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Preface

Welcome to the book you will want to have by your side when you cross the door of a new
consulting gig or take on a new Natural Language Processing (NLP) problem. This book starts
as a private repository of LingPipe recipes that Baldwin continually referred to when facing
repeated but twitchy NLP problems with system building. We are an open source company
but the code never merited sharing. Now they are shared.

Honestly, the LingPipe API is an intimidating and opaque edifice to code against like any rich
and complex Java API. Add in the "black arts" quality needed to get NLP systems working and
we have the perfect conditions to satisfy the need for a recipe book that minimizes theory
and maximizes the practicality of getting the job done with best practices sprinkled in from
20 years in the business.

This book is about getting the job done; damn the theory! Take this book and build the next
generation of NLP systems and send us a note about what you did.

LingPipe is the best tool on the planet to build NLP systems with; this book is the way to use it.

What this book covers

Chapter 1, Simple Classifiers, explains that a huge percentage of NLP problems are actually
classification problems. This chapter covers very simple but powerful classifiers based on
character sequences and then brings in evaluation techniques such as cross-validation and
metrics such as precision, recall, and the always-BS-resisting confusion matrix. You get to
train yourself on your own and download data from Twitter. The chapter ends with a simple
sentiment example.

Chapter 2, Finding and Working with Words, is exactly as boring as it sounds but there

are some high points. The last recipe will show you how to tokenize Chinese/Japanese/
Vietnamese languages, which doesn't have whitespaces, to help define words. We will show
you how to wrap Lucene tokenizers, which cover all kinds of fun languages such as Arabic.
Almost everything later in the book relies on tokenization.
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Chapter 3, Advanced Classifiers, introduces the star of modern NLP systems—logistic
regression classifiers. 20 years of hard-won experience lurks in this chapter. We will address
the life cycle around building classifiers and how to create training data, cheat when creating
training data with active learning, and how to tune and make the classifiers work faster.

Chapter 4, Tagging Words and Tokens, explains that language is about words. This chapter
focuses on ways of applying categories to tokens, which in turn drives many of the high-end
uses of LingPipe such as entity detection (people/places/orgs in text), part-of-speech tagging,
and more. It starts with tag clouds, which have been described as "mullet of the Internet"

and ends with a foundational recipe for conditional random fields (CRF), which can

provide state-of-the-art performance for entity-detection tasks. In between, we will

address confidence-tagged words, which is likely to be a very important dimension

of more sophisticated systems.

Chapter 5, Finding Spans in Text - Chunking, shows that text is not words alone. It is
collections of words, usually in spans. This chapter will advance from word tagging to span
tagging, which brings in capabilities such as finding sentences, named entities, and basal
NPs and VPs. The full power of CRFs are addressed with discussions on feature extraction
and tuning. Dictionary approaches are discussed as they are ways of combining chunkings.

Chapter 6, String Comparison and Clustering, focuses on comparing text with each other,
independent of a trained classifier. The technologies range from the hugely practical
spellchecking to the hopeful but often frustrating Latent Dirichelet Allocation (LDA) clustering
approach. Less presumptive technologies such as single-link and complete-link clustering
have driven major commercial successes for us. Don't ignore this chapter.

Chapter 7, Finding Coreference Between Concepts/People, lays the future but unfortunately,
you won't get the ultimate recipe, just our best efforts so far. This is one of the bleeding edges
of industrial and academic NLP efforts that has tremendous potential. Potential is why we
include our efforts to help grease the way to see this technology in use.

What you need for this book

You need some NLP problems and a solid foundation in Java, a computer, and a
developer-savvy approach.

Who this book is for

If you have NLP problems or you want to educate yourself in comment NLP issues, this book

is for you. With some creativity, you can train yourself into being a solid NLP developer, a beast
so rare that they are seen about as often as unicorns, with the result of more interesting job
prospects in hot technology areas such as Silicon Valley or New York City.
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Conventions

In this book, you will find a number of styles of text that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Java is a pretty awful language to put into a recipe book with a 66-character limit on lines
for code. The overriding convention is that the code is ugly and we apologize.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Once the
string is read in from the console, then classifier.classify (input) is called, which
returns Classification."

A block of code is set as follows:

public static List<String[]> filterJaccard(List<String[]> texts,
TokenizerFactory tokFactory, double cutoff) {
JaccardDistance jaccardD = new JaccardDistance (tokFactory) ;

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

public static void consoleInputBestCategory (
BaseClassifier<CharSequence> classifier) throws IOException

BufferedReader reader = new BufferedReader (
new InputStreamReader (System.in)) ;
while (true) ({
System.out.println("\nType a string to be classified. " + "
Empty string to quit.");
String data = reader.readLine() ;
if (data.equals("")) {
return;
}
Classification classification = classifier.classify(data);

System.out.println("Best Category: " +
classification.bestCategory());

}
Any command-line input or output is written as follows:

tar -xvzf lingpipeCookbook.tgz
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New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "Click on Create a
new application."

Warnings or important notes appear in a box like this.

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Send hate/love/neutral e-mails to cookbook@l ingpipe.com. We do care, we won't
do your homework for you or prototype your startup for free, but do talk to us.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

We do offer consulting services and even have a pro-bono (free) program as well as a start
up support program. NLP is hard, this book is most of what we know but perhaps we can
help more.

Downloading the example code

You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

All the source for the book is available at http://alias-i.com/book.html.

—a1


www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://alias-i.com/book.html
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Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http: //www.packtpub.com/submit-errata,
selecting your book, clicking on the errata submission form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded on our website, or added to any list of existing errata, under the Errata section
of that title. Any existing errata can be viewed by selecting your title from http://www.
packtpub.com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyrightepacktpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Hit http://lingpipe.comand go to our forum for the best place to get questions
answered and see if you have a solution already.



http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
http://www.packtpub.com/support
http://lingpipe.com




Simple Classifiers

In this chapter, we will cover the following recipes:

» Deserializing and running a classifier

» Getting confidence estimates from a classifier

» Getting data from the Twitter API

» Applying a classifier to a . csv file

» Evaluation of classifiers - the confusion matrix

» Training your own language model classifier

» How to train and evaluate with cross validation

» Viewing error categories - false positives

» Understanding precision and recall

» How to serialize a LingPipe object - classifier example
» Eliminate near duplicates with the Jaccard distance

» How to classify sentiment - simple version



Simple Classifiers

Introduction

This chapter introduces the LingPipe toolkit in the context of its competition and then dives
straight into text classifiers. Text classifiers assign a category to text, for example, they assign
the language to a sentence or tell us if a tweet is positive, negative, or neutral in sentiment.
This chapter covers how to use, evaluate, and create text classifiers based on language models.
These are the simplest machine learning-based classifiers in the LingPipe API. What makes
them simple is that they operate over characters only—later, classifiers will have notions of
words/tokens and even more. However, don't be fooled, character-language models are ideal
for language identification, and they were the basis of some of the world's earliest commercial
sentiment systems.

This chapter also covers crucial evaluation infrastructure—it turns out that almost everything
we do turns out to be a classifier at some level of interpretation. So, do not skimp on the
power of cross validation, definitions of precision/recall, and F-measure.

The best part is that you will learn how to programmatically access Twitter data to train up
and evaluate your own classifiers. There is a boring bit concerning the mechanics of reading
and writing LingPipe objects from/to disk, but other than that, this is a fun chapter. The goal
of this chapter is to get you up and running quickly with the basic care and feeding of
machine-learning techniques in the domain of natural language processing (NLP).

LingPipe is a Java toolkit for NLP-oriented applications. This book will show you how to solve
common NLP problems with LingPipe in a problem/solution format that allows developers to
quickly deploy solutions to common tasks.

LingPipe and its installation

LingPipe 1.0 was released in 2003 as a dual-licensed open source NLP Java library.

At the time of writing this book, we are coming up on 2000 hits on Google Scholar and
have thousands of commercial installs, ranging from universities to government agencies
to Fortune 500 companies.

Current licensing is either AGPL (http://www.gnu.org/licenses/agpl-3.0.html)
or our commercial license that offers more traditional features such as indemnification and
non-sharing of code as well as support.

Projects similar to LingPipe

Nearly all NLP projects have awful acronyms so we will lay bare our own. LingPipe is the short
form for linguistic pipeline, which was the name of the cvs directory in which Bob Carpenter
put the initial code.



http://www.gnu.org/licenses/agpl-3.0.html

Chapter 1

LingPipe has lots of competition in the NLP space. The following are some of the more popular
ones with a focus on Java:

>

>

>

NLTK: This is the dominant Python library for NLP processing.
OpenNLP: This is an Apache project built by a bunch of smart folks.

JavaNLP: This is a rebranding of Stanford NLP tools, again built by a bunch
of smart folks.

ClearTK: This is a University of Boulder toolkit that wraps lots of popular machine
learning frameworks.

DkPro: Technische Universitat Darmstadt from Germany produced this UIMA-based
project that wraps many common components in a useful manner. UIMA is a common
framework for NLP.

GATE: GATE is really more of a framework than competition. In fact, LingPipe
components are part of their standard distribution. It has a nice graphical "hook the
components up" capability.

Learning Based Java (LBJ): LBJ is a special-purpose programming language based
on Java, and it is geared toward machine learning and NLP. It was developed at the
Cognitive Computation Group of the University of lllinois at Urbana Champaign.

Mallet: This name is the short form of MAchine Learning for LanguagE Toolkit.
Apparently, reasonable acronym generation is short in supply these days. Smart
folks built this too.

Here are some pure machine learning frameworks that have broader appeal but are not
necessarily tailored for NLP tasks:

>

Vowpal Wabbit: This is very focused on scalability around Logistic Regression,
Latent Dirichelet Allocation, and so on. Smart folks drive this.

Factorie: It is from UMass, Amherst and an alternative offering to Mallet. Initially it
focused primarily on graphic models, but now it also supports NLP tasks.

Support Vector Machine (SVM): SVM light and 1ibsvm are very popular SVM
implementations. There is no SVM implementation in LingPipe, because logistic
regression does this as well.

So, why use LingPipe?
It is very reasonable to ask why choose LingPipe with such outstanding free competition
mentioned earlier. There are a few reasons:

>

Documentation: The class-level documentation in LingPipe is very thorough. If the
work is based on academic work, that work is cited. Algorithms are laid out, the
underlying math is explained, and explanations are precise. What the documentation
lacks is a "how to get things done" perspective; however, this is covered in this book.

Bl
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>

Enterprise/server optimized: LingPipe is designed from the ground up for server
applications, not for command-line usage (though we will be using the command line
extensively throughout the book).

Coded in the Java dialect: LingPipe is a native Java API that is designed

according to standard Java class design principles (Joshua Bloch's Effective Java,
by Addison-Wesley), such as consistency checks on construction, immutability, type
safety, backward-compatible serializability, and thread safety.

Error handling: Considerable attention is paid to error handling through exceptions
and configurable message streams for long-running processes.

Support: LingPipe has paid employees whose job is to answer your questions and
make sure that LingPipe is doing its job. The rare bug gets fixed in under 24 hours
typically. They respond to questions very quickly and are very willing to help people.

Consulting: You can hire experts in LingPipe to build systems for you. Generally, they
teach developers how to build NLP systems as a byproduct.

Consistency: The LingPipe APl was designed by one person, Bob Carpenter, with an
obsession of consistency. While it is not perfect, you will find a regularity and eye to
design that can be missing in academic efforts. Graduate students come and go, and
the resulting contributions to university toolkits can be quite varied.

Open source: There are many commercial providers, but their software is a black box.
The open source nature of LingPipe provides transparency and confidence that the
code is doing what we ask it to do. When the documentation fails, it is a huge relief
to have access to code to understand it better.

Downloading the book code and data

You will need to download the source code for this cookbook, with supporting models
and data from http://alias-1i.com/book.html. Untar and uncompress it using the
following command:

tar -xvzf lingpipeCookbook.tgz

Downloading the example code

M You can download the example code files for all Packt books you have
Q purchased from your account at http://www.packtpub. com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Alternatively, your operating system might provide other ways of extracting the archive.
All recipes assume that you are running the commands in the resulting cookbook directory.
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Downloading LingPipe
Downloading LingPipe is not strictly necessary, but you will likely want to be able to look at the
source and have a local copy of the Javadoc.

The download and installation instructions for LingPipe can be found at http://alias-1i.
com/lingpipe/web/install.html.

The examples from this chapter use command-line invocation, but it is assumed that the
reader has sufficient development skills to map the examples to their preferred IDE/ant
or other environment.

Deserializing and running a classifier

This recipe does two things: introduces a very simple and effective language ID classifier
and demonstrates how to deserialize a LingPipe class. If you find yourself here from a later
chapter, trying to understand deserialization, | encourage you to run the example program
anyway. It will take 5 minutes, and you might learn something useful.

Our language ID classifier is based on character language models. Each language model gives
you the probability of the text, given that it is generated in that language. The model that is
most familiar with the text is the first best fit. This one has already been built, but later in the
chapter, you will learn to make your own.

How to do it...

Perform the following steps to deserialize and run a classifier:

1. Go to the cookbook directory for the book and run the command for OSX, Unix,
and Linux:
java -cp lingpipe-cookbook.l.0.jar:1lib/lingpipe-4.1.0.jar com.
lingpipe.cookbook.chapterl.RunClassifierFromDisk
For Windows invocation (quote the classpath and use ; instead of :):
java -cp "lingpipe-cookbook.l.0.jar;lib\lingpipe-4.1.0.jar" com.
lingpipe.cookbook.chapterl.RunClassifierFromDisk

We will use the Unix style command line in this book.
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2. The program reports the model being loaded and a default, and prompts for a
sentence to classify:

Loading: models/3LangId.LMClassifier

Type a string to be classified. Empty string to quit.
The rain in Spain falls mainly on the plain.

english

Type a string to be classified. Empty string to quit.
la lluvia en Espaifia cae principalmente en el llano.
spanish

Type a string to be classified. Empty string to quit.
AL ORITEIEFICE S D,

japanese

3. The classifier is trained on English, Spanish, and Japanese. We have entered an
example of each—to get some Japanese, goto http://ja.wikipedia.org/
wiki/. These are the only languages it knows about, but it will guess on any text.
So, let's try some Arabic:

Type a string to be classified. Empty string to quit.
ek s el éxﬁi;\u‘b‘\ gds 2l

japanese

4. ltthinks it is Japanese because this language has more characters than English or
Spanish. This in turn leads that model to expect more unknown characters. All the
Arabic characters are unknown.

5. If you are working with a Windows terminal, you might encounter difficulty entering
UTF-8 characters.

The code in the jar is cookbook/src/com/lingpipe/cookbook/chapterl/
RunClassifierFromDisk.java. What is happening is that a pre-built model for language
identification is deserialized and made available. It has been trained on English, Japanese,
and Spanish. The training data came from Wikipedia pages for each language. You can see
the data in data/3LangId.csv. The focus of this recipe is to show you how to deserialize
the classifier and run it—training is handled in the Training your own language model classifier
recipe in this chapter. The entire code for the RunClassifier FromDisk.java class starts
with the package; then it imports the start of the RunClassifierFromDisk class and the
start of main ():

package com.lingpipe.cookbook.chapterl;
import java.io.File;

Sk
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import java.io.IOException;

import com.aliasi.classify.BaseClassifier;
import com.aliasi.util.AbstractExternalizable;
import com.lingpipe.cookbook.Util;
public class RunClassifierFromDisk
public static void main(String[] args) throws
IOException, ClassNotFoundException {

The preceding code is a very standard Java code, and we present it without explanation.
Next is a feature in most recipes that supplies a default value for a file if the command line
does not contain one. This allows you to use your own data if you have it, otherwise it will
run from files in the distribution. In this case, a default classifier is supplied if there is no
argument on the command line:

String classifierPath = args.length > 0 ? args[0]
"models/3LangId.LMClassifier";
System.out.println("Loading: " + classifierPath) ;

Next, we will see how to deserialize a classifier or another LingPipe object from disk:

File serializedClassifier = new File(classifierPath) ;
@SuppressWarnings ("unchecked")
BaseClassifier<String> classifier
= (BaseClassifier<String>)
AbstractExternalizable.readObject (serializedClassifier);

The preceding code snippet is the first LingPipe-specific code, where the classifier is built
using the static AbstractExternalizable.readObject method

This class is employed throughout LingPipe to carry out a compilation of classes for two
reasons. First, it allows the compiled objects to have final variables set, which supports
LingPipe's extensive use of immutables. Second, it avoids the messiness of exposing the
1/0 methods required for externalization and deserialization, most notably, the no-argument
constructor. This class is used as the superclass of a private internal class that does the
actual compilation. This private internal class implements the required no-arg constructor
and stores the object required for readResolve ().

The reason we use Externalizable instead of Serializable
R is to avoid breaking backward compatibility when changing any
% method signatures or member variables. Externalizable extends
K Serializable and allows control of how the object is read or written. For
more information on this, refer to the excellent chapter on serialization in
Josh Bloch's book, Effective Java, 2nd Edition.

[}
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BaseClassifier<E> is the foundational classifier interface, with E being the type of
object being classified in LingPipe. Look at the Javadoc to see the range of classifiers that
implements the interface—there are 10 of them. Deserializing to BaseClassifier<E>
hides a good bit of complexity, which we will explore later in the How to serialize a LingPipe
object - classifier example recipe in this chapter.

The last line calls a utility method, which we will use frequently in this book:
Util.consoleInputBestCategory(classifier) ;

This method handles interactions with the command line. The code is in src/com/
lingpipe/cookbook/Util. java:

public static void consoleInputBestCategory (
BaseClassifier<CharSequence> classifier) throws IOException {
BufferedReader reader = new BufferedReader (
new InputStreamReader (System.in)) ;
while (true) {
System.out.println("\nType a string to be classified. "
+ " Empty string to quit.");
String data = reader.readLine() ;
if (data.equals("")) {
return;
}
Classification classification = classifier.classify(data);
System.out.println("Best Category: " +
classification.bestCategory()) ;

}
}

Once the string is read in from the console, then classifier.classify (input) is called,
which returns Classification. This, in turn, provides a String label that is printed out.
That's it! You have run a classifier.

Getting confidence estimates from a

classifier

Classifiers tend to be a lot more useful if they give more information about how confident they
are of the classification—this is usually a score or a probability. We often threshold classifiers
to help fit the performance requirements of an installation. For example, if it was vital that
the classifier never makes a mistake, then we could require that the classification be very
confident before committing to a decision.
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LingPipe classifiers exist on a hierarchy based on the kinds of estimates they provide.
The backbone is a series of interfaces—don't freak out; it is actually pretty simple. You don't
need to understand it now, but we do need to write it down somewhere for future reference:

>

BaseClassifier<E>: This is just your basic classifier of objects of type E.
It has a classify () method that returns a classification, which in turn has
a bestCategory () method and a toString () method that is of some
informative use.

RankedClassifier<E> extends BaseClassifier<E>:The classify ()
method returns RankedClassification, which extends Classification
and adds methods for category (int rank) that says what the 1st to nth
classifications are. There is also a size () method that indicates how many
classifications there are.

ScoredClassifier<E> extends RankedClassifier<Es>:The returned
ScoredClassification adds a score (int rank) method.

ConditionalClassifier<E> extends RankedClassifier<Es>:
ConditionalClassification produced by this has the property

that the sum of scores for all categories must sum to 1 as accessed

via the conditionalProbability (int rank) method and
conditionalProbability (String category). There's more; you can read the
Javadoc for this. This classification will be the work horse of the book when things get
fancy, and we want to know the confidence that the tweet is English versus the tweet
is Japanese versus the tweet is Spanish. These estimates will have to sum to 1.

JointClassifier<E> extends ConditionalClassifier<Es>: This provides
JointClassification of the input and category in the space of all the possible
inputs, and all such estimates sum to 1. This is a sparse space, so values are log
based to avoid underflow errors. We don't see a lot of use of this estimate directly
in production.

It is obvious that there has been a great deal of thought put into the classification stack
presented. This is because huge numbers of industrial NLP problems are handled by a
classification system in the end.

It turns out that our simplest classifier—in some arbitrary sense of simple—produces the
richest estimates, which are joint classifications. Let's dive in.
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Getting ready

In the previous recipe, we blithely deserialized to BaseClassifier<Strings that hid
all the details of what was going on. The reality is a bit more complex than suggested by
the hazy abstract class. Note that the file on disk that was loaded is named 3LangId.
LMClassifier. By convention, we name serialized models with the type of object it will
deserialize to, which, in this case, is LMClassifier, and it extends BaseClassifier.
The most specific typing for the classifier is:

LMClassifier<CompiledNGramBoundaryLM,
MultivariateDistribution> classifier
= (LMClassifier <CompiledNGramBoundaryLM,
MultivariateDistribution>) AbstractExternalizable.readObject (new
File(args[0]1));

The cast to LMClassifier<CompiledNGramBoundaryLM,
MultivariateDistributions> specifies the type of distribution to be
MultivariateDistribution. The Javadoc for com.aliasi.stats.
MultivariateDistribution is quite explicit and helpful in describing what this is.

MultivariateDistribution implements a discrete
distribution over a finite set of outcomes, numbered
’ consecutively from zero.

The Javadoc goes into a lot of detail about MultivariateDistribution, but it basically
means that we can have an n-way assignment of probabilities that sum to 1.

The next class in the cast is for CompiledNGramBoundaryLM, which is the "memory" of

the LMClassifier. In fact, each language gets its own. This means that English will have a
separate language model from Spanish and so on. There are eight different kinds of language
models that could have been used as this part of the classifier—consult the Javadoc for the
LanguageModel interface. Each language model (LM) has the following properties:

» The LM will provide a probability that it generated the text provided. It is robust
against data that it has not seen before, in the sense that it won't crash or give
a zero probability. Arabic just comes across as a sequence of unknown characters
for our example.

» The sum of all the possible character sequence probabilities of any length is 1
for boundary LMs. Process LMs sum the probability to 1 over all sequences of the
same length. Look at the Javadoc for how this bit of math is done.

» Each language model has no knowledge of data outside of its category.
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The classifier keeps track of the marginal probability of the category and factors this
into the results for the category. Marginal probability is saying that we tend to see
two-thirds English, one-sixth Spanish, and one-sixth Japanese in Disney tweets.

This information is combined with the LM estimates.

The LM is a compiled version of LanguageModel . Dynamic that we will cover
in the later recipes that discuss training.

LMClassifier thatis constructed wraps these components into a classifier.

Luckily, the interface saves the day with a more aesthetic deserialization:

JointClassifier<String> classifier = (JointClassifier<Strings)
AbstractExternalizable.readObject (new File(classifierPath)) ;

The interface hides the guts of the implementation nicely and this is what we are going with in
the example program.

How to do it...

This recipe is the first time we start peeling away from what classifiers can do, but first,
let's play with it a bit:

1.

Get your magic shell genie to conjure a command prompt with a Java interpreter
and type:

java -cp lingpipe-cookbook.l.0.jar:1lib/lingpipe-4.1.0.jar: com.
lingpipe.cookbook.chapterl.RunClassifierJoint
We will enter the same data as we did earlier:

Type a string to be classified. Empty string to quit.
The rain in Spain falls mainly on the plain.
Rank Categ Score P (Category|Input) log2 P(Category, Input)

O0O=english -3.60092 0.9999999999 -165.64233893156052
l=spanish -4.50479 3.04549412621E-13 -207.2207276413206
2=japanese -14.369 7.6855682344E-150 -660.989401136873

As described, JointClassification carries through all the classification metrics in the
hierarchy rooted at Classification. Each level of classification shown as follows adds to
the classifiers preceding it:

>

>

Classification provides the first best category as the rank O category.

RankedClassification adds an ordering of all the possible categories with a
lower rank corresponding to greater likelihood of the category. The rank column
reflects this ordering.
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» ScoredClassification adds a numeric score to the ranked output. Note that
scores might or might not compare well against other strings being classified
depending on the type of classifier. This is the column labeled Score. To understand
the basis of this score, consult the relevant Javadoc.

» ConditionalClassification further refines the score by making it a category
probability conditioned on the input. The probabilities of all categories will sum up to
1. This is the column labeled P (Category| Input), which is the traditional way to
write probability of the category given the input.

» JointClassification adds the log, (log base 2) probability of the input and the
category—this is the joint probability. The probabilities of all categories and inputs will
sum up to 1, which is a very large space indeed with very low probabilities assigned
to any pair of category and string. This is why log, values are used to prevent
numerical underflow. This is the column labeled 1og 2 P (Category, Input),
which is translated as the log, probability of the category and input.

Look at the Javadoc for the com.aliasi.classify package for more information on the
metrics and classifiers that implement them.

The code is in src/com/1lingpipe/cookbook/chapterl/RunClassifierJoint.java
and it deserializes to a JointClassifier<CharSequences:

public static void main(String[] args) throws IOException,
ClassNotFoundException {
String classifierPath = args.length > 0 ? args[0]
"models/3LangId.LMClassifier";
@SuppressWarnings ("unchecked")
JointClassifier<CharSequence> classifier
= (JointClassifier<CharSequences>)
AbstractExternalizable.readObject (new File(classifierPath)) ;
Util.consoleInputPrintClassification(classifier) ;

}

It makes a call to Util.consoleInputPrintClassification(classifier), which
minimally differs from Util.consoleInputBestCategory (classifier), in thatit uses
the toString () method of classification to print. The code is as follows:

public static void consoleInputPrintClassification(BaseClassifier<Cha
rSequence>
classifier) throws IOException {
BufferedReader reader = new BufferedReader (new
InputStreamReader (System.in)) ;
while (true) {

]
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System.out.println("\nType a string to be classified." + Empty
string to quit.");

String data = reader.readLine() ;

if (data.equals("")) {

return;

}

Classification classification = classifier.classify(data);

System.out.println(classification) ;

}

}

We got a richer output than we expected, because the type is Classification, but the
toString () method will be applied to the runtime type JointClassification.

See also

» There is detailed information in Chapter 6, Character Language Models of Text
Analysis with LingPipe 4, by Bob Carpenter and Breck Baldwin, LingPipe Publishing
(http://alias-i.com/lingpipe-book/lingpipe-book-0.5.pdf)on
language models.

Getting data from the Twitter API

We use the popular twitter4j package to invoke the Twitter Search API, and search for
tweets and save them to disk. The Twitter APl requires authentication as of Version 1.1, and
we will need to get authentication tokens and save them in the twitter4j.properties file
before we get started.

Getting ready

If you don't have a Twitter account, go to twitter.com/signup and create an account.
You will also need to go to dev.twitter.comand sign in to enable yourself for the
developer account. Once you have a Twitter login, we'll be on our way to creating the Twitter
OAuth credentials. Be prepared for this process to be different from what we are presenting.
In any case, we will supply example results in the data directory. Let's now create the Twitter
OAuth credentials:

1. Logintodev.twitter.com.
Find the little pull-down menu next to your icon on the top bar.

Choose My Applications.
Click on Create a new application.

ok 0D

Fill in the form and click on Create a Twitter application.
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10.

The next page contains the OAuth settings.

Click on the Create my access token link.

You will need to copy Consumer key and Consumer secret.

You will also need to copy Access token and Access token secret.

These values should go into the twitter4j.properties file in the
appropriate locations. The properties are as follows:

debug=false

oauth.consumerKey=ehUOExampleEwQLQpPPQ
oauth.consumerSecret=aTHUGTBgExampleaW3yLvwdJY1hWY74
oauth.accessToken=1934528880-fiMQBJCBExamplegK6otBG3XXazLv
oauth.accessTokenSecret=y0XExampleGEHdhCQGcn46F8Vx2E

How to do it...

Now, we're ready to access Twitter and get some search data using the following steps:

1.

Go to the directory of this chapter and run the following command:

java -cp lingpipe-cookbook.l.0.jar:lib/twitter4j-core-
4.0.1.jar:1ib/opencsv-2.4.jar:1lib/lingpipe-4.1.0.jar com.lingpipe.
cookbook.chapterl.TwitterSearch

The code displays the output file (in this case, a default value). Supplying a path as
an argument will write to this file. Then, type in your query at the prompt:
Writing output to data/twitterSearch.csv

Enter Twitter Query:disney

The code then queries Twitter and reports every 100 tweets found (output truncated):
Tweets Accumulated: 100

Tweets Accumulated: 200

Tweets Accumulated: 1500

writing to disk 1500 tweets at data/twitterSearch.csv

This program uses the search query, searches Twitter for the term, and writes the output
(limited to 1500 tweets) to the . csv file name that you specified on the command line or
uses a default.

=]
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The code uses the twitter4j library to instantiate TwitterFactory and searches Twitter
using the user-entered query. The start of main () at src/com/lingpipe/cookbook/
chapterl/TwitterSearch. java is:

String outFilePath = args.length > 0 ? args([0] : "data/twitterSearch.
csv";

File outFile = new File(outFilePath) ;

System.out.println ("Writing output to " + outFile);

BufferedReader reader = new BufferedReader (new
InputStreamReader (System.in)) ;

System.out.print ("Enter Twitter Query:");
String queryString = reader.readLine() ;

The preceding code gets the outfile, supplying a default if none is provided, and takes the
query from the command line.

The following code sets up the query according to the vision of the twitter4j developers.

For more information on this process, read their Javadoc. However, it should be fairly
straightforward. In order to make our result set more unique, you'll notice that when we create
the query string, we will filter out retweets using the -filter:retweets option. This is only
somewhat effective; see the Eliminate near duplicates with the Jaccard distance recipe later
in this chapter for a more complete solution:

Twitter twitter = new TwitterFactory () .getInstance() ;

Query query = new Query(queryString + " -filter:retweets");
query.setLang ("en") ; //English
query.setCount (TWEETS_ PER_PAGE) ;

query.setResultType (Query.RECENT) ;

We will get the following result:

List<String[]> csvRows = new ArrayList<Stringl[]ls>();
while (csvRows.size () < MAX TWEETS) {
QueryResult result = twitter.search (query) ;
List<Status> resultTweets = result.getTweets() ;
for (Status tweetStatus : resultTweets)
String row([] = new String[Util.ROW_LENGTH] ;
row [Util.TEXT OFFSET] = tweetStatus.getText();
csvRows .add (row) ;

}

System.out.println ("Tweets Accumulated: " + csvRows.size());

s
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if ((query = result.nextQuery()) == null) {
break;
}
}

The preceding snippet is a pretty standard code slinging, albeit without the usual hardening
for external facing code—try/catch, timeouts, and retries. One potentially confusing bit is the
use of query to handle paging through the search results—it returns null when no more
pages are available. The current Twitter API allows a maximum of 100 results per page, so in
order to get 1500 results, we need to rerun the search until there are no more results, or until
we get 1500 tweets. The next step involves a bit of reporting and writing:

System.out.println("writing to disk " + csvRows.size()
+ " tweets at " + outFilePath);

Util.writeCsvAddHeader (csvRows, outFile) ;
The list of tweets is then written to a . csv file using the Util.writeCsvAddHeader method:

public static void writeCsvAddHeader (List<String[]> data, File file)
throws IOException ({
CSVWriter csvWriter = new CSVWriter
(new OutputStreamWriter (new
FileOutputStream(file) , Strings.UTF8)) ;

csvWriter.writeNext (ANNOTATION HEADER ROW) ;
csvWriter.writeAll (data) ;
csvWriter.close() ;

}

We will be using this . csv file to run the language ID test in the next section.

For more details on using the Twitter APl and twitter4j, please go to their documentation pages:

» http://twitter4j.org/javadoc/
» https://dev.twitter.com/docs

Applying a classifier to a .csv file

Now, we can test our language ID classifier on the data we downloaded from Twitter.
This recipe will show you how to run the classifier on the . csv file and will set the stage
for the evaluation step in the next recipe.

=
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How to do it...

Applying a classifier to the . csv file is straightforward! Just perform the following steps:

1. Getacommand prompt and run:

java -cp lingpipe-cookbook.l.0.jar:lib/lingpipe-4.1.0.jar:1ib/
twitter4j-core-4.0.1.jar:1lib/opencsv-2.4.jar com.lingpipe.
cookbook.chapterl.ReadClassifierRunOnCsv

2. This will use the default CSV file from the data/disney. csv distribution, run
over each line of the CSV file, and apply a language ID classifier from models/
3LangId.LMClassifiertoit:

InputText: When all else fails #Disney
Best Classified Language: english
InputText: ES INSUPERABLE DISNEY !! QUIERO VOLVER: (

Best Classified Language: Spanish

3. You can also specify the input as the first argument and the classifier as the
second one.

We will deserialize a classifier from the externalized model that was described in the previous
recipes. Then, we will iterate through each line of the . csv file and call the classify method of
the classifier. The code in main () is:

String inputPath = args.length > 0 ? args[0] : "data/disney.csv";
String classifierPath = args.length > 1 ? args[1]
"models/3LangId.LMClassifier";
@SuppressWarnings ("unchecked") BaseClassifier<CharSequence> classifier
= (BaseClassifier<CharSequences>) AbstractExternalizable.readObject (new
File(classifierPath)) ;
List<String[]> lines = Util.readCsvRemoveHeader (new File (inputPath)) ;
for(String [] line: lines)
String text = line[Util.TEXT OFFSET] ;
Classification classified = classifier.classify(text);
System.out.println ("InputText: " + text);

System.out.println("Best Classified Language: " + classified.
bestCategory()) ;

}

s
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The preceding code builds on the previous recipes with nothing particularly new. Util.
readCsvRemoveHeader, shown as follows, just skips the first line of the . csv file before
reading from disk and returning the rows that have non-null values and non-empty strings in
the TEXT OFFSET position:

public static List<String[]> readCsvRemoveHeader (File file) throws
IOException {
FileInputStream fileIn = new FileInputStream(file);
InputStreamReader inputStreamReader = new
InputStreamReader (fileIn, Strings.UTF8) ;
CSVReader csvReader = new CSVReader (inputStreamReader) ;
csvReader.readNext () ; //skip headers
List<String[]> rows = new ArrayList<Stringl[]s>();
String[] row;

while ((row = csvReader.readNext()) != null) {
if (row[TEXT_OFFSET] == null || row[TEXT OFFSET].equals("")) ({
continue;

}

rows.add (row) ;

}

csvReader.close () ;
return rows;

Evaluation of classifiers - the confusion

matrix

Evaluation is incredibly important in building solid NLP systems. It allows developers

and management to map a business need to system performance, which, in turn, helps
communicate system improvement to vested parties. "Well, uh, the system seems to be doing
better" does not hold the gravitas of "Recall has improved 20 percent, and the specificity is
holding well with 50 percent more training data".

This recipe provides the steps for the creation of truth or gold standard data and tells us how
to use this data to evaluate the performance of our precompiled classifier. It is as simple as it
is powerful.
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Getting ready

You might have noticed the headers from the output of the CSV writer and the suspiciously
labeled column, TRUTH. Now, we get to use it. Load up the tweets we provided earlier or
convert your data into the format used in our . csv format. An easy way to get novel data is
to run a query against Twitter with a multilingual friendly query such as Disney, which is our
default supplied data.

Open the CSV file and annotate the language you think the tweet is in for at least 10
examples each of e for English and n for non-English. There is a data/disney e n.csv file
in the distribution; you can use this if you don't want to deal with annotating data. If you are
not sure about a tweet, feel free to ignore it. Unannotated data is ignored. Have a look at the
following screenshot:

disney_e_n.csv - OpenOffice Calc

A B C

SCORE GUESS TRUTH TRUTH
e When all else fails #Disney

EHOFE LMD £ £5HIELANDIC Vo B » 5 L0k H. FLUE
Best part of having a neice now is having an excuse to relive all the old Disney movies
| can't wait for Disney though
request now "let's get tricky" by @bellathorne and @ROSHON on @radiodisney!!! just
100 DDisneyZ o] By & s~(/ _; ) RREMICH-> TV I3, FLTZV¥+A0T,
I fully love the Disney Channel | do not care **
@greenath_ t'as de la chance d'aller a Disney putain j'y ai jamais été moi.
AHH! What a talent! Love ya girl! @ShoshanaBean in Disney-Style Spell Block Tango!
Prefiro gastar uma baba de dinheiro pra ir pra cancun dogq pra Disney por exemplo
@meeelp mas gue venha um filhinho mais fofo que o proprio pai, com covinha e amar
“@rpdavlin: | want to go to a college in California so | can go to Disney Land whenever
Cant sleep so jm watching.. Beverley Hills Chihuahua.. Yep thats right, I'm watching a ¢
A, Twitter7 v 77 — F L 726 & (AON)
Miley isn't Hannah anymore, Demi isn’t Sonny anymore, Selena isn't Alex anymore. Di:
ES INSUPERABLE DISNEY !! QUIERO VOLVER:(
Creo q fue lo peor q pude hacer mirar los videos de disney
Malisimos los nuevos dibujitos de disney, nickelodeon, cartoon, etc, no me gustannn
@Hukaaaa_disney 2 A v 7 AL LW IHTHTETEZL 2 (&) WuriEl~y 74 =
21 E@FernandaAbarca_ how did you become an artist for Dream Works. | wanna do that fi
22 isney channel should have played "Mom's got a date with a vampire"
23 Some imagination, huh? #fantasmic #studios # glowwiththeshow #disney #disneynerd

P T W TR A4 TE AAKMTE ALIC OF MC ACARICAARK AARK L A CATAC AE l'\ll.'\I

-
=)
3332 Soco>@@©33030®0®3@®OOO3

.3*3 v n| Sheetl

Screenshot of the spreadsheet with human annotations for English 'e' and non-English 'n'. It is known as truth data or
gold standard data because it represents the phenomenon correctly.

Often, this data is called gold standard data, because it represents the truth. The "gold"

in "gold standard" is quite literal. Back it up and store it with longevity in mind—it is most
likely that it is the single-most valuable collection of bytes on your hard drive, because it is
expensive to produce in any quantity and the cleanest articulation of what is being done.
Implementations come and go; evaluation data lives on forever. The John Smith corpus from
the The John Smith problem recipe, in Chapter 7, Finding Coreference Between Concepts/
People, is the canonical evaluation corpus for that particular problem and lives on as the
point of comparison for a line of research that started in 1997. The original implementation
is long forgotten.

=]
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How to do it...

Perform the following steps to evaluate the classifiers:

1. Enter the following in the command prompt; this will run the default classifier
on the texts in the default gold standard data. Then, it will compare the classifier's
best category against what was annotated in the TRUTH column:
java -cp lingpipe-cookbook.l.0.jar:lib/opencsv-2.4.jar:1ib/
lingpipe-4.1.0.jar com.lingpipe.cookbook.chapterl.
RunConfusionMatrix

2. This class will then produce the confusion matrix:
reference\response
\e,n,
e 11,0,
nl,9,

The confusion matrix is aptly named since it confuses almost everyone initially, but it is,
without a doubt, the best representation of classifier output, because it is very difficult to
hide bad classifier performance with it. In other words, it is an excellent BS detector. It is the
unambiguous view of what the classifier got right, what it got wrong, and what it thought was
the right answer.

The sum of each row represents the items that are known by truth/reference/gold standard
to belong to the category. For English (e) there were 11 tweets. Each column represents what
the system thought was in the same labeled category. For English (e), the system thought 11
tweets were English and none were non-English (n). For the non-English category (n), there
are 10 cases in truth, of which the classifier thought 1 was English (incorrectly) and 9 were
non-English (correctly). Perfect system performance will have zeros in all the cells that are not
located diagonally, from the top-left corner to the bottom-right corner.

The real reason it is called a confusion matrix is that it is relatively easy to see categories that
the classifier is confusing. For example, British English and American English would likely be
highly confusable. Also, confusion matrices scale to multiple categories quite nicely, as will be
seen later. Visit the Javadoc for a more detailed explanation of the confusion matrix—it is well
worth mastering.
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Building on the code from the previous recipes in this chapter, we will focus on what is novel in
the evaluation setup. The entirety of the code is in the distribution at src/com/lingpipe/
cookbook/chapterl/RunConfusionMatrix.java. The start of main () is shown in the
following code snippet. The code starts by reading from the arguments that look for non-default
CSV data and serialized classifiers. Defaults, which this recipe uses, are shown here:

String inputPath = args.length > 0 ? args[0]
"data/disney e n.csv";

String classifierPath = args.length > 1 ? args[1]
"models/lLangId.LMClassifier";

Next, the language model and the . csv data will be loaded. The method differs slightly from
the Util.CsvRemoveHeader explanation, in that it only accepts rows that have a value in
the TRUTH column—see src/com/1lingpipe/cookbook/Util. java if this is not clear:

@SuppressWarnings ("unchecked")
BaseClassifier<CharSequence> classifier

= (BaseClassifier<CharSequences>) AbstractExternalizable.
readObject (new File(classifierPath)) ;

List<String[]> rows = Util.readAnnotatedCsvRemoveHeader (new
File (inputPath)) ;

Next, the categories will be found:
String[] categories = Util.getCategories (rows) ;

The method will accumulate all the category labels from the TRUTH column. The code is
simple and is shown here:

public static String[] getCategories (List<String[]> data) {
Set<String> categories = new HashSet<Strings> () ;
for (Stringl[] csvData : data)
if (!csvData [ANNOTATION OFFSET] .equals("")) {
categories.add (csvData [ANNOTATION OFFSET]) ;
}
}
return categories.toArray(new String[0]) ;

}

The code will be useful when we run arbitrary data, where the labels are not known at
compile time.
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Then, we will set up BaseClassfierEvaluator. This requires the classifier to be evaluated.
The categories and a boolean value that controls whether inputs are stored in the classifier
for construction will also be set up:

boolean storelInputs = false;
BaseClassifierEvaluator<CharSequence> evaluator = new

BaseClassifierEvaluator<CharSequences (classifier, categories,
storelInputs) ;

Note that the classifier can be null and specified at a later time; the categories must exactly
match those produced by the annotation and the classifier. We will not bother configuring the
evaluator to store the inputs, because we are not going to use this capability in this recipe.
See the Viewing error categories - false positives recipe for an example in which the inputs
are stored and accessed.

Next, we will do the actual evaluation. The loop will iterate over each row of the information
in the . csvfile, build a Classified<CharSequence>, and pass it off to the evaluator's
handle () method:

for (Stringl[] row : rows)
String truth = row[Util.ANNOTATION_OFFSET];
String text = row[Util.TEXT_OFFSET];
Classification classification = new Classification (truth) ;
Classified<CharSequence> classified
= new Classified<CharSequences> (text,classification);
evaluator.handle (classified) ;

}

The fourth line will create a classification object with the value from the truth annotation—e

or n in this case. This is the same type as the one BaseClassifier<E> returns for the
bestCategory () method. There is no special type for truth annotations. The next line adds in
the text that the classification applies to and we get a Classified<CharSequence> object.

The last line of the loop will apply the handle method to the created classified object. The
evaluator assumes that data supplied to its handle method is a truth annotation, which is
handled by extracting the data being classified, applying the classifier to this data, getting the
resulting firstBest () classification, and finally noting whether the classification matches
that of what was just constructed with the truth. This happens for each row of the . csv file.

Outside the loop, we will print out the confusion matrix with Util.
createConfusionMatrix():

System.out.println(Util.confusionMatrixToString (evaluator.
confusionMatrix())) ;

Examining this code is left to the reader. That's it; we have evaluated our classifier and printed
out the confusion matrix.
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There's more...

The evaluator has a complete toString () method that is a bit of a fire hose for information
on just how well your classifier did. Those aspects of the output will be covered in later
recipes. The Javadoc is quite extensive and well worth reading.

Training your own language model classifier

The world of NLP really opens up when classifiers are customized. This recipe provides details
on how to customize a classifier by collecting examples for the classifier to learn from—this is
called training data. It is also called gold standard data, truth, or ground truth. We have some
from the previous recipe that we will use.

Getting ready

We will create a customized language ID classifier for English and other languages. Creation
of training data involves getting access to text data and then annotating it for the categories
of the classifier—in this case, annotation is the language. Training data can come from a range
of sources. Some possibilities include:

» Gold standard data such as the one created in the preceding evaluation recipe.

» Data that is somehow already annotated for the categories you care about. For
example, Wikipedia has language-specific versions, which make easy pickings to
train up a language ID classifier. This is how we created the 3LangId.
LMClassifier model.

» Be creative—where is the data that helps guide a classifier in the right direction?
Language ID doesn't require much data to work well, so 20 tweets per language will start to

reliably distinguish strongly different languages. The amount of training data will be driven by
evaluation—more data generally improves performance.

The example assumes that around 10 tweets of English and 10 non-English tweets have been
annotated by people and putin data/disney e n.csv.

How to do it...

In order to train your own language model classifier, perform the following steps:

1. Fire up a terminal and type the following:

java -cp lingpipe-cookbook.l.0.jar:lib/opencsv-2.4.jar:1ib/
lingpipe-4.1.0.jar com.lingpipe.cookbook.chapterl.
TrainAndRunLMClassifier
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2. Then, type some English in the command prompt, perhaps, a Kurt Vonnegut quotation,
to see the resulting JointClassification. See the Getting confidence estimates
from a classifier recipe for the explanation of the following output:

Type a string to be classified. Empty string to quit.

So it goes.

Rank Categ Score P(Category|Input) log2 P(Category,Input)
O=e -4.24592987919 0.9999933712053 -55.19708842949149

l=n -5.56922173547 6.62884502334E-6 -72.39988256112824

3. Type in some non-English, such as the Spanish title of Borge's The Garden of the
Forking Paths:

Type a string to be classified. Empty string to quit.

El Jardin de senderos que se bifurcan

Rank Categ Score P(Category|Input) log2 P(Category,Input)
0=n -5.6612148689 0.999989087229795 -226.44859475801326
l=e -6.0733050528 1.091277041753E-5 -242.93220211249715

The program is in src/com/1ingpipe/cookbook/chapterl/
TrainAndRunLMClassifier.java; the contents of the main () method start with:

String dataPath = args.length > 0 ? args[0]
"data/disney e n.csv";

List<String[]> annotatedData =
Util.readAnnotatedCsvRemoveHeader (new File (dataPath)) ;

String[] categories = Util.getCategories (annotatedData) ;

The preceding code gets the contents of the . csv file and then extracts the list of
categories that were annotated; these categories will be all the non-empty strings in
the annotation column.

The following DynamicLMClassifier is created using a static method that requires the
array of categories and int, which is the order of the language models. With an order of 3,
the language model will be trained on all 1 to 3 character sequences of the text training data.
So "l luv Disney" will produce training instances of "I", "I ", " I", " I", " [u", "u", "uv", "luv", and

S0 on. The createNGramBoundary method appends a special token to the beginning and
end of each text sequence; this token can help if the beginnings or ends are informative for
classification. Most text data is sensitive to beginnings/ends, so we will choose this model:

int maxCharNGram = 3;
DynamicLMClassifier<NGramBoundaryLM> classifier =
DynamicLMClassifier.createNGramBoundary (categories, maxCharNGram) ;
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The following code iterates over the rows of training data and creates
Classified<CharSequence> in the same way as shown in the Evaluation of classifiers
- the confusion matrix recipe for evaluation. However, instead of passing the Classified
object to an evaluation handler, it is used to train the classifier.

for (Stringl[] row: annotatedData) ({
String truth = row[Util.ANNOTATION_OFFSET];
String text = row[Util.TEXT_OFFSET];
Classification classification
= new Classification (truth) ;
Classified<CharSequence> classified =
new Classified<CharSequences (text,classification);
classifier.handle (classified) ;

}
No further steps are necessary, and the classifier is ready for use by the console:

Util.consoleInputPrintClassification(classifier) ;

There's more...

Training and using the classifier can be interspersed for classifiers based on DynamicLM.
This is generally not the case with other classifiers such as LogisticRegression, because
they use all the data to compile a model that can carry out classifications.

There is another method for training the classifier that gives you more control over how the
training goes. The following is the code snippet for this:

Classification classification = new Classification (truth) ;

Classified<CharSequence> classified = new
Classified<CharSequences> (text,classification) ;

classifier.handle(classified) ;

Alternatively, we can have the same effect with:

int count = 1;
classifier.train (truth, text, count) ;

The train () method allows an extra degree of control for training, because it allows

for the count to be explicitly set. As we explore LingPipe classifiers, we will often see an
alternate way of training that allows for some additional control beyond what the handle ()
method provides.

Character-language model-based classifiers work very well for tasks where character
sequences are distinctive. Language identification is an ideal candidate for this, but it
can also be used for tasks such as sentiment, topic assignment, and question answering.
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The Javadoc for LingPipe's classifiers are quite extensive on the underlying math that drives
the technology.

How to train and evaluate with cross

validation

The earlier recipes have shown how to evaluate classifiers with truth data and how to train
with truth data but how about doing both? This great idea is called cross validation, and it
works as follows:
1. Split the data into n distinct sets or folds—the standard n is 10.
2. Forifrom 1ton:
o Train on the n - 1 folds defined by the exclusion of fold i
o Evaluate on fold i

3. Report the evaluation results across all folds i.

This is how most machine-learning systems are tuned for performance. The work flow is
as follows:

1. See what the cross validation performance is.

2. Look at the error as determined by an evaluation metric.

3. Look at the actual errors—yes, the data—for insights into how the system can
be improved.

Make some changes
5. Evaluate it again.

Cross validation is an excellent way to compare different approaches to a problem, try
different classifiers, motivate normalization approaches, explore feature enhancements,

and so on. Generally, a system configuration that shows increased performance on cross
validation will also show increased performance on new data. What cross validation does not
do, particularly with active learning strategies discussed later, is reliably predict performance
on new data. Always apply the classifier to new data before releasing production systems as a
final sanity check. You have been warned.

Cross validation also imposes a negative bias compared to a classifier trained on all possible
training data, because each fold is a slightly weaker classifier, in that it only has 90 percent of
the data on 10 folds.

Rinse, lather, and repeat is the mantra of building state-of-the-art NLP systems.

=




Chapter 1

Getting ready

Note how different this approach is from other classic computer-engineering approaches
that focus on developing against a functional specification driven by unit tests. This
process is more about refining and adjusting the code to work better as determined by
the evaluation metrics.

How to do it...

To run the code, perform the following steps:

1. Gettoacommand prompt and type:

java -cp lingpipe-cookbook.l.0.jar:lib/opencsv-2.4.jar:1ib/
lingpipe-4.1.0.jar com.lingpipe.cookbook.chapterl.RunXValidate

2. The result will be:

Training data is: data/disney e n.csv
Training on fold 0
Testing on fold 0
Training on fold 1
Testing on fold 1
Training on fold 2
Testing on fold 2
Training on fold 3
Testing on fold 3
reference\response

\e,n,

e 10,1,

n 6,4,

The preceding output will make more sense in the following section.

This recipe introduces an XvalidatingObjectCorpus object that manages cross
validation. It is used heavily in training classifiers. Everything else should be familiar
from the previous recipes. The main () method starts with:

String inputPath = args.length > 0 ? args[0] : "data/disney e n.csv";
System.out.println("Training data is: " + inputPath) ;

List<String[]> truthData = Util.readAnnotatedCsvRemoveHeader (new
File (inputPath)) ;
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The preceding code gets us the data from the default or a user-entered file. The next two lines
introduce XxvalidatingObjectCorpus—the star of this recipe:

int numFolds = 4;

XValidatingObjectCorpus<Classified<CharSequence>> corpus = Util.
loadXValCorpus (truthData, numFolds) ;

The numFolds variable controls how the data that is just loaded will be partitioned—it will be
in four partitions in this case. Now, we will look at the Util.loadXValCorpus (truthData,
numfolds) subroutine:

public static XValidatingObjectCorpus<Classified<CharSequences>
loadXValCorpus (List<String[]> rows, int numFolds) throws IOException {
XValidatingObjectCorpus<Classified<CharSequence>> corpus
= new XValidatingObjectCorpus<Classified<CharSequence>> (numFolds) ;
for (String[] row : rows) {
Classification classification = new
Classification (row [ANNOTATION OFFSET]) ;
Classified<CharSequence> classified = new
Classified<CharSequences> (row [TEXT OFFSET],classification) ;
corpus.handle (classified) ;

}

return corpus;

}

XValidatingObjectCorpus<E> constructed will contain all the truth data in the form of
Objects E. In this case, we are filling the corpus with the same object used to train and
evaluate in the previous recipes in this chapter—Classified<CharSequences. This will be
handy, because we will be using the objects to both train and test our classifier. The numFolds
parameter specifies how many partitions of the data to make. It can be changed later.

The following for loop should be familiar, in that, it should iterate over all the annotated

data and creates the Classified<CharSequence> object before applying the corpus.
handle () method, which adds it to the corpus. Finally, we will return the corpus. It is worth
taking a look at the Javadoc for XvalidatingObjectCorpus<Es> if you have any questions.

Returning to the body of main (), we will permute the corpus to mix the data, get the
categories, and set up BaseClassifierEvaluator<CharSequence> with a null value
where we supplied a classifier in a previous recipe:

corpus.permuteCorpus (new Random(123413)) ;

String[] categories = Util.getCategories (truthData) ;
boolean storelInputs = false;
BaseClassifierEvaluator<CharSequence> evaluator

= new BaseClassifierEvaluator<CharSequences>(null, categories,
storelInputs) ;
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Now, we are ready to do the cross validation:

int maxCharNGram = 3;
for (int i = 0; i < numFolds; ++i) ({
corpus.setFold (i) ;
DynamicLMClassifier<NGramBoundaryLM> classifier =
DynamicLMClassifier.createNGramBoundary (categories,
maxCharNGram) ;
System.out.println("Training on fold " + i);
corpus.visitTrain(classifier);
evaluator.setClassifier(classifier);
System.out.println("Testing on fold " + 1i);
corpus.visitTest (evaluator) ;

}

On each iteration of the for loop, we will set which fold is being used, which, in turn, will
select the training and testing partition. Then, we will construct DynamicIMClassifier and
train it by supplying the classifier to corpus.visitTrain (classifier). Next, we will set
the evaluator's classifier to the one we just trained. The evaluator is passed to the corpus.
visitTest (evaluator) method where the contained classifier is applied to the test data
that it was not trained on. With four folds, 25 percent of the data will be test data at any given
iteration, and 75 percent of the data will be training data. Data will be in the test partition
exactly once and three times in the training. The training and test partitions will never contain
the same data unless there are duplicates in the data.

Once the loop has finished all iterations, we will print a confusion matrix discussed in the
Evaluation of classifiers — the confusion matrix recipe:

System.out.println(
Util.confusionMatrixToString(evaluator.confusionMatrix())) ;

There's more...

This recipe introduces quite a few moving parts, namely, cross validation and a corpus object
that supports it. The ObjectHandler<E> interface is also used a lot; this can be confusing
to developers not familiar with the pattern. It is used to train and test the classifier. It can
also be used to print the contents of the corpus. Change the contents of the for loop to
visitTrain with Util.corpusPrinter:

System.out.println("Training on fold " + i);
corpus.visitTrain (Util.corpusPrinter()) ;
corpus.visitTrain(classifier);
evaluator.setClassifier (classifier) ;
System.out.println("Testing on fold " + 1i);
corpus.visitTest (Util.corpusPrinter()) ;
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Now, you will get an output that looks like:

Training on fold 0

Malis?mos los nuevos dibujitos de disney, nickelodeon, cartoon,
etc, no me gustannn:n

@meeelp mas que venha um filhinho mais fofo que o pr?prio pai, com
covinha e amando a Disney kkkkkkkkkkkkkkkkk:n

@HedyHAMIDI au quartier pas a Disney moi:n

I fully love the Disney Channel I do not care ?:e

The text is followed by : and the category. Printing the training/test folds is a good sanity
check for whether the corpus is properly populated. It is also a nice glimpse into how the
ObjectHandler<Es> interface works—here, the source is from com/1ingpipe/cookbook/
Util.java:

public static ObjectHandler<Classified<CharSequence>> corpusPrinter ()
{
return new ObjectHandler<Classified<CharSequences>>() ({
@Override
public void handle (Classified<CharSequences> e)
System.out.println(e.toString()) ;

}
Vi
}

There is not much to the returned class. There is a single handle () method that just prints
the toString () method of Classified<CharSequences. In the context of this recipe,
the classifier instead invokes train () on the text and classification, and the evaluator takes
the text, runs it past the classifier, and compares the result to the truth.

Another good experiment to run is to report performance on each fold instead of all folds.
For small datasets, you will see very large variations in performance. Another worthwhile
experiment is to permute the corpus 10 times and see the variations in performance that
come from different partitioning of the data.

Another issue is how data is selected for evaluation. To text process applications, it is
important to not leak information between test data and training data. Cross validation over
10 days of data will be much more realistic if each day is a fold rather than a 10-percent slice
of all 10 days. The reason is that a day's data will likely be correlated, and this correlation

will produce information about that day in training and testing, if days are allowed to be in
both train and test. When evaluating the final performance, always select data from after the
training data epoch if possible, to better emulate production environments where the future is
not known.
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Viewing error categories - false positives

We can achieve the best possible classifier performance by examining the errors and making
changes to the system. There is a very bad habit among developers and machine-learning
folks to not look at errors, particularly as systems mature. Just to be clear, at the end of a
project, the developers responsible for tuning the classifier should be very familiar with the
domain being classified, if not expert in it, because they have looked at so much data while
tuning the system. If the developer cannot do a reasonable job of emulating the classifiers
that you are tuning, then you are not looking at enough data.

This recipe performs the most basic form of looking at what the system got wrong in the
form of false positives, which are examples from training data that the classifier assigned
to a category, but the correct category was something else.

How to do it...

Perform the following steps in order to view error categories using false positives:

1. This recipe extends the previous How to train and evaluate with cross validation
recipe by accessing more of what the evaluation class provides. Get a command
prompt and type:

java -cp lingpipe-cookbook.l.0.jar:lib/opencsv-2.4.jar:1lib/
lingpipe-4.1.0.jar com.lingpipe.cookbook.chapterl.
ReportFalsePositivesOverXValidation
2. This will result in:
Training data is: data/disney e n.csv
reference\response
\e,n,

e 10,1,

n 6,4,
False Positives for e

Malisimos los nuevos dibujitos de disney, nickelodeon, cartoon,
etc, no me gustannn : n

@meeelp mas que venha um filhinho mais fofo que o préprio pai, com
covinha e amando a Disney kkkkkkkkkkkkkkkkk : n

@HedyHAMIDI au quartier pas a Disney moi : n

@greenath t'as de la chance d'aller a Disney putain j'y ai jamais
été moi. : n
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Prefiro gastar uma baba de dinheiro pra ir pra cancun doq pra
Disney por exemplo : n

ES INSUPERABLE DISNEY !! QUIERO VOLVER:( : n
False Positives for n

request now "let's get tricky" by @bellathorne and @ROSHON on @
radiodisney!!! just call 1-877-870-5678 or at http://t.co/
cbne5yRKhQ!! <3 : e

3. The output starts with a confusion matrix. Then, we will see the actual six instances
of false positives for p from the lower left-hand side cell of the confusion matrix
labeled with the category that the classifier guessed. Then, we will see false positives
for n, which is a single example. The true category is appended with :, which is
helpful for classifiers that have more than two categories.

This recipe is based on the previous one, but it has its own source in com/1lingpipe/
cookbook/chapterl/ReportFalsePositivesOverXValidation. java. There are
two differences. First, storeInputs is set to true for the evaluator:

boolean storelInputs = true;

BaseClassifierEvaluator<CharSequence> evaluator = new BaseClassifierEv
aluator<CharSequences> (null, categories, storelInputs);

Second, a Util method is added to print false positives:

for (String category : categories) ({
Util.printFalsePositives (category, evaluator, corpus);

}

The preceding code works by identifying a category of focus—e or English tweets—and
extracting all the false positives from the classifier evaluator. For this category, false positives
are tweets that are non-English in truth, but the classifier thought they were English. The
referenced Util method is as follows:

public static <E> void printFalsePositives (String category,
BaseClassifierEvaluator<E> evaluator, Corpus<ObjectHandler<Classified
<E>>> corpus) throws IOException {

final Map<E,Classification> truthMap = new
HashMap<E, Classifications> () ;

corpus.visitCorpus (new ObjectHandler<Classified<E>>() {
@Override
public void handle(Classified<E> data) {
truthMap.put (data.getObject () ,data.getClassification()) ;
}
1)
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The preceding code takes the corpus that contains all the truth data and populates
Map<E, Classification> to allow for lookup of the truth annotation, given the input.
If the same input exists in two categories, then this method will not be robust but will
record the last example seen:

List<Classified<E>> falsePositives = evaluator.
falsePositives (category) ;
System.out.println("False Positives for " + category) ;
for (Classified<E> classified : falsePositives) ({
E data = classified.getObject();
Classification truthClassification = truthMap.get (data) ;
System.out.println(data + " : " +
truthClassification.bestCategory()) ;

}
}

The code gets the false positives from the evaluator and then iterates over all them with a
lookup into truthMap built in the preceding code and prints out the relevant information.
There are also methods to get false negatives, true positives, and true negatives in evaluator.

The ability to identify mistakes is crucial to improving performance. The advice seems obvious,
but it is very common for developers to not look at mistakes. They will look at system output
and make a rough estimate of whether the system is good enough; this does not result in
top-performing classifiers.

The next recipe works through more evaluation metrics and their definition.

Understanding precision and recall

The false positive from the preceding recipe is one of the four possible error categories.
All the categories and their interpretations are as follows:

» For a given category X:

o True positive: The classifier guessed X, and the true category is X

o False positive: The classifier guessed X, but the true category is a category
that is different from X

o True negative: The classifier guessed a category that is different from X,
and the true category is different from X

o False negative: The classifier guessed a category different from X, but the
true category is X
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With these definitions in hand, we can define the additional common evaluation metrics
as follows:

» Precision for a category X is true positive / (false positive + true positive)

o The degenerate case is to make one very confident guess for 100 percent
precision. This minimizes the false positives but will have a horrible recall.

» Recall or sensitivity for a category X is true positive / (false negative + true positive)

o The degenerate case is to guess all the data as belonging to category
X for 100 percent recall. This minimizes false negatives but will have
horrible precision.

» Specificity for a category X is true negative / (true negative + false positive)
o The degenerate case is to guess that all data is not in category X.

The degenerate cases are provided to make clear what the metric is focused on. There
are metrics such as f-measure that balance precision and recall, but even then, there is
no inclusion of true negatives, which can be highly informative. See the Javadoc at com.
aliasi.classify.PrecisionRecallEvaluation for more details on evaluation.

» In our experience, most business needs map to one of the three scenarios:

» High precision / high recall: The language ID needs to have both good coverage
and good accuracy; otherwise, lots of stuff will go wrong. Fortunately, for distinct
languages where a mistake will be costly (such as Japanese versus English or English
versus Spanish), the LM classifiers perform quite well.

» High precision / usable recall: Most business use cases have this shape. For
example, a search engine that automatically changes a query if it is misspelled better
not make lots of mistakes. This means it looks pretty bad to change "Breck Baldwin"
to "Brad Baldwin", but no one really notices if "Bradd Baldwin" is not corrected.

» High recall / usable precision: Intelligence analysis looking for a particular needle
in a haystack will tolerate a lot of false positives in support of finding the intended
target. This was an early lesson from our DARPA days.

How to serialize a LingPipe object -

classifier example

In a deployment situation, trained classifiers, other Java objects with complex configuration,
or training are best accessed by deserializing them from a disk. The first recipe did exactly this
by reading in LMClassifier from the disk with AbstractExternalizable. This recipe
shows how to get the language ID classifier written out to the disk for later use.
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Serializing DynamicLMClassifier and reading it back in results in a different class, which
is an instance of LMClassifier that performs the same as the one just trained except

that it can no longer accept training instances because counts have been converted to log
probabilities and the backoff smoothing arcs are stored in suffix trees. The resulting classifier
is much faster.

In general, most of the LingPipe classifiers, language models, and hidden Marcov models
(HMM) implement both the Serializable and Compilable interfaces.

Getting ready

We will work with the same data as we did in the Viewing error categories - false
positives recipe.

How to do it...

Perform the following steps to serialize a LingPipe object:

1. Go tothe command prompt and convey:
java -cp lingpipe-cookbook.l.0.jar:lib/opencsv-2.4.jar:1lib/
lingpipe-4.1.0.jar com.lingpipe.cookbook.chapterl.
TrainAndWriteClassifierToDisk

2. The program will respond with the default file values for input/output:
Training on data/disney e n.csv

Wrote model to models/my disney e n.LMClassifier

3. Test if the model works by invoking the Deserializing and running a classifier recipe
while specifying the classifier file to be read in:

java -cp lingpipe-cookbook.l.0.jar:1lib/lingpipe-4.1.0.jar com.
lingpipe.cookbook.chapterl.LoadClassifierRunOnCommandLine models/
my disney e n.LMClassifier

4. The usual interaction follows:
Type a string to be classified. Empty string to quit.
The rain in Spain

Best Category: e

The contents of main () from src/com/lingpipe/cookbook/chapterl/
TrainAndWriteClassifierToDisk.java start with the materials covered in the previous
recipes of the chapter to read the . csv files, set up a classifier, and train it. Please refer back
to it if any code is unclear.
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The new bit for this recipe happens when we invoke the AbtractExternalizable.
compileTo () method on DynamicLMClassifier, which compiles the model and
writes it to a file. This method is used like the writeExternal method from Java's
Externalizable interface:

AbstractExternalizable.compileTo (classifier,outFile) ;

This is all you need to know folks to write a classifier to a disk.

There's more...

There is an alternate way to serialize that is amenable to more variations of data sources for
serializations that are not based on the File class. An alternate way to write a classifier is:

FileOutputStream fos = new FileOutputStream(outFile) ;
ObjectOutputStream oos = new ObjectOutputStream(fos) ;
classifier.compileTo (ocos) ;

oos.close() ;

fos.close();

Additionally, DynamicLM can be compiled without involving the disk with a static
AbstractExternalizable.compile () method. It will be used in the following fashion:

@SuppressWarnings ("unchecked")

LMClassifier<LanguageModel, MultivariateDistribution> compiledLM
= (LMClassifier<LanguageModel, MultivariateDistributions)
AbstractExternalizable.compile (classifier);

The compiled version is a lot faster but does not allow further training instances.

Eliminate near duplicates with the

Jaccard distance

It often happens that the data has duplicates or near duplicates that should be filtered.
Twitter data has lots of duplicates that can be quite frustrating to work with even with the
-filter:retweets option available for the search API. A quick way to see this is to sort
the text in the spreadsheet, and tweets with common prefixes will be neighbors:

=
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485

487
488
489
480
491
492
493

495
496

A Disney deveria fazer uma princesa sem cabelos, para que cada menina no mundo gue luta contra o cince
E Disne§ Halloween F'Iailist hitp://t.co/deCWqlw47u via @Weidknecht

A Disney Halloween Playlist http://t.co/UXhK7DRQUo via @Weidknecht

A Disney le falta crear una princesa que sin su principe azul tambien viva feliz.

A Disney le falta crear una princesa que también sin principe viva feliz ;)

A Disney le falta crear una princesa que también sin principe viva feliz.

A Disney le falta crear una princesa que también sin principe viva feliz.

A Disney le falta crear una princesa que también sin principe viva feliz.

A Disney le falta crear una princesa que también sin principe viva feliz.

A Disney le falta crear una princesa que también sin principe viva feliz. -.- #AsiDeSimple
A disney movie never fails to make me happy. »

A Disney Pixar le falta crear una princesa gue también sin principe viva feliz.

Duplicate tweets that share a prefix

This sort only reveals shared prefixes; there are many more that don't share a prefix.
This recipe will allow you to find other sources of overlap and threshold, the point at
which duplicates are removed.

How to do it...

Perform the following steps to eliminate near duplicates with the Jaccard distance:

1.

Type in the command prompt:

java -cp lingpipe-cookbook.l.0.jar:lib/opencsv-2.4.jar:1lib/
lingpipe-4.1.0.jar com.lingpipe.cookbook.chapterl.
DeduplicateCsvData

You will be overwhelmed with a torrent of text:

Tweets too close, proximity 1.00

@britneyspears do you ever miss the Disney days? and iilysm
please follow me. kiss from Turkey #AskBritneyJean ??

@britneyspears do you ever miss the Disney days? and iilysm
please follow me. kiss from Turkey #AskBritneyJean ???

Tweets too close, proximity 0.50
Sooo, I want to have a Disney Princess movie night....

I just want to be a Disney Princess

Two example outputs are shown—the first is a near-exact duplicate with only a
difference in a final 2. It has a proximity of 1. 0; the next example has proximity of
0.50, and the tweets are different but have a good deal of word overlap. Note that
the second case does not share a prefix.

This recipe jumps a bit ahead of the sequence, using a tokenizer to drive the deduplication
process. It is here because the following recipe, for sentiment, really needs deduplicated data
to work well. Chapter 2, Finding and Working with Words, covers tokenization in detail.
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The source for main () is:

String inputPath = args.length > 0 ? args[0] : "data/disney.csv";
String outputPath = args.length > 1 ? args[l] : "data/disneyDeduped.
csv";

List<String[]> data = Util.readCsvRemoveHeader (new File (inputPath)) ;
System.out.println(data.size());

There is nothing new in the preceding code snippet, but the following code snippet has
TokenizerFactory:

TokenizerFactory tokenizerFactory = new RegExTokenizerFactory ("\\w+");

Briefly, the tokenizer breaks the text into text sequences defined by matching the regular
expression \w+ (the first \ escapes the second one in the preceding code—it is a Java thing).
It matches contiguous word characters. The string "Hi, you here??" produces tokens "Hi",
"you", and "here". The punctuation is ignored.

Next up, Util.filterJaccard is called with a cutoff of . 5, which roughly eliminates tweets
that overlap with half their words. Then, the filter data is written to disk:

double cutoff = .5;

List<String[]> dedupedData = Util.filterJaccard(data,
tokenizerFactory, cutoff);

System.out .println (dedupedData.size()) ;
Util.writeCsvAddHeader (dedupedData, new File (outputPath)) ;

}
The Util.filterJaccard () method's source is as follows:

public static List<String[]> filterJaccard(List<String[]> texts,
TokenizerFactory tokFactory, double cutoff) {

JaccardDistance jaccardD = new JaccardDistance (tokFactory) ;

In the preceding snippet, a JaccardDistance class is constructed with a tokenizer factory.
The Jaccard distance divides the intersection of tokens from the two strings over the union of
tokens from both strings. Look at the Javadoc for more information.

The nested for loops in the following example explore each row with every other row until

a higher threshold proximity is found or until all data has been looked at. Do not use this for
large datasets because it is the O(n?)algorithm. If no row is above proximity, then the row is
added to filteredTexts

List<String[]> filteredTexts = new ArrayList<Stringl[]>();
for (int i = 0; i < texts.size(); ++i) {

String targetText = texts.get (i) [TEXT OFFSET] ;

boolean addText = true;

for (int j = i + 1; j < texts.size(); ++j ) {

=
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String comparisionText = texts.get (j) [TEXT OFFSET] ;

double proximity =
jaccardD.proximity (targetText, comparisionText) ;

if (proximity >= cutoff) ({
addText = false;
System.out.printf (" Tweets too close, proximity %.2f\n",

proximity) ;

System.out.println("\t" + targetText) ;
System.out.println("\t" + comparisionText) ;
break;

}
}

if (addText)
filteredTexts.add (texts.get (1)) ;
}
}

return filteredTexts;

}

There are much better ways to efficiently filter the texts at a cost of extra complexity—a
simple reverse-word lookup index to compute an initial covering set will be vastly more
efficient—search for a shingling text lookup for O(n) to O(n log(n)) approaches.

Setting the threshold can be a bit tricky, but looking a bunch of data should make the
appropriate cutoff fairly clear for your needs.

How to classify sentiment - simple version

Sentiment has become the classic business-oriented classification task—what executive

can resist an ability to know on a constant basis what positive and negative things are being
said about their business? Sentiment classifiers offer this capability by taking text data

and classifying it into positive and negative categories. This recipe addresses the process

of creating a simple sentiment classifier, but more generally, it addresses how to create
classifiers for novel categories. It is also a 3-way classifier, unlike the 2-way classifiers

we have been working with.

Our first sentiment system was built for BuzzMetrics in 2004 using language model classifiers.
We tend to use logistic regression classifiers now, because they tend to perform better.
Chapter 3, Advanced Classifiers, covers logistic regression classifiers.
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How to do it...

The previous recipes focused on language ID—how do we shift the classifier over to the very
different task of sentiment? This will be much simpler than one might think—all that needs to
change is the training data, believe it or not. The steps are as follows:

1.

Use the Twitter search recipe to download tweets about a topic that

has positive/negative tweets about it. A search on disney is our example,
but feel free to branch out. This recipe will work with the supplied CSV file,
data/disneySentiment annot.csv.

Load the created data/disneySentiment annot.csv file into your spreadsheet
of choice. There are already some annotations done.

As in the Evaluation of classifiers - the confusion matrix recipe, annotate the true
class column for one of the three categories:

o The p annotation stands for positive. The example is "Oh well, | love Disney
movies. #hateonit".

o The n annotation stands for negative. The example is "Disney really messed
me up yo, this is not the way things are suppose to be".

o The o annotation stands for other. The example is "Update on Downtown
Disney. http://t.co/SE39z73vnw".

o Leave blank tweets that are not in English, irrelevant, both positive and
negative, or you are unsure about.

Keep annotating until the smallest category has at least 10 examples.
Save the annotations.
Run the previous recipe for cross validation, providing the annotated file's name:

java -cp lingpipe-cookbook.l.0.jar:lib/lingpipe-4.1.0.jar:1ib/
opencsv-2.4.jar com.lingpipe.cookbook.chapterl.RunXValidate data/
disneyDedupedSentiment.csv

The system will then run a four-fold cross validation and print a confusion matrix.
Look at the How to train and evaluate with cross validation recipe if you need
further explanation:

Training on fold 0

Testing on fold 0

Training on fold 1

Testing on fold 1

Training on fold 2

Testing on fold 2

Training on fold 3
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Testing on fold 3
reference\response
\p,n,o,
p 14,0,10,
n 6,0,4,
o 7,1,37,

That's it! Classifiers are entirely dependent on training data for what they classify. More
sophisticated techniques will bring richer features into the mix than character ngrams,

but ultimately, the labels imposed by training data are the knowledge being imparted to
the classifier. Depending on your view, the underlying technology is magical or astoundingly
simple minded.

Most developers are surprised that the only difference between language ID and sentiment
is the labeling applied to the data for training. The language model classifier is applying an
individual language model for each category and also noting the marginal distribution of the
categories in the estimates.

There's more...

Classifiers are pretty dumb but very useful if they are not expected to work outside their
capabilities. Language ID works great as a classification problem because the observed
events are tightly tied to the classification being done—the words and characters of a
language. Sentiment is more difficult because the observed events, in this case, are exactly
the same as the language ID and are less strongly associated with the end classification. For
example, the phrase "l love" is a good predictor of the sentence being English but not as clear
a predictor that the sentiment is positive, negative, or other. If the tweet is "l love Disney", then
we have a positive statement. If the tweet is "l love Disney, not", then it is negative. Addressing
the complexities of sentiment and other more complex phenomenon tends to be resolved in
the following ways:

» Create more training data. Even relatively dumb techniques such as language model
classifiers can perform very well given enough data. Humanity is just not that creative
in ways to gripe about, or praise, something. The Train a little, learn a little - active
learning recipe of Chapter 3, Advanced Classifiers, presents a clever way to do this.

» Use fancier classifiers that in turn use fancier features (observations) about the
data to get the job done. Look at the logistic regression recipes for more information.
For the negation case, a feature that looked for a negative phrase in the tweet might
help. This could get arbitrarily sophisticated.
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Note that a more appropriate way to take on the sentiment problem can be to create a binary
classifier for positive and not positive and a binary classifier for negative and not negative.
The classifiers will have separate training data and will allow for a tweet to be both positive
and negative.

Common problems as a classification problem

Classifiers form the foundations of many industrial NLP problems. This recipe goes through
the process of encoding some common problems into a classification-based solution. We will
pull from real-world examples that we have built whenever possible. You can think of them as
mini recipes.

Topic detection

Problem: Take footnotes from financial documents (10Qs and 10Ks) and determine whether
an eXtensible Business Reporting Language (XBRL) category is applied like "forward looking
financial statements". Turns out that foot notes are where all the action happens. For example,
is the footnote referring to retired debt? Performance needed to be greater than 90 percent
precision with acceptable recall.

Solution: This problem closely mirrors how we approached language ID and sentiment.

The actual solution involves a sentence recognizer that detects the footnotes—see Chapter
5, Finding Spans in Text - Chunking—and then creates training data for each of the XBRL
categories. We used the confusion matrix output to help refine the XBRL categories that

the system was struggling to distinguish. Merging categories was a possibility, and we did
merge them. This system is based on language model classifiers. If done now, we would use
logistic regression.

Question answering

Problem: Identify FAQs in a large dataset of text-based customer support data and develop the
answers and ability to automatically deliver answers with 90 percent precision.

Solution: Perform clustering analysis over logs to find FAQs—see Chapter 6, String Comparison
and Clustering. This will result in a very large set of FAQs that are really Infrequently Asked
Questions (IAQs); this means that the prevalence of an IAQ can be as low as 1/20000.
Positive data is fairly easy to find for a classifier, but negative data is too expensive to create
on any kind of balanced distribution—for every positive case, one will expect 19999 negative
case. The solution is to assume that any random sample of a large size will contain very few
positives and to just use this as negative data. A refinement is to run a trained classifier over
the negatives to find high-scoring cases and annotate them to pull out the positives that might
be found.
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Degree of sentiment

Problem: Classify a sentiment on a scale of 1 to 10 based on the degree of negativeness
to positiveness.

Solution: Even though our classifiers provide a score that can be mapped on a 1-to-10 scale,
this is not what the background computation is doing. To correctly map to a degree scale, one
will have to annotate the distinction in training data—this tweet is a 1, this tweet is a 3, and so
on. We will then train a 10-way classifier, and the first best category should, in theory, be the
degree. We write in theory because despite regular customer requests for this, we have never
found a customer that was willing to support the required annotation.

Non-exclusive category classification

Problem: The desired classifications are not mutually exclusive. A tweet can say both positive
and negative things, for example, "Loved Mickey, hated Pluto". Our classifiers assume that
categories are mutually exclusive.

Solution: We regularly use multiple binary classifiers in place of one n-way or multinomial
classifiers. The classifiers will be trained for positive/non-positive and negative/non-negative.
A tweet can then be annotated n and p.

Person/company/location detection
Problem: Detect mentions of people in text data.

Solution: Believe it or not, this breaks down into a word classification problem. See Chapter 6,
String Comparison and Clustering.

It is generally fruitful to look at any novel problem as a classification problem, even if classifiers
don't get used as the underlying technology. It can help clarify what the underlying technology
actually needs to do.







Finding and Working
with Words

In this chapter, we cover the following recipes:

» Introduction to tokenizer factories - finding words in a character stream
» Combining tokenizers - lowercase tokenizer

» Combining tokenizers - stop word tokenizers

» Using Lucene/Solr tokenizers

» Using Lucene/Solr tokenizers with LingPipe

» Evaluating tokenizers with unit tests

» Modifying tokenizer factories

» Finding words for languages without white spaces

Introduction

An important part of building NLP systems is to work with the appropriate unit for processing.
This chapter addresses the abstraction layer associated with the word level of processing.
This is called tokenization, which amounts to grouping adjacent characters into meaningful
chunks in support of classification, entity finding, and the rest of NLP.

LingPipe provides a broad range of tokenizer needs, which are not covered in this book.
Look at the Javadoc for tokenizers that do stemming, Soundex (tokens based on what
English words sound like), and more.
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Introduction to tokenizer factories - finding

words in a character stream

LingPipe tokenizers are built on a common pattern of a base tokenizer that can be used

on its own, or can be as the source for subsequent filtering tokenizers. Filtering tokenizers
manipulate the tokens/white spaces provided by the base tokenizer. This recipe covers our
most commonly used tokenizer, IndoEuropeanTokenizerFactory, which is good for
languages that use the Indo-European style of punctuation and word separators—examples
include English, Spanish, and French. As always, the Javadoc has useful information.

IndoEuropeanTokenizerFactory creates tokenizers with built-in
support for alpha-numerics, numbers, and other common constructs in
Indo-European languages.

% The tokenization rules are roughly based on those used in MUC-6 but
are necessarily more fine grained, because the MUC tokenizers are
based on lexical and semantic information, such as whether a string is

- an abbreviation. _

MUC-6 refers to the Message Understanding Conference that originated the idea of
government-sponsored competitions between contractors in 1995. The informal term was
Bake off, in reference to the Pillsbury Bake-Off that started in 1949, and one of the authors
was a participant as postdoc in MUC-6. MUC drove much of the innovation in the evaluation
of NLP systems.

LingPipe tokenizers are built using the LingPipe TokenizerFactory interface, which
provides a way of invoking different types of tokenizers using the same interface. This is
very useful in creating filtered tokenizers, which are constructed as a chain of tokenizers
and modify their output in some way. A TokenizerFactory instance might be created
either as a basic tokenizer, which takes simple parameters in its construction, or as a
filtered tokenizer, which takes other tokenizer factory objects as parameters. In either case,
an instance of TokenizerFactory has a single tokenize () method, which takes input
as a character array, a start index, and the number of characters to process and outputs a
Tokenizer object. The Tokenizer object represents the state of tokenizing a particular
slice of string and provides a stream of tokens. While TokenizerFactory is thread safe
and/or serializable, tokenizer instances are typically neither thread safe nor serializable.
The Tokenizer object provides methods to iterate over the tokens in the string and to
provide token positions of the tokens in the underlying text.

Getting ready

Download the JAR file and source for the book if you have not already done so.
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How to do it...

It is all pretty simple. The following are the steps to get started with tokenization:

1.

Go to the cookbook directory and invoke the following class:

java -cp "lingpipe-cookbook.l.0.jar:1lib/lingpipe-4.1.0.jar" com.
lingpipe.cookbook.chapter2.RunBaseTokenizerFactory

This will lead us to a command prompt, which asks us to type in some text:

type a sentence to see tokens and white spaces

If we type a sentence such as: It's no use growing older if you only
learn new ways of misbehaving yourself, we will get the following output:
It's no use growing older if you only learn new ways of
misbehaving yourself.

Token:'It!'

WhiteSpace:'

Token:'''

WhiteSpace:'
Token:'s'
WhiteSpace:' !
Token: 'no'
WhiteSpace:' !
Token: 'use'
WhiteSpace:' !
Token: 'growing'
WhiteSpace:' !
Token: 'older'
WhiteSpace:' !
Token:'if'
WhiteSpace:' !
Token: 'you'
WhiteSpace:' !
Token: 'only'
WhiteSpace:' !
Token: 'learn'
WhiteSpace:' !
Token: 'new'
WhiteSpace:' !
Token: 'ways'

WhiteSpace:' !
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Token: 'of!
WhiteSpace:' !
Token: 'misbehaving'
WhiteSpace:"' !
Token: 'yourself'
WhiteSpace:''
Token:'.'

WhiteSpace:' !

3. Examine the output and note what the tokens and white spaces are. The text is from
the short story, The Stampeding of Lady Bastable, by Saki.

The code is so simple that it can be included in its entirety as follows:

package com.lingpipe.cookbook.chapter2;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;

import com.aliasi.tokenizer.IndoEuropeanTokenizerFactory;
import com.aliasi.tokenizer.Tokenizer;
import com.aliasi.tokenizer.TokenizerFactory;

public class RunBaseTokenizerFactory {

public static void main(String[] args) throws IOException {
TokenizerFactory tokFactory =
IndoEuropeanTokenizerFactory.INSTANCE;
BufferedReader reader = new BufferedReader (
new InputStreamReader (System.in)) ;

while (true) {

System.out.println("type a sentence to " + "see
the tokens and white spaces");

String input = reader.readLine() ;

Tokenizer tokenizer = tokFactory.tokenizer
(input.toCharArray (), 0, input.length());

String token = null;

while ((token = tokenizer.nextToken()) != null) {
System.out.println("Token:'" + token + "'");
System.out.println ("WhiteSpace:'" +

tokenizer.nextWhitespace () + "'");
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}
}
}

This recipe starts with the creation of TokenizerFactory tokFactory

in the first statement of the main () method. Note that a singleton
IndoEuropeanTokenizerFactory.INSTANCE is used. The factory will produce tokenizers
for a given string, which is evident in the line, Tokenizer tokenizer = tokFactory.
tokenizer (input.toCharArray (), 0, input.length()).The entered stringis
converted to a character array with input . toCharArray () as the first argument to the
tokenizer method and the start and finish offsets provided into the created character array.

The resulting tokenizer provides tokens for the provided slice of character array, and
the white spaces and tokens are printed out in the while loop. Calling the tokenizer.
nextToken () method does a few things:

» The method returns the next token or null if there is no next token. The null then ends
the loop; otherwise, the loop continues.

» The method also increments the corresponding white space. There is always a white
space with a token, but it might be the empty string.

IndoEuropeanTokenizerFactory assumes a fairly standard abstraction over characters
that break down as follows:

» Characters from the beginning of the char array to the first token are ignored and not
reported as white space

» Characters from the end of the last token to the end of the char array are reported
as the next white space

» White spaces can be the empty string because of two adjoining tokens—note the
apostrophe in the output and corresponding white spaces

This means that it is not possible to reconstruct the original string necessarily if the input
does not start with a token. Fortunately, tokenizers are easily modified for customized needs.
We will see this later in the chapter.

There's more...

Tokenization can be arbitrarily complex. The LingPipe tokenizers are intended to cover

most common uses, but you might need to create your own tokenizer to have fine-grained
control, for example, Victoria's Secret with "Victoria's" as the token. Consult the source for
IndoEuropeanTokenizerFactory if such customization is needed, to see how arbitrary
tokenization is done here.
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Combining tokenizers - lowercase tokenizer

We mentioned in the previous recipe that LingPipe tokenizers can be basic or filtered. Basic
tokenizers, such as the Indo-European tokenizer, don't need much in terms of parameterization,
none at all as a matter of fact. However, filtered tokenizers need a tokenizer as a parameter.
What we're doing with filtered tokenizers is invoking multiple tokenizers where a base tokenizer
is usually modified by a filter to produce a different tokenizer.

LingPipe provides several basic tokenizers, such as IndoEuropeanTokenizerFactory or
CharacterTokenizerFactory. A complete list can be found in the Javadoc for LingPipe.
In this section, we'll show you how to combine an Indo-European tokenizer with a lowercase
tokenizer. This is a fairly common process that many search engines implement for Indo-
European languages.

Getting ready

You will need to download the JAR file for the book and have Java and Eclipse set up so that
you can run the example.

How to do it...

This works just the same way as the previous recipe. Perform the following steps:

1. Invoke the RunlLowerCaseTokenizerFactory class from the command line:

java -cp "lingpipe-cookbook.l.0.jar:lib/lingpipe-4.1.0.jar" com.
lingpipe.cookbook.chapter2.RunLowerCaseTokenizerFactory.

2. Then, in the command prompt, let's use the following example:
type a sentence below to see the tokens and white spaces are:
This is an UPPERCASE word and these are numbers 1 2 3 4.5.
Token: 'this'
WhiteSpace:' !
Token:'is'
WhiteSpace:' !
Token: 'an'
WhiteSpace:' !
Token: 'uppercase'
WhiteSpace:' !
Token: 'word'
WhiteSpace:' !
Token: 'and'

WhiteSpace:' !
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Token: 'these!’
WhiteSpace:' !
Token: 'are'
WhiteSpace:"' !
Token: 'numbers'
WhiteSpace:' !
Token:'1l'
WhiteSpace:' !
Token:'2'
WhiteSpace:' !
Token:'3"
WhiteSpace:' !
Token:'4.5!

WhiteSpace:'

Token:'.'

WhiteSpace:'

You can see in the preceding output that all the tokens are converted to lowercase, including
the word UPPERCASE, which was typed in uppercase. As this example uses an Indo-European
tokenizer as its base tokenizer, you can see that the number 4.5 is retained as 4 . 5 instead of
being broken up into 4 and 5.

The way we put tokenizers together is very simple:

public static void main(String[] args) throws IOException {

TokenizerFactory tokFactory =
IndoEuropeanTokenizerFactory.INSTANCE;

tokFactory = new LowerCaseTokenizerFactory (tokFactory) ;

tokFactory = new WhitespaceNormTokenizerFactory (tokFactory) ;

BufferedReader reader = new BufferedReader (new
InputStreamReader (System.in)) ;

while (true) ({
System.out.println("type a sentence below to see
the tokens and white spaces are:");

String input = reader.readLine() ;
Tokenizer tokenizer =
tokFactory.tokenizer (input.toCharArray (), O,

input.length()) ;
String token = null;
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while ((token = tokenizer.nextToken()) != null)
System.out.println("Token:'" + token + "'");
System.out.println ("WhiteSpace:'" +
tokenizer.nextWhitespace () + "'");

}
}
}

Here, we created a tokenizer that returns case and white space normalized tokens produced
using an Indo-European tokenizer. The tokenizer created from the tokenizer factory is a
filtered tokenizer that starts with the Indo-European base tokenizer, which is then modified by
LowerCaseTokenizer to produce the lowercase tokenizer. This is then once again modified
by WwhiteSpaceNormTokenizerFactory to produce a lowercase, white space-normalized
Indo-European tokenizer.

Case normalization is applied where the case of words doesn't matter much; for example,
search engines often store case-normalized words in their indexes. Now, we will use
case-normalized tokens in the upcoming examples on classifiers.

See also

» For more details on how filtered tokenizers are built, see the Javadoc for the abstract
class, ModifiedTokenizerFactory.

Combining tokenizers - stop word tokenizers

Similarly to the way in which we put together a lowercase and white space normalized tokenizer,
we can use a filtered tokenizer to create a tokenizer that filters out stop words. Once again, using
search engines as our example, we can remove commonly occurring words from our input set so
as to normalize the text. The stop words that are typically removed convey very little information
by themselves, although they might convey information in context.

The input is tokenized using whatever base tokenizer is set up, and then, the resulting tokens
are filtered out by the stop tokenizer to produce a token stream that is free of the stop words
specified when the stop tokenizer is initialized.

Getting ready

You will need to download the JAR file for the book and have Java and Eclipse set up so that
you can run the example.
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How to do it...

As we did earlier, we will go through the steps of interacting with the tokenizer:

1. Invoke the RunStopTokenizerFactory class from the command line:

java -cp "lingpipe-cookbook.l.0.jar:lib/lingpipe-4.1.0.jar" com.
lingpipe.cookbook.chapter2.RunStopTokenizerFactory

2. Then, in the prompt, let's use the following example:
type a sentence below to see the tokens and white spaces:
the quick brown fox is jumping
Token: 'quick'
WhiteSpace:' !
Token: 'brown'
WhiteSpace:' !
Token: 'fox!
WhiteSpace:' !
Token: 'jumping'

WhiteSpace:''

3. Note that we lose adjacency information. In the input, we have fox is jumping,
but the tokens came out as fox followed by jumping, because is was filtered.
This can be a problem for token-based processes that need accurate adjacency
information. In the Foreground- or background-driven interesting phrase detection
recipe of Chapter 4, Tagging Words and Tokens, we will show a length-based filtering
tokenizer that preserves adjacency.

The stop words used in this StopTokenizerFactory filter are just a very short list of
words, is, of, the, and to. Obviously, this list can be much longer if required. As you saw in
the preceding output, the words the and is have been removed from the tokenized output.
This is done with a very simple step: we instantiate StopTokenizerFactory in src/com/
lingpipe/cookbook/chapter2/RunStopTokenizerFactory. java. The relevant
code is:

TokenizerFactory tokFactory =
IndoEuropeanTokenizerFactory.INSTANCE;

tokFactory = new LowerCaseTokenizerFactory (tokFactory) ;

Set<String> stopWords = new HashSet<Strings () ;

stopWords.add ("the") ;

stopWords.add ("of") ;

stopWords.add ("to") ;

s
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stopWords.add ("is") ;
tokFactory = new StopTokenizerFactory (tokFactory, stopWords) ;

As we're using LowerCaseTokenizerFactory as one of the filters in the tokenizer factory,
we can get away with the stop words that contain only lowercase words. If we want to preserve
the case of the input tokens and continue to remove the stop words, we will need to add
uppercase or mixed-case versions as well.

See also

» The complete list of filtered tokenizers provided by LingPipe can be found on the
Javadoc page at http://alias-i.com/lingpipe/docs/api/com/aliasi/
tokenizer/ModifyTokenTokenizerFactory.html

Using Lucene/Solr tokenizers

The very popular search engine, Lucene, includes many analysis modules, which provide
general purpose tokenizers as well as language-specific tokenizers from Arabic to Thai. As of
Lucene 4, most of these different analyzers can be found in separate JAR files. We will cover
Lucene tokenizers, because they can be used as LingPipe tokenizers, as you will see in the
next recipe.

Much like the LingPipe tokenizers, Lucene tokenizers also can be split into basic tokenizers
and filtered tokenizers. Basic tokenizers take a reader as input, and filtered tokenizers take
other tokenizers as input. We will look at an example of using a standard Lucene analyzer
along with a lowercase-filtered tokenizer. A Lucene analyzer essentially maps a field to a token
stream. So, if you have an existing Lucene index, you can use the analyzer with the field name
instead of the raw tokenizer, as we will show in the later part of this chapter.

Getting ready

You will need to download the JAR file for the book and have Java and Eclipse set up so that
you can run the example. Some of the Lucene analyzers used in the examples are part of the
1ib directory. However, if you'd like to experiment with other language analyzers, download
them from the Apache Lucene website at https://lucene.apache.org.
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How to do it...

Remember that we are not using a LingPipe tokenizer in this recipe but introducing the
Lucene tokenizer classes:

1. Invoke the RunLuceneTokenizer class from the command line:

java -cp lingpipe-cookbook.l.0.jar:1lib/lucene-analyzers-common-
4.6.0.jar:1ib/lucene-core-4.6.0.jar com.lingpipe.cookbook.
chapter2.RunLuceneTokenize

2. Then, in the prompt, let's use the following example:
the quick BROWN fox jumped
type a sentence below to see the tokens and white spaces:
The rain in Spain.
Token:'the' Start: 0 End:3
Token:'rain' Start: 4 End:8
Token:'in' Start: 9 End:11
Token: 'spain' Start: 12 End:17

Let's review the following code to see how the Lucene tokenizers differ in invocation from the
previous examples—the relevant part of the code from src/com/1ingpipe/cookbook/
chapter2/RunLuceneTokenizer.java is:

BufferedReader reader = new BufferedReader (new
InputStreamReader (System.in)) ;

while (true) {

The preceding snippet sets up Buf feredReader from the command line and starts a
perpetual while () loop. Next, the prompt is provided, the input is read, and it is used
to construct a Reader object:

System.out.println("type a sentence below to
see the tokens and white spaces:");

String input = reader.readLine() ;

Reader stringReader = new StringReader (input) ;

All the input is now wrapped up, and it is time to construct the actual tokenizer:

TokenStream tokenStream = new StandardTokenizer (Version.
LUCENE 46, stringReader) ;

tokenStream = new LowerCaseFilter (Version.LUCENE 46, tokenStream) ;

[ei-
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The input text is used to construct StandardTokenizer with Lucene's versioning system
supplied—this produces an instance of TokenStream. Then, we used LowerCaseFilter
to create the final filtered tokenStream with the base tokenStream as an argument.

In Lucene, we need to attach the attributes we're interested in from the token stream; this is
done by the addAattribute method:

CharTermAttribute terms =

tokenStream.addAttribute (CharTermAttribute.class) ;
OffsetAttribute offset =

tokenStream.addAttribute (OffsetAttribute.class) ;
tokenStream.reset () ;

Note that in Lucene 4, once the tokenizer has been instantiated, the reset () method must
be called before using the tokenizer:

while (tokenStream.incrementToken()) {
String token = terms.toString() ;
int start = offset.startOffset();
int end = offset.endOffset();

System.out.println("Token:'" + token + "'"
+ " Start: " + start + " End:" + end);

}
The tokenStream is wrapped up with the following:

tokenStream.end () ;
tokenStream.close () ;

An excellent introduction to Lucene is in Text Processing with Java, Mitzi Morris, Colloquial
Media Corporation, where the guts of what we explained earlier are made clearer than what
we can provide in a recipe.

Using Lucene/Solr tokenizers with LingPipe

We can use these Lucene tokenizers with LingPipe; this is useful because Lucene has
such a rich set of them. We are going to show how to wrap a Lucene TokenStream into
a LingPipe TokenizerFactory by extending the Tokenizer abstract class.
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How to do it...

We will shake things up a bit and have a recipe that is not interactive. Perform the
following steps:

1.

Invoke the LuceneAnalyzerTokenizerFactory class from the command line:

java -cp lingpipe-cookbook.l.0.jar:1lib/lucene-analyzers-common-
4.6.0.jar:1ib/lucene-core-4.6.0.jar:1ib/lingpipe-4.1.0.jar com.
lingpipe.cookbook.chapter2.LuceneAnalyzerTokenizerFactory

The main () method in the class specifies the input:

String text = "Hi how are you? " + "Are the numbers
1 2 3 4.5 all integers?";
Analyzer analyzer = new StandardAnalyzer (Version.LUCENE 46) ;
TokenizerFactory tokFactory = new
LuceneAnalyzerTokenizerFactory
(analyzer, "DEFAULT") ;
Tokenizer tokenizer =
tokFactory.tokenizer (text.toCharArray (), O,
text.length()) ;

String token = null;

while ((token = tokenizer.nextToken()) != null) {
String ws = tokenizer.nextWhitespace() ;
System.out.println("Token:'" + token + "'");
System.out.println("WhiteSpace:'" + ws + "'");

}

The preceding snippet creates a Lucene StandardAnalyzer and uses it
to construct a LingPipe TokenizerFactory. The output is as follows—the
StandardAnalyzer filters stop words, so the token are is filtered:
Token: 'hi’

WhiteSpace: 'default’

Token: 'how!'

WhiteSpace: 'default’

Token: 'you'

WhiteSpace: 'default’

Token: 'numbers'

WhiteSpace: 'default!’

The white spaces report as default because the implementation does not
accurately provide white spaces but goes with a default. We will discuss this
limitation in the How it works... section.

(&5}
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Let's take a look at the LuceneAnalyzerTokenizerFactory class. This class
implements the LingPipe TokenizerFactory interface by wrapping a Lucene analyzer.
We will start with the class definition from src/com/1ingpipe/cookbook/chapter2/
LuceneAnalyzerTokenizerFactory.java:

public class LuceneAnalyzerTokenizerFactory
implements TokenizerFactory, Serializable ({

private static final long serialVersionUID =
8376017491713196935L;

private Analyzer analyzer;

private String field;

public LuceneAnalyzerTokenizerFactory
(Analyzer analyzer, String field)
super () ;
this.analyzer = analyzer;
this.field = field;

}

The constructor stores the analyzer and the name of the field as private variables.
As this class implements the TokenizerFactory interface, we need to implement
the tokenizer () method:

public Tokenizer tokenizer (char[] charSeg , int start, int length) {
Reader reader = new CharArrayReader (charSeq, start, length) ;
TokenStream tokenStream = analyzer.tokenStream(field, reader) ;
return new LuceneTokenStreamTokenizer (tokenStream) ;

}

The tokenizer () method creates a new character-array reader and passes it to the Lucene
analyzer to convert it to a TokenStream. An instance of LuceneTokenStreamTokenizer
is created based on the token stream. LuceneTokenStreamTokenizer is a nested static
class that extends LingPipe's Tokenizer class:

static class LuceneTokenStreamTokenizer extends Tokenizer ({
private TokenStream tokenStream;
private CharTermAttribute termAttribute;
private OffsetAttribute offsetAttribute;

private int lastTokenStartPosition = -1;
private int lastTokenEndPosition = -1;

public LuceneTokenStreamTokenizer (TokenStream ts)
tokenStream = ts;
termAttribute = tokenStream.addAttribute (




Chapter 2

CharTermAttribute.class) ;
offsetAttribute =
tokenStream.addAttribute (OffsetAttribute.class) ;
1

The constructor stores TokenStream and attaches the term and the offset attributes. In the
previous recipe, we saw that the term and the offset attributes contain the token string, and
the token start and end offsets into the input text. The token offsets are also initialized to -1
before any tokens are found:

@Override
public String nextToken() {
try {
if (tokenStream.incrementToken ()) {

lastTokenStartPosition =
offsetAttribute.startOffset () ;

lastTokenEndPosition =
offsetAttribute.endOffset () ;

return termAttribute.toString() ;

} else {
endAndClose () ;
return null;

}

} catch (IOException e) {
endAndClose () ;
return null;

}
}

We will implement the next Token () method and use the incrementToken () method
of the token stream to retrieve any tokens from the token stream. We will set the token
start and end offsets using OffsetAttribute. If the token stream is finished or

the incrementToken () method throws an 1/0 exception, we will end and close

the TokenStream.

The nextWhitespace () method has some limitations, because of fsetAttribute is
focused on the current token where LingPipe tokenizers quantize the input into the next token
and next offset. A general solution here will be quite challenging, because there might not

be any well-defined white spaces between tokens—think character ngrams. So, the default
string is supplied just to make it clear. The method is:

@Override
public String nextWhitespace() {
return "default";

}

The code also covers how to serialize the tokenizer, but we will not cover this in the recipe.

]
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Evaluating tokenizers with unit tests

We will not evaluate Indo-European tokenizers like the other components of LingPipe

with measures such as precision and recall. Instead, we will develop them with unit tests,
because our tokenizers are heuristically constructed and expected to perform perfectly on
example data—if a tokenizer fails to tokenize a known case, then it is a bug, not a reduction
in performance. Why is this? There are a few reasons:

» Many tokenizers are very "mechanistic" and are amenable to the rigidity of the
unit test framework. For example, the RegExTokenizerFactory is obviously
a candidate to unit test rather than an evaluation harness.

» The heuristic rules that drive most tokenizers are very general, and there is no issue
of overfitting training data at the expense of a deployed system. If you have a known
bad case, you can just go and fix the tokenizer and add a unit test.

» Tokens and white spaces are assumed to be semantically neutral, which means
that tokens don't change depending on context. This is not totally true with our
Indo-European tokenizer, because it treats . differently if it is part of a decimal
or at the end of a sentence, for example, 3.14 is pi.:

Token: '3.14"
WhiteSpace:' !
Token: 'is'
WhiteSpace:' !
Token: 'pi'
WhiteSpace:''
Token:'.'
WhiteSpace:''.

It might be appropriate to use an evaluation metric for statistics-based tokenizers; this is
discussed in the Finding words for languages without white spaces recipe in this chapter.
See the Evaluation of sentence detection recipe in Chapter 5, Finding Spans in

Text - Chunking, for appropriate span-based evaluation techniques.

How to do it...

We will forgo running the code step and just get right into the source to put
together a tokenizer evaluator. The source is in src/com/lingpipe/chapter2/
TestTokenizerFactory.java. Perform the following steps:

1. The following code sets up a base tokenizer factory with a regular expression—look
at the Javadoc for the class if you are not clear about what is being constructed:

public static void main(String[] args) {
String pattern = "[a-2zA-Z]+]|[0-9]+|\\S";

(&)
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TokenizerFactory tokFactory = new
RegExTokenizerFactory (pattern) ;
String[] tokens =

{"Tokenizers", "need", "unit", "tests","."};
String text = "Tokenizers need unit tests.";
checkTokens (tokFactory, text, tokens) ;
Strlng[] whiteSpaceS — {ll nonowon llllllllllll};

checkTokensAndWhiteSpaces
(tokFactory, text, tokens, whiteSpaces) ;
System.out.println("All tests passed!");

}

2. The checkTokens method takes TokenizerFactory, an array of String that is
the desired tokenization, and String that is to be tokenized. It follows:

static void checkTokens (TokenizerFactory

tokFactory, String string,

String[] correctTokens) {

Tokenizer tokenizer =
tokFactory.tokenizer (input.toCharArray(),0,
input.length()) ;

String[] tokens = tokenizer.tokenize() ;

if (tokens.length != correctTokens.length) ({
System.out.println("Token list lengths do not match");
System.exit (-1) ;

}
for (int i = 0; i < tokens.length; ++i) {
if (!correctTokens[i].equals (tokens[i]))
System.out.println ("Token mismatch:
got |" + tokens[i] + "|");
System.out.println(" expected |"
+ correctTokens[i] + "[|" );
System.exit (-1);
}

}

3. The method is quite intolerant of errors, because it exits the program if the token
arrays are not of the same length or if any of the tokens are not equal. A proper unit
test framework such as JUnit will be a better framework, but that is beyond the scope
of the book. You can look at the LingPipe unit tests in 1ingpipe.4.1.0/src/com/
aliasi/test for how JUnit is used.

4. The checkTokensAndWhiteSpaces () method checks white spaces as well
as tokens. It follows the same basic ideas of checkTokens (), SO we leave
it unexplained.
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Modifying tokenizer factories

In this recipe, we will describe a tokenizer that modifies the tokens in the token stream. We

will extend the Modi fyTokenTokenizerFactory class to return text that is rotated by 13
places in the English alphabet, also known as rot-13. Rot-13 is a very simple substitution cipher,
which replaces a letter with the letter that follows after 13 places. For example, the letter a will
be replaced by the letter n, and the letter z will be replaced by the letter m. This is a reciprocal
cypher, which means that applying the same cypher twice recovers the original text.

How to do it...

We will invoke the Rot 13TokenizerFactory class from the command line:

java -cp "lingpipe-cookbook.l.0.jar:lib/lingpipe-4.1.0.jar" com.
lingpipe.cookbook.chapter2.Rotl3TokenizerFactory

type a sentence below to see the tokens and white spaces:
Move along, nothing to see here.

Token: 'zbir'

Token: 'nybat!'

Token:',"'

Token: 'abguvat'

Token: 'gb'

Token: 'frr!

Token: 'urer'

Token:'.'

Modified Output: zbir nybat, abguvat gb frr urer.
type a sentence below to see the tokens and white spaces:
zbir nybat, abguvat gb frr urer.

Token: 'move'

Token: 'along'

Token:',"'

Token: 'nothing'

Token: 'to!

Token: 'see!’

Token: 'here'

Token:'.'

Modified Output: move along, nothing to see here.

&)
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You can see that the input text, which was mixed case and in normal English, has been
transformed into its Rot-13 equivalent. You can see that the second time around, we passed
the Rot-13 modified text as input and got the original text back, except that it was

all lowercase.

Rot13TokenizerFactory extends the ModifyTokenTokenizerFactory class. We wil
override the modifyToken () method, which operates a token at a time and, in this case,
converts the token to its Rot-13 equivalent. There is a similar modifyWhiteSpace (String)
method, which modifies the white spaces if required:

public class Rotl3TokenizerFactory
extends ModifyTokenTokenizerFactory{

public Rotl3TokenizerFactory (TokenizerFactory £)
super (f) ;

}

@Override
public String modifyToken (String tok)
return rotl3 (tok) ;

}

public static void main(String[] args) throws IOException {

TokenizerFactory tokFactory =
IndoEuropeanTokenizerFactory.INSTANCE;

tokFactory = new LowerCaseTokenizerFactory (tokFactory) ;

tokFactory = new Rotl3TokenizerFactory (tokFactory) ;

The start and end offsets of the tokens themselves remain the same as that of the underlying
tokenizer. Here, we will use an Indo-European tokenizer as our base tokenizer. Filter it once
through LowerCaseTokenizer and then through Rot13Tokenizer.

The rot13 method is:

public static String rotl3(String input)
StringBuilder sb = new StringBuilder() ;

for (int i = 0; i < input.length(); i++) {
char ¢ = input.charAt (i) ;
if (c >= 'a' && ¢ <= 'm') c += 13;
else if (c >= 'A' && c <= 'M') c += 13;
else if (¢ >= 'n' && c <= 'z') c -= 13;
else if (c >= 'N' && c <= 'Z2') c -= 13;

sb.append (c) ;

}

return sb.toString() ;

}

[}
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Finding words for languages without white

spaces

Languages such as Chinese do not have word boundaries. For example, K E= 2B %K E
BEN—FIE K A#BEHPARNTX from Wikipedia is a sentence in Chinese that translates
roughly into "Ganymede is running around Jupiter's moons, orbital period of about seven days"
as done by the machine translation service at https://translate.google.com. Notice
the absence of white spaces.

Finding tokens in this sort of data requires a very different approach that is based on
character-language models and our spell-checking class. This recipe encodes finding words

by treating untokenized text as misspelled text, where the correction inserts a space to delimit
tokens. Of course, there is nothing misspelled about Chinese, Japanese, Vietnamese, and other
non-word delimiting orthographies, but we have encoded it in our spelling-correction class.

Getting ready

We will approximate non-word delimiting orthographies with de-white spaced English. This is
sufficient to understand the recipe and can be easily modified to the actual language when
needed. Get a 100,000 or so words of English and get them to the disk in UTF-8 encoding.
The reason for fixing the encoding is that the input is assumed to be UTF-8—you can change it
by changing the encoding and recompiling the recipe.

We used A Connecticut Yankee in King Arthur's Court by Mark Twain, downloaded from Project
Gutenberg (http://www.gutenberg.org/). Project Gutenberg is an excellent source of
texts that are in the public domain, and Mark Twain is fine writer—we highly recommend the
book. Place your selected text in the cookbook directory or work with our default.

How to do it...

We will run a program, play with it a bit, and explain what it does and how it does it, using the
following steps:

1. Type the following command:

java -cp lingpipe-cookbook.l.0.jar:1lib/lingpipe-4.1.0.jar com.
lingpipe.cookbook.chapter2.TokenizeWithoutWhiteSpaces

Type an Englese sentence (English without spaces like Chinese):

TheraininSpainfallsmainlyontheplain

2. The following is the output:

The rain in Spain falls mainly on the plain

[
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3. You might not get the perfect output. How good is Mark Twain at recovering proper
white space from the Java program that generated it? Let's find out:

type an Englese sentence (English without spaces like Chinese)
NGramProcessLMlm=newNGramProcessLM (nGram) ;

NGram Process L Mlm=new NGram Process L M(n Gram);

4. The preceding way was not very good, but we are not being very fair; let's use the
concatenated source of LingPipe as training data:
java -cp lingpipe-cookbook.l.0.jar:1lib/lingpipe-4.1.0.jar com.
lingpipe.cookbook.chapter2.TokenizeWithoutWhiteSpaces data/
cookbookSource. txt

Compiling Spell Checker
type an Englese sentence (English without spaces like Chinese)
NGramProcessLMlm=newNGramProcessLM (nGram) ;

NGramProcessLM 1lm = new NGramProcessLM(nGram) ;

5. This is the perfect space insertion.

For all the fun and games, there is very little code involved. The cool thing is that we are
building on the character-language models from Chapter 1, Simple Classifiers. The source
isin src/com/lingpipe/chapter2/TokenizeWithoutWhiteSpaces.java

public static void main (String[] args) throws IOException,
ClassNotFoundException {

int nGram = 5;

NGramProcessLM 1lm = new NGramProcessLM (nGram) ;

WeightedEditDistance spaceInsertingEditDistance

= CompiledSpellChecker.TOKENIZING;

TrainSpellChecker trainer = new TrainSpellChecker (1m,

spacelnsertingEditDistance) ;

The main () method starts up with the creation of NgramProcessLM. Next up, we will access
a class for edit distance that is designed to only add spaces to a character stream. That's it.
Editdistance is typically a fairly crude measure of string similarity that scores how many
edits need to happen to to stringl to make it the same as string2. A lot of information on
this is Javadoc com.aliasi.spell. For example, com.aliasi.spell.EditDistance
has an excellent discussion of the basics.

. The EditDistance class implements the standard notion of edit
% distance, with or without transposition. The distance without transposition
s is known as the Levenshtein distance, and with transposition, it is known
as the Damerau-Levenstein distance.
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Read the Javadoc with LingPipe; it has a lot of useful of information that we don't have space
for in this book.

So far we configured and constructed a TrainSpellChecker class. The next step is to
naturally train it:

File trainingFile = new File (args[0]) ;

String training = Files.readFromFile (trainingFile, Strings.UTFS8) ;
training = training.replaceAll ("\\s+", " ");

trainer.handle (training) ;

We slurped up a text file, assuming it is UTF-8; if not, correct the character encoding and
recompile. Then, we replaced all the multiple white spaces with a single one. This might not
be the best move if multiple white spaces have meaning. This is followed by training, just like
we trained language models in Chapter 1, Simple Classifiers.

Next up, we will compile and configure the spell checker:

System.out.println("Compiling Spell Checker");
CompiledSpellChecker spellChecker = (CompiledSpellChecker)
AbstractExternalizable.compile (trainer) ;

spellChecker.setAllowInsert (true) ;
spellChecker.setAllowMatch (true) ;
spellChecker.setAllowDelete (false) ;
spellChecker.setAllowSubstitute (false) ;
spellChecker.setAllowTranspose (false) ;
spellChecker.setNumConsecutiveInsertionsAllowed (1) ;

The next interesting line compiles spellChecker, which translates all the counts in

the underlying language model to precomputed probabilities, which is much faster. The
compilation step can write to a disk, so it can be used later without training; however, visit
the Javadoc for AbstractExternalizable on how to do this. The next lines configure
CompiledSpellChecker to only consider the edits that insert characters and to check for
the exact string matches, but it forbids deletions, substitutions, and transpositions. Finally,
only one insert is allowed. It should be clear that we are using a very limited portion of the
capabilities of CompiledSpellChecker, but this is exactly what is called for—insert a
space or don't.
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Last up is our standard I/0 routine:

BufferedReader reader = new BufferedReader (new
InputStreamReader (System.in)) ;
while (true) {
System.out.println("type an Englese sentence
(English " + "without spaces like Chinese)"));
String input = reader.readLine() ;
String result = spellChecker.didYouMean (input) ;
System.out.println (result) ;

}

The mechanics of the CompiledSpellChecker and WeightedEditDistance classes are
better described in either the Javadoc or the Using edit distance and language models for
spelling correction recipe in Chapter 6, String Comparison and Clustering. However, the basic
idea is that the string entered is compared to the language model just trained, resulting in a
score that shows how good a fit this string is to the model. This string is going to be one huge
word without any white spaces—but note that there is no tokenizer at work here, so the spell
checker starts inserting spaces and reassessing the score of the resulting sequence. It keeps
these sequences where insertion of spaces increases the score of the sequence.

Remember that the language model was trained on text with white spaces. The spell checker
tries to insert a space everywhere it can and keeps a set of "best so far" insertions of white
spaces. In the end, it returns the best scoring series of edits.

Note that to complete the tokenizer, the appropriate TokenizerFactory needs to be
applied to the white space-modified text, but this is left as an exercise for the reader.

CompiledSpellChecker allows for an n-best output as well; this allows for multiple possible
analyses of the text. In a high-coverage/recall situation such as a research search engine,

it might serve to allow the application of multiple tokenizations. Also, the edit costs can be
manipulated by extending the weightedEditDistance class directly to tune the system.

See also

It will be unhelpful to not actually provide non-English resources for this recipe. We built
and evaluated a Chinese tokenizer using resources available on the web for research use.
Our tutorial on Chinese word segmentation covers this in detail. You can find the Chinese
word segmentation tutorial at http://alias-1i.com/lingpipe/demos/tutorial/
chineseTokens/read-me.html.
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Advanced Classifiers

In this chapter, we will cover the following recipes:

» Asimple classifier

» Language model classifier with tokens
» Naive Bayes

» Feature extractors

» Logistic regression

» Multithreaded cross validation

» Tuning parameters in logistic regression
» Customizing feature extraction

» Combining feature extractors

» Classifier-building life cycle

» Linguistic tuning

» Thresholding classifiers

» Train a little, learn a little - active learning

» Annotation

Introduction

This chapter introduces more sophisticated classifiers that use different learning techniques
as well as richer observations about the data (features). We will also address the best
practices for building machine-learning systems as well as data annotation and approaches
that minimize the amount of training data needed.
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A simple classifier

This recipe is a thought experiment that should help make clear what machine learning does.
Recall the Training your own language model classifier recipe in Chapter 1, Simple Classifiers,
to train your own sentiment classifier in the recipe. Consider what a conservative approach

to the same problem might be—build Map<String, String> from the inputs to the correct
class. This recipe will explore how this might work and what its consequences might be.

How to do it...

Brace yourself; this will be spectacularly stupid but hopefully informative.

1. Enter the following in the command line:

java -cp lingpipe-cookbook.l.0.jar:1lib/lingpipe-
4.1.0.jar:1ib/opencsv-2.4.jar com.lingpipe.cookbook.chapter3.
OverfittingClassifier

2. The usual anemic prompt appears, with some user input:
Training
Type a string to be classified. Empty string to quit.
When all else fails #Disney
Category is: e

3. It correctly gets the language as e or English. However, everything else is about to fail.
Next, we will use the following code:

Type a string to be classified. Empty string to quit.
When all else fails #Disne
Category is: n

We just dropped the final y on #Disney, and as a result, we got a big confused
classifier. What happened?

This section should really be called How it doesn't work, but let's dive into the details anyway.

Just to be clear, this recipe is not recommended as an actual solution to a classification
problem that requires any flexibility at all. However, it introduces a minimal example of how to
work with LingPipe's Classification class as well as makes clear what an extreme case
of overfitting looks like; this in turn, helps demonstrate how machine learning is different from
most of standard computer engineering.
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Starting with the main () method, we will get into standard code slinging that should be
familiar to you from Chapter 1, Simple Classifiers:

String dataPath = args.length > 0 ? args[0]
"data/disney e n.csv";

List<String[]> annotatedData =
Util.readAnnotatedCsvRemoveHeader (new File (dataPath)) ;

OverfittingClassifier classifier = new OverfittingClassifier();
System.out.println ("Training") ;
for (Stringl[] row: annotatedData) ({

String truth = row[Util.ANNOTATION_OFFSET];

String text = row[Util.TEXT_OFFSET];

classifier.handle (text,new Classification (truth)) ;

}

Util.consoleInputBestCategory(classifier) ;

Nothing novel is going on here—we are just training up a classifier, as shown in
Chapter 1, Simple Classifiers, and then supplying the classifier to the Util.
consoleInputBestCategory () method. Looking at the class code reveals
what is going on:

public class OverfittingClassifier implements
BaseClassifier<CharSequences> {

Map<String,Classification> mMap
= new HashMap<String,Classifications>();

public void handle (String text,
Classification classification) {
mMap .put (text, classification);

}

So, the handle () method takes the text and classification pair and stuffs them
in HashMap. The classifier does nothing else to learn from the data so training amounts
to memorization of the data:

@Override
public Classification classify(CharSequence text) {
if (mMap.containsKey (text)) ({
return mMap.get (text) ;

}

return new Classgsification("n");
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The classify () method just does a lookup into Map and returns the value if there is one,
otherwise, we will get the category n as the return classification.

What is good about the preceding code is that you have a minimalist example of a
BaseClassifier implementation, and you can see how the handle () method adds
data to the classifier.

What is bad about the preceding code is the utter rigidity of the mapping from training data to
categories. If the exact example is not seen in training, then the n category is assumed.

This is an extreme example of overfitting, but it essentially conveys what it means to have an
overfit model. An overfit model is tailored too close to the training data and cannot generalize
well to new data.

Let's think a bit more about what is so wrong about the preceding classifier for language
identification—the issue is that entire sentences/tweets are the wrong unit of processing.
Words/tokens are a much better measure of what language is being used. Some
improvements that will be borne out in the later recipes are:

» Break the text into words/tokens.

» Instead of a match/no-match decision, consider a more nuanced approach.
A simple which language matches more words will be a huge improvement.

» Aslanguages get closer, for example, British versus American English, probabilities
can be called for that. Pay attention to likely discriminating words.

While this recipe might be comically inappropriate for the task at hand, consider trying a
sentiment for an even more ludicrous example. It embodies a core assumption of much of
computer science that the world of inputs is discrete and finite. Machine learning can be
viewed as a response to a world where this is not the case.

There's more...

Oddly enough, we often have a need for such a classifier in commercial systems—we call it
the management classifier; it runs preemptively on data. It has happened that a senior VP is
unhappy with the system output for some example. This classifier then can be trained with the
exact case that allows for immediate system fixing and satisfaction of the VP.

Language model classifier with tokens

Chapter 1, Simple Classifiers, covered classification without knowing what tokens/words were,
with a language model per category—we used character slices or ngrams to model the text.
Chapter 2, Finding and Working with Words, discussed at length the process of finding tokens
in text, and now we can use them to build a classifier. Most of the time, we use tokenized
input to classifiers, so this recipe is an important introduction to the concept.

@
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How to do it...

This recipe will tell us how to train and use a tokenized language model classifier, but it will
ignore issues such as evaluation, serialization, deserialization, and so on. You can refer to
the recipes in Chapter 1, Simple Classifiers, for examples. This code of this recipe is in com.
lingpipe.cookbook.chapter3.TrainAndRunTokenizedLMClassifier

1. The exception of the following code is the same as found in the Training your
own language model classifier recipe in Chapter 1, Simple Classifiers. The
DynamicLMClassifier class provides a static method for the creation of a tokenized
LM classifier. Some setup is required. The maxTokenNgram variable sets the largest
size of token sequences used in the classifier—smaller datasets usually benefit from
lower order (number of tokens) ngrams. Next, we will set up a tokenizerFactory
method, selecting the workhorse tokenizer from Chapter 2, Finding and Working with
Words. Finally, we will specify the categories that the classifier uses:
int maxTokenNGram = 2;
TokenizerFactory tokenizerFactory =

IndoEuropeanTokenizerFactory.INSTANCE;

String[] categories = Util.getCategories (annotatedData) ;

2. Next, the classifier is constructed:

DynamicLMClassifier<TokenizedLM> classifier =
DynamicLMClassifier.createTokenized
(categories, tokenizerFactory, maxTokenNGram) ;

3. Run the code from the command line or your IDE:

java -cp lingpipe-cookbook.l.0.jar:1lib/lingpipe-
4.1.0.jar:1ib/opencsv-2.4.jar com.lingpipe.cookbook.chapter3.
TrainAndRunTokenizedLMClassifier

There's more...

In application, the DynamicLMClassifier classifier does not see a great deal of use in
commercial application. This classifier might be a good choice for an author-identification
classifier (that is, one that classifies whether a given piece of text is written by an author
or by someone else) that was highly sensitive to turns of phrase and exact word usage.
The Javadoc is well worth consulting to better understand what this class does.

Naive Bayes

Naive Bayes is probably the world's most famous classification technology, and just to keep
you on your toes, we provide two separate implementations with lots of configurability.
One of the most well-known applications of a naive Bayes classifier is for spam filtering in

an e-mail.
[}
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The reason the word naive is used is that the classifier assumes that words (features)
occur independent of one another—this is clearly a naive assumption, but lots of useful
and not-so-useful technologies have been based on the approach. Some notable features
of the traditional naive Bayes include:

» Character sequences are converted to bags of tokens with counts. No whitespaces
are considered, and the order of the tokens does not matter.

» Naive Bayes classifiers require two or more categories into which input texts are
categorized. These categories must be both exhaustive and mutually exclusive.
This indicates that a document used for training must only belong to one category.

» The math is very simple: p (category | tokens) = p(category, tokens)/
p (tokens).

» The class is configurable for various kinds of unknown token models.

A naive Bayes classifier estimates two things. First, it estimates the probability of each
category, independent of any tokens. This is carried out based on the number of training
examples presented for each category. Second, for each category, it estimates the probability
of seeing each token in that category. Naive Bayes is so useful and important that we will
show you exactly how it works and plug through the formulas. The example we have is to
classify hot and cold weather based on the text.

First, we will work out the math to calculate the probability of a category given a word
sequence. Second, we will plug in an example and then verify it using the classifier we build.

Getting ready

Let's lay out the basic formula to calculate the probability of a category given a text input.
A token-based naive Bayes classifier computes the joint token count and category probabilities
as follows:

p(tokens,cat) = p(tokens|cat) * p(cat)

1. Conditional probabilities are derived by applying Bayes's rule to invert the
probability calculation:

p(cat|tokens) = p(tokens,cat) / p(tokens)
= p(tokens|cat) * p(cat) / p(tokens)

2. Now, we will get to expand all these terms. If we look at p (tokens |cat),
this is where the naive assumption comes into play. We assume that each
token is independent, and thus, the probability of all the tokens is the product
of the probability of each token:

p(tokens|cat) = p(tokens[0] |cat) * p(tokens[1l]|cat) *
* p(tokens[n] |cat)

(&)
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The probability of the tokens themselves, that is, p (tokens), the denominator in the
preceding equation. This is just the sum of their probability in each category weighted
by the probability of the category itself:

p(tokens) = p(tokens|catl) * p(catl) + p(tokens|cat2)
* p(cat2) + . . . + p(tokens|catN) * p(catN)

When building a naive Bayes classifier, p (tokens) doesn't need to be

explicitly calculated. Instead, we can use p (tokens|cat) * p(cat)
M . . .
and assign the tokens to the category with the higher product.

Now that we have laid out each element of our equation, we can look at how
these probabilities are calculated. We can calculate both these probabilities
using simple frequencies.

The probability of a category is calculated by counting the number of times

the category showed up in the training instances divided by the total number of
training instances. As we know that Naive Bayes classifiers have exhaustive and
mutually-exclusive categories, the sum of the frequency of each category must
equal the total number of training instances:

p(cat) = frequency(cat) / (frequency(catl) +
frequency(cat2) + . . . + frequency(catN))

The probability of a token in a category is computed by counting the number of times
the token appeared in a category divided by the number of times all the other tokens
appeared in this category:

p(token|cat) = frequency (token,cat)/ (frequency (tokenl,cat)
+ frequency(token2,cat) + . . . + frequency(tokenN, cat)

These probabilities are calculated to provide what is called the maximum likelihood
estimate of the model. Unfortunately, these estimates provide zero probability

for tokens that were not seen during the training. You can see this very easily in

the calculation of an unseen token probability. Since it wasn't seen, it will have a
frequency count of O, and the numerator of our original equation goes to O.

In order to overcome this, we will use a technique known as smoothing that

assigns a prior and then computes a maximum a posteriori estimate rather than a
maximum likelihood estimate. A very common smoothing technique is called additive
smoothing, and it just involves adding a prior count to every count in the training
data. Two sets of counts are added: the first is a token count added to all the token
frequency calculations, and the second is a category count, which is added to all the
category count calculations.
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This obviously changes the p (cat) and the p (token|cat) values. Let's call the
alpha prior that is added to the category count and the beta prior that is added
to the token count. When we call the alpha prior, our previous calculations will
change to:

p(cat) = frequency(cat) + alpha / [(frequency(catl) +
alpha) + (frequency(cat2)+alpha) + . . . +
(frequency (catN) + alpha)]

When we call the beta prior, the calculations will change to:

p(token|cat) = (frequency (token,cat)+beta) /
[ (frequency (tokenl, cat) +beta) + frequency(token2, cat) +beta) +

+ (frequency (tokenN,cat) + beta)]

Now that we have set up our equations, let's look at a concrete example.

We'll build a classifier to classify whether the forecast calls for hot or cold weather
based on a set of phrases:

hot : super steamy today
hot : boiling out
hot : steamy out

cold : freezing out
cold : icy
There are a total of seven tokens in these five training items:

O super

0 steamy

o today

o boiling

o  out

o freezing

o icy
Of these, all the tokens appear once, except steamy, which appears twice in the hot
category and out, which appears once in each category. This is our training data.
Now, let's calculate the probability of an input text being in the hot or cold category .
Let's say our input is the word super. Let's set the category prior alpha to 1 and the
token prior beta also to 1.
So, we will calculate the probabilities of p (hot | super) and p (cold|super):
p (hot | super) = p(super|hot) * p(hot)/ p(super)

p(super|hot) = (freq(super,hot) + beta) /
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[ (freq (super |hot) +beta) + (freg(steamy|hot) + beta) +
+ (freq(freezing|hot) +beta)

We will take into consideration all the tokens, including the ones that haven't been
seen in the hot category:

freqg(super|hot) + beta = 1 + 1 = 2
freqg(steamy|hot) + beta = 2 + 1 = 3
freqg(today|hot) + beta = 1 +

+ B
I
N

freqg(out|hot) + beta = 1 + 1
freq(freezing|hot) + beta = 0 + 1 = 1

(
(
(
freq(boiling|hot) + beta
(
(
(

freqg(icy|hot) + beta = 0 + 1 = 1
This will give us a denominator equal to a sum of these inputs:
2434242424141 = 13

Now, p (super |hot) = 2/13 is one part of the equation. We still need to calculate
p(hot) andp (super):

p(hot) = (freq(hot) + alpha) /
((freg(hot) + alpha) +
freqg(cold) +alpha))

For the hot category, we have three documents or cases, and for the cold category,

we have two documents in our training data. So, freq (hot) = 3 and freg(cold)
= 2

p(hot) = (3 + 1) / (3 + 1) + (2 +1) = 4/7

Similarly p(cold) = (2 + 1) / (3 + 1) + (2 +1) = 3/7

Please note that p(hot) = 1 - p(cold)

p(super) = p(super|hot) * p(hot) + p(super|cold) + p(cold)

To calculate p (super | cold), we need to repeat the same steps:

p(super|cold) = (freq(super,cold) + beta) /
[ (freq(super|cold) +beta) + (freg(steamy|cold) + beta) + . . . +
(freq(freezing|cold) +beta)

freq(super|cold) + beta = 0 + 1 = 1
freqg(steamy|cold) + beta = 0 + 1 = 1
freq(today|cold) + beta = 0

1
= o +

freqg(out|cold) + beta = 1 +

(
(
(
freq(boiling|cold) + beta
(
freq(freezing|cold) + beta = 1 + 1 = 2
(

freq(icy|cold) + beta = 1 + 1 = 2
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p (super|cold) freq(super|cold) +beta/sum of all terms above

=0 + 1/ (1+1+1+1+2+2+2) = 1/10

This gives us the probability of the token super:

P(super) = p(super|hot) * p(hot) + p(super|cold) * p(cold)
= 2/13 * 4/7 + 1/10 * 3/7

We now have all the pieces together to calculate p (hot | super) and
p(cold|super):

p (hot | super) = p(super|hot) * p(hot) / p(super)

(2/13 * 4/7) / (2/13 * 4/7 + 1/10 * 3/7)

0.6722

p(cold|super) = p(super|cold) * p(cold) /p(super)

(1/10 * 3/7) / (2/13 * 4/7 + 1/10 * 3/7)
0.3277

Obviously, p(hot|super) = 1 - p(cold|super)

If we want to repeat this for the input stream super super, the following
calculations can be used:

p (hot | super super) = p(super super|hot) * p(hot) / p(super super)
= (2/13 * 2/13 * 4/7) / (2/13 * 2/13 * 4/7 + 1/10 *
1/10 * 3/7)
= 0.7593
p(cold|super super) = p(super super|cold) * p(cold) /p(super
super)
= (1/10 * 1/10 * 3/7) / (2/13 * 2/13 * 4/7 + 1/10 *
1/10 * 3/7)

= 0.2406

Remember our naive assumption: the probability of the tokens is the product of the
probabilities, since we assume that they are independent of each other.

Let's verify our calculations by training up the naive Bayes classifier and using the same input.

How to do it...

Let's verify some of these calculations in code:

1.

In your IDE, run the TrainAndRunNaiveBayesClassifier class in the code
package of this chapter, or using the command line, type the following command:
java -cp lingpipe-cookbook.l.0.jar:1lib/lingpipe-
4.1.0.jar:1lib/opencsv-2.4.jar com.lingpipe.cookbook.chapter3.
TrainAndRunNaiveBayesClassifier
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In the prompt, let's use our first example, super:

Type a string to be classified
super
h 0.67
c 0.33

As we can see, our calculations were correct. For the case of a word, hello, that
doesn't exist in our training; we will fall back to the prevalence of the categories
modified by the category's prior counts:

Type a string to be classified
hello
h 0.57
c 0.43

Again, for the case of super super, our calculations were correct.

Type a string to be classified
super super

h 0.76
c 0.24

The source that generates the preceding output is in src/com/lingpipe/
chapter3/TrainAndRunNaiveBays.java. The code should be straightforward,
so we will not covering it in this recipe.

>

For more details on configuring naive Bayes, including length normalizing, refer to the
Javadoc at http://alias-i.com/lingpipe/docs/api/index.html?com/
aliasi/classify/TradNaiveBayesClassifier.html

You can refer to the expectation maximization tutorial at http://alias-i.com/
lingpipe/demos/tutorial /em/read-me.html

Feature extractors

Up until now, we have been using characters and words to train our models. We are about to
introduce a classifier (logistic regression) that allows for other observations about the data
to inform the classifier—for example, whether a word is actually a date. Feature extractors
are used in CRF taggers and K-means clustering. This recipe will introduce feature extractors
independent of any technology that uses them.
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How to do it...

There is not much to this recipe, but the upcoming Logistic regression recipe has many
moving parts, and this is one of them.

1. Fire up your IDE or type in the command line:

java -cp lingpipe-cookbook.l.0.jar:1lib/lingpipe-4.1.0.jar com.
lingpipe.cookbook.chapter3.SimpleFeatureExtractor

2. Type a string into our standard I/0 loop:

Type a string to see its features
My first feature extraction!

3. Features are then produced:
1=1
My=1
extraction=1
feature=1
first=1

4. Note that there is no order information here. Does it keep a count or not?

Type a string to see its features

My my my what a nice feature extractor.
my=2

=1

My=1

a=1

extractor=1

feature=1

nice=1

what=1

5. The feature extractor keeps count with my=2, and it does not normalize the case
(My is different from my). Refer to the later recipes in this chapter on how to modify
feature extractors—they are very flexible.

LingPipe provides solid infrastructure for the creation of feature extractors. The code for
this recipe is in src/com/lingipe/chapter3/SimpleFeatureExtractor.java:

public static void main(String[] args) throws IOException {
TokenizerFactory tokFact
= IndoEuropeanTokenizerFactory.INSTANCE;
FeatureExtractor<CharSequence> tokenFeatureExtractor
= new TokenFeatureExtractor (tokFact) ;

~[ee]
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The preceding code constructs TokenFeatureExtractor with TokenizerFactory.
It is one of the 13 FeatureExtractor implementations provided in LingPipe.

Next, we will apply the 1/0 loop and print out the feature, which is Map<String, ? extends
Number>. The String element is the feature name. In this case, the actual token is the
name. The second element of the map is a value that extends Number, in this case, the count
of how many times the token was seen in the text.

BufferedReader reader
= new BufferedReader (new InputStreamReader (System.in)) ;
while (true) {
System.out.println("\nType a string to see its features");
String text = reader.readLine() ;
Map<String, ? extends Number > features
= tokenFeatureExtractor.features (text) ;
System.out.println (features) ;

}

The feature name needs to only be a unique name—we could have prepended each feature
name with SimpleFeatExt to keep track of where the feature came from, which is helpful
in complex feature-extraction scenarios.

Logistic regression

Logistic regression is probably responsible for the majority of industrial classifiers, with the
possible exception of naive Bayes classifiers. It almost certainly is one of the best performing
classifiers available, albeit at the cost of slow training and considerable complexity in
configuration and tuning.

Logistic regression is also known as maximum entropy, neural network classification with

a single neuron, and others. So far in this book, the classifiers have been based on the
underlying characters or tokens, but logistic regression uses unrestricted feature extraction,
which allows for arbitrary observations of the situation to be encoded in the classifier.

This recipe closely follows a more complete tutorial at http://alias-1i.com/lingpipe/
demos/tutorial/logistic-regression/read-me.html.

How logistic regression works

All that logistic regression does is take a vector of feature weights over the data, apply a
vector of coefficients, and do some simple math, which results in a probability for each class
encountered in training. The complicated bit is in determining what the coefficients should be.
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The following are some of the features produced by our training recipe for 21 tweets
annotated for English e and non-English n. There are relatively few features because feature
weights are being pushed to 0.0 by our prior, and once a weight is 0. 0, then the feature is
removed. Note that one category, n, is set to 0. 0 for all the features of the n-1 category—this
is a property of the logistic regression process that fixes once categories features to 0.0 and
adjust all other categories features with respect to that:

FEATURE e n
I : 0.37 0.0

[ 0.30 0.0
Disney : 0.15 0.0
"o 0.08 0.0

to : 0.07 0.0
anymore : 0.06 0.0
isn : 0.06 0.0
' 0.06 0.0

t o 0.04 0.0

for : 0.03 0.0
que : -0.01 0.0
moi : -0.01 0.0
_ -0.02 0.0

, -0.08 0.0
pra : -0.09 0.0

? o -0.09 0.0

Take the string, I l1uv Disney, which will only have two non-zero features: I=0.37 and
Disney=0.15 for e and zeros for n. Since there is no feature that matches luv, it is ignored.
The probability that the tweet is English breaks down to:

vectorMultiply(e,[l,Disney]) = exp(.37*1 +.15*1) = 1.68
vectorMultiply(n,[l,Disney]) = exp(0*1 +0*1)=1
We will rescale to a probability by summing the outcomes and dividing it:
p(el,[l,Disney]) = 1.68/(1.68 +1) = 0.62
p(el,[l,Disney]) = 1/(1.68 +1) = 0.38

This is how the math works on running a logistic regression model. Training is another
issue entirely.

Getting ready

This recipe assumes the same framework that we have been using all along to get training
data from . csv files, train the classifier, and run it from the command line.

(e
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Setting up to train the classifier is a bit complex because of the number of parameters and
objects used in training. We will discuss all the 10 arguments to the training method as found
in com.lingpipe.cookbook.chapter3.TrainAndRunLogReg.

The main () method starts with what should be familiar classes and methods—if they are
not familiar, have a look at How to train and evaluate with cross validation and Introduction
to Introduction to tokenizer Factories - finding words in a character stream, recipes from
Chapter 1, Simple Classifiers, and Chapter 2, Finding and Working with Words, respectively:

public static void main(String[] args) throws IOException {
String trainingFile = args.length > 0 ? args[0]
"data/disney e n.csv";
List<String[]> training
= Util.readAnnotatedCsvRemoveHeader (new File (trainingFile)) ;

int numFolds = 0;
XValidatingObjectCorpus<Classified<CharSequence>> corpus
= Util.loadXValCorpus (training, numFolds) ;

TokenizerFactory tokenizerFactory
= IndoEuropeanTokenizerFactory.INSTANCE;

Note that we are using XvValidatingObjectCorpus when a simpler implementation
such as ListCorpus will do. We will not take advantage of any of its cross-validation
features, because the numFolds param as 0 will have training visit the entire corpus.
We are trying to keep the number of novel classes to a minimum, and we tend to always
use this implementation in real-world gigs anyway.

Now, we will start to build the configuration for our classifier. The FeatureExtractor<E>
interface provides a mapping from data to features; this will be used to train and run the
classifier. In this case, we are using a TokenFeatureExtractor () method, which creates
features based on the tokens found by the tokenizer supplied during construction. This is
similar to what naive Bayes reasons over. The previous recipe goes into more detail about
what the feature extractor is doing if this is not clear:

FeatureExtractor<CharSequence> featureExtractor
= new TokenFeatureExtractor (tokenizerFactory) ;

The minFeatureCount item is usually set to a number higher than 1, but with small training
sets, this is needed to get any performance. The thought behind filtering feature counts is
that logistic regression tends to overfit low-count features that, just by chance, exist in one
category of training data. As training data grows, the minFeatureCount value is adjusted
usually by paying attention to cross-validation performance:

int minFeatureCount = 1;

]
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The addInterceptFeature Boolean controls whether a category feature exists that
models the prevalence of the category in training. The default name of the intercept feature
is *&* INTERCEPT%$ " &**, and you will see it in the weight vector output if it is being used.
By convention, the intercept feature is setto 1. 0 for all inputs. The idea is that if a category
is just very common or very rare, there should be a feature that captures just this fact,
independent of other features that might not be as cleanly distributed. This models the
category probability in naive Bayes in some way, but the logistic regression algorithm will
decide how useful it is as it does with all other features:

boolean addInterceptFeature = true;
boolean noninformativeIntercept = true;

These Booleans control what happens to the intercept feature if it is used. Priors, in the
following code, are typically not applied to the intercept feature; this is the result if this
parameter is true. Set the Boolean to false, and the prior will be applied to the intercept.

Next is the RegressionPrior instance, which controls how the model is fit. What you

need to know is that priors help prevent logistic regression from overfitting the data by
pushing coefficients towards O. There is a non-informative prior that does not do this with
the consequence that if there is a feature that applies to just one category it will be scaled to
infinity, because the model keeps fitting better as the coefficient is increased in the numeric
estimation. Priors, in this context, function as a way to not be over confident in observations
about the world.

Another dimension in the RegressionPrior instance is the expected variance of the
features. Low variance will push coefficients to zero more aggressively. The prior returned by
the static 1aplace () method tends to work well for NLP problems. For more information
on what is going on here, consult the relevant Javadoc and the logistic regression tutorial
referenced at the beginning of the recipe—there is a lot going on, but it can be managed
without a deep theoretical understanding. Also, see the Tuning parameters in logistic
regression recipe in this chapter.

double priorVariance = 2;
RegressionPrior prior
= RegressionPrior.laplace (priorVariance,
noninformativeIntercept) ;

Next, we will control how the algorithm searches for an answer.

AnnealingSchedule annealingSchedule
= AnnealingSchedule.exponential (0.00025,0.999) ;
double minImprovement = 0.000000001;
int minEpochs = 100;
int maxEpochs = 2000;

5]
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AnnealingSchedule is best understood by consulting the Javadoc, but what it does

is change how much the coefficients are allowed to vary when fitting the model. The
minImprovement parameter sets the amount the model fit has to improve to not terminate
the search, because the algorithm has converged. The minEpochs parameter sets a minimal
number of iterations, and maxEpochs sets an upper limit if the search does not converge as
determined by minImprovement.

Next is some code that allows for basic reporting/logging. LogLevel . INFO will report a great
deal of information about the progress of the classifier as it tries to converge:

PrintWriter progressWriter = new PrintWriter (System.out, true);
progressWriter.println("Reading data.");

Reporter reporter = Reporters.writer (progressWriter) ;
reporter.setLevel (LogLevel.INFO) ;

Here ends the Getting ready section of one of our most complex classes—next, we will train
and run the classifier.

How to do it...

It has been a bit of work setting up to train and run this class. We will just go through the
steps to get it up and running; the upcoming recipes will address its tuning and evaluation:

1. Note that there is a more complex 14-argument train method as well the one that
extends configurability. This is the 10-argument version:

LogisticRegressionClassifier<CharSequence> classifier

= LogisticRegressionClassifier.
<CharSequence>train (corpus,
featureExtractor,
minFeatureCount,
addInterceptFeature,
prior,
annealingSchedule,
minImprovement,
minEpochs,
maxEpochs,
reporter) ;

2. The train () method, depending on the LogLevel constant, will produce from
nothing with LogLevel . NONE to the prodigious output with LogLevel . ALL.
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3.

While we are not going to use it, we show how to serialize the trained model to disk.
The How to serialize a LingPipe object - classifier example recipe in Chapter 1,
Simple Classifiers, explains what is going on:

AbstractExternalizable.compileTo(classifier,
new File ("models/myModel.LogisticRegression")) ;

Once trained, we will apply the standard classification loop with:

Util.consoleInputPrintClassification(classifier) ;

Run the preceding code in the IDE of your choice or use the command-line command:

java -cp lingpipe-cookbook.l.0.jar:lib/lingpipe-4.1.0.jar:1ib/
opencsv-2.4.jar com.lingpipe.cookbook.chapter3.TrainAndRunLogReg

The result is a big dump of information about the training:

Reading data.

:00 Feature Extractor class=class com.aliasi.tokenizer.

TokenFeatureExtractor

:00 min feature count=1

:00 Extracting Training Data

:00 Cold start

:00 Regression callback handler=null

:00 Logistic Regression Estimation

:00 Monitoring convergence=true

:00 Number of dimensions=233

:00 Number of Outcomes=2

:00 Number of Parameters=233

:00 Number of Training Instances=21

:00 Prior=LaplaceRegressionPrior (Variance=2.0,
noninformativeIntercept=true)

:00 Annealing Schedule=Exponential (initialLearningRate=2.5E-4,
base=0.999)

:00 Minimum Epochs=100

:00 Maximum Epochs=2000

:00 Minimum Improvement Per Period=1.0E-9

:00 Has Informative Prior=true

:00 epoch= 0 1r=0.000250000 11= -20.9648 1p=
-232.0139 1lp= -252.9787 1llp*= -252.9787

:00 epoch= 1 1r=0.000249750 11= -20.9406 1p=
-232.0195 1lp= -252.9602 1llp*= -252.9602

7. The epoch reporting goes on until either the number of epochs is met or the search

converges. In the following case, the number of epochs was met:

:00 epoch= 1998 1r=0.000033868 1l= -15.4568 1p=
-233.8125 1lp= -249.2693 1llp*= -249.2693

:00 epoch= 1999 1r=0.000033834 11= -15.4565 1p=
-233.8127 1llp= -249.2692 1llp*= -249.2692
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Now, we can play with the classifier a bit:

Type a string to be classified. Empty string to quit.
I luv Disney

Rank Category Score P (Category|Input)

O=e 0.626898085027528 0.626898085027528

1=n 0.373101914972472 0.373101914972472

This should look familiar; it is exactly the same result as the worked example at the
start of the recipe.

That's it! You have trained up and used the world's most relevant industrial classifier.
However, there's a lot more to harnessing the power of this beast.

Multithreaded cross validation

Cross validation (refer to the How to train and evaluate with cross validation recipe in Chapter
1, Simple Classifiers) can be very slow, which interferes with tuning systems. This recipe will
show you a simple but effective way to access all the available cores on your system to more
quickly process each fold.

How to do it...

This recipe explains multi-threaded cross validation in the context of the next recipe, so don't
be confused by the fact that the same class is repeated.

1.

Engage your IDE or type in the command line:

java -cp lingpipe-cookbook.l.0.jar:lib/lingpipe-4.1.0.jar:1ib/
opencsv-2.4.jar com.lingpipe.cookbook.chapter3.TuneLogRegParams
The system then responds with the following output (you might have to scroll to the
top of the window):

Reading data.

RUNNING thread Fold 5 (1 of 10)
RUNNING thread Fold 9 (2 of 10)
RUNNING thread Fold 3 (3 of 10)
RUNNING thread Fold 4 (4 of 10)
RUNNING thread Fold 0 (5 of 10)
RUNNING thread Fold 2 (6 of 10)
RUNNING thread Fold 8 (7 of 10)
RUNNING thread Fold 6 (8 of 10)
RUNNING thread Fold 7 (9 of 10)
RUNNING thread Fold 1 (10 of 10)

reference\response
\e,n,
e 11,0,
n 6,4,
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3. The default training data is 21 tweets annotated for English e and non-English n.
In the preceding output, we saw a report of each fold that runs as a thread and the
resulting confusion matrix. That's it! We just did multithreaded cross validation. Let's
see how this works.

All the action happens in the Util.xvall.ogRegMultiThread () method, which we invoke

from src/com/lingpipe/cookbook/chapter3/TuneLogRegParams . java. The details of

TuneLogRegParams are covered in the next recipe. This recipe will focus on the Util method:

int numThreads = 2;

int numFolds = 10;
Util.xvalLogRegMultiThread (corpus,
featureExtractor,

minFeatureCount,
addInterceptFeature,
prior,
annealingSchedule,
minImprovement,

minEpochs,

maxEpochs,

reporter,

numFolds,

numThreads,

categories) ;

All 10 parameters used to configure logistic regression are controllable (you can refer to the
previous recipe for explanation), with the addition of numFolds, which controls how many
folds there will be, numThreads, which controls how many threads can be run at the same
time, and finally, categories.

If we look at the relevant method in src/com/lingpipe/cookbook/Util. java, We See:

public static <E> ConditionalClassifierEvaluator<Es>
xvalLogRegMultiThread (

final
final
final
final
final
final
final
final
final
final

XValidatingObjectCorpus<Classified<E>> corpus,
FeatureExtractor<E> featureExtractor,

int minFeatureCount,

boolean addInterceptFeature,

RegressionPrior prior,

AnnealingSchedule annealingSchedule,

double minImprovement,

int minEpochs, final int maxEpochs,

Reporter reporter,

int numFolds,
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final int numThreads,
final Stringl[] categories) ({

The method starts with the matching arguments for configuration information of
logistic regression and running cross validation. Since cross validation is most often
used in system tuning, all the relevant bits are exposed to modification. Everything
is final because we are using an anonymous inner class to create threads.

Next, we will set up crossFoldEvaluator that will collect the results from
each thread:

corpus.setNumFolds (numFolds) ;

corpus.permuteCorpus (new Random(11211)) ;

final boolean storelInputs = true;

final ConditionalClassifierEvaluator<E> crossFoldEvaluator
= new ConditionalClassifierEvaluator<E>(null, categories,

storelInputs) ;

Now, we will get down to the business of creating threads for each fold, i:

List<Thread> threads = new ArrayList<Threads () ;
for (int i = 0; i < numFolds; ++i) {
final XValidatingObjectCorpus<Classified<E>> fold
= corpus.itemView() ;
fold.setFold (1) ;

The XvValidatingObjectCorpus class is set up for multithreaded access by
creating a thread-safe version of the corpus for reads with the itemview () method.
This method returns a corpus that can have the fold set, but no data can be added.

Each thread is a runnable object, where the actual work of training and evaluating
the fold is handled in the run () method:

Runnable runnable
= new Runnable()

@Override

public void run() {

try {

LogisticRegressionClassifier<E> classifier
= LogisticRegressionClassifier.<E>train(fold,

featureExtractor,
minFeatureCount,
addInterceptFeature,
prior,
annealingSchedule,
minImprovement,
minEpochs,
maxEpochs,
reporter) ;

[55]-
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In this code, we started with training the classifier, which, in turn,

requires a try/catch statement to handle T0Exception thrown by the
LogisticRegressionClassifier.train () method. Next, we will create
withinFoldEvaluator that will be populated within the thread without a
synchronization issue:

ConditionalClassifierEvaluator<E> withinFoldEvaluator
= new ConditionalClassifierEvaluator<E>(classifier,

categories, storelnputs) ;

fold.visitTest (withinFoldEvaluator) ;

It is important that storeInputs be true so that the fold results can be added
to crossFoldEvaluator:

addToEvaluator (withinFoldEvaluator, crossFoldEvaluator) ;

This method, also in Ut i1, iterates over all the true positives and false negatives

for each category and adds them to crossFoldEvaluator. Note that this is
synchronized: this means that only one thread can access the method at a time, but
given that classification has already been done, it should not be much of a bottleneck:

public synchronized static <E> void addToEvaluator (BaseClassifierE
valuator<E> foldEval, ScoredClassifierEvaluator<E> crossFoldEval)
{
for (String category : foldEval.categories()) ({
for (Classified<E> classified : foldEval.
truePositives (category)) ({
crossFoldEval.addClassification(category,classified.
getClassification(),classified.getObject()) ;
}
for (Classified<E> classified : foldEval.
falseNegatives (category))
crossFoldEval.addClassification(category,classified.
getClassification(),classified.getObject()) ;

}
}
}

The method takes the true positives and false negatives from each category and
adds them to the crossFoldEval evaluator. These are essentially copy operations
that do not take long to compute.

Returning to xvallLogRegMultiThread, we will handle the exception and add the
completed Runnable to our list of Thread:

catch (Exception e) {
e.printStackTrace() ;

}
}
Vi

threads.add (new Thread (runnable, "Fold " + 1)) ;
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5. With all the threads set up, we will invoke runThreads () as well as
print the confusion matrix that results. We will not go into the source of
runThreads (), because it is a straightforward Java management of threads,
and printConfusionMatrix has been covered in Chapter 1, Simple Classifiers:

runThreads (threads, numThreads) ;
printConfusionMatrix (crossFoldEvaluator.confusionMatrix()) ;

}

That's it for really speeding up cross validation on multicore machines. It can make a big
difference when tuning systems.

Tuning parameters in logistic regression

Logistic regression presents an intimidating array of parameters to tweak for better
performance, and working with it is a bit of black art. Having built thousands of these
classifiers, we are still learning how to do it better. This recipe will point you in the general
right direction, but the topic probably deserves its own book.

How to do it...

This recipe involves extensive changes to the source of src/com/lingpipe/chapter3/
TuneLogRegParams . java. We will just run one configuration of it here, with most of the
exposition in the How it works... section.

1. Engage your IDE or type the following in the command line:

java -cp lingpipe-cookbook.l.0.jar:lib/lingpipe-4.1.0.jar:1ib/
opencsv-2.4.jar com.lingpipe.cookbook.chapter3.TuneLogRegParams

2. The system then responds with cross-validation output confusion matrix for our
default data in data/disney e n.csv

reference\response
\e,n,
e 11,0,
n 6,4,

3. Next, we will report on false positives for each category—this will cover all the
mistakes made:

False Positives for e

ES INSUPERABLE DISNEY !! QUIERO VOLVER:( : n

@greenath t'as de la chance d'aller a Disney putain : n
jamais été moi. : n

@HedyHAMIDI au quartier pas a Disney moi: n

o7}
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4.

This output is followed by the features, their coefficients, and a count—remember that
we will see n-1 categories, because one of the category's features is set to 0. 0 for
all features:

Feature coefficients for category e
I : 0.36688604

! : 0.29588525

Disney : 0.14954419

" . 0.07897427

to : 0.07378086

Got feature count: 113

Finally, we have our standard I/0 that allows for examples to be tested:

Type a string to be classified

I luv disney

Rank Category Score P (Category|Input)
O0=e 0.5907060507161321 0.5907060507161321
1=n 0.40929394928386786 0.40929394928386786

This is the basic structure that we will work with. In the upcoming sections,
we will explore the impact of varying parameters more closely.

This recipe assumes that you are familiar with logistic regression training and configuration
from two recipes back and cross validation, which is the previous recipe. The overall structure
of the code is presented in an outline form, with the tuning parameters retained. Modifying
each parameter will be discussed later in the recipe—below we start with the main () method
ignoring some code as indicated by '. . ." and the tunable code shown for tokenization and
feature extraction:

public static void main(String[] args) throws IOException {

TokenizerFactory tokenizerFactory
= IndoEuropeanTokenizerFactory.INSTANCE;
FeatureExtractor<CharSequence> featureExtractor
= new TokenFeatureExtractor (tokenizerFactory) ;
int minFeatureCount = 1;
boolean addInterceptFeature = false;

Next the priors are set up:

boolean noninformativeIntercept = true;
double priorVariance = 2 ;
RegressionPrior prior

= RegressionPrior.laplace(priorVariance,

noninformativeIntercept) ;
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Priors have a strong influence on the behavior coefficient assignment:

AnnealingSchedule annealingSchedule
= AnnealingSchedule.exponential (0.00025,0.999) ;
double minImprovement = 0.000000001;
int minEpochs = 10;
int maxEpochs = 20;

The preceding code controls the search space of logistic regression:

Util.xvallLogRegMultiThread (corpus,..) ;

The preceding code runs cross validation to see how the system is doing—note the elided
parameters with . . ..

In the following code, we will set the number of folds to 0, which will have the train method
visit the entire corpus:

corpus.setNumFolds (0) ;
LogisticRegressionClassifier<CharSequence> classifier
= LogisticRegressionClassifier.<CharSequence>train (corpus,..

Then, for each category, we will print out the features and their coefficients for the just
trained classifier:

int featureCount = 0;
for (String category : categories) ({
ObjectToDoubleMap<String> featureCoeff
= classifier.featureValues (category) ;
System.out.println("Feature coefficients for category "
+ category) ;
for (String feature : featureCoeff.keysOrderedByValueList ()) {
System.out.print (feature) ;
System.out.printf (" :%.8f\n",featureCoeff.getValue (feature)) ;
++featureCount;

}

System.out.println("Got feature count: " + featureCount) ;
Finally, we will have the usual console classifier 1/0:

Util.consoleInputPrintClassification(classifier) ;
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Tuning feature extraction

The features that are fed into logistic regression have a huge impact on the performance

of the system. We will cover feature extraction in greater detail in the later recipes, but we
will bring to bear one of the most useful and somewhat counter-intuitive approaches here,
because it is very easy to execute—use character ngrams instead of words/tokens. Let's look
at an example:

Type a string to be classified. Empty string to quit.
The rain in Spain

Rank Category Score P (Category|Input)

0=e 0.5 0.5

l1=n 0.5 0.5

This output indicates that the classifier is tied between e English and n non-English as a
decision. Scrolling back through the features, we will see that there are no matches for
any of the words in the input. There are some substring matches on the English side. The
has the substring he for the feature word the. For language ID, it makes sense to consider
subsequences, but as a matter of experience, it can be a big help for sentiment and other
problems as well.

Modifying the tokenizer to be two-to-four-character ngrams is done as follows:

int min = 2;
int max = 4;
TokenizerFactory tokenizerFactory
= new NGramTokenizerFactory (min,max) ;

This results in the proper distinction being made:

Type a string to be classified. Empty string to quit.
The rain in Spain

Rank Category Score P (Category|Input)

O0=e 0.5113903651380305 0.5113903651380305

1=n 0.4886096348619695 0.4886096348619695

The overall performance on cross validation drops a bit. For very small training sets, such
as 21 tweets, this is not unexpected. Generally, the cross-validation performance with a
consultation of what the mistakes look like and a look at the false positives will help guide
this process.

In looking at the false positives, it is clear that Disney is a source of problems, because the
coefficients on features show it to be evidence for English. Some of the false positives are:

False Positives for e
@greenath t'as de la chance d'aller a Disney putain j'y ai jamais été
moi. : n

@HedyHAMIDI au quartier pas a Disney moi : n
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Prefiro gastar uma baba de dinheiro pra ir pra cancun dog pra Disney
por exemplo : n

The following are the features for e:

Feature coefficients for category e
I : 0.36688604

!+ 0.29588525

Disney : 0.14954419

" : 0.07897427

to : 0.07378086

In the absence of more training data, the features !, Disney, and " should be removed to
help this classifier perform better, because none of these features are language specific,
whereas I and to are, although not unique to English. This can be done by filtering the data
or creating the appropriate tokenizer factory, but the best move is to probably get more data.

The minFeature count becomes useful when there is much more data, and you don't
want logistic regression focusing on a very-low-count phenomenon because it tends to lead
to overfitting.

Setting the addInterceptFeature parameter to true will add a feature that always fires.
This will allow logistic regression to have a feature sensitive to the number of examples for
each category. It is not the marginal likelihood of the category, as logistic regression will adjust
the weight like any other feature—but the following priors show how it can be further tuned:

de : -0.08864114
(: -0.10818647
* & INTERCEPT$S$ &** : -0.17089337

The intercept is the strongest feature for n in the end, and the overall cross-validation
performance suffered in this case.

Priors

The role of priors is to restrict the tendency of logistic regression to perfectly fit the training
data. The ones we use try in varying degrees to push coefficients to zero. We will start with the
nonInformativeIntercept prior, which controls whether the intercept feature is subject
to the normalizing influences of the prior—if true, then the intercept is not subject to the prior,
which was the case in the preceding example. Setting it to false moved it much closer to
zero from -0.17:

*§"INTERCEPT$S$ &** : -0.03874782
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Next, we will adjust the variance of the prior. This sets an expected variation for the weights.
A low variance means that coefficients are expected not to vary much from zero. In the
preceding code, the variance was set to 2. This is the result of setting it to . 01:

Feature coefficients for category e
' : -0.00003809
Feature coefficients for category n

This is a drop from 104 features with variance 2 to one feature for variance .01,
because once a feature has dropped to 0, it is removed.

Increasing the variance changes our top e features from 2 to 4:

Feature coefficients for category e
I : 0.36688604

! : 0.29588525

Disney : 0.14954419

I : 0.40189501
! : 0.31387376
Disney : 0.18255271

This is a total of 119 features.
Consider a variance of 2 and a gaussian prior:

boolean noninformativeIntercept = false;
double priorVariance = 2;
RegressionPrior prior
= RegressionPrior.gaussian (priorVariance,
noninformativeIntercept) ;

We will get the following output:

I : 0.38866670
! : 0.27367013
Disney : 0.22699340

Oddly, we spend very little time worrying about which prior we use, but variance has a big role
in performance, because it can cut down the feature space quickly. Laplace is a commonly
accepted prior for NLP applications.

Consult the Javadoc and logistic regression tutorial for more information.
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Annealing schedule and epochs

As logistic regression converges, the annealing schedule controls how the search space is
explored and terminated:

AnnealingSchedule annealingSchedule
= AnnealingSchedule.exponential (0.00025,0.999) ;
double minImprovement = 0.000000001;
int minEpochs = 10;
int maxEpochs = 20;

When tuning, we will increase the first parameter to the annealing schedule by order of
magnitude (.0025, .025, . .) if the search is taking too long—often, we can increase

the training speed without impacting the cross-validation performance. Also, the
minImprovement value can be increased to have the convergence end earlier, which
can both increase the training speed and prevent the model from overfitting—this is called
early stopping. Again, your guiding light in this situation is to look at the cross-validation
performance when making changes.

The epochs required to achieve convergence can get quite high, so if the classifier is iterating
to maxEpochs -1, this means that more epochs are required to converge. Be sure to set the
reporter.setLevel (LogLevel.INFO) ; property or a more informative level to get the
convergence report. This is another way to additionally force early stopping.

Parameter tuning is a black art that can only be learned through practice. The quality and
quantity of training data is probably the dominant factor in classifier performance, but tuning
can make a big difference as well.

Customizing feature extraction

Logistic regression allows for arbitrary features to be used. Features are any observations that
can be made about data being classified. Some examples are as follows:
» Words/tokens from the text.

» We found that character ngrams work very well in lieu of words or stemmed words.
For small data sets of less than 10,000 words of training, we will use 2-4 grams.
Bigger training data can merit a longer gram, but we have never had good results
above 8-gram characters.

» Output from another component can be a feature, for example, a part-of-speech tagger.

» Metadata known about the text, for example, the location of a tweet or time of the
day it was created.

» Recognition of dates and numbers abstracted from the actual value.
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How to do it...

The source for this recipe is in src/com/lingpipe/cookbook/chapter3/
ContainsNumberFeatureExtractor. java.

1. Feature extractors are straightforward to build. The following is a feature extractor
that returns a CONTAINS NUMBER feature with weight 1:
public class ContainsNumberFeatureExtractor implements
FeatureExtractor<CharSequences> {
@Override
public Map<String, Counter> features (CharSequence text)
ObjectToCounterMap<String> featureMap
= new ObjectToCounterMap<Strings>() ;
if (text.toString() .matches (".*\\d.*"))
featureMap.set ("CONTAINS NUMBER", 1);

}

return featureMap; }

2. Byadding amain () method, we can test the feature extractor:

public static void main(String[] args) {
FeatureExtractor<CharSequence> featureExtractor
= new ContainsNumberFeatureExtractor () ;
System.out.println (featureExtractor.features ("I have a number
1)) ;

}

3. Now run the following command:

java -cp lingpipe-cookbook.l.0.jar:1lib/lingpipe-
4.1.0.jar:1ib/opencsv-2.4.jar com.lingpipe.cookbook.chapter3.
ContainsNumberFeatureExtractor

4. The preceding code yields the following output:
CONTAINS NUMBER=1

That's it. The next recipe will show you how to combine feature extractors.

There's more...

Designing features is a bit of an art. Logistic regression is supposed to be robust in the
face of irrelevant features, but overwhelming it with really dumb features will likely detract
from performance.

One way to think about what features you need is to wonder what evidence from the text
or environment helps you, the human, decide what the correct classification is. Try and
ignore your world knowledge when looking at the text. If world knowledge, that is, France
is a country, is important, then try and model this world knowledge with a gazetteer to
generate CONTAINS COUNTRY MENTION.
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Be aware that features are strings, and the only notion of equivalence is the exact string
match. The 12 : 01pm feature is completely distinct from 12 : 02pm, although, to a human,
these strings are very close, because we understand time. To get the similarity of these two
features, you must have something like a LUNCH_TIME feature that is computed using time.

Combining feature extractors

Feature extractors can be combined in much the same way as tokenizers in Chapter 2,
Finding and Working with Words.

How to do it...

This recipe will show you how to combine the feature extractor from the previous recipe
with a very common feature extractor over character ngrams.

1. We will start with amain () method in src/com/1lingpipe/cookbook/chapter3/
CombinedFeatureExtractor. java that we will use to run the feature extractor.
The following lines set up features that result from the tokenizer using the
LingPipe class, TokenFeatureExtractor

public static void main(Stringl[] args) ({
int min = 2;
int max = 4;
TokenizerFactory tokenizerFactory
= new NGramTokenizerFactory (min,max) ;
FeatureExtractor<CharSequence> tokenFeatures
= new TokenFeatureExtractor (tokenizerFactory) ;

2. Then, we will construct the feature extractor from the previous recipe.

FeatureExtractor<CharSequence> numberFeatures
= new ContainsNumberFeatureExtractor () ;

3. Next, the LingPipe class joining feature extractors, AddFeatureExtractor,
joins the two into a third:
FeatureExtractor<CharSequence> joinedFeatureExtractors

= new AddFeatureExtractor<CharSequences (
tokenFeatures,numberFeatures) ;

4. The remaining code gets the features and prints them out:

String input = "show me 1!";
Map<String, ? extends Number> features

= joinedFeatureExtractors.features (input) ;
System.out.println (features) ;
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5. Run the following command
java -cp lingpipe-cookbook.l.0.jar:lib/lingpipe-
4.1.0.jar:1ib/opencsv-2.4.jar com.lingpipe.cookbook.chapter3.
CombinedFeatureExtractor

6. The output looks like this:
{me =1.0, m=1.0, me 1=1.0, e =1.0, show=1.0, me =1.0, ho=1.0,
ow =1.0, e 1!=1.0, sho=1.0, 1=1.0, me=1.0, how =1.0, CONTAINS
NUMBER=1.0, w me=1.0, me=1.0 , 1!=1.0, sh=1.0, ow=1.0, e
1=1.0, wm=1.0, ow m=1.0, w =

There's more...

The Javadoc references a broad range of feature extractors and combiners/filters to help
manage the task of feature extraction. One slightly confusing aspect of the class is that the
FeatureExtractor interface is in the com.aliasi.util package, and the implementing
classes are all in com.aliasi.features

Classifier-building life cycle

At the top-level building, a classifier usually proceeds as follows:

1. Create training data—refer to the following recipe for more about this.
Build training and evaluation infrastructure with sanity check.
Establish baseline performance.

0w

Select optimization metric for classifier—this is what the classifier is trying to do
and will guide tuning.

5. Optimize classifier via techniques such as:
Parameter tuning

Thresholding

Linguistic tuning

Adding training data

Refining classifier definition

0 0O 0 0O O

This recipe will present the first four steps in concrete terms, and there are recipes in this
chapter for the optimization step.
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Getting ready

Nothing happens without training data for classifiers. Look at the Annotation recipe at the
end of the chapter for tips on creating training data. You can also use an active learning
framework to incrementally generate a training corpus (covered later in this chapter), which is
the data used in this recipe.

Next, reduce the risk by starting with the dumbest possible implementation to make sure that
the problem being solved is scoped correctly, and that the overall architecture makes sense.
Connect the assumed inputs to assumed outputs with simple code. We promise that most of
the time, one or the other will not be what you thought it would be.

This recipe assumes that you are familiar with the evaluation concepts in Chapter 1, Simple
Classifiers, such as cross validation and confusion matrices, in addition to the logistic
regression recipes covered so far.

The entire source is at src/com/lingpipe/cookbook/chapter3/
ClassifierBuilder.java

This recipe also assumes that you can compile and run the code within your preferred
development environment. The result of all the changes we are making is in src/com/
lingpipe/cookbook/chapter3/ClassifierBuilderFinal.java.

g Big caveat in this recipe—we are using a tiny dataset to make basic
points on classifier building. The sentiment classifier we are trying to
e build would benefit from 10 times more data.

How to do it...

We start with a collection of tweets that have been deduplicated and are the result of the
Train a little, learn a little - active learning recipe that will follow this recipe. The starting
point of the recipe is the following code:

public static void main(String[] args) throws IOException {
String trainingFile = args.length > 0 ? args[0]
"data/activeLearningCompleted/"
+ "disneySentimentDedupe.2.csv";
int numFolds = 10;
List<String[]> training
= Util.readAnnotatedCsvRemoveHeader (new File (trainingFile)) ;
String[] categories = Util.getCategories(training) ;
XValidatingObjectCorpus<Classified<CharSequence>> corpus
= Util.loadXValCorpus (training, numFolds) ;
TokenizerFactory tokenizerFactory
= IndoEuropeanTokenizerFactory.INSTANCE;
PrintWriter progressWriter = new PrintWriter (System.out, true) ;
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Reporter reporter = Reporters.writer (progressWriter) ;
reporter.setLevel (LogLevel .WARN) ;
boolean storelInputs = true;
ConditionalClassifierEvaluator<CharSequence> evaluator
= new ConditionalClassifierEvaluator<CharSequences> (null,
categories, storelnputs) ;
corpus.setNumFolds (0) ;
LogisticRegressionClassifier<CharSequence> classifier = Util.
trainLogReg (corpus, tokenizerFactory, progressWriter) ;
evaluator.setClassifier(classifier) ;
System.out.println("!!!Testing on training!!!");
Util.printConfusionMatrix(evaluator.confusionMatrix()) ;

}

Sanity check - test on training data
The first thing to do is get the system running and test on training data:

1. We have left a print statement that advertises what is going on:

System.out.println("!!!Testing on training!!!");
corpus.visitTrain (evaluator) ;

2. Running ClassifierBuilder will yield the following:
11 1Testing on training!!!
reference\response

\p,n,o,
p 67,0,3,
n 0,30,2,
o 2,1,106,

3. The preceding confusion matrix is nearly a perfect system output, which validates
that the system is basically working. This is the best system output you will ever see;
never let management see it, or they will think this level of performance is either
doable or done.

Establishing a baseline with cross validation and metrics
Now it is time to see what is really going on.

1. If you have small data, then set the number of folds to 10 so that 90 percent of the
data is used for training. If you have large data or are in a huge rush, then set it to 2:

static int NUM_FOLDS = 10;

2. Comment out or remove the training on test code:

//System.out.println("!!!Testing on training!!!");
//corpus.visitTrain (evaluator) ;
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3. Plumb in a cross-validation loop or just uncomment the loop in our source:

corpus.setNumFolds (numFolds) ;
for (int i = 0; i < numFolds; ++i) {
corpus.setFold (i) ;
LogisticRegressionClassifier<CharSequence> classifier
= Util.trainLogReg (corpus, tokenizerFactory,
progressWriter) ;
evaluator.setClassifier (classifier) ;
corpus.visitTest (evaluator) ;

}

4. Recompiling and running the code will give us the following output:

reference\response
\p,n,o,
p 45,8,17,
n 16,13, 3,
o 18,3,88,

5. The classifier labels mean p=positiveSentiment, n=negativeSentiment, and
o=other, which covered other languages or neutral sentiment. The first row of the
confusion matrix indicates that the system gets 45 true positives, 8 false negatives
that it thinks are n, and 17 false negatives that it thinks are o:

reference\response
\p.,n,o,
p 45,8,17,

6. To get the false positives for p, we need to look at the first column. We see that the
system thought that 16 n annotations were p and 18 o annotations were p:

reference\response
\p,
p 45
n 16
o 18

The confusion matrix is the most honest and straightforward way to view/
M present results for classifiers. Performance metrics such as precision, recall,
Q F-measure, and accuracy are all very slippery and often used incorrectly.
When presenting results, always have a confusion matrix handy, because if
we are in the audience or someone like us is, we will ask to see it.

7. Perform the same analysis for the other categories, and you will have an assessment
of system performance.
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Picking a single metric to optimize against
Perform the following steps:

1.

While the confusion matrix establishes the overall performance of the classifier, it
is too complex to use as a tuning guide. You don't want to have to digest the entire
matrix every time you adjust a feature. You and your team must agree on a single
number that, if it goes up, the system is considered better. The following metrics
apply to binary classifiers; if there are more than two categories, then you will have
to sum them somehow. Some common metrics we see are:

o F-measure: F-measure is an attempt to reward reductions in false negatives
and false positives at the same time:

F-measure = 2%TP / (2*TP + FP + FN)

It is mainly an academic measure to declare that one system is better than
another. It sees little use in industry.

o Recall at 90 percent precision: The goal is to provide as much coverage
as possible while not making more than 10 percent false positives. This is
when the system does not want to look bad very often; this applies to spell
checkers, question answering systems, and sentiment dashboards.

o Precision at 99.9 percent recall: This metric supports needle in the
haystack or needle in the needle stack kind of problems. The user cannot
afford to miss anything and is willing to perhaps slog through lots of false
positives as long as they don't miss anything. The system is better if the
false positive rate is lower. Use cases are intelligence analysts and
medical researchers.

Determining this metric comes from a mixture of business/research needs, technical
capability, available resources, and willpower. If a customer wants a high recall

and high-precision system, our first question will be to ask what the budget is per
document. If it is high enough, we will suggest hiring experts to correct system output,
which is the best combination of what computers are good at (exhaustiveness) and
what humans are good at (discrimination). Generally, budgets don't support this, so
the balancing act begins, but we have deployed systems in just this way.

For this recipe, we will pick a maximizing recall at 50-percent precision for n
(negative), because we want to be sure to intercept any negative sentiment and

will tolerate false positives. We will choose 65 percent for a p positive, because

the good news is less actionable, and who doesn't love Disney? We don't care

what o (other performance) is—the category exists for linguistic reasons, independent
of the business use. This metric a likely metric for a sentiment-dashboard application.
This means that the system will produce one mistake for every two guesses of a
negative-sentiment category and 13 out of 20 for positive sentiment.
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Implementing the evaluation metric
Perform the following steps to implement the evaluation metric:

1.

We will start with reporting precision/recall for all categories with the Util.
printPrecRecall method after printing out the confusion matrix:

Util.printConfusionMatrix (evaluator.confusionMatrix()) ;
Util.printPrecRecall (evaluator) ;

The output will now look like this:

reference\response
\p,n,o,

p 45,8,17,
n 16,13,3,
o 18,3,88,

Category p

Recall: 0.64

Prec : 0.57

Category n

Recall: 0.41

Prec : 0.54

Category o

Recall: 0.81

Prec : 0.81

The precision for n exceeds our objective of . 5-since we want to maximize recall at
.5, we can make a few more mistakes before we get to the limit. You can refer to the
Thresholding classifiers recipe to find out how to do this.

The precision for p is 57 percent, and this is too low for our business objective. Logistic
regression classifiers, however, provide a conditional probability that might allow us to
meet the precision needs just by paying attention to the probability. Adding the following
line of code will allow us to see the results sorted by conditional probability:

Util.printPRcurve (evaluator) ;

The preceding line of code starts by getting a
ScoredPrecisionRecallEvaluation value from the evaluator. A double-scored
curve ([] [1) is gotten from that object with the Boolean interpolate set to false,
because we want the curve to be unadulterated. You can look at the Javadoc for what
is going on. Then, we will use a print route from the same class to print out the curve.
The output will look like this:

reference\response
\p,n,o,
p 45,8,17,
n 16,13,3,
o 18,3,88,
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Category p
Recall: 0.64
Prec : 0.57

Category n
Recall: 0.41

O O O O O O O O O O O O O O O OO OO oV ou o oo oo o o o o

SCORE

.988542
.979390
.975054
.967286
.953539
.942158
.927563
.922381
.902579
.901597
.895898
.891566
.888831
.884803
.877658
.874135
.874016
.871183
.858999
.849296
.845691
.810079
.807661
.807339
.799474
.753967
.753169
.751815
.747515
.745660
0.

744455

Prec : 0.54
Category o
Recall: 0.81
Prec 0.81
PR Curve for Category: p
PRECI. RECALL
0.000000 0.000000
0.500000 0.014286
0.666667 0.028571
0.750000 0.042857
0.600000 0.042857
0.666667 0.057143
0.571429 0.057143
0.625000 0.071429
0.555556 0.071429
0.600000 0.085714
0.636364 0.100000
0.666667 0.114286
0.615385 0.114286
0.642857 0.128571
0.666667 0.142857
0.687500 0.157143
0.647059 0.157143
0.611111 0.157143
0.631579 0.171429
0.650000 0.185714
0.619048 0.185714
0.636364 0.200000
0.652174 0.214286
0.666667 0.228571
0.640000 0.228571
0.653846 0.242857
0.666667 0.257143
0.678571 0.271429
0.655172 0.271429
0.633333 0.271429
0.645161 0.285714
0.656250 0.300000

0.

738555

0.636364 0.300000 0.736310




Chapter 3

0.647059 0.314286 0.705090
0.628571 0.314286 0.694125

6. The output is sorted by score, in the third column, which in this case, happens to be a
conditional probability, so the max value is 1 and min value is 0. Notice that the recall
grows as correct cases are found (the second line), and it never goes down. However,
when a mistake is made like in the fourth line, precision drops to . 6, because 3 out
of 5 cases are correct so far. The precision actually goes below . 65 before the last
value is found—in bold, with a score of . 73.

7. So, without any tuning, we can report that we can achieve 30 percent recall for p
at our accepted precision limit of 65 percent. This requires that we threshold the
classifier at . 73 for the category, which means if we reject scores less than .73
for p, some comments are:

o We got lucky. Usually, the first classifier runs do not reveal an immediately
useful threshold with default values.

o Logistic regression classifiers have a very nice property that they provide;
they also provide conditional probability estimates for thresholding. Not all
classifiers have this property—language models and naive Bayes classifiers
tend to push scores towards O or 1, making thresholding difficult.

o Asthe training data is highly biased (this is from the Train a little, learn a
little - active learning recipe that follows), we cannot trust this threshold.
The classifier will have to be pointed at fresh data to set the threshold.
Refer to the Thresholding classifiers recipe to see how this is done.

o This classifier has seen very little data and will not be a good candidate
for deployment despite the supporting evaluation. We would be more
comfortable with at least 1,000 tweets from a diverse set of dates.

At this point in the process, we either accept the results by verifying that the performance is
acceptable on fresh data or turn to improving the classifier by techniques covered by other
recipes in this chapter. The final step of the recipe is to train up the classifier on all training
data and write to disk:

corpus.setNumFolds (0) ;
LogisticRegressionClassifier<CharSequence> classifier

= Util.trainLogReg(corpus, tokenizerFactory, progressWriter) ;
AbstractExternalizable.compileTo (classifier,

new File("models/ClassifierBuilder.LogisticRegression")) ;

We will use the resulting model in the Thresholding classifiers recipe.
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This recipe will address issues around tuning the classifier by paying attention to the mistakes
made by the system and making linguistic adjustments by adjusting parameters and features.
We will continue with the sentiment use case from the previous recipe and work with the
same data. We will start with a fresh class at src/com/1lingpipe/cookbook/chapter3/
LinguisticTuning.java

We have very little data. In the real world, we will insist on more training data—at least 100 of
the smallest category, negative, are needed with a natural distribution of positives and others.

How to do it...

We will jump right in and run some data—the default is data/activeLearningCompleted/
disneySentimentDedupe.2.csv, but you can specify your own file in the command line.

1. Run the following in your command line or IDE equivalent:

java -cp lingpipe-cookbook.l.0.jar:lib/lingpipe-4.1.0.jar:1ib/
opencsv-2.4.jar com.lingpipe.cookbook.chapter3.LinguisticTuning

2. For each fold, the features for the classifier will be printed. The output will look like
the following for each category (just the first few features for each):

Training on fold 0
HHHHHAHHHAHH A H A HPrinting features for category p NON_ZERO
?: 0.52

1: 0.41
love: 0.37
can: 0.36
my: 0.36

ig: 0.34

in: 0.29

of: 0.28

I: 0.28

old: 0.26
me: 0.25

My: 0.25

?: 0.25
wait: 0.24
?: 0.23

an: 0.22
out: 0.22
movie: 0.22
?: 0.21
movies: 0.21
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shirt: 0.21

t: 0.20

again: 0.20
Princess: 0.19
i: 0.19

HHHHHAFHHAHH ARG HHAFH##HPrinting features for category o NON_ZERO

0.69
/: 0.52
*&“INTERCEPT%S$ &**: 0.48
@: 0.41
*: 0.36
(: 0.35

HAEHHHHEHEHHEHAEHAHHHHAH#Printing features for category n ZERO

Starting with the n category, note that there are no features. It is a property of logistic
regression that one category's features are all set to 0. 0, and the remaining n-1
category's features are offset accordingly. This cannot be controlled, which is a bit
annoying because the n or negative category can be the focus of linguistic tuning
given how badly it performs in the example. Not to be deterred, we will move on.

Note that the output is intended to make it easy to use a £ind command to
locate feature output in the extensive reporting output. To find a feature search
on category <feature name> to see if there is a nonzeroed report, search on
category <feature name> NON_ ZERO.

We are looking for a few things in these features. First of all, there are apparently odd
features that are getting big scores—the output is ranked in positive to negative for
the category. What we want to look for is some signal in the feature weights—so love
makes sense as being associated with a positive sentiment. Looking at features like
this can really be surprising and counter intuitive. The uppercase I and lowercase i
suggest that the text should be downcased. We will make this change and see if it
helps. Our current performance is:

Category p
Recall: 0.64
Prec : 0.57

The code change is to add a LowerCaseTokenizerFactory item to the current
IndoEuropeanTokenizerFactory class:

TokenizerFactory tokenizerFactory

= IndoEuropeanTokenizerFactory.INSTANCE;
tokenizerFactory = new LowerCaseTokenizerFactory (tokenizerFacto
ry);
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7.

10.

11.

12.

Run the code, and we will pick up some precision and recall:

Category p
Recall: 0.69
Prec : 0.59

The features are as follows:

Training on fold 0
HH#HHHHHHAHH A HH AR #H##HPrinting features for category p NON_ZERO
?: 0.53

my: 0.49

love: 0.43

can: 0.41

' 0.39

i: 0.35

is: 0.31

of: 0.28

wait: 0.27

old: 0.25

¥: 0.24

an: 0.22

What's the next move? The minFeature count is very low at 1. Let's raise it to 2
and see what happens:

Category p
Recall: 0.67
Prec : 0.58

This hurts performance by a few cases, so we will return to 1. However, experience
dictates that the minimum count goes up as more data is found to prevent overfitting.

It is time for the secret sauce—change the tokenizer to NGramTokenizer; it tends to
work better than standard tokenizers—we are now rolling with the following code:
TokenizerFactory tokenizerFactory

= new NGramTokenizerFactory(2,4);
tokenizerFactory
= new LowerCaseTokenizerFactory (tokenizerFactory) ;

This worked. We will pick up a few more cases:

Category p
Recall: 0.71
Prec : 0.64
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13. However, the features are now pretty hard to scan:
HH#H###A##H#Printing features for category p NON_ZERO

ea: 0.20
11: 0.20
ov: 0.17
n : 0.16
ne: 0.15
?: 0.14
al: 0.13
rs: 0.13
ca: 0.13
! : 0.13
ol: 0.13
lo: 0.13
m: 0.13
re : 0.12
so: 0.12
i : 0.12
f : 0.12
lov: 0.12

14. We have found over the course of time that character ngrams are the features of
choice for text-classifier problems. They seem to nearly always help, and they helped
here. Look at the features, and you can recover that Love is still contributing but in
little bits, such as 1ov, ov, and lo.

15. There is another approach that deserves a mention, which is some of the tokens
produced by IndoEuropeanTokenizerFactory are most likely useless, and
they are just confusing the issue. Using a stop-word list, focusing on more useful
tokenization, and perhaps applying a stemmer such as the Porter stemmer might
work as well. This has been the traditional approach to these kinds of problems—we
have never had that much luck with them.

16. Itis a good time to check on the performance of the n category; we have been
messing about with the model and should check it:

Category n
Recall: 0.41
Prec : 0.72

17. The output also reports false positives for p and n. We really don't care much about
o, except when it shows up as a false positive for the other categories:
False Positives for p
*<categorys> is truth category

I was really excited for Disney next week until I just read that
it's "New Jersey" week. #noooooooooo
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p 0.8434727204351016
0 0.08488521562829848
*n 0.07164206393660003

"Why worry? If you've done the best you can, worrying won't make
anything better." ~Walt Disney

p 0.4791823543407749
*0 0.3278392260935065
n 0.19297841956571868

18. Looking at false positives, we can suggest changes to feature extraction. Recognizing
quotes from ~wWwalt Disney might help the classifier with IS DISNEY QUOTE.

19. Also, looking at errors can point out errors in annotation, one can argue that the
following is actually positive:
Cant sleep so im watching.. Beverley Hills Chihuahua.. Yep thats
right, I'm watching a Disney film about talking dogs.. FML!!!
p 0.6045997587907997
0 0.3113342571409484
*n 0.08406598406825164

At this point, the system is somewhat tuned. The configuration should be saved
someplace and the next steps are considered. They include the following:

o Declare victory and deploy. Before deploying, be sure to test on novel data
using all training data to train. The Thresholding classifiers recipe will be
very useful.

o Annotate more data. Use the active learning framework in the following
recipe to help identify high-confidence cases that are wrong and right.
This will likely help more than anything with performance, especially with
low-count data such as the kind we have been working with.

o Looking at the epoch report, the system is never converging on its own.
Increase the limit to 10,000 and see if this helps things.

The result of our tuning efforts was to improve the performance from:

reference\response

\p,n,o,
p 45,8,17,
n 16,13,3,
o 18,3,88,
Category p
Recall: 0.64
Prec : 0.57

Category n
Recall: 0.41
Prec : 0.54
Category o




Recall: 0.81
Prec : 0.81

To the following;:

reference\response
\p,n,o,
p 50,3,17,
n 14,13,5,
o 14,2,93,

Category p
Recall: 0.71
Prec : 0.64

Category n
Recall: 0.41
Prec : 0.72
Category o

Recall:

Prec
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This is not a bad uptick in performance in exchange for looking at some data and

thinking a bit about how to help the classifier do its job.

Thresholding classifiers

Logistic regression classifiers are often deployed with a threshold rather than the provided
classifier.bestCategory () method. This method picks the category with the highest
conditional probability, which, in a 3-way classifier, can be just above one-third. This recipe will
show you how to adjust classifier performance by explicitly controlling how the best category

is determined.

This recipe will consider the 3-way case with the p, n, and o labels and work with the classifier
produced by the Classifier-building life cycle recipe earlier in this chapter. The cross-validation

evaluation produced is:

Category p

Recall: 0.64
Prec : 0.57

Category n

Recall: 0.41
Prec : 0.54

Category o

Recall: 0.81
Prec : 0.81

We will run novel data to set thresholds.
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How to do it...

Our business use case is that recall be maximized while p has .65 precision and n has .5
precision for reasons discussed in the Classifier-building life cycle recipe. The o category is not
important in this case. The p category appears to be too low with .57, and the n category can
increase recall as the precision is above . 5.

1.

120

We cannot use the cross-validation results unless care has been taken to produce
a proper distribution of annotations—the active learning approach used tends to not
produce such distributions. Even with a good distribution, the fact that the classifier
was likely tuned with cross validation means that it is most likely overfit to that
dataset because tuning decisions were made to maximize performance of those
sets that are not general to new data.

We need to point the trained classifier at new data—the rule of thumb is to train by
hook or crook but always threshold on fresh. We followed the Getting data from the
Twitter API recipe in Chapter 1, Simple Classifiers, and downloaded new data from
Twitter with the disney query. Nearly a year has passed since our initial search, so
the tweets are most likely non-overlapping. The resulting 1,500 tweets were put into
data/freshDisney.csv.

Ensure that you don't run this code on data that is not backed up. The I/0 is simple
rather than robust. The code overwrites the input file.

Invoke RunClassifier on your IDE or run the following command:

java -cp lingpipe-cookbook.l.0.jar:1lib/lingpipe-4.1.0.jar:1ib/
opencsv-2.4.jar com.lingpipe.cookbook.chapter3/RunClassifier

Data is: data/freshDisney.csv model is: models/ClassifierBuilder.
LogisticRegression

No annotations found, not evaluating

writing scored output to data/freshDisney.csv

Open the . csv file in your favorite spreadsheet. All tweets should have a score
and a guessed category in the standard annotation format.

Sort with the primary sort on the GUESS column in the ascending or descending
order and then sort on SCORE in the descending order. The result should be each
category with higher scores descending to lower scores. This is how we set up
top-down annotations.
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A1:D322

1
2
3
4
5
6
7
8
9

KE =
A B c Sort
BCORE ____ JGUESS TRUTH TEXT [SGRcEERAl] orrions |
0.981217118n "Family show" Sort by }
0.8620157208 n At Disney Wor Asoending
0.8446068186 n @drunkasluke GUESS
0.7967970506 n Get a good ide EeecarEe
0.7754888167 n Kids these day  Thenby
0.7682952067 n "| always like t Ascending
0.7561606726 n Call me when SCORE ‘
0.7347686762 n Aaaand just | S
0.7241339323 n does anyone € Thenby
0.6947640004 n Did Disney reg Ascending
0.6884140805 n So I'm like rea| U Descending
0.6762779881 n Disney sure dt¢
0 87652051729 n @MSCarmacel

Setting up sort of data for top-down annotation. All categories are grouped together, and a descending sort of the

score is established.

For the categories that you care about, in this case, p and n, annotate truth from
the highest score to the lowest scores until it is likely that the precision goal has
been broached. For example, annotate n until you either run out of n guesses, or
you have enough mistakes that you have .50 precision. A mistake is when the
truth is o or p. Do the same for p until you have a precision of .65, or you run out
of number of p. For our canned example, we have put the annotations in data/
freshDisneyAnnotated.csv.

Run the following command or the equivalent in your IDE (note that we are supplying
the input file and not using the default):

java -cp lingpipe-cookbook.l.0.jar:lib/lingpipe-4.1.0.jar:1ib/
opencsv-2.4.jar com.lingpipe.cookbook.chapter3/RunClassifier data/
freshDisneyAnnotated.csv

This command will produce the following output:

Data is: data/freshDisneyAnnotated.csv model is: models/
ClassifierBuilder.LogisticRegression

reference\response
\p,n,o0,
p 141,25,0,
n 39,37,0,
o 51,28,0,

Category p

Recall: 0.85

Prec : 0.61

Category n

Recall: 0.49

Prec : 0.41
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10.

11.

122

Category o
Recall: 0.00
Prec : NaN

First off, this is a surprisingly good system performance for our minimally trained
classifier. p is very close to the target precision of . 65 without thresholding, and
coverage is not bad: it is found as 141 true positives out of 1,500 tweets. As we have
not annotated all 1,500 tweets, we cannot truly say what the recall of the classifier is,
so the term is overloaded in common use. The n category is not doing as well, but it is
still pretty good. Our annotation did no annotations for the o category, so the system
column is all zeros.

Next, we will look at the precision/recall/score curve for thresholding guidance:
PR Curve for Category: p

PRECI. RECALL SCORE
1.000000 0.006024 0.976872
1.000000 0.012048 0.965248
1.000000 0.018072 0.958461
1.000000 0.024096 0.947749
1.000000 0.030120 0.938152
1.000000 0.036145 0.930893
1.000000 0.042169 0.928653
0.829268 0.204819 0.781308
0.833333 0.210843 0.777209
0.837209 0.216867 0.776252
0.840909 0.222892 0.771287
0.822222 0.222892 0.766425
0.804348 0.222892 0.766132
0.808511 0.228916 0.764918
0.791667 0.228916 0.761848
0.795918 0.234940 0.758419
0.780000 0.234940 0.755753
0.784314 0.240964 0.755314
0.649746 0.771084 0.531612
0.651515 0.777108 0.529871
0.653266 0.783133 0.529396
0.650000 0.783133 0.528988
0.651741 0.789157 0.526603
0.648515 0.789157 0.526153
0.650246 0.795181 0.525740
0.651961 0.801205 0.525636
0.648780 0.801205 0.524874
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12. Most values have been elided to save space in the preceding output. We saw that the
point at which the classifier passes . 65 precision has a score of . 525. This means that
we can expect 65-percent precision if we threshold at . 525 with a bunch of caveats:

o Thisis a single-point sample without a confidence estimate. There are
more sophisticated ways to arrive at a threshold that is beyond the scope

of this recipe.

o Time is a big contributor to variance in performance.

o 10-percent variance in performance for well-developed classifiers is
not uncommon in practice. Factor this into performance requirements.

13. The nice thing about the preceding curve is that it looks like we can provide a . 80
precision classifier at a threshold of . 76 with nearly 30 percent of the coverage of

the . 65 precision classifier if we decide that higher precision is called for.
14. The n case has a curve that looks like this:

PR Curve for Category: n

PRECI.
.000000
.500000
.666667
.500000
.600000
.500000

O O O o o+

.468750
.454545
.470588
.485714
.500000
.486486
.500000
.487179
.475000
.463415

O O O O o o

O O O O O O O o o o

RECALL

.013158
.013158
.026316
.026316
.039474
.039474

.197368
.197368
.210526
.223684
.236842
.236842
.250000
.250000
.250000
.250000

O O O O o o

O O O O O O o o o o

SCORE

.981217
.862016
.844607
.796797
. 775489
.768295

.571442
571117
.567976
.563354
.552538
.549950
.549910
.547843
.540650
.529589

15. It looks like a threshold of . 549 gets the job done. The rest of the recipe will show
how you to set up the thresholded classifier now that we have the thresholds.

The code behind RunClassifier. java offers nothing of novelty in the context of this

chapter, so it is left to you to work through.
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The goal is to create a classifier that will assign p to a tweet if it scores above .525 for
that category and n if scores above . 549 for that category; otherwise, it gets o. Wrong....
management saw the p/r curve and now insists that p must be 80-percent precise, which
means that the threshold will be . 76.

The solution is very simple. If a score for p is below . 76, then it will be rescored down to 0. 0.
Likewise, if a score for n is below .54, then it will be rescored down to 0. 0. The effect of this

is that o will be the best category for all below-threshold cases, because . 75 p can at best be
.25 n, which remains below the n threshold, and .53 n can at most be .47 p, which is below
that category's threshold. This can get complicated if all categories are thresholded,

or the thresholds are low.

Stepping back, we are taking a conditional classifier where all the category scores must sum
to 1 and breaking this contract, because we will take any estimate for p that is below .76
and bust it down to 0. 0. It is a similar story for n. The resulting classifier will now have to be
ScoredClassifier because this is the next most specific contract in the LingPipe API that
we can uphold.

The code for this class is in src/com/1lingpipe/cookbook/chapter3/
ThresholdedClassifier. At the top level, we have the class, relevant member
variable, and constructor:

public class ThresholdedClassifier<E> implements
ScoredClassifier<E> {

ConditionalClassifier<E> mNonThresholdedClassifier;

public ThresholdedClassifier (ConditionalClassifier<Es>
classifier) {

mNonThresholdedClassifier = classifier;

}

Next, we will implement the only required method for ScoredClassification, and thisis
where the magic happens:

@Override
public ScoredClassification classify(E input)
ConditionalClassification classification
= mNonThresholdedClassifier.classify (input) ;
List<ScoredObject<String>> scores
= new ArrayList<ScoredObject<String>>() ;
for (int i = 0; i < classification.size(); ++i) {
String category = classification.category (i) ;
Double score = classification.score (i) ;
if (category.equals("p") && score < .76d)
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}

score = 0.0;

}

if (category.equals("n") && score < .549d) (
score = 0.0;

}

ScoredObject<String> scored

= new ScoredObject<Strings> (category, score) ;

scores.add (scored) ;
}
ScoredClassification thresholded

= ScoredClassification.create (scores) ;
return thresholded;

Chapter 3

The complicated bit about scored classifications is that scores have to be assigned to all

categories even if the score is 0. 0. The mapping from a conditional classification, where all
scores sum to 1.0, does not lend itself to a generic solution, which is why the preceding ad
hoc implementation is used.

There is also amain () method that spools up the relevant bits for
ThresholdedClassifier and applies them:

java -cp lingpipe-cookbook.l.0.jar:1lib/lingpipe-4.1.0.jar:1lib/opencsv-
2.4.jar com.lingpipe.cookbook.chapter3/ThresholdedClassifier data/
freshDisneyAnnotated.csv

Data is: data/freshDisneyAnnotated.csv model is: models/

ClassifierBuilder.LogisticRegression

reference\response

\p,n,o,
p 38,14,114,
n 5,19,52,
o 5,5,69,

Category p

Recall: 0.23

Prec

0.79

Category n

Recall: 0.25

Prec

0.50

Category o

Recall: 0.87

Prec

0.29
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The thresholds are doing exactly as designed; p is . 79 precision, which is close enough for
consulting, and n is spot on. The source for the main () method should be straightforward
given the context of this chapter.

That's it. Aimost never do we release a nonthresholded classifier, and best practices require
that thresholds be set on held-out data, preferably from later epochs than the training

data. Logistic regression is quite robust against skewed training data, but the ointment that
cleanses the flaws of skewed data is novel data annotated top down to precision objectives.
Yes, it is possible to threshold with cross validation, but it suffers from the flaws that overfit
due to tuning, and you would screw up your distributions. Recall-oriented objectives are
another matter.

Train a little, learn a little - active learning

Active learning is a super power to quickly develop classifiers. It has saved many a project in
the real world. The idea is very simple and can be broken down as follows:

1. Assemble a packet of raw data that is way bigger than you can annotate manually.
Annotate an embarrassingly small amount of the raw data.
Train the classifier on the embarrassingly small amount of training data.
Run the trained classifier on all the data.

Put the classifier output into a . csv file ranked by confidence of best category.

o o &~ wDd

Correct another embarrassingly small amount of data, starting with the most
confident classifications.

Evaluate the performance.
8. Repeat the process until the performance is acceptable, or you run out of data.

9. If successful, be sure to evaluate/threshold on fresh data, because the active
learning process can introduce biases to the evaluation.

What this process does is help the classifier distinguish the cases where it is making higher
confidence mistakes and correcting it. It also works as a classification-driven search engine
of sorts, where the positive training data functions as the query, and the remaining data
functions as the index being searched.

Traditionally, active learning is applied to the near-miss cases where the classifier is
unsure of the correct class. In this case, the corrections will apply to the lowest confidence
classifications. We came up with the high-confidence correction approach because we
were under pressure to increase precision with a thresholded classifier that only accepted
high-confidence decisions.
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Getting ready

What is going on here is that we are using the classifier to find more data that looks like

what it knows about. For problems where the target classes are rare in the unannotated

data, it can very quickly help the system identify more examples of the class. For example,

in a binary-classification task with marginal probability of 1 percent for the target class in the
raw data, this is almost certainly the way to go. You cannot ask annotators to reliably mark a
1-in-100 phenomenon over time. While this is the right way to do it, the end result is that it will
not be done because of the effort involved.

Like most cheats, shortcuts, and super powers, the question to ask is what is the price paid.
In the duality of precision and recall, recall suffers with this approach. This is because the
approach biases annotation towards known cases. Cases that have very different wording are
unlikely to be found, so coverage can suffer.

How to do it...

Let's get started with active learning:

1. Collect some training data in our . csv format from Chapter 1, Simple Classifiers,
or use our example data in data/activeLearning/disneyDedupe.0.csv.
Our data builds on the Disney tweets from Chapter 1, Simple Classifiers. Sentiment
is a good candidate for active learning, because it benefits from quality training data
and creating quality training data can be difficult. Use the . csv file format from the
Twitter search downloader if you are using your own data.

2. Runthe .csv deduplication routine from the Eliminate near duplicates with Jaccard
distance recipe of Chapter 1, Simple Classifiers to get rid of near-duplicate tweets.
We have already done this with our example data. We went from 1,500 tweets to
1,343.

3. If you have your own data, annotate around 25 examples in the TRUTH
column according to the standard annotation:

o p stands for positive sentiment
o n stands for negative sentiment

o o stands for other, which means that no sentiment is expressed, or the tweet
is not in English

o Be sure to get a few examples of each category
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Our example data is already annotated for this step. If you are using your own data,
be sure to use the format of the first file (that has the 0. csv format), with no other .

in the path.

1
2
3
4
5
6
s
8
9

10
11
12
13
14
15
16
17
18
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A

B C

SCORE GUESS TRUTH

o

CO0O3J3JJJTDOO0O00C>O03TUTOCODUDOTOOTDTO

TEXT

When all else fails #Disney
FHOZEEZXFEED £ E5HELANDIC VW2 B » 3 &0 H, FHUE
Best part of having a neice now is having an excuse to relive all the old Disney movies #TheAristocaty
| can't wait for Disney though
request now "let's get tricky" by @bellathorne and @ROSHON on @radicdisney!!! just call 1-877-870
100D DisneyH i B & s~ _ ;) l3iicH-oTWwI I, FLTZVUY®A0T, 57 b A
| fully love the Disney Channel | do not care **

@greenath_ t'as de la chance d'aller a Disney putain j'y ai jamais été moi.

AHH! What a talent! Love ya girl! @ShoshanaBean in Disney-Style Spell Block Tango! http://t.co/rmpl]
Prefiro gastar uma baba de dinheire pra ir pra cancun doq pra Disney por exemplo

@meeelp mas gue venha um filhinho mais fofo que o proprio pai, com covinha e amandg a Disney k
“@rpdavlin: | want to go to a college in California so | can go to Disney Land whenever | want”

Cant sleep so im watching.. Beverley Hills Chihuahua.. Yep thats right, I'm watching a disney film abo|
Thd Twitter7 v 77— L 726 & ("OR)

Miley isn't Hannah anymore, Demi isn’t Sonny anymore, Selena isn't Alex anymore. Disney isn’t Disni
ES INSUPERABLE DISNEY !! QUIERO VOLVER:(

Creo q fue lo peor q pude hacer mirar los videos de disney

Malisimos los nuevos dibujitos de disney, nickelodeon, cartoon, etc, no me gustannn
@Hukaaaa_disney # A v 7 REVIBTHTETE LA () MultBH~Y 74 =72TL & (H
@FernandaAbarca_ how did you become an artist for Dream Works. | wanna do that for Disney!
Disney channel should have played "Mom's got a date with a vampire"

Some imagination, huh? #fantasmic #studios # glowwiththeshow #disney #disneynerd #disneyaddict,
@$SolDominguez14 TE CONTE QUE SE ME PERDIERON CON LAS FOTOS DE DISNEY
@HedyHAMIDI au quartier pas a Disney moi

or Christmas break jm going to Disney for 4 days then Naples (Florida) for 4 days and then south be;

Examples of tweets annotated. Note that all categories have examples.

Run the following command. Do not do this on your own annotated data without

backing up the
been warned:

java -cp lin
opencsv-2.4.

file. Our I/0 routine is written for simplicity, not robustness. You have

gpipe-cookbook.1.0.jar:1ib/lingpipe-4.1.0.jar:1ib/
jar: com.lingpipe.cookbook.chapter3.ActiveLearner

Pointed at the supplied annotated data, this will print the following to the console
with a final suggestion:

reference\re
\p
7
1
2

p
n

o
Category p

Recall: 0.88
Prec 0.70
Category n

Recall: 0.00
Prec NaN
Category o

Recall: 0.85

sponse
/11,0,
: 0,1,
+0,3,
,0,11,




Prec

0.73
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Writing to file: data/activeLearning/disneySentimentDedupe.l.csv

Done, now go annotate and save with same file name

6. This recipe will show you how to make it better, mainly by making it bigger in smart
ways. Let's see where we stand:

o The data has been annotated a bit for three categories

o Of 1,343 tweets, there have been 25 annotated, 13 of which are o, which we
don't particularly care about given the use case, but they still are important
because they are not p orn

o This is not nearly enough annotated data to build a reliable classifier with,
but we can use it to help annotate more data

o The last line encourages more annotation and the name of a file to annotate

7. The precision and recall are reported for each category, that is, the result of cross

validation over the training data. There is also a confusion matrix. At this point, we are
not expecting very good performance, but p and o are doing quite well. The n category
is not doing well at all.

Next, fire up a spreadsheet, and import and view the indicated . csv file using a
UTF-8 encoding. OpenOffice shows us the following:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

A

[SCORE

0.9471994630938778
0.9419607496390708
0.9283149831857811

0.9203851660685771
0.9117371628174511

0.8841236593075998
0.8757195792668063
0.8736601934881794
0.8724205561977442
0.8722812346687495
0.8698138209417262
0.8641146493342046
0.8579036427200295
0.8576209822082565

]

OCcCOO0OCDOCOOOOCO

B C
|GUESS TRUTH TEXT

@d_emi_12128L ! | (> <) a—ALZAbE, v FCTFHEILGL, B L
@disney pon A B e A, Bidd (PN IBES L ER. HEO L QRBEZEC(*_*
"@NurAyna_Diba: Disney ;) @anis_afigah98 @syazafarzana3 @Miss_Thila @syeers
@lzumisama ¥ v 7 U L L 2(AOMB G BBHCZ Y P A3 v F—TEML £
@treasure_rd ¥ - 5 » VP SN £ T(((o* V" *)o))oow

MR, VMEBL TE&Y Th, Mo sBEC {holtFEM M) NERA L]
@EntradaNumerada me lo han pasag, que estaba en el facebook de disney, pero no
Me ha gustade un video de @YouTube (http://t.co/xyKWygkxpr - Personajes de disne
| love October! | love all the Halloween movies on Disney. (: | don't think I'll ever get to
ZaBnifl~({((o* V' Mo)) loutiir~! H~IFA LD HEIKEFEV hitp:/it.co/Q
B LHIITECEI(0 "WAHHH S AEEHE! BRSET—A(((o* V' *)o))
AHH! What a talent! Love ya girll @ShoshanaBean in Disney-Style Spell Block Tango
"@ LB: “@CallmeJroc: "@ LB: What channel is TNT on Comcast?"| thin
@z 103hr LEDAS DA EG ; W ohdbs b & 3L {4 0" )ik {DisneyiT Z 3

Initial output of the active learning approach

Reading from the left-hand side to the right-hand side, we will see the SCORE column,
which reflects the classifier's confidence; its most likely category, shown in the GUESS
column, is correct. The next column is the TRUTH class as determined by a human.
The last TEXT column is the tweet being classified.
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9. All 1,343 tweets have been classified in one of two ways:

o If the tweet had an annotation, that is, an entry in the TRUTH column, then
the annotation was made when the tweet was in the test fold of a 10-fold
cross validation. Line 13 is just such a case. In this case, the classification
was o, but the truth was p, so it would be a false negative for p.

o If the tweet was not annotated, that is, no entry in the TRUTH column, then it
was classified using all the available training data. All other examples in the
shown spreadsheet are handled this way. They don't inform the evaluation at
all. We will annotate these tweets to help improve classifier performance.

10. Next, we will annotate high-confidence tweets irrespective of category, as shown in
the following screenshot:

A B C
1 SCORE GUESS TRUTH TEXT

2 0.9471994630938778 o o @d_emi 1212 8L 1! | (> <)y a—AL Ak, FvFCFRD 2

3 10.9419607496390708 o o @disney_pon iFA B2 A\ Bld L I(MoNIBES L LERR. FEH L DH
4 10.9283149831857811 o o "@NurAyna_Diba: Disney ;) @anis_afiqgah98 @syazafarzana3 @Miss_Th
5 0.9203851660685771 o o @lzumisama v Z U L EL A OMBEEBEAC I Y P I YA I vy F—

6 0.9117371628174511 o o @treasure_rd » - 5 » LR SN & T(((o(* V" "))

7 0.8841236593075998 o o FEHIE, AL T&id T, ME A sEEIC (o T ERN)

8 0.8757195792668063 o o @EntradaNumerada me lo han pasao, que estaba en el facebook de disn
9 0.8736601934881794 o o Me ha gustado un video de @YouTube (http://t.colxyKWygkxpr - Personaj
10 0.8724205561977442 p p | love October! | love all the Halloween movies on Disney. (: | don't think I'l
11 0.8722812346687495 o o B~ (((o™ V' o)) lgu#ii~! d~iFhA b bE I RIFEY

12 0.8698138209417262 o o Bl LI I8 EH(0 "WAHHD» s EER! HRZET—A (o V]
13 0.8641146493342046 o p AHH! What a talent! Love ya girl! @ShoshanaBean in Disney-Style Spell f
14 0.8579036427200295 o o '@ LB: “@CallmeJroc: "@ LB: What channel is TNT on Gom
15 0.8576209822092565 o o @z 103hr LEDASIHEG s Wbt EdaL {(T0" )ik <D
16 0.8542441393721144 o o @tobimori_disney &4]. + X UV —Hid A #HIEL T O TFHv U —T
17 0.8485044944794032 p p Omg this lady came up to me & she told me that I'm beautiful & | wanted t
18 0.8483696756024185 o o @nachiyoooooo H W4 E 5~ | | (Mo T @ Ada] FHok s HEAef

19 0.8472430644312434 o o @sa_disney ki L+ HHT 230 TEbsbeAEELE (70

20 0.8462310752023967 o @ANFfxXx A =EHSADEH- THEOCTEEOTITIMIN HEEZED

Corrected output for active learning output. Note the dominance of the o category.

11. Annotating down to line 19, we will notice that most of the tweets are o and
are dominating the process. There are only three p and no n. We need to get
some n annotations.

12. We can focus on likely candidate n annotations by selecting the entire sheet, except
for the headers, and sorting by column B or GUESS. Scrolling to the n guesses, we
should see the highest confidence examples. In the following screenshot, we have
annotated all the n guesses because the category needs data. Our annotations
arein data/activeLearningCompleted/disneySentimentDedupe.l.csv.
If you want to exactly duplicate the recipe, you will have to copy this file to the
activeLearning directory.
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-
=

-
o

-
el

A
SCORE
0.7703571400075279
0.6179962361514403
0.5891773762077569
0.5817997687434362
0.5713388940277104
0.5483527336780735
0.5273008556659156
0.5267176567154189
0.5261349424313857
0.5142050312904649
0.5011808358524934
0.497765755803829
0.4836319509041813
0.49267706505085745
0.4884013180786297
0.48421603087720827
0.4840113274689928
0.483219491957155
0.47129503081075874
0.470168053626517
0.4635340209179496
0.4611524197316742

0.4505007354069556
N A27R20151730330R

B

GUESS TRUTH TEXT

n

3 33333 333333 3333333 3335 33
202 0TO0OUDDUDUTDTOOCOO0CCDTDOOCOT OOTD

C

Stay High. #mickeymouse #mickey #disney #drawing #draw #graffiti #art #skillz #high
Donald is a joy to draw :) #sketch #donald #disney #kingdomhearts #draw #drawing #
The #buffalo is watching you #disney #disneyworld #magickingdom #wishes #mickeyrn
#happyhalloween#disney#zombies#pirate#japanffmakeup http://t.co/ZJaMWMWnI&
What's your #favoritefairytaleprincess? #0ncelUponATime #O0nceWonderland #Disney
More East Coast #fantasmic #wdw #dhs #florida #disney http://t.co/vbQjh0VzTV

Hoy tenia el #Woody'sMode #ToyStory #Disney #son #instapic #Happy http:/ft.co/xK2
Am | the only one who has seen the Mickey's Nutcracker? #disney #mickey #nutcrack
Milk & cockies and dumbo + #bigkid #missedthis #disney #cadbury #malk http://t.cols
These disney songs at campus candy > #cinderella #aladdin #awholenewworld #innei
I've never seen a human this close before. Oh... he's very handsome, isn't he? #Little
Finished product. #mickey #disney #pumpkin #family http://t.co/tnfRA10qFf

Parent Trap was right, Oreos and peanut butter are the bomb #amazing #supersnack
| just entered to win a #LeSportSac #ltsASmallWorld bag from http://t.co/FRcZLOjmbr]
#Ratatouille = BY ME = ** #art #pixar #drawing #Paris #Disney #instavideo @ Salt
My Disney Blu-ray collection continues to grow! #disney #bluray #movies #monsters
#rafiki #lionking #disney #bitchdontkillmyvibe Lol love this. There is no one out there fl
My Babysitter is a Vampire <3 #Love #Disney #NeverTooOld #Perfection #Popcorn #
#Shopping #Sewing #5: Crayola Color Wonder Disney Preschool Coloring Pad: Cray:
Who wishes they were eating a #wildernesslodge #wildernesssalad right now? #disn
Mi suefio era ir a disney, cosa que ya lo hice :D haora mi suefio es ir a Europa :D #E
Our boyfriends are better than these princes, but maybe not as animated ;) hitp://t.col|
#Disney: MY LIFE ME, #Playhouse: PICCOLO GRANDE TIMMY, #Rai4: MONGA, #

nur Mdanialla _hiundav'e nuimnkin craatinn #thal innKina #inridarnck #cimha #idienav

Annotations sorted by category with very few n or negative categories.

13. Scrolling to the p guesses, we annotated a bunch as well.

o
)
W

©
Il
«

o
@
~

w0
~
N

A
0.8724205561977442
0.8485044944794032
0.8310584005730502
0.7965840744832615
0.7958127325812825
0.7891010786490208
0.7883925341519806
0.7717185818498742
0.7712570586117128
0.7661168825901645
0.7528778351867063
0.743508993345372

0.7362033673515557
0.7320019124025289
0.7312837337891654
0.7300676805695224
0.7279650119184519
0.7251422293869907
0.7248156359194971
0.7237282570730921
0.7234869546564598
0.7174808233819484
0.7038309765050552
0.7035828185939226

TVTTOUVTOUO T T T T OUOOUO T T T T OO OO OUDOTTODTT
020U 3I0CT IOV O3IIIITUVIOUDUITTODTT

I love October! | love all the Halloween movies on Disney. (: | don't think I'll ever get tc
Omg this lady came up to me & she told me that I'm beautiful & | wanted to be on Disi
All the seniors scored | the last game of the season.....this feels like the end of a Disn|
Holy crap | want to go back to Disney so damn bad | can't stand it &' #disneycrew

| mean | could write a speech and an essay, or | could sing Disney songs. | think the ¢
| feel bad for kids that have to grow up watching the new Disney and Nickelodeon shc|

| need to find someone to go with me to Disney on ice again. Kaitlin and | are going o
| hope you will forgive me @JosephMorgan for not watching The Originals tonight but
| hate all the shows that are on Disney channel now so much. They make me want to
That speaker made me want to be an Imagineer, but I'm not into engineering and | ca
My dear Disney friends. | can't just pick one of you. | love you all so much! Happy #na
The Kardashians rented a Disney park for the day& had it closed down to the public
Oh! And one day I'll get to meet @blizzardfox and take him to Disney land and preten
| need two people to be Selena and Demi for Halloween so we can be the x stars of C
@amylouisej4 NFL was brilliant, so much cheap American beer. I'm going to get to a ¢
“@rpdavlin: | want to go to a college in California so | can go to Disney Land wheneve
Next time | become overly emotional @ school, I'm going to start singing Disney song
| always get excited knowing I'm going to Disney it's like can we just fast fwd please!!!
Giveaway Time! Those who get the chance to go to Disney are fortunate to do so. Trif
| wish my kids would have the opportunity to watch the Disney movies | did as a kid
One of my lifetime goals is to collect all of Disney's and Pixar's animated movies. | wa
| love breaking my toe 3 days before | go to Disney...

In another life I'd like to come back having the job of poorly singing kids jingles for Dis|
As a child | was offered an acting job for Disney, but | turned this enormous opportuni

Positive labels with corrections and surprising number of negatives

14. There are eight negative cases that we found in the p guesses mixed in with lots of p

and some o annotations.
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15.

16.

17.

We will save the file without changing the filename and run the same program as we
did earlier:

java -cp lingpipe-cookbook.l.0.jar:lib/lingpipe-4.1.0.jar:1ib/
opencsv-2.4.jar: com.lingpipe.cookbook.chapter3.ActiveLearner
The output will be as follows:

First file: data/activelearning2/disneySentimentDedupe.0.csv
Reading from file data/activelearning2/disneySentimentDedupe.l.csv
reference\response

\p,n,o0,
p 17,1,20,
n9,1,5,
o 9,1,51,
Category p
Recall: 0.45
Prec : 0.49

Category n

Recall: 0.07

Prec : 0.33

Category o

Recall: 0.84

Prec : 0.67

Corpus is: 114

Writing to file: data/activeLearning2/disneySentimentDedupe.2.csv
Done, now go annotate and save with same file name

This is a fairly typical output early in the annotation process. Positive p,

the easy category, is dragging along at 49-percent precision and 45-percent recall.
Negative n is even worse. Undaunted, we will do another round of annotation on the
output file indicating focus on n guesses to help that category improve performance.
We will save and rerun the file:

First file: data/activelLearning2/disneySentimentDedupe.0.csv
Reading from file data/activelearning2/disneySentimentDedupe.2.csv
reference\response

\p,n,o0,
p 45,8,17,
n 16,13,3,
o 18,3,88,
Category p
Recall: 0.64
Prec : 0.57

Category n
Recall: 0.41
Prec : 0.54
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Category o
Recall: 0.81
Prec : 0.81

18. This last round of annotation got us over the edge (remember to copy over our
annotation from activeLearningCompleted/disneySentimentDedupe.2.csv
if you are mirroring the recipe exactly). We annotated high-confidence examples from
both p and n, adding nearly 100 examples. The first best annotation for n is above
50-percent precision with 41-percent recall. We assume that there will be a tunable
threshold that meets our 80-percent requirement for p and declares victory in 211
moves, which is much less than the total 1,343 annotations.

19. That's it. This is a real-world example and the first example we have tried for the book,
so the data is not cooked. The approach tends to work, although no promises; some
data resists even the most focused efforts of a well-equipped computational linguist.

20. Be sure to store the final . csv file some place safe. It would be a shame to lose all
that directed annotation.

21. Before releasing this classifier we would want to run the classifier, which trains
on all annotated data, on new text to verify performance and set thresholds. This
annotation process introduces biases over the data that will not be reflected in the
real world. In particular, we have biased annotation for n and p and added o as we
saw them. This is not the actual distribution.

This recipe has some subtlety because of the simultaneous evaluation and creation of ranked
output for annotation. The code starts with constructs that should be familiar to you:

public static void main(String[] args) throws IOException {
String fileName = args.length > 0 ? args[0]
"data/activeLearning/disneySentimentDedupe.0.csv";
System.out.println("First file: " + fileName) ;
String latestFile = getLatestEpochFile(fileName) ;

The getLatestEpochFile method looks for the highest numbered file that ends with csv,
shares the root with the filename, and returns it. On no account will we use this routine for
anything serious. The method is standard Java, so we won't cover it.




Advanced Classifiers

Once we have the latest file, we will do some reporting, read it in our standard .csv
annotated files, and load a cross-validating corpus. All these routines are explained elsewhere
in locations specified in the Ut 11 source. Finally, we will get the categories that were found in
the . csv annotated file:

List<String[]> data
= Util.readCsvRemoveHeader (new File(latestFile)) ;
int numFolds = 10;
XValidatingObjectCorpus<Classified<CharSequence>> corpus
= Util.loadXValCorpus (data,numFolds) ;
String[] categories = Util.getCategoryArray (corpus) ;

Next, we will configure some standard logistic-regression-training parameters and create the
evaluator for cross-fold evaluation. Note that the Boolean for storeInputs is true, which
will facilitate recording results. The How to train and evaluate with cross validation recipe in
Chapter 1, Simple Classifiers, has a complete explanation:

PrintWriter progressWriter = new PrintWriter (System.out, true);
boolean storelInputs = true;
ConditionalClassifierEvaluator<CharSequence> evaluator

= new ConditionalClassifierEvaluator<CharSequences> (null,
categories, storelnputs) ;
TokenizerFactory tokFactory

= IndoEuropeanTokenizerFactory.INSTANCE;

Then, we will execute standard cross validation:

for (int i = 0; i < numFolds; ++i) {
corpus.setFold (i) ;
final LogisticRegressionClassifier<CharSequence> classifier
= Util.trainLogReg (corpus, tokFactory, progressWriter) ;
evaluator.setClassifier (classifier) ;
corpus.visitTest (evaluator) ;

}

At the end of cross validation, the evaluator has all the classifications stored in visitTest ().
Next, we will transfer this data to an accumulator, which creates and stores rows that will be put
into the output spreadsheet and redundantly stores the score; this score will be used in a sort to
control the order of annotations printed out:

final ObjectToDoubleMap<String[]> accumulator
= new ObjectToDoubleMap<String[]>() ;

Then, we will iterate over each category and create a list of the false negatives and true
positives for the category—these are the cases that the truth category is the category label:

for (String category : categories) ({
List<Classified<CharSequence>> inCategory

= evaluator.truePositives (category) ;
inCategory.addAll (evaluator.falseNegatives (category)) ;
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Next, all the in-category test cases are used to create rows for the accumulator:

for (Classified<CharSequence> testCase : inCategory) ({
CharSequence text = testCase.getObject () ;
ConditionalClassification classification
= (ConditionalClassification) testCase.
getClassification() ;
double score = classification.conditionalProbability(0) ;
String[] xFoldRow = new String[Util.TEXT OFFSET + 1];
xFoldRow [Util.SCORE] = String.valueOf (score) ;
xFoldRow [Util.GUESSED_ CLASS] = classification.bestCategory () ;
xFoldRow [Util.ANNOTATION OFFSET] = category;
xFoldRow [Util.TEXT OFFSET] = text.toString();
accumulator.set (xFoldRow, score) ;

}
Next, the code will print out some standard evaluator output:

Util.printConfusionMatrix(evaluator.confusionMatrix()) ;
Util.printPrecRecall (evaluator) ;

All the mentioned steps only apply to annotated data. We will now turn to getting best category
and scores for all the unannotated data in the . csv file.

First, we will set the number of folds on the cross-validating corpus to 0, which means that
vistTrain () will visit the entire corpus of annotations—unannotated data is not contained
in the corpus. The logistic regression classifier is trained in the usual way:

corpus.setNumFolds (0) ;
final LogisticRegressionClassifier<CharSequence> classifier
= Util.trainLogReg(corpus, tokFactory, progressWriter) ;

Armed with a classifier, the code iterates over all the data items, one row at a time. The first
step is to check for an annotation. If the value is not the empty string, then the data was in the
aforementioned corpus and used as training data so that the loop skips to the next row:

for (Stringl[] csvData : data)
if (!csvData[Util.ANNOTATION OFFSET] .equals("")) {
continue;

}

ScoredClassification classification = classifier.
classify(csvData [Util.TEXT OFFSET]) ;

csvData [Util.GUESSED_ CLASS] = classification.category(0) ;

double estimate = classification.score(0);

csvData [Util.SCORE] = String.valueOf (estimate) ;

accumulator.set (csvData, estimate) ;
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If the row is unannotated, then the score and bestCategory () method is added at the
appropriate points, and the row is added to the accumulator with the score.

The rest of the code increments the index of the filename and writes out the accumulator data
with a bit of reporting:

String outfile = incrementFileName (latestFile) ;
Util.writeCsvAddHeader (accumulator.keysOrderedByValueList (),
new File(outfile)) ;
System.out.println("Corpus size: " + corpus.size());
System.out.println("Writing to file: " + outfile);
System.out.println("Done, now go annotate and save with same"
+ " file name") ;

This is how it works. Remember that the biases that can be introduced by this approach
invalidate evaluation numbers. Always run on fresh held-out data to get a proper sense
of the classifier's performance.

One of the most valuable services we provide is teaching our customers how to create
gold-standard data, also known as training data. Nearly every successful-driven NLP project
we have done has involved a good deal of customer-driven annotation. The quality of the
NLP is entirely dependent on the quality of the training data. Creating training data is a
fairly straightforward process, but it requires attention to detail and significant resources.
From a budget perspective, you can expect to spend as much as the development team on
annotation, if not more.

How to do it...

We will use sentiment over tweets as our example, and we will assume a business context,
but even academic efforts will have similar dimensions.

1. Get 10 examples of what you expect the system to do. For our example, this means
getting 10 tweets that reflect the scope of what the system is expected to do.

2. Make some effort to pick from the range of what you expect as inputs/outputs.
Feel free to cherry-pick strong examples, but do not make up examples. Humans
are terrible at creating example data. Seriously, don't do it.

3. Annotate these tweets for the expected categories.
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Have a meeting with all the stakeholders in the annotation. This includes user-
experience designers, business folks, developers, and end users. The goal of this
meeting is to expose all the relevant parties to what the system will actually do—the
system will take the 10 examples and produce the category label. You will be amazed
at how much clarity this step establishes. Here are the kinds of clarity:

o Upstream/downstream users of the classifier will have a clear idea of
what they are expected to produce or consume. For example, the system
consumes UTF-8-encoded English tweets and produces an ASCII single
character of p, n, or u.

o For a sentiment, people tend to want a severity score, which is very hard to get.
You can expect annotation costs to double at least. Is it worth it? A score of
confidence can be provided, but that is confidence that the category is correct
not the severity of the sentiment. This meeting will force the discussion.

o During this meeting explain that each category will likely need at least 100
examples, if not 500, to do a reasonable job. Also explain that switching
domains might require new annotations. NLP is extremely easy for your
human colleagues, and as a result, they tend to underestimate what it takes
to build systems.

o Don't neglect to include whoever is paying for all this. | suppose you should
not have your parents involved if this is your undergraduate thesis.

Write down an annotation standard that explains the intention behind each category.
It doesn't need to be very complex, but it needs to exist. The annotation standard
should be circulated around the stakeholders. Bonus points if you have one at the
mentioned meetings; if so, it will likely be different at the end, but this is fine. An
example is:

o Atweetis positive p if the sentiment is unambiguously positive about Disney.
A positive sentiment that applies to a non-Disney tweet is not p but u. An
example is the n tweet indicates clearly negative intent towards Disney.
Examples include that all other tweets are u.

o Examples in the annotation standard do the best job of communicating the
intent. Humans do a better job with examples rather than descriptions in
our experience.

Create your collection of unannotated data. The best practice here is for the data to
be random from the expected source. This works fine for categories with noticeable
prevalence in data, say 10 percent or more, but we have built classifiers that occur
at a rate of 1/2,000,000 for question-answering systems. For rare categories, you
can use a search engine to help find instances of the category—for example, search
for 1uv to find positive tweets. Alternatively, you can use a classifier trained on a few
examples, run it on data, and look at the high-scoring positives—we covered this in
the previous recipe.
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7. Recruit at least two annotators to annotate data. The reason we need at least two is
that the task has to be shown to be reproducible by humans. If people can't reliably
do the task, then you can't expect a computer to do it. This is where we execute some
code. Type in the following command in the command line or invoke your annotators
in you IDE—this will run with our default files:

java -cp lingpipe-cookbook.l.0.jar:1lib/lingpipe-
4.1.0.jar:1lib/opencsv-2.4.jar com.lingpipe.cookbook.chapter3.
InterAnnotatorAgreement
data/disney e n.csv treated as truth
data/disneyl e n.csv treated as response
Disagreement: n x e for: When all else fails #Disney
Disagreement: e x n for: FEHDZEHLREHHDOE E4 HILLANDIZV -
reference\response
\e,n,

e 10,1,

nl,9,
Category: e Precision: 0.91, Recall: 0.91

Category: n Precision: 0.90, Recall: 0.90

8. The code reports disagreements and prints out a confusion matrix. Precision
and recall are useful metrics as well.

There is little novel data in the code in src/com/lingpipe/cookbook/
chapter3/InterAnnotatorAgreement . java. One slight twist is that we used
BaseClassifierEvaluator to do the evaluation work without a classifier ever being
specified—the creation is as follows:

BaseClassifierEvaluator<CharSequence> evaluator
= new BaseClassifierEvaluator<CharSequence> (null,

categories, storelnputs) ;

The evaluator is populated with classifications directly rather than the usual Corpus.
visitTest () method, as done elsewhere in the book:

evaluator.addClassification (truthCategory,
responseClassification, text);

If the recipe requires further explanation, consult the Evaluation of classifiers—the confusion
matrix recipe in Chapter 1, Simple Classifiers.
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There's more...

Annotation is a very complex area that deserves its own book, and fortunately, there is a good
one, Natural Language Annotation for Machine Learning, James Pustejovsky and Amber
Stubbs, O'Reilly Media. To get annotations done, there is Amazon's Mechanical Turk service
as well as companies that specialize in the creation of training data such as CrowdFlower.
However, be careful of outsourcing because classifiers are very dependent on the quality

of data.

Conflict resolution between annotators is a challenging area. Many errors will be due to
attention lapses, but some will persist as legitimate areas of disagreement. Two easy
resolution strategies are either to throw out the data or keep both annotations.







Tagging Words
and Tokens

In this chapter, we will cover the following recipes:

>

Interesting phrase detection

Foreground- or background-driven interesting phrase detection
Hidden Markov Models (HMM) - part-of-speech

N-best word tagging

Confidence-based tagging

Training word tagging

Word-tagging evaluation

Conditional random fields (CRF) for word/token tagging
Modifying CRFs

Introduction

Words and tokens are the focus of this chapter. The more common extraction technologies,
such as named entity recognition, are actually encoded into the concepts presented here,
but this will have to wait until Chapter 5, Finding Spans in Text - Chunking. We will start easy
with finding interesting sets of tokens. Then, we will move on to HMM and finish with one

of the most complex components of LingPipe—CRF. As usual, we show you how to evaluate
tagging and train your own taggers.
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Interesting phrase detection

Imagine that a program can take a bunch of text data and automatically find the interesting
parts, where "interesting" means that the word or phrase occurs more often than expected.
It has a very nice property—no training data is needed, and it works for any language that
we have tokens for. You have seen this most often in tag clouds such as the one in the
following figure:

javadoc models ¥ 3
buas lice i Services
about alias-i

e core M

The preceding figure shows a tag cloud generated for the 1ingpipe.com home page.
However, be aware that tag clouds are considered to be the "mullets of the Internet" as noted
by Jeffery Zeldman in http://www.zeldman.com/daily/0405d.shtml, so you will be on
shaky ground if you deploy such a feature on a website.

How to do it...

To get the interesting phrases from a small dataset with tweets about Disney, perform the
following steps:

1. Fire up the command line and type:

java -cp lingpipe-cookbook.l.0.jar:lib/lingpipe-4.1.0.jar:1ib/
opencsv-2.4.jar com.lingpipe.cookbook.chapter4.InterestingPhrases

2. The program should respond with something like:

Score 42768.0 : Crayola Color

Score 42768.0 : Bing Rewards
Score 42768. : PassPorter Moms
Score 42768. : PRINCESS BATMAN
Score 42768.0 : Vinylmation NIB
Score 42768.0 : York City
Score 42768. : eternal damnation
Score 42768.0 : ncipes azules

Score 42768. : diventare realt

©O O O o o o o o o

Score 42768. : possono diventare
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Score
Score
Score
Score
Score
Score
Score
Score
Score

Score

42768.0
42768.0
42768.0
42768.0
42768.0
42768.0
42768.0
42768.0
42768.0
42768.0

Pictures Releases
SPACE MOUNTAIN
DEVANT MOI

QUOI DEVANT
Lindsay Lohan
EPISODE VII

STAR WARS

Indiana Jones
Steve Jobs

Smash Mouth
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3. You can also supply a . csv file in our standard format as an argument to see
different data.

The output tends to be tantalizingly useless. Tantalizingly useless means that some useful
phrases show up, but with a bunch of less interesting phrases that you will never want in your
summary of what is interesting in the data. On the interesting side, we can see Crayola
Color, Lindsey Lohan, Episode VII, and so on. On the junk side, we can see ncipes
azules, pictures releases, and so on. There are lots of ways to address the junk
output—the obvious first step will be to use a language ID classifier to throw out non-English.

Here, we will go through the source in its entirety, broken by explanatory text:

package com.lingpipe.cookbook.chapter4;

import java.
import java.
import java.
import java.

io.FileReader;
io.IOException;
util.List;
util.SortedSet;

import au.com.bytecode.opencsv.CSVReader;

import com.aliasi.lm.TokenizedLM;

import com.aliasi.tokenizer.IndoEuropeanTokenizerFactory;

import com.aliasi.util.ScoredObject;

public class InterestingPhrases
static int TEXT INDEX = 3;
public static void main(String[] args) throws IOException

String inputCsv

= args.length > 0 ? args[0]

"data/disney.csv";
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Here, we see the path, imports, and the main () method. Our ternary operator that supplies
a default file name or reads from the command line is the last line:

List<String[]> lines = Util.readCsv(new File (inputCsv)) ;
int ngramSize = 3;
TokenizedLM languageModel = new
TokenizedLM (IndoEuropeanTokenizerFactory.INSTANCE,
ngramSize) ;

After collecting the input data, the first interesting code constructs a tokenized language
model which differs in significant ways from the character language models used in

Chapter 1, Simple Classifiers. A tokenized language model operates over tokens created

by TokenizerFactory, and the ngram parameter dictates the number of tokens used
instead of the number of characters. A subtlety of TokenizedLM is that it can also use
character language models to make predictions for tokens it has not seen before. See the
Foreground- or background-driven interesting phrase detection recipe to understand how this
works in practice; don't use the preceding constructor unless there are no unknown tokens
when estimating. Also, the relevant Javadoc provides more details on this. In the following
code snippet, the language model is trained:

for (String [] line: lines) {
languageModel.train(line [TEXT INDEX]) ;

}
The next relevant step is the creation of collocations:

int phraselLength = 2;
int minCount = 2;
int maxReturned = 100;

SortedSet<ScoredObject<String[] >> collocations =
languageModel.collocationSet (phraseLength,
minCount, maxReturned) ;

The parameterization controls the phrase length in tokens; it also sets a minimum count of
how often the phrase can be seen and how many phrases to return. We can look at phrases
of length 3 as we have a language model that stores 3 grams. Next, we will visit the results:

for (ScoredObject<Stringl[]> scoredTokens : collocations) ({
double score = scoredTokens.score() ;
StringBuilder sb = new StringBuilder() ;
for (String token : scoredTokens.getObject()) ({

sb.append (token + " ") ;

}
System.out.printf ("Score %.1f : ", score);
System.out.println (sb) ;
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The SortedSet<ScoredObject<String[] >> collocation is sorted from a high score to

a low score. The intuition behind the score is that a higher score is given when the tokens

are seen together more than one would expect, given their singleton frequency in the

training data. In other words, phrases are scored depending on how much they vary from the
independence assumption based on the tokens. See the Javadoc at http://alias-1i.com/
lingpipe/docs/api/com/aliasi/1lm/TokenizedLM.html for the exact definitions—an
interesting exercise will be to create your own score and compare it with what is done

in LingPipe.

There's more...

Given that this code is close to being usable on a website, it is worth discussing tuning.
Tuning is the process of looking at system output and making changes based on the
mistakes the system makes. Some changes that we would immediately consider include:

» Alanguage ID classifier that will be handy to filter out non-English texts

» Some thought around how to better tokenize the data

» Varying token lengths to include 3 grams and unigrams in the summary

» Using named entity recognition to highlight proper nouns

Foreground- or background-driven

interesting phrase detection

Like the previous recipe, this recipe finds interesting phrases, but it uses another language
model to determine what is interesting. Amazon's statistically improbable phrases (SIP) work
this way. You can get a clear view from their website at http: //www.amazon.com/gp/
search-inside/sipshelp.html:

"Amazon.com's Statistically Improbable Phrases, or "SIPs", are the most distinctive
phrases in the text of books in the Search Inside!™ program. To identify SIPs, our
computers scan the text of all books in the Search Inside! program. If they find

a phrase that occurs a large number of times in a particular book relative to all
Search Inside! books, that phrase is a SIP in that book.

SIPs are not necessarily improbable within a particular book, but they are
improbable relative to all books in Search Insidel."

The foreground model will be the book being processed, and the background model will be all
the other books in Amazon's Search Inside!™ program. While Amazon has probably introduced
tweaks that differ, it is the same basic idea.



http://alias-i.com/lingpipe/docs/api/com/aliasi/lm/TokenizedLM.html
http://alias-i.com/lingpipe/docs/api/com/aliasi/lm/TokenizedLM.html
http://www.amazon.com/gp/search-inside/sipshelp.html
http://www.amazon.com/gp/search-inside/sipshelp.html
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Getting ready

There are a few sources of data worth looking at to get interesting phrases with two separate
language models. The key is you want the background model to function as the source

of expected word/phrase distributions that will help highlight interesting phrases in the
foreground model. Some examples include:

>

Time-separated Twitter data: The examples of time-separated Twitter data are
as follows:

o Background model: This refers to a year worth of tweets about Disney World
up to yesterday.

o Foreground model: Tweets for today.
o Interesting phrases: What's new in Disney World today on Twitter.
Topic-separated Twitter data: The examples of topic-separated Twitter data are
as follows:
o Background model: Tweets about Disneyland
o Foreground model: Tweets about Disney World
o Interesting phrases: What is said about Disney World that is not said about
Disneyland
Books on very similar topics: The examples of books on similar topics are as follows:
o Background model: A pile of early sci-fi novels
o Foreground model: Jules Verne's War of the Worlds

o Interesting phrases: The unique phrases and concepts of "War of
the Worlds"

How to do it...

Here are the steps to run a foreground or background model on tweets about Disneyland
versus tweets about Disney World:

1.
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In the command line, type:

java -cp lingpipe-cookbook.1l.0.jar:1lib/lingpipe-
4.1.0.jar:1lib/opencsv-2.4.jar com.lingpipe.cookbook.chapter4.
InterestingPhrasesForegroundBackground

The output will look something like:

Score 989.621859 : [sleeping, beautyl]
Score 989.621859 : [california, adventure]
Score 521.568529 : [winter, dreams]

Score 367.309361 : [disneyland, resort]
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Score 339.429700 : [talking, about]
Score 256.473825 : [disneyland, during]

3. The foreground model consists of tweets for the search term, disneyland, and the
background model consists of tweets for the search term, disneyworld.

4. The top tied results are for unique features of California-based Disneyland, namely,
the name of the castle, Sleeping Beauty's Castle, and a theme park built in the
parking lot of Disneyland, California Adventure.

5. The next bigram is for Winter Dreams, which refers to a premier for a film.
6. Overall, not a bad output to distinguish between the tweets of the two resorts.

The code is in src/com/lingpipe/cookbook/chapter4/
InterestingPhrasesForegroundBackground. java. The exposition starts after we
loaded the raw . csv data for the foreground and background models:

TokenizerFactory tokenizerFactory
= IndoEuropeanTokenizerFactory.INSTANCE;
tokenizerFactory
= new LowerCaseTokenizerFactory (tokenizerFactory) ;
int minLength = 5;
tokenizerFactory
= new LengthFilterTokenizerFactoryPreserveToken (tokenizerFactory,
minLength) ;

One can be excused for wondering why we dedicated all of Chapter 2, Finding and Working
with Words, to tokenization, but it turns out that most NLP systems are very sensitive to how
the character stream is broken up into words or tokens. In the preceding code snippet, we
saw a stack of three tokenizer factories doing useful violence to the character sequence.
The first two are covered adequately in Chapter 2, Finding and Working with Words, but

the third one is a customized factory that bears some examination. The intent behind the
LengthFilterTokenizerFactoryPreserveToken class is to filter short tokens but at
the same time not lose adjacency information. The goal is to take the phrase, "Disney is my
favorite resort", and produce tokens (disney, 234, 235, favorite, resort), because we
don't want short words in our interesting phrases—they tend to sneak past simple statistical
models and mess up the output. Please refer to src/come/lingpipe/cookbook/
chapter4/LengthFilterTokenizerFactoryPreserveToken. java for the source of
the third tokenizer. Also, refer to Chapter 2, Finding and Working with Words for exposition.
Next is the background model:

int nGramOrder = 3;

TokenizedLM backgroundLanguageModel = new

TokenizedLM (tokenizerFactory, nGramOrder) ;

for (String [] line: backgroundData) {
backgroundLanguageModel.train(line [Util.TEXT OFFSET]) ;

}
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What is being built here is the model that is used to judge the novelty of phrases in the
foreground model. Then, we will create and train the foreground model:

TokenizedLM foregroundLanguageModel = new TokenizedLM

(tokenizerFactory,nGramOrder) ;

for (String [] line: foregroundData) ({
foregroundLanguageModel .train(line [Util.TEXT_ OFFSET]) ;

}

Next, we will access the newTermSet () method from the foreground model. The parameters
and phraseSize determine how long the token sequences are; minCount specifies a
minimum number of instances of the phrase to be considered, and maxReturned controls
how many results to return:

int phraseSize =
int minCount = 3;
int maxReturned = 100;
SortedSet<ScoredObject<String[] >> suprisinglyNewPhrases
= foregroundLanguageModel .newTermSet (phraseSize, minCount,
maxReturned, backgroundLanguageModel) ;
for (ScoredObject<Stringl[]> scoredTokens : suprisinglyNewPhrases) {
double score = scoredTokens.score() ;
String[] tokens = scoredTokens.getObject() ;
System.out.printf ("Score %$f : ", score);
System.out.println(java.util.Arrays.asList (tokens)) ;

2;

}

The preceding for loop prints out the phrases in order of the most surprising phrase to the
least surprising one.

The details of what is going on here are beyond the scope of the recipe, but the Javadoc again
starts us down the road to enlightenment.

The exact scoring used is the z-score, as defined in BinomialDistribution. z (double
,int, int), with the success probability defined by the n-grams probability estimate in the
background model, the number of successes being the count of the n-gram in this model,
and the number of trials being the total count in this model.

There's more...

This recipe is the first place where we have faced unknown tokens, which can have very bad
properties if not handled correctly. It is easy to see why this is a problem with a maximum
likelihood of a token-based language model, which is a fancy name for a language model
that provides an estimate of some unseen tokens by multiplying the likelihoods of each
token. Each likelihood is the number of times the token was seen in training divided by the
number of tokens seen in data. For example, consider training on the following data from

A Connecticut Yankee in King Arthur's Court:
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"The ungentle laws and customs touched upon in this tale are historical, and the
episodes which are used to illustrate them are also historical."

This is very little training data, but it is sufficient for the point being made. Consider how we will
get an estimate for the phrase, "The ungentle inlaws" using our language model. There are 24
words with "The" occurring once; we will assign a probability of 1/24 to this. We will assign a
probability of 1/24 to "ungentle" as well. If we stop here, we can say that the likelihood of "The
ungentle" is 1/24 * 1/24. However, the next word is "inlaws", which does not exist in the training
data. If this token is assigned a value of 0/24, it will make the likelihood of the entire string
0(1/24 * 1/24 * 0/20). This means that whenever there is an unseen token for which the
estimate is likely going to be zero, this is generally an unhelpful property.

The standard response to this issue is to substitute and approximate the value to stand in for
data that has not been seen in training. There are a few approaches to solving this problem:

» Provide a low but non-zero estimate for unknown tokens. This is a very
common approach.

» Use character language models with the unknown token. There are provisions for
this in the class—refer to the Javadoc.

» There are lots of other approaches and substantial research literature. Good search
terms are "back off" and "smoothing".

Hidden Markov Models (HMM) - part-of-

speech

This recipe brings in the first hard-core linguistic capability of LingPipe; it refers to the
grammatical category for words or part-of-speech (POS). What are the verbs, nouns,
adjectives, and so on in text?

How to do it...

Let's jump right in and drag ourselves back to those awkward middle-school years in English
class or our equivalent:

1. As always, head over to your friendly command prompt and type the following:
java -cp lingpipe-cookbook.l.0.jar:1lib/lingpipe-4.1.0.jar: com.
lingpipe.cookbook.chapter9.PosTagger

2. The system will respond with a prompt to which we will add a Jorge Luis
Borges quote:

INPUT> Reality is not always probable, or likely.
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3. The system will respond delightfully to this quote with:
Reality nn is bez not * always rb probable jj , , or cc likely jj

Appended to each token is _ with a part-of-speech tag; nn is noun, rb is adverb, and so on.
The complete tag set and description of the corpus of the tagger can be found at http://
en.wikipedia.org/wiki/Brown_ Corpus. Play around with it a bit. POS tagger was one
of the first breakthrough machine-learning applications in NLP back in the '90s. You can
expect this one to perform at better than 90-percent accuracy, although it might suffer a bit
on Twitter data given that that the underlying corpus was collected in 1961.

As appropriate for a recipe book, we are not revealing the fundamentals of how part-of-speech
taggers are built. There is Javadoc, the Web, and the research literature to help you understand
the underlying technology—in the recipe for training an HMM, there is a brief discussion of the
underlying HMM. This is about how to use the API as presented:

public static void main(String[] args) throws ClassNotFoundException,
IOException {
TokenizerFactory tokFactory = IndoEuropeanTokenizerFactory.INSTANCE;
String hmmModelPath = args.length > 0 ? args[0]
"models/pos-en-general-brown.HiddenMarkovModel" ;
HiddenMarkovModel hmm = (HiddenMarkovModel) AbstractExternalizable.
readObject (new File (hmmModelPath)) ;
HmmDecoder decoder
= new HmmDecoder (hmm) ;
BufferedReader bufReader
= new BufferedReader (new InputStreamReader (System.in)) ;
while (true) {
System.out.print ("\n\nINPUT> ") ;
System.out.flush() ;
String input =
bufReader.readLine () ;
Tokenizer tokenizer =
tokFactory.tokenizer (input.toCharArray (), 0, input.length()) ;
String[] tokens = tokenizer.tokenize() ;
List<String> tokenList = Arrays.asList (tokens) ;
firstBest (tokenList, decoder) ;

}
}

The code starts by setting up TokenizerFactory, which makes sense because we need
to know what the words that are going to get the parts of speech are. The next line reads in
a previously trained part-of-speech tagger as HiddenMarkovModel. We will not go into too
much detail; you just need to know that an HMM assigns a part-of-speech tag for token n as
a function of the tag assignments that preceded it.
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The fact that these tags are not directly observed in data makes the Markov model hidden.
Usually, one or two tokens back are looked at. There is a lot going on with HMMs that is
worth understanding.

The next line with HmmDecoder decoder wraps the HMM in code to tag provided tokens.
Our standard interactive while loop is up next with all the interesting bits happening in the
firstBest(tokenList,decoder) method at the end. The method is as follows:

static void firstBest (List<String> tokenList, HmmDecoder decoder) {
Tagging<String> tagging = decoder.tag(tokenList) ;
System.out.println ("\nFIRST BEST") ;
for (int i = 0; i < tagging.size(); ++i){
System.out.print (tagging.token (i) + " " +
tagging.tag(i) + " ");
}

System.out.println() ;

}

Note the decoder.tag (tokenList) call that produces a Tagging<String> tagging.
Tagging does not have an iterator or useful encapsulation of the tag/token pair, so the
information is accessed by incrementing an index i.

N-best word tagging

The certainty-driven nature of Computer Science is not reflected in the vagaries of linguistics
where reasonable PhDs can agree or disagree at least until Chomsky's henchmen show up.
This recipe uses the same HMM trained in the preceding recipe but provides a ranked list of
possible tags for each word.

Where might this be helpful? Imaging a search engine that searched for words and a tag—not
necessarily part-of-speech. The search engine can index the word and the top n-best tags that
will allow a match into a non-first best tag. This can help increase recall.

How to do it...

N-best analyses push the sophistication boundaries of NLP developers. What used to be a
singleton is now a ranked list, but it is where the next level of performance occurs. Let's get
started by performing the following steps:

1. Put away your copy of Syntactic Structures face down and type out the following:

java -cp lingpipe-cookbook.l.0.jar:1lib/lingpipe-4.1.0.jar: com.
lingpipe.cookbook.chapter4.NbestPosTagger
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2. Then, enter the following:

INPUT> Colorless green ideas sleep furiously.

3. ltyields the following output:

N BEST
# JointLogProb Analysis
0 -91.141 Colorless jj green jj ideas nns sleep vb

furiously rb

1 -93.916 Colorless jj green nn ideas nns sleep vb
furiously rb

2 -95.494 Colorless jj green jj ideas nns sleep rb
furiously rb

3 -96.266 Colorless jj green jj ideas nns sleep nn
furiously rb .

4 -98.268 Colorless jj green nn ideas nns sleep rb
furiously rb

The output lists from most likely to least likely the estimate of the entire sequence of tokens
given the estimates from the HMM. Remember that the joint probabilities are log 2 based.
To compare joint probabilities subtract -93.9 from -91.1 for a difference of 2.8. So, the tagger
thinks that option 1 is 2 * 2.8 = 7 times less likely to occur than option 0. The source of this
difference is in assigning green to noun rather than adjective.

The code to load the model and command I/0 is the same as that of the previous recipe.
The difference is in the method used to get and display the tagging:

static void nBest (List<String> tokenList, HmmDecoder decoder, int
maxNBest) {
System.out.println ("\nN BEST") ;
System.out.println ("# JointLogProb Analysis");
Iterator<ScoredTagging<String>> nBestIt =
decoder.tagNBest (tokenList, maxNBest) ;
for (int n = 0; nBestIt.hasNext(); ++n) {
ScoredTagging<String> scoredTagging = nBestIt.next () ;
System.out.printf(n + " $9.3f ",scoredTagging.score()) ;
for (int i = 0; i < tokenList.size(); ++i){
System.out.print (scoredTagging.token(i) + " " +
pad (scoredTagging.tag (i) ,5)) ;
}

System.out.println() ;

}

There is nothing much to it other than working out the formatting issues as the taggings are
being iterated over.
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Confidence-based tagging

There is another view into the tagging probabilities; this reflects the probability assignments
at the level of word. The code reflects the underlying TagLattice and offers insights into
whether the tagger is confident or not.

How to do it...

This recipe will focus the probability estimates on the individual token. Perform the
following steps:

1. Type in the following on the command line or IDE equivalent:

java -cp lingpipe-cookbook.l.0.jar:lib/lingpipe-4.1.0.jar: com.
lingpipe.cookbook.chapter4.ConfidenceBasedTagger

2. Then, enter the following:

INPUT> Colorless green ideas sleep furiously.

3. ltyields the following output:

CONFIDENCE

# Token (Prob:Tag) *

0 Colorless 0.991:373 0.006:np$ 0.002:np

1 green 0.788:373 0.208:nn 0.002:nns
2 ideas 1.000:nns 0.000:rb 0.000:373

3 sleep 0.821:vb 0.101:rb 0.070:nn

4 furiously 1.000:rb 0.000:ql 0.000:jjr
5 1.000:. 0.000:np 0.000:nn

This view of the data distributes the joint probabilities of the tag and word. We can see that
there is . 208 chance that green should be tagged as nn or a singular noun, but the correct
analysis is still . 788 with adjective j 7.

We are still using the same old HMM from the Hidden Markov Models (HMM) - part-of-speech
recipe but using different parts of it. The code to read in the model is exactly the same, with

a major difference in how we report results. src/com/1ingpipe/cookbook/chapter4/
ConfidenceBasedTagger.java the method:

static void confidence (List<String> tokenList, HmmDecoder decoder) {
System.out.println ("\nCONFIDENCE") ;
System.out.println ("# Token (Prob:Tag) *") ;
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TagLattice<String> lattice = decoder.tagMarginal (tokenList) ;

for (int tokenIndex = 0; tokenIndex < tokenList.size();
++tokenIndex) {

ConditionalClassification tagScores =
lattice.tokenClassification (tokenIndex) ;

System.out.print (pad (Integer.toString (tokenIndex) ,4)) ;

System.out.print (pad (tokenList.get (tokenIndex),15)) ;

for (int i = 0; i < 3; ++i) {
double conditionalProb = tagScores.score(i);
String tag = tagScores.category (i) ;
System.out.printf (" %9.3f:" + pad(tag,4),conditionalProb) ;

}
System.out.println() ;
}
}

The method demonstrates the underlying lattice of tokens to the probabilities explicitly, which
is at the heart of the HMM. Change the termination condition on the for loop to see more or
fewer tags.

Training word tagging

Word tagging gets much more interesting when you can create your own models. The realm of
annotating part-of-speech tagging corpora is a bit too much for a mere recipe book—annotation
of the part-of-speech data is very difficult because it requires considerable linguistic knowledge
to do well. This recipe will directly address the machine-learning component of the HMM-based
sentence detector.

As this is a recipe book, we will minimally explain what an HMM is. The token language
models that we have been working with do their previous context calculations on some
number of words/tokens that precede the current word being estimated. HMMs take into
account some length of the previous tags while calculating estimates for the current token's
tag. This allows for seemingly disparate neighbors such as of and in to be similar, because
they are both prepositions.

In the Sentence detection recipe, from Chapter 5, Finding Spans in Text — Chunking, a useful but
not very flexible sentence detector is based on the HeuristicSentenceModel in LingPipe.
Rather than mucking about with modifying/extending the HeuristicSentenceModel, we will
build a machine-learning-based sentence system with the data that we annotate.
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How to do it...

The steps here describe how to run the program in src/com/1lingpipe/cookbook/
chapter4 /HMMTrainer.java:

1.

Either create a new corpus of the sentence-annotated data or use the following
default data, which is in data/connecticut_yankee EOS.txt. If you are
rolling your own data, simply edit some text with [' and '] to mark the sentence
boundaries. Our example looks like the following;:

[The ungentle laws and customs touched upon in this tale are
historical, and the episodes which are used to illustrate them
are also historical.] [It is not pretended that these laws and
customs existed in England in the sixth century; no, it is only
pretended that inasmuch as they existed in the English and other
civilizations of far later times, it is safe to consider that it
is

no libel upon the sixth century to suppose them to have been in
practice in that day also.] [One is quite justified in inferring
that whatever one of these laws or customs was lacking in that
remote time, its place was competently filled by a worse one.]

Go to the command prompt and run the program with the following command:
java -cp lingpipe-cookbook.l.0.jar:1lib/lingpipe-4.1.0.jar com.
lingpipe.cookbook.chapter4.HmmTrainer

It will give the following output:

Training The/BOS ungentle/WORD laws/WORD and/WORD customs/WORD
touched/WORD...
done training, token count: 123

Enter text followed by new line

> The cat in the hat. The dog in a bog.

The/BOS cat/WORD in/WORD the/WORD hat/WORD ./EOS The/BOS dog/WORD
in/WORD a/WORD bog/WORD ./EOS

The output is a tokenized text with one of the three tags: BOS for the beginning of a
sentence, EOS for the end of a sentence, and WORD for all other tokens.
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Like many span-based markups, the span annotation is translated into a token-level
annotation, as shown earlier in the recipe's output. So, the first order of business is to
collect the annotated text, set up TokenizerFactory, and then call a parsing subroutine
to add to List<Tagging<Strings>>:

public static void main(String[] args) throws IOException
String inputFile = args.length > 0 ? args[0]
"data/connecticut_ yankee EOS.txt";

char[] text = Files.readCharsFromFile (new File (inputFile),
Strings.UTF8) ;

TokenizerFactory tokenizerFactory =
IndoEuropeanTokenizerFactory.INSTANCE;

List<Tagging<String>> taggingList = new
ArrayList<Tagging<String>>() ;

addTagging (tokenizerFactory, tagginglList, text) ;

The subroutine to parse the preceding format works by first tokenizing the text with
IndoEuropeanTokenizer, which has the desirable property of treatingthe [' and ']
sentence delimiters as separate tokens. It does not check whether the sentence delimiters
are well formed—a more robust solution will be needed to do this. The tricky bit is that we want
to ignore this markup in the resulting token stream, but we want to use it to have the token
following [' be a BOS and the token preceding '] be EOS. Other tokens are just
WORD. The subroutine builds a parallel Lists<Strings instance for tags and tokens, which
is then used to create Tagging<String> and is added to taggingList. The tokenization
recipes in Chapter 2, Finding and Working with Words, cover what is going on with the
tokenizer. Have a look at the following code snippet:

static void addTagging(TokenizerFactory tokenizerFactory,
List<Tagging<String>> taggingList, char[] text) {
Tokenizer tokenizer =
tokenizerFactory.tokenizer (text, 0, text.length);
List<String> tokens = new ArrayList<Strings>();
List<String> tags = new ArrayList<Strings>();
boolean bosFound = false;
for (String token : tokenizer.tokenize())
if (token.equals("[")) {
bosFound = true;

}

else if (token.equals("1")) {
tags.set (tags.size() - 1,"EOS");

}

else {

tokens.add (token) ;
if (bosFound) ({
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tags.add ("BOS") ;
bosFound = false;
}
else {
tags.add ("WORD") ;

}
}

if (tokens.size() > 0) {
taggingList.add (new Tagging<Strings (tokens, tags)) ;
}
}

There is a subtlety with the preceding code. The training data is treated as a single
tagging—this will emulate what the input will look like when we use the sentence detector
on novel data. If more than one document/chapter/paragraph is being used for training,
then we will call this subroutine for each block of text.

Returning to the main () method, we will set up ListCorpus and add the tagging to
the training side of the corpus, one tagging at a time. There is an addTest () method as
well, but this recipe is not concerned with evaluation; if it was, we would most likely use
XValidatingCorpus anyway:

ListCorpus<Tagging<String>> corpus =
new ListCorpus<Tagging<Strings>> () ;

for (Tagging<Strings> tagging : taggingList)
System.out.println("Training " + tagging) ;
corpus.addTrain (tagging) ;

}

Next, we will create HnmCharLmEstimator, which is our HMM. Note that there are
constructors that allow for customized parameters that affect performance—see the Javadoc.
Next, the estimator is trained against the corpus, and HnmDecoder is created, which will
actually tag tokens, as shown in the following code snippet:

HmmCharLmEstimator estimator = new HmmCharLmEstimator () ;
corpus.visitTrain (estimator) ;

System.out.println("done training, token count: " +
estimator.numTrainingTokens ()) ;

HmmDecoder decoder = new HmmDecoder (estimator) ;

In the following code snippet, our standard |/0 loop gets invoked for some user feedback.
Once we get some text from the user, it is tokenized with the same tokenizer we used for
training, and the decoder is presented with the resulting tokens.
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Note that there is no requirement that the training tokenizer be the same as the production
tokenizer, but one must be careful to not tokenize in a radically different way; otherwise, the
HMM will not be seeing the tokens it was trained with. The back-off model will then be used,
which will likely degrade performance. Have a look at the following code snippet:

BufferedReader reader = new BufferedReader (new
InputStreamReader (System.in)) ;
while (true) {
System.out.print ("Enter text followed by new line\n>");
String evalText = reader.readLine() ;
Tokenizer tokenizer = tokenizerFactory.tokenizer (evalText.
toCharArray(),0,evalText.length()) ;
List<String> evalTokens = Arrays.asList (tokenizer.tokenize()) ;
Tagging<String> evalTagging = decoder.tag(evalTokens) ;
System.out.println(evalTagging) ;

}

That's it! To truly wrap this as a proper sentence detector, we will need to map back to the
character offsets in the original text, but this is covered in Chapter 5, Finding Spans in Text

- Chunking. This is sufficient to show how to work with HMMs. A more full-featured approach
will make sure that each BOS has a matching EOS and the other way around. The HMM has
no such requirement.

There's more...

We have a small and easy-to-use corpus of the part-of-speech tags; this allows us to show
how training the HMM for a very different problem works out to be the same thing. It is like
our How to classify a sentiment - simple version recipe, in Chapter 1, Simple Classifiers; the
only difference between the language ID and sentiment is the training data. We will start with
a hard-coded corpus for simplicity—it is in src/com/1ingpipe/cookbook/chapter4/
TinyPosCorus.java

public class TinyPosCorpus extends Corpus<ObjectHandler<Tagging<
String>>> {

public void visitTrain(ObjectHandler<Tagging<String>> handler) {
for (Stringl[] [] wordsTags : WORDS TAGSS) {
String[] words = wordsTags[0];
String[] tags = wordsTags[1l];
Tagging<String> tagging = new
Tagging<Strings> (Arrays.asList (words),
Arrays.asList (tags)) ;
handler.handle (tagging) ;
}
}
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public void visitTest (ObjectHandler<Tagging<String>> handler)
/* no op */

1
static final Stringl[] []1[] WORDS TAGSS = new Stringl[] []1[] {
{ { "gohn", "ran", "." },{ vpN", "IV", "EOS" } },
{ { "Mary", "ran", "." },{ vpN", "IV", "EOS" } },
{ { "John", "jumped", "t },{ "PN", "IV", "EOS" } },
{ { "The", "dog", "jumped", "i!" },{ "DET", "N", "IV", "EOS" } },
{ { "The", "dog", "sat", ".v" },{ "DET", "N", "IV", "EOS" } },
{ { "Mary", "sat", "tv },{ vpN", "IV", "EOS" } },
{ { "Mary", "likes", "John", "." },{ "PN", "TV", "PN", "EOS" } },
{ { "The", "dog", "likes", "Mary", "." }, { "DET", "N", "TV",
"PN', "EOS" } },
{ { "John", "likes", "the", "dog", "." }, { "BN", "TV", "DET",
"N", "EOS" } },
{ { "The", "dog", "ran", "." },{ "DET", "N", "IV", "EOS", } },
{ { "The", "dog", "ran", "." },{ "DET", "N", "IV", "EOS", } }

}i

The corpus manually creates tokens as well as the tags for the tokens in the static WORDS TAGS
and creates Tagging<Strings> for each sentence; Tagging<Strings> consists of two aligned
List<Strings> instances in this case. The taggings are then sent to the handle () method for
the Corpus superclass. Swapping in this corpus looks like the following:

/*

List<Tagging<Strings>> taggingList = new
ArrayList<Tagging<String>>() ;

addTagging (tokenizerFactory, tagginglList, text) ;

ListCorpus<Tagging<String>> corpus = new
ListCorpus<Tagging<String>> () ;

for (Tagging<Strings> tagging : taggingList)
System.out.println("Training " + tagging) ;
corpus.addTrain (tagging) ;

}

*/

Corpus<ObjectHandler<Tagging<String>>> corpus = new TinyPosCorpus () ;
HmmCharLmEstimator estimator = new HmmCharLmEstimator () ;
corpus.visitTrain (estimator) ;
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We just commented out the code that loads the corpus with sentence detection and features
in TinyPosCorpus in its place. It doesn't need data to be added so we will just train the
HMM with it. To avoid confusion we have created a separate class HnmTrainerPos. java.
Running it results in the following;:

java -cp lingpipe-cookbook.l.0.jar:1lib/lingpipe-4.1.0.jar
done training, token count: 42

Enter text followed by new line

> The cat in the hat is back.

The/DET cat/N in/TV the/DET hat/N is/TV back/PN ./EOS

The only mistake is that in is a transitive verb TV. The training data is very small so mistakes
are to be expected. Like the difference in language ID and sentiment classification in Chapter
1, Simple Classifiers, the HMM is used to learn a very different phenomenon just by changing
what the training data is.

Word-tagging evaluation

Word tagging evaluation drives developments in downstream technologies such as named
entity detection, which, in turn, drives high-end applications such as coreference. You will
notice that much of the evaluation resembles the evaluation from our classifiers except that
each tag is evaluated like its own classifier category.

This recipe should serve to get you started on evaluation, but be aware that there is a very

good tutorial on tagging evaluation on our website at http://alias-i.com/lingpipe/
demos/tutorial/posTags/read-me.html; this recipe goes into greater detail on how
to best understand tagger performance.

This recipe is short and easy to use, so you have no excuses to not evaluate your tagger.

Getting ready

The following is the class source for our evaluator located at src/com/1lingpipe/
cookbook/chapter4 /TagEvaluator. java:

public class TagEvaluator
public static void main(String[] args) throws

ClassNotFoundException, IOException {

HmmDecoder decoder = null;

boolean storeTokens = true;

TaggerEvaluator<String> evaluator = new
TaggerEvaluator<Strings> (decoder, storeTokens) ;

Corpus<ObjectHandler<Tagging<String>>>
smallCorpus = new TinyPosCorpus () ;

160


http://alias-i.com/lingpipe/demos/tutorial/posTags/read-me.html
http://alias-i.com/lingpipe/demos/tutorial/posTags/read-me.html

Chapter 4

}

int numFolds = 10;
XValidatingObjectCorpus<Tagging<String>> xValCorpus =
new XValidatingObjectCorpus<Tagging<String>> (numFolds) ;
smallCorpus.visitCorpus (xValCorpus) ;
for (int i = 0; i < numFolds; ++i) {
xValCorpus.setFold (i) ;
HmmCharLmEstimator estimator = new HmmCharLmEstimator () ;
xValCorpus.visitTrain(estimator) ;

System.out.println("done training " +
estimator.numTrainingTokens()) ;

decoder = new HmmDecoder (estimator) ;
evaluator.setTagger (decoder) ;
xValCorpus.visitTest (evaluator) ;

}

BaseClassifierEvaluator<String> classifierEval =
evaluator.tokenEval () ;
System.out.println(classifierEval) ;

How to do it...

We will call out the interesting bits of the preceding code:

1.

First off, we will set up TaggerEvaluator with a null HnmDecoder and boolean
that controls whether the tokens are stored or not. The HmmDecoder object will be
set in the cross-validation code later in the code:

HmmDecoder decoder = null;
boolean storeTokens = true;

TaggerEvaluator<String> evaluator = new TaggerEvaluator<String>
(decoder, storeTokens) ;

Next, we will load TinyPosCorpus from the previous recipe and use it to populate
XValididatingObjectCorpus—a pretty neat trick that allows for easy conversion
between corpus types. Note that we pick 10 folds—the corpus only has 11 training
examples, so we want to maximize the amount of training data per fold. See the How
to train and evaluate with cross validation recipe in Chapter 1, Simple Classifiers,
if you are new to this concept. Have a look at the following code snippet:
Corpus<ObjectHandler<Tagging<String>>> smallCorpus

= new TinyPosCorpus () ;
int numFolds = 10;

XValidatingObjectCorpus<Tagging<String>> xValCorpus
= new XValidatingObjectCorpus<Tagging<String>> (numFolds) ;

smallCorpus.visitCorpus (xValCorpus) ;
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3. The following code snippet is a for () loop that iterates over the number of folds.
The first half of the loop handles training:

for (int i = 0; i < numFolds; ++i) ({
xValCorpus.setFold (i) ;
HmmCharILmEstimator estimator = new HmmCharLmEstimator() ;
xValCorpus.visitTrain(estimator) ;

System.out.println("done training " +
estimator.numTrainingTokens () ) ;

4. The rest of the loop first creates a decoder for the HMM, sets the evaluator to use this
decoder, and then applies the appropriately configured evaluator to the test portion of
the corpus:

decoder = new HmmDecoder (estimator) ;
evaluator.setTagger (decoder) ;
XValCorpus.visitTest (evaluator) ;

5. The last lines apply after all folds of the corpus have been used for training and
testing. Notice that the evaluator is BaseClassifierEvaluator! It reports on
each tag as a category:

BaseClassifierEvaluator<String> classifierEval =
evaluator.tokenEval () ;
System.out.println(classifierEval) ;

6. Brace yourself for the torrent of evaluation. The following is a small bit of it, namely,
the confusion matrix that you should be familiar with from Chapter 1, Simple Classifiers:

Confusion Matrix

reference \ response
,DET, PN, N, IV, TV, EOS
DET,4,2,0,0,0,0
PN,0,7,0,1,0,0
N,0,0,4,1,1,0
iv,0,0,0,8,0,0
Tv,0,1,0,0,2,0
EO0S,0,0,0,0,0,11

That's it. You have an evaluation setup that is strongly related to the classifier evaluation from
Chapter 1, Simple Classifiers.

There are evaluation classes for the n-best word tagging, that is, NBestTaggerEvaluator
and MarginalTaggerEvaluator, for the confidence ranked. Again, look at the more
detailed tutorial on part-of-speech tagging for a quite thorough presentation on evaluation
metrics and some example software to help tune the HMM.
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Conditional random fields (CRF) for word/

token tagging

Conditional random fields (CRF) are an extension of the Logistic regression recipe in
Chapter 3, Advanced Classifiers, but are applied to word tagging. At the end of Chapter 1,
Simple Classifiers, we discussed various ways to encode a problem into a classification
problem. CRFs treat the sequence tagging problem as finding the best category where
each category (C) is one of the C*T tag (T) assignments to tokens.

For example, if we have the tokens The and rain and tag d for determiner and n for noun,
then the set of categories for the CRF classifier are:

» Category1:.4 4
» Category2:n 4
» Category3:n n
» Category4:4 4

Various optimizations are applied to keep this combinatoric nightmare computable, but this is
the general idea. Crazy, but it works.

Additionally, CRFs allow random features to be used in training in the exact same way that
logistic regression does for classification. Additionally, it has data structures optimized for
HMM style observations against context. Its use for part-of-speech tagging is not very exciting,
because our current HMMs are pretty close to state of the art. Where CRFs really make a
difference is in use cases like named entity detection which are covered in Chapter 5, Finding
Spans in Text — Chunking, but we wanted to address the pure CRF implementation before
complicating the presentation with a chunking interface.

There is an excellent detailed tutorial on CRFs at http://alias-1i.com/lingpipe/
demos/tutorial/crf/read-me.html; this recipe follows this tutorial fairly closely.
You will find more information and proper references there.

How to do it...

All of the technologies we have been presenting up to now were invented in the previous
millennium; this is a technology from the new millennium. Perform the following steps:

1. Inthe command line, type:
java -cp lingpipe-cookbook.l.0.jar:1lib/lingpipe-4.1.0.jar: com.
lingpipe.cookbook.chapter4.CRFTagger

2. The console continues with the convergence results that should be familiar from the
Logistic regression recipe of Chapter 3, Advanced Classifiers, and we will get the
standard command prompt:

Enter text followed by new line
>The rain in Spain falls mainly on the plain.
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3. Inresponse to this, we will get some fairly confused output:

The/DET rain/N in/TV Spain/PN falls/IV mainly/EOS on/DET the/N
plain/IV ./EOS

4. This is an awful output, but the CRF has been trained on 11 sentences. So, let's
not be too harsh—particularly since this technology mostly reigns supreme for word
tagging and span tagging when given sufficient training data to do its work.

Like logistic regression, there are many configuration-related tasks that we need to perform
to get this class up and running. This recipe will address the CRF-specific aspects of the
code and refer to the Logistic regression recipe of Chapter 3, Advanced Classifiers for the
logistic-regression aspects of the configuration.

Starting at the top of the main () method, we will get our corpus, which was discussed in the
earlier three recipes:

Corpus<ObjectHandler<Tagging<String>>> corpus
= new TinyPosCorpus () ;

Next up is the feature extractor, which is the actual input to the CRF trainer. The only reason it
is final is that an anonymous inner class will access it to demonstrate how feature extraction
works in the next recipe:

final ChainCrfFeatureExtractor<String> featureExtractor
= new SimpleCrfFeatureExtractor() ;

We will address how this class works later in the recipe.

The next block of configuration is for the underlying logistic-regression algorithm. Refer to the
logistic regression recipe in Chapter 3, Advanced Classifiers, for more information on this.
Have a look at the following code snippet:

boolean addIntercept = true;

int minFeatureCount = 1;

boolean cacheFeatures = false;

boolean allowUnseenTransitions = true;
double priorVariance = 4.0;

boolean uninformativeIntercept = true;

RegressionPrior prior = RegressionPrior.gaussian(priorVariance,
uninformativeIntercept) ;

int priorBlockSize = 3;

double initialLearningRate = 0.05;

double learningRateDecay = 0.995;

AnnealingSchedule annealingSchedule =
AnnealingSchedule.exponential (initialLearningRate,
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learningRateDecay) ;
double minImprovement = 0.00001;
int minEpochs = 2;
int maxEpochs = 2000;
Reporter reporter = Reporters.stdoOut () .setLevel (LogLevel.INFO) ;

Next up, the CRF is trained with:

System.out.println("\nEstimating") ;
ChainCrf<String> crf = ChainCrf.estimate (corpus,
featureExtractor,
addIntercept,
minFeatureCount,
cacheFeatures,
allowUnseenTransitions,
prior,
priorBlockSize,
annealingSchedule,
minImprovement,
minEpochs,
maxEpochs,
reporter) ;

The rest of the code just uses the standard 1/0 loop. Refer to Chapter 2, Finding and Working
with Words, for how the tokenizerFactory works:

TokenizerFactory tokenizerFactory = IndoEuropeanTokenizerFactory.
INSTANCE;
BufferedReader reader = new BufferedReader (new
InputStreamReader (System.in)) ;
while (true) {
System.out.print ("Enter text followed by new line\n>");
System.out.flush() ;
String text = reader.readLine() ;
Tokenizer tokenizer = tokenizerFactory.tokenizer (
text.toCharArray(),0,text.length());
List<String> evalTokens = Arrays.asList (tokenizer.tokenize()) ;
Tagging<String> evalTagging = crf.tag(evalTokens) ;
System.out.println(evalTagging) ;

SimpleCrfFeatureExtractor

Now, we will get to the feature extractor. The provided implementation closely mimics
the features of a standard HMM. The class at com/1ingpipe/cookbook/chapter4/
SimpleCrfFeatureExtractor. java starts with:

public class SimpleCrfFeatureExtractor implements ChainCrfFeatureExtra
ctor<String> {
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public ChainCrfFeatures<String> extract (List<String> tokens,
List<String> tags) {
return new SimpleChainCrfFeatures (tokens, tags) ;

}

The ChainCrfFeatureExtractor interface requires an extract () method with the
tokens and associated tags that get converted into ChainCrfFeatures<Strings> in this
case. This is handled by an inner class below SimpleChainCrfFeatures; this inner class
extends ChainCrfFeatures and provides implementations of the abstract methods,
nodeFeatures () and edgeFeatures ():

static class SimpleChainCrfFeatures extends ChainCrfFeatures<String> {

The following constructor access passes the tokens and tags to the super class, which will do
the bookkeeping to support looking up tags and tokens:

public SimpleChainCrfFeatures (List<String> tokens, List<String> tags)

{
}

The node features are computed as follows:

super (tokens, tags) ;

public Map<String,Double> nodeFeatures (int n)
ObjectToDoubleMap<String> features =
new ObjectToDoubleMap<Strings () ;
features.increment ("TOK_ " + token(n),1.0);
return features;

}

The tokens are indexed by their position in the sentence. The node feature for the word/
token in position n is the String value returned by the base class method token (n) from
ChainCrfFeatures with the prefix TOK . The value here is 1. 0. Feature values can be
usefully adjusted to values other than 1.0, which is handy for more sophisticated approaches
to CRFs, such as using the confidence estimates of other classifiers. Take a look at the
following recipe for an example of this.

Like HMMs, there are features that are dependent on other positions in the input—these
are called edge features. The edge features take two arguments: one for the position
that features are being generated for n and k, which will apply to all other positions in
the sentence:

public Map<String,Double> edgeFeatures (int n, int k) {
ObjectToDoubleMap<String> features = new
ObjectToDoubleMap<Strings () ;
features.increment ("TAG " + tag(k),1.0);
return features;

}

The next recipe will address how to modify feature extraction.

166




Chapter 4

There's more...

There is an extensive research literature referenced in the Javadoc and a much more
exhaustive tutorial on the LingPipe website.

Modifying CRFs

The power and appeal of CRFs comes from rich feature extraction—proceed with an evaluation
harness that provides feedback on your explorations. This recipe will detail how to create
more complex features.

How to do it...

We will not train and run a CRF; instead, we will print out the features. Substitute this feature
extractor for the one in the previous recipe to see them at work. Perform the following steps:

1.

Go to a command line and type:

java -cp lingpipe-cookbook.l.0.jar:1lib/lingpipe-4.1.0.jar: com.
lingpipe.cookbook.chapter4.ModifiedCrfFeatureExtractor

The feature extractor class outputs for each token in the training data the truth
tagging that is being used to learn:

Tagging: John/PN

This reflects the training tagging for the token John as determined by src/com/
lingpipe/cookbook/chapter4/TinyPosCorpus.java

The node features follow the top-three POS tags from our Brown corpus HMM tagger
and the TOK_John feature:

Node Feats:{nps=2.0251355582754984E-4, np=0.9994337160349874,
nn=2.994165140854113E-4, TOK_JOhn=1.0}

Next, the edge features are displayed for the other tokens in the sentence,
"John ran":

Edge Feats:{TOKEN SHAPE LET-CAP=1.0, TAG PN=1.0}
Edge Feats:{TAG IV=1.0, TOKEN SHAPE LET-CAP=1.0}
Edge Feats:{TOKEN SHAPE LET-CAP=1.0, TAG E0S=1.0}

The rest of the output are the features for the remaining tokens in the sentence
and then the remaining sentences in TinyPosCorpus.
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Our feature extraction code occurs in src/com/lingpipe/cookbook/chapter4/
ModifiedCrfFeatureExtractor. java. We will start with the main () method that
loads a corpus, runs the contents past the feature extractor, and prints it out:

public static void main(String[] args) throws IOException,
ClassNotFoundException {

Corpus <ObjectHandler<Tagging<String>>> corpus
= new TinyPosCorpus () ;

final ChainCrfFeatureExtractor<String> featureExtractor
= new ModifiedCrfFeatureExtractor () ;

We will tee up TinyPosCorpus from the previous recipe as our corpus, and then, we
will create a feature extractor from the containing class. The use of final is required by
referencing the variable in the anonymous inner class that follows.

Apologies for the anonymous inner class, but it is just the easiest way to access what is
stored in the corpus for various reasons such as copying and printing. In this case, we are
just generating and printing the features found for the training data:

corpus.visitCorpus (new ObjectHandler<Tagging<String>>() {
@Override
public void handle (Tagging<String> tagging)
ChainCrfFeatures<String> features =
featureExtractor.extract (tagging.tokens (), tagging.tags());

The corpus contains Tagging objects, and they, in turn, contain a List<String> of tokens
and tags. Then, this information is used to create a ChainCrfFeatures<Strings> object
by applying the featureExtractor.extract () method to the tokens and tags. This will
involve substantial computation, as will be shown.

Next, we will do reporting of the training data with tokens and the expected tagging:

for (int i = 0; i < tagging.size(); ++i) {
System.out.println("--------- ") ;
System.out.println("Tagging: " + tagging.token(i) + "/" + tagging.
tag(i));

Then, we will follow with the features that will be used to inform the CRF model in attempting
to produce the preceding tagging for nodes:

System.out.println("Node Feats:" + features.nodeFeatures(i)) ;
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Then, the edge features are produced by the following iteration of relative positions to the
source node i:

for (int j = 0; j < tagging.size(); ++j) {
System.out.println("Edge Feats:"
+ features.edgeFeatures (i, j));

}

This is it to print out the features. Now, we will address how the feature extractor is constructed.
We assume that you are familiar with the previous recipe. First, the constructor that brings in the
Brown corpus POS tagger:

HmmDecoder mDecoder;

public ModifiedCrfFeatureExtractor () throws IOException,
ClassNotFoundException {
File hmmFile = new File ("models/pos-en-general-"
+ "brown.HiddenMarkovModel") ;

HiddenMarkovModel hmm
= (HiddenMarkovModel)
AbstractExternalizable.readObject (hmmFile) ;

mDecoder = new HmmDecoder (hmm) ;

}

The constructor brings in some external resources for feature generation, namely, a POS
tagger trained on the Brown corpus. Why involve another POS tagger for a POS tagger? We will
call the role of the Brown POS tagger a "feature tagger" to distinguish it from the tagger we are
trying to build. A few reasons to use the feature tagger are:

» We are using a stupidly small corpus for training, and a more robust generalized POS
feature tagger will help things out. TinyPosCorpus is too small for even this benefit,
but with a bit more data, the fact that there is a feature at that unifies the, a, and
some Will help the CRF recognize that some dogis 'DET' 'N', even though it has
never seen some in training.

» We have had to work with tag sets that are not aligned with POS feature taggers.
The CRF can use these observations in the foreign tag set to better reason about
the desired tagging. The simplest case is that at, from the Brown corpus tag set,
maps cleanly onto DET in this tag set.

» There can be performance improvements to run multiple taggers that are either
trained on different data or use different technologies to tag. The CRF can then,
hopefully, recognize contexts where one tagger outperforms others and use this
information to guide the analysis. Back in the day, our MUC-6 system featured 3
POS taggers that voted for the best output. Letting the CRF sort it out will be a
superior approach.
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The guts of feature extraction are accessed with the extract method:

public ChainCrfFeatures<String>
extract (List<String> tokens, List<String> tags) {
return new ModChainCrfFeatures (tokens, tags) ;

}

ModChainCrfFeatures is created as an inner class just to keep the proliferation of classes
to a minimum, and the enclosing class is very lightweight:

class ModChainCrfFeatures extends ChainCrfFeatures<Strings> {
TagLattice<String> mBrownTaggingLattice;

public ModChainCrfFeatures (List<String> tokens,
List<String> tags) {
super (tokens, tags) ;
mBrownTaggingLattice =
mDecoder.tagMarginal (tokens) ;

}

The preceding constructor hands off the tokens and tags to the super class, which handles
bookkeeping of this data. Then, the "feature tagger" is applied to the tokens, and the resulting
output is assigned to the member variable, mBrownTaggingLattice. The code will access
the tagging, one token at a time, so it must be computed now.

The feature creation step happens with two methods: nodeFeatures and edgeFeatures.
We will start with a simple enhancement of edgeFeatures from the previous recipe:

public Map<String, ? extends Number> edgeFeatures (int n, int k) {

ObjectToDoubleMap<String> features = new
ObjectToDoubleMap<Strings () ;

features.set ("TAG " + tag(k), 1.04d);

String category = IndoEuropeanTokenCategorizer
.CATEGORIZER
.categorize (token(n)) ;

features.set ("TOKEN_ SHAPE " + category,1.0d);

return features;

}

The code adds a token-shaped feature that generalizes 12 and 34 into 2-DIG and many other
generalizations. To CRF, the similarity of 12 and 34 as two-digit numbers is non-existent unless
feature extraction says otherwise. Refer to the Javadoc for the complete categorizer output.
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Candidate-edge features

CRFs allow random features to be applied, so the question is what features make sense to
use. Edge features are used in conjunction with node features, so another issue is whether
a feature should be applied to edges or nodes. Edge features will be used to reason about
relationships between the current word/token to those around it. Some possible edge
features are:

» The token shape (all caps, starts with a number, and so on) of the previous token
as done earlier.

» Recognition of iambic pentameter that requires a correct ordering of stressed and
unstressed syllables. This will require a syllable-stress tokenizer as well.

» It often happens that text contains one or more languages—this is called code
switching. It is a common occurrence in tweets. A reasonable edge feature will be the
language of surrounding tokens; this language will better model that the next word is
likely to be of the same language as the previous word.

Node features

The node features tend to be where the action is in CRFs, and they can get very rich.

The Named entity recognition using CRFs with better features recipe in Chapter 5, Finding
Spans in Text - Chunking, is an example. We will add part-of-speech tags in this recipe to
the token feature of the previous recipe:

public Map<String,? extends Number> nodeFeatures (int n)
ObjectToDoubleMap<String> features
= new ObjectToDoubleMap<Strings () ;

features.set ("TOK " + token(n), 1);

ConditionalClassification tagScores
= mBrownTagginglLattice.tokenClassification(n) ;

for (int i = 0; i < 3; ++ i) {
double conditionalProb = tagScores.score(i);
String tag = tagScores.category (i) ;
features.increment (tag, conditionalProb) ;

}

return features;

}
Then as in the previous recipe the token feature is added with:

features.set ("TOK " + token(n), 1);

This results in the token string being prepended with TOK _and a count of 1. Note that while
tag (n) is available in training, it doesn't make sense to use this information, as that is what
the CRF is trying to predict.
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Next, the top-three tags are extracted from the POS feature tagger and added with
the associated conditional probability. CRFs will be able to work with the varying
weights productively.

There's more...

When generating new features, some thought about the sparseness of data is worth
considering. If dates were likely to be an important feature for the CRF, it would probably
not be a good idea to do the standard Computer Science thing and convert the date to
milliseconds since Jan 1, 1970 GMT. The reason is that the MILLI 1000000000 feature
will be treated as completely different from MILLI 1000000001. There are a few reasons:

» The underlying classifier does not know that the two values are nearly the same

» The classifier does not know that the MILLI prefix is the same—the common prefix
is only there for human convenience

» The feature is unlikely to occur in training more than once and will likely be pruned by
a minimum feature count

Instead of normalizing dates to milliseconds, consider an abstraction over the dates that will
likely have many instances in training data, such as the has_date feature that ignores the
actual date but notes the existence of the date. If the date is important, then compute all

the important information about the date. If it is a day of the week, then map to days of the
week. If temporal order matters, then map to coarser measurement that is likely to have many
measurements. Generally speaking, CRFs and the underlying logistic regression classifier

are robust against ineffective features, so feel free to be creative—you are unlikely to make
accuracy worse by adding features.
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Finding Spans in
Text - Chunking

This chapter covers the following recipes:

» Sentence detection

» Evaluation of sentence detection

» Tuning sentence detection

» Marking embedded chunks in a string - sentence chunk example
» Paragraph detection

» Simple noun phrases and verb phrases

» Regular expression-based chunking for NER

» Dictionary-based chunking for NER

» Translating between word tagging and chunks - BIO codec
» HMM-based NER

» Mixing the NER sources

» CRFs for chunking

» NER using CRFs with better features
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Introduction

This chapter will tell us how to work with spans of text that typically cover one or more words/
tokens. The LingPipe API represents this unit of text as a chunk with corresponding chunkers
that produce chunkings. The following is some text with character offsets indicated:

LingPipe is an API. It is written in Java.
012345678901234567890123456789012345678901
1 2 3 4

Chunking the preceding text into sentences will give us the following output:

Sentence start=0, end=18
Sentence start =20, end=41

Adding in a chunking for named entities adds entities for LingPipe and Java:

Organization start=0, end=7
Organization start=37, end=40

We can define the named-entity chunkings with respect to their offsets from the sentences
that contain them; this will make no difference to LingPipe, but Java will be:

Organization start=17, end=20

This is the basic idea of chunks. There are lots of ways to make them.

Sentence detection

Sentences in written text roughly correspond to a spoken utterance. They are the standard
unit of processing words in industrial applications. In almost all mature NLP applications,
sentence detection is a part of the processing pipeline even in the case of tweets, which
can have more than one sentence in the allotted 140 characters.

How to do it...

1. Asusual, we will play with some data first. Enter the following command in
the console:

java -cp lingpipe-cookbook.l.0.jar:lib/lingpipe-4.1.0.jar: com.
lingpipe.cookbook.chapter5.SentenceDetection

2. The program will provide a prompt for your sentence-detection experimentation.
A new line / return terminates the text to be analyzed:
Enter text followed by new line

>A sentence. Another sentence.
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SENTENCE 1:

A sentence.

SENTENCE 2:

Another sentence.
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3. ltis worth playing around a bit with different inputs. The following are some examples
that explore the properties of the sentence detector. Drop the capitalized beginning of
a sentence; this will prevent the detection of the second sentence:

>A sentence.

SENTENCE 1:

A sentence.

another sentence.

another sentence.

4. The detector does not require a final period—this is configurable:

>A sentence. Another sentence without a final period

SENTENCE 1:A sentence.

SENTENCE 2:Another sentence without a final period

5. The detector balances parentheses, which will not allow sentences to break inside
parentheses—this is also configurable:

> (A sentence.

SENTENCE 1:

(A sentence.

This sentence detector is a heuristic-based or rule-based sentence detector. A statistical
sentence detector would be a reasonable approach as well. We will get through the entire
source to run the detector, and later, we will discuss the modifications:

Another sentence.)

Another sentence.)

package com.lingpipe.cookbook.chapters;

import
import
import
import
import
import
import
import
import
import
import
import

com.
com.
com.
com.
com.
com.
com.
com.

java.
java.
java.
java.

aliasi.
aliasi.
aliasi.
aliasi.
aliasi.
aliasi.
aliasi.
aliasi.

chunk. Chunk;
chunk.Chunker;

chunk. Chunking;

sentences.
sentences.

sentences

tokenizer.
tokenizer.

io.IOException;

IndoEuropeanSentenceModel;
SentenceChunker;

.SentenceModel;

IndoEuropeanTokenizerFactory;
TokenizerFactory;

io.BufferedReader;

io.InputStreamReader;
util.Set;
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public class SentenceDetection {

public static void main(String[] args) throws IOException {
boolean endSent = true;
boolean parenS = true;

SentenceModel sentenceModel = new
IndoEuropeanSentenceModel (endSent, parenS) ;

Working from the top of the main class, the Boolean endSent parameter controls whether
the string that is sentence detected is assumed to end with a sentence, no matter what—this
means that the last character is a sentence boundary always—it does not need to be a period
or other typical sentence-ending mark. Change it and try a sentence without a final period,
and the result will be that no sentence is detected.

The next Boolean parens declaration gives priority to parentheses over sentence makers
when finding sentences. Next, the actual sentence chunker will be set up:

TokenizerFactory tokFactory =
IndoEuropeanTokenizerFactory.INSTANCE;

Chunker sentenceChunker =
new SentenceChunker (tokFactory, sentenceModel) ;

The tokFactory should be familiar to you from Chapter 2, Finding and Working with Words.
The sentenceChunker then can be constructed. Following is the standard 1/0 code for
command-line interaction:

BufferedReader reader =
new BufferedReader (new InputStreamReader (System.in)) ;
while (true) {
System.out.print ("Enter text followed by new line\n>");
String text = reader.readLine() ;

Once we have the text, then the sentence detector is applied:

Chunking chunking = sentenceChunker.chunk (text) ;
Set<Chunk> sentences = chunking.chunkSet () ;

The chunking provides a Set<Chunk> parameter, which will noncontractually provide an
appropriate ordering of Chunks; they will be added as per the ChunkingImpl Javadoc.
The truly paranoid programmer might impose the proper sort order, which we will cover
later in the chapter when we have to handle overlapping chunks.

Next, we will check to see if any sentences were found, and if we don't find them, we will
report to the console:

if (sentences.size() < 1) {
System.out.println("No sentence chunks found.");
return;
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The following is the first exposure to the Chunker interface in the book, and a few comments
are in order. The Chunker interface generates the Chunk objects, which are typed and scored
contiguous-character sequences over CharSequence—usually, String. Chunks can overlap.
The Chunk objects are stored in Chunking:

String textStored = chunking.charSequence () .toString() ;
for (Chunk sentence : sentences) ({
int start = sentence.start();
int end = sentence.end() ;
System.out.println ("SENTENCE :"
+ textStored.substring(start,end)) ;

}
}

First, we recovered the underlying text string textStored that the chunks are based on.

It is the same string as text, but we wanted to illustrate this potentially useful method of the
Chunking class, which can come up in recursive or other contexts when the chunking is far
removed from where CharSequence that it uses is unavailable.

The remaining for loop iterates over the sentences and prints them out with the
substring () method of String.

There's more...

Before moving on to how to roll your own sentence detector, it is worth mentioning that
LingPipe has MedlineSentenceModel, which is oriented towards the kind of sentences
found in the medical research literature. It has seen a lot of data and should be a starting
place for your own sentence-detection efforts over these kinds of data.

Nested sentences
Sentences, particularly in literature, can contain nested sentences. Consider the following:

John said "this is a nested sentence" and then shut up.
The preceding sentence will be marked up properly as:
[John said "[this is a nested sentencel" and then shut up.]

This sort of nesting is different from a linguist's concept of a nested sentence, which is based
on grammatical role. Consider the following example:

[[John ate the gorillal] and [Mary ate the burger]].

This sentence consists of two linguistically complete sentences joined by and. The difference
between the two is that the former is determined by punctuation and the latter by a grammatical
function. Whether this distinction is significant or not can be debated. However, the former case
is much easier to recognize programmatically.
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However, we have rarely needed to model nested sentences in industrial contexts, but we
took it on in our MUC-6 system and various coreference resolution systems in research
contexts. This is beyond the scope of a recipe book, but be aware of the issue. LingPipe
has no out-of-the-box capabilities for nested sentence detection.

Evaluation of sentence detection

Like most of the things we do, we want to be able to evaluate the performance of our
components. Sentence detection is no different. Sentence detection is a span annotation that
differs from our previous evaluations for classifiers and tokenization. As text can have characters
that are not in any sentence, there is a notion of sentence start and sentence end. An example
of characters that don't belong in a sentence will be JavaScript from an HTML page.

The following recipe will take you through the steps of creating evaluation data and running it
past an evaluation class.

How to do it...

Perform the following steps to evaluate sentence detection:

1. Open a text editor and copy and paste some literary gem that you want to evaluate
sentence detection with, or you can go with our supplied default text, which is used if
you don't provide your own data. It is easiest if you stick to plain text.

2. Insert balanced [ and ] to indicate the beginnings and ends of sentences in the text.
If the text already contains either [ or 1, pick another character that is not in the
text as a sentence delimiter—curly brackets or slashes are a good choice. If you use
different delimiters, you will have to modify the source appropriately and recreate
the JAR file. The code assumes a single-character text delimiter. An example of a
sentence-annotated text from The Hitchhiker's Guide to the Galaxy is as follows—note
that not every character is in a sentence; some whitespaces are between sentences:

[The Guide says that the best drink in existence is the Pan
Galactic Gargle Blaster.] [It says that the effect of a Pan
Galactic Gargle Blaster is like having your brains smashed out by
a slice of lemon wrapped round a large gold brick.]

3. Getyourself a command line and run the following command:

java -cp lingpipe-cookbook.l.0.jar:1lib/lingpipe-4.1.0.jar: com.
lingpipe.cookbook.chapter5.EvaluateAnnotatedSentences

TruePos: 0-83/The Guide says that the best drink in existence is
the Pan Galactic Gargle Blaster.:S

TruePos: 84-233/It says that the effect of a Pan Galactic Gargle
Blaster is like having your brains smashed out by a slice of lemon
wrapped round a large gold brick.:S
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4. For this data, the code will display two sentences that match perfectly with the
sentences annotated with [], as indicated by the TruePos label.

5. A good exercise is to modify the annotation a bit to force errors. We will move the first
sentence boundary one character in:

T[he Guide says that the best drink in existence is the Pan
Galactic Gargle Blaster.] [It says that the effect of a Pan
Galactic Gargle Blaster is like having your brains smashed out by
a slice of lemon wrapped round a large gold brick.]

6. Rerunning the modified annotation file after saving it yields:

TruePos: 84-233/It says that the effect of a Pan Galactic Gargle
Blaster is like having your brains smashed out by a slice of lemon
wrapped round a large gold brick.:S

FalsePos: 0-83/The Guide says that the best drink in existence is
the Pan Galactic Gargle Blaster.:S

FalseNeg: 1-83/he Guide says that the best drink in existence is
the Pan Galactic Gargle Blaster.:S

By changing the truth annotation, a false negative is produced, because the sentence
span was missed by one character. In addition, a false positive is created by the
sentence detector that recognizes the 0-83 character sequence.

7. ltis a good idea to play around with the annotation and various kinds of data to get
a feel of how evaluation works and the capabilities of the sentence detector.

The class starts by digesting the annotated text and storing the sentence chunks in an
evaluation object. Then, the sentence detector is created, just as we did in the previous
recipe. The code finishes by applying the created sentence detector to the text, and the
results are printed.

Parsing annotated data

Given text annotated with [] for sentence boundaries means that the correct offsets of the
sentences have to be recovered, and the original unannotated text must be created, that
is, without any [1. Span parsers can be a bit tricky to code, and the following is offered for
simplicity rather than efficiency or proper coding technique:

String path = args.length > 0 ? args[0]
"data/hitchHikersGuide.sentDetected";

char[] chars

= Files.readCharsFromFile (new File(path), Strings.UTF8) ;
StringBuilder rawChars = new StringBuilder() ;
int start = -1;
int end = 0;
Set<Chunk> sentChunks = new HashSet<Chunk> () ;
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The preceding code reads in the entire file as a single char [] array with an appropriate
character encoding. Also, note that for large files, a streaming approach will be more memory
friendly. Next, an accumulator for unannotated chars is setup as a StringBuilder object
with the rawChars variable. All characters encountered that are not either a [ or 1 will be
appended to the object. The remaining code sets up counters for sentence starts and ends
that are indexed into the unannotated character array and an accumulator for Set <Chunk >
for annotated sentence segments.

The following for loop advances one character at a time over the annotated
character sequence:

for (int i=0; i < chars.length; ++i) {
if (chars[i] == '[') {
start = rawChars.length() ;

!
else if (chars([i] == '1') {
end = rawChars.length() ;

Chunk chunk = ChunkFactory.createChunk (start, end,
SentenceChunker.SENTENCE CHUNK TYPE) ;
sentChunks.add (chunk) ; } B B
else {
rawChars.append (chars[i]) ;
}
}
String originalText = rawChars.toString() ;
Thefirst if (chars([i] == '[') tests for starts of sentences in the annotation and sets
the start variable to the length of rawChars. The iteration variable i includes the length
added by the annotations. The corresponding else if (chars[i] == ']') statement
handles the end of sentence case. Note that there are no error checks for this parser—this is
a very bad idea because annotation errors are very likely if entered with a text editor. However,
this is motivated by keeping the code as simple as possible. Later in the recipe, we will provide
an example with some minimal error checking. Once the end of a sentence is found, a chunk
is created for the sentence with ChunkFactory.createChunk with offsets and for the
standard LingPipe sentence type SentenceChunker.SENTENCE CHUNK_ TYPE, which is
required for the upcoming evaluation classes to work properly.

The remaining else statement applies for all the characters that are not sentence
boundaries, and it simply adds the character to the rawChars accumulator. The result of this
accumulator can be seen outside the for loop when String unannotatedText is created.
Now, we have sentence chunks indexed correctly into a text string. Next, we will create a
proper Chunking object:

ChunkingImpl sentChunking = new ChunkingImpl (unannotatedText) ;
for (Chunk chunk : sentChunks) ({
sentChunking.add (chunk) ;

}
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The ChunkingImpl implementing class (Chunking is an interface) requires the underlying
text on construction, which is why we didn't just populate it in the preceding loop. LingPipe
generally tries to make object construction complete. If Chunkings can be created without the
underlying CharSequence method, then what will be returned when the charSequence ()
method is called? An empty string is actively misleading. Alternatively, returning null needs
to be caught and dealt with. Better to just force the object to make sense of construction.

Moving on, we will see the standard configuration of the sentence chunker from the
previous recipe:

boolean eosIsSentBoundary = false;
boolean balanceParens = true;
SentenceModel sentenceModel = new
IndoEuropeanSentenceModel (eosIsSentBoundary, balanceParens) ;
TokenizerFactory tokFactory =
IndoEuropeanTokenizerFactory.INSTANCE;
SentenceChunker sentenceChunker =
new SentenceChunker (tokFactory, sentenceModel) ;

The interesting stuff follows with an evaluator that takes sentenceChunker as being
evaluated as a parameter:

SentenceEvaluator evaluator =
new SentenceEvaluator (sentenceChunker) ;

Next up, the handle (sentChunking) method will take the text we just parsed into
Chunking and run the sentence detector on CharSequence supplied in sentChunking
and set up the evaluation:

evaluator.handle (sentChunking) ;

Then, we will just get the evaluation data and work our way through the differences between
the truth sentence detection and what the system did:

SentenceEvaluation eval = evaluator.evaluation() ;

ChunkingEvaluation chunkEval = eval.chunkingEvaluation() ;

for (ChunkAndCharSeq truePos : chunkEval.truePositiveSet()) ({
System.out.println("TruePos: " + truePos) ;

}

for (ChunkAndCharSeq falsePos : chunkEval.falsePositiveSet()) ({
System.out.println("FalsePos: " + falsePos) ;

}

for (ChunkAndCharSeq falseNeg : chunkEval.falseNegativeSet ()) {
System.out.println("FalseNeg: " + falseNeg) ;
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This recipe does not cover all the evaluation methods—check out the Javadoc—but it

does provide what a sentence detection tuner will likely be most in need of; this is a listing
of what the sentence detector got right (true positives), sentences it found but were wrong
(false positives), and sentences it missed (false negatives). Note that true negatives don't
make much sense in span annotations, because they will be the set of all the possible spans
that are not in the truth sentence detection.

Tuning sentence detection

Lots of data will resist the charms of IndoEuropeanSentenceModel, so this recipe will
provide a starting place to modify sentence detection to meet new kinds of sentences.
Unfortunately, this is a very open-ended area of system building, so we will focus on
techniques rather than likely formats for sentences.

How to do it...

This recipe will follow a well-worn pattern: create evaluation data, set up evaluation, and start
hacking. Here we go:

1. Haul out your favorite text editor and mark up some data—we will stick to the [ and
1 markup approach. The following is an example that runs afoul of our standard
IndoEuropeanSentenceModel:
[A1l1l decent people live beyond their incomes nowadays, and those
who aren't respectable live beyond other people's.] [A few gifted
individuals manage to do both.]

2. We will put the preceding sentence in data/saki.sentDetected. txt and runit:

java -cp lingpipe-cookbook.l.0.jar:1lib/lingpipe-4.1.0.jar: com.
lingpipe.cookbook.chapter5.EvaluateAnnotatedSentences data/saki.
sentDetected

FalsePos: 0-159/Al1ll decent people live beyond their incomes
nowadays, and those who aren't respectable live beyond other
people's. A few gifted individuals manage to do both.:S
FalseNeg: 0-114/Al1l decent people live beyond their incomes
nowadays, and those who aren't respectable live beyond other
people's.:S

FalseNeg: 116-159/A few gifted individuals manage to do both.:S

There's more...

The single false positive corresponds to the one sentence found, and the two false negatives
are the two sentences not found that we annotated here. What happened? The sentence
model missed people's. as a sentence end. If the apostrophe is removed, the sentence

is detected properly—what is going on?
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First, let's look at the code running in the background. IndoEuropeanSentenceModel
extends HeuristicSentenceModel by configuring several categories of tokens from the
Javadoc for HeuristicSentenceModel:

» Possible stops: These are tokens that are allowed to be the final ones in a sentence.
This set typically includes sentence-final punctuation tokens, such as periods (.) and
double quotes (").

» Impossible penultimates: These are tokens that might not be the penultimate
(second-to-last) token in a sentence. This set is typically made up of abbreviations
or acronyms, such as Mr.

» Impossible starts: These are tokens that might not be the first ones in a sentence.
This set typically includes punctuation characters that should be attached to the
previous sentence, such as end quotes (").

IndoEuropeanSentenceModel is not configurable, but from the Javadoc, it is clear that all
single characters are considered impossible penultimates. The words people's is tokenized
into people, ', s, and .. The single character s is penultimate to the . and is thus blocked.
How to fix this?

A few options present themselves:

» Ignore the mistake assuming that it won't happen frequently
» Fix by creating a custom sentence model

» Fix by modifying the tokenizer to not separate apostrophes

» Write a complete sentence-detection model for the interface

The second option, create a custom sentence model, is handled most easily by copying
the source from IndoEuropeanSentenceModel into a new class and modifying it,

as the relevant data structures are private. This is done to simplify the serialization of the
class—very little configuration needs to be written to disk. In the example classes, there
is a MySentenceModel . java file that differs by obvious changes in the package name
and imports:

IMPOSSIBLE PENULTIMATES. add ("R") ;

//IMPOSSIBLE PENULTIMATES.add("S"); breaks on "people's."
//IMPOSSIBLE PENULTIMATES.add("T"); breaks on "didn't."
IMPOSSIBLE PENULTIMATES.add("U") ;

The preceding code just comments out two of the likely single-letter cases of penultimate
tokens that are a single-word character. To see it at work, change the sentence model

to SentenceModel sentenceModel = new MySentenceModel () ; inthe
EvaluateAnnotatedSentences. java class and recompile and run it.
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If you see the preceding code as a reasonable balancing of finding sentences that end in likely
contractions versus non-sentence cases such as [Hunter S. Thompson is a famous
fellow.], which will detect S. as a sentence boundary.

Extending HeuristicSentenceModel can work well for many sorts of data. Mitzi Morris
built MedlineSentenceModel . java, which is designed to work well with the abstracts
provided in the MEDLINE research index.

One way to look at the preceding problem is that contractions should not be broken up

into tokens for the purpose of sentence detection. IndoEuropeanTokenizerFactory
should be tuned up to keep "people's" and other contractions together. While it initially
seems slightly better that the first solution, it might well run afoul of the fact that
IndoEuropeanSentenceModel was tuned with a particular tokenization in mind, and the
consequences of the change are unknown in the absence of an evaluation corpus.

The other option is to write a completely novel sentence-detection class that supports the
SentenceModel interface. Faced with a highly novel data collection such as Twitter feeds,
we will consider using a machine-learning-driven span-annotation technique such as HMMs
or CRFs covered in Chapter 4, Tagging Words and Tokens, and at the end of this chapter.

Marking embedded chunks in a

string — sentence chunk example

The method of displaying chunkings in the previous recipes is not well suited for applications
that need to modify the underlying string. For example, a sentiment analyzer might want to
highlight only sentences that are strongly positive and not mark up the remaining sentences
while still displaying the entire text. The slight complication in producing the marked-up text
is that adding markups changes the underlying string. This recipe provides working code to
insert the chunking by adding chunks in reverse.

How to do it...

While this recipe may not be technically complex it is useful to get span annotations into a text
without out having to invent the code from whole cloth. The src/com/1lingpipe/coobook/
chapter5/WriteSentDetectedChunks class has the referenced code:

1. The sentence chunking is created as per the first sentence-detection recipe. The
following code extracts the chunks as Set <Chunk> and then sorts them by Chunk .
LONGEST MATCH ORDER COMPARITOR. In the Javadoc, the comparator is defined as:

Compares two chunks based on their text position. A chunk is great-
er if it starts later than another chunk, or if it starts at the same
position and ends earlier.
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There is also TEXT ORDER COMPARITOR, which is as follows:

String textStored = chunking.charSequence () .toString() ;
Set<Chunk> chunkSet = chunking.chunkSet() ;
System.out.println("size: " + chunkSet.size());

Chunk [] chunkArray = chunkSet.toArray(new Chunk[0]) ;
Arrays.sort (chunkArray, Chunk. LONGEST_MATCH_ORDER_COMPARATOR) ;

Next, we will iterate over the chunks in the reverse order, which eliminates having
to keep an offset variable for the changing length of the StringBuilder object.
Offset variables are a common source of bugs, so this recipe avoids them as much
as possible but does non-standard reverse loop iteration, which might be worse:

StringBuilder output = new StringBuilder (textStored) ;
int sentBoundOffset = 0;
for (int i = chunkArray.length -1; i >= 0; --i) {
Chunk chunk = chunkArray[i];
String sentence = textStored.substring(chunk.start (), chunk.
end()) ;
if (sentence.contains("like")) ({

)
output.insert (chunk.end(),"}") ;
output.insert (chunk.start (),"{");

}

System.out.println (output.toString()) ;

The preceding code does a very simple sentiment analysis by looking for the string
like in the sentence and marking that sentence if true. Note that this code cannot
handle overlapping chunks or nested chunks. It assumes a single, non-overlapping
chunk set. Some example output is:

java -cp lingpipe-cookbook.l.0.jar:lib/lingpipe-4.1.0.jar: com.
lingpipe.cookbook.chapter5.WriteSentDetectedChunks

Enter text followed by new line
>People like to ski. But sometimes it is terrifying.
size: 2

{People like to ski.} But sometimes it is terrifying.

To print nested chunks, look at the Paragraph detection recipe that follows.
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Paragraph detection

The typical containing structure of a set of sentences is a paragraph. It can be set off explicitly
in a markup language such as <p> in HTML or with two or more new lines, which is how
paragraphs are usually rendered. We are in the part of NLP where no hard-and-fast rules
apply, so we apologize for the hedging. We will handle some common examples in this
chapter and leave it to you to generalize.

How to do it...

We have never set up an evaluation harness for paragraph detection, but it can be

done in ways similar to sentence detection. This recipe, instead, will illustrate a simple
paragraph-detection routine that does something very important—maintain offsets into the
original document with embedded sentence detection. This attention to detail will serve you
well if you ever need to mark up the document in a way that is sensitive to sentences or other
subspans of the document, such as named entities. Consider the following example:

Sentence 1. Sentence 2
Sentence 3. Sentence 4.

It gets transformed into the following:

{[Sentence 1.] [Sentence 2]}

{ [Sentence 3.] [Sentence 4.]

}

In the preceding snippet, []1designates sentences, and { } designates paragraphs. We will
jump right into the code on this recipe from src/com/1lingpipe/cookbook/chapter5s/
ParagraphSentenceDetection. java:

1. The example code has little to offer in paragraph-detection techniques. It is an
open-ended problem, and you will have to use your wiles to solve it. Our paragraph
detector is a pathetic split ("\n\n") that, in a more sophisticated approach, will
take into account context, characters, and other features that are far too idiosyncratic
for us to cover. Here is the beginning of the code that reads the entire document as a
string and splits it into an array. Note that paraSeperatorLength is the number of
characters that form the basis of the paragraph split—if the length of the split varies,
then that length will have to be associated with the corresponding paragraph:

public static void main(String[] args) throws IOException
String document = Files.readFromFile (new File(args[0]),
Strings.UTF8) ;

String[] paragraphs = document.split ("\n\n");
int paraSeparatorLength = 2;
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The real point of the recipe is to help with the mechanics of maintaining character
offsets into the original document and show embedded processing. This will be done
by keeping two separate chunkings: one for paragraphs and one for sentences:
ChunkingImpl paraChunking = new

ChunkingImpl (document .toCharArray (), 0,document.length()) ;

ChunkingImpl sentChunking = new
ChunkingImpl (paraChunking.charSequence()) ;

Next, the sentence detector will be set up in the same way as one in the
previous recipe:

boolean eosIsSentBoundary = true;
boolean balanceParens = false;

SentenceModel sentenceModel = new
IndoEuropeanSentenceModel (eosIsSentBoundary, balanceParens) ;

SentenceChunker sentenceChunker = new
SentenceChunker (IndoEuropeanTokenizerFactory. INSTANCE,
sentenceModel) ;

The chunking iterates over the array of paragraphs and builds a sentence chunking
for each paragraph. The somewhat-complicated part of this approach is that the
sentence chunk offsets are with respect to the paragraph string, not the entire
document. So, the variables' starts and ends are updated with document offsets in
the code. Chunks have no methods to adjust starts and ends, so a new chunk must
be created, adjustedSentChunk, with appropriate offsets into the paragraph start
and must be added to sentChunking:

int paraStart = 0;
for (String paragraph : paragraphs) {
for (Chunk sentChunk
sentenceChunker.chunk (paragraph) .chunkSet ()) {

Chunk adjustedSentChunk =
ChunkFactory.createChunk (sentChunk.start () +
paraStart, sentChunk.end () + paraStart, "S");

sentChunking.add (adjustedSentChunk) ;

}

The rest of the loop adds the paragraph chunk and then updates the start of

the paragraph with the length of the paragraph plus the length of the paragraph
separator. This will complete the creation of correctly offset sentences and
paragraphs into the original document string;:

paraChunking.add (ChunkFactory.createChunk (paraStart, paraStart +
paragraph.length(),"P")) ;

paraStart += paragraph.length() + paraSeparatorLength;

}
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6. The rest of the program is concerned with printing out the paragraphs and sentences
with some markup. First, we will create a chunking that has both sentence and
paragraph chunks:

String underlyingString =
paraChunking.charSequence () .toString() ;
ChunkingImpl displayChunking = new
ChunkingImpl (paraChunking.charSequence()) ;
displayChunking.addAll (sentChunking.chunkSet () ) ;
displayChunking.addAll (paraChunking.chunkSet ()) ;

7. Next, displayChunking will be sorted by recovering chunkSet, converting it into
an array of chunks and the application of the static comparator:

Set<Chunk> chunkSet = displayChunking.chunkSet () ;
Chunk [] chunkArray = chunkSet.toArray (new Chunk[0]) ;

Arrays.sort (chunkArray,
Chunk . LONGEST _MATCH_ORDER_COMPARATOR) ;

8. We will use the same trick as we did in the Marking embedded chunks in a
string - sentence chunk example recipe, which is to insert the markup backwards
into the string. We will have to keep an offset counter, because nested sentences
will extend the finishing paragraph mark placement. The approach assumes that
no chunks overlap and that sentences are contained within paragraphs always:

StringBuilder output = new StringBuilder (underlyingString) ;
int sentBoundOffset = 0;

for (int i = chunkArray.length -1; i >= 0; --i) {
Chunk chunk = chunkArray[i];
if (chunk.type().equals("P"))
output.insert (chunk.end() + sentBoundOffset,"}");
output.insert (chunk.start (), "{");

sentBoundOffset = 0;

}

if (chunk.type().equals("s")) {
output.insert (chunk.end(),"1") ;
output.insert (chunk.start (),"[");
sentBoundOffset += 2;

}

System.out.println (output.toString()) ;

9. That's it for the recipe.
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Simple noun phrases and verb phrases

This recipe will show you how to find simple noun phrases (NP) and verb phrases (VP).
By "simple", we mean that there is no complex structure within the phrases. For example,
the complex NP "The rain in Spain" will be broken into two simple NP chunks "The rain"
and "Spain". These phrases are also called "basal".

This recipe will not go into the details of how the basal NPs/VPs are calculated but rather how
to use the class—it can come in handy, and the source can be included if you want to sort out
how it works.

How to do it...

Like many of the recipes, we will provide a command-line-interactive interface here:

1. Haul up the command line and type:

java -cp lingpipe-cookbook.l.0.jar:lib/lingpipe-4.1.0.jar: com.
lingpipe.cookbook.chapter5.PhraseChunker

INPUT> The rain in Spain falls mainly on the plain.
The/at rain/nn in/in Spain/np falls/vbz mainly/rb on/in the/at
plain/jj ./.

noun(0,8) The rain

noun(12,17) Spain

verb (18,30) falls mainly

noun(34,43) the plain

The main () method starts by deserializing a part-of-speech tagger and then creating
tokenizerFactory:

public static void main(String[] args) throws IOException,
ClassNotFoundException {
File hmmFile =
new File ("models/pos-en-general-brown.HiddenMarkovModel") ;
HiddenMarkovModel posHmm =
(HiddenMarkovModel) AbstractExternalizable.readObject (hmmFile) ;
HmmDecoder posTagger = new HmmDecoder (posHmm) ;
TokenizerFactory tokenizerFactory =
IndoEuropeanTokenizerFactory.INSTANCE;
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Next, PhraseChunker is constructed, which is a heuristic approach to the problem. Look at
the source to see how it works—it scans the input left to right for NP/VP starts and attempts to
add to the phrase incrementally:

PhraseChunker chunker =
new PhraseChunker (posTagger, tokenizerFactory) ;

Our standard console 1/0 code is next:

BufferedReader bufReader = new BufferedReader (new
InputStreamReader (System.in)) ;
while (true) {

System.out.print ("\n\nINPUT> ") ;

String input = bufReader.readLine() ;

Then, the input is tokenized, POS is tagged, and the tokens and tags are printed out:

Tokenizer tokenizer =
tokenizerFactory.tokenizer (input.toCharArray (),
0,input.length()) ;

String[] tokens = tokenizer.tokenize() ;

List<String> tokenList = Arrays.asList (tokens) ;

Tagging<String> tagging = posTagger.tag(tokenList) ;

for (int j = 0; j < tokenList.size(); ++j) {
System.out.print (tokens[j] + "/" + tagging.tag(j) + " ");

}

System.out.println() ;

The NP/VP chunkings are then calculated and printed out:

Chunking chunking = chunker.chunk (input)

7

CharSequence cs = chunking.charSequence ()
for (Chunk chunk : chunking.chunkSet()) ({
String type = chunk.type() ;
int start = chunk.start();
int end = chunk.end() ;
CharSequence text = cs.subSequence (start,end) ;
System.out.println(" " + type + "(" + start + ","
+ end + ") " + text);

}

There is a more comprehensive tutorial at http://alias-i.com/lingpipe/demos/
tutorial/posTags/read-me.html.
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Regular expression-based chunking for NER

Named Entity Recognition (NER) is the process of finding mentions of specific things in text.
Consider a simple name; location-named entity recognizer might find Ford Prefect and
Guildford as the name and location mentions, respectively, in the following text:

Ford Prefect used to live in Guildford before he needed to move.

We will start by building rule-based NER systems and move up to machine-learning methods.
Here, we'll take a look at building an NER system that can extract e-mail addresses from text.

How to do it...

1. Enter the following command into the command prompt:
java -cp lingpipe-cookbook.l.0.jar:1lib/lingpipe-4.1.0.jar com.
lingpipe.cookbook.chapter5.RegexNer

2. Interaction with the program proceeds as follows:
Enter text, . to quit:

>Hello,my name is Foo and my email is foo@bar.com or you can also
contact me at foo.bar@gmail.com.

input=Hello,my name is Foo and my email is foo@bar.com or you can
also contact me at foo.bar@gmail.com.

chunking=Hello,my name is Foo and my email is foo@bar.com or you
can also contact me at foo.bar@gmail.com. : [37-48:email@0.0,
79-96:email@0.0]

chunk=37-48:email@0.0 text=foo@bar.com

chunk=79-96:email@0.0 text=foo.bar@gmail.com
3. You can see that both foo@bar.com as well as foo.bar@egmail . com were

returned as valid e-mail type chunks. Also, note that the final period in the
sentence is not part of the second e-mail.
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A regular expression chunker finds chunks that match the given regular expression.
Essentially, the java.util.regex.Matcher.find () method is used to iteratively
find matching text segments, and these are then converted into the Chunk objects. The
RegExChunker class wraps these steps. The code of src/com/1ingpipe/cookbook/
chapter5/RegExNer. java is described as follows:

public static void main(String[] args) throws IOException {
String emailRegex = "[A-Za-z0-9] (([_\\.\\-1?[a-zA-Z0-9]1+)*)" +
+ "@([A-Za-2z0-9]1+)" +
(OO AN\-1?[a-2A-20-91+) *)\\. ([A-Za-z] {2, })";
String chunkType = "email";
double score = 1.0;
Chunker chunker = new RegExChunker (emailRegex, chunkType, score) ;

All the interesting work was done in the preceding lines of code. The emailRegex is pulled
off of the Internet—see the following for the source, and the remaining bits are setting up
chunkType and score.

The rest of the code reads in the input and prints out the chunking:

BufferedReader reader = new BufferedReader (new
InputStreamReader (System.in)) ;
String input = "";
while (true) {

System.out.println ("Enter text, . to quit:");
input = reader.readLine() ;
if (input.equals(".")) {
break;
}

Chunking chunking = chunker.chunk (input) ;
System.out.println("input=" + input) ;
System.out.println ("chunking=" + chunking) ;
Set<Chunk> chunkSet = chunking.chunkSet () ;
Iterator<Chunk> it = chunkSet.iterator () ;
while (it.hasNext()) {

Chunk chunk = it.next () ;

int start = chunk.start();

int end = chunk.end() ;

String text = input.substring(start,end);

System.out.println (" chunk=" + chunk + "
text=" + text);
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» The regular expression for the e-mail address match is from
regexlib.comat http://regexlib.com/DisplayPatterns.
aspx?cattabindex=0&categoryId=1

Dictionary-based chunking for NER

In many websites and blogs and certainly on web forums, you might see keyword highlighting
that links pages you can buy a product from. Similarly, news websites also provide topic pages
for people, places, and trending events, such as the one at http://www.nytimes.com/
pages/topics/.

A lot of this is fully automated and is easy to do with a dictionary-based Chunker. It is
straightforward to compile lists of names for entities and their types. An exact dictionary
chunker extracts chunks based on exact matches of tokenized dictionary entries.

The implementation of the dictionary-based chunker in LingPipe is based on the Aho-Corasick
algorithm which finds all matches against a dictionary in linear time independent of the
number of matches or size of the dictionary. This makes it much more efficient than the

naive approach of doing substring searches or using regular expressions.

How to do it...

1. Inthe IDE of your choice run the DictionaryChunker class in the chapters
package or type the following using the command line:

java -cp lingpipe-cookbook.l.0.jar:1lib/lingpipe-4.1.0.jar com.
lingpipe.cookbook.chapter5.DictionaryChunker

2. Since this particular chunker example is biased (very heavily) towards the Hitchhikers
Guide, let's use a sentence that involves some of the characters:
Enter text, . to quit:

Ford and Arthur went up the bridge of the Heart of Gold with
Marvin

CHUNKER overlapping, case sensitive
phrase=|Ford| start=0 end=4 type=PERSON score=1.0
phrase=|Arthur| start=9 end=15 type=PERSON score=1.0
phrase=|Heart| start=42 end=47 type=ORGAN score=1.0

phrase=|Heart of Gold| start=42 end=55 type=SPACECRAFT
score=1.0

phrase=|Marvin| start=61 end=67 type=ROBOT score=1.0

3. Note that we have overlapping chunks from Heart and Heart of Gold. As we will
see, this can be configured to behave differently.
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Dictionary-based NER drives a great deal of automatic linking against unstructured text
data. We can build one using the following steps.

The first step of the code will create MapDictionary<Strings> to store the
dictionary entries:

static final double CHUNK SCORE = 1.0;

public static void main(String[] args) throws IOException {
MapDictionary<String> dictionary = new MapDictionary<Strings() ;
MapDictionary<String> dictionary = new MapDictionary<Strings() ;

Next, we will populate the dictionary with DictionaryEntry<Strings>, which includes type
information and a score that will be used to create chunks:

dictionary.addEntry (new
DictionaryEntry<Strings> ("Arthur", "PERSON", CHUNK SCORE) ) ;

dictionary.addEntry (new
DictionaryEntry<Strings ("Ford", "PERSON", CHUNK SCORE)) ;

dictionary.addEntry (new
DictionaryEntry<String> ("Trillian", "PERSON", CHUNK SCORE)) ;

dictionary.addEntry (new
DictionaryEntry<Strings ("Zaphod", "PERSON", CHUNK SCORE) ) ;

dictionary.addEntry (new
DictionaryEntry<Strings> ("Marvin", "ROBOT", CHUNK SCORE) ) ;

dictionary.addEntry(new DictionaryEntry<Strings ("Heart of Gold",
"SPACECRAFT", CHUNK SCORE) ) ;

dictionary.addEntry(new DictionaryEntry<Strings> ("Hitchhikers
Guide", "PRODUCT", CHUNK SCORE)) ;

In the DictionaryEntry constructor, the first argument is the phrase, the second string
argument is the type, and the final double argument is the score for the chunk. Dictionary
entries are always case sensitive. There is no limit to the number of different entity

types in a dictionary. The scores will simply be passed along as chunk scores in the
dictionary-based chunker.

Next, we will build Chunker:

boolean returnAllMatches = true;

boolean caseSensitive = true;

ExactDictionaryChunker dictionaryChunker =
new ExactDictionaryChunker (dictionary,
IndoEuropeanTokenizerFactory.INSTANCE,
returnAllMatches, caseSensitive) ;
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An exact dictionary chunker might be configured either to extract all the matching chunks to
restrict the results to a consistent set of non-overlapping chunks via the returnAl1Matches
boolean. Look at the Javadoc to understand the exact criteria. There is also a caseSensitive
boolean. The chunker requires a tokenizer, as it matches tokens as symbols, and whitespaces
are ignored in the matching process.

Next is our standard I/0 code for console interaction:

BufferedReader reader = new BufferedReader (new
InputStreamReader (System.in)) ;

String text = "";
while (true) {

System.out.println("Enter text, . to quit:");
text = reader.readLine() ;
if (text.equals("."))

break;

}
The remaining code creates a chunking, goes through the chunks, and prints them out:

System.out.println ("\nCHUNKER overlapping, case sensitive");
Chunking chunking = dictionaryChunker.chunk (text) ;
for (Chunk chunk : chunking.chunkSet()) ({
int start = chunk.start();
int end = chunk.end() ;
String type = chunk.type() ;
double score = chunk.score() ;
String phrase = text.substring(start,end);
System.out.println (" phrase=|" + phrase + "|"
+ " start=" + start + " end=" + end
+ " type=" + type + " score=" + score);

Dictionary chunkers are very useful even in machine-learning-based systems. There tends
to always be a class of entities that are best identified this way. The Mixing the NER sources
recipe addresses how to work with multiple sources of named entities.

Translating between word tagging and

chunks - BIO codec

In Chapter 4, Tagging Words and Tokens, we used HMMs and CRFs to apply tags to words/
tokens. This recipe addresses the case of creating chunks from taggings that use the Begin,
In, and Out (BIO) tags to encode chunkings that can span multiple words/tokens. This, in turn,
is the basis of modern named-entity detection systems.
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Getting ready

The standard BIO-tagging scheme has the first token in a chunk of type X tagged B-X (begin),
with all the subsequent tokens in the same chunk tagged I-X (in). All the tokens that are not
in chunks are tagged O (out). For example, the string with character counts:

John Jones Mary and Mr. Jones
01234567890123456789012345678
0 1 2

It can be tagged as:

John B_PERSON

Jones I_PERSON

Mary B_PERSON

and O

Mr B_PERSON
I_PERSON

Jones I PERSON

The corresponding chunks will be:

0-10 "John Jones" PERSON
11-15 "Mary" PERSON
20-29 "Mr. Jones" PERSON

How to do it...

The program will show the simplest mapping between taggings and chunkings and the other
way around:

1. Run the following:
java -cp lingpipe-cookbook.l.0.jar:1lib/lingpipe-4.1.0.jar: com.
lingpipe.cookbook.chapter5.BioCodec
2. The program first prints out the string that will be tagged with a tagging:
Tagging for :The rain in Spain.
The/B_Weather
rain/I Weather
in/0
Spain/B_Place
./0
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3. Next, the chunking is printed:
Chunking from StringTagging
0-8:Weather@-Infinity
12-17:Place@-Infinity

4. Then, the tagging is created from the chunking just displayed:
StringTagging from Chunking
The/B_Weather
rain/I_Weather
in/0
Spain/B_Place
./0

The code starts by manually constructing StringTagging—we will see HMMs and
CRFs do the same programmatically, but here it is explicit. It then prints out the created
StringTagging:

public static void main(String[] args) {

List<String> tokens = new ArrayList<Strings>();

tokens.add ("The") ;

tokensg.add ("rain") ;

tokeng.add ("in") ;

tokens.add ("Spain") ;

tokens.add (".") ;

List<String> tags = new ArrayList<Strings>();

tags.add ("B_Weather") ;

tags.add ("I_Weather") ;

tags.add("o") ;

tags.add("B_Place") ;

tags.add("o") ;

CharSequence cs = "The rain in Spain.";

//012345678901234567

int[] tokenStarts = {0,4,9,12,17};

int[] tokenEnds = {3,8,11,17,17};

StringTagging tagging =
new StringTagging(tokens, tags, cs,
tokenStarts, tokenEnds) ;

System.out.println("Tagging for :" + cs);

for (int i = 0; i < tagging.size(); ++i) {
System.out.println(tagging.token(i) + "/"

+ tagging.tag(i)) ;
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Next, it will construct BioTagChunkCodec and convert the tagging just printed out to a
chunking followed by printing the chunking:

BioTagChunkCodec codec = new BioTagChunkCodec () ;
Chunking chunking = codec.toChunking(tagging) ;
System.out.println ("Chunking from StringTagging") ;
for (Chunk chunk : chunking.chunkSet()) ({
System.out.println (chunk) ;

}

The remaining code reverses the process. First, a different BioTagChunkCodec is created
with boolean enforceConsistency, which, if true, checks that the tokens created by the
supplied tokenizer align exactly with the chunk begins and ends. Without the alignment we
end up with a perhaps untenable relationship between chunks and tokens depending on the
use case:

boolean enforceConsistency = true;

BioTagChunkCodec codec2 =
new BioTagChunkCodec (IndoEuropeanTokenizerFactory.INSTANCE,
enforceConsistency) ;

StringTagging tagging2 = codec2.toStringTagging (chunking) ;

System.out.println("StringTagging from Chunking") ;

for (int i = 0; i < tagging2.size(); ++i) {
System.out.println(tagging2.token (i) + "/" + tagging2.tag(i)) ;

}

The last for loop simply prints out the tagging returned by the codec2.
toStringTagging () method.

There's more...

The recipe works through the simplest example of mapping between taggings and chunkings.
BioTagChunkCodec also takes the TagLattice<Strings> objects to produce n-best output,
as will be shown in the HMM and CRF chunkers to follow.

HMM-based NER

HmmChunker uses an HMM to perform chunking over tokenized character sequences.
Instances contain an HMM decoder for the model and tokenizer factory. The chunker requires
the states of the HMM to conform to a token-by-token encoding of a chunking. It uses the
tokenizer factory to break the chunks down into sequences of tokens and tags. Refer to the
Hidden Markov Models (HMM) - part of speech recipe in Chapter 4, Tagging Words and Tokens.

We'll look at training HmmChunker and using it for the CoNLL2002 Spanish task. You can
and should use your own data, but this recipe assumes that training data will be in the
CoNLL2002 format.
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Training is done using an ObjectHandler which supplies the training instances.

Getting ready

As we want to train this chunker, we need to either label some data using the Computational
Natural Language Learning (CoNLL) schema or use the one that's publicly available. For speed,
we'll choose to get a corpus that is available in the CoNLL 2002 task.

The ConNLL is an annual meeting that sponsors a bakeoff. In 2002,
s the bakeoff involved Spanish and Dutch NER.

The data can be downloaded from http://www.cnts.ua.ac.be/conll12002/ner.tgz.

Similar to what we showed in the preceding recipe; let's take a look at what this data
looks like:

El )

Abogado B-PER
General I-PER
del I-PER
Estado I-PER

, 0]

Daryl B-PER
Williams I-PER
, 0]

With this encoding scheme, the phrases El Abogado General del Estado and Daryl Williams
are coded as persons, with their beginning and continuing tokens picked out with tags B-PER
and I-PER, respectively.

There are a few formatting errors in the data that must be fixed before our
parsers can handle them. After unpacking ner . tgz in the data directory
. you will have to go to data/ner/data, unzip the following files, and
% modify as indicated:
esp.train, line 221619, change I-LOC to B-LOC
esp.testa, line 30882, change I-LOC to B-LOC
esp.testb, line 9291, change I-LOC to B-LOC

How to do it...

1. Using the command line, type the following:

java -cp lingpipe-cookbook.l.0.jar:1lib/lingpipe-4.1.0.jar com.
lingpipe.cookbook.chapter5.HmmNeChunker
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2.
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It will run the training on the CoNLL training data if the model doesn't exist.
It might take a while, so be patient. The output of the training will be:
Training HMM Chunker on data from: data/ner/data/esp.train
Output written to : models/Conll2002_ ESP.RescoringChunker

Enter text, . to quit:

Once the prompt to enter the text is presented, type in some Spanish text from the
CoNLL test set:

La empresa también tiene participacién en Tele Leste Celular

, operadora mévil de los estados de Bahia y Sergipe y que es
controlada por la espafiola Iberdrola , y ademds es socia de
Portugal Telecom en Telesp Celular , la operadora mévil de Sao
Paulo

Rank Conf Span Type Phrase

0 1.0000 (105, 112) LOC Sergipe

1 1.0000 (149, 158) ORG Iberdrola

2 1.0000 (202, 216) ORG Telesp Celular

3 1.0000 (182, 198) ORG Portugal Telecom

4 1.0000 (97, 102) LoC Bahia

5 1.0000 (241, 250) LoC Sao Paulo

6 0.9907 (163, 169) PER ademas

7 0.9736 (11, 18) ORG también

8 0.9736 (39, 60) ORG en Tele Leste Celular
9 0.0264 (42, 60) ORG Tele Leste Celular

What we will see is a number of entities, their confidence score, the span in the
original sentence, the type of entity, and the phrase that represents this entity.

To find out the correct tags, take a look at the annotated esp . testa file,
which contains the following tags for this sentence:
Tele B-ORG

Leste I-ORG

Celular I-ORG

Bahia B-LOC

Sergipe B-LOC

Iberdrola B-ORG

Portugal B-ORG

Telecom I-ORG

Telesp B-ORG

Celular I-ORG

Sao B-LOC

Paulo I-LOC
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6. This can be read as follows:

Tele Leste Celular ORG
Bahia LocC
Sergipe LOC
Iberdrola ORG
Portugal Telecom ORG
Telesp Celular ORG
Sao Paulo LOC

7. So, we got all the ones with 1.000 confidence correct and the rest wrong. This can
help us set up a threshold in production.

The CharLmRescoringChunker provides a long-distance character language model-based
chunker that operates by rescoring the output of a contained character language model HMM
chunker. The underlying chunker is an instance of CharLmHmmChunker, which is configured
with the specified tokenizer factory, n-gram length, number of characters, and interpolation
ratio provided in the constructor.

Let's start with the main () method; here, we will set up the chunker, train it if it doesn't exist,
and then allow for some input to get the named entities out:

String modelFilename

"models/Conll2002_ ESP.RescoringChunker";
"data/ner/data/esp.train";

String trainFilename

The training file will be in the correct place if you unpack the CoNLL data (tar -xvzf ner.
tgz) in the data directory. Remember to correct the annotation on line 221619 of esp.
train. If you use other data, then modify and recompile the class.

The next bit of code trains the model if it doesn't exist and then loads the serialized version of
the chunker. If you have questions about deserialization, see the Deserializing and running a
classifier recipe in Chapter 1, Simple Classifiers. Consider the following code snippet:

File modelFile = new File (modelFilename) ;
if (!modelFile.exists())

System.out.println("Training HMM Chunker on data
from: " + trainFilename) ;

trainHMMChunker (modelFilename, trainFilename) ;

System.out.println ("Output written to : "
+ modelFilename) ;

@SuppressWarnings ("unchecked")
RescoringChunker<CharLmRescoringChunker> chunker
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= (RescoringChunker<CharLmRescoringChunkers>)
AbstractExternalizable.readObject (modelFile) ;

The trainHMMChunker () method starts with some File bookkeeping before setting up
configuration parameters for CharLmRescoringChunker:

static void trainHMMChunker (String modelFilename, String
trainFilename) throws IOException({

File modelFile = new File (modelFilename) ;

File trainFile = new File(trainFilename) ;

int numChunkingsRescored = 64;
int maxNgram = 12;
int numChars = 256;
double lmInterpolation = maxNgram;
TokenizerFactory factory
= IndoEuropeanTokenizerFactory.INSTANCE;

CharLmRescoringChunker chunkerEstimator
= new CharLmRescoringChunker (factory,numChunkingsRescored,
maxNgram, numChars,
lmInterpolation) ;

Starting with the first parameter, numChunkingsRescored sets the number of chunkings
from the embedded Chunker that will be rescored in an effort to improve performance.

The implementation of this rescoring can vary, but generally, less-localized information is
used to improve on the basic HMM output, which is contextually limited. The maxNgram sets
the maximum character size for the rescoring-bounded character language model per chunk
type, and lmInterpolation dictates how the models are interpolated. A good value is the
character n-gram size. Finally, a tokenizer factory is created. There is a lot going on in this
class; consult Javadoc for more information.

Next in the method, we will get a parser to be discussed in the following code snippet,

that takes chunkerEstimator with the setHandler () method, and then, the parser.
parse () method does the actual training. The last bit of code serializes the model to
disk—see the How to serialize a LingPipe object - classifier example recipe in Chapter 1,
Simple Classifiers, to read about what is going on:

Conll2002ChunkTagParser parser
= new Conll2002ChunkTagParser () ;

parser.setHandler (chunkerEstimator) ;
parser.parse (trainFile) ;
AbstractExternalizable.compileTo (chunkerEstimator, modelFile) ;
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Now, let's take a look at parsing the CoNLL data. The source for this class is src/com/
lingpipe/cookbook/chapter5/Conll2002ChunkTagParser

public class Conll2002ChunkTagParser extends StringParser<ObjectHandl
er<Chunkings>>

{

static final String TOKEN_TAG LINE REGEX =
" (\\S+) \\s (\\S+\\s) ? (O] [B|I1-\\S+)";
static final int TOKEN_GROUP = 1;
static final int TAG_GROUP = 3;
static final String IGNORE LINE REGEX =
"-DOCSTART (.*)";
static final String EOS_REGEX =
"\\A\\Z";
static final String BEGIN TAG PREFIX = "B-";
static final String IN _TAG PREFIX = "I-";
static final String OUT_TAG = "O";

The statics set up the configuration of the com.aliasi.tag.LineTaggingParser
LingPipe class. CoNLL, like many available data sets, uses a token/tag per line format,
which is meant to be very easy to parse:

private final LineTaggingParser mParser =
new LineTaggingParser (TOKEN_TAG_LINE_REGEX,
TOKEN_GROUP, TAG GROUP, IGNORE LINE REGEX, EOS_REGEX) ;

The LineTaggingParser constructor requires a regular expression that identifies the token
and tag strings via grouping. There is additionally a regular expression for lines to ignore and
finally, a regular expression for sentence ends.

Next, we set up TagChunkCodec; this will handle the mapping from tagged tokens in the
BIO format to proper chunks. See the previous recipe, Translating between word tagging
and chunks - BIO codec, for more about what is going on here. The remaining parameters
customize the tags to match those of the CoNLL training data:

private final TagChunkCodec mCodec =
new BioTagChunkCodec (null, false,
BEGIN TAG PREFIX, IN TAG PREFIX, OUT_TAG) ;

The rest of the class provides methods for parseString (), which is immediately sent to the
LineTaggingParser class:

public void parseString(char[] c¢s, int start, int end) {
mParser.parseString(cs,start,end) ;
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Next, the ObjectHandler parser is properly configured with the codec and supplied handler:

public void setHandler (ObjectHandler<Chunking> handler) {

ObjectHandler<Tagging<String>> taggingHandler
= TagChunkCodecAdapters.chunkingToTagging (mCodec, handler) ;

mParser.setHandler (taggingHandler) ;

}

public TagChunkCodec getTagChunkCodec () {
return mCodec;

}

It's a lot of odd-looking code, but all this does is set up a parser to read the lines from the
input file and extract chunkings out of them.

Finally, let's go back to the main method and look at the output loop. We will set up the
MAX NBEST chunkings value as 10 and then invoke the nBestChunkings method on
the chunker. This provides the top 10 chunks and their probabilistic scores. Based on an
evaluation, we can choose to cut off at a particular score:

char[] cs = text.toCharArray() ;
Iterator<Chunks> it =
chunker.nBestChunks (cs, 0,cs.length,
MAX N BEST CHUNKS) ;
System.out.println(text) ;
System.out.println ("Rank Conf Span" + " Type
Phrase") ;
DecimalFormat df = new DecimalFormat ("0.0000") ;

for (int n = 0; it.hasNext(); ++n) ({

Chunk chunk = it.next();

double conf = chunk.score() ;

int start = chunk.start();

int end = chunk.end() ;

String phrase = text.substring(start,end);

System.out.println(n + " " + " " + df.format (conf)
+ " (" + start + ", " + end + ") " + chunk.type () + "
" + phrase);

}

For more details on running a complete evaluation, refer to the evaluation section of the
tutorial at http://alias-1i.com/lingpipe/demos/tutorial /ne/read-me.html.
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See also

For more details on CharLmRescoringChunker and HmmChunker, refer to:
» http://alias-i.com/lingpipe/docs/api/com/aliasi/chunk/
AbstractCharLmRescoringChunker.html

» http://alias-i.com/lingpipe/docs/api/com/aliasi/chunk/
HmmChunker.html

Mixing the NER sources

Now that we've seen how to build a few different types of NERs, we can look at how to
combine them. In this recipe, we will take a regular expression chunker, a dictionary-based
chunker, and an HMM-based chunker and combine their outputs and look at overlaps.

We will just initialize a few chunkers in the same way we did in the past few recipes and then
pass the same text through these chunkers. The easiest possibility is that each chunker
returns a unique output. For example, let's consider a sentence such as "President Obama
was scheduled to give a speech at the G-8 conference this evening". If we have a person
chunker and an organization chunker, we might only get two unique chunks out. However, if
we add a Presidents of USA chunker, we will get three chunks: PERSON, ORGANIZATION,
and PRESIDENT. This very simple recipe will show us one way to handle these cases.

How to do it...

1. Using the command line or equivalent in your IDE, type the following:
java -cp lingpipe-cookbook.l.0.jar:1lib/lingpipe-4.1.0.jar com.
lingpipe.cookbook.chapter5.MultipleNer

2. The usual interactive prompt follows:
Enter text, . to quit:

President Obama is scheduled to arrive in London this evening. He
will address the G-8 summit.

neChunking: [10-15:PERSON@-Infinity, 42-48:LOCATION@-Infinity,
83-86 :O0RGANIZATION@-Infinity]

pChunking: [62-66:MALE PRONOUN@1.O0]
dChunking: [10-15:PRESIDENT@1.0]
----Overlaps Allowed

Combined Chunks:

[83-86:0RGANIZATION@-Infinity, 10-15:PERSON@-Infinity,
10-15:PRESIDENT@1.0, 42-48:LOCATION@-Infinity, 62-66:MALE
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PRONOUN@1.0]
----Overlaps Not Allowed

Unique Chunks:

[83-86 :ORGANIZATION@-Infinity, 42-48:LOCATION@-Infinity, 62-
66 :MALE PRONOUN@1.0]

OverLapped Chunks:
[10-15:PERSON@-Infinity, 10-15:PRESIDENT@1.0]

3. We see the output from the three chunkers: neChunking is the output of an HMM
chunker that is trained to return the MUC-6 entities, pChunking is a simple regular
expression that recognizes male pronouns, and dChunking is a dictionary chunker
that recognizes US Presidents.

4. With overlaps allowed, we will see the chunks for PRESIDENT as well as PERSON
in the merged output.

5. With overlaps disallowed, they will be added to the set overlapped chunks and
removed from the unique chunks.

We initialized three chunkers that should be familiar to you from the previous recipes
in this chapter:

Chunker pronounChunker =
new RegExChunker (" He | he | Him | him",
"MALE PRONOUN",1.0) ;

File MODEL FILE =
new File ("models/ne-en-news.mucé6."
+ "AbstractCharLmRescoringChunker") ;

Chunker neChunker =
(Chunker) AbstractExternalizable.readObject (MODEL_FILE) ;

MapDictionary<String> dictionary = new MapDictionary<Strings() ;
dictionary.addEntry (

new DictionaryEntry<Strings ("Obama", "PRESIDENT", CHUNK SCORE)) ;
dictionary.addEntry (

new DictionaryEntry<Strings ("Bush", "PRESIDENT", CHUNK SCORE)) ;

ExactDictionaryChunker dictionaryChunker =
new ExactDictionaryChunker (dictionary,
IndoEuropeanTokenizerFactory.INSTANCE) ;
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Now, we will just chunk our input text via all three chunkers, combine the chunks into one set,
and pass our getCombinedChunks method to it:

Set<Chunk> neChunking = neChunker.chunk (text) .chunkSet () ;
Set<Chunk> pChunking = pronounChunker.chunk (text) .chunkSet () ;
Set<Chunk> dChunking = dictionaryChunker.chunk (text) .chunkSet () ;
Set<Chunk> allChunks = new HashSet<Chunk>() ;

allChunks.addAll (neChunking) ;

allChunks.addAll (pChunking) ;

allChunks.addAll (dChunking) ;
getCombinedChunks (allChunks, true) ; //allow overlaps
getCombinedChunks (allChunks, false) ; //no overlaps

The meat of this recipe is in the getCombinedChunks method. We will just loop through all
the chunks and check each pair if they overlap in their starts and ends. If they overlap and
overlaps are not allowed, they are added to an overlapped set; otherwise, they are added to
a combined set:

static void getCombinedChunks (Set<Chunk> chunkSet,
boolean allowOverlap) {
Set<Chunk> combinedChunks = new HashSet<Chunk> () ;
Set<Chunk>overLappedChunks = new HashSet<Chunk> () ;
for (Chunk c¢ : chunkSet) {
combinedChunks.add (c) ;
for (Chunk x : chunkSet) {
if (c.equals(x)) {
continue;
}
if (ChunkingImpl.overlap(c,x))
if (allowOverlap) {
combinedChunks.add (x) ;
} else {
overLappedChunks.add (x) ;
combinedChunks.remove (c) ;
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Here is the place to add more rules for overlapping chunks. For example, you can make it
score based, so if the PRESIDENT chunk type has a higher score than the HMM-based one,
you can choose it instead.

CRFs for chunking

CRFs are best known to provide close to state-of-the-art performance for named-entity
tagging. This recipe will tell us how to build one of these systems. The recipe assumes that
you have read, understood, and played with the Conditional random fields - CRF for word/
token tagging recipe in Chapter 4, Tagging Words and Tokens, which addresses the underlying
technology. Like HMMs, CRFs treat named entity detection as a word-tagging problem, with

an interpretation layer that provides chunkings. Unlike HMMs, CRFs use a logistic-regression-
based classification approach, which, in turn, allows for random features to be included. Also,
there is an excellent tutorial on CRFs that this recipe follows closely (but omits details) at
http://alias-i.com/lingpipe/demos/tutorial/crf/read-me.html. There is also
a lot of information in the Javadoc.

Getting ready

Just as we did earlier, we will use a small hand-coded corpus to serve as training data.
The corpus is in src/com/lingpipe/cookbook/chapter5/TinyEntityCorpus.java
It starts with:

public class TinyEntityCorpus extends Corpus<ObjectHandler<Chunkings>>

{

public void visitTrain (ObjectHandler<Chunking> handler) {
for (Chunking chunking : CHUNKINGS) handler.handle (chunking) ;

}

public void visitTest (ObjectHandler<Chunking> handler)
/* no op */

}

Since we are only using this corpus to train, the visitTest () method does nothing.
However, the visitTrain () method exposes the handler to all the chunkings stored
in the CHUNKINGS constant. This, in turn, looks like the following:

static final Chunking[] CHUNKINGS = new Chunking[] {

chunking (""), chunking("The"),

chunking ("John ran.", chunk(0,4,"PER")),

chunking ("Mary ran.", chunk(0,4,"PER")),

chunking ("The kid ran."), chunking("John likes Mary.",

chunk (0,4, "PER"), chunk(11,15,"PER")),

chunking ("Tim lives in Washington", chunk(0,3,"PER"),

chunk (13,23, "LOC") ), chunking("Mary Smith is in New York City",
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chunk (0,10, "PER") , chunk(17,30,"LOC")),

chunking ("New York City is fun", chunk(0,13,"LOC")),
chunking ("Chicago is not like Washington",

chunk (0,7, "LOC"), chunk(20,30,"LOC"))

}i

We are still not done. Given that the creation of Chunking is fairly verbose, there are static
methods to help dynamically create the requisite objects:

static Chunking chunking (String s, Chunk... chunks) {
ChunkingImpl chunking = new ChunkingImpl (s) ;
for (Chunk chunk : chunks) chunking.add (chunk) ;
return chunking;

static Chunk chunk (int start, int end, String type) {
return ChunkFactory.createChunk (start,end, type) ;

}

This is all the setup; next, we will train and run a CRF on the preceding data.

How to do it...

1. Type the TrainAndRunSimplCrf class in the command line or run the equivalent in
your IDE:

java -cp lingpipe-cookbook.l.0.jar:1lib/lingpipe-4.1.0.jar: com.
lingpipe.cookbook.chapter5.TrainAndRunSimpleCrf

2. This results in loads of screen output that report on the health and progress of the
CRF, it is mostly information from the underlying logistic-regression classifier that
drives the whole show. The fun bit is that we will get an invitation to play with the
new CRF:

Enter text followed by new line

>John Smith went to New York.

3. The chunker reports the first best output:
FIRST BEST

John Smith went to New York. : [0-10:PER@-Infinity, 19-27:LOC@-
Infinity]
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4.

The preceding output is the first best analysis by the CRF of what sorts of entities are
in the sentence. It thinks that John Smith is PER with the 0-10:PER@-Infinity
output. We know that it applies to the John Smith string by taking the substring
from O to 10 in the input text. Ignore —Infinity, which is supplied for chunks that
have no score. The first best chunking does not have scores. The other entity that it
thinks is in the text is New York as an LOC.

Immediately, the conditional probabilities follow:

10 BEST CONDITIONAL

Rank log p(tags|tokens) Tagging

-1.66335590 [0-10:PER@-Infinity, 19-27:LOC@-Infinity]
-2.38671498 [0-10:PER@-Infinity, 19-28:LOC@-Infinity]
-2.77341747 [0-10:PER@-Infinity]

-2.85908677 [0-4:PER@-Infinity, 19-27:LOC@-Infinity]
-3.00398856 [0-10:PER@-Infinity, 19-22:LOC@-Infinity]
-3.23050827 [0-10:PER@-Infinity, 16-27:LOC@-Infinity]
-3.49773765 [0-10:PER@-Infinity, 23-27:PER@-Infinity]
-3.58244582 [0-4:PER@-Infinity, 19-28:LOC@-Infinity]
-3.72315571 [0-10:PER@-Infinity, 19-22:PER@-Infinity]

W 0 9 a6 U1 A W DD B O

-3.95386735 [0-10:PER@-Infinity, 16-28:LOC@-Infinity]

The preceding output provides the 10 best analyses of the whole phrase, along
with their conditional (natural log) probabilities. In this case, we will see that the
system isn't particularly confident of any of its analyses. For instance, the estimated
probability of the first best analysis being correct is exp (-1.66)=0.19.

Next, in the output, we see probabilities for individual chunks:
MARGINAL CHUNK PROBABILITIES

Rank Chunk Phrase
0-10:PER@-0.49306887565189683 John Smith
19-27:LOC@-1.1957935770408703 New York
0-4:PER@-1.3270942262839682 John
19-22:LOC@-2.484463373596263 New
23-27:PER@-2.6919267821139776 York
16-27:LOC@-2.881057607295971 to New York
11-15:PER@-3.0868632773744222 went
16-18:PER@-3.1583044940140192 to
19-22:PER@-3.2036305275847825 New
23-27:LOC@-3.536294896211011 York

W 0 9 a6 U1 A W DD B O
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8. As with the previous conditional output, the probabilities are logs, so we can see that
the John Smith chunk has estimated probability exp (-0.49) = 0.61, which
makes sense because in training the CRF saw John at the beginning of PER and
Smith at the end of another, but not John Smith directly.

9. The preceding kind of probability distributions can really improve systems if there are
sufficient resources to consider a broad range of analyses and ways of combining
evidence to allow for improbable outcomes to be selected. First best analyses tend to
be over committed to conservative outcomes that fit what training data looks like.

The code in src/com/lingpipe/cookbook/chapter5/TrainAndRunSimpleCRF . java
resembles our classifier and HMM recipes with a few differences. These differences are
addressed as follows:

public static void main(String[] args) throws IOException
Corpus<ObjectHandler<Chunking>> corpus =
new TinyEntityCorpus() ;

TokenizerFactory tokenizerFactory =
IndoEuropeanTokenizerFactory.INSTANCE;
boolean enforceConsistency = true;
TagChunkCodec tagChunkCodec =
new BioTagChunkCodec (tokenizerFactory,
enforceConsistency) ;

When we previously played with CRFs, the inputs were of the Tagging<Strings type.
Looking back at TinyEntityCorpus.java, the types are of the Chunking type. The
preceding BioTagChunkCodec facilitates the translation of Chunking into Tagging

via the efforts of a supplied TokenizerFactory and boolean that raise an exception if
TokenizerFactory does not exactly agree with the Chunk starts and ends. Look back to
the Translating between word tagging and chunks-BIO codec recipe better understand the
role of this class.

Let's take a look at the following;:

John Smith went to New York City. : [0-10:PER@-Infinity, 19-32:LOCe@-
Infinity]
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This codec will translate into a tagging:

Tok Tag
John  B_PER
Smith I_PER

went O
to 6}
New B_LOC

York I_LOC
City I_LOC
¢}

The codec will do the reverse operation as well. The Javadoc is worth a visit. Once this
mapping is established, the rest of the CRF is the same as the word tagging case behind

the scenes, as shown by the fact that we use the same feature extractor in the Conditional
random fields - CRF for word/token tagging recipe, in Chapter 4, Tagging Words and Tokens.
Consider the following code snippet:

ChainCrfFeatureExtractor<String> featureExtractor =
new SimpleCrfFeatureExtractor() ;

All the mechanics are hidden inside a new ChainCrfChunker class, and it is initialized
in a manner similar to logistic regression, which is the underlying technology. Refer to the
Logistic regression recipe of Chapter 3, Advanced Classifiers, for more information on
the configuration:

int minFeatureCount = 1;

boolean cacheFeatures = true;

boolean addIntercept = true;

double priorVariance = 4.0;

boolean uninformativeIntercept = true;

RegressionPrior prior =
RegressionPrior.gaussian (priorVariance,
uninformativeIntercept) ;

int priorBlockSize = 3;

double initiallearningRate = 0.05;

double learningRateDecay = 0.995;

AnnealingSchedule annealingSchedule =
AnnealingSchedule.exponential (initialLearningRate,
learningRateDecay) ;

double minImprovement = 0.00001;

int minEpochs = 10;

int maxEpochs = 5000;

Reporter reporter =
Reporters.stdOut () .setLevel (LogLevel .DEBUG) ;

System.out.println ("\nEstimating") ;

ChainCrfChunker crfChunker =
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ChainCrfChunker.estimate (corpus,

tagChunkCodec, tokenizerFactory,
featureExtractor, addIntercept,
minFeatureCount, cacheFeatures,

prior, priorBlockSize, annealingSchedule,
minImprovement, minEpochs, maxEpochs, reporter) ;

The only new thing here is the tagChunkCodec parameter, which we just described.
Once the training is over, we will access the chunker for first best with the following code:

System.out.println ("\nFIRST BEST") ;
Chunking chunking = crfChunker.chunk (evalText) ;
System.out.println (chunking) ;

Conditional chunkings are delivered by:

int maxNBest = 10;

System.out.println("\n" + maxNBest + " BEST CONDITIONAL") ;

System.out.println("Rank log p(tags|tokens) Tagging");

Iterator<ScoredObject<Chunking>> it =
crfChunker.nBestConditional (evalTextChars, 0,
evalTextChars.length, maxNBest) ;

for (int rank = 0; rank < maxNBest && it.hasNext(); ++rank) {
ScoredObject<Chunking> scoredChunking = it.next () ;
System.out.println(rank + " "ot
scoredChunking.score() + " " +

scoredChunking.getObject () .chunkSet ()) ;

!
The individual chunks are accessed with:

System.out.println ("\nMARGINAL CHUNK PROBABILITIES") ;

System.out.println ("Rank Chunk Phrase") ;

int maxNBestChunks = 10;

Iterator<Chunk> nBestIt = crfChunker.nBestChunks
(evalTextChars, 0, evalTextChars.length,maxNBestChunks) ;

for (int n = 0; n < maxNBestChunks && nBestIt.hasNext(); ++n) {
Chunk chunk = nBestChunkIt.next () ;
System.out.println(n + " " + chunk + " " +

evalText.substring (chunk.start () ,chunk.end())) ;

}

That's it. You have access to one of the world's finest chunking technologies. Next, we will
show you how to make it better.
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NER using CRFs with better features

In this recipe, we'll show you how to create a realistic, though not quite state-of-the-art,

set of features for CRFs. The features will include normalized tokens, part-of-speech tags,
word-shape features, position features, and token prefixes and suffixes. Substitute it for the
SimpleCrfFeatureExtractor in the CRFs for chunking recipe to use it.

How to do it...

The source for this recipe is in src/com/lingpipe/cookbook/chapters/
FancyCrfFeatureExtractor.java

1. Open up your IDE or command prompt and type:

java -cp lingpipe-cookbook.l.0.jar:lib/lingpipe-4.1.0.jar: com.
lingpipe.cookbook.chapter5.FancyCrfFeatureExtractor

2. Brace yourself for an explosion of features from the console. The data being used for
feature extraction is TinyEntityCorpus of the previous recipe. Luckily, the first bit
of data is just the node features for the "John" in the sentence John ran.:
Tagging: John/PN
Node Feats:{PREF_NEXT ra=1.0, PREF Jo=1.0, POS np=1.0, TOK_CAT
LET-CAP=1.0, SUFF_NEXT an=1.0, PREF Joh=1.0, PREF NEXT r=1.0,
SUFF_John=1.0, TOK John=1.0, PREF NEXT ran=1.0, BOS=1.0, TOK NEXT
ran=1.0, SUFF_NEXT n=1.0, SUFF NEXT ran=1.0, SUFF ohn=1.0, PREF
J=1.0, POS _NEXT vbd=1.0, SUFF_hn=1.0, SUFF n=1.0, TOK_CAT NEXT
ran=1.0, PREF_John=1.0}

3. The next word in the sequence adds edge features—we won't bother showing you the
node features:

Edge Feats:{PREV TAG TOKEN CAT PN LET-CAP=1.0, PREV TAG PN=1.0}

As with other recipes, we won't bother discussing parts that are very similar to previous
recipes—the relevant previous recipe here is the Modifying CRFs recipe in Chapter 4, Tagging
Words and Tokens. This is exactly the same, except for the fact that we will add in a lot more
features—perhaps, from unexpected sources.
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The tutorial for CRFs covers how to serialize/deserialize this class.
i This implementation does not cover it.

Object construction is similar to the Modifying CRFs recipe in Chapter 4, Tagging Words
and Tokens:

public FancyCrfFeatureExtractor ()
throws ClassNotFoundException, IOException {
File posHmmFile = new File ("models/pos-en-general"
+ "brown.HiddenMarkovModel") ;
@SuppressWarnings ("unchecked") HiddenMarkovModel posHmm =
(HiddenMarkovModel)
AbstractExternalizable.readObject (posHmmFile) ;

FastCache<String,double[] > emissionCache =
new FastCache<String,double[]>(100000) ;

mPosTagger = new HmmDecoder (posHmm,null,emissionCache) ;

}

The constructor sets up a part-of-speech tagger with a cache and shoves it into the
mPosTagger member variable.

The following method does very little, except supplying an inner ChunkerFeatures class:

public ChainCrfFeatures<String> extract (List<String> tokens,
List<String> tags) {
return new ChunkerFeatures (tokens, tags) ;

}
The ChunkerFeatures class is where things get more interesting:

class ChunkerFeatures extends ChainCrfFeatures<Strings> {
private final Tagging<String> mPosTagging;

public ChunkerFeatures (List<String> tokens,
List<String> tags) {
super (tokens, tags) ;
mPosTagging = mPosTagger.tag(tokens) ;

}

The mPosTagger function is used to set up Tagging<String> for the tokens presented on
class creation. This will be alighed with the tag () and token () superclass methods and be
the source of part-of-speech tags as a node feature.
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Now, we can get on with the feature extraction. We will start with edge features, as they are
the simplest:

public Map<String, ? extends Number> edgeFeatures (int n, int k) {
ObjectToDoubleMap<String> feats =
new ObjectToDoubleMap<Strings () ;
feats.set ("PREV_TAG " + tag(k),1.0);
feats.set ("PREV_TAG TOKEN CAT " + tag(k)
+ " " + tokenCat (n-1), 1.0);
return feats;

}

The new feature is prefixed with PREV_TAG TOKEN CAT , and the example is
PREV TAG TOKEN CAT PN LET-CAP=1.0.The tokencCat () method looks at
the word shape feature for the previous token and returns it as a string. Look at the
Javadoc for IndoEuropeanTokenCategorizer to see what is going on.

Next comes the node features. There are many of these; each will be presented in turn:

public Map<String, ? extends Number> nodeFeatures (int n) {
ObjectToDoubleMap<String> feats =
new ObjectToDoubleMap<Strings () ;

The preceding code sets up the method with the appropriate return type. The next two lines
set up some state to know where the feature extractor is in the string:

boolean bos = n == 0;
boolean eos = (n + 1) >= numTokens() ;

Next, we will compute the token categories, tokens, and part-of-speech tags for the current
position, previous position, and the next position of the input:

String tokenCat = tokenCat (n);
bos ? null : tokenCat (n-1);
eos ? null : tokenCat (n+1) ;

String prevTokenCat

String nextTokenCat

String token = normedToken (n) ;
String prevToken = bos ? null : normedToken(n-1);

String nextToken eos ? null : normedToken (n+1l) ;
String posTag = mPosTagging.tag(n) ;

String prevPosTag = bos ? null : mPosTagging.tag(n-1);
String nextPosTag = eos ? null : mPosTagging.tag(n+l) ;

The previous and next methods check if we're at the begin or end of the sentence and return
null accordingly. The part-of-speech tagging is taken from the saved part-of-speech taggings
computed in the constructor.
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The token methods provide some normalization of tokens to compress all numbers to the
same kind of value. This method is as follows:

public String normedToken (int n) {
return token (n).replaceAll ("\\d+","*$0*")
.replaceAll ("\\d","D") ;

}

This just takes every sequence of numbers and replaces it with *D. . .D*. For instance,
12/3/08 is converted to *DD* /*D* /*DD*.

We will then set feature values for the preceding, current, and following tokens. First, a flag
indicates whether it begins or ends a sentence or an internal node:

if (bos) {
feats.set ("BOS",1.0);

!

if (eos) {
feats.set ("EOS",1.0) ;

!

if (!bos && !eos)
feats.set ("!BOS!EOS",1.0) ;

}
Next, we will include the tokens, token categories, and their parts of speech:

feats.set ("TOK_ " + token, 1.0);
if (!bos) {
feats.set ("TOK_PREV_" + prevToken,1.0);
}
if (leos) {
feats.set ("TOK_NEXT " + nextToken,1.0);

}
feats.set ("TOK_CAT " + tokenCat, 1.0);
if (!bos) {

feats.set ("TOK_CAT PREV_" + prevTokenCat, 1.0);
}
if (teos) {
feats.set ("TOK_CAT NEXT " + nextToken, 1.0);
}
feats.set ("POS_" + posTag,1.0);
if (!bos) {
feats.set ("POS_PREV_" + prevPosTag,1.0);
}
if (teos) {
feats.set ("POS_NEXT " + nextPosTag,1.0);

}
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Finally, we will add the prefix and suffix features, which add features for each suffix and prefix
(up to a prespecified length):

for (String suffix : suffixes(token)) {
feats.set ("SUFF_" + suffix,1.0);
}
if (!bos) {
for (String suffix : suffixes (prevToken)) {
feats.set ("SUFF_PREV_" + suffix,1.0);
if (teos) {
for (String suffix : suffixes(nextToken)) {
feats.set ("SUFF_NEXT " + suffix,1.0);
}
for (String prefix : prefixes (token)) {
feats.set ("PREF_" + prefix,1.0);
}
if (!bos) {
for (String prefix : prefixes (prevToken)) {
feats.set ("PREF_PREV_" + prefix,1.0);
}
if (teos) {
for (String prefix : prefixes (nextToken)) {
feats.set ("PREF_NEXT " + prefix,1.0);

}

return feats;

}

After this, we will just return the feature mapping generated.
The prefix or suf fix function is simply implemented with a list:

static int MAX PREFIX LENGTH = 4;
static List<String> prefixes(String s)

int numPrefixes = Math.min (MAX PREFIX LENGTH, s.length());

if (numPrefixes == 0)
return Collections.emptyList () ;

if (numPrefixes == 1)
return Collections.singletonList (s) ;

List<String> result = new ArrayList<Strings> (numPrefixes) ;

for (int i = 1; i <= Math.min(MAX PREFIX LENGTH,s.length()); ++1i)

result.add(s.substring(0,1));
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return result;

static int MAX SUFFIX LENGTH = 4;
static List<String> suffixes(String s)
int numSuffixes = Math.min(s.length(), MAX SUFFIX LENGTH) ;
if (numSuffixes <= 0)
return Collections.emptyList () ;
}
if (numSuffixes == 1) {
return Collections.singletonList (s) ;
}
List<String> result = new ArraylList<Strings> (numSuffixes) ;
for (int i = s.length() - numSuffixes; i < s.length(); ++i) {
result.add(s.substring(i)) ;

}

return result;

}

That's a nice feature set for your named-entity detector.







String Comparison
and Clustering

In this chapter, we will cover the following recipes:

» Distance and proximity - simple edit distance

» Weighted edit distance

» The Jaccard distance

» The Tf-Idf distance

» Using edit distance and language models for spelling correction
» The case restoring corrector

» Automatic phrase completion

» Single-link and complete-link clustering using edit distance

» Latent Dirichlet allocation (LDA) for multitopic clustering

Introduction

This chapter starts off by comparing strings using standard language neutral techniques.
Then, we will use these techniques to build some commonly used applications. We will also
look at clustering techniques based on distances between strings.

For a string, we use the canonical definition that a string is a sequence of characters.
So, clearly, these techniques apply to words, phrases, sentences, paragraphs, and so on,
all of which you have learnt to extract in the previous chapters.
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Distance and proximity - simple edit

distance

String comparison refers to techniques used to measure the similarity between two strings.
We will use distance and proximity to specify how similar any two strings are. The more similar
any two strings are, the lesser the distance between them, so the distance from a string to
itself is 0. An inverse measure is proximity, which means that the more similar any two strings
are, the greater their proximity.

We will take a look at simple edit distance first. Simple edit distance measures distance in
terms of how many edits are required to convert one string to the other. A common distance
measure proposed by Levenshtien in 1965 allows deletion, insertion, and substitution as basic
operations. Adding in transposition is called Damerau-Levenshtien distance. For example, the
distance between foo and boo is 1, as we're looking at a substitution of £ with b.

For more on distance metrics, refer to the Wikipedia article on distance
s athttp://en.wikipedia.org/wiki/Distance

Let's look at some more examples of editable operations:

» Deletion: Bart and Bar
» Insertion: Bar and Bart
» Substitution: Bar and Car

» Transposition: Bart and Brat

How to do it...

Now, we will run a simple example on edit distance:

1. Runthe SimpleEditDistance class using the command line or your IDE:
java -cp lingpipe-cookbook.l.0.jar:1lib/lingpipe-4.1.0.jar com.
lingpipe.cookbook.chapter6.SimpleEditDistance

2. Inthe command prompt, you will be prompted for two strings:

Enter the first string:

ab

Enter the second string:

ba

Allowing Transposition Distance between: ab and ba is 1.0

No Transposition Distance between: ab and ba is 2.0
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3. You will see the distance between the two strings with transposition allowed and with
transposition not allowed.

4. Play with some more examples to get a sense of how it works—try them first by hand
and then verify that you got the optimal case.

This is a very simple piece of code, and all it does is create two instances of the
EditDistance class: one that allows transpositions, and the other that does not
allow transpositions:

public static void main(String[] args) throws IOException

EditDistance dmAllowTrans = new EditDistance (true) ;
EditDistance dmNoTrans = new EditDistance (false) ;

The remaining code will set up an 1/0 routing, apply the edit distances, and print them out:

BufferedReader reader = new BufferedReader (new
InputStreamReader (System.in)) ;
while (true) {
System.out.println("Enter the first string:");
String textl = reader.readLine() ;
System.out.println("Enter the second string:");
String text2 = reader.readLine() ;
double allowTransDist = dmAllowTrans.distance (textl, text2);
double noTransDist = dmNoTrans.distance (textl, text2);
System.out.println("Allowing Transposition Distance "
+" between: " + textl + " and " + text2 +
" is " + allowTransDist) ;
System.out.println("No Transposition Distance
between: " + textl + " and " + text2 +
" is " + noTransDist) ;

}
}

If we wanted the proximity instead of distance, we would just use the proximity method
instead of the distance method.

In simple EditDistance, all the editable operations have a fixed cost of 1.0, that is, each
editable operation (deletion, substitution, insertion, and, if allowed, transposition) is counted
with a cost of 1.0 each. So, in the example where we find the distance between ab and ba,
there is one deletion and one insertion, both of which have a cost of 1.0. Therefore, this
makes the distance between ab and ba 2.0 if transposition is not allowed and 1.0 if it is.
Note that typically, there will be more than one way to edit one string into the other.
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While EditDistance is quite simple to use, it is not simple to
implement. This is what the Javadoc has to say about this class:

. Implementation note: This class implements edit distance using
% dynamic programming in time O(n * m) where n and m are the
= length of the sequences being compared. Using a sliding window of
three lattice slices rather than allocating the entire lattice at once,
the space required is that for three arrays of integers as long as the
shorter of the two character sequences being compared.

In the following sections, we will see how to assign varying costs to each edit operation.

» Refer to the LingPipe Javadoc on EditDistance athttp://alias-i.com/
lingpipe/docs/api/com/aliasi/spell/EditDistance.html for more
details

» For more details on distance, refer to the Javadoc at http://alias-1i.com/
lingpipe/docs/api/com/aliasi/util/Distance.html

» For more details on proximity, refer to the Javadoc at http://alias-i.com/
lingpipe/docs/api/com/aliasi/util/Proximity.html

Weighted edit distance

Weighted edit distance is essentially a simple edit distance, except that the edits allow different
costs to be associated with each kind of edit operation. The edit operations we identified in

the previous recipe are substitution, insertion, deletion, and transposition. Additionally, there
can be a cost associated with the exact matches to increase the weight for matching - this
might be used when edits are required, such as a string-variation generator. Edit weights are
generally scaled as log probabilities so that you can assign likelihood to an edit operation. The
larger the weight, the more likely that edit operation is. As probabilities are between O and 1,
log probabilities, or weights, will be between negative infinity and zero. For more on this refer to
the Javadoc on the WeightedEditDistance class at http://alias-i.com/lingpipe/
docs/api/com/aliasi/spell/WeightedEditDistance.html.

On the log scale, weighted edit distance can be generalized to produce exactly the same
results as simple edit distance did in the previous recipe by setting the match weight to O
and substituting, deleting, and inserting weights to -1 and transposition weights to either -1
or negative infinity, if we want to turn transposition off.

We will look at weighted edit distance for spell checking and Chinese word segmentation in
other recipes.
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In this section, we will use the FixedWeightEditDistance instance and create the
CustomWeightEditDistance class that extends the WeightedEditDistance abstract
class. The FixedWeightEditDistance class is initialized with weights for each edit
operation. The CustomWeightEditDistance class extends WeightedEditDistance and
has rules for each edit operation weights. The weight for deleting alphanumeric characters is
-1, and for all other characters, that is, punctuation and spaces, it is is 0. We will set insertion
weights to be the same as deletion weights.

How to do it...

Let's expand on our previous example and look at a version that runs the simple edit distance
as well as our weighted edit distance:

1. Inyour IDE run the SimpleWeightedEditDistance class, orinthe command
line, type:
java -cp lingpipe-cookbook.l.0.jar:1lib/lingpipe-4.1.0.jar com.
lingpipe.cookbook.chapter6.SimpleWeightedEditDistance

2. Inthe command line, you will be prompted for two strings: enter the examples shown
here or choose your own:

SimpleWeightedEditDistance [Java Application] /Library/lava/|avaVirtualMachines/1.6.0_37-b06-434 jdk]
Enter the first string:

J'aﬂ :_

Enter the second string:

Brat

Allowing Transposition Distance between: Bart and Brat is 1.8
No Transposition Distance between: Bart and Braot is 2.0

Fixed Weight Edit Distance between: Bart and Brat is 4.8
Custom Weight Edit Distance between: Bart and Brat is 2.8
Enter the first string:

abc4

Enter the second string:

Abc

Allowing Transposition Distance between: abc+ and Abc- is 2.0
No Transposition Distance between: obc+ and Abc- is 2.8

Fixed Weight Edit Distance between: abc+ and Abc- is 4.8
Custom Weight Edit Distance between: abc+ and Abc- 1s -0.8
Enter the first string:

3. Asyou can see, there are two other distance measures being shown here:
a fixed weight edit distance and a custom weight edit distance.

4. Play around with other examples, including punctuation and spaces.
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We will instantiate a FixedWeightEditDistance class with some weights that are,
arbitrarily chosen:

double matchWeight = 0;

double deleteWeight = -2;
double insertWeight = -2;
double substituteWeight = -2;

double transposeWeight = Double.NEGATIVE INFINITY;

WeightedEditDistance wed = new FixedWeightEditDistance (matchWeight, del
eteWeight, insertWeight, substituteWeight, transposeWeight) ;

System.out.println("Fixed Weight Edit Distance: "+ wed.toString());

In this example, we set the delete, substitute, and insert weights to be equal. This is very
similar to the standard edit distance, except that we modified the weights associated with the
edit operations from 1 to 2. Setting the transpose weight to negative infinity effectively turns
off transpositions completely. Obviously, it's not necessary that the delete, substitute, and
insert weights should be equal.

We will also create a CustomWeightEditDistance class, which treats punctuations and
whitespaces as matches, that is, zero cost for the insert and delete operations (for letters or
digits, the cost remains -1). For substitutions, if the character is different only in case, the cost
is zero; for all other cases, the cost is -1. We will also turn off transposition by setting its cost
to negative infinity. This will result in Abc+ matching abc-:

public static class CustomWeightedEditDistance extends
WeightedEditDistance(

@Override
public double deleteWeight (char arg0)

return (Character.isDigit (arg0) | |Character.isLetter (arg0))
? -1 : 0;

@Override
public double insertWeight (char arg0)
return deleteWeight (arg0) ;

}

@Override
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public double matchWeight (char arg0) {
return O0;

@Override

public double substituteWeight (char cDeleted, char cInserted) {
return Character.toLowerCase (cDeleted) ==
Character.toLowerCase (cInserted) ? 0 :-1;

@Override
public double transposeWeight (char arg0, char argl) {
return Double.NEGATIVE INFINITY;

}
}

This sort of custom weighted edit distance is particularly useful in comparing strings where
minor formatting changes are encountered, such as gene/protein names that vary from
Serpin A3 to serpina3 but refer to the same thing.

» Thereis a T&T (Tsuruoka and Tsujii) specification for edit distance to compare protein
names, referto http://alias-i.com/lingpipe/docs/api/com/aliasi/
dict/ApproxDictionaryChunker . html#TT DISTANCE

» More details on the WeightedEditDistance class can be found on the Javadoc
page at http://alias-1i.com/lingpipe/docs/api/com/aliasi/spell/
WeightedEditDistance.html

The Jaccard distance

The Jaccard distance is a very popular and efficient way of comparing strings. The Jaccard
distance operates at a token level and compares two strings by first tokenizing them and then
dividing the number of common tokens by the total number of tokens. In the Eliminate near
duplicates with the Jaccard distance recipe in Chapter 1, Simple Classifiers, we applied the
distance to eliminate near-duplicate tweets. This recipe will go into a bit more detail and show
you how it is computed.
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A distance of O is a perfect match, that is, the strings share all their terms, and a distance of 1
is a perfect mismatch, that is, the strings have no terms in common. Remember that proximity
and distance are additive inverses, so proximity also ranges from 1 to O. Proximity of 1 is a
perfect match, and proximity of O is a perfect mismatch:

proximity = count (common tokens)/count (total tokens)
distance = 1 - proximity

The tokens are generated by TokenizerFactory, which is passed in during construction.
For example, let's use IndoEuropeanTokenizerFactory and take a look at a concrete
example. If stringlis fruit flies like a bananaand string2istime flies
like an arrow, then the token set for stringl would be { ' fruit', 'flies’',
'like', 'a', 'banana'}, and the token set for string2 would be {'time"',
'flies', 'like', 'an', ‘'arrow'}.The common terms (or the intersection)

between these two token sets are { 'flies', 'like'}, and the union of these terms

is {'fruit',' flies', 'like', 'a', 'banana', 'time', 'an', ‘'arrow'}.
Now, we can calculate the Jaccard proximity by dividing the number of common terms by the
total number of terms, that is, 2/8, which equals 0.25. Thus, the distance is 0.75 (1 - 0.25).
Obviously, the Jaccard distance is eminently tunable by modifying the tokenizer that the class
is initialized with. For example, one could use a case-normalizing tokenizer so that Abc and
abc would be considered equivalent. Similarly, a stemming tokenizer would consider the
words runs and run to be equivalent. We will see a similar ability in the next distance metric,
the Tf-Idf distance, as well.

How to do it...

Here's how to run the JaccardDistance example:

1. In Eclipse, run the JaccardDistanceSample class, or in the command line, type:
java -cp lingpipe-cookbook.l.0.jar:1lib/lingpipe-4.1.0.jar com.
lingpipe.cookbook.chapter6.JaccardDistanceSample

2. Asin the previous recipes, you will be prompted for two strings. The first string that we
will use is Mimsey Were the Borogroves, which is an excellent sci-fi short-story
title, and the second string 211 mimsy were the borogoves, isthe actual line
from Jabberwocky that inspired it:

Enter the first string:
Mimsey Were the Borogroves
Enter the second string:

All mimsy were the borogoves,

IndoEuropean Tokenizer

Textl Tokens: {'Mimsey''Were''the'}

228




Chapter 6

Text2 Tokens: {'All''mimsy''were''the''borogoves'}

IndoEuropean Jaccard Distance is 0.8888888888888888

Character Tokenizer

Textl Tokens: {IMI tirtigprigrigt ly'IWi'le''r'le!''t'th''e''B''o''r''0!
'g''r'io''v! lel}

Text2 Tokens: {IAI 1jrejreprerjrimrigs ly-llwl Tgllipligligiihligliihtiigt
Tptig!t lgllol Iyitg!? lsl}

Character Jaccard Distance between is 0.42105263157894735

EnglishStopWord Tokenizer
Textl Tokens: {'Mimsey''Were'}
Text2 Tokens: {'All''mimsy''borogoves'}

English Stopword Jaccard Distance between is 1.0

3. The output contains the tokens and the distances using three different tokenizers.
The IndoEuropean and EnglishStopWord tokenizers are pretty close and show
that these two lines are far apart. Remember that the closer two strings are, the
lesser is the distance between them. The character tokenizer, however, shows that
these lines are closer to each other with characters as the basis of comparison.
Tokenizers can make a big difference in calculating the distance between strings.

The code is straightforward, and we will just cover the creation of the JaccardDistance
objects. We will start with three tokenizer factories:

TokenizerFactory indoEuropeanTf =
IndoEuropeanTokenizerFactory.INSTANCE;

TokenizerFactory characterTf =
CharacterTokenizerFactory.INSTANCE;

TokenizerFactory englishStopWordTf =
new EnglishStopTokenizerFactory (indoEuropeanTf) ;

Note that englishStopWordTf uses a base tokenizer factory to construct itself. Refer to
Chapter 2, Finding and Working with Words, if there are questions on what is going on here.
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Next, the Jaccard distance classes are constructed, given a tokenizer factory as an argument:

JaccardDistance jaccardIndoEuropean =
new JaccardDistance (indoEuropeanTf) ;

JaccardDistance jaccardCharacter =
new JaccardDistance (characterTf) ;

JaccardDistance jaccardEnglishStopWord =
new JaccardDistance (englishStopWordTf) ;

The rest of the code is just our standard I/0 loop and some print statements. That's it! On to
more sophisticated measures of string distance.

The Tf-Idf distance

A very useful distance metric between strings is provided by the TfIdfDistance class.

It is, in fact, closely related to the distance metric from the popular open source search
engine, Lucene/SOLR/Elastic Search, where the strings being compared are the query
against documents in the index. Tf-Idf stands for the core formula that is term frequency (TF)
times inverse document frequency (IDF) for terms shared by the query and the document.

A very cool thing about this approach is that common terms (for example, the) that are very
frequent in documents are downweighted, while rare terms are upweighted in the distance
comparison. This can help focus the distance on terms that are actually discriminating in the
document collection.

Not only does TfIdfDistance come in handy for search-engine-like applications, it can

be very useful for clustering and for any problem that calls for document similarity without
supervised training data. It has a desirable property; scores are normalized to a score
between 0 and 1, and for a fixed document d1 and varying length documents d2, do not
overwhelm the assigned score. In our experience, the scores for different pairs of documents
are fairly robust if you were trying to rank the quality of match for a pair of documents.

. Note that there are a range of different distances called
a Tf-1df distances. The one in this class is defined to be
S symmetric, unlike typical Tf-ldf distances that are defined

for information-retrieval purposes.

There is a lot of information in the Javadoc that is well worth a good look. However, for the
purposes of these recipes, all you need to know is that the Tf-Idf distance is useful for finding
similar documents on a word-by-word basis.
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How to do it...

In the quest to keep things a little interesting, we will use our TEIdfDistance class to build
a really simple search engine over tweets. We will perform the following steps:

1.

If you have not done it already, run the TwitterSearch class from Chapter 1,
Simple Classifiers, and get some tweets to play with, or go with our provided data.
We will use the tweets found by running the Disney World query, and they are
already in the data directory.

Type the following in the command line—this uses our defaults:

java -cp lingpipe-cookbook.l.0.jar:1lib/lingpipe-4.1.0.jar:1ib/
opencsv-2.4.jar com.lingpipe.cookbook.chapter6.TfIdfSearch

Reading search index from data/disney.csv
Getting IDF data from data/connecticut yankee king arthur.txt

enter a query:

Enter a query that has some likely word matches:
I want to go to disney world

0.86 : I want to go to Disneyworld

0.86 : I want to go to disneyworld

0.75 : I just want to go to DisneyWorld...

0.75 : I just want to go to Disneyworld ??7?

0.65 : Cause I wanna go to Disneyworld.

0.56 : I wanna go to disneyworld with Demi

0.50 : I wanna go back to disneyworld

0.50 : I so want to go to Disneyland I've never been. I've been to

Disneyworld in Florida.

0.47 : I want to go to #DisneyWorld again... It's so magical!!
0.45 : I want to go to DisneyWorld.. Never been there : (
#jadedchildhood

That's it. Try different queries and play around with the scores. Then, have a look at
the source.
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This code is a very simple way to build a search engine rather than a good way to build one.
However, it is a decent way to explore how the concept of string distance works in the search
context. Later in the book, we will perform clustering based on the same distance metric. Start
with the main () classin src/com/lingpipe/cookbook/chapter6/TfIdfSearch. java:

public static void main(String[] args) throws IOException {
String searchableDocs = args.length > 0
? args[0] : "data/disneyWorld.csv";

System.out.println ("Reading search index
from " + searchableDocs) ;

String idfFile = args.length > 1
? args[l] : "data/connecticut_yankee king arthur.txt";
System.out.println ("Getting IDF data from " + idfFile);

This program can take command-line-supplied files for the searched data in the . csv format
and a text file for use as the source of training data. Next, we will set up a tokenizer factory
and TfIdfDistance. If you are not familiar with tokenizer factories, then refer to the
Modifying tokenizer factories recipe in Chapter 2, Modifying Tokenizer Factories,

for an explanation:

TokenizerFactory tokFact = IndoEuropeanTokenizerFactory.INSTANCE;
TfIdfDistance tfIdfDist = new TfIdfDistance (tokFact) ;

Then, we will get the data that will be the IDF component by splitting the training text on ".",
which approximates sentence detection—we could have done a proper sentence detection
like we did in the Sentence detection recipe in Chapter 5, Finding Spans in Text - Chunking,
but we chose to keep the example as simple as possible:

String training =
Files.readFromFile (new File(idfFile), Strings.UTF8) ;
for (String line: training.split("\\.")) {
tfIdfDist.handle (line) ;

}

Inside the for loop, there is handle (), which trains the class with knowledge of the token
distributions in the corpus, with sentences being the document. It often happens that the
concept of document is either smaller (sentence, paragraph, and word) or larger than what
is typically termed document. In this case, the document frequency will be the number of
sentences the token is in.

Next, the documents that we are searching are loaded:

List<String[]> docsToSearch =
Util.readCsvRemoveHeader (new File (searchableDocs)) ;
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The console is set up to read in the query:

BufferedReader reader =
new BufferedReader (new InputStreamReader (System.in)) ;

while (true) {
System.out.println("enter a query: ");
String query = reader.readLine() ;

Next, each document is scored against the query with TETdfDistance and put into
ObjectToDoubleMap, Which keeps track of the proximity:

ObjectToDoubleMap<String> scoredMatches =
new ObjectToDoubleMap<Strings> () ;
for (String [] line : docsToSearch) ({
scoredMatches.put (line [Util.TEXT OFFSET],
thdeist.proximity(line[Util.EEXT_OFFSET],
query)) ;

}

Finally, scoredMatches is retrieved in the proximity order, and the first 10 examples are
printed out:

List<String> rankedDocs = scoredMatches.keysOrderedByValueList () ;
for (int i = 0; i < 10; ++1i) {
System.out.printf ("$.2f : ",
scoredMatches.get (rankedDocs.get (1)) ) ;
System.out.println (rankedDocs.get (1)) ;
}
}

While this approach is very inefficient, in that, each query iterates over all the training data,
does an explicit TEIdfDistance comparison, and stores it, it is not a bad way to play around
with small datasets and comparison metrics.

There are some subtleties worth highlighting about TfIdfDistance.

Difference between supervised and unsupervised trainings

When we train TfIdfDistance, there are some important differences in the use of
training from the ones used in the rest of the book. The training done here is unsupervised,
which means that no human or other external source has marked up the data for the
expected outcome. Most of the recipes in this book that train use human annotated,

or supervised, data.
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Training on test data is OK

As this is unsupervised data, there is no requirement that the training data should be be
distinct from the evaluation or production data.

Using edit distance and language models for

spelling correction

Spelling correction takes a user input text and provides a corrected form. Most of us are
familiar with automatic spelling correction via our smart phones or editors such as Microsoft
Word. There are obviously quite a few amusing examples of these on the Web where the
spelling correction fails. In this example, we'll build our own spelling-correction engine and
look at how to tune it.

LingPipe's spelling correction is based on a noisy-channel model which models user
mistakes and expected user input (based on the data). Expected user input is modeled by
a character-language model, and mistakes (or noise) is modeled by weighted edit distance.
The spelling correction is done using the CompiledSpellChecker class. This class
implements the noisy-channel model and provides an estimate of the most likely message,
given that the message actually received. We can express this through a formula in the
following manner:

didYouMean (received) = ArgMaxintended P (intended | received)
= ArgMaxintended P (intended,received) / P(received)
ArgMaxintended P (intended, received)

ArgMaxintended P (intended) * P (received | intended)

In other words, we will first create a model of the intended message by creating an n-gram
character-language model. The language model stores the statistics of seen phrases, that
is, essentially, it stores counts of how many times the n-grams occurred. This gives us

P (intended). For example, P (intended) is how likely is the character sequence the.
Next, we will create the channel model, which is a weighted edit distance and gives us the
probability that the error was typed for that intended text. Again, for example, how likely is
the error teh when the user intended to type the. In our case, we will model the likeliness
using weighted edit distance where the weights are scaled as log probabilities. Refer to the
Weighted edit distance recipe earlier in the chapter.

The usual way of creating a compiled spell checker is through an instance of
TrainSpellChecker. The result of compiling the spell-checker-training class and reading
it back in is a compiled spell checker. TrainSpellChecker creates the basic models,
weighted edit distance, and token set through the compilation process. We will then need
to set various parameters on the CompiledSpellChecker object.
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A tokenizer factory can be optionally specified to train token-sensitive spell checkers. With
tokenization, input is further normalized to insert a single whitespace between all the tokens
that are not already separated by a space in the input. The tokens are then output during
compilation and read back into the compiled spell checker. The output of set of tokens may
be pruned to remove any below a given count threshold. The thresholding doesn't make sense
in the absence of tokens because we only have characters to count in the absence of tokens.
Additionally, the set of known tokens can be used to constrain the set of alternative spellings
suggested during spelling correction to include only tokens in the observed token set.

This approach to spell check has several advantages over a pure dictionary-based solution:

» The context is usefully modeled. Frod can be corrected to Ford if the next word is
dealership and to Frodo if the next word is Baggins—a character from The Lord
of the Rings trilogy.

» Spell checking can be sensitive to domains. Another big advantage of this approach
over dictionary-based spell checking is that the corrections are motivated by data in
the training corpus. So, trt will be corrected to tort in a legal domain, tart in a
cooking domain, and TRt in a bioinformatics domain.

How to do it...

Let's look at the steps involved in running spell checking:

1. Inyour IDE, run the SpellcCheck class, or in the command line, type the
following—note that we are allocating 1 gigabyte of heap space with the —-xmx1g flag:

java -Xmxlg -cp lingpipe-cookbook.l.0.jar:lib/lingpipe-
4.1.0.jar:1lib/opencsv-2.4.jar com.lingpipe.cookbook.chapters6.
SpellCheck
2. Be patient; the spell checker takes a minute or two to train.
Now, let's enter some misspelled words such as beleive:
Enter word, . to quit:
>beleive
Query Text: beleive
Best Alternative: believe
Nbest: 0: believe Score:-13.97322991490364
Nbest: 1: believed Score:-17.326215342327487
Nbest: 2: believes Score:-20.8595682233572
Nbest: 3: because Score:-21.468056442099623

4. Asyou can see, we got the best alternative to the input text as well as some other
alternatives. They are sorted by the likelihood of being the best alternative.
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5. Now, we can play around with different input and see how well this spell checker
does. Try multiple words in the input and see how it performs:

The rain in Spani falls mainly on the plain.
Query Text: The rain in Spani falls mainly on the plain.
Best Alternative: the rain in spain falls mainly on the plain .

Nbest: 0: the rain in spain falls mainly on the plain .
Score:-96.30435947472415

Nbest: 1: the rain in spain falls mainly on the plan .
Score:-100.55447634639404

Nbest: 2: the rain in spain falls mainly on the place .
Score:-101.32592701496742

Nbest: 3: the rain in spain falls mainly on the plain ,
Score:-101.81294112237359

6. Also, try inputting some proper names to see how they get evaluated.

Now, let's look at what makes all this tick. We will start off by setting up
TrainSpellChecker, which requires a NGramProcessLM instance, TokenizerFactory
and an EditDistance object that sets up weights for edit operations such as deletion,
insertion, substitution, and so on:

public static void main(String[] args) throws IOException,
ClassNotFoundException {
double matchWeight = -0.0;
double deleteWeight = -4.0;
double insertWeight = -2.5;
double substituteWeight = -2.5;
double transposeWeight = -1.0;

FixedWeightEditDistance fixedEdit =
new FixedWeightEditDistance (matchWeight,
deleteWeight,
insertWeight,
substituteWeight,
transposeWeight) ;
int NGRAM_LENGTH = 6;
NGramProcessLM 1lm = new NGramProcessLM (NGRAM LENGTH) ;

TokenizerFactory tokenizerFactory =
IndoEuropeanTokenizerFactory.INSTANCE;
tokenizerFactory =
new com.aliasi.tokenizer.LowerCaseTokenizerFactory (tokenizerFacto
ry);
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NGramProcessLM needs to know the number of characters to sample in its modeling of the
data. Reasonable values have been supplied in this example for the weighted edit distance,
but they can be played with to help with variations due to particular datasets:

TrainSpellChecker sc =
new TrainSpellChecker (1m, fixedEdit, tokenizerFactory) ;

TrainSpellChecker can now be constructed, and next, we will load 150,000 lines of books
from Project Gutenberg. In a search-engine context, this data will be the data in your index:

File inFile = new File("data/project_gutenberg books.txt");

String bigEnglish =
Files.readFromFile (inFile, Strings.UTF8) ;

sc.handle (bigEnglish) ;

Next, we will add entries from a dictionary to help with rare words:

File dict = new File("data/websters words.txt");
String webster =

Files.readFromFile (dict, Strings.UTFS8) ;
sc.handle (webster) ;

Next, we will compile TrainSpellChecker so that we can instantiate
CompiledSpellChecker. Typically, the output of the compileTo () operation is
written to disk, and CompiledSpellChecker is read and instantiated from the disk,
but the in-memory option is being used here:

CompiledSpellChecker csc =
(CompiledSpellChecker) AbstractExternalizable.compile(sc) ;

Note that there is also a way to deserialize to TrainSpellChecker in cases where
more data might be added later. CompiledSpellChecker will not accept further
training instances.

CompiledSpellChecker admits many fine-tuning methods that are not relevant
during training but are relevant in use. For example, it can take a set of strings that
are not to be edited; in this case, the single value is 1ingpipe:

Set<String> dontEdit = new HashSet<Strings> () ;
dontEdit.add ("lingpipe") ;
csc.setDoNotEditTokens (dontEdit) ;

If these tokens are seen in the input, they will not be considered for edits. This can have a
huge impact on the run time. The larger this set is, the faster the decoder will run. Configure
the set of do-not-edit tokens to be as large as possible if execution speed is important.
Usually, this is done by taking the object to counter-map from the compiled spell checker
and saving tokens with high counts.
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During training, the tokenizer factory was used to normalize data into tokens separated by a
single whitespace. It is not serialized in the compile step, so if token sensitivity is needed in
do-not-edit tokens, then it must be supplied:

csc.setTokenizerFactory (tokenizerFactory) ;
int nBest = 3;
csc.setNBest (64) ;

The nBest parameter is set for the number of hypotheses that will be considered in modifying
inputs. Even though the nBest size in the output is set to 3, it is advisable to allow for a
larger hypothesis space in the left-to-right exploration of best performing edits. Also, the class
has methods to control what edits are allowed and how they are scored. See the tutorial and
Javadoc for more about them.

Finally, we will do a console I/0 loop to generate spelling variations:

BufferedReader reader =

new BufferedReader (new InputStreamReader (System.in)) ;
String query = "";
while (true) {

System.out.println("Enter word, . to quit:");
query = reader.readLine() ;
if (query.equals(".")){

break;

}
String bestAlternative = csc.didYouMean (query) ;
System.out.println("Best Alternative: "
+ bestAlternative) ;
int i = 0;
Iterator<ScoredObject<String>> iterator =
csc.didYouMeanNBest (query) ;
while (i < nBest) {
ScoredObject<String> so = iterator.next();

System.out.println("Nbest: " + i + ": "
+ so.getObject () + " Score:" + go.score());
i++;

}

We have included a dictionary in this model, and we will just feed the
N dictionary entries into the trainer like any other data.

Q It might be worthwhile to boost the dictionary by training each word in the
dictionary more than once. Depending on the count of the dictionary, it
might dominate or be dominated by the source training data.
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See also

The spelling-correction tutorial is more complete and covers evaluation at http://
alias-i.com/lingpipe/demos/tutorial/querySpellChecker/read-me.
html

The Javadoc for CompiledSpellChecker can be found at http://alias-1i.
com/lingpipe/docs/api/com/aliasi/spell/CompiledSpellChecker.
html

More information on how spell checkers work is given in the textbook, Speech and
Language Processing, Jurafsky, Dan, and James H. Martin, 2000, Prentice-Hall

The case restoring corrector

A case-restoring spell corrector, also called a truecasing corrector, only restores the case and
does not change anything else, that is, it does not correct spelling errors. This is very useful
when dealing with low-quality text from transcriptions, automatic speech-recognition output,
chat logs, and so on, which contain a variety of case challenges. We typically want to enhance
this text to build better rule-based or machine-learning systems. For example, news and video
transcriptions (such as closed captions) typically have errors, and this makes it harder to use
this data to train NER. Case restoration can be used as a normalization tool across different
data sources to ensure that all the data is consistent.

How to do it...

1.

In your IDE, run the CaseRestore class, or in the command line, type the following:
java -cp lingpipe-cookbook.l.0.jar:1lib/lingpipe-4.1.0.jar com.
lingpipe.cookbook.chapter6.CaseRestore

Now, let's type in some mangled-case or single-case input:

Enter input, . to quit:

george washington was the first president of the u.s.a

Best Alternative: George Washington was the first President of the
U.S.A

Enter input, . to quit:
ITS RUDE TO SHOUT ON THE WEB

Best Alternative: its rude to shout on the Web
As you can see, the mangled case gets corrected. If we use more modern text, such

as current newspaper data or something similar, this would be directly applicable to
case-normalizing broadcast news transcripts or closed captions.
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The class works in a manner similar to the spelling correction in which we have a model
specified by the language model and a channel model specified by the edit distance metric.
The distance metric, however, only allows case changes, that is, case variants are zero cost,
and all other edit costs are set to Double .NEGATIVE INFINITY:

We will focus on what is different from the previous recipe rather than going over all the
source. We will train the spell checker with some English text from Project Gutenberg and
use the CASE_RESTORING edit distance from the CompiledSpellChecker class:

int NGRAM_LENGTH = 5;
NGramProcessLM 1lm = new NGramProcessLM(NGRAM LENGTH) ;

TrainSpellChecker sc = new
TrainSpellChecker (1m, CompiledSpellChecker.CASE RESTORING) ;

Once again, by invoking the bestAlternative method, we will get the best estimate
of case-restored text:

String bestAlternative = csc.didYouMean (query) ;

That's it. Case restoration is made easy.

» The paper by Lucian Vlad Lita et al., 2003, at http://www.cs.cmu.edu/~11lita/
papers/lita.truecasing-acl2003.pdf is a good reference on truecasing

Automatic phrase completion

Automatic phrase completion is different from spelling correction, in that, it finds the most
likely completion among a set of fixed phrases for the text entered so far by a user.

Obviously, automatic phrase completion is ubiquitous on the Web, for instance, on
https://google.com. For example, if | type anaz as a query, Google pops up the
following suggestions:

=

Google | ans
amazon
amazon prime
amazon promo codes

amazon books
About 501,0

00 results (0.39 seconds)
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Note that the application is performing spelling checking at the same time as completion.
For instance, the top suggestion is amazon, even though the query so far is anaz. This is not
surprising, given that the number of results reported for the phrases that start with anaz is
probably very small.

Next, note that it's not doing word suggestion but phrase suggestion. Some of the results,
such as amazon prime are two words.

One important difference between autocompletion and spell checking is that autocompletion
typically operates over a fixed set of phrases that must match the beginning to be completed.
What this means is that if | type a query I want to find anaz, there are no suggested
completions. The source of phrases for a web search is typically high-frequency queries from
the query logs.

In LingPipe, we use the AutoCompleter class, which maintains a dictionary of phrases
with counts and provides suggested completions based on prefix matching by weighted edit
distance and phrase likelihood.

The autocompleter finds the best scoring phrases for a given prefix. The score of a phrase
versus a prefix is the sum of the score of the phrase and the maximum score of the prefix
against any prefix of the phrase. The score for a phrase is just its maximum likelihood
probability estimate, that is, the log of its count divided by the sum of all counts.

Google and other search engines most likely use their query counts as the data for the best
scoring phrases. As we don't have query logs here, we'll use US census data about cities in the
US with populations greater than 100,000. The phrases are the city names, and their counts
are their populations.

How to do it...

1. Inyour IDE, run the AutoComplete class, or in the command line, type the
following command:
java -cp lingpipe-cookbook.l.0.jar:1lib/lingpipe-4.1.0.jar com.
lingpipe.cookbook.chapter6.AutoComplete

2. Enter some US city names and look at the output. For example, typing new will result
in the following output:

Enter word, . to quit:

new

|new|

-13.39 New York,New York
-17.89 New Orleans,Louisiana
-18.30 Newark,New Jersey

-18.92 Newport News,Virginia
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-19.39 New Haven, Connecticut
If we misspell 'new' and type 'mew' instead,
Enter word, . to quit:

mew

| mew |
-13.39 New York,New York
-17.89 New Orleans,Louisiana

-19.39 New Haven, Connecticut

Typing city names that don't exist in our initial list will not return any output:
Enter word, . to quit:

Alta,Wyoming

|Alta, Wyoming|

Configuring an autocompleter is very similar to configuring spelling, except that instead of
training a language model, we will supply it with a fixed list of phrases and counts, an edit
distance metric, and some configuration parameters. The initial portion of this code just
reads a file and sets up a map of phrases to counts:

File wordsFile = new File("data/city populations 2012.csv");

String[] lines =

FileLineReader.readLineArray (wordsFile, "ISO-8859-1") ;

ObjectToCounterMap<String> cityPopMap = new
ObjectToCounterMap<Strings () ;

int lineCount = 0;

for (String line : lines) {

if (lineCount++ <1) continue;
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int 1 = line.lastIndexOf(',");

if (i < 0) continue;

String phrase = line.substring(0,1i);

String countString = line.substring(i+l) ;
Integer count = Integer.valueOf (countString) ;

cityPopMap.set (phrase, count) ;




Chapter 6

The next step is to configure the edit distance. This will measure how close a prefix of a target
phrase is to the query prefix. This class uses a fixed weight edit distance, but any edit distance
might be used in general:

double matchWeight = 0.0;

double insertWeight = -10.0;
double substituteWeight = -10.0;
double deleteWeight = -10.0;

double transposeWeight = Double.NEGATIVE INFINITY;
FixedWeightEditDistance editDistance =
new FixedWeightEditDistance (matchWeight,
deleteWeight,
insertWeight,
substituteWeight,
transposeWeight) ;

There are a few parameters to tune autocompletion: the edit distance and search parameters.
The edit distance is tuned in exactly the same way as it is for spelling. The maximum number
of results to return is more of an application's decision than a tuning's decision. Having said
this, smaller result sets are faster to compute. The maximum queue size indicates how big the
set of hypotheses can get inside the autocompleter before being pruned. Set maxQueueSize
as low as possible while still performing adequately to increase speed:

int maxResults = 5;

int maxQueueSize = 10000;

double minScore = -25.0;

AutoCompleter completer =
new AutoCompleter (cityPopMap, editDistance,
maxResults, maxQueueSize, minScore) ;

» Review the Javadoc for the AutoCompleter class at http://alias-i.com/
lingpipe/docs/api/com/aliasi/spell/AutoCompleter.html

Single-link and complete-link clustering

using edit distance

Clustering is the process of grouping a collection of objects by their similarities, that is, using
some sort of distance measure. The idea behind clustering is that objects within a cluster are
located close to each other, but objects in different clusters are farther away from each other.
We can divide clustering techniques very broadly into hierarchical (or agglomerative) and
divisional techniques. Hierarchical techniques start by assuming that every object is its own
cluster and merge clusters together until a stopping criterion has been met.
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For example, a stopping criterion can be a fixed distance between every cluster. Divisional
techniques go the other way and start by grouping all the objects into one cluster and split it
until a stopping criterion has been met, such as the number of clusters.

We will review hierarchical techniques in the next few recipes. The two clustering
implementations we will provide in LingPipe are single-link clustering and complete-link
clustering; the resulting clusters form what is known as a partition of the input set. A set of
sets is a partition of another set if each element of the set is a member of exactly one set of
the partition. In mathematical terms, the sets that make up a partition are pair-wise disjoint,
and the union is the original set.

A clusterer takes a set of objects as input and returns a set of sets of objects as output, that
is, in code, Clusterer<Strings> has a cluster method, which operates on Set<String>
and returns Set<Set<String>>.

A hierarchical clusterer extends the Clusterer interface and also operates on a set of
objects, but it returns Dendrogram instead of a set of sets of objects. A dendrogram is a
binary tree over the elements being clustered, with distances attached to each branch, which
indicates the distance between the two sub-branches. For the aa, aaa, aaaaa, bbb, bbbb
strings, the single-link based dendrogram with EditDistance as the metric looks like this:

aaa
aa

aaaaa

bbbb
bbb

The preceding dendrogram is based on single-link clustering, which takes the minimum
distance between any two elements as the measure of similarity. So, when {'aa', 'aaa'}

is merged with { 'aaaa' }, the score is 2.0 by adding two a to aaa. Complete-link clustering
takes the maximum distance between any two elements, which would be 3.0, with an addition
of three a to aa. Single-link clustering tends to create highly separated clusters, whereas
complete-link clustering tends to create more tightly centered clusters.

There are two ways to extract clusterings from dendrograms. The simplest way is to set

a distance bound and maintain every cluster formed at less than or equal to this bound.
The other way to construct a clustering is to continue cutting the highest distance cluster
until a specified number of clusters is obtained.

In this example, we will look at single-link and complete-link clustering with edit distance as
the distance metric. We will try to cluster city names by EditDistance, where the maximum
distance is 4.




Chapter 6

How to do it...

1.

In your IDE, run the HierarchicalClustering class, or in the command line,
type the following:

java -cp lingpipe-cookbook.l.0.jar:1lib/lingpipe-4.1.0.jar com.
lingpipe.cookbook.chapter6.HierarchicalClustering

The output is various clustering approaches to the same underlying set of Strings.
In this recipe, we will intersperse the source and output. First, we will create our set
of strings:

public static void main(String[] args) throws
UnsupportedEncodingException, IOException

Set<String> inputSet = new HashSet<Strings>() ;
String [] input =

{ "aa", "aaa", "aaaaa", llbbbll, "bbbb" }’.
inputSet.addAll (Arrays.asList (input)) ;

Next, we will set up a single-link instance with EditDistance and create the
dendrogram for the preceding set and print it out:

boolean allowTranspositions = false;
Distance<CharSequences> editDistance =
new EditDistance (allowTranspositions) ;

AbstractHierarchicalClusterer<String> slClusterer =
new SingleLinkClusterer<Strings>(editDistance) ;

Dendrogram<Strings> slDendrogram =
slClusterer.hierarchicalCluster (inputSet) ;

System.out.println("\nSingle Link Dendrogram") ;
System.out.println (slDendrogram.prettyPrint ()) ;

The output will be as follows:

Single Link Dendrogram

aaa
aa

aaaaa

bbbb
bbb

245




String Comparison and Clustering

5.
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Next up, we will create and print out the complete-link treatment of the same set:

AbstractHierarchicalClusterer<String> clClusterer =
new CompleteLinkClusterer<Strings>(editDistance) ;

Dendrogram<String> clDendrogram =
clClusterer.hierarchicalCluster (inputSet) ;

System.out.println("\nComplete Link Dendrogram") ;
System.out.println(clDendrogram.prettyPrint ()) ;

This will produce the same dendrogram, but with different scores:

Complete Link Dendrogram

aaa
aa

aaaaa

bbbb
bbb

Next, we will produce the clusters where the number of clusters is being controlled for
the single-link case:

System.out.println("\nSingle Link Clusterings with k Clusters");
for (int k = 1; k < 6; ++k ) {
Set<Set<String>> slKClustering =
slDendrogram.partitionK (k) ;
System.out.println(k + " " + slKClustering) ;

}

This will produce the following—it will be the same for the complete link, given the
input set:

Single Link Clusterings with k Clusters
1 [[bbbb, aaa, aa, aaaaa, bbb]l]

2 [[aaa, aa, aaaaal, [bbbb, bbbl]

3 [[aaaaal, [bbbb, bbbl, [aaa, aall

4 [[bbbb, bbbl, [aal, [aaal, [aaaaal]l

5 [[bbbb], [aal, [aaal, [aaaaa], [bbb]]




10.

11.

12.

13.
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The following code snippet is the complete-link clustering without a max distance:

Set<Set<String>> slClustering = slClusterer.cluster (inputSet) ;
System.out.println("\nComplete Link Clustering No "

+ "Max Distance");
System.out.println(slClustering + "\n");

The output will be:
Complete Link Clustering No Max Distance

[ [bbbb, aaa, aa, aaaaa, bbbl]

Next, we will control the max distance:

for(int k = 1; k < 6; ++k ){
clClusterer.setMaxDistance (k) ;

System.out.println("Complete Link Clustering at " +
"Max Distance= " + k) ;

Set<Set<String>> slClusteringMd =
clClusterer.cluster (inputSet) ;

System.out.println(slClusteringMd) ;

}

The following is the effects of clustering limited by maximum distance for the
complete-link case. Note that the single-link input here will have all elements
in the same cluster at 3:

Complete Link Clustering at Max Distance= 1
[ [bbbb, bbbl, [aaa, aal, [aaaaall

Complete Link Clustering at Max Distance= 2
[ [bbbb, bbbl, [aaa, aal, [aaaaall

Complete Link Clustering at Max Distance= 3
[[bbbb, bbb], [aaa, aa, aaaaal]

Complete Link Clustering at Max Distance= 4
[[bbbb, bbb], [aaa, aa, aaaaall

Complete Link Clustering at Max Distance= 5

[ [bbbb, aaa, aa, aaaaa, bbbl]

That's it! We have exercised a good portion of LingPipe's clustering API.
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There's more...

Clustering is very sensitive to Distance that is used for the comparison of clusters. Consult
the Javadoc for the 10 implementing classes for possible variations. TfIdfDistance can
come in very handy to cluster language data.

K-means (++) clustering is a feature-extractor-based clustering. This is what Javadoc says
about it:

K-means clustering may be viewed as an iterative approach to the minimization
of the average square distance between items and their cluster centers...

See also...

» For a detailed tutorial including details on evaluations, go over to http://alias-1i.
com/lingpipe/demos/tutorial/cluster/read-me.html

Latent Dirichlet allocation (LDA) for

multitopic clustering

Latent Dirichlet allocation (LDA) is a statistical technique to document clustering based

on the tokens or words that are present in the document. Clustering such as classification
generally assumes that categories are mutually exclusive. The neat thing about LDA is that it
allows for documents to be in multiple topics at the same time, instead of just one category.
This better reflects the fact that a tweet can be about Disney and Wally World, among

other topics.

The other neat thing about LDA, like many clustering techniques, is that it is unsupervised,
which means that no supervised training data is required! The closest thing to training data
is that the number of topics must be specified before hand.

LDA can be a great way to explore a dataset where you don't know what you don't know.
It can also be difficult to tune, but generally, it does something interesting. Let's get a
system working.

For each document, LDA assigns a probability of belonging to a topic based on the words

in that document. We will start with documents that are converted to sequences of tokens.
LDA uses the count of the tokens and does not care about the context or order in which those
words appear. The model that LDA operates on for each document is called "a bag of words"
to denote that the order is not important.
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The LDA model consists of a fixed number of topics, each of which is modeled as a
distribution over words. A document under LDA is modeled as a distribution over topics.
There is a Dirichlet prior on both the topic distributions over words and the document
distributions over topics. Check out the Javadoc, referenced tutorial, and research literature
if you want to know more about what is going on behind the scenes.

Getting ready

We will continue to work with the . csv data from tweets. Refer to Chapter 1, Simple
Classifiers, to know how to get tweets, or use the example data from the book. The recipe
uses data/gravity tweets.csv.

This recipe closely follows the tutorial at http://alias-1i.com/lingpipe/demos/
tutorial/cluster/read-me.html, which goes into much more detail than we do in the
recipe. The LDA portion is at the end of the tutorial.

How to do it...

This section will be a source code review for src/com/1lingpipe/cookbook/chapteré/
Lda. java with some references to the src/com/1lingpipe/cookbook/chapter6/
LdaReportingHandler. java helping class that will get discussed as we use parts of it:

1. The top of the main () method gets data from a standard csv reader:

File corpusFile = new File(args[0]) ;
List<String[]> tweets = Util.readCsvRemoveHeader (corpusFile) ;

2. Next up is a pile of configuration that we will address line by line. The minTokenCount
filters all tokens that are seen less than five times in the algorithm. As datasets get
bigger, this number can get larger. For 1100 tweets, we are assuming that at least five
mentions will help reduce the overall noisiness of Twitter data:

int minTokenCount = 5;

3. The numTopics parameter is probably the most critical configuration value, because
it informs the algorithm about how many topics to find. Changes to this number can
produce very different topics. You can experiment with it. By choosing 10, we are
saying that the 1100 tweets talk about 10 things overall. This is clearly wrong; maybe,
100 is closer to the mark. It is possible that the 1100 tweets had more than 1100
topics, since a tweet can be in more than one topic. Play around with it:

short numTopics = 10;
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4.

10.

According to the Javadoc, a rule of thumb for documentTopicPrior is to setit to
5 divided by the number of topics (or less if there are very few topics; 0.1 is typically
the maximum value used):

double documentTopicPrior = 0.1;

A generally useful value for the topicWordPrior is as follows:
double topicWordPrior = 0.01;

The burninEpochs parameter sets how many epochs to run before sampling.
Setting this to greater than O has desirable properties, in that, it avoids correlation in
the samples. The sampleLag controls how often the sample is taken after burning
is complete, and numSamples controls how many samples to take. Currently, 2000
samples will be taken. If burninEpochs were 1000, then 3000 samples would be
taken with a sample lag of 1 (every time). If sampleLag was 2, then there would

be 5000 iterations (1000 burnin, 2000 samples taken every 2 epochs for a total of
4000 epochs). Consult the Javadoc and tutorial for more about what is going on here:
int burninEpochs = 0;

int samplelag = 1;

int numSamples = 2000;

Finally, randomSeed initializes the random process in GibbsSampler:
long randomSeed = 6474835;

SymbolTable is constructed; this will store the mapping from strings to integers for
efficient processing:

SymbolTable symbolTable = new MapSymbolTable() ;

A tokenizer is next with our standard one:

TokenzierFactory tokFactory = IndoEuropeanTokenizerFactory.
INSTANCE;

Next, the configuration of LDA is printed out:

System.out.println ("Input file=" + corpusFile) ;
System.out.println ("Minimum token count=" + minTokenCount) ;
System.out.println ("Number of topics=" + numTopics) ;
System.out.println("Topic prior in docs=" + documenttopicPrior) ;
System.out.println("Word prior in topics=" + wordPrior) ;
System.out.println ("Burnin epochs=" + burninEpochs) ;
System.out.println("Sample lag=" + samplelag) ;

(

System.out.println ("Number of samples=" + numSamples) ;
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11. Then, we will create a matrix of documents and tokens that will be input to LDA and
a report on how many tokens are present:

int [] [] docTokens = LatentDirichletAllocation.tokenizeDocuments (Id
aTexts, tokFactory, symbolTable, minTokenCount) ;
System.out.println ("Number of unique words above count"

+ " threshold=" + symbolTable.numSymbols()) ;

12. A sanity check will follow by reporting a total token count:
int numTokens = 0;

for (int[] tokens : docTokens) {
numTokens += tokens.length;
}

System.out.println("Tokenized. #Tokens After Pruning=" +
numTokens) ;

13. In order to get progress reports on the epochs/samples, a handler is created to
deliver the desired news. It takes symbolTable as an argument to be able to
recreate the tokens in reporting:

LdaReportingHandler handler = new LdaReportingHandler (symbolTab
le);

14. The method that the search accesses in LdaReportingHandler follows:

public void handle (LatentDirichletAllocation.GibbsSample sample) {
System.out.printf ("Epoch=%3d elapsed time=%s\n",
sample.epoch(),
Strings.msToString (System.currentTimeMillis ()

- mStartTime)) ;
if ((sample.epoch() % 10) == 0) {
double corpusLog2Prob = sample.corpusLog2Probability () ;
System.out.println (" log2 p(corpus|phi,theta)="
+ corpusLog2Prob + " token cross" +

entropy rate=" +
(-corpusLog2Prob/sample.numTokens ())) ;

}
15. After all this setup, we will get to run LDA:

LatentDirichletAllocation.GibbsSample sample =
LatentDirichletAllocation.gibbsSampler (docTokens,
numTopics,
documentTopicPrior,
wordPrior,
burninEpochs,
samplelag,
numSamples,
new Random (randomSeed) ,
handler) ;
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16.

17.

18.

19.
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Wait, there's more! However, we are almost done. We just need a final report:

int maxWordsPerTopic = 20;
int maxTopicsPerDoc = 10;
boolean reportTokens = true;
handler.reportTopics (sample, maxWordsPerTopic,
maxTopicsPerDoc, reportTokens) ;
Finally, we will get to run this code. Type the following command:
java -cp lingpipe-cookbook.l.0.jar:1lib/lingpipe-4.1.0.jar:1lib/
opencsv-2.4.jar com.lingpipe.cookbook.chapter6.LDA

Have a look at a sample of the resulting output that confirms the configuration and
the early reports from the search epochs:

Input file=data/gravity tweets.csv
Minimum token count=1
Number of topics=10
Topic prior in docs=0.1
Word prior in topics=0.01
Burnin epochs=0
Sample lag=1
Number of samples=2000
Number of unique words above count threshold=1652
Tokenized. #Tokens After Pruning=10101
Epoch= 0 elapsed time=:00
log2 p(corpus|phi,theta)=-76895.71967475882
token cross-entropy rate=7.612683860484983
Epoch= 1 elapsed time=:00

After the epochs are done, we will get a report on the topics found. The first topic
starts with a listing of words ordered by count. Note that the topic does not have

a title. The topic meaning can be gleaned by scanning the words that have high
counts and a high z score. In this case, there is a word movie with a Z score of 4.0,
a gets 6.0, and looking down the list, we see good with a score of 5.6. The Z score
reflects how nonindependent the word is from the topic with a higher score; this
means that the word is more tightly associated with the topic. Look at the source for
LdaReportingHandler to get the exact definition

TOPIC 0 (total count=1033)

WORD COUNT Z
movie 109 4.0
Gravity 73 1.9
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a 72 6.0
is 57 4.9
! 52 3.2
was 45 6.0
. 42 -0.4
? 41 5.8
good 39 5.6

20. The preceding output is pretty awful, and the other topics don't look any better.
The next topic shows no more potential, but some obvious problems are arising
because of tokenization:

TOPIC 1 (total count=1334)

WORD COUNT Z
/ 144 2.2
117 2.5
# 91 3.5
@ 73 4.2
72 1.0
! 50 2.7
co 49 1.3
t 47 0.8
http 47 1.2

21. Donning our system tuner's hats, we will adjust the tokenizer to be the new
RegExTokenizerFactory (" [*\\s]+") tokenizer, which really cleans up the
clusters, increases clusters to 25, and applies Util.filterJaccard (tweets,
tokFactory, .5) toremove duplicates (1100 to 301). These steps were not
performed one at a time, but this is a recipe, so we present the results of some
experimentation. There was no evaluation harness, so this was a process that was
made up of making a change, seeing if the output looks better and so on. Clusters
are notoriously difficult to evaluate and tune on such an open-ended problem.

The output looks a bit better.

22. On scanning the topics, we get to know that there are still lots of low-value words that
crap up the topics, but Topic 18 looks somewhat promising, with a high Z score for
best and ever:

OPIC 18 (total count=115)

WORD COUNT Z
movie 24 1
the 24 1.3
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23. Looking further into the output, we will see some documents that score high
for Topic 18:

DOC 34

TOPIC COUNT PROB
18 3 0.270
4 2 0.183
3 1 0.096
6 1 0.096
8 1 0.096
19 1 0.096

Gravity(4) is(6) the(8) best(18) movie(l9) I've(1l8) seen(18) in(3)

a(4)

DOC 50

TOPIC COUNT PROB
18 6 0.394
17 4 0.265
5 2 0.135
7 1 0.071

The (17) movie(1l8) Gravity(7) has(17) to(l7) be(5) one(1l8) of(18)
the(18) best(18) of(18) all(1l7) time(5)




Chapter 6

24. Both seem reasonable for a best movie ever topic. However, be warned that the
other topics/document assignments are fairly bad.

We can't really claim victory over this dataset in all honesty, but we have laid out the
mechanics of how LDA works and its configuration. LDA has not been a huge commercial
success, but it has produced interesting concept-level implementations for National Institutes
of Health and other customers. LDA is a tuner's paradise with many ways to play with the
resulting clustering. Check out the tutorial and Javadoc, and send us your success stories.
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Finding Coreference
Between Concepts/
People

In this chapter, we will cover the following recipes:

» Named entity coreference with a document
» Adding pronouns to coreference
» Cross-document coreference

» The John Smith problem

Introduction

Coreference is a basic mechanism in human language that allows two sentences to

be about the same thing. It's a big deal for human communication—it functions much in
the same way as variable names do in programming languages, with the additional subtly
that scope is defined by very different rules than blocks. Coreference is less important
commercially—maybe this chapter will help change that. Here is an example:

Alice walked into the garden. She was surprised.

Coreference exists between Alice and She; the phrases talk about the same thing. It all
gets very interesting when we start asking whether Alice in one document is the same as
Alice in another.
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Coreference, like word-sense disambiguation, is a next-generation industrial capacity. The
challenges of coreference contribute to the insistence of the IRS to have a social security
number that unambiguously identifies persons independent of their names. Many of the
techniques discussed were developed to help track persons and organizations in text data
with varying degrees of success.

Named entity coreference with a document

As seen in Chapter 5, Finding Spans in Text — Chunking, LingPipe can use a variety of
techniques to recognize proper nouns that correspond to persons, places, things, genes, and
so on. However, chunking doesn't quite finish the job, because it doesn't help with finding an
entity when two named entities are the same. Being able to say that John Smith is the same
entity as Mr. Smith, John or even an exact repeat, John Smith, can be very useful—so useful
that the idea was the basis of our company when we were a baby-defense contractor. Our
novel contribution was the generation of sentences indexed by what entities they mentioned,
which turned out to be an excellent way to summarize what was being said about that entity,
particularly if the mapping spanned languages—we call it entity-based summarization.

The idea for entity-based summarization came about as a result of a talk
Baldwin gave at the University of Pennsylvania at a graduate student
seminar. Mitch Marcus, the then department chair, thought that showing all
%i\ sentences that mentioned an entity—including pronouns—will be an excellent
summary of that entity. In some sense, this comment is why LingPipe exists.
It led to Baldwin leading a UPenn DARPA project and then the creation of
Alias-i. Lesson learned—talk to everybody about your ideas and research.

This recipe will take you through the basics of computing coreferences.

Getting ready

Lay your hands on some narrative text; we will use a simple example that we know
works—coreference systems usually need a lot of tuning to the domain. Feel free to
pick something else, but it will need to be in English.

How to do it...

As usual, we will take you through running code from the command line and then dive into
what the code actually does. Off we go.

1. We will start with a simple text to illustrate coreference. The file is in data/
simpleCoref . txt, and it contains:

John Smith went to Washington. Mr. Smith is a business man.
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Get thee to a command line and a Java interpreter and reproduce the following:

java -cp lingpipe-cookbook.l.0.jar:1lib/lingpipe-4.1.0.jar: com.
lingpipe.cookbook.chapter7.NamedEntityCoreference

This results in:

Reading in file :data/simpleCoref.txt

Sentence Text=John Smith went to Washington.
mention text=John Smith type=PERSON id=0
mention text=Washington type=LOCATION id=1

Sentence Text=Mr. Smith is a business man.
mention text=Mr. Smith type=PERSON id=0

There are three named entities found. Note that there is an 1D field in the output.
The John SmithandMr. Smith entities have the same ID, id=0. This means
that the phrases are considered to be coreferent. The remaining entity Washington
has a different ID, id=1, and is not coreferent with John Smith / Mr. Smith.

Create your own text file, supply it as an argument on the command line, and see
what gets computed.

The coreference code in LingPipe is a heuristic system built on top of sentence detection and
named-entity recognition. The overall flow is as follows:

1.
2.

Tokenize the text.

Detect sentences in the document, for each sentence, detect named entities
in the sentence in the left-to-right order, and for each named entity, perform
the following tasks:

1. Create a mention. A mention is a single instance of a named entity.

2. Mentions can be added to the existing mention chains, or they can start
their own mention chains.

3. Try to resolve the mention to a mention chain that is already created.
If a unique match is found, then add the mention to the mention chain;
otherwise, create a new mention chain.

The code is in src/com/lingpipe/cookbook/chapter7/NamedEntityCoreference.
java. The main () method starts by setting up the parts of this recipe, starting with a
tokenizer factory, sentence chunker, and finally, a named-entity chunker:

public static void main(String[] args)

throws ClassNotFoundException, IOException {
String inputDoc = args.length > 0 ? args[0]
"data/simpleCoref.txt";
System.out.println("Reading in file :"
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+ inputDoc) ;
TokenizerFactory mTokenizerFactory
= IndoEuropeanTokenizerFactory.INSTANCE;
SentenceModel sentenceModel
= new IndoEuropeanSentenceModel () ;
Chunker sentenceChunker
= new SentenceChunker (mTokenizerFactory, sentenceModel) ;
File modelFile
= new File("models/ne-en-news-"
+ "mucé .AbstractCharLmRescoringChunker") ;
Chunker namedEntChunker
= (Chunker) AbstractExternalizable.readObject (modelFile) ;

Now, we have set up the basic infrastructure for the recipe. Next is a coreference-specific class:

MentionFactory mf = new EnglishMentionFactory () ;

The MentionFactory class creates mentions from phrases and types—the current
source is named entities. Next, the coreference class is created with MentionFactory
as a parameter:

WithinDocCoref coref = new WithinDocCoref (mf) ;

The WithinDocCoref class wraps all the mechanics of computing coreference. From
Chapter 5, Finding Spans in Text - Chunking, you should be familiar with the code to get the
document text, detect sentences, and iterate over the sentences that apply a named-entity
chunker to each sentence:

File doc = new File (inputDoc) ;
String text = Files.readFromFile (doc,Strings.UTF8) ;
Chunking sentenceChunking
= sentenceChunker.chunk (text) ;
Iterator sentencelt

= sentenceChunking.chunkSet () .iterator () ;
for (int sentenceNum = 0; sentencelt.hasNext (); ++sentenceNum) {
Chunk sentenceChunk = (Chunk) sentencelt.next();

String sentenceText
= text.substring(sentenceChunk.start (),
sentenceChunk.end()) ;
System.out.println("Sentence Text=" + sentenceText) ;

Chunking neChunking = namedEntChunker.chunk (sentenceText) ;
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In the context of the current sentence, the named entities from the sentence are iterated over
in the left-to-right order as they would be read. We know this because the ChunkingImpl
class returns chunks in the order that they were added, and our HMMChunker adds them in
the left-to-right order:

Chunking neChunking = namedEntChunker.chunk (sentenceText) ;
for (Chunk neChunk : neChunking.chunkSet()) {

The following code takes the information from the chunk—type and phrase, but not the offset
information, and creates a mention:

String mentionText
= sentenceText.substring (neChunk.start (),
neChunk.end()) ;
String mentionType = neChunk.type() ;
Mention mention = mf.create (mentionText,mentionType) ;

The next line runs coreference with the mention and what sentence it is in and returns its ID:
int mentionId = coref.resolveMention (mention, sentenceNum) ;
System.out.println (" mention text=" + mentionText

+ " type=" + mentionType
+ " id=" + mentionId) ;

If the mention was resolved to an existing entity, it will have that ID, as we saw with
Mr. Smith. Otherwise, it will get a distinct ID and itself be available as an antecedent
for subsequent mentions.

This covers the mechanics of running within a document coreference. The upcoming recipes will
cover the modification of this class. The next recipe will add pronouns and provide references.

Adding pronouns to coreference

The preceding recipe handled coreference between named entities. This recipe will add
pronouns to the mix.
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How to do it...

This recipe will use an interactive version to help you explore the properties of the coreference
algorithm. The system is very dependent on the quality of the named-entity detection, so use
examples that the HMM is likely to get right. This was trained on Wall Street Journal articles
from the '90s.

1. Saddle up your console and type the following command:

java -cp lingpipe-cookbook.l.0.jar:1lib/lingpipe-4.1.0.jar: com.
lingpipe.cookbook.chapter7.Coreference

2. Inthe resulting command prompt, type this:

Enter text followed by new line

>John Smith went to Washington. He was a senator.
Sentence Text=John Smith went to Washington.
mention text=John Smith type=PERSON id=0

mention text=Washington type=LOCATION id=1
Sentence Text= He was a senator.

mention text=He type=MALE PRONOUN id=0

3. The shared ID between He and John Smith indicates the coreference between the
two. More examples will follow, with comments. Note that each input is considered a
distinct document with separate ID spaces.

4. If pronouns are not resolved to a named entity, they get the index -1 as shown here:

>He went to Washington.

Sentence Text= He went to Washington.
mention text=He type=MALE PRONOUN id=-1
mention text=Washington type=LOCATION id=0

5. The following case also results in a -1 value for id, because there is not one unique
person in the prior context but two. This is called a failed uniqueness presupposition:

>Jay Smith and Jim Jones went to Washington. He was a senator.
Sentence Text=Jay Smith and Jim Jones went to Washington.
mention text=Jay Smith type=PERSON id=0

mention text=Jim Jones type=PERSON id=1

mention text=Washington type=LOCATION id=2

Sentence Text= He was a senator.

mention text=He type=MALE PRONOUN id=-1

6. The following code shows that John Smith can be resolved to a female pronoun as
well. This is because there is no data about what names indicate which genders. It
can be added, but generally, the context will disambiguate. John could be a female
name. The key here is that the pronoun will disambiguate the gender, and a following
male pronoun will fail to match:

Frank Smith went to Washington. She was a senator.

Sentence Text=Frank Smith went to Washington.
mention text=Frank Smith type=PERSON id=0
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mention text=Washington type=LOCATION id=1
Sentence Text=She was a senator.
mention text=She type=FEMALE PRONOUN id=0

7. The gender assignment will block reference by an incorrect gender. The He pronoun
in the following code is resolved to ID -1, because the only person is resolved to a
female pronoun:

John Smith went to Washington. She was a senator. He is now a
lobbyist.
Sentence Text=John Smith went to Washington.
mention text=John Smith type=PERSON id=0
mention text=Washington type=LOCATION id=1
Sentence Text=She was a senator.
mention text=She type=FEMALE PRONOUN id=0
Sentence Text=He is now a lobbyist.
mention text=He type=MALE PRONOUN id=-1

8. Coreference can happen inside a sentence as well:

>Jane Smith knows her future.

Sentence Text=Jane Smith knows her future.
mention text=Jane Smith type=PERSON id=0
mention text=her type=FEMALE PRONOUN id=0

9. The order of the mentions (ordered by the most recent mention) matters when
resolving mentions. In the following code, He is resolved to James, not John:
John is in this sentence. Another sentence about nothing. James is
in this sentence. He is here.

Sentence Text=John is in this sentence.
mention text=John type=PERSON id=0
Sentence Text=Another sentence about nothing.

Sentence Text=James is in this sentence.
mention text=James type=PERSON id=1
Sentence Text=He is here.
mention text=He type=MALE PRONOUN id=1

10. The same effect takes place with named-entity mentions. The Mr. Smith entity
resolves to the last mention:
John Smith is in this sentence. Random sentence. James Smith is in
this sentence. Mr. Smith is mention again here.
Sentence Text=John Smith is in this sentence.
mention text=John Smith type=PERSON id=0
Sentence Text=Random sentence.
mention text=Random type=ORGANIZATION id=1
Sentence Text=James Smith is in this sentence.
mention text=James Smith type=PERSON id=2
Sentence Text=Mr. Smith is mention again here.
mention text=Mr. Smith type=PERSON id=2
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11. The distinction between John and James goes away if there are too many
intervening sentences:
John Smith is in this sentence. Random sentence. James Smith is

in this sentence. Random sentence. Random sentence. Mr. Smith is
here.

Sentence Text=John Smith is in this sentence.

mention text=John Smith type=PERSON id=0
Sentence Text=Random sentence.

mention text=Random type=ORGANIZATION id=1
Sentence Text=James Smith is in this sentence.

mention text=James Smith type=PERSON id=2
Sentence Text=Random sentence.

mention text=Random type=ORGANIZATION id=1
Sentence Text=Random sentence.

mention text=Random type=ORGANIZATION id=1
Sentence Text=Mr. Smith is here.

mention text=Mr. Smith type=PERSON id=3

The preceding examples are meant to demonstrate the properties of the within-document
coreference system.

The code changes to add pronouns are straightforward. The code for this recipe is in
src/com/lingpipe/cookbook/chapter7/Coreference. java. The recipe assumes
that you understood the previous recipe, so it just covers the addition of pronoun mentions:

Chunking mentionChunking
= neChunker.chunk (sentenceText) ;

Set<Chunk> chunkSet = new TreeSet<Chunk> (Chunk.TEXT_ORDER
COMPARATOR) ;

chunkSet .addAll (mentionChunking.chunkSet ()) ;

We added the Ment ion objects from multiple sources, so there are no order guarantees on
the order of elements anymore. Correspondingly, we created TreeSet and the appropriate
comparator and added all the chunkings from the neChunker.

Next, we will add the male and female pronouns:

addRegexMatchingChunks(MALE_EN_PRONOUNS,"MALE_PRONOUN",
sentenceText, chunkSet) ;

addRegexMatchingChunks(FEMALE_EN_PRONOUNS,"FEMALE_PRONOUN",
sentenceText, chunkSet) ;
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The MALE_EN PRONOUNS constant is a regular expression, Pattern:

static Pattern MALE EN PRONOUNS = Pattern.compile ("\\
b (He |he |Him|him) \\b") ;

The following lines of code show the addRegExMatchingChunks subroutine. It adds
chunks based on regular expression matches and removes the overlapping, existing
HMM-derived chunks:

static void addRegexMatchingChunks (Pattern pattern, String type,
String text, Set<Chunk> chunkSet) {

java.util.regex.Matcher matcher = pattern.matcher (text);

while (matcher.find()) {

Chunk regexChunk

= ChunkFactory.createChunk (matcher.start (),
matcher.end (),
type) ;

for (Chunk chunk : chunkSet) ({

if (ChunkingImpl.overlap (chunk, regexChunk)) {

chunkSet . remove (chunk) ;

}
}

chunkSet .add (regexChunk) ;

}

The one complex bit is that the type for the MALE PRONOUN and FEMALE _PRONOUN pronouns
will be used to match against PERSON entities, with the consequence that the resolution sets
the gender of the resolved-to entity.

Other than that, the code should look very familiar with our standard I/0 loop running the
interaction in the command prompt.

The algorithm behind the system is based on the PhD. thesis of Baldwin. The system was
called CogNIAC, and the work is from the mid '90s and is not a current state-of-the-art
coreference system. A more modern approach would most likely use a machine-learning
framework to take the features generated by Baldwin's approach and many other features
and use it to develop a better performing system. A paper on the system is at http://www.
aclweb.org/anthology/W/W97/W97-1306.pdf
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Cross-document coreference

Cross-document coreference (XDoc) takes the id space of an individual document and makes
it global to a larger universe. This universe typically includes other processed documents and
databases of known entities. While the annotation is trivial, all that one needs to do is swap the
document-scope IDs for the universe-scope IDs. The calculation of XDoc can be quite difficult.

This recipe will tell us how to use a lightweight implementation of XDoc developed over

the course of deploying such systems over the years. We will provide a code overview for
those who might want to extend/modify the code—but there is a lot going on, and the recipe
is quite dense.

The input is in the XML format where each file can contain multiple documents:

<doc id="1">

<title/>

<content>

Breck Baldwin and Krishna Dayanidhi wrote a book about LingPipe.
</content>

</doc>

<doc id="2">

<title/>

<content>

Krishna Dayanidhi is a developer. Breck Baldwin is too.
</content>

</doc>

<doc id="3">

<title/>

<content>

K-dog likes to cook as does Breckles.
</content>

</doc>

The goal is to produce annotations where the mentions of Breck Baldwin share the same
ID across documents as for Krishna. Note that both are mentioned by their nicknames in the
last document.

A very common elaboration of XDoc is linking a database (DB) of known entities to text
mentions of these entities. This bridges the divide between structured DB and unstructured
data (text), which many consider to be the next big thing in business intelligence / voice of
the customer / enterprise-knowledge management. We have built systems that linked DBs
of genes/proteins to MEDLINE abstracts and persons-of-interest lists to free text, and so on.
DBs also provide a natural way for human editors to control how XDoc behaves.
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How to do it...

All the code for this recipe is in the com. lingpipe.cookbook.chapter7.tracker
package.

1.

Gain access to your IDE and run RunTracker or type the following command in the
command line:

java -cp lingpipe-cookbook.l.0.jar:1lib/lingpipe-4.1.0.jar: com.
lingpipe.cookbook.chapter7.tracker.RunTracker

The screen will scroll by with the analysis of documents, but we will go to the
designated output file and examine it. Open cookbook/data/xDoc/output/
docs1.xml in your favorite text editor. You will see a poorly formatted version of the
example output, unless your editor automatically formats XML usefully—the Firefox
web browser does a decent job of rendering XML. The output should look like this:

<docs>

<doc id="1">

<title/>

<content>

<s index="0">

<entity id="1000000001" type="OTHER">Breck Baldwin</

entity> and <entity id="1000000002" type="OTHER">Krishna
Dayanidhi</entity> wrote a book about <entity id="1000000003"
type="OTHER">LingPipe.</entity>

</s>

</content>

</doc>

<doc id="2">

<title/>

<content><s index="0">

<entity id="1000000002" type="OTHER">Krishna Dayanidhi</entity> is
a developer.

</s>

<s index="1"><entity 1d="1000000001" type="OTHER">Breck Baldwin</
entity> is too.

</s>

</content>

</doc>

<doc i1d="3"><title/><content><s index="0">K-dog likes to cook as
does <entity 1d="1000000004" start="28" type="OTHER">Breckles</
entitys>.</s></content></doc>

</docs>
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3.

268

Krishna is recognized in the first two documents with the shared ID, 1000000002,
but the nickname, K-dog, is not recognized at all. Breck is recognized in all three
documents, but since the ID on the third mention, Breckles, is different from the one
in the first two mentions, the system does not consider them to be the same entity.

Next, we will use a DB in the form of a dictionary to improve the recognition of the
authors when they are mentioned via nicknames. There is a dictionary at data/
xDoc/author-dictionary.xml; it looks like this:

<dictionary>
<entity canonical="Breck Baldwin" id="1" speculativeAliases="0"
type="MALE" >
<alias xdc="1">Breck Baldwin</alias>
<alias xdc="1">Breckles</alias>
<alias xdc="0">Breck</alias>
</entity>

<entity canonical="Krishna Dayanidhi" id="2"
speculativeAliases="0" type="MALE">
<alias xdc="1">Krishna Dayanidhi</alias>
<alias xdc="1">K-Dog</alias>
<alias xdc="0">Krishna</alias>
</entity>

The aforementioned dictionary contains nicknames for both authors, in addition
to their first names. Aliases that have the xdc=1 value will be used to link entities
across documents. The xdc=0 value will only apply within a document. All aliases
will be used to identify named entities via a dictionary lookup.

Run the following command, which specifies the entity dictionary or IDE equivalent:

java -cp lingpipe-cookbook.l.0.jar:1lib/lingpipe-4.1.0.jar: com.
lingpipe.cookbook.chapter?7.tracker.RunTracker data/xDoc/author-
dictionary.xml

The output in xDoc/output /docsl.xml is very different from that of the previous
run. First, note that the IDs for us are now the same as specified in the dictionary
file: 1 for Breck and 2 for Krishna. This is a link between the structured DB, such
as the nature of the dictionary and unstructured text. Second, notice that both our
nicknames have been correctly identified and assigned to the correct IDs. Third, note
that the types are now MALE instead of OTHER:

<docs>

<doc id="1">
<title/>
<contents>

<s index="0">

<entity id="1" type="MALE">Breck Baldwin</entity> and <entity
id="2" type="MALE">Krishna Dayanidhi</entity> wrote a book about
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<entity id="1000000001" type="OTHER">LingPipe.</entity>

</s>

</content>

</doc>

<doc id="2">

<title/>

<content>

<s index="0">

<entity id="2" start="0" type="MALE">K-dog</entity> likes to cook
as does <entity id="1" start="28" type="MALE">Breckles</entitys>.
</s>

</content>

</doc>

</docs>

This was a very quick introduction to how to run XDoc. In the next section, we will see
how it works.

Up until this recipe, we have attempted to keep code simple, straightforward, and
understandable without a deep dive into piles of source. This recipe is more complicated.

The code that backs this recipe is not going to fit into the allocated space for complete
explanation. The exposition assumes that you will explore entire classes on your own and that
you will refer to other recipes in this book for explanation. We offer this recipe because XDoc
coreference is a very interesting problem, and our existing infrastructure might help others
explore the phenomenon. Welcome to the deep end of the pool.

The batch process life cycle

The entire process is controlled by the RunTracker. java class. The overall flow of the
main () method is as follows:

1. Read the DB of known entities that will be a source of named-entity recognition via
Dictionary and a known mapping from aliases to dictionary entries. Aliases come
with instructions regarding whether they should be used for matching entities across
documents via the xdc=1 or xdc=0 flag.

2. SetupEnitityUniverse, which is the global data structure of IDs for what is found
in the texts and from the mentioned dictionary of known entities.

3. Set up what is needed for within-document coreference—things such as a tokenizer,
sentence detector, and named-entity detector. It gets a bit fancy with a POS tagger
and some word counts.

269



Finding Coreference Between Concepts/People

4. There is a Boolean that controls whether speculative entities will be added. If this
Boolean is true, it means that we will update our universe of cross-document
entities with the ones that we have never seen before. It is a much tougher task to
reliably compute with this set to true.

5. All the mentioned configuration goes into creating a Tracker object.

6. Then, the main () method reads in documents to process, hands them off to the
Tracker object for processing, and writes them to disk. The major steps of the
Tracker.processDocuments () method are as follows:

1. Take a set of documents in the XML format and get the individual documents.

2. For each document, apply the processDocument () method, which runs
within-document coreference using the dictionary to help find entities as
well as the named-entity detector and returns MentionChain[]. Then,
resolve the individual mentions' chains against the entity universe to update
document-level IDs to entity universe IDs. The last step is to write the
document to disk with the entity universe IDs.

That is all that we will say about RunTracker; there is nothing in there that you should not
be able to handle in the context of this book. In the following sections, we will address the
individual components that RunTracker uses.

Setting up the entity universe

The entity universe EntityUniverse. java, is an in-memory representation of the global
entities mentioned in a document/database collection. The entity universe also contains
various indexes into these entities, which support computing XDoc on individual documents.

The dictionary seeds the EntityUniverse file with known entities, and the documents
processed subsequently are sensitive to these entities. The XDoc algorithm tries to merge with
existing entities before creating new ones, so the dictionary entities are strong attractors for
mentions of these entities.

Each entity consists of a unique long ID, a set of aliases partitioned into four separate lists
and a type (person, location, and so on). Whether the entity is in the user-defined dictionary
and whether speculative mentions are allowed to be added to the entity are also mentioned.
The toString () method lists an entity as:

id=556 type=ORGANIZATION userDefined=true allowSpec=false user
XDC=[Nokia Corp., Nokial] user non-XDC=[] spec XDC=[] spec non-XDC

=11
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The global data structures are as follows:
private long mLastId = FIRST SYSTEM ID;

Entities need unique IDs, and we have a convention that the FIRST SYSTEM ID valueis a
large integer, such as 1, 000, 000. This provides a space (IDs < 1,000,000) for users to add
new entities without collisions with entities found by the system.

We will instantiate a tokenizer for use across the tracker:
private final TokenizerFactory mTokenizerFactory;
There is a global mapping from unique entity IDs to the entities:

private final Map<Long,Entity> mIdToEntity
= new HashMap<Long, Entity>() ;

Another important data structure is a mapping from aliases (phrases) to entities that have
the alias—mXdcPhraseToEntitySet. Only phrases that are candidates for finding likely
matches for cross-document coreference get added here. From the dictionary, the aliases
that are xdc=1 are added:

private final ObjectToSet<String,Entity> mXdcPhraseToEntitySet
= new ObjectToSet<String,Entity>() ;

For speculatively found aliases, if the alias has at least two tokens and is not already on
another entity, it is added to this set. This reflects a heuristic that tries hard to not split the
entities apart. The logic of this is quite twisted and beyond the scope of this tutorial. You
can referto EntityUniverse.createEntitySpeculative and EntityUniverse.
addPhraseToEntity for the code

Why are some aliases not used in finding candidate entities? Consider that George has very
little descriptive content to discriminate entities in EntityUniverse, but George H.W.
Bush has much more information to work with.

ProcessDocuments() and ProcessDocument()

The interesting bits start to happen in the Tracker.processDocuments () method, which
calls the XML parsing of each document and then incrementally calls the processDocument ()
method. The code is straightforward for the former, so we will move on to where the more task-
specific work happens with the processDocument () method called:

public synchronized OutputDocument processDocument (
InputDocument document) {

WithinDocCoref coref
= new WithinDocCoref (mMentionFactory) ;

String title = document.title() ;
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String content = document.content () ;

List<String> sentenceTextList = new ArrayList<Strings>();
List<Mention[] > sentenceMentionList
= new ArrayList<Mention[]>() ;

List<int []> mentionStartList = new ArrayList<int[]>();
List<int []> mentionEndList = new ArrayList<int[]>();

int firstContentSentenceIndex
= processBlock(title, 0,
sentenceTextList,
sentenceMentionList,
mentionStartList,mentionEndList,
coref) ;

processBlock (content, firstContentSentenceIndex,
sentenceTextList,
sentenceMentionList,
mentionStartList,mentionEndList,
coref) ;

MentionChain[] chains = coref.mentionChains () ;

We used a document format that supports distinguishing the title from the body of the
document. This is a good idea if title case is distinct from body case, as is usual with
newswire. The chains variable will have chains from the title and body of the text, with
possible coreference between them. The mentionStartList and mentionEndList
arrays will make it possible to realign the document scoped IDs with the entity universe
scoped IDs later in the method:

Entity[] entities = mXDocCoref.xdocCoref (chains) ;

Computing XDoc

The XDoc code is the result of many hours of hand-tuning the algorithm to work well on
news-style data. It has been run on datasets in the 20,000 document range and is designed
to support dictionary entries very aggressively. The code also attempts to prevent short
circuits, which occur when obviously different entities have been merged together. If you
mistakenly make Barbara Bush and George Bush coreferent in your global database,

then you will have embarrassingly bad results that users will see.

The other sort of error is having two entities in the global store when one will do. This is a sort
of Superman/Clark Kent problem that can also apply to multiple mentions of the same name.
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We will begin with the top-level code:

public Entity[] xdocCoref (MentionChain[] chains) { Entity[]
entities = new Entity[chains.length];

Map<MentionChain, Entity> chainToEntity
= new HashMap<MentionChain, Entity>() ;
ObjectToSet<Entity,MentionChain> entityToChainSet
= new ObjectToSet<Entity,MentionChains> () ;

for (MentionChain chain : chains)
resolveMentionChain ( (TTMentionChain) chain,
chainToEntity, entityToChainSet) ;

for (int i = 0; i < chains.length; ++i) {
TTMentionChain chain = (TTMentionChain) chains[i];
Entity entity = chainToEntity.get (chain) ;

if (entity != null) {
if (Tracker.DEBUG) ({
System.out.println ("XDOC: resolved to" + entity);
Set chainSetForEntity = entityToChainSet.get (entity) ;
if (chainSetForEntity.size() > 1)

System.out.println ("XDOC: multiple chains
resolved to same entity " + entity.id());

}

entities[i] = entity;

if (entity.addSpeculativeAliases())
addMentionChainToEntity (chain,entity) ;

} else {
Entity newEntity = promote(chain) ;
entities[i] = newEntity;

}

return entities;

}

A document has a list of mention chains, and each mention chain will be either added to an
existing entity, or the mention chain will be promoted to being a new entity. Mention chains
must contain a mention that is not pronominal, which is handled at the within-document
coreference level.
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Three data structures are updated as each mention chain is processed:

» The Entity[] entities are returned by the xdocCoref method to support the inline
annotation of the documents.

» Map<MentionChain,Entity> chainToEntity maps from mention chains
to entities.

» ObjectToSet<Entity,MentionChain> entityToChainSet isthe converse
of chainToEntity. Itis possible that multiple chains in the same document get
mapped to the same entity, so this data structure is sensitive to this possibility. This
version of the code allows this to happen—in effect, XDoc is setting up a within-doc
resolution as a side effect.

Simple enough, if an entity is found, then the addMentionChainToEntity () method
adds any new information from the mention chain to the entity. New information can include
new aliases and type changes (that is, a person is moved to being male or female in virtue
of a disambiguating pronoun reference). If no entity is found, then the mention chain goes to
promote (), which creates a new entity in the entity universe. We will start with promote ().

The promote() method

The entity universe is a minimalist data structure that just keeps track of phrases, types,
and IDs. The TTMentionChain class is a more complex representation of the mentions
of a particular document:

private Entity promote (TTMentionChain chain)
Entity entity
= mEntityUniverse.createEntitySpeculative (
chain.normalPhrases(),
chain.entityType());
if (Tracker.DEBUG)
System.out.println("XDOC: promoted " + entity);

return entity;

}

The call to mEntityUniverse.createEntitySpeculative only requires the phrases

for the chain (in this case, normalized phrases that have been lowercased and in which all
sequences of whitespaces converted into a single space) and the type of the entity. No record

is kept of the document from which the mention chain came, counts, or other potentially useful
information. This is to keep the memory representation as small as possible. If there is a need
to find all the sentences or documents that an entity is mentioned in (a common task), then that
mapping from entity IDs has to be stored elsewhere. The XML representation produced for the
document after XDoc is run is a natural place to start addressing these needs.
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The createEntitySpeculative() method

Creation of a speculatively found new entity only requires determining which of its aliases
are the good candidates to link mention chains. Those that are good for cross-document
coreference go into the xdcPhrases set, and the others go into the nonXdc phrases:

public Entity createEntitySpeculative (Set<Strings> phrases,
String entityType) ({
Set<String> nonXdcPhrases = new HashSet<Strings () ;
Set<String> xdcPhrases = new HashSet<Strings> () ;
for (String phrase : phrases)
if (isXdcPhrase (phrase,hasMultiWordPhrases))
xdcPhrases.add (phrase) ;
else
nonXdcPhrases.add (phrase) ;

}

while (mIdToEntity.containsKey (++mLastId))
next untaken ID

Entity entity = new Entity(mLastId,entityType,
null,null, xdcPhrases, nonXdcPhrases) ;

; // move up to

add (entity) ;
return entity;

}

The boolean method, XdcPhrase (), plays a critical role in the XDoc process. The current
approach supports a very conservative notion of what a good XDoc phrase is. Intuitively, in
the domain of newswire, phrases such as he, Bob, and John Smith are poor indicators of
a unique individual being talked about. Good phrases might be Breckenridge Baldwin,
because that is likely a unique name. There are lots of fancy theories for what is going on
here, see rigid designators (http://en.wikipedia.org/wiki/Rigid designator).
The next few lines of code run roughshod over 2,000 years of philosophical thought:

public boolean isXdcPhrase (String phrase,
boolean hasMultiWordPhrase) {

if (mXdcPhraseToEntitySet.containsKey (phrase)) {
return false;

if (phrase.indexOf (' ') == -1 && hasMultiWordPhrase) {
return false;

if (PronounChunker.isPronominal (phrase)) {
return false;

}

return true;
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This approach attempts to identify the bad phrases for XDoc rather than the good ones.
The reasoning is as follows:

» There is already an entity associated with the phrase: This enforces an
assumption that there is only one John Smith in the world. This worked very well
for intelligence-gathering applications, where the analysts had little trouble teasing
apart the John Smith cases. You can refer to the The John Smith problem recipe
at the end of this chapter for more about this.

» The phrase is only one word, and there are multiword phrases associated with the
mention chain or entity: This assumes that longer words are better for XDoc. Note
that different orders of entity creation can result in one-word phrases having xdc to
be true on entities with multiword aliases.

» The phrase is a pronoun: This is a fairly safe assumption, unless we are in
religious texts where He or Him capitalized in the middle of a sentence indicate
reference to God.

Once the sets of xdc and nonXdc phrases are known, then the entity is created. Refer to the
source code for Entity.java to understand how entities are created.

Then, the entity is created, and an add method updates a mapping in the EntityUniverse
file of xdc phrases to entity IDs:

public void add(Entity e)
if (e.id() > mLastId)
mLastId = e.id() ;
mIdToEntity.put (new Long(e.id()) ,e);
for (String phrase : e.xdcPhrases()) ({
mXdcPhraseToEntitySet.addMember (phrase, e) ;

}

The EntityUniverse file's global mXdcPhraseToEntitySet variable is the key to finding
candidate entities for XDoc as used in xdcEntitiesToPhrase ().

The XDocCoref.addMentionChainToEntity() entity

Returning to the XDocCoref .xdocCoref () method, we have covered how to create a new
entity via XDocCoref .promote (). The next option to cover is what happens when a mention
chain is resolved to an existing entity, namely XDocCoref .addMentionChainToEntity ().
For the speculative mentions to be added, the entity must allow speculatively found mentions
as provided by the Entity.allowSpeculativeAliases () method. This is a feature of the
user-defined dictionary entities discussed in user-defined entities. If speculative entities are
allowed, then the mention chains are added to the entity with a sensitivity to whether they are
xdc phrases or not:

private void addMentionChainToEntity (TTMentionChain chain,
Entity entity) {
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for (String phrase : chain.normalPhrases())
mEntityUniverse.addPhraseToEntity (normalPhrase,
entity) ;

}

The only change that adding a mention chain can add to an entity is the addition of a new
phrase. The additional phrases are classified for whether they are xdc or not in the same way
as was done in the promotion of a mention chain.

At this point, we have gone over the basics of how mention chains from documents are either
promoted to speculative entities or are merged with existing entities in EntityUniverse.
Next, we will take a look at how resolution occurs in XDocCoref . resolveMentionChain ().

The XDocCoref.resolveMentionChain() entity

The XDocCoref .resolveMentionChain () method assembles a covering set of entities
that can possibly match the mention chain being resolved and then attempt to find a unique
entity via a call to XDocCoref .resolveCandates ():

private void resolveMentionChain (TTMentionChain chain,

Map<MentionChain, Entity> chainToEntity,
ObjectToSet<Entity,MentionChain> entityToChainSet) {

if (Tracker.DEBUG)
System.out.println ("XDOC: resolving mention chain "

+ chain) ;
int maxLengthAliasOnMentionChain = 0;
int maxLengthAliasResolvedToEntityFromMentionChain = -1;

Set<String> tokens = new HashSet<Strings () ;

Set<Entity> candidateEntities = new HashSet<Entity>() ;

for (String phrase : chain.normalPhrases())

String[] phraseTokens = mEntityUniverse.normalTokens (phrase) ;

String normalPhrase
= mEntityUniverse.concatenateNormalTokens (phraseTokens) ;

for (int i = 0; 1 < phraseTokens.length; ++1i) {
tokens.add (phraseTokens [1]) ;

int length = phraseTokens.length;
if (length > maxLengthAliasOnMentionChain) {
maxLengthAliasOnMentionChain = length;
}
Set<Entity> matchingEntities
= mEntityUniverse.xdcEntitiesWithPhrase (phrase) ;
for (Entity entity : matchingEntities)
if (null != TTMatchers.unifyEntityTypes (
chain.entityType(),
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entity.type())) {
if (maxLengthAliasResolvedToEntityFromMentionChain
< length)
maxLengthAliasResolvedToEntityFromMentionChain
= length;

candidateEntities.add (entity) ;

}
}
}

resolveCandidates (chain,
tokens,
candidateEntities,

maxLengthAliasResolvedToEntityFromMentionChain ==
maxLengthAliasOnMentionChain,

chainToEntity,
entityToChainSet) ;}

The code assembles a set of entities by doing a lookup into the entity universe with
EntityUniverse.xdcEntitiesWithPhrase (). All aliases for the mention chain are tried
without consideration of whether they are good XDoc aliases. Before the entities are added

to candidateEntities, the type returned must be consistent with the type of the mention
chain as determined by TTMatchers.unifyEntityTypes. This way, Washington,

a location is not resolved to Washington, a person. A bit of record keeping is done to
determine whether the longest alias on the mention chain has matched an entity.

The resolveCandidates() method

The resolveCandidates () method captures a key assumption that holds both for within-
document and XDoc coreferences—this unambiguous reference is the only basis of resolution.
In the within-document case, an example where humans have this problem is the sentence,
Bob and Joe were working together. He fell into the threshing machine.
Who is he referring to? The linguistic expectation that a singular referring term have a unique
antecedent is called a uniqueness presupposition. An example XDoc case is as follows:

» Docl: John Smith is a character from Pocohontas
» Doc2: John Smith is the chairman or GM
» Doc3: John Smith is admired
Which John Smith does the John Smith from Doc3 go with? Perhaps, neither.
The algorithm in this software requires that there should be a single possible entity that

survives the matching criteria. If there is more than one or zero, then a new entity is created.
The implementation is as follows:

private void resolveCandidates (TTMentionChain chain,
Set<String> tokens,
Set<Entity> candidateEntities,
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boolean resolvedAtMaxLength,
Map<MentionChain, Entity> chainToEntity,

ObjectToSet<Entity,MentionChain>
entityToChainSet)

filterCandidates (chain, tokens, candidateEntities, resolvedAtMax

Length) ;
if (candidateEntities.size() == 0)
return;
if (candidateEntities.size() == 1) {
Entity entity = Collections.<Entity>getFirst (candidateEnt
ities) ;
chainToEntity.put (chain, entity) ;
entityToChainSet.addMember (entity, chain) ;
return;
}
// BLOWN Uniqueness Presupposition; candidateEntities.size() >
1

if (Tracker.DEBUG)

System.out.println("Blown UP; candidateEntities.size()=" +
candidateEntities.size()) ;

}

The filterCandidates method eliminates all the candidate entities that fail for various
semantic reasons. Coreference with an entity in the entity universe only happens if there is
a single possible solution. There is not a distinction between too many candidate entities
(more than one) or too few (zero). In a more advanced system, one could try and further
disambiguate if there are too many entities via context.

This is the heart of the XDoc code. The rest of the code marks up the document
with entity-universe-relevant indices as returned by the xdocCoref method, which
we just covered:

Entity[] entities = mXDocCoref.xdocCoref (chains) ;

The following for loop iterates over the mention chains, which are aligned with Entities[]
returned by xdocCoref. For each mention chain, the mention is mapped to its cross-
document entity:

Map<Mention, Entity> mentionToEntityMap
= new HashMap<Mention, Entitys>() ;
for (int i = 0; i < chains.length; ++i){
for (Mention mention : chains[i] .mentions()) ({
mentionToEntityMap.put (mention,entities[i]) ;
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Next, the code will set up a bunch of mappings to create chunks that reflect the entity
universe IDs:

String[] sentenceTexts
= sentenceTextList
.<String>toArray (new String[sentenceTextList.size()])
Mention[] [] sentenceMentions
= sentenceMentionList

.<Mention[] >toArray (new Mention[sentenceMentionList.
size()11[1);

int [] [] mentionStarts
= mentionStartList
.<int [] >toArray (new int [mentionStartList.size()][]);

int [] [] mentionEnds
= mentionEndList

.<int [] >toArray (new int [mentionEndList.size()][]);
The actual creation of the chunks happens next:

Chunking[] chunkings = new Chunking[sentenceTexts.length];
for (int i = 0; i < chunkings.length; ++i) ({
ChunkingImpl chunking = new ChunkingImpl (sentenceTexts[i]) ;
chunkings[i] = chunking;
for (int j = 0; j < sentenceMentions([i].length; ++j) {
Mention mention = sentenceMentions[i] [j];
Entity entity = mentionToEntityMap.get (mention) ;
if (entity == null) {
Chunk chunk = ChunkFactory.createChunk (mentionStarts([i] []],
mentionEnds [1] []],
mention.entityType ()
+ "e-1m);
//chunking.add (chunk) ; //uncomment to get unresolved ents as -1
indexed.
} else {
Chunk chunk = ChunkFactory.createChunk (mentionStarts([i] []],
mentionEnds [i] []],
entity.type ()
+ ":" + entity.id());
chunking.add (chunk) ;
}
}
}
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The chunkings are then used to create the relevant portions of the document, and
OutputDocument is returned:

// needless allocation here and last, but simple
Chunking[] titleChunkings = new Chunking[firstContentSentence
Index] ;
for (int 1 = 0; 1 < titleChunkings.length; ++1i)
titleChunkings[i] = chunkings[i];

Chunking[] bodyChunkings = new Chunking[chunkings.length -
firstContentSentencelIndex] ;
for (int i = 0; i < bodyChunkings.length; ++1i)
bodyChunkings [i] = chunkings[firstContentSentenceIndex+i];

String id = document.id() ;

OutputDocument result = new OutputDocument (id, titleChunkings,
bodyChunkings) ;
return result;

}

So, this is what we have to offer as a starting place for XDoc coreference. Hopefully, we have
explained the intentions behind the more opaque methods. Good luck!

The John Smith problem

Different people, locations, and concepts can have the same orthographic representation
but be distinct. There are multiple instances of "John Smith", "Paris", and "bank" in the world,
and a proper cross-document coreference system should be able to handle it. For the case of
concepts such as "bank" (a river bank versus a financial bank), the term of art is word-sense
disambiguation. This recipe will demonstrate one approach to the problem that Baldwin
developed back in the day with Amit Bagga for person disambiguation.

Getting ready

The code for this recipe closely follows the clustering tutorial at http://alias-i.com/
lingpipe/demos/tutorial/cluster/read-me.html but changes it to more closely fit
the original Bagga-Baldwin work. There is a fair amount of code but nothing very complicated.
The source is in src/com/1ingpipe/cookbook/chapter7/JohnSmith.java
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The class starts with the standard panoply of NLP tools for tokenization, sentence detection,
and named-entity detection. Refer to the previous recipes if this stack is unfamiliar:

public static void main(String[] args)
throws ClassNotFoundException, IOException {

TokenizerFactory tokenizerFactory = IndoEuropeanTokenizerFactory.
INSTANCE;

SentenceModel sentenceModel

= new IndoEuropeanSentenceModel () ;

SENTENCE_CHUNKER

= new SentenceChunker (tokenizerFactory, sentenceModel) ;

File modelFile

= new File("models/ne-en-news-mucé6.
AbstractCharLmRescoringChunker") ;

NAMED_ENTITY CHUNKER

= (Chunker) AbstractExternalizable.readObject (modelFile) ;

Next up, we will revisit TfIdfDistance. However, the task requires that we wrap the class to
operate over Document s rather than CharSequences, because we would like to retain the
filename and be able to manipulate what text is used for the calculations to come:

TfIdfDocumentDistance tfIdfDist = new TfIdfDocumentDistance (tokenizer
Factory) ;

Dropping to the referenced class, we have the following code:

public class TfIdfDocumentDistance implements Distance<Documents {
TfIdfDistance mTfIdfDistance;
public TfIdfDocumentDistance (TokenizerFactory tokenizerFactory)
mTfIdfDistance = new TfIdfDistance (tokenizerFactory) ;

}

public void train(CharSequence text) {
mTfIdfDistance.handle (text) ;

@Override
public double distance (Document docl, Document doc2) {
return mTfIdfDistance.distance (docl.mCoreferentText,
doc2.mCoreferentText) ;
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The train method interfaces with the TfIdfDistance.handle () method and provides
an implementation of a distance (Document docl, Document doc2) method that will
drive the clustering code discussed below. All that the train method does is pull out the
relevant text and hand it off to the TE1dfDistance class for the relevant value.

The reference class, Document, is an inner class in JohnSmith, and it is quite simple. It gets
sentences that have entities which match the . *John Smith. * pattern and puts them in
the mCoreferentText variable:

static class Document {
final File mFile;
final CharSequence mText;
final CharSequence mCoreferentText;
Document (File file) throws IOException {
mFile = file; // includes name
mText = Files.readFromFile(file,Strings.UTF8) ;
Set<String> coreferentSents
= getCoreferentSents(".*John " +
"Smith.*", mText.toString()) ;
StringBuilder sb = new StringBuilder() ;
for (String sentence : coreferentSents) {
sb.append (sentence) ;

}

mCoreferentText = sb.toString() ;

public String toString() {
return mFile.getParentFile() .getName () + "/"
+ mFile.getName () ;

}
Going deeper into the code, we will now visit the getCoreferentSents () method:

static final Set<String> getCoreferentSents (String targetPhrase,
String text) ({
Chunking sentenceChunking
= SENTENCE_CHUNKER.chunk (text) ;
Iterator<Chunk> sentencelt
= sentenceChunking.chunkSet () .iterator () ;
int targetlId = -2;
MentionFactory mentionFactory = new EnglishMentionFactory () ;
WithinDocCoref coref = new WithinDocCoref (mentionFactory) ;
Set<String> matchingSentenceAccumulator
= new HashSet<Strings> () ;
for (int sentenceNum = 0; sentenceIt.hasNext(); ++sentenceNum) {

283



Finding Coreference Between Concepts/People

Chunk sentenceChunk = sentencelt.next () ;
String sentenceText
= text.substring(sentenceChunk.start (),
sentenceChunk.end()) ;
Chunking neChunking
= NAMED ENTITY CHUNKER.chunk (sentenceText) ;
Set<Chunk> chunkSet
= new TreeSet<Chunks> (Chunk.TEXT ORDER COMPARATOR) ;

chunkSet.addall (neChunking.chunkSet ()) ; Coreference.
addRegexMatchingChunks (

Pattern.compile ("\\bJohn Smith\\b"),

"PERSON", sentenceText, chunkSet) ;
Iterator<Chunk> neChunkIt = chunkSet.iterator () ;
while (neChunkIt.hasNext ())

Chunk neChunk = neChunkIt.next () ;
String mentionText
= sentenceText.substring (neChunk.start (),
neChunk.end()) ;
String mentionType = neChunk.type() ;
Mention mention
= mentionFactory.create (mentionText,mentionType) ;
int mentionId
= coref.resolveMention (mention, sentenceNum) ;
if (targetId == -2 && mentionText.matches (targetPhrase))
targetId = mentionId;
}
if (mentionId == targetId) ({
matchingSentenceAccumulator.add (sentenceText) ;
System.out.println("Adding " + sentenceText) ;

System.out.println (" mention text=" + mentionText
+ " type=" + mentionType
+ " id=" + mentionId) ;
}
}
}
if (targetId == -2) {
System.out.println("!!!Missed target doc " + text);

}

return matchingSentenceAccumulator;

}
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Look at the Cross-document coreference recipe for most of the moving parts of the preceding
method. We will call out a few notable bits. We are cheating in some sense by using a regular
expression chunker to find any string that has as a John Smith substring and adding it in

as a PERSON entity. Like most kinds of cheating, this is quite useful if your sole purpose in

life is tracking John Smith. The cheating we did in reality was to use dictionary matching to
find all variations of high-value intelligence targets such as Osama bin Laden. In the end,
we had over 40 versions of his name scouring openly available news sources as a part of the
MITAP project.

Further, as each sentence is processed, we will check all the mentions for a matching pattern
for John Smith, and if so, we will collect any sentence that has a mention of this ID. This
means that a sentence that refers back to John Smith with a pronoun will be included, as
will the Mr. Smith cases if coreference is doing its job. Note that we need to see a match
for John Smith before we start collecting contextual information, so we will miss the first
sentence of He awoke. John Smith was a giant cockroach. Also note thatif a
second John Smith shows up with a different ID, it will be ighored—this can happen.

Finally, note that there is some error checking, in that if John Smith is not found, then an
error is reported to System. out.

If we pop back to mundane I/0 slinging in our main () method after setting up
TfIdfDocumentDistance, we would have:

File dir = new File(args[0]);
Set<Set<Document>> referencePartition
= new HashSet<Set<Documents>> () ;
for (File catDir : dir.listFiles()) {
System.out.println("Category from file=" + catDir) ;
Set<Document> docsForCat = new HashSet<Documents () ;
referencePartition.add (docsForCat) ;
for (File file : catDir.listFiles()) {
Document doc = new Document (file) ;
tfIdfDist.train(doc.mText) ;
docsForCat .add (doc) ;

}

We have not discussed this, but the truth annotation of which document references which
Mr. Smith is encoded in the directory structure of the data. Each subdirectory in the top
johnSmith directory is treated as the truth cluster. So, referencePartition contains
the truth. We could have wrapped this as a classification problem with each subdirectory, the
correct classification. We will leave it as an exercise to you to stuff this into a cross-validating
corpus with a logistic regression solution.
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Moving on, we will construct the test set by flattening our previous categories into a single
set of Documents. We could have done this in the previous step, but mixing tasks tends to
produce bugs, and the extra for loop does very little damage to the execution speed:

Set<Document> docSet = new HashSet<Documents> () ;
for (Set<Documents> cluster : referencePartition) {
docSet.addAll (cluster) ;

}

Next, we will tee up the clustering algorithms. We will do both CompleteLink and
SingleLink driven by TfIdfDocumentDistance that runs the show:

HierarchicalClusterer<Document> clClusterer

= new CompletelLinkClusterer<Documents> (tfIdfDist) ;
Dendrogram<Document> completeLinkDendrogram

= clClusterer.hierarchicalCluster (docSet) ;

HierarchicalClusterer<Document> slClusterer

= new SingleLinkClusterer<Documents> (tfIdfDist) ;
Dendrogram<Document> singleLinkDendrogram

= slClusterer.hierarchicalCluster (docSet) ;

The details of the clustering algorithms are covered in Chapter 5, Finding Spans in

Texts - Chunking. Now, we will report performance based on the number of clusters

varied from 1 to the number of inputs. The one fancy bit is that the Cross category uses
SingleLinkClusterer as the reference and CompleteLinkClusterer as the response:

System.out.println() ;
System.out.println (" —------ - oo "
4+ M- n) .

System.out.println("| K | Complete | Single | "
+ " Cross ") ;

System.out.println("| | P R F | P R F | P
yom R F ") ;

System.out.println(" -------------"---"-"----~—“"-“—~ -~~~ —~—~—~—~—~—~—~—~—~—~———— - "
T "

for (int k = 1; k <= docSet.size(); ++k) {

Set<Set<Document>> clResponsePartition

= completeLinkDendrogram.partitionK (k) ;
Set<Set<Document>> slResponsePartition

= singleLinkDendrogram.partitionK (k) ;

ClusterScore<Document> scoreCL
= new ClusterScore<Document> (referencePartition,

clResponsePartition)
PrecigionRecallEvaluation clPrEval
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= scoreCL.equivalenceEvaluation() ;
ClusterScore<Document> scoreSL
= new ClusterScore<Documents> (referencePartition,
slResponsePartition) ;
PrecisionRecallEvaluation slPrEval
= scoreSL.equivalenceEvaluation() ;

ClusterScore<Document> scoreX
= new ClusterScore<Documents> (clResponsePartition
slResponsePartition) ;
PrecisionRecallEvaluation xPrEval
= scoreX.equivalenceEvaluation() ;

System.out.printf ("| %3d | %$3.2f %3.2f %3.2f | %3.2f %3.2f %3.2f"
+ " | %3.2f %3.2f %3.2f |\n",

k,
clPrEval.precision(),
clPrEval.recall(),
clPrEval.fMeasure (),
slPrEval.precision(),
slPrEval.recall (),
slPrEval.fMeasure (),
xPrEval .precision(),
xPrEval.recall (),
xPrEval.fMeasure()) ;

}

System.out.println (" ------------m oo "

}

That's all that we need to do to get ready for this recipe. This is a rare phenomenon to be
computed, and this is a toy implementation, but the key concepts should be evident.

How to do it...

We will just run this code and then mess with it a bit:

1. Getyourself to a terminal and type:
java -cp lingpipe-cookbook.l.0.jar:1lib/lingpipe-4.1.0.jar: com.
lingpipe.cookbook.chapter7.JohnSmith

2. The result will be piles of information that indicate what sentences are being extracted
for use in the clustering—remember that the truth annotation is determined by the
directory that the files are in. The first cluster is 0:

Category from file=data/johnSmith/0
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3. The code reports sentences that contain references to John Smith:

Adding I thought John Smith marries Pocahontas.''
mention text=John Smith type=PERSON id=5
Adding He's bullets , she's arrows.''
mention text=He type=MALE PRONOUN id=5

4. The pronominal reference to John Smith is the basis of inclusion of the
second sentence.

5. The system output goes on, and finally, we will get the results for a single-link
clustering against the truth and a complete link against the truth. The K column
indicates how many clusters the algorithm was allowed with precision, recall, and
F-measure reported. The first row is in this case that there is only one cluster that will
allow for 100 percent recall and 23 percent precision for both complete and single
links. Looking down at the scores, we can see that the complete link reports the best
F-measure with 11 clusters at 0. 60—in truth, there are 35 clusters. The single-link
approach maxes out F-measure at 68 clusters with 0. 78 and shows much greater
robustness on varying numbers of clusters. The cross case shows that single link
and complete link are quite different in direct comparison as well. Note that some K
values have been eliminated for readability:

| XK | Complete | Single

| | P R F | P R F

| 1| 0.23 1.00 0.38 | 0.23 1.00 0.38
| 2 | 0.28 0.64 0.39 | 0.24 1.00 0.38
| 3 | 0.29 0.64 0.40 | 0.24 1.00 0.39
| 4 | 0.30 0.64 0.41 | 0.24 1.00 0.39
| 5 | 0.44 0.63 0.52 | 0.24 0.99 0.39
| 6 | 0.45 0.63 0.52 | 0.25 0.99 0.39
| 7 | 0.45 0.63 0.52 | 0.25 0.99 0.40
| 8 | 0.49 0.62 0.55 | 0.25 0.99 0.40
| 9 | 0.55 0.61 0.58 | 0.25 0.99 0.40
| 10 | 0.55 0.61 0.58 | 0.25 0.99 0.41
| 11 | 0.59 0.61 0.60 | 0.27 0.99 0.42
| 12 | 0.59 0.61 0.60 | 0.27 0.98 0.42
| 13 | 0.56 0.41 0.48 | 0.27 0.98 0.43
| 14 | 0.71 0.41 0.52 | 0.27 0.98 0.43
| 15 | 0.71 0.41 0.52 | 0.28 0.98 0.43
| 16 | 0.68 0.34 0.46 | 0.28 0.98 0.44
| 17 | 0.68 0.34 0.46 | 0.28 0.98 0.44
| 18 | 0.69 0.34 0.46 | 0.29 0.98 0.44
| 19 | 0.67 0.32 0.43 | 0.29 0.98 0.45
| 20 | 0.69 0.29 0.41 | 0.29 0.98 0.45
| 30 | 0.84 0.22 0.35 | 0.33 0.96 0.49
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The following output constrains clustering not by cluster size but by the max distance
threshold. The output is for the single-link cluster with . 05 increases the distance
and the evaluation is the B-cubed metric. The output is the distance, precision,
recall, and the size of the resulting cluster. The performance at .80 and . 9 is quite
good, but beware of setting production thresholds in this after the fact fashion.

In a production environment, we will want to see much more data before setting

the threshold:
B-cubed eval
Dist: 0.00
Dist: 0.05
Dist: 0.10
Dist: 0.15
Dist: 0.20
Dist: 0.25
Dist: 0.30
Dist: 0.35

g v v W 9y 'd g

B R R R PR R RB R

.00
.00
.00
.00
.00
.00
.00
.00

2ol s o v B s B e

O O O O O O O o

77
.80
.80
.81
.81
.82
.82
.83

size:
size:
size:
size:
size:
size:
size:

size:

189
171
164
157
153
148
144
142
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Dist: 0.40 P: 1.00 R: 0.83 size:141
Dist: 0.45 P: 1.00 R: 0.83 size:141
Dist: 0.50 P: 1.00 R: 0.83 size:138
Dist: 0.55 P: 1.00 R: 0.83 size:136
Dist: 0.60 P: 1.00 R: 0.84 size:128
Dist: 0.65 P: 1.00 R: 0.84 size:119
Dist: 0.70 P: 1.00 R: 0.86 size:108
Dist: 0.75 P: 0.99 R: 0.88 size: 90
Dist: 0.80 P: 0.99 R: 0.94 size: 60
Dist: 0.85 P: 0.95 R: 0.97 size: 26
Dist: 0.90 P: 0.91 R: 0.99 size: 8
Dist: 0.95 P: 0.23 R: 1.00 size: 1
Dist: 1.00 P: 0.23 R: 1.00 size: 1

7. The B-cubed (Bagga, Bierman, and Baldwin) evaluation was created to heavily
penalize pushing large clusters together. It assumes that it is more of a problem to
push lots of documents about George W. Bush together with George H. W. Bush, both
large clusters, than to mistake George Bush, the mechanic who got mentioned once
in the dataset. Other scoring metrics will count both the mistakes as equally bad. It is
the standard scoring metric used in the literature for this phenomenon.

See also

There is a fair amount of work in the research literature on this exact problem. We were not
the first ones to think about this, but we came up with the dominant evaluation metric, and
we released a corpus for other groups to compare themselves with us and each other. Our
contribution is Entity-based cross-document coreferencing using the Vector Space Model by
Bagga and Baldwin in ACL '98 Proceedings of the 36th Annual Meeting of the Association for
Computational Linguistics and 17th International Conference on Computational Linguistics.
There has been much progress since—there are more than 400 citations to this model on
Google Scholar; they are worth a look if this problem is of importance to you.
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A
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running, on tweets 146-148
BaseClassifier<E> classifier interface 14
baseline
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about 269
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Index

processDocument() method 271, 272
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XDocCoref.resolveMentionChain()
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about 146
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URL 150

C
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words, finding in 52-55
CharacterTokenizerFactory 56
CharLmRescoringChunker

URL 205
checkTokensAndWhiteSpaces() method 67
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obtaining from 15-19
deserializing 11-14
evaluating 24-28
evaluating, with cross validation 32-36
running 11-14
thresholding 119-126
training, with cross validation 32-36
working 76-78
classifier.bestCategory() method 119
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