
 <url>...</url>
 <inceptionYear>...</inceptionYear>
 <licenses>...</licenses>
 <organization>...</organization>
 <developers>...</developers>
 <contributors>...</contributors>

 <!-- POM Relationships -->
 <groupId>...</groupId>
 <artifactId>...</artifactId>
 <version>...</version>
 <parent>...</parent>

 <dependencyManagement>...</dependencyManagement>
 <dependencies>...</dependencies>

 <modules>...</modules>

<!-- Environment Settings -->
 <issueManagement>...</issueManagement>
 <ciManagement>...</ciManagement>
 <mailingLists>...</mailingLists>
 <scm>...</scm>
 <prerequisites>...</prerequisites>
 <repositories>...</repositories>
 <pluginRepositories>...</pluginRepositories>
 <distributionManagement>...</distributionManagement>
 <profiles>...</profiles>
</project>

Maven coordinates
Maven coordinates define a set of identifiers that can be used to uniquely identify a
project, a dependency, or a plugin in a Maven POM. Analogous to algebra where a
point is identified by its coordinate in space, the Maven coordinates mark a specific
place in a repository, acting like a coordinate system for Maven projects. The Maven
coordinates' constituents are as follows:

Chapter 3

[35]

•	 groupId: This represents a group, company, team, organization, or project.
A general convention for a group ID is it begins with a reverse domain name
of the organization that creates the project. However, it may not necessarily
use the dot notation as it does in the junit project. The group forms the basis
for storage in the repository and acts much like a Java packaging structure
does in OS. The corresponding dots are replaced with OS-specific directory
separators (such as / in Unix), which forms the relative directory structure
from the base repository. For example, if groupId is com.packt.mvneclipse,
it lives in the $M2_REPO/com/packt/mvneclipse directory.

•	 artifactId: This is a unique identifier under groupId that represents a single
project/the project known by. Along with the groupId coordinate, the
artifactId coordinate fully defines the artifact's living quarters within the
repository. For example, continuing with the preceding example, the artifact
ID with hello-project resides at the $M2_REPO/com/packt/mvneclipse/
hello-project path.

•	 project version: This denotes a specific release of a project. It is also used
within an artifact's repository to separate versions from each other. For
example, hello-project with version 1.0 resides in the $M2_REPO/com/
packt/mvneclipse/hello-project/1.0/ directory.

•	 packaging: This describes the packaged output produced by a project.
If no packaging is declared, Maven assumes the artifact is the default jar file.
The core packaging values available in Maven are: pom, jar, maven-plugin,
ejb, war, ear, rar, and par. The following figure illustrates an example of
Maven coordinates:

groupld artifactld version

com.packt.mvneclipse hello-project 1.0

As the local repository, $M2_REPO signifies the
%USER_HOME% /.m2 directory in the user's machine.

Creating and Importing Projects

[36]

POM relationships
POM relationships identify the relationship they possess with respect to other
modules, projects, and other POMs. This relationship could be in the form of
dependencies, multimodule projects, parent-child also known as inheritance,
and aggregation. The elements of POM relationships are represented graphically
as shown in the following figure:

Dependencies

Multi-Module

Inheritance

Coordinates

groupId

artifactId

version

POM Relationships

Similarly, the elements of POM relationships in the XML file can be specified as
shown in the following code:

 <!-- POM Relationships -->
 <groupId>...</groupId>
 <artifactId>...</artifactId>
 <version>...</version>
 <parent>...</parent>
 <dependencyManagement>...</dependencyManagement>
 <dependencies>...</dependencies>
 <modules>...</modules>

Chapter 3

[37]

A simple POM
The most basic POM consists of just the Maven coordinates and is sufficient to
build and generate a jar file for the project. A simple POM file may look like the
following code:

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.packt.mvneclipse</groupId>
 <artifactId>hello-project</artifactId>
 <version>1.0</version>

</project>

The following points will explain these elements:

•	 The modelVersion value is 4.0.0. Maven supports this version of
POM model.

•	 There is a single POM file for every project.
•	 All POM files require the project element and three mandatory fields:

groupId, artifactId, and version.
•	 The root element of pom.xml is project, and it has three major subnodes.

A simple POM (as shown in the previous code snippet) is hardly enough in
real-world projects.

A super POM
Like Java, where every object inherits from java.lang.Object, every POM inherits
from a base POM known as Super POM. Implicitly, every POM inherits the
default value from the base POM. It eases the developer's effort toward minimal
configuration in his/her pom.xml file. However, default values can be overridden
easily when they are specified in the projects' corresponding pom file. The default
configuration of the super POM can be made available by issuing the following
command inside the respective project:

mvn help:effective-pom

Creating and Importing Projects

[38]

The super POM is a part of the Maven installation and can be found in the maven-
x.y.z-uber.jar or maven-model-builder-x.y.z.jar file at $M2_HOME/lib, where
x.y.z denotes the version. In the corresponding JAR file, there is a file named pom-
4.0.0.xml under the org.apache.maven.model package.

May contain in either

of JAR

contains

pom-4.0.0.xml

org.apache.maven.model package

maven-x.y.z-uber.jar maven-model-builder-x.y.z.jar

The default configuration of the super POM inherited in a sample project is given
as follows; for the sake of brevity, only some important aspects are shown:

<!--General project Information -->
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt.mvneclipse</groupId>
 <artifactId>hello-project</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <name>hello-project</name>
 <url>http://maven.apache.org</url>
 <properties>1
 <project.build.sourceEncoding>UTF8</project.build.sourceEncoding>
</properties>

<repositories>
 <repository>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <id>central</id>
 <name>Maven Repository Switchboard</name>
 <url>http://repo1.maven.org/maven2</url>
 </repository>
</repositories>
<pluginRepositories>
 <pluginRepository>
 <releases>
 <updatePolicy>never</updatePolicy>

Chapter 3

[39]

 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <id>central</id>
 <name>Maven Plugin Repository</name>
 <url>http://repo1.maven.org/maven2</url>
 </pluginRepository>
</pluginRepositories>

<!-- Build source directory and details>
 <build>
…
 <sourceDirectory> ...</sourceDirectory>
 <scriptSourceDirectory>..</scriptSourceDirectory>
 <testOutputDirectory>..</testOutputDirectory>
 <outputDirectory>...<outputDirectory>
…

<finalName>hello-project-0.0.1-SNAPSHOT</finalName>
 <pluginManagement>
 <plugins>
 <plugin>
 <artifactId>maven-antrun-plugin</artifactId>
 <version>1.3</version>
 </plugin>
 <plugin>
 <artifactId>maven-assembly-plugin</artifactId>
 <version>2.2-beta-5</version>
 </plugin>
 <plugin>
 <artifactId>maven-dependency-plugin</artifactId>
 <version>2.1</version>
 </plugin>
 <plugin>
 <artifactId>maven-release-plugin</artifactId>
 <version>2.0</version>
 </plugin>
 </plugins>
 </pluginManagement>
 <plugins>

Creating and Importing Projects

[40]

<!-- Plugins, phases and goals -->
 <plugin>
 <artifactId>maven-clean-plugin</artifactId>
 <version>2.4.1</version>
 <executions>
 <execution>
 <id>default-clean</id>
 <phase>clean</phase>
 <goals>
 <goal>clean</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 <plugin>
 <artifactId>maven-surefire-plugin</artifactId>
 <version>2.7.2</version>
 <executions>
 <execution>
 <id>default-test</id>
 <phase>test</phase>
 <goals>
 <goal>test</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 <plugin>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>2.3.2</version>
 <executions>
 <execution>
 <id>default-testCompile</id>
 <phase>test-compile</phase>
 <goals>
 <goal>testCompile</goal>
 </goals>
 </execution>
 <execution>
 <id>default-compile</id>
 <phase>compile</phase>
 <goals>
 <goal>compile</goal>
 </goals>

Chapter 3

[41]

 </execution>
 </executions>
 </plugin>
 <plugin>
 <artifactId>maven-jar-plugin</artifactId>
 <version>2.3.1</version>
 <executions>
 <execution>
 <id>default-jar</id>
 <phase>package</phase>
 <goals>
 <goal>jar</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 <plugin>
 <artifactId>maven-deploy-plugin</artifactId>
 <version>2.5</version>
 <executions>
 <execution>
 <id>default-deploy</id>
 <phase>deploy</phase>
 <goals>
 <goal>deploy</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 <plugin>
 <artifactId>maven-site-plugin</artifactId>
 <version>2.0.1</version>
 <executions>
 <execution>
 <id>default-site</id>
 <phase>site</phase>
 <goals>
 <goal>site</goal>
 </goals>
 <configuration>
 </project>

Creating and Importing Projects

[42]

The Maven project build architecture
The following figure shows the common build architecture for Maven projects.
Essentially, every Maven project contains a POM file that defines every aspect of
the project essentials. Maven uses the POM details to decide upon different actions
and artifact generation. The dependencies specified are first searched for in the local
repository and then in the central repository. There is also a notion that the remote
repository is searched if it is specified in the POM. We will talk about repositories in
the next section. In addition, POM defines details to be included during site generation.

Have a look at the following diagram:

Local Repository

pom.xml

Maven

Build System

Site

Central Repos

Remote Repos

Other essential concepts
The other essential concepts of Maven are discussed in the following sections.

Repository
Maven repositories are accessible locations designed to store the artifacts that Maven
builds produce. To be more precise, a repository is a location to store a project's
artifacts that is designed to match the Maven coordinates.

Chapter 3

[43]

A Maven repository can be one of the following types:

•	 Local
•	 Central
•	 Remote

The local repository
A local repository is one that resides in the same machine where a Maven build runs.
It is a .m2 folder located in the $USER_HOME directory of the user's machine. It is
created when the mvn command is run for the very first time. However, to override
the default location, open the settings.xml file if it exists; else, create one in the
$M2_HOME\conf (for windows: %M2_HOME%\conf) folder and respective location as in
the following code:

<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0
 http://maven.apache.org/xsd/settings-1.0.0.xsd">
 <localRepository>/opt/m2repos</localRepository>
</settings>

When we run the Maven command, Maven will download dependencies to
a custom path.

The central repository
The central repository is the repository provided by the Maven community.
It contains a large repository of commonly used libraries. This repository
comes into play when Maven does not find libraries in the local repository.
The central repository can be found at: http://search.maven.org/#browse.

The remote repository
Enterprises usually maintain their own repositories for the libraries that are being
used for the project. These differ from the local repository; a repository is maintained
on a separate server, different from the developer's machine and is accessible within
the organization. Also, sometimes, there are cases where the availability of the
libraries in central repositories is not certain, thus giving rise to the need for a
remote repository.

http://search.maven.org/#browse

Creating and Importing Projects

[44]

For example, the following POM file mentions the remote repositories, where the
dependency is not available in the central repository:

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt.mvneclipse</groupId>
 <artifactId>hello-project</artifactId>
 <version>1.0</version>

 <dependencies>
 <dependency>
 <groupId>com.packt.commons</groupId>
 <artifactId>utility-lib</artifactId>
 <version>1.0.0</version>
 </dependency>
 <dependencies>
 <repositories>
 <repository>
 <id>packt.ser1</id>
 <url>http://download.packt.net/maven2/1</url>
 </repository>
 <repository>
 <id>packt.ser2</id>
 <url>http://download.packt.net/maven2/2</url>
 </repository>
 </repositories>
</project>

Search sequence in repositories
The following figure illustrates the sequence in which the search operation is carried
out in the repositories on execution of the Maven build:

Chapter 3

[45]

Mention of Remote Repo

In pom.xml

Search Local Repo

Found ? Search Central Repo

Futher Maven Processing

Download to Local Repo

Error&Stop Found ?

Search Remote Repo

Found ?

Y

N

N

N

N

Y

Y

Y

Maven follows the ensuing sequence to search dependent libraries in repositories,
and the sequence is explained as follows:

1.	 In step 1, Maven searches for dependencies in the local repository; if found,
it proceeds further, else it goes to the central repository.

2.	 In step 2, the search continues in the central repository; if found, it proceeds
to download the dependent libraries to the local repository and continues
the processing. If the search fails in the central repository and if there is a
mention of a remote repository in the POM file, it continues with step 3 or
else throws an error and stops.

3.	 In step 3, the search continues in the remote repositories. If found, it proceeds
to download the dependent libraries to the local repository and continues
processing. If search encounters a failure, it throws an error and stops at
that juncture.

Creating and Importing Projects

[46]

Project dependencies
The powerful feature of Maven is its dependency management for any project.
Dependencies may be external libraries or internal (in-house) libraries/project.
Dependencies in POM can be stated under the following tags with the following
attributes as shown:

<dependencies>
 <dependency>
 <groupId>org.testng </groupId>
 <artifactId>testng</artifactId>
 <version>6.1.1</version>
 <type>jar</type>
 <scope>test</scope>
 <optional>true</optional>
 </dependency>
...
 </dependencies>

The attributes used in the preceding code snippet are as follows:

•	 groupId, artifactId, and version: These are the Maven coordinates
for dependency.

•	 type: This is a dependency packaging type. The default type is JAR.
We have already discussed this in an earlier section.

•	 scope: This provides a mechanism of control over the inclusion of
dependencies in the class path and with an application. We will talk
about this scope in the next section.

•	 optional: This indicates the dependency as optional when the project is
a dependency. To put this in simple terms, consider that project A has the
optional dependency, which means it needs this library at build time. Now,
project B has this project A that is dependency defined, so this implies B may
not need A's dependency for its build and is a part of transitive dependencies.

Dependency scopes
Dependency scopes control the availability of dependencies in a classpath and are
packaged along with an application. There are six dependency scopes, which are
described in detail as follows:

•	 Compile: This is the default scope if not specified. Dependencies with this
scope are available in all classpaths and are packaged.

•	 Provided: Similar to the compile scope, however, this indicates JDK or
the container to provide them. It is available only in compilation and test
classpaths and is not transitive.

Chapter 3

[47]

•	 Runtime: This scope indicates that the dependency is not required for
compilation but is available for execution. For example, a JDBC driver is
required only at runtime, however the JDBC API is required during
compile time.

•	 Test: This scope indicates that the dependency is not required for normal
use of the application, and it is only available for the test compilation and
execution phases.

•	 System: This is similar to the provided scope but the explicit path to
JARs on the local filesystem is mentioned. The path must be absolute such
as $JAVA_HOME/lib. Maven will not check the repositories; instead it will
check the existence of the file.

Transitive dependencies
Project A depends on project B and project B depends on C—now C is a transitive
dependency for A. Maven's strength lies in the fact that it can handle transitive
dependencies and hide the chain of dependencies under the hood from a developer's
knowledge. As a developer, the direct dependency of the project is defined, and
all other dependencies' chain nuisance is dealt by Maven with effective version
conflict management. Scope limits the transitivity of a dependency as discussed in
the preceding section by allowing the inclusion of dependencies appropriate for the
current stage of the build.

For more information, please visit http://maven.apache.org/guides/
introduction/introduction-to-dependency-mechanism.html.

Transitive dependency is illustrated in the following figure:

Project A Project B

Project C

depends

depends
C Transitive dependency For A

http://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html
http://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html

Creating and Importing Projects

[48]

Plugins and goals
Maven, essentially, is a plugin framework where every action is the result of some
plugin. Each plugin consists of goals (also called Mojos) that define the action to be
taken. To put it in simple words, a goal is a unit of work. For example, a compiler
plugin has compile as the goal that compiles the source of the project. An illustration
is as follows:

Plugin

goal

goal

goal

A plugin with set of goals can be executed using the following command:

mvn [pluginID:goalID]

Typically, the following are the types of plugins:

Type Description
Build plugins These are executed during the build and are specified

in the <build> <build/> element in the pom file.
Reporting Plugins These are executed during site generation and are

configured in the <reporting> <reporting/>
element in the pom file.

Core plugins These plugins correspond to the default core phases.
Packaging types/tools These relate to the respective artifact types for

packaging.

The following table consists of some of the common plugins:

Plugin Description
compiler This is used to compile the source code.
jar This builds the jar file from the project.
war This builds the war file from the project.
install This installs the build artifact into the local repository.

Chapter 3

[49]

Plugin Description
site This generates the site for the current project.
surefire This runs unit tests and generates reports.
clean This cleans up the target after the build.
javadoc This generates a Javadoc for the project.
pdf This generates the PDF version of the project

documentation.

For more plugins, navigate to http://maven.apache.org/plugins/.

Site generation and reporting
Seldom are projects a single developer's asset. A project contains stakeholders, and
collaboration among them is essential. Often, a lack of effective documentation has
paralyzed the project, its maintenance, and its usage. Maven with its site plugin has
eased this process of having effective project documentation by generating a site and
reports related to project. A site can be generated using the following command:

mvn site

The site is generated at the target/site directory. Maven uses the Doxia
component (discussed in the Maven Component Architecture section of Chapter 1,
Apache Maven – Introduction and Installation) to generate documentation. The site also
contains all the configured reports such as the unit test coverage, PMD report, and
others. We will cover site and report generation in more detail in the Generating site
documentation section of Chapter 5, Spicing Up a Maven Project.

Creating a Maven project
m2eclipse makes the creation of Maven projects simple. Maven projects can be
created in the following two ways:

•	 Using an archetype
•	 Without using an archetype

Now, we will discuss how to go about creating projects using these methods.

http://maven.apache.org/plugins/

Creating and Importing Projects

[50]

Using an archetype
An archetype is a plugin that allows a user to create Maven projects using a defined
template known as archetype. There are different archetypes for different types
of projects.

Archetypes are primarily available to create the following:

•	 Maven plugins
•	 Simple web applications
•	 Simple projects

We will now see how to create a simple Hello World! project using an archetype:

1.	 Navigate to File | New and click on Other. The project wizard appears and
expands the Maven folder. Select Maven Project as shown in the following
screenshot and click on Next:

Chapter 3

[51]

2.	 The New Maven Project wizard appears. Use the default workspace
and click on Next as shown in the following screenshot:

3.	 The Select an Archetype wizard appears. This shows a list of archetypes
available in the Maven repository. New archetypes can be added using the
Add Archetypes button. For our case here, let's choose maven-archetype-
quickstart as shown in the following screenshot and click on Next:

Creating and Importing Projects

[52]

4.	 A wizard to specify the Maven coordinates appears. Please fill in the details
given in the following table in the screenshot that follows the table and click
on Finish:

Field Value
Group Id com.packt.mvneclipse

Artifact Id hello-project

Version Default – 0.0.1-SNAPSHOT
Package com.packt.mvneclipse.hello

A sample Maven project has now been created, and it contains a Java file that prints
Hello World!. The project has the following structure:

Chapter 3

[53]

Using no archetypes
You can create a Maven project without archetypes using the following steps:

1.	 Navigate to File | New and click on Other. The project wizard appears
and expands the Maven folder. Select Maven Project and click on Next.

2.	 The New Maven Project wizard appears. Use the default workspace and
check the Skip archetype checkbox as shown in the following screenshot
and click on Next:

Creating and Importing Projects

[54]

3.	 The wizard to specify the Maven coordinates appears. Please fill in the
details, as shown in the following screenshot, and click on Finish:

4.	 A skeleton structure, as shown in the following screenshot, will be created, and
we have customized it according to the type of application we are building:

Chapter 3

[55]

Checking out a Maven project
Checking out a Maven project means checking out from the source code versioning
system. Before we process this, we need to make sure we have the Maven connector
installed for the corresponding SCM we plan to use. Use the following steps to check
out a Maven project:

1.	 Navigate to Eclipse | Preferences in Mac, else Windows | Preference search
in other OS, and search for Maven, expand it, and click on Discovery.

2.	 Then, click on Open Catalog. This lists all the m2connectors available in the
marketplace. In our case, we are going to use SVN, so choose m2-Subversive,
as shown in the following screenshot, and click on Finish. In the screens to
follow, click on Next, accept the license, and finally click on Finish to install
it. Similarly, we can choose any connector we intend to use for SCM.

Creating and Importing Projects

[56]

3.	 Like how you create projects, navigate to File | New and click on Other.
The project wizard appears. Expand the Maven folder. Click on Checkout
Maven Projects from SCM and click on Next.

4.	 In the next screen, choose the SCM connector SVN and provide the
corresponding SVN URL, as shown in the following screenshot, and
click on Finish. If you click on Next, it will show the repository structure.

Chapter 3

[57]

Importing a Maven project
Importing a Maven project is like importing any other Java project. The steps to
import a Maven project are as follows:

1.	 From the File menu, click on Import. Choose Import, a source window
appears, expand Maven and click on Existing Maven Projects as shown
in the following screenshot:

Creating and Importing Projects

[58]

2.	 In the next wizard, we have to choose the Maven project's location. Navigate
to the corresponding location using the Browse... button, and click on Finish
to finish the import as shown in the following screenshot; the project will be
imported in the workspace:

Summary
Congratulations! In this chapter, you got acquainted with the Maven project structure,
the POM file, other essential concepts of the Maven realm, and finally you ended up
learning how to create and import Maven projects. For more information, you can refer
to Maven: The Complete Reference by Tim O'Brien, published by Sonatype, Inc., and the
Apache Maven site. In the next chapter, we will look at the build cycle and you will
learn how to run Maven projects.

Building and Running
a Project

Congratulations! You are halfway through the book. As discussed in earlier chapters,
Maven follows convention over configuration; this implies there is a default build
mechanism in place. The build mechanism, often termed as the build lifecycle, forms
a sequence of steps grouped together in phases (also known as stages). Each phase is
accompanied with a set of goals that define the unit of task. In this chapter, we will
look at three standard lifecycles—clean, default, and site—and get acquainted with
other common lifecycles. You will also get to know about building and running the
hello-project, which was created in Chapter 3, Creating and Importing Projects.
This chapter covers the following sections:

•	 Build lifecycle
°° Default lifecycle
°° Clean lifecycle
°° Site lifecycle

•	 Package-specific lifecycle
•	 The Maven console
•	 Building and packaging projects
•	 Running hello-project

Building and Running a Project

[60]

The build lifecycle
Building a Maven project results in the execution of set goals grouped in phases.
Though there is a default build cycle of Maven, it can be customized to suit
our needs; that's the beauty Maven inherits. To ascertain, it is essential to have
knowledge of the build's lifecycle. Essentially, the following are the three
standard lifecycles in Maven:

•	 Default
•	 Clean
•	 Site

The default lifecycle
The default lifecycle handles the build of the project and its deployment. It is the
primary lifecycle of Maven and is also known as the build lifecycle. In general, it
provides the build process model for Java applications. There are 23 phases for the
default lifecycle that starts with validation and ends with deploy. For details on all
23 phases, please refer to http://maven.apache.org/guides/introduction/
introduction-to-the-lifecycle.html#Lifecycle_Reference.

However, here we will see some of the phases and the default associated goals that
need attention for common application development, which are as follows:

Lifecycle phases Description Plugin:goals

validate This validates that the project is correct
and contains all the necessary information
to perform the build operation

-

compile This compiles the source code compiler:compile

test-compile This compiles the test source code in the
test destination directory

compiler:testCompile

test This runs the test using suitable unit
testing framework as configured in the
pom file

surefire:test

package This packages the compiled source code
in the corresponding distributable format
such as JAR, WAR, EAR, and so on

jar:jar (for JAR
packaging)

http://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html#Lifecycle_Reference
http://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html#Lifecycle_Reference

Chapter 4

[61]

Lifecycle phases Description Plugin:goals

install This installs the package in the local
repository, which can act as a dependency
for other projects

install:install

deploy This copies the final package to a remote
repository to share with other developers
and projects

deploy:deploy

The clean lifecycle
The clean lifecycle is the simplest lifecycle in Maven, and it consists of the
following phases:

•	 pre-clean: This phase executes the process needed before a project's clean up
•	 clean: This phase removes all files built by an earlier build

(the target directory)
•	 post-clean: This phase executes the process required after a project's cleanup

Out of these phases, the one that gathers our interest is the clean phase. The Maven
"clean:clean" goal is bound to the clean phase. It cleans the project's build (usually
target) directory. Executing any one phase result in execution of all phases up to
it and the phase itself, for example, a call of a clean phase would execute the first
pre-clean phase and then the clean phase; similarly, a call of post-clean results in the
calling of pre-clean, clean, and post-clean phases. The following diagram illustrates
the execution of the clean lifecycle phases (reference: the Apache Maven site):

Building and Running a Project

[62]

We can bind other goals to the phases of the clean lifecycle. Suppose we want to
echo some message on the pre-clean phase; we can achieve this by binding the
maven-antrun-plugin:run goal to this phase, which can be done as follows:

</project>

<build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-antrun-plugin</artifactId>
 <executions>
 <execution>
 <id>precleanid</id>
 <phase>pre-clean</phase>
 <goals>
 <goal>run</goal>
 </goals>
 <configuration>
 <tasks>
 <echo>Hello am in pre-clean phase</echo>
 </tasks>
 </configuration>
 </execution>

The site lifecycle
The site lifecycle handles the creation of the project site documentation. The phases
of a site lifecycle are shown in the following diagram:

pre-site

site

post-site

site-deploy

Chapter 4

[63]

The following table describes the site lifecycle phases in the order of execution.
(reference: Apache Maven website)

Phases Description
pre-site This phase executes processes needed before the

generation of a project site.
site This phase generates documentation of a project site
post-site This phase executes a process required after a site's

generation and to prepare for site deployment
site-deploy This phase deploys the generated site documentation to

the specified web server

Executing any one phase results in the execution of all phases up to it and the phase
itself. For example, calling post-site results in the execution of pre-site, site, and post-
site phases. Similar to the clean lifecycle, we can bind other goals to the site's lifecycle.

The package-specific lifecycle
Each type of packaging has its own set of default goals. The default goals for JAR
packaging is different from WAR packaging. Maven provides a lifecycle for the
following built-in packaging types:

•	 JAR
•	 WAR
•	 EAR
•	 POM
•	 EJB
•	 Maven plugins

Building and Running a Project

[64]

The lifecycle and goal binding for WAR packaging is described here. For other
packaging lifecycle and goal binding, please refer to http://maven.apache.org/
guides/introduction/introduction-to-the-lifecycle.html#Built-in_
Lifecycle_Bindings.

Phases plugin:goals

process-resources resources:resources

compile compiler:compile

process-test-resources resources:testResources

test-compile compiler:testCompile

test surefire:test

package war:war

install install:install

deploy deploy:deploy

The Maven console
Before we get our hands dirty with building and executing Maven projects,
we need to enable the Maven console. The Maven console can be enabled with
the following steps:

1.	 Navigate to Window | Show View | Console. This shows the console view.
2.	 Next, click on the little arrow of Open Console as shown in the following

screen and click on Maven Console:

The Maven console shows all the output of the Maven build process. It shows all
the details that Maven processes and is really helpful in getting to know what is
happening underneath and you can also see the debug messages.

http://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html#Built-in_Lifecycle_Bindings
http://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html#Built-in_Lifecycle_Bindings
http://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html#Built-in_Lifecycle_Bindings

Chapter 4

[65]

Building and packaging projects
Building and packaging Maven projects needs execution of required phases, which
we discussed in the preceding sections. Let's build and package hello-project
from Chapter 3, Creating and Importing Projects, which we generated using archetypes.
In the Default Lifecycle section, the phase package executes the following phases
in order: compile, test, and package phases. Now, we will see how to invoke the
package phase from m2eclipse. The following steps will ascertain this:

1.	 Right-click on hello-project and select Run As. Click on Run
Configurations and the Run Configurations window will appear.

2.	 Right-click on Maven Build and choose New as shown in the
following screenshot:

Building and Running a Project

[66]

3.	 Once the launch configurations window appears, fill in the details as
shown in the following screenshot. For Base Directory, click on Browse
Workspace... and choose hello-project from the pop-up list:

4.	 Next, click on Apply and close it using the Close button.

Chapter 4

[67]

5.	 Again right-click on the project and select Run As, and click on Maven build
as shown in the following screenshot:

6.	 A window, as shown in the following screenshot, will appear with all the run
configurations available:

Building and Running a Project

[68]

7.	 Choose the hello-package launch configuration and click on OK. It should
compile, run tests, generate site documentation, and package in the target
directory, as shown in following screenshot:

Running hello-project
Since hello-project from the previous chapter is a Java application, running it is
similar to any other Java application. Right-click on the project, select Run As, and
click on Java Application, select the main JAVA class, and click on OK. It will print
Hello World! in the console.

Running a web application requires some extra steps, which we will discuss in
Chapter 5, Spicing Up a Maven Project.

Chapter 4

[69]

Summary
In this chapter, you learned about the clean, site, and default build lifecycles of
the Maven project, and later used this knowledge to get the application to package
and run.

In the next chapter, we will build a web application and you will learn to customize
the pom file to suit our needs.

Spicing Up a Maven Project
So far we have built the base, and now we are finally ready to launch the rocket.
Rocket! Exciting, isn't it? Let's put our knowledge from previous chapters to practice;
we will use Maven to create a simple web application, MyDistance, which lets the user
convert distance between different units. In the process of building this application,
we will also learn to customize the project's information and generate different
artifacts. The topics that will be covered in this chapter are categorized as follows:

•	 Creating the MyDistance project
•	 Changing the project information
•	 Adding dependencies
•	 Adding resources
•	 The application code

°° Adding a form to obtain an input
°° Adding the servlet
°° Adding a utility class

•	 Running an application
•	 Writing unit tests
•	 Running unit tests
•	 Generating site documentation
•	 Generating unit tests—HTML reports
•	 Generating javadocs

Spicing Up a Maven Project

[72]

Creating the MyDistance project
To create the MyDistance application, we need to perform the following steps:

1.	 From the menu, navigate to File | New | Other.... A new project wizard
window appears. Search for maven in the textbox, select Maven Project,
and click on the Next button, as shown in the following screenshot:

2.	 A New Maven Project wizard appears; select the Use default Workspace
location checkbox, and ensure the Create a simple project (skip archetype
selection) checkbox is unchecked, as shown in the following screenshot:

Chapter 5

[73]

3.	 Next, choose an archetype from the new archetype wizard. Since we are
building a web application, in Filter, search for webapp, choose maven-
archetype-webapp, and click on Next, as shown in the following screenshot:

4.	 Specify the Maven coordinates, also termed as Group-Artifact-Version
(GAV) in technical parlance, with the following values, and click on Finish:

Field Value
Group Id com.packt.mvneclipse

Artifact Id MyDistance

Version 0.0.1-SNAPSHOT

Package com.packt.chpt5.mydistance

Spicing Up a Maven Project

[74]

Your screen will look like the following screenshot once you perform the
previous step:

A snapshot in Maven indicates the current development copy,
that is, the current snapshot of the code. Maven checks for a
new SNAPSHOT version in a remote repository at a configured
interval, for a default time of 24 hours. For more information
on Maven versions, refer to http://docs.oracle.com/
middleware/1212/core/MAVEN/maven_version.htm.

5.	 The web application skeleton gets created and the structure would look
like the following screenshot:

http://docs.oracle.com/middleware/1212/core/MAVEN/maven_version.htm
http://docs.oracle.com/middleware/1212/core/MAVEN/maven_version.htm

Chapter 5

[75]

Don't worry if you see a red cross that indicates an error in the project; we will learn
more about it in the upcoming section, Application code.

Changing the project information
Before we venture into further details of the code, let's customize the project
information. Let's add information about the organization, license, and developers
associated with it. To do this, let's open the pom file and add the following code:

<project >
…....
 <!-- Organization information -->
 <organization>
 <name>Packt Publishing</name>
 <url>www.packtpub.com</url>
 </organization>

Spicing Up a Maven Project

[76]

 <!-- License information -->
 <licenses>
 <license>
 <name>Apache 2</name>
 <url>http://www.apache.org/licenses/LICENSE-2.0.txt</url>
 <distribution>manual</distribution>
 <comments>A Friendly license</comments>
 </license>
 </licenses>
 <!-- Developers Information -->
 <developers>
 <developer>
 <id>foo</id>
 <name>Foo foo</name>
 <email>foo@foo.com</email>
 <url>http://www.foofoo.net</url>
 <organization>Packt</organization>
 <organizationUrl>http://packtpub.com</organizationUrl>
 <roles>
 <role>developer</role>
 </roles>
 <timezone>-8</timezone>
 </developer>
 </developers>
.......
</project>

For detailed information on the Maven model, visit http://maven.
apache.org/ref/3.2.1/maven-model/maven.html.

Adding dependencies
Our project is a simple web application, and to begin, it will need JUnit as a
dependency for testing and log4j for logging purposes. As we progress further,
we will add more dependencies progressively; the idea of this section is to show
how to add dependencies in the pom file. If we see our pom file, we can see that JUnit
is already present as a dependency; so, let's add log4j as a dependency by adding
the following code snippet:

<project>
…....
<dependencies>
…

http://maven.apache.org/ref/3.2.1/maven-model/maven.html
http://maven.apache.org/ref/3.2.1/maven-model/maven.html

Chapter 5

[77]

<!-- For logging purpose -->
 <dependency>
 <groupId>log4j</groupId>
 <artifactId>log4j</artifactId>
 <version>1.2.17</version>
 </dependency>
</dependencies>
…....
</project>

The complete resultant pom file would look like the following:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.
apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt.mvneclipse</groupId>
 <artifactId>MyDistance</artifactId>
 <packaging>war</packaging>
 <version>0.0.1-SNAPSHOT</version>
 <name>MyDistance Maven Webapp</name>
 <url>http://maven.apache.org</url>
 <!-- Organization information -->
 <organization>
 <name>Packt Publishing</name>
 <url>www.packtpub.com</url>
 </organization>

 <!-- License information -->
 <licenses>
 <license>
 <name>Apache 2</name>
 <url>http://www.apache.org/licenses/LICENSE-2.0.txt</url>
 <distribution>manual</distribution>
 <comments>A Friendly license</comments>
 </license>
 </licenses>
 <!-- Developers Information -->
 <developers>
 <developer>
 <id>foo</id>
 <name>Foo foo</name>
 <email>foo@foo.com</email>

Spicing Up a Maven Project

[78]

 <url>http://www.foofoo.net</url>
 <organization>Packt</organization>
 <organizationUrl>http://packtpub.com</organizationUrl>
 <roles>
 <role>developer</role>
 </roles>
 <timezone>-8</timezone>
 </developer>
 </developers>
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 <!-- For logging purpose -->
 <dependency>
 <groupId>log4j</groupId>
 <artifactId>log4j</artifactId>
 <version>1.2.17</version>
 </dependency>
 </dependencies>
 <build>
 <finalName>MyDistance</finalName>
 </build>
</project>

Adding resources
We are going to use log4j to log in to the file or console. Log4j is configured via the
log4j properties file. Now let's create the properties file. To do so, navigate to src/
main/resources, right-click on resources and select New | Other...; a new wizard
appears. Search for file in the Filter section, select File, and click on Next, as shown
in the following screenshot:

Chapter 5

[79]

Next, a File resource window appears; enter the filename as log4j.properties
and make sure the parent folder is MyDistance/src/main/resources and click
on Finish, as shown in the following screenshot:

Spicing Up a Maven Project

[80]

Resources are placed in the src/main/resources folder.

Once the file is created, add the following piece of code to set the different properties
of log4j. It attaches the pattern layout to split out information on the console,
writes a log to the Mydistance.log file, and is set to the DEBUG level, as shown in
the following code:

#log4j Properties
 log4j.rootLogger=DEBUG, consoleAppender, fileAppender

 log4j.appender.consoleAppender=org.apache.log4j.ConsoleAppender
 log4j.appender.consoleAppender.layout=org.apache.log4j.PatternLayout
 log4j.appender.consoleAppender.layout.ConversionPattern=[%t] %-5p
%c{1} %x - %m%n

 log4j.appender.fileAppender=org.apache.log4j.RollingFileAppender
 log4j.appender.fileAppender.layout=org.apache.log4j.PatternLayout
 log4j.appender.fileAppender.layout.ConversionPattern=[%t] %-5p
%c{1} %x - %m%n
 log4j.appender.fileAppender.File=Mydistance.log

For more information on log4j, refer to http://logging.apache.org/log4j/1.2/.

The application code
The application is deliberately created in JSP or servlets to keep it simple and to
avoid having familiarity with other frameworks to understand the example. Before
we get into the basics of the application code, let's solve the error that Eclipse
complains of in step 5 of the Creating a MyDistance Project section. Add the following
dependency in the pom file and the error should vanish:

<!-- Include servlet API -->
 <dependency>
 <groupId>javax.servlet</groupId>
 <artifactId>javax.servlet-api</artifactId>
 <version>3.1.0</version>
 <scope>provided</scope>
 </dependency>

http://logging.apache.org/log4j/1.2/

Chapter 5

[81]

The preceding dependency will also be required for writing servlets later in the
Adding a Servlet section.

The scope is provided, which means that the container will provide
this dependency, and Maven will not include it in this project's
output or war file. We discussed scopes in more detail in Chapter 4,
Building and Running a Project.

The application will require the following additional files:

•	 index.jsp: This is a JSP file with a form that allows users to enter a
distance, its unit, and the desired conversion unit

•	 DistanceServlet: This is a servlet that processes the inputs from the form
•	 ConversionUtil: This is a utility class that has a method to perform

conversion between different units

Adding a form to get an input
Under src/main/webapp, open the index.jsp file, and add the following code to get
the distance, its unit, and conversion unit as input. The form consists of an input box,
two radio buttons to choose units, and a button to initiate the conversion, as shown
in the following code:

<body>
<h2>MyDistance Utility</h2>
 <form>
 <table>
 <tr>
 <td><input type="text" id="mydistance" name='distance'
 placeholder="My Distance In"></td>

 <td> <input type="radio" name="distin" id="distin"
 value="km">KM

 <input type="radio" name="distin" id="distin"
 value="m">Metre</td>
 </tr>
 <tr></tr>
 <tr></tr>
 <tr></tr>
 <tr>

Spicing Up a Maven Project

[82]

 <td> <label for="convert">Convert To</label></td>
 <td> <input type="radio" name="convertto" id="convertto"
 value="yd">Yard

 <input type="radio" name="convertto" id="convertto"
 value="mi">Miles</td>
 </tr>
 <tr>
 <td><input type="button" id="submit" value='Convert'></td>
 </tr>

 </table>
 <div id="convertvalue"> </div>
 </form>
</body>

If you like, you can add CSS styles to make the UI more pleasing. The preceding bare
bones file results in something like this:

We want to calculate the value and show the corresponding result beneath it using
Ajax (jQuery Ajax). To achieve this, add the following piece of code:

<head>
 <script src="http://code.jquery.com/jquery-latest.js">
 </script>
 <script>
 $(document).ready(function() {
 $('#submit').click(function(event) {
 var mydistance=$('#mydistance').val();

 var mydistanceIn=$('[name=distin]:checked').val();
 var convertTo=$('[name=convertto]:checked').val();
 if(mydistanceIn==convertTo){

Chapter 5

[83]

 alert("Cannot have same unit");
 return false;
 }
 console.log(mydistance+mydistanceIn+convertTo);
 $.get('mydistance',{distance:mydistance,distIn:
 mydistanceIn,convert:convertTo},function(responseText) {
 $('#convertvalue').text(responseText);
 });
 });
 });
 </script>
</head>

Adding a servlet
Before we add any Java files, create a folder, java, under src/main as Maven
looks for Java files in this directory (all Java files should reside under it). Add
the DistanceServlet servlet in the com.packt.chpt5.mydistance package.
The servlet gets the request parameters, extracts it, and calls the corresponding
conversion method in the utility class. The servlet would look like the following:

public class DistanceServlet extends HttpServlet {

 private static final long serialVersionUID = 1L;
 static Logger log=Logger.getLogger(DistanceServlet.class);
 public void doGet(HttpServletRequest req, HttpServletResponse
 resp)
 throws ServletException, IOException {
 double convertVal = 0;
 double distanceProvided
 =Double.parseDouble(req.getParameter("distance"));
 String distanceIn=req.getParameter("distIn");
 String convertTo=req.getParameter("convert");
 log.debug("Request Parameters ==>"+"Distance-
 "+distanceProvided+distanceIn+" Conversion Unit- "+convertTo
);
 ConversionUtil conversion= new ConversionUtil();
 if(distanceIn.equals("km") && convertTo.equals("yd")){
 convertVal=conversion.convertkmToYard(distanceProvided);
 }

 if(distanceIn.equals("m") && convertTo.equals("yd")){

Spicing Up a Maven Project

[84]

 convertVal=conversion.convertMtoYard(distanceProvided);
 }

 if(distanceIn.equals("km") && convertTo.equals("mi")){
 convertVal=conversion.convertKMToMile(distanceProvided);
 }

 if(distanceIn.equals("m") && convertTo.equals("mi")){
 convertVal=conversion.convertMToMile(distanceProvided);
 }

 resp.setContentType("text/html");
 PrintWriter out = resp.getWriter();
 out.print("The converted value is "+convertVal);
 out.flush();
 out.close();

 }

}

Add the following lines in the web.xml file under src/main/webapp/WEB-INF:

<web-app>
 <display-name>MyDistance Calculator</display-name>
 <servlet>
 <servlet-name>mydistance</servlet-name>
 <servlet-class>com.packt.chpt5.mydistance.DistanceServlet</
servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>

 <servlet-mapping>
 <servlet-name>mydistance</servlet-name>
 <url-pattern>/mydistance</url-pattern>
 </servlet-mapping>
</web-app>

Chapter 5

[85]

Adding a utility class
Add a utility class ConversionUtil in the com.packt.chpt5.mydistance.util
package. A utility class contains methods to perform conversion across different
distance units. Add the following code to the utility class:

public double convertKMToMile(double distance){
 return (distance*0.62137);
}
public double convertkmToYard(double distance){
 return distance*1093.6;
}

public double convertMToMile(double distance){
 return (distance/1000)*0.62137 ;
}
public double convertMtoYard(double distance){
 return (distance/1000)*1093.6;
}

Running an application
Now we are done with coding. Let's run the coding and see how it works. The
project is a web application, so it requires a servlet container to run. We will use
the Tomcat container here. Add the following build plugin for the Tomcat that can
actually host a Tomcat instance right from Maven and no installation is required:

 <build>
….
 <plugins>
 <plugin>
 <groupId>org.apache.tomcat.maven</groupId>
 <artifactId>tomcat7-maven-plugin</artifactId>
 <version>2.1</version>
 </plugin>
 </plugins>
 </build>

Spicing Up a Maven Project

[86]

This will download all the dependencies from the repository. After the download is
complete, right-click on the project, choose Run As | Run Configurations..., create
the configuration in the configuration window specifying Goals as tomcat7:run,
and click on Run, as shown in the following screenshot:

The Tomcat plugin has the run goal, which compiles and runs the
application.

Chapter 5

[87]

Similarly, we can add any other container and run the application in it. The running
application will be available at http://localhost:8080/MyDistance/ and would
look like the following screenshot (shown with a sample conversion):

Writing unit tests
Writing unit tests is a part of good practice in software development. Maven's test
phase executes unit tests and generates the corresponding report. In this section,
we will learn about writing a simple unit test for our utility class ConversionUtil,
and in the next section, we will see how to execute it and generate reports.

All the unit test classes should go under src/test/java. Create the corresponding
folder in the MyDistance project. Once the folder is in place, right-click on it and
navigate to New | Other.... Once the wizard window appears, type in junit in
the Filter section, select JUnit Test Case, and click on Next, as shown in the
following screenshot:

Spicing Up a Maven Project

[88]

In the window to follow, define the unit test class by filling in the following details
and click on Next, as shown in the preceding screenshot:

Fields Values
Source folder MyDistance/src/test/java

Package com.packt.chpt5.mydistance.util

Name ConvertionUtilTest

Class under test com.packt.chpt5.mydistance.util.
ConversionUtil

Chapter 5

[89]

A window to choose test methods will be shown, for which stubs will be
generated as shown in the following screenshot. Make sure that all methods
of the ConversionUtil class are checked and click on Finish as follows:

Spicing Up a Maven Project

[90]

The ConversionUtilTest test class with the test method stubs will be generated.
Edit the code of the class as follows:

private ConversionUtil conversion;

 @Override
 protected void setUp() throws Exception {

 super.setUp();
 conversion= new ConversionUtil();
 }

 public void testConvertKmToMile() {
 double actual=conversion.convertKMToMile(4);
 assertEquals(2.48548,actual,0.001);
 }

 public void testConvertkmToYard() {
 double actual=conversion.convertkmToYard(4);
 assertEquals(4374.45,actual,0.10);
 }

 public void testConvertMToMile() {
 double actual=conversion.convertMToMile(4000);
 assertEquals(2.48548,actual,0.001);
 }

 public void testConvertMtoYard() {
 double actual=conversion.convertMtoYard(4000);
 assertEquals(4374.45,actual,0.10);
 }

 @Override
 protected void tearDown() throws Exception {

 super.tearDown();
 conversion = null;
 }

For more information on JUnit test cases, refer to http://junit.org/.

http://junit.org/

Chapter 5

[91]

Running unit tests
Running the unit test in Maven is just specifying the phase test. To execute the unit
test we wrote in the preceding section, right-click on the MyDistance project, select
Run As, and click on Maven Test. It will run the unit tests against the class and
generate the report in the /target/surefire-reports/ folder, as shown in the
following screenshot:

You can see the results of unit test execution in the txt and xml format.

Generating site documentation
One of the integral features of Maven is that it eases artifacts and site documentation
generation. To generate site documentation, add the following dependency in the
pom file:

<reporting>
 <plugins>
 <!-- Reporting -document generation -->
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-plugin-plugin</artifactId>
 <version>3.3</version>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-project-info-reports-plugin</artifactId>
 <version>2.7</version>
 </plugin>
 </plugins>

 </reporting>

Spicing Up a Maven Project

[92]

After adding the preceding dependencies, run the project with the goal as site,
that is, in the Run Configurations window, specify Goals as site, as shown in
following screenshot:

Click on the Run button and the documentation will be generated. The excerpts
of the output in Maven Console would look like the following:

[INFO] Generating "About" report --- maven-project-info-reports-
plugin:2.7
[INFO] Generating "Plugin Management" report --- maven-project-
info-reports-plugin:2.7
[INFO] Generating "Distribution Management" report --- maven-
project-info-reports-plugin:2.7
[INFO] Generating "Dependency Information" report --- maven-
project-info-reports-plugin:2.7
[INFO] Generating "Source Repository" report --- maven-project-
info-reports-plugin:2.7
[INFO] Generating "Mailing Lists" report --- maven-project-info-
reports-plugin:2.7
[INFO] Generating "Issue Tracking" report --- maven-project-info-
reports-plugin:2.7

Chapter 5

[93]

[INFO] Generating "Continuous Integration" report --- maven-
project-info-reports-plugin:2.7
[INFO] Generating "Project Plugins" report --- maven-project-info-
reports-plugin:2.7
[INFO] Generating "Project License" report --- maven-project-info-
reports-plugin:2.7
[INFO] Generating "Project Team" report --- maven-project-info-
reports-plugin:2.7
[INFO] Generating "Project Summary" report --- maven-project-info-
reports-plugin:2.7
[INFO] Generating "Dependencies" report --- maven-project-info-
reports-plugin:2.7
[INFO] --

[INFO] BUILD SUCCESS
[INFO] --

The documentation would be generated in the target/site folder and the
expansion of the folder would look like the following:

Spicing Up a Maven Project

[94]

There is an HTML file for each type of detail ranging from project-info, project
reports, project summary, license, plugin, and so on, and index.html being
the start point that links every document. The Project Summary page is shown in
the following screenshot:

For more information on site and site plugins, please refer to http://maven.
apache.org/guides/mini/guide-site.html and http://maven.apache.org/
plugins/maven-site-plugin/.

Generating unit tests – HTML reports
In the preceding section, we ran the unit tests, and the results were generated in
the txt and xml format. Often, developers need to generate more readable reports.
Also, as a matter of fact, the reports should be a part of site documentation for better
collaboration and information available in one place. To generate an HTML report
and make it a part of site documentation, add the dependency under the reporting
element as plugin in the pom file as follows:

<reporting>
 <plugins>
…...
<!-- For HTML test report generation -->
 <plugin>

http://maven.apache.org/guides/mini/guide-site.html
http://maven.apache.org/guides/mini/guide-site.html
http://maven.apache.org/plugins/maven-site-plugin/
http://maven.apache.org/plugins/maven-site-plugin/

Chapter 5

[95]

 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-report-plugin</artifactId>
 <version>2.17</version>
 </plugin>
…...
 </plugins>
</reporting>

After the addition shown in the preceding code, run the site phase from the
previous section. The test reports would be available by navigating to Project
Documentation | Project Reports | Surefire Report of the navigation in index.
html, as shown in the following screenshot:

Generating javadocs
We often need to generate API documentation of our code base. Having an API
documentation increases collaboration, understanding, migration, and the transfer
of knowledge becomes handy. To generate javadocs, add the following dependency
in the reporting element as follows:

<reporting>
 <plugins>
 …...
 <!-- For Javadoc generation-->
 <plugin>

Spicing Up a Maven Project

[96]

 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-javadoc-plugin</artifactId>
 <version>2.9.1</version>
 </plugin>
 </plugins>
</reporting>

After making the preceding changes to the pom file, run the site phase from the
previous section. The APIs will be generated in the apidocs and testapidocs
folders under target/site. This can be navigated in the index.html file, under
the Project Reports head with JavaDocs and the Test JavaDocs label, along with
Surefire-Reports as shown in the following screenshot:

Summary
Well done! We have developed MyDistance, a distance conversion utility web
application. During the course of development, we learned adding dependencies,
writing unit tests, executing them, generating site documentation, and generating
javadocs for them. In the next chapter, we will learn about multimodule projects
with Maven.

Creating a Multimodule
Project

Now that we have already launched the rocket, let's explore more of it. In this chapter,
we will develop a MyDistance application from the previous chapter as a multimodule
Maven project and learn how to create multimodule projects, build, and run them.
The topics covered in this chapter are as follows:

•	 Introduction
•	 Creating a parent project—POM
•	 Creating a core module
•	 Creating a webapp module
•	 Building a multimodule project

Introduction
Software architecture states modularity as the degree to which a system's components
may be separated and recombined. In software engineering, modularity refers to
the extent to which a software/application can be divided into multiple modules
to achieve the business goal. Modularity enhances manageability and reusability.
The growing days has seen software getting more complex, and modularity is the
need of the hour.

Multimodule projects consist of many modules that adapt to modularity.
A multimodule project is identified by a parent/master POM referencing one
or more .sub modules.

Creating a Multimodule Project

[98]

A multimodule project constitutes of the following:

•	 Parent project POM: This glues and references all the other modules of
a project

•	 Modules: This includes submodules that serve different functions of the
application and constitute the application

Parent POM is where you can put common dependencies in a single place and let
other modules inherit it, that is, POM inheritance in modules. Usually, universal
dependencies such as JUnit or log4j are the candidates of POM inheritance.

The mechanism by which Maven handles multimodule projects is referred to as
reactor. The reactor of Maven's core has the following functions:

•	 Collects all the modules to build
•	 Sorts the projects (modules) into the current build order
•	 Builds the sorted projects in order

The modules of the project are enclosed inside the <modules> </modules> tag by
specifying each module with the <module> </module> tag. Similarly, the parents
are enclosed inside the <parent> </parent> tag by specifying Maven coordinates.

Now, for illustration, we will take the MyDistance application from Chapter 5, Spicing
Up a Maven Project, and develop it as a multimodule project. The modules of the
project would be as follows:

•	 Distance-main: This is the parent project, also known as parent POM,
that glues and references different modules of the project, that is,
distance-core and distance-webapp

•	 distance-core: This module provides a simple distance conversion
utility class

•	 distance-webapp: This is a web interface in which you can input the units
that depend on the distance-core module to perform a conversion and
respond to the results

In the subsequent sections, we will get into the details of the preceding modules.

Chapter 6

[99]

Creating a parent project – POM
The first step towards building a multimodule project is setting up a parent POM.
To do this, follow the ensuing steps:

1.	 Navigate to File | New and click on Maven Project. Alternatively, navigate
to File | New and click on Other.... In the Select a wizard screen, search for
maven via the search box, select Maven Project, and click on the Next button,
as shown in the following screenshot:

2.	 The New Maven Project wizard appears; make sure that you tick the checkbox
Create a simple project (skip archetype selection), as shown in the following
screenshot, and click on Next:

Creating a Multimodule Project

[100]

3.	 The New Maven project configuration wizard appears; fill in the details
as shown in the screenshot and click on Finish:

Make sure that you choose the packaging as POM from the dropdown:

Field Value
Group Id com.packt.mvneclipse

Artifact Id Distance-main

Version 0.0.1-SNAPSHOT

Packaging pom

Chapter 6

[101]

4.	 The corresponding project will get created, and the resulting screen would
look as follows:

We have the parent POM in place now.

Creating a Multimodule Project

[102]

Creating a core module
The core module of MyDistance will contain a class that can be converted across
different units, that is, from km/meter to yard/miles. Let's name this core module
distance-core. To create a core module, perform the following steps:

1.	 Navigate to File | New and click on Other…. In the Select a wizard screen,
search for maven via the search box, select Maven Module, and click on the
Next button, as shown in the following screenshot:

2.	 The New Maven Module wizard appears; make sure to tick the checkbox
Create a simple project (skip archetype selection), provide the module
name as distance-core, and browse to select the parent as Distance-main,
as shown in the following screenshot:

Chapter 6

[103]

3.	 In the Configure project Maven module wizard, fill in the details provided in
the table after the following screenshot and click on Finish:

Field Value
Group Id com.packt.mvneclipse

Version 0.0.1-SNAPSHOT

Packaging jar

Since the core module just contains a Java class and is available to be used
as a library for a web module of an application, the packaging type is jar.

4.	 The distance-core module gets created and the contents of the POM will
look as follows:
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://
maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>com.packt.mvneclipse</groupId>
 <artifactId>Distance-main</artifactId>

Creating a Multimodule Project

[104]

 <version>0.0.1-SNAPSHOT</version>
 </parent>
 <artifactId>distance-core</artifactId>
 </project>

Please note that the parent of the module is enclosed in the <parent></
parent> tag. Also, the groupId and version tags will not be present
for a module since we specified the same groupId and version as
the parent in the Configure Maven Module wizard. We did this in the
preceding code while creating a module.
At any point, if we wish to change or add groupId/version/
artifactId, we can always edit the pom.xml file since it's an XML file.

5.	 The core module consists of a class file that performs the conversion across
distance units. Now let's add a class; right-click on the project, navigate to
New, select Package, and specify the package name as com.packt.chpt6.
mydistance.util.

6.	 Create a class named ConversionUtil in the preceding package. If you
remember, we created this class in Chapter 5, Spicing Up a Maven Project.
So, copy the contents of this class and save it.

7.	 Now let's put a unit test class in place. Create a package, com.packt.chpt6.
mydistance.util, in src/test/java. Add the class ConversionUtilTest
to the corresponding package. Refer to Chapter 5, Spicing Up a Maven Project,
where we created this test class; copy the contents of this class and save it.
The resulting src structure will look as follows:

Chapter 6

[105]

You might notice that we have some errors, and the errors are due to the TestCase
class not being resolved. To solve this error, add jUnit as a dependency to the parent
module, the pom.xml file, as shown in the following code:

 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>

Usually, JUnit and log4j dependencies, that is, common
dependencies across modules, are put in one place in the
parent POM and the modules inherit them.

Creating a webapp module
The webapp module has a JSP file that has a form to accept the input. It also has a
servlet that accepts the request parameters and performs the conversion using a core
module and provides the response. Now let's see how to get the webapp module in
place by performing the following steps:

1.	 Navigate to File | New and click on Other...; in the Select a wizard screen,
search for maven via the search box, select Maven Module, and click on the
Next button as shown in the following screenshot:

Creating a Multimodule Project

[106]

2.	 In the New Maven Module window that will follow, provide the module
name as distance-webapp and browse to select the parent as Distance-main.

3.	 In the Select an Archetype window, search for webapp via the search box,
select maven-archetype-webapp, and click on Next to proceed, as shown
in the following screenshot:

Chapter 6

[107]

4.	 In the New Maven module window, fill in the details provided in the
following table and click on Finish as shown in the screenshot that follows
this table:

Field Value
Group Id com.packt.mvneclipse

Version 0.0.1-SNAPSHOT

Package com.packt.chpt6.mydistance

5.	 The webapp module will be created, and the resulting structure will look
like the following screenshot:

Creating a Multimodule Project

[108]

6.	 Now if we look at the parent project's structure, we might notice that it has
a reference to each of the modules, as shown in the following screenshot:

7.	 Also, if we take note of the pom.xml file of the parent project, we will see how
modules are being added to the <module> tag as follows:
<modules>
 <module>distance-core</module>
 <module>distance-webapp</module>
</modules>

8.	 Open the webapp module's pom.xml file and add the dependencies for
log4j, servlet, and Tomcat, as shown in the following code; this is also
discussed in Chapter 5, Spicing Up a Maven Project, in more detail:
 <!-- Include servlet API -->
 <dependency>
 <groupId>javax.servlet</groupId>
 <artifactId>javax.servlet-api</artifactId>
 <version>3.1.0</version>
 <scope>provided</scope>
 </dependency>
 <!-- For logging purpose could be put in parent POM for modules
to inherit -->
 <dependency>
 <groupId>log4j</groupId>
 <artifactId>log4j</artifactId>
 <version>1.2.17</version>
 </dependency>

<!-- For tomcat
<plugins>
 <plugin>
 <groupId>org.apache.tomcat.maven</groupId>
 <artifactId>tomcat7-maven-plugin</artifactId>
 <version>2.1</version>
 </plugin>
 </plugins>

Chapter 6

[109]

9.	 Also, add distance-core as a dependency since it is used by the webapp to
perform the conversion, as shown in the following code:
 <dependency>
 <groupId>com.packt.mvneclipse</groupId>
 <artifactId>distance-core</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <scope>compile</scope>
 </dependency>

10.	 Add the log4j.properties file to the resources folder. Refer to the
Adding Resources section in Chapter 5, Spicing Up a Maven Project.

11.	 Add the form to get input and add servlets (refer to sections Adding a form
for getting input and Adding Servlet of Chapter 5, Spicing Up a Maven Project).

Building a multimodule project
Now that we are done with writing the code for modules, let's build the project.
Right-click on the parent project—in this case, Distance-main—select Run As,
and click on Maven test. This should compile and run the unit tests. An excerpt
of the output in the console is as follows:

[INFO] Scanning for projects...

[INFO] --

[INFO] Reactor Build Order:

[INFO]

[INFO] Distance-main

[INFO] distance-core

[INFO] distance-webapp Maven Webapp

[INFO]

[INFO] Using the builder org.apache.maven.lifecycle.internal.builder.
singlethreaded.SingleThreadedBuilder with a thread count of 1

[INFO]

[INFO] --

[INFO] Building Distance-main 0.0.1-SNAPSHOT

[INFO] ---

[INFO] --

[INFO] Building distance-core 0.0.1-SNAPSHOT

Creating a Multimodule Project

[110]

[INFO] --

--

 T E S T S

Running com.packt.chpt6.mydistance.util.ConversionUtilTest

Tests run: 4, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.009 sec

Results :

Tests run: 4, Failures: 0, Errors: 0, Skipped: 0

[INFO]

[INFO] --

[INFO] Building distance-webapp Maven Webapp 0.0.1-SNAPSHOT

[INFO] ---

[INFO] --

[INFO] Reactor Summary:

[INFO]

[INFO] Distance-main SUCCESS [
0.002 s]

[INFO] distance-core SUCCESS [
2.250 s]

[INFO] distance-webapp Maven Webapp SUCCESS [
0.161 s]

[INFO] --

[INFO] BUILD SUCCESS

[INFO] --

The mechanism referred to as a reactor knows the order of building a project.
Now again, right-click on Distance-main, select Run As, and click on Maven
install to install the modules in a local repository.

Always make sure to clean the project by running Maven clean via
the Run As option if any changes occur; alternatively, you can reinstall
the project using Maven install.

Chapter 6

[111]

Running the application
To run the application, right-click on the webapp module of the parent project
highlighted in the following screenshot, select Run As, and then click on Run
Configurations.... In the Run configuration window, specify the goal
as tomcat7:run and click on the Run button. The web application will run
at http://localhost:8080/distance-webapp/; point the browser to this
location and perform the conversion:

Summary
In this chapter, we learned how to create a multimodule project and then build
and run the application. In the next chapter, we will take a sneak peek into
m2eclipse and learn how to customize it.

Peeking into m2eclipse
We are toward the end of the journey; now in this chapter, we will look into other
additional features in m2eclipse, getting familiar with the form-based POM editor,
and learn about repositories.

The topics covered in this chapter are as follows:

•	 Other features in m2eclipse
•	 A form-based POM editor
•	 Analyzing project dependencies
•	 Working with repositories
•	 m2eclipse preferences

Peeking into m2eclipse

[114]

Other features in m2eclipse
The following steps have to be performed in order to understand the other features
of m2eclipse. Right-click on the Maven project and navigate to the Maven menu
item. Then, you can see the available features as shown in the following screenshot:

If you see the screenshot, the available features are as follows:

•	 Add Dependency
•	 Add Plugin
•	 New Maven Module Project
•	 Download JavaDoc
•	 Download Sources
•	 Update Project
•	 Disable Workspace Resolution
•	 Disable Maven Nature

Chapter 7

[115]

Similarly, right-click on Maven Dependencies and navigate to the Maven
menu item. The available features seen are shown in the following screenshot:

The available features are as follows:

•	 Download JavaDoc
•	 Download Sources
•	 Exclude Maven Artifact
•	 Open POM
•	 Open JavaDoc
•	 Import Project(s) from SCM

In the sections to follow, we will collectively discuss these features.

Peeking into m2eclipse

[116]

Add Dependency
It allows us to add dependencies to the Maven project. The screenshot for this is
shown as follows:

Up until now, we have been editing the pom.xml file and adding dependencies to it.
Adding dependencies is another way to achieve the same objective using the graphical
interface. When you use this option, the information you need to know is less, that
is, knowing artifactId/groupId is enough to search across repositories and select
the appropriate one. In the previous method, you need to know complete Maven
coordinates to add the dependencies; hence, the latter is a time saver.

Add Plugin
Similar to Add Dependency, Add Plugin allows you to add plugins via the
graphical interface. This requires us to have minimal information to search
through the repository and add plugins. The screenshot for this is as follows:

Chapter 7

[117]

New Maven Module Project
In Chapter 6, Creating a Multimodule Project, we created a multimodule project and
learned about creating module projects. This is another way to invoke the same Add
module wizard to create modules. The screenshot of the window is shown as follows,
which is the same as the screenshot obtained when you navigate to New | Other |
Maven Module and right-click on the project (as we saw in the previous chapter):

Peeking into m2eclipse

[118]

Download JavaDoc
Download JavaDoc is used to download the javadoc of the project if present
in the central repository to the local repository. For example, right-click on the
log4j-1.2.17.jar file under Maven Dependencies and click on Download
JavaDoc, as shown in the following screenshot. The javadoc will be downloaded
to the local repository along with other artifacts at the $HOME/.m2/repository/
log4j/log4j/1.2.17/ as log4j-1.2.17-javadoc.jar location:

Download Source
If the central repository has a source artifact for the corresponding project, we can
use this option to download it to the local repository and use it with the Eclipse
environment. This is a life saver, particularly when we are debugging a complex
issue and there is need to drill down the code of dependencies. For example, the
source code of log4j will be downloaded at the $HOME/.m2/repository/log4j/
log4j/1.2.17/ as log4j-1.2.17-javadoc.jar location. After downloading the
source code, right-click on the log4j-1.2.17.jar file and click on Properties,
as shown in the following screenshot:

Chapter 7

[119]

The Properties window appears; the Java Source Attachment navigation button
shows the attached source code location, as shown in the following screenshot:

Note that we can also find the javadoc location by clicking on the Javadoc Location
navigation button on the left pane.

Peeking into m2eclipse

[120]

Open Javadoc
When we want to browse through the javadoc of the corresponding project, we use
this option. The javadoc opens in the editor area as a separate tab as shown in the
following screenshot for log4j docs:

Open POM
At any point, if there is a need to look at the POM file of the dependencies, we can
use this option. The respective POM file of the dependency opens in the editor area
of the workspace. The following screenshot depicts the POM file in the editor area
for log4j, which has been the dependency in the MyDistance application we built
in Chapter 4, Building and Running a Project:

Chapter 7

[121]

Update Project
There are instances where we have a Java project and we want to convert it to
a Maven project. We can do this by right-clicking on the project, navigating to
Configure | Convert to Maven Project, and adding a POM file. Now, Update
Project is used to update the project from its dependencies and resources. Update
Project is also handy if you have multiple Maven projects in your workspace, and
the projects depend on each other. Then, after you build (mvn install) one project,
you can perform Update Project on other projects to pick up the new artifact. The
update option is shown in the following screenshot:

Peeking into m2eclipse

[122]

Choosing Offline will not check the central repository for updates.

Disable Workspace Resolution
Imagine a case where a project A depends on project B and they reside in the same
workspace, mostly in multimodule projects. Now, if workspace resolution is disabled,
to have project A, a successful build and a project B artifact are needed in the local
repository. However, if the workspace resolution is enabled, the dependencies
are resolved using an Eclipse workspace, and there is no need for an artifact in the
local repository.

Disable Maven Nature
It disables the Maven aspect of the project, that is, the Maven dependencies are
removed from the build path. In that case, we may need to include the JARs
manually in the classpath from the build window.

Import Project(s) from SCM
It allows you to pull the source code to your Eclipse workspace for the dependency.
In other words, it enables you to create a new Maven project for a dependency
based on the sources for that dependency. The sources are pulled from the Source
Code Management (SCM) system as defined in the POM for the dependency. If the
dependency POM fails to mention the SCM, then this option does nothing. Make
sure you have a proper m2e connector installed for the corresponding SCMs. We
discussed importing and installing Subversion m2e connector in Chapter 3, Creating
and Importing Projects.

A form-based POM editor
m2eclipse provides the option of editing the pom file using a form-based POM editor.
In earlier chapters, we played with XML tags and edited the pom file. While directly
editing an XML file, the knowledge of tags is required, and there is a high chance
that the user will make some errors. However, a form-based editor reduces the
chance of a simple error and eases the editing of a pom file without or very minimal
XML knowledge behind the scene. I would prefer playing around with XML tags
and use that option, but you are open to choose your option. The form-based editor
is shown in the following screenshot and has five tabs: Overview, Dependencies,
Dependency Hierarchy, Effective POM, and pom.xml:

Chapter 7

[123]

An overview
Overview provides general information of the project. It consists of the following
sections and provides information about them as shown in the preceding screenshot:

•	 Artifact
•	 Parent
•	 Project
•	 Modules
•	 Properties
•	 Organization
•	 SCM
•	 Issue Management
•	 Continuous Integration

You can change any information in this form, and this will be reflected in the XML
file. We will discuss the Dependencies and the Dependencies Hierarchy tab in the
next section.

Peeking into m2eclipse

[124]

Analyzing project dependencies
A POM editor has a Dependencies tab that provides a glance of dependencies and
an option to manage dependencies of the project. The Dependencies tab has two
sections as shown in the following screenshot:

It shows all the dependencies of the project on the left side. We can also add
dependencies to the project using the Add button of the Dependencies section.
The Manage button allows you to choose the POM that will manage the
corresponding dependencies, and the screenshot for this is shown as follows:

Chapter 7

[125]

As stated very clearly on the top of the window, the managed dependencies version
information will move to the POM that manages it. For example, let's choose to
manage the log4j dependency of distance-webapp by the Distance-main POM.
Select log4j on the list to the and select Distance-main in the list to the right, and
click on OK as shown in the following screenshot:

After the log4j file is managed, the word "managed" appears to its right, as shown
in the following screenshot:

Peeking into m2eclipse

[126]

If we happen to see its effect in the XML file, we can see that the version information
from the distance-webapp POM is moved and is added as a dependency in the
Distance-main POM, as shown in the following code:

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>log4j</groupId>
 <artifactId>log4j</artifactId>
 <version>1.2.17</version>
 </dependency>
 </dependencies>
</dependencyManagement>

Another way to achieve the same functionality is via the Dependency Management
section to the right across the parent-child POM. The Dependency Hierarchy
tab contains two sections: Dependency Hierarchy and Resolved Dependencies
as follows:

Chapter 7

[127]

The Dependency Hierarchy section on the left provides the tree view of the
dependencies. The first level of the tree is direct dependency of the project and
then each subsequent level shows the dependencies of each dependency. The
preceding screenshot is for the distance-webapp module, where we have four direct
dependencies, and these dependencies have no further dependency, so the tree
structure is not visible. However, for large projects and large direct dependencies,
we can easily visualize it. The jar icon indicates that it is referenced from the Maven
repository and the open folder icon indicates its presence in the Eclipse workspace.

The Resolved Dependencies section on the right shows the list of all resolved
dependencies, that is, resulting dependencies after all conflicts and scopes applied.
It gives a general idea of resolution chain propagation and route to Resolved
Dependencies. Click on any resolved dependency and its shows the dependency
chain in the Dependency Hierarchy section.

For more information on dependencies, refer to http://books.sonatype.com/
m2eclipse-book/reference/dependencies-sect-analyze-depend.html.

Working with repositories
To browse through the repository, navigate to Window | Show View and click
on Other... as follows:

http://books.sonatype.com/m2eclipse-book/reference/dependencies-sect-analyze-depend.html
http://books.sonatype.com/m2eclipse-book/reference/dependencies-sect-analyze-depend.html

Peeking into m2eclipse

[128]

Next, the Show View window appears. Search for maven repository, as shown
in the following screenshot, and click on Maven Repositories:

The Maven Repositories view constitutes of the following types:

•	 Local Repositories
•	 Global Repositories
•	 Project Repositories
•	 Custom Repositories

The repositories that are of interest are local, global, and project repositories.

Local Repositories
It shows the artifacts of the local repository, and we can drill down to see its POM
contents. It also consists of Eclipse workspace projects. The following is the screenshot
of the local repository:

Chapter 7

[129]

Global Repositories
It references the artifacts of the central repository. We can browse through
the artifacts of the central repository and view its POM. Right-click on Global
repositories, which provides the ability to re-index, build full index, minimum
index, and update index from the central repository. The following screenshot
illustrates the global repository:

Project Repositories
This repository shows the project-based repositories. Maven discourages the inclusion
of repositories mentioned in the project POM file; however, we tend to disobey it when
we have to reference local custom artifacts not available in the central repository, or
where we may have to package repositories along with distribution. For example,
let's take a scenario where we have to reference the artifacts from a libs folder in the
Eclipse workspace. To achieve this, add the following snippet in the pom.xml file:

<repositories>
 <repository>
 <id>project-based-repository</id>
 <name>Project-specific jars</name>
 <url>file:///${basedir}/libs</url>
 </repository>
<repositories>

Peeking into m2eclipse

[130]

Refresh the Maven Repositories window by clicking on the two cyclic arrows on
the top-right side of the window. We can see the corresponding reference in Project
Repositories as follows:

m2eclipse preferences
To open m2eclipse preferences, navigate to Window | Preferences. In the
Preferences window and search for maven in the filter textbox as follows:

Chapter 7

[131]

Maven
Click on Maven as shown in the screenshot that follows later; it allows us to set the
following options for Maven:

•	 Offline: This option will not check the central repository for updates
•	 Debug Output: This option sets Maven in the debug mode
•	 Download Artifact Sources: This option downloads sources to local

repositories such as JAR
•	 Download Artifact Javadoc: This option downloads the javadoc to the

local repository
•	 Update Maven projects on startup: This option updates the dependencies

of the Maven project
•	 Hide folders of physically nested modules (experimental):

This option is in the experimental mode, which hides the nested
folders of a multimodule project

Peeking into m2eclipse

[132]

Discovery
Discovery is used to discover the m2e connectors available for use. Please refer to the
Checking out a Maven project section in Chapter 3, Creating and Importing Projects, on
how we used this feature.

Archetypes
Archetypes allows us to add, remove, and edit the Maven archetype catalog,
as shown in the following screenshot:

For more information on archetypes, please refer to http://maven.apache.org/
archetype/index.html.

http://maven.apache.org/archetype/index.html
http://maven.apache.org/archetype/index.html

Chapter 7

[133]

User Interface and User Settings
User Interface allows us to set XML file options, as shown in the following screenshot:

The settings.xml file contains elements used to define values that configure
Maven execution in various ways, such as the pom.xml file. The settings file is
at $ {M2_HOME}/settings.xml, where M2_HOME is {USER_HOME}/.m2. In the Local
Repository section of Chapter 3, Creating and Importing Projects, we use this file to set
the alternate local repository other than the default one.

Peeking into m2eclipse

[134]

User Settings allows us to use the custom settings file and re-index the local
repository, as shown in the following screenshot:

For more information on settings, please refer to http://maven.apache.org/
settings.html#Servers.

Installations
Installations shows Maven installations and allows us to choose the Maven to use.
We used it to set the external Maven installation in the Setting Maven to Use section
of Chapter 2, Installing m2Eclipse; please refer to it for more details.

Warnings
Warnings allows us to enable/disable the warning for a duplicate group ID and
version across the parent-child POM. At the time of writing this, though this option
is enabled, m2eclipse still complains about duplicates; hopefully, this feature will
work in days to come with other new releases.

http://maven.apache.org/settings.html#Servers
http://maven.apache.org/settings.html#Servers

Chapter 7

[135]

Templates
Templates shows the list of all the templates used by Maven. It also provides an
option to add new templates, edit, remove, import, and export the templates,
as shown in the following screenshot:

Lifecycle Mappings
Lifecycle Mappings allows us to customize the project build lifecycle for Maven
projects used by m2eclipse. This feature is still experimental at the time of
writing this book; hence, we will limit its discussion.

For more information, please refer to http://wiki.eclipse.org/M2E_plugin_
execution_not_covered.

http://wiki.eclipse.org/M2E_plugin_execution_not_covered
http://wiki.eclipse.org/M2E_plugin_execution_not_covered

Peeking into m2eclipse

[136]

Summary
In this chapter, you learned about other additional features available in m2eclipse, and
got familiar with the repositories, form-based POM editor, and m2eclipse preferences.
So, in this book, you learned Maven concepts; m2eclipse and features; and its ease in
creating, building, and running Maven projects.

Index
A
Add Dependency, m2eclipse feature 116
Add Plugin, m2eclipse feature 116
Another Neat Tool (Ant) 12
Ant build file

reference 12
Ant, versus Maven. See Maven, versus Ant
Apache Maven. See Maven
archetype

used, for creating Maven project 50-52
Archetypes, m2eclipse preferences 132
artifactId coordinate, Maven 35
attributes, dependency scopes

Compile 46
Provided 46
Runtime 47
System 47
Test 47

attributes, project dependencies
artifactId 46
groupId 46
optional 46
scope 46
type 46
version 46

B
build architecture, Maven project 42
build environment 33
build lifecycle

about 59, 60
clean lifecycle 61, 62
default lifecycle 60, 61
site lifecycle 62, 63

Build plugins 48
build settings 33
build.xml file, Ant 32

C
central repository

about 43
URL 43

clean lifecycle 61
clean lifecycle, phases

clean 61
post-clean 61
pre-clean 61

clean phase, clean lifecycle 61
clean plugin 49
code, MyDistance application

about 80, 81
form, adding 81, 82
servlet, adding 83, 84
utility class, adding 85

compile phase, default lifecycle 60
compile phase, package-specific lifecycle 63
compiler plugin 48
components, Maven

Doxia 11
Modello 11
Plexus 10
SCM 11
Wagon 10

contents, POM
build environment 33
build settings 33
POM relationships 33, 36
project information 33

ConversionUtilTest class 90

[138]

coordinates, Maven
artifactId 35
groupId 35
packaging 35
project version 35

core module, multimodule project
creating 102-105

Core plugins 48

D
default configuration, super POM 38
default lifecycle

about 60
URL, for phases 60

default lifecycle, phases
compile 60
deploy 61
install 61
package 60
test 60
test-compile 60
validate 60

dependencies
adding, to Maven project 116

dependencies, MyDistance application
adding 76, 77

dependency mechanism
URL 47

dependency scopes, project 46
deploy phase, default lifecycle 61
deploy phase, package-specific lifecycle 64
Disable Maven Nature, m2eclipse

feature 122
Disable Workspace Resolution, m2eclipse

feature 122
Discovery, m2eclipse preferences 132
Download JavaDoc, m2eclipse feature 118
Download Source, m2eclipse

feature 118, 119
Doxia

about 11, 49
URL 11

E
Eclipse

downloading 20, 21
installing 21
launching 21
URL, for downloading 20

Eclipse Marketplace
about 22
used, for installing m2eclipse 22-24

essential concepts, Maven
plugins 48
project dependencies 46
reporting 49
repository 42
site generation 49

F
features, m2eclipse

about 19, 114, 115
Add Dependency 116
Add Plugin 116
Disable Maven Nature 122
Disable Workspace Resolution 122
Download JavaDoc 118
Download Source 118, 119
Import Project(s) from SCM 122
New Maven Module Project 117
Open Javadoc 120
Open POM 120
Update Project 121, 122

form-based POM editor
overview 122, 123

G
global repositories 129
goals binding

URL 63
Group-Artifact-Version (GAV) 73
groupId coordinate, Maven 35

H
hello-project

running 68

[139]

I
Import Project(s) from SCM, m2eclipse

feature 122
installation, m2eclipse

about 22
Eclipse Marketplace used 22-24
update site used 24-27

installation, Maven
about 15
on Linux 16
on Mac OS 16
on Windows 15, 16
verifying 16

Installations, m2eclipse preferences 134
install phase, default lifecycle 61
install phase, package-specific lifecycle 64
install plugin 48

J
jar plugin 48
javadoc plugin 49
javadocs

generating 95, 96
JUnit test cases

URL 90

L
Lifecycle Mappings, m2eclipse

preferences 135
Linux

Maven, installing on 16
local repository 43, 128
log4j

about 78
URL 80

M
m2eclipse

about 19
features 19, 114, 115
history 20
installing 22
installing, Eclipse Marketplace

used 22-24

installing, update site used 24-27
m2eclipse preferences

about 130
Archetypes 132
Discovery 132
Installations 134
Lifecycle Mappings 135
Maven 131
Templates 135
User Interface 133
User Settings 133
Warnings 134

Mac OS
Maven, installing on 16

Make file 32
Maven

about 8
component architecture 9
coordinates 34, 35
downloading 14
essential concepts 42
goals 8
installation, verifying 16
installing 15
installing, on Linux 16
installing, on Mac OS 16
installing, on Windows 15, 16
origin 8
principles 8, 9
setting, for usage 27-29
URL, for downloading 14
URL, for installing JDK 15
URL, for site plugins 94

Maven console 64
Maven, m2eclipse preferences 131
Maven model

URL 76
Maven project

build architecture 42
building 65-67
checking out 55, 56
creating 49
creating, archetype used 50-52
creating, without archetypes 53, 54
dependencies, adding to 116
importing 57, 58

[140]

packaging 65-67
structure 32

Maven versions
URL 74

Maven, versus Ant
automatic downloads 14
convention over configuration 13
dependency management 14
higher level of reusability 14
less maintenance 14
lifecycle 13
repository management 14

Modello
about 11
URL 11

modules, multimodule project
about 98
distance-core 98
Distance-main 98
distance-webapp 98

multimodule project
about 97
building 109, 110
core module, creating 102-105
modules 98
parent project POM 98
parent project POM, creating 99-101
webapp module, creating 105-109

MyDistance application
code 80
creating 72-75
dependencies, adding 76, 77
project information, modifying 75, 76
requisites 81
resources, adding 78-80
running 85-87

N
New Maven Module Project, m2eclipse

feature 117

O
Open Javadoc, m2eclipse feature 120
Open POM, m2eclipse feature 120

P
package phase, default lifecycle 60
package phase, package-specific lifecycle 64
package-specific lifecycle 63
package-specific lifecycle, phases

compile 63
deploy 64
install 64
package 64
process-resources 63
process-test-resources 63
test 64
test-compile 64

packaging coordinate, Maven 35
packaging lifecycle

URL 63
Packaging types/tools 48
parent project POM, multimodule project

about 98
creating 99-101

pdf plugin 49
phase 59
Plexus

about 10
URL 10

plugins
about 48
URL 49

plugins, with set of goals
executing 48

POM
about 32
simple POM 37
super POM 37, 38

POM file 33
POM relationships 33, 36
pom.xml file 32
post-clean phase, clean lifecycle 61
post-site phase, clean lifecycle 63
pre-clean phase, clean lifecycle 61
pre-site phase, clean lifecycle 63
process-resources phase, package-specific

lifecycle 63
process-test-resources phase,

package-specific lifecycle 63

[141]

project dependencies
about 46
analyzing 124-127
dependency scopes 46
transitive dependencies 47
URL 127

project information 33
Project Object Model. See POM
project repositories 129
project version coordinate, Maven 35

R
reactor

functions 98
remote repository 43
reporting 49
Reporting Plugins 48
repositories, Maven

about 42
central 43
global 129
local 43, 128
project 129
remote 43
search sequence 44, 45
working with 127, 128

requisites, MyDistance application
ConversionUtil 81
DistanceServlet 81
index.jsp 81

resources, MyDistance application
adding 78-80

S
SCM

about 11, 122
types 11
URL 12

search sequence, in repositories 44, 45
simple POM 37
site-deploy phase, clean lifecycle 63
site documentation

generating 91-94
site generation 49
site lifecycle 62

site lifecycle, phases
post-site 63
pre-site 63
site 63
site-deploy 63

site phase, clean lifecycle 63
site plugin 49
snapshot 74
Source Code Management. See SCM
stages 59
structure, Maven project 32
super POM

about 37, 38
default configuration 38

surefire plugin 49

T
Templates, m2eclipse preferences 135
test-compile phase, default lifecycle 60
test-compile phase, package-specific

lifecycle 64
test phase, default lifecycle 60
test phase, package-specific lifecycle 64
transitive dependencies 47

U
unit tests

generating 94, 95
running 91
writing 87-90

Update Project, m2eclipse feature 121, 122
update site

about 22
used, for installing m2eclipse 24-27

User Interface, m2eclipse preferences 133
User Settings, m2eclipse preferences 133

V
validate phase, default lifecycle 60

W
Wagon

about 10
URL 10

[142]

Warnings, m2eclipse preferences 134
war plugin 48
web application

running 111
webapp module, multimodule project

creating 105-109
Windows

Maven, installing on 15, 16

Thank you for buying
Maven for Eclipse

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Instant Apache Maven Starter
ISBN: 978-1-78216-760-0 Paperback: 62 pages

Get started with the fundamentals of developing Java
projects with Apache Maven

1.	 Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results.

2.	 Create Java projects and project templates
with Maven archetypes.

3.	 Manage project dependencies, project
coordinates, and multimodules.

4.	 Download, install, and configure Maven
on different operating systems.

Apache Maven Dependency
Management
ISBN: 978-1-78328-301-9 Paperback: 158 pages

Manage your Java and JEE project dependencies with
ease with this hands-on guide to Maven

1.	 Improve your productivity by efficiently
managing dependencies.

2.	 Learn how to detect and fix dependency
conflicts.

3.	 Learn how to share transitive relations
and to visualize your dependencies.

Please check www.PacktPub.com for information on our titles

Instant Eclipse Application Testing
How-to
ISBN: 978-1-78216-324-4 Paperback: 62 pages

An easy-to-use guide on how to test Java applications
of any scope using Eclipse IDE

1.	 Learn something new in an Instant!
A short, fast, focused guide delivering
immediate results.

2.	 Learn how to install Eclipse and Java for
any platform.

3.	 Get to grips with how to efficiently navigate
in the Eclipse environment using shortcuts.

Android Development Tools
for Eclipse
ISBN: 978-1-78216-110-3 Paperback: 144 pages

Set up, build, and publish Android projects quickly
using Android Development Tools for Eclipse

1.	 Build Android applications using ADT
for Eclipse.

2.	 Generate Android application skeleton code
using wizards.

3.	 Advertise and monetize your applications.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Apache Maven – Introduction and Installation
	Introduction to Maven
	Maven's origin
	Maven's principles
	Maven's component architecture
	The Plexus container
	Wagon
	Maven Doxia
	Modello
	Maven SCM

	Maven versus Ant
	Downloading Maven
	Installing Maven
	Installing Maven on Windows
	Installing Maven on Linux and Mac OS
	Verifying the installation of Maven

	Summary

	Chapter 2: Installing m2eclipse
	Introduction to m2eclipse
	Downloading Eclipse
	Installing and launching Eclipse
	Installing m2eclipse
	Using Eclipse Marketplace
	Using Update Site

	Setting Maven for use
	Summary

	Chapter 3: Creating and Importing Projects
	The Maven project structure
	POM (Project Object Model)
	Maven coordinates
	POM relationships
	A simple POM
	A super POM

	The Maven project build architecture
	Other essential concepts
	Repository
	The Local repository
	The central repository
	The remote repository
	Search sequence in repositories

	Project dependencies
	Dependency scopes
	Transitive dependencies

	Plugins and Goals
	Site generation and reporting

	Creating a Maven project
	Using an archetype
	Using no archetypes
	Checking out a Maven project

	Importing a Maven project
	Summary

	Chapter 4: Building and Running
a Project
	Build lifecycle
	The default lifecycle
	The clean lifecycle
	The site lifecycle

	The package-specific lifecycle
	The Maven console
	Building and packaging projects
	Running hello-project
	Summary

	Chapter 5: Spicing Up a Maven Project
	Creating the MyDistance project
	Changing the project information
	Adding dependencies
	Adding resources
	The application code
	Adding a form to get an input
	Adding a servlet
	Adding a utility class

	Running an application
	Writing unit tests
	Running unit tests
	Generating site documentation
	Generating unit tests – HTML reports
	Generating javadocs
	Summary

	Chapter 6: Creating a Multimodule Project
	Introduction
	Creating a parent project – POM
	Creating a core module
	Creating a webapp module
	Building a multimodule project
	Running the application
	Summary

	Chapter 7: Peeking into m2eclipse
	Other features in m2eclipse
	Add Dependency
	Add Plugin
	New Maven Module Project
	Download JavaDoc
	Download Source
	Open Javadoc
	Open POM
	Update Project
	Disable Workspace Resolution
	Disable Maven Nature
	Import Project(s) from SCM

	A form-based POM editor
	Overview

	Analyzing project dependencies
	Working with repositories
	Local Repositories
	Global Repositories
	Project Repositories

	m2eclipse preferences
	Maven
	Discovery
	Archetypes
	User Interface and User Settings
	Installations
	Warnings
	Templates
	Lifecycle Mappings

	Summary

	Index

