OREILLY

Java Recipes

SIMPLE SOLUTIONS TO DIFFICULT PROBLEMS IN JAVA 8 AND 9

Ken Kousen

Modern Java Recipes
Simple Solutions to Difficult Problems
in Java 8 and 9

Ken Kousen

Beijing + Boston « Farnham -« Sebastopol + Tokyo [K@2a{=|HNE

Modern Java Recipes
by Ken Kousen

Copyright © 2017 Ken Kousen. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/insti-
tutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Brian Foster and Jeff Bleiel Indexer: Ellen Troutman-Zaig
Production Editor: Justin Billing Interior Designer: David Futato
Copyeditor: Kim Cofer Cover Designer: Karen Montgomery
Proofreader: Jasmine Kwityn lllustrator: Rebecca Demarest
August 2017: First Edition

Revision History for the First Edition
2017-08-04: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491973172 for release details.

The O’Reilly logo is a registered trademark of O'Reilly Media, Inc. Modern Java Recipes, the cover image,
and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

978-1-491-97317-2
[LST]

http://oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781491973172

Hey Xander, this one’s yours. Surprise!

Table of Contents

Foreword.ooviiiiiiii ix
Preface.oooviiiiiiii Xi
1. TheBasics.vvvvriiiiiiiiiiiii 1
1.1 Lambda Expressions 2
1.2 Method References 6
1.3 Constructor References 10
1.4 Functional Interfaces 15
1.5 Default Methods in Interfaces 18
1.6 Static Methods in Interfaces 21
2. Thejava.util.functionPackage.ccvvviiiiiiiiiiiiiiiiiiieiiieennn, 25
2.1 Consumers 26
2.2 Suppliers 28
2.3 Predicates 31
2.4 Functions 35
3 SHRAMS. ettt e 39
3.1 Creating Streams 39
3.2 Boxed Streams 43
3.3 Reduction Operations Using Reduce 46
3.4 Check Sorting Using Reduce 55
3.5 Debugging Streams with peek 57
3.6 Converting Strings to Streams and Back 60
3.7 Counting Elements 63
3.8 Summary Statistics 65
3.9 Finding the First Element in a Stream 68

3.10 Using anyMatch, allMatch, and noneMatch 73

3.11 Stream flatMap Versus map 75
3.12 Concatenating Streams 79
3.13 Lazy Streams 83
4, Comparatorsand Collectors.ovvuiiriiiiniiiiiieiieieeerneannannes 87
4.1 Sorting Using a Comparator 87
4.2 Converting a Stream into a Collection 91
4.3 Adding a Linear Collection to a Map 94
4.4 Sorting Maps 97
4.5 Partitioning and Grouping 100
4.6 Downstream Collectors 102
4.7 Finding Max and Min Values 104
4.8 Creating Immutable Collections 107
4.9 Implementing the Collector Interface 109
5. Issues with Streams, Lambdas, and Method References............ccovvvnvnn.n.. 115
5.1 The java.util.Objects Class 115
5.2 Lambdas and Effectively Final 117
5.3 Streams of Random Numbers 120
5.4 Default Methods in Map 122
5.5 Default Method Conflict 127
5.6 Iterating Over Collections and Maps 130
5.7 Logging with a Supplier 132
5.8 Closure Composition 134
5.9 Using an Extracted Method for Exception Handling 138
5.10 Checked Exceptions and Lambdas 141
5.11 Using a Generic Exception Wrapper 144
6. The Optional Type. ..ottt i it i it ie e eaens 147
6.1 Creating an Optional 148
6.2 Retrieving Values from an Optional 150
6.3 Optional in Getters and Setters 154
6.4 Optional flatMap Versus map 156
6.5 Mapping Optionals 160
7o Filel/0. ..o 165
7.1 Process Files 166
7.2 Retrieving Files as a Stream 169
7.3 Walking the Filesystem 170
7.4 Searching the Filesystem 172

vi | Tableof Contents

8. Thejava.timePackage.........covviuiiiiiiiiiiiiiiiiiieiiirinneenneennnss 175

8.1 Using the Basic Date-Time Classes 176
8.2 Creating Dates and Times from Existing Instances 180
8.3 Adjusters and Queries 185
8.4 Convert from java.util. Date to java.time.LocalDate 190
8.5 Parsing and Formatting 194
8.6 Finding Time Zones with Unusual Offsets 197
8.7 Finding Region Names from Offsets 200
8.8 Time Between Events 202

9. Parallelismand CONCUITENCY. ... ovvveriit it e iii it i ennesennaens 205
9.1 Converting from Sequential to Parallel Streams 206
9.2 When Parallel Helps 209
9.3 Changing the Pool Size 215
9.4 The Future Interface 217
9.5 Completing a CompletableFuture 220
9.6 Coordinating CompletableFutures, Part 1 225
9.7 Coordinating CompletableFutures, Part 2 231
10. Java 9 Additions.ooviiiiiiiiiii 239
10.1 Modules in Jigsaw 240
10.2 Private Methods in Interfaces 245
10.3 Creating Immutable Collections 247
10.4 Stream: ofNullable, iterate, takeWhile, and dropWhile 252
10.5 Downstream Collectors: filtering and flatMapping 255
10.6 Optional: stream, or, ifPresentOrElse 259
10.7 Date Ranges 262

A. GenericsandJava8......... ..o 267
INAEX. .. 287

Table of Contents | vii

Foreword

There’s no doubt that the new features in Java 8, particularly lambda expressions and
the Streams API, are a huge step forward for the Java language. I've been using Java 8
and telling developers about the new features at conferences, in workshops, and via
blog posts for a several years now. What's clear to me is that although lambdas and
streams bring a more functional style of programming to Java (and also allow us to
seamlessly make use of parallel processing power), it’s not these attributes that make
them so appealing to developers once they start using them—it’s how much easier it is
to solve certain types of problems using these idioms, and how much more produc-
tive they make us.

My passion as a developer, presenter, and writer is not just to make other developers
aware of the evolution of the Java language, but to show how this evolution helps
make our lives as developers easier—how we have options for simpler solutions to
problems, or even solve different types of problems. What I love about Ken’s work is
that he focuses on exactly this—helping you learn something new without having to
wade through details you already know or don’t need, focusing on the parts of a tech-
nology that are valuable to real world developers.

I first came across Kens work when he presented “Making Java Groovy” at JavaOne.
At the time, the team I was working on was struggling with writing readable and use-
ful tests, and one of the solutions we were contemplating was Groovy. As a long-time
Java programmer, I was reluctant to learn a whole new language just to write tests,
especially when I thought I knew how to write tests. But seeing Ken talk about
Groovy for Java programmers taught me a lot of what I needed to know without
repeating things I already understood. It made me realise that with the right learning
material I didn’t need to wade through all the details of a language just to learn the
bits I cared about. I bought his book immediately.

This new book on Modern Java Recipes follows a similar theme—as experienced
developers, we don't need to learn everything about all the new features in Java 8 and
9 as if we're new to the language, nor do we have the time to do that. What we need is

a guide that quickly makes the relevant features available to us, that gives us real
examples that apply to our jobs. This book is that guide. By presenting recipes based
on the sorts of problems we encounter daily, and showing how to solve those using
new features in Java 8 and 9, we become familiar with the updates to the language in a
way that's much more natural for us. We can evolve our skills.

Even those whove been using Java 8 and 9 can learn something. The section on
Reduction Operators really helped me understand this functional-style programming
without having to reprogram my brain. The Java 9 features that are covered are
exactly the ones that are useful to us as developers, and they are not (yet) well known.
This is an excellent way to get up to speed on the newest version of Java in a quick
and effective fashion. There’s something in this book for every Java developer who
wants to level up their knowledge.

—Trisha Gee

Java Champion ¢

Java Developer Advocate for JetBrains
July 2017

x | Foreword

Preface

Modern Java

Sometimes it’s hard to believe that a language with literally 20 years of backward
compatibility could change so drastically. Prior to the release of Java SE 8 in March of
2014," for all of its success as the definitive server-side programming language, Java
had acquired the reputation of being “the COBOL of the 21st century” It was stable,
pervasive, and solidly focused on performance. Changes came slowly when they came
at all, and companies felt little urgency to upgrade when new versions became avail-
able.

That all changed when Java SE 8 was released. Java SE 8 included “Project Lambda,
the major innovation that introduced functional programming concepts into what
was arguably the world’s leading object-oriented language. Lambda expressions,
method references, and streams fundamentally changed the idioms of the language,
and developers have been trying to catch up ever since.

The attitude of this book is not to judge whether the changes are good or bad or
could have been done differently. The goal here is to say, “this is what we have, and
this is how you use it to get your job done” That’s why this book is designed as a rec-
ipes book. It’s all about what you need to do, and how the new features in Java help
you do it.

That said, there are a lot of advantages to the new programming model, once you get
used to them. Functional code tends to be simpler and easier to both write and
understand. The functional approach favors immutability, which makes writing con-
current code cleaner and more likely to be successful. Back when Java was created,
you could still rely on Moore’s law to double your processor speed roughly every 18

1 Yes, it’s actually been over three years since the first release of Java SE 8. I can’t believe it either.

Xi

months. These days performance improvements come from the fact that even most
phones have multiple processors.

Since Java has always been sensitive to backward compatibility, many companies and
developers have moved to Java SE 8 without adopting the new idioms. The platform
is more powerful even so, and is worth using, not to mention the fact that Oracle for-
mally declared Java 7 end-of-life in April 2015.

It has taken a couple of years, but most Java developers are now working with the Java
8 JDK, and it’s time to dig in and understand what that means and what consequences
it has for your future development. This book is designed to make that process easier.

Who Should Read This Book

The recipes in this book assume that the typical reader already is comfortable with
Java versions prior to Java SE 8. You don't need to be an expert, and some older con-
cepts are reviewed, but the book is not intended to be a beginner’s guide to Java or
object-oriented programming. If you have used Java on a project before and you are
familiar with the standard library, you’ll be fine.

This book covers almost all of Java SE 8, and includes one chapter focused on the new
changes coming in Java 9. If you need to understand how the new functional idioms
added to the language will change the way you write code, this book is a use-case-
driven way of accomplishing that goal.

Java is pervasive on the server side, with a rich support system of open source libra-
ries and tools. The Spring Framework and Hibernate are two of the most popular
open source frameworks, and both either require Java 8 as a minimum or will very
soon. If you plan to operate in this ecosystem, this book is for you.

How This Book Is Organized

This book is organized into recipes, but it’s difficult to discuss recipes containing
lambda expressions, method references, and streams individually without referring to
the others. In fact, the first six chapters discuss related concepts, though you don’t
have to read them in any particular order.

The chapters are organized as follows:

o Chapter 1, The Basics, covers the basics of lambda expressions and method refer-
ences, and follows with the new features of interfaces: default methods and static
methods. It also defines the term “functional interface” and explains how it is key
to understanding lambda expressions.

o Chapter 2, The java.util function Package, presents the new java.util.function
package, which was added to the language in Java 8. The interfaces in that pack-

xii | Preface

age fall into four special categories (consumers, suppliers, predicates, and func-
tions) that are used throughout the rest of the standard library.

Chapter 3, Streams, adds in the concept of streams, and how they represent an
abstraction that allows you to transform and filter data rather than process it iter-
atively. The concepts of “map,” “filter;” and “reduce” relate to streams, as shown in
the recipes in this chapter. They ultimately lead to the ideas of parallelism and
concurrency covered in Chapter 9.

Chapter 4, Comparators and Collectors, involves the sorting of streaming data,
and converting it back into collections. Partitioning and grouping is also part of
this chapter, which turns what are normally considered database operations into
easy library calls.

Chapter 5, Issues with Streams, Lambdas, and Method References, is a miscellane-
ous chapter; the idea being that now that you know how to use lambdas, method
references, and streams, you can look at ways they can be combined to solve
interesting problems. The concepts of laziness, deferred execution, and closure
composition are also covered, as is the annoying topic of exception handling.

Chapter 6, The Optional Type, discusses one of the more controversial additions
to the language—the Optional type. Recipes in this chapter describe how the
new type is intended to be used and how you can both create instances and
extract values from them. This chapter also revisits the functional idea of map
and flat-map operations on Optionals, and how they differ from the same opera-
tions on streams.

Chapter 7, File I/O, switches to the practical topic of input/output streams (as
opposed to functional streams), and the additions made to the standard library
to incorporate the new functional concepts when dealing with files and directo-
ries.

Chapter 8, The java.time Package, shows the basics of the new Date-Time API,
and how (at long last) they replace the legacy Date and Calendar classes. The
new API is based on the Joda-Time library, which is backed by many developer-
years of experience and use and has been rewritten to form the java.time pack-
age. Frankly, if this had been the only addition to Java 8, it would have been
worth the upgrade.

Chapter 9, Parallelism and Concurrency, addresses one of the implicit promises of
the stream model: that you can change a sequential stream to a parallel one with
a single method call, and thereby take advantage of all the processors available on
your machine. Concurrency is a big topic, but this chapter presents the additions
to the Java library that make it easy to experiment with and assess when the costs
and benefits are worth the effort.

Chapter 10, Java 9 Additions, covers many of the changes coming in Java 9, which
is currently scheduled to be released September 21, 2017. The details of Jigsaw

Preface | xiii

can fill an entire book by themselves, but the basics are clear and are described in
this chapter. Other recipes cover private methods in interfaces, the new methods
added to streams, collectors, and Optional, and how to create a stream of dates.?

o Appendix A, Generics and Java 8, is about the generics capabilities in Java. While
generics as a technology was added back in 1.5, most developers only learned the
minimum they needed to know to make them work. One glance at the Javadocs
for Java 8 and 9 shows that those days are over. The goal of the appendix is to
show you how to read and interpret the API so you understand the much more
complex method signatures involved.

The chapters, and indeed the recipes themselves, do not have to be read in any partic-
ular order. They do complement each other and each recipe ends with references to
others, but you can start reading anywhere. The chapter groupings are provided as a
way to put similar recipes together, but it is expected that you will jump from one to
another to solve whatever problem you may have at the moment.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This element signifies a tip or suggestion.

2 Yes, I too wish that the Java 9 chapter had been Chapter 9, but it didn’t seem right to reorder the chapters just
for that accidental symmetry. This footnote will have to suffice.

xiv | Preface

This element signifies a general note.

This element indicates a warning or caution.

\

Using Code Examples

The source code for the book is located in three GitHub repositories: one for the Java
8 recipes (everything but Chapter 10) at https://github.com/kousen/java_8_recipes, one
for the Java 9 recipes at https://github.com/kousen/java_9_recipes, and a special one
for the larger CompletableFuture example in Recipe 9.7 at https://github.com/kousen/
cfboxscores. All are configured as Gradle projects with tests and a build file.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless youre reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi-
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Modern Java Recipes by Ken Kousen
(O’Reilly). Copyright 2017 Ken Kousen, 978-0-491-97317-27

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

0'Reilly Safari

Safari (formerly Safari Books Online) is a membership-based
‘ DC training and reference platform for enterprise, government,
educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac-
tive tutorials, and curated playlists from over 250 publishers, including O'Reilly

Preface | xv

https://github.com/kousen/java_8_recipes
https://github.com/kousen/java_9_recipes
https://github.com/kousen/cfboxscores
https://github.com/kousen/cfboxscores
mailto:permissions@oreilly.com
http://oreilly.com/safari

Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes-
sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

To comment or ask technical questions about this book, send email to bookques-
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web-
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

This book is the unexpected result of a conversation I had with Jay Zimmerman back
in late July 2015. T was (and still am) a member of the No Fluff, Just Stuff conference
tour, and that year several Java 8 talks were being given by Venkat Subramaniam. Jay
told me that Venkat had decided to scale back his activity in the coming year and Jay
was wondering whether I would be willing to do similar talks in the new season start-
ing in early 2016. I had been coding in Java since the mid-"90s (I started with Java
1.0.6) and had been planning to learn the new APIs anyway, so I agreed.

xvi | Preface

http://oreilly.com/safari
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://nofluffjuststuff.com

I have now been giving presentations on the new functional features of Java for a cou-
ple of years. By the Fall of 2016 I had completed my last book,* and since the idea was
to write another recipes book for the same publisher I foolishly thought the project
would be easy.

Noted science fiction author Neil Gaiman famously once said that after finishing
American Gods he thought he knew how to write a novel. His friend corrected him,
saying he now knew how to write this novel. I now understand what he meant. The
original proposal for this book anticipated about 25 to 30 recipes spanning about 150
pages. The final result you hold in your hand has more than 70 recipes filling nearly
300 pages, but the larger scope and greater detail has produced a much more valuable
book than I intended.

Of course, that’s because I had lots of help. The aforementioned Venkat Subramaniam
has been extremely helpful, both through his talks, his other books, and private dis-
cussions. He also was kind enough to be a technical reviewer on this book, so any
remaining errors are all his fault. (No, they’re mine, but please don’t tell him I admit-
ted that.)

I also am very grateful to have had the frequent assistance of Tim Yates, who is one of
the best coders I've ever met. I knew him from his work in the Groovy community,
but his versatility goes well beyond that, as his Stack Overflow rating will show. Rod
Hilton, who I met while giving Java 8 presentations on the NFJS tour, was also kind
enough to offer a review. Both of their recommendations have been invaluable.

I have been fortunate enough to work with the excellent editors and staff at O’Reilly
Media over the course of two books, over a dozen video courses, and many online
training classes delivered on their Safari online platform. Brian Foster has been a con-
stant source of support, not to mention his almost magical ability to cut through
bureaucracy. I met him while writing my previous book, and though he wasn't the
editor of this one, his help and friendship have been very valuable to me throughout
the process.

My editor, Jeff Bleiel, was very understanding as the book doubled in length, and pro-
vided the structure and organization needed to keep making progress. I'm very glad
we got to work together and hope we will continue to do so in the future.

I need to acknowledge many of my fellow speakers on the NFJS tour, including Nate
Schutta, Michael Carducci, Matt Stine, Brian Sletten, Mark Richards, Pratik Patel,
Neal Ford, Craig Walls, Raju Gandhi, Kirk Knoernschild, Dan “the Man” Hinojosa,
and Janelle Klein for their constant perspective and encouragement. Both writing
books and teaching training classes (my actual day job) are solitary pursuits. It’s great

3 Gradle Recipes for Android, also from O’Reilly Media, all about the Gradle build tool as it is applied to
Android projects.

Preface | xvii

having a community of friends and colleagues that I can rely on for perspective,
advice, and various forms of entertainment.

Finally, I need to express all my love to my wife Ginger and my son Xander. Without
the support and kindness of my family I would not be the person I am today, a fact
that grows more obvious to me with each passing year. I can never express what you
both mean to me.

xviii | Preface

CHAPTER1
The Basics

The biggest change in Java 8 is the addition of concepts from functional program-
ming to the language. Specifically, the language added lambda expressions, method
references, and streams.

If you haven’t used the new functional features yet, you'll probably be surprised by
how different your code will look from previous Java versions. The changes in Java 8
represent the biggest changes to the language ever. In many ways, it feels like you're
learning a completely new language.

The question then becomes: Why do this? Why make such drastic changes to a lan-
guage thats already twenty years old and plans to maintain backward compatibility?
Why make such dramatic revisions to a language that has been, by all accounts,
extremely successful? Why switch to a functional paradigm after all these years of
being one of the most successful object-oriented languages ever?

The answer is that the software development world has changed, so languages that
want to be successful in the future need to adapt as well. Back in the mid-’90s, when
Java was shiny and new, Moore’s law' was still fully in force. All you had to do was
wait a couple of years and your computer would double in speed.

Today’s hardware no longer relies on increasing chip density for speed. Instead, even
most phones have multiple cores, which means software needs to be written expect-
ing to be run in a multiprocessor environment. Functional programming, with its
emphasis on “pure” functions (that return the same result given the same inputs, with
no side effects) and immutability simplifies programming in parallel environments. If

1 Coined by Gordon Moore, one of the co-founders of Fairchild Semiconductor and Intel, based on the obser-
vation that the number of transistors that could be packed into an integrated circuit doubled roughly every 18
months. See Wikipedia’s Moore’s law entry for details.

https://en.wikipedia.org/wiki/Moore%27s_law

you don’t have any shared, mutable state, and your program can be decomposed into
collections of simple functions, it is easier to understand and predict its behavior.

This, however, is not a book about Haskell, or Erlang, or Frege, or any of the other
functional programming languages. This book is about Java, and the changes made to
the language to add functional concepts to what is still fundamentally an object-
oriented language.

Java now supports lambda expressions, which are essentially methods treated as
though they were first-class objects. The language also has method references, which
allow you to use an existing method wherever a lambda expression is expected. In
order to take advantage of lambda expressions and method references, the language
also added a stream model, which produces elements and passes them through a
pipeline of transformations and filters without modifying the original source.

The recipes in this chapter describe the basic syntax for lambda expressions, method
references, and functional interfaces, as well the new support for static and default
methods in interfaces. Streams are discussed in detail in Chapter 3.

1.1 Lambda Expressions

Problem

You want to use lambda expressions in your code.

Solution

Use one of the varieties of lambda expression syntax and assign the result to a refer-
ence of functional interface type.

Discussion

A functional interface is an interface with a single abstract method (SAM). A class
implements any interface by providing implementations for all the methods in it.
This can be done with a top-level class, an inner class, or even an anonymous inner
class.

For example, consider the Runnable interface, which has been in Java since version
1.0. It contains a single abstract method called run, which takes no arguments and
returns void. The Thread class constructor takes a Runnable as an argument, so an
anonymous inner class implementation is shown in Example 1-1.

Example 1-1. Anonymous inner class implementation of Runnable

public class RunnableDemo {
public static void main(String[] args) {

2 | Chapter1: The Basics

new Thread(new Runnable() { (1)

public void run() {
System.out.println(
"inside runnable using an anonymous inner class");

}
}).start();

}

© Anonymous inner class

The anonymous inner class syntax consists of the word new followed by the Runnable
interface name and parentheses, implying that youre defining a class without an
explicit name that implements that interface. The code in the braces ({}) then over-
rides the run method, which simply prints a string to the console.

The code in Example 1-2 shows the same example using a lambda expression.

Example 1-2. Using a lambda expression in a Thread constructor

new Thread(() -> System.out.println(
"inside Thread constructor using lambda")).start();

The syntax uses an arrow to separate the arguments (since there are zero arguments
here, only a pair of empty parentheses is used) from the body. In this case, the body
consists of a single line, so no braces are required. This is known as an expression
lambda. Whatever value the expression evaluates to is returned automatically. In this
case, since println returns void, the return from the expression is also void, which
matches the return type of the run method.

A lambda expression must match the argument types and return type in the signature
of the single abstract method in the interface. This is called being compatible with the
method signature. The lambda expression is thus the implementation of the interface
method, and can also be assigned to a reference of that interface type.

As a demonstration, Example 1-3 shows the lambda assigned to a variable.

Example 1-3. Assigning a lambda expression to a variable

Runnable r = () -> System.out.println(
"lambda expression implementing the run method");
new Thread(r).start();

1.1Lambda Expressions | 3

There is no class in the Java library called Lambda. Lambda expres-
sions can only be assigned to functional interface references.

Assigning a lambda to the functional interface is the same as saying the lambda is the
implementation of the single abstract method inside it. You can think of the lambda
as the body of an anonymous inner class that implements the interface. That is why
the lambda must be compatible with the abstract method; its argument types and
return type must match the signature of that method. Notably, however, the name of
the method being implemented is not important. It does not appear anywhere as part
of the lambda expression syntax.

This example was especially simple because the run method takes no arguments and
returns void. Consider instead the functional interface java.io.Filename Filter,
which again has been part of the Java standard library since version 1.0. Instances of
Filename Filter are used as arguments to the File.list method to restrict the
returned files to only those that satisfy the method.

From the Javadocs, the FilenameFilter class contains the single abstract method
accept, with the following signature:

boolean accept(File dir, String name)

The File argument is the directory in which the file is found, and the String name is
the name of the file.

The code in Example 1-4 implements FilenameFilter using an anonymous inner
class to return only Java source files.
Example 1-4. An anonymous inner class implementation of FilenameFilter
File directory = new File("./src/main/java");
String[] names = directory.list(new FilenameFilter() { (1)

public boolean accept(File dir, String name) {

return name.endsWith(".java");

}

s

System.out.println(Arrays.asList(names));
© Anonymous inner class

In this case, the accept method returns true if the filename ends with .java and false
otherwise.

4 | Chapter1:The Basics

The lambda expression version is shown in Example 1-5.

Example 1-5. Lambda expression implementing FilenameFilter
File directory = new File("./src/main/java");

String[] names = directory.list((dir, name) -> name.endsWith(".java")); o
System.out.println(Arrays.asList(names));

}

© Lambda expression

The resulting code is much simpler. This time the arguments are contained within
parentheses, but do not have types declared. At compile time, the compiler knows
that the list method takes an argument of type FilenameFilter, and therefore
knows the signature of its single abstract method (accept). It therefore knows that
the arguments to accept are a File and a String, so that the compatible lambda
expression arguments must match those types. The return type on accept is a
boolean, so the expression to the right of the arrow must also return a boolean.

If you wish to specify the data types in the code, you are free to do so, as in
Example 1-6.

Example 1-6. Lambda expression with explicit data types
File directory = new File("./src/main/java");

String[] names = directory.list((File dir, String name) -> (1]
name.endsWith(".java"));

© Explicit data types

Finally, if the implementation of the lambda requires more than one line, you need to
use braces and an explicit return statement, as shown in Example 1-7.

Example 1-7. A block lambda

File directory = new File("./src/main/java");

String[] names = directory.list((File dir, String name) -> { (1]
return name.endsWith(".java");

s

System.out.println(Arrays.asList(names));

© Block syntax

1.1Lambda Expressions | 5

This is known as a block lambda. In this case the body still consists of a single line,
but the braces now allow for multiple statements. The return keyword is now
required.

Lambda expressions never exist alone. There is always a context for the expression,
which indicates the functional interface to which the expression is assigned. A
lambda can be an argument to a method, a return type from a method, or assigned to
a reference. In each case, the type of the assignment must be a functional interface.

1.2 Method References

Problem

You want to use a method reference to access an existing method and treat it like a
lambda expression.

Solution

Use the double-colon notation to separate an instance reference or class name from the
method.((”
(double colon) notation in method references”)))

Discussion

If a lambda expression is essentially treating a method as though it was a object, then
a method reference treats an existing method as though it was a lambda.

For example, the forEach method in Iterable takes a Consumer as an argument.
Example 1-8 shows that the Consumer can be implemented as either a lambda expres-
sion or as a method reference.

Example 1-8. Using a method reference to access println

Stream.of (3, 1, 4, 1, 5, 9)
.forEach(x -> System.out.println(x)); (1)

Stream.of(3, 1, 4, 1, 5, 9)
.forEach(System.out::println); (2]

Consumer<Integer> printer = System.out::println; (3]
Stream.of (3, 1, 4, 1, 5, 9)
.forEach(printer);

© Using a lambda expression

® Using a method reference

6 | Chapter1: The Basics

© Assigning the method reference to a functional interface

The double-colon notation provides the reference to the println method on the
System.out instance, which is a reference of type PrintStream. No parentheses are
placed at the end of the method reference. In the example shown, each element of the
stream is printed to standard output.?

If you write a lambda expression that consists of one line that
invokes a method, consider using the equivalent method reference
instead.

The method reference provides a couple of (minor) advantages over the lambda syn-
tax. First, it tends to be shorter, and second, it often includes the name of the class
containing the method. Both make the code easier to read.

Method references can be used with static methods as well, as shown in Example 1-9.

Example 1-9. Using a method reference to a static method

Stream.generate(:random) (1)
limit(10)
.forEach(System.out::println); (2]

@ Static method
® Instance method

The generate method on Stream takes a Supplier as an argument, which is a func-
tional interface whose single abstract method takes no arguments and produces a sin-
gle result. The random method in the Math class is compatible with that signature,
because it also takes no arguments and produces a single, uniformly distributed,
pseudorandom double between 0 and 1. The method reference Math: : random refers
to that method as the implementation of the Supplier interface.

Since Stream.generate produces an infinite stream, the limit method is used to
ensure only 10 values are produced, which are then printed to standard output using
the System.out: :println method reference as an implementation of Consumer.

2 Itis difficult to discuss lambdas or method references without discussing streams, which have their own chap-
ter later. Suffice it to say that a stream produces a series of elements sequentially, does not store them any-
where, and does not modify the original source.

1.2 Method References | 7

Syntax

There are three forms of the method reference syntax, and one is a bit misleading:

object::instanceMethod
Refer to an instance method using a reference to the supplied object, as in
System.out::println

Class::staticMethod
Refer to static method, as in Math: :max

Class::instanceMethod
Invoke the instance method on a reference to an object supplied by the context,
asin String::length

That last example is the confusing one, because as Java developers we’re accustomed
to seeing only static methods invoked via a class name. Remember that lambda
expressions and method references never exist in a vacuum—there’s always a context.
In the case of an object reference, the context will supply the argument(s) to the
method. In the printing case, the equivalent lambda expression is (as shown in con-
text in Example 1-8):

// equivalent to System.out::println
X -> System.out.println(x)

The context provides the value of x, which is used as the method argument.
The situation is similar for the static max method:

// equivalent to Math::max
(x,y) -> Math.max(x,y)

Now the context needs to supply two arguments, and the lambda returns the greater
one.

The “instance method through the class name” syntax is interpreted differently. The
equivalent lambda is:

// equivalent to String::length
x -> x.length()

This time, when the context provides x, it is used as the target of the method, rather
than as an argument.

If you refer to a method that takes multiple arguments via the class
name, the first element supplied by the context becomes the target
and the remaining elements are arguments to the method.

8 | Chapter1: The Basics

Example 1-10 shows the sample code.

Example 1-10. Invoking a multiple-argument instance method from a class reference

List<String> strings =
Arrays.asList("this", "is", "a", "list", "of", "strings");
List<String> sorted = strings.stream()
.sorted((s1, s2) -> sl.compareTo(s2)) (1)
.collect(Collectors.toList());

List<String> sorted = strings.stream()
.sorted(:compareTo) (1)
.collect(Collectors.toList());

© Method reference and equivalent lambda

The sorted method on Stream takes a Comparator<T> as an argument, whose single
abstract method is int compare(String other). The sorted method supplies each
pair of strings to the comparator and sorts them based on the sign of the returned
integer. In this case, the context is a pair of strings. The method reference syntax,
using the class name String, invokes the compareTo method on the first element (s1
in the lambda expression) and uses the second element s2 as the argument to the
method.

In stream processing, you frequently access an instance method using the class name
in a method reference if you are processing a series of inputs. The code in
Example 1-11 shows the invocation of the length method on each individual String
in the stream.

Example 1-11. Invoking the length method on String using a method reference

Stream.of ("this", "is", "a", "stream", "of", "strings")
.map(:length)
.forEach(System.out::println); (2]

© Instance method via class name
® Instance method via object reference

This example transforms each string into an integer by invoking the length method,
then prints each result.

A method reference is essentially an abbreviated syntax for a lambda. Lambda expres-
sions are more general, in that each method reference has an equivalent lambda
expression but not vice versa. The equivalent lambdas for the method references
from Example 1-11 are shown in Example 1-12.

1.2 Method References | 9

Example 1-12. Lambda expression equivalents for method references

Stream.of ("this", "is", "a", "stream", "of", "strings")
.map(s -> s.length())
.forEach(x -> System.out.println(x));

As with any lambda expression, the context matters. You can also use this or super
as the left side of a method reference if there is any ambiguity.

See Also

You can also invoke constructors using the method reference syntax. Constructor ref-
erences are shown in Recipe 1.3. The package of functional interfaces, including the
Supplier interface discussed in this recipe, is covered in Chapter 2.

1.3 Constructor References

Problem

You want to instantiate an object using a method reference as part of a stream pipe-
line.

Solution

Use the new keyword as part of a method reference.

Discussion

When people talk about the new syntax added to Java 8, they mention lambda expres-
sions, method references, and streams. For example, say you had a list of people and
you wanted to convert it to a list of names. One way to do so would be the snippet
shown in Example 1-13.

Example 1-13. Converting a list of people to a list of names
List<String> names = people.stream()
.map(person -> person.getName()) (1)
.collect(Collectors.tolList());
// or, alternatively,
List<String> names = people.stream()

.map(:getName)
.collect(Collectors.tolList());

© Lambda expression

10 | Chapter1:The Basics

® Method reference

What if you want to go the other way? What if you have a list of strings and you want
to create a list of Person references from it? In that case you can use a method refer-
ence, but this time using the keyword new. That syntax is called a constructor refer-
ence.

To show how it is used, start with a Person class, which is just about the simplest
Plain Old Java Object (POJO) imaginable. All it does is wrap a simple string attribute
called name in Example 1-14.

Example 1-14. A Person class

public class Person {
private String name;

public Person() {}

public Person(String name) {
this.name = name;

}
// getters and setters ...

// equals, hashCode, and toString methods ...
}

Given a collection of strings, you can map each one into a Person using either a
lambda expression or the constructor reference in Example 1-15.
Example 1-15. Transforming strings into Person instances
List<String> names =
Arrays.asList("Grace Hopper", "Barbara Liskov", "Ada Lovelace",
"Karen Sparck Jones");
List<Person> people = names.stream()
.map(name -> new Person(name)) (1]
.collect(Collectors.tolList());
// or, alternatively,
List<Person> people = names.stream()

.map(:new)
.collect(Collectors.tolList());

© Using alambda expression to invoke the constructor

1.3 Constructor References | 11

® Using a constructor reference instantiating Person

The syntax Person: :new refers to the constructor in the Person class. As with all
lambda expressions, the context determines which constructor is executed. Because
the context supplies a string, the one-arg String constructor is used.

Copy constructor

A copy constructor takes a Person argument and returns a new Person with the same
attributes, as shown in Example 1-16.

Example 1-16. A copy constructor for Person
public Person(Person p) {
this.name = p.name;

}

This is useful if you want to isolate streaming code from the original instances. For
example, if you already have a list of people, convert the list into a stream, and then
back into a list, the references are the same (see Example 1-17).

Example 1-17. Converting a list to a stream and back

Person before = new Person("Grace Hopper");

List<Person> people = Stream.of(before)
.collect(Collectors.tolList());

Person after = people.get(0);

assertTrue(before == after); (1)

before.setName("Grace Murray Hopper"); (2]
assertEquals("Grace Murray Hopper", after.getName()); (3]

© Same object
® Change name using before reference
© Name has changed in the after reference

Using a copy constructor, you can break that connection, as in Example 1-18.

Example 1-18. Using the copy constructor

people = Stream.of(before)
.map(:new) (1]
.collect(Collectors.toList());

12 | Chapter1: The Basics

after = people.get(0);
assertFalse(before == after); (2]
assertkEquals(before, after); (3]

before.setName("Rear Admiral Dr. Grace Murray Hopper");
assertFalse(before.equals(after));

© Use copy constructor
® Different objects
© But equivalent

This time, when invoking the map method, the context is a stream of Person instan-
ces. Therefore the Person: :new syntax invokes the constructor that takes a Person
and returns a new, but equivalent, instance, and has broken the connection between
the before reference and the after reference.’

Varargs constructor

Consider now a varargs constructor added to the Person POJO, shown in
Example 1-19.

Example 1-19. A Person constructor that takes a variable argument list of String

public Person(String... names) {
this.name = Arrays.stream(names)
.collect(Collectors.joining(" "));

}

This constructor takes zero or more string arguments and concatenates them
together with a single space as the delimiter.

How can that constructor get invoked? Any client that passes zero or more string

arguments separated by commas will call it. One way to do that is to take advantage

of the split method on String that takes a delimiter and returns a String array:
String[] split(String delimiter)

Therefore, the code in Example 1-20 splits each string in the list into individual
words and invokes the varargs constructor.

3 I mean no disrespect by treating Admiral Hopper as an object. I have no doubt she could still kick my butt,
and she passed away in 1992.

1.3 Constructor References | 13

Example 1-20. Using the varargs constructor

names.stream() (1]
.map(name -> name.split(" ")) (2]
.map(:new) (3]

.collect(Collectors.tolList()); (4]

© Create a stream of strings
©® Map to a stream of string arrays
©® Map to a stream of Person

Collect to a list of Person

This time, the context for the map method that contains the Person: :new constructor
reference is a stream of string arrays, so the varargs constructor is called. If you add a
simple print statement to that constructor:

System.out.println("Varargs ctor, names=" + Arrays.tolList(names));
then the result is:

Varargs ctor, names=[Grace, Hopper]
Varargs ctor, names=[Barbara, Liskov]
Varargs ctor, names=[Ada, Lovelace]
Varargs ctor, names=[Karen, Sparck, Jones]

Arrays

Constructor references can also be used with arrays. If you want an array of Person
instances, Person[], instead of a list, you can use the toArray method on Stream,
whose signature is:

<A> A[] toArray(IntFunction<A[]> generator)

This method uses A to represent the generic type of the array returned containing the
elements of the stream, which is created using the provided generator function. The
cool part is that a constructor reference can be used for that, too, as in Example 1-21.

Example 1-21. Creating an array of Person references
Person[] people = names.stream()
.map(:new)

.toArray(Person[]::new); (2]

@ Constructor reference for Person

® Constructor reference for an array of Person

14 | Chapter 1: The Basics

The toArray method argument creates an array of Person references of the proper
size and populates it with the instantiated Person instances.

Constructor references are just method references by another name, using the word
new to invoke a constructor. Which constructor is determined by the context, as
usual. This technique gives a lot of flexibility when processing streams.

See Also

Method references are discussed in Recipe 1.2.

1.4 Functional Interfaces

Problem

You want to use an existing functional interface, or write your own.

Solution

Create an interface with a single, abstract method, and add the @Functionallnter
face annotation.

Discussion

A functional interface in Java 8 is an interface with a single, abstract method. As such,
it can be the target for a lambda expression or method reference.

The use of the term abstract here is significant. Prior to Java 8, all methods in inter-
faces were considered abstract by default—you didn’t even need to add the keyword.

For example, here is the definition of an interface called PalindromeChecker, shown

in Example 1-22.

Example 1-22. A Palindrome Checker interface

public interface PalindromeChecker {
boolean isPalidrome(String s);

}

All methods in an interface are public,* so you can leave out the access modifier, just
as you can leave out the abstract keyword.

4 Atleast until Java 9, when private methods are also allowed in interfaces. See Recipe 10.2 for details.

1.4 Functional Interfaces | 15

Since this interface has only a single, abstract method, it is a functional interface. Java
8 provides an annotation called @FunctionalInterface in the java.lang package
that can be applied to the interface, as shown in the example.

This annotation is not required, but is a good idea, for two reasons. First, it triggers a
compile-time check that the interface does, in fact, satisfy the requirement. If the
interface has either zero abstract methods or more than one, you will get a compiler
error.

The other benefit to adding the @Functionallnterface annotation is that it generates
a statement in the Javadocs as follows:

Functional Interface:
This 1s a functional interface and can therefore be used as the assignment
target for a lambda expression or method reference.

Functional interfaces can have default and static methods as well. Both default and
static methods have implementations, so they don’t count against the single abstract
method requirement. Example 1-23 shows the sample code.

Example 1-23. Mylnterface is a functional interface with static and default methods

public interface MyInterface {
int myMethod(); (1]
// int myOtherMethod(); (2}

default String sayHello() {
return "Hello, World!";

}

static void myStaticMethod() {
System.out.println("I'm a static method in an interface");

}

© Single abstract method
@ Ifadded, this would no longer be a functional interface

Note that if the commented method myOtherMethod was included, the interface
would no longer satisfy the functional interface requirement. The annotation would
generate an error of the form “multiple non-overriding abstract methods found.”

Interfaces can extend other interfaces, even more than one. The annotation checks
the current interface. So if one interface extends an existing functional interface and
adds another abstract method, it is not itself a functional interface. See Example 1-24.

16 | Chapter1: The Basics

Example 1-24. Extending a functional interface—no longer functional

public interface MyChildInterface extends MyInterface {
int anotherMethod(); (1]
}

@ Additional abstract method

The MyChildInterface is not a functional interface, because it has two abstract meth-
ods: myMethod, which it inherits from MyInterface; and anotherMethod, which it
declares. Without the @FunctionalInterface annotation, this compiles, because it’s a
standard interface. It cannot, however, be the target of a lambda expression.

One edge case should also be noted. The Comparator interface is used for sorting,
which is discussed in other recipes. If you look at the Javadocs for that interface and
select the Abstract Methods tab, you see the methods shown in Figure 1-1.

Method Summary

All Methods | Static Methods | Instance Methods | .\ - (4. [[.L}]| Default Methods

Modifier and Type Method and Description

int compare(T ol, T o2)
Compares its two arguments for order.

boolean equals{Object obj)
Indicates whether some other object is "equal to" this comparator.

Figure 1-1. Abstract methods in the Comparator class

Wait, what? How can this be a functional interface if there are two abstract methods,
especially if one of them is actually implemented in java.lang.Object?

As it turns out, this has always been legal. You can declare methods in Object as
abstract in an interface, but that doesn’t make them abstract. Usually the reason for
doing so is to add documentation that explains the contract of the interface. In the
case of Comparator, the contract is that if two elements return true from the equals
method, the compare method should return zero. Adding the equals method to
Comparator allows the associated Javadocs to explain that.

The rules for functional interfaces say that methods from Object don’t count against
the single abstract method limit, so Comparator is still a functional interface.

See Also

Default methods in interfaces are discussed in Recipe 1.5, and static methods in inter-
faces are discussed in Recipe 1.6.

1.4 Functional Interfaces | 17

1.5 Default Methods in Interfaces

Problem

You want to provide an implementation of a method inside an interface.

Solution

Use the keyword default on the interface method, and add the implementation in
the normal way.

Discussion

The traditional reason Java never supported multiple inheritance is the so-called dia-
mond problem. Say you have an inheritance hierarchy as shown in the (vaguely UML-
like) Figure 1-2.

Animal
speak()

Horse Bird
speak() speak()
Pegasus
speak()

Figure 1-2. Animal inheritance

Class Animal has two child classes, Bird and Horse, each of which overrides the
speak method from Animal, in Horse to say “whinny” and in Bird to say “chirp”
What, then, does Pegasus (which multiply inherits from both Horse and Bird)® say?
What if you have a reference of type Animal assigned to an instance of Pegasus?
What then should the speak method return?

Animal animal = new Pegaus();

animal.speak(); // whinny, chirp, or other?
Different languages take different approaches to this problem. In C++, for example,
multiple inheritance is allowed, but if a class inherits conflicting implementations, it

5 “A magnificent horse, with the brain of a bird” (Disney’s Hercules movie, which is fun if you pretend you
know nothing about Greek mythology and never heard of Hercules.)

18 | Chapter1: The Basics

won't compile.® In Eiffel,” the compiler allows you to choose which implementation
you want.

Java’s approach was to prohibit multiple inheritance, and interfaces were introduced
as a workaround for when a class has an “is a kind of” relationship with more than
one type. Since interfaces had only abstract methods, there were no implementations
to conflict. Multiple inheritance is allowed with interfaces, but again that works
because only the method signatures are inherited.

The problem is, if you can never implement a method in an interface, you wind up
with some awkward designs. Among the methods in the java.util.Collection
interface, for example, are:

boolean isEmpty()

int size()
The isEmpty method returns true if there are no elements in the collection, and false
otherwise. The size method returns the number of elements in the collections.
Regardless of the underlying implementation, you can immediately implement the
isEmpty method in terms of size, as in Example 1-25.

Example 1-25. Implementation of isEmpty in terms of size

public boolean isEmpty() {
return size() == 0;

}

Since Collection is an interface, you can’t do this in the interface itself. Instead, the
standard library includes an abstract class called java.util.AbstractCollection,
which includes, among other code, exactly the implementation of isEmpty shown
here. If you are creating your own collection implementation and you don’t already
have a superclass, you can extend AbstractCollection and you get the isEmpty
method for free. If you already have a superclass, you have to implement the Collec
tion interface instead and remember to provide your own implementation of
isEmpty as well as size.

All of this is quite familiar to experienced Java developers, but as of Java 8 the situa-
tion changes. Now you can add implementations to interface methods. All you have
to do is add the keyword default to a method and provide an implementation. The
code in Example 1-26 shows an interface with both abstract and default methods.

6 This can be solved by using virtual inheritance, but still.

7 There’s an obscure reference for you, but Eiffel was one of the foundational languages of object-oriented pro-
gramming. See Bertrand Meyer’s Object-Oriented Software Construction, Second Edition (Prentice Hall, 1997).

1.5 Default Methods in Interfaces | 19

Example 1-26. An Employee interface with a default method

public interface Employee {
String getFirst();

String getlLast();
void convertCaffeineToCodeForMoney();

default String getName() { (1)
return String.format("%s %s", getFirst(), getLast());
}
}

© Default method with an implementation

The getName method has the keyword default, and its implementation is in terms of
the other, abstract, methods in the interface, getFirst and getlLast.

Many of the existing interfaces in Java have been enhanced with default methods in
order to maintain backward compatibility. Normally when you add a new method to
an interface, you break all the existing implementations. By adding a new method as a
default, all the existing implementations inherit the new method and still work. This
allowed the library maintainers to add new default methods throughout the JDK
without breaking existing implementations.

For example, java.util.Collection now contains the following default methods:

default boolean removelf(Predicate<? super E> filter)
default Stream<E> stream()
default Stream<E> parallelStream()

default Spliterator<E> spliterator()

The removeIf method removes all of the elements from the collection that satisfy the
Predicate® argument, returning true if any elements were removed. The stream and
parallelStream methods are factory methods for creating streams. The spliterator
method returns an object from a class that implements the Spliterator interface,
which is an object for traversing and partitioning elements from a source.

Default methods are used the same way any other methods are used, as Example 1-27
shows.

8 Predicate is one of the new functional interfaces in the java.util.function package, described in detail in
Recipe 2.3.

20 | Chapter 1: The Basics

Example 1-27. Using default methods

List<Integer> nums = Arrays.asList(3, 1, 4, 1, 5, 9);

boolean removed = nums.removeIf(n -> n <= 0);

System.out.println("Elements were " + (removed ? "" : "NOT") + " removed");
nums.forEach(System.out: :println);

@ Use the default method removeIf from Collection

® Use the default method forEach from Iterator

What happens when a class implements two interfaces with the same default method?
That is the subject of Recipe 5.5, but the short answer is that if the class implements
the method itself everything is fine. See Recipe 5.5 for details.

See Also

Recipe 5.5 shows the rules that apply when a class implements multiple interfaces
with default methods.

1.6 Static Methods in Interfaces

Problem

You want to add a class-level utility method to an interface, along with an implemen-
tation.

Solution

Make the method static and provide the implementation in the usual way.

Discussion

Static members of Java classes are class-level, meaning they are associated with the
class as a whole rather than with a particular instance. That makes their use in inter-
faces problematic from a design point of view. Some questions include:

o What does a class-level member mean when the interface is implemented by
many different classes?

o Does a class need to implement an interface in order to use a static method?

« Static methods in classes are accessed by the class name. If a class implements an
interface, does a static method get called from the class name or the interface
name?

1.6 Static Methods in Interfaces | 21

The designers of Java could have decided these questions in several different ways.
Prior to Java 8, the decision was not to allow static members in interfaces at all.

Unfortunately, however, that led to the creation of utility classes: classes that contain
only static methods. A typical example is java.util.Collections, which contains
methods for sorting and searching, wrapping collections in synchronized or unmodi-
fiable types, and more. In the NIO package, java.nio.file.Paths is another exam-
ple. It contains only static methods that parse Path instances from strings or URIs.

Now, in Java 8, you can add static methods to interfaces whenever you like. The
requirements are:

o Add the static keyword to the method.

 Provide an implementation (which cannot be overridden). In this way they are
like default methods, and are included in the default tab in the Javadocs.

o Access the method using the interface name. Classes do not need to implement
an interface to use its static methods.

One example of a convenient static method in an interface is the comparing method
in java.util.Comparator, along with its primitive variants, comparingInt,
comparinglong, and comparingDouble. The Comparator interface also has static
methods naturalOrder and reverseOrder. Example 1-28 shows how they are used.

Example 1-28. Sorting strings

List<String> bonds = Arrays.asList("Connery", "Lazenby", "Moore",
"Dalton", "Brosnan", "Craig");

List<String> sorted = bonds.stream()
.sorted(Comparator.naturalOrder()) (1]
.collect(Collectors.tolList());

// [Brosnan, Connery, Craig, Dalton, Lazenby, Moore]

sorted = bonds.stream()
.sorted(Comparator.reverseOrder()) (2]
.collect(Collectors.tolList());

// [Moore, Lazenby, Dalton, Craig, Connery, Brosnan]

sorted = bonds.stream()
.sorted(Comparator.comparing(:toLowerCase)) (3]
.collect(Collectors.tolList());

// [Brosnan, Connery, Craig, Dalton, Lazenby, Moore]

sorted = bonds.stream()
.sorted(Comparator.comparingInt(:length)) (4]
.collect(Collectors.tolList());

// [Moore, Craig, Dalton, Connery, Lazenby, Brosnan]

22 | Chapter 1: The Basics

sorted = bonds.stream()
.sorted(Comparator.comparingInt(:length) (5]
.thenComparing(Comparator.naturalOrder()))
.collect(Collectors.tolList());
// [Craig, Moore, Dalton, Brosnan, Connery, Lazenby]

Natural order (lexicographical)
Reverse lexicographical
Sort by lowercase name

Sort by name length

® 6 o o0 o

Sort by length, then equal lengths lexicographically

The example shows how to use several static methods in Comparator to sort the list of
actors who have played James Bond over the years.” Comparators are discussed fur-
ther in Recipe 4.1.

Static methods in interfaces remove the need to create separate utility classes, though
that option is still available if a design calls for it.

The key points to remember are:

o Static methods must have an implementation
e You cannot override a static method
« Call static methods from the interface name

 You do not need to implement an interface to use its static methods

See Also

Static methods from interfaces are used throughout this book, but Recipe 4.1 covers
the static methods from Comparator used here.

9 The temptation to add Idris Elba to the list is almost overwhelming, but no such luck as yet.

1.6 Static Methods in Interfaces | 23

CHAPTER 2
The java.util.function Package

The previous chapter discussed the basic syntax of lambda expressions and method
references. One basic principle is that for either, there is always a context. Lambda
expressions and method references are always assigned to functional interfaces,
which provide information about the single abstract method being implemented.

While many interfaces in the Java standard library contain only a single, abstract
method and are thus functional interfaces, there is a new package that is specifically
designed to contain only functional interfaces that are reused in the rest of the library.
That package is called java.util.function.

The interfaces in java.util.function fall into four categories: (1) consumers, (2)
suppliers, (3) predicates, and (4) functions. Consumers take a generic argument and
return nothing. Suppliers take no arguments and return a value. Predicates take an
argument and return a boolean. Functions take a single argument and return a value.

For each of the basic interfaces, there are several related ones. For example, Consumer
has variations customized for primitive types (IntConsumer, LongConsumer, and
DoubleConsumer) and a variation (BiConsumer) that takes two arguments and returns
void.

Although by definition the interfaces in this chapter only contain a single abstract
method, most also include additional methods that are either static or default.
Becoming familiar with these methods will make your job as a developer easier.

25

2.1 Consumers

Problem

You want to write lambda expressions that implement the java.util.function.Con
sumer package.

Solution

Implement the void accept(T t) method using a lambda expression or a method
reference.

Discussion

The java.util.function.Consumer interface has as its single, abstract method, void
accept(T t). See Example 2-1.

Example 2-1. Methods in java.util function. Consumer

void accept(T t) (1]
default Consumer<T> andThen(Consumer<? super T> after) (2]

© Single abstract method
® Default method for composition

The accept method takes a generic argument and returns void. One of the most fre-
quently used examples of a method that takes a Consumer as an argument is the
default forEach method in java.util.Iterable, shown in Example 2-2.

Example 2-2. The forEach method in Iterable

default void forEach(Consumer<? super T> action) (1]
© Passes each element of an iterable collection to the consumer argument

All linear collections implement this interface by performing the given action for
each element of the collection, as in Example 2-3.

Example 2-3. Printing the elements of a collection

List<String> strings = Arrays.asList("this", "is", "a", "list", "of", "strings");

strings.forEach(new Consumer<String>() { (1]

26 | Chapter2: Thejava.util.function Package

public void accept(String s) {
System.out.println(s);
}
s

strings.forEach(s -> System.out.println(s)); (2]
strings.forEach(System.out::println); (3]

© Anonymous inner class implementation
® Expression lambda
© Method reference

The lambda expression conforms to the signature of the accept method, because it
takes a single argument and returns nothing. The println method in PrintStream,
accessed here via System.out, is compatible with Consumer. Therefore, either can be
used as the target for an argument of type Consumer.

The java.util.function package also contains primitive variations of Consumer<T>,
as well as a two-argument version. See Table 2-1 for details.

Table 2-1. Additional Consumer interfaces
IntConsumer void accept(int x)
DoubleConsumer void accept(double x)
LongConsumer void accept(long x)

BiConsumer voild accept(T t, U u)

Consumers are expected to operate via side effects, as shown in
Recipe 2.3.

The BiConsumer interface has an accept method that takes two generic arguments,
which are assumed to be of different types. The package contains three variations on
BiConsumer where the second argument is a primitive. One is ObjIntConsumer,
whose accept method takes two arguments, a generic and and an int. ObjLong
Consumer and ObjDoubleConsumer are defined similarly.

Other uses of the Consumer interface in the standard library include:

Optional.ifPresent(Consumer<? super T> consumer)
If a value is present, invoke the specified consumer. Otherwise do nothing.

2.1Consumers | 27

Stream.forEach(Consumer<? super T> action)
Performs an action for each element of the stream.! The Stream.forEachOrdered
method is similar, accessing elements in encounter order.

Stream.peek(Consumer<? super T> action)
Returns a stream with the same elements as the existing stream, first performing
the given action. This is a very useful technique for debugging (see Recipe 3.5 for
an example).

See Also

The andThen method in Consumer is used for composition. Function composition is
discussed further in Recipe 5.8. The peek method in Stream is examined in Recipe
3.5.

2.2 Suppliers

Problem

You want to implement the java.util.function.Supplier interface.

Solution

Implement the T get() method in java.util.function.Supplier using a lambda
expression or a method reference.

Discussion

The java.util.function.Supplier interface is particularly simple. It does not have
any static or default methods. It contains only a single, abstract method, T get().

Implementing Supplier means providing a method that takes no arguments and
returns the generic type. As stated in the Javadocs, there is no requirement that a new
or distinct result be returned each time the Supplier is invoked.

One simple example of a Supplier is the Math.random method, which takes no argu-
ments and returns a double. That can be assigned to a Supplier reference and
invoked at any time, as in Example 2-4.

1 This is such a common operation that forEach was also added directly to Iterable. The Stream variation is
useful when the source elements do not come from a collection, or if you want to make the stream parallel.

28 | Chapter2: The java.util.function Package

Example 2-4. Using Math.random() as a Supplier
Logger logger = Logger.getLogger("...");
DoubleSupplier randomSupplier = new DoubleSupplier() { (1]

public double getAsDouble() {
return Math.random();
}
b

randomSupplier = () -> Math.random();
randomSupplier = :random;

o0

logger.info(randomSupplier);

© Anonymous inner class implementation
® Expression lambda
© Method reference

The single abstract method in DoubleSupplier is getAsDouble, which returns a
double. The other associated Supplier interfaces in the java.util.function pack-
age are shown in Table 2-2.

Table 2-2. Additional Supplier interfaces
IntSupplier int getAsInt()
DoubleSupplier double getAsDouble()
LongSupplier long getAsLong()

BooleanSupplier boolean getAsBoolean()

One of the primary use cases for Suppliers is to support the concept of deferred exe-
cution. The info method in java.util.logging.Logger takes a Supplier, whose get
method is only called if the log level means the message will be seen (shown in detail
in Recipe 5.7). This process of deferred execution can be used in your own code, to
ensure that a value is retrieved from a Supplier only when appropriate.

Another example from the standard library is the orElseGet method in Optional,
which also takes a Supplier. The Optional class is discussed in Chapter 6, but the
short explanation is that an Optional is a nonnull object that either wraps a value or
is empty. It is typically returned by methods that may reasonably expect to have no
result, like finding a value in an empty collection.

2.2 Suppliers | 29

To see how that might work, consider searching for a name in a collection, as shown
in Example 2-5.

Example 2-5. Finding a name from a collection

List<String> names = Arrays.asList("Mal", "Wash", "Kaylee", "Inara",
"Zoé", "Jayne", "Simon", "River", "Shepherd Book");

Optional<String> first = names.stream()
.filter(name -> name.startsWith("C"))
.findFirst();

System.out.println(first); (1]
System.out.println(first.orElse("None")); (2]

System.out.println(first.orElse(String.format("No result found in %s",
names.stream().collect(Collectors.joining(", "))))); (3]

System.out.println(first.orElseGet(() ->
String.format("No result found in %s",
names.stream().collect(Collectors.joining(", "))))); (4)

Prints Optional.empty

]

Prints the string "None"

()

Forms the comma-separated collection, even when name is found
Forms the comma-separated collection only if the Optional is empty

The findFirst method on Stream returns the first encountered element in an
ordered stream.” Since it’s possible to apply a filter so there are no elements remaining
in the stream, the method returns an Optional. That Optional either contains the
desired element, or is empty. In this case, none of the names in the list pass the filter,
so the result is an empty Optional.

The orElse method on Optional returns either the contained element, or a specified
default. That's fine if the default is a simple string, but can be wasteful if processing is
necessary to return a value.

2 Streams may have an encounter order or they may not, just as lists are assumed to be ordered by index and
sets are not. This can be different from the order in which elements are processed. See Recipe 3.9 for more
information.

30 | Chapter2: Thejava.util.function Package

In this case, the returned value shows the complete list of names in comma-separated
form. The orElse method creates the complete string, whether the Optional contains
a value or not.

The orElseGet method, however, takes a Supplier as an argument. The advantage is
that the get method on the Supplier will only be invoked when the Optional is
empty, so the complete name string is not formed unless it is necessary.

Other examples from the standard library that use Suppliers include:

o The orElseThrow method in Optional, which takes a Supplier<X extends
Exception>. The Supplier is only executed if an exception occurs.

o Objects.requireNonNull(T obj, Supplier<String> messageSupplier) only
customizes its response if the first argument is null.

e CompletableFuture.supplyAsync(Supplier<U> supplier) returns a Completa
bleFuture that is asynchronously completed by a task running with the value
obtained by calling the given Supplier.

o The Logger class has overloads for all its logging methods that takes a Supplier
<String> rather than just a string (used as an example in Recipe 5.7).

See Also

Using the overloaded logging methods that take a Supplier is discussed in Recipe
5.7. Finding the first element in a collection is discussed in Recipe 3.9. Completable
futures are part of several recipes in Chapter 9, and Optional is the topic of recipes in
Chapter 6.

2.3 Predicates

Problem

You want to filter data using the java.util.function.Predicate interface.

Solution

Implement the boolean test(T t) method in the Predicate interface using a
lambda expression or a method reference.

2.3Predicates | 31

Discussion

Predicates are used primarily to filter streams. Given a stream of items, the filter
method in java.util.stream.Stream takes a Predicate and returns a new stream
that includes only the items that satisfy the given predicate.

The single abstract method in Predicate is boolean test(T t), which takes a single
generic argument and returns true or false. The complete set of methods in
Predicate, including state and defaults, is given in Example 2-6.

Example 2-6. Methods in java.util function.Predicate

default Predicate<T> and(Predicate<? super T> other)
static <T> Predicate<T> isEquals(Object targetRef)
default Predicate<T> negate()

default Predicate<T> or(Predicate<? super T> other)
boolean test(T t) (1)

O Single abstract method

Say you have a collection of names and you want to find all the instances that have a
particular length. Example 2-7 shows an example of how to use stream processing to
do so.

Example 2-7. Finding strings of a given length

public String getNamesOfLength(int length, String... names) {
return Arrays.stream(names)
.filter(s -> s.length() == length) (1]
.collect(Collectors.joining(", "));

}

© Predicate for strings of given length only

Alternatively, perhaps you want only the names that start with a particular string, as
in Example 2-8.

Example 2-8. Finding strings that start with a given string

public String getNamesStartingWith(String s, String... names) {
return Arrays.stream(names)
filter(s -> s.startsWith(s)) (1]
.collect(Collectors.joining(", "));
}

© Predicate to return strings starting with a given string

32 | Chapter2: Thejava.util.function Package

These can be made more general by allowing the condition to be specified by the cli-
ent. Example 2-9 shows a method to do that.

Example 2-9. Finding strings that satisfy an arbitrary predicate

public class ImplementPredicate {
public String getNamesSatisfyingCondition(
Predicate<String> condition, String... names) {
return Arrays.stream(names)
.filter(condition) (1)
.collect(Collectors.joining(", "));

}

// ... other methods ...
}

O Filter by supplied predicate

This is quite flexible, but it may be a bit much to expect the clients to write every
predicate themselves. One option is to add constants to the class representing the
most common cases, as in Example 2-10.

Example 2-10. Adding constants for common cases

public class ImplementPredicate {
public static final Predicate<String> LENGTH_FIVE = s -> s.length() == 5;
public static final Predicate<String> STARTS_WITH_S =
s -> s.startsWith("S");

// ... rest as before ...
}

The other advantage to supplying a predicate as an argument is that you can also use
the default methods and, or, and negate to create a composite predicate from a series
of individual elements.

The test case in Example 2-11 demonstrates all of these techniques.

Example 2-11. JUnit test for predicate methods

import static functionpackage.ImplementPredicate.*; (1]
import static org.junit.Assert.assertEquals;

// ... other imports ...
public class ImplementPredicateTest {

private ImplementPredicate demo = new ImplementPredicate();
private String[] names;

2.3Predicates | 33

public void setUp() {
names = Stream.of("Mal", "Wash", "Kaylee", "Inara", "Zoé",
"Jayne", "Simon", "River", "Shepherd Book")
.sorted()
.toArray(String[]::new);

public void getNamesOfLength5() throws Exception {
assertkEquals("Inara, Jayne, River, Simon",
demo.getNamesOfLength(5, names));

public void getNamesStartingWithS() throws Exception {
assertEquals("Shepherd Book, Simon",
demo.getNamesStartingWith("S", names));

public void getNamesSatisfyingCondition() throws Exception {

assertkEquals("Inara, Jayne, River, Simon",
demo.getNamesSatisfyingCondition(s -> s.length() == 5, names));

assertEquals("Shepherd Book, Simon",
demo.getNamesSatisfyingCondition(s -> s.startsWith("S"),
names));

assertkEquals("Inara, Jayne, River, Simon",
demo.getNamesSatisfyingCondition(LENGTH_FIVE, names));

assertkEquals("Shepherd Book, Simon",
demo.getNamesSatisfyingCondition(STARTS_WITH_S, names));

public void composedPredicate() throws Exception {
assertEquals("Simon",
demo.getNamesSatisfyingCondition(
LENGTH_FIVE.and(STARTS_WITH_S), names)); (2]
assertEquals("Inara, Jayne, River, Shepherd Book, Simon",
demo.getNamesSatisfyingCondition(
LENGTH_FIVE.or (STARTS_WITH_S), names)); ©
assertEquals("Kaylee, Mal, Shepherd Book, Wash, Zoé",
demo.getNamesSatisfyingCondition(LENGTH_FIVE.negate(), names)); (3]

}

© Static import to make using constants simpler

@ Composition

34 | Chapter2: Thejava.util.function Package

© Negation

Other methods in the standard library that use predicates include:

Optional.filter(Predicate<? super T> predicate)
If a value is present, and the value matches the given predicate, returns an
Optional describing the value, otherwise returns an empty Optional.

Collection.removelf(Predicate<? super E> filter)
Removes all elements of this collection that satisfy the predicate.

Stream.allMatch(Predicate<? super T> predicate)
Returns true if all elements of the stream satisfy the given predicate. The methods
anyMatch and noneMatch work similarly.

Collectors.partitioningBy(Predicate<? super T> predicate)
Returns a Collector that splits a stream into two categories: those that satisfy the
predicate and those that do not.

Predicates are useful whenever a stream should only return certain elements. This
recipe hopefully gives you an idea where and when that might be useful.

See Also

Closure composition is also discussed in Recipe 5.8. The allMatch, anyMatch, and
noneMatch methods are discussed in Recipe 3.10. Partitioning and group by opera-
tions are discussed in Recipe 4.5.

2.4 Functions

Problem

You need to implement the java.util.function.Function interface to transform an
input parameter into an output value.

Solution

Provide a lambda expression that implements the R apply(T t) method.

Discussion

The functional interface java.util.function.Function contains the single abstract
method apply, which is invoked to transform a generic input parameter of type T into
a generic output value of type R. The methods in Function are shown in
Example 2-12.

2.4Functions | 35

Example 2-12. Methods in the java.util function.Function interface

default <V> Function<T,V> andThen(Function<? super R,? extends V> after)
R apply(T t)

default <V> Function<V,R> compose(Function<? super V,? extends T> before)

static <T> Function<T,T> identity()

The most common usage of Function is as an argument to the Stream.map method.
For example, one way to transform a String into an integer would be to invoke the
length method on each instance, as in Example 2-13.

Example 2-13. Mapping strings to their lengths

List<String> names = Arrays.asList("Mal", "Wash", "Kaylee", "Inara",

"Zoé", "Jayne", "Simon", "River", "Shepherd Book");

List<Integer> namelLengths = names.stream()
.map(new Function<String, Integer>() { (1]

public Integer apply(String s) {
return s.length();

}
b
.collect(Collectors.toList());

namelLengths = names.stream()
.map(s -> s.length()) (2]
.collect(Collectors.tolList());
namelLengths = names.stream()
.map(:length) (3]
.collect(Collectors.tolList());

System.out.printf("nameLengths = %s%n", nameLengths);
// namelLengths == [3, 4, 6, 5, 3, 5, 5, 5, 13]

© Anonymous inner class
©® Lambda expression
© Method reference

The complete list of primitive variations for both the input and the output generic
types are shown in Table 2-3.

36 | Chapter2: Thejava.util.function Package

Table 2-3. Additional Function interfaces

IntFunction R apply(int value)
DoubleFunction R apply(double value)
LongFunction R apply(long value)
ToIntFunction int applyAsInt(T value)
ToDoubleFunction double applyAsDouble(T value)
ToLongFunction long applyAsLong(T value)

DoubleToIntFunction 1int applyAsInt(double value)
DoubleToLongFunction long applyAsLong(double value)
IntToDoubleFunction double applyAsDouble(int value)
IntToLongFunction long applyAsLong(int value)
LongToDoubleFunction double applyAsDouble(long value)
LongToIntFunction int applyAsInt(long value)

BiFunction voild accept(T t, U u)

The argument to the map method in Example 2-13 could have been a ToIntFunction,
because the return type on the method is an int primitive. The Stream.mapToInt
method takes a ToIntFunction as an argument, and mapToDouble and mapToLong are
analogous. The return types on mapToInt, mapToDouble, and mapTolLong are Int
Stream, DoubleStream, and LongStream, respectively.

What if the argument and return type are the same? The java.util.function pack-
age defines UnaryOperator for that. As you might expect, there are also interfaces
called IntUnaryOperator, DoubleUnaryOperator, and LongUnaryOperator, where the
input and output arguments are int, double, and long, respectively. An example of a
UnaryOperator would be the reverse method in StringBuilder, because both the
input type and the output type are strings.

The BiFunction interface is defined for two generic input types and one generic out-
put type, all of which are assumed to be different. If all three are the same, the pack-
age includes the BinaryOperator interface. An example of a binary operator would
be Math.max, because both inputs and the output are either int, double, float, or
long. Of course, the interface also defines interfaces called IntBinaryOperator,
DoubleBinaryOperator, and LongBinaryOperator for those situations.?

3 See Recipe 3.3 for more on BinaryOperator uses in the standard library.

24Functions | 37

To complete the set, the package also has primitive variations of BiFunction, which
are summarized in Table 2-4.

Table 2-4. Additional BiFunction interfaces
ToIntBiFunction int applyAsInt(T t, U u)
ToDoubleBiFunction double applyAsDouble(T t, U u)
ToLongBiFunction long applyAsLong(T t, U u)

While the various Stream.map methods are the primary usages of Function, they do
appear in other contexts. Among them are:

Map.computeIfAbsent(K key, Function<? super K,? extends V> mappingFunction)
If the specified key does not have a value, use the provided Function to compute
one and add it to a Map.

Comparator.comparing(Function<? super T,? extends U> keyExtractor)
Discussed in Recipe 4.1, this method generates a Comparator that sorts a collec-
tion by the key generated from the given Function.

Comparator.thenComparing(Function<? super T,? extends U> keyExtractor)
An instance method, also used in sorting, that adds an additional sorting mecha-
nism if the collection has equal values by the first sort.

Functions are also used extensively in the Collectors utility class for grouping and
downstream collectors.

The andThen and compose methods are discussed in Recipe 5.8. The identity
method is simply the lambda expression e -> e. One usage is shown in Recipe 4.3.

See Also

See Recipe 5.8 for examples of the andThen and compose methods in the Function
interface. See Recipe 4.3 for an example of Function.identity. See Recipe 4.6 for
examples of using functions as downstream collectors. The computeIfAbsent method
is discussed in Recipe 5.4. Binary operators are also covered in Recipe 3.3.

38 | Chapter2: Thejava.util.function Package

CHAPTER 3
Streams

Java 8 introduces a new streaming metaphor to support functional programming. A
stream is a sequence of elements that does not save the elements or modify the origi-
nal source. Functional programming in Java often involves generating a stream from
some source of data, passing the elements through a series of intermediate operations
(called a pipeline), and completing the process with a terminal expression.

Streams can only be used once. After a stream has passed through zero or more inter-
mediate operations and reached a terminal operation, it is finished. To process the
values again, you need to make a new stream.

Streams are also lazy. A stream will only process as much data as is necessary to reach
the terminal condition. Recipe 3.13 shows this in action.

The recipes in this chapter demonstrate various typical stream operations.

3.1 Creating Streams

Problem

You want to create a stream from a source of data.

Solution

Use the static factory methods in the Stream interface, or the stream methods on
Iterable or Arrays.

39

Discussion

The new java.util.stream.Streanm interface in Java 8 provides several static meth-
ods for creating streams. Specifically, you can use the static methods Stream.of,
Stream.iterate, and Stream.generate.

The Stream.of method takes a variable argument list of elements:
static <T> Stream<T> of(T... values)

The implementation of the of method in the standard library actually delegates to the
stream method in the Arrays class, shown in Example 3-1.

Example 3-1. Reference implementation of Stream.of

public static<T> Stream<T> of(T... values) {
return Arrays.stream(values);

}

The @Safevarargs annotation is part of Java generics. It comes up
when you have an array as an argument, because it is possible to
assign a typed array to an Object array and then violate type safety
with an added element. The @SafeVarargs annotation tells the
compiler that the developer promises not to do that. See Appen-
dix A for additional details.

As a trivial example, see Example 3-2.

Since streams do not process any data until a terminal expression is
reached, each of the examples in this recipe will add a terminal
method like collect or forEach at the end.

Example 3-2. Creating a stream using Stream.of

String names = Stream.of("Gomez", "Morticia", "Wednesday", "Pugsley")
.collect(Collectors.joining(","));

System.out.println(names);

// prints Gomez,Morticia,Wednesday,Pugsley

The API also includes an overloaded of method that takes a single element T t. This
method returns a singleton sequential stream containing a single element.

Speaking of the Arrays.stream method, Example 3-3 shows an example.

40 | Chapter3:Streams

Example 3-3. Creating a stream using Arrays.stream

String[] munsters = { "Herman", "Lily", "Eddie", "Marilyn", "Grandpa" };
names = Arrays.stream(munsters)
.collect(Collectors.joining(","));
System.out.println(names);
// prints Herman,Lily,Eddie,Marilyn,Grandpa

Since you have to create an array ahead of time, this approach is less convenient, but
works well for variable argument lists. The API includes overloads of Arrays.stream
for arrays of int, long, and double, as well as the generic type used here.

Another static factory method in the Stream interface is iterate. The signature of
the iterate method is:

static <T> Stream<T> iterate(T seed, UnaryOperator<T> f)

According to the Javadocs, this method “returns an infinite (emphasis added) sequen-
tial ordered Stream produced by iterative application of a function f to an initial ele-
ment seed.” Recall that a UnaryOperator is a function whose single input and output
types are the same (discussed in Recipe 2.4). This is useful when you have a way to
produce the next value of the stream from the current value, as in Example 3-4.

Example 3-4. Creating a stream using Stream.iterate

List<BigDecimal> nums =
Stream.iterate(BigDecimal.ONE, n -> n.add(BigDecimal.ONE))
Llimit(10)
.collect(Collectors.toList());
System.out.println(nums);
// prints [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Stream.iterate(LocalDate.now(), ld -> ld.plusDays(1L))
Llimit(10)
.forEach(System.out: :println)

// prints 10 days starting from today

The first example counts from one using BigDecimal instances. The second uses the
new LocalDate class in java. time and adds one day to it repeatedly. Since the result-
ing streams are both unbounded, the intermediate operation limit is needed.

The other factory method in the Stream class is generate, whose signature is:
static <T> Stream<T> generate(Supplier<T> s)

This method produces a sequential, unordered stream by repeatedly invoking the
Supplier. A simple example of a Supplier in the standard library (a method that
takes no arguments but produces a return value) is the Math.random method, which
is used in Example 3-5.

3.1(Creating Streams | 41

Example 3-5. Creating a stream of random doubles

long count = Stream.generate(:random)
limit(10)
.forEach(System.out: :println)

If you already have a collection, you can take advantage of the default method
stream that has been added to the Collection interface, as in Example 3-6.!

Example 3-6. Creating a stream from a collection

List<String> bradyBunch = Arrays.asList("Greg", "Marcia", "Peter", "Jan",
"Bobby", "Cindy");

names = bradyBunch.stream()
.collect(Collectors.joining(","));

System.out.println(names);

// prints Greg,Marcia,Peter, Jan,Bobby,Cindy

There are three child interfaces of Stream specifically for working with primitives:
IntStream, LongStream, and DoubleStream. IntStream and LongStream each have
two additional factory methods for creating streams, range and rangeClosed. Their
method signatures from IntStream are (LongStream is similar):

static IntStream range(int startInclusive, int endExclusive)

static IntStream rangeClosed(int startInclusive, int endInclusive)
static LongStream range(long startInclusive, long endExclusive)
static LongStream rangeClosed(long startInclusive, long endInclusive)

The arguments show the difference between the two: rangeClosed includes the end
value, and range doesn't. Each returns a sequential, ordered stream that starts at the
first argument and increments by one after that. An example of each is shown in
Example 3-7.

Example 3-7. The range and rangeClosed methods

List<Integer> ints = IntStream.range(10, 15)
.boxed() @
.collect(Collectors.tolList());

System.out.println(ints);

// prints [16, 11, 12, 13, 14]

List<Long> longs = LongStream.rangeClosed(10, 15)
.boxed()
.collect(Collectors.tolList());

1 Hopefully it doesn’t destroy my credibility entirely to admit that I was able to recall the names of all six Brady
Bunch kids without looking them up. Believe me, I'm as horrified as you are.

42 | Chapter3:Streams

System.out.println(longs);
// prints [10, 11, 12, 13, 14, 15]

© Necessary for Collectors to convert primitives to List<T>
The only quirk in that example is the use of the boxed method to convert the int

values to Integer instances, which is discussed further in Recipe 3.2.

To summarize, here are the methods to create streams:

e Stream.of(T... values) and Stream.of(T t)
e Arrays.stream(T[] array), with overloads for int[], double[], and long[]
e Stream.iterate(T seed, UnaryOperator<T> f)
e Stream.generate(Supplier<T> s)
e Collection.stream()
o Using range and rangeClosed:
— IntStream.range(int startInclusive, int endExclusive)
— IntStream.rangeClosed(int startInclusive, int endInclusive)
— LongStream.range(long startInclusive, long endExclusive)

— LongStream.rangeClosed(long startInclusive, long endInclusive)

See Also

Streams are used throughout this book. The process of converting streams of primi-
tives to wrapper instances is discussed in Recipe 3.2.

3.2 Boxed Streams

Problem

You want to create a collection from a primitive stream.

Solution

Use the boxed method on Stream to wrap the elements. Alternatively, map the values
using the appropriate wrapper class, or use the three-argument form of the collect
method.

3.2Boxed Streams | 43

Discussion

When dealing with streams of objects, you can convert from a stream to a collection
using one of the static methods in the Collectors class. For example, given a stream
of strings, you can create a List<String> using the code in Example 3-8.

Example 3-8. Converting a stream of strings to a list

List<String> strings = Stream.of("this", "is", "a", "list", "of", "strings")
.collect(Collectors.tolList());

The same process doesn’t work on streams of primitives, however. The code in
Example 3-9 does not compile.

Example 3-9. Converting a stream of int to a list of Integer (DOES NOT COMPILE)

IntStream.of (3, 1, 4, 1, 5, 9)
.collect(Collectors.tolList()); // does not compile

You have three alternatives available as workarounds. First, use the boxed method on
Stream to convert the IntStream to a Stream<Integer>, as shown in Example 3-10.

Example 3-10. Using the boxed method

List<Integer> ints = IntStream.of(3, 1, 4, 1, 5, 9)
.boxed() (1)
.collect(Collectors.tolList());

@ Converts int to Integer

One alternative is to use the mapToObj method to convert each element from a primi-
tive to an instance of the wrapper class, as in Example 3-11.

Example 3-11. Using the mapToObj method

List<Integer> ints = IntStream.of(3, 1, 4, 1, 5, 9)
.mapToObj(:valueOf)
.collect(Collectors.tolList())

Just as mapToInt, mapToLong, and mapToDouble parse streams of objects into the asso-
ciated primitives, the mapToObj method from IntStream, LongStream, and Double
Stream converts primitives to instances of the associated wrapper classes. The argu-
ment to mapToObj in this example uses the Integer constructor.

44 | Chapter3:Streams

In JDK 9, the Integer(int val) constructor is deprecated for per-
formance reasons. The recommendation is to use Integer .val
\ ueOf (int) instead.

Another alternative is to use the three-argument version of collect, whose signature
is:

<R> R collect(Supplier<R> supplier,
ObjIntConsumer<R> accumulator,
BiConsumer<R,R> combiner)

Example 3-12 shows how to use this method.

Example 3-12. Using the three-argument version of collect

List<Integer> ints = IntStream.of(3, 1, 4, 1, 5, 9)
.collect(ArrayList<Integer>::new, radd, :addAll);

In this version of collect, the Supplier is the constructor for ArrayList<Integers>,
the accumulator is the add method, which represents how to add a single element to a
list, and the combiner (which is only used during parallel operations) is addAll,
which combines two lists into one. Using the three-argument version of collect is
not very common, but understanding how it works is a useful skill.

Any of these approaches work, so the choice is just a matter of style.

Incidentally, if you want to convert to an array rather than a list, then the toArray
method works just as well if not better. See Example 3-13.

Example 3-13. Convert an IntStream to an int array
int[] intArray = IntStream.of(3, 1, 4, 1, 5, 9).toArray();

// or

int[] intArray = IntStream.of(3, 1, 4, 1, 5, 9).toArray(int[]::new);

The first demo uses the default form of toArray, which returns Object[]. The second
uses an IntFunction<int[]> as a generator, which creates an int[] of the proper size
and populates it.

The fact that any of these approaches is necessary is yet another consequence of the
original decision in Java to treat primitives differently from objects, complicated by
the introduction of generics. Still, using boxed or mapToObj is easy enough once you
know to look for them.

3.2Boxed Streams | 45

See Also

Collectors are discussed in Chapter 4. Constructor references are covered in Recipe
1.3.

3.3 Reduction Operations Using Reduce

Problem

You want to produce a single value from stream operations.

Solution

Use the reduce method to accumulate calculations on each element.

Discussion

The functional paradigm in Java often uses a process known as map-filter-reduce.
The map operation transforms a stream of one type (like a String) into another (like
an int, by invoking the length method). Then a filter is applied to produce a new
stream with only the desired elements in it (e.g., strings with length below a certain
threshold). Finally, you may wish to provide a terminal operation that generates a sin-
gle value from the stream (like a sum or average of the lengths).

Built-in reduction operations

The primitive streams IntStream, LongStream, and DoubleStream have several
reduction operations built into the APL

For example, Table 3-1 shows the reduction operations from the IntStreanm class.

Table 3-1. Reduction operations in the IntStream class

Method Return type

average OptionalDouble

count long

max Optionallnt

min Optionallnt

sum int
summaryStatistics IntSummaryStatistics

collect(Supplier<R> supplier, R
ObjIntConsumer<R> accumulator,
BiConsumer<R,R> combiner)

reduce int, Optionallnt

46 | Chapter3:Streams

Reduction operations like sum, count, max, min, and average do what you would
expect. The only interesting part is that some of them return Optionals, because if
there are no elements in the stream (perhaps after a filtering operation) the result is
undefined or null.

For example, consider reduction operations involving the lengths of a collection of
strings, as in Example 3-14.

Example 3-14. Reduction operations on IntStream

String[] strings = "this is an array of strings".split(" ");
long count = Arrays.stream(strings)

.map(:length)

.count();

System.out.println("There are " + count + " strings");
int totallLength = Arrays.stream(strings)

.mapToInt(:length) (2]

.sum();
System.out.println("The total length is " + totalLength);

OptionalDouble ave = Arrays.stream(strings)
.mapToInt(:length)
.average();

System.out.println("The average length is

" + ave);
Optionallnt max = Arrays.stream(strings)

.mapToInt(:length) (2]

.max(); (3]

Optionallnt min = Arrays.stream(strings)
.mapToInt(:length)
.min();

System.out.println("The max and min lengths are " + max + " and " + min);

O countisa Stream method, so no need to map to IntStream
® sumand average are on the primitive streams only

© max and min without Comparator only on primitive streams

The program prints:

There are 6 strings

The total length is 22

The average length is OptionalDouble[3.6666666666666665]

The max and min lengths are OptionalInt[7] and Optionallnt[2]

3.3 Reduction Operations Using Reduce | 47

Note how the average, max, and min methods return Optionals, because in principle
you could have applied a filter that removed all the elements from the stream.

The count method is actually quite interesting, and is discussed in Recipe 3.7.

The Stream interface has max(Comparator) and min(Comparator), where the compa-
rators are used to determine the max or min element. In IntStream, there are over-
loaded versions of both methods that do not need an argument, because the compari-
son is done using the natural order of integers.

The summaryStatistics method is discussed in Recipe 3.8.

The last two operations in the table, collect and reduce, bear further discussion.
The collect method is used throughout this book to convert a stream into a collec-
tion, usually in combination with one of the static helper methods in the Collectors
class, like toList or toSet. That version of collect does not exist on the primitive
streams. The three-argument version shown here takes a collection to populate, a way
to add a single element to that collection, and a way to add multiple elements to the
collection. An example is shown in Recipe 3.2.

Basic reduce implementations

The behavior of the reduce method, however, is not necessarily intuitive until you've
seen it in action.

There are two overloaded versions of the reduce method in IntStream:

Optionallnt reduce(IntBinaryOperator op)

int reduce(int identity, IntBinaryOperator op)
The first takes an IntBinaryOperator and returns an OptionalInt. The second asks
you to supply an int called identity along with an IntBinaryOperator.

Recall that a java.util.function.BiFunction takes two arguments and returns a
single value, all three of which can be of different types. If both input types and the
return type are all the same, the function is a BinaryOperator (think, for example,
Math.max). An IntBinaryOperator is a BinaryOperator where the both inputs and
the output type are all ints.

Pretend, for the moment, that you didn’t think to use sum. One way to sum a series of
integers would be to use the reduce method shown in Example 3-15.

Example 3-15. Summing numbers using reduce

int sum = IntStream.rangeClosed(1, 10)
.reduce((x, y) -> x + y).orElse(0); (1]

©® The value of sum is 55

48 | Chapter3:Streams

Normally stream pipelines are written vertically, an approach based
on a fluent API where the result of one method becomes the target
of the next. In this case, the reduce method returns something
other than a stream, so orElse is written on the same line rather
than below because it’s not part of the pipeline. That’s just a conve-
nience—use any formatting approach that works for you.

The IntBinaryOperator here is supplied by a lambda expression that takes two ints
and returns their sum. Since it is conceivable that the stream could be empty if we
had added a filter, the result is an OptionalInt. Chaining the orElse method to it
indicates that if there are no elements in the stream, the return value should be zero.

In the lambda expression, you can think of the first argument of the binary operator
as an accumulator, and the second argument as the value of each element in the
stream. This is made clear if you print each one as it goes by, as shown in
Example 3-16.

Example 3-16. Printing the values of x and y

int sum = IntStream.rangeClosed(1, 10)
.reduce((x, y) -> {
System.out.printf("x=%d, y=%d%n", x, y);
return x + y;
}).orElse(0);

The output is shown in Example 3-17.

Example 3-17. The output of printing each value as it passes

x=1, y=2
x=3, y=3
x=6, y=4
x=10, y=5
x=15, y=6
x=21, y=7
x=28, y=8
x=36, y=9
x=45, y=10

sum=55

As the output shows, the initial values of x and y are the first two values of the range.
The value returned by the binary operator becomes the value of x (i.e., the accumula-
tor) on the next iteration, while y takes on each value in the stream.

3.3 Reduction Operations Using Reduce | 49

This is fine, but what if you wanted to process each number before summing them?
Say, for example, you wanted to double all the numbers before summing them.> A
naive approach would be simply to try the code shown in Example 3-18.

Example 3-18. Doubling the values during the sum (NOTE: NOT CORRECT)

int doubleSum = IntStream.rangeClosed(1, 10)
.reduce((x, y) -> x + 2 * y).orElse(0); (1]

© The value of doubleSum is 109 (oops! off by one!)

Since the sum of the integers from 1 to 10 is 55, the resulting sum should be 110, but
this calculation produces 109. The reason is that in the lambda expression in the
reduce method, the initial values of x and y are 1 and 2 (the first two values of the
stream), so that first value of the stream doesn’t get doubled.

That’s why there’s an overloaded version of reduce that takes an initial value for the
accumulator. The resulting code is shown in Example 3-19.

Example 3-19. Doubling the values during the sum (WORKS)

int doubleSum = IntStream.rangeClosed(1l, 10)
.reduce(0, (x, y) -> x + 2 *y);

@ The value of doubleSum is 110, as it should be

By providing the initial value of zero for the accumulator x, the value of y is assigned
to each of the elements in the stream, doubling them all. The values of x and y during
each iteration are shown in Example 3-20.

Example 3-20. The values of the lambda parameters during each iteration

Acc=0, n=1
Acc=2, n=2
Acc=6, n=3
Acc=12, n
Acc=20, n
Acc=30, n
Acc=42, n
Acc=56, n
Acc=72, n
Acc=90, n

2 There are many ways to solve this problem, including just doubling the value returned by the sum method.
The approach taken here illustrates how to use the two-argument form of reduce.

50 | Chapter3:Streams

sum=110

Note also that when you use the version of reduce with an initial value for the accu-
mulator, the return type is int rather than OptionallInt.

Identity Values of Binary Operators

The demonstrations used in this recipe referred to the first argument as an initial
value for the accumulator, even though the method signature called it identity. The
word identity means that you should supply a value to the binary operator that,
when combined with any other value, returns the other value. For addition, the iden-
tity is zero. For multiplication, the identity is 1. For string concatenation, the identity
is the empty string.

For the summing operation demonstrated here, the result is the same, but it’s worth
keeping in mind that the actual requirement for the first argument of reduce is the
identity value for whatever operation you are planning to use as the binary operator.
Internally this becomes the initial value of the accumulator.

The standard library provides many reduction methods, but if none of them directly

apply to your problem, the two forms of the reduce method shown here can be very
helpful.

Binary operators in the library

A few methods have been added to the standard library that make reduction opera-
tions particularly simple. For example, Integer, Long, and Double all have a sum
method that does exactly what you would expect. The implementation of the sum
method in Integer is:

public static int sum(int a, int b) {

return a + b;

}
Why bother creating a method just to add two integers, as done here? The sum
method is a BinaryOperator (more specifically, an IntBinaryOperator) and can
therefore be used easily in a reduce operation, as in Example 3-21.

Example 3-21. Performing a reduce with a binary operator
int sum = Stream.of(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

.reduce(0, 1sum);
System.out.println(sum);

3.3 Reduction Operations Using Reduce | 51

This time you don't even need an IntStream, but the result is the same. Likewise the
Integer class now has a max and a min method, both of which are also binary opera-
tors and can be used the same way, as in Example 3-22.

Example 3-22. Finding the max using reduce

Integer max = Stream.of(3, 1, 4, 1, 5, 9)
.reduce(Integer .MIN_VALUE, :max); (1)
System.out.println("The max value is " + max);

©® The identity for max is the minimum integer

Another interesting example is the concat method in String, which doesn’t actually
look like a BinaryOperator because the method only takes a single argument:

String concat(String str)

You can use this in a reduce operation anyway, as shown in Example 3-23.

Example 3-23. Concatenating strings from a stream using reduce

String s = Stream.of("this", "is", "a", "list")

.reduce("", :concat);
System.out.println(s);

@ Prints thisisalist

The reason this works is that when you use a method reference via the class name (as
in String::concat), the first parameter becomes the target of the concat method
and the second parameter is the argument to concat. Since the result returns a
String, the target, parameter, and return type are all of the same type and once again
you can treat this as a binary operator for the reduce method.

This technique can greatly reduce’ the size of your code, so keep that in mind when
you’re browsing the APL

3 Sorry about the pun.

52 | Chapter3:Streams

Using a Collector

While using concat this way works, it is inefficient because String concatenation cre-
ates and destroys objects. A better approach would be to use the collect method
with a Collector.

One overload of the collect method on Stream takes a Supplier for the collection, a
BiConsumer that adds a single element to the collection, and a BiConsumer that com-
bines two collections. With strings, the natural accumulator would be a String
Builder. The corresponding collect implementation would look like Example 3-24.

Example 3-24. Collecting strings using a StringBuilder

String s = Stream.of("this", "is", "a", "list")
.collect(() -> new StringBuilder(), (1)
(sb, str) -> sb.append(str), (2]
(sb1, sb2) -> sbi.append(sb2)) ©
.toString();

@ Result Supplier
® Add asingle value to the result
©® Combine two results

This approach can be more simply expressed using method references, as in
Example 3-25.

Example 3-25. Collecting strings, with method references

String s = Stream.of("this", "is", "a", "list")

.collect(:new,
:append,
:append)
.toString();

Simplest of all, however, would be to use the joining method in the Collectors util-
ity class, as in Example 3-26.

Example 3-26. Joining strings using Collectors

String s = Stream.of("this", "is", "a", "list")
.collect(Collectors.joining());

The joining method is overloaded to also take a string delimiter. It’s hard to beat that
for simplicity. For more details and examples, see Recipe 4.2.

3.3 Reduction Operations Using Reduce |

53

The most general form of reduce
The third form of the reduce method is:

<U> U reduce(U identity,
BiFunction<U,? super T,U> accumulator,
BinaryOperator<U> combiner)

This is a bit more complicated, and there are normally easier ways to accomplish the
same goal, but an example of how to use it might be useful.

Consider a Book class with simply an integer ID and a string title, as in Example 3-27.

Example 3-27. A simple Book class

public class Book {
private Integer 1id;
private String title;

// ... constructors, getters and setters, toString, equals, hashCode ...

}

Say you have a list of books and you want to add them to a Map, where the keys are
the IDs and the values are the books themselves.

The example shown here can be solved much more easily using the

Collectors.toMap method, which is demonstrated in Recipe 4.3. It

is used here because its simplicity will hopefully make it easier to
\ focus on the more complex version of reduce.

One way to accomplish that is shown in Example 3-28.

Example 3-28. Accumulating Books into a Map

HashMap<Integer, Book> bookMap = books.stream()
.reduce(new HashMap<Integer, Book>(),

(map, book) -> {
map.put(book.getId(), book);
return map;

1,

(map1, map2) -> { (3]
mapl.putAll(map2);
return mapl;

s

bookMap.forEach((k,v) -> System.out.println(k + +Vv));

O Identity value for putAll

54 | Chapter3:Streams

® Accumulate a single book into Map using put
©® Combine multiple Maps using putAll

It’s easiest to examine the arguments to the reduce method in reverse order.

The last argument is a combiner, which is required to be a BinaryOperator. In this
case, the provided lambda expression takes two maps and copies all the keys from the
second map into the first one and returns it. The lambda expression would be simpler
if the putAll method returned the map, but no such luck. The combiner is only rele-
vant if the reduce operation is done in parallel, because then you need to combine
maps produced from each portion of the range.

The second argument is a function that adds a single book to a Map. This too would
be simpler if the put method on Map returned the Map after the new entry was added.

The first argument to the reduce method is the identity value for the combiner func-
tion. In this case, the identity value is an empty Map, because that combined with any
other Map returns the other Map.
The output from this program is:

1: Book{id=1, title='Modern Java Recipes'}

2: Book{id=2, title='Making Java Groovy'}

3: Book{id=3, title='Gradle Recipes for Android'}

Reduction operations are fundamental to the functional programming idiom. In
many common cases, the Stream interfaces provide a built-in method for you, like
sum or collect(Collectors.joining(',"). If you need to write your own, however,
this recipe shows how to use the reduce operation directly.

The best news is that once you understand how to use reduce in Java 8, you know
how to use the same operation in other languages, even if it goes by different names
(like inject in Groovy or fold in Scala). They all work the same way.

See Also

A much simpler way to turn a list of POJOs into a Map is shown in Recipe 4.3. Sum-
mary statistics are discussed in Recipe 3.8. Collectors are discussed in Chapter 4.

3.4 Check Sorting Using Reduce

Problem

You want to check that a sort is correct.

3.4 Check Sorting Using Reduce | 55

Solution

Use the reduce method to check each pair of elements.

Discussion
The reduce method on Stream takes a BinaryOperator as an argument:
Optional<T> reduce(BinaryOperator<T> accumulator)

A BinaryOperator is a Function where both input types and the output type are all
the same. As shown in Recipe 3.3, the first element in the BinaryOperator is nor-
mally an accumulator, while the second element takes each value of the stream, as in
Example 3-29.

Example 3-29. Summing BigDecimals with reduce

BigDecimal total = Stream.iterate(BigDecimal.ONE, n -> n.add(BigDecimal.ONE))
Llimit(10)
.reduce(BigDecimal.ZERO, (acc, val) -> acc.add(val)); (1]
System.out.println("The total is " + total);

@ Using the add method in BigDecimal as a BinaryOperator

As usual, whatever is returned by the lambda expression becomes the value of the acc
variable on the next iteration. In this way, the calculation accumulates the values of
the first 10 BigDecimal instances.

This is the most typical way of using the reduce method, but just because acc here is
used as an accumulator doesn’t mean it has to be thought of as such. Consider sorting
strings instead, using the approach discussed in Recipe 4.1. The code snippet shown
in Example 3-30 sorts strings by length.

Example 3-30. Sorting strings by length

List<String> strings = Arrays.asList(

"this", "is", "a", "list", "of", "strings");
List<String> sorted = strings.stream()

.sorted(Comparator.comparingInt(:length))
.collect(toList());

O Resultis["a", "is", "of", "this", "list", "strings"]

The question is, how do you test this? Each adjacent pair of strings has to be com-
pared by length to make sure the first is equal to or shorter than the second. The

56 | Chapter3:Streams

reduce method here works well, however, as Example 3-31 shows (part of a JUnit test
case).

Example 3-31. Testing that strings are sorted properly
strings.stream()
.reduce((prev, curr) -> {
assertTrue(prev.length() <= curr.length()); (1]
(2]

return curr;

s

© Check each pair is sorted properly
® curr becomes the next value of prev

For each consecutive pair, the previous and current parameters are assigned to vari-
ables prev and curr. The assertion tests that the previous length is less than or equal
to the current length. The important part is that the argument to reduce returns the
value of the current string, curr, which becomes the value of prev on the next itera-
tion.

The only thing required to make this work is for the stream to be sequential and
ordered, as here.

See Also

The reduce method is discussed in Recipe 3.3. Sorting is discussed in Recipe 4.1.

3.5 Debugging Streams with peek

Problem

You want to see the individual elements of a stream as they are processed.

Solution

Invoke the peek intermediate operation wherever you need it in a stream pipeline.

Discussion

Stream processing consists of a series of zero or more intermediate operations fol-
lowed by a terminal operation. Each intermediate operation returns a new stream.
The terminal operation returns something other than a stream.

3.5 Debugging Streams with peek | 57

Newcomers to Java 8 sometimes find the sequence of intermediate operations on a
stream pipeline confusing, because they have trouble visualizing the stream values as
they are processed.

Consider a simple method that accepts a start and end range for a stream of integers,
doubles each number, and then sums up only the resulting values divisible by 3, as
shown in Example 3-32.

Example 3-32. Doubling integers, filtering, and summing

public int sumDoublesDivisibleBy3(int start, int end) {
return IntStream.rangeClosed(start, end)
.map(n ->n * 2)
filter(n -> n % 3 == 0)
.sum();

}

A simple test could prove that this is working properly:

public void sumDoublesDivisibleBy3() throws Exception {
assertEquals (1554, demo.sumDoublesDivisibleBy3(100, 120));
}

That’s helpful, but doesn’t deliver a lot of insight. If the code wasn't working, it would
be very difficult to figure out where the problem lay.

Imagine that you added a map operation to the pipeline that took each value, printed
it, and then returned the value again, as in Example 3-33.
Example 3-33. Adding an identity map for printing

public int sumDoublesDivisibleBy3(int start, int end) {
return IntStream.rangeClosed(start, end)

.map(n -> { (1)
System.out.println(n);
return n;

b

.map(n ->n * 2)
filter(n ->n % 3 == 0)
.sum();

}

© Identity map that prints each element before returning it

The result prints the numbers from start to end, inclusive, with one number per
line. While you might not want this in production code, it gives you a look inside the
stream processing without interfering with it.

58 | Chapter3:Streams

This behavior is exactly how the peek method in Stream works. The declaration of
the peek method is:

Stream<T> peek(Consumer<? super T> action)

According to the Javadocs, the peek method “returns a stream consisting of the ele-
ments of this stream, additionally performing the provided action on each element as
they are consumed from the resulting stream.” Recall that a Consumer takes a single
input but returns nothing, so any provided Consumer will not corrupt each value as it
streams by.

Since peek is an intermediate operation, the peek method can be added multiple
times if you wish, as in Example 3-34.

Example 3-34. Using multiple peek methods

public int sumDoublesDivisibleBy3(int start, int end) {
return IntStream.rangeClosed(start, end)

.peek(n -> System.out.printf("original: %d%n", n)) (1]
.map(n ->n * 2)
.peek(n -> System.out.printf("doubled : %d%n", n)) (2]
filter(n ->n % 3 == 0)
.peek(n -> System.out.printf("filtered: %d%n", n)) (3]
.sum();

}

© Print value before doubling
® Print value after doubling but before filtering
© Print value after filtering but before summing

The result will show each element in its original form, then after it has been doubled,
and finally only if it passes the filter. The output is:

original: 100
doubled : 200
original: 101
doubled : 202
original: 102
doubled : 204
filtered: 204

original: 119
doubled : 238
original: 120
doubled : 240
filtered: 240

3.5 Debugging Streams with peek | 59

Unfortunately, there’s no easy way to make the peek code optional, so this is a conve-
nient step to use for debugging but should be removed in production code.

3.6 Converting Strings to Streams and Back

Problem

Rather than loop over individual characters of a String, you would like to use the
idiomatic Stream processing techniques.

Solution

Use the default methods chars and codePoints from the java.lang.CharSequence
interface to convert a String into an IntStream. To convert back to a String, use the
overload of the collect method on IntStream that takes a Supplier, a BiConsumer
representing an accumulator, and a BiConsumer representing a combiner.

Discussion

Strings are collections of characters, so in principle it should be as easy to convert a
string into a stream as it is any other collection or array. Unfortunately, String is not
part of the Collections framework, and therefore does not implement Iterable, so
there is no stream factory method to convert one into a Stream. The other option
would be the static stream methods in the java.util.Arrays class, but while there
are versions of Arrays.stream for int[], long[], double[], and even T[], there isn’'t
one for char[]. It's almost as if the designers of the API didn’t want you to process a
String using stream techniques.

Still, there is an approach that works. The String class implements the CharSequence
interface, and that interface contains two new methods that produce an IntStream.
Both methods are default methods in the interface, so they have an implementation
available. The signatures are in Example 3-35.

Example 3-35. Stream methods in java.lang.CharSequence

default IntStream chars()
default IntStream codePoints()

The difference between the two methods has to do with how Java handles UTF-16-
encoded characters as opposed to the full Unicode set of code points. If you're inter-
ested, the differences are explained in the Javadocs for java.lang.Character. For the
methods shown here, the difference is only in the type of integers returned. The for-

60 | Chapter3:Streams

mer returns a IntStream consisting of char values from this sequence, while the lat-
ter returns an IntStream of Unicode code points.

The opposite question is how to convert a stream of characters back into a String.
The Stream.collect method is used to perform a mutable reduction on the elements
of a stream to produce a collection. The version of collect that takes a Collector is
most commonly used, because the Collectors utility class provides many static
methods (like toList, toSet, toMap, joining, and many others discussed in this
book) that produce the desired Collector.

Conspicuous by its absence, however, is a Collector that will take a stream of charac-
ters and assemble it into a String. Fortunately, that code isn't difficult to write, using
the other overload of collect, which takes a Supplier and two BiConsumer argu-
ments, one as an accumulator and one as a combiner.

This all sounds a lot more complicated than it is in practice. Consider writing a
method to check if a string is a palindrome. Palindromes are not case sensitive, and
they remove all punctuation before checking whether the resulting string is the same
forward as backward. In Java 7 or earlier, Example 3-36 shows one way to write a
method that tests strings.

Example 3-36. Checking for palindromes in Java 7 or earlier

public boolean isPalindrome(String s) {

StringBuilder sb = new StringBuilder();
for (char c : s.toCharArray()) {

if (Character.isLetterOrDigit(c)) {

sb.append(c);

}
}
String forward = sb.toString().toLowerCase();
String backward = sb.reverse().toString().toLowerCase();
return forward.equals(backward);

}

As is typical in code written in a nonfunctional style, the method declares a separate
object with mutable state (the StringBuilder instance), then iterates over a collec-
tion (the char[] returned by the toCharArray method in String), using an if condi-
tion to decide whether to append a value to the buffer. The StringBuilder class also
has a reverse method to make checking for palindromes easier, while the String
class does not. This combination of mutable state, iteration, and decision statements
cries out for an alternative stream-based approach.

That stream-based alternative is shown in Example 3-37.

3.6 Converting Strings to Streams and Back | 61

Example 3-37. Checking for palindromes using Java 8 streams

public boolean isPalindrome(String s) {
String forward = s.tolLowerCase().codePoints() (1)

filter(:isLetterOrDigit)
.collect(:new,
:appendCodePoint,
:append)
.toString();

String backward = new StringBuilder(forward).reverse().toString();
return forward.equals(backward);

}

@ Returns an IntStream

The codePoints method returns an IntStream, which can then be filtered using the
same condition as in Example 3-37. The interesting part is in the collect method,
whose signature is:

<R> R collect(Supplier<R> supplier,

BiConsumer<R,? super T> accumulator,
BiConsumer<R,R> combiner)

The arguments are:
o A Supplier, which produces the resulting reduced object, in this case a String
Builder.

o A BiConsumer used to accumulate each element of the stream into the resulting
data structure; this example uses the appendCodePoint method.

o A BiConsumer representing a combiner, which is a “non-interfering, stateless
function” for combining two values that must be compatible with the accumula-
tor; in this case, the append method. Note that the combiner is only used if the
operation is done in parallel.

That sounds like a lot, but the advantage in this case is that the code doesn’t have to
make a distinction between characters and integers, which is often an issue when
working with elements of strings.

Example 3-38 shows a simple test of the method.

Example 3-38. Testing the palindrome checker

private PalindromeEvaluator demo = new PalindromeEvaluator();

public void isPalindrome() throws Exception {
assertTrue(

62 | Chapter3:Streams

Stream.of ("Madam, in Eden, I'm Adam",
"Go hang a salami; I'm a lasagna hog",
"Flee to me, remote elf!",
"A Santa pets rats as Pat taps a star step at NASA")
.allMatch(:isPalindrome));

assertFalse(demo.isPalindrome("This is NOT a palindrome"));

}

Viewing strings as arrays of characters doesn’t quite fit the functional idioms in Java
8, but the mechanisms in this recipe hopefully show how they can be made to work.

See Also

Collectors are discussed further in Chapter 4, with the case of implementing your
own collector the subject of Recipe 4.9. The allMatch method is discussed in Recipe
3.10.

3.7 Counting Elements

Problem

You want to know how many elements are in a stream.

Solution

Use either the Stream.count or Collectors.counting methods.

Discussion

This recipe is almost too easy, but does serve to demonstrate a technique that will be
revisited later in Recipe 4.6.

The Stream interface has a default method called count that returns a long, which is
demonstrated in Example 3-39.
Example 3-39. Counting elements in a stream

long count = Stream.of(3, 1, 4, 1, 5, 9, 2, 6, 5).count();
System.out.printf("There are %d elements in the stream%n", count); (1]

@ Prints There are 9 elements in the stream

One interesting feature of the count method is that the Javadocs show how it is
implemented. The docs say, “this is a special case of a reduction and is equivalent to”:

return mapToLong(e -> 1L).sum();

3.7 Counting Elements | 63

First every element in the stream is mapped to 1 as a long. Then the mapTolLong
method produces a LongStream, which has a sum method. In other words, map all the
elements to ones and add them up. Nice and simple.

An alternative is to notice that the Collectors class has a similar method, called
counting, shown in Example 3-40.

Example 3-40. Counting the elements using Collectors.counting

count = Stream.of(3, 1, 4, 1, 5, 9, 2, 6, 5)
.collect(Collectors.counting());
System.out.printf("There are %d elements in the stream%n", count);

The result is the same. The question is, why do this? Why not use the count method
on Stream instead?

You can, of course, and arguably should. Where this becomes useful, however, is as a
downstream collector, discussed more extensively in Recipe 4.6. As a spoiler, consider
Example 3-41.

Example 3-41. Counting string partitioned by length

Map<Boolean, Long> numberLengthMap = strings.stream()
.collect(Collectors.partitioningBy(
s -> s.length() % 2 == 0, (1)
Collectors.counting())); (2]

numberLengthMap.forEach((k,v) -> System.out.printf("%5s: %d%n", k, v));
//

// false: 4
// true: 8

@ Predicate
® Downstream collector

The first argument to partitioningBy is a Predicate, used to separate the strings
into two categories: those that satisfy the predicate, and those that do not. If that was
the only argument to partitioningBy, the result would be a Map<Boolean,
List<String>>, where the keys would be the values true and false, and the values
would be lists of even- and odd-length strings.

The two-argument overload of partitioningBy used here takes a Predicate fol-
lowed by a Collector, called a downstream collector, which postprocesses each list of
strings returned. This is the use case for the Collectors.counting method. The out-

64 | Chapter3:Streams

put now is a Map<Boolean, Long> where the values are the number of even- and odd-
length strings in the stream.

Several other methods in Stream have analogs in Collectors methods, which are dis-

cussed in that section. In each case, if you are working directly with a stream, use the

Stream methods. The Collectors methods are intended for downstream post-
processing of a partitioningBy or groupingBy operation.

See Also

Downstream collectors are discussed in Recipe 4.6. Collectors in general are dis-
cussed in several recipes included in Chapter 4. Counting is a built-in reduction oper-
ation, as discussed in Recipe 3.3.

3.8 Summary Statistics

Problem

You want the count, sum, min, max, and average of a stream of numerical values.

Solution

Use the summaryStatistics method in IntStream, DoubleStream, and LongStream.

Discussion

The primitive streams IntStream, DoubleStream, and LongStream add methods to
the Stream interface that work for primitive types. One of those methods is summary
Statistics, shown in Example 3-42.

Example 3-42. SummaryStatistics

DoubleSummaryStatistics stats = DoubleStream.generate(:random)
limit(1_000_000)
.summaryStatistics();
System.out.println(stats); (1]
System.out.println("count: " + stats.getCount());
System.out.println("min : " + stats.getMin());
System.out.println("max " + stats.getMax());
System.out.println("sum " + stats.getSum());
System.out.println("ave " + stats.getAverage());

@ Print using the toString method

3.8 Summary Statistics

65

Java 7 added the capability to use underscores in numerical literals,
asin 1_000_000.

A typical run yields:

DoubleSummaryStatistics{count=1000000, sum=499608.317465, min=0.000001,
average=0.499608, max=0.999999}

count: 1000000

min : 1.3938598313334438E-6

max : 0.9999988915490642

sum : 499608.31746475823

ave : 0.49960831746475826

The toString implementation of DoubleSummaryStatistics shows all the values, but
the class also has getter methods for the individual quantities: getCount, getSum, get
Max, getMin, and getAverage. With one million doubles, it’s not surprising that the

minimum is close to zero, the maximum is close to 1, the sum is approximately
500,000, and the average is nearly 0.5.

There are two other interesting methods in the DoubleSummaryStatistics class:

void accept(double value)

void combine(DoubleSummaryStatistics other)
The accept method records another value into the summary information. The
combine method combines two DoubleSummaryStatistics objects into one. They are
used when adding data to an instance of the class before computing the results.

As an example, the website Spotrac keeps track of payroll statistics for various sports
teams. In the source code for this book you will find a file holding the team salary
payroll for all 30 teams in Major League Baseball for the 2017 season, taken from this
site.*

The source code in Example 3-43 defines a class called Team that contains an id, a
team name, and a total salary.
Example 3-43. Team class contains id, name, and salary

public class Team {
private static final NumberFormat nf = NumberFormat.getCurrencyInstance();

private int id;
private String name;

4 Source: http://www.spotrac.com/mlb/payroll/, where you can specify a year or other information.

66 | Chapter3:Streams

http://www.spotrac.com/mlb/payroll/
http://www.spotrac.com

private double salary;

// ... constructors, getters and setters ...

public String toString() {
return "Team{" +
"id=" + id +

, name='" + name + '\'' +
", salary=" + nf.format(salary) +
"

}

After parsing the team salary file, the results are:

Team{1d=1, name='Los Angeles Dodgers', salary=$245,269,535.00}
Team{1d=2, name='Boston Red Sox', salary=$202,135,939.00}
Team{1d=3, name='New York Yankees', salary=$202,095,552.00}

Team{1d=28, name='San Diego Padres', salary=$73,754,027.00}
Team{1d=29, name='Tampa Bay Rays', salary=$73,102,766.00}
Team{1d=30, name='Milwaukee Brewers', salary=$62,094,433.00}

There are now two ways to compute the summary statistics on the collection of
teams. The first is to use the three-argument collect method as in Example 3-44.

Example 3-44. Collect with a Supplier, accumulator, and combiner

DoubleSummaryStatistics teamStats = teams.stream()

.mapToDouble(:getSalary)

.collect(:new,
taccept,
:combine);

This version of the collect method is discussed in Recipe 4.9. Here it relies on a con-
structor reference to supply an instance of DoubleSummaryStatistics, the accept
method to add another value to an existing DoubleSummaryStatistics object, and
the combine method to combine two separate DoubleSummaryStatistics objects into
one.

The results are (formatted for easy reading):

30 teams
sum = $4,232,271,100.00
min = $62,094,433.00
max = $245,269,535.00
ave = $141,075,703.33

The recipe on downstream collectors (Recipe 4.6) shows an alternative way to com-
pute the same data. In this case, the summary is computed as in Example 3-45.

3.8 Summary Statistics | 67

Example 3-45. Collect using summarizingDouble

teamStats = teams.stream()
.collect(Collectors.summarizingDouble(:getSalary));

The argument to the Collectors.summarizingDouble method is the salary for each
team. Either way, the result is the same.

The summary statistics classes are essentially a “poor developer’s” approach to statis-
tics. They’re limited to only the properties shown (count, max, min, sum, and aver-
age), but if those are all you need, it’s nice to know the library provides them auto-
matically.

See Also

Summary statistics is a special form of a reduction operation. Others appear in Recipe
3.3. Downstream collectors are covered in Recipe 4.6. The multi-argument collect
method is discussed in Recipe 4.9.

3.9 Finding the First Element in a Stream

Problem

You wish to find the first element in a stream that satisfies a particular condition.

Solution

Use the findFirst or findAny method after applying a filter.

Discussion

The findFirst and findAny methods in java.util.stream.Stream return an
Optional describing the first element of a stream. Neither takes an argument, imply-
ing that any mapping or filtering operations have already been done.

For example, given a list of integers, to find the first even number, apply an even-
number filter and then use findFirst, as in Example 3-46.
Example 3-46. Finding the first even integer

Optional<Integer> firstEven = Stream.of(3, 1, 4, 1, 5, 9, 2, 6, 5)
filter(n ->n % 2 == 0)

5 Of course, another lesson of this recipe is that if you can find a way to play Major League Baseball, you proba-
bly ought to consider it, even if only for a short time. Java will still be here when you’re done.

68 | Chapter3:Streams

.findFirst();

System.out.println(firstEven); (1]
@ Prints Optional[4]

If the stream is empty, the return value is an empty Optional (see Example 3-47).

Example 3-47. Using findFirst on an empty stream

Optional<Integer> firstEvenGT10 = Stream.of(3, 1, 4, 1, 5, 9, 2, 6, 5)
filter(n -> n > 10)
filter(n -> n % 2 == 0)
findFirst();

System.out.println(firstEvenGT10); (1]
@ Prints Optional.empty

Since the code returns the first element after applying the filter, you might think that
it involves a lot of wasted work. Why apply a modulus operation to all the elements
and then pick just the first one? Stream elements are actually processed one by one,
so this isn't a problem. This is discussed in Recipe 3.13.

If the stream has no encounter order, then any element may be returned. In the cur-
rent example, the stream does have an encounter order, so the “first” even number (in
the original example) is always 4, whether we do the search using a sequential or a par-
allel stream. See Example 3-48.

Example 3-48. Using firstEven in parallel

firstEven = Stream.of(3, 1, 4, 1, 5, 9, 2, 6, 5)
.parallel()
filter(n -> n % 2 == 0)
.findFirst();

System.out.println(firstEven); (1]
© Always prints Optional[4]

That feels bizarre at first. Why would you get the same value back even though sev-
eral numbers are being processed at the same time? The answer lies in the notion of
encounter order.

The API defines encounter order as the order in which the source of data makes its
elements available. A List and an array both have an encounter order, but a Set does
not.

3.9 Finding the First Elementin a Stream | 69

There is also a method called unordered in BaseStream (which Stream extends) that
(optionally!) returns an unordered stream as an intermediate operation, though it
may not.

Sets and Encounter Order

HashSet instances have no defined encounter order, but if you initialize one with the
same data repeatedly (in Java 8) you will get the same order of elements each time.
That means using findFirst will give the same result each time as well. The method
documentation says that findFirst may give a different result on unordered streams,
but the current implementation doesn’t change its behavior just because the stream is
unordered.

To get a Set with a different encounter order, you can add and remove enough ele-
ments to force a rehash. For example:

List<String> wordList = Arrays.asList(

"this", "is", "a", "stream", "of", "strings");
Set<String> words = new HashSet<>(wordList);
Set<String> words2 = new HashSet<>(words);

// Now add and remove enough elements to force a rehash
IntStream.rangeClosed(0, 50).forEachOrdered(i ->

words2.add(String.valueOf(i)));
words2.retainAll(wordList);

// The sets are equal, but have different element ordering
System.out.println(words.equals(words2));
System.out.println("Before: " + words);
System.out.println("After : + words2);

The outputs will be something like:

true
Before: [a, strings, stream, of, this, is]
After : [this, is, strings, stream, of, a]

The ordering is different, so the result of findFirst will be different.

In Java 9, the new immutable sets (and maps) are randomized, so their iteration
orders will change from run to run, even if they are initialized the same way every
time.®

The findAny method returns an Optional describing some element of the stream, or
an empty Optional if the stream is empty. In this case, the behavior of the operation

6 Thanks to Stuart Marks for this explanation.

70 | Chapter3:Streams

is explicitly nondeterministic, meaning it is free to select any element of the stream.
This allows optimization in parallel operations.

To demonstrate this, consider returning any element from an unordered, parallel
stream of integers. Example 3-49 introduces an artificial delay by mapping each ele-
ment to itself after a random delay of up to 100 milliseconds.

Example 3-49. Using findAny in parallel after a random delay

public Integer delay(Integer n) {

try {
Thread.sleep((long) (Math.random() * 100));

} catch (InterruptedException ignored) { (1]

}
return n;
}
/...
Optional<Integer> any = Stream.of(3, 1, 4, 1, 5, 9, 2, 6, 5)
.unordered()
.parallel() (3]
.map(this::delay) (4]
.findAny();

System.out.println("Any: + any);

© The only exception in Java that it is OK to catch and ignore’
® We don't care about order

© Use the common fork-join pool in parallel

O Introduce a random delay

O Return the first element, regardless of encounter order

The output now could be any of the given numbers, depending on which thread gets
there first.

Both findFirst and findAny are short-circuiting, terminal operations. A short-
circuiting operation may produce a finite stream when presented with an infinite one.
A terminal operation is short-circuiting if it may terminate in finite time even when
presented with infinite input.

7 To be serious for a moment, it’s not a good idea to catch and ignore any exception. It’s just fairly common to
do so with InterruptedException. That doesn’t make it a great idea, though.

3.9 Finding the First Elementina Stream | 71

Note that the examples used in this recipe demonstrate that sometimes parallelization
can hurt rather than help performance. Streams are lazy, meaning they will only pro-
cess as many elements as are necessary to satisfy the pipeline. In this case, since the
requirement is simply to return the first element, firing up a fork-join pool is overkill.
See Example 3-50.

Example 3-50. Using findAny on sequential and parallel streams

Optional<Integer> any = Stream.of(3, 1, 4, 1, 5, 9, 2, 6, 5)
.unordered()
.map(this::delay)
.findAny(); (1)

System.out.println("Sequential Any: + any);
any = Stream.of(3, 1, 4, 1, 5, 9, 2, 6, 5)
.unordered()
.parallel()
.map(this::delay)
.findany(); O

System.out.println("Parallel Any: " + any);

© Sequential stream (by default)
® Parallel stream

Typical output looks like the following (on an eight-core machine, which therefore
uses a fork-join pool with eight threads by default).®

For sequential processing:

main // sequential, so only one thread
Sequential Any: Optional[3]

For parallel processing:

ForkJoinPool.commonPool-worker-1
ForkJoinPool.commonPool-worker-5
ForkJoinPool.commonPool-worker-3
ForkJoinPool.commonPool-worker-6
ForkJoinPool.commonPool-worker-7
main
ForkJoinPool.commonPool-worker-2
ForkJoinPool.commonPool-worker-4
Parallel Any: Optional[1]

8 This demo assumes that the delay method has been modified to print the name of the current thread along
with the value it is processing.

72 | Chapter3: Streams

The sequential stream only needs to access one element, which it then returns, short-
circuiting the process. The parallel stream fires up eight different threads, finds one
element, and shuts them all down. The parallel stream therefore accesses many values
it doesn’t need.

Again, the key concept is that of encounter order with streams. If the stream has an
encounter order, then findFirst will always return the same value. The findAny
method is allowed to return any element, making it more appropriate for parallel
operations.

See Also

Lazy streams are discussed in Recipe 3.13. Parallel streams are in Chapter 9.

3.10 Using anyMatch, allMatch, and noneMatch

Problem

You wish to determine if any elements in a stream match a Predicate, or if all match,
or if none match.

Solution

Use the methods anyMatch, allMatch, and noneMatch on the Stream interface, each
of which returns a boolean.

Discussion

The signatures of the anyMatch, allMatch, and noneMatch methods on Stream are:

boolean anyMatch(Predicate<? super T> predicate)
boolean allMatch(Predicate<? super T> predicate)
boolean noneMatch(Predicate<? super T> predicate)

Each does exactly what it sounds like. As an example, consider a prime number cal-
culator. A number is prime if none of the integers from 2 up to the value minus 1
evenly divide into it.

A trivial way to check if a number is prime is to compute the modulus of the number
from every number from 2 up to its square root, rounded up, as in Example 3-51.

Example 3-51. Prime number check

public boolean isPrime(int num) {
int limit = (int) (Math.sqrt(num) + 1); (1]
return num == 2 || num > 1 && IntStream.range(2, limit)

3.10 Using anyMatch, allMatch, and noneMatch | 73

.noneMatch(divisor -> num % divisor == 0); (2]

}

© Upper limit for check
® Using noneMatch

The noneMatch method makes the calculation particularly simple.

BigInteger and Primes

Interestingly, the java.math.BigInteger class has the method isProbablyPrime,
which has the following signature:

boolean isProbablyPrime(int certainty)

If the method returns false, the value is definitely composite. For true, however, the
certainty argument comes into play.

The value of certainty represents the amount of uncertainty that the caller is willing
to tolerate. If the method returns true, the probability that the number is actually
prime exceeds 1 - 1/2~{certainty}, so a certainty of 2 implies a probability of 0.5,
a certainty of 3 implies 0.75, 4 implies 0.875, 5 implies 0.9375, and so on.

Asking for greater values of certainty makes the algorithm take longer.

Two ways to test the calculation are shown in Example 3-52.

Example 3-52. Tests for the prime calculation

private Primes calculator = new Primes();

public void testIsPrimeUsingAllMatch() throws Exception {
assertTrue(IntStream.of(2, 3, 5, 7, 11, 13, 17, 19)
.allMatch(:1sPrime));

(2]

public void testIsPrimeWithComposites() throws Exception {
assertFalse(Stream.of(4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20)
.anyMatch(:isPrime));

}

© Use allMatch for simplicity

@ Test with composites

74 | Chapter3:Streams

The first test invokes the allMatch method, whose argument is a Predicate, on a
stream of known primes and returns true only if all the values are prime.

The second test uses anyMatch with a collection of composite (nonprime) numbers,
and asserts that none of them satisfy the predicate.

The anyMatch, allMatch, and noneMatch methods are convenient ways to check a
stream of values against a particular condition.

You need to be aware of one problematic edge condition. The anyMatch, allMatch,
and noneMatch methods don’t necessarily behave intuitively on empty streams, as the
tests in Example 3-53 show.

Example 3-53. Testing empty streams

public void emptyStreamsDanger() throws Exception {
assertTrue(Stream.empty().allMatch(e -> false));
assertTrue(Stream.empty().noneMatch(e -> true));
assertFalse(Stream.empty().anyMatch(e -> true));
}

For both allMatch and noneMatch, the Javadocs say, “if the stream is empty then true
is returned and the predicate is not evaluated,” so in both of these cases the predicate
can be anything. For anyMatch, the method returns false on an empty stream. That
can lead to very difficult-to-diagnose errors, so be careful.

The allMatch and noneMatch methods return true and the any

Match method returns false on an empty stream regardless of the

supplied predicate. Any supplied predicate is not evaluated when
\ the stream is empty.

See Also

Predicates are discussed in Recipe 2.3.

3.11 Stream flatMap Versus map

Problem

You have a stream and you need to transform the elements in some way, but youre
not sure whether to use map or flatMap.

3.11 Stream flatMap Versusmap | 75

Solution

Use map if each element is transformed into a single value. Use flatMap if each ele-
ment will be transformed to multiple values and the resulting stream needs to be
“flattened”

Discussion

Both the map and the flatMap methods on Stream take a Function as an argument.
The signature for map is:

<R> Stream<R> map(Function<? super T,? extends R> mapper)

A Function takes a single input and transforms it into a single output. In the case of
map, a single input of type T is transformed into a single output of type R.

Consider a Customer class, where a customer has a name and a collection of Order.
To keep things simple, the Order class just has an integer ID. Both classes are shown
in Example 3-54.

Example 3-54. A one-to-many relationship

public class Customer {
private String name;
private List<Order> orders = new ArraylList<>();

public Customer(String name) {
this.name = name;

}

public String getName() { return name; }
public List<Order> getOrders() { return orders; }

public Customer addOrder(Order order) {
orders.add(order);
return this;

}

public class Order {
private int id;

public Order(int id) {
this.id = id;
}

public int getId() { return id; }
}

Now create a few customers and add some orders, as in Example 3-55.

76 | Chapter3:Streams

Example 3-55. Sample customers with orders

Customer sheridan = new Customer("Sheridan");
Customer ivanova = new Customer("Ivanova");
Customer garibaldi = new Customer("Garibaldi");

sheridan.addOrder(new Order(1))
.addOrder(new Order(2))
.addOrder(new Order(3));

ivanova.addOrder(new Order(4))
.addOrder(new Order(5));

List<Customer> customers = Arrays.asList(sheridan, ivanova, garibaldi);

A map operation is done when there is a one-to-one relationship between the input
parameter and the output type. In this case, you can map the customers to names and
print them, as in Example 3-56.

Example 3-56. Using map on Customer to name
customers.stream() (1)
.map(:getName) (2]
.forEach(System.out::println); (3]

@ Stream<Customers
® Stream<String>

©® Sheridan, Ivanova, Garibaldi

If instead of mapping customers to name, you map them to orders, you get a collec-
tion of collections, as in Example 3-57.

Example 3-57. Using map on Customer to orders

customers.stream()
.map(:getOrders) (1)
.forEach(System.out::println); (2]

customers.stream()
.map(customer -> customer.getOrders().stream()) (3]

.forEach(System.out::println);

@ Stream<List<Order>>

® [order{id=1}, Order{id=2}, Order{id=3}], [Order{id=4}, Order{id=5}],
[]

3.11 Stream flatMap Versusmap | 77

©® Stream<Stream<Order>>

The mapping operation results in a Stream<List<Order>>, where the last list is
empty. If you invoke the stream method on the lists of orders, you get a
Stream<Stream<Order>>, where the last inner stream is an empty stream.

This is where the flatMap method comes in. The flatMap method has the following
signature:

<R> Stream<R> flatMap(Function<? super T,? extends Stream<? extends R>> mapper)

For each generic argument T, the function produces a Stream<R> rather than just an
R. The flatMap method then “flattens” the resulting stream by removing each element
from the individual streams and adding them to the output.

The Function argument to flatMap takes a generic input argu-
ment, but produces a Stream of output types.

The code in Example 3-58 demonstrates flatMap.

Example 3-58. Using flatMap on Customer orders

customers.stream() (1)
.flatMap(customer -> customer.getOrders().stream()) (2]
.forEach(System.out::println); (3]

©® Stream<Customer>
® Stream<Order>
©® order{id=1}, Order{id=2}, Order{id=3}, Order{id=4}, Order{id=5}

The result of the flatMap operation is to produce a Stream<Order>, which has been
flattened so you don’t need to worry about the nested streams any more.

The two key concepts for flatMap are:

o The Function argument to flatMap produces a Stream of output values.

o The resulting stream of streams is flattened into a single stream of results.

If you keep those ideas in mind, you should find the flatMap method quite helpful.

78 | Chapter3: Streams

As a final note, the Optional class also has a map method and a flatMap method. See
Recipes 6.4 and 6.5 for details.

See Also

The flatMap method is also demonstrated in Recipe 6.5. flatMap in Optional is dis-
cussed in Recipe 6.4.

3.12 Concatenating Streams

Problem

You want to combine two or more streams into a single one.

Solution

The concat method on Stream combines two streams, which works if the number of
streams is small. Otherwise use flatMap.

Discussion

Say you acquire data from several locations, and you want to process every element in
all of them using streams. One mechanism you can use is the concat method in
Stream, whose signature is:

static <T> Stream<T> concat(Stream<? extends T> a, Stream<? extends T> b)

This method creates a lazily concatenated stream that accesses all the elements of the
first stream, followed by all the elements of the second stream. As the Javadocs say,
the resulting stream is ordered if the input streams are ordered, and the resulting
stream is parallel if either of the input streams are parallel. Closing the returned
stream also closes the underlying input streams.

Both input streams must hold elements of the same type.

As a simple example of concatenating streams, see Example 3-59.

Example 3-59. Concatenating two streams

public void concat() throws Exception {
Stream<String> first = Stream.of("a", "b", "c").parallel();

3.12 Concatenating Streams | 79

Stream<String> second = Stream.of("X", "Y", "Z");

List<String> strings = Stream.concat(first, second) (1)
.collect(Collectors.toList());

List<String> stringlList = Arrays.asList("a", "b", "c", "X", "Yy", "z");

assertEquals(stringlList, strings);

}

© First elements followed by second elements

If you want to add a third stream to the mix, you can nest the concatenations,
Example 3-60.

Example 3-60. Concatenating multiple streams

public void concatThree() throws Exception {
Stream<String> first = Stream.of("a", "b", "c").parallel();
Stream<String> second = Stream.of("X", "Y", "Z");
Stream<String> third = Stream.of("alpha", "beta", "gamma");

List<String> strings = Stream.concat(Stream.concat(first, second), third)
.collect(Collectors.tolList());
List<String> stringlList = Arrays.asList("a", "b", "c",
X", "y", "z", "alpha", "beta", "gamma");
assertEquals(stringlList, strings);

}

This nesting approach works, but the Javadocs contain a note about this:

Use caution when constructing streams from repeated concatenation. Accessing an ele-
ment of a deeply concatenated stream can result in deep call chains, or even StackOver
flowException

The idea is that the concat method essentially builds a binary tree of streams, which
can grow unwieldy if too many are used.

An alternative approach is to use the reduce method to perform multiple concatena-
tions, as in Example 3-61.

Example 3-61. Concatenating with reduce

public void reduce() throws Exception {
Stream<String> first = Stream.of("a", "b", "c").parallel();
Stream<String> second = Stream.of("X", "Y", "Z");
Stream<String> third = Stream.of("alpha", "beta", "gamma");
Stream<String> fourth = Stream.empty();

List<String> strings = Stream.of(first, second, third, fourth)
.reduce(Stream.empty(), :concat)

80 | Chapter3:Streams

.collect(Collectors.toList());

List<String> stringlList = Arrays.asList("a", "b", "c",
X', Myt "z', "alpha", "beta", "gamma);
assertEquals(stringlList, strings);

}

@ Using reduce with an empty stream and a binary operator

This works because the concat method when used as a method reference is a binary
operator. Note this is simpler code, but doesn't fix the potential stack overflow prob-
lem.

Instead, when combining streams, the flatMap method is a natural solution, as in
Example 3-62.

Example 3-62. Using flatMap to concatenate streams

public void flatMap() throws Exception {
Stream<String> first = Stream.of("a", "b", "c").parallel();
Stream<String> second = Stream.of("X", "Y", "Z");
Stream<String> third = Stream.of("alpha", "beta", "gamma");
Stream<String> fourth = Stream.empty();

List<String> strings = Stream.of(first, second, third, fourth)
.flatMap(Function.identity())
.collect(Collectors.toList());

List<String> stringlList = Arrays.asList("a", "b", "c",

X", "y", "z", "alpha", "beta", "gamma");
assertEquals(stringlList, strings);

}
This approach works, but also has its quirks. Using concat creates a parallel stream if

any of the input streams are parallel, but flatMap does not (Example 3-63).

Example 3-63. Parallel or not?

public void concatParallel() throws Exception {
Stream<String> first = Stream.of("a", "b", "c").parallel();
Stream<String> second = Stream.of("X", "Y", "Z");
Stream<String> third = Stream.of("alpha", "beta", "gamma");

Stream<String> total = Stream.concat(Stream.concat(first, second), third);

assertTrue(total.isParallel());

3.12 Concatenating Streams | 81

public void flatMapNotParallel() throws Exception {
Stream<String> first = Stream.of("a", "b", "c").parallel();
Stream<String> second = Stream.of("X", "Y", "Z");
Stream<String> third = Stream.of("alpha", "beta", "gamma");
Stream<String> fourth = Stream.empty();

Stream<String> total = Stream.of(first, second, third, fourth)
.flatMap(Function.identity());
assertFalse(total.isParallel());
}

Still, you can always make the stream parallel if you want by calling the parallel
method, as long as you have not yet processed the data (Example 3-64).

Example 3-64. Making a flatMap stream parallel

public void flatMapParallel() throws Exception {
Stream<String> first = Stream.of("a", "b", "c").parallel();
Stream<String> second = Stream.of("X", "Y", "Z");
Stream<String> third = Stream.of("alpha", "beta", "gamma");
Stream<String> fourth = Stream.empty();

Stream<String> total = Stream.of(first, second, third, fourth)
.flatMap(Function.identity());
assertFalse(total.isParallel());

total = total.parallel();
assertTrue(total.isParallel());

}

Since flatMap is an intermediate operation, the stream can still be modified using the
parallel method, as shown.

In short, the concat method is effective for two streams, and can be used as part of a
general reduction operation, but flatMap is a natural alternative.

See Also

See the excellent blog post online at http://bit.ly/efficient-multistream-concatentation
for details, performance considerations, and more.

The flatMap method on Streanm is discussed in Recipe 3.11.

82 | Chapter3:Streams

http://bit.ly/efficient-multistream-concatentation

3.13 Lazy Streams

Problem

You want to process the minimum number of stream elements necessary to satisfy a
condition.

Solution

Streams are already lazy and do not process elements until a terminal condition is
reached. Then each element is processed individually. If there is a short-circuiting
operation at the end, the stream processing will terminate whenever all the conditions
are satisfied.

Discussion

When you first encounter stream processing, it’s tempting to think that much more
effort is being expended than necessary. For example, consider taking a range of
numbers between 100 and 200, doubling each of them, and then finding the first
value that is evenly divisible by three, as in Example 3-65.°

Example 3-65. First double between 200 and 400 divisible by 3

Optionallnt firstEvenDoubleDivBy3 = IntStream.range(100, 200)
.map(n ->n * 2)
filter(n -> n % 3 == 0)
.findFirst();

System.out.println(firstEvenDoubleDivBy3); (1)

© Prints Optional[204]
If you didn’t know better, you might think a lot of wasted effort was expended:

o The range of numbers from 100 to 199 is created (100 operations)
 Each number is doubled (100 operations)
 Each number is checked for divisibility (100 operations)

o The first element of the resulting stream is returned (1 operation)

Since the first value that satisfies the stream requirements is 204, why process all the
other numbers?

9 Thanks to the inimitable Venkat Subramaniam for the basis of this example.

3.13 Lazy Streams | 83

Fortunately, stream processing doesn't work that way. Streams are lazy, in that no
work is done until the terminal condition is reached, and then each element is pro-
cessed through the pipeline individually. To demonstrate this, Example 3-66 shows
the same code, but refactored to show each element as it passes through the pipeline.

Example 3-66. Explicit processing of each stream element

public int multByTwo(int n) { (1]
System.out.printf("Inside multByTwo with arg %d%n", n);
return n * 2;

}

public boolean divByThree(int n) { (2]
System.out.printf("Inside divByThree with arg %d%n", n);
return n % 3 == 0;

}
/) ..

firstEvenDoubleDivBy3 = IntStream.range(100, 200)
.map(this::multByTwo)
.filter(this::divByThree) (2]
.findFirst();

© Method reference for multiply by two, with print
® Method reference for modulus 3, with print

The output this time is:

Inside multByTwo with arg 100

Inside divByThree with arg 200

Inside multByTwo with arg 101

Inside divByThree with arg 202

Inside multByTwo with arg 102

Inside divByThree with arg 204

First even divisible by 3 is Optional[204]

The value 100 goes through the map to produce 200, but does not pass the filter, so the
stream moves to the value 101. That is mapped to 202, which also doesn’t pass the
filter. Then the next value, 102, is mapped to 204, but that is divisible by 3, so it
passes. The stream processing terminates after processing only three values, using six
operations.

This is one of the great advantages of stream processing over working with collec-
tions directly. With a collection, all of the operations would have to be performed
before moving to the next step. With streams, the intermediate operations form a
pipeline, but nothing happens until the terminal operation is reached. Then the
stream processes only as many values as are necessary.

84 | Chapter3:Streams

This isn’t always relevant—if any of the operations are stateful, like sorting or adding
them all together, then all the values are going to have to be processed anyway. But
when you have stateless operations followed by a short-circuiting, terminal operation,
the advantage is clear.

See Also

The differences between findFirst and findAny are discussed in Recipe 3.9.

3.13 Lazy Streams | 85

CHAPTER 4
Comparators and Collectors

Java 8 enhances the Comparator interface with several static and default methods that
make sorting operations much simpler. It's now possible to sort a collection of POJOs
by one property, then equal first properties by a second, then by a third, and so on,
just with a series of library calls.

Java 8 also adds a new utility class called java.util.stream.Collectors, which pro-
vides static methods to convert from streams back into various types of collections.
The collectors can also be applied “downstream,” meaning that they can postprocess a
grouping or partitioning operation.

The recipes in this chapter illustrate all these concepts.

4.1 Sorting Using a Comparator

Problem

You want to sort objects.

Solution

Use the sorted method on Stream with a Comparator, either implemented with a
lambda expression or generated by one of the static compare methods on the
Comparator interface.

Discussion

The sorted method on Stream produces a new, sorted stream using the natural
ordering for the class. The natural ordering is specified by implementing the
java.util.Comparable interface.

87

For example, consider sorting a collection of strings, as shown in Example 4-1.

Example 4-1. Sorting strings lexicographically

private List<String> sampleStrings =

Arrays.asList("this", "is", "a", "list", "of", "strings");

public List<String> defaultSort() {
Collections.sort(sampleStrings);
return sampleStrings;

}

public List<String> defaultSortUsingStreams() {
return sampleStrings.stream()
.sorted()
.collect(Collectors.tolList());
}

@ Default sort from Java 7 and below
® Default sort from Java 8 and above

Java has had a utility class called Collections ever since the collections framework
was added back in version 1.2. The static sort method on Collections takes a List
as an argument, but returns void. The sort is destructive, modifying the supplied col-
lection. This approach does not follow the functional principles supported by Java 8,
which emphasize immutability.

Java 8 uses the sorted method on streams to do the same sorting, but produces a new
stream rather than modifying the original collection. In this example, after sorting the
collection, the returned list is sorted according to the natural ordering of the class.
For strings, the natural ordering is lexicographical, which reduces to alphabetical
when all the strings are lowercase, as in this example.

If you want to sort the strings in a different way, then there is an overloaded sorted
method that takes a Comparator as an argument.

Example 4-2 shows a length sort for strings in two different ways.

Example 4-2. Sorting strings by length

public List<String> lengthSortUsingSorted() {
return sampleStrings.stream()
.sorted((s1, s2) -> sl.length() - s2.length()) o
.collect(toList());
}

public List<String> lengthSortUsingComparator() {

88 | Chapter4: Comparators and Collectors

return sampleStrings.stream()
.sorted(Comparator.comparingInt(:length)) (2]
.collect(toList());
}

@ Using a lambda for the Comparator to sort by length
©® Using a Comparator using the comparingInt method

The argument to the sorted method is a java.util.Comparator, which is a func-
tional interface. In lengthSortUsingSorted, a lambda expression is provided to
implement the compare method in Comparator. In Java 7 and earlier, the implementa-
tion would normally be provided by an anonymous inner class, but here a lambda
expression is all that is required.

Java 8 added sort(Comparator) as a default instance method on
List, equivalent to the static void sort(List, Comparator)
method on Collections. Both are destructive sorts that return
void, so the sorted(Comparator) approach on streams discussed
here (which returns a new, sorted stream) is still preferred.

The second method, lengthSortUsingComparator, takes advantage of one of the
static methods added to the Comparator interface. The comparingInt method takes
an argument of type ToIntFunction that transforms the string into an int, called a
keyExtractor in the docs, and generates a Comparator that sorts the collection using
that key.

The added default methods in Comparator are extremely useful. While you can write
a Comparator that sorts by length pretty easily, when you want to sort by more than
one field that can get complicated. Consider sorting the strings by length, then equal-
length strings alphabetically. Using the default and static methods in Comparator, that
becomes almost trivial, as shown in Example 4-3.

Example 4-3. Sorting by length, then equal lengths lexicographically

public List<String> lengthSortThenAlphaSort() {
return sampleStrings.stream()

.sorted(comparing(:length) (1)
.thenComparing(naturalOrder()))
.collect(toList());

}

© Sort by length, then equal-length strings alphabetically

4.1Sorting Using a Comparator | 89

Comparator provides a default method called thenComparing. Just like comparing, it
also takes a Function as an argument, again known as a keyExtractor. Chaining this
to the comparing method returns a Comparator that compares by the first quantity,
then equal first by the second, and so on.

Static imports often make the code easier to read. Once you get used to the static
methods in both Comparator and Collectors, this becomes an easy way to simplify
the code. In this case, the comparing and naturalOrder methods have been statically
imported.

This approach works on any class, even if it does not implement Comparable. Con-
sider the Golfer class shown in Example 4-4.

Example 4-4. A class for golfers

public class Golfer {
private String first;
private String last;
private int score;

// ... other methods ...
}

To create a leader board at a tournament, it makes sense to sort by score, then by last
name, and then by first name. Example 4-5 shows how to do that.

Example 4-5. Sorting golfers

private List<Golfer> golfers = Arrays.asList(
new Golfer("Jack", "Nicklaus", 68),
new Golfer("Tiger", "Woods", 70),
new Golfer("Tom", "Watson", 70),
new Golfer("Ty", "Webb", 68),
new Golfer("Bubba", "Watson", 70)
)

public List<Golfer> sortByScoreThenLastThenFirst() {
return golfers.stream()

.sorted(comparingInt(:getScore)
.thenComparing(:getlLast)
.thenComparing(:getFirst))

.collect(toList());

}

The output from calling sortByScoreThenLastThenFirst is shown in Example 4-6.

90 | Chapter4: Comparators and Collectors

Example 4-6. Sorted golfers

Golfer{first='Jack', last='Nicklaus', score=68}
Golfer{first='Ty', last='Webb', score=68}
Golfer{first='Bubba', last='Watson', score=70}
Golfer{first='Tom', last='Watson', score=70}
Golfer{first='Tiger', last='Woods', score=70}

The golfers are sorted by score, so Nicklaus and Webb come before Woods and both
Watsons.! Then equal scores are sorted by last name, putting Nicklaus before Webb
and Watson before Woods. Finally, equal scores and last names are sorted by first
name, putting Bubba Watson before Tom Watson.

The default and static methods in Comparator, along with the new sorted method on
Stream, makes generating complex sorts easy.

4.2 Converting a Stream into a Collection

Problem

After stream processing, you want to convert to a List, Set, or other linear collec-
tion.

Solution

Use the toList, toSet, or toCollection methods in the Collectors utility class.

Discussion

Idiomatic Java 8 often involves passing elements of a stream through a pipeline of
intermediate operations, finishing with a terminal operation. One terminal operation
is the collect method, which is used to convert a Stream into a collection.

The collect method in Stream has two overloaded versions, as shown in
Example 4-7.

Example 4-7. The collect method in Stream<T>

<R,A> R collect(Collector<? super T,A,R> collector)

<R> R collect(Supplier<R> supplier,
BiConsumer<R,? super T> accumulator,
BiConsumer<R,R> combiner)

1 Ty Webb, of course, is from the movie Caddyshack. Judge Smails: “Ty, what did you shoot today?” Ty Webb:
“Oh, Judge, I don’t keep score” Smails: “Then how do you measure yourself with other golfers?” Webb: “By
height” Adding a sort by height is left to the reader as an easy exercise.

4.2 Converting a Stream into a Collection | 91

This recipe deals with the first version, which takes a Collector as an argument. Col-
lectors perform a “mutable reduction operation” that accumulates elements into a
result container. Here the result will be a collection.

Collector is an interface, so it can’t be instantiated. The interface contains a static of
method for producing them, but there is often a better, or at least easier, way.

The Java 8 API frequently uses a static method called of as a fac-
tory method.

Here, the static methods in the Collectors class will be used to produce Collector
instances, which are used as the argument to Stream.collect to populate a collec-
tion.

A simple example that creates a List is shown in Example 4-8.2

Example 4-8. Creating a List

List<String> superHeroes =
Stream.of ("Mr. Furious", "The Blue Raja", "The Shoveler",
"The Bowler", "Invisible Boy", "The Spleen", "The Sphinx")
.collect(Collectors.tolList());

This method creates and populates an ArrayList with the given stream elements.
Creating a Set is just as easy, as in Example 4-9.

Example 4-9. Creating a Set

Set<String> villains =
Stream.of ("Casanova Frankenstein", "The Disco Boys",
"The Not-So-Goodie Mob", "The Suits", "The Suzies",
"The Furriers", "The Furriers")
.collect(Collectors.toSet());
}

© Duplicate name, removed when converting to a Set

2 The names in this recipe come from Mystery Men, one of the great overlooked movies of the *90s. (Mr. Furi-
ous: “Lance Hunt is Captain Amazing” The Shoveler: “Lance Hunt wears glasses. Captain Amazing doesn’t
wear glasses” Mr. Furious: “He takes them off when he transforms” The Shoveler: “That doesn’t make any
sense! He wouldn’t be able to see!”)

92 | Chapter4: Comparators and Collectors

This method creates an instance of HashSet and populates it, leaving out any dupli-
cates.

Both of these examples used the default data structures—ArrayList for List, and
HashSet for Set. If you wish to specify a particular data structure, you should use the
Collectors.toCollection method, which takes a Supplier as an argument.
Example 4-10 shows the sample code.

Example 4-10. Creating a linked list

List<String> actors =

Stream.of ("Hank Azaria", "Janeane Garofalo", "William H. Macy",
"Paul Reubens", "Ben Stiller", "Kel Mitchell", "Wes Studi")
.collect(Collectors.toCollection(:new));

}

The argument to the toCollection method is a collection Supplier, so the construc-
tor reference to LinkedList is provided here. The collect method instantiates a
LinkedList and then populates it with the given names.

The Collectors class also contains a method to create an array of objects. There are
two overloads of the toArray method:
Object[] toArray();
<A> A[] toArray(IntFunction<A[]> generator);

The former returns an array containing the elements of this stream, but without spec-
ifying the type. The latter takes a function that produces a new array of desired type
with length equal to the size of the stream, and is easiest to use with an array con-
structor reference as shown in Example 4-11.

Example 4-11. Creating an array

String[] wannabes =
Stream.of ("The Waffler", "Reverse Psychologist", "PMS Avenger")
.toArray(String[]::new); (1]
}

o Array constructor reference as a Supplier

The returned array is of the specified type, whose length matches the number of ele-
ments in the stream.

To transform into a Map, the Collectors.toMap method requires two Function
instances—one for the keys and one for the values.

Consider an Actor POJO, which wraps a name and a role. If you have a Set of Actor
instances from a given movie, the code in Example 4-12 creates a Map from them.

4.2 Converting a Stream into a Collection | 93

Example 4-12. Creating a Map
Set<Actor> actors = mysteryMen.getActors();

Map<String, String> actorMap = actors.stream()
.collect(Collectors.toMap(:getName, :getRole)); (1)

actorMap.forEach((key,value) ->
System.out.printf("%s played %s%n", key, value));

© Functions to produce keys and values

The output is

Janeane Garofalo played The Bowler

Greg Kinnear played Captain Amazing
William H. Macy played The Shoveler

Paul Reubens played The Spleen

Wes Studi played The Sphinx

Kel Mitchell played Invisible Boy
Geoffrey Rush played Casanova Frankenstein
Ben Stiller played Mr. Furious

Hank Azaria played The Blue Raja

Similar code works for ConcurrentMap using the toConcurrentMap method.

See Also

Suppliers are discussed in Recipe 2.2. Constructor references are in Recipe 1.3. The
toMap method is also demonstrated in Recipe 4.3.

4.3 Adding a Linear Collection to a Map

Problem

You want to add a collection of objects to a Map, where the key is one of the object
properties and the value is the object itself.

Solution

Use the toMap method of Collectors, along with Function.identity.

Discussion

This is a short, very focused use case, but when it comes up in practice the solution
here can be quite convenient.

94 | Chapter4: Comparators and Collectors

Say you had a List of Book instances, where Book is a simple POJO that has an ID, a
name, and a price. An abbreviated form of the Book class is shown in Example 4-13.

Example 4-13. A simple POJO representing a book

public class Book {
private int 1id;
private String name;
private double price;

// ... other methods ...
}

Now assume you have a collection of Book instances, as shown in Example 4-14.

Example 4-14. A collection of books

List<Book> books = Arrays.asList(
new Book(1, "Modern Java Recipes", 49.99),
new Book(2, "Java 8 in Action", 49.99),
new Book(3, "Java SE8 for the Really Impatient", 39.99),
new Book(4, "Functional Programming in Java", 27.64),
new Book(5, "Making Java Groovy", 45.99)
new Book(6, "Gradle Recipes for Android", 23.76)

)

In many situations, instead of a List you might want a Map, where the keys are the
book IDs and the values are the books themselves. This is really easy to accomplish
using the toMap method in Collectors, as shown two different ways in
Example 4-15.

Example 4-15. Adding the books to a Map

Map<Integer, Book> bookMap = books.stream()
.collect(Collectors.toMap(:getld, b -> b)); (1]

bookMap = books.stream()
.collect(Collectors.toMap(:getId, Function.identity())); (2]

© Identity lambda: given an element, return it
® Static identity method in Function does the same thing

The toMap method in Collectors takes two Function instances as arguments, the
first of which generates a key and the second of which generates the value from the
provided object. In this case, the key is mapped by the getId method in Book, and the
value is the book itself.

4.3 Adding a Linear CollectiontoaMap | 95

The first toMap in Example 4-15 uses the getId method to map to the key and an
explicit lambda expression that simply returns its parameter. The second example
uses the static identity method in Function to do the same thing.

The Two Static Identity Methods

The static identity method in Function has the signature
static <T> Function<T,T> identity()
The implementation in the standard library is shown in Example 4-16.

Example 4-16. The static identity method in Function

static <T> Function<T, T> identity() {
return t -> t;

}

The UnaryOperator class extends Function, but you can’t override a static method. In
the Javadocs, it also declares a static identity method:

static <T> UnaryOperator<T> identity()

Its implementation in the standard library is essentially the same, as shown in
Example 4-17.

Example 4-17. The static identity method in UnaryOperator

static <T> UnaryOperator<T> identity() {
return t -> t;

}

The differences are only in the way you call them (from the two interface names) and
the corresponding return types. In this case, it doesn’t matter which one you use, but
it’s interesting to see that they’re both there.

Whether you decide to supply an explicit lambda or use the static method is merely a
matter of style. Either way, it is easy to add collection values to a Map where the key is
a property of the object and the value is the object itself.

See Also

Functions are covered in Recipe 2.4, which also discusses unary and binary operators.

96 | Chapter4: Comparators and Collectors

4.4 Sorting Maps

Problem

You want to sort a Map by key or by value.

Solution

Use the new static methods in the Map.Entry interface.

Discussion

The Map interface has always contained a public, static, inner interface called
Map.Entry, which represents a key-value pair. The Map.entrySet method returns a
Set of Map.Entry elements. Prior to Java 8, the primary methods used in this inter-
face were getKey and getValue, which do what youd expect.

In Java 8, the static methods in Table 4-1 have been added.

Table 4-1. Static methods in Map.Entry (from Java 8 docs)

Method Description

comparingByKey() Returns a comparator that compares Map . Entry in
natural order on key

comparingByKey(Comparator<? super K> cmp) Returns a comparator that compares Map . Entry by
key using the given Comparator

comparingByValue() Returns a comparator that compares Map . Entry in
natural order on value

comparingByValue(Comparator<? super V> cmp) Returnsa comparator that compares Map.Entry by
value using the given Comparator

To demonstrate how to use them, Example 4-18 generates a Map of word lengths to
number of words in a dictionary. Every Unix system contains a file in the usr/share/
dict/words directory holding the contents of Webster’s 2nd edition dictionary, with
one word per line. The Files.lines method can be used to read a file and produce a
stream of strings containing those lines. In this case, the stream will contain each
word from the dictionary.

Example 4-18. Reading the dictionary file into a Map

System.out.println("\nNumber of words of each length:");
try (Stream<String> lines = Files.lines(dictionary)) {
lines.filter(s -> s.length() > 20)
.collect(Collectors.groupingBy(
:length, Collectors.counting()))

4.4Sorting Maps | 97

.forEach((len, num) -> System.out.printf("%d: %d%n", len, num));

} catch (IOException e) {

}

e.printStackTrace();

This example is discussed in Recipe 7.1, but to summarize:

The file is read inside a try-with-resources block. Stream implements Auto
Closeable, so when the try block exits, Java calls the close method on Stream,
which then calls the close method on File.

The filter restricts further processing to only words of at least 20 characters in
length.

The groupingBy method of Collectors takes a Function as the first argument,
representing the classifier. Here, the classifier is the length of each string. If you
only provide one argument, the result is a Map where the keys are the values of
the classifier and the values are lists of elements that match the classifier. In the
case were currently examining, groupingBy(String::length) would have pro-
duced a Map<Integer,List<String>> where the keys are the word lengths and
the values are lists of words of that length.

In this case, the two-argument version of groupingBy lets you supply another
Collector, called a downstream collector, that postprocesses the lists of words. In
this case, the return type is Map<Integer,Long>, where the keys are the word
lengths and the values are the number of words of that length in the dictionary.

The result is:

Number of words of each length:
21: 82
22: 41
23: 17
24: 5

In other words, there are 82 words of length 21, 41 words of length 22, 17 words of
length 23, and 5 words of length 24.°

The results show that the map is printed in ascending order of word length. In order
to see it in descending order, use Map.Entry.comparingByKey as in Example 4-19.

3 For the record, those five longest words are formaldehydesulphoxylate, pathologicopsychological, scientifico-
philosophical, tetraiodophenolphthalein, and thyroparathyroidectomize. Good luck with that, spell checker.

98

Chapter 4: Comparators and Collectors

Example 4-19. Sorting the map by key

System.out.println("\nNumber of words of each length (desc order):");
try (Stream<String> lines = Files.lines(dictionary)) {
Map<Integer, Long> map = lines.filter(s -> s.length() > 20)
.collect(Collectors.groupingBy(
:length, Collectors.counting()));

map.entrySet().stream()
.sorted(Map.Entry.comparingByKey(Comparator.reverseOrder()))
.forEach(e -> System.out.printf("Length %d: %2d words%n",
e.getKey(), e.getValue()));
} catch (IOException e) {
e.printStackTrace();
}

After computing the Map<Integer,Long>, this operation extracts the entrySet and
produces a stream. The sorted method on Stream is used to produce a sorted stream
using the provided comparator.

In this case, Map.Entry.comparingByKey generates a comparator that sorts by the
keys, and using the overload that takes a comparator allows the code to specify that
we want it in reverse order.

The sorted method on Stream produces a new, sorted stream that
does not modify the source. The original Map is unaffected.

The result is:

Number of words of each length (desc order):
Length 24: 5 words
Length 23: 17 words
Length 22: 41 words
Length 21: 82 words

The other sorting methods listed in Table 4-1 are used similarly.

See Also

An additional example of sorting a Map by keys or values is shown in Appendix A.
Downstream collectors are discussed in Recipe 4.6. File operations on the dictionary
is part of Recipe 7.1.

4.4Sorting Maps | 99

4.5 Partitioning and Grouping

Problem

You want to divide a collection of elements into categories.

Solution

The Collectors.partitioningBy method splits elements into those that satisfy a
Predicate and those that do not. The Collectors.groupingBy method produces a
Map of categories, where the values are the elements in each category.

Discussion

Say you have a collection of strings. If you want to split them into those with even
lengths and those with odd lengths, you can use Collectors.partitioningBy, as in
Example 4-20.

Example 4-20. Partitioning strings by even or odd lengths

List<String> strings = Arrays.asList("this", "is", "a", "long", "list", "of",

"strings", "to", "use", "as", "a", "demo");

Map<Boolean, List<String>> lengthMap = strings.stream()
.collect(Collectors.partitioningBy(s -> s.length() % 2 == 0)); (1)

lengthMap.forEach((key,value) -> System.out.printf("%5s: %s%n", key, value));

//
// false: [a, strings, use, a]
// true: [this, is, long, list, of, to, as, demo]

© Partitioning by even or odd length

The signature of the two partitioningBy methods are:

static <T> Collector<T,?,Map<Boolean,List<T>>> partitioningBy(
Predicate<? super T> predicate)
static <T,D,A> Collector<T,?,Map<Boolean,D>> partitioningBy(
Predicate<? super T> predicate, Collector<? super T,A,D> downstream)
The return types look rather nasty due to the generics, but you rarely have to deal
with them in practice. Instead, the result of either operation becomes the argument to
the collect method, which uses the generated collector to create the output map
defined by the third generic argument.

The first partitioningBy method takes a single Predicate as an argument. It divides
the elements into those that satisfy the Predicate and those that do not. You will

100 | Chapter4: Comparators and Collectors

always get a Map as a result that has exactly two entries: a list of values that satisfy the
Predicate, and a list of values that do not.

The overloaded version of the method takes a second argument of type Collector,
called a downstream collector. This allows you to postprocess the lists returned by the
partition, and is discussed in Recipe 4.6.

The groupingBy method performs an operation like a “group by” statement in SQL. It
returns a Map where the keys are the groups and the values are lists of elements in
each group.

If you are getting your data from a database, by all means do any
grouping operations there. The new API methods are convenience
methods for data in memory.

The signature for the groupingBy method is:

static <T,K> Collector<T,?,Map<K,List<T>>> groupingBy(
Function<? super T,? extends K> classifier)

The Function argument takes each element of the stream and extracts a property to
group by. This time, rather than simply partition the strings into two categories, con-
sider separating them by length, as in Example 4-21.

Example 4-21. Grouping strings by length

List<String> strings = Arrays.asList("this", "is", "a", "long", "list", "of",

”strings", utou, "USE", ”as”, a", "demo");

Map<Integer, List<String>> lengthMap = strings.stream()
.collect(Collectors.groupingBy(:length)); (1)

lengthMap.forEach((k,v) -> System.out.printf("%d: %s%n", k, v));
//

// 1: [a, a]

// 2: [is, of, to, as]

// 3: [use]

// 4: [this, long, list, demo]

// 7: [strings]

© Grouping strings by length

The keys in the resulting map are the lengths of the strings (1, 2, 3, 4, and 7) and the
values are lists of strings of each length.

4.5 Partitioning and Grouping | 101

See Also

An extension of the recipe we just looked at, Recipe 4.6 shows how to postprocess the
lists returned by a groupingBy or partitioningBy operation.

4.6 Downstream Collectors

Problem

You want to postprocess the collections returned by a groupingBy or partitioningBy
operation.

Solution

Use one of the static utility methods from the java.util.stream.Collectors class.

Discussion

In Recipe 4.5, we looked at how to separate elements into multiple categories. The
partitioningBy and groupingBy methods return a Map where the keys were the cate-
gories (booleans true and false for partitioningBy, objects for groupingBy) and
the values were lists of elements that satisfied each category. Recall the example parti-
tioning strings by even and odd lengths, shown in Example 4-20 but repeated in
Example 4-22 for convenience.

Example 4-22. Partitioning strings by even or odd lengths

List<String> strings = Arrays.asList("this", "is", "a", "long", "list", "of",

"strings", "to", "use", "as", "a", "demo");

Map<Boolean, List<String>> lengthMap = strings.stream()
.collect(Collectors.partitioningBy(s -> s.length() % 2 == 0));

lengthMap.forEach((key,value) -> System.out.printf("%5s: %s%n", key, value));

//
// false: [a, strings, use, a]
// true: [this, is, long, list, of, to, as, demo]

Rather than the actual lists, you may be interested in how many elements fall into
each category. In other words, instead of producing a Map whose values are
List<String>, you might want just the number of elements in each of the lists. The
partitioningBy method has an overloaded version whose second argument is of
type Collector:

static <T,D,A> Collector<T,?,Map<Boolean,D>> partitioningBy(
Predicate<? super T> predicate, Collector<? super T,A,D> downstream)

102 | Chapter4: Comparators and Collectors

This is where the static Collectors.counting method becomes useful. Example 4-23
shows how it works.

Example 4-23. Counting the partitioned strings

Map<Boolean, Long> numberLengthMap = strings.stream()
.collect(Collectors.partitioningBy(s -> s.length() % 2 == 0,
Collectors.counting()));

numberLengthMap.forEach((k,v) -> System.out.printf("%5s: %d%n", k, v));
//

// false: 4
// true: 8

@ Downstream collector

This is called a downstream collector, because it is postprocessing the resulting lists
downstream (i.e., after the partitioning operation is completed).

The groupingBy method also has an overload that takes a downstream collector:

/**
* @param <T> the type of the input elements
* @param <K> the type of the keys
* @param <A> the intermediate accumulation type of the downstream collector
* @param <D> the result type of the downstream reduction
* @param classifier a classifier function mapping input elements to keys
* @param downstream a {@code Collector} implementing the downstream reduction
* @return a {@code Collector} implementing the cascaded group-by operation
*/
static <T,K,A,D> Collector<T,?,Map<K,D>> groupingBy(
Function<? super T,? extends K> classifier,
Collector<? super T,A,D> downstream)

A portion of the Javadoc comment from the source code is included in the signature,
which shows that T is the type of the element in the collection, K is the key type for the
resulting map, A is an accumulator, and D is the type of the downstream collector.
The ? represents “unknown.” See Appendix A for more details on generics in Java 8.

Several methods in Stream have analogs in the Collectors class. Table 4-2 shows
how they align.

4.6 Downstream Collectors | 103

Table 4-2. Collectors methods similar to Stream methods

Stream Collectors

count counting

map mapping

min minBy

max maxBy
IntStream.sum summingInt
DoubleStream.sum summingDouble
LongStream.sum summinglLong
IntStream.summarizing summarizingInt

DoubleStream.summarizing summarizingDouble

LongStream.summarizing summarizinglLong

Again, the purpose of a downstream collector is to postprocess the collection of
objects produced by an upstream operation, like partitioning or grouping.
See Also

Recipe 7.1 shows an example of a downstream collector when determining the
longest words in a dictionary. Recipe 4.5 discusses the partitionBy and groupingBy
methods in more detail. The whole issue of generics is covered in Appendix A.

4.7 Finding Max and Min Values

Problem

You want to determine the maximum or minimum value in a stream.

Solution

You have several choices: the maxBy and minBy methods on BinaryOperator, the max
and min methods on Stream, or the maxBy and minBy utility methods on Collectors.

Discussion

A BinaryOperator is one of the functional interfaces in the java.util.function
package. It extends BiFunction and applies when both arguments to the function and
the return value are all from the same class.

The BinaryOperator interface adds two static methods:

104 | Chapter4: Comparators and Collectors

static <T> BinaryOperator<T> maxBy(Comparator<? super T> comparator)
static <T> BinaryOperator<T> minBy(Comparator<? super T> comparator)

Each of these returns a BinaryOperator that uses the supplied Comparator.

To demonstrate the various ways to get the maximum value from a stream, consider a
POJO called Employee that holds three attributes: name, salary, and department, as
in Example 4-24.

Example 4-24. Employee POJO

public class Employee {
private String name;
private Integer salary;

private String department;

// ... other methods ...

}

List<Employee> employees = Arrays.asList((1]
new Employee("Cersei", 250_000, "Lannister"),
new Employee("Jamie", 150_000, "Lannister"),
new Employee("Tyrion", 1000, "Lannister"),
new Employee("Tywin", 1_000_000, "Lannister"),
new Employee("Jon Snow", 75_000, "Stark"),
new Employee("Robb", 120_000, "Stark"),
new Employee("Eddard", 125_000, "Stark"),
new Employee("Sansa", 0, "Stark"),
new Employee("Arya", 1000, "Stark"));

Employee defaultEmployee = (2]

new Employee("A man (or woman) has no name", 0, "Black and White");
© Collection of employees
@ Default for when the stream is empty

Given a collection of employees, you can use the reduce method on Stream, which
takes a BinaryOperator as an argument. The snippet in Example 4-25 shows how to
get the employee with the largest salary.

Example 4-25. Using BinaryOperator.maxBy

Optional<Employee> optionalEmp = employees.stream()
.reduce(BinaryOperator.maxBy(Comparator.comparingInt(:getSalary)));

System.out.println("Emp with max salary: " +
optionalEmp.orElse(defaultEmployee));

4.7 Finding Max and Min Values | 105

The reduce method requires a BinaryOperator. The static maxBy method produces
that BinaryOperator based on the supplied Comparator, which in this case compares
employees by salary.

This works, but there’s actually a convenience method called max that can be applied
directly to the stream:

Optional<T> max(Comparator<? super T> comparator)

Using that method directly is shown in Example 4-26.

Example 4-26. Using Stream.max

optionalEmp = employees.stream()
.max(Comparator.comparingInt(:getSalary));

The result is the same.

Note that there is also a method called max on the primitive streams (IntStream, Long
Stream, and DoubleStream) that takes no arguments. Example 4-27 shows that
method in action.

Example 4-27. Finding the highest salary

Optionallnt maxSalary = employees.stream()
.mapToInt(:getSalary)
.max();

System.out.println("The max salary is

+ maxSalary);

In this case, the mapToInt method is used to convert the stream of employees into a
stream of integers by invoking the getSalary method, and the returned stream is an
IntStream. The max method then returns an Optionallnt.

There is also a static method called maxBy in the Collectors utility class. You can use
it directly here, as in Example 4-28.

Example 4-28. Using Collectors.maxBy

optionalEmp = employees.stream()
.collect(Collectors.maxBy(Comparator.comparingInt(:getSalary)));

This is awkward, however, and can be replaced by the max method on Stream, as
shown in the preceding example. The maxBy method on Collectors is helpful when
used as a downstream collector (i.e., when postprocessing a grouping or partitioning
operation). The code in Example 4-29 uses groupingBy on Stream to create a Map of
departments to lists of employees, but then determines the employee with the greatest
salary in each department.

106 | Chapter4: Comparators and Collectors

Example 4-29. Using Collectors.maxBy as a downstream collector

Map<String, Optional<Employee>> map = employees.stream()
.collect(Collectors.groupingBy(
:getDepartment,
Collectors.maxBy(
Comparator.comparingInt(:getSalary))));

map.forEach((house, emp) ->
System.out.println(house +

+ emp.orElse(defaultEmployee)));

The minBy method in each of these classes works the same way.

See Also

Functions are discussed in Recipe 2.4. Downstream collectors are in Recipe 4.6.

4.8 Creating Immutable Collections

Problem

You want to create an immutable list, set, or map using the Stream API.

Solution

Use the new static method collectingAndThen in the Collectors class.

Discussion

With its focus on parallelization and clarity, functional programming favors using
immutable objects wherever possible. The Collections framework, added in Java 1.2,
has always had methods to create immutable collections from existing ones, though
in a somewhat awkward fashion.

The Collections utility class has methods unmodifiableList, unmodifiableSet,
and unmodifiableMap (along with a few other methods with the same unmodifiable
prefix), as shown in Example 4-30.

Example 4-30. Unmodifiable methods in the Collections class

static <T> List<T> unmodifiableList(List<? extends T> list)
static <T> Set<T> unmodifiableSet(Set<? extends T> s)
static <K,V> Map<K,V> unmodifiableMap(Map<? extends K,? extends V> m)

In each case, the argument to the method is an existing list, set, or map, and the
resulting list, set, or map has the same elements as the argument, but with an impor-

4.8 Creating Immutable Collections | 107

tant difference: all the methods that could modify the collection, like add or remove,
now throw an UnsupportedOperationException.

Prior to Java 8, if you received the individual values as an argument, using a variable
argument list, you produced an unmodifiable list or set as shown in Example 4-31.

Example 4-31. Creating unmodifiable lists or sets prior to Java 8
(1]

public final <T> List<T> createImmutableListJava7(T... elements) {
return Collections.unmodifiableList(Arrays.asList(elements));

}
(1]

public final <T> Set<T> createImmutableSetJava7(T... elements) {
return Collections.unmodifiableSet(new HashSet<>(Arrays.asList(elements)));

}

© You promise not to corrupt the input array type. See Appendix A for details.

The idea in each case is to start by taking the incoming values and converting them
into a List. You can wrap the resulting list using unmodifiableList, or, in the case of
a Set, use the list as the argument to a set constructor before using unmodifiableSet.

In Java 8, with the new Stream API, you can instead take advantage of the static
Collectors.collectingAndThen method, as in Example 4-32.

Example 4-32. Creating unmodifiable lists or sets in Java 8

import static java.util.stream.Collectors.collectingAndThen;
import static java.util.stream.Collectors.tolList;
import static java.util.stream.Collectors.toSet;

// ... define a class with the following methods ...

public final <T> List<T> createImmutableList(T... elements) {
return Arrays.stream(elements)
.collect(collectingAndThen(toList(),
:unmodifiableList)); @

public final <T> Set<T> createImmutableSet(T... elements) {
return Arrays.stream(elements)
.collect(collectingAndThen(toSet(),
:unmodifiableSet)); (1)

108 | Chapter4: Comparators and Collectors

© “Finisher” wraps the generated collections

The Collectors.collectingAndThen method takes two arguments: a downstream
Collector and a Function called a finisher. The idea is to stream the input elements
and then collect them into a List or Set, and then the unmodifiable function wraps
the resulting collection.

Converting a series of input elements into an unmodifiable Map isn’t as clear, partly
because it’s not obvious which of the input elements would be assumed to be keys and
which would be values. The code shown in Example 4-33* creates an immutable Map
in a very awkward way, using an instance initializer.

Example 4-33. Creating an immutable Map

Map<String, Integer> map = Collections.unmodifiableMap(
new HashMap<String, Integer>() {{
put("have", 1);
put("the", 2);
put("high", 3);
put("ground", 4);
s

Readers who are familiar with Java 9, however, already know that this entire recipe
can be replaced with a very simple set of factory methods: List.of, Set.of, and
Map.of.

See Also

Recipe 10.3 shows the new factory methods in Java 9 that automatically create
immutable collections.

4.9 Implementing the Collector Interface

Problem

You need to implement java.util.stream.Collector manually, because none of the
factory methods in the java.util.stream.Collectors class give you exactly what
you need.

4 From Carl Martensen’s blog post “Java 9°s Immutable Collections Are Easier To Create But Use With Caution”.

4.9 Implementing the Collector Interface | 109

http://carlmartensen.com/immutability-made-easy-in-java-9

Solution

Provide lambda expressions or method references for the Supplier, accumulator,
combiner, and finisher functions used by the Collector.of factory methods, along
with any desired characteristics.

Discussion

The utility class java.util.stream.Collectors has several convenient static meth-
ods whose return type is Collector. Examples are tolList, toSet, toMap, and even
toCollection, each of which is illustrated elsewhere in this book. Instances of classes
that implement Collector are sent as arguments to the collect method on Stream.
For instance, in Example 4-34, the method accepts string arguments and returns a
List containing only those whose length is even.

Example 4-34. Using collect to return a List

public List<String> evenLengthStrings(String... strings) {
return Stream.of(strings)
.filter(s -> s.length() % 2 == 0)
.collect(Collectors.tolList()); (1)
}

© Collect even-length strings into a List

If you need to write your own collectors, however, the procedure is a bit more com-
plicated. Collectors use five functions that work together to accumulate entries into a
mutable container and optionally transform the result. The five functions are called
supplier, accumulator, combiner, finisher, and characteristics.

Taking the characteristics function first, it represents an immutable Set of ele-
ments of an enum type Collector.Characteristics. The three possible values are
CONCURRENT, IDENTITY_FINISH, and UNORDERED. CONCURRENT means that the result
container can support the accumulator function being called concurrently on the
result container from multiple threads. UNORDERED says that the collection operation
does not need to preserve the encounter order of the elements. IDENTITY_FINISH
means that the finishing function returns its argument without any changes.

Note that you don’t have to provide any characteristics if the defaults are what you
want.

The purpose of each of the required methods is:

supplier()
Create the accumulator container using a Supplier<A>

110 | Chapter4: Comparators and Collectors

accumulator()
Add a single new data element to the accumulator container using a Bi Con
sumer<A,T>

combiner()
Merge two accumulator containers using a BinaryOperator<A>

finisher()
Transform the accumulator container into the result container using a Function
<A,R>

characteristics()
A Set<Collector.Characteristics> chosen from the enum values

As wusual, an understanding of the functional interfaces defined in the
java.util.function package makes everything clearer. A Supplier is used to create
the container where temporary results are accumulated. A BiConsumer adds a single
element to the accumulator. A BinaryOperator means that both input types and the
output type are the same, so here the idea is to combine two accumulators into one. A
Function finally transforms the accumulator into the desired result container.

Each of these methods is invoked during the collection process, which is triggered by
(for example) the collect method on Stream. Conceptually, the collection process is
equivalent to the (generic) code shown in Example 4-35, taken from the Javadocs.

Example 4-35. How the Collector methods are used

R container = collector.supplier.get(); (1)
for (T t : data) {
collector.accumulator().accept(container, t); (2]

}

return collector.finisher().apply(container); (3]

@ Create the accumulator container
® Add each element to the accumulator container
© Convert the accumulator container to the result container using the finisher

Conspicuous by its absence is any mention of the combiner function. If your stream
is sequential, you don’t need it—the algorithm proceeds as described. If, however, you
are operating on a parallel stream, then the work is divided into multiple regions,
each of which produces its own accumulator container. The combiner is then used
during the join process to merge the accumulator containers together into a single
one before applying the finisher function.

4.9 Implementing the Collector Interface | 111

A code sample, similar to that shown in Example 4-34, is given in Example 4-36.

Example 4-36. Using collect to return an unmodifiable SortedSet

public SortedSet<String> oddLengthStringSet(String... strings) {
Collector<String, ?, SortedSet<String>> intoSet =

Collector.of(TreeSet<String>: :new, (1]
:add, (2]
(left, right) -> { (3]

left.addAll(right);
return left;
3,
:unmodifiableSortedSet); (4)
return Stream.of(strings)
.filter(s -> s.length() % 2 != 0)
.collect(intoSet);
}

Supplier to create a new TreeSet
BiConsumer to add each string to the TreeSet

BinaryOperator to combine two SortedSet instances into one

© 6 o o

finisher function to create an unmodifiable set

The result will be a sorted, unmodifiable set of strings, ordered lexicographically.

This example used one of the two overloaded versions of the static of method for
producing collectors, whose signatures are:

static <T,A,R> Collector<T,A,R> of(Supplier<A> supplier,
BiConsumer<A,T> accumulator,
BinaryOperator<A> combiner,
Function<A,R> finisher,
Collector.Characteristics... characteristics)

static <T,R> Collector<T,R,R> of(Supplier<R> supplier,
BiConsumer<R,T> accumulator,
BinaryOperator<R> combiner,
Collector.Characteristics... characteristics)

Given the convenience methods in the Collectors class that produce collectors for
you, you rarely need to make one of your own this way. Still, it's a useful skill to have,
and once again illustrates how the functional interfaces in the java.util.function
package come together to create interesting objects.

112 | Chapter4: Comparators and Collectors

See Also

The finisher function is an example of a downstream collector, discussed further in
Recipe 4.6. The Supplier, Function, and BinaryOperator functional interfaces are
discussed in various recipes in Chapter 2. The static utility methods in Collectors
are discussed in Recipe 4.2.

4.9 Implementing the Collector Interface | 113

CHAPTER 5

Issues with Streams, Lambdas,
and Method References

Now that you know the basics of lambdas and method references and how they are
used in streams, there are several topics that arise from the combination. For exam-
ple, now that interfaces can have default methods, what happens when a class imple-
ments multiple interfaces that have the same default method signature but different
implementations? As another example, what happens when you are writing code in a
lambda expression and try to access or modify a variable defined outside it? Also,
what about exceptions? How are they handled in lambda expressions, where you have
no method signature on which to add a throws clause?

This chapter deals with all these issues and more.

5.1The java.util.Objects Class

Problem

You wish to use static utility methods for null checking, comparisons, and more.

Solution
Use the java.util.Objects class, added in Java 7, but helpful during stream process-

ng.

Discussion

One of the lesser-known classes added in Java 7 is the java.util.Objects class,
which contains static methods for a variety of tasks. These methods include:

115

static boolean deepEquals(Object a, Object b)
Checks for “deep” equality, which is particularly useful when comparing arrays.

static boolean equals(Object a, Object b)
Uses the equals method from the first argument, but is null safe.

static int hash(Object... values)
Generates a hash code for a sequence of input values.

static String toString(Object o)
Returns the result of calling toString on the argument if not null, and returns
null otherwise.

static String toString(Object o, String nullDefault)
Returns the result of calling toString on the first argument, and returns the sec-
ond argument if the first argument is null.

There are also a few overloads of a method useful for validation of arguments:

static <T> T requireNotNull(T obj)
Returns T if not null and throws a NullPointerException (NPE) otherwise.

static <T> T requireNotNull(T obj, String message)
Same as previous method, but the NPE resulting from a null argument has the
specified message.

static <T> T requireNotNull(T obj, Supplier<String> messageSupplier)
Same as previous method, but invokes the given Supplier to generate a message
for the NPE if the first argument is null.

That last method takes a Supplier<String> as an argument, which finally gives a rea-
son for including this class in a book focused on Java 8 and above. An arguably better
reason, however, is given by the 1sNull and nonNull methods. Each of those returns
a boolean:

static boolean isNull(Object obj)
Returns true if the provided reference is null and false otherwise.

static boolean nonNull(Object obj)
Returns true if the provided reference is not null and false otherwise.

The beauty of these methods is that they can be used as Predicate instances in a fil-
ter.

For example, say you have a class that returns a collection. Example 5-1 has a method
to return the complete collection, whatever it may be, and a method to return the col-
lection without any nulls.

116 | Chapter5: Issues with Streams, Lambdas, and Method References

Example 5-1. Returning a collection and filtering out nulls

List<String> strings = Arrays.aslList(

"this", null, "is", "a", null, "list", "of", "strings", null);
List<String> nonNullStrings = strings.stream()

filter(:nonNull)
.collect(Collectors.tolList());

© Filter out null elements

You can use the Objects.deepEquals method to test this, as in Example 5-2.

Example 5-2. Testing the filter

public void testNonNulls() throws Exception {
List<String> strings =
Arrays.asList("this", "is", "a", "list", "of", "strings");
assertTrue(Objects.deepEquals(strings, nonNullStrings);

}
This process can be generalized so that it doesn't just apply to strings. The code in
Example 5-3 filters nulls out of any list.
Example 5-3. Filtering nulls from a generic list
public <T> List<T> getNonNullElements(List<T> list) {
return list.stream()
filter(:nonNull)
.collect(Collectors.tolList());
}

Now a method that produces a List with multiple elements being null can be filtered
with ease.

5.2 Lambdas and Effectively Final

Problem

Inside a lambda expression you want to access a variable defined outside it.

Solution

Local variables accessed inside lambda expressions must be final or “effectively final”
Attributes can be both acces