

Ken Kousen

Modern Java Recipes
Simple Solutions to Difficult Problems

in Java 8 and 9

978-1-491-97317-2

[LSI]

Modern Java Recipes
by Ken Kousen

Copyright © 2017 Ken Kousen. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/insti‐
tutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Brian Foster and Jeff Bleiel
Production Editor: Justin Billing
Copyeditor: Kim Cofer
Proofreader: Jasmine Kwityn

Indexer: Ellen Troutman-Zaig
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

August 2017: First Edition

Revision History for the First Edition
2017-08-04: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491973172 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Modern Java Recipes, the cover image,
and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781491973172

Hey Xander, this one’s yours. Surprise!

Table of Contents

Foreword. ix

Preface. xi

1. The Basics. 1
1.1 Lambda Expressions 2
1.2 Method References 6
1.3 Constructor References 10
1.4 Functional Interfaces 15
1.5 Default Methods in Interfaces 18
1.6 Static Methods in Interfaces 21

2. The java.util.function Package. 25
2.1 Consumers 26
2.2 Suppliers 28
2.3 Predicates 31
2.4 Functions 35

3. Streams. 39
3.1 Creating Streams 39
3.2 Boxed Streams 43
3.3 Reduction Operations Using Reduce 46
3.4 Check Sorting Using Reduce 55
3.5 Debugging Streams with peek 57
3.6 Converting Strings to Streams and Back 60
3.7 Counting Elements 63
3.8 Summary Statistics 65
3.9 Finding the First Element in a Stream 68

v

3.10 Using anyMatch, allMatch, and noneMatch 73
3.11 Stream flatMap Versus map 75
3.12 Concatenating Streams 79
3.13 Lazy Streams 83

4. Comparators and Collectors. 87
4.1 Sorting Using a Comparator 87
4.2 Converting a Stream into a Collection 91
4.3 Adding a Linear Collection to a Map 94
4.4 Sorting Maps 97
4.5 Partitioning and Grouping 100
4.6 Downstream Collectors 102
4.7 Finding Max and Min Values 104
4.8 Creating Immutable Collections 107
4.9 Implementing the Collector Interface 109

5. Issues with Streams, Lambdas, and Method References. 115
5.1 The java.util.Objects Class 115
5.2 Lambdas and Effectively Final 117
5.3 Streams of Random Numbers 120
5.4 Default Methods in Map 122
5.5 Default Method Conflict 127
5.6 Iterating Over Collections and Maps 130
5.7 Logging with a Supplier 132
5.8 Closure Composition 134
5.9 Using an Extracted Method for Exception Handling 138
5.10 Checked Exceptions and Lambdas 141
5.11 Using a Generic Exception Wrapper 144

6. The Optional Type. 147
6.1 Creating an Optional 148
6.2 Retrieving Values from an Optional 150
6.3 Optional in Getters and Setters 154
6.4 Optional flatMap Versus map 156
6.5 Mapping Optionals 160

7. File I/O. 165
7.1 Process Files 166
7.2 Retrieving Files as a Stream 169
7.3 Walking the Filesystem 170
7.4 Searching the Filesystem 172

vi | Table of Contents

8. The java.time Package. 175
8.1 Using the Basic Date-Time Classes 176
8.2 Creating Dates and Times from Existing Instances 180
8.3 Adjusters and Queries 185
8.4 Convert from java.util.Date to java.time.LocalDate 190
8.5 Parsing and Formatting 194
8.6 Finding Time Zones with Unusual Offsets 197
8.7 Finding Region Names from Offsets 200
8.8 Time Between Events 202

9. Parallelism and Concurrency. 205
9.1 Converting from Sequential to Parallel Streams 206
9.2 When Parallel Helps 209
9.3 Changing the Pool Size 215
9.4 The Future Interface 217
9.5 Completing a CompletableFuture 220
9.6 Coordinating CompletableFutures, Part 1 225
9.7 Coordinating CompletableFutures, Part 2 231

10. Java 9 Additions. 239
10.1 Modules in Jigsaw 240
10.2 Private Methods in Interfaces 245
10.3 Creating Immutable Collections 247
10.4 Stream: ofNullable, iterate, takeWhile, and dropWhile 252
10.5 Downstream Collectors: filtering and flatMapping 255
10.6 Optional: stream, or, ifPresentOrElse 259
10.7 Date Ranges 262

A. Generics and Java 8. 267

Index. 287

Table of Contents | vii

Foreword

There’s no doubt that the new features in Java 8, particularly lambda expressions and
the Streams API, are a huge step forward for the Java language. I’ve been using Java 8
and telling developers about the new features at conferences, in workshops, and via
blog posts for a several years now. What’s clear to me is that although lambdas and
streams bring a more functional style of programming to Java (and also allow us to
seamlessly make use of parallel processing power), it’s not these attributes that make
them so appealing to developers once they start using them—it’s how much easier it is
to solve certain types of problems using these idioms, and how much more produc‐
tive they make us.

My passion as a developer, presenter, and writer is not just to make other developers
aware of the evolution of the Java language, but to show how this evolution helps
make our lives as developers easier—how we have options for simpler solutions to
problems, or even solve different types of problems. What I love about Ken’s work is
that he focuses on exactly this—helping you learn something new without having to
wade through details you already know or don’t need, focusing on the parts of a tech‐
nology that are valuable to real world developers.

I first came across Ken’s work when he presented “Making Java Groovy” at JavaOne.
At the time, the team I was working on was struggling with writing readable and use‐
ful tests, and one of the solutions we were contemplating was Groovy. As a long-time
Java programmer, I was reluctant to learn a whole new language just to write tests,
especially when I thought I knew how to write tests. But seeing Ken talk about
Groovy for Java programmers taught me a lot of what I needed to know without
repeating things I already understood. It made me realise that with the right learning
material I didn’t need to wade through all the details of a language just to learn the
bits I cared about. I bought his book immediately.

This new book on Modern Java Recipes follows a similar theme—as experienced
developers, we don’t need to learn everything about all the new features in Java 8 and
9 as if we’re new to the language, nor do we have the time to do that. What we need is

ix

a guide that quickly makes the relevant features available to us, that gives us real
examples that apply to our jobs. This book is that guide. By presenting recipes based
on the sorts of problems we encounter daily, and showing how to solve those using
new features in Java 8 and 9, we become familiar with the updates to the language in a
way that’s much more natural for us. We can evolve our skills.

Even those who’ve been using Java 8 and 9 can learn something. The section on
Reduction Operators really helped me understand this functional-style programming
without having to reprogram my brain. The Java 9 features that are covered are
exactly the ones that are useful to us as developers, and they are not (yet) well known.
This is an excellent way to get up to speed on the newest version of Java in a quick
and effective fashion. There’s something in this book for every Java developer who
wants to level up their knowledge.

—Trisha Gee
Java Champion &

Java Developer Advocate for JetBrains
July 2017

x | Foreword

1 Yes, it’s actually been over three years since the first release of Java SE 8. I can’t believe it either.

Preface

Modern Java
Sometimes it’s hard to believe that a language with literally 20 years of backward
compatibility could change so drastically. Prior to the release of Java SE 8 in March of
2014,1 for all of its success as the definitive server-side programming language, Java
had acquired the reputation of being “the COBOL of the 21st century.” It was stable,
pervasive, and solidly focused on performance. Changes came slowly when they came
at all, and companies felt little urgency to upgrade when new versions became avail‐
able.

That all changed when Java SE 8 was released. Java SE 8 included “Project Lambda,”
the major innovation that introduced functional programming concepts into what
was arguably the world’s leading object-oriented language. Lambda expressions,
method references, and streams fundamentally changed the idioms of the language,
and developers have been trying to catch up ever since.

The attitude of this book is not to judge whether the changes are good or bad or
could have been done differently. The goal here is to say, “this is what we have, and
this is how you use it to get your job done.” That’s why this book is designed as a rec‐
ipes book. It’s all about what you need to do, and how the new features in Java help
you do it.

That said, there are a lot of advantages to the new programming model, once you get
used to them. Functional code tends to be simpler and easier to both write and
understand. The functional approach favors immutability, which makes writing con‐
current code cleaner and more likely to be successful. Back when Java was created,
you could still rely on Moore’s law to double your processor speed roughly every 18

xi

months. These days performance improvements come from the fact that even most
phones have multiple processors.

Since Java has always been sensitive to backward compatibility, many companies and
developers have moved to Java SE 8 without adopting the new idioms. The platform
is more powerful even so, and is worth using, not to mention the fact that Oracle for‐
mally declared Java 7 end-of-life in April 2015.

It has taken a couple of years, but most Java developers are now working with the Java
8 JDK, and it’s time to dig in and understand what that means and what consequences
it has for your future development. This book is designed to make that process easier.

Who Should Read This Book
The recipes in this book assume that the typical reader already is comfortable with
Java versions prior to Java SE 8. You don’t need to be an expert, and some older con‐
cepts are reviewed, but the book is not intended to be a beginner’s guide to Java or
object-oriented programming. If you have used Java on a project before and you are
familiar with the standard library, you’ll be fine.

This book covers almost all of Java SE 8, and includes one chapter focused on the new
changes coming in Java 9. If you need to understand how the new functional idioms
added to the language will change the way you write code, this book is a use-case-
driven way of accomplishing that goal.

Java is pervasive on the server side, with a rich support system of open source libra‐
ries and tools. The Spring Framework and Hibernate are two of the most popular
open source frameworks, and both either require Java 8 as a minimum or will very
soon. If you plan to operate in this ecosystem, this book is for you.

How This Book Is Organized
This book is organized into recipes, but it’s difficult to discuss recipes containing
lambda expressions, method references, and streams individually without referring to
the others. In fact, the first six chapters discuss related concepts, though you don’t
have to read them in any particular order.

The chapters are organized as follows:

• Chapter 1, The Basics, covers the basics of lambda expressions and method refer‐
ences, and follows with the new features of interfaces: default methods and static
methods. It also defines the term “functional interface” and explains how it is key
to understanding lambda expressions.

• Chapter 2, The java.util.function Package, presents the new java.util.function
package, which was added to the language in Java 8. The interfaces in that pack‐

xii | Preface

age fall into four special categories (consumers, suppliers, predicates, and func‐
tions) that are used throughout the rest of the standard library.

• Chapter 3, Streams, adds in the concept of streams, and how they represent an
abstraction that allows you to transform and filter data rather than process it iter‐
atively. The concepts of “map,” “filter,” and “reduce” relate to streams, as shown in
the recipes in this chapter. They ultimately lead to the ideas of parallelism and
concurrency covered in Chapter 9.

• Chapter 4, Comparators and Collectors, involves the sorting of streaming data,
and converting it back into collections. Partitioning and grouping is also part of
this chapter, which turns what are normally considered database operations into
easy library calls.

• Chapter 5, Issues with Streams, Lambdas, and Method References, is a miscellane‐
ous chapter; the idea being that now that you know how to use lambdas, method
references, and streams, you can look at ways they can be combined to solve
interesting problems. The concepts of laziness, deferred execution, and closure
composition are also covered, as is the annoying topic of exception handling.

• Chapter 6, The Optional Type, discusses one of the more controversial additions
to the language—the Optional type. Recipes in this chapter describe how the
new type is intended to be used and how you can both create instances and
extract values from them. This chapter also revisits the functional idea of map
and flat-map operations on Optionals, and how they differ from the same opera‐
tions on streams.

• Chapter 7, File I/O, switches to the practical topic of input/output streams (as
opposed to functional streams), and the additions made to the standard library
to incorporate the new functional concepts when dealing with files and directo‐
ries.

• Chapter 8, The java.time Package, shows the basics of the new Date-Time API,
and how (at long last) they replace the legacy Date and Calendar classes. The
new API is based on the Joda-Time library, which is backed by many developer-
years of experience and use and has been rewritten to form the java.time pack‐
age. Frankly, if this had been the only addition to Java 8, it would have been
worth the upgrade.

• Chapter 9, Parallelism and Concurrency, addresses one of the implicit promises of
the stream model: that you can change a sequential stream to a parallel one with
a single method call, and thereby take advantage of all the processors available on
your machine. Concurrency is a big topic, but this chapter presents the additions
to the Java library that make it easy to experiment with and assess when the costs
and benefits are worth the effort.

• Chapter 10, Java 9 Additions, covers many of the changes coming in Java 9, which
is currently scheduled to be released September 21, 2017. The details of Jigsaw

Preface | xiii

2 Yes, I too wish that the Java 9 chapter had been Chapter 9, but it didn’t seem right to reorder the chapters just
for that accidental symmetry. This footnote will have to suffice.

can fill an entire book by themselves, but the basics are clear and are described in
this chapter. Other recipes cover private methods in interfaces, the new methods
added to streams, collectors, and Optional, and how to create a stream of dates.2

• Appendix A, Generics and Java 8, is about the generics capabilities in Java. While
generics as a technology was added back in 1.5, most developers only learned the
minimum they needed to know to make them work. One glance at the Javadocs
for Java 8 and 9 shows that those days are over. The goal of the appendix is to
show you how to read and interpret the API so you understand the much more
complex method signatures involved.

The chapters, and indeed the recipes themselves, do not have to be read in any partic‐
ular order. They do complement each other and each recipe ends with references to
others, but you can start reading anywhere. The chapter groupings are provided as a
way to put similar recipes together, but it is expected that you will jump from one to
another to solve whatever problem you may have at the moment.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

xiv | Preface

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
The source code for the book is located in three GitHub repositories: one for the Java
8 recipes (everything but Chapter 10) at https://github.com/kousen/java_8_recipes, one
for the Java 9 recipes at https://github.com/kousen/java_9_recipes, and a special one
for the larger CompletableFuture example in Recipe 9.7 at https://github.com/kousen/
cfboxscores. All are configured as Gradle projects with tests and a build file.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Modern Java Recipes by Ken Kousen
(O’Reilly). Copyright 2017 Ken Kousen, 978-0-491-97317-2.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Safari
Safari (formerly Safari Books Online) is a membership-based
training and reference platform for enterprise, government,
educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac‐
tive tutorials, and curated playlists from over 250 publishers, including O’Reilly

Preface | xv

https://github.com/kousen/java_8_recipes
https://github.com/kousen/java_9_recipes
https://github.com/kousen/cfboxscores
https://github.com/kousen/cfboxscores
mailto:permissions@oreilly.com
http://oreilly.com/safari

Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes‐
sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
This book is the unexpected result of a conversation I had with Jay Zimmerman back
in late July 2015. I was (and still am) a member of the No Fluff, Just Stuff conference
tour, and that year several Java 8 talks were being given by Venkat Subramaniam. Jay
told me that Venkat had decided to scale back his activity in the coming year and Jay
was wondering whether I would be willing to do similar talks in the new season start‐
ing in early 2016. I had been coding in Java since the mid-’90s (I started with Java
1.0.6) and had been planning to learn the new APIs anyway, so I agreed.

xvi | Preface

http://oreilly.com/safari
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://nofluffjuststuff.com

3 Gradle Recipes for Android, also from O’Reilly Media, all about the Gradle build tool as it is applied to
Android projects.

I have now been giving presentations on the new functional features of Java for a cou‐
ple of years. By the Fall of 2016 I had completed my last book,3 and since the idea was
to write another recipes book for the same publisher I foolishly thought the project
would be easy.

Noted science fiction author Neil Gaiman famously once said that after finishing
American Gods he thought he knew how to write a novel. His friend corrected him,
saying he now knew how to write this novel. I now understand what he meant. The
original proposal for this book anticipated about 25 to 30 recipes spanning about 150
pages. The final result you hold in your hand has more than 70 recipes filling nearly
300 pages, but the larger scope and greater detail has produced a much more valuable
book than I intended.

Of course, that’s because I had lots of help. The aforementioned Venkat Subramaniam
has been extremely helpful, both through his talks, his other books, and private dis‐
cussions. He also was kind enough to be a technical reviewer on this book, so any
remaining errors are all his fault. (No, they’re mine, but please don’t tell him I admit‐
ted that.)

I also am very grateful to have had the frequent assistance of Tim Yates, who is one of
the best coders I’ve ever met. I knew him from his work in the Groovy community,
but his versatility goes well beyond that, as his Stack Overflow rating will show. Rod
Hilton, who I met while giving Java 8 presentations on the NFJS tour, was also kind
enough to offer a review. Both of their recommendations have been invaluable.

I have been fortunate enough to work with the excellent editors and staff at O’Reilly
Media over the course of two books, over a dozen video courses, and many online
training classes delivered on their Safari online platform. Brian Foster has been a con‐
stant source of support, not to mention his almost magical ability to cut through
bureaucracy. I met him while writing my previous book, and though he wasn’t the
editor of this one, his help and friendship have been very valuable to me throughout
the process.

My editor, Jeff Bleiel, was very understanding as the book doubled in length, and pro‐
vided the structure and organization needed to keep making progress. I’m very glad
we got to work together and hope we will continue to do so in the future.

I need to acknowledge many of my fellow speakers on the NFJS tour, including Nate
Schutta, Michael Carducci, Matt Stine, Brian Sletten, Mark Richards, Pratik Patel,
Neal Ford, Craig Walls, Raju Gandhi, Kirk Knoernschild, Dan “the Man” Hinojosa,
and Janelle Klein for their constant perspective and encouragement. Both writing
books and teaching training classes (my actual day job) are solitary pursuits. It’s great

Preface | xvii

having a community of friends and colleagues that I can rely on for perspective,
advice, and various forms of entertainment.

Finally, I need to express all my love to my wife Ginger and my son Xander. Without
the support and kindness of my family I would not be the person I am today, a fact
that grows more obvious to me with each passing year. I can never express what you
both mean to me.

xviii | Preface

1 Coined by Gordon Moore, one of the co-founders of Fairchild Semiconductor and Intel, based on the obser‐
vation that the number of transistors that could be packed into an integrated circuit doubled roughly every 18
months. See Wikipedia’s Moore’s law entry for details.

CHAPTER 1

The Basics

The biggest change in Java 8 is the addition of concepts from functional program‐
ming to the language. Specifically, the language added lambda expressions, method
references, and streams.

If you haven’t used the new functional features yet, you’ll probably be surprised by
how different your code will look from previous Java versions. The changes in Java 8
represent the biggest changes to the language ever. In many ways, it feels like you’re
learning a completely new language.

The question then becomes: Why do this? Why make such drastic changes to a lan‐
guage that’s already twenty years old and plans to maintain backward compatibility?
Why make such dramatic revisions to a language that has been, by all accounts,
extremely successful? Why switch to a functional paradigm after all these years of
being one of the most successful object-oriented languages ever?

The answer is that the software development world has changed, so languages that
want to be successful in the future need to adapt as well. Back in the mid-’90s, when
Java was shiny and new, Moore’s law1 was still fully in force. All you had to do was
wait a couple of years and your computer would double in speed.

Today’s hardware no longer relies on increasing chip density for speed. Instead, even
most phones have multiple cores, which means software needs to be written expect‐
ing to be run in a multiprocessor environment. Functional programming, with its
emphasis on “pure” functions (that return the same result given the same inputs, with
no side effects) and immutability simplifies programming in parallel environments. If

1

https://en.wikipedia.org/wiki/Moore%27s_law

you don’t have any shared, mutable state, and your program can be decomposed into
collections of simple functions, it is easier to understand and predict its behavior.

This, however, is not a book about Haskell, or Erlang, or Frege, or any of the other
functional programming languages. This book is about Java, and the changes made to
the language to add functional concepts to what is still fundamentally an object-
oriented language.

Java now supports lambda expressions, which are essentially methods treated as
though they were first-class objects. The language also has method references, which
allow you to use an existing method wherever a lambda expression is expected. In
order to take advantage of lambda expressions and method references, the language
also added a stream model, which produces elements and passes them through a
pipeline of transformations and filters without modifying the original source.

The recipes in this chapter describe the basic syntax for lambda expressions, method
references, and functional interfaces, as well the new support for static and default
methods in interfaces. Streams are discussed in detail in Chapter 3.

1.1 Lambda Expressions
Problem
You want to use lambda expressions in your code.

Solution
Use one of the varieties of lambda expression syntax and assign the result to a refer‐
ence of functional interface type.

Discussion
A functional interface is an interface with a single abstract method (SAM). A class
implements any interface by providing implementations for all the methods in it.
This can be done with a top-level class, an inner class, or even an anonymous inner
class.

For example, consider the Runnable interface, which has been in Java since version
1.0. It contains a single abstract method called run, which takes no arguments and
returns void. The Thread class constructor takes a Runnable as an argument, so an
anonymous inner class implementation is shown in Example 1-1.

Example 1-1. Anonymous inner class implementation of Runnable

public class RunnableDemo {
 public static void main(String[] args) {

2 | Chapter 1: The Basics

 new Thread(new Runnable() {
 @Override
 public void run() {
 System.out.println(
 "inside runnable using an anonymous inner class");
 }
 }).start();
 }
}

Anonymous inner class

The anonymous inner class syntax consists of the word new followed by the Runnable
interface name and parentheses, implying that you’re defining a class without an
explicit name that implements that interface. The code in the braces ({}) then over‐
rides the run method, which simply prints a string to the console.

The code in Example 1-2 shows the same example using a lambda expression.

Example 1-2. Using a lambda expression in a Thread constructor

new Thread(() -> System.out.println(
 "inside Thread constructor using lambda")).start();

The syntax uses an arrow to separate the arguments (since there are zero arguments
here, only a pair of empty parentheses is used) from the body. In this case, the body
consists of a single line, so no braces are required. This is known as an expression
lambda. Whatever value the expression evaluates to is returned automatically. In this
case, since println returns void, the return from the expression is also void, which
matches the return type of the run method.

A lambda expression must match the argument types and return type in the signature
of the single abstract method in the interface. This is called being compatible with the
method signature. The lambda expression is thus the implementation of the interface
method, and can also be assigned to a reference of that interface type.

As a demonstration, Example 1-3 shows the lambda assigned to a variable.

Example 1-3. Assigning a lambda expression to a variable

Runnable r = () -> System.out.println(
 "lambda expression implementing the run method");
new Thread(r).start();

1.1 Lambda Expressions | 3

There is no class in the Java library called Lambda. Lambda expres‐
sions can only be assigned to functional interface references.

Assigning a lambda to the functional interface is the same as saying the lambda is the
implementation of the single abstract method inside it. You can think of the lambda
as the body of an anonymous inner class that implements the interface. That is why
the lambda must be compatible with the abstract method; its argument types and
return type must match the signature of that method. Notably, however, the name of
the method being implemented is not important. It does not appear anywhere as part
of the lambda expression syntax.

This example was especially simple because the run method takes no arguments and
returns void. Consider instead the functional interface java.io.Filename Filter,
which again has been part of the Java standard library since version 1.0. Instances of
Filename Filter are used as arguments to the File.list method to restrict the
returned files to only those that satisfy the method.

From the Javadocs, the FilenameFilter class contains the single abstract method
accept, with the following signature:

boolean accept(File dir, String name)

The File argument is the directory in which the file is found, and the String name is
the name of the file.

The code in Example 1-4 implements FilenameFilter using an anonymous inner
class to return only Java source files.

Example 1-4. An anonymous inner class implementation of FilenameFilter

File directory = new File("./src/main/java");

String[] names = directory.list(new FilenameFilter() {
 @Override
 public boolean accept(File dir, String name) {
 return name.endsWith(".java");
 }
});
System.out.println(Arrays.asList(names));

Anonymous inner class

In this case, the accept method returns true if the filename ends with .java and false
otherwise.

4 | Chapter 1: The Basics

The lambda expression version is shown in Example 1-5.

Example 1-5. Lambda expression implementing FilenameFilter

File directory = new File("./src/main/java");

String[] names = directory.list((dir, name) -> name.endsWith(".java"));
 System.out.println(Arrays.asList(names));
}

Lambda expression

The resulting code is much simpler. This time the arguments are contained within
parentheses, but do not have types declared. At compile time, the compiler knows
that the list method takes an argument of type FilenameFilter, and therefore
knows the signature of its single abstract method (accept). It therefore knows that
the arguments to accept are a File and a String, so that the compatible lambda
expression arguments must match those types. The return type on accept is a
boolean, so the expression to the right of the arrow must also return a boolean.

If you wish to specify the data types in the code, you are free to do so, as in
Example 1-6.

Example 1-6. Lambda expression with explicit data types

File directory = new File("./src/main/java");

String[] names = directory.list((File dir, String name) ->
 name.endsWith(".java"));

Explicit data types

Finally, if the implementation of the lambda requires more than one line, you need to
use braces and an explicit return statement, as shown in Example 1-7.

Example 1-7. A block lambda

File directory = new File("./src/main/java");

String[] names = directory.list((File dir, String name) -> {
 return name.endsWith(".java");
});
System.out.println(Arrays.asList(names));

Block syntax

1.1 Lambda Expressions | 5

This is known as a block lambda. In this case the body still consists of a single line,
but the braces now allow for multiple statements. The return keyword is now
required.

Lambda expressions never exist alone. There is always a context for the expression,
which indicates the functional interface to which the expression is assigned. A
lambda can be an argument to a method, a return type from a method, or assigned to
a reference. In each case, the type of the assignment must be a functional interface.

1.2 Method References
Problem
You want to use a method reference to access an existing method and treat it like a
lambda expression.

Solution
Use the double-colon notation to separate an instance reference or class name from the
method.(((”

(double colon) notation in method references”)))

Discussion
If a lambda expression is essentially treating a method as though it was a object, then
a method reference treats an existing method as though it was a lambda.

For example, the forEach method in Iterable takes a Consumer as an argument.
Example 1-8 shows that the Consumer can be implemented as either a lambda expres‐
sion or as a method reference.

Example 1-8. Using a method reference to access println

Stream.of(3, 1, 4, 1, 5, 9)
 .forEach(x -> System.out.println(x));

Stream.of(3, 1, 4, 1, 5, 9)
 .forEach(System.out::println);

Consumer<Integer> printer = System.out::println;
Stream.of(3, 1, 4, 1, 5, 9)
 .forEach(printer);

Using a lambda expression

Using a method reference

6 | Chapter 1: The Basics

2 It is difficult to discuss lambdas or method references without discussing streams, which have their own chap‐
ter later. Suffice it to say that a stream produces a series of elements sequentially, does not store them any‐
where, and does not modify the original source.

Assigning the method reference to a functional interface

The double-colon notation provides the reference to the println method on the
System.out instance, which is a reference of type PrintStream. No parentheses are
placed at the end of the method reference. In the example shown, each element of the
stream is printed to standard output.2

If you write a lambda expression that consists of one line that
invokes a method, consider using the equivalent method reference
instead.

The method reference provides a couple of (minor) advantages over the lambda syn‐
tax. First, it tends to be shorter, and second, it often includes the name of the class
containing the method. Both make the code easier to read.

Method references can be used with static methods as well, as shown in Example 1-9.

Example 1-9. Using a method reference to a static method

Stream.generate(Math::random)
 .limit(10)
 .forEach(System.out::println);

Static method

Instance method

The generate method on Stream takes a Supplier as an argument, which is a func‐
tional interface whose single abstract method takes no arguments and produces a sin‐
gle result. The random method in the Math class is compatible with that signature,
because it also takes no arguments and produces a single, uniformly distributed,
pseudorandom double between 0 and 1. The method reference Math::random refers
to that method as the implementation of the Supplier interface.

Since Stream.generate produces an infinite stream, the limit method is used to
ensure only 10 values are produced, which are then printed to standard output using
the System.out::println method reference as an implementation of Consumer.

1.2 Method References | 7

Syntax
There are three forms of the method reference syntax, and one is a bit misleading:

object::instanceMethod

Refer to an instance method using a reference to the supplied object, as in
System.out::println

Class::staticMethod

Refer to static method, as in Math::max

Class::instanceMethod

Invoke the instance method on a reference to an object supplied by the context,
as in String::length

That last example is the confusing one, because as Java developers we’re accustomed
to seeing only static methods invoked via a class name. Remember that lambda
expressions and method references never exist in a vacuum—there’s always a context.
In the case of an object reference, the context will supply the argument(s) to the
method. In the printing case, the equivalent lambda expression is (as shown in con‐
text in Example 1-8):

// equivalent to System.out::println
x -> System.out.println(x)

The context provides the value of x, which is used as the method argument.

The situation is similar for the static max method:

// equivalent to Math::max
(x,y) -> Math.max(x,y)

Now the context needs to supply two arguments, and the lambda returns the greater
one.

The “instance method through the class name” syntax is interpreted differently. The
equivalent lambda is:

// equivalent to String::length
x -> x.length()

This time, when the context provides x, it is used as the target of the method, rather
than as an argument.

If you refer to a method that takes multiple arguments via the class
name, the first element supplied by the context becomes the target
and the remaining elements are arguments to the method.

8 | Chapter 1: The Basics

Example 1-10 shows the sample code.

Example 1-10. Invoking a multiple-argument instance method from a class reference

List<String> strings =
 Arrays.asList("this", "is", "a", "list", "of", "strings");
List<String> sorted = strings.stream()
 .sorted((s1, s2) -> s1.compareTo(s2))
 .collect(Collectors.toList());

List<String> sorted = strings.stream()
 .sorted(String::compareTo)
 .collect(Collectors.toList());

Method reference and equivalent lambda

The sorted method on Stream takes a Comparator<T> as an argument, whose single
abstract method is int compare(String other). The sorted method supplies each
pair of strings to the comparator and sorts them based on the sign of the returned
integer. In this case, the context is a pair of strings. The method reference syntax,
using the class name String, invokes the compareTo method on the first element (s1
in the lambda expression) and uses the second element s2 as the argument to the
method.

In stream processing, you frequently access an instance method using the class name
in a method reference if you are processing a series of inputs. The code in
Example 1-11 shows the invocation of the length method on each individual String
in the stream.

Example 1-11. Invoking the length method on String using a method reference

Stream.of("this", "is", "a", "stream", "of", "strings")
 .map(String::length)
 .forEach(System.out::println);

Instance method via class name

Instance method via object reference

This example transforms each string into an integer by invoking the length method,
then prints each result.

A method reference is essentially an abbreviated syntax for a lambda. Lambda expres‐
sions are more general, in that each method reference has an equivalent lambda
expression but not vice versa. The equivalent lambdas for the method references
from Example 1-11 are shown in Example 1-12.

1.2 Method References | 9

Example 1-12. Lambda expression equivalents for method references

Stream.of("this", "is", "a", "stream", "of", "strings")
 .map(s -> s.length())
 .forEach(x -> System.out.println(x));

As with any lambda expression, the context matters. You can also use this or super
as the left side of a method reference if there is any ambiguity.

See Also
You can also invoke constructors using the method reference syntax. Constructor ref‐
erences are shown in Recipe 1.3. The package of functional interfaces, including the
Supplier interface discussed in this recipe, is covered in Chapter 2.

1.3 Constructor References
Problem
You want to instantiate an object using a method reference as part of a stream pipe‐
line.

Solution
Use the new keyword as part of a method reference.

Discussion
When people talk about the new syntax added to Java 8, they mention lambda expres‐
sions, method references, and streams. For example, say you had a list of people and
you wanted to convert it to a list of names. One way to do so would be the snippet
shown in Example 1-13.

Example 1-13. Converting a list of people to a list of names

List<String> names = people.stream()
 .map(person -> person.getName())
 .collect(Collectors.toList());

// or, alternatively,

List<String> names = people.stream()
 .map(Person::getName)
 .collect(Collectors.toList());

Lambda expression

10 | Chapter 1: The Basics

Method reference

What if you want to go the other way? What if you have a list of strings and you want
to create a list of Person references from it? In that case you can use a method refer‐
ence, but this time using the keyword new. That syntax is called a constructor refer‐
ence.

To show how it is used, start with a Person class, which is just about the simplest
Plain Old Java Object (POJO) imaginable. All it does is wrap a simple string attribute
called name in Example 1-14.

Example 1-14. A Person class

public class Person {
 private String name;

 public Person() {}

 public Person(String name) {
 this.name = name;
 }

 // getters and setters ...

 // equals, hashCode, and toString methods ...
}

Given a collection of strings, you can map each one into a Person using either a
lambda expression or the constructor reference in Example 1-15.

Example 1-15. Transforming strings into Person instances

List<String> names =
 Arrays.asList("Grace Hopper", "Barbara Liskov", "Ada Lovelace",
 "Karen Spärck Jones");

List<Person> people = names.stream()
 .map(name -> new Person(name))
 .collect(Collectors.toList());

// or, alternatively,

List<Person> people = names.stream()
 .map(Person::new)
 .collect(Collectors.toList());

Using a lambda expression to invoke the constructor

1.3 Constructor References | 11

Using a constructor reference instantiating Person

The syntax Person::new refers to the constructor in the Person class. As with all
lambda expressions, the context determines which constructor is executed. Because
the context supplies a string, the one-arg String constructor is used.

Copy constructor

A copy constructor takes a Person argument and returns a new Person with the same
attributes, as shown in Example 1-16.

Example 1-16. A copy constructor for Person

public Person(Person p) {
 this.name = p.name;
}

This is useful if you want to isolate streaming code from the original instances. For
example, if you already have a list of people, convert the list into a stream, and then
back into a list, the references are the same (see Example 1-17).

Example 1-17. Converting a list to a stream and back

Person before = new Person("Grace Hopper");

List<Person> people = Stream.of(before)
 .collect(Collectors.toList());
Person after = people.get(0);

assertTrue(before == after);

before.setName("Grace Murray Hopper");
assertEquals("Grace Murray Hopper", after.getName());

Same object

Change name using before reference

Name has changed in the after reference

Using a copy constructor, you can break that connection, as in Example 1-18.

Example 1-18. Using the copy constructor

people = Stream.of(before)
 .map(Person::new)
 .collect(Collectors.toList());

12 | Chapter 1: The Basics

3 I mean no disrespect by treating Admiral Hopper as an object. I have no doubt she could still kick my butt,
and she passed away in 1992.

after = people.get(0);
assertFalse(before == after);
assertEquals(before, after);

before.setName("Rear Admiral Dr. Grace Murray Hopper");
assertFalse(before.equals(after));

Use copy constructor

Different objects

But equivalent

This time, when invoking the map method, the context is a stream of Person instan‐
ces. Therefore the Person::new syntax invokes the constructor that takes a Person
and returns a new, but equivalent, instance, and has broken the connection between
the before reference and the after reference.3

Varargs constructor

Consider now a varargs constructor added to the Person POJO, shown in
Example 1-19.

Example 1-19. A Person constructor that takes a variable argument list of String

public Person(String... names) {
 this.name = Arrays.stream(names)
 .collect(Collectors.joining(" "));
}

This constructor takes zero or more string arguments and concatenates them
together with a single space as the delimiter.

How can that constructor get invoked? Any client that passes zero or more string
arguments separated by commas will call it. One way to do that is to take advantage
of the split method on String that takes a delimiter and returns a String array:

String[] split(String delimiter)

Therefore, the code in Example 1-20 splits each string in the list into individual
words and invokes the varargs constructor.

1.3 Constructor References | 13

Example 1-20. Using the varargs constructor

names.stream()
 .map(name -> name.split(" "))
 .map(Person::new)
 .collect(Collectors.toList());

Create a stream of strings

Map to a stream of string arrays

Map to a stream of Person

Collect to a list of Person

This time, the context for the map method that contains the Person::new constructor
reference is a stream of string arrays, so the varargs constructor is called. If you add a
simple print statement to that constructor:

System.out.println("Varargs ctor, names=" + Arrays.toList(names));

then the result is:

Varargs ctor, names=[Grace, Hopper]
Varargs ctor, names=[Barbara, Liskov]
Varargs ctor, names=[Ada, Lovelace]
Varargs ctor, names=[Karen, Spärck, Jones]

Arrays

Constructor references can also be used with arrays. If you want an array of Person
instances, Person[], instead of a list, you can use the toArray method on Stream,
whose signature is:

<A> A[] toArray(IntFunction<A[]> generator)

This method uses A to represent the generic type of the array returned containing the
elements of the stream, which is created using the provided generator function. The
cool part is that a constructor reference can be used for that, too, as in Example 1-21.

Example 1-21. Creating an array of Person references

Person[] people = names.stream()
 .map(Person::new)
 .toArray(Person[]::new);

Constructor reference for Person

Constructor reference for an array of Person

14 | Chapter 1: The Basics

4 At least until Java 9, when private methods are also allowed in interfaces. See Recipe 10.2 for details.

The toArray method argument creates an array of Person references of the proper
size and populates it with the instantiated Person instances.

Constructor references are just method references by another name, using the word
new to invoke a constructor. Which constructor is determined by the context, as
usual. This technique gives a lot of flexibility when processing streams.

See Also
Method references are discussed in Recipe 1.2.

1.4 Functional Interfaces
Problem
You want to use an existing functional interface, or write your own.

Solution
Create an interface with a single, abstract method, and add the @FunctionalInter
face annotation.

Discussion
A functional interface in Java 8 is an interface with a single, abstract method. As such,
it can be the target for a lambda expression or method reference.

The use of the term abstract here is significant. Prior to Java 8, all methods in inter‐
faces were considered abstract by default—you didn’t even need to add the keyword.

For example, here is the definition of an interface called PalindromeChecker, shown
in Example 1-22.

Example 1-22. A Palindrome Checker interface

@FunctionalInterface
public interface PalindromeChecker {
 boolean isPalidrome(String s);
}

All methods in an interface are public,4 so you can leave out the access modifier, just
as you can leave out the abstract keyword.

1.4 Functional Interfaces | 15

Since this interface has only a single, abstract method, it is a functional interface. Java
8 provides an annotation called @FunctionalInterface in the java.lang package
that can be applied to the interface, as shown in the example.

This annotation is not required, but is a good idea, for two reasons. First, it triggers a
compile-time check that the interface does, in fact, satisfy the requirement. If the
interface has either zero abstract methods or more than one, you will get a compiler
error.

The other benefit to adding the @FunctionalInterface annotation is that it generates
a statement in the Javadocs as follows:

Functional Interface:
This is a functional interface and can therefore be used as the assignment
target for a lambda expression or method reference.

Functional interfaces can have default and static methods as well. Both default and
static methods have implementations, so they don’t count against the single abstract
method requirement. Example 1-23 shows the sample code.

Example 1-23. MyInterface is a functional interface with static and default methods

@FunctionalInterface
public interface MyInterface {
 int myMethod();
 // int myOtherMethod();

 default String sayHello() {
 return "Hello, World!";
 }

 static void myStaticMethod() {
 System.out.println("I'm a static method in an interface");
 }
}

Single abstract method

If added, this would no longer be a functional interface

Note that if the commented method myOtherMethod was included, the interface
would no longer satisfy the functional interface requirement. The annotation would
generate an error of the form “multiple non-overriding abstract methods found.”

Interfaces can extend other interfaces, even more than one. The annotation checks
the current interface. So if one interface extends an existing functional interface and
adds another abstract method, it is not itself a functional interface. See Example 1-24.

16 | Chapter 1: The Basics

Example 1-24. Extending a functional interface—no longer functional

public interface MyChildInterface extends MyInterface {
 int anotherMethod();
}

Additional abstract method

The MyChildInterface is not a functional interface, because it has two abstract meth‐
ods: myMethod, which it inherits from MyInterface; and anotherMethod, which it
declares. Without the @FunctionalInterface annotation, this compiles, because it’s a
standard interface. It cannot, however, be the target of a lambda expression.

One edge case should also be noted. The Comparator interface is used for sorting,
which is discussed in other recipes. If you look at the Javadocs for that interface and
select the Abstract Methods tab, you see the methods shown in Figure 1-1.

Figure 1-1. Abstract methods in the Comparator class

Wait, what? How can this be a functional interface if there are two abstract methods,
especially if one of them is actually implemented in java.lang.Object?

As it turns out, this has always been legal. You can declare methods in Object as
abstract in an interface, but that doesn’t make them abstract. Usually the reason for
doing so is to add documentation that explains the contract of the interface. In the
case of Comparator, the contract is that if two elements return true from the equals
method, the compare method should return zero. Adding the equals method to
Comparator allows the associated Javadocs to explain that.

The rules for functional interfaces say that methods from Object don’t count against
the single abstract method limit, so Comparator is still a functional interface.

See Also
Default methods in interfaces are discussed in Recipe 1.5, and static methods in inter‐
faces are discussed in Recipe 1.6.

1.4 Functional Interfaces | 17

5 “A magnificent horse, with the brain of a bird.” (Disney’s Hercules movie, which is fun if you pretend you
know nothing about Greek mythology and never heard of Hercules.)

1.5 Default Methods in Interfaces
Problem
You want to provide an implementation of a method inside an interface.

Solution
Use the keyword default on the interface method, and add the implementation in
the normal way.

Discussion
The traditional reason Java never supported multiple inheritance is the so-called dia‐
mond problem. Say you have an inheritance hierarchy as shown in the (vaguely UML-
like) Figure 1-2.

Figure 1-2. Animal inheritance

Class Animal has two child classes, Bird and Horse, each of which overrides the
speak method from Animal, in Horse to say “whinny” and in Bird to say “chirp.”
What, then, does Pegasus (which multiply inherits from both Horse and Bird)5 say?
What if you have a reference of type Animal assigned to an instance of Pegasus?
What then should the speak method return?

Animal animal = new Pegaus();
animal.speak(); // whinny, chirp, or other?

Different languages take different approaches to this problem. In C++, for example,
multiple inheritance is allowed, but if a class inherits conflicting implementations, it

18 | Chapter 1: The Basics

6 This can be solved by using virtual inheritance, but still.
7 There’s an obscure reference for you, but Eiffel was one of the foundational languages of object-oriented pro‐

gramming. See Bertrand Meyer’s Object-Oriented Software Construction, Second Edition (Prentice Hall, 1997).

won’t compile.6 In Eiffel,7 the compiler allows you to choose which implementation
you want.

Java’s approach was to prohibit multiple inheritance, and interfaces were introduced
as a workaround for when a class has an “is a kind of ” relationship with more than
one type. Since interfaces had only abstract methods, there were no implementations
to conflict. Multiple inheritance is allowed with interfaces, but again that works
because only the method signatures are inherited.

The problem is, if you can never implement a method in an interface, you wind up
with some awkward designs. Among the methods in the java.util.Collection
interface, for example, are:

boolean isEmpty()
int size()

The isEmpty method returns true if there are no elements in the collection, and false
otherwise. The size method returns the number of elements in the collections.
Regardless of the underlying implementation, you can immediately implement the
isEmpty method in terms of size, as in Example 1-25.

Example 1-25. Implementation of isEmpty in terms of size

public boolean isEmpty() {
 return size() == 0;
}

Since Collection is an interface, you can’t do this in the interface itself. Instead, the
standard library includes an abstract class called java.util.AbstractCollection,
which includes, among other code, exactly the implementation of isEmpty shown
here. If you are creating your own collection implementation and you don’t already
have a superclass, you can extend AbstractCollection and you get the isEmpty
method for free. If you already have a superclass, you have to implement the Collec
tion interface instead and remember to provide your own implementation of
isEmpty as well as size.

All of this is quite familiar to experienced Java developers, but as of Java 8 the situa‐
tion changes. Now you can add implementations to interface methods. All you have
to do is add the keyword default to a method and provide an implementation. The
code in Example 1-26 shows an interface with both abstract and default methods.

1.5 Default Methods in Interfaces | 19

8 Predicate is one of the new functional interfaces in the java.util.function package, described in detail in
Recipe 2.3.

Example 1-26. An Employee interface with a default method

public interface Employee {
 String getFirst();

 String getLast();

 void convertCaffeineToCodeForMoney();

 default String getName() {
 return String.format("%s %s", getFirst(), getLast());
 }
}

Default method with an implementation

The getName method has the keyword default, and its implementation is in terms of
the other, abstract, methods in the interface, getFirst and getLast.

Many of the existing interfaces in Java have been enhanced with default methods in
order to maintain backward compatibility. Normally when you add a new method to
an interface, you break all the existing implementations. By adding a new method as a
default, all the existing implementations inherit the new method and still work. This
allowed the library maintainers to add new default methods throughout the JDK
without breaking existing implementations.

For example, java.util.Collection now contains the following default methods:

default boolean removeIf(Predicate<? super E> filter)
default Stream<E> stream()
default Stream<E> parallelStream()
default Spliterator<E> spliterator()

The removeIf method removes all of the elements from the collection that satisfy the
Predicate8 argument, returning true if any elements were removed. The stream and
parallelStream methods are factory methods for creating streams. The spliterator
method returns an object from a class that implements the Spliterator interface,
which is an object for traversing and partitioning elements from a source.

Default methods are used the same way any other methods are used, as Example 1-27
shows.

20 | Chapter 1: The Basics

Example 1-27. Using default methods

List<Integer> nums = Arrays.asList(3, 1, 4, 1, 5, 9);
boolean removed = nums.removeIf(n -> n <= 0);
System.out.println("Elements were " + (removed ? "" : "NOT") + " removed");
nums.forEach(System.out::println);

Use the default method removeIf from Collection

Use the default method forEach from Iterator

What happens when a class implements two interfaces with the same default method?
That is the subject of Recipe 5.5, but the short answer is that if the class implements
the method itself everything is fine. See Recipe 5.5 for details.

See Also
Recipe 5.5 shows the rules that apply when a class implements multiple interfaces
with default methods.

1.6 Static Methods in Interfaces
Problem
You want to add a class-level utility method to an interface, along with an implemen‐
tation.

Solution
Make the method static and provide the implementation in the usual way.

Discussion
Static members of Java classes are class-level, meaning they are associated with the
class as a whole rather than with a particular instance. That makes their use in inter‐
faces problematic from a design point of view. Some questions include:

• What does a class-level member mean when the interface is implemented by
many different classes?

• Does a class need to implement an interface in order to use a static method?
• Static methods in classes are accessed by the class name. If a class implements an

interface, does a static method get called from the class name or the interface
name?

1.6 Static Methods in Interfaces | 21

The designers of Java could have decided these questions in several different ways.
Prior to Java 8, the decision was not to allow static members in interfaces at all.

Unfortunately, however, that led to the creation of utility classes: classes that contain
only static methods. A typical example is java.util.Collections, which contains
methods for sorting and searching, wrapping collections in synchronized or unmodi‐
fiable types, and more. In the NIO package, java.nio.file.Paths is another exam‐
ple. It contains only static methods that parse Path instances from strings or URIs.

Now, in Java 8, you can add static methods to interfaces whenever you like. The
requirements are:

• Add the static keyword to the method.
• Provide an implementation (which cannot be overridden). In this way they are

like default methods, and are included in the default tab in the Javadocs.
• Access the method using the interface name. Classes do not need to implement

an interface to use its static methods.

One example of a convenient static method in an interface is the comparing method
in java.util.Comparator, along with its primitive variants, comparingInt,
comparingLong, and comparingDouble. The Comparator interface also has static
methods naturalOrder and reverseOrder. Example 1-28 shows how they are used.

Example 1-28. Sorting strings

List<String> bonds = Arrays.asList("Connery", "Lazenby", "Moore",
 "Dalton", "Brosnan", "Craig");

List<String> sorted = bonds.stream()
 .sorted(Comparator.naturalOrder())
 .collect(Collectors.toList());
// [Brosnan, Connery, Craig, Dalton, Lazenby, Moore]

sorted = bonds.stream()
 .sorted(Comparator.reverseOrder())
 .collect(Collectors.toList());
// [Moore, Lazenby, Dalton, Craig, Connery, Brosnan]

sorted = bonds.stream()
 .sorted(Comparator.comparing(String::toLowerCase))
 .collect(Collectors.toList());
// [Brosnan, Connery, Craig, Dalton, Lazenby, Moore]

sorted = bonds.stream()
 .sorted(Comparator.comparingInt(String::length))
 .collect(Collectors.toList());
// [Moore, Craig, Dalton, Connery, Lazenby, Brosnan]

22 | Chapter 1: The Basics

9 The temptation to add Idris Elba to the list is almost overwhelming, but no such luck as yet.

sorted = bonds.stream()
 .sorted(Comparator.comparingInt(String::length)
 .thenComparing(Comparator.naturalOrder()))
 .collect(Collectors.toList());
// [Craig, Moore, Dalton, Brosnan, Connery, Lazenby]

Natural order (lexicographical)

Reverse lexicographical

Sort by lowercase name

Sort by name length

Sort by length, then equal lengths lexicographically

The example shows how to use several static methods in Comparator to sort the list of
actors who have played James Bond over the years.9 Comparators are discussed fur‐
ther in Recipe 4.1.

Static methods in interfaces remove the need to create separate utility classes, though
that option is still available if a design calls for it.

The key points to remember are:

• Static methods must have an implementation
• You cannot override a static method
• Call static methods from the interface name
• You do not need to implement an interface to use its static methods

See Also
Static methods from interfaces are used throughout this book, but Recipe 4.1 covers
the static methods from Comparator used here.

1.6 Static Methods in Interfaces | 23

CHAPTER 2

The java.util.function Package

The previous chapter discussed the basic syntax of lambda expressions and method
references. One basic principle is that for either, there is always a context. Lambda
expressions and method references are always assigned to functional interfaces,
which provide information about the single abstract method being implemented.

While many interfaces in the Java standard library contain only a single, abstract
method and are thus functional interfaces, there is a new package that is specifically
designed to contain only functional interfaces that are reused in the rest of the library.
That package is called java.util.function.

The interfaces in java.util.function fall into four categories: (1) consumers, (2)
suppliers, (3) predicates, and (4) functions. Consumers take a generic argument and
return nothing. Suppliers take no arguments and return a value. Predicates take an
argument and return a boolean. Functions take a single argument and return a value.

For each of the basic interfaces, there are several related ones. For example, Consumer
has variations customized for primitive types (IntConsumer, LongConsumer, and
DoubleConsumer) and a variation (BiConsumer) that takes two arguments and returns
void.

Although by definition the interfaces in this chapter only contain a single abstract
method, most also include additional methods that are either static or default.
Becoming familiar with these methods will make your job as a developer easier.

25

2.1 Consumers
Problem
You want to write lambda expressions that implement the java.util.function.Con
sumer package.

Solution
Implement the void accept(T t) method using a lambda expression or a method
reference.

Discussion
The java.util.function.Consumer interface has as its single, abstract method, void
accept(T t). See Example 2-1.

Example 2-1. Methods in java.util.function.Consumer

 void accept(T t)
default Consumer<T> andThen(Consumer<? super T> after)

Single abstract method

Default method for composition

The accept method takes a generic argument and returns void. One of the most fre‐
quently used examples of a method that takes a Consumer as an argument is the
default forEach method in java.util.Iterable, shown in Example 2-2.

Example 2-2. The forEach method in Iterable

default void forEach(Consumer<? super T> action)

Passes each element of an iterable collection to the consumer argument

All linear collections implement this interface by performing the given action for
each element of the collection, as in Example 2-3.

Example 2-3. Printing the elements of a collection

List<String> strings = Arrays.asList("this", "is", "a", "list", "of", "strings");

strings.forEach(new Consumer<String>() {
 @Override

26 | Chapter 2: The java.util.function Package

 public void accept(String s) {
 System.out.println(s);
 }
});

strings.forEach(s -> System.out.println(s));
strings.forEach(System.out::println);

Anonymous inner class implementation

Expression lambda

Method reference

The lambda expression conforms to the signature of the accept method, because it
takes a single argument and returns nothing. The println method in PrintStream,
accessed here via System.out, is compatible with Consumer. Therefore, either can be
used as the target for an argument of type Consumer.

The java.util.function package also contains primitive variations of Consumer<T>,
as well as a two-argument version. See Table 2-1 for details.

Table 2-1. Additional Consumer interfaces
Interface Single abstract method

IntConsumer void accept(int x)

DoubleConsumer void accept(double x)

LongConsumer void accept(long x)

BiConsumer void accept(T t, U u)

Consumers are expected to operate via side effects, as shown in
Recipe 2.3.

The BiConsumer interface has an accept method that takes two generic arguments,
which are assumed to be of different types. The package contains three variations on
BiConsumer where the second argument is a primitive. One is ObjIntConsumer,
whose accept method takes two arguments, a generic and and an int. ObjLong
Consumer and ObjDoubleConsumer are defined similarly.

Other uses of the Consumer interface in the standard library include:

Optional.ifPresent(Consumer<? super T> consumer)

If a value is present, invoke the specified consumer. Otherwise do nothing.

2.1 Consumers | 27

1 This is such a common operation that forEach was also added directly to Iterable. The Stream variation is
useful when the source elements do not come from a collection, or if you want to make the stream parallel.

Stream.forEach(Consumer<? super T> action)

Performs an action for each element of the stream.1 The Stream.forEachOrdered
method is similar, accessing elements in encounter order.

Stream.peek(Consumer<? super T> action)

Returns a stream with the same elements as the existing stream, first performing
the given action. This is a very useful technique for debugging (see Recipe 3.5 for
an example).

See Also
The andThen method in Consumer is used for composition. Function composition is
discussed further in Recipe 5.8. The peek method in Stream is examined in Recipe
3.5.

2.2 Suppliers
Problem
You want to implement the java.util.function.Supplier interface.

Solution
Implement the T get() method in java.util.function.Supplier using a lambda
expression or a method reference.

Discussion
The java.util.function.Supplier interface is particularly simple. It does not have
any static or default methods. It contains only a single, abstract method, T get().

Implementing Supplier means providing a method that takes no arguments and
returns the generic type. As stated in the Javadocs, there is no requirement that a new
or distinct result be returned each time the Supplier is invoked.

One simple example of a Supplier is the Math.random method, which takes no argu‐
ments and returns a double. That can be assigned to a Supplier reference and
invoked at any time, as in Example 2-4.

28 | Chapter 2: The java.util.function Package

Example 2-4. Using Math.random() as a Supplier

Logger logger = Logger.getLogger("...");

DoubleSupplier randomSupplier = new DoubleSupplier() {
 @Override
 public double getAsDouble() {
 return Math.random();
 }
};

randomSupplier = () -> Math.random();
randomSupplier = Math::random;

logger.info(randomSupplier);

Anonymous inner class implementation

Expression lambda

Method reference

The single abstract method in DoubleSupplier is getAsDouble, which returns a
double. The other associated Supplier interfaces in the java.util.function pack‐
age are shown in Table 2-2.

Table 2-2. Additional Supplier interfaces
Interface Single abstract method

IntSupplier int getAsInt()

DoubleSupplier double getAsDouble()

LongSupplier long getAsLong()

BooleanSupplier boolean getAsBoolean()

One of the primary use cases for Suppliers is to support the concept of deferred exe‐
cution. The info method in java.util.logging.Logger takes a Supplier, whose get
method is only called if the log level means the message will be seen (shown in detail
in Recipe 5.7). This process of deferred execution can be used in your own code, to
ensure that a value is retrieved from a Supplier only when appropriate.

Another example from the standard library is the orElseGet method in Optional,
which also takes a Supplier. The Optional class is discussed in Chapter 6, but the
short explanation is that an Optional is a nonnull object that either wraps a value or
is empty. It is typically returned by methods that may reasonably expect to have no
result, like finding a value in an empty collection.

2.2 Suppliers | 29

2 Streams may have an encounter order or they may not, just as lists are assumed to be ordered by index and
sets are not. This can be different from the order in which elements are processed. See Recipe 3.9 for more
information.

To see how that might work, consider searching for a name in a collection, as shown
in Example 2-5.

Example 2-5. Finding a name from a collection

List<String> names = Arrays.asList("Mal", "Wash", "Kaylee", "Inara",
 "Zoë", "Jayne", "Simon", "River", "Shepherd Book");

Optional<String> first = names.stream()
 .filter(name -> name.startsWith("C"))
 .findFirst();

System.out.println(first);
System.out.println(first.orElse("None"));

System.out.println(first.orElse(String.format("No result found in %s",
 names.stream().collect(Collectors.joining(", ")))));

System.out.println(first.orElseGet(() ->
 String.format("No result found in %s",
 names.stream().collect(Collectors.joining(", ")))));

Prints Optional.empty

Prints the string "None"

Forms the comma-separated collection, even when name is found

Forms the comma-separated collection only if the Optional is empty

The findFirst method on Stream returns the first encountered element in an
ordered stream.2 Since it’s possible to apply a filter so there are no elements remaining
in the stream, the method returns an Optional. That Optional either contains the
desired element, or is empty. In this case, none of the names in the list pass the filter,
so the result is an empty Optional.

The orElse method on Optional returns either the contained element, or a specified
default. That’s fine if the default is a simple string, but can be wasteful if processing is
necessary to return a value.

30 | Chapter 2: The java.util.function Package

In this case, the returned value shows the complete list of names in comma-separated
form. The orElse method creates the complete string, whether the Optional contains
a value or not.

The orElseGet method, however, takes a Supplier as an argument. The advantage is
that the get method on the Supplier will only be invoked when the Optional is
empty, so the complete name string is not formed unless it is necessary.

Other examples from the standard library that use Suppliers include:

• The orElseThrow method in Optional, which takes a Supplier<X extends

Exception>. The Supplier is only executed if an exception occurs.
• Objects.requireNonNull(T obj, Supplier<String> messageSupplier) only

customizes its response if the first argument is null.
• CompletableFuture.supplyAsync(Supplier<U> supplier) returns a Completa
bleFuture that is asynchronously completed by a task running with the value
obtained by calling the given Supplier.

• The Logger class has overloads for all its logging methods that takes a Supplier
<String> rather than just a string (used as an example in Recipe 5.7).

See Also
Using the overloaded logging methods that take a Supplier is discussed in Recipe
5.7. Finding the first element in a collection is discussed in Recipe 3.9. Completable
futures are part of several recipes in Chapter 9, and Optional is the topic of recipes in
Chapter 6.

2.3 Predicates
Problem
You want to filter data using the java.util.function.Predicate interface.

Solution
Implement the boolean test(T t) method in the Predicate interface using a
lambda expression or a method reference.

2.3 Predicates | 31

Discussion
Predicates are used primarily to filter streams. Given a stream of items, the filter
method in java.util.stream.Stream takes a Predicate and returns a new stream
that includes only the items that satisfy the given predicate.

The single abstract method in Predicate is boolean test(T t), which takes a single
generic argument and returns true or false. The complete set of methods in
Predicate, including state and defaults, is given in Example 2-6.

Example 2-6. Methods in java.util.function.Predicate

default Predicate<T> and(Predicate<? super T> other)
static <T> Predicate<T> isEquals(Object targetRef)
default Predicate<T> negate()
default Predicate<T> or(Predicate<? super T> other)
boolean test(T t)

Single abstract method

Say you have a collection of names and you want to find all the instances that have a
particular length. Example 2-7 shows an example of how to use stream processing to
do so.

Example 2-7. Finding strings of a given length

public String getNamesOfLength(int length, String... names) {
 return Arrays.stream(names)
 .filter(s -> s.length() == length)
 .collect(Collectors.joining(", "));
}

Predicate for strings of given length only

Alternatively, perhaps you want only the names that start with a particular string, as
in Example 2-8.

Example 2-8. Finding strings that start with a given string

public String getNamesStartingWith(String s, String... names) {
 return Arrays.stream(names)
 .filter(s -> s.startsWith(s))
 .collect(Collectors.joining(", "));
}

Predicate to return strings starting with a given string

32 | Chapter 2: The java.util.function Package

These can be made more general by allowing the condition to be specified by the cli‐
ent. Example 2-9 shows a method to do that.

Example 2-9. Finding strings that satisfy an arbitrary predicate

public class ImplementPredicate {
 public String getNamesSatisfyingCondition(
 Predicate<String> condition, String... names) {
 return Arrays.stream(names)
 .filter(condition)
 .collect(Collectors.joining(", "));
 }
 }

 // ... other methods ...
}

Filter by supplied predicate

This is quite flexible, but it may be a bit much to expect the clients to write every
predicate themselves. One option is to add constants to the class representing the
most common cases, as in Example 2-10.

Example 2-10. Adding constants for common cases

public class ImplementPredicate {
 public static final Predicate<String> LENGTH_FIVE = s -> s.length() == 5;
 public static final Predicate<String> STARTS_WITH_S =
 s -> s.startsWith("S");

 // ... rest as before ...
}

The other advantage to supplying a predicate as an argument is that you can also use
the default methods and, or, and negate to create a composite predicate from a series
of individual elements.

The test case in Example 2-11 demonstrates all of these techniques.

Example 2-11. JUnit test for predicate methods

import static functionpackage.ImplementPredicate.*;
import static org.junit.Assert.assertEquals;

// ... other imports ...

public class ImplementPredicateTest {
 private ImplementPredicate demo = new ImplementPredicate();
 private String[] names;

2.3 Predicates | 33

 @Before
 public void setUp() {
 names = Stream.of("Mal", "Wash", "Kaylee", "Inara", "Zoë",
 "Jayne", "Simon", "River", "Shepherd Book")
 .sorted()
 .toArray(String[]::new);
 }

 @Test
 public void getNamesOfLength5() throws Exception {
 assertEquals("Inara, Jayne, River, Simon",
 demo.getNamesOfLength(5, names));
 }

 @Test
 public void getNamesStartingWithS() throws Exception {
 assertEquals("Shepherd Book, Simon",
 demo.getNamesStartingWith("S", names));
 }

 @Test
 public void getNamesSatisfyingCondition() throws Exception {
 assertEquals("Inara, Jayne, River, Simon",
 demo.getNamesSatisfyingCondition(s -> s.length() == 5, names));
 assertEquals("Shepherd Book, Simon",
 demo.getNamesSatisfyingCondition(s -> s.startsWith("S"),
 names));
 assertEquals("Inara, Jayne, River, Simon",
 demo.getNamesSatisfyingCondition(LENGTH_FIVE, names));
 assertEquals("Shepherd Book, Simon",
 demo.getNamesSatisfyingCondition(STARTS_WITH_S, names));
 }

 @Test
 public void composedPredicate() throws Exception {
 assertEquals("Simon",
 demo.getNamesSatisfyingCondition(
 LENGTH_FIVE.and(STARTS_WITH_S), names));
 assertEquals("Inara, Jayne, River, Shepherd Book, Simon",
 demo.getNamesSatisfyingCondition(
 LENGTH_FIVE.or(STARTS_WITH_S), names));
 assertEquals("Kaylee, Mal, Shepherd Book, Wash, Zoë",
 demo.getNamesSatisfyingCondition(LENGTH_FIVE.negate(), names));
 }
}

Static import to make using constants simpler

Composition

34 | Chapter 2: The java.util.function Package

Negation

Other methods in the standard library that use predicates include:

Optional.filter(Predicate<? super T> predicate)

If a value is present, and the value matches the given predicate, returns an
Optional describing the value, otherwise returns an empty Optional.

Collection.removeIf(Predicate<? super E> filter)

Removes all elements of this collection that satisfy the predicate.

Stream.allMatch(Predicate<? super T> predicate)

Returns true if all elements of the stream satisfy the given predicate. The methods
anyMatch and noneMatch work similarly.

Collectors.partitioningBy(Predicate<? super T> predicate)

Returns a Collector that splits a stream into two categories: those that satisfy the
predicate and those that do not.

Predicates are useful whenever a stream should only return certain elements. This
recipe hopefully gives you an idea where and when that might be useful.

See Also
Closure composition is also discussed in Recipe 5.8. The allMatch, anyMatch, and
noneMatch methods are discussed in Recipe 3.10. Partitioning and group by opera‐
tions are discussed in Recipe 4.5.

2.4 Functions
Problem
You need to implement the java.util.function.Function interface to transform an
input parameter into an output value.

Solution
Provide a lambda expression that implements the R apply(T t) method.

Discussion
The functional interface java.util.function.Function contains the single abstract
method apply, which is invoked to transform a generic input parameter of type T into
a generic output value of type R. The methods in Function are shown in
Example 2-12.

2.4 Functions | 35

Example 2-12. Methods in the java.util.function.Function interface

default <V> Function<T,V> andThen(Function<? super R,? extends V> after)
 R apply(T t)
default <V> Function<V,R> compose(Function<? super V,? extends T> before)
static <T> Function<T,T> identity()

The most common usage of Function is as an argument to the Stream.map method.
For example, one way to transform a String into an integer would be to invoke the
length method on each instance, as in Example 2-13.

Example 2-13. Mapping strings to their lengths

List<String> names = Arrays.asList("Mal", "Wash", "Kaylee", "Inara",
 "Zoë", "Jayne", "Simon", "River", "Shepherd Book");

List<Integer> nameLengths = names.stream()
 .map(new Function<String, Integer>() {
 @Override
 public Integer apply(String s) {
 return s.length();
 }
 })
 .collect(Collectors.toList());

nameLengths = names.stream()
 .map(s -> s.length())
 .collect(Collectors.toList());

nameLengths = names.stream()
 .map(String::length)
 .collect(Collectors.toList());

System.out.printf("nameLengths = %s%n", nameLengths);
// nameLengths == [3, 4, 6, 5, 3, 5, 5, 5, 13]

Anonymous inner class

Lambda expression

Method reference

The complete list of primitive variations for both the input and the output generic
types are shown in Table 2-3.

36 | Chapter 2: The java.util.function Package

3 See Recipe 3.3 for more on BinaryOperator uses in the standard library.

Table 2-3. Additional Function interfaces
Interface Single abstract method

IntFunction R apply(int value)

DoubleFunction R apply(double value)

LongFunction R apply(long value)

ToIntFunction int applyAsInt(T value)

ToDoubleFunction double applyAsDouble(T value)

ToLongFunction long applyAsLong(T value)

DoubleToIntFunction int applyAsInt(double value)

DoubleToLongFunction long applyAsLong(double value)

IntToDoubleFunction double applyAsDouble(int value)

IntToLongFunction long applyAsLong(int value)

LongToDoubleFunction double applyAsDouble(long value)

LongToIntFunction int applyAsInt(long value)

BiFunction void accept(T t, U u)

The argument to the map method in Example 2-13 could have been a ToIntFunction,
because the return type on the method is an int primitive. The Stream.mapToInt
method takes a ToIntFunction as an argument, and mapToDouble and mapToLong are
analogous. The return types on mapToInt, mapToDouble, and mapToLong are Int
Stream, DoubleStream, and LongStream, respectively.

What if the argument and return type are the same? The java.util.function pack‐
age defines UnaryOperator for that. As you might expect, there are also interfaces
called IntUnaryOperator, DoubleUnaryOperator, and LongUnaryOperator, where the
input and output arguments are int, double, and long, respectively. An example of a
UnaryOperator would be the reverse method in StringBuilder, because both the
input type and the output type are strings.

The BiFunction interface is defined for two generic input types and one generic out‐
put type, all of which are assumed to be different. If all three are the same, the pack‐
age includes the BinaryOperator interface. An example of a binary operator would
be Math.max, because both inputs and the output are either int, double, float, or
long. Of course, the interface also defines interfaces called IntBinaryOperator,
DoubleBinaryOperator, and LongBinaryOperator for those situations.3

2.4 Functions | 37

To complete the set, the package also has primitive variations of BiFunction, which
are summarized in Table 2-4.

Table 2-4. Additional BiFunction interfaces
Interface Single abstract method

ToIntBiFunction int applyAsInt(T t, U u)

ToDoubleBiFunction double applyAsDouble(T t, U u)

ToLongBiFunction long applyAsLong(T t, U u)

While the various Stream.map methods are the primary usages of Function, they do
appear in other contexts. Among them are:

Map.computeIfAbsent(K key, Function<? super K,? extends V> mappingFunction)

If the specified key does not have a value, use the provided Function to compute
one and add it to a Map.

Comparator.comparing(Function<? super T,? extends U> keyExtractor)

Discussed in Recipe 4.1, this method generates a Comparator that sorts a collec‐
tion by the key generated from the given Function.

Comparator.thenComparing(Function<? super T,? extends U> keyExtractor)

An instance method, also used in sorting, that adds an additional sorting mecha‐
nism if the collection has equal values by the first sort.

Functions are also used extensively in the Collectors utility class for grouping and
downstream collectors.

The andThen and compose methods are discussed in Recipe 5.8. The identity
method is simply the lambda expression e -> e. One usage is shown in Recipe 4.3.

See Also
See Recipe 5.8 for examples of the andThen and compose methods in the Function
interface. See Recipe 4.3 for an example of Function.identity. See Recipe 4.6 for
examples of using functions as downstream collectors. The computeIfAbsent method
is discussed in Recipe 5.4. Binary operators are also covered in Recipe 3.3.

38 | Chapter 2: The java.util.function Package

CHAPTER 3

Streams

Java 8 introduces a new streaming metaphor to support functional programming. A
stream is a sequence of elements that does not save the elements or modify the origi‐
nal source. Functional programming in Java often involves generating a stream from
some source of data, passing the elements through a series of intermediate operations
(called a pipeline), and completing the process with a terminal expression.

Streams can only be used once. After a stream has passed through zero or more inter‐
mediate operations and reached a terminal operation, it is finished. To process the
values again, you need to make a new stream.

Streams are also lazy. A stream will only process as much data as is necessary to reach
the terminal condition. Recipe 3.13 shows this in action.

The recipes in this chapter demonstrate various typical stream operations.

3.1 Creating Streams
Problem
You want to create a stream from a source of data.

Solution
Use the static factory methods in the Stream interface, or the stream methods on
Iterable or Arrays.

39

Discussion
The new java.util.stream.Stream interface in Java 8 provides several static meth‐
ods for creating streams. Specifically, you can use the static methods Stream.of,
Stream.iterate, and Stream.generate.

The Stream.of method takes a variable argument list of elements:

static <T> Stream<T> of(T... values)

The implementation of the of method in the standard library actually delegates to the
stream method in the Arrays class, shown in Example 3-1.

Example 3-1. Reference implementation of Stream.of

@SafeVarargs
public static<T> Stream<T> of(T... values) {
 return Arrays.stream(values);
}

The @SafeVarargs annotation is part of Java generics. It comes up
when you have an array as an argument, because it is possible to
assign a typed array to an Object array and then violate type safety
with an added element. The @SafeVarargs annotation tells the
compiler that the developer promises not to do that. See Appen‐
dix A for additional details.

As a trivial example, see Example 3-2.

Since streams do not process any data until a terminal expression is
reached, each of the examples in this recipe will add a terminal
method like collect or forEach at the end.

Example 3-2. Creating a stream using Stream.of

String names = Stream.of("Gomez", "Morticia", "Wednesday", "Pugsley")
 .collect(Collectors.joining(","));
System.out.println(names);
// prints Gomez,Morticia,Wednesday,Pugsley

The API also includes an overloaded of method that takes a single element T t. This
method returns a singleton sequential stream containing a single element.

Speaking of the Arrays.stream method, Example 3-3 shows an example.

40 | Chapter 3: Streams

Example 3-3. Creating a stream using Arrays.stream

String[] munsters = { "Herman", "Lily", "Eddie", "Marilyn", "Grandpa" };
names = Arrays.stream(munsters)
 .collect(Collectors.joining(","));
System.out.println(names);
// prints Herman,Lily,Eddie,Marilyn,Grandpa

Since you have to create an array ahead of time, this approach is less convenient, but
works well for variable argument lists. The API includes overloads of Arrays.stream
for arrays of int, long, and double, as well as the generic type used here.

Another static factory method in the Stream interface is iterate. The signature of
the iterate method is:

static <T> Stream<T> iterate(T seed, UnaryOperator<T> f)

According to the Javadocs, this method “returns an infinite (emphasis added) sequen‐
tial ordered Stream produced by iterative application of a function f to an initial ele‐
ment seed.” Recall that a UnaryOperator is a function whose single input and output
types are the same (discussed in Recipe 2.4). This is useful when you have a way to
produce the next value of the stream from the current value, as in Example 3-4.

Example 3-4. Creating a stream using Stream.iterate

List<BigDecimal> nums =
 Stream.iterate(BigDecimal.ONE, n -> n.add(BigDecimal.ONE))
 .limit(10)
 .collect(Collectors.toList());
System.out.println(nums);
// prints [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Stream.iterate(LocalDate.now(), ld -> ld.plusDays(1L))
 .limit(10)
 .forEach(System.out::println)
// prints 10 days starting from today

The first example counts from one using BigDecimal instances. The second uses the
new LocalDate class in java.time and adds one day to it repeatedly. Since the result‐
ing streams are both unbounded, the intermediate operation limit is needed.

The other factory method in the Stream class is generate, whose signature is:

static <T> Stream<T> generate(Supplier<T> s)

This method produces a sequential, unordered stream by repeatedly invoking the
Supplier. A simple example of a Supplier in the standard library (a method that
takes no arguments but produces a return value) is the Math.random method, which
is used in Example 3-5.

3.1 Creating Streams | 41

1 Hopefully it doesn’t destroy my credibility entirely to admit that I was able to recall the names of all six Brady
Bunch kids without looking them up. Believe me, I’m as horrified as you are.

Example 3-5. Creating a stream of random doubles

long count = Stream.generate(Math::random)
 .limit(10)
 .forEach(System.out::println)

If you already have a collection, you can take advantage of the default method
stream that has been added to the Collection interface, as in Example 3-6.1

Example 3-6. Creating a stream from a collection

List<String> bradyBunch = Arrays.asList("Greg", "Marcia", "Peter", "Jan",
 "Bobby", "Cindy");
names = bradyBunch.stream()
 .collect(Collectors.joining(","));
System.out.println(names);
// prints Greg,Marcia,Peter,Jan,Bobby,Cindy

There are three child interfaces of Stream specifically for working with primitives:
IntStream, LongStream, and DoubleStream. IntStream and LongStream each have
two additional factory methods for creating streams, range and rangeClosed. Their
method signatures from IntStream are (LongStream is similar):

static IntStream range(int startInclusive, int endExclusive)
static IntStream rangeClosed(int startInclusive, int endInclusive)
static LongStream range(long startInclusive, long endExclusive)
static LongStream rangeClosed(long startInclusive, long endInclusive)

The arguments show the difference between the two: rangeClosed includes the end
value, and range doesn’t. Each returns a sequential, ordered stream that starts at the
first argument and increments by one after that. An example of each is shown in
Example 3-7.

Example 3-7. The range and rangeClosed methods

List<Integer> ints = IntStream.range(10, 15)
 .boxed()
 .collect(Collectors.toList());
System.out.println(ints);
// prints [10, 11, 12, 13, 14]

List<Long> longs = LongStream.rangeClosed(10, 15)
 .boxed()
 .collect(Collectors.toList());

42 | Chapter 3: Streams

System.out.println(longs);
// prints [10, 11, 12, 13, 14, 15]

Necessary for Collectors to convert primitives to List<T>

The only quirk in that example is the use of the boxed method to convert the int
values to Integer instances, which is discussed further in Recipe 3.2.

To summarize, here are the methods to create streams:

• Stream.of(T... values) and Stream.of(T t)
• Arrays.stream(T[] array), with overloads for int[], double[], and long[]
• Stream.iterate(T seed, UnaryOperator<T> f)

• Stream.generate(Supplier<T> s)

• Collection.stream()

• Using range and rangeClosed:
— IntStream.range(int startInclusive, int endExclusive)

— IntStream.rangeClosed(int startInclusive, int endInclusive)

— LongStream.range(long startInclusive, long endExclusive)

— LongStream.rangeClosed(long startInclusive, long endInclusive)

See Also
Streams are used throughout this book. The process of converting streams of primi‐
tives to wrapper instances is discussed in Recipe 3.2.

3.2 Boxed Streams
Problem
You want to create a collection from a primitive stream.

Solution
Use the boxed method on Stream to wrap the elements. Alternatively, map the values
using the appropriate wrapper class, or use the three-argument form of the collect
method.

3.2 Boxed Streams | 43

Discussion
When dealing with streams of objects, you can convert from a stream to a collection
using one of the static methods in the Collectors class. For example, given a stream
of strings, you can create a List<String> using the code in Example 3-8.

Example 3-8. Converting a stream of strings to a list

List<String> strings = Stream.of("this", "is", "a", "list", "of", "strings")
 .collect(Collectors.toList());

The same process doesn’t work on streams of primitives, however. The code in
Example 3-9 does not compile.

Example 3-9. Converting a stream of int to a list of Integer (DOES NOT COMPILE)

IntStream.of(3, 1, 4, 1, 5, 9)
 .collect(Collectors.toList()); // does not compile

You have three alternatives available as workarounds. First, use the boxed method on
Stream to convert the IntStream to a Stream<Integer>, as shown in Example 3-10.

Example 3-10. Using the boxed method

List<Integer> ints = IntStream.of(3, 1, 4, 1, 5, 9)
 .boxed()
 .collect(Collectors.toList());

Converts int to Integer

One alternative is to use the mapToObj method to convert each element from a primi‐
tive to an instance of the wrapper class, as in Example 3-11.

Example 3-11. Using the mapToObj method

List<Integer> ints = IntStream.of(3, 1, 4, 1, 5, 9)
 .mapToObj(Integer::valueOf)
 .collect(Collectors.toList())

Just as mapToInt, mapToLong, and mapToDouble parse streams of objects into the asso‐
ciated primitives, the mapToObj method from IntStream, LongStream, and Double
Stream converts primitives to instances of the associated wrapper classes. The argu‐
ment to mapToObj in this example uses the Integer constructor.

44 | Chapter 3: Streams

In JDK 9, the Integer(int val) constructor is deprecated for per‐
formance reasons. The recommendation is to use Integer .val
ueOf(int) instead.

Another alternative is to use the three-argument version of collect, whose signature
is:

<R> R collect(Supplier<R> supplier,
 ObjIntConsumer<R> accumulator,
 BiConsumer<R,R> combiner)

Example 3-12 shows how to use this method.

Example 3-12. Using the three-argument version of collect

List<Integer> ints = IntStream.of(3, 1, 4, 1, 5, 9)
 .collect(ArrayList<Integer>::new, ArrayList::add, ArrayList::addAll);

In this version of collect, the Supplier is the constructor for ArrayList<Integer>,
the accumulator is the add method, which represents how to add a single element to a
list, and the combiner (which is only used during parallel operations) is addAll,
which combines two lists into one. Using the three-argument version of collect is
not very common, but understanding how it works is a useful skill.

Any of these approaches work, so the choice is just a matter of style.

Incidentally, if you want to convert to an array rather than a list, then the toArray
method works just as well if not better. See Example 3-13.

Example 3-13. Convert an IntStream to an int array

int[] intArray = IntStream.of(3, 1, 4, 1, 5, 9).toArray();

// or

int[] intArray = IntStream.of(3, 1, 4, 1, 5, 9).toArray(int[]::new);

The first demo uses the default form of toArray, which returns Object[]. The second
uses an IntFunction<int[]> as a generator, which creates an int[] of the proper size
and populates it.

The fact that any of these approaches is necessary is yet another consequence of the
original decision in Java to treat primitives differently from objects, complicated by
the introduction of generics. Still, using boxed or mapToObj is easy enough once you
know to look for them.

3.2 Boxed Streams | 45

See Also
Collectors are discussed in Chapter 4. Constructor references are covered in Recipe
1.3.

3.3 Reduction Operations Using Reduce
Problem
You want to produce a single value from stream operations.

Solution
Use the reduce method to accumulate calculations on each element.

Discussion
The functional paradigm in Java often uses a process known as map-filter-reduce.
The map operation transforms a stream of one type (like a String) into another (like
an int, by invoking the length method). Then a filter is applied to produce a new
stream with only the desired elements in it (e.g., strings with length below a certain
threshold). Finally, you may wish to provide a terminal operation that generates a sin‐
gle value from the stream (like a sum or average of the lengths).

Built-in reduction operations

The primitive streams IntStream, LongStream, and DoubleStream have several
reduction operations built into the API.

For example, Table 3-1 shows the reduction operations from the IntStream class.

Table 3-1. Reduction operations in the IntStream class
Method Return type

average OptionalDouble

count long

max OptionalInt

min OptionalInt

sum int

summaryStatistics IntSummaryStatistics

collect(Supplier<R> supplier,
ObjIntConsumer<R> accumulator,
BiConsumer<R,R> combiner)

R

reduce int, OptionalInt

46 | Chapter 3: Streams

Reduction operations like sum, count, max, min, and average do what you would
expect. The only interesting part is that some of them return Optionals, because if
there are no elements in the stream (perhaps after a filtering operation) the result is
undefined or null.

For example, consider reduction operations involving the lengths of a collection of
strings, as in Example 3-14.

Example 3-14. Reduction operations on IntStream

String[] strings = "this is an array of strings".split(" ");
long count = Arrays.stream(strings)
 .map(String::length)
 .count();
System.out.println("There are " + count + " strings");

int totalLength = Arrays.stream(strings)
 .mapToInt(String::length)
 .sum();
System.out.println("The total length is " + totalLength);

OptionalDouble ave = Arrays.stream(strings)
 .mapToInt(String::length)
 .average();
System.out.println("The average length is " + ave);

OptionalInt max = Arrays.stream(strings)
 .mapToInt(String::length)
 .max();

OptionalInt min = Arrays.stream(strings)
 .mapToInt(String::length)
 .min();

System.out.println("The max and min lengths are " + max + " and " + min);

count is a Stream method, so no need to map to IntStream

sum and average are on the primitive streams only

max and min without Comparator only on primitive streams

The program prints:

There are 6 strings
The total length is 22
The average length is OptionalDouble[3.6666666666666665]
The max and min lengths are OptionalInt[7] and OptionalInt[2]

3.3 Reduction Operations Using Reduce | 47

Note how the average, max, and min methods return Optionals, because in principle
you could have applied a filter that removed all the elements from the stream.

The count method is actually quite interesting, and is discussed in Recipe 3.7.

The Stream interface has max(Comparator) and min(Comparator), where the compa‐
rators are used to determine the max or min element. In IntStream, there are over‐
loaded versions of both methods that do not need an argument, because the compari‐
son is done using the natural order of integers.

The summaryStatistics method is discussed in Recipe 3.8.

The last two operations in the table, collect and reduce, bear further discussion.
The collect method is used throughout this book to convert a stream into a collec‐
tion, usually in combination with one of the static helper methods in the Collectors
class, like toList or toSet. That version of collect does not exist on the primitive
streams. The three-argument version shown here takes a collection to populate, a way
to add a single element to that collection, and a way to add multiple elements to the
collection. An example is shown in Recipe 3.2.

Basic reduce implementations

The behavior of the reduce method, however, is not necessarily intuitive until you’ve
seen it in action.

There are two overloaded versions of the reduce method in IntStream:

OptionalInt reduce(IntBinaryOperator op)
int reduce(int identity, IntBinaryOperator op)

The first takes an IntBinaryOperator and returns an OptionalInt. The second asks
you to supply an int called identity along with an IntBinaryOperator.

Recall that a java.util.function.BiFunction takes two arguments and returns a
single value, all three of which can be of different types. If both input types and the
return type are all the same, the function is a BinaryOperator (think, for example,
Math.max). An IntBinaryOperator is a BinaryOperator where the both inputs and
the output type are all ints.

Pretend, for the moment, that you didn’t think to use sum. One way to sum a series of
integers would be to use the reduce method shown in Example 3-15.

Example 3-15. Summing numbers using reduce

int sum = IntStream.rangeClosed(1, 10)
 .reduce((x, y) -> x + y).orElse(0);

The value of sum is 55

48 | Chapter 3: Streams

Normally stream pipelines are written vertically, an approach based
on a fluent API where the result of one method becomes the target
of the next. In this case, the reduce method returns something
other than a stream, so orElse is written on the same line rather
than below because it’s not part of the pipeline. That’s just a conve‐
nience—use any formatting approach that works for you.

The IntBinaryOperator here is supplied by a lambda expression that takes two ints
and returns their sum. Since it is conceivable that the stream could be empty if we
had added a filter, the result is an OptionalInt. Chaining the orElse method to it
indicates that if there are no elements in the stream, the return value should be zero.

In the lambda expression, you can think of the first argument of the binary operator
as an accumulator, and the second argument as the value of each element in the
stream. This is made clear if you print each one as it goes by, as shown in
Example 3-16.

Example 3-16. Printing the values of x and y

int sum = IntStream.rangeClosed(1, 10)
 .reduce((x, y) -> {
 System.out.printf("x=%d, y=%d%n", x, y);
 return x + y;
 }).orElse(0);

The output is shown in Example 3-17.

Example 3-17. The output of printing each value as it passes

x=1, y=2
x=3, y=3
x=6, y=4
x=10, y=5
x=15, y=6
x=21, y=7
x=28, y=8
x=36, y=9
x=45, y=10

sum=55

As the output shows, the initial values of x and y are the first two values of the range.
The value returned by the binary operator becomes the value of x (i.e., the accumula‐
tor) on the next iteration, while y takes on each value in the stream.

3.3 Reduction Operations Using Reduce | 49

2 There are many ways to solve this problem, including just doubling the value returned by the sum method.
The approach taken here illustrates how to use the two-argument form of reduce.

This is fine, but what if you wanted to process each number before summing them?
Say, for example, you wanted to double all the numbers before summing them.2 A
naïve approach would be simply to try the code shown in Example 3-18.

Example 3-18. Doubling the values during the sum (NOTE: NOT CORRECT)

int doubleSum = IntStream.rangeClosed(1, 10)
 .reduce((x, y) -> x + 2 * y).orElse(0);

The value of doubleSum is 109 (oops! off by one!)

Since the sum of the integers from 1 to 10 is 55, the resulting sum should be 110, but
this calculation produces 109. The reason is that in the lambda expression in the
reduce method, the initial values of x and y are 1 and 2 (the first two values of the
stream), so that first value of the stream doesn’t get doubled.

That’s why there’s an overloaded version of reduce that takes an initial value for the
accumulator. The resulting code is shown in Example 3-19.

Example 3-19. Doubling the values during the sum (WORKS)

int doubleSum = IntStream.rangeClosed(1, 10)
 .reduce(0, (x, y) -> x + 2 * y);

The value of doubleSum is 110, as it should be

By providing the initial value of zero for the accumulator x, the value of y is assigned
to each of the elements in the stream, doubling them all. The values of x and y during
each iteration are shown in Example 3-20.

Example 3-20. The values of the lambda parameters during each iteration

Acc=0, n=1
Acc=2, n=2
Acc=6, n=3
Acc=12, n=4
Acc=20, n=5
Acc=30, n=6
Acc=42, n=7
Acc=56, n=8
Acc=72, n=9
Acc=90, n=10

50 | Chapter 3: Streams

sum=110

Note also that when you use the version of reduce with an initial value for the accu‐
mulator, the return type is int rather than OptionalInt.

Identity Values of Binary Operators
The demonstrations used in this recipe referred to the first argument as an initial
value for the accumulator, even though the method signature called it identity. The
word identity means that you should supply a value to the binary operator that,
when combined with any other value, returns the other value. For addition, the iden‐
tity is zero. For multiplication, the identity is 1. For string concatenation, the identity
is the empty string.

For the summing operation demonstrated here, the result is the same, but it’s worth
keeping in mind that the actual requirement for the first argument of reduce is the
identity value for whatever operation you are planning to use as the binary operator.
Internally this becomes the initial value of the accumulator.

The standard library provides many reduction methods, but if none of them directly
apply to your problem, the two forms of the reduce method shown here can be very
helpful.

Binary operators in the library
A few methods have been added to the standard library that make reduction opera‐
tions particularly simple. For example, Integer, Long, and Double all have a sum
method that does exactly what you would expect. The implementation of the sum
method in Integer is:

public static int sum(int a, int b) {
 return a + b;
}

Why bother creating a method just to add two integers, as done here? The sum
method is a BinaryOperator (more specifically, an IntBinaryOperator) and can
therefore be used easily in a reduce operation, as in Example 3-21.

Example 3-21. Performing a reduce with a binary operator

int sum = Stream.of(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
 .reduce(0, Integer::sum);
System.out.println(sum);

3.3 Reduction Operations Using Reduce | 51

3 Sorry about the pun.

This time you don’t even need an IntStream, but the result is the same. Likewise the
Integer class now has a max and a min method, both of which are also binary opera‐
tors and can be used the same way, as in Example 3-22.

Example 3-22. Finding the max using reduce

Integer max = Stream.of(3, 1, 4, 1, 5, 9)
 .reduce(Integer.MIN_VALUE, Integer::max);
System.out.println("The max value is " + max);

The identity for max is the minimum integer

Another interesting example is the concat method in String, which doesn’t actually
look like a BinaryOperator because the method only takes a single argument:

String concat(String str)

You can use this in a reduce operation anyway, as shown in Example 3-23.

Example 3-23. Concatenating strings from a stream using reduce

String s = Stream.of("this", "is", "a", "list")
 .reduce("", String::concat);
System.out.println(s);

Prints thisisalist

The reason this works is that when you use a method reference via the class name (as
in String::concat), the first parameter becomes the target of the concat method
and the second parameter is the argument to concat. Since the result returns a
String, the target, parameter, and return type are all of the same type and once again
you can treat this as a binary operator for the reduce method.

This technique can greatly reduce3 the size of your code, so keep that in mind when
you’re browsing the API.

52 | Chapter 3: Streams

Using a Collector
While using concat this way works, it is inefficient because String concatenation cre‐
ates and destroys objects. A better approach would be to use the collect method
with a Collector.

One overload of the collect method on Stream takes a Supplier for the collection, a
BiConsumer that adds a single element to the collection, and a BiConsumer that com‐
bines two collections. With strings, the natural accumulator would be a String
Builder. The corresponding collect implementation would look like Example 3-24.

Example 3-24. Collecting strings using a StringBuilder

String s = Stream.of("this", "is", "a", "list")

 .collect(() -> new StringBuilder(),

 (sb, str) -> sb.append(str),

 (sb1, sb2) -> sb1.append(sb2))
 .toString();

Result Supplier

Add a single value to the result

Combine two results

This approach can be more simply expressed using method references, as in
Example 3-25.

Example 3-25. Collecting strings, with method references

String s = Stream.of("this", "is", "a", "list")
 .collect(StringBuilder::new,
 StringBuilder::append,
 StringBuilder::append)
 .toString();

Simplest of all, however, would be to use the joining method in the Collectors util‐
ity class, as in Example 3-26.

Example 3-26. Joining strings using Collectors

String s = Stream.of("this", "is", "a", "list")
 .collect(Collectors.joining());

The joining method is overloaded to also take a string delimiter. It’s hard to beat that
for simplicity. For more details and examples, see Recipe 4.2.

3.3 Reduction Operations Using Reduce | 53

The most general form of reduce

The third form of the reduce method is:

<U> U reduce(U identity,
 BiFunction<U,? super T,U> accumulator,
 BinaryOperator<U> combiner)

This is a bit more complicated, and there are normally easier ways to accomplish the
same goal, but an example of how to use it might be useful.

Consider a Book class with simply an integer ID and a string title, as in Example 3-27.

Example 3-27. A simple Book class

public class Book {
 private Integer id;
 private String title;

 // ... constructors, getters and setters, toString, equals, hashCode ...
}

Say you have a list of books and you want to add them to a Map, where the keys are
the IDs and the values are the books themselves.

The example shown here can be solved much more easily using the
Collectors.toMap method, which is demonstrated in Recipe 4.3. It
is used here because its simplicity will hopefully make it easier to
focus on the more complex version of reduce.

One way to accomplish that is shown in Example 3-28.

Example 3-28. Accumulating Books into a Map

HashMap<Integer, Book> bookMap = books.stream()
 .reduce(new HashMap<Integer, Book>(),
 (map, book) -> {
 map.put(book.getId(), book);
 return map;
 },
 (map1, map2) -> {
 map1.putAll(map2);
 return map1;
 });

bookMap.forEach((k,v) -> System.out.println(k + ": " + v));

Identity value for putAll

54 | Chapter 3: Streams

Accumulate a single book into Map using put

Combine multiple Maps using putAll

It’s easiest to examine the arguments to the reduce method in reverse order.

The last argument is a combiner, which is required to be a BinaryOperator. In this
case, the provided lambda expression takes two maps and copies all the keys from the
second map into the first one and returns it. The lambda expression would be simpler
if the putAll method returned the map, but no such luck. The combiner is only rele‐
vant if the reduce operation is done in parallel, because then you need to combine
maps produced from each portion of the range.

The second argument is a function that adds a single book to a Map. This too would
be simpler if the put method on Map returned the Map after the new entry was added.

The first argument to the reduce method is the identity value for the combiner func‐
tion. In this case, the identity value is an empty Map, because that combined with any
other Map returns the other Map.

The output from this program is:

1: Book{id=1, title='Modern Java Recipes'}
2: Book{id=2, title='Making Java Groovy'}
3: Book{id=3, title='Gradle Recipes for Android'}

Reduction operations are fundamental to the functional programming idiom. In
many common cases, the Stream interfaces provide a built-in method for you, like
sum or collect(Collectors.joining(','). If you need to write your own, however,
this recipe shows how to use the reduce operation directly.

The best news is that once you understand how to use reduce in Java 8, you know
how to use the same operation in other languages, even if it goes by different names
(like inject in Groovy or fold in Scala). They all work the same way.

See Also
A much simpler way to turn a list of POJOs into a Map is shown in Recipe 4.3. Sum‐
mary statistics are discussed in Recipe 3.8. Collectors are discussed in Chapter 4.

3.4 Check Sorting Using Reduce
Problem
You want to check that a sort is correct.

3.4 Check Sorting Using Reduce | 55

Solution
Use the reduce method to check each pair of elements.

Discussion
The reduce method on Stream takes a BinaryOperator as an argument:

Optional<T> reduce(BinaryOperator<T> accumulator)

A BinaryOperator is a Function where both input types and the output type are all
the same. As shown in Recipe 3.3, the first element in the BinaryOperator is nor‐
mally an accumulator, while the second element takes each value of the stream, as in
Example 3-29.

Example 3-29. Summing BigDecimals with reduce

BigDecimal total = Stream.iterate(BigDecimal.ONE, n -> n.add(BigDecimal.ONE))
 .limit(10)
 .reduce(BigDecimal.ZERO, (acc, val) -> acc.add(val));
System.out.println("The total is " + total);

Using the add method in BigDecimal as a BinaryOperator

As usual, whatever is returned by the lambda expression becomes the value of the acc
variable on the next iteration. In this way, the calculation accumulates the values of
the first 10 BigDecimal instances.

This is the most typical way of using the reduce method, but just because acc here is
used as an accumulator doesn’t mean it has to be thought of as such. Consider sorting
strings instead, using the approach discussed in Recipe 4.1. The code snippet shown
in Example 3-30 sorts strings by length.

Example 3-30. Sorting strings by length

List<String> strings = Arrays.asList(
 "this", "is", "a", "list", "of", "strings");

List<String> sorted = strings.stream()
 .sorted(Comparator.comparingInt(String::length))
 .collect(toList());

Result is ["a", "is", "of", "this", "list", "strings"]

The question is, how do you test this? Each adjacent pair of strings has to be com‐
pared by length to make sure the first is equal to or shorter than the second. The

56 | Chapter 3: Streams

reduce method here works well, however, as Example 3-31 shows (part of a JUnit test
case).

Example 3-31. Testing that strings are sorted properly

strings.stream()
 .reduce((prev, curr) -> {
 assertTrue(prev.length() <= curr.length());
 return curr;
 });

Check each pair is sorted properly

curr becomes the next value of prev

For each consecutive pair, the previous and current parameters are assigned to vari‐
ables prev and curr. The assertion tests that the previous length is less than or equal
to the current length. The important part is that the argument to reduce returns the
value of the current string, curr, which becomes the value of prev on the next itera‐
tion.

The only thing required to make this work is for the stream to be sequential and
ordered, as here.

See Also
The reduce method is discussed in Recipe 3.3. Sorting is discussed in Recipe 4.1.

3.5 Debugging Streams with peek
Problem
You want to see the individual elements of a stream as they are processed.

Solution
Invoke the peek intermediate operation wherever you need it in a stream pipeline.

Discussion
Stream processing consists of a series of zero or more intermediate operations fol‐
lowed by a terminal operation. Each intermediate operation returns a new stream.
The terminal operation returns something other than a stream.

3.5 Debugging Streams with peek | 57

Newcomers to Java 8 sometimes find the sequence of intermediate operations on a
stream pipeline confusing, because they have trouble visualizing the stream values as
they are processed.

Consider a simple method that accepts a start and end range for a stream of integers,
doubles each number, and then sums up only the resulting values divisible by 3, as
shown in Example 3-32.

Example 3-32. Doubling integers, filtering, and summing

public int sumDoublesDivisibleBy3(int start, int end) {
 return IntStream.rangeClosed(start, end)
 .map(n -> n * 2)
 .filter(n -> n % 3 == 0)
 .sum();
}

A simple test could prove that this is working properly:

@Test
public void sumDoublesDivisibleBy3() throws Exception {
 assertEquals(1554, demo.sumDoublesDivisibleBy3(100, 120));
}

That’s helpful, but doesn’t deliver a lot of insight. If the code wasn’t working, it would
be very difficult to figure out where the problem lay.

Imagine that you added a map operation to the pipeline that took each value, printed
it, and then returned the value again, as in Example 3-33.

Example 3-33. Adding an identity map for printing

public int sumDoublesDivisibleBy3(int start, int end) {
 return IntStream.rangeClosed(start, end)
 .map(n -> {
 System.out.println(n);
 return n;
 })
 .map(n -> n * 2)
 .filter(n -> n % 3 == 0)
 .sum();
}

Identity map that prints each element before returning it

The result prints the numbers from start to end, inclusive, with one number per
line. While you might not want this in production code, it gives you a look inside the
stream processing without interfering with it.

58 | Chapter 3: Streams

This behavior is exactly how the peek method in Stream works. The declaration of
the peek method is:

Stream<T> peek(Consumer<? super T> action)

According to the Javadocs, the peek method “returns a stream consisting of the ele‐
ments of this stream, additionally performing the provided action on each element as
they are consumed from the resulting stream.” Recall that a Consumer takes a single
input but returns nothing, so any provided Consumer will not corrupt each value as it
streams by.

Since peek is an intermediate operation, the peek method can be added multiple
times if you wish, as in Example 3-34.

Example 3-34. Using multiple peek methods

public int sumDoublesDivisibleBy3(int start, int end) {
 return IntStream.rangeClosed(start, end)
 .peek(n -> System.out.printf("original: %d%n", n))
 .map(n -> n * 2)
 .peek(n -> System.out.printf("doubled : %d%n", n))
 .filter(n -> n % 3 == 0)
 .peek(n -> System.out.printf("filtered: %d%n", n))
 .sum();
}

Print value before doubling

Print value after doubling but before filtering

Print value after filtering but before summing

The result will show each element in its original form, then after it has been doubled,
and finally only if it passes the filter. The output is:

original: 100
doubled : 200
original: 101
doubled : 202
original: 102
doubled : 204
filtered: 204
...
original: 119
doubled : 238
original: 120
doubled : 240
filtered: 240

3.5 Debugging Streams with peek | 59

Unfortunately, there’s no easy way to make the peek code optional, so this is a conve‐
nient step to use for debugging but should be removed in production code.

3.6 Converting Strings to Streams and Back
Problem
Rather than loop over individual characters of a String, you would like to use the
idiomatic Stream processing techniques.

Solution
Use the default methods chars and codePoints from the java.lang.CharSequence
interface to convert a String into an IntStream. To convert back to a String, use the
overload of the collect method on IntStream that takes a Supplier, a BiConsumer
representing an accumulator, and a BiConsumer representing a combiner.

Discussion
Strings are collections of characters, so in principle it should be as easy to convert a
string into a stream as it is any other collection or array. Unfortunately, String is not
part of the Collections framework, and therefore does not implement Iterable, so
there is no stream factory method to convert one into a Stream. The other option
would be the static stream methods in the java.util.Arrays class, but while there
are versions of Arrays.stream for int[], long[], double[], and even T[], there isn’t
one for char[]. It’s almost as if the designers of the API didn’t want you to process a
String using stream techniques.

Still, there is an approach that works. The String class implements the CharSequence
interface, and that interface contains two new methods that produce an IntStream.
Both methods are default methods in the interface, so they have an implementation
available. The signatures are in Example 3-35.

Example 3-35. Stream methods in java.lang.CharSequence

default IntStream chars()
default IntStream codePoints()

The difference between the two methods has to do with how Java handles UTF-16-
encoded characters as opposed to the full Unicode set of code points. If you’re inter‐
ested, the differences are explained in the Javadocs for java.lang.Character. For the
methods shown here, the difference is only in the type of integers returned. The for‐

60 | Chapter 3: Streams

mer returns a IntStream consisting of char values from this sequence, while the lat‐
ter returns an IntStream of Unicode code points.

The opposite question is how to convert a stream of characters back into a String.
The Stream.collect method is used to perform a mutable reduction on the elements
of a stream to produce a collection. The version of collect that takes a Collector is
most commonly used, because the Collectors utility class provides many static
methods (like toList, toSet, toMap, joining, and many others discussed in this
book) that produce the desired Collector.

Conspicuous by its absence, however, is a Collector that will take a stream of charac‐
ters and assemble it into a String. Fortunately, that code isn’t difficult to write, using
the other overload of collect, which takes a Supplier and two BiConsumer argu‐
ments, one as an accumulator and one as a combiner.

This all sounds a lot more complicated than it is in practice. Consider writing a
method to check if a string is a palindrome. Palindromes are not case sensitive, and
they remove all punctuation before checking whether the resulting string is the same
forward as backward. In Java 7 or earlier, Example 3-36 shows one way to write a
method that tests strings.

Example 3-36. Checking for palindromes in Java 7 or earlier

public boolean isPalindrome(String s) {
 StringBuilder sb = new StringBuilder();
 for (char c : s.toCharArray()) {
 if (Character.isLetterOrDigit(c)) {
 sb.append(c);
 }
 }
 String forward = sb.toString().toLowerCase();
 String backward = sb.reverse().toString().toLowerCase();
 return forward.equals(backward);
}

As is typical in code written in a nonfunctional style, the method declares a separate
object with mutable state (the StringBuilder instance), then iterates over a collec‐
tion (the char[] returned by the toCharArray method in String), using an if condi‐
tion to decide whether to append a value to the buffer. The StringBuilder class also
has a reverse method to make checking for palindromes easier, while the String
class does not. This combination of mutable state, iteration, and decision statements
cries out for an alternative stream-based approach.

That stream-based alternative is shown in Example 3-37.

3.6 Converting Strings to Streams and Back | 61

Example 3-37. Checking for palindromes using Java 8 streams

public boolean isPalindrome(String s) {
 String forward = s.toLowerCase().codePoints()
 .filter(Character::isLetterOrDigit)
 .collect(StringBuilder::new,
 StringBuilder::appendCodePoint,
 StringBuilder::append)
 .toString();

 String backward = new StringBuilder(forward).reverse().toString();
 return forward.equals(backward);
}

Returns an IntStream

The codePoints method returns an IntStream, which can then be filtered using the
same condition as in Example 3-37. The interesting part is in the collect method,
whose signature is:

<R> R collect(Supplier<R> supplier,
 BiConsumer<R,? super T> accumulator,
 BiConsumer<R,R> combiner)

The arguments are:

• A Supplier, which produces the resulting reduced object, in this case a String
Builder.

• A BiConsumer used to accumulate each element of the stream into the resulting
data structure; this example uses the appendCodePoint method.

• A BiConsumer representing a combiner, which is a “non-interfering, stateless
function” for combining two values that must be compatible with the accumula‐
tor; in this case, the append method. Note that the combiner is only used if the
operation is done in parallel.

That sounds like a lot, but the advantage in this case is that the code doesn’t have to
make a distinction between characters and integers, which is often an issue when
working with elements of strings.

Example 3-38 shows a simple test of the method.

Example 3-38. Testing the palindrome checker

private PalindromeEvaluator demo = new PalindromeEvaluator();

@Test
public void isPalindrome() throws Exception {
 assertTrue(

62 | Chapter 3: Streams

 Stream.of("Madam, in Eden, I'm Adam",
 "Go hang a salami; I'm a lasagna hog",
 "Flee to me, remote elf!",
 "A Santa pets rats as Pat taps a star step at NASA")
 .allMatch(demo::isPalindrome));

 assertFalse(demo.isPalindrome("This is NOT a palindrome"));
}

Viewing strings as arrays of characters doesn’t quite fit the functional idioms in Java
8, but the mechanisms in this recipe hopefully show how they can be made to work.

See Also
Collectors are discussed further in Chapter 4, with the case of implementing your
own collector the subject of Recipe 4.9. The allMatch method is discussed in Recipe
3.10.

3.7 Counting Elements
Problem
You want to know how many elements are in a stream.

Solution
Use either the Stream.count or Collectors.counting methods.

Discussion
This recipe is almost too easy, but does serve to demonstrate a technique that will be
revisited later in Recipe 4.6.

The Stream interface has a default method called count that returns a long, which is
demonstrated in Example 3-39.

Example 3-39. Counting elements in a stream

long count = Stream.of(3, 1, 4, 1, 5, 9, 2, 6, 5).count();
System.out.printf("There are %d elements in the stream%n", count);

Prints There are 9 elements in the stream

One interesting feature of the count method is that the Javadocs show how it is
implemented. The docs say, “this is a special case of a reduction and is equivalent to”:

return mapToLong(e -> 1L).sum();

3.7 Counting Elements | 63

First every element in the stream is mapped to 1 as a long. Then the mapToLong
method produces a LongStream, which has a sum method. In other words, map all the
elements to ones and add them up. Nice and simple.

An alternative is to notice that the Collectors class has a similar method, called
counting, shown in Example 3-40.

Example 3-40. Counting the elements using Collectors.counting

count = Stream.of(3, 1, 4, 1, 5, 9, 2, 6, 5)
 .collect(Collectors.counting());
System.out.printf("There are %d elements in the stream%n", count);

The result is the same. The question is, why do this? Why not use the count method
on Stream instead?

You can, of course, and arguably should. Where this becomes useful, however, is as a
downstream collector, discussed more extensively in Recipe 4.6. As a spoiler, consider
Example 3-41.

Example 3-41. Counting string partitioned by length

Map<Boolean, Long> numberLengthMap = strings.stream()
 .collect(Collectors.partitioningBy(
 s -> s.length() % 2 == 0,
 Collectors.counting()));

numberLengthMap.forEach((k,v) -> System.out.printf("%5s: %d%n", k, v));
//
// false: 4
// true: 8

Predicate

Downstream collector

The first argument to partitioningBy is a Predicate, used to separate the strings
into two categories: those that satisfy the predicate, and those that do not. If that was
the only argument to partitioningBy, the result would be a Map<Boolean,

List<String>>, where the keys would be the values true and false, and the values
would be lists of even- and odd-length strings.

The two-argument overload of partitioningBy used here takes a Predicate fol‐
lowed by a Collector, called a downstream collector, which postprocesses each list of
strings returned. This is the use case for the Collectors.counting method. The out‐

64 | Chapter 3: Streams

put now is a Map<Boolean, Long> where the values are the number of even- and odd-
length strings in the stream.

Several other methods in Stream have analogs in Collectors methods, which are dis‐
cussed in that section. In each case, if you are working directly with a stream, use the
Stream methods. The Collectors methods are intended for downstream post-
processing of a partitioningBy or groupingBy operation.

See Also
Downstream collectors are discussed in Recipe 4.6. Collectors in general are dis‐
cussed in several recipes included in Chapter 4. Counting is a built-in reduction oper‐
ation, as discussed in Recipe 3.3.

3.8 Summary Statistics
Problem
You want the count, sum, min, max, and average of a stream of numerical values.

Solution
Use the summaryStatistics method in IntStream, DoubleStream, and LongStream.

Discussion
The primitive streams IntStream, DoubleStream, and LongStream add methods to
the Stream interface that work for primitive types. One of those methods is summary
Statistics, shown in Example 3-42.

Example 3-42. SummaryStatistics

DoubleSummaryStatistics stats = DoubleStream.generate(Math::random)
 .limit(1_000_000)
 .summaryStatistics();

System.out.println(stats);

System.out.println("count: " + stats.getCount());
System.out.println("min : " + stats.getMin());
System.out.println("max : " + stats.getMax());
System.out.println("sum : " + stats.getSum());
System.out.println("ave : " + stats.getAverage());

Print using the toString method

3.8 Summary Statistics | 65

4 Source: http://www.spotrac.com/mlb/payroll/, where you can specify a year or other information.

Java 7 added the capability to use underscores in numerical literals,
as in 1_000_000.

A typical run yields:

DoubleSummaryStatistics{count=1000000, sum=499608.317465, min=0.000001,
 average=0.499608, max=0.999999}
count: 1000000
min : 1.3938598313334438E-6
max : 0.9999988915490642
sum : 499608.31746475823
ave : 0.49960831746475826

The toString implementation of DoubleSummaryStatistics shows all the values, but
the class also has getter methods for the individual quantities: getCount, getSum, get
Max, getMin, and getAverage. With one million doubles, it’s not surprising that the
minimum is close to zero, the maximum is close to 1, the sum is approximately
500,000, and the average is nearly 0.5.

There are two other interesting methods in the DoubleSummaryStatistics class:

void accept(double value)
void combine(DoubleSummaryStatistics other)

The accept method records another value into the summary information. The
combine method combines two DoubleSummaryStatistics objects into one. They are
used when adding data to an instance of the class before computing the results.

As an example, the website Spotrac keeps track of payroll statistics for various sports
teams. In the source code for this book you will find a file holding the team salary
payroll for all 30 teams in Major League Baseball for the 2017 season, taken from this
site.4

The source code in Example 3-43 defines a class called Team that contains an id, a
team name, and a total salary.

Example 3-43. Team class contains id, name, and salary

public class Team {
 private static final NumberFormat nf = NumberFormat.getCurrencyInstance();

 private int id;
 private String name;

66 | Chapter 3: Streams

http://www.spotrac.com/mlb/payroll/
http://www.spotrac.com

 private double salary;

 // ... constructors, getters and setters ...

 @Override
 public String toString() {
 return "Team{" +
 "id=" + id +
 ", name='" + name + '\'' +
 ", salary=" + nf.format(salary) +
 '}';
 }
}

After parsing the team salary file, the results are:

Team{id=1, name='Los Angeles Dodgers', salary=$245,269,535.00}
Team{id=2, name='Boston Red Sox', salary=$202,135,939.00}
Team{id=3, name='New York Yankees', salary=$202,095,552.00}
...
Team{id=28, name='San Diego Padres', salary=$73,754,027.00}
Team{id=29, name='Tampa Bay Rays', salary=$73,102,766.00}
Team{id=30, name='Milwaukee Brewers', salary=$62,094,433.00}

There are now two ways to compute the summary statistics on the collection of
teams. The first is to use the three-argument collect method as in Example 3-44.

Example 3-44. Collect with a Supplier, accumulator, and combiner

DoubleSummaryStatistics teamStats = teams.stream()
 .mapToDouble(Team::getSalary)
 .collect(DoubleSummaryStatistics::new,
 DoubleSummaryStatistics::accept,
 DoubleSummaryStatistics::combine);

This version of the collect method is discussed in Recipe 4.9. Here it relies on a con‐
structor reference to supply an instance of DoubleSummaryStatistics, the accept
method to add another value to an existing DoubleSummaryStatistics object, and
the combine method to combine two separate DoubleSummaryStatistics objects into
one.

The results are (formatted for easy reading):

30 teams
 sum = $4,232,271,100.00
 min = $62,094,433.00
 max = $245,269,535.00
 ave = $141,075,703.33

The recipe on downstream collectors (Recipe 4.6) shows an alternative way to com‐
pute the same data. In this case, the summary is computed as in Example 3-45.

3.8 Summary Statistics | 67

5 Of course, another lesson of this recipe is that if you can find a way to play Major League Baseball, you proba‐
bly ought to consider it, even if only for a short time. Java will still be here when you’re done.

Example 3-45. Collect using summarizingDouble

teamStats = teams.stream()
 .collect(Collectors.summarizingDouble(Team::getSalary));

The argument to the Collectors.summarizingDouble method is the salary for each
team. Either way, the result is the same.

The summary statistics classes are essentially a “poor developer’s” approach to statis‐
tics. They’re limited to only the properties shown (count, max, min, sum, and aver‐
age), but if those are all you need, it’s nice to know the library provides them auto‐
matically.5

See Also
Summary statistics is a special form of a reduction operation. Others appear in Recipe
3.3. Downstream collectors are covered in Recipe 4.6. The multi-argument collect
method is discussed in Recipe 4.9.

3.9 Finding the First Element in a Stream
Problem
You wish to find the first element in a stream that satisfies a particular condition.

Solution
Use the findFirst or findAny method after applying a filter.

Discussion
The findFirst and findAny methods in java.util.stream.Stream return an
Optional describing the first element of a stream. Neither takes an argument, imply‐
ing that any mapping or filtering operations have already been done.

For example, given a list of integers, to find the first even number, apply an even-
number filter and then use findFirst, as in Example 3-46.

Example 3-46. Finding the first even integer

Optional<Integer> firstEven = Stream.of(3, 1, 4, 1, 5, 9, 2, 6, 5)
 .filter(n -> n % 2 == 0)

68 | Chapter 3: Streams

 .findFirst();

System.out.println(firstEven);

Prints Optional[4]

If the stream is empty, the return value is an empty Optional (see Example 3-47).

Example 3-47. Using findFirst on an empty stream

Optional<Integer> firstEvenGT10 = Stream.of(3, 1, 4, 1, 5, 9, 2, 6, 5)
 .filter(n -> n > 10)
 .filter(n -> n % 2 == 0)
 .findFirst();

System.out.println(firstEvenGT10);

Prints Optional.empty

Since the code returns the first element after applying the filter, you might think that
it involves a lot of wasted work. Why apply a modulus operation to all the elements
and then pick just the first one? Stream elements are actually processed one by one,
so this isn’t a problem. This is discussed in Recipe 3.13.

If the stream has no encounter order, then any element may be returned. In the cur‐
rent example, the stream does have an encounter order, so the “first” even number (in
the original example) is always 4, whether we do the search using a sequential or a par‐
allel stream. See Example 3-48.

Example 3-48. Using firstEven in parallel

firstEven = Stream.of(3, 1, 4, 1, 5, 9, 2, 6, 5)
 .parallel()
 .filter(n -> n % 2 == 0)
 .findFirst();

System.out.println(firstEven);

Always prints Optional[4]

That feels bizarre at first. Why would you get the same value back even though sev‐
eral numbers are being processed at the same time? The answer lies in the notion of
encounter order.

The API defines encounter order as the order in which the source of data makes its
elements available. A List and an array both have an encounter order, but a Set does
not.

3.9 Finding the First Element in a Stream | 69

6 Thanks to Stuart Marks for this explanation.

There is also a method called unordered in BaseStream (which Stream extends) that
(optionally!) returns an unordered stream as an intermediate operation, though it
may not.

Sets and Encounter Order
HashSet instances have no defined encounter order, but if you initialize one with the
same data repeatedly (in Java 8) you will get the same order of elements each time.
That means using findFirst will give the same result each time as well. The method
documentation says that findFirst may give a different result on unordered streams,
but the current implementation doesn’t change its behavior just because the stream is
unordered.

To get a Set with a different encounter order, you can add and remove enough ele‐
ments to force a rehash. For example:

List<String> wordList = Arrays.asList(
 "this", "is", "a", "stream", "of", "strings");
Set<String> words = new HashSet<>(wordList);
Set<String> words2 = new HashSet<>(words);

// Now add and remove enough elements to force a rehash
IntStream.rangeClosed(0, 50).forEachOrdered(i ->
 words2.add(String.valueOf(i)));
words2.retainAll(wordList);

// The sets are equal, but have different element ordering
System.out.println(words.equals(words2));
System.out.println("Before: " + words);
System.out.println("After : " + words2);

The outputs will be something like:

true
Before: [a, strings, stream, of, this, is]
After : [this, is, strings, stream, of, a]

The ordering is different, so the result of findFirst will be different.

In Java 9, the new immutable sets (and maps) are randomized, so their iteration
orders will change from run to run, even if they are initialized the same way every
time.6

The findAny method returns an Optional describing some element of the stream, or
an empty Optional if the stream is empty. In this case, the behavior of the operation

70 | Chapter 3: Streams

7 To be serious for a moment, it’s not a good idea to catch and ignore any exception. It’s just fairly common to
do so with InterruptedException. That doesn’t make it a great idea, though.

is explicitly nondeterministic, meaning it is free to select any element of the stream.
This allows optimization in parallel operations.

To demonstrate this, consider returning any element from an unordered, parallel
stream of integers. Example 3-49 introduces an artificial delay by mapping each ele‐
ment to itself after a random delay of up to 100 milliseconds.

Example 3-49. Using findAny in parallel after a random delay

public Integer delay(Integer n) {
 try {
 Thread.sleep((long) (Math.random() * 100));
 } catch (InterruptedException ignored) {
 }
 return n;
}

// ...

Optional<Integer> any = Stream.of(3, 1, 4, 1, 5, 9, 2, 6, 5)
 .unordered()
 .parallel()
 .map(this::delay)
 .findAny();

System.out.println("Any: " + any);

The only exception in Java that it is OK to catch and ignore7

We don’t care about order

Use the common fork-join pool in parallel

Introduce a random delay

Return the first element, regardless of encounter order

The output now could be any of the given numbers, depending on which thread gets
there first.

Both findFirst and findAny are short-circuiting, terminal operations. A short-
circuiting operation may produce a finite stream when presented with an infinite one.
A terminal operation is short-circuiting if it may terminate in finite time even when
presented with infinite input.

3.9 Finding the First Element in a Stream | 71

8 This demo assumes that the delay method has been modified to print the name of the current thread along
with the value it is processing.

Note that the examples used in this recipe demonstrate that sometimes parallelization
can hurt rather than help performance. Streams are lazy, meaning they will only pro‐
cess as many elements as are necessary to satisfy the pipeline. In this case, since the
requirement is simply to return the first element, firing up a fork-join pool is overkill.
See Example 3-50.

Example 3-50. Using findAny on sequential and parallel streams

Optional<Integer> any = Stream.of(3, 1, 4, 1, 5, 9, 2, 6, 5)
 .unordered()
 .map(this::delay)
 .findAny();

System.out.println("Sequential Any: " + any);

any = Stream.of(3, 1, 4, 1, 5, 9, 2, 6, 5)
 .unordered()
 .parallel()
 .map(this::delay)
 .findAny();

System.out.println("Parallel Any: " + any);

Sequential stream (by default)

Parallel stream

Typical output looks like the following (on an eight-core machine, which therefore
uses a fork-join pool with eight threads by default).8

For sequential processing:

main // sequential, so only one thread
Sequential Any: Optional[3]

For parallel processing:

ForkJoinPool.commonPool-worker-1
ForkJoinPool.commonPool-worker-5
ForkJoinPool.commonPool-worker-3
ForkJoinPool.commonPool-worker-6
ForkJoinPool.commonPool-worker-7
main
ForkJoinPool.commonPool-worker-2
ForkJoinPool.commonPool-worker-4
Parallel Any: Optional[1]

72 | Chapter 3: Streams

The sequential stream only needs to access one element, which it then returns, short-
circuiting the process. The parallel stream fires up eight different threads, finds one
element, and shuts them all down. The parallel stream therefore accesses many values
it doesn’t need.

Again, the key concept is that of encounter order with streams. If the stream has an
encounter order, then findFirst will always return the same value. The findAny
method is allowed to return any element, making it more appropriate for parallel
operations.

See Also
Lazy streams are discussed in Recipe 3.13. Parallel streams are in Chapter 9.

3.10 Using anyMatch, allMatch, and noneMatch
Problem
You wish to determine if any elements in a stream match a Predicate, or if all match,
or if none match.

Solution
Use the methods anyMatch, allMatch, and noneMatch on the Stream interface, each
of which returns a boolean.

Discussion
The signatures of the anyMatch, allMatch, and noneMatch methods on Stream are:

boolean anyMatch(Predicate<? super T> predicate)
boolean allMatch(Predicate<? super T> predicate)
boolean noneMatch(Predicate<? super T> predicate)

Each does exactly what it sounds like. As an example, consider a prime number cal‐
culator. A number is prime if none of the integers from 2 up to the value minus 1
evenly divide into it.

A trivial way to check if a number is prime is to compute the modulus of the number
from every number from 2 up to its square root, rounded up, as in Example 3-51.

Example 3-51. Prime number check

public boolean isPrime(int num) {
 int limit = (int) (Math.sqrt(num) + 1);
 return num == 2 || num > 1 && IntStream.range(2, limit)

3.10 Using anyMatch, allMatch, and noneMatch | 73

 .noneMatch(divisor -> num % divisor == 0);
}

Upper limit for check

Using noneMatch

The noneMatch method makes the calculation particularly simple.

BigInteger and Primes
Interestingly, the java.math.BigInteger class has the method isProbablyPrime,
which has the following signature:

boolean isProbablyPrime(int certainty)

If the method returns false, the value is definitely composite. For true, however, the
certainty argument comes into play.

The value of certainty represents the amount of uncertainty that the caller is willing
to tolerate. If the method returns true, the probability that the number is actually
prime exceeds 1 - 1/2^{certainty}, so a certainty of 2 implies a probability of 0.5,
a certainty of 3 implies 0.75, 4 implies 0.875, 5 implies 0.9375, and so on.

Asking for greater values of certainty makes the algorithm take longer.

Two ways to test the calculation are shown in Example 3-52.

Example 3-52. Tests for the prime calculation

private Primes calculator = new Primes();

@Test
public void testIsPrimeUsingAllMatch() throws Exception {
 assertTrue(IntStream.of(2, 3, 5, 7, 11, 13, 17, 19)
 .allMatch(calculator::isPrime));
}

@Test
public void testIsPrimeWithComposites() throws Exception {
 assertFalse(Stream.of(4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20)
 .anyMatch(calculator::isPrime));
}

Use allMatch for simplicity

Test with composites

74 | Chapter 3: Streams

The first test invokes the allMatch method, whose argument is a Predicate, on a
stream of known primes and returns true only if all the values are prime.

The second test uses anyMatch with a collection of composite (nonprime) numbers,
and asserts that none of them satisfy the predicate.

The anyMatch, allMatch, and noneMatch methods are convenient ways to check a
stream of values against a particular condition.

You need to be aware of one problematic edge condition. The anyMatch, allMatch,
and noneMatch methods don’t necessarily behave intuitively on empty streams, as the
tests in Example 3-53 show.

Example 3-53. Testing empty streams

@Test
public void emptyStreamsDanger() throws Exception {
 assertTrue(Stream.empty().allMatch(e -> false));
 assertTrue(Stream.empty().noneMatch(e -> true));
 assertFalse(Stream.empty().anyMatch(e -> true));
}

For both allMatch and noneMatch, the Javadocs say, “if the stream is empty then true
is returned and the predicate is not evaluated,” so in both of these cases the predicate
can be anything. For anyMatch, the method returns false on an empty stream. That
can lead to very difficult-to-diagnose errors, so be careful.

The allMatch and noneMatch methods return true and the any
Match method returns false on an empty stream regardless of the
supplied predicate. Any supplied predicate is not evaluated when
the stream is empty.

See Also
Predicates are discussed in Recipe 2.3.

3.11 Stream flatMap Versus map
Problem
You have a stream and you need to transform the elements in some way, but you’re
not sure whether to use map or flatMap.

3.11 Stream flatMap Versus map | 75

Solution
Use map if each element is transformed into a single value. Use flatMap if each ele‐
ment will be transformed to multiple values and the resulting stream needs to be
“flattened.”

Discussion
Both the map and the flatMap methods on Stream take a Function as an argument.
The signature for map is:

<R> Stream<R> map(Function<? super T,? extends R> mapper)

A Function takes a single input and transforms it into a single output. In the case of
map, a single input of type T is transformed into a single output of type R.

Consider a Customer class, where a customer has a name and a collection of Order.
To keep things simple, the Order class just has an integer ID. Both classes are shown
in Example 3-54.

Example 3-54. A one-to-many relationship

public class Customer {
 private String name;
 private List<Order> orders = new ArrayList<>();

 public Customer(String name) {
 this.name = name;
 }

 public String getName() { return name; }
 public List<Order> getOrders() { return orders; }

 public Customer addOrder(Order order) {
 orders.add(order);
 return this;
 }
}

public class Order {
 private int id;

 public Order(int id) {
 this.id = id;
 }

 public int getId() { return id; }
}

Now create a few customers and add some orders, as in Example 3-55.

76 | Chapter 3: Streams

Example 3-55. Sample customers with orders

Customer sheridan = new Customer("Sheridan");
Customer ivanova = new Customer("Ivanova");
Customer garibaldi = new Customer("Garibaldi");

sheridan.addOrder(new Order(1))
 .addOrder(new Order(2))
 .addOrder(new Order(3));
ivanova.addOrder(new Order(4))
 .addOrder(new Order(5));

List<Customer> customers = Arrays.asList(sheridan, ivanova, garibaldi);

A map operation is done when there is a one-to-one relationship between the input
parameter and the output type. In this case, you can map the customers to names and
print them, as in Example 3-56.

Example 3-56. Using map on Customer to name

customers.stream()
 .map(Customer::getName)
 .forEach(System.out::println);

Stream<Customer>

Stream<String>

Sheridan, Ivanova, Garibaldi

If instead of mapping customers to name, you map them to orders, you get a collec‐
tion of collections, as in Example 3-57.

Example 3-57. Using map on Customer to orders

customers.stream()
 .map(Customer::getOrders)
 .forEach(System.out::println);

customers.stream()
 .map(customer -> customer.getOrders().stream())
 .forEach(System.out::println);

Stream<List<Order>>

[Order{id=1}, Order{id=2}, Order{id=3}], [Order{id=4}, Order{id=5}],

[]

3.11 Stream flatMap Versus map | 77

Stream<Stream<Order>>

The mapping operation results in a Stream<List<Order>>, where the last list is
empty. If you invoke the stream method on the lists of orders, you get a
Stream<Stream<Order>>, where the last inner stream is an empty stream.

This is where the flatMap method comes in. The flatMap method has the following
signature:

<R> Stream<R> flatMap(Function<? super T,? extends Stream<? extends R>> mapper)

For each generic argument T, the function produces a Stream<R> rather than just an
R. The flatMap method then “flattens” the resulting stream by removing each element
from the individual streams and adding them to the output.

The Function argument to flatMap takes a generic input argu‐
ment, but produces a Stream of output types.

The code in Example 3-58 demonstrates flatMap.

Example 3-58. Using flatMap on Customer orders

customers.stream()
 .flatMap(customer -> customer.getOrders().stream())
 .forEach(System.out::println);

Stream<Customer>

Stream<Order>

Order{id=1}, Order{id=2}, Order{id=3}, Order{id=4}, Order{id=5}

The result of the flatMap operation is to produce a Stream<Order>, which has been
flattened so you don’t need to worry about the nested streams any more.

The two key concepts for flatMap are:

• The Function argument to flatMap produces a Stream of output values.
• The resulting stream of streams is flattened into a single stream of results.

If you keep those ideas in mind, you should find the flatMap method quite helpful.

78 | Chapter 3: Streams

As a final note, the Optional class also has a map method and a flatMap method. See
Recipes 6.4 and 6.5 for details.

See Also
The flatMap method is also demonstrated in Recipe 6.5. flatMap in Optional is dis‐
cussed in Recipe 6.4.

3.12 Concatenating Streams
Problem
You want to combine two or more streams into a single one.

Solution
The concat method on Stream combines two streams, which works if the number of
streams is small. Otherwise use flatMap.

Discussion
Say you acquire data from several locations, and you want to process every element in
all of them using streams. One mechanism you can use is the concat method in
Stream, whose signature is:

static <T> Stream<T> concat(Stream<? extends T> a, Stream<? extends T> b)

This method creates a lazily concatenated stream that accesses all the elements of the
first stream, followed by all the elements of the second stream. As the Javadocs say,
the resulting stream is ordered if the input streams are ordered, and the resulting
stream is parallel if either of the input streams are parallel. Closing the returned
stream also closes the underlying input streams.

Both input streams must hold elements of the same type.

As a simple example of concatenating streams, see Example 3-59.

Example 3-59. Concatenating two streams

@Test
public void concat() throws Exception {
 Stream<String> first = Stream.of("a", "b", "c").parallel();

3.12 Concatenating Streams | 79

 Stream<String> second = Stream.of("X", "Y", "Z");
 List<String> strings = Stream.concat(first, second)
 .collect(Collectors.toList());
 List<String> stringList = Arrays.asList("a", "b", "c", "X", "Y", "Z");
 assertEquals(stringList, strings);
}

First elements followed by second elements

If you want to add a third stream to the mix, you can nest the concatenations,
Example 3-60.

Example 3-60. Concatenating multiple streams

@Test
public void concatThree() throws Exception {
 Stream<String> first = Stream.of("a", "b", "c").parallel();
 Stream<String> second = Stream.of("X", "Y", "Z");
 Stream<String> third = Stream.of("alpha", "beta", "gamma");

 List<String> strings = Stream.concat(Stream.concat(first, second), third)
 .collect(Collectors.toList());
 List<String> stringList = Arrays.asList("a", "b", "c",
 "X", "Y", "Z", "alpha", "beta", "gamma");
 assertEquals(stringList, strings);
}

This nesting approach works, but the Javadocs contain a note about this:
Use caution when constructing streams from repeated concatenation. Accessing an ele‐
ment of a deeply concatenated stream can result in deep call chains, or even StackOver
flowException

The idea is that the concat method essentially builds a binary tree of streams, which
can grow unwieldy if too many are used.

An alternative approach is to use the reduce method to perform multiple concatena‐
tions, as in Example 3-61.

Example 3-61. Concatenating with reduce

@Test
public void reduce() throws Exception {
 Stream<String> first = Stream.of("a", "b", "c").parallel();
 Stream<String> second = Stream.of("X", "Y", "Z");
 Stream<String> third = Stream.of("alpha", "beta", "gamma");
 Stream<String> fourth = Stream.empty();

 List<String> strings = Stream.of(first, second, third, fourth)
 .reduce(Stream.empty(), Stream::concat)

80 | Chapter 3: Streams

 .collect(Collectors.toList());

 List<String> stringList = Arrays.asList("a", "b", "c",
 "X", "Y", "Z", "alpha", "beta", "gamma");
 assertEquals(stringList, strings);
}

Using reduce with an empty stream and a binary operator

This works because the concat method when used as a method reference is a binary
operator. Note this is simpler code, but doesn’t fix the potential stack overflow prob‐
lem.

Instead, when combining streams, the flatMap method is a natural solution, as in
Example 3-62.

Example 3-62. Using flatMap to concatenate streams

@Test
public void flatMap() throws Exception {
 Stream<String> first = Stream.of("a", "b", "c").parallel();
 Stream<String> second = Stream.of("X", "Y", "Z");
 Stream<String> third = Stream.of("alpha", "beta", "gamma");
 Stream<String> fourth = Stream.empty();

 List<String> strings = Stream.of(first, second, third, fourth)
 .flatMap(Function.identity())
 .collect(Collectors.toList());
 List<String> stringList = Arrays.asList("a", "b", "c",
 "X", "Y", "Z", "alpha", "beta", "gamma");
 assertEquals(stringList, strings);
}

This approach works, but also has its quirks. Using concat creates a parallel stream if
any of the input streams are parallel, but flatMap does not (Example 3-63).

Example 3-63. Parallel or not?

@Test
public void concatParallel() throws Exception {
 Stream<String> first = Stream.of("a", "b", "c").parallel();
 Stream<String> second = Stream.of("X", "Y", "Z");
 Stream<String> third = Stream.of("alpha", "beta", "gamma");

 Stream<String> total = Stream.concat(Stream.concat(first, second), third);

 assertTrue(total.isParallel());
}

@Test

3.12 Concatenating Streams | 81

public void flatMapNotParallel() throws Exception {
 Stream<String> first = Stream.of("a", "b", "c").parallel();
 Stream<String> second = Stream.of("X", "Y", "Z");
 Stream<String> third = Stream.of("alpha", "beta", "gamma");
 Stream<String> fourth = Stream.empty();

 Stream<String> total = Stream.of(first, second, third, fourth)
 .flatMap(Function.identity());
 assertFalse(total.isParallel());
}

Still, you can always make the stream parallel if you want by calling the parallel
method, as long as you have not yet processed the data (Example 3-64).

Example 3-64. Making a flatMap stream parallel

@Test
public void flatMapParallel() throws Exception {
 Stream<String> first = Stream.of("a", "b", "c").parallel();
 Stream<String> second = Stream.of("X", "Y", "Z");
 Stream<String> third = Stream.of("alpha", "beta", "gamma");
 Stream<String> fourth = Stream.empty();

 Stream<String> total = Stream.of(first, second, third, fourth)
 .flatMap(Function.identity());
 assertFalse(total.isParallel());

 total = total.parallel();
 assertTrue(total.isParallel());
}

Since flatMap is an intermediate operation, the stream can still be modified using the
parallel method, as shown.

In short, the concat method is effective for two streams, and can be used as part of a
general reduction operation, but flatMap is a natural alternative.

See Also
See the excellent blog post online at http://bit.ly/efficient-multistream-concatentation
for details, performance considerations, and more.

The flatMap method on Stream is discussed in Recipe 3.11.

82 | Chapter 3: Streams

http://bit.ly/efficient-multistream-concatentation

9 Thanks to the inimitable Venkat Subramaniam for the basis of this example.

3.13 Lazy Streams
Problem
You want to process the minimum number of stream elements necessary to satisfy a
condition.

Solution
Streams are already lazy and do not process elements until a terminal condition is
reached. Then each element is processed individually. If there is a short-circuiting
operation at the end, the stream processing will terminate whenever all the conditions
are satisfied.

Discussion
When you first encounter stream processing, it’s tempting to think that much more
effort is being expended than necessary. For example, consider taking a range of
numbers between 100 and 200, doubling each of them, and then finding the first
value that is evenly divisible by three, as in Example 3-65.9

Example 3-65. First double between 200 and 400 divisible by 3

OptionalInt firstEvenDoubleDivBy3 = IntStream.range(100, 200)
 .map(n -> n * 2)
 .filter(n -> n % 3 == 0)
 .findFirst();
System.out.println(firstEvenDoubleDivBy3);

Prints Optional[204]

If you didn’t know better, you might think a lot of wasted effort was expended:

• The range of numbers from 100 to 199 is created (100 operations)
• Each number is doubled (100 operations)
• Each number is checked for divisibility (100 operations)
• The first element of the resulting stream is returned (1 operation)

Since the first value that satisfies the stream requirements is 204, why process all the
other numbers?

3.13 Lazy Streams | 83

Fortunately, stream processing doesn’t work that way. Streams are lazy, in that no
work is done until the terminal condition is reached, and then each element is pro‐
cessed through the pipeline individually. To demonstrate this, Example 3-66 shows
the same code, but refactored to show each element as it passes through the pipeline.

Example 3-66. Explicit processing of each stream element

public int multByTwo(int n) {
 System.out.printf("Inside multByTwo with arg %d%n", n);
 return n * 2;
}

public boolean divByThree(int n) {
 System.out.printf("Inside divByThree with arg %d%n", n);
 return n % 3 == 0;
}

// ...

firstEvenDoubleDivBy3 = IntStream.range(100, 200)
 .map(this::multByTwo)
 .filter(this::divByThree)
 .findFirst();

Method reference for multiply by two, with print

Method reference for modulus 3, with print

The output this time is:

Inside multByTwo with arg 100
Inside divByThree with arg 200
Inside multByTwo with arg 101
Inside divByThree with arg 202
Inside multByTwo with arg 102
Inside divByThree with arg 204
First even divisible by 3 is Optional[204]

The value 100 goes through the map to produce 200, but does not pass the filter, so the
stream moves to the value 101. That is mapped to 202, which also doesn’t pass the
filter. Then the next value, 102, is mapped to 204, but that is divisible by 3, so it
passes. The stream processing terminates after processing only three values, using six
operations.

This is one of the great advantages of stream processing over working with collec‐
tions directly. With a collection, all of the operations would have to be performed
before moving to the next step. With streams, the intermediate operations form a
pipeline, but nothing happens until the terminal operation is reached. Then the
stream processes only as many values as are necessary.

84 | Chapter 3: Streams

This isn’t always relevant—if any of the operations are stateful, like sorting or adding
them all together, then all the values are going to have to be processed anyway. But
when you have stateless operations followed by a short-circuiting, terminal operation,
the advantage is clear.

See Also
The differences between findFirst and findAny are discussed in Recipe 3.9.

3.13 Lazy Streams | 85

CHAPTER 4

Comparators and Collectors

Java 8 enhances the Comparator interface with several static and default methods that
make sorting operations much simpler. It’s now possible to sort a collection of POJOs
by one property, then equal first properties by a second, then by a third, and so on,
just with a series of library calls.

Java 8 also adds a new utility class called java.util.stream.Collectors, which pro‐
vides static methods to convert from streams back into various types of collections.
The collectors can also be applied “downstream,” meaning that they can postprocess a
grouping or partitioning operation.

The recipes in this chapter illustrate all these concepts.

4.1 Sorting Using a Comparator
Problem
You want to sort objects.

Solution
Use the sorted method on Stream with a Comparator, either implemented with a
lambda expression or generated by one of the static compare methods on the
Comparator interface.

Discussion
The sorted method on Stream produces a new, sorted stream using the natural
ordering for the class. The natural ordering is specified by implementing the
java.util.Comparable interface.

87

For example, consider sorting a collection of strings, as shown in Example 4-1.

Example 4-1. Sorting strings lexicographically

private List<String> sampleStrings =
 Arrays.asList("this", "is", "a", "list", "of", "strings");

public List<String> defaultSort() {
 Collections.sort(sampleStrings);
 return sampleStrings;
}

public List<String> defaultSortUsingStreams() {
 return sampleStrings.stream()
 .sorted()
 .collect(Collectors.toList());
}

Default sort from Java 7 and below

Default sort from Java 8 and above

Java has had a utility class called Collections ever since the collections framework
was added back in version 1.2. The static sort method on Collections takes a List
as an argument, but returns void. The sort is destructive, modifying the supplied col‐
lection. This approach does not follow the functional principles supported by Java 8,
which emphasize immutability.

Java 8 uses the sorted method on streams to do the same sorting, but produces a new
stream rather than modifying the original collection. In this example, after sorting the
collection, the returned list is sorted according to the natural ordering of the class.
For strings, the natural ordering is lexicographical, which reduces to alphabetical
when all the strings are lowercase, as in this example.

If you want to sort the strings in a different way, then there is an overloaded sorted
method that takes a Comparator as an argument.

Example 4-2 shows a length sort for strings in two different ways.

Example 4-2. Sorting strings by length

public List<String> lengthSortUsingSorted() {
 return sampleStrings.stream()
 .sorted((s1, s2) -> s1.length() - s2.length())
 .collect(toList());
}

public List<String> lengthSortUsingComparator() {

88 | Chapter 4: Comparators and Collectors

 return sampleStrings.stream()
 .sorted(Comparator.comparingInt(String::length))
 .collect(toList());
}

Using a lambda for the Comparator to sort by length

Using a Comparator using the comparingInt method

The argument to the sorted method is a java.util.Comparator, which is a func‐
tional interface. In lengthSortUsingSorted, a lambda expression is provided to
implement the compare method in Comparator. In Java 7 and earlier, the implementa‐
tion would normally be provided by an anonymous inner class, but here a lambda
expression is all that is required.

Java 8 added sort(Comparator) as a default instance method on
List, equivalent to the static void sort(List, Comparator)
method on Collections. Both are destructive sorts that return
void, so the sorted(Comparator) approach on streams discussed
here (which returns a new, sorted stream) is still preferred.

The second method, lengthSortUsingComparator, takes advantage of one of the
static methods added to the Comparator interface. The comparingInt method takes
an argument of type ToIntFunction that transforms the string into an int, called a
keyExtractor in the docs, and generates a Comparator that sorts the collection using
that key.

The added default methods in Comparator are extremely useful. While you can write
a Comparator that sorts by length pretty easily, when you want to sort by more than
one field that can get complicated. Consider sorting the strings by length, then equal-
length strings alphabetically. Using the default and static methods in Comparator, that
becomes almost trivial, as shown in Example 4-3.

Example 4-3. Sorting by length, then equal lengths lexicographically

public List<String> lengthSortThenAlphaSort() {
 return sampleStrings.stream()
 .sorted(comparing(String::length)
 .thenComparing(naturalOrder()))
 .collect(toList());
}

Sort by length, then equal-length strings alphabetically

4.1 Sorting Using a Comparator | 89

Comparator provides a default method called thenComparing. Just like comparing, it
also takes a Function as an argument, again known as a keyExtractor. Chaining this
to the comparing method returns a Comparator that compares by the first quantity,
then equal first by the second, and so on.

Static imports often make the code easier to read. Once you get used to the static
methods in both Comparator and Collectors, this becomes an easy way to simplify
the code. In this case, the comparing and naturalOrder methods have been statically
imported.

This approach works on any class, even if it does not implement Comparable. Con‐
sider the Golfer class shown in Example 4-4.

Example 4-4. A class for golfers

public class Golfer {
 private String first;
 private String last;
 private int score;

 // ... other methods ...
}

To create a leader board at a tournament, it makes sense to sort by score, then by last
name, and then by first name. Example 4-5 shows how to do that.

Example 4-5. Sorting golfers

private List<Golfer> golfers = Arrays.asList(
 new Golfer("Jack", "Nicklaus", 68),
 new Golfer("Tiger", "Woods", 70),
 new Golfer("Tom", "Watson", 70),
 new Golfer("Ty", "Webb", 68),
 new Golfer("Bubba", "Watson", 70)
);

public List<Golfer> sortByScoreThenLastThenFirst() {
 return golfers.stream()
 .sorted(comparingInt(Golfer::getScore)
 .thenComparing(Golfer::getLast)
 .thenComparing(Golfer::getFirst))
 .collect(toList());
}

The output from calling sortByScoreThenLastThenFirst is shown in Example 4-6.

90 | Chapter 4: Comparators and Collectors

1 Ty Webb, of course, is from the movie Caddyshack. Judge Smails: “Ty, what did you shoot today?” Ty Webb:
“Oh, Judge, I don’t keep score.” Smails: “Then how do you measure yourself with other golfers?” Webb: “By
height.” Adding a sort by height is left to the reader as an easy exercise.

Example 4-6. Sorted golfers

Golfer{first='Jack', last='Nicklaus', score=68}
Golfer{first='Ty', last='Webb', score=68}
Golfer{first='Bubba', last='Watson', score=70}
Golfer{first='Tom', last='Watson', score=70}
Golfer{first='Tiger', last='Woods', score=70}

The golfers are sorted by score, so Nicklaus and Webb come before Woods and both
Watsons.1 Then equal scores are sorted by last name, putting Nicklaus before Webb
and Watson before Woods. Finally, equal scores and last names are sorted by first
name, putting Bubba Watson before Tom Watson.

The default and static methods in Comparator, along with the new sorted method on
Stream, makes generating complex sorts easy.

4.2 Converting a Stream into a Collection
Problem
After stream processing, you want to convert to a List, Set, or other linear collec‐
tion.

Solution
Use the toList, toSet, or toCollection methods in the Collectors utility class.

Discussion
Idiomatic Java 8 often involves passing elements of a stream through a pipeline of
intermediate operations, finishing with a terminal operation. One terminal operation
is the collect method, which is used to convert a Stream into a collection.

The collect method in Stream has two overloaded versions, as shown in
Example 4-7.

Example 4-7. The collect method in Stream<T>

<R,A> R collect(Collector<? super T,A,R> collector)
<R> R collect(Supplier<R> supplier,
 BiConsumer<R,? super T> accumulator,
 BiConsumer<R,R> combiner)

4.2 Converting a Stream into a Collection | 91

2 The names in this recipe come from Mystery Men, one of the great overlooked movies of the ’90s. (Mr. Furi‐
ous: “Lance Hunt is Captain Amazing.” The Shoveler: “Lance Hunt wears glasses. Captain Amazing doesn’t
wear glasses.” Mr. Furious: “He takes them off when he transforms.” The Shoveler: “That doesn’t make any
sense! He wouldn’t be able to see!”)

This recipe deals with the first version, which takes a Collector as an argument. Col‐
lectors perform a “mutable reduction operation” that accumulates elements into a
result container. Here the result will be a collection.

Collector is an interface, so it can’t be instantiated. The interface contains a static of
method for producing them, but there is often a better, or at least easier, way.

The Java 8 API frequently uses a static method called of as a fac‐
tory method.

Here, the static methods in the Collectors class will be used to produce Collector
instances, which are used as the argument to Stream.collect to populate a collec‐
tion.

A simple example that creates a List is shown in Example 4-8.2

Example 4-8. Creating a List

List<String> superHeroes =
 Stream.of("Mr. Furious", "The Blue Raja", "The Shoveler",
 "The Bowler", "Invisible Boy", "The Spleen", "The Sphinx")
 .collect(Collectors.toList());

This method creates and populates an ArrayList with the given stream elements.
Creating a Set is just as easy, as in Example 4-9.

Example 4-9. Creating a Set

Set<String> villains =
 Stream.of("Casanova Frankenstein", "The Disco Boys",
 "The Not-So-Goodie Mob", "The Suits", "The Suzies",
 "The Furriers", "The Furriers")
 .collect(Collectors.toSet());
}

Duplicate name, removed when converting to a Set

92 | Chapter 4: Comparators and Collectors

This method creates an instance of HashSet and populates it, leaving out any dupli‐
cates.

Both of these examples used the default data structures—ArrayList for List, and
HashSet for Set. If you wish to specify a particular data structure, you should use the
Collectors.toCollection method, which takes a Supplier as an argument.
Example 4-10 shows the sample code.

Example 4-10. Creating a linked list

List<String> actors =
 Stream.of("Hank Azaria", "Janeane Garofalo", "William H. Macy",
 "Paul Reubens", "Ben Stiller", "Kel Mitchell", "Wes Studi")
 .collect(Collectors.toCollection(LinkedList::new));
}

The argument to the toCollection method is a collection Supplier, so the construc‐
tor reference to LinkedList is provided here. The collect method instantiates a
LinkedList and then populates it with the given names.

The Collectors class also contains a method to create an array of objects. There are
two overloads of the toArray method:

 Object[] toArray();
<A> A[] toArray(IntFunction<A[]> generator);

The former returns an array containing the elements of this stream, but without spec‐
ifying the type. The latter takes a function that produces a new array of desired type
with length equal to the size of the stream, and is easiest to use with an array con‐
structor reference as shown in Example 4-11.

Example 4-11. Creating an array

String[] wannabes =
 Stream.of("The Waffler", "Reverse Psychologist", "PMS Avenger")
 .toArray(String[]::new);
}

Array constructor reference as a Supplier

The returned array is of the specified type, whose length matches the number of ele‐
ments in the stream.

To transform into a Map, the Collectors.toMap method requires two Function
instances—one for the keys and one for the values.

Consider an Actor POJO, which wraps a name and a role. If you have a Set of Actor
instances from a given movie, the code in Example 4-12 creates a Map from them.

4.2 Converting a Stream into a Collection | 93

Example 4-12. Creating a Map

Set<Actor> actors = mysteryMen.getActors();

Map<String, String> actorMap = actors.stream()
 .collect(Collectors.toMap(Actor::getName, Actor::getRole));

actorMap.forEach((key,value) ->
 System.out.printf("%s played %s%n", key, value));

Functions to produce keys and values

The output is

Janeane Garofalo played The Bowler
Greg Kinnear played Captain Amazing
William H. Macy played The Shoveler
Paul Reubens played The Spleen
Wes Studi played The Sphinx
Kel Mitchell played Invisible Boy
Geoffrey Rush played Casanova Frankenstein
Ben Stiller played Mr. Furious
Hank Azaria played The Blue Raja

Similar code works for ConcurrentMap using the toConcurrentMap method.

See Also
Suppliers are discussed in Recipe 2.2. Constructor references are in Recipe 1.3. The
toMap method is also demonstrated in Recipe 4.3.

4.3 Adding a Linear Collection to a Map
Problem
You want to add a collection of objects to a Map, where the key is one of the object
properties and the value is the object itself.

Solution
Use the toMap method of Collectors, along with Function.identity.

Discussion
This is a short, very focused use case, but when it comes up in practice the solution
here can be quite convenient.

94 | Chapter 4: Comparators and Collectors

Say you had a List of Book instances, where Book is a simple POJO that has an ID, a
name, and a price. An abbreviated form of the Book class is shown in Example 4-13.

Example 4-13. A simple POJO representing a book

public class Book {
 private int id;
 private String name;
 private double price;

 // ... other methods ...
}

Now assume you have a collection of Book instances, as shown in Example 4-14.

Example 4-14. A collection of books

List<Book> books = Arrays.asList(
 new Book(1, "Modern Java Recipes", 49.99),
 new Book(2, "Java 8 in Action", 49.99),
 new Book(3, "Java SE8 for the Really Impatient", 39.99),
 new Book(4, "Functional Programming in Java", 27.64),
 new Book(5, "Making Java Groovy", 45.99)
 new Book(6, "Gradle Recipes for Android", 23.76)
);

In many situations, instead of a List you might want a Map, where the keys are the
book IDs and the values are the books themselves. This is really easy to accomplish
using the toMap method in Collectors, as shown two different ways in
Example 4-15.

Example 4-15. Adding the books to a Map

Map<Integer, Book> bookMap = books.stream()
 .collect(Collectors.toMap(Book::getId, b -> b));

bookMap = books.stream()
 .collect(Collectors.toMap(Book::getId, Function.identity()));

Identity lambda: given an element, return it

Static identity method in Function does the same thing

The toMap method in Collectors takes two Function instances as arguments, the
first of which generates a key and the second of which generates the value from the
provided object. In this case, the key is mapped by the getId method in Book, and the
value is the book itself.

4.3 Adding a Linear Collection to a Map | 95

The first toMap in Example 4-15 uses the getId method to map to the key and an
explicit lambda expression that simply returns its parameter. The second example
uses the static identity method in Function to do the same thing.

The Two Static Identity Methods
The static identity method in Function has the signature

static <T> Function<T,T> identity()

The implementation in the standard library is shown in Example 4-16.

Example 4-16. The static identity method in Function

static <T> Function<T, T> identity() {
 return t -> t;
}

The UnaryOperator class extends Function, but you can’t override a static method. In
the Javadocs, it also declares a static identity method:

static <T> UnaryOperator<T> identity()

Its implementation in the standard library is essentially the same, as shown in
Example 4-17.

Example 4-17. The static identity method in UnaryOperator

static <T> UnaryOperator<T> identity() {
 return t -> t;
}

The differences are only in the way you call them (from the two interface names) and
the corresponding return types. In this case, it doesn’t matter which one you use, but
it’s interesting to see that they’re both there.

Whether you decide to supply an explicit lambda or use the static method is merely a
matter of style. Either way, it is easy to add collection values to a Map where the key is
a property of the object and the value is the object itself.

See Also
Functions are covered in Recipe 2.4, which also discusses unary and binary operators.

96 | Chapter 4: Comparators and Collectors

4.4 Sorting Maps
Problem
You want to sort a Map by key or by value.

Solution
Use the new static methods in the Map.Entry interface.

Discussion
The Map interface has always contained a public, static, inner interface called
Map.Entry, which represents a key-value pair. The Map.entrySet method returns a
Set of Map.Entry elements. Prior to Java 8, the primary methods used in this inter‐
face were getKey and getValue, which do what you’d expect.

In Java 8, the static methods in Table 4-1 have been added.

Table 4-1. Static methods in Map.Entry (from Java 8 docs)
Method Description

comparingByKey() Returns a comparator that compares Map.Entry in
natural order on key

comparingByKey(Comparator<? super K> cmp) Returns a comparator that compares Map.Entry by
key using the given Comparator

comparingByValue() Returns a comparator that compares Map.Entry in
natural order on value

comparingByValue(Comparator<? super V> cmp) Returns a comparator that compares Map.Entry by
value using the given Comparator

To demonstrate how to use them, Example 4-18 generates a Map of word lengths to
number of words in a dictionary. Every Unix system contains a file in the usr/share/
dict/words directory holding the contents of Webster’s 2nd edition dictionary, with
one word per line. The Files.lines method can be used to read a file and produce a
stream of strings containing those lines. In this case, the stream will contain each
word from the dictionary.

Example 4-18. Reading the dictionary file into a Map

System.out.println("\nNumber of words of each length:");
try (Stream<String> lines = Files.lines(dictionary)) {
 lines.filter(s -> s.length() > 20)
 .collect(Collectors.groupingBy(
 String::length, Collectors.counting()))

4.4 Sorting Maps | 97

3 For the record, those five longest words are formaldehydesulphoxylate, pathologicopsychological, scientifico‐
philosophical, tetraiodophenolphthalein, and thyroparathyroidectomize. Good luck with that, spell checker.

 .forEach((len, num) -> System.out.printf("%d: %d%n", len, num));
} catch (IOException e) {
 e.printStackTrace();
}

This example is discussed in Recipe 7.1, but to summarize:

• The file is read inside a try-with-resources block. Stream implements Auto
Closeable, so when the try block exits, Java calls the close method on Stream,
which then calls the close method on File.

• The filter restricts further processing to only words of at least 20 characters in
length.

• The groupingBy method of Collectors takes a Function as the first argument,
representing the classifier. Here, the classifier is the length of each string. If you
only provide one argument, the result is a Map where the keys are the values of
the classifier and the values are lists of elements that match the classifier. In the
case we’re currently examining, groupingBy(String::length) would have pro‐
duced a Map<Integer,List<String>> where the keys are the word lengths and
the values are lists of words of that length.

• In this case, the two-argument version of groupingBy lets you supply another
Collector, called a downstream collector, that postprocesses the lists of words. In
this case, the return type is Map<Integer,Long>, where the keys are the word
lengths and the values are the number of words of that length in the dictionary.

The result is:

Number of words of each length:
21: 82
22: 41
23: 17
24: 5

In other words, there are 82 words of length 21, 41 words of length 22, 17 words of
length 23, and 5 words of length 24.3

The results show that the map is printed in ascending order of word length. In order
to see it in descending order, use Map.Entry.comparingByKey as in Example 4-19.

98 | Chapter 4: Comparators and Collectors

Example 4-19. Sorting the map by key

System.out.println("\nNumber of words of each length (desc order):");
try (Stream<String> lines = Files.lines(dictionary)) {
 Map<Integer, Long> map = lines.filter(s -> s.length() > 20)
 .collect(Collectors.groupingBy(
 String::length, Collectors.counting()));

 map.entrySet().stream()
 .sorted(Map.Entry.comparingByKey(Comparator.reverseOrder()))
 .forEach(e -> System.out.printf("Length %d: %2d words%n",
 e.getKey(), e.getValue()));
} catch (IOException e) {
 e.printStackTrace();
}

After computing the Map<Integer,Long>, this operation extracts the entrySet and
produces a stream. The sorted method on Stream is used to produce a sorted stream
using the provided comparator.

In this case, Map.Entry.comparingByKey generates a comparator that sorts by the
keys, and using the overload that takes a comparator allows the code to specify that
we want it in reverse order.

The sorted method on Stream produces a new, sorted stream that
does not modify the source. The original Map is unaffected.

The result is:

Number of words of each length (desc order):
Length 24: 5 words
Length 23: 17 words
Length 22: 41 words
Length 21: 82 words

The other sorting methods listed in Table 4-1 are used similarly.

See Also
An additional example of sorting a Map by keys or values is shown in Appendix A.
Downstream collectors are discussed in Recipe 4.6. File operations on the dictionary
is part of Recipe 7.1.

4.4 Sorting Maps | 99

4.5 Partitioning and Grouping
Problem
You want to divide a collection of elements into categories.

Solution
The Collectors.partitioningBy method splits elements into those that satisfy a
Predicate and those that do not. The Collectors.groupingBy method produces a
Map of categories, where the values are the elements in each category.

Discussion
Say you have a collection of strings. If you want to split them into those with even
lengths and those with odd lengths, you can use Collectors.partitioningBy, as in
Example 4-20.

Example 4-20. Partitioning strings by even or odd lengths

List<String> strings = Arrays.asList("this", "is", "a", "long", "list", "of",
 "strings", "to", "use", "as", "a", "demo");

Map<Boolean, List<String>> lengthMap = strings.stream()
 .collect(Collectors.partitioningBy(s -> s.length() % 2 == 0));

lengthMap.forEach((key,value) -> System.out.printf("%5s: %s%n", key, value));
//
// false: [a, strings, use, a]
// true: [this, is, long, list, of, to, as, demo]

Partitioning by even or odd length

The signature of the two partitioningBy methods are:

static <T> Collector<T,?,Map<Boolean,List<T>>> partitioningBy(
 Predicate<? super T> predicate)
static <T,D,A> Collector<T,?,Map<Boolean,D>> partitioningBy(
 Predicate<? super T> predicate, Collector<? super T,A,D> downstream)

The return types look rather nasty due to the generics, but you rarely have to deal
with them in practice. Instead, the result of either operation becomes the argument to
the collect method, which uses the generated collector to create the output map
defined by the third generic argument.

The first partitioningBy method takes a single Predicate as an argument. It divides
the elements into those that satisfy the Predicate and those that do not. You will

100 | Chapter 4: Comparators and Collectors

always get a Map as a result that has exactly two entries: a list of values that satisfy the
Predicate, and a list of values that do not.

The overloaded version of the method takes a second argument of type Collector,
called a downstream collector. This allows you to postprocess the lists returned by the
partition, and is discussed in Recipe 4.6.

The groupingBy method performs an operation like a “group by” statement in SQL. It
returns a Map where the keys are the groups and the values are lists of elements in
each group.

If you are getting your data from a database, by all means do any
grouping operations there. The new API methods are convenience
methods for data in memory.

The signature for the groupingBy method is:

static <T,K> Collector<T,?,Map<K,List<T>>> groupingBy(
 Function<? super T,? extends K> classifier)

The Function argument takes each element of the stream and extracts a property to
group by. This time, rather than simply partition the strings into two categories, con‐
sider separating them by length, as in Example 4-21.

Example 4-21. Grouping strings by length

List<String> strings = Arrays.asList("this", "is", "a", "long", "list", "of",
 "strings", "to", "use", "as", "a", "demo");

Map<Integer, List<String>> lengthMap = strings.stream()
 .collect(Collectors.groupingBy(String::length));

lengthMap.forEach((k,v) -> System.out.printf("%d: %s%n", k, v));
//
// 1: [a, a]
// 2: [is, of, to, as]
// 3: [use]
// 4: [this, long, list, demo]
// 7: [strings]

Grouping strings by length

The keys in the resulting map are the lengths of the strings (1, 2, 3, 4, and 7) and the
values are lists of strings of each length.

4.5 Partitioning and Grouping | 101

See Also
An extension of the recipe we just looked at, Recipe 4.6 shows how to postprocess the
lists returned by a groupingBy or partitioningBy operation.

4.6 Downstream Collectors
Problem
You want to postprocess the collections returned by a groupingBy or partitioningBy
operation.

Solution
Use one of the static utility methods from the java.util.stream.Collectors class.

Discussion
In Recipe 4.5, we looked at how to separate elements into multiple categories. The
partitioningBy and groupingBy methods return a Map where the keys were the cate‐
gories (booleans true and false for partitioningBy, objects for groupingBy) and
the values were lists of elements that satisfied each category. Recall the example parti‐
tioning strings by even and odd lengths, shown in Example 4-20 but repeated in
Example 4-22 for convenience.

Example 4-22. Partitioning strings by even or odd lengths

List<String> strings = Arrays.asList("this", "is", "a", "long", "list", "of",
 "strings", "to", "use", "as", "a", "demo");

Map<Boolean, List<String>> lengthMap = strings.stream()
 .collect(Collectors.partitioningBy(s -> s.length() % 2 == 0));

lengthMap.forEach((key,value) -> System.out.printf("%5s: %s%n", key, value));
//
// false: [a, strings, use, a]
// true: [this, is, long, list, of, to, as, demo]

Rather than the actual lists, you may be interested in how many elements fall into
each category. In other words, instead of producing a Map whose values are
List<String>, you might want just the number of elements in each of the lists. The
partitioningBy method has an overloaded version whose second argument is of
type Collector:

static <T,D,A> Collector<T,?,Map<Boolean,D>> partitioningBy(
 Predicate<? super T> predicate, Collector<? super T,A,D> downstream)

102 | Chapter 4: Comparators and Collectors

This is where the static Collectors.counting method becomes useful. Example 4-23
shows how it works.

Example 4-23. Counting the partitioned strings

Map<Boolean, Long> numberLengthMap = strings.stream()
 .collect(Collectors.partitioningBy(s -> s.length() % 2 == 0,
 Collectors.counting()));

numberLengthMap.forEach((k,v) -> System.out.printf("%5s: %d%n", k, v));
//
// false: 4
// true: 8

Downstream collector

This is called a downstream collector, because it is postprocessing the resulting lists
downstream (i.e., after the partitioning operation is completed).

The groupingBy method also has an overload that takes a downstream collector:

/**
* @param <T> the type of the input elements
* @param <K> the type of the keys
* @param <A> the intermediate accumulation type of the downstream collector
* @param <D> the result type of the downstream reduction
* @param classifier a classifier function mapping input elements to keys
* @param downstream a {@code Collector} implementing the downstream reduction
* @return a {@code Collector} implementing the cascaded group-by operation
*/
static <T,K,A,D> Collector<T,?,Map<K,D>> groupingBy(
 Function<? super T,? extends K> classifier,
 Collector<? super T,A,D> downstream)

A portion of the Javadoc comment from the source code is included in the signature,
which shows that T is the type of the element in the collection, K is the key type for the
resulting map, A is an accumulator, and D is the type of the downstream collector.
The ? represents “unknown.” See Appendix A for more details on generics in Java 8.

Several methods in Stream have analogs in the Collectors class. Table 4-2 shows
how they align.

4.6 Downstream Collectors | 103

Table 4-2. Collectors methods similar to Stream methods
Stream Collectors

count counting

map mapping

min minBy

max maxBy

IntStream.sum summingInt

DoubleStream.sum summingDouble

LongStream.sum summingLong

IntStream.summarizing summarizingInt

DoubleStream.summarizing summarizingDouble

LongStream.summarizing summarizingLong

Again, the purpose of a downstream collector is to postprocess the collection of
objects produced by an upstream operation, like partitioning or grouping.

See Also
Recipe 7.1 shows an example of a downstream collector when determining the
longest words in a dictionary. Recipe 4.5 discusses the partitionBy and groupingBy
methods in more detail. The whole issue of generics is covered in Appendix A.

4.7 Finding Max and Min Values
Problem
You want to determine the maximum or minimum value in a stream.

Solution
You have several choices: the maxBy and minBy methods on BinaryOperator, the max
and min methods on Stream, or the maxBy and minBy utility methods on Collectors.

Discussion
A BinaryOperator is one of the functional interfaces in the java.util.function
package. It extends BiFunction and applies when both arguments to the function and
the return value are all from the same class.

The BinaryOperator interface adds two static methods:

104 | Chapter 4: Comparators and Collectors

static <T> BinaryOperator<T> maxBy(Comparator<? super T> comparator)
static <T> BinaryOperator<T> minBy(Comparator<? super T> comparator)

Each of these returns a BinaryOperator that uses the supplied Comparator.

To demonstrate the various ways to get the maximum value from a stream, consider a
POJO called Employee that holds three attributes: name, salary, and department, as
in Example 4-24.

Example 4-24. Employee POJO

public class Employee {
 private String name;
 private Integer salary;
 private String department;

 // ... other methods ...
}

List<Employee> employees = Arrays.asList(
 new Employee("Cersei", 250_000, "Lannister"),
 new Employee("Jamie", 150_000, "Lannister"),
 new Employee("Tyrion", 1_000, "Lannister"),
 new Employee("Tywin", 1_000_000, "Lannister"),
 new Employee("Jon Snow", 75_000, "Stark"),
 new Employee("Robb", 120_000, "Stark"),
 new Employee("Eddard", 125_000, "Stark"),
 new Employee("Sansa", 0, "Stark"),
 new Employee("Arya", 1_000, "Stark"));

Employee defaultEmployee =
 new Employee("A man (or woman) has no name", 0, "Black and White");

Collection of employees

Default for when the stream is empty

Given a collection of employees, you can use the reduce method on Stream, which
takes a BinaryOperator as an argument. The snippet in Example 4-25 shows how to
get the employee with the largest salary.

Example 4-25. Using BinaryOperator.maxBy

Optional<Employee> optionalEmp = employees.stream()
 .reduce(BinaryOperator.maxBy(Comparator.comparingInt(Employee::getSalary)));

System.out.println("Emp with max salary: " +
 optionalEmp.orElse(defaultEmployee));

4.7 Finding Max and Min Values | 105

The reduce method requires a BinaryOperator. The static maxBy method produces
that BinaryOperator based on the supplied Comparator, which in this case compares
employees by salary.

This works, but there’s actually a convenience method called max that can be applied
directly to the stream:

Optional<T> max(Comparator<? super T> comparator)

Using that method directly is shown in Example 4-26.

Example 4-26. Using Stream.max

optionalEmp = employees.stream()
 .max(Comparator.comparingInt(Employee::getSalary));

The result is the same.

Note that there is also a method called max on the primitive streams (IntStream, Long
Stream, and DoubleStream) that takes no arguments. Example 4-27 shows that
method in action.

Example 4-27. Finding the highest salary

OptionalInt maxSalary = employees.stream()
 .mapToInt(Employee::getSalary)
 .max();
System.out.println("The max salary is " + maxSalary);

In this case, the mapToInt method is used to convert the stream of employees into a
stream of integers by invoking the getSalary method, and the returned stream is an
IntStream. The max method then returns an OptionalInt.

There is also a static method called maxBy in the Collectors utility class. You can use
it directly here, as in Example 4-28.

Example 4-28. Using Collectors.maxBy

optionalEmp = employees.stream()
 .collect(Collectors.maxBy(Comparator.comparingInt(Employee::getSalary)));

This is awkward, however, and can be replaced by the max method on Stream, as
shown in the preceding example. The maxBy method on Collectors is helpful when
used as a downstream collector (i.e., when postprocessing a grouping or partitioning
operation). The code in Example 4-29 uses groupingBy on Stream to create a Map of
departments to lists of employees, but then determines the employee with the greatest
salary in each department.

106 | Chapter 4: Comparators and Collectors

Example 4-29. Using Collectors.maxBy as a downstream collector

Map<String, Optional<Employee>> map = employees.stream()
 .collect(Collectors.groupingBy(
 Employee::getDepartment,
 Collectors.maxBy(
 Comparator.comparingInt(Employee::getSalary))));

map.forEach((house, emp) ->
 System.out.println(house + ": " + emp.orElse(defaultEmployee)));

The minBy method in each of these classes works the same way.

See Also
Functions are discussed in Recipe 2.4. Downstream collectors are in Recipe 4.6.

4.8 Creating Immutable Collections
Problem
You want to create an immutable list, set, or map using the Stream API.

Solution
Use the new static method collectingAndThen in the Collectors class.

Discussion
With its focus on parallelization and clarity, functional programming favors using
immutable objects wherever possible. The Collections framework, added in Java 1.2,
has always had methods to create immutable collections from existing ones, though
in a somewhat awkward fashion.

The Collections utility class has methods unmodifiableList, unmodifiableSet,
and unmodifiableMap (along with a few other methods with the same unmodifiable
prefix), as shown in Example 4-30.

Example 4-30. Unmodifiable methods in the Collections class

static <T> List<T> unmodifiableList(List<? extends T> list)
static <T> Set<T> unmodifiableSet(Set<? extends T> s)
static <K,V> Map<K,V> unmodifiableMap(Map<? extends K,? extends V> m)

In each case, the argument to the method is an existing list, set, or map, and the
resulting list, set, or map has the same elements as the argument, but with an impor‐

4.8 Creating Immutable Collections | 107

tant difference: all the methods that could modify the collection, like add or remove,
now throw an UnsupportedOperationException.

Prior to Java 8, if you received the individual values as an argument, using a variable
argument list, you produced an unmodifiable list or set as shown in Example 4-31.

Example 4-31. Creating unmodifiable lists or sets prior to Java 8

@SafeVarargs
public final <T> List<T> createImmutableListJava7(T... elements) {
 return Collections.unmodifiableList(Arrays.asList(elements));
}

@SafeVarargs
public final <T> Set<T> createImmutableSetJava7(T... elements) {
 return Collections.unmodifiableSet(new HashSet<>(Arrays.asList(elements)));
}

You promise not to corrupt the input array type. See Appendix A for details.

The idea in each case is to start by taking the incoming values and converting them
into a List. You can wrap the resulting list using unmodifiableList, or, in the case of
a Set, use the list as the argument to a set constructor before using unmodifiableSet.

In Java 8, with the new Stream API, you can instead take advantage of the static
Collectors.collectingAndThen method, as in Example 4-32.

Example 4-32. Creating unmodifiable lists or sets in Java 8

import static java.util.stream.Collectors.collectingAndThen;
import static java.util.stream.Collectors.toList;
import static java.util.stream.Collectors.toSet;

// ... define a class with the following methods ...

@SafeVarargs
public final <T> List<T> createImmutableList(T... elements) {
 return Arrays.stream(elements)
 .collect(collectingAndThen(toList(),
 Collections::unmodifiableList));
}

@SafeVarargs
public final <T> Set<T> createImmutableSet(T... elements) {
 return Arrays.stream(elements)
 .collect(collectingAndThen(toSet(),
 Collections::unmodifiableSet));
}

108 | Chapter 4: Comparators and Collectors

4 From Carl Martensen’s blog post “Java 9’s Immutable Collections Are Easier To Create But Use With Caution”.

“Finisher” wraps the generated collections

The Collectors.collectingAndThen method takes two arguments: a downstream
Collector and a Function called a finisher. The idea is to stream the input elements
and then collect them into a List or Set, and then the unmodifiable function wraps
the resulting collection.

Converting a series of input elements into an unmodifiable Map isn’t as clear, partly
because it’s not obvious which of the input elements would be assumed to be keys and
which would be values. The code shown in Example 4-334 creates an immutable Map
in a very awkward way, using an instance initializer.

Example 4-33. Creating an immutable Map

Map<String, Integer> map = Collections.unmodifiableMap(
 new HashMap<String, Integer>() {{
 put("have", 1);
 put("the", 2);
 put("high", 3);
 put("ground", 4);
}});

Readers who are familiar with Java 9, however, already know that this entire recipe
can be replaced with a very simple set of factory methods: List.of, Set.of, and
Map.of.

See Also
Recipe 10.3 shows the new factory methods in Java 9 that automatically create
immutable collections.

4.9 Implementing the Collector Interface
Problem
You need to implement java.util.stream.Collector manually, because none of the
factory methods in the java.util.stream.Collectors class give you exactly what
you need.

4.9 Implementing the Collector Interface | 109

http://carlmartensen.com/immutability-made-easy-in-java-9

Solution
Provide lambda expressions or method references for the Supplier, accumulator,
combiner, and finisher functions used by the Collector.of factory methods, along
with any desired characteristics.

Discussion
The utility class java.util.stream.Collectors has several convenient static meth‐
ods whose return type is Collector. Examples are toList, toSet, toMap, and even
toCollection, each of which is illustrated elsewhere in this book. Instances of classes
that implement Collector are sent as arguments to the collect method on Stream.
For instance, in Example 4-34, the method accepts string arguments and returns a
List containing only those whose length is even.

Example 4-34. Using collect to return a List

public List<String> evenLengthStrings(String... strings) {
 return Stream.of(strings)
 .filter(s -> s.length() % 2 == 0)
 .collect(Collectors.toList());
}

Collect even-length strings into a List

If you need to write your own collectors, however, the procedure is a bit more com‐
plicated. Collectors use five functions that work together to accumulate entries into a
mutable container and optionally transform the result. The five functions are called
supplier, accumulator, combiner, finisher, and characteristics.

Taking the characteristics function first, it represents an immutable Set of ele‐
ments of an enum type Collector.Characteristics. The three possible values are
CONCURRENT, IDENTITY_FINISH, and UNORDERED. CONCURRENT means that the result
container can support the accumulator function being called concurrently on the
result container from multiple threads. UNORDERED says that the collection operation
does not need to preserve the encounter order of the elements. IDENTITY_FINISH
means that the finishing function returns its argument without any changes.

Note that you don’t have to provide any characteristics if the defaults are what you
want.

The purpose of each of the required methods is:

supplier()

Create the accumulator container using a Supplier<A>

110 | Chapter 4: Comparators and Collectors

accumulator()

Add a single new data element to the accumulator container using a Bi Con
sumer<A,T>

combiner()

Merge two accumulator containers using a BinaryOperator<A>

finisher()

Transform the accumulator container into the result container using a Function
<A,R>

characteristics()

A Set<Collector.Characteristics> chosen from the enum values

As usual, an understanding of the functional interfaces defined in the
java.util.function package makes everything clearer. A Supplier is used to create
the container where temporary results are accumulated. A BiConsumer adds a single
element to the accumulator. A BinaryOperator means that both input types and the
output type are the same, so here the idea is to combine two accumulators into one. A
Function finally transforms the accumulator into the desired result container.

Each of these methods is invoked during the collection process, which is triggered by
(for example) the collect method on Stream. Conceptually, the collection process is
equivalent to the (generic) code shown in Example 4-35, taken from the Javadocs.

Example 4-35. How the Collector methods are used

R container = collector.supplier.get();
for (T t : data) {
 collector.accumulator().accept(container, t);
}
return collector.finisher().apply(container);

Create the accumulator container

Add each element to the accumulator container

Convert the accumulator container to the result container using the finisher

Conspicuous by its absence is any mention of the combiner function. If your stream
is sequential, you don’t need it—the algorithm proceeds as described. If, however, you
are operating on a parallel stream, then the work is divided into multiple regions,
each of which produces its own accumulator container. The combiner is then used
during the join process to merge the accumulator containers together into a single
one before applying the finisher function.

4.9 Implementing the Collector Interface | 111

A code sample, similar to that shown in Example 4-34, is given in Example 4-36.

Example 4-36. Using collect to return an unmodifiable SortedSet

public SortedSet<String> oddLengthStringSet(String... strings) {
 Collector<String, ?, SortedSet<String>> intoSet =
 Collector.of(TreeSet<String>::new,
 SortedSet::add,
 (left, right) -> {
 left.addAll(right);
 return left;
 },
 Collections::unmodifiableSortedSet);
 return Stream.of(strings)
 .filter(s -> s.length() % 2 != 0)
 .collect(intoSet);
 }

Supplier to create a new TreeSet

BiConsumer to add each string to the TreeSet

BinaryOperator to combine two SortedSet instances into one

finisher function to create an unmodifiable set

The result will be a sorted, unmodifiable set of strings, ordered lexicographically.

This example used one of the two overloaded versions of the static of method for
producing collectors, whose signatures are:

static <T,A,R> Collector<T,A,R> of(Supplier<A> supplier,
 BiConsumer<A,T> accumulator,
 BinaryOperator<A> combiner,
 Function<A,R> finisher,
 Collector.Characteristics... characteristics)
static <T,R> Collector<T,R,R> of(Supplier<R> supplier,
 BiConsumer<R,T> accumulator,
 BinaryOperator<R> combiner,
 Collector.Characteristics... characteristics)

Given the convenience methods in the Collectors class that produce collectors for
you, you rarely need to make one of your own this way. Still, it’s a useful skill to have,
and once again illustrates how the functional interfaces in the java.util.function
package come together to create interesting objects.

112 | Chapter 4: Comparators and Collectors

See Also
The finisher function is an example of a downstream collector, discussed further in
Recipe 4.6. The Supplier, Function, and BinaryOperator functional interfaces are
discussed in various recipes in Chapter 2. The static utility methods in Collectors
are discussed in Recipe 4.2.

4.9 Implementing the Collector Interface | 113

CHAPTER 5

Issues with Streams, Lambdas,
and Method References

Now that you know the basics of lambdas and method references and how they are
used in streams, there are several topics that arise from the combination. For exam‐
ple, now that interfaces can have default methods, what happens when a class imple‐
ments multiple interfaces that have the same default method signature but different
implementations? As another example, what happens when you are writing code in a
lambda expression and try to access or modify a variable defined outside it? Also,
what about exceptions? How are they handled in lambda expressions, where you have
no method signature on which to add a throws clause?

This chapter deals with all these issues and more.

5.1 The java.util.Objects Class
Problem
You wish to use static utility methods for null checking, comparisons, and more.

Solution
Use the java.util.Objects class, added in Java 7, but helpful during stream process‐
ing.

Discussion
One of the lesser-known classes added in Java 7 is the java.util.Objects class,
which contains static methods for a variety of tasks. These methods include:

115

static boolean deepEquals(Object a, Object b)

Checks for “deep” equality, which is particularly useful when comparing arrays.

static boolean equals(Object a, Object b)

Uses the equals method from the first argument, but is null safe.

static int hash(Object... values)

Generates a hash code for a sequence of input values.

static String toString(Object o)

Returns the result of calling toString on the argument if not null, and returns
null otherwise.

static String toString(Object o, String nullDefault)

Returns the result of calling toString on the first argument, and returns the sec‐
ond argument if the first argument is null.

There are also a few overloads of a method useful for validation of arguments:

static <T> T requireNotNull(T obj)

Returns T if not null and throws a NullPointerException (NPE) otherwise.

static <T> T requireNotNull(T obj, String message)

Same as previous method, but the NPE resulting from a null argument has the
specified message.

static <T> T requireNotNull(T obj, Supplier<String> messageSupplier)

Same as previous method, but invokes the given Supplier to generate a message
for the NPE if the first argument is null.

That last method takes a Supplier<String> as an argument, which finally gives a rea‐
son for including this class in a book focused on Java 8 and above. An arguably better
reason, however, is given by the isNull and nonNull methods. Each of those returns
a boolean:

static boolean isNull(Object obj)

Returns true if the provided reference is null and false otherwise.

static boolean nonNull(Object obj)

Returns true if the provided reference is not null and false otherwise.

The beauty of these methods is that they can be used as Predicate instances in a fil‐
ter.

For example, say you have a class that returns a collection. Example 5-1 has a method
to return the complete collection, whatever it may be, and a method to return the col‐
lection without any nulls.

116 | Chapter 5: Issues with Streams, Lambdas, and Method References

Example 5-1. Returning a collection and filtering out nulls

List<String> strings = Arrays.asList(
 "this", null, "is", "a", null, "list", "of", "strings", null);

List<String> nonNullStrings = strings.stream()
 .filter(Objects::nonNull)
 .collect(Collectors.toList());

Filter out null elements

You can use the Objects.deepEquals method to test this, as in Example 5-2.

Example 5-2. Testing the filter

@Test
public void testNonNulls() throws Exception {
 List<String> strings =
 Arrays.asList("this", "is", "a", "list", "of", "strings");
 assertTrue(Objects.deepEquals(strings, nonNullStrings);
}

This process can be generalized so that it doesn’t just apply to strings. The code in
Example 5-3 filters nulls out of any list.

Example 5-3. Filtering nulls from a generic list

public <T> List<T> getNonNullElements(List<T> list) {
 return list.stream()
 .filter(Objects::nonNull)
 .collect(Collectors.toList());
}

Now a method that produces a List with multiple elements being null can be filtered
with ease.

5.2 Lambdas and Effectively Final
Problem
Inside a lambda expression you want to access a variable defined outside it.

Solution
Local variables accessed inside lambda expressions must be final or “effectively final.”
Attributes can be both accessed and modified.

5.2 Lambdas and Effectively Final | 117

Discussion
Back in the late ’90s, when Java was still shiny and new, occasionally developers
would write client-side Java applications using the Swing user interface library. Like
all GUI libraries, Swing components are event-driven: components generate events
and listeners react to them.

Since it was considered a good practice to write separate listeners for each compo‐
nent, listeners were often implemented as anonymous inner classes. This kept them
modular, but using inner classes had an added benefit: code in inner classes can
access and modify the private attributes of the outer class. For example, a JButton
instance generates an ActionEvent, and a ActionEventListener interface contains a
single method called actionPerformed that is invoked once an implementation is
registered as a listener. See Example 5-4 for a sample.

Example 5-4. A trivial Swing user interface

public class MyGUI extends JFrame {
 private JTextField name = new JTextField("Please enter your name");
 private JTextField response = new JTextField("Greeting");
 private JButton button = new JButton("Say Hi");

 public MyGUI() {
 // ... unrelated GUI setup code ...
 String greeting = "Hello, %s!";
 button.addActionListener(new ActionListener() {
 @Override
 public void actionPerformed(ActionEvent e) {
 response.setText(
 String.format(greeting, name.getText());
 // greeting = "Anything else";
 }
 });
 }
}

Local variable

Access local variable and attributes

Modify local variable (will not compile)

The greeting string is a local variable defined inside the constructor. The name and
response variables are attributes of the class. The ActionListener interface is imple‐
mented as an anonymous inner class, whose one method is actionPerformed. Inside
the inner class, code can:

118 | Chapter 5: Issues with Streams, Lambdas, and Method References

• Access attributes like name and response
• Modify attributes (though that’s not shown here)
• Access the local variable greeting
• Cannot modify the local variable

In fact, prior to Java 8, the compiler would have required the greeting variable to be
declared final. In Java 8, the variable doesn’t have to be declared final, but it must be
effectively final. In other words, any code that tries to change the value of a local vari‐
able will not compile.

Of course, in Java 8, the anonymous inner class would be replaced by a lambda
expression, as in Example 5-5.

Example 5-5. Lambda expression for the listener

String greeting = "Hello, %s!";
button.addActionListener(e ->
 response.setText(String.format(greeting,name.getText())));

The same rules apply. The greeting variable doesn’t have to be declared to be final,
but it must be effectively final or the code will not compile.

If Swing isn’t to your liking, here’s another way to approach this problem. Say you
want to sum values in a given List, as in Example 5-6.

Example 5-6. Sum the values in a List

List<Integer> nums = Arrays.asList(3, 1, 4, 1, 5, 9);

int total = 0;
for (int n : nums) {
 total += n;
}

total = 0;
nums.forEach(n -> total += n);

total = nums.stream()
 .mapToInt(Integer::valueOf)
 .sum()

Local variable total

Traditional for-each loop

Modify local variable in a lambda: WILL NOT COMPILE

5.2 Lambdas and Effectively Final | 119

1 Why, then, aren’t Java 8 lambdas actually called closures? According to Bruce Eckel, the term “closure” is so
heavily overloaded it leads to arguments. “When someone says real closures, it too often means, what closure
meant in the first language I encountered with something called closures.” For more information, see his blog
post “Are Java 8 Lamdas Closures?”.

Convert stream to IntStream and call sum

The code declares a local variable called total. Summing the values using a tradi‐
tional for-each loop works just fine.

The forEach method defined on Iterable takes a Consumer as an argument, but if
the consumer tries to modify the total variable, the code will not compile.

Of course, the right way to solve the problem is to convert the stream into an Int
Stream, which then has a sum method—no local variables involved at all.

Technically, a function along with the accessible variables defined in its environment
is called a closure. By that definition, Java is in somewhat of a gray area—local vari‐
ables are accessible but cannot be modified. You could argue that Java 8 lambdas are
actually closures, in that they are closed over values rather than variables.1

See Also
Other languages have different rules for closure variables. For example, Groovy
allows you to modify them, though that is not considered a good practice.

5.3 Streams of Random Numbers
Problem
You want a stream of random integers, longs, or doubles, within a given set of
bounds.

Solution
Use the static ints, longs, and doubles methods in java.util.Random.

120 | Chapter 5: Issues with Streams, Lambdas, and Method References

http://bit.ly/eckel-java-8-lambdas

2 The Javadocs say the returned values are chosen “pseudorandomly with (approximately) uniform distribu‐
tion” from that range, which shows the sort of hedging you have to do when discussing random number gen‐
erators.

Discussion
If all you need is a single random double, the static Math.random method is conve‐
nient. It returns a double value between 0.0 and 1.0.2 The process is equivalent to
instantiating the java.util.Random class and invoking the nextDouble method.

The Random class provides a constructor that lets you specify a seed. If you specify the
same seed, you get the same resulting sequence of random numbers, which can be
useful in testing.

If you want a sequential stream of random numbers, however, Java 8 added several
methods to the Random class that return them. The methods are ints, longs, and
doubles, whose signatures are (without the various overloads):

IntStream ints()
LongStream longs()
DoubleStream doubles()

The overloaded versions of each allow you to specify the size of the resulting stream
and the min and max values for the generated numbers. For example:

DoubleStream doubles(long streamSize, double randomNumberOrigin,
 double randomNumberBound)

The returned stream produces the given streamSize number of pseudorandom dou‐
ble values, each of which is greater than or equal to the randomNumberOrigin and
strictly less than the randomNumberBound.

Variants that don’t specify streamSize return an “effectively unlimited” stream of val‐
ues.

If you don’t specify the min or max, they default to zero and one for doubles, the
complete range of Integer for ints, and (effectively) the complete range of Long for
longs. In each case, the result is like repeatedly invoking nextDouble, nextInt, or
nextLong, respectively.

Example 5-7 shows the sample code.

Example 5-7. Generating streams of random numbers

Random r = new Random();
r.ints(5)
 .sorted()
 .forEach(System.out::println);

5.3 Streams of Random Numbers | 121

r.doubles(5, 0, 0.5)
 .sorted()
 .forEach(System.out::println);

List<Long> longs = r.longs(5)
 .boxed()
 .collect(Collectors.toList());
System.out.println(longs);

List<Integer> listOfInts = r.ints(5, 10, 20)
 .collect(LinkedList::new, LinkedList::add, LinkedList::addAll);
System.out.println(listOfInts);

Five random integers

Five random doubles between 0 (inclusive) and 0.5 (exclusive)

Boxing long to Long so they can be collected

Alternative form of collect instead of calling boxed

The latter two examples deal with the minor annoyance that occurs when you want to
create a collection of primitives. You can’t invoke collect(Collectors.toList())
on a collection of primitives, as discussed in Recipe 3.2. As suggested in that recipe,
you can either use the boxed method to convert the long values to instances of Long,
or you can use the three-argument version of collect and specify the Supplier,
accumulator, and combiner yourself, as shown.

It’s worth noting that SecureRandom is a subclass of Random. It provides a crypto‐
graphically strong random number generator. All the same methods (ints, longs,
doubles, and their overloads) also work on SecureRandom, just with a different gener‐
ator.

See Also
The boxed method in Stream is discussed in Recipe 3.2.

5.4 Default Methods in Map
Problem
You want to add or replace elements in a Map only if they already exist or are absent,
or other related operations.

122 | Chapter 5: Issues with Streams, Lambdas, and Method References

Solution
Use one of the many new default methods in the java.util.Map interface, like compu
teIfAbsent, computeIfPresent, replace, merge, and so on.

Discussion
The Map interface has been in Java since the rest of the collections framework was
added way back in version 1.2. Java 8 introduced default methods in interfaces, and
several new methods have been added to Map as a result.

Table 5-1 shows the new methods.

Table 5-1. Default methods in Map
Method Purpose

compute Compute a new value based on the existing key and value

computeIfAb
sent

Return the value for the given key if it exists, or use the supplied function to compute and store it if not

computeIfPre
sent

Compute a new value to replace an existing value

forEach Iterate over a Map, passing each key and value to the consumer

getOrDefault If the key exists in the Map, return its value; otherwise return the default

merge If the key is not in the Map, return the supplied value; otherwise compute a new value

putIfAbsent If the key isn’t in the Map, associate it with the given value

remove Remove the entry for this key only if it matches the given value

replace Replace the existing key with the new value

replaceAll Replace each entry in the Map with the result of applying the given function to the current entry

That’s a lot of new methods for an interface we’ve been using for over a decade. Some
of them are really convenient, however.

computeIfAbsent

The complete signature for the computIfAbsent method is:

V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction)

This method is particularly useful when creating a cache of the results of method
calls. For example, consider the classic recursive calculation of Fibonacci numbers.

5.4 Default Methods in Map | 123

3 In the wildly unlikely event that you haven’t already heard this joke: “Rumor has it that this year’s Fibonacci
conference is going to be as good as the last two combined.”

 The value of any Fibonacci number greater than 1 is equal to the sum of the previous
two Fibonacci numbers,3 as in Example 5-8.

Example 5-8. Recursive calculation of Fibonacci numbers

long fib(long i) {
 if (i == 0) return 0;
 if (i == 1) return 1;
 return fib(i - 1) + fib(i - 2);
}

Highly inefficient

The problem is that fib(5) = fib(4) + fib(3) = fib(3) + fib(2) + fib(2) +
fib(1) = ... and there are many, many repeated calculations. The way to fix this is
to use a cache, a technique known as memoization in functional programming. The
result, modified to store BigInteger instances, is shown in Example 5-9.

Example 5-9. Fibonacci calculation with a cache

private Map<Long, BigInteger> cache = new HashMap<>();

public BigInteger fib(long i) {
 if (i == 0) return BigInteger.ZERO;
 if (i == 1) return BigInteger.ONE;

 return cache.computeIfAbsent(i, n -> fib(n - 2).add(fib(n - 1)));
}

Cache returns value if it exists, or computes and stores it if not

The calculation uses a cache where the keys are the supplied numbers and the values
are the corresponding Fibonacci numbers. The computeIfAbsent method looks in
the cache for a given number. If it exists, it returns the value. Otherwise it uses the
supplied Function to compute the new value, store it in the cache, and return it.
That’s quite an improvement for a single method.

computeIfPresent

The complete signature of the computeIfPresent method is:

V computeIfPresent(K key,
 BiFunction<? super K, ? super V, ? extends V> remappingFunction)

124 | Chapter 5: Issues with Streams, Lambdas, and Method References

The computeIfPresent method only updates a value if its associated key is already in
the map. Consider the case where you are parsing text and making a count of how
many times each word appears. Such a calculation, known as a concordance, is not
uncommon. If, however, you only care about certain specific keywords, you can use
computeIfPresent to update those. See Example 5-10.

Example 5-10. Update the word counts only for specific words

public Map<String,Integer> countWords(String passage, String... strings) {
 Map<String, Integer> wordCounts = new HashMap<>();

 Arrays.stream(strings).forEach(s -> wordCounts.put(s, 0));

 Arrays.stream(passage.split(" ")).forEach(word ->
 wordCounts.computeIfPresent(word, (key, val) -> val + 1));

 return wordCounts;
}

Put the words we care about in the map with a count of zero

Read the passage, updating the counts only for the words we care about

By putting the words you care about into the map initially with a count of zero, the
computeIfPresent method will only update those values.

If you run this with a passage of text and a comma-separated list of words, as in
Example 5-11, you get the results you’re looking for.

Example 5-11. Calling the countWords method

String passage = "NSA agent walks into a bar. Bartender says, " +
 "'Hey, I have a new joke for you.' Agent says, 'heard it'.";

Map<String, Integer> counts = demo.countWords(passage, "NSA", "agent", "joke");
counts.forEach((word, count) -> System.out.println(word + "=" + count));

// Output is agent=1, NSA=2, joke=1

Only the desired words are keys in the map, so only those have their counts updated.
As usual, printing the values takes advantage of the default forEach method in Map,
which takes a BiConsumer, whose arguments are the keys and the values.

5.4 Default Methods in Map | 125

Other methods

The replace method works like the put method, but only if the key already exists. If
not, the replace method does nothing, while put adds a null key, which may not be
what you want.

There are two overloads of the replace method:

V replace(K key, V value)
boolean replace(K key, V oldValue, V newValue)

The first one replaces the value of the key if it exists in the map at all. The second only
does the replacement if the current value is the one specified.

The getOrDefault method solves the occasionally annoying fact that calling get on a
Map with a key that doesn’t exist returns null. That’s helpful, but the method only
returns the default, it doesn’t also add it to the map.

The signature of getOrDefault is:

V getOrDefault(Object key, V defaultValue)

The getOrDefault method returns the default if the key does not
exist in the map, but it does not add the key to the map.

The merge method is very helpful. Its complete signature is:

V merge(K key, V value,
 BiFunction<? super V, ? super V, ? extends V> remappingFunction)

Say you want the complete word count map for a given passage of text, rather than
just the counts for specific words. Normally you would have two conditions: if the
word is already in the map, update the count; otherwise put it in the map with a
count of one. With merge the process simplifies, as in Example 5-12.

Example 5-12. Using the merge method

public Map<String, Integer> fullWordCounts(String passage) {
 Map<String, Integer> wordCounts = new HashMap<>();
 String testString = passage.toLowerCase().replaceAll("\\W"," ");

 Arrays.stream(testString.split("\\s+")).forEach(word ->
 wordCounts.merge(word, 1, Integer::sum));

 return wordCounts;
}

126 | Chapter 5: Issues with Streams, Lambdas, and Method References

Remove case sensitivity and punctuation

Add or update the count for a given word

The merge method takes the key and default value, which is inserted if the key doesn’t
already exist in the map. Otherwise merge uses the BinaryOperator (here the sum
method in Integer) to compute the new value based on the old value.

Hopefully this recipe makes it clear that the new default methods on Map provide sev‐
eral convenient techniques for your coding.

5.5 Default Method Conflict
Problem
You have a class that implements two interfaces, each of which contains the same
default method with different implementations.

Solution
Implement the method in your class. Your implementation can still use the provided
defaults from the interfaces through the super keyword.

Discussion
Java 8 supports both static and default methods in interfaces. Default methods pro‐
vide an implementation, which is then inherited by the class. This allows interfaces to
add new methods without breaking existing class implementations.

Since classes can implement multiple interfaces, a class may inherit default methods
that have the same signature but are implemented differently, or it may already con‐
tain its own version of a default method.

There are three possibilities when this occurs:

• In any conflict between a method in a class and a default method in an interface,
the class always wins.

• If the conflict comes between two interfaces where one is a descendant of the
other, then the descendant wins, the same way they do in classes.

• If there is no inheritance relationship between the two defaults, the class will not
compile.

In the last case, simply implement the method in the class and everything will work
again. This reduces the third case to the first one.

5.5 Default Method Conflict | 127

As an example, consider the Company interface shown in Example 5-13 and the
Employee interface shown in Example 5-14.

Example 5-13. The Company interface with a default method

public interface Company {
 default String getName() {
 return "Initech";
 }

 // other methods
}

The default keyword indicates that the getName method is a default method, which
provides an implementation that returns the company name.

Example 5-14. The Employee interface with a default method

public interface Employee {
 String getFirst();

 String getLast();

 void convertCaffeineToCodeForMoney();

 default String getName() {
 return String.format("%s %s", getFirst(), getLast());
 }
}

The Employee interface also contains a default method called getName with the same
signature as the one in Company, but with a different implementation. The Company
Employee class shown in Example 5-15 implements both interfaces, causing a conflict.

Example 5-15. First attempt at CompanyEmployee (WON’T COMPILE)

public class CompanyEmployee implements Company, Employee {
 private String first;
 private String last;

 @Override
 public void convertCaffeineToCodeForMoney() {
 System.out.println("Coding...");
 }

 @Override
 public String getFirst() {
 return first;
 }

128 | Chapter 5: Issues with Streams, Lambdas, and Method References

 @Override
 public String getLast() {
 return last;
 }
}

Since CompanyEmployee inherits unrelated defaults for getName, the class won’t com‐
pile. To fix this, you need to add your own version of getName to the class, which will
then override both the defaults.

You can still use the provided defaults, however, using the super keyword, as shown
in Example 5-16.

Example 5-16. Fixed version of CompanyEmployee

public class CompanyEmployee implements Company, Employee {

 @Override
 public String getName() {
 return String.format("%s working for %s",
 Employee.super.getName(), Company.super.getName());
 }

 // ... rest as before ...
}

Implement getName

Access default implementations using super

In this version, the getName method in the class builds a String from the default ver‐
sions provided by both Company and Employee.

The best news of all is that this is as complicated as default methods ever get. You now
know everything there is to know about them.

Actually, there’s one edge case to consider. If the Company interface contained getName
but was not marked default (and didn’t have an implementation, making it abstract),
would that still cause a conflict because Employee also had the same method? The
answer is yes, interestingly enough, and you still need to provide an implementation
in the CompanyEmployee class.

Of course, if the same method appears in both interfaces and neither is a default, then
this is the pre-Java 8 situation. There’s no conflict, but the class must provide an
implementation.

5.5 Default Method Conflict | 129

See Also
Default methods in interfaces are discussed in Recipe 1.5.

5.6 Iterating Over Collections and Maps
Problem
You want to iterate over a collection or map.

Solution
Use the forEach method, which was added as a default method to both Iterable and
Map.

Discussion
Rather than using a loop to iterate over a linear collection (i.e., a class that imple‐
ments Collection or one of its descendants), you can use the new forEach method
that has been added to Iterable as a default method.

From the Javadocs, its signature is:

default void forEach(Consumer<? super T> action)

The argument to forEach is of type Consumer, one of the functional interfaces added
to the java.util.function package. A Consumer represents an operation that takes a
single generic parameter and returns no result. As the docs say, “unlike most other
functional interfaces, Consumer is expected to operate via side effects.”

A pure function operates without side effects, so applying the func‐
tion with the same parameters always gives the same result. In
functional programming, this is known as referential transparency,
where a function can be replaced by its corresponding value.

Since java.util.Collection is a subinterface of Iterable, the forEach method is
available on all linear collections, from ArrayList to LinkedHashSet. Iterating over
each is therefore simple, as Example 5-17 shows.

Example 5-17. Iterating over a linear collection

List<Integer> integers = Arrays.asList(3, 1, 4, 1, 5, 9);

integers.forEach(new Consumer<Integer>() {
 @Override

130 | Chapter 5: Issues with Streams, Lambdas, and Method References

 public void accept(Integer integer) {
 System.out.println(integer);
 }
});

integers.forEach((Integer n) -> {
 System.out.println(n);
});

integers.forEach(n -> System.out.println(n));

integers.forEach(System.out::println);
}

Anonymous inner class implementation

Full verbose form of a block lambda

Expression lambda

Method reference

The anonymous inner class version is shown simply as a reminder of the signature of
the accept method in the Consumer interface. As the inner class shows, the accept
method takes a single argument and returns void. The lambda versions shown are
compatible with this. Since each of the lambda versions consists of a single call to the
println method on System.out, that method can be used as a method reference, as
shown in the last version.

The Map interface also has a forEach method, added as a default. In this case, the sig‐
nature takes a BiConsumer:

default void forEach(BiConsumer<? super K, ? super V> action)

BiConsumer is another of the new interfaces in the java.util.function package. It
represents a function that takes two generic arguments and returns void. When
implemented in the forEach method in Map, the arguments become the keys and val‐
ues from the Map.Entry instances in the entrySet.

That means iterating over a Map is now as easy as iterating over a List, Set, or any
other linear collection. Example 5-18 shows the sample code.

Example 5-18. Iterating over a Map

Map<Long, String> map = new HashMap<>();
map.put(86L, "Don Adams (Maxwell Smart)");
map.put(99L, "Barbara Feldon");
map.put(13L, "David Ketchum");

5.6 Iterating Over Collections and Maps | 131

4 These examples are taken from the now ancient TV series Get Smart, which ran from 1965 to 1970. Maxwell
Smart is essentially a bumbling combination of James Bond and Inspector Clouseau, created by producers
Mel Brooks and Buck Henry.

map.forEach((num, agent) ->
 System.out.printf("Agent %d, played by %s%n", num, agent));

The output from the iteration is shown in Example 5-19.4

Example 5-19. Map iteration output

Agent 99, played by Barbara Feldon
Agent 86, played by Don Adams (Maxwell Smart)
Agent 13, played by David Ketchum

Prior to Java 8, to iterate over a Map you needed to first use the keySet or entrySet
methods to acquire the Set of keys or Map.Entry instances and then iterate over that.
With the new default forEach method, iteration is much simpler.

Keep in mind that there is no easy way to break out of forEach.
Consider rewriting your stream processing code as a filter
and/or sorted instead, followed by a findFirst.

See Also
The functional interfaces Consumer and BiConsumer are discussed in Recipe 2.1.

5.7 Logging with a Supplier
Problem
You want to create a log message, but only if the log level ensures it will be seen.

Solution
Use the new logging overloads in the Logger class that take a Supplier.

Discussion
The logging methods in java.util.logging.Logger, like info, warning, or severe,
now have two overloaded versions: one that takes a single String as an argument,
and one that takes a Supplier<String>.

132 | Chapter 5: Issues with Streams, Lambdas, and Method References

5 You may be wondering why the designers of the Java logging framework didn’t use the same log levels (trace,
debug, info, warn, error, and fatal) that every other logging API uses. That’s an excellent question. If you ever
find out, please let me know, too.

For instance, Example 5-20 shows the signatures of the various logging methods.5

Example 5-20. Overloaded logging methods java.util.logging.Logger

void config(String msg)
void config(Supplier<String> msgSupplier)

void fine(String msg)
void fine(Supplier<String> msgSupplier)

void finer(String msg)
void finer(Supplier<String> msgSupplier)

void finest(String msg)
void finest(Supplier<String> msgSupplier)

void info(String msg)
void info(Supplier<String> msgSupplier)

void warning(String msg)
void warning(Supplier<String> msgSupplier)

void severe(String msg)
void severe(Supplier<String> msgSupplier)

For each method, the version that takes a String was part of the original API that
appeared in Java 1.4. The Supplier version is new to Java 8. If you look at the imple‐
mentation of the Supplier version in the standard library, you see the code shown in
Example 5-21.

Example 5-21. Implementation details of the Logger class

public void info(Supplier<String> msgSupplier) {
 log(Level.INFO, msgSupplier);
}

public void log(Level level, Supplier<String> msgSupplier) {
 if (!isLoggable(level)) {
 return;
 }
 LogRecord lr = new LogRecord(level, msgSupplier.get());
 doLog(lr);
}

5.7 Logging with a Supplier | 133

Return if the message will not be shown

Retrieve the message from the Supplier by calling get

Rather than construct a message that will never be shown, the implementation checks
to see if the message will be “loggable.” If the message was provided as a simple string,
it would be evaluated whether it was logged or not. The version that uses a Supplier
allows the developer to put empty parentheses and an arrow in front of the message,
converting it into a Supplier, which will only be invoked if the log level is appropri‐
ate. Example 5-22 shows how to use both overloads of info.

Example 5-22. Using a Supplier in the info method

private Logger logger = Logger.getLogger(this.getClass().getName());
private List<String> data = new ArrayList<>();

// ... populate list with data ...

logger.info("The data is " + data.toString());
logger.info(() -> "The data is " + data.toString());

Argument always constructed

Argument only constructed if log level shows info messages

In this example, the message invokes the toString method on every object in the list.
In the first case, the resulting string will be formed whether the program shows info
messages or not. Converting the log argument to a Supplier by simply adding () ->
in front of it means that the get method on the Supplier will only be invoked if the
message will be used.

The technique of replacing an argument with a Supplier of the same type is known
as deferred execution, and can be used in any context where object creation might be
expensive.

See Also
Deferred execution is one of the primary use cases for Supplier. Suppliers are dis‐
cussed in Recipe 2.2.

5.8 Closure Composition
Problem
You want to apply a series of small, independent functions consecutively.

134 | Chapter 5: Issues with Streams, Lambdas, and Method References

Solution
Use the composition methods defined as defaults in the Function, Consumer, and
Predicate interfaces.

Discussion
One of the benefits of functional programming is that you can create a set of small,
reusable functions that you can combine to solve larger problems. To support this,
the functional interfaces in the java.util.function package include methods to
make composition easy.

For example, the Function interface has two default methods with the signatures
shown in Example 5-23.

Example 5-23. Composition methods in java.util.function.Function

default <V> Function<V,R> compose(Function<? super V,? extends T> before)
default <V> Function<T,V> andThen(Function<? super R,? extends V> after)

The dummy arguments’ names in the Javadocs indicate what each method does. The
compose method applies its argument before the original function, while the andThen
method applies its argument after the original function.

To demonstrate this, consider the trivial example shown in Example 5-24.

Example 5-24. Using the compose and andThen methods

Function<Integer, Integer> add2 = x -> x + 2;
Function<Integer, Integer> mult3 = x -> x * 3;

Function<Integer, Integer> mult3add2 = add2.compose(mult3);
Function<Integer, Integer> add2mmult3 = add2.andThen(mult3);

System.out.println("mult3add2(1): " + mult3add2.apply(1));
System.out.println("add2mult3(1): " + add2mult3.apply(1));

First mult3, then add2

First add2, then mult3

The add2 function adds 2 to its argument. The mult3 function multiplies its argument
by 3. Since mult3add2 is made using compose, first the mult3 function is applied and
then the add2 function, whereas for add2mult3 using the andThen function does the
opposite.

The results of applying each composite function gives:

5.8 Closure Composition | 135

mult3add2(1): 5 // because (1 * 3) + 2 == 5
add2mult3(1): 9 // because (1 + 2) * 3 == 9

The result of the composition is a function, so this process creates new operations
that can be used later. Say, for example, you receive data as part of an HTTP request,
which means it is transmitted in string form. You already have a method to operate
on the data, but only if it’s already a number. If this happens frequently, you can com‐
pose a function that parses the string data before applying the numerical operation.
For instance, see Example 5-25.

Example 5-25. Parse an integer from a string, then add 2

Function<Integer, Integer> add2 = x -> x + 2;
Function<String, Integer> parseThenAdd2 = add2.compose(Integer::parseInt);
System.out.println(parseThenAdd2.apply("1"));
// prints 3

The new function, parseThenAdd2, invokes the static Integer.parseInt method
before adding 2 to the result. Going the other way, you can define a function that
invokes a toString method after a numerical operation, as in Example 5-26.

Example 5-26. Add a number, then convert to a string

Function<Integer, Integer> add2 = x -> x + 2;
Function<Integer, String> plus2toString = add2.andThen(Object::toString);
System.out.println(plus2toString.apply(1));
// prints "3"

This operation returns a function that takes an Integer argument and returns a
String.

The Consumer interface also has a method used for closure composition, as shown in
Example 5-27.

Example 5-27. Closure composition with consumers

default Consumer<T> andThen(Consumer<? super T> after)

The Javadocs for Consumer explain that the andThen method returns a composed
Consumer that performs the original operation followed by the Consumer argument. If
either operation throws an exception, it is thrown to the caller of the composed oper‐
ation.

See the sample code in Example 5-28.

136 | Chapter 5: Issues with Streams, Lambdas, and Method References

6 See https://en.wikipedia.org/wiki/Triangular_number for details. Triangle numbers are the number of hand‐
shakes needed if each person in a room shakes hands with every other person exactly once.

Example 5-28. Composed consumer for printing and logging

Logger log = Logger.getLogger(...);
Consumer<String> printer = System.out::println;
Consumer<String> logger = log::info;

Consumer<String> printThenLog = printer.andThen(logger);
Stream.of("this", "is", "a", "stream", "of", "strings").forEach(printThenLog);

The example code creates two consumers—one for printing to the console, and one
for logging. The composed consumer does both printing and logging for each ele‐
ment of the stream.

The Predicate interface has three methods that can be used to compose predicates,
as shown in Example 5-29.

Example 5-29. Composition methods in the Predicate interface

default Predicate<T> and(Predicate<? super T> other)
default Predicate<T> negate()
default Predicate<T> or(Predicate<? super T> other)

As you might expect the and, or, and negate methods are used to compose predicates
using logical and, logical or, and logical not operations. Each returns a composed
predicate.

To give a moderately interesting example, consider properties of integers. A perfect
square is a number whose square root is also an integer. A triangle number counts the
objects that can form an equilateral triangle.6

The code in Example 5-30 shows methods for computing perfect squares and triangle
numbers, and how you can use the and method to find numbers that are both.

Example 5-30. Triangle numbers that are perfect squares

public static boolean isPerfect(int x) {
 return Math.sqrt(x) % 1 == 0;
}

public static boolean isTriangular(int x) {
 double val = (Math.sqrt(8 * x + 1) - 1) / 2;
 return val % 1 == 0;
}

// ...

5.8 Closure Composition | 137

https://en.wikipedia.org/wiki/Triangular_number

7 The Unix operating system is based on this idea, with similar advantages.

IntPredicate triangular = CompositionDemo::isTriangular;
IntPredicate perfect = CompositionDemo::isPerfect;
IntPredicate both = triangular.and(perfect);

IntStream.rangeClosed(1, 10_000)
 .filter(both)
 .forEach(System.out::println);

Examples: 1, 4, 9, 16, 25, 36, 49, 64, 81, …

Examples: 1, 3, 6, 10, 15, 21, 28, 36, 45, …

Both (between 1 and 10,000): 1, 36, 1225

The composition approach can be used to build up complex operations from a small
library of simple functions.7

See Also
Functions are discussed in Recipe 2.4, consumers in Recipe 2.1, and predicates in
Recipe 2.3.

5.9 Using an Extracted Method for Exception Handling
Problem
Code in a lambda expression needs to throw an exception, but you do not want to
clutter a block lambda with exception handling code.

Solution
Create a separate method that does the operation, handle the exception there, and
invoke the extracted method in your lambda expression.

Discussion
A lambda expression is effectively the implementation of the single abstract method
in a functional interface. As with anonymous inner classes, lambda expressions can
only throw exceptions declared in the abstract method signature.

138 | Chapter 5: Issues with Streams, Lambdas, and Method References

8 Isn’t that just about the worst-named class in the entire Java API? All exceptions are thrown at runtime; other‐
wise they’re compiler errors. Shouldn’t that class have been called UncheckedException all along? To empha‐
size how silly the situation can get, Java 8 also adds a new class called java.io.UncheckedIOException just to
avoid some of the issues discussed in this recipe.

9 Interestingly enough, if the values and the divisor are changed to Double instead of Integer, you don’t get an
exception at all, even if the divisor is 0.0. Instead you get a result where all the elements are “Infinity.” This,
believe it or not, is the correct behavior according to the IEEE 754 specification for handling floating-point
values in a binary computer (and caused me massive headaches back when I used to program in—ugh—For‐
tran; the nightmares have gone away, but it took a while).

If the required exception is unchecked, the situation is relatively easy. The ancestor of
all unchecked exceptions is java.lang.RuntimeException.8 Like any Java code, a
lambda expression can throw a runtime exception without declaring it or wrapping
the code in a try/catch block. The exception is then propagated to the caller.

Consider, for instance, a method that divides all elements of a collection by a constant
value, as shown in Example 5-31.

Example 5-31. A lambda expression that may throw an unchecked exception

public List<Integer> div(List<Integer> values, Integer factor) {
 return values.stream()
 .map(n -> n / factor)
 .collect(Collectors.toList());
}

Can throw an ArithmeticException

Integer division will throw an ArithmeticException (an unchecked exception) if the
denominator is zero.9 This will be propagated to the caller, as shown in Example 5-32.

Example 5-32. Client code

List<Integer> values = Arrays.asList(30, 10, 40, 10, 50, 90);
List<Integer> scaled = demo.div(values, 10);
System.out.println(scaled);
// prints: [3, 1, 4, 1, 5, 9]

scaled = demo.div(values, 0);
System.out.println(scaled);
// throws ArithmeticException: / by zero

The client code invokes the div method, and if the divisor is zero, the lambda expres‐
sion throws an ArithmeticException. The client can add a try/catch block inside the
map method in order to handle the exception, but that leads to some seriously ugly
code (see Example 5-33).

5.9 Using an Extracted Method for Exception Handling | 139

Example 5-33. Lambda expression with try/catch

public List<Integer> div(List<Integer> values, Integer factor) {
 return values.stream()
 .map(n -> {
 try {
 return n / factor;
 } catch (ArithmeticException e) {
 e.printStackTrace();
 }
 })
 .collect(Collectors.toList());
}

This same process works even for checked exceptions, as long as the checked excep‐
tion is declared in the functional interface.

It’s generally a good idea to keep stream processing code as simple as possible, with
the goal of writing one line per intermediate operation. In this case, you can simplify
the code by extracting the function inside map into a method, and the stream process‐
ing could be done by calling it, as in Example 5-34.

Example 5-34. Extracting a lambda into a method

private Integer divide(Integer value, Integer factor) {
 try {
 return value / factor;
 } catch (ArithmeticException e) {
 e.printStackTrace();
 }
}

public List<Integer> divUsingMethod(List<Integer> values, Integer factor) {
 return values.stream()
 .map(n -> divide(n, factor))
 .collect(Collectors.toList());
}

Handle the exception here

Stream code is simplified

As an aside, if the extracted method had not needed the factor value, the argument
to map could have been simplified to a method reference.

The technique of extracting the lambda to a separate method has benefits as well. You
can write tests for the extracted method (using reflection if the method is private), set
break points in it, or any other mechanism normally associated with methods.

140 | Chapter 5: Issues with Streams, Lambdas, and Method References

See Also
Lambda expressions with checked exceptions are discussed in Recipe 5.10. Using a
generic wrapper method for exceptions is in Recipe 5.11.

5.10 Checked Exceptions and Lambdas
Problem
You have a lambda expression that throws a checked exception, and the abstract
method in the functional interface you are implementing does not declare that excep‐
tion.

Solution
Add a try/catch block to the lambda expression, or delegate to an extracted method to
handle it.

Discussion
A lambda expression is effectively the implementation of the single abstract method
in a functional interface. A lambda expression can therefore only throw checked
exceptions declared in the signature of the abstract method.

Say you are planning to invoke a service using a URL and you need to form a query
string from a collection of string parameters. The parameters need to be encoded in a
way that allows them to be used in a URL. Java provides a class for this purpose
called, naturally enough, java.net.URLEncoder, which has a static encode method
that takes a String and encodes it according to a specified encoding scheme.

In this case, what you would like to write is code like Example 5-35.

Example 5-35. URL encoding a collection of strings (NOTE: DOES NOT COMPILE)

public List<String> encodeValues(String... values) {
 return Arrays.stream(values)
 .map(s -> URLEncoder.encode(s, "UTF-8")))
 .collect(Collectors.toList());
}

Throws UnsupportedEncodingException, which must be handled

The method takes a variable argument list of strings and tries to run each of them
through the UREncoder.encode method under the recommended UTF-8 encoding.
Unfortunately, the code does not compile because that method throws a (checked)
UnsupportedEncodingException.

5.10 Checked Exceptions and Lambdas | 141

You might be tempted to simply declare that the encodeValues method throws that
exception, but that doesn’t work (see Example 5-36).

Example 5-36. Declaring the exception (ALSO DOES NOT COMPILE)

public List<String> encodeValues(String... values)
 throws UnsupportedEncodingException {
 return Arrays.stream(values)
 .map(s -> URLEncoder.encode(s, "UTF-8")))
 .collect(Collectors.toList());
}

Throwing the exception from the surrounding method also DOES NOT COM‐
PILE

The problem is that throwing an exception from a lambda is like building an entirely
separate class with a method and throwing the exception from there. It helps to think
of the lambda as the implementation of an anonymous inner class, because then it
becomes clear that throwing the exception in the inner object still needs to be han‐
dled or declared there, not in the surrounding object. Code like that is shown in
Example 5-37, which shows both the anonymous inner class version and the lambda
expression version.

Example 5-37. URL encoding using try/catch (CORRECT)

public List<String> encodeValuesAnonInnerClass(String... values) {
 return Arrays.stream(values)
 .map(new Function<String, String>() {
 @Override
 public String apply(String s) {
 try {
 return URLEncoder.encode(s, "UTF-8");
 } catch (UnsupportedEncodingException e) {
 e.printStackTrace();
 return "";
 }
 }
 })
 .collect(Collectors.toList());
}

public List<String> encodeValues(String... values) {
 return Arrays.stream(values)
 .map(s -> {
 try {
 return URLEncoder.encode(s, "UTF-8");
 } catch (UnsupportedEncodingException e) {
 e.printStackTrace();
 return "";

142 | Chapter 5: Issues with Streams, Lambdas, and Method References

 }
 })
 .collect(Collectors.toList());
}

Anonymous inner class

Contains code that will throw a checked exception

Lambda expression version

Since the apply method (the single abstract method from Function) does not declare
any checked exceptions, you must add a try/catch block inside any lambda expression
that is implementing it. If you use a lambda expression as shown, you don’t even see
the apply method signature at all, even if you wanted to modify it (which isn’t
allowed anyway).

Example 5-38 shows a version that uses an extracted method for the encoding.

Example 5-38. URL encoding delegating to a method

private String encodeString(String s) {
 try {
 return URLEncoder.encode(s, "UTF-8");
 } catch (UnsupportedEncodingException e) {
 throw new RuntimeException(e);
 }
}

public List<String> encodeValuesUsingMethod(String... values) {
 return Arrays.stream(values)
 .map(this::encodeString)
 .collect(Collectors.toList());
}

Extracted method for exception handling

Method reference to the extracted method

This works, and is simple to implement. It also gives you a method that you can test
and/or debug separately. The only downside is that you need to extract a method for
each operation that may throw an exception. As mentioned in the previous recipe,
however, it often allows for easier testing of the component parts of the stream pro‐
cessing.

5.10 Checked Exceptions and Lambdas | 143

See Also
Using an extracted method to handle exceptions in lambdas is covered in Recipe 5.9.
Using a generic wrapper for exceptions is discussed in Recipe 5.11.

5.11 Using a Generic Exception Wrapper
Problem
You have a lambda expression that throws an exception, but you wish to use a generic
wrapper that catches all checked exceptions and rethrows them as unchecked.

Solution
Create special exception classes and add a generic method to accept them and return
lambdas without exceptions.

Discussion
Both Recipes 5.9 and 5.10 show how to delegate to a separate method to handle
exceptions thrown from lambda expressions. Unfortunately, you need to define a pri‐
vate method for each operation that may throw an exception. This can be made more
versatile using a generic wrapper.

For this approach, define a separate functional interface with a method that declares
it throws Exception, and use a wrapper method to connect it to your code.

For example, the map method on Stream requires a Function, but the apply method
in Function does not declare any checked exceptions. If you want to use a lambda
expression in map that may throw a checked exception, start by creating a separate
functional interface that declares that it throws Exception, as in Example 5-39.

Example 5-39. A functional interface based on Function that throws Exception

@FunctionalInterface
public interface FunctionWithException<T, R, E extends Exception> {
 R apply(T t) throws E;
}

Now you can add a wrapper method that takes a FunctionWithException and
returns a Function by wrapping the apply method in a try/catch block, as shown in
Example 5-40.

144 | Chapter 5: Issues with Streams, Lambdas, and Method References

Example 5-40. A wrapper method to deal with exceptions

private static <T, R, E extends Exception>
 Function<T, R> wrapper(FunctionWithException<T, R, E> fe) {
 return arg -> {
 try {
 return fe.apply(arg);
 } catch (Exception e) {
 throw new RuntimeException(e);
 }
 };
}

The wrapper method accepts code that throws any Exception and builds in the nec‐
essary try/catch block, while delegating to the apply method. In this case the wrapper
method was made static, but that isn’t required. The result is that you can invoke
the wrapper with any Function that throws an exception, as in Example 5-41.

Example 5-41. Using a generic static wrapper method

public List<String> encodeValuesWithWrapper(String... values) {
 return Arrays.stream(values)
 .map(wrapper(s -> URLEncoder.encode(s, "UTF-8")))
 .collect(Collectors.toList());
}

Using the wrapper method

Now you can write code in your map operation that throws any exception, and the
wrapper method will rethrow it as unchecked. The downside to this approach is that
a separate generic wrapper, like ConsumerWithException, SupplierWithException,
and so on, is needed for each functional interface you plan to use.

It’s complications like this that make it clear why some Java frameworks (like Spring
and Hibernate), and even entire languages (like Groovy and Kotlin), catch all checked
exceptions and rethrow them as unchecked.

See Also
Lambda expressions with checked exceptions are discussed in Recipe 5.10. Extracting
to a method is covered in Recipe 5.9.

5.11 Using a Generic Exception Wrapper | 145

1 I’m being diplomatic here.

CHAPTER 6

The Optional Type

Sigh, why does everything related to Optional have to take 300 messages?
—Brian Goetz, lambda-libs-spec-experts

mailing list (October 23, 2013)

The Java 8 API introduced a new class called java.util.Optional<T>. While many
developers assume that the goal of Optional is to remove NullPointerExceptions
from your code, that’s not its real purpose. Instead, Optional is designed to commu‐
nicate to the user when a returned value may legitimately be null. This situation can
arise whenever a stream of values is filtered by some condition that happens to leave
no elements remaining.

In the Stream API, the following methods return an Optional if no elements remain
in the stream: reduce, min, max, findFirst, findAny.

An instance of Optional can be in one of two states: a reference to an instance of type
T, or empty. The former case is called present, and the latter is known as empty (as
opposed to null).

While Optional is a reference type, it should never be assigned a
value of null. Doing so is a serious error.

This chapter looks at the idiomatic ways to use Optional. While the proper use of
Optional is likely to be a lively source of discussions in your company,1 the good

147

2 See the sidebar about immutability.

news is that there are standard recommendations for its proper use. Following these
principles should help keep your intentions clear and maintainable.

6.1 Creating an Optional
Problem
You need to return an Optional from an existing value.

Solution
Use Optional.of, Optional.ofNullable, or Optional.empty.

Discussion
Like many other new classes in the Java 8 API, instances of Optional are immutable.
The API refers to Optional as a value-based class, meaning instances:

• Are final and immutable (though they may contain references to mutable
objects)2

• Have no public constructors, and thus must be instantiated by factory methods
• Have implementations of equals, hashCode, and toString that are based only on

their state

Optional and Immutability
Instances of Optional are immutable, but the objects they wrap may not be. If you
create an Optional that contains an instance of a mutable object, you can still modify
the instance. See, for instance, Example 6-1.

Example 6-1. Are Optionals immutable?

AtomicInteger counter = new AtomicInteger();
Optional<AtomicInteger> opt = Optional.ofNullable(counter);

System.out.println(optional); // Optional[0]

counter.incrementAndGet();
System.out.println(optional); // Optional[1]

optional.get().incrementAndGet();

148 | Chapter 6: The Optional Type

System.out.println(optional); // Optional[2]

optional = Optional.ofNullable(new AtomicInteger());

Increment using counter directly

Retrieve contained value and increment

Optional reference can be reassigned

You can modify the contained value either with the original reference, or one
retrieved by calling get on the Optional. You can even reassign the reference itself,
which basically says that immutable is not the same thing as final. What you can’t do
is modify the Optional instance itself, because there are no methods available to do
so.

This idea of the word “immutable” being something of a gray area is pretty common
in Java, which doesn’t have a good, built-in way of creating classes that only produce
objects that can’t be changed.

The static factory methods to create an Optional are empty, of, and ofNullable,
whose signatures are:

static <T> Optional<T> empty()
static <T> Optional<T> of(T value)
static <T> Optional<T> ofNullable(T value)

The empty method returns, naturally enough, an empty Optional. The of method
returns an Optional that wraps the specified value or throws an exception if the argu‐
ment is null. The expected way to use it is as shown in Example 6-2.

Example 6-2. Creating an Optional with “of ”

public static <T> Optional<T> createOptionalTheHardWay(T value) {
 return value == null ? Optional.empty() : Optional.of(value);
}

The description of the method in Example 6-2 is called “The Hard Way” not because
it’s particularly difficult, but because an easier way is to use the ofNullable method,
as in Example 6-3.

Example 6-3. Creating an Optional with “ofNullable”

public static <T> Optional<T> createOptionalTheEasyWay(T value) {
 return Optional.ofNullable(value);
}

6.1 Creating an Optional | 149

In fact, the implementation of ofNullable in the reference implementation of Java 8
is the line shown in createOptionalTheHardWay: check if the contained value is null,
and if it is return an empty Optional, otherwise use Optional.of to wrap it.

Incidentally, the classes OptionalInt, OptionalLong, and OptionalDouble wrap
primitives that can never be null, so they only have an of method:

static OptionalInt of(int value)
static OptionalLong of(long value)
static OptionalDouble of(double value)

Instead of get, the getter methods on those classes are getAsInt, getAsLong, and
getAsDouble.

See Also
Other recipes in this chapter, like Recipes 6.4 and 6.5, also create Optional values, but
from provided collections. Recipe 6.3 uses the methods in this recipe to wrap pro‐
vided values.

6.2 Retrieving Values from an Optional
Problem
You want to extract a contained value from an Optional.

Solution
Use the get method, but only if you’re sure a value exists inside the Optional. Other‐
wise use one of the variations of orElse. You can also use ifPresent if you only want
to execute a Consumer when a value is present.

Discussion
If you invoke a method that returns an Optional, you can retrieve the value con‐
tained inside by invoking the get method. If the Optional is empty, however, then
the get method throws a NoSuchElementException.

Consider a method that returns the first even-length string from a stream of them, as
shown in Example 6-4.

Example 6-4. Retrieving the first even-length string

Optional<String> firstEven =
 Stream.of("five", "even", "length", "string", "values")

150 | Chapter 6: The Optional Type

 .filter(s -> s.length() % 2 == 0)
 .findFirst();

The findFirst method returns an Optional<String>, because it’s possible that none
of the strings in the stream will pass the filter. You could print the returned value by
calling get on the Optional:

System.out.println(firstEven.get()) // Don't do this, even if it works

The problem is that while this will work here, you should never call get on an
Optional unless you’re sure it contains a value or you risk throwing the exception, as
in Example 6-5.

Example 6-5. Retrieving the first odd-length string

Optional<String> firstOdd =
 Stream.of("five", "even", "length", "string", "values")
 .filter(s -> s.length() % 2 != 0)
 .findFirst();

System.out.println(firstOdd.get()); // throws NoSuchElementException

How do you get around this? You have several options. The first is to check that the
Optional contains a value before retrieving it, as in Example 6-6.

Example 6-6. Retrieving the first even-length string with a protected get

Optional<String> firstEven =
 Stream.of("five", "even", "length", "string", "values")
 .filter(s -> s.length() % 2 == 0)
 .findFirst();

System.out.println(
 first.isPresent() ? first.get() : "No even length strings");

Same as before

Only call get if isPresent returns true

While this works, you’ve only traded null checking for isPresent checking, which
doesn’t feel like much of an improvement.

Fortunately, there’s a good alternative, which is to use the very convenient orElse
method, as shown in Example 6-7.

6.2 Retrieving Values from an Optional | 151

Example 6-7. Using orElse

Optional<String> firstOdd =
 Stream.of("five", "even", "length", "string", "values")
 .filter(s -> s.length() % 2 != 0)
 .findFirst();

System.out.println(firstOdd.orElse("No odd length strings"));

The orElse method returns the contained value if one is present, or a supplied
default otherwise. It’s therefore a convenient method to use if you have a fallback
value in mind.

There are a few variations of orElse:

• orElse(T other) returns the value if present, otherwise it returns the default
value, other

• orElseGet(Supplier<? extends T> other) returns the value if present, other‐
wise it invokes the Supplier and returns the result

• orElseThrow(Supplier<? extends X> exceptionSupplier) returns the value if
present, otherwise throws the exception created by the Supplier

The difference between orElse and orElseGet is that the former returns a string that
is always created, whether the value exists in the Optional or not, while the latter uses
a Supplier, which is only executed if the Optional is empty.

In this case, the value is a simple string, so the difference is pretty minimal. If, how‐
ever, the argument to orElse is a complex object, orElseGet with a Supplier ensures
the object is only created when needed, as in Example 6-8.

Example 6-8. Using a Supplier in orElseGet

Optional<ComplexObject> val = values.stream.findFirst()

val.orElse(new ComplexObject());
val.orElseGet(() -> new ComplexObject())

Always creates the new object

Only creates object if necessary

152 | Chapter 6: The Optional Type

3 See Chapter 6 of Venkat Subramaniam’s book Functional Programming in Java (Pragmatic Programmers,
2014) for a detailed explanation.

Using a Supplier as a method argument is an example of deferred
or lazy execution. It allows you to avoid invoking the get method
on the Supplier until necessary.3

The implementation of orElseGet in the library is shown in Example 6-9.

Example 6-9. Implementation of Optional.orElseGet in the JDK

public T orElseGet(Supplier<? extends T> other) {
 return value != null ? value : other.get();
}

value is a final attribute of type T in Optional

The orElseThrow method also takes a Supplier. From the API, the method signature
is:

<X extends Throwable> T orElseThrow(Supplier<? extends X> exceptionSupplier)

Therefore, in Example 6-10, the constructor reference used as the Supplier argument
isn’t executed when the Optional contains a value.

Example 6-10. Using orElseThrow as a Supplier

Optional<String> first =
 Stream.of("five", "even", "length", "string", "values")
 .filter(s -> s.length() % 2 == 0)
 .findFirst();

System.out.println(first.orElseThrow(NoSuchElementException::new));

Finally, the ifPresent method allows you to provide a Consumer that is only executed
when the Optional contains a value, as in Example 6-11.

Example 6-11. Using the ifPresent method

Optional<String> first =
 Stream.of("five", "even", "length", "string", "values")
 .filter(s -> s.length() % 2 == 0)
 .findFirst();

first.ifPresent(val -> System.out.println("Found an even-length string"));

6.2 Retrieving Values from an Optional | 153

first = Stream.of("five", "even", "length", "string", "values")
 .filter(s -> s.length() % 2 != 0)
 .findFirst();

first.ifPresent(val -> System.out.println("Found an odd-length string"));

In this case, only the message “Found an even-length string” will be printed.

See Also
Suppliers are discussed in Recipe 2.2. Constructor references are in Recipe 1.3. The
findAny and findFirst methods in Stream that return an Optional are covered in
Recipe 3.9.

6.3 Optional in Getters and Setters
Problem
You wish to use Optional in accessors and mutators.

Solution
Wrap the result of getter methods in Optionals, but do not do the same for setters,
and especially not for attributes.

Discussion
The Optional data type communicates to a user that the result of an operation may
legitimately be null, without throwing a NullPointerException. The Optional class,
however, was deliberately designed not to be serializable, so you don’t want to use it to
wrap fields in a class.

Consequently, the preferred mechanism for adding Optionals in getters and setters is
to wrap nullable attributes in them when returned from getter methods, but not to do
the same in setters, as in Example 6-12.

Example 6-12. Using Optional in a DAO layer

public class Department {
 private Manager boss;

 public Optional<Manager> getBoss() {
 return Optional.ofNullable(boss);
 }

 public void setBoss(Manager boss) {

154 | Chapter 6: The Optional Type

4 Perhaps this is just wishful thinking, but an appealing idea, nonetheless.

 this.boss = boss;
 }
}

In Department, the Manager attribute boss is considered nullable.4 You might be
tempted to make the attribute of type Optional<Manager>, but because Optional is
not serializable, neither would be Department.

The approach here is not to require the user to wrap a value in an Optional in order
to call a setter method, which is what would be necessary if the setBoss method took
an Optional<Manager> as an argument. The purpose of an Optional is to indicate a
value that may legitimately be null, and the client already knows whether or not the
value is null, and the internal implementation here doesn’t care.

Finally, returning an Optional<Manager> in the getter method accomplishes the goal
of telling the caller that the department may or may not have a boss at the moment
and that’s OK.

The downside to this approach is that for years the “JavaBeans” convention defined
getters and setters in parallel, based on the attribute. In fact, the definition of a prop‐
erty in Java (as opposed to simply an attribute) is that you have getters and setters that
follow the standard pattern. The approach in this recipe violates that pattern. The get‐
ter and the setter are no longer symmetrical.

It’s (partly) for this reason that some developers say that Optional should not appear
in your getters and setters at all. Instead, they treat it as an internal implementation
detail that shouldn’t be exposed to the client.

The approach used here is popular among open source developers who use Object-
Relational Mapping (ORM) tools like Hibernate, however. The overriding considera‐
tion there is communicating to the client that you’ve got a nullable database column
backing this particular field, without forcing the client to wrap a reference in the set‐
ter as well.

That seems a reasonable compromise, but, as they say, your mileage may vary.

See Also
Recipe 6.5 uses this DAO example to convert a collection of IDs into a collection of
employees. Recipe 6.1 discusses wrapping values in an Optional.

6.3 Optional in Getters and Setters | 155

6.4 Optional flatMap Versus map
Problem
You want to avoid wrapping an Optional inside another Optional.

Solution
Use the flatMap method in Optional.

Discussion
The map and flatMap methods in Stream are discussed in Recipe 3.11. The concept of
flatMap is a general one, however, and can also be applied to Optional.

The signature of the flatMap method in Optional is:

<U> Optional<U> flatMap(Function<? super T, Optional<U>> mapper)

This is similar to map from Stream, in that the Function argument is applied to each
element and produces a single result, in this case of type Optional<U>. More specifi‐
cally, if the argument T exists, flatMap applies the function to it and returns an
Optional wrapping the contained value. If the argument is not present, the method
returns an empty Optional.

As discussed in Recipe 6.3, a Data Access Object (DAO) is often written with getter
methods that return Optionals (if the property can be null), but the setter methods
do not wrap their arguments in Optionals. Consider a Manager class that has a non‐
null string called name, and a Department class that has a nullable Manager called
boss, as shown in Example 6-13.

Example 6-13. Part of a DAO layer with Optionals

public class Manager {
 private String name;

 public Manager(String name) {
 this.name = name;
 }

 public String getName() {
 return name;
 }
}

public class Department {
 private Manager boss;

156 | Chapter 6: The Optional Type

 public Optional<Manager> getBoss() {
 return Optional.ofNullable(boss);
 }

 public void setBoss(Manager boss) {
 this.boss = boss;
 }
}

Assumed not null, so no need for Optionals

Might be null, so wrap getter return in an Optional, but not setter

If the client calls the getBoss method on Department, the result is wrapped in an
Optional. See Example 6-14.

Example 6-14. Returning an Optional

Manager mrSlate = new Manager("Mr. Slate");

Department d = new Department();
d.setBoss(mrSlate);
System.out.println("Boss: " + d.getBoss());

Department d1 = new Department();
System.out.println("Boss: " + d1.getBoss());

Department with a nonnull manager

Prints Boss: Optional[Manager{name='Mr. Slate'}]

Department without a manager

Prints Boss: Optional.empty

So far, so good. If the Department has a Manager, the getter method returns it wrap‐
ped in an Optional. If not, the method returns an empty Optional.

The problem is, if you want the name of the Manager, you can’t call getName on an
Optional. You either have to get the contained value out of the Optional, or use the
map method (Example 6-15).

Example 6-15. Extract a name from an Optional manager

System.out.println("Name: " +
 d.getBoss().orElse(new Manager("Unknown")).getName());

6.4 Optional flatMap Versus map | 157

System.out.println("Name: " +
 d1.getBoss().orElse(new Manager("Unknown")).getName());

System.out.println("Name: " + d.getBoss().map(Manager::getName));
System.out.println("Name: " + d1.getBoss().map(Manager::getName));

Extract boss from Optional before calling getName

Use Optional.map to apply getName to contained Manager

The map method (discussed further in Recipe 6.5) applies the given function only if
the Optional it’s called on is not empty, so that’s the simpler approach here.

Life gets more complicated if the Optionals might be chained. Say a Company might
have a Department (only one, just to keep the code simple), as in Example 6-16.

Example 6-16. A company may have a department (only one, for simplicity)

public class Company {
 private Department department;

 public Optional<Department> getDepartment() {
 return Optional.ofNullable(department);
 }

 public void setDepartment(Department department) {
 this.department = department;
 }
}

If you call getDepartment on a Company, the result is wrapped in an Optional. If you
then want the manager, the solution would appear to be to use the map method as in
Example 6-15. But that leads to a problem, because the result is an Optional wrapped
inside an Optional (Example 6-17).

Example 6-17. An Optional wrapped inside an Optional

Company co = new Company();
co.setDepartment(d);

System.out.println("Company Dept: " + co.getDepartment());

System.out.println("Company Dept Manager: " + co.getDepartment()
 .map(Department::getBoss));

Prints Company Dept: Optional[Department{boss=Manager{name='Mr.

Slate'}}]

158 | Chapter 6: The Optional Type

Prints Company Dept Manager: Optional[Optional[Manager{name='Mr.

Slate'}]]

This is where flatMap on Optional comes in. Using flatMap flattens the structure, so
that you only get a single Optional. See Example 6-18, which assumes the company
was created as in the previous example.

Example 6-18. Using flatMap on a company

System.out.println(
 co.getDepartment()
 .flatMap(Department::getBoss)
 .map(Manager::getName));

Optional<Department>

Optional<Manager>

Optional<String>

Now wrap the company in an Optional as well, as in Example 6-19.

Example 6-19. Using flatMap on an optional company

Optional<Company> company = Optional.of(co);

System.out.println(
 company
 .flatMap(Company::getDepartment)
 .flatMap(Department::getBoss)
 .map(Manager::getName)
);

Optional<Company>

Optional<Department>

Optional<Manager>

Optional<String>

Whew! As the example shows, you can even wrap the company in an Optional, then
just use Optional.flatMap repeatedly to get to whatever property you want, finishing
with an Optional.map operation.

6.4 Optional flatMap Versus map | 159

See Also
Wrapping a value inside an Optional is discussed in Recipe 6.1. The flatMap method
in Stream is discussed in Recipe 3.11. Using Optional in a DAO layer is in Recipe 6.3.
The map method in Optional is in Recipe 6.5.

6.5 Mapping Optionals
Problem
You want to apply a function to a collection of Optional instances, but only if they
contain a value.

Solution
Use the map method in Optional.

Discussion
Say you have a list of employee ID values and you want to retrieve a collection of the
corresponding employee instances. If the findEmployeeById method has the signa‐
ture

public Optional<Employee> findEmployeeById(int id)

then searching for all the employees will return a collection of Optional instances,
some of which may be empty. You can then filter out the empty Optionals, as shown
in Example 6-20.

Example 6-20. Finding Employees by ID

public List<Employee> findEmployeesByIds(List<Integer> ids) {
 return ids.stream()
 .map(this::findEmployeeById)
 .filter(Optional::isPresent))
 .map(Optional::get)
 .collect(Collectors.toList());
}

Stream<Optional<Employee>>

Remove empty Optionals

Retrieve values you know exist

160 | Chapter 6: The Optional Type

The result of the first map operation is a stream of Optionals, each of which either
contains an employee or is empty. To extract the contained value, the natural idea is
to invoke the get method, but you’re never supposed to call get unless you’re sure a
value is present. Instead use the filter method with Optional::isPresent as a
predicate to remove all the empty Optionals. Then you can map the Optionals to
their contained values by mapping them using Optional::get.

This example used the map method on Stream. For a different approach, there is also a
map method on Optional, whose signature is:

<U> Optional<U> map(Function<? super T,? extends U> mapper)

The map method in Optional takes a Function as an argument. If the Optional is not
empty, the map method extracts the contained value, applies the function to it, and
returns an Optional containing the result. Otherwise it returns an empty Optional.

The finder operation in Example 6-20 can be rewritten using this method to the ver‐
sion in Example 6-21.

Example 6-21. Using Optional.map

public List<Employee> findEmployeesByIds(List<Integer> ids) {
 return ids.stream()
 .map(this::findEmployeeById)
 .flatMap(optional ->
 optional.map(Stream::of)
 .orElseGet(Stream::empty))
 .collect(Collectors.toList());
}

Stream<Optional<Employee>>

Turns nonempty Optional<Employee> into Optional<Stream<Employee>>

Extracts the Stream<Employee> from the Optional

The idea is that if the optional containing an employee is not empty, invoke the
Stream::of method on the contained value, which turns it into a one-element stream
of that value, which is then wrapped in an Optional. Otherwise return an empty
optional.

Say an employee was found by ID. The findEmployeeById method returns an
Optional<Employee> for that value. The optional.map(Stream::of) method then
returns an Optional containing a one-element stream holding that employee, so we
have Optional<Stream<Employee>>. Then the orElseGet method extracts the con‐
tained value, yielding Stream<Employee>.

6.5 Mapping Optionals | 161

5 At least, that’s the idea.

If the findEmployeeById method returned an empty Optional, then
optional.map(Stream::of) returns an empty Optional as well, and the orElse
Get(Stream::empty) method returns an empty stream.

The result is that you get a combination of Stream<Employee> elements and empty
streams, and that’s exactly what the flatMap method in Stream was designed to han‐
dle. It reduces everything down to a Stream<Employee> for only the nonempty
streams, so the collect method can return them as a List of employees.

The process is illustrated in Figure 6-1.

Figure 6-1. Optional map and flatMap

The Optional.map method is a convenience5 method for (hopefully) simplifying
stream processing code. The filter/map approach discussed earlier is certainly more
intuitive, especially for developers unaccustomed to flatMap operations, but the
result is the same.

162 | Chapter 6: The Optional Type

Of course, you can use any function you wish inside the Optional.map method. The
Javadocs illustrate converting names into file input streams. A different example is
shown in Recipe 6.4.

Incidentally, Java 9 adds a stream method to Optional. If the Optional is not empty,
it returns a one-element stream wrapping the contained value. Otherwise it returns
an empty stream. See Recipe 10.6 for details.

See Also
Recipe 6.3 illustrates how to use Optional in a DAO (data access object) layer. Recipe
3.11 discusses the flatMap method on streams, while Recipe 6.4 discusses the flat
Map method on Optionals. Recipe 10.6 talks about the new methods added to
Optional in Java 9.

6.5 Mapping Optionals | 163

1 Most Java developers are astonished to learn that NIO was added that early.

2 Even more confusing, the interface DirectoryStream.Filter is actually a functional interface, though again
it has nothing to do with functional streams. It’s used to approve only selected entries in a directory tree.

CHAPTER 7

File I/O

The nonblocking (or “new”) input/output package, referred to as NIO, was added in
J2SE 1.4.1 The NIO.2 extension, added in Java 7, brought in new classes for manipu‐
lating files and directories. The additions included the java.nio.file package,
which is the subject of this chapter. Several of the new classes in that package, like
java.nio.files.File, have been enhanced in Java 8 with methods that use streams.

Unfortunately, here is where the stream metaphor from functional programming
conflicts with the same term from input/output, leading to potential confusion. For
example, the java.nio.file.DirectoryStream interface has nothing to do with
functional streams. It is implemented by classes that iterate over a directory tree using
the traditional for-each construct.2

This chapter focuses on capabilities in I/O that support functional streams. In Java 8,
several methods were added to the java.nio.file.Files class to support functional
streams. Those methods are shown in Table 7-1. Note that all the methods in the
Files class are static.

165

Table 7-1. Methods in java.nio.files.Files that return streams
Method Return type

lines Stream<String>

list Stream<Path>

walk Stream<Path>

find Stream<Path>

The recipes in this chapter deal with each of these methods.

7.1 Process Files
Problem
You want to process the contents of a text file using streams.

Solution
Use the static lines method in either java.io.BufferedReader or java.nio
.file.Files to return the contents of a file as a stream.

Discussion
All FreeBSD-based Unix systems (including macOS) include a version of Webster’s
Second International Dictionary in the /usr/share/dict/ folder. The file web2 includes
approximately 230,000 words. Each word appears on its own line.

Say you wanted to find the 10 longest words in that dictionary. You can use the
Files.lines method to retrieve the words as a stream of strings, and then do normal
stream processing like map and filter. An example is shown in Example 7-1.

Example 7-1. Finding the 10 longest words in the web2 dictionary

try (Stream<String> lines = Files.lines(Paths.get("/usr/share/dict/web2")) {
 lines.filter(s -> s.length() > 20)
 .sorted(Comparator.comparingInt(String::length).reversed())
 .limit(10)
 .forEach(w -> System.out.printf("%s (%d)%n", w, w.length()));
} catch (IOException e) {
 e.printStackTrace();
}

The predicate in the filter passes only words longer than 20 characters. The sorted
method then sorts the words by length in descending order. The limit method ter‐

166 | Chapter 7: File I/O

3 Fortunately, the word blepharosphincterectomy doesn’t mean what it sounds like. It has to do with relieving
pressure of the eyelid on the cornea, which is bad enough, but it could have been worse.

minates after the first 10 words, which are then printed. By opening the stream in a
try-with-resources block, the system will automatically close it, and the dictionary
file, when the try block completes.

Streams and AutoCloseable
The Stream interface extends BaseStream, which is a subinterface of AutoCloseable.
Streams can therefore be used inside the Java 7 try-with-resources block. When
exiting the block, the system will automatically invoke the close method, which will
not only close the stream, it will also call any close handlers from the stream pipeline
to release any resources.

So far in this book the try-with-resources wrapper has not been needed, because
the streams were generated from collections or otherwise in memory. In this recipe,
however, the stream is based on a file, so try-with-resources ensures that the dictio‐
nary file is also closed.

The results from executing the code in Example 7-1 is shown in Example 7-2.

Example 7-2. Longest words in dictionary

formaldehydesulphoxylate (24)
pathologicopsychological (24)
scientificophilosophical (24)
tetraiodophenolphthalein (24)
thyroparathyroidectomize (24)
anthropomorphologically (23)
blepharosphincterectomy (23)
epididymodeferentectomy (23)
formaldehydesulphoxylic (23)
gastroenteroanastomosis (23)

There are five words in the dictionary that are 24 characters in length. The results
show them in alphabetical order, only because the original file was in alphabetical
order. If you add a thenComparing clause to the Comparator argument to sorted, you
can choose how you want the equal-length words to be sorted.

Following the list of 24-character words are five 23-character words, many of which
are from the medical field.3

By applying Collectors.counting as a downstream collector, you can determine
how many words of each length exist in the dictionary, as shown in Example 7-3.

7.1 Process Files | 167

Example 7-3. Determining number of words of each length

try (Stream<String> lines = Files.lines(Paths.get("/usr/share/dict/web2"))) {
 lines.filter(s -> s.length() > 20)
 .collect(Collectors.groupingBy(String::length, Collectors.counting()))
 .forEach((len, num) -> System.out.println(len + ": " + num));
}

This snippet used the groupingBy collector to create a Map where the keys are the
word lengths and values are the number of words of each length. The result is:

21: 82
22: 41
23: 17
24: 5

The output has the information, but isn’t terribly informative. It’s also sorted in
ascending order, which may not be what you want.

As an alternative, the Map.Entry interface now has static methods comparingByKey
and comparingByValue, each of which also takes an optional Comparator, as dis‐
cussed in Recipe 4.4. In this case, sorting by the reverseOrder comparator gives the
reverse of the natural order. See Example 7-4.

Example 7-4. Number of words of each length, in descending order

try (Stream<String> lines = Files.lines(Paths.get("/usr/share/dict/web2"))) {
 Map<Integer, Long> map = lines.filter(s -> s.length() > 20)
 .collect(Collectors.groupingBy(String::length, Collectors.counting()));

 map.entrySet().stream()
 .sorted(Map.Entry.comparingByKey(Comparator.reverseOrder()))
 .forEach(e -> System.out.printf("Length %d: %d words%n",
 e.getKey(), e.getValue()));
}

The result now is:

Length 24: 5 words
Length 23: 17 words
Length 22: 41 words
Length 21: 82 words

If your source of data is not a File, the BufferedReader class also has a lines
method, though in this case it is an instance method. The equivalent version of
Example 7-4 using BufferedReader is shown in Example 7-5.

168 | Chapter 7: File I/O

4 That’s an I/O stream, not a functional one.

Example 7-5. Using BufferedReader.lines method

try (Stream<String> lines =
 new BufferedReader(
 new FileReader("/usr/share/dict/words")).lines()) {

 // ... same as previous example ...
}

Again, since Stream implements AutoCloseable, when the try-with-resources
block closes the stream, it will then close the underlying BufferedReader.

See Also
Sorting maps is discussed in Recipe 4.4.

7.2 Retrieving Files as a Stream
Problem
You want to process all the files in a directory as a Stream.

Solution
Use the static Files.list method.

Discussion
The static list method in the java.nio.file.Files class takes a Path as an argu‐
ment and returns a Stream that wraps a DirectoryStream.4 The DirectoryStream
interface extends AutoCloseable, so using the list method is best done using a try-
with-resources construct, as in Example 7-6.

Example 7-6. Using Files.list(path)

try (Stream<Path> list = Files.list(Paths.get("src/main/java"))) {
 list.forEach(System.out::println);
} catch (IOException e) {
 e.printStackTrace();
}

Assuming this is executed in the root of a project that has the standard Maven or
Gradle structure, this will print the names of all files and folders in the src/main/java

7.2 Retrieving Files as a Stream | 169

directory. Using the try-with-resources block means that when the try block com‐
pletes, the system will invoke close on the stream, which will then invoke close on
the underlying DirectoryStream. The listing is not recursive.

When run on the source code for this book, the result includes both directories and
individual files:

src/main/java/collectors
src/main/java/concurrency
src/main/java/datetime
...
src/main/java/Summarizing.java
src/main/java/tasks
src/main/java/UseFilenameFilter.java

The signature for the list method shows that the return type is a Stream<Path> and
its argument a directory:

public static Stream<Path> list(Path dir) throws IOException

Executing the method on a non-directory resource results in a NotDirectoryExcep
tion.

The Javadocs make a point of saying that the resulting stream is weakly consistent,
meaning “it is thread safe but does not freeze the directory while iterating, so it may
(or may not) reflect updates to the directory that occur after returning from this
method.”

See Also
To navigate a filesystem using a depth-first search, see Recipe 7.3.

7.3 Walking the Filesystem
Problem
You need to perform a depth-first traversal of the filesystem.

Solution
Use the static Files.walk method.

Discussion
The signature of the static Files.walk method in the java.nio.file package is:

public static Stream<Path> walk(Path start,
 FileVisitOption... options)
 throws IOException

170 | Chapter 7: File I/O

The arguments are the starting Path and a variable argument list of FileVisitOption
values. The return type is a lazily populated Stream of Path instances obtained by
walking the filesystem from the starting path, performing a depth-first traversal.

The returned Stream encapsulates a DirectoryStream, so again it is recommended
that you invoke the method using a try-with-resources block, as in Example 7-7.

Example 7-7. Walking the tree

try (Stream<Path> paths = Files.walk(Paths.get("src/main/java"))) {
 paths.forEach(System.out::println);
} catch (IOException e) {
 e.printStackTrace();
}

The walk method takes zero or more FileVisitOption values as the second and sub‐
sequent arguments. This example didn’t use any. FileVisitOption is an enum, added
in Java 1.7, whose only defined value is FileVisitOption.FOLLOW_LINKS. Following
links means that, at least in principle, the tree can involve a cycle, so the stream keeps
track of files visited. If a cycle is detected, a FileSystemLoopException is thrown.

The results of this example on the book source code is similar to:

src/main/java
src/main/java/collectors
src/main/java/collectors/Actor.java
src/main/java/collectors/AddCollectionToMap.java
src/main/java/collectors/Book.java
src/main/java/collectors/CollectorsDemo.java
src/main/java/collectors/ImmutableCollections.java
src/main/java/collectors/Movie.java
src/main/java/collectors/MysteryMen.java
src/main/java/concurrency
src/main/java/concurrency/CommonPoolSize.java
src/main/java/concurrency/CompletableFutureDemos.java
src/main/java/concurrency/FutureDemo.java
src/main/java/concurrency/ParallelDemo.java
src/main/java/concurrency/SequentialToParallel.java
src/main/java/concurrency/Timer.java
src/main/java/datetime
...

The paths are traversed lazily. The resulting stream is guaranteed to have at least one
element—the starting argument. As each path is encountered, the system determines
if it is a directory, at which point it is traversed before moving on to the next sibling.
The result is a depth-first traversal. Each directory is closed after all of its entries have
been visited.

7.3 Walking the Filesystem | 171

There is also an overload of this method available:

public static Stream<Path> walk(Path start,
 int maxDepth,
 FileVisitOption... options)
 throws IOException

The maxDepth argument is the maximum number of levels of directories to visit. Zero
means only use the starting level. The version of this method without a maxDepth
parameter uses a value of Integer.MAX_VALUE, meaning all levels should be visited.

See Also
Listing files in a single directory is shown in Recipe 7.2. Searching for files is done
using Recipe 7.4.

7.4 Searching the Filesystem
Problem
You want to find files in a file tree that satisfy given properties.

Solution
Use the static Files.find method in the java.nio.file package.

Discussion
The signature of the Files.find method is:

public static Stream<Path> find(Path start,
 int maxDepth,
 BiPredicate<Path, BasicFileAttributes> matcher,
 FileVisitOption... options)
 throws IOException

This is similar to the walk method, but with an added BiPredicate to determine
whether or not a particular Path should be returned. The find method starts at a
given path and performs a depth-first search, up to the maxDepth number of levels,
evaluating each path against the BiPredicate, following links if specified as the value
of the FileVisitOption enum.

The BiPredicate matcher needs to return a boolean based on each path element,
along with its associated BasicFileAttributes object. For instance, Example 7-8
returns the paths for nondirectory files in the fileio package in the book’s source
code.

172 | Chapter 7: File I/O

Example 7-8. Finding the nondirectory files in the fileio package

try (Stream<Path> paths =
 Files.find(Paths.get("src/main/java"), Integer.MAX_VALUE,
 (path, attributes) ->
 !attributes.isDirectory() && path.toString().contains("fileio"))) {
 paths.forEach(System.out::println);
} catch (IOException e) {
 e.printStackTrace();
}

The result is:

src/main/java/fileio/FileList.java
src/main/java/fileio/ProcessDictionary.java
src/main/java/fileio/SearchForFiles.java
src/main/java/fileio/WalkTheTree.java

For each file encountered while walking the tree, the method evaluates it against the
given BiPredicate. This is just like calling the walk method with a filter, but the Java‐
docs claim this approach may be more efficient by avoiding redundant retrieval of the
BasicFileAttributes objects.

As usual, the resulting Stream encapsulates a DirectoryStream, so closing the stream
closes the underlying source. Using the method in a try-with-resources block, as
shown, is therefore the preferred approach.

See Also
Walking the filesystem is discussed in Recipe 7.3.

7.4 Searching the Filesystem | 173

1 No pun intended.

CHAPTER 8

The java.time Package

Friends don’t let friends use java.util.Date.
—Tim Yates

From the beginning of the language, the standard edition library has included two
classes for handling dates and times: java.util.Date and java.util.Calendar. The
former is a classic example of how not to design a class. If you check the public API,
practically all the methods are deprecated, and have been since Java 1.1 (roughly
1997). The deprecations recommend using Calendar instead, which isn’t much fun
either.

Both predate1 the addition of enums into the language, so they use integer constants
for fields like months. Both are mutable, and therefore not thread safe. To handle
some issues, the library later added the java.sql.Date class as a subclass of the ver‐
sion in java.util, but that didn’t really address the fundamental problems.

Finally, in Java SE 8, a completely new package has been added that addressed every‐
thing. The java.time package is based on the Joda-Time library, which has been used
as a free, open source alternative for years. In fact, the designers of Joda-Time helped
design and build the new package, and recommend that future development take
advantage of it.

The new package was developed under JSR-310: Date and Time API, and supports
the ISO 8601 standard. It correctly adjusts for leap years and daylight savings rules in
individual regions.

175

http://www.joda.org/joda-time/

This chapter contains recipes that illustrate the usefulness of the java.time package.
Hopefully they will address basic questions you may have, and point you to further
information wherever needed.

As a reference, the Java Tutorial online has an excellent section on the Date-Time
library. See https://docs.oracle.com/javase/tutorial/datetime/TOC.html for details.

8.1 Using the Basic Date-Time Classes
Problem
You want to use the new date and time classes in the java.time package.

Solution
Work with the factory methods in classes like Instant, Duration, Period, LocalDate,
LocalTime, LocalDateTime, ZonedDateTime, and others.

Discussion
The classes in Date-Time all produce immutable instances, so they are thread safe.
They also do not have public constructors, so each is instantiated using factory meth‐
ods.

Two static factory methods are of particular note: now and of. The now method is used
to create an instance based on the current date or time. Example 8-1 shows the sam‐
ple code.

Example 8-1. The now factory method

System.out.println("Instant.now(): " + Instant.now());
System.out.println("LocalDate.now(): " + LocalDate.now());
System.out.println("LocalTime.now(): " + LocalTime.now());
System.out.println("LocalDateTime.now(): " + LocalDateTime.now());
System.out.println("ZonedDateTime.now(): " + ZonedDateTime.now());

A sample set of results are shown in Example 8-2.

Example 8-2. The results of calling the now method

Instant.now(): 2017-06-20T17:27:08.184Z
LocalDate.now(): 2017-06-20
LocalTime.now(): 13:27:08.318
LocalDateTime.now(): 2017-06-20T13:27:08.319
ZonedDateTime.now(): 2017-06-20T13:27:08.319-04:00[America/New_York]

176 | Chapter 8: The java.time Package

https://docs.oracle.com/javase/tutorial/datetime/TOC.html

All output values are using the ISO 8601 standard formatting. For dates, the basic for‐
mat is yyyy-MM-dd. For times, the format is hh:mm:ss.sss. The format for LocalDate
Time combines the two, using a capital T as a separator. Date/times with a time zone
append a numerical offset (here, -04:00) using UTC as a base, as well as a so-called
region name (here, America/New_York). The output of the toString method in
Instant shows the time to nanosecond precision, in Zulu time.

The now method also appears in the classes Year, YearMonth, and ZoneId.

The static of factory method is used to produce new values. For LocalDate, the argu‐
ments are the year, month (either the enum or an int), and the day of month.

The month field in all the of methods is overloaded to accept a
Month enum, like Month.JANUARY, or an integer that starts at 1.
Since integer constants in Calendar start at 0 (that is,
Calendar.JANUARY is 0), watch out for off-by-one errors. Use the
Month enum wherever possible.

For LocalTime, there are several overloads, depending on how many values of the set
of hour, minute, second, and nanosecond are available. The of method on LocalDate
Time combines the others. Some examples are shown in Example 8-3.

Example 8-3. The of method for the date/time classes

System.out.println("First landing on the Moon:");
LocalDate moonLandingDate = LocalDate.of(1969, Month.JULY, 20);
LocalTime moonLandingTime = LocalTime.of(20, 18);
System.out.println("Date: " + moonLandingDate);
System.out.println("Time: " + moonLandingTime);

System.out.println("Neil Armstrong steps onto the surface: ");
LocalTime walkTime = LocalTime.of(20, 2, 56, 150_000_000);
LocalDateTime walk = LocalDateTime.of(moonLandingDate, walkTime);
System.out.println(walk);

The output of the demo in Example 8-3 is:

First landing on the Moon:
Date: 1969-07-20
Time: 20:18
Neil Armstrong steps onto the surface:
1969-07-20T20:02:56.150

The last argument to the LocalTime.of method is nanoseconds, so this example used
a feature from Java 7 where you can insert an underscore inside a numerical value for
readability.

8.1 Using the Basic Date-Time Classes | 177

2 Maybe it’s just me, but that seems like a lot.
3 Based on a similar table in the Java Tutorial, https://docs.oracle.com/javase/tutorial/datetime/overview/

naming.html.

The Instant class models a single, instantaneous point along the time line.

The ZonedDateTime class combines dates and times with time zone information from
the ZoneId class. Time zones are expressed relative to UTC.

There are two types of zone IDs:

• Fixed offsets, relative to UTC/Greenwich, like -05:00
• Geographical regions, like America/Chicago

Technically there’s a third type of ID, which is an offset that is assumed to be from
Zulu time. It includes a Z along with the numerical value.

The rules for offset changes come from the ZoneRules class, where the rules are
loaded from a ZoneRulesProvider. The ZoneRules class has methods such as
isDaylightSavings(Instant).

You can get the current value of the ZoneId from the static systemDefault method.
The complete list of available region IDs comes from the static getAvailableZoneIds
method:

Set<String> regionNames = ZoneId.getAvailableZoneIds();
System.out.println("There are " + regionNames.size() + " region names");

For jdk1.8.0_131, there are 600 region names.2

The Date-Time API uses standard prefixes for method names. If you are familiar with
the prefixes in Table 8-1, you can usually guess what a method does.3

Table 8-1. Prefixes used on Date-Time methods
Method Type Use

of Static factory Creates an instance

from Static factory Converts input parameters to target class

parse Static factory Parses an input string

format Instance Produces formatted output

get Instance Returns part of an object

is Instance Queries the state of the object

with Instance Creates a new object by changing one element of an existing one

plus, minus Instance Creates a new object by adding or subtracting from an existing one

178 | Chapter 8: The java.time Package

https://docs.oracle.com/javase/tutorial/datetime/overview/naming.html
https://docs.oracle.com/javase/tutorial/datetime/overview/naming.html

Method Type Use

to Instance Converts an object to another type

at Instance Combines this object with another

The of method was shown earlier. The parse and format methods are discussed in
Recipe 8.5. The with method is covered in Recipe 8.2, and is the immutable equiva‐
lent of a set method. Using plus and minus and their variations are part of Recipe 8.2
as well.

An example of using the at method is to add a time zone to a local date and time, as
in Example 8-4.

Example 8-4. Applying a time zone to a LocalDateTime

LocalDateTime dateTime = LocalDateTime.of(2017, Month.JULY, 4, 13, 20, 10);
ZonedDateTime nyc = dateTime.atZone(ZoneId.of("America/New_York"));
System.out.println(nyc);

ZonedDateTime london = nyc.withZoneSameInstant(ZoneId.of("Europe/London"));
System.out.println(london);

This prints:

2017-07-04T13:20:10-04:00[America/New_York]
2017-07-04T18:20:10+01:00[Europe/London]

As the result shows, the withZoneSameInstant method allows you to take one Zoned
DateTime and find out what it would be in another time zone.

There are two enums in the package: Month and DayOfWeek. Month has constants for
each month in the standard calendar (JANUARY through DECEMBER). Month also has
many convenient methods, as shown in Example 8-5.

Example 8-5. Some methods in the Month enum

System.out.println("Days in Feb in a leap year: " +
 Month.FEBRUARY.length(true));
System.out.println("Day of year for first day of Aug (leap year): " +
 Month.AUGUST.firstDayOfYear(true));
System.out.println("Month.of(1): " + Month.of(1));
System.out.println("Adding two months: " + Month.JANUARY.plus(2));
System.out.println("Subtracting a month: " + Month.MARCH.minus(1));

Argument is boolean leapYear

8.1 Using the Basic Date-Time Classes | 179

The output of Example 8-5 is:

Days in Feb in a leap year: 29
Day of year for first day of Aug (leap year): 214
Month.of(1): JANUARY
Adding two months: MARCH
Subtracting a month: FEBRUARY

The last two examples, which use the plus and minus methods, create new instances.

Because the java.time classes are immutable, any instance method
that seems to modify one, like plus, minus, or with, produces a
new instance.

The DayOfWeek enum has constants representing the seven weekdays, from MONDAY
through SUNDAY. Again the int value for each follows the ISO standard, so that MONDAY
is 1 and SUNDAY is 7.

See Also
Parsing and formatting methods are discussed in Recipe 8.5. Converting existing
dates and times to new ones is covered in Recipe 8.2. The Duration and Period
classes are discussed in Recipe 8.8.

8.2 Creating Dates and Times from Existing Instances
Problem
You want to modify an existing instance of one of the Date-Time classes.

Solution
If you need a simple addition or subtraction, use one of the plus or minus methods.
Otherwise use the with method.

Discussion
One of the features of the new Date-Time API is that all of the instances are immuta‐
ble. Once you’ve created a LocalDate, LocalTime, LocalDateTime, or ZonedDateTime,
it can no longer be changed. This has the great advantage of making them thread safe,
but what if you want to make a new instance based on the existing one?

The LocalDate class has several methods for adding and subtracting values from
dates. Specifically, there are:

180 | Chapter 8: The java.time Package

• LocalDate plusDays(long daysToAdd)

• LocalDate plusWeeks(long weeksToAdd)

• LocalDate plusMonths(long monthsToAdd)

• LocalDate plusYears(long yearsToAdd)

Each method returns a new LocalDate, which is a copy of the current date with the
specified value added to it.

The LocalTime class has similar methods:

• LocalTime plusNanos(long nanosToAdd)

• LocalTime plusSeconds(long secondsToAdd)

• LocalTime plusMinutes(long minutesToAdd)

• LocalTime plusHours(long hoursToAdd)

Again, each returns a new instance, which is a copy of the original with the added
amount. LocalDateTime has all the methods for both LocalDate and LocalTime. For
instance, the various plus methods for LocalDate and LocalTime are shown in
Example 8-6.

Example 8-6. Using plus methods on LocalDate and LocalTime

@Test
public void localDatePlus() throws Exception {
 DateTimeFormatter formatter = DateTimeFormatter.ofPattern("yyyy-MM-dd");
 LocalDate start = LocalDate.of(2017, Month.FEBRUARY, 2);

 LocalDate end = start.plusDays(3);
 assertEquals("2017-02-05", end.format(formatter));

 end = start.plusWeeks(5);
 assertEquals("2017-03-09", end.format(formatter));

 end = start.plusMonths(7);
 assertEquals("2017-09-02", end.format(formatter));

 end = start.plusYears(2);
 assertEquals("2019-02-02", end.format(formatter));
}

@Test
public void localTimePlus() throws Exception {
 DateTimeFormatter formatter = DateTimeFormatter.ISO_LOCAL_TIME;

 LocalTime start = LocalTime.of(11, 30, 0, 0);

8.2 Creating Dates and Times from Existing Instances | 181

4 Holy Layers of Indirection, Batman!

 LocalTime end = start.plusNanos(1_000_000);
 assertEquals("11:30:00.001", end.format(formatter));

 end = start.plusSeconds(20);
 assertEquals("11:30:20", end.format(formatter));

 end = start.plusMinutes(45);
 assertEquals("12:15:00", end.format(formatter));

 end = start.plusHours(5);
 assertEquals("16:30:00", end.format(formatter));
}

The classes also have two additional plus and minus methods. Here are the signatures
for those methods in LocalDateTime:

LocalDateTime plus(long amountToAdd, TemporalUnit unit)
LocalDateTime plus(TemporalAmount amountToAdd)

LocalDateTime minus(long amountToSubtract, TemporalUnit unit)
LocalDateTime minus(TemporalAmount amountToSubtract)

The corresponding methods in LocalDate and LocalTime are the same, with the cor‐
responding return types. Interestingly enough, the minus versions just call the plus
versions with the amounts negated.

For the methods that take a TemporalAmount, the argument is usually a Period or a
Duration, but may be any type implementing the TemporalAmount interface. That
interface has methods called addTo and subtractFrom:

Temporal addTo(Temporal temporal)
Temporal subtractFrom(Temporal temporal)

If you follow the call stack, invoking minus delegates to plus with a negated argu‐
ment, which delegates to TemporalAmount.addTo(Temporal), which calls back to
plus(long, TemporalUnit), which actually does the work.4

Some examples with the plus and minus methods are shown in Example 8-7.

Example 8-7. The plus and minus methods

@Test
public void plus_minus() throws Exception {
 Period period = Period.of(2, 3, 4); // 2 years, 3 months, 4 days
 LocalDateTime start = LocalDateTime.of(2017, Month.FEBRUARY, 2, 11, 30);
 LocalDateTime end = start.plus(period);

182 | Chapter 8: The java.time Package

 assertEquals("2019-05-06T11:30:00",
 end.format(DateTimeFormatter.ISO_LOCAL_DATE_TIME));

 end = start.plus(3, ChronoUnit.HALF_DAYS);
 assertEquals("2017-02-03T23:30:00",
 end.format(DateTimeFormatter.ISO_LOCAL_DATE_TIME));

 end = start.minus(period);
 assertEquals("2014-10-29T11:30:00",
 end.format(DateTimeFormatter.ISO_LOCAL_DATE_TIME));

 end = start.minus(2, ChronoUnit.CENTURIES);
 assertEquals("1817-02-02T11:30:00",
 end.format(DateTimeFormatter.ISO_LOCAL_DATE_TIME));

 end = start.plus(3, ChronoUnit.MILLENNIA);
 assertEquals("5017-02-02T11:30:00",
 end.format(DateTimeFormatter.ISO_LOCAL_DATE_TIME));
}

When the API calls for TemporalUnit, remember that the provided
implementation class is ChronoUnit, which has many convenient
constants.

Finally, there are a series of with methods on each class that can be used to change
one field at a time.

The signatures range from withNano to withYear, with a few interesting ones thrown
in. Here is the set from LocalDateTime:

LocalDateTime withNano(int nanoOfSecond)
LocalDateTime withSecond(int second)
LocalDateTime withMinute(int minute)
LocalDateTime withHour(int hour)
LocalDateTime withDayOfMonth(int dayOfMonth)
LocalDateTime withDayOfYear(int dayOfYear)
LocalDateTime withMonth(int month)
LocalDateTime withYear(int year)

The code in Example 8-8 puts these methods through their paces.

Example 8-8. Using with methods on LocalDateTime

@Test
public void with() throws Exception {
 LocalDateTime start = LocalDateTime.of(2017, Month.FEBRUARY, 2, 11, 30);
 LocalDateTime end = start.withMinute(45);
 assertEquals("2017-02-02T11:45:00",
 end.format(DateTimeFormatter.ISO_LOCAL_DATE_TIME));

8.2 Creating Dates and Times from Existing Instances | 183

 end = start.withHour(16);
 assertEquals("2017-02-02T16:30:00",
 end.format(DateTimeFormatter.ISO_LOCAL_DATE_TIME));

 end = start.withDayOfMonth(28);
 assertEquals("2017-02-28T11:30:00",
 end.format(DateTimeFormatter.ISO_LOCAL_DATE_TIME));

 end = start.withDayOfYear(300);
 assertEquals("2017-10-27T11:30:00",
 end.format(DateTimeFormatter.ISO_LOCAL_DATE_TIME));

 end = start.withYear(2020);
 assertEquals("2020-02-02T11:30:00",
 end.format(DateTimeFormatter.ISO_LOCAL_DATE_TIME));
}

@Test(expected = DateTimeException.class)
public void withInvalidDate() throws Exception {
 LocalDateTime start = LocalDateTime.of(2017, Month.FEBRUARY, 2, 11, 30);
 start.withDayOfMonth(29);
}

Since 2017 is not a leap year, you can’t set the date to February 29. The result is a
DateTimeException, as the last test shows.

There are also with methods that take a TemporalAdjuster or a TemporalField:

LocalDateTime with(TemporalAdjuster adjuster)
LocalDateTime with(TemporalField field, long newValue)

The version with TemporalField lets the field resolve the date to make it valid. For
instance, Example 8-9 takes the last day of January and tries to change the month to
February. According to the Javadocs, the system chooses the previous valid date,
which in this case is the last day of February.

Example 8-9. Adjusting the month to an invalid value

@Test
public void temporalField() throws Exception {
 LocalDateTime start = LocalDateTime.of(2017, Month.JANUARY, 31, 11, 30);
 LocalDateTime end = start.with(ChronoField.MONTH_OF_YEAR, 2);
 assertEquals("2017-02-28T11:30:00",
 end.format(DateTimeFormatter.ISO_LOCAL_DATE_TIME));
}

As you might imagine, there are some fairly complicated rules involved, but they’re
well documented in the Javadocs.

The with method taking a TemporalAdjuster is discussed in Recipe 8.3.

184 | Chapter 8: The java.time Package

See Also
See Recipe 8.3 for information about TemporalAdjuster and TemporalQuery.

8.3 Adjusters and Queries
Problem
Given a temporal value, you want to adjust it to a new one based on your own logic,
or you want to retrieve information about it.

Solution
Create a TemporalAdjuster or formulate a TemporalQuery.

Discussion
The TemporalAdjuster and TemporalQuery classes provide interesting ways to work
with the Date-Time classes. They provide useful built-in methods and ways to imple‐
ment your own. This recipe will illustrate both possibilities.

Using TemporalAdjuster

The TemporalAdjuster interface provides methods that take a Temporal value and
return an adjusted one. The TemporalAdjusters class contains a set of adjusters as
static methods you might find convenient.

You use a TemporalAdjuster via the with method on a temporal object, as in this ver‐
sion from LocalDateTime:

LocalDateTime with(TemporalAdjuster adjuster)

The TemporalAdjuster class has an adjustInto method that also works, but the one
listed here is preferred.

Looking first at the TemporalAdjusters class methods, there are many convenience
methods:

static TemporalAdjuster firstDayOfNextMonth()
static TemporalAdjuster firstDayOfNextYear()
static TemporalAdjuster firstDayOfYear()

static TemporalAdjuster firstInMonth(DayOfWeek dayOfWeek)
static TemporalAdjuster lastDayOfMonth()
static TemporalAdjuster lastDayOfYear()
static TemporalAdjuster lastInMonth(DayOfWeek dayOfWeek)

static TemporalAdjuster next(DayOfWeek dayOfWeek)

8.3 Adjusters and Queries | 185

static TemporalAdjuster nextOrSame(DayOfWeek dayOfWeek)
static TemporalAdjuster previous(DayOfWeek dayOfWeek)
static TemporalAdjuster previousOrSame(DayOfWeek dayOfWeek)

The test case in Example 8-10 shows a couple of those methods in action.

Example 8-10. Using static methods in TemporalAdjusters

@Test
public void adjusters() throws Exception {
 LocalDateTime start = LocalDateTime.of(2017, Month.FEBRUARY, 2, 11, 30);
 LocalDateTime end = start.with(TemporalAdjusters.firstDayOfNextMonth());
 assertEquals("2017-03-01T11:30", end.toString());

 end = start.with(TemporalAdjusters.next(DayOfWeek.THURSDAY));
 assertEquals("2017-02-09T11:30", end.toString());

 end = start.with(TemporalAdjusters.previousOrSame(DayOfWeek.THURSDAY));
 assertEquals("2017-02-02T11:30", end.toString());
}

The fun comes when you write your own adjuster. TemporalAdjuster is a functional
interface, whose single abstract method is:

Temporal adjustInto(Temporal temporal)

For example, the Java Tutorial for the Date-Time package has an example of a Pay
dayAdjuster, which assumes that an employee is being paid twice a month. The rules
are that payment occurs on the 15th of the month and again on the last day of the
month, but if either occurs on a weekend, the previous Friday is used.

The code from the online example is reproduced in Example 8-11 for reference. Note
that in this case, the method has been added to a class that implements Temporal
Adjuster.

Example 8-11. PaydayAdjuster (from the Java Tutorial)

import java.time.DayOfWeek;
import java.time.LocalDate;
import java.time.temporal.Temporal;
import java.time.temporal.TemporalAdjuster;
import java.time.temporal.TemporalAdjusters;

public class PaydayAdjuster implements TemporalAdjuster {
 public Temporal adjustInto(Temporal input) {
 LocalDate date = LocalDate.from(input);
 int day;
 if (date.getDayOfMonth() < 15) {
 day = 15;
 } else {

186 | Chapter 8: The java.time Package

 day = date.with(TemporalAdjusters.lastDayOfMonth())
 .getDayOfMonth();
 }
 date = date.withDayOfMonth(day);
 if (date.getDayOfWeek() == DayOfWeek.SATURDAY ||
 date.getDayOfWeek() == DayOfWeek.SUNDAY) {
 date = date.with(TemporalAdjusters.previous(DayOfWeek.FRIDAY));
 }

 return input.with(date);
 }
}

Useful way to convert any Temporal to a LocalDate

In July 2017, the 15th occured on a Saturday and the 31st was on a Monday. The test
in Example 8-12 shows that it works correctly for July 2017.

Example 8-12. Testing the adjuster for July 2017

@Test
public void payDay() throws Exception {
 TemporalAdjuster adjuster = new PaydayAdjuster();
 IntStream.rangeClosed(1, 14)
 .mapToObj(day -> LocalDate.of(2017, Month.JULY, day))
 .forEach(date ->
 assertEquals(14, date.with(adjuster).getDayOfMonth()));

 IntStream.rangeClosed(15, 31)
 .mapToObj(day -> LocalDate.of(2017, Month.JULY, day))
 .forEach(date ->
 assertEquals(31, date.with(adjuster).getDayOfMonth()));
}

This works, but there are a couple of minor irritations. First of all, as of Java 8, you
can’t create a stream of dates without going through another mechanism, like count‐
ing days as shown. That changes in Java 9, which includes a method that return a
stream of dates. See Recipe 10.7 for details.

The other issue with the preceding code is that a class was created to implement the
interface. Because TemporalAdjuster is a functional interface, you can provide a
lambda expression or a method reference as an implementation instead.

You can now make a utility class called Adjusters that has static methods for what‐
ever you want to do, as in Example 8-13.

8.3 Adjusters and Queries | 187

Example 8-13. Utility class with adjusters

public class Adjusters {
 public static Temporal adjustInto(Temporal input) {
 LocalDate date = LocalDate.from(input);
 // ... implementation as before ...
 return input.with(date);
 }
}

Does not implement TemporalAdjuster

Static method, so no instantiation required

Now the comparable test is shown in Example 8-14.

Example 8-14. Using a method reference for the temporal adjuster

@Test
public void payDayWithMethodRef() throws Exception {
 IntStream.rangeClosed(1, 14)
 .mapToObj(day -> LocalDate.of(2017, Month.JULY, day))
 .forEach(date ->
 assertEquals(14,
 date.with(Adjusters::adjustInto).getDayOfMonth()));

 IntStream.rangeClosed(15, 31)
 .mapToObj(day -> LocalDate.of(2017, Month.JULY, day))
 .forEach(date ->
 assertEquals(31,
 date.with(Adjusters::adjustInto).getDayOfMonth()));
}

Method reference to adjustInto

You may find this approach more versatile if you have multiple temporal adjusters in
mind.

Using TemporalQuery

The TemporalQuery interface is used as the argument to the query method on tempo‐
ral objects. For example, on LocalDate, the signature of the query method is:

<R> R query(TemporalQuery<R> query)

This method invokes TemporalQuery.queryFrom(TemporalAccessor) with this as
an argument and returns whatever the query is designed to do. All the methods on
TemporalAccessor are available for performing the calculation.

188 | Chapter 8: The java.time Package

5 For example, “Ahoy, matey, I’d like t’ add ye t’ me professional network on LinkedIn.”

The API includes a class called TemporalQueries, which includes constants defining
many common queries:

static TemporalQuery<Chronology> chronology()
static TemporalQuery<LocalDate> localDate()
static TemporalQuery<LocalTime> localTime()
static TemporalQuery<ZoneOffset> offset()
static TemporalQuery<TemporalUnit> precision()
static TemporalQuery<ZoneId> zone()
static TemporalQuery<ZoneId> zoneId()

A simple test to show how some work is given in Example 8-15.

Example 8-15. Using the methods from TemporalQueries

@Test
public void queries() throws Exception {
 assertEquals(ChronoUnit.DAYS,
 LocalDate.now().query(TemporalQueries.precision()));
 assertEquals(ChronoUnit.NANOS,
 LocalTime.now().query(TemporalQueries.precision()));
 assertEquals(ZoneId.systemDefault(),
 ZonedDateTime.now().query(TemporalQueries.zone()));
 assertEquals(ZoneId.systemDefault(),
 ZonedDateTime.now().query(TemporalQueries.zoneId()));
}

Like with TemporalAdjuster, however, the interesting part comes when you write
your own. The TemporalQuery interface has only a single abstract method:

R queryFrom(TemporalAccessor temporal)

Say we have a method that, given a TemporalAccessor, computes the number of days
between the argument and International Talk Like A Pirate Day, September 19.5 Such
a method is shown in Example 8-16.

Example 8-16. Method to calculate days until Talk Like A Pirate Day

private long daysUntilPirateDay(TemporalAccessor temporal) {
 int day = temporal.get(ChronoField.DAY_OF_MONTH);
 int month = temporal.get(ChronoField.MONTH_OF_YEAR);
 int year = temporal.get(ChronoField.YEAR);
 LocalDate date = LocalDate.of(year, month, day);
 LocalDate tlapd = LocalDate.of(year, Month.SEPTEMBER, 19);
 if (date.isAfter(tlapd)) {
 tlapd = tlapd.plusYears(1);
 }

8.3 Adjusters and Queries | 189

 return ChronoUnit.DAYS.between(date, tlapd);
}

Since that method has a signature that is compatible with the single abstract method
in the TemporalQuery interface, you can use a method reference to invoke it, as in
Example 8-17.

Example 8-17. Using a TemporalQuery via a method reference

@Test
public void pirateDay() throws Exception {
 IntStream.range(10, 19)
 .mapToObj(n -> LocalDate.of(2017, Month.SEPTEMBER, n))
 .forEach(date ->
 assertTrue(date.query(this::daysUntilPirateDay) <= 9));
 IntStream.rangeClosed(20, 30)
 .mapToObj(n -> LocalDate.of(2017, Month.SEPTEMBER, n))
 .forEach(date -> {
 Long days = date.query(this::daysUntilPirateDay);
 assertTrue(days >= 354 && days < 365);
 });
}

You can use this approach to define your own custom queries.

8.4 Convert from java.util.Date to java.time.LocalDate
Problem
You want to convert from java.util.Date or java.util.Calendar to the new
classes in the java.time package.

Solution
Use the Instant class as a bridge, or use java.sql.Date and java.sql.Timestamp
methods, or even strings or integers for the conversion.

Discussion
When looking at the new classes in java.time, you may be surprised to find that
there aren’t a lot of built-in mechanisms for converting from the standard date and
time classes in java.util to the new preferred classes.

One approach to convert a java.util.Date to a java.time.LocalDate is to invoke
the toInstant method to create an Instant. Then you can apply the default ZoneId
and extract a LocalDate from the resulting ZonedDateTime, as in Example 8-18.

190 | Chapter 8: The java.time Package

6 When you print a java.util.Date, it uses Java’s default time zone to format the string.

Example 8-18. Converting java.util.Date to java.time.LocalDate via Instant

public LocalDate convertFromUtilDateUsingInstant(Date date) {
 return date.toInstant().atZone(ZoneId.systemDefault()).toLocalDate();
}

Since java.util.Date includes date and time information but no time zone,6 it rep‐
resents an Instant in the new API. Applying the atZone method on the system
default time zone reapplies the time zone. Then you can extract the LocalDate from
the resulting ZonedDateTime.

Another approach to changing from util dates to Date-Time dates is to notice that
there are convenient conversion methods in java.sql.Date (see Example 8-19) and
java.sql.Timestamp (see Example 8-20).

Example 8-19. Conversion methods in java.sql.Date

LocalDate toLocalDate()
static Date valueOf(LocalDate date)

Example 8-20. Conversion methods in java.sql.Timestamp

LocalDateTime toLocalDateTime()
static Timestamp valueOf(LocalDateTime dateTime)

Creating a class to do the conversion is easy enough, as in Example 8-21.

Example 8-21. Converting java.util classes to java.time classes (more to come)

package datetime;

import java.sql.Timestamp;
import java.time.LocalDate;
import java.time.LocalDateTime;
import java.util.Date;

public class ConvertDate {
 public LocalDate convertFromSqlDatetoLD(java.sql.Date sqlDate) {
 return sqlDate.toLocalDate();
 }

 public java.sql.Date convertToSqlDateFromLD(LocalDate localDate) {
 return java.sql.Date.valueOf(localDate);
 }

8.4 Convert from java.util.Date to java.time.LocalDate | 191

7 See https://en.wikipedia.org/wiki/Year_2038_problem for details.
8 While I expect to be safely retired by that point, I can imagine being on a respirator somewhere when the

failover occurs.

9 In fact, this is the only nondeprecated constructor in the java.sql.Date class, though you can also use the
setTime method to adjust the value of an existing java.sql.Date.

 public LocalDateTime convertFromTimestampToLDT(Timestamp timestamp) {
 return timestamp.toLocalDateTime();
 }

 public Timestamp convertToTimestampFromLDT(LocalDateTime localDateTime) {
 return Timestamp.valueOf(localDateTime);
 }
}

Since the methods you need are based on java.sql.Date, the question then becomes,
how do you convert from java.util.Date (which most developers use) and
java.sql.Date? One way is to use the constructor from SQL date that takes a long
representing the milliseconds elapsed in the current epoch.

The Epoch and Java
On Unix-based operating systems, the epoch is defined as the number of seconds
elapsed since 00:00:00 UTC on Thursday, January 1, 1970 (not counting leap sec‐
onds). The system clocks on current computers are based on this value.

Note that the number of seconds since the beginning of the epoch overflows a signed,
32-bit integer at 3:14:07 UTC on January 19, 2038, at which point every 32-bit operat‐
ing system in the world will suddenly think it’s December 13, 1901. This is known as
the “Year 2038 Problem,”7 and while virtually all systems should be on 64-bit operat‐
ing systems by then, embedded systems rarely, if ever, get updated.8

In Java, the elapsed time is measured in milliseconds, which would seem to make the
problem worse, but stored in a long rather than an integer, giving us several thousand
years before the overflow issue arises.

The java.util.Date class has a method called getTime that returns the long value,
and the java.sql.Date class has a constructor that takes this long as an argument.9

This means another way to convert from a java.util.Date instance to a
java.time.LocalDate is to go through the java.sql.Date class, as in Example 8-22.

192 | Chapter 8: The java.time Package

https://en.wikipedia.org/wiki/Year_2038_problem

Example 8-22. Converting a java.util.Date to a java.time.LocalDate

public LocalDate convertUtilDateToLocalDate(java.util.Date date) {
 return new java.sql.Date(date.getTime()).toLocalDate()
}

Way back in Java 1.1, virtually the entire java.util.Date class was deprecated in
favor of java.util.Calendar. Converting between calendar instances and the new
java.time package can be done with the toInstant method, adjusting for the time
zone (Example 8-23).

Example 8-23. Converting from java.util.Calendar to java.time.ZonedDateTime

public ZonedDateTime convertFromCalendar(Calendar cal) {
 return ZonedDateTime.ofInstant(cal.toInstant(), cal.getTimeZone().toZoneId());
}

This method uses the ZonedDateTime class. The LocalDateTime class also has an
ofInstant method, but for some reason it also takes a ZoneId second argument. This
is strange because a LocalDateTime doesn’t contain time zone information. It seems
more intuitive, therefore, to use the method from ZonedDateTime instead.

You can also use the various getter methods on Calendar explicitly and go directly to
LocalDateTime (Example 8-24), if you want to bypass the time zone information
entirely.

Example 8-24. Using getter methods from Calendar to LocalDateTime

public LocalDateTime convertFromCalendarUsingGetters(Calendar cal) {
 return LocalDateTime.of(cal.get(Calendar.YEAR),
 cal.get(Calendar.MONTH),
 cal.get(Calendar.DAY_OF_MONTH),
 cal.get(Calendar.HOUR),
 cal.get(Calendar.MINUTE),
 cal.get(Calendar.SECOND));
}

Another mechanism is to generate a formatted string from the calendar, which can
then be parsed into the new class (Example 8-25).

Example 8-25. Generating and parsing a timestamp string

public LocalDateTime convertFromUtilDateToLDUsingString(Date date) {
 DateFormat df = new SimpleDateFormat("yyyy-MM-dd'T'HH:mm:ss");
 return LocalDateTime.parse(df.format(date),
 DateTimeFormatter.ISO_LOCAL_DATE_TIME);
}

8.4 Convert from java.util.Date to java.time.LocalDate | 193

That’s not really an advantage, but it’s nice to know you can do it. Finally, although
Calendar doesn’t have a direct conversion method, it turns out GregorianCalendar
does (Example 8-26).

Example 8-26. Converting a GregorianCalendar to a ZonedDateTime

public ZonedDateTime convertFromGregorianCalendar(Calendar cal) {
 return ((GregorianCalendar) cal).toZonedDateTime();
}

That works, but it does assume you’re using a Gregorian calendar. Since that’s the
only Calendar implementation in the standard library, it’s probably true, but not nec‐
essarily so.

Finally, Java 9 added the ofInstant method to LocalDate, making the conversion
simpler, as in Example 8-27.

Example 8-27. Converting java.util.Dat to java.time.LocalDate (JAVA 9 ONLY)

public LocalDate convertFromUtilDateJava9(Date date) {
 return LocalDate.ofInstant(date.toInstant(), ZoneId.systemDefault());
}

That approach is more direct, but is restricted to Java 9.

8.5 Parsing and Formatting
Problem
You want to parse and/or format the new date-time classes.

Solution
The DateTimeFormatter class creates date-time formats, which can be used for both
parsing and formatting.

Discussion
The DateTimeFormatter class has a wide variety of options, from constants like
ISO_LOCAL_DATE to pattern letters like uuuu-MMM-dd to localized styles for any given
Locale.

Fortunately, the process of parsing and formatting is almost trivially easy. All the
main date-time classes have a format and a parse method. Example 8-28 shows the
signatures for LocalDate:

194 | Chapter 8: The java.time Package

Example 8-28. Methods to parse and format LocalDate instances

static LocalDate parse(CharSequence text)
static LocalDate parse(CharSequence text, DateTimeFormatter formatter)
 String format(DateTimeFormatter formatter)

Uses ISO_LOCAL_DATE

Parsing and formatting are shown in Example 8-29.

Example 8-29. Parsing and formatting a LocalDate

LocalDateTime now = LocalDateTime.now();
String text = now.format(DateTimeFormatter.ISO_DATE_TIME);
LocalDateTime dateTime = LocalDateTime.parse(text);

Format from LocalDateTime to string

Parse from string to LocalDateTime

With that in mind, the real fun comes from playing with various date-time formats,
locales, and so on. The code in Example 8-30 shows some examples.

Example 8-30. Formatting dates

LocalDate date = LocalDate.of(2017, Month.MARCH, 13);

System.out.println("Full : " +
 date.format(DateTimeFormatter.ofLocalizedDate(FormatStyle.FULL)));
System.out.println("Long : " +
 date.format(DateTimeFormatter.ofLocalizedDate(FormatStyle.LONG)));
System.out.println("Medium : " +
 date.format(DateTimeFormatter.ofLocalizedDate(FormatStyle.MEDIUM)));
System.out.println("Short : " +
 date.format(DateTimeFormatter.ofLocalizedDate(FormatStyle.SHORT)));

System.out.println("France : " +
 date.format(DateTimeFormatter.ofLocalizedDate(FormatStyle.FULL)
 .withLocale(Locale.FRANCE)));
System.out.println("India : " +
 date.format(DateTimeFormatter.ofLocalizedDate(FormatStyle.FULL)
 .withLocale(new Locale("hin", "IN"))));
System.out.println("Brazil : " +
 date.format(DateTimeFormatter.ofLocalizedDate(FormatStyle.FULL)
 .withLocale(new Locale("pt", "BR"))));
System.out.println("Japan : " +
 date.format(DateTimeFormatter.ofLocalizedDate(FormatStyle.FULL)
 .withLocale(Locale.JAPAN)));

Locale loc = new Locale.Builder()

8.5 Parsing and Formatting | 195

10 There’s no truth to the rumor that I deliberately chose unusual languages and output formats just to challenge
O’Reilly Media’s ability to print the results correctly, at least as far as you know.

 .setLanguage("sr")
 .setScript("Latn")
 .setRegion("RS")
 .build();
System.out.println("Serbian: " +
 date.format(DateTimeFormatter.ofLocalizedDate(FormatStyle.FULL)
 .withLocale(loc)));

The output looks something like:10

Full : Monday, March 13, 2017
Long : March 13, 2017
Medium : Mar 13, 2017
Short : 3/13/17

France : lundi 13 mars 2017
India : Monday, March 13, 2017
Brazil : Segunda-feira, 13 de Março de 2017
Japan : 2017年 3月 13日
Serbian: ponedeljak, 13. mart 2017.

The parse and format methods throw a DateTimeParseException and DateTime
Exception, respectively, so you might want to consider catching them in your own
code.

If you have your own format in mind, use the ofPattern method to create it. All the
legal values are described in detail in the Javadocs. As an example of what’s possible,
see Example 8-31.

Example 8-31. Defining your own format pattern

ZonedDateTime moonLanding = ZonedDateTime.of(
 LocalDate.of(1969, Month.JULY, 20),
 LocalTime.of(20, 18),
 ZoneId.of("UTC")
);
System.out.println(moonLanding.format(DateTimeFormatter.ISO_ZONED_DATE_TIME));

DateTimeFormatter formatter =
 DateTimeFormatter.ofPattern("uuuu/MMMM/dd hh:mm:ss a zzz GG");
System.out.println(moonLanding.format(formatter));

formatter = DateTimeFormatter.ofPattern("uuuu/MMMM/dd hh:mm:ss a VV xxxxx");
System.out.println(moonLanding.format(formatter));

These produce:

196 | Chapter 8: The java.time Package

1969-07-20T20:18:00Z[UTC]
1969/July/20 08:18:00 PM UTC AD
1969/July/20 08:18:00 PM UTC +00:00

Again, to see what’s possible and what all the different formatting letters mean, see
the Javadocs for DateTimeFormatter. The process is always as simple as shown.

To show an example of a localized date-time formatter, consider the daylight savings
time issue. In the United States, daylight savings moves the clocks forward at 2 A.M.
on March 11, 2018, in the Eastern time zone. What happens when you ask for a
zoned date time at 2:30 A.M. on that day? See Example 8-32.

Example 8-32. Move the clocks forward

ZonedDateTime zdt = ZonedDateTime.of(2018, 3, 11, 2, 30, 0, 0,
 ZoneId.of("America/New_York"));
System.out.println(
 zdt.format(DateTimeFormatter.ofLocalizedDateTime(FormatStyle.FULL)));

This uses an overload of the of method that takes the year, month, dayOfMonth,
hours, minutes, seconds, nanoOfSecond, and ZoneId. Note that all the fields (other
than the ZoneId) are of type int, which means you can’t use the Month enum.

The output of this code is:

Sunday, March 11, 2018 3:30:00 AM EDT

So the method correctly changed the time from 2:30 A.M. (which doesn’t exist) to
3:30 A.M.

8.6 Finding Time Zones with Unusual Offsets
Problem
You want to find all the time zones with non-integral hour offsets.

Solution
Get the time zone offset for each time zone and determine its remainder when divid‐
ing the total seconds by 3,600.

Discussion
Most time zones are offset from UTC by an integral number of hours. For example,
what we normally called Eastern Time is UTC-05:00 and metropolitan France (CET)
is UTC+01:00. There are time zones, however, that are offset by the half-hour, like
Indian Standard Time (IST), which is UTC+05:30, or even 45 minutes, like the Chat‐

8.6 Finding Time Zones with Unusual Offsets | 197

ham Islands in New Zealand, which is UTC+12:45. This recipe demonstrates how you
can use the java.time package to find all the time zones that are off by nonintegral
amounts.

Example 8-33 demonstrates how to find the ZoneOffset for each regional zone ID,
and compare its total seconds to the number of seconds in an hour.

Example 8-33. Finding the offset seconds for each zone ID

public class FunnyOffsets {
 public static void main(String[] args) {
 Instant instant = Instant.now();
 ZonedDateTime current = instant.atZone(ZoneId.systemDefault());
 System.out.printf("Current time is %s%n%n", current);

 System.out.printf("%10s %20s %13s%n", "Offset", "ZoneId", "Time");
 ZoneId.getAvailableZoneIds().stream()
 .map(ZoneId::of)
 .filter(zoneId -> {
 ZoneOffset offset = instant.atZone(zoneId).getOffset();
 return offset.getTotalSeconds() % (60 * 60) != 0;
 })
 .sorted(comparingInt(zoneId ->
 instant.atZone(zoneId).getOffset().getTotalSeconds()))
 .forEach(zoneId -> {
 ZonedDateTime zdt = current.withZoneSameInstant(zoneId);
 System.out.printf("%10s %25s %10s%n",
 zdt.getOffset(), zoneId,
 zdt.format(DateTimeFormatter.ofLocalizedTime(
 FormatStyle.SHORT)));
 });
 }
}

Map the string region IDs to zone IDs

Calculate the offset

Only use zone IDs whose offsets are not divisible by 3,600

The static ZoneId.getAvailableZoneIds method returns a Set<String> represent‐
ing all the region IDs in the world. Using the ZoneId.of method, the resulting stream
of strings is transformed into a stream of ZoneId instances.

The lambda expression in the filter first applies the atZone method to an Instant in
order to create a ZonedDateTime, which then has a getOffset method. Finally, the
ZoneOffset class provides a getTotalSeconds method. The Javadocs for that method
describe it as “the primary way to access the offset amount. It returns the total of the

198 | Chapter 8: The java.time Package

hours, minutes and seconds fields as a single offset that can be added to a time.” The
Predicate in the filter then returns true only for those total seconds amounts that
aren’t evenly divisible by 3,600 (60 sec/min * 60 min/hour).

Before printing, the resulting ZoneId instances are sorted. The sorted method takes a
Comparator. Here, the static Comparator.comparingInt method is used, which gen‐
erates a Comparator that will sort by a given integer key. In this case, the same calcu‐
lation is used to determine the total seconds in the offsets. The result is that the
ZoneId instances are sorted by the offset amounts.

Then, to print the results, the current ZonedDateTime in the default time zone is eval‐
uated for each ZoneId using the withZoneSameInstant method. The printed string
then shows the offset, the regional zone ID, and a formatted, localized version of the
local time in that zone.

The result is shown in Example 8-34.

Example 8-34. Time zones offset by non-hour amounts

Current time is 2016-08-08T23:12:44.264-04:00[America/New_York]

 Offset ZoneId Time
 -09:30 Pacific/Marquesas 5:42 PM
 -04:30 America/Caracas 10:42 PM
 -02:30 America/St_Johns 12:42 AM
 -02:30 Canada/Newfoundland 12:42 AM
 +04:30 Iran 7:42 AM
 +04:30 Asia/Tehran 7:42 AM
 +04:30 Asia/Kabul 7:42 AM
 +05:30 Asia/Kolkata 8:42 AM
 +05:30 Asia/Colombo 8:42 AM
 +05:30 Asia/Calcutta 8:42 AM
 +05:45 Asia/Kathmandu 8:57 AM
 +05:45 Asia/Katmandu 8:57 AM
 +06:30 Asia/Rangoon 9:42 AM
 +06:30 Indian/Cocos 9:42 AM
 +08:45 Australia/Eucla 11:57 AM
 +09:30 Australia/North 12:42 PM
 +09:30 Australia/Yancowinna 12:42 PM
 +09:30 Australia/Adelaide 12:42 PM
 +09:30 Australia/Broken_Hill 12:42 PM
 +09:30 Australia/South 12:42 PM
 +09:30 Australia/Darwin 12:42 PM
 +10:30 Australia/Lord_Howe 1:42 PM
 +10:30 Australia/LHI 1:42 PM
 +11:30 Pacific/Norfolk 2:42 PM
 +12:45 NZ-CHAT 3:57 PM
 +12:45 Pacific/Chatham 3:57 PM

8.6 Finding Time Zones with Unusual Offsets | 199

This example shows how several of the classes in java.time can be combined to solve
an interesting problem.

8.7 Finding Region Names from Offsets
Problem
You want to know the ISO 8601 region name given an offset from UTC.

Solution
Filter all the available zone IDs by the given offset.

Discussion
While time zone names like “Eastern Daylight Time” or “Indian Standard Time” are
well-known, they are unofficial and their abbreviations like EDT and IST are some‐
times not even unique. The ISO 8601 specification defines time zone IDs two ways:

• By region name, like “America/Chicago”
• By offset from UTC in hours and minutes, like “+05:30”

Say you want to know what the region name is for a given offset from UTC. Many
regions share the same UTC offset at any given time, but you can calculate a List of
region names that have a given offset easily.

The ZoneOffset class specifies a time zone offset from Greenwich/UTC time. If you
already have a value for the offset, you can filter the complete list of region names
using it, as in Example 8-35.

Example 8-35. Getting region names given an offset

public static List<String> getRegionNamesForOffset(ZoneOffset offset) {
 LocalDateTime now = LocalDateTime.now();
 return ZoneId.getAvailableZoneIds().stream()
 .map(ZoneId::of)
 .filter(zoneId -> now.atZone(zoneId).getOffset().equals(offset))
 .map(ZoneId::toString)
 .sorted()
 .collect(Collectors.toList());
}

The ZoneId.getAvailableZoneIds method returns a List of strings. Each one can
be mapped to a ZoneId using the static ZoneId.of method. Then, after determining
the corresponding ZonedDateTime for that ZoneId using the atZone method in Local

200 | Chapter 8: The java.time Package

DateTime, you can get the ZoneOffset for each and filter the set by only those that
match it. The result is then mapped to strings, which are sorted and collected into a
List.

How do you get a ZoneOffset? One way is to use a given ZoneId, as shown in
Example 8-36.

Example 8-36. Get region names for a given offset

public static List<String> getRegionNamesForZoneId(ZoneId zoneId) {
 LocalDateTime now = LocalDateTime.now();
 ZonedDateTime zdt = now.atZone(zoneId);
 ZoneOffset offset = zdt.getOffset();

 return getRegionNamesForOffset(offset);
}

This works for any given ZoneId.

For example, if you want to determine the list of region names that correspond to
your current location, use the code in Example 8-37.

Example 8-37. Getting the current region names

@Test
public void getRegionNamesForSystemDefault() throws Exception {
 ZonedDateTime now = ZonedDateTime.now();
 ZoneId zoneId = now.getZone();
 List<String> names = getRegionNamesForZoneId(zoneId);

 assertTrue(names.contains(zoneId.getId()));
}

If you don’t know a region name but you do know the hours and minutes it is offset
from GMT, the ZoneOffset class has a convenient method called ofHoursMinutes for
that as well. The overload in Example 8-38 shows how to do that.

Example 8-38. Getting region names given an hour and minute offset

public static List<String> getRegionNamesForOffset(int hours, int minutes) {
 ZoneOffset offset = ZoneOffset.ofHoursMinutes(hours, minutes);
 return getRegionNamesForOffset(offset);
}

The tests in Example 8-39 demonstrate how the given code works.

8.7 Finding Region Names from Offsets | 201

Example 8-39. Testing region names for a given offset

@Test
public void getRegionNamesForGMT() throws Exception {
 List<String> names = getRegionNamesForOffset(0, 0);

 assertTrue(names.contains("GMT"));
 assertTrue(names.contains("Etc/GMT"));
 assertTrue(names.contains("Etc/UTC"));
 assertTrue(names.contains("UTC"));
 assertTrue(names.contains("Etc/Zulu"));
}

@Test
public void getRegionNamesForNepal() throws Exception {
 List<String> names = getRegionNamesForOffset(5, 45);

 assertTrue(names.contains("Asia/Kathmandu"));
 assertTrue(names.contains("Asia/Katmandu"));
}

@Test
public void getRegionNamesForChicago() throws Exception {
 ZoneId chicago = ZoneId.of("America/Chicago");
 List<String> names = RegionIdsByOffset.getRegionNamesForZoneId(chicago);

 assertTrue(names.contains("America/Chicago"));
 assertTrue(names.contains("US/Central"));
 assertTrue(names.contains("Canada/Central"));
 assertTrue(names.contains("Etc/GMT+5") || names.contains("Etc/GMT+6"));
}

A complete list of region names can be found in Wikipedia at https://en.wikipedia.org/
wiki/List_of_tz_database_time_zones.

8.8 Time Between Events
Problem
You need to know the amount of time between two events.

Solution
If you want times readable by people, use the between or until methods on the tem‐
poral classes or between method on Period to generate a Period object. Otherwise
use the Duration class for seconds and nanoseconds on the timeline.

202 | Chapter 8: The java.time Package

https://en.wikipedia.org/wiki/List_of_tz_database_time_zones
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

11 Including, believe it or not, FOREVER. If you ever need that value, please send me a message. I’d love to know
what the use case was.

Discussion
The Date-Time API includes the interface java.time.temporal.TemporalUnit,
which is implemented by the enum ChronoUnit in the same package. The between
method on that interface takes two TemporalUnit instances and returns a long:

long between(Temporal temporal1Inclusive,
 Temporal temporal2Exclusive)

The start and end times must be of compatible types. The implementation converts
the second argument to be an instance of the first type before calculating the amount.
The result is negative if the second argument occurs before the first argument.

The return value is the number of “units” between the arguments. This becomes con‐
venient when using the constants in the ChronoUnit enum.

For example, say you want to know how many days you need to wait until a particular
date. Since you’re interested in days, use the ChronoUnit.DAYS constant from the
enum, as in Example 8-40.

Example 8-40. Days to Election Day

LocalDate electionDay = LocalDate.of(2020, Month.NOVEMBER, 3);
LocalDate today = LocalDate.now();

System.out.printf("%d day(s) to go...%n",
 ChronoUnit.DAYS.between(today, electionDay));

Since the between method is invoked on the DAYS enum value, this will return the
number of days. Other constants in ChronoUnit include HOURS, WEEKS, MONTHS, YEARS,
DECADES, CENTURIES, and more.11

Using the Period class

If you’re interested in a breakdown into years, months, and days, use the Period class.
The until method in many of the basic classes has an overload that returns a Period:

// In java.time.LocalDate
Period until(ChronoLocalDate endDateExclusive)

This example can be rewritten as in Example 8-41.

8.8 Time Between Events | 203

Example 8-41. Using Period to get days, months, and years

LocalDate electionDay = LocalDate.of(2020, Month.NOVEMBER, 3);
LocalDate today = LocalDate.now();

Period until = today.until(electionDay);

years = until.getYears();
months = until.getMonths();
days = until.getDays();
System.out.printf("%d year(s), %d month(s), and %d day(s)%n",
 years, months, days);

Equivalent to Period.between(today, electionDay)

As the comment states, the Period class also has a static method called between that
works the same way. The recommendation is to use whichever style makes the code
more readable.

The Period class is used when you need to deal with human-readable times, like days,
months, and years.

Using the Duration class

The Duration class represents an amount of time in terms of seconds and nanosec‐
onds, which makes it suitable for working with Instant. The result can be converted
to many other types. The class stores a long representing seconds and an int repre‐
senting nanoseconds, and can be negative if the end point comes before the starting
point.

A primitive timing mechanism using Duration is shown in Example 8-42.

Example 8-42. Timing a method

public static double getTiming(Instant start, Instant end) {
 return Duration.between(start, end).toMillis() / 1000.0;
}

Instant start = Instant.now();
// ... call method to be timed ...
Instant end = Instant.now();
System.out.println(getTiming(start, end) + " seconds");

This is a “poor developer’s” approach to timing a method, but it is easy.

The Duration class has conversion methods: toDays, toHours, toMillis, toMinutes,
and toNanos, which is why the getTiming method in Example 8-42 used toMillis
and divided by 1,000.

204 | Chapter 8: The java.time Package

1 An excellent, (relatively) short discussion of these concepts can be found in “Concurrency Is Not Parallelism,”
by Rob Pike, creator of the Go programming language. See https://www.youtube.com/watch?v=cN_DpYBzKso
for a video.

CHAPTER 9

Parallelism and Concurrency

This chapter confronts the issues of parallelization and concurrency in Java 8. Some
of the concepts extend back to language additions from much earlier versions of the
language (especially the java.util.concurrent package added in Java 5), but Java 8
specifically added several capabilities to the language to help you operate at a higher
level of abstraction.

One hazard of parallelization and concurrency is that when you try to talk about
them, someone will care a lot—very vocally—about the distinction between the two
words. Let’s get that out of the way right now:

• Concurrency is when multiple tasks can run in overlapping time periods
• Parallelism is when multiple tasks run at literally the same time

You design for concurrency—the ability to decompose your problem into independ‐
ent operations that can run simultaneously, even if they aren’t doing so at the
moment. A concurrent application is composed of independently executing pro‐
cesses. You can then implement the concurrent tasks in parallel, which may or may
not improve performance, assuming you have multiple processing units.1

Why wouldn’t parallelization help performance? There are many reasons, but paralle‐
lization in Java by default splits work into multiple sections, assigning each to the
common fork-join pool, executing them, and joining the results together. All of that
work introduces overhead. A lot of expected performance improvements will be deci‐
ded by how well your problem maps to that algorithm. One of the recipes in this

205

https://www.youtube.com/watch?v=cN_DpYBzKso

2 Video: http://www.infoq.com/presentations/Simple-Made-Easy, Transcript: http://bit.ly/hickey-simplemadeeasy
3 Another great example of simple versus easy is found in a story told about Patrick Stewart while he was play‐

ing Captain Picard in Star Trek: The Next Generation. A writer tried to describe to him all the detailed steps
necessary to enter orbit around a planet. “Nonsense,” Stewart replied. “You just say, ‘Standard orbit, Ensign.’”

4 Of particular note are Java Concurrency in Practice by Brian Goetz (Addison-Wesley Professional) and Pro‐
gramming Concurrency on the JVM by Venkat Subramaniam (Pragmatic Bookshelf).

chapter gives some guidelines on how to make the decision on whether or not to par‐
allelize.

Java 8 makes it easy to try out parallelism. There is a classic presentation by Rich
Hickey (the creator of the Clojure programming language) called “Simple Made
Easy.”2 One of the basic concepts in his talk is that the words simple and easy imply
different concepts. In short, something that is simple is conceptually clear, while
something that is easy might be elementary to do but might hide massive complexity
under the hood. For example, some sorting algorithms are simple and some are not,
but calling the sorted method on a Stream is always easy.3

Parallel and concurrent processing is a complex topic, and difficult to get right. From
the beginning, Java included low-level mechanisms to support multithreaded access,
with methods like wait, notify, and notifyAll in Object, as well as the synchron
ized keyword. Getting concurrency right with such primitives is extremely difficult,
so later the language added the java.util.concurrent package, which allowed
developers to work with concurrency at a higher level of abstraction using classes like
ExecutorService, ReentrantLock, and BlockingQueue. Still, managing concurrency
is hard, especially in the presence of the dreaded “shared mutable state” monster.

With Java 8, asking for parallel streams is easy because it involves a single method
call. That’s unquestionably easy. The problem is, improving performance is hardly
simple. All the problems from before are still there; they’re just hidden under the sur‐
face.

The recipes in this section are not a complete discussion of concurrency and paralleli‐
zation. Those topics can and do span entire books.4 Here the goal is to show you what
the available mechanisms are and how they are intended to be used. You can then
apply the concepts to your code and make your own measurements and decisions.

9.1 Converting from Sequential to Parallel Streams
Problem
You want to make a stream either sequential or parallel, regardless of the default.

206 | Chapter 9: Parallelism and Concurrency

http://www.infoq.com/presentations/Simple-Made-Easy
http://bit.ly/hickey-simplemadeeasy

Solution
Use the stream or parallelStream methods on Collection, or the sequential or
parallel methods on Stream.

Discussion
By default, when you create a stream in Java the result is sequential. In BaseStream
(the superclass of the Stream interface), you can use the method isParallel to deter‐
mine whether the stream is operating sequentially or in parallel.

Example 9-1 shows how all the standard mechanisms used to create streams are
sequential by default.

Example 9-1. Creating sequential streams (parts of a JUnit test)

@Test
public void sequentialStreamOf() throws Exception {
 assertFalse(Stream.of(3, 1, 4, 1, 5, 9).isParallel());
}

@Test
public void sequentialIterateStream() throws Exception {
 assertFalse(Stream.iterate(1, n -> n + 1).isParallel());
}

@Test
public void sequentialGenerateStream() throws Exception {
 assertFalse(Stream.generate(Math::random).isParallel());
}

@Test
public void sequentialCollectionStream() throws Exception {
 List<Integer> numbers = Arrays.asList(3, 1, 4, 1, 5, 9);
 assertFalse(numbers.stream().isParallel());
}

If the source was a collection, you can use the parallelStream method to yield a
(possibly) parallel stream, as in Example 9-2.

Example 9-2. Using the parallelStream method

@Test
public void parallelStreamMethodOnCollection() throws Exception {
 List<Integer> numbers = Arrays.asList(3, 1, 4, 1, 5, 9);
 assertTrue(numbers.parallelStream().isParallel());
}

9.1 Converting from Sequential to Parallel Streams | 207

5 An interesting topic, to be sure, but ultimately beyond the scope of this book.

The reason for the “possibly” qualification is that it is allowable for this method to
return a sequential stream, but by default the stream will be parallel. The Javadocs
imply that the sequential case will only occur if you create your own spliterator,
which is pretty unusual.5

The other way to create a parallel stream is to use the method parallel on an exist‐
ing stream, as in Example 9-3.

Example 9-3. Using the parallel method on a stream

@Test
public void parallelMethodOnStream() throws Exception {
 assertTrue(Stream.of(3, 1, 4, 1, 5, 9)
 .parallel()
 .isParallel());
}

Interestingly enough, there is also a sequential method, which returns a sequential
stream, as in Example 9-4.

Example 9-4. Converting a parallel stream to sequential

@Test
public void parallelStreamThenSequential() throws Exception {
 List<Integer> numbers = Arrays.asList(3, 1, 4, 1, 5, 9);
 assertFalse(numbers.parallelStream()
 .sequential()
 .isParallel());
}

Be careful, though. There’s a trap here. Say you plan a pipeline where part of the pro‐
cessing can reasonably be done in parallel, but other parts should be done sequen‐
tially. You might be tempted to try the code in Example 9-5.

Example 9-5. Switching from parallel to sequential (NOT WHAT YOU MIGHT
EXPECT)

List<Integer> numbers = Arrays.asList(3, 1, 4, 1, 5, 9);
List<Integer> nums = numbers.parallelStream()
 .map(n -> n * 2)
 .peek(n -> System.out.printf("%s processing %d%n",
 Thread.currentThread().getName(), n))
 .sequential()
 .sorted()
 .collect(Collectors.toList());

208 | Chapter 9: Parallelism and Concurrency

6 Think of it this way: sorting using a parallel stream would mean dividing up the range into equal parts and
sorting each of them individually, then trying to combine the resulting sorted ranges. The output wouldn’t be
sorted overall.

Ask for a parallel stream

Before sorting, switch to sequential

The idea here is that you want to double all the numbers, and then sort them. Since
the doubling function is stateless and associative, there’s no reason not to do it paral‐
lel. Sorting, however, is inherently sequential.6

The peek method is used to show the name of the thread doing the processing, and in
the example peek is invoked after the call to parallelStream but before the call to
sequential. The output is:

main processing 6
main processing 2
main processing 8
main processing 2
main processing 10
main processing 18

The main thread did all the processing. In other words, the stream is sequential,
despite the call to parallelStream. Why is that? Remember that with streams, no
processing is done until the terminal expression is reached, so it’s at that moment that
the state of the stream is evaluated. Since the last parallel or sequential call before
the collect method was to sequential, the stream is sequential and the elements are
processed accordingly.

When executing, a stream can be either parallel or sequential. The
parallel or sequential methods effectively set or unset a
boolean, which is checked when the terminal expression is reached.

If you really have your heart set on processing part of a stream in parallel and part
sequentially, use two separate streams. It’s an awkward solution, but there aren’t any
better alternatives.

9.2 When Parallel Helps
Problem
You want to see a benefit from using parallel streams.

9.2 When Parallel Helps | 209

7 Technically the pool size is processors minus one, but the main thread is still used as well.

8 Frequently you’ll see this expressed as N * Q > 10,000, but nobody ever seems to put dimensions on Q, so
that’s difficult to interpret.

Solution
Use parallel streams under the right conditions.

Discussion
The stream API was designed to make it easy to switch from sequential to parallel
streams, but that may or may not help your performance. Keep in mind that moving
to parallel streams is an optimization. Make sure you have working code first. Then
try to decide whether or not using parallel streams is worth it. Those decisions are
best made with actual data.

By default, Java 8 parallel streams use a common fork-join pool to distribute the
work. The size of that pool is equal to the number of processors, which you can deter‐
mine via Runtime.getRuntime().availableProcessors().7 Managing the fork-join
pool requires overhead, both in dividing the work into individual segments and in
combining the individual results back into a final answer.

For the additional overhead to be worthwhile, you need:

• A large amount of data, or
• A time-consuming process for each element, and
• A source of data that is easy to divide, and
• Operations that are stateless and associative

The first two requirements are often combined. If N is the number of data elements
and Q is the amount of computational time required for each element, then in general
you need N * Q to exceed some threshold.8 The next requirement means that you
need to have a data structure that is easy to divide into segments, like an array. Finally,
doing anything stateful or where order matters is clearly going to cause problems
when going parallel.

Here is an example that is about the simplest demonstration of a computation where
parallel streams help. The stream code in Example 9-6 adds a very small number of
integers.

Example 9-6. Adding integers in a sequential stream

public static int doubleIt(int n) {
 try {

210 | Chapter 9: Parallelism and Concurrency

9 The size will actually be seven, but there will be eight separate threads involved including the main thread.

 Thread.sleep(100);
 } catch (InterruptedException ignore) {
 }
 return n * 2;
}

// in main...
Instant before = Instant.now();
total = IntStream.of(3, 1, 4, 1, 5, 9)
 .map(ParallelDemo::doubleIt)
 .sum();
Instant after = Instant.now();
Duration duration = Duration.between(start, end);
System.out.println("Total of doubles = " + total);
System.out.println("time = " + duration.toMillis() + " ms");

Artificial delay

Measure time before and after

Since adding numbers is blazingly fast, going parallel isn’t likely to show much
improvement unless an artificial delay is introduced. Here N is very small, so Q is
inflated by introducing a 100-millisecond sleep.

By default, streams are sequential. Since the doubling of each element is delayed by
100 milliseconds and there are six elements, the overall process should take just over
0.6 seconds, and that’s what happens:

Total of doubles = 46
time = 621 ms

Now change the stream code to use a parallel stream instead. The Stream interface
has a method called parallel for this purpose, shown in Example 9-7.

Example 9-7. Using a parallel stream

total = IntStream.of(3, 1, 4, 1, 5, 9)
 .parallel()
 .map(ParallelDemo::doubleIt)
 .sum();

Use a parallel stream

On a machine with eight cores, the instantiated fork-join pool will be of size eight.9

That means each element in the stream can have its own core (assuming nothing else

9.2 When Parallel Helps | 211

is going on—a point to be addressed later), so all the doubling operations can happen
essentially simultaneously.

The result now is:

Total of doubles = 46
time = 112 ms

Since each doubling operation is delayed by 100 milliseconds and there are enough
threads for every number to be handled individually, the overall computation only
took just over 100 milliseconds.

Timing using JMH
Performance measurements are notoriously difficult to get right, because they are
dependent on many different issues like caching, JVM startup times, and more. The
demonstration shown here is quite crude. One mechanism that can be used for more
rigorous testing is the micro-benchmarking framework JMH (Java Micro-benchmark
Harness, available at http://openjdk.java.net/projects/code-tools/jmh/).

JMH lets you use annotations to specify the timing mode, scope, JVM arguments,
and more. Refactoring the example from this section to use JMH is shown in
Example 9-8.

Example 9-8. Timing the doubling operation using JMH

import org.openjdk.jmh.annotations.*;

import java.util.concurrent.TimeUnit;
import java.util.stream.IntStream;

@BenchmarkMode(Mode.AverageTime)
@OutputTimeUnit(TimeUnit.MILLISECONDS)
@State(Scope.Thread)
@Fork(value = 2, jvmArgs = {"-Xms4G", "-Xmx4G"})
public class DoublingDemo {
 public int doubleIt(int n) {
 try {
 Thread.sleep(100);
 } catch (InterruptedException ignored) {
 }
 return n * 2;
 }

 @Benchmark
 public int doubleAndSumSequential() {
 return IntStream.of(3, 1, 4, 1, 5, 9)
 .map(this::doubleIt)
 .sum();
 }

212 | Chapter 9: Parallelism and Concurrency

http://openjdk.java.net/projects/code-tools/jmh/

10 Java 8 and 9 in Action, Urma, Fusco, and Mycroft (Manning Publishers, 2017)

 @Benchmark
 public int doubleAndSumParallel() {
 return IntStream.of(3, 1, 4, 1, 5, 9)
 .parallel()
 .map(this::doubleIt)
 .sum();
 }
}

The default settings are to run 20 iterations in two separate threads, after a series of
warmup iterations. The results in a typical run are:

Benchmark Mode Cnt Score Error Units
DoublingDemo.doubleAndSumParallel avgt 40 103.523 ± 0.247 ms/op
DoublingDemo.doubleAndSumSequential avgt 40 620.242 ± 1.656 ms/op

The values are essentially the same as the crude estimate—that is, the sequential pro‐
cessing averaged about 620 ms while the parallel case averaged about 103. Running in
parallel on a system that can assign an individual thread to each of six numbers is
about six times faster than doing each computation consecutively, as long as there are
enough processors to go around.

Summing primitives

The previous example artificially inflated Q for a small N in order to show the effec‐
tiveness of using parallel streams. This section will make N large enough to draw some
conclusions, and compare both parallel and sequential for both generic streams and
primitive streams, as well as straight iteration.

The example in this section is basic, but it is based on a similar
demo in the excellent book Java 8 and 9 in Action.10

The iterative approach is shown in Example 9-9.

Example 9-9. Iteratively summing numbers in a loop

public long iterativeSum() {
 long result = 0;
 for (long i = 1L; i <= N; i++) {
 result += i;
 }

9.2 When Parallel Helps | 213

 return result;
}

Next, Example 9-10 shows both sequential and iterative approaches to summing a
Stream<Long>.

Example 9-10. Summing generic streams

public long sequentialStreamSum() {
 return Stream.iterate(1L, i -> i + 1)
 .limit(N)
 .reduce(0L, Long::sum);
}

public long parallelStreamSum() {
 return Stream.iterate(1L, i -> i + 1)
 .limit(N)
 .parallel()
 .reduce(0L, Long::sum);
}

The parallelStreamSum method is working with the worst situation possible, in that
the computation is using Stream<Long> instead of LongStream and working with a
collection of data produced by the iterate method. The system does not know how
to divide the resulting work easily.

By contrast, Example 9-11 both uses the LongStream class (which has a sum method)
and works with rangeClosed, which Java knows how to partition.

Example 9-11. Using LongStream

public long sequentialLongStreamSum() {
 return LongStream.rangeClosed(1, N)
 .sum();
}

public long parallelLongStreamSum() {
 return LongStream.rangeClosed(1, N)
 .parallel()
 .sum();
}

Sample results using JMH for N = 10,000,000 elements are:

Benchmark Mode Cnt Score Error Units
iterativeSum avgt 40 6.441 ± 0.019 ms/op
sequentialStreamSum avgt 40 90.468 ± 0.613 ms/op
parallelStreamSum avgt 40 99.148 ± 3.065 ms/op
sequentialLongStreamSum avgt 40 6.191 ± 0.248 ms/op
parallelLongStreamSum avgt 40 6.571 ± 2.756 ms/op

214 | Chapter 9: Parallelism and Concurrency

See how much all the boxing and unboxing costs? The approaches that use
Stream<Long> instead of LongStream are much slower, especially combined with the
fact that using a fork-join pool with iterate is not easy to divide. Using LongStream
with a rangeClosed method is so fast that there is very little difference between
sequential and parallel performance at all.

9.3 Changing the Pool Size
Problem
You want to use a different number of threads in the common pool than the default.

Solution
Change the proper system parameter, or submit the tasks to your own instance of
ForkJoinPool.

Discussion
The Javadocs for the java.util.concurrent.ForkJoinPool class state that you can
control the construction of the common pool using three system properties:

• java.util.concurrent.ForkJoinPool.common.parallelism

• java.util.concurrent.ForkJoinPool.common.threadFactory

• java.util.concurrent.ForkJoinPool.common.exceptionHandler

By default, the size of the common thread pool equals the number of processors on
your machine, computed from Runtime.getRuntime().availableProcessors().
Setting the parallelism flag to a nonnegative integer lets you specify the parallelism
level.

The flag can be specified either programmatically or on the command line. For
instance, Example 9-12 shows how to use System.setProperty to create the desired
degree of parallelism.

Example 9-12. Specifying the common pool size programmatically

System.setProperty(
 "java.util.concurrent.ForkJoinPool.common.parallelism", "20");
long total = LongStream.rangeClosed(1, 3_000_000)
 .parallel()
 .sum();

9.3 Changing the Pool Size | 215

int poolSize = ForkJoinPool.commonPool().getPoolSize();
System.out.println("Pool size: " + poolSize);

Prints Pool size: 20

Setting the pool size to a number greater than the number of avail‐
able cores is not likely to improve performance.

On the command line, you can use the -D flag as with any system property. Note that
the programmatic setting overrides the command-line setting, as shown in
Example 9-13:

Example 9-13. Setting the common pool size using a system parameter

$ java -cp build/classes/main concurrency.CommonPoolSize
Pool size: 20

// ...comment out the System.setProperty("...parallelism,20") line...
$ java -cp build/classes/main concurrency.CommonPoolSize
Pool size: 7

$ java -cp build/classes/main \
 -Djava.util.concurrent.ForkJoinPool.common.parallelism=10 \
 concurrency.CommonPoolSize
Pool size: 10

This example was run on a machine with eight processors. The pool size by default is
seven, but that doesn’t include the main thread, so there are eight active threads by
default.

Using your own ForkJoinPool

The ForkJoinPool class has a constructor that takes an integer representing the
degree of parallelism. You can therefore create your own pool, separate from the
common pool, and submit your jobs to that pool instead.

The code in Example 9-14 uses this mechanism to create its own pool.

Example 9-14. Creating your own ForkJoinPool

ForkJoinPool pool = new ForkJoinPool(15);
ForkJoinTask<Long> task = pool.submit(
 () -> LongStream.rangeClosed(1, 3_000_000)
 .parallel()
 .sum());

216 | Chapter 9: Parallelism and Concurrency

try {
 total = task.get();
} catch (InterruptedException | ExecutionException e) {
 e.printStackTrace();
} finally {
 pool.shutdown();
}
poolSize = pool.getPoolSize();
System.out.println("Pool size: " + poolSize);

Instantiate a ForkJoinPool of size 15

Submit a Callable<Integer> as the job

Execute the job and wait for a reply

Prints Pool size: 15

The common pool used when invoking parallel on a stream performs quite well in
most circumstances. If you need to change its size, use the system property. If that
still doesn’t get you what you want, try creating your own ForkJoinPool and submit
the jobs to it.

In any case, be sure to collect data on the resulting performance before deciding on a
long-term solution.

See Also
A related way to do parallel computations with your own pool is use Completable
Future, as discussed in Recipe 9.5.

9.4 The Future Interface
Problem
You want to represent the result of an asynchronous computation, check if it is com‐
plete, cancel if necessary, and retrieve the result.

Solution
Use a class that implements the java.util.concurrent.Future interface.

9.4 The Future Interface | 217

Discussion
This book is about the new features in Java 8 and 9, one of which is the very helpful
class CompletableFuture. Among its other qualities, a CompletableFuture imple‐
ments the Future interface, so it’s worth a brief review to see what Future can do.

The java.util.concurrent package was added to Java 5 to help developers operate
at a higher level of abstraction than simple wait and notify primitives. One of the
interfaces in that package is ExecutorService, which has a submit method that takes
a Callable and returns a Future wrapping the desired object.

For instance, Example 9-15 contains code that submits a job to an ExecutorService,
prints a string, then retrieves the value from the Future.

Example 9-15. Submitting a Callable and returning the Future

ExecutorService service = Executors.newCachedThreadPool();
Future<String> future = service.submit(new Callable<String>() {
 @Override
 public String call() throws Exception {
 Thread.sleep(100);
 return "Hello, World!";
 }
});
System.out.println("Processing...");
getIfNotCancelled(future);

The getIfNotCancelled method is shown in Example 9-16.

Example 9-16. Retrieving a value from a Future

public void getIfNotCancelled(Future<String> future) {
 try {
 if (!future.isCancelled()) {
 System.out.println(future.get());
 } else {
 System.out.println("Cancelled");
 }
 } catch (InterruptedException | ExecutionException e) {
 e.printStackTrace();
 }
}

Check status of Future

Blocking call to retrieve its value

218 | Chapter 9: Parallelism and Concurrency

The method isCancelled does exactly what it sounds like. Retrieving the value inside
the Future is done with the get method, which is a blocking call that returns the
generic type inside it. The method shown uses a try/catch block to deal with the
declared exceptions.

The output is:

Processing...
Hello, World!

Since the submitted call returns the Future<String> immediately, the code prints
“Processing…” right away. Then the call to get blocks until the Future completes, and
then prints the result.

Of course, this is a book on Java 8, so it’s worth noting that the anonymous inner class
implementation of the Callable interface can be replaced with a lambda expression,
as shown in Example 9-17.

Example 9-17. Using a lambda expression and checking if the Future is done

future = service.submit(() -> {
 Thread.sleep(10);
 return "Hello, World!";
});

System.out.println("More processing...");

while (!future.isDone()) {
 System.out.println("Waiting...");
}

getIfNotCancelled(future);

Lambda expression for the Callable

Wait until Future is finished

This time, in addition to using the lambda expression, the isDone method is invoked
in a while loop to poll the Future until it is finished.

Using isDone in a loop is called busy waiting and is not generally a
good idea because of the potentially millions of calls it generates.
The CompletableFuture class, discussed in the rest of this chapter,
provides a better way to react when a Future completes.

This time the output is:

9.4 The Future Interface | 219

More processing...
Waiting...
Waiting...
Waiting...
// ... lots more waiting ...
Waiting...
Waiting...
Hello, World!

Clearly a more elegant mechanism is needed to notify the developer when the Future
is completed, especially if the plan is to use the result of this Future as part of another
calculation. That’s one of the issues addressed by CompletableFuture.

Finally, the Future interface has a cancel method in case you change your mind
about it, as shown in Example 9-18.

Example 9-18. Cancelling the Future

future = service.submit(() -> {
 Thread.sleep(10);
 return "Hello, World!";
});

future.cancel(true);

System.out.println("Even more processing...");

getIfNotCancelled(future);

This code prints:

Even more processing...
Cancelled

Since CompletableFuture extends Future, all the methods covered in this recipe are
available there as well.

See Also
Completable Futures are discussed in Recipes 9.5, 9.6, and 9.7.

9.5 Completing a CompletableFuture
Problem
You want to explicitly complete a CompletableFuture, giving it a value or causing it
to throw an exception when the get method is invoked.

220 | Chapter 9: Parallelism and Concurrency

Solution
Use the completedFuture, complete, or the completeExceptionally methods.

Discussion
The CompletableFuture class implements the Future interface. The class also imple‐
ments the CompletionStage interface, whose dozens of methods open up a wide
range of possible use cases.

The real benefit of CompletableFuture is that it allows you to coordinate activities
without writing nested callbacks. That will be the subject of the next two recipes.
Here the question is how to complete a CompletableFuture when you know the
value you want to return.

Say your application needs to retrieve a product based on its ID, and that the retrieval
process may be expensive because it involves some kind of remote access. The cost
could be a network call to a RESTful web service, or a database call, or any other rela‐
tively time-consuming mechanism.

You therefore decide to create a cache of products locally in the form of a Map. That
way, when a product is requested, the system can check the map first, and if it returns
null, then undergo the more expensive operation. The code in Example 9-19 repre‐
sents both local and remote ways of fetching a product.

Example 9-19. Retrieving a product

private Map<Integer, Product> cache = new HashMap<>();
private Logger logger = Logger.getLogger(this.getClass().getName());

private Product getLocal(int id) {
 return cache.get(id);
}

private Product getRemote(int id) {
 try {
 Thread.sleep(100);
 if (id == 666) {
 throw new RuntimeException("Evil request");
 }
 } catch (InterruptedException ignored) {
 }
 return new Product(id, "name");
}

Returns right away, but might be null

Simulate a delay followed by a retrieval

9.5 Completing a CompletableFuture | 221

Simulate a network, database, or other kind of error

The idea now is to create a getProduct method that takes an ID for an argument and
returns a product. If you make the return type CompletableFuture<Product>, how‐
ever, the method can return immediately and you can do other work while the
retrieval actually happens.

To make this work, you need a way to complete a CompletableFuture. There are
three methods relevant here:

 boolean complete(T value)
static <U> CompletableFuture<U> completedFuture(U value)
 boolean completeExceptionally(Throwable ex)

The complete method is used when you already have a CompletableFuture and you
want to give it a specific value. The completedFuture method is a factory method
that creates a CompletableFuture with an already-computed value. The complete
Exceptionally method completes the Future with a given exception.

Using them together produces the code in Example 9-20. The code assumes that you
already have a legacy mechanism for returning a product from a remote system,
which you want to use to complete the Future.

Example 9-20. Completing a CompletableFuture

public CompletableFuture<Product> getProduct(int id) {
 try {
 Product product = getLocal(id);
 if (product != null) {
 return CompletableFuture.completedFuture(product);
 } else {
 CompletableFuture<Product> future = new CompletableFuture<>();
 Product p = getRemote(id);
 cache.put(id, p);
 future.complete(p);
 return future;
 }
 } catch (Exception e) {
 CompletableFuture<Product> future = new CompletableFuture<>();
 future.completeExceptionally(e);
 return future;
 }
}

Complete with the product from the cache if available

Legacy retrieval

222 | Chapter 9: Parallelism and Concurrency

Complete after legacy retrieval (for async, see next example)

Complete with an exception if something goes wrong

The method first tries to retrieve a product from the cache. If the map returns a non-
null value, then the factory method CompletableFuture.completedFuture is used to
return it.

If the cache returns null, then remote access is necessary. The code simulates a syn‐
chronous approach (more about that later) that would presumably be the legacy code.
A CompletableFuture is instantiated, and the complete method is used to populate it
with the generated value.

Finally, if something goes horribly wrong (simulated here with an ID of 666), then a
RuntimeException is thrown. The completeExceptionally method takes that excep‐
tion as an argument and completes the Future with it.

The way the exception handling works is shown in the test cases in Example 9-21.

Example 9-21. Using completeExceptionally on a CompletableFuture

@Test(expected = ExecutionException.class)
public void testException() throws Exception {
 demo.getProduct(666).get();
}

@Test
public void testExceptionWithCause() throws Exception {
 try {
 demo.getProduct(666).get();
 fail("Houston, we have a problem...");
 } catch (ExecutionException e) {
 assertEquals(ExecutionException.class, e.getClass());
 assertEquals(RuntimeException.class, e.getCause().getClass());
 }
}

Both of these tests pass. When completeExceptionally is called on a Completable
Future, the get method throws an ExecutionException whose cause is the exception
that triggered the problem in the first place. Here that’s a RuntimeException.

The get method declares an ExecutionException, which is a
checked exception. The join method is the same as get except that
it throws an unchecked CompletionException if completed excep‐
tionally, again with the underlying exception as its cause.

9.5 Completing a CompletableFuture | 223

The part of the example code most likely to be replaced is the synchronous retrieval
of the product. For that, you can use supplyAsync, one of the other static factory
methods available in CompletableFuture. The complete list is given by:

static CompletableFuture<Void> runAsync(Runnable runnable)
static CompletableFuture<Void> runAsync(Runnable runnable,
 Executor executor)

static <U> CompletableFuture<U> supplyAsync(Supplier<U> supplier)
static <U> CompletableFuture<U> supplyAsync(Supplier<U> supplier,
 Executor executor)

The runAsync methods are useful if you don’t need to return anything. The supply
Async methods return an object using the given Supplier. The single-argument
methods use the default common fork-join pool, while the two-argument overloads
use the executor given as the second argument.

The asynchronous version is shown in Example 9-22.

Example 9-22. Using supplyAsync to retrieve a product

public CompletableFuture<Product> getProductAsync(int id) {
 try {
 Product product = getLocal(id);
 if (product != null) {
 logger.info("getLocal with id=" + id);
 return CompletableFuture.completedFuture(product);
 } else {
 logger.info("getRemote with id=" + id);

 return CompletableFuture.supplyAsync(() -> {
 Product p = getRemote(id);
 cache.put(id, p);
 return p;
 });
 }
 } catch (Exception e) {
 logger.info("exception thrown");
 CompletableFuture<Product> future = new CompletableFuture<>();
 future.completeExceptionally(e);
 return future;
 }
}

Same operation as before, but returns the product asynchronously

In this case, the product is retrieved in the lambda expression shown that implements
Supplier<Product>. You could always extract that as a separate method and reduce
the code here to a method reference.

224 | Chapter 9: Parallelism and Concurrency

The challenge is how to invoke another operation after the CompletableFuture has
finished. Coordinating multiple CompletableFuture instances is the subject of the
next recipe.

See Also
The example in this recipe is based on a similar one in a blog post by Kenneth Jørgen‐
sen.

9.6 Coordinating CompletableFutures, Part 1
Problem
You want the completion of one Future to trigger another action.

Solution
Use the various instance methods in CompletableFuture that coordinate actions, like
thenApply, thenCompose, thenRun, and more.

Discussion
The best part about the CompletableFuture class is that it makes it easy to chain
Futures together. You can create multiple futures representing the various tasks you
need to perform, and then coordinate them by having the completion of one Future
trigger the execution of another.

As a trivial example, consider the following process:

• Ask a Supplier for a string holding a number
• Parse the number into an integer
• Double the number
• Print it

The code in Example 9-23 shows how simple that can be.

Example 9-23. Coordinating tasks using a CompletableFuture

private String sleepThenReturnString() {
 try {
 Thread.sleep(100);
 } catch (InterruptedException ignored) {
 }
 return "42";

9.6 Coordinating CompletableFutures, Part 1 | 225

http://kennethjorgensen.com/blog/2016/introduction-to-completablefutures
http://kennethjorgensen.com/blog/2016/introduction-to-completablefutures

}

CompletableFuture.supplyAsync(() -> this::sleepThenReturnString)
 .thenApply(Integer::parseInt)
 .thenApply(x -> 2 * x)
 .thenAccept(System.out::println)
 .join();
System.out.println("Running...");

Introduce an artificial delay

Apply a function when previous stage is finished

Apply a consumer when previous stage is finished

Retrieve the finished result

The output is “Running…” followed by 84. The supplyAsync method takes a Sup
plier (in this case of type String). The thenApply method takes a Function, whose
input argument is the result of the previous CompletionStage. The function in the
first thenApply converts the string into an integer, then the function in the second
thenApply doubles the integer. Finally, the thenAccept method takes a Consumer,
which it executes when the previous stage completes.

There are many different coordination methods in CompletableFuture. The com‐
plete list (other than overloads, discussed following the table) is shown in Table 9-1.

Table 9-1. Coordinating methods for CompletableFuture
Modifier(s) Return type Method name Arguments

Completable
Future<Void>

acceptEither CompletionStage<? extends T> other,
Consumer<? super T> action

static Completable
Future<Void>

allOf CompletableFuture<?>... cfs

static Completable
Future<Object>

anyOf CompletableFuture<?>... cfs

<U> CompletableFuture<U> apply
ToEither

CompletionStage<? extends T> other,
Function<? super T, U> fn

Completable
Future<Void>

runAfterBoth CompletionStage<?> other,
Runnable action

Completable
Future<Void>

runAfter
Either

CompletionStage<?> other,
Runnable action

Completable
Future<Void>

thenAccept Consumer<? super T> action

<U> CompletableFuture<U> thenApply Function<? super T> action, ?
extends U> fn

226 | Chapter 9: Parallelism and Concurrency

Modifier(s) Return type Method name Arguments

<U,V> CompletableFuture<V> thenCombine CompletionStage<? extends U> other,
BiFunction<? super T, ? super U, ?
extends V> fn

<U> CompletableFuture<U> thenCompose Function<? super T, ? extends
CompletionStage<U>> fn

Completable
Future<Void>

thenRun Runnable action

CompletableFuture<T> whenComplete BiConsumer<? super T, ? super Throwa
ble> action

All of the methods shown in the table use the common ForkJoinPool of worker
threads, whose size is equal to the total number of processors. We have already dis‐
cussed the runAsync and supplyAsync methods. They are factory methods that let
you specify a Runnable or a Supplier and return a CompletableFuture. As the table
shows, you can then chain additional methods like thenApply or thenCompose to add
tasks that will start when the previous one completes.

The table omits a set of similar patterns for each method—two for each that end in
the word Async: one with an Executor and one without. For example, looking at
thenAccept, the variations are:

CompletableFuture<Void> thenAccept(Consumer<? super T> action)
CompletableFuture<Void> thenAcceptAsync(Consumer<? super T> action)
CompletableFuture<Void> thenAcceptAsync(
 Consumer<? super T> action, Executor executor)

The thenAccept method executes its Consumer argument in the same thread as the
original task, while the second version submits it to the pool again. The third version
supplies an Executor, which is used to run the task instead of the common fork-join
pool.

Choosing whether or not to use the Async versions of the methods
is a trade-off. You may get faster individual task execution with
asynchronous tasks, but they also add overhead, so the overall
completion speed may not improve.

If you want to use your own Executor instead of the common pool, remember that
the ExecutorService implements the Executor interface. The code in Example 9-24
shows a variation using a separate pool.

Example 9-24. Running CompletableFuture tasks on a separate thread pool

ExecutorService service = Executors.newFixedThreadPool(4);

9.6 Coordinating CompletableFutures, Part 1 | 227

CompletableFuture.supplyAsync(() -> this::sleepThenReturnString, service)
 .thenApply(Integer::parseInt)
 .thenApply(x -> 2 * x)
 .thenAccept(System.out::println)
 .join();
System.out.println("Running...");

Supply the separate pool as an argument

The subsequent thenApply and thenAccept methods use the same thread as the sup
plyAsync method. If you use thenApplyAsync, the task will be submitted to the pool,
unless you add yet another pool as an additional argument.

Waiting to Finish in the Common ForkJoinPool
By default, a CompletableFuture uses the so-called “common” fork-join pool, which
is an optimized thread pool that performs work stealing, meaning all threads in the
pool “attempt to find and execute tasks submitted to the pool and/or created by other
active tasks,” according to the Javadocs. One important point to note is that all the
worker threads are daemon threads, meaning if the program exits before the threads
are finished, they will be terminated.

This means that if you execute the code in Example 9-23 without the call to join(),
you’ll see only “Running…” but not the result of the Future. The system will termi‐
nate before the task completes.

There are two ways to fix that. One is to invoke either get or join as shown, which
blocks until the result is retrieved. The other is to tell the program to wait until all
threads are completed, by giving the common pool a time-out period:

ForkJoinPool.commonPool().awaitQuiesence(long timeout, TimeUnit unit)

If you give the pool a sufficiently long waiting period, the Futures will complete. The
awaitQuiescence method tells the system to wait until all the worker threads are idle,
or until the given time period elapses, whichever comes first.

For those CompletableFuture instances that return a value, you can retrieve the value
using either the get or join methods. Both block until the Future completes or
throws an exception. The difference between the two is that get throws a (checked)
ExecutionException, while join throws an (unchecked) CompletionException. This
means that join is easier to use in lambda expressions.

You can also cancel a CompletableFuture using the cancel method, which takes a
boolean:

boolean cancel(boolean mayInterruptIfRunning)

228 | Chapter 9: Parallelism and Concurrency

11 Interestingly enough, according to the Javadocs the boolean parameter “has no effect because interrupts are
not used to control processing.”

12 OK, this is probably the most complicated way of adding two numbers ever.

If the Future has not already completed, this method will complete it by using a
CancellationException. Any dependent Futures will also complete exceptionally
with a CompletionException caused by the CancellationException. As it happens,
the boolean argument does nothing.11

The code in Example 9-23 demonstrated the thenApply and thenAccept methods.
thenCompose is an instance method that allows you to chain another Future to the
original, with the added benefit that the result of the first is available in the second.
The code in Example 9-25 is probably the world’s most complicated way of adding
two numbers.

Example 9-25. Composing two Futures together

@Test
public void compose() throws Exception {
 int x = 2;
 int y = 3;
 CompletableFuture<Integer> completableFuture =
 CompletableFuture.supplyAsync(() -> x)
 .thenCompose(n -> CompletableFuture.supplyAsync(() -> n + y));

 assertTrue(5 == completableFuture.get());
}

The argument to thenCompose is a function, which takes the result of the first Future
and transforms it into the output of the second. If you would rather that the Futures
be independent, you can use thenCombine instead, as in Example 9-26.12

Example 9-26. Combining two Futures

@Test
public void combine() throws Exception {
 int x = 2;
 int y = 3;
 CompletableFuture<Integer> completableFuture =
 CompletableFuture.supplyAsync(() -> x)
 .thenCombine(CompletableFuture.supplyAsync(() -> y),
 (n1, n2) -> n1 + n2);

 assertTrue(5 == completableFuture.get());
}

9.6 Coordinating CompletableFutures, Part 1 | 229

The thenCombine method takes a Future and a BiFunction as arguments, where the
results of both Futures are available in the function when computing the result.

One other special method is of note. The handle method has the signature:

<U> CompletableFuture<U> handle(BiFunction<? super T, Throwable, ? extends U> fn)

The two input arguments to the BiFunction are the result of the Future if it com‐
pletes normally and the thrown exception if not. Your code decides what to return.
There are also handleAsyc methods that take either a BiFunction or a BiFunction
and an Executor. See Example 9-27.

Example 9-27. Using the handle method

private CompletableFuture<Integer> getIntegerCompletableFuture(String num) {
 return CompletableFuture.supplyAsync(() -> Integer.parseInt(num))
 .handle((val, exc) -> val != null ? val : 0);
}

@Test
public void handleWithException() throws Exception {
 String num = "abc";
 CompletableFuture<Integer> value = getIntegerCompletableFuture(num);
 assertTrue(value.get() == 0);
}

@Test
public void handleWithoutException() throws Exception {
 String num = "42";
 CompletableFuture<Integer> value = getIntegerCompletableFuture(num);
 assertTrue(value.get() == 42);
}

The example simply parses a string, looking for an integer. If the parse is successful,
the integer is returned. Otherwise a ParseException is thrown and the handle
method returns zero. The two tests show that the operation works in either case.

As you can see, there are a wide variety of ways you can combine tasks, both synchro‐
nously and asynchronously, on the common pool or your own executors. The next
recipe gives a larger example of how they can be used.

See Also
A more complex example is given in Recipe 9.7.

230 | Chapter 9: Parallelism and Concurrency

13 For this example, all you need to know about baseball is that two teams play, each scores runs until one team
wins, and that the collection of statistics for a game is called a box score.

9.7 Coordinating CompletableFutures, Part 2
Problem
You want to see a larger example of coordinating CompletableFuture instances.

Solution
Access a set of web pages for each date in baseball season, each of which contains
links to the games played on that day. Download the box score information for each
game and transform it into a Java class. Then asynchronously save the data, compute
the results for each game, find the game with the highest total score, and print the
max score and the game in which it occurred.

Discussion
This recipe demonstrates a more complex example than the simple demonstrations
shown in the rest of this book. Hopefully it will give you an idea of what is possible,
and how you might combine CompletableFuture tasks to accomplish your own
goals.

The application relies on the fact that Major League Baseball maintains a set of web
pages with the box scores of each game played on a given date.13 Figure 9-1 shows the
web page for all the games played on June 14, 2017.

9.7 Coordinating CompletableFutures, Part 2 | 231

Figure 9-1. Games played on June 14, 2017

On that page, each of the links to a game begins with the letters “gid”, followed by the
year, month, and day, then by the code for the away team and the code for the home
team. If you follow each link, the resulting site has a list of files, one of which is called
boxscore.json.

The design of this application is to:

1. Access the site that contains the games for a range of dates.
2. Determine the game links on each page.
3. Download the boxscore.json file for each game.
4. Convert the JSON file for each game to a Java object.
5. Save the downloaded result into local files.
6. Determine the scores of each game.
7. Determine the game with the biggest total score.
8. Print the individual scores along with the maximum game and score.

Many of these tasks can be arranged to execute concurrently, and many can be run in
parallel.

The complete code for this example is too large to fit in this book, but is available on
the companion website. This recipe will illustrate the uses of parallel streams and
completable Futures.

232 | Chapter 9: Parallelism and Concurrency

https://github.com/kousen/cfboxscores

The first challenge is to find the game links for each date in a given range. The Game
PageLinksSupplier class in Example 9-28 implements the Supplier interface to pro‐
duce a list of strings representing the game links.

Example 9-28. Get the game links for a range of dates

public class GamePageLinksSupplier implements Supplier<List<String>> {
 private static final String BASE =
 "http://gd2.mlb.com/components/game/mlb/";
 private LocalDate startDate;
 private int days;

 public GamePageLinksSupplier(LocalDate startDate, int days) {
 this.startDate = startDate;
 this.days = days;
 }

 public List<String> getGamePageLinks(LocalDate localDate) {
 // Use the JSoup library to parse the HTML web page and
 // extract the links that start with "gid"
 }

 @Override
 public List<String> get() {
 return Stream.iterate(startDate, d -> d.plusDays(1))
 .limit(days)
 .map(this::getGamePageLinks)
 .flatMap(list -> list.isEmpty() ? Stream.empty() : list.stream())
 .collect(Collectors.toList());
 }
}

Required method for Supplier<List<String>>

The get method iterates over a range of dates by using the iterate method on
Stream. It starts with the given date and adds days up to the limit.

The datesUntil method added in Java 9 to LocalDate produces a
Stream<LocalDate>. See Recipe 10.7 for details.

Each LocalDate becomes the argument to the getGamePageLinks method, which
uses the JSoup library to parse the HTML page, find all the links that start with “gid”,
and return them as strings.

9.7 Coordinating CompletableFutures, Part 2 | 233

http://jsoup.org

The next step is to access the boxscore.json file at each game link. That is done using
the BoxscoreRetriever class, which implements Function<List<String>,

List<Result>> and is shown in Example 9-29.

Example 9-29. Retrieving the list of box scores from the list of game links

public class BoxscoreRetriever implements Function<List<String>, List<Result>> {
 private static final String BASE =
 "http://gd2.mlb.com/components/game/mlb/";

 private OkHttpClient client = new OkHttpClient();
 private Gson gson = new Gson();

 @SuppressWarnings("ConstantConditions")
 public Optional<Result> gamePattern2Result(String pattern) {
 // ... code omitted ...
 String boxscoreUrl = BASE + dateUrl + pattern + "boxscore.json";

 // .. set up OkHttp to make the network call ...
 try {
 // ... get the response ...
 if (!response.isSuccessful()) {
 System.out.println("Box score not found for " + boxscoreUrl);
 return Optional.empty();
 }

 return Optional.ofNullable(
 gson.fromJson(response.body().charStream(), Result.class));
 } catch (IOException e) {
 e.printStackTrace();
 return Optional.empty();
 }
 }

 @Override
 public List<Result> apply(List<String> strings) {
 return strings.parallelStream()
 .map(this::gamePattern2Result)
 .filter(Optional::isPresent)
 .map(Optional::get)
 .collect(Collectors.toList());
 }
}

If no box score is found (due to rain or other problem), return an empty
Optional

Use Gson to convert the JSON into a Result

234 | Chapter 9: Parallelism and Concurrency

This class relies on the OkHttp library and the Gson JSON parsing library to down‐
load the box score in JSON form and convert it into an object of type Result. The
class implements the Function interface, so it implements the apply method to con‐
vert the list of strings into a list of results. A box score for a given game may not exist
if the game is rained out or if some other network error occurs, so the game Pat
tern2Result method returns an Optional<Result>, which is empty in those cases.

The apply method streams over the game links, converting each one into an
Optional<Result>. Next it filters the stream, passing only the Optional instances
that are not empty, and then invokes the get method on each one. Finally it collects
them into a list of results.

Java 9 also adds a stream method to Optional, which would sim‐
plify the filter(Optional::isPresent) followed by map(

Optional::get) process. See Recipe 10.6 for details.

Once the box scores are retrieved, they can be saved locally. This can be done in the
methods shown in Example 9-30.

Example 9-30. Save each box score to a file

private void saveResultList(List<Result> results) {
 results.parallelStream().forEach(this::saveResultToFile);
}

public void saveResultToFile(Result result) {
 // ... determine a file name based on the date and team names ...
 try {
 File file = new File(dir + "/" + fileName);
 Files.write(file.toPath().toAbsolutePath(),
 gson.toJson(result).getBytes());
 } catch (IOException e) {
 e.printStackTrace();
 }
}

Create or overwrite file, then close it

The Files.write method with its default options creates a file if it doesn’t exist or
overwrites it if it does, then closes it.

Two other postprocessing methods are used. One, called getMaxScore, determines
the maximum total score from a given game. The other, called getMaxGame, returns
the game with the max score. Both are shown in Example 9-31.

9.7 Coordinating CompletableFutures, Part 2 | 235

http://square.github.io/okhttp/
https://github.com/google/gson

Example 9-31. Getting the maximum total score and the game where it occurred

private int getTotalScore(Result result) {
 // ... sum the scores of both teams ...
}

public OptionalInt getMaxScore(List<Result> results) {
 return results.stream()
 .mapToInt(this::getTotalScore)
 .max();
}

public Optional<Result> getMaxGame(List<Result> results) {
 return results.stream()
 .max(Comparator.comparingInt(this::getTotalScore));
}

Now, at last, all of the preceding methods and classes can be combined with complet‐
able Futures. See Example 9-32 for the main application code.

Example 9-32. Main application code

public void printGames(LocalDate startDate, int days) {
 CompletableFuture<List<Result>> future =
 CompletableFuture.supplyAsync(
 new GamePageLinksSupplier(startDate, days))
 .thenApply(new BoxscoreRetriever());

 CompletableFuture<Void> futureWrite =
 future.thenAcceptAsync(this::saveResultList)
 .exceptionally(ex -> {
 System.err.println(ex.getMessage());
 return null;
 });

 CompletableFuture<OptionalInt> futureMaxScore =
 future.thenApplyAsync(this::getMaxScore);
 CompletableFuture<Optional<Result>> futureMaxGame =
 future.thenApplyAsync(this::getMaxGame);
 CompletableFuture<String> futureMax =
 futureMaxScore.thenCombineAsync(futureMaxGame,
 (score, result) ->
 String.format("Highest score: %d, Max Game: %s",
 score.orElse(0), result.orElse(null)));

 CompletableFuture.allOf(futureWrite, futureMax).join();

 future.join().forEach(System.out::println);
 System.out.println(futureMax.join());
}

236 | Chapter 9: Parallelism and Concurrency

14 Clearly this could be done together, but it makes for a nice thenCombine example.

Coordinated tasks to retrieve the box scores

Save to files, completing exceptionally if problems occur

Combine the two max tasks

Complete everything

Several CompletableFuture instances are created. The first uses the GamePageLinks
Supplier to retrieve all the game page links for the desired dates, then applies the
BoxscoreRetriever to convert them into results. The second sets up writing each
one to disk, completing exceptionally if something goes wrong. Then the post-
processing steps of finding the maximum total score and the game in which it occur‐
red are set up.14 The allOf method is used to complete all of the tasks, then the results
are printed.

Note the use of thenApplyAsync, which isn’t strictly necessary, but allows for the tasks
to run asynchronously.

If you run the program for May 5, 2017, for three days, you get:

GamePageParser parser = new GamePageParser();
parser.printGames(LocalDate.of(2017, Month.MAY, 5), 3);

The output results are:

Box score not found for Los Angeles at San Diego on May 5, 2017
May 5, 2017: Arizona Diamondbacks 6, Colorado Rockies 3
May 5, 2017: Boston Red Sox 3, Minnesota Twins 4
May 5, 2017: Chicago White Sox 2, Baltimore Orioles 4
// ... more scores ...
May 7, 2017: Toronto Blue Jays 2, Tampa Bay Rays 1
May 7, 2017: Washington Nationals 5, Philadelphia Phillies 6
Highest score: 23, Max Game: May 7, 2017: Boston Red Sox 17, Minnesota Twins 6

Hopefully this will give you a sense of how you can combine many features discussed
throughout this book, from future tasks using CompletableFuture to functional
interfaces like Supplier and Function to classes like Optional, Stream, and Local
Date, and even methods like map, filter, and flatMap, to accomplish an interesting
problem.

See Also
The coordination methods for completable Futures are discussed in Recipe 9.6.

9.7 Coordinating CompletableFutures, Part 2 | 237

CHAPTER 10

Java 9 Additions

At the time of this writing, Java SDK 9 is considered feature complete, but not yet
released. The new feature garnering the most press coverage is Project Jigsaw, which
introduces a new modularization mechanism into the language.

This chapter contains recipes involving the new additions, like private methods in
interfaces, factory methods for immutable collections, and the new methods for
streams, Optional, and Collectors. Each of the recipes has been tested with Java SE
9 Early Access build 174.

FYI, the new features in Java 9 not covered in this chapter are:

• The jshell interactive console
• The modified try-with-resources block
• The relaxed syntax for the diamond operator
• The new deprecation warnings
• The reactive streams classes
• The stack-walking API
• The revised Process class

Several are relatively minor (like the diamond operator changes, try-with-

resources requirements, and deprecation warnings). Some are specialty topics (like
the stack-walking API and the changes to the Process API). The new shell is covered
heavily in the documentation, along with a tutorial.

Finally, the reactive streams additions are fascinating, but the open source commu‐
nity already provides APIs like Reactive Streams, RxJava, and more, and it might be a
good idea to wait to see how the community decides to support the new Java 9 API.

239

http://www.reactive-streams.org/

1 They may even have the details of Jigsaw worked out by then. Here’s hoping. :)
2 The Jigsaw project itself was created in 2008.

The recipes in this chapter hopefully cover the most common use cases. Should that
turn out not to be the case, more recipes will be added in the next edition of this
book.1

The recipes in this chapter also have a different feel to them from the rest of the book.
This book has been use-case driven, in that each recipe is supposed to solve a particu‐
lar type of problem. In this chapter, some of the recipes are just placeholders for dis‐
cussions about new features in the API.

10.1 Modules in Jigsaw
Problem
You want to access Java modules from the standard library, and encapsulate your own
code in modules.

Solution
Learn the basics of Jigsaw modules and learn how to use the modularized JDK. Then
wait for the final release of Java 9 to make any upgrade-related decisions.

Discussion
JSR 376, the Java Platform Module System, is both the biggest change coming in Java
9 and the most controversial one. Attempts have been made to modularize Java for
nearly ten years,2 with varying degrees of success and adoption, culminating in JPMS.

While the goal of “strong” encapsulation enforced by a module system has benefits
for maintenance, no new feature comes without a cost. In this case, making such a
fundamental change to a language with twenty years of backward compatibility to
maintain is bound to be difficult.

For example, the concept of modules changes the nature of public and private. If a
module does not export a particular package, you can’t access classes inside it even if
they are made public. Likewise, you can no longer use reflection to access non-
public members of a class that isn’t in an exported package. This affects reflection-
based libraries and frameworks (including popular ones like Spring and Hibernate),
as well as virtually every non-Java language on the JVM. As a concession, the team
has proposed that a command-line flag called --illegal-access=permit will be the
default in Java 9 and disallowed in a future release.

240 | Chapter 10: Java 9 Additions

http://bit.ly/javanews-may-2017

3 In the second vote, which ended June 26, the JPMS specification was unanimously approved (with one
abstention). See https://jcp.org/en/jsr/results?id=6016 for the detailed results.

At the time of this writing (late June 2017), the inclusion of the JPMS specification in
Java 9 has been rejected once, but is under revision in preparation for another vote.3

In addition, the release date of Java 9 has been pushed back to late September 2017.

Still, it is likely that some form of Jigsaw will be included in Java 9, and its basic capa‐
bilities are well established. The purpose of this recipe is to give you the necessary
background on those basics, so that if and when the JPMS system is adopted, you’ll be
ready to take advantage of it.

The first thing to know is that you do not have to modularize your own code. The
Java libraries have been modularized, and other dependency libraries are the process
of doing so, but you can wait to do the same for your own code until the system sta‐
bilizes.

Modules
The new system defines modules, which have a name (except for the so-called
unnamed module) and express their dependencies and export packages via a file
called module-info.java. A module includes a compiled module-info.class inside its
deliverable JAR. The module-info.java file is known as a module descriptor.

The contents of module-info.java start with the word module and then use a combina‐
tion of requires and exports keywords to describe what the module does. To
demonstrate this, following is a trivial “Hello, World!” example that will use two
modules and the JVM.

The example modules are com.oreilly.suppliers and com.kousenit.clients.

The “reversed URL” pattern is currently the recommended naming
convention for modules.

The former supplies a Stream of strings representing names. The latter prints each
name to the console with a welcome message.

For the Supplier module, the source code for the NamesSupplier class is shown in
Example 10-1.

10.1 Modules in Jigsaw | 241

https://jcp.org/en/jsr/results?id=6016

4 It’s about time there was a Babylon 5 reference in this book. Presumably the space station was built out of
modules, too (sorry).

Example 10-1. Supplying a stream of names

package com.oreilly.suppliers;

// imports ...

public class NamesSupplier implements Supplier<Stream<String>> {
 private Path namesPath = Paths.get("server/src/main/resources/names.txt");

 @Override
 public Stream<String> get() {
 try {
 return Files.lines(namesPath);
 } catch (IOException e) {
 e.printStackTrace();
 return null;
 }
 }
}

(The module is stored in an IntelliJ module—unfortunately IntelliJ IDEA also uses
the word “module” for a different concept—called “server,” which is why that name is
in the path for the text file.)

The contents of names.txt are:4

Londo
Vir
G'Kar
Na'Toth
Delenn
Lennier
Kosh

In the client module, the source code for the Main class is in Example 10-2.

Example 10-2. Printing the names

package com.kousenit.clients;

// imports ...

public class Main {
 public static void main(String[] args) throws IOException {
 NamesSupplier supplier = new NamesSupplier();

 try (Stream<String> lines = supplier.get()) {

242 | Chapter 10: Java 9 Additions

 lines.forEach(line -> System.out.printf("Hello, %s!%n", line));
 }
 }
}

try-with-resources auto-closes stream

The module-info.java file for the Supplier code is shown in Example 10-3.

Example 10-3. Defining the Supplier module

module com.oreilly.suppliers {
 exports com.oreilly.suppliers;
}

Module name

Make module available to others

The module-info.java file for the client module is shown in Example 10-4.

Example 10-4. Defining the client module

module com.kousenit.clients {
 requires com.oreilly.suppliers;
}

Module name

Needs Supplier module

When this program is executed, the output is:

Hello, Vir!
Hello, G'Kar!
Hello, Na'Toth!
Hello, Delenn!
Hello, Lennier!
Hello, Kosh!

The exports clause is necessary in the Supplier module for the NamesSupplier class
to be visible to the client. The requires clause in the client module tells the system
that this module needs classes from the Supplier module.

If you would like to log accesses to the server in that module, you can add a Logger
from the java.util.logging package in the JVM, as in Example 10-5.

10.1 Modules in Jigsaw | 243

Example 10-5. Add logging to Supplier module

public class NamesSupplier implements Supplier<Stream<String>> {
 private Path namesPath = Paths.get("server/src/main/resources/names.txt");
 private Logger logger = Logger.getLogger(this.getClass().getName());

 @Override
 public Stream<String> get() {
 logger.info("Request for names on " + Instant.now());
 try {
 return Files.lines(namesPath);
 } catch (IOException e) {
 e.printStackTrace();
 return null;
 }
 }
}

Create a Java util logger

Log accesses with a timestamp

This code will not compile. The JVM has been modularized as part of Java 9, and the
java.util.logging package is not part of java.base, which is the only module pro‐
vided by the JVM by default. In order to use the Logger class, you need to update the
module-info.java file to match that in Example 10-6.

Example 10-6. Updated module-info.java file

module com.oreilly.suppliers {
 requires java.logging;
 exports com.oreilly.suppliers;
}

Require a module from the JVM other than java.base

The JVM modules are each documented with their own module-info.java files. For
instance, Example 10-7 shows the module-info.java file from the java.logging mod‐
ule.

Example 10-7. The module-info.java file for the Java Logging API

module java.logging {
 exports java.util.logging;
 provides jdk.internal.logger.DefaultLoggerFinder with
 sun.util.logging.internal.LoggingProviderImpl;
}

244 | Chapter 10: Java 9 Additions

This file does not only exports the module. It also provides an internal implementa‐
tion of a Service Provider Interface (SPI) DefaultLoggerFinder in the form of the
LoggingProviderImpl class when a logger is requested by a client.

Jigsaw also establishes mechanisms for working with service loca‐
tors and providers. See the documentation for details.

Hopefully this gives you a sense of how modules are defined and how they work
together. Expect to hear much more about this in the coming months.

There are many more issues related to modules that will be resolved before the speci‐
fication is approved. Many of them involve porting legacy code. Terms like the
unnamed module and automatic modules involve code that is not in any module but
on the “module path,” and modules formed by existing legacy JAR files. Much of the
debate about JPMS is about how to handle those cases.

See Also
The development of Jigsaw is part of the Open JDK project. See the quick-start guide
at http://openjdk.java.net/projects/jigsaw/quick-start. The current documentation is at
http://openjdk.java.net/projects/jigsaw/spec/sotms/ (entitled “State of the Module Sys‐
tem”).

10.2 Private Methods in Interfaces
Problem
You want to add private methods to interfaces that can be called by other methods in
the interface.

Solution
Java SE 9 now supports using the private keyword on interface methods.

Discussion
In Java SE 8, for the first time developers could add implementations to interface
methods, labeling them as default or static. The next logical step was to add
private methods as well.

10.2 Private Methods in Interfaces | 245

http://openjdk.java.net/projects/jigsaw/quick-start
http://openjdk.java.net/projects/jigsaw/spec/sotms/

Private methods use the keyword private and must have an implementation. Like
private methods in classes, they cannot be overridden. Even more, they can only be
invoked from within the same source file.

Example 10-8 is somewhat contrived, but still illustrative.

Example 10-8. Private method in an interface

import java.util.function.IntPredicate;
import java.util.stream.IntStream;

public interface SumNumbers {
 default int addEvens(int... nums) {
 return add(n -> n % 2 == 0, nums);
 }

 default int addOdds(int... nums) {
 return add(n -> n % 2 != 0, nums);
 }

 private int add(IntPredicate predicate, int... nums) {
 return IntStream.of(nums)
 .filter(predicate)
 .sum();
 }
}

Private method

The addEvens and addOdds methods are both public (because the default access in
an interface is public) and take a variable argument list of integers as an argument.
The provided default implementation for each delegates to the add method, which
also takes an IntPredicate as an argument. By making add private, it is not accessi‐
ble to any client, even through a class that implements the interface.

Example 10-9 shows how the method is used.

Example 10-9. Testing the private interface method

class PrivateDemo implements SumNumbers {}

import org.junit.Test;
import static org.junit.Assert.*;

public class SumNumbersTest {
 private SumNumbers demo = new PrivateDemo();

 @Test
 public void addEvens() throws Exception {

246 | Chapter 10: Java 9 Additions

 assertEquals(2 + 4 + 6, demo.addEvens(1, 2, 3, 4, 5, 6));
 }

 @Test
 public void addOdds() throws Exception {
 assertEquals(1 + 3 + 5, demo.addOdds(1, 2, 3, 4, 5, 6));
 }
}

Class that implements the interface

Invoking public methods that delegate to the private method

You can only instantiate a class, so an empty class called PrivateDemo is created that
implements the SumNumbers interface. That class is instantiated, and its public inter‐
face methods can be invoked.

10.3 Creating Immutable Collections
Problem
You want to create immutable lists, sets, or maps in Java 9.

Solution
Use the static factory methods List.of, Set.of, and Map.of available in Java 9.

Discussion
The Javadocs on Java 9 state that the List.of() static factory methods provide a con‐
venient way to create immutable lists. The List instances created by these methods
have the following characteristics:

• They are structurally immutable. Elements cannot be added, removed, or
replaced. Calling any mutator method will always cause UnsupportedOperation
Exception to be thrown. However, if the contained elements are themselves
mutable, this may cause the List’s contents to appear to change.

• They disallow null elements. Attempts to create them with null elements result in
NullPointerException.

• They are serializable if all elements are serializable.
• The order of elements in the list is the same as the order of the provided argu‐

ments, or of the elements in the provided array.
• They are serialized as specified on the Serialized Form page.

10.3 Creating Immutable Collections | 247

5 The complete set of tests is in the source code for the book.

The available overloads of the of method for List are shown in Example 10-10.

Example 10-10. Static factory methods for creating immutable lists

static <E> List<E> of()
static <E> List<E> of(E e1)
static <E> List<E> of(E e1, E e2)
static <E> List<E> of(E e1, E e2, E e3)
static <E> List<E> of(E e1, E e2, E e3, E e4)
static <E> List<E> of(E e1, E e2, E e3, E e4, E e5)
static <E> List<E> of(E e1, E e2, E e3, E e4, E e5, E e6)
static <E> List<E> of(E e1, E e2, E e3, E e4, E e5, E e6, E e7)
static <E> List<E> of(E e1, E e2, E e3, E e4, E e5, E e6, E e7, E e8)
static <E> List<E> of(E e1, E e2, E e3, E e4, E e5, E e6, E e7, E e8, E e9)
static <E> List<E> of(E e1, E e2, E e3, E e4, E e5, E e6, E e7, E e8, E e9,
 E e10)
static <E> List<E> of(E... elements)

The resulting lists are, as the docs say, structurally immutable, so none of the normal
mutator methods on List can be invoked: add, addAll, clear, remove, removeAll,
replaceAll, and set all throw UnsupportedOperationException. A couple of test
cases5 are shown in Example 10-11.

Example 10-11. Demonstrating immutability

@Test(expected = UnsupportedOperationException.class)
public void showImmutabilityAdd() throws Exception {
 List<Integer> intList = List.of(1, 2, 3);
 intList.add(99);
}

@Test(expected = UnsupportedOperationException.class)
public void showImmutabilityClear() throws Exception {
 List<Integer> intList = List.of(1, 2, 3);
 intList.clear();
}

@Test(expected = UnsupportedOperationException.class)
public void showImmutabilityRemove() throws Exception {
 List<Integer> intList = List.of(1, 2, 3);
 intList.remove(0);
}

@Test(expected = UnsupportedOperationException.class)
public void showImmutabilityReplace() throws Exception {
 List<Integer> intList = List.of(1, 2, 3);

248 | Chapter 10: Java 9 Additions

 intList.replaceAll(n -> -n);
}

@Test(expected = UnsupportedOperationException.class)
public void showImmutabilitySet() throws Exception {
 List<Integer> intList = List.of(1, 2, 3);
 intList.set(0, 99);
}

If the contained objects are themselves mutable, however, a list of them can appear to
change. Say you have a simple class that holds a mutable value, an in Example 10-12.

Example 10-12. A trivial class that holds a mutable value

public class Holder {
 private int x;

 public Holder(int x) { this.x = x; }

 public void setX(int x) {
 this.x = x;
 }

 public int getX() {
 return x;
 }
}

If you create an immutable list of holders, the values in the holders can change, which
makes the list appear to change, as in Example 10-13.

Example 10-13. Changing the wrapped integer

@Test
public void areWeImmutableOrArentWe() throws Exception {
 List<Holder> holders = List.of(new Holder(1), new Holder(2));
 assertEquals(1, holders.get(0).getX());

 holders.get(0).setX(4);
 assertEquals(4, holders.get(0).getX());
}

Immutable list of Holder instances

Change the contained value inside a Holder

This works, but it violates the spirit of the law, if not the letter. In other words, if
you’re going to make an immutable list, try to have it contain immutable objects.

10.3 Creating Immutable Collections | 249

For sets (again from the Javadocs):

• They reject duplicate elements at creation time. Duplicate elements passed to a
static factory method result in IllegalArgumentException.

• The iteration order of set elements is unspecified and is subject to change.

All of the of methods have the same signature as the corresponding List methods,
except that they return Set<E>.

Maps are the same way, but the signatures of the of methods take alternating keys
and values as arguments, as in Example 10-14.

Example 10-14. Static factory methods for creating immutable maps

static <K,V> Map<K,V> of()
static <K,V> Map<K,V> of(K k1, V v1)
static <K,V> Map<K,V> of(K k1, V v1, K k2, V v2)
static <K,V> Map<K,V> of(K k1, V v1, K k2, V v2, K k3, V v3)
static <K,V> Map<K,V> of(K k1, V v1, K k2, V v2, K k3, V v3,
 K k4, V v4)
static <K,V> Map<K,V> of(K k1, V v1, K k2, V v2, K k3, V v3,
 K k4, V v4, K k5, V v5)
static <K,V> Map<K,V> of(K k1, V v1, K k2, V v2, K k3, V v3,
 K k4, V v4, K k5, V v5, K k6, V v6)
static <K,V> Map<K,V> of(K k1, V v1, K k2, V v2, K k3, V v3,
 K k4, V v4, K k5, V v5, K k6, V v6, K k7, V v7)
static <K,V> Map<K,V> of(K k1, V v1, K k2, V v2, K k3, V v3,
 K k4, V v4, K k5, V v5, K k6, V v6, K k7, V v7, K k8, V v8)
static <K,V> Map<K,V> of(K k1, V v1, K k2, V v2, K k3, V v3,
 K k4, V v4, K k5, V v5, K k6, V v6, K k7, V v7, K k8, V v8,
 K k9, V v9)
static <K,V> Map<K,V> of(K k1, V v1, K k2, V v2, K k3, V v3,
 K k4, V v4, K k5, V v5, K k6, V v6, K k7, V v7, K k8, V v8,
 K k9, V v9, K k10, V v10)
static <K,V> Map<K,V> ofEntries(Map.Entry<? extends K,? extends V>... entries)

For creating maps of up to 10 entries, use the associated of methods that alternate the
keys and the values. That can be awkward, so the interface also provides the of
Entries method and a static entry method for creating them:

static <K,V> Map<K,V> ofEntries(Map.Entry<? extends K,? extends V>... entries)
static <K,V> Map.Entry<K,V> entry(K k, V v)

The code in Example 10-15 shows how to use those methods to create an immutable
map.

250 | Chapter 10: Java 9 Additions

Example 10-15. Immutable map from entries

@Test
public void immutableMapFromEntries() throws Exception {
 Map<String, String> jvmLanguages = Map.ofEntries(
 Map.entry("Java", "http://www.oracle.com/technetwork/java/index.html"),
 Map.entry("Groovy", "http://groovy-lang.org/"),
 Map.entry("Scala", "http://www.scala-lang.org/"),
 Map.entry("Clojure", "https://clojure.org/"),
 Map.entry("Kotlin", "http://kotlinlang.org/"));

 Set<String> names = Set.of("Java", "Scala", "Groovy", "Clojure", "Kotlin");
 List<String> urls = List.of("http://www.oracle.com/technetwork/java/index.html",
 "http://groovy-lang.org/",
 "http://www.scala-lang.org/",
 "https://clojure.org/",
 "http://kotlinlang.org/");

 Set<String> keys = jvmLanguages.keySet();
 Collection<String> values = jvmLanguages.values();

 names.forEach(name -> assertTrue(keys.contains(name)));
 urls.forEach(url -> assertTrue(values.contains(url)));

 Map<String, String> javaMap = Map.of("Java",
 "http://www.oracle.com/technetwork/java/index.html",
 "Groovy",
 "http://groovy-lang.org/",
 "Scala",
 "http://www.scala-lang.org/",
 "Clojure",
 "https://clojure.org/",
 "Kotlin",
 "http://kotlinlang.org/");
 javaMap.forEach((name, url) -> assertTrue(
 jvmLanguages.keySet().contains(name) && \
 jvmLanguages.values().contains(url)));
}

Using Map.ofEntries

Using Map.of

The combination of the ofEntries and entry methods is a nice simplification.

See Also
Recipe 4.8 discusses how to create immutable collections using Java 8 or earlier.

10.3 Creating Immutable Collections | 251

10.4 Stream: ofNullable, iterate, takeWhile, and
dropWhile
Problem
You want to use the new functionality added to streams in Java 9.

Solution
Use the new Stream methods ofNullable, iterate, takeWhile, and dropWhile.

Discussion
A few new methods have been added to the Stream interface in Java 9. This recipe
will show how to use ofNullable, iterate, takeWhile, and dropWhile.

The ofNullable method

In Java 8, the Stream interface has an overloaded static factory method called of,
which takes either a single value or a variable argument list. Either way, you can’t use
a null argument.

In Java 9, the ofNullable method lets you create a single-element stream that wraps a
value if not null, or is an empty stream otherwise. See the test case in Example 10-16
for details.

Example 10-16. Using Stream.ofNullable(arg)

@Test
public void ofNullable() throws Exception {
 Stream<String> stream = Stream.ofNullable("abc");
 assertEquals(1, stream.count());

 stream = Stream.ofNullable(null);
 assertEquals(0, stream.count());
}

Stream with one element

Returns Stream.empty()

The count method returns the number of nonempty elements in a stream. You can
now use the ofNullable method on any argument without checking whether or not
it’s null first.

252 | Chapter 10: Java 9 Additions

Using iterate with a Predicate

The next interesting method is a new overload for iterate. The iterate method in
Java 8 has the signature:

static<T> Stream<T> iterate(final T seed, final UnaryOperator<T> f)

So creating a stream starts with a single element (the seed), and subsequent elements
are produced by successively applying the unary operator. The result is an infinite
stream, so using it normally requires a limit or some other short-circuiting function,
like findFirst or findAny.

The new overloaded version of iterate takes a Predicate as the second argument:

static<T> Stream<T> iterate(T seed, Predicate<? super T> hasNext,
 UnaryOperator<T> next)

The values are produced by starting with the seed and then applying the unary opera‐
tor as long as the values satisfy the hasNext predicate.

For instance, see Example 10-17.

Example 10-17. Iterate with a Predicate

@Test
public void iterate() throws Exception {
 List<BigDecimal> bigDecimals =
 Stream.iterate(BigDecimal.ZERO, bd -> bd.add(BigDecimal.ONE))
 .limit(10)
 .collect(Collectors.toList());

 assertEquals(10, bigDecimals.size());

 bigDecimals = Stream.iterate(BigDecimal.ZERO,
 bd -> bd.longValue() < 10L,
 bd -> bd.add(BigDecimal.ONE))
 .collect(Collectors.toList());

 assertEquals(10, bigDecimals.size());
}

Java 8 way to create a stream of big decimals

Java 9 way

The first stream is the Java 8 way of using iterate with a limit. The second one uses
a Predicate as the second argument. The result looks more like a traditional for
loop.

10.4 Stream: ofNullable, iterate, takeWhile, and dropWhile | 253

takeWhile and dropWhile

The new methods takeWhile and dropWhile allow you to get portions of a stream
based on a predicate. According to the Javadocs, on an ordered stream, takeWhile
returns “the longest prefix of elements taken from this stream that match the given
predicate,” starting at the beginning of the stream.

The dropWhile method does the opposite—it returns the remaining elements of the
stream after dropping the longest prefix of elements that satisfy the predicate.

The code in Example 10-18 shows how they work on an ordered stream.

Example 10-18. Taking and dropping from a stream

@Test
public void takeWhile() throws Exception {
 List<String> strings = Stream.of("this is a list of strings".split(" "))
 .takeWhile(s -> !s.equals("of"))
 .collect(Collectors.toList());
 List<String> correct = Arrays.asList("this", "is", "a", "list");
 assertEquals(correct, strings);
}

@Test
public void dropWhile() throws Exception {
 List<String> strings = Stream.of("this is a list of strings".split(" "))
 .dropWhile(s -> !s.equals("of"))
 .collect(Collectors.toList());
 List<String> correct = Arrays.asList("of", "strings");
 assertEquals(correct, strings);
}

Return stream up to where predicate fails

Return stream after predicate fails

Each method splits the stream at the same place, but takeWhile returns the elements
before the split and dropWhile returns the elements after it.

The real advantage to takeWhile is that it is a short-circuiting operation. If you have a
huge collection of sorted elements, you can stop evaluating once you hit the condi‐
tion you care about.

For example, say you had a collection of orders from a client, sorted by value in
descending order. Using takeWhile, you can get just the orders above a certain thres‐
hold, without having to apply a filter on every element.

254 | Chapter 10: Java 9 Additions

The code in Example 10-19 simulates this situation by generating 50 random integers
between 0 and 50, sorting them in descending order, and returning only those whose
value is greater than 70.

Example 10-19. Taking ints above 70

Random random = new Random();
List<Integer> nums = random.ints(50, 0, 100)
 .boxed()
 .sorted(Comparator.reverseOrder())
 .takeWhile(n -> n > 90)
 .collect(Collectors.toList());

Generate 50 random ints between 0 and 100

Box them so they can be sorted with a Comparator and collected

Split the stream and return the values greater than 70

This particular example is perhaps more intuitive (though not necessarily more effi‐
cient) using dropWhile instead, as in Example 10-20.

Example 10-20. Using dropWhile on the integer stream

Random random = new Random();
List<Integer> nums = random.ints(50, 0, 100)
 .sorted()
 .dropWhile(n -> n < 90)
 .boxed()
 .collect(Collectors.toList());

Sorted in ascending order

Split after the last value less than 90

Methods like takeWhile and dropWhile have existed in other languages for years. In
Java 9 they’re available to Java as well.

10.5 Downstream Collectors: filtering and flatMapping
Problem
You want to filter elements as part of a downstream collector, or flatten a generated
collection of collections.

10.5 Downstream Collectors: filtering and flatMapping | 255

Solution
Java 9 introduces the filtering and flatMapping methods in Collectors for those
purposes.

Discussion
Java 8 introduced a groupingBy operation in Collectors, so that you can group
objects by a particular property. Grouping operations produce a map of keys to lists
of values. Java 8 also allows you to use downstream collectors, so that instead of gen‐
erating lists, you can postprocess the lists to get their sizes, or map them to something
else, and so on.

Java 9 introduced two new downstream collectors: filtering and flatMapping.

The filtering method

Say you have a class called Task that has attributes for a budget and a list of develop‐
ers working on it, which are represented by instances of a Developer class. Both
classes are shown in Example 10-21.

Example 10-21. Tasks and Developers

public class Task {
 private String name;
 private long budget;
 private List<Developer> developers = new ArrayList<>();

 // ... constructors, getters and setters, etc. ...
}

public class Developer {
 private String name;

 // ... constructors, getters and setters, etc. ...
}

First, say you want to group the tasks by budget. A simple Collectors.groupingBy
operation is shown in Example 10-22.

Example 10-22. Grouping tasks by budget

Developer venkat = new Developer("Venkat");
Developer daniel = new Developer("Daniel");
Developer brian = new Developer("Brian");
Developer matt = new Developer("Matt");
Developer nate = new Developer("Nate");
Developer craig = new Developer("Craig");

256 | Chapter 10: Java 9 Additions

Developer ken = new Developer("Ken");

Task java = new Task("Java stuff", 100);
Task altJvm = new Task("Groovy/Kotlin/Scala/Clojure", 50);
Task javaScript = new Task("JavaScript (sorry)", 100);
Task spring = new Task("Spring", 50);
Task jpa = new Task("JPA/Hibernate", 20);

java.addDevelopers(venkat, daniel, brian, ken);
javaScript.addDevelopers(venkat, nate);
spring.addDevelopers(craig, matt, nate, ken);
altJvm.addDevelopers(venkat, daniel, ken);

List<Task> tasks = Arrays.asList(java, altJvm, javaScript, spring, jpa);

Map<Long, List<Task>> taskMap = tasks.stream()
 .collect(groupingBy(Task::getBudget));

This results in a Map of budget amounts to lists of tasks with that budget:

 50: [Groovy/Kotlin/Scala/Clojure, Spring]
 20: [JPA/Hibernate]
100: [Java stuff, JavaScript (sorry)]

Now, if you only want tasks that have a budget that exceeds some threshold, you can
add a filter operation, as in Example 10-23.

Example 10-23. Grouping with a filter

taskMap = tasks.stream()
 .filter(task -> task.getBudget() >= THRESHOLD)
 .collect(groupingBy(Task::getBudget));

The output for a threshold of 50 is:

 50: [Groovy/Kotlin/Scala/Clojure, Spring]
100: [Java stuff, JavaScript (sorry)]

Tasks with budgets below the threshold will not appear in the output map at all. If
you want to see them anyway, you now have an alternative. In Java 9, the Collectors
class now has an additional static method called filtering, similar to filter, but
applied to the downstream list of tasks. The code in Example 10-24 shows how to use
it.

Example 10-24. Grouping with a downstream filter

taskMap = tasks.stream()
 .collect(groupingBy(Task::getBudget,
 filtering(task -> task.getBudget() >= 50, toList())));

10.5 Downstream Collectors: filtering and flatMapping | 257

Now all the budget values will appear as keys, but the tasks whose budgets fall below
the threshold will not appear in the list values:

 50: [Groovy/Kotlin/Scala/Clojure, Spring]
 20: []
100: [Java stuff, JavaScript (sorry)]

The filtering operation is thus a downstream collector, operating on the list gener‐
ated by the grouping operation.

The flatMapping method
This time, say you want to get a list of developers on each task. The basic grouping
operation produces a group of task names to lists of tasks, as in Example 10-25.

Example 10-25. Grouping tasks by names

Map<String, List<Task>> tasksByName = tasks.stream()
 .collect(groupingBy(Task::getName));

The (formatted) output is:

 Java stuff: [Java stuff]
Groovy/Kotlin/Scala/Clojure: [Groovy/Kotlin/Scala/Clojure]
 JavaScript (sorry): [JavaScript (sorry)]
 Spring: [Spring]
 JPA/Hibenate: [JPA/Hibernate]

To get the associated lists of developers, you can use the mappingBy downstream col‐
lector, as in Example 10-26.

Example 10-26. Lists of developers for each task

Map<String, Set<List<Developer>>> map = tasks.stream()
 .collect(groupingBy(Task::getName,
 Collectors.mapping(Task::getDevelopers, toSet())));

As the return type shows, the problem is that it returns a Set<List<Developer>>.
What’s needed here is a downstream flatMap operation to flatten the collection of
collections. That’s now possible using the flatMapping method on Collectors, as in
Example 10-27.

Example 10-27. Using flatMapping to get just a set of developers

Map<String, Set<Developer>> task2setdevs = tasks.stream()
 .collect(groupingBy(Task::getName,
 Collectors.flatMapping(task -> task.getDevelopers().stream(),
 toSet())));

258 | Chapter 10: Java 9 Additions

Now the result is what you want:

 Java stuff: [Daniel, Brian, Ken, Venkat]
Groovy/Kotlin/Scala/Clojure: [Daniel, Ken, Venkat]
 JavaScript (sorry): [Nate, Venkat]
 Spring: [Craig, Ken, Matt, Nate]
 JPA/Hibernate: []

The flatMapping method is just like the flatMap method on Stream. Note that the
first argument flatMapping needs to be a stream, which can be empty or not depend‐
ing on the source.

See Also
Downstream collectors are discussed in Recipe 4.6. The flatMap operation is in
Recipe 3.11.

10.6 Optional: stream, or, ifPresentOrElse
Problem
You want to flat map Optionals into a stream of contained elements, or you want to
choose from several possibilities, or you want to do something if an element is
present and return a default otherwise.

Solution
Use the new stream, or, or ifPresentOrElse methods in Optional.

Discussion
The Optional class, introduced in Java 8, provides a way to indicate to a client that a
returned value may legitimately be null. Rather than returning null, you return an
empty Optional. That makes Optional a good wrapper for methods that may or may
not return a value.

The stream method
Consider a finder method to look up customers by ID, as in Example 10-28.

Example 10-28. Find a customer by ID

public Optional<Customer> findById(int id) {
 return Optional.ofNullable(map.get(id));
}

10.6 Optional: stream, or, ifPresentOrElse | 259

This method assumes that the customers are contained within a Map in memory. The
get method on Map returns a value if the key is present or null if not, so making it the
argument to Optional.ofNullable either wraps a nonnull value inside an Optional
or returns an empty Optional.

Remember that since the Optional.of method throws an excep‐
tion if its argument is null, the Optional.ofNullable(arg) is a
convenient shortcut. Its implementation is arg != null ?

Optional.of(arg) : Optional.empty().

Since findById returns an Optional<Customer>, trying to return a collection of cus‐
tomers is a bit more complicated. In Java 8, you can write the code in Example 10-29.

Example 10-29. Using a filter and a Map on Optionals

public Collection<Customer> findAllById(Integer... ids) {
 return Arrays.stream(ids)
 .map(this::findById)
 .filter(Optional::isPresent)
 .map(Optional::get)
 .collect(Collectors.toList());
}

Maps to a Stream<Optional<Customer>>

Filter out any empty Optionals

Call get, so maps to a Stream<Customer>

This isn’t too much of a hardship, but Java 9 has made the process simpler by adding
the stream method to Optional, whose signature is:

Stream<T> stream()

If a value is present, this method returns a sequential, single element stream contain‐
ing only that value. Otherwise it returns an empty stream. This method means that a
stream of optional customers can be turned into a stream of customers directly, as in
Example 10-30.

Example 10-30. Using flatMap with Optional.stream

public Collection<Customer> findAllById(Integer... ids) {
 return Arrays.stream(ids)
 .map(this::findById)
 .flatMap(Optional::stream)

260 | Chapter 10: Java 9 Additions

 .collect(Collectors.toList());
}

Map to Stream<Optional<Customer>>

Flat map to Stream<Customer>

This is purely a convenience method, but a useful one.

The or method

The orElse method is used to extract a value from an Optional. It takes a default as
an argument:

Customer customer = findById(id).orElse(Customer.DEFAULT)

There is also the orElseGet method that uses a Supplier to create the default, in the
case where doing so is an expensive operation:

Customer customer = findById(id).orElseGet(() -> createDefaultCustomer())

Both of those return Customer instances. The or method on Optional, added in Java
9, allows you to return an Optional<Customer> instead, given a Supplier of them, so
you can chain alternative ways of finding customers together.

The signature of the or method is:

Optional<T> or(Supplier<? extends Optional<? extends T>> supplier)

If a value is present, this method returns an Optional describing it. Otherwise it
invokes the Supplier and returns the Optional it returns.

Therefore, if we have multiple ways to find a customer, you can now write the code in
Example 10-31.

Example 10-31. Using the or method to try alternatives

public Optional<Customer> findById(int id) {
 return findByIdLocal(id)
 .or(() -> findByIdRemote(id))
 .or(() -> Optional.of(Customer.DEFAULT));

This method searches for the customer in the local cache and then accesses some
remote server. If neither of those finds a nonempty Optional, the final clause creates
a default, wraps it in an Optional, and returns it instead.

The ifPresentOrElse method

The ifPresent method on Optional executes a Consumer if the Optional is not
empty, as in Example 10-32.

10.6 Optional: stream, or, ifPresentOrElse | 261

Example 10-32. Using ifPresent to only print nonempty customers

public void printCustomer(Integer id) {
 findByIdLocal(id).ifPresent(System.out::println);
}

public void printCustomers(Integer... ids) {
 Arrays.asList(ids)
 .forEach(this::printCustomer);
}

Only prints for nonempty Optionals

This works, but you might want to run something else if the returned Optional is
empty. The new ifPresentOrElse method takes a second, Runnable, argument that is
executed if the Optional is empty. Its signature is:

void ifPresentOrElse(Consumer<? super T> action, Runnable emptyAction)

To use it, simply provide a lambda that takes no arguments and returns void, as in
Example 10-33.

Example 10-33. Printing a customer or a default message

public void printCustomer(Integer id) {
 findByIdLocal(id).ifPresentOrElse(System.out::println,
 () -> System.out.println("Customer with id=" + id + " not found"));
}

This version prints the customer if one is found, and prints a default message other‐
wise.

None of these additions to Optional change its behavior in any fundamental way, but
they do provide conveniences when applicable.

See Also
The recipes in Chapter 6 cover the Optional class in Java 8.

10.7 Date Ranges
Problem
You want a stream of dates between two given endpoints.

Solution
Use the new datesUntil method in the LocalDate class, added in Java 9.

262 | Chapter 10: Java 9 Additions

Discussion
The new Date-Time API added in Java 8 is an enormous improvement over classes
like Date, Calendar, and TimeStamp in java.util, but one of the additions in Java 9
addresses an annoying hole in the API: there’s no easy way to create a stream of dates.

In Java 8, the easiest way to create a stream of dates is to start with an initial date and
add an offset. For example, if you want all the days given endpoints a week apart, you
can write the code in Example 10-34.

Example 10-34. Days between two dates (WARNING: BUG!)

public List<LocalDate> getDays_java8(LocalDate start, LocalDate end) {
 Period period = start.until(end);
 return IntStream.range(0, period.getDays())
 .mapToObj(start:plusDays)
 .collect(Collectors.toList());
}

Trap! See next example.

This works by determining the Period between the two dates and then creating an
IntStream of days between them. Looking at days a week apart gives:

LocalDate start = LocalDate.of(2017, Month.JUNE, 10);
LocalDate end = LocalDate.of(2017, Month.JUNE, 17);
System.out.println(dateRange.getDays_java8(start, end));

// [2017-06-10, 2017-06-11, 2017-06-12, 2017-06-13,
// 2017-06-14, 2017-06-15, 2017-06-16]

This seems to work, but there’s actually a trap here. If you change the end date to
exactly one month from the start date, the problem is obvious:

LocalDate start = LocalDate.of(2017, Month.JUNE, 10);
LocalDate end = LocalDate.of(2017, Month.JULY, 17);
System.out.println(dateRange.getDays_java8(start, end));

// []

No values are returned. The problem is that the getDays method on Period returns
the days field from the period, not the number of days total. (The same is true about
getMonths, getYears, and so on.) So if the days are the same, even though the
months are different, the result is a range of size zero.

The proper way to handle this problem is to use the ChronoUnit enum, which imple‐
ments the TemporalUnit interface and defines constants for DAYS, MONTHS, etc. The
proper implementation for Java 8 is given in Example 10-35.

10.7 Date Ranges | 263

Example 10-35. Days between two dates (WORKS)

public List<LocalDate> getDays_java8(LocalDate start, LocalDate end) {
 Period period = start.until(end);
 return LongStream.range(0, ChronoUnit.DAYS.between(start, end))
 .mapToObj(start:plusDays)
 .collect(Collectors.toList());
}

Works

You can also use the iterate method, but that requires you to know the number of
days, as in Example 10-36.

Example 10-36. Iterating on LocalDate

public List<LocalDate> getDaysByIterate(LocalDate start, int days) {
 return Stream.iterate(start, date -> date.plusDays(1))
 .limit(days)
 .collect(Collectors.toList());
}

Fortunately, Java 9 makes all of this much simpler. Now the LocalDate class has a
method called datesUntil, with an overload that takes a Period. The signatures are:

Stream<LocalDate> datesUntil(LocalDate endExclusive)
Stream<LocalDate> datesUntil(LocalDate endExclusive, Period step)

The version without a Period essentially calls the overload with a second argument of
one day.

The Java 9 approach to the preceding problem is much simpler, as shown in
Example 10-37.

Example 10-37. Date ranges in Java 9

public List<LocalDate> getDays_java9(LocalDate start, LocalDate end) {
 return start.datesUntil(end)
 .collect(Collectors.toList());
}

public List<LocalDate> getMonths_java9(LocalDate start, LocalDate end) {
 return start.datesUntil(end, Period.ofMonths(1))
 .collect(Collectors.toList());
}

Assumes Period.ofDays(1)

Counts in months

264 | Chapter 10: Java 9 Additions

The datesUntil method produces a Stream, which can be manipulated with all the
normal stream processing techniques.

See Also
Calculating the days between dates in Java 8 is part of Recipe 8.8.

10.7 Date Ranges | 265

APPENDIX A

Generics and Java 8

Background
Generics capabilities were added in Java way back in version J2SE 1.5, but most Java
developers only learned the minimum they needed to know about them to get the job
done. With the advent of Java 8, suddenly the Javadocs are filled with method signa‐
tures like this one from java.util.Map.Entry:

static <K extends Comparable<? super K>,V> Comparator<Map.Entry<K,V>>
 comparingByKey()

or this one from java.util.Comparator:

static <T,U extends Comparable<? super U>> Comparator<T> comparing(
 Function<? super T,? extends U> keyExtractor)

or even this monster from java.util.stream.Collectors:

static <T,K,D,A,M extends Map<K, D>> Collector<T,?,M> groupingBy(
 Function<? super T,? extends K> classifier, Supplier<M> mapFactory,
 Collector<? super T,A,D> downstream)

Understanding the minimum isn’t going to be enough anymore. The purpose of this
appendix is to help you break down similar signatures into understandable parts so
that you can use the API productively.

What Everybody Knows
When you want to use a collection like List or Set, you declare the type of the con‐
tained elements by placing their class name in angle brackets:

List<String> strings = new ArrayList<String>();
Set<Employee> employees = new HashSet<Employee>();

267

1 Never once in my entire career did I accidentally add the wrong type to a list. Eliminating the casting on the
way out, however, justified even this ugly syntax.

2 Java 10, known as Project Valhalla, has proposed adding primitive types to collections.

Java 7 made the syntax a bit easier by introducing the diamond
operator used in the following code samples. Since the reference on
the lefthand side declares the collection along with its contained
type, like List<String> or List<Integer>, the instantiation on the
same line doesn’t have to. You can simply write new ArrayList<>()
without putting the type inside the angle brackets.

Declaring the data type of the collection accomplishes two goals:

• You can’t accidentally place the wrong type inside a collection
• You no longer need to cast a retrieved value to the proper type

For example, if you declare the strings variable as shown, then you can only add
String instances to the collection and you automatically have a String when you
retrieve an item, as in Example A-1.

Example A-1. Simple generics demo

List<String> strings = new ArrayList<>();
strings.add("Hello");
strings.add("World");
// strings.add(new Date());
// Integer i = strings.get(0);

for (String s : strings) {
 System.out.printf("%s has length %d%n", s, s.length());
}

Won’t compile

for-each loop knows the contained data type is String

Applying type safety to the insertion process is convenient, but developers rarely
make that mistake. Being able to deal with the proper type on retrieval without hav‐
ing to cast first, however, saves a lot of code.1

The other thing all Java developers know is that you can’t add primitive types to
generic collections. That means you can’t define List<int> or List<double>.2 Fortu‐
nately, the same version of Java that introduced generics also added auto-boxing and

268 | Appendix A: Generics and Java 8

unboxing to the language. As a result, when you want to store primitives in a generic
type, you declare the type using the wrapper class. See Example A-2.

Example A-2. Using primitives in generic collections

List<Integer> ints = new ArrayList<>();
ints.add(3); ints.add(1); ints.add(4);
ints.add(1); ints.add(9); ints.add(2);
System.out.println(ints);

for (int i : ints) {
 System.out.println(i);
}

Java takes care of wrapping the int values inside Integer instances on insertion, and
extracts them from the Integer instances on retrieval. While there may be efficiency
concerns regarding boxing and unboxing, the code is easy enough to write.

There’s one more aspect of generics that all Java developers know. When you’re read‐
ing the Javadocs about a class that uses generics, you use a capital letter in brackets
for the type itself. For example, the docs for the List interface is:

public interface List<E> extends Collection<E>

Here, E is the type parameter. The methods in the interface use the same parameter.
Example A-3 shows a sample of those methods.

Example A-3. Methods declared in the List interface

boolean add(E e)
boolean addAll(Collection<? extends E> c)
void clear()
boolean contains(Object o)
boolean containsAll(Collection<?> c)
E get(int index)

Using the type parameter E as an argument or return type

A bounded wildcard

Methods that do not involve the type itself

An unknown type

Some of these methods use the declared generic type, E, as either an argument or a
return type. Some (specifically, clear and contains) don’t use the type at all. Others
involve some kind of wildcard, using a question mark.

Generics and Java 8 | 269

As a syntax note, it is legal to declare generic methods even in classes that aren’t
generic. In that case, the generic parameter or parameters are declared as part of the
method signatures. For example, here are some of the static methods from the utility
class java.util.Collections:

static <T> List<T> emptyList()
static <K,V> Map<K,V> emptyMap()
static <T> boolean addAll(Collection<? super T> c, T... elements)
static <T extends Object & Comparable<? super T>>
 T min(Collection<? extends T> coll)

Three of these methods declare a generic parameter called T. The emptyList method
uses it to specify the contained type in the List. The emptyMap method uses K and V
for key and value types in a generic map.

The addAll method declares the generic type T, but then uses a Collection<? super
T> as the first argument of the method, as well as a variable argument list of type T.
The syntax ? super T is a bounded wildcard, which will be the subject of the next
section.

The min method shows how generic types may provide safety, but can make the docu‐
mentation much harder to read. This signature is discussed in more detail in a later
section, but for the record, T is bounded to be both a subclass of Object as well as
implementing the Comparable interface, where Comparable is defined for T or any of
its ancestors. The argument to the method involves any Collection of T or any of its
descendants.

The wildcard is where we transition from syntax everyone knows to the parts with
which you may not be comfortable. To prepare for that, consider the strange case
when what looks like inheritance turns out not to be inheritance at all.

What Some Developers Don’t Realize
Many developers are surprised to learn that ArrayList<String> is not related in any
practical way to ArrayList<Object>. You can add subclasses of Object to an Object
collection, as in Example A-4.

Example A-4. Using a List<Object>

List<Object> objects = new ArrayList<Object>();
objects.add("Hello");
objects.add(LocalDate.now());
objects.add(3);
System.out.println(objects);

270 | Appendix A: Generics and Java 8

That much is OK. String is a subclass of Object, so you can assign a String to an
Object reference. You would think that if you declared a list of strings, you could add
objects to it. That, as they say, turns out not to be the case. See Example A-5.

Example A-5. Using a List<String> with objects

List<String> strings = new ArrayList<>();
String s = "abc";
Object o = s;
// strings.add(o);

// List<Object> moreObjects = strings;
// moreObjects.add(new Date());
// String s = moreObjects.get(0);

Allowed

Not allowed

Also not allowed, but pretend it was

Corrupted collection

Since String is a subclass of Object, you can assign a String reference to an Object
reference. You can’t, however, add an Object reference to a List<String>, which feels
strange. The problem is that List<String> is not a subclass of List<Object>. When
declaring a type, the only instances you can add to it are of the declared type. That’s it.
No sub- or superclass instances allowed. We say that the parameterized type is invari‐
ant.

The commented out section shows why List<String> is not a subclass of
List<Object>. Say you could assign a List<String> to a List<Object>. Then, using
the list of object references, you could add something that wasn’t a string to the list,
which would cause a cast exception when you tried to retrieve it using the original
reference to the list of strings. The compiler wouldn’t know any better.

Still, it seems reasonable that if you defined a list of numbers, you should be able to
add integers, floats, and doubles to it. To accomplish that, we need type bounds that
involve wildcards.

Wildcards and PECS
A wildcard is a type argument that uses a question mark, ?, which may or may not
have an upper or lower bound.

Generics and Java 8 | 271

Unbounded Wildcards
Type arguments without bounds are useful, but have limitations. If you declare a List
of unbounded type, as in Example A-6, you can read from it but not write to it.

Example A-6. A List with an unbounded wildcard

List<?> stuff = new ArrayList<>();
// stuff.add("abc");
// stuff.add(new Object());
// stuff.add(3);
int numElements = stuff.size();

No additions allowed

numElements is zero

That feels pretty useless, since there’s apparently no way to get anything into it. One
use for them is that any method that takes a List<?> as an argument will accept any
list at all when invoked (Example A-7).

Example A-7. Unbounded List as a method arg

private static void printList(List<?> list) {
 System.out.println(list);
}

public static void main(String[] args) {
 // ... create lists called ints, strings, stuff ...
 printList(ints);
 printList(strings);
 printList(stuff);
}

Recall the earlier example, which showed the containsAll method from List<E>:

boolean containsAll(Collection<?> c)

That method returns true only if all the elements of the collection appear in the cur‐
rent list. Since the argument uses an unbounded wildcard, the implementation is
restricted to only:

• Methods from Collection itself that don’t need the contained type, or
• Methods from Object

In the case of containsAll, that’s perfectly acceptable. The default implementation
(in AbstractCollection) in the reference implementation walks through the argu‐

272 | Appendix A: Generics and Java 8

ment using iterator and invokes the contains method to check that each element in
it is also inside the original list. Both iterator and contains are defined in Collec
tion, and equals comes from Object, and the contains implementation delegates to
the equals and hashCode methods of Object, which may have been overridden in the
contained type. As far as the containsAll method is concerned, all the methods it
needs are available. The restrictions on unbounded wildcards are not a problem.

The question mark forms the basis for bounding the types. This is where the fun
starts.

Upper Bounded Wildcards
An upper bounded wildcard uses the extends keyword to set a superclass limit. To
define a list of numbers that will allow ints, longs, doubles, and even BigDecimal
instances to be added to it, see Example A-8.

The keyword extends is used even if the upper bound is an inter‐
face rather than a class, as in List<? extends Comparable>.

Example A-8. A List with an upper bound

List<? extends Number> numbers = new ArrayList<>();
// numbers.add(3);
// numbers.add(3.14159);
// numbers.add(new BigDecimal("3"));

Still cannot add values

Well, that seemed like a good idea at the time. Unfortunately, while you can define the
list with the upper bounded wildcard, again you can’t add to it. The problem is that
when you retrieve the value, the compiler has no idea what type it is, only that it
extends Number.

Still, you can define a method argument that takes List<? extends Number> and
then invoke the method with the different types of lists. See Example A-9.

Example A-9. Using an upper bound

private static double sumList(List<? extends Number> list) {
 return list.stream()
 .mapToDouble(Number::doubleValue)
 .sum();
}

Generics and Java 8 | 273

public static void main(String[] args) {
 List<Integer> ints = Arrays.asList(1, 2, 3, 4, 5);
 List<Double> doubles = Arrays.asList(1.0, 2.0, 3.0, 4.0, 5.0);
 List<BigDecimal> bigDecimals = Arrays.asList(
 new BigDecimal("1.0"),
 new BigDecimal("2.0"),
 new BigDecimal("3.0"),
 new BigDecimal("4.0"),
 new BigDecimal("5.0")
);

 System.out.printf("ints sum is %s%n", sumList(ints));
 System.out.printf("doubles sum is %s%n", sumList(doubles));
 System.out.printf("big decimals sum is %s%n", sumList(bigDecimals));
}

Note that summing BigDecimal instances using their corresponding double values
cancels the benefit of using big decimals in the first place, but only the primitive
streams IntStream, LongStream, and DoubleStream include a sum method. This does
illustrate the point, however, which is that you can invoke the method with lists of
any subtype of Number. Since Number defines the doubleValue method, the code com‐
piles and runs.

When you access an element from the list with an upper bound, the result can defi‐
nitely be assigned to a reference of upper bound type, as in Example A-10.

Example A-10. Extracting a value from an upper bound reference

private static double sumList(List<? extends Number> list) {
 Number num = list.get(0);
 // ... from before ...
}

When the method is invoked, the elements of the list will be either Number or one of
its descendants, so a Number reference will always be correct.

Lower Bounded Wildcards
A lower bounded wildcard means any ancestor of your class is acceptable. You use the
super keyword with the wildcard to specify a lower bound. The implicationn, in the
case of a List<? super Number>, is that the reference could represent List<Number>
or List<Object>.

With the upper bound, we were specifying the type that the variables must conform
to in order for the implementation of the method to work. To add up the numbers,
we needed to be sure that the variables had a doubleValue method, which is defined
in Number. All of the Number subclasses have that method as well, either directly or

274 | Appendix A: Generics and Java 8

through an override. That’s why we specified List<? extends Number> for the input
type.

Here, however, we’re taking the items from the list and adding them to a different col‐
lection. That destination collection could be a List<Number>, but it could also be a
List<Object> because the individual Object references can be assigned to a Number.

Here’s the classic demonstration of the concept, which isn’t really idiomatic Java 8
code for reasons that will be discussed later, but does illustrate the concept.

Consider a method called numsUpTo that takes two arguments, an integer and a list to
populate with all the numbers up to the first argument, as in Example A-11.

Example A-11. A method to populate a given list

public void numsUpTo(Integer num, List<? super Integer> output) {
 IntStream.rangeClosed(1, num)
 .forEach(output::add);
}

The reason this isn’t idiomatic Java 8 is that it’s using the supplied list as an output
variable. That’s essentially a side effect, and therefore frowned upon. Still, by making
the second argument of type List<? super Integer>, the supplied list can be of type
List<Integer>, List<Number>, or even List<Object>, as in Example A-12.

Example A-12. Using the numsUpTo method

ArrayList<Integer> integerList = new ArrayList<>();
ArrayList<Number> numberList = new ArrayList<>();
ArrayList<Object> objectList = new ArrayList<>();

numsUpTo(5, integerList);
numsUpTo(5, numberList);
numsUpTo(5, objectList);

The returned lists all contain the numbers 1 through 5. The use of a lower bounded
wildcard means we know the list is going to hold integers, but we can use references
inside the list of any super type.

With the upper bounded list, we were extracting values and using them. With the
lower bounded list, we supplied them. This combination has a traditional name:
PECS.

PECS
The term PECS stands for “Producer Extends, Consumer Super,” which is an odd
acronym coined by Joshua Block in his Effective Java book, but provides a mnemonic

Generics and Java 8 | 275

on what to do. It means that if a parameterized type represents a producer, use
extends. If it represents a consumer, use super. If the parameter is both, don’t use
wildcards at all—the only type that satisfies both requirements is the explicit type
itself.

The advice boils down to:

• Use extends when you only get values out of a data structure
• Use super when you only put values into a data structure
• Use an explicit type when you plan to do both

As long as we’re on the subject of terminology, there are formal terms for these con‐
cepts, which are frequently used in languages like Scala.

The term covariant preserves the ordering of types from more specific to more gen‐
eral. In Java, arrays are covariant because String[] is a subtype of Object[]. As we’ve
seen, collections in Java are not covariant unless we use the extends keyword with a
wildcard.

The term contravariant goes the other direction. In Java, that’s where we use the
super keyword with a wildcard.

An invariant means that the type must be exactly as specified. All parameterized types
in Java are invariant unless we use extends or super, meaning that if a method
expects a List<Employee> then that’s what you have to supply. Neither a
List<Object> nor a List<Salaried> will do.

The PECS rule is a restatement of the formal rule that a type constructor is contravar‐
iant in the input type and covariant in the output type. The idea is sometimes stated
as “be liberal in what you accept and conservative in what you produce.”

Multiple Bounds
One final note before looking at examples from the Java 8 API. A type parameter can
have multiple bounds. The bounds are separated by an ampersand when they are
defined:

T extends Runnable & AutoCloseable

You can have as many interface bounds as you like, but only one can be a class. If you
have a class as a bound, it must be first in the list.

Examples from the Java 8 API
With all that in mind, now it’s time to review some examples from the Java 8 docs.

276 | Appendix A: Generics and Java 8

3 OK, technically it’s a lexicographical sort, meaning the capital letters come before the lowercase letters.

Stream.max
In the java.util.stream.Stream interface, consider the max method:

Optional<T> max(Comparator<? super T> comparator)

Note the use of the lower bounded wildcard in the Comparator. The max method
returns the maximum element of a stream by applying the supplied Comparator to it.
The return type is Optional<T>, because there may not be a return value if the stream
is empty. The method wraps the minimum in an Optional if there is one, and returns
an empty Optional if not.

To keep things simple, Example A-13 shows an Employee POJO.

Example A-13. A trivial Employee POJO

public class Employee {
 private int id;
 private String name;

 public Employee(int id, String name) {
 this.id = id;
 this.name = name;
 }

 // ... other methods ...
}

The code in Example A-14 creates a collection of employees, converts them into a
Stream, and then uses the max method to find the employee with the max id and the
max name (alphabetically3). The implementation uses anonymous inner classes to
emphasize that the Comparator can be of type Employee or Object.

Example A-14. Finding the max Employee

List<Employee> employees = Arrays.asList(
 new Employee(1, "Seth Curry"),
 new Employee(2, "Kevin Durant"),
 new Employee(3, "Draymond Green"),
 new Employee(4, "Klay Thompson"));

Employee maxId = employees.stream()
 .max(new Comparator<Employee>() {
 @Override
 public int compare(Employee e1, Employee e2) {
 return e1.getId() - e2.getId();

Generics and Java 8 | 277

 }
 }).orElse(Employee.DEFAULT_EMPLOYEE);

Employee maxName = employees.stream()
 .max(new Comparator<Object>() {
 @Override
 public int compare(Object o1, Object o2) {
 return o1.toString().compareTo(o2.toString());
 }
 }).orElse(Employee.DEFAULT_EMPLOYEE);

System.out.println(maxId);
System.out.println(maxName);

Anonymous inner class implementation of Comparator<Employee>

Anonymous inner class implementation of Comparator<Object>

Klay Thompson (max ID of 4)

Seth Curry (max name starts with S)

The idea is that the Comparator can be written taking advantage of methods in
Employee, but it’s also legal to just use Object methods like toString. By defining the
method in the API using the super wildcard, Comparator<? super T> comparator),
either Comparator is allowed.

For the record, nobody would write that code that way any more. The more idiomatic
approach is shown in Example A-15.

Example A-15. Idiomatic approach to finding the max Employee

import static java.util.Comparator.comparing;
import static java.util.Comparator.comparingInt;

// ... create employees ...

Employee maxId = employees.stream()
 .max(comparingInt(Employee::getId))
 .orElse(Employee.DEFAULT_EMPLOYEE);

Employee maxName = employees.stream()
 .max(comparing(Object::toString))
 .orElse(Employee.DEFAULT_EMPLOYEE);

System.out.println(maxId);
System.out.println(maxName);

278 | Appendix A: Generics and Java 8

4 The Java API uses T for a single input variable, or T and U for two input variables, and so on. It normally uses R
for return variables. For maps, the API uses K for the keys and V for the values.

This is certainly cleaner, but it doesn’t emphasize the bounded wildcard like the
anonymous inner class.

Stream.map
As another simple example from the same class, consider the map method. It takes a
Function with two arguments, both of which use wildcards:

<R> Stream<R> map(Function<? super T,? extends R> mapper)

The goal of this method is to apply the mapper function to each element of the stream
(of type T) to transform it into an instance of type R.4 The return type from the map
function is therefore Stream<R>.

Since Stream is defined as a generic class with type parameter T, the method doesn’t
also need to define that variable in the signature. The method requires an additional
type parameter, R, however, so that appears in the signature before the return type. If
the class had not been generic, the method would have declared both parameters.

The java.util.function.Function interface defines two type parameters, the first
(the input argument) is the type consumed from the Stream, and the second (the out‐
put argument) the type of object produced by the function. The wildcards imply that
when the parameters are specified, the input parameter must be of the same type or
above as the Stream. The output type can be any child of the returned stream type.

The Function example looks confusing because from a PECS per‐
spective, the types are backwards. However, if you keep in mind
that Function<T,R> consumes a T and produces an R, it’s clearer
why super goes on T and extends goes on R.

The code in Example A-16 shows how to use the method.

Example A-16. Mapping a List<Employee> to a List<String>

List<String> names = employees.stream()
 .map(Employee::getName)
 .collect(toList());

List<String> strings = employees.stream()
 .map(Object::toString)
 .collect(toList());

Generics and Java 8 | 279

5 Comparators are covered in Recipe 4.1.
6 Sorry.

The Function declared two generic variables, one for input and one for output. In the
first case, the method reference Employee::getName uses the Employee from the
stream as input, and returns a String as output.

The second example shows that the input variable could have been treated as a
method from Object rather than Employee, because of the super wildcard. The out‐
put type could, in principle, have been a List containing subclasses of String, but
String is final so there aren’t any.

Next let’s look at one of the method signatures that introduced this appendix.

Comparator.comparing
The example in Example A-15 used the static comparing function from Comparator.
The Comparator interface has been around since Java 1.0, so it might surprise devel‐
opers to see it now has many additional methods. The Java 8 rule is that a functional
interface is defined as an interface that contains only a single, abstract method (SAM).
In the case of Comparator, that method is compare, which takes two arguments, both
of generic type T, and returns an int that is negative, zero, or positive depending on
whether the first argument is less than, equal to, or greater than, the second.5

The signature of comparing is:

static <T,U extends Comparable<? super U>> Comparator<T> comparing(
 Function<? super T,? extends U> keyExtractor)

Let’s start by breaking down the argument to the compare method, whose name is
keyExtractor and is of type Function. As before, Function defines two generic
types, one for the input and one for the output. In this case, the input is lower boun‐
ded by an input type T and the output is upper bounded by an output type U. The
name of the argument is the key6 here: the function uses a method to extract a prop‐
erty to sort by, and the compare method returns a Comparator to do the job.

Because the goal is to use the ordering of a stream by the given property U, that prop‐
erty must implement Comparable. That’s why when U is declared, it must extend
Comparable. Of course, Comparable itself is a typed interface, whose type would nor‐
mally be U but is allowed to be any superclass of U.

Ultimately what the method returns is a Comparator<T>, which is then used by other
methods in Stream to sort the stream into a new stream of the same type.

The code presented earlier in Example A-15 demonstrates how the method is used.

280 | Appendix A: Generics and Java 8

7 In fact, in the reference implementation it is a HashMap.

Map.Entry.comparingByKey and Map.Entry.comparingByValue
As a final example, consider adding the employees to a Map where the key is the
employee ID and the values are the employees themselves. Then the code will sort
them by ID or name, and print the results.

The first step, adding the employees to a Map, is actually a one-liner when you use the
static toMap method from Collectors:

// Add employees to a map using id as key
Map<Integer, Employee> employeeMap = employees.stream()
 .collect(Collectors.toMap(Employee::getId, Function.identity()));

The signature of the Collectors.toMap method is:

static <T, K, U> Collector<T, ?, Map<K, U>> toMap(
 Function<? super T,? extends K> keyMapper,
 Function<? super T,? extends U> valueMapper)

Collectors is a utility class (i.e., it contains only static methods) that produces imple‐
mentations of the Collector interface.

In this example, the toMap method takes two arguments: one function to generate the
keys and one function to generate the values in the output map. The return type is a
Collector, which defines three generic arguments.

The Collector interface (from the Javadocs) has the signature:

public interface Collector<T,A,R>

Where the generic types are defined as:

• T, the type of input elements to the reduction operation
• A, the mutable accumulation type of the reduction operation (often hidden as an

implementation detail)
• R, the result of the reduction operation

In this case, we’re specifying the keyMapper, which is going to the getId method of
Employee. That means here T is Integer. The result, R, is an implementation of the
Map interface that uses Integer for K and Employee for U.

Then comes the fun part—the A variable in Collector is the actual implementation
of the Map interface. It’s probably a HashMap,7 but we never know because the result is
used as the argument to the toMap method so we never see it. In the Collector,
though, the type uses an unbounded wildcard, ?, which tells us that internally it either

Generics and Java 8 | 281

only uses methods from Object or it uses methods in Map that aren’t specific to type.
In fact, it only uses the new default merge method in Map, after calling the keyMapper
and valueMapper functions.

To do the sorting, Java 8 has added static methods comparingByKey and comparingBy
Value to Map.Entry. Printing the elements sorted by key is shown in Example A-17.

Example A-17. Sorting Map elements by key and printing

Map<Integer, Employee> employeeMap = employees.stream()
 .collect(Collectors.toMap(Employee::getId, Function.identity()));

System.out.println("Sorted by key:");
employeeMap.entrySet().stream()
 .sorted(Map.Entry.comparingByKey())
 .forEach(entry -> {
 System.out.println(entry.getKey() + ": " + entry.getValue());
 });

Add employees to a Map using ID as key

Sort employees by ID and print them

The signature of comparingByKey is:

static <K extends Comparable<? super K>,V>
 Comparator<Map.Entry<K,V>> comparingByKey()

The comparingByKey method takes no arguments and returns a Comparator that
compares Map.Entry instances. Since we’re comparing by the keys, the declared
generic type for the key, K, must be a subtype of Comparable that does the actual com‐
parisons. Of course, the Comparable itself defines the generic type K or one of its
ancestors, meaning that the compareTo method could use a property of the K class or
above.

The result of this sorting is:

Sorted by key:
1: Seth Curry
2: Kevin Durant
3: Draymond Green
4: Klay Thompson

Sorting by value instead introduces a nice complication, where the error would be
hard to understand without knowing something about the generic types involved.
First, the signature of the comparingByValue method is:

static <K,V extends Comparable<? super V>> Comparator<Map.Entry<K,V>>
 comparingByValue()

282 | Appendix A: Generics and Java 8

This time it’s V that needs to be a subtype of Comparable.

A naïve implementation of sorting by value would then be:

// Sort employees by name and print them (DOES NOT COMPILE)
employeeMap.entrySet().stream()
 .sorted(Map.Entry.comparingByValue())
 .forEach(entry -> {
 System.out.println(entry.getKey() + ": " + entry.getValue());
 });

This doesn’t compile. The error you get is:

Java: incompatible types: inference variable V has incompatible bounds
 equality constraints: generics.Employee
 upper bounds: java.lang.Comparable<? super V>

The problem is that the values in the map are instances of Employee, and Employee
doesn’t implement Comparable. Fortunately, the API defines an overloaded version of
comparingByValue:

static <K,V> Comparator<Map.Entry<K,V>> comparingByValue(
 Comparator<? super V> cmp)

This method takes a Comparator as an argument and returns a new Comparator that
compares the Map.Entry elements by the argument. The proper way to sort the map
values is given in Example A-18.

Example A-18. Sorting map elements by value and printing

// Sort employees by name and print them
System.out.println("Sorted by name:");
employeeMap.entrySet().stream()
 .sorted(Map.Entry.comparingByValue(Comparator.comparing(Employee::getName)))
 .forEach(entry -> {
 System.out.println(entry.getKey() + ": " + entry.getValue());
 });

By providing the Employee::getName method reference to the comparing method,
the employees are sorted by their names in their natural order:

Sorted by name:
3: Draymond Green
2: Kevin Durant
4: Klay Thompson
1: Seth Curry

Hopefully, these examples give you enough background on how to read and use the
API without getting lost in the generics.

Generics and Java 8 | 283

A Note on Type Erasure
One of the challenges of working on a language like Java is that it needs to support
years of backward compatibility. When generics were added to the language, the deci‐
sion was made to remove them during the compilation process. That way no new
classes are created for parameterized types, so there is no runtime penalty to using
them.

Since all of that is done under the hood, all you really need to know is that at compile
time:

• Bounded type parameters are replaced with their bounds
• Unbounded type parameters are replaced with Object
• Type casts are inserted where needed
• Bridge methods are generated to preserve polymorphism

For types, the result is pretty simple. The Map interface defines two generic types: K for
the keys and V for the values. When you instantiate a Map<Integer,Employee>, the
compiler replaces K with Integer and V with Employee.

In the Map.Entry.comparingByKey example, the keys were declared such that
K extends Comparable. Therefore everywhere in the class that uses K will be replaced
by Comparable.

the Function interface defines two generic types, T and R, and has a single abstract
method:

R apply(T t)

In Stream, the map method adds the bounds Function<? super T,? extends R>. So
when we used that method:

List<String> names = employees.stream()
 .map(Employee::getName)
 .collect(Collectors.toList());

The Function replaced T with Employee (since the stream was made up of employees)
and R with String (since the return type from getName is String).

That’s basically it, leaving out some edge cases. See the Java Tutorial for details if
you’re interested, but type erasure is probably the least complicated part of the whole
technology.

Summary
The generics capabilities originally defined in J2SE 1.5 are still with us, but with the
advent of Java 8 the corresponding method signatures have gotten far more complex.

284 | Appendix A: Generics and Java 8

Most of the functional interfaces added to the language use both generic types and
bounded wildcards to enforce type safety. Hopefully this appendix will give you the
foundation you need to understand what the API is trying to accomplish, and there‐
fore help you use it successfully.

Generics and Java 8 | 285

Index

Symbols
<> (diamond operator), 268
? (question mark), wildcard type arguments,

271
@FunctionalInterface annotation, 15
@SafeVarargs annotation, 40
_ (underscore) in numerical values, 177

A
abstract methods

in functional interfaces, 15
accessors (getters), wrapping result in Option‐

als, 154
accumulator argument in Collectors, 110
adjusters and queries (for temporal values),

185-190
TemporalAdjuster class, 185
TemporalQuery class, 188
writing your own adjuster, 186

Adjusters class (example), 187
PaydayAdjuster (example), 186

writing your own query, 189
and method (Predicate), 137
andThen method (Consumer), 136
andThen method (Function), 135
anonymous inner classes, 118

accessing attributes of outer class and local
variable, 118

replacement with lambda expressions, 119
Runnable implementation, 2

anyMatch, allMatch, and noneMatch methods
(Stream), 73-75
prime number check, 73
using on empty streams, 75

ArrayList<String> and ArrayList<Object>, 270
arrays

Arrays.stream method, 40
creating a stream, 40

converting IntStream to int array, 45
creating with Collectors.toArray method, 93
using constructor references with, 14

Async versions, CompletableFuture coordinat‐
ing methods, 227

at method, 179
AutoCloseable interface, streams and, 167

B
BaseStream class, unordered method, 70
BasicFileAttributes object, 172
between method

Duration class, 204
Period class, 204
TemporalUnit interface, 203

BiConsumer interface, 27, 111
String.collect method taking BiConsumer

arguments, 61
BiFunction interface, 37, 48

CompletableFuture handle method taking,
230

BigInteger class, isProbablyPrime method, 74
binary operators

identity values, 51
performing a reduce with, 51

BinaryOperator class, 48, 111
BinaryOperator as argument to

Stream.reduce, 56
maxBy and minBy methods, 104
use by Map.merge method, 127

287

BiPredicate class, 172
boxed streams, 43-45

using boxed method to convert IntStream to
Stream, 44

BufferedReader class, lines method, 166, 168
busy waiting, 219

C
Calendar class (see java.util.Calendar class)
Callable interface

anonymous inner class implementation,
substituting lambda for, 219

ExecutorService.submit method taking a
Callable, 218

cancel method (CompletableFuture), 228
characteristics function (Collectors), 110
chars and codePoints methods (CharSequence),

60
ChronoUnit class, 183, 203, 263

constants for time units, 203
class name, instance method invoked via, 8
class-level members, using in interfaces, 21
closure composition, in Consumer interface,

136
closures, 120
collect method (Stream)

converting stream of characters to a string,
61

instances of classes implementing Collectors
as arguments, 110

overloaded versions, 91
with Supplier, accumulator, and combiner,

67
Collection interface, 19

default methods, 20
removeIf method, using predicates, 35

collections
adding a linear collection to a map, 94-96
Collection.stream method, 42
Collections class, sort method, 88, 89
converting a stream to a collection, 91-94
creating from primitive streams, 43-45
creating immutable collections in Java 9,

247-251
generic, 267

using primitives in, 268
immutable, creating using Stream API,

107-109
iterating over, 130-132

of primitives, 122
returning a collection and filtering out nulls,

116
static methods in java.util.Collections, 270
stream processing versus, 84

Collector interface, 281
implementing, 109-112

Collectors class, 87
collectingAndThen method, 107-109
converting from a stream to a collection, 44
counting method, 64, 167
downstream collectors, filtering and flat‐

Mapping, 255-259
groupingBy method, 98, 168
maxBy method, 106
methods in Collectors analogous to meth‐

ods in Stream, 65
methods using Function, 38
partitioningBy and groupingBy methods,

100-101
downstream collectors, 102-104

partitioningBy method, using predicates, 35
Stream.collect method taking a Collector, 61
summarizingDouble method, 67
toMap method, 281
using toMap with Function.identity, 94-96

combiners, combiner method in Collectors, 110
Comparable interface, 87, 280
Comparator interface, 17, 167

BinaryOperator maxBy and minBy methods
taking a Comparator, 105

comparing method, 280
enhancements in Java 8, 87
methods using Function, 38
reverseOrder method, 168
sorting streams using a Comparator, 87-91
static methods in, 22

CompletableFuture class, 218, 219, 220-225
benefit of, 221
completing, example, 222
completing, methods for, 222
coordinating CompletableFutures, 225-237

combining two Futures, 229
composing two Futures together, 229
coordinating tasks, 225
larger example, 231-237
methods for, 226
running CompletableFuture tasks on

separate thread pool, 227

288 | Index

using handle method, 230
variations on coordinating methods, 227

runAsync and supplyAsync methods, 224
supplyAsync method, 31
using completeExceptionally on, 223
using supplyAsync to retrieve a product,

224
compose method (Function), 135
composition methods, 135-138

in Consumer interface, 136
in Function interface, 135
in Predicate interface, 137

computeIfAbsent method (Map), 123
computeIfPresent method (Map), 124
concatenating streams, 79-82

creating parallel streams or not, 81
multiple streams, 80
using Stream.concat method, 79
using Stream.flatMap method, 81
using Stream.reduce method, 80

concurrency, 206
(see also parallelism and concurrency)
defined, 205

ConcurrentMap, creating using Collec‐
tors.toConcurrentMap method, 94

constructor references, 10-15
copy constructor, 12
using with arrays, 14
varargs constructor, 13

Consumer interface, 130
accept method, 131

consumers, 26-28
additional consumer interfaces in

java.util.function, 27
Consumer interface

composition methods, 136
implementing, 26
other uses of, 27

ifPresent method taking a Consumer, 153
Iterable.forEach method taking a Con‐

sumer, 120, 130
contravariant, 276
copy constructor, 12
count method (Stream), 63
counting method (Collectors), 64, 103
covariant, 276

D
daemon threads, 228

Date-Time classes in java.time package,
176-180
adjusters and queries, 185-190
converting java.util.Date or javal.util.Calen‐

dar to new classes, 190-194
date ranges, 262-265

in Java 8, 263
in Java 9, using LocalDate.datesUntil,

264
finding region names from UTC offsets,

200-202
finding time zones with non-integral hour

offsets, 197-200
getting time between events, 202-204
modifying existing instance, 180-184
parsing and formatting, 194
prefixes on method names, 178

datesUntil method (LocalDate), 264
DateTimeFormatter class, 194

ofPattern method, 196
DayOfWeek enum, 179

constants for seven weekdays, 180
default methods in interfaces, 16, 18-21, 245

conflicts in, 21
conflicts in classes implementing, 127-129
new default methods added to existing

interfaces, 20
using, 20

deferred execution, Supplier support for, 29,
134

depth-first traversal of directories, 171
diamond operator (<>), 268
DirectoryStream interface, 169, 171, 173
DoubleConsumer interface, 27
doubles method (Random), 121
DoubleStream interface, 42

max method, 106
summaryStatistics method, 65

DoubleSummaryStatistics class, 66
accept and combine methods, 66

downstream collectors, 64, 255-259
applying Collectors.counting as, 167
filtering method, 256, 256
flatMapping method, 256, 258
from partitioningBy and groupingBy meth‐

ods in Collectors, 102-104
groupingBy method, 98
partitioningBy method, 101

using Collectors.maxBy method as, 106

Index | 289

using to compute team salaries (example),
67

dropWhile method (Stream), 254
example, using on the integer stream, 255

Duration class, 182, 204
conversion methods for time units, 204
primitive timing mechanism using, 204

E
easy versus simple, 206
effectively final variables, 119
empty method (Optional), 149
empty streams

using anyMatch, allMatch, and nonMatch
methods on, 75

using findFirst method on, 69
using reduce with empty stream and binary

operator, 81
encounter order, 69

sets and, 70
epoch, 192
event listeners, 118
exception handling

CompletableFuture.handle method, 230
completeExceptionally method on Comple‐

tableFuture, 223
for lambda expressions, using an extracted

method for, 138-140
lambda expression throwing checked excep‐

tion, 141-143
using a generic exception wrapper, 144-145

ExecutionException, 223
Executor interface, 227

CompletableFuture methods using an Exec‐
utor, 227
handleAsync method, 230

ExecutorService interface, 218, 227
extends keyword, 273

in PECS, 276

F
Fibonacci numbers, recursive calculation of,

123
file I/O, 165-173

processing text file contents using streams,
166-169

retrieving files as a Stream, 169
searching the filesystem for specified files,

172-173

walking the filesystem, 170-172
FilenameFilter interface, 4
Files class

find method, 172
lines method, 166
list method, 169
methods that return streams, 165
walk method, 170
write method, 235

FileVisitOption enum, 171
filtering method (Collectors), 256
filters

filtering data using predicates, 31-35
using a filter on Optionals, 260

find method (Files), 172
findAny method (Stream), 68

using in parallel after random delay, 70
using on sequential and parallel streams, 72

findFirst method (Stream), 68
finishers, 109

finisher method in Collectors, 110
flatMap method (Optional), 156-159
flatMap method (Stream)

map method versus, 75-79
using to concatenate streams, 81

flatMapping method (Collectors), 258
forEach method (Iterable and Map), 130-132
forEach method (Iterable), taking Consumer as

argument, 120
ForkJoinPool class, 227

system properties controlling size of com‐
mon pool, 215

using your own, 216
waiting to finish in common ForkJoinPool,

228
format method (LocalDate), 194
formatting java.time Date-Time classes

creating your own format, 196
LocalDate class, 195
using DateTimeFormatter, 194

functional interfaces
assigning a lambda to, 4
default methods in, 18-21
defined, 2
java.util.function package, 25-38
static methods in, 21-23
using or writing your own, 15-17

functional programming features in Java 8, 1
functions

290 | Index

Collectors.groupingBy method taking a
Function, 101

finishers, 109
Function argument, Stream.map and

Stream.flatMap methods, 76
Function interface, 111

composition methods, 135
Function.identity method, using with Col‐

lections.toMap, 96
Future interface, 217-220

cancel method, 220
chaining Futures together using Completa‐

bleFuture, 225
retrieving a value from a Future, 218
submitting a Callable and returning the

Future, 218
using lambda expression and check if

Future is done, 219

G
generics and Java 8, 267-285

declaring generic methods in non-generic
types, 270

examples from Java 8, 276-284
Comparator.comparing method, 280
Map.Entry, comparingByKey and com‐

paringByValue methods, 281
Stream.map method, 279
Stream.max method, 277
type erasure, 284

multiple bounds for type parameters, 276
what all Java developers know, 267
what some developers don't know, 270
wildcards and PECS, 271

lower bounded wildcards, 274
PECS, 276
unbounded wildcards, 272
upper bounded wildcards, 273

getAvailableZoneIds method, 178
getOrDefault method (Map), 126
Greenwich/UTC time, time zone offsets from,

200
GregorianCalendar, converting to ZonedDate‐

Time, 194
groupingBy method (Collectors), 101, 168, 256

filtering with, 257
overloaded version taking downstream col‐

lector, 103
Gson JSON parsing library, 235

H
handle method (CompletableFuture), 230

I
I/O (input/output), 165

(see also file I/O)
identity method (Function), 96
identity method (UnaryOperator), 96
ifPresent method (Optional), 153, 261
ifPresentOrElse method (Optional), 262
immutability

creating an immutable collection, 107-109
creating immutable collections, 247-251
instances of Optional, 148

implementations of interface methods, 245
info method (Logger), using a Supplier, 134
instance method invoked via class name, 8
Instant class

atZone method, 198
now method, 176
using as bridge for java.util.Date conver‐

sions, 190
converting Date to LocalDate, 190

working with, using Duration, 204
IntBinaryOperator class, 48
IntConsumer interface, 27
Integer class, min and max methods, 52
intermediate operations on stream pipelines, 57
ints, longs, and doubles static methods (Ran‐

dom), 121
IntStream interface, 42

basic reduce implementations, 48
converting to int array, 45
max method, 106
reduction operations, 46
sum method, 120
summaryStatistics method, 65

invariant, 276
isDone method (Future), 219
isNull method (Objects), 116
ISO 8601 specification, time zone IDs, defini‐

tions of, 200
Iterable interface

Consumer as argument in forEach method,
26

forEach method, 130-132
iterate method (Stream), 41, 264

in Java 9, 253

Index | 291

J
Java 8, changes in, 1
Java 9 additions, 239-265

date ranges, 262-265
downstream collectors, filtering and flat‐

Mapping, 255-259
immutable collections, 247-251
modules in Jigsaw, 240-245
new features not covered, 239
Optional type, new methods, 259-262
private methods in interfaces, 245-247
streams, new functionality in, 252-255

Java Platform Module System (JPMS), 240
java.base module, 244
java.io.FilenameFilter interface, 4
java.lang.CharSequence, chars and codePoints

methods, 60
java.math.BigInteger class, 74
java.nio.file package, 165
java.sql.Date class, 175

conversion methods in, 191
java.sql.Timestamp class, conversion methods,

191
java.time package, 175

adjusters and queries, 185-190
converting java.util.Date or javal.util.Calen‐

dar to new classes, 190-194
finding region names from UTC offsets,

200-202
finding time zones with non-integral hour

offsets, 197-200
getting time between events, 202-204
modifying existing Date-Time class

instance, 180-184
parsing and formatting Date-Time classes,

194-197
using basic Date-Time classes, 176-180

java.util.Calendar class, 175
converting to java.time.ZonedDateTime,

193
converting to LocalDateTime

by generating and parsing timestamp
stream, 193

using Calendar getter methods, 193
java.util.Comparable interface, 87
java.util.concurrent package, 205, 218
java.util.concurrent.ForkJoinPool class, 215
java.util.concurrent.Future interface (see Future

interface)

java.util.Date class, 175
converting to java.sql.Date, 192
converting to LocalDate, 194
converting to new classes in java.time pack‐

age, 190
deprecation in favor of java.util.Calendar,

193
java.util.function package, 25-38

Consumer interface, implementing, 26-28
functions, 35-38

additional Function interfaces, 36
other examples from standard library

using Functions, 38
Predicates, 31-35

Predicate interface, methods, 32
Suppliers, 28-31

additional Supplier interfaces, 29
implementing Supplier interface, 28
other examples from standard library, 31

java.util.Iterable, Consumer as argument in
forEach method, 26

java.util.logging.Logger class, 29, 132
(see also logging)

java.util.Objects class (see Objects class)
java.util.stream.Collectors (see Collectors class)
Jigsaw, modules in, 240-245
JMH (Java Micro-benchmark Harness), 212
Joda-Time library, 175
JPMS (Java Platform Module System), 240
JSON parsing library (Gson), 235
JSR 376, the Java Platform Module System, 240
JVM, modularization in Java 9, 244

L
lambda expressions, 1, 2-6

accessing local variable defined outside of,
117-120
replacing anonymous inner class, 119

assigning to a variable, 3
checked exceptions and, 141-143

handling exception with extracted
method, 143

handling exception with try/catch block,
141

using generic exception wrapper,
144-145

compatibility with method signature, 3
implementing compare method in Compa‐

rator, 89

292 | Index

issues with, 115
method references and, 6-10
replacing Callable anonymous inner class

implementation, 219
supplying an IntBinaryOperator, 49
using extracted method for exception han‐

dling, 138-140
using in Thread constructor, 3
using to invoke constructor reference, 12

lazy streams, 83-85
lines method (BufferedReader), 168
lines method (Files), 166
list method (Files), 169
List<? extends Number>, 273
List<? super Number>, 274
List<?>, 272

as a method argument, 272
List<String> and List<Object>, 271
lists

creating immutable lists with List.of, 247
overloads for List.of, 248

filtering nulls from generic list, 117
List.of method, 109
sort method on List taking a Comparator,

89
unmodifiable, producing prior to Java 8, 108
unmodifiableList method, Collections, 107

LocalDate class
converting java.util.Date to, 190
datesUntil method, 264
iterating on, 264
methods for adding and subtracting values

from dates, 180
now method, 176
of method, 177
ofInstant method, 194
parse and format methods, 194
using plus methods on, 181

LocalDateTime class
applying a time zone using at method, 179
atZone method, 200
converting java.util.Calendar to, by generat‐

ing and parsing timestamp string, 193
converting java.util.Calendar to, using Cal‐

endar getter methods, 193
now method, 176
of method, 177
ofInstant method, 193
plus and minus methods, 182

with methods, 183
using TemporalAdjuster, 185

localized date-time formatter, 197
LocalTime class

methods for adding and subtracting values
from time, 181

now method, 176
of method, 177
using plus methods on, 181

Logger class
info method, taking Supplier as argument,

29
overloads for all logging methods taking a

Supplier, 31
logging

adding to Supplier module (example), 243
module-info.java file for Java Logging API,

244
using overloaded methods in Logger taking

a Supplier, 29, 132-134
LongConsumer interface, 27
longs method (Random), 121
LongStream interface, 42, 214

max method, 106
summaryStatistics method, 65

M
map method (Optional), 158
map method (Stream), 279

flatMap method versus, 75-79
map-filter-reduce process, 46
Map.computeIfAbsent method, using Function,

38
Map.Entry interface, 97-99, 131

comparingByKey and comparingByValue
methods, 168, 281

comparingByKey method, 98
creating an immutable Map from entries,

250
new static methods added in Java 8, 97

maps
adding a linear collection to a Map, 94-96
creating an immutable Map, 109
creating immutable Maps, 250

from entries, 250
creating with Collectors.toMap method, 93
creating with groupingBy collector and sort‐

ing, 168
flatMapping downstream collector, 258

Index | 293

iterating over, using forEach method of
Map, 131

Map.of method, 109
mapping Optionals using Optional.map,

160-163
new default methods in Map, 122-127
sorting, 97-99
unmodifiableMap method, Collections, 107
using a Map on Optionals, 260

mapToObject method, using to convert primi‐
tives to instances of wrapper class, 44

Math.random method, using as a supplier, 28
max and min values, finding, 104-107

max method on primitive streams, 106
minBy method, 107
using BinaryOperator maxBy and minBy

methods, 104
using Collectors.maxBy method, 106
using Stream.max method, 106

max method (Stream), 277
merge method (Map), 126
method references, 1, 6-10

constructor references, 10-15
issues with, 115
lambda expression equivalents, 9
lambda expressions and, 7
syntax, 8
using a TemporalQuery via, 190

minus methods, 179, 180
examples of use, 182
LocalDateTime class, 182

module descriptor, 241
module-info.java file, 241

updating for Supplier module (example),
244

modules, 240-245
client module (example), 242

defining the module, 243
modularization in Java, 240
Supplier module (example), 241

adding logging, 243
defining the module, 243
updating module-info.java to add log‐

ging, 244
Month enum, 179

methods, 179
Moore's Law, 1
multiple bounds (type parameters), 276
multiple inheritance, 18

multiprocessor environments, 1

N
negate method (Predicate), 137
new keyword, using in method references, 10
noneMatch method (Stream), 73-75
nonNull method (Objects), 116
now method, 176
nullable attributes, wrapping in Optionals, 154
numsUpTo method, 275

O
Object class method, in functional interface, 17
objects

using List<Object>, 270
using List<String> with objects, 271

Objects class, 115-117
deepEquals method, 117
isNull and nonNull methods, 116

returning a collection and filtering out
nulls, 116

methods, 115
requireNonNull method, 31

overloaded versions, 116
of method, 92

Collector.of method, overloaded versions,
112

for date/time classes, 177
in List, Set, and Map, 109, 247
Map.of method, 250
Optional class, 149, 260
overloaded version in localied date-time

formatter, 197
Set.of method, 250

ofInstant method, 193, 194
ofNullable method (Optional), 149, 260
ofNullable method (Stream), 252
ofPattern method, 196
Optional type, 147-163, 235

creating an Optional, 148-150
immutability and Optionals, 148
of, empty, and ofNullable methods, 149

filter method, using predicates, 35
flatMap and map methods, 79
flatMap versus map method, 156-159
from reduction operations on IntStream, 47
Java 9 additions, 259-262

ifPresentOrElse method, 262
or method, 261

294 | Index

stream method, 259
mapping Optionals with map method,

160-163
orElseGet method, taking Supplier as argu‐

ment, 29
retrieving values from, 150-154

using get method, 150
using ifPresent method, 153
using orElse method, 151
using orElseGet method, 152

returned by Stream.findAny method, 70
using in accessors and mutators, 154-155

OptionalDouble class, 150
OptionalInt class, 150
OptionalLong class, 150
or method (Optional), 261
or method (Predicate), 137
orElse method, 151
orElseGet method, 152
orElseThrow method, 153

P
palindrome, checking string for

in Java 7, 61
testing the palindrome checker, 62
using Java 8 streams, 61

parallel method, 208
parallel streams, 70

performance and parallelization, 72
using String.concat or String.flatMap

method, 81
parallelism and concurrency, 205

CompletableFuture class, 220-225
converting from sequential to parallel

streams, 206-209
coordinating CompletableFutures, 225-237

more complex example, 231-237
definitions of the concepts, 205
using Future interface, 217-220
when parallel helps, 209, 215

adding integers in sequential stream, 210
adding integers using parallel stream,

211
summing primitives, 213
timing using JMH, 212

parallelism flag, 215
parallelStream method, 207
parse method

LocalDate class, 194

LocalDateTime class, 193
parsing java.time Date-Time classes, 194-197
partitioning and grouping, 100-101

downstream collectors produced by Colle‐
tors partitioningBy and groupingBy
methods, 102-104

grouping strings by length, using Collec‐
tors.groupingBy, 101

partitioning strings using Collectors.parti‐
tionBy, 100

partitioningBy method (Collectors), 64
PaydayAdjuster class (example), 186
PECS (Producer Extends, Consumer Super),

276
peek method (Stream), debugging streams

with, 58
performance measurements, 212
Period class, 182, 203

determining Period between two dates, 263
LocalDate.datesUntil method taking a

Period, 264
using to get days, months, and years, 203

plus methods, 179, 180
examples of use, 182
LocalDateTime class, 182
LocalTime class, 181
using on LocalDate and LocalTime, 181
using to modify existing Date-Time class

instances, 180
predicates, 31-35

adding constants for common use cases, 33
BiPredicate determining wheter Path should

be returned, 172
Collectors.partitioningBy method taking a

Predicate, 64, 100
composition methods in Predicate interface,

137
determining if any, all, or no stream ele‐

ments match a Predicate, 73-75
fashioning composite predicates, 33
finding strings that satisfy an arbitrary pred‐

icate, 33
Predicate instance as filter in Objects isNull

and nonNull methods, 116
Predicate interface, methods, 32
Stream.iterate method taking a Predicate,

253
use by other methods in standard library, 35
using to find strings of given length, 32

Index | 295

prefixes on Date-Time methods, 178
prime number check, 73

testing, 74
primitive types, using in generic collections,

268
private methods in interfaces, 245-247

example, 246
testing private methods, 246

processors, number of, 210
Producer Extends, Consumer Super (see PECS)
properties, 155
pure functions, 1, 130

R
Random class, static ints, longs, and doubles

methods, 121
random numbers, creating stream of within

given bounds, 120-122
range and rangeClosed methods, 42
reduce method (Stream)

check sorting with, 55-57
sorting string by length, 56

concatenating streams with, 80
taking BinaryOperator as argument, 105

reduction operations using reduce, 46-55
basic reduce implementations, 48

summing numbers using reduce, 48
region names, finding from UTC offsets,

200-202
replace method (Map), 126
requireNonNull method (Objects), 116
reverseOrder method (Comparator), 168
runAsync method (CompletableFuture), 224,

227
Runnable interface, anonymous inner class

implementation, 2
Runtime.getRuntime.availableProcessors, 210

S
SAM (single abstract method), 2
SecureRandom class, 122
sequential method, 208
sequential streams, 72

converting parallel stream to sequential, 208
methods of creating, 207
switching from parallel to sequential, prob‐

lems with, 208
sets

and encounter order, 70

creating immutable sets, 250
Set.of method, 109
unmodifiable, producing prior to Java 8, 108
unmodifiableSet method, Collections, 107

short-circuiting operations, 71, 83
side effects, Consumer interface and, 130
simple versus easy, 206
single abstract method (SAM), 2
sorted method, 167
sorting

sorting a Map, using Map.Entry methods,
97-99

using a Comparator, 87-91
static methods in interfaces, 16, 21-23, 245

adding, requirements for, 22
class-level members, using in interfaces, 21
key points about, 23
method references to, 7

Stream interface
flatMap method, 259
map method, 279
max method, 277
new methods in Java 9, 252

iterate method, using with a Predicate,
253

ofNullable method, 252
takeWhile and dropWhile, 254

stream method (Optional), 163, 259
streams, 1, 7, 39-85

and AutoCloseable, 167
check sorting using reduce, 55-57
concatenating, 79-82
converting a list to and from a stream, 12
converting from sequential to parallel

streams, 206-209
creating parallel streams with parallel‐

Stream method, 207
creating sequential streams, 207
using parallel method on existing

stream, 208
converting stream to IntStream and calling

sum, 120
converting strings to and from, 60-63
converting to a collection, 91-94
counting elements in, 63-65
creating, 39-43

child interfaces of Stream for working
with primitives, 42

from collections, 42

296 | Index

Stream interface, methods, 40
summary of methods used, 43
using Arrays.stream, 40
using Stream.generate, 41
using Stream.iterate, 41
using Stream.of, 40

creating collection from primitive stream,
43-45

creating immutable collections using Col‐
lections.collectingAndThen, 108

creating stream of dates, 187
debugging with peek, 57-60
file I/O and, 165
filtering using predicates, 32
findFirst method on Stream, 30
finding first element, 68-73
flatMap versus map methods, 75-79
invoking instance method via class name in

method references, 9
issues with, 115
lazy, 83-85
new functionality added in Java 9, 252-255
of random numbers within given bounds,

120-122
parallel, deciding when to use, 209-215
processing using consumers, 27
reduction operation using reduce, 46-55
retrieving a files as a Stream, 169
sorted method, using with a Comparator,

87-91
Stream methods analogous to Collectors

methods, 103
stream processing versus collections, 84
Stream.allMatch method, using predicates,

35
Stream.map method, Function argument in,

36
summary statistics for stream of numerical

values, 65-68
using anyMatch, allMatch, and noneMatch

methods, 73-75
using to process text file contents, 166-169

strings
collecting using a StringBuilder, 53
concatenating from a stream using reduce,

52
converting to and from streams, 60-63
grouping by length, using Collectors.group‐

ingBy, 101

partitioning, using Collectors.partitio‐
ningBy, 100

sorting by length, then equal lengths lexico‐
graphically, 89

sorting lexicographically, 88
sorting using sorted method on Stream, 88
sorting using Stream.reduce, 56

sum method, 274
summarizingDouble method (Collectors), 67
summary statistics for a stream, 65-68

limitations of summary statistics classes, 68
super keyword

in PECS, 276
using with default methods, 129
using with lower bounded wildcard, 274
using with method references, 10

suppliers, 28-31
additional Supplier interfaces in

java.util.function, 29
Collectors.toCollection method taking a

Supplier, 93
implementing Supplier interface, 28
Objects.requireNotNull method taking Sup‐

plier as argument, 116
Optional.or method taking a Supplier, 261
orElseGet method, taking Supplier as argu‐

ment, 152
orElseThrow method taking a Supplier, 153
other examples from standard library using

Suppliers, 31
overloaded Logger methods taking a Sup‐

plier, 132-134
Stream.collect method taking a Supplier, 61
Supplier interface, 111
supplier method in Collectors, 110
support for deferred execution, 29

supplyAsync method (CompletableFuture),
224, 226, 227

System.setProperty method, setting degree of
parallelism, 215

T
takeWhile method (Stream), 254

example, taking ints above 70, 255
TemporalAccessor class, 188
TemporalAdjuster class, 184, 185

methods, 185
test case using static methods, 186
using, 185

Index | 297

writing your own adjuster, 186
TemporalAmount interface, 182

addTo method, 182
TemporalField class, 184
TemporalQueries class

constants defining common queries, 189
using methods from, 189

TemporalQuery class, 185
queryFrom method, 189
using, 188
using a TemporalQuery via a method refer‐

ence, 190
TemporalUnit interface, 183, 203, 263

between method, 203
terminal operations, 71, 83

collect method on Stream, 91
thenAccept method (CompletableFuture), 226

variations on, 227
thenApply method (CompletableFuture), 226
thenCombine method (CompletableFuture),

229
thenComparing method (Comparator), 90
thenCompose method (CompletableFuture),

229
this, using with method references, 10
Thread class

Runnable as argument, 2
using lambda expression in constructor, 3

thread pool
changing pool size, 215-217

setting common pool size programmati‐
cally, 215

setting common pool size using system
parameter, 216

using your own ForkJoinPool, 216
running CompletableFuture tasks on sepa‐

rate pool, 227
size of, 210
waiting to finish in common ForkJoinPool,

228
timing operations using JMH, 212
toArray method (Collectors), 93
toCollection method (Collectors), 93
toConcurrentMap method (Collectors), 94
toInstant method, 193
toMap method (Collectors), 93, 95

using with Function.identity method, 95
try-with-resources block, 98, 167

AutoCloseable and streams, 167

using with Files.find method, 173
using with Files.list method, 169
using with Files.walk method, 171

try/catch block, lambda expression with, 139,
142

type erasure in Java, 284
type parameters (in generics), 269

U
umodifiable methods in Collections, 107
UnaryOperator class, 37, 41

identity method, 96
unchecked exceptions, 139

lambda expression throwing, 139
Unix-based operating systems, epoch defini‐

tion, 192
unordered streams, 70
until method, 203
UTC, time zone offsets from, 197, 200
utility classes, 22

V
varargs constructors, 13

W
walk method (Files), 170
weakly consistent, 170
wildcards, 271

lower bounded, 274
unbounded type, 272
upper bounded, 273

with methods, 179
LocalDateTime class, 183

using TemporalAdjuster, 185

Y
Year 2038 problem, 192
Year class, now method, 177
YearMonth class, now method, 177

Z
ZonedDateTime class, 178, 179, 200

converting GregorianCalendar to, 194
converting java.sql.Calendar to, 193
localized date-time formatter, 197
now method, 176
withZoneSameInstant method, 199

ZoneId class, 200

298 | Index

getAvailableZoneIds method, 178, 198
getting region names by ZoneId, 201
now method, 177
of method, transforming string region IDs

to zone IDs, 198

types of zone IDs, 178
ZoneOffset class, 198, 200

getTotalSeconds method, 198
ofHoursMinutes method, 201

ZoneRules class, 178

Index | 299

About the Author
Ken Kousen is a technical trainer, software developer, and conference speaker spe‐
cializing in Java and open source topics, including Android, Spring, Hibernate/JPA,
Groovy, Grails, and Gradle. He is the author of the O’Reilly book Gradle Recipes for
Android and the Manning book Making Java Groovy. He also has recorded several
video courses for O’Reilly, on topics such as Android, Groovy, Gradle, Grails 3,
Advanced Java, and the Spring Framework.

He has delivered talks at technical conferences all over the world, including giving the
keynote addresses at DevNexus in Atlanta, and the Gr8conf events in Minneapolis,
Copenhagen, and New Delhi. In 2013 and 2016, he received the JavaOne Rockstar
award.

His academic background includes BS degrees in mechanical engineering and mathe‐
matics from MIT, an MA and PhD in aerospace engineering from Princeton, and an
MS in computer science from RPI. He is currently President of Kousen IT, Inc., based
in Connecticut.

Colophon
The animal on the cover of Modern Java Recipes is the sambar (Rusa unicolor), a spe‐
cies of large deer native to southern Asia that tends to congregate in close proximity
to rivers. Adults range in height from 40–63" at the shoulder, and adults tend to
weigh 200–700 pounds, with males being significantly larger than females. The sam‐
bar is the third-largest extant cervid species, after the elk and moose.

Sambar are crepuscular or nocturnal, and usually live in small groups, the males liv‐
ing alone for most of the year while females form herds of as few as three individuals.
Sambar demonstrate greater bipedal capability than other deer species, allowing them
to reach higher foliage and mark territory, as well as to intimidate predators. Sambar
are unique among deer species in the proficiency with which females protect their
young, preferring to defend themselves in water where they can take advantage of
their height and powerful swimming capabilities.

The IUCN Red List assigned Vulnerable status to the sambar in 2008. The decline in
global population is due to industrial and agricultural development encroaching on
their habitat, as well as overhunting—the males’ antlers are highly sought-after for
display as trophies and for use in traditional medicine. While its population in Asia is
declining, the sambar population in New Zealand and Australia has grown steadily
since their introduction in the late 19th century, to an extent that they now presents a
threat to endangered native plant species.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Lydekker’s The Royal Natural History. The cover fonts are
URW Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the heading
font is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Cover
	Copyright
	Table of Contents
	Foreword
	Preface
	Modern Java
	Who Should Read This Book
	How This Book Is Organized
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Safari
	How to Contact Us
	Acknowledgments

	Chapter 1. The Basics
	1.1 Lambda Expressions
	Problem
	Solution
	Discussion

	1.2 Method References
	Problem
	Solution
	Discussion
	See Also

	1.3 Constructor References
	Problem
	Solution
	Discussion
	See Also

	1.4 Functional Interfaces
	Problem
	Solution
	Discussion
	See Also

	1.5 Default Methods in Interfaces
	Problem
	Solution
	Discussion
	See Also

	1.6 Static Methods in Interfaces
	Problem
	Solution
	Discussion
	See Also

	Chapter 2. The java.util.function Package
	2.1 Consumers
	Problem
	Solution
	Discussion
	See Also

	2.2 Suppliers
	Problem
	Solution
	Discussion
	See Also

	2.3 Predicates
	Problem
	Solution
	Discussion
	See Also

	2.4 Functions
	Problem
	Solution
	Discussion
	See Also

	Chapter 3. Streams
	3.1 Creating Streams
	Problem
	Solution
	Discussion
	See Also

	3.2 Boxed Streams
	Problem
	Solution
	Discussion
	See Also

	3.3 Reduction Operations Using Reduce
	Problem
	Solution
	Discussion
	See Also

	3.4 Check Sorting Using Reduce
	Problem
	Solution
	Discussion
	See Also

	3.5 Debugging Streams with peek
	Problem
	Solution
	Discussion

	3.6 Converting Strings to Streams and Back
	Problem
	Solution
	Discussion
	See Also

	3.7 Counting Elements
	Problem
	Solution
	Discussion
	See Also

	3.8 Summary Statistics
	Problem
	Solution
	Discussion
	See Also

	3.9 Finding the First Element in a Stream
	Problem
	Solution
	Discussion
	See Also

	3.10 Using anyMatch, allMatch, and noneMatch
	Problem
	Solution
	Discussion
	See Also

	3.11 Stream flatMap Versus map
	Problem
	Solution
	Discussion
	See Also

	3.12 Concatenating Streams
	Problem
	Solution
	Discussion
	See Also

	3.13 Lazy Streams
	Problem
	Solution
	Discussion
	See Also

	Chapter 4. Comparators and Collectors
	4.1 Sorting Using a Comparator
	Problem
	Solution
	Discussion

	4.2 Converting a Stream into a Collection
	Problem
	Solution
	Discussion
	See Also

	4.3 Adding a Linear Collection to a Map
	Problem
	Solution
	Discussion
	See Also

	4.4 Sorting Maps
	Problem
	Solution
	Discussion
	See Also

	4.5 Partitioning and Grouping
	Problem
	Solution
	Discussion
	See Also

	4.6 Downstream Collectors
	Problem
	Solution
	Discussion
	See Also

	4.7 Finding Max and Min Values
	Problem
	Solution
	Discussion
	See Also

	4.8 Creating Immutable Collections
	Problem
	Solution
	Discussion
	See Also

	4.9 Implementing the Collector Interface
	Problem
	Solution
	Discussion
	See Also

	Chapter 5. Issues with Streams, Lambdas, and Method References
	5.1 The java.util.Objects Class
	Problem
	Solution
	Discussion

	5.2 Lambdas and Effectively Final
	Problem
	Solution
	Discussion
	See Also

	5.3 Streams of Random Numbers
	Problem
	Solution
	Discussion
	See Also

	5.4 Default Methods in Map
	Problem
	Solution
	Discussion

	5.5 Default Method Conflict
	Problem
	Solution
	Discussion
	See Also

	5.6 Iterating Over Collections and Maps
	Problem
	Solution
	Discussion
	See Also

	5.7 Logging with a Supplier
	Problem
	Solution
	Discussion
	See Also

	5.8 Closure Composition
	Problem
	Solution
	Discussion
	See Also

	5.9 Using an Extracted Method for Exception Handling
	Problem
	Solution
	Discussion
	See Also

	5.10 Checked Exceptions and Lambdas
	Problem
	Solution
	Discussion
	See Also

	5.11 Using a Generic Exception Wrapper
	Problem
	Solution
	Discussion
	See Also

	Chapter 6. The Optional Type
	6.1 Creating an Optional
	Problem
	Solution
	Discussion
	See Also

	6.2 Retrieving Values from an Optional
	Problem
	Solution
	Discussion
	See Also

	6.3 Optional in Getters and Setters
	Problem
	Solution
	Discussion
	See Also

	6.4 Optional flatMap Versus map
	Problem
	Solution
	Discussion
	See Also

	6.5 Mapping Optionals
	Problem
	Solution
	Discussion
	See Also

	Chapter 7. File I/O
	7.1 Process Files
	Problem
	Solution
	Discussion
	See Also

	7.2 Retrieving Files as a Stream
	Problem
	Solution
	Discussion
	See Also

	7.3 Walking the Filesystem
	Problem
	Solution
	Discussion
	See Also

	7.4 Searching the Filesystem
	Problem
	Solution
	Discussion
	See Also

	Chapter 8. The java.time Package
	8.1 Using the Basic Date-Time Classes
	Problem
	Solution
	Discussion
	See Also

	8.2 Creating Dates and Times from Existing Instances
	Problem
	Solution
	Discussion
	See Also

	8.3 Adjusters and Queries
	Problem
	Solution
	Discussion

	8.4 Convert from java.util.Date to java.time.LocalDate
	Problem
	Solution
	Discussion

	8.5 Parsing and Formatting
	Problem
	Solution
	Discussion

	8.6 Finding Time Zones with Unusual Offsets
	Problem
	Solution
	Discussion

	8.7 Finding Region Names from Offsets
	Problem
	Solution
	Discussion

	8.8 Time Between Events
	Problem
	Solution
	Discussion

	Chapter 9. Parallelism and Concurrency
	9.1 Converting from Sequential to Parallel Streams
	Problem
	Solution
	Discussion

	9.2 When Parallel Helps
	Problem
	Solution
	Discussion

	9.3 Changing the Pool Size
	Problem
	Solution
	Discussion
	See Also

	9.4 The Future Interface
	Problem
	Solution
	Discussion
	See Also

	9.5 Completing a CompletableFuture
	Problem
	Solution
	Discussion
	See Also

	9.6 Coordinating CompletableFutures, Part 1
	Problem
	Solution
	Discussion
	See Also

	9.7 Coordinating CompletableFutures, Part 2
	Problem
	Solution
	Discussion
	See Also

	Chapter 10. Java 9 Additions
	10.1 Modules in Jigsaw
	Problem
	Solution
	Discussion
	See Also

	10.2 Private Methods in Interfaces
	Problem
	Solution
	Discussion

	10.3 Creating Immutable Collections
	Problem
	Solution
	Discussion
	See Also

	10.4 Stream: ofNullable, iterate, takeWhile, and dropWhile
	Problem
	Solution
	Discussion

	10.5 Downstream Collectors: filtering and flatMapping
	Problem
	Solution
	Discussion
	See Also

	10.6 Optional: stream, or, ifPresentOrElse
	Problem
	Solution
	Discussion
	See Also

	10.7 Date Ranges
	Problem
	Solution
	Discussion
	See Also

	Appendix A. Generics and Java 8
	Background
	What Everybody Knows
	What Some Developers Don’t Realize
	Wildcards and PECS
	Unbounded Wildcards
	Upper Bounded Wildcards
	Lower Bounded Wildcards
	PECS
	Multiple Bounds

	Examples from the Java 8 API
	Stream.max
	Stream.map
	Comparator.comparing
	Map.Entry.comparingByKey and Map.Entry.comparingByValue
	A Note on Type Erasure

	Summary

	Index
	About the Author

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

